if_ale.c revision 1.5 1 /* $NetBSD: if_ale.c,v 1.5 2009/08/05 07:03:04 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.5 2009/08/05 07:03:04 cegger Exp $");
36
37 #include "bpfilter.h"
38 #include "vlan.h"
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52
53 #include <sys/bus.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <sys/rnd.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_alereg.h>
85
86 static int ale_match(device_t, cfdata_t, void *);
87 static void ale_attach(device_t, device_t, void *);
88 static int ale_detach(device_t, int);
89
90 static int ale_miibus_readreg(device_t, int, int);
91 static void ale_miibus_writereg(device_t, int, int, int);
92 static void ale_miibus_statchg(device_t);
93
94 static int ale_init(struct ifnet *);
95 static void ale_start(struct ifnet *);
96 static int ale_ioctl(struct ifnet *, u_long, void *);
97 static void ale_watchdog(struct ifnet *);
98 static int ale_mediachange(struct ifnet *);
99 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
100
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc *sc);
103 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void ale_txeof(struct ale_softc *);
107
108 static int ale_dma_alloc(struct ale_softc *);
109 static void ale_dma_free(struct ale_softc *);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
113
114 static void ale_stop(struct ifnet *, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
125
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 ale_match, ale_attach, ale_detach, NULL);
128
129 int aledebug = 0;
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 struct ale_softc *sc = device_private(dev);
139 uint32_t v;
140 int i;
141
142 if (phy != sc->ale_phyaddr)
143 return 0;
144
145 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
146 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
147 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
148 DELAY(5);
149 v = CSR_READ_4(sc, ALE_MDIO);
150 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
151 break;
152 }
153
154 if (i == 0) {
155 printf("%s: phy read timeout: phy %d, reg %d\n",
156 device_xname(sc->sc_dev), phy, reg);
157 return 0;
158 }
159
160 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
161 }
162
163 static void
164 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
165 {
166 struct ale_softc *sc = device_private(dev);
167 uint32_t v;
168 int i;
169
170 if (phy != sc->ale_phyaddr)
171 return;
172
173 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
174 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
175 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
176 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
177 DELAY(5);
178 v = CSR_READ_4(sc, ALE_MDIO);
179 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
180 break;
181 }
182
183 if (i == 0)
184 printf("%s: phy write timeout: phy %d, reg %d\n",
185 device_xname(sc->sc_dev), phy, reg);
186 }
187
188 static void
189 ale_miibus_statchg(device_t dev)
190 {
191 struct ale_softc *sc = device_private(dev);
192 struct ifnet *ifp = &sc->sc_ec.ec_if;
193 struct mii_data *mii;
194 uint32_t reg;
195
196 if ((ifp->if_flags & IFF_RUNNING) == 0)
197 return;
198
199 mii = &sc->sc_miibus;
200
201 sc->ale_flags &= ~ALE_FLAG_LINK;
202 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
203 (IFM_ACTIVE | IFM_AVALID)) {
204 switch (IFM_SUBTYPE(mii->mii_media_active)) {
205 case IFM_10_T:
206 case IFM_100_TX:
207 sc->ale_flags |= ALE_FLAG_LINK;
208 break;
209
210 case IFM_1000_T:
211 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
212 sc->ale_flags |= ALE_FLAG_LINK;
213 break;
214
215 default:
216 break;
217 }
218 }
219
220 /* Stop Rx/Tx MACs. */
221 ale_stop_mac(sc);
222
223 /* Program MACs with resolved speed/duplex/flow-control. */
224 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
225 ale_mac_config(sc);
226 /* Reenable Tx/Rx MACs. */
227 reg = CSR_READ_4(sc, ALE_MAC_CFG);
228 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
229 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
230 }
231 }
232
233 void
234 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
235 {
236 struct ale_softc *sc = ifp->if_softc;
237 struct mii_data *mii = &sc->sc_miibus;
238
239 mii_pollstat(mii);
240 ifmr->ifm_status = mii->mii_media_status;
241 ifmr->ifm_active = mii->mii_media_active;
242 }
243
244 int
245 ale_mediachange(struct ifnet *ifp)
246 {
247 struct ale_softc *sc = ifp->if_softc;
248 struct mii_data *mii = &sc->sc_miibus;
249 int error;
250
251 if (mii->mii_instance != 0) {
252 struct mii_softc *miisc;
253
254 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
255 mii_phy_reset(miisc);
256 }
257 error = mii_mediachg(mii);
258
259 return error;
260 }
261
262 int
263 ale_match(device_t dev, cfdata_t match, void *aux)
264 {
265 struct pci_attach_args *pa = aux;
266
267 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
268 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
269 }
270
271 void
272 ale_get_macaddr(struct ale_softc *sc)
273 {
274 uint32_t ea[2], reg;
275 int i, vpdc;
276
277 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
278 if ((reg & SPI_VPD_ENB) != 0) {
279 reg &= ~SPI_VPD_ENB;
280 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
281 }
282
283 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
284 &vpdc, NULL)) {
285 /*
286 * PCI VPD capability found, let TWSI reload EEPROM.
287 * This will set ethernet address of controller.
288 */
289 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
290 TWSI_CTRL_SW_LD_START);
291 for (i = 100; i > 0; i--) {
292 DELAY(1000);
293 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
294 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
295 break;
296 }
297 if (i == 0)
298 printf("%s: reloading EEPROM timeout!\n",
299 device_xname(sc->sc_dev));
300 } else {
301 if (aledebug)
302 printf("%s: PCI VPD capability not found!\n",
303 device_xname(sc->sc_dev));
304 }
305
306 ea[0] = CSR_READ_4(sc, ALE_PAR0);
307 ea[1] = CSR_READ_4(sc, ALE_PAR1);
308 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
309 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
310 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
311 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
312 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
313 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
314 }
315
316 void
317 ale_phy_reset(struct ale_softc *sc)
318 {
319 /* Reset magic from Linux. */
320 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
321 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
322 GPHY_CTRL_PHY_PLL_ON);
323 DELAY(1000);
324 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
325 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
326 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
327 DELAY(1000);
328
329 #define ATPHY_DBG_ADDR 0x1D
330 #define ATPHY_DBG_DATA 0x1E
331
332 /* Enable hibernation mode. */
333 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 ATPHY_DBG_ADDR, 0x0B);
335 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 ATPHY_DBG_DATA, 0xBC00);
337 /* Set Class A/B for all modes. */
338 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 ATPHY_DBG_ADDR, 0x00);
340 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 ATPHY_DBG_DATA, 0x02EF);
342 /* Enable 10BT power saving. */
343 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 ATPHY_DBG_ADDR, 0x12);
345 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 ATPHY_DBG_DATA, 0x4C04);
347 /* Adjust 1000T power. */
348 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 ATPHY_DBG_ADDR, 0x04);
350 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 ATPHY_DBG_ADDR, 0x8BBB);
352 /* 10BT center tap voltage. */
353 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 ATPHY_DBG_ADDR, 0x05);
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_ADDR, 0x2C46);
357
358 #undef ATPHY_DBG_ADDR
359 #undef ATPHY_DBG_DATA
360 DELAY(1000);
361 }
362
363 void
364 ale_attach(device_t parent, device_t self, void *aux)
365 {
366 struct ale_softc *sc = device_private(self);
367 struct pci_attach_args *pa = aux;
368 pci_chipset_tag_t pc = pa->pa_pc;
369 pci_intr_handle_t ih;
370 const char *intrstr;
371 struct ifnet *ifp;
372 pcireg_t memtype;
373 int mii_flags, error = 0;
374 uint32_t rxf_len, txf_len;
375 const char *chipname;
376
377 aprint_naive("\n");
378 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
379
380 sc->sc_dev = self;
381 sc->sc_dmat = pa->pa_dmat;
382 sc->sc_pct = pa->pa_pc;
383 sc->sc_pcitag = pa->pa_tag;
384
385 /*
386 * Allocate IO memory
387 */
388 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
389 switch (memtype) {
390 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
391 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
392 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
393 break;
394 default:
395 aprint_error_dev(self, "invalid base address register\n");
396 break;
397 }
398
399 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
400 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
401 aprint_error_dev(self, "could not map mem space\n");
402 return;
403 }
404
405 if (pci_intr_map(pa, &ih) != 0) {
406 aprint_error_dev(self, "could not map interrupt\n");
407 goto fail;
408 }
409
410 /*
411 * Allocate IRQ
412 */
413 intrstr = pci_intr_string(sc->sc_pct, ih);
414 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
415 if (sc->sc_irq_handle == NULL) {
416 aprint_error_dev(self, "could not establish interrupt");
417 if (intrstr != NULL)
418 aprint_error(" at %s", intrstr);
419 aprint_error("\n");
420 goto fail;
421 }
422
423 /* Set PHY address. */
424 sc->ale_phyaddr = ALE_PHY_ADDR;
425
426 /* Reset PHY. */
427 ale_phy_reset(sc);
428
429 /* Reset the ethernet controller. */
430 ale_reset(sc);
431
432 /* Get PCI and chip id/revision. */
433 sc->ale_rev = PCI_REVISION(pa->pa_class);
434 if (sc->ale_rev >= 0xF0) {
435 /* L2E Rev. B. AR8114 */
436 sc->ale_flags |= ALE_FLAG_FASTETHER;
437 chipname = "AR8114 (L2E RevB)";
438 } else {
439 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
440 /* L1E AR8121 */
441 sc->ale_flags |= ALE_FLAG_JUMBO;
442 chipname = "AR8121 (L1E)";
443 } else {
444 /* L2E Rev. A. AR8113 */
445 sc->ale_flags |= ALE_FLAG_FASTETHER;
446 chipname = "AR8113 (L2E RevA)";
447 }
448 }
449 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
450
451 /*
452 * All known controllers seems to require 4 bytes alignment
453 * of Tx buffers to make Tx checksum offload with custom
454 * checksum generation method work.
455 */
456 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
457
458 /*
459 * All known controllers seems to have issues on Rx checksum
460 * offload for fragmented IP datagrams.
461 */
462 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
463
464 /*
465 * Don't use Tx CMB. It is known to cause RRS update failure
466 * under certain circumstances. Typical phenomenon of the
467 * issue would be unexpected sequence number encountered in
468 * Rx handler.
469 */
470 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
471 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
472 MASTER_CHIP_REV_SHIFT;
473 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
474 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
475
476 /*
477 * Uninitialized hardware returns an invalid chip id/revision
478 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
479 */
480 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
481 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
482 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
483 rxf_len == 0xFFFFFFF) {
484 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
485 "%u Rx FIFO -- not initialized?\n",
486 sc->ale_chip_rev, txf_len, rxf_len);
487 goto fail;
488 }
489
490 if (aledebug) {
491 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
492 txf_len, rxf_len);
493 }
494
495 /* Set max allowable DMA size. */
496 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
497 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
498
499 callout_init(&sc->sc_tick_ch, 0);
500 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
501
502 error = ale_dma_alloc(sc);
503 if (error)
504 goto fail;
505
506 /* Load station address. */
507 ale_get_macaddr(sc);
508
509 aprint_normal_dev(self, "Ethernet address %s\n",
510 ether_sprintf(sc->ale_eaddr));
511
512 ifp = &sc->sc_ec.ec_if;
513 ifp->if_softc = sc;
514 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
515 ifp->if_init = ale_init;
516 ifp->if_ioctl = ale_ioctl;
517 ifp->if_start = ale_start;
518 ifp->if_stop = ale_stop;
519 ifp->if_watchdog = ale_watchdog;
520 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
521 IFQ_SET_READY(&ifp->if_snd);
522 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
523
524 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
525
526 #ifdef ALE_CHECKSUM
527 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
528 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
529 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
530 #endif
531
532 #if NVLAN > 0
533 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
534 #endif
535
536 /* Set up MII bus. */
537 sc->sc_miibus.mii_ifp = ifp;
538 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
539 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
540 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
541
542 sc->sc_ec.ec_mii = &sc->sc_miibus;
543 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
544 ale_mediastatus);
545 mii_flags = 0;
546 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
547 mii_flags |= MIIF_DOPAUSE;
548 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
549 MII_OFFSET_ANY, mii_flags);
550
551 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
552 aprint_error_dev(self, "no PHY found!\n");
553 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
554 0, NULL);
555 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
556 } else
557 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
558
559 if_attach(ifp);
560 ether_ifattach(ifp, sc->ale_eaddr);
561
562 if (!pmf_device_register(self, NULL, NULL))
563 aprint_error_dev(self, "couldn't establish power handler\n");
564 else
565 pmf_class_network_register(self, ifp);
566
567 return;
568 fail:
569 ale_dma_free(sc);
570 if (sc->sc_irq_handle != NULL) {
571 pci_intr_disestablish(pc, sc->sc_irq_handle);
572 sc->sc_irq_handle = NULL;
573 }
574 if (sc->sc_mem_size) {
575 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
576 sc->sc_mem_size = 0;
577 }
578 }
579
580 static int
581 ale_detach(device_t self, int flags)
582 {
583 struct ale_softc *sc = device_private(self);
584 struct ifnet *ifp = &sc->sc_ec.ec_if;
585 int s;
586
587 pmf_device_deregister(self);
588 s = splnet();
589 ale_stop(ifp, 0);
590 splx(s);
591
592 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
593
594 /* Delete all remaining media. */
595 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
596
597 ether_ifdetach(ifp);
598 if_detach(ifp);
599 ale_dma_free(sc);
600
601 if (sc->sc_irq_handle != NULL) {
602 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
603 sc->sc_irq_handle = NULL;
604 }
605 if (sc->sc_mem_size) {
606 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
607 sc->sc_mem_size = 0;
608 }
609
610 return 0;
611 }
612
613
614 static int
615 ale_dma_alloc(struct ale_softc *sc)
616 {
617 struct ale_txdesc *txd;
618 int nsegs, error, guard_size, i;
619
620 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
621 guard_size = ALE_JUMBO_FRAMELEN;
622 else
623 guard_size = ALE_MAX_FRAMELEN;
624 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
625 ALE_RX_PAGE_ALIGN);
626
627 /*
628 * Create DMA stuffs for TX ring
629 */
630 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
631 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
632 if (error) {
633 sc->ale_cdata.ale_tx_ring_map = NULL;
634 return ENOBUFS;
635 }
636
637 /* Allocate DMA'able memory for TX ring */
638 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
639 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
640 &nsegs, BUS_DMA_WAITOK);
641 if (error) {
642 printf("%s: could not allocate DMA'able memory for Tx ring, "
643 "error = %i\n", device_xname(sc->sc_dev), error);
644 return error;
645 }
646
647 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
648 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
649 BUS_DMA_NOWAIT);
650 if (error)
651 return ENOBUFS;
652
653 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
654
655 /* Load the DMA map for Tx ring. */
656 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
657 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
658 if (error) {
659 printf("%s: could not load DMA'able memory for Tx ring.\n",
660 device_xname(sc->sc_dev));
661 bus_dmamem_free(sc->sc_dmat,
662 &sc->ale_cdata.ale_tx_ring_seg, 1);
663 return error;
664 }
665 sc->ale_cdata.ale_tx_ring_paddr =
666 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
667
668 for (i = 0; i < ALE_RX_PAGES; i++) {
669 /*
670 * Create DMA stuffs for RX pages
671 */
672 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
673 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
674 &sc->ale_cdata.ale_rx_page[i].page_map);
675 if (error) {
676 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
677 return ENOBUFS;
678 }
679
680 /* Allocate DMA'able memory for RX pages */
681 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
682 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
683 1, &nsegs, BUS_DMA_WAITOK);
684 if (error) {
685 printf("%s: could not allocate DMA'able memory for "
686 "Rx ring.\n", device_xname(sc->sc_dev));
687 return error;
688 }
689 error = bus_dmamem_map(sc->sc_dmat,
690 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
691 sc->ale_pagesize,
692 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
693 BUS_DMA_NOWAIT);
694 if (error)
695 return ENOBUFS;
696
697 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
698 sc->ale_pagesize);
699
700 /* Load the DMA map for Rx pages. */
701 error = bus_dmamap_load(sc->sc_dmat,
702 sc->ale_cdata.ale_rx_page[i].page_map,
703 sc->ale_cdata.ale_rx_page[i].page_addr,
704 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
705 if (error) {
706 printf("%s: could not load DMA'able memory for "
707 "Rx pages.\n", device_xname(sc->sc_dev));
708 bus_dmamem_free(sc->sc_dmat,
709 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
710 return error;
711 }
712 sc->ale_cdata.ale_rx_page[i].page_paddr =
713 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
714 }
715
716 /*
717 * Create DMA stuffs for Tx CMB.
718 */
719 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
720 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
721 if (error) {
722 sc->ale_cdata.ale_tx_cmb_map = NULL;
723 return ENOBUFS;
724 }
725
726 /* Allocate DMA'able memory for Tx CMB. */
727 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
728 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
729
730 if (error) {
731 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
732 device_xname(sc->sc_dev));
733 return error;
734 }
735
736 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
737 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
738 BUS_DMA_NOWAIT);
739 if (error)
740 return ENOBUFS;
741
742 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
743
744 /* Load the DMA map for Tx CMB. */
745 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
746 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
747 if (error) {
748 printf("%s: could not load DMA'able memory for Tx CMB.\n",
749 device_xname(sc->sc_dev));
750 bus_dmamem_free(sc->sc_dmat,
751 &sc->ale_cdata.ale_tx_cmb_seg, 1);
752 return error;
753 }
754
755 sc->ale_cdata.ale_tx_cmb_paddr =
756 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
757
758 for (i = 0; i < ALE_RX_PAGES; i++) {
759 /*
760 * Create DMA stuffs for Rx CMB.
761 */
762 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
763 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
764 &sc->ale_cdata.ale_rx_page[i].cmb_map);
765 if (error) {
766 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
767 return ENOBUFS;
768 }
769
770 /* Allocate DMA'able memory for Rx CMB */
771 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
772 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
773 &nsegs, BUS_DMA_WAITOK);
774 if (error) {
775 printf("%s: could not allocate DMA'able memory for "
776 "Rx CMB\n", device_xname(sc->sc_dev));
777 return error;
778 }
779 error = bus_dmamem_map(sc->sc_dmat,
780 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
781 ALE_RX_CMB_SZ,
782 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
783 BUS_DMA_NOWAIT);
784 if (error)
785 return ENOBUFS;
786
787 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
788
789 /* Load the DMA map for Rx CMB */
790 error = bus_dmamap_load(sc->sc_dmat,
791 sc->ale_cdata.ale_rx_page[i].cmb_map,
792 sc->ale_cdata.ale_rx_page[i].cmb_addr,
793 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
794 if (error) {
795 printf("%s: could not load DMA'able memory for Rx CMB"
796 "\n", device_xname(sc->sc_dev));
797 bus_dmamem_free(sc->sc_dmat,
798 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
799 return error;
800 }
801 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
802 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
803 }
804
805
806 /* Create DMA maps for Tx buffers. */
807 for (i = 0; i < ALE_TX_RING_CNT; i++) {
808 txd = &sc->ale_cdata.ale_txdesc[i];
809 txd->tx_m = NULL;
810 txd->tx_dmamap = NULL;
811 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
812 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
813 &txd->tx_dmamap);
814 if (error) {
815 txd->tx_dmamap = NULL;
816 printf("%s: could not create Tx dmamap.\n",
817 device_xname(sc->sc_dev));
818 return error;
819 }
820 }
821
822 return 0;
823 }
824
825 static void
826 ale_dma_free(struct ale_softc *sc)
827 {
828 struct ale_txdesc *txd;
829 int i;
830
831 /* Tx buffers. */
832 for (i = 0; i < ALE_TX_RING_CNT; i++) {
833 txd = &sc->ale_cdata.ale_txdesc[i];
834 if (txd->tx_dmamap != NULL) {
835 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
836 txd->tx_dmamap = NULL;
837 }
838 }
839
840 /* Tx descriptor ring. */
841 if (sc->ale_cdata.ale_tx_ring_map != NULL)
842 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
843 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
844 sc->ale_cdata.ale_tx_ring != NULL)
845 bus_dmamem_free(sc->sc_dmat,
846 &sc->ale_cdata.ale_tx_ring_seg, 1);
847 sc->ale_cdata.ale_tx_ring = NULL;
848 sc->ale_cdata.ale_tx_ring_map = NULL;
849
850 /* Rx page block. */
851 for (i = 0; i < ALE_RX_PAGES; i++) {
852 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
853 bus_dmamap_unload(sc->sc_dmat,
854 sc->ale_cdata.ale_rx_page[i].page_map);
855 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
856 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
859 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
860 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
861 }
862
863 /* Rx CMB. */
864 for (i = 0; i < ALE_RX_PAGES; i++) {
865 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
866 bus_dmamap_unload(sc->sc_dmat,
867 sc->ale_cdata.ale_rx_page[i].cmb_map);
868 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
869 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
870 bus_dmamem_free(sc->sc_dmat,
871 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
872 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
873 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
874 }
875
876 /* Tx CMB. */
877 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
878 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
879 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
880 sc->ale_cdata.ale_tx_cmb != NULL)
881 bus_dmamem_free(sc->sc_dmat,
882 &sc->ale_cdata.ale_tx_cmb_seg, 1);
883 sc->ale_cdata.ale_tx_cmb = NULL;
884 sc->ale_cdata.ale_tx_cmb_map = NULL;
885
886 }
887
888 static int
889 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
890 {
891 struct ale_txdesc *txd, *txd_last;
892 struct tx_desc *desc;
893 struct mbuf *m;
894 bus_dmamap_t map;
895 uint32_t cflags, poff, vtag;
896 int error, i, nsegs, prod;
897 #if NVLAN > 0
898 struct m_tag *mtag;
899 #endif
900
901 m = *m_head;
902 cflags = vtag = 0;
903 poff = 0;
904
905 prod = sc->ale_cdata.ale_tx_prod;
906 txd = &sc->ale_cdata.ale_txdesc[prod];
907 txd_last = txd;
908 map = txd->tx_dmamap;
909
910 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
911 if (error == EFBIG) {
912 error = 0;
913
914 MGETHDR(m, M_DONTWAIT, MT_DATA);
915 if (m == NULL) {
916 printf("%s: can't defrag TX mbuf\n",
917 device_xname(sc->sc_dev));
918 m_freem(*m_head);
919 *m_head = NULL;
920 return ENOBUFS;
921 }
922
923 M_COPY_PKTHDR(m, *m_head);
924 if ((*m_head)->m_pkthdr.len > MHLEN) {
925 MCLGET(m, M_DONTWAIT);
926 if (!(m->m_flags & M_EXT)) {
927 m_freem(*m_head);
928 m_freem(m);
929 *m_head = NULL;
930 return ENOBUFS;
931 }
932 }
933 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
934 mtod(m, void *));
935 m_freem(*m_head);
936 m->m_len = m->m_pkthdr.len;
937 *m_head = m;
938
939 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
940 BUS_DMA_NOWAIT);
941
942 if (error != 0) {
943 printf("%s: could not load defragged TX mbuf\n",
944 device_xname(sc->sc_dev));
945 if (!error) {
946 bus_dmamap_unload(sc->sc_dmat, map);
947 error = EFBIG;
948 }
949 m_freem(*m_head);
950 *m_head = NULL;
951 return error;
952 }
953 } else if (error) {
954 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
955 return error;
956 }
957
958 nsegs = map->dm_nsegs;
959
960 if (nsegs == 0) {
961 m_freem(*m_head);
962 *m_head = NULL;
963 return EIO;
964 }
965
966 /* Check descriptor overrun. */
967 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
968 bus_dmamap_unload(sc->sc_dmat, map);
969 return ENOBUFS;
970 }
971 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
972 BUS_DMASYNC_PREWRITE);
973
974 m = *m_head;
975 /* Configure Tx checksum offload. */
976 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
977 /*
978 * AR81xx supports Tx custom checksum offload feature
979 * that offloads single 16bit checksum computation.
980 * So you can choose one among IP, TCP and UDP.
981 * Normally driver sets checksum start/insertion
982 * position from the information of TCP/UDP frame as
983 * TCP/UDP checksum takes more time than that of IP.
984 * However it seems that custom checksum offload
985 * requires 4 bytes aligned Tx buffers due to hardware
986 * bug.
987 * AR81xx also supports explicit Tx checksum computation
988 * if it is told that the size of IP header and TCP
989 * header(for UDP, the header size does not matter
990 * because it's fixed length). However with this scheme
991 * TSO does not work so you have to choose one either
992 * TSO or explicit Tx checksum offload. I chosen TSO
993 * plus custom checksum offload with work-around which
994 * will cover most common usage for this consumer
995 * ethernet controller. The work-around takes a lot of
996 * CPU cycles if Tx buffer is not aligned on 4 bytes
997 * boundary, though.
998 */
999 cflags |= ALE_TD_CXSUM;
1000 /* Set checksum start offset. */
1001 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1002 }
1003
1004 #if NVLAN > 0
1005 /* Configure VLAN hardware tag insertion. */
1006 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1007 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1008 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1009 cflags |= ALE_TD_INSERT_VLAN_TAG;
1010 }
1011 #endif
1012
1013 desc = NULL;
1014 for (i = 0; i < nsegs; i++) {
1015 desc = &sc->ale_cdata.ale_tx_ring[prod];
1016 desc->addr = htole64(map->dm_segs[i].ds_addr);
1017 desc->len =
1018 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1019 desc->flags = htole32(cflags);
1020 sc->ale_cdata.ale_tx_cnt++;
1021 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1022 }
1023 /* Update producer index. */
1024 sc->ale_cdata.ale_tx_prod = prod;
1025
1026 /* Finally set EOP on the last descriptor. */
1027 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1028 desc = &sc->ale_cdata.ale_tx_ring[prod];
1029 desc->flags |= htole32(ALE_TD_EOP);
1030
1031 /* Swap dmamap of the first and the last. */
1032 txd = &sc->ale_cdata.ale_txdesc[prod];
1033 map = txd_last->tx_dmamap;
1034 txd_last->tx_dmamap = txd->tx_dmamap;
1035 txd->tx_dmamap = map;
1036 txd->tx_m = m;
1037
1038 /* Sync descriptors. */
1039 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1040 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1041
1042 return 0;
1043 }
1044
1045 static void
1046 ale_start(struct ifnet *ifp)
1047 {
1048 struct ale_softc *sc = ifp->if_softc;
1049 struct mbuf *m_head;
1050 int enq;
1051
1052 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1053 return;
1054
1055 /* Reclaim transmitted frames. */
1056 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1057 ale_txeof(sc);
1058
1059 enq = 0;
1060 for (;;) {
1061 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 if (m_head == NULL)
1063 break;
1064
1065 /*
1066 * Pack the data into the transmit ring. If we
1067 * don't have room, set the OACTIVE flag and wait
1068 * for the NIC to drain the ring.
1069 */
1070 if (ale_encap(sc, &m_head)) {
1071 if (m_head == NULL)
1072 break;
1073 ifp->if_flags |= IFF_OACTIVE;
1074 break;
1075 }
1076 enq = 1;
1077
1078 #if NBPFILTER > 0
1079 /*
1080 * If there's a BPF listener, bounce a copy of this frame
1081 * to him.
1082 */
1083 if (ifp->if_bpf != NULL)
1084 bpf_mtap(ifp->if_bpf, m_head);
1085 #endif
1086 }
1087
1088 if (enq) {
1089 /* Kick. */
1090 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1091 sc->ale_cdata.ale_tx_prod);
1092
1093 /* Set a timeout in case the chip goes out to lunch. */
1094 ifp->if_timer = ALE_TX_TIMEOUT;
1095 }
1096 }
1097
1098 static void
1099 ale_watchdog(struct ifnet *ifp)
1100 {
1101 struct ale_softc *sc = ifp->if_softc;
1102
1103 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1104 printf("%s: watchdog timeout (missed link)\n",
1105 device_xname(sc->sc_dev));
1106 ifp->if_oerrors++;
1107 ale_init(ifp);
1108 return;
1109 }
1110
1111 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1112 ifp->if_oerrors++;
1113 ale_init(ifp);
1114
1115 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1116 ale_start(ifp);
1117 }
1118
1119 static int
1120 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1121 {
1122 struct ale_softc *sc = ifp->if_softc;
1123 int s, error;
1124
1125 s = splnet();
1126
1127 error = ether_ioctl(ifp, cmd, data);
1128 if (error == ENETRESET) {
1129 if (ifp->if_flags & IFF_RUNNING)
1130 ale_rxfilter(sc);
1131 error = 0;
1132 }
1133
1134 splx(s);
1135 return error;
1136 }
1137
1138 static void
1139 ale_mac_config(struct ale_softc *sc)
1140 {
1141 struct mii_data *mii;
1142 uint32_t reg;
1143
1144 mii = &sc->sc_miibus;
1145 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1146 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1147 MAC_CFG_SPEED_MASK);
1148
1149 /* Reprogram MAC with resolved speed/duplex. */
1150 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1151 case IFM_10_T:
1152 case IFM_100_TX:
1153 reg |= MAC_CFG_SPEED_10_100;
1154 break;
1155 case IFM_1000_T:
1156 reg |= MAC_CFG_SPEED_1000;
1157 break;
1158 }
1159 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1160 reg |= MAC_CFG_FULL_DUPLEX;
1161 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1162 reg |= MAC_CFG_TX_FC;
1163 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1164 reg |= MAC_CFG_RX_FC;
1165 }
1166 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1167 }
1168
1169 static void
1170 ale_stats_clear(struct ale_softc *sc)
1171 {
1172 struct smb sb;
1173 uint32_t *reg;
1174 int i;
1175
1176 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1177 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1178 i += sizeof(uint32_t);
1179 }
1180 /* Read Tx statistics. */
1181 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1182 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1183 i += sizeof(uint32_t);
1184 }
1185 }
1186
1187 static void
1188 ale_stats_update(struct ale_softc *sc)
1189 {
1190 struct ifnet *ifp = &sc->sc_ec.ec_if;
1191 struct ale_hw_stats *stat;
1192 struct smb sb, *smb;
1193 uint32_t *reg;
1194 int i;
1195
1196 stat = &sc->ale_stats;
1197 smb = &sb;
1198
1199 /* Read Rx statistics. */
1200 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1201 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1202 i += sizeof(uint32_t);
1203 }
1204 /* Read Tx statistics. */
1205 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1206 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1207 i += sizeof(uint32_t);
1208 }
1209
1210 /* Rx stats. */
1211 stat->rx_frames += smb->rx_frames;
1212 stat->rx_bcast_frames += smb->rx_bcast_frames;
1213 stat->rx_mcast_frames += smb->rx_mcast_frames;
1214 stat->rx_pause_frames += smb->rx_pause_frames;
1215 stat->rx_control_frames += smb->rx_control_frames;
1216 stat->rx_crcerrs += smb->rx_crcerrs;
1217 stat->rx_lenerrs += smb->rx_lenerrs;
1218 stat->rx_bytes += smb->rx_bytes;
1219 stat->rx_runts += smb->rx_runts;
1220 stat->rx_fragments += smb->rx_fragments;
1221 stat->rx_pkts_64 += smb->rx_pkts_64;
1222 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1223 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1224 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1225 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1226 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1227 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1228 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1229 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1230 stat->rx_rrs_errs += smb->rx_rrs_errs;
1231 stat->rx_alignerrs += smb->rx_alignerrs;
1232 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1233 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1234 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1235
1236 /* Tx stats. */
1237 stat->tx_frames += smb->tx_frames;
1238 stat->tx_bcast_frames += smb->tx_bcast_frames;
1239 stat->tx_mcast_frames += smb->tx_mcast_frames;
1240 stat->tx_pause_frames += smb->tx_pause_frames;
1241 stat->tx_excess_defer += smb->tx_excess_defer;
1242 stat->tx_control_frames += smb->tx_control_frames;
1243 stat->tx_deferred += smb->tx_deferred;
1244 stat->tx_bytes += smb->tx_bytes;
1245 stat->tx_pkts_64 += smb->tx_pkts_64;
1246 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1247 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1248 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1249 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1250 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1251 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1252 stat->tx_single_colls += smb->tx_single_colls;
1253 stat->tx_multi_colls += smb->tx_multi_colls;
1254 stat->tx_late_colls += smb->tx_late_colls;
1255 stat->tx_excess_colls += smb->tx_excess_colls;
1256 stat->tx_abort += smb->tx_abort;
1257 stat->tx_underrun += smb->tx_underrun;
1258 stat->tx_desc_underrun += smb->tx_desc_underrun;
1259 stat->tx_lenerrs += smb->tx_lenerrs;
1260 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1261 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1262 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1263
1264 /* Update counters in ifnet. */
1265 ifp->if_opackets += smb->tx_frames;
1266
1267 ifp->if_collisions += smb->tx_single_colls +
1268 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1269 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1270
1271 /*
1272 * XXX
1273 * tx_pkts_truncated counter looks suspicious. It constantly
1274 * increments with no sign of Tx errors. This may indicate
1275 * the counter name is not correct one so I've removed the
1276 * counter in output errors.
1277 */
1278 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1279 smb->tx_underrun;
1280
1281 ifp->if_ipackets += smb->rx_frames;
1282
1283 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1284 smb->rx_runts + smb->rx_pkts_truncated +
1285 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1286 smb->rx_alignerrs;
1287 }
1288
1289 static int
1290 ale_intr(void *xsc)
1291 {
1292 struct ale_softc *sc = xsc;
1293 struct ifnet *ifp = &sc->sc_ec.ec_if;
1294 uint32_t status;
1295
1296 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1297 if ((status & ALE_INTRS) == 0)
1298 return 0;
1299
1300 /* Acknowledge and disable interrupts. */
1301 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1302
1303 if (ifp->if_flags & IFF_RUNNING) {
1304 int error;
1305
1306 error = ale_rxeof(sc);
1307 if (error) {
1308 sc->ale_stats.reset_brk_seq++;
1309 ale_init(ifp);
1310 return 0;
1311 }
1312
1313 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1314 if (status & INTR_DMA_RD_TO_RST)
1315 printf("%s: DMA read error! -- resetting\n",
1316 device_xname(sc->sc_dev));
1317 if (status & INTR_DMA_WR_TO_RST)
1318 printf("%s: DMA write error! -- resetting\n",
1319 device_xname(sc->sc_dev));
1320 ale_init(ifp);
1321 return 0;
1322 }
1323
1324 ale_txeof(sc);
1325 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1326 ale_start(ifp);
1327 }
1328
1329 /* Re-enable interrupts. */
1330 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1331 return 1;
1332 }
1333
1334 static void
1335 ale_txeof(struct ale_softc *sc)
1336 {
1337 struct ifnet *ifp = &sc->sc_ec.ec_if;
1338 struct ale_txdesc *txd;
1339 uint32_t cons, prod;
1340 int prog;
1341
1342 if (sc->ale_cdata.ale_tx_cnt == 0)
1343 return;
1344
1345 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1346 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1347 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1348 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1349 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1350 BUS_DMASYNC_POSTREAD);
1351 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1352 } else
1353 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1354 cons = sc->ale_cdata.ale_tx_cons;
1355 /*
1356 * Go through our Tx list and free mbufs for those
1357 * frames which have been transmitted.
1358 */
1359 for (prog = 0; cons != prod; prog++,
1360 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1361 if (sc->ale_cdata.ale_tx_cnt <= 0)
1362 break;
1363 prog++;
1364 ifp->if_flags &= ~IFF_OACTIVE;
1365 sc->ale_cdata.ale_tx_cnt--;
1366 txd = &sc->ale_cdata.ale_txdesc[cons];
1367 if (txd->tx_m != NULL) {
1368 /* Reclaim transmitted mbufs. */
1369 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1370 m_freem(txd->tx_m);
1371 txd->tx_m = NULL;
1372 }
1373 }
1374
1375 if (prog > 0) {
1376 sc->ale_cdata.ale_tx_cons = cons;
1377 /*
1378 * Unarm watchdog timer only when there is no pending
1379 * Tx descriptors in queue.
1380 */
1381 if (sc->ale_cdata.ale_tx_cnt == 0)
1382 ifp->if_timer = 0;
1383 }
1384 }
1385
1386 static void
1387 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1388 uint32_t length, uint32_t *prod)
1389 {
1390 struct ale_rx_page *rx_page;
1391
1392 rx_page = *page;
1393 /* Update consumer position. */
1394 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1395 ALE_RX_PAGE_ALIGN);
1396 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1397 /*
1398 * End of Rx page reached, let hardware reuse
1399 * this page.
1400 */
1401 rx_page->cons = 0;
1402 *rx_page->cmb_addr = 0;
1403 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1404 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1405 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1406 RXF_VALID);
1407 /* Switch to alternate Rx page. */
1408 sc->ale_cdata.ale_rx_curp ^= 1;
1409 rx_page = *page =
1410 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1411 /* Page flipped, sync CMB and Rx page. */
1412 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1413 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1414 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1415 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1416 /* Sync completed, cache updated producer index. */
1417 *prod = *rx_page->cmb_addr;
1418 }
1419 }
1420
1421
1422 /*
1423 * It seems that AR81xx controller can compute partial checksum.
1424 * The partial checksum value can be used to accelerate checksum
1425 * computation for fragmented TCP/UDP packets. Upper network stack
1426 * already takes advantage of the partial checksum value in IP
1427 * reassembly stage. But I'm not sure the correctness of the
1428 * partial hardware checksum assistance due to lack of data sheet.
1429 * In addition, the Rx feature of controller that requires copying
1430 * for every frames effectively nullifies one of most nice offload
1431 * capability of controller.
1432 */
1433 static void
1434 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1435 {
1436 if (status & ALE_RD_IPCSUM_NOK)
1437 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1438
1439 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1440 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1441 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1442 (status & ALE_RD_TCP_UDPCSUM_NOK))
1443 {
1444 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1445 }
1446 } else {
1447 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1448 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1449 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1450 }
1451 }
1452 }
1453 /*
1454 * Don't mark bad checksum for TCP/UDP frames
1455 * as fragmented frames may always have set
1456 * bad checksummed bit of frame status.
1457 */
1458 }
1459
1460 /* Process received frames. */
1461 static int
1462 ale_rxeof(struct ale_softc *sc)
1463 {
1464 struct ifnet *ifp = &sc->sc_ec.ec_if;
1465 struct ale_rx_page *rx_page;
1466 struct rx_rs *rs;
1467 struct mbuf *m;
1468 uint32_t length, prod, seqno, status;
1469 int prog;
1470
1471 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1472 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1473 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1474 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1475 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1476 /*
1477 * Don't directly access producer index as hardware may
1478 * update it while Rx handler is in progress. It would
1479 * be even better if there is a way to let hardware
1480 * know how far driver processed its received frames.
1481 * Alternatively, hardware could provide a way to disable
1482 * CMB updates until driver acknowledges the end of CMB
1483 * access.
1484 */
1485 prod = *rx_page->cmb_addr;
1486 for (prog = 0; ; prog++) {
1487 if (rx_page->cons >= prod)
1488 break;
1489 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1490 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1491 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1492 /*
1493 * Normally I believe this should not happen unless
1494 * severe driver bug or corrupted memory. However
1495 * it seems to happen under certain conditions which
1496 * is triggered by abrupt Rx events such as initiation
1497 * of bulk transfer of remote host. It's not easy to
1498 * reproduce this and I doubt it could be related
1499 * with FIFO overflow of hardware or activity of Tx
1500 * CMB updates. I also remember similar behaviour
1501 * seen on RealTek 8139 which uses resembling Rx
1502 * scheme.
1503 */
1504 if (aledebug)
1505 printf("%s: garbled seq: %u, expected: %u -- "
1506 "resetting!\n", device_xname(sc->sc_dev),
1507 seqno, sc->ale_cdata.ale_rx_seqno);
1508 return EIO;
1509 }
1510 /* Frame received. */
1511 sc->ale_cdata.ale_rx_seqno++;
1512 length = ALE_RX_BYTES(le32toh(rs->length));
1513 status = le32toh(rs->flags);
1514 if (status & ALE_RD_ERROR) {
1515 /*
1516 * We want to pass the following frames to upper
1517 * layer regardless of error status of Rx return
1518 * status.
1519 *
1520 * o IP/TCP/UDP checksum is bad.
1521 * o frame length and protocol specific length
1522 * does not match.
1523 */
1524 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1525 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1526 ALE_RD_TRUNC)) {
1527 ale_rx_update_page(sc, &rx_page, length, &prod);
1528 continue;
1529 }
1530 }
1531 /*
1532 * m_devget(9) is major bottle-neck of ale(4)(It comes
1533 * from hardware limitation). For jumbo frames we could
1534 * get a slightly better performance if driver use
1535 * m_getjcl(9) with proper buffer size argument. However
1536 * that would make code more complicated and I don't
1537 * think users would expect good Rx performance numbers
1538 * on these low-end consumer ethernet controller.
1539 */
1540 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1541 0, ifp, NULL);
1542 if (m == NULL) {
1543 ifp->if_iqdrops++;
1544 ale_rx_update_page(sc, &rx_page, length, &prod);
1545 continue;
1546 }
1547 if (status & ALE_RD_IPV4)
1548 ale_rxcsum(sc, m, status);
1549 #if NVLAN > 0
1550 if (status & ALE_RD_VLAN) {
1551 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1552 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1553 }
1554 #endif
1555
1556
1557 #if NBPFILTER > 0
1558 if (ifp->if_bpf)
1559 bpf_mtap(ifp->if_bpf, m);
1560 #endif
1561
1562 /* Pass it to upper layer. */
1563 ether_input(ifp, m);
1564
1565 ale_rx_update_page(sc, &rx_page, length, &prod);
1566 }
1567
1568 return 0;
1569 }
1570
1571 static void
1572 ale_tick(void *xsc)
1573 {
1574 struct ale_softc *sc = xsc;
1575 struct mii_data *mii = &sc->sc_miibus;
1576 int s;
1577
1578 s = splnet();
1579 mii_tick(mii);
1580 ale_stats_update(sc);
1581 splx(s);
1582
1583 callout_schedule(&sc->sc_tick_ch, hz);
1584 }
1585
1586 static void
1587 ale_reset(struct ale_softc *sc)
1588 {
1589 uint32_t reg;
1590 int i;
1591
1592 /* Initialize PCIe module. From Linux. */
1593 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1594
1595 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1596 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1597 DELAY(10);
1598 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1599 break;
1600 }
1601 if (i == 0)
1602 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1603
1604 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1605 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1606 break;
1607 DELAY(10);
1608 }
1609
1610 if (i == 0)
1611 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1612 reg);
1613 }
1614
1615 static int
1616 ale_init(struct ifnet *ifp)
1617 {
1618 struct ale_softc *sc = ifp->if_softc;
1619 struct mii_data *mii;
1620 uint8_t eaddr[ETHER_ADDR_LEN];
1621 bus_addr_t paddr;
1622 uint32_t reg, rxf_hi, rxf_lo;
1623
1624 /*
1625 * Cancel any pending I/O.
1626 */
1627 ale_stop(ifp, 0);
1628
1629 /*
1630 * Reset the chip to a known state.
1631 */
1632 ale_reset(sc);
1633
1634 /* Initialize Tx descriptors, DMA memory blocks. */
1635 ale_init_rx_pages(sc);
1636 ale_init_tx_ring(sc);
1637
1638 /* Reprogram the station address. */
1639 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1640 CSR_WRITE_4(sc, ALE_PAR0,
1641 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1642 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1643
1644 /*
1645 * Clear WOL status and disable all WOL feature as WOL
1646 * would interfere Rx operation under normal environments.
1647 */
1648 CSR_READ_4(sc, ALE_WOL_CFG);
1649 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1650
1651 /*
1652 * Set Tx descriptor/RXF0/CMB base addresses. They share
1653 * the same high address part of DMAable region.
1654 */
1655 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1656 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1657 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1658 CSR_WRITE_4(sc, ALE_TPD_CNT,
1659 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1660
1661 /* Set Rx page base address, note we use single queue. */
1662 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1663 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1664 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1665 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1666
1667 /* Set Tx/Rx CMB addresses. */
1668 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1669 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1670 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1671 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1672 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1673 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1674
1675 /* Mark RXF0 is valid. */
1676 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1677 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1678 /*
1679 * No need to initialize RFX1/RXF2/RXF3. We don't use
1680 * multi-queue yet.
1681 */
1682
1683 /* Set Rx page size, excluding guard frame size. */
1684 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1685
1686 /* Tell hardware that we're ready to load DMA blocks. */
1687 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1688
1689 /* Set Rx/Tx interrupt trigger threshold. */
1690 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1691 (4 << INT_TRIG_TX_THRESH_SHIFT));
1692 /*
1693 * XXX
1694 * Set interrupt trigger timer, its purpose and relation
1695 * with interrupt moderation mechanism is not clear yet.
1696 */
1697 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1698 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1699 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1700
1701 /* Configure interrupt moderation timer. */
1702 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1703 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1704 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1705 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1706 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1707 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1708 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1709 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1710 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1711 reg |= MASTER_IM_RX_TIMER_ENB;
1712 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1713 reg |= MASTER_IM_TX_TIMER_ENB;
1714 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1715 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1716
1717 /* Set Maximum frame size of controller. */
1718 if (ifp->if_mtu < ETHERMTU)
1719 sc->ale_max_frame_size = ETHERMTU;
1720 else
1721 sc->ale_max_frame_size = ifp->if_mtu;
1722 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1723 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1724
1725 /* Configure IPG/IFG parameters. */
1726 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1727 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1728 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1729 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1730 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1731
1732 /* Set parameters for half-duplex media. */
1733 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1734 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1735 HDPX_CFG_LCOL_MASK) |
1736 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1737 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1738 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1739 HDPX_CFG_ABEBT_MASK) |
1740 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1741 HDPX_CFG_JAMIPG_MASK));
1742
1743 /* Configure Tx jumbo frame parameters. */
1744 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1745 if (ifp->if_mtu < ETHERMTU)
1746 reg = sc->ale_max_frame_size;
1747 else if (ifp->if_mtu < 6 * 1024)
1748 reg = (sc->ale_max_frame_size * 2) / 3;
1749 else
1750 reg = sc->ale_max_frame_size / 2;
1751 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1752 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1753 TX_JUMBO_THRESH_UNIT_SHIFT);
1754 }
1755
1756 /* Configure TxQ. */
1757 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1758 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1759 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1760 TXQ_CFG_TPD_BURST_MASK;
1761 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1762
1763 /* Configure Rx jumbo frame & flow control parameters. */
1764 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1765 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1766 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1767 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1768 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1769 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1770 RX_JUMBO_LKAH_MASK));
1771 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1772 rxf_hi = (reg * 7) / 10;
1773 rxf_lo = (reg * 3)/ 10;
1774 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1775 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1776 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1777 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1778 RX_FIFO_PAUSE_THRESH_HI_MASK));
1779 }
1780
1781 /* Disable RSS. */
1782 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1783 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1784
1785 /* Configure RxQ. */
1786 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1787 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1788
1789 /* Configure DMA parameters. */
1790 reg = 0;
1791 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1792 reg |= DMA_CFG_TXCMB_ENB;
1793 CSR_WRITE_4(sc, ALE_DMA_CFG,
1794 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1795 sc->ale_dma_rd_burst | reg |
1796 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1797 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1798 DMA_CFG_RD_DELAY_CNT_MASK) |
1799 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1800 DMA_CFG_WR_DELAY_CNT_MASK));
1801
1802 /*
1803 * Hardware can be configured to issue SMB interrupt based
1804 * on programmed interval. Since there is a callout that is
1805 * invoked for every hz in driver we use that instead of
1806 * relying on periodic SMB interrupt.
1807 */
1808 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1809
1810 /* Clear MAC statistics. */
1811 ale_stats_clear(sc);
1812
1813 /*
1814 * Configure Tx/Rx MACs.
1815 * - Auto-padding for short frames.
1816 * - Enable CRC generation.
1817 * Actual reconfiguration of MAC for resolved speed/duplex
1818 * is followed after detection of link establishment.
1819 * AR81xx always does checksum computation regardless of
1820 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1821 * cause Rx handling issue for fragmented IP datagrams due
1822 * to silicon bug.
1823 */
1824 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1825 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1826 MAC_CFG_PREAMBLE_MASK);
1827 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1828 reg |= MAC_CFG_SPEED_10_100;
1829 else
1830 reg |= MAC_CFG_SPEED_1000;
1831 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1832
1833 /* Set up the receive filter. */
1834 ale_rxfilter(sc);
1835 ale_rxvlan(sc);
1836
1837 /* Acknowledge all pending interrupts and clear it. */
1838 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1839 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1840 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1841
1842 sc->ale_flags &= ~ALE_FLAG_LINK;
1843
1844 /* Switch to the current media. */
1845 mii = &sc->sc_miibus;
1846 mii_mediachg(mii);
1847
1848 callout_schedule(&sc->sc_tick_ch, hz);
1849
1850 ifp->if_flags |= IFF_RUNNING;
1851 ifp->if_flags &= ~IFF_OACTIVE;
1852
1853 return 0;
1854 }
1855
1856 static void
1857 ale_stop(struct ifnet *ifp, int disable)
1858 {
1859 struct ale_softc *sc = ifp->if_softc;
1860 struct ale_txdesc *txd;
1861 uint32_t reg;
1862 int i;
1863
1864 callout_stop(&sc->sc_tick_ch);
1865
1866 /*
1867 * Mark the interface down and cancel the watchdog timer.
1868 */
1869 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1870 ifp->if_timer = 0;
1871
1872 sc->ale_flags &= ~ALE_FLAG_LINK;
1873
1874 ale_stats_update(sc);
1875
1876 mii_down(&sc->sc_miibus);
1877
1878 /* Disable interrupts. */
1879 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1880 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1881
1882 /* Disable queue processing and DMA. */
1883 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1884 reg &= ~TXQ_CFG_ENB;
1885 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1886 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1887 reg &= ~RXQ_CFG_ENB;
1888 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1889 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1890 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1891 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1892 DELAY(1000);
1893
1894 /* Stop Rx/Tx MACs. */
1895 ale_stop_mac(sc);
1896
1897 /* Disable interrupts again? XXX */
1898 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1899
1900 /*
1901 * Free TX mbufs still in the queues.
1902 */
1903 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1904 txd = &sc->ale_cdata.ale_txdesc[i];
1905 if (txd->tx_m != NULL) {
1906 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1907 m_freem(txd->tx_m);
1908 txd->tx_m = NULL;
1909 }
1910 }
1911 }
1912
1913 static void
1914 ale_stop_mac(struct ale_softc *sc)
1915 {
1916 uint32_t reg;
1917 int i;
1918
1919 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1920 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1921 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1922 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1923 }
1924
1925 for (i = ALE_TIMEOUT; i > 0; i--) {
1926 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1927 if (reg == 0)
1928 break;
1929 DELAY(10);
1930 }
1931 if (i == 0)
1932 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1933 device_xname(sc->sc_dev), reg);
1934 }
1935
1936 static void
1937 ale_init_tx_ring(struct ale_softc *sc)
1938 {
1939 struct ale_txdesc *txd;
1940 int i;
1941
1942 sc->ale_cdata.ale_tx_prod = 0;
1943 sc->ale_cdata.ale_tx_cons = 0;
1944 sc->ale_cdata.ale_tx_cnt = 0;
1945
1946 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1947 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1948 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1949 txd = &sc->ale_cdata.ale_txdesc[i];
1950 txd->tx_m = NULL;
1951 }
1952 *sc->ale_cdata.ale_tx_cmb = 0;
1953 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1954 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1955 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1956 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1957 }
1958
1959 static void
1960 ale_init_rx_pages(struct ale_softc *sc)
1961 {
1962 struct ale_rx_page *rx_page;
1963 int i;
1964
1965 sc->ale_cdata.ale_rx_seqno = 0;
1966 sc->ale_cdata.ale_rx_curp = 0;
1967
1968 for (i = 0; i < ALE_RX_PAGES; i++) {
1969 rx_page = &sc->ale_cdata.ale_rx_page[i];
1970 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1971 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1972 rx_page->cons = 0;
1973 *rx_page->cmb_addr = 0;
1974 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1975 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1976 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1977 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1978 }
1979 }
1980
1981 static void
1982 ale_rxvlan(struct ale_softc *sc)
1983 {
1984 struct ifnet *ifp = &sc->sc_ec.ec_if;
1985 uint32_t reg;
1986
1987 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1988 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1989 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1990 reg |= MAC_CFG_VLAN_TAG_STRIP;
1991 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1992 }
1993
1994 static void
1995 ale_rxfilter(struct ale_softc *sc)
1996 {
1997 struct ethercom *ec = &sc->sc_ec;
1998 struct ifnet *ifp = &ec->ec_if;
1999 struct ether_multi *enm;
2000 struct ether_multistep step;
2001 uint32_t crc;
2002 uint32_t mchash[2];
2003 uint32_t rxcfg;
2004
2005 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2006 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2007
2008 /*
2009 * Always accept broadcast frames.
2010 */
2011 rxcfg |= MAC_CFG_BCAST;
2012
2013 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2014 ec->ec_multicnt > 0) {
2015 allmulti:
2016 if (ifp->if_flags & IFF_PROMISC)
2017 rxcfg |= MAC_CFG_PROMISC;
2018 else
2019 rxcfg |= MAC_CFG_ALLMULTI;
2020 mchash[0] = mchash[1] = 0xFFFFFFFF;
2021 } else {
2022 /* Program new filter. */
2023 memset(mchash, 0, sizeof(mchash));
2024
2025 ETHER_FIRST_MULTI(step, ec, enm);
2026 while (enm != NULL) {
2027 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2028 ETHER_ADDR_LEN)) {
2029 ifp->if_flags |= IFF_ALLMULTI;
2030 goto allmulti;
2031 }
2032 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2033
2034 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2035 ETHER_NEXT_MULTI(step, enm);
2036 }
2037 }
2038
2039 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2040 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2041 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2042 }
2043