if_ale.c revision 1.6 1 /* $NetBSD: if_ale.c,v 1.6 2009/08/18 05:50:55 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 */
31
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.6 2009/08/18 05:50:55 cegger Exp $");
36
37 #include "bpfilter.h"
38 #include "vlan.h"
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52
53 #include <sys/bus.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <sys/rnd.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_alereg.h>
85
86 static int ale_match(device_t, cfdata_t, void *);
87 static void ale_attach(device_t, device_t, void *);
88 static int ale_detach(device_t, int);
89
90 static int ale_miibus_readreg(device_t, int, int);
91 static void ale_miibus_writereg(device_t, int, int, int);
92 static void ale_miibus_statchg(device_t);
93
94 static int ale_init(struct ifnet *);
95 static void ale_start(struct ifnet *);
96 static int ale_ioctl(struct ifnet *, u_long, void *);
97 static void ale_watchdog(struct ifnet *);
98 static int ale_mediachange(struct ifnet *);
99 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
100
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc *sc);
103 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void ale_txeof(struct ale_softc *);
107
108 static int ale_dma_alloc(struct ale_softc *);
109 static void ale_dma_free(struct ale_softc *);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
113
114 static void ale_stop(struct ifnet *, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
125
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 ale_match, ale_attach, ale_detach, NULL);
128
129 int aledebug = 0;
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
131
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 struct ale_softc *sc = device_private(dev);
139 uint32_t v;
140 int i;
141
142 if (phy != sc->ale_phyaddr)
143 return 0;
144
145 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
146 switch (reg) {
147 case MII_100T2CR:
148 case MII_100T2SR:
149 case MII_EXTSR:
150 return 0;
151 default:
152 break;
153 }
154 }
155
156 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
157 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
158 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
159 DELAY(5);
160 v = CSR_READ_4(sc, ALE_MDIO);
161 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
162 break;
163 }
164
165 if (i == 0) {
166 printf("%s: phy read timeout: phy %d, reg %d\n",
167 device_xname(sc->sc_dev), phy, reg);
168 return 0;
169 }
170
171 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
172 }
173
174 static void
175 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
176 {
177 struct ale_softc *sc = device_private(dev);
178 uint32_t v;
179 int i;
180
181 if (phy != sc->ale_phyaddr)
182 return;
183
184 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
185 switch (reg) {
186 case MII_100T2CR:
187 case MII_100T2SR:
188 case MII_EXTSR:
189 return;
190 default:
191 break;
192 }
193 }
194
195 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
196 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
197 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
198 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
199 DELAY(5);
200 v = CSR_READ_4(sc, ALE_MDIO);
201 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
202 break;
203 }
204
205 if (i == 0)
206 printf("%s: phy write timeout: phy %d, reg %d\n",
207 device_xname(sc->sc_dev), phy, reg);
208 }
209
210 static void
211 ale_miibus_statchg(device_t dev)
212 {
213 struct ale_softc *sc = device_private(dev);
214 struct ifnet *ifp = &sc->sc_ec.ec_if;
215 struct mii_data *mii;
216 uint32_t reg;
217
218 if ((ifp->if_flags & IFF_RUNNING) == 0)
219 return;
220
221 mii = &sc->sc_miibus;
222
223 sc->ale_flags &= ~ALE_FLAG_LINK;
224 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
225 (IFM_ACTIVE | IFM_AVALID)) {
226 switch (IFM_SUBTYPE(mii->mii_media_active)) {
227 case IFM_10_T:
228 case IFM_100_TX:
229 sc->ale_flags |= ALE_FLAG_LINK;
230 break;
231
232 case IFM_1000_T:
233 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
234 sc->ale_flags |= ALE_FLAG_LINK;
235 break;
236
237 default:
238 break;
239 }
240 }
241
242 /* Stop Rx/Tx MACs. */
243 ale_stop_mac(sc);
244
245 /* Program MACs with resolved speed/duplex/flow-control. */
246 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
247 ale_mac_config(sc);
248 /* Reenable Tx/Rx MACs. */
249 reg = CSR_READ_4(sc, ALE_MAC_CFG);
250 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
251 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
252 }
253 }
254
255 void
256 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
257 {
258 struct ale_softc *sc = ifp->if_softc;
259 struct mii_data *mii = &sc->sc_miibus;
260
261 mii_pollstat(mii);
262 ifmr->ifm_status = mii->mii_media_status;
263 ifmr->ifm_active = mii->mii_media_active;
264 }
265
266 int
267 ale_mediachange(struct ifnet *ifp)
268 {
269 struct ale_softc *sc = ifp->if_softc;
270 struct mii_data *mii = &sc->sc_miibus;
271 int error;
272
273 if (mii->mii_instance != 0) {
274 struct mii_softc *miisc;
275
276 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
277 mii_phy_reset(miisc);
278 }
279 error = mii_mediachg(mii);
280
281 return error;
282 }
283
284 int
285 ale_match(device_t dev, cfdata_t match, void *aux)
286 {
287 struct pci_attach_args *pa = aux;
288
289 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
290 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
291 }
292
293 void
294 ale_get_macaddr(struct ale_softc *sc)
295 {
296 uint32_t ea[2], reg;
297 int i, vpdc;
298
299 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
300 if ((reg & SPI_VPD_ENB) != 0) {
301 reg &= ~SPI_VPD_ENB;
302 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
303 }
304
305 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
306 &vpdc, NULL)) {
307 /*
308 * PCI VPD capability found, let TWSI reload EEPROM.
309 * This will set ethernet address of controller.
310 */
311 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
312 TWSI_CTRL_SW_LD_START);
313 for (i = 100; i > 0; i--) {
314 DELAY(1000);
315 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
316 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
317 break;
318 }
319 if (i == 0)
320 printf("%s: reloading EEPROM timeout!\n",
321 device_xname(sc->sc_dev));
322 } else {
323 if (aledebug)
324 printf("%s: PCI VPD capability not found!\n",
325 device_xname(sc->sc_dev));
326 }
327
328 ea[0] = CSR_READ_4(sc, ALE_PAR0);
329 ea[1] = CSR_READ_4(sc, ALE_PAR1);
330 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
331 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
332 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
333 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
334 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
335 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
336 }
337
338 void
339 ale_phy_reset(struct ale_softc *sc)
340 {
341 /* Reset magic from Linux. */
342 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
343 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
344 GPHY_CTRL_PHY_PLL_ON);
345 DELAY(1000);
346 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
347 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
348 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
349 DELAY(1000);
350
351 #define ATPHY_DBG_ADDR 0x1D
352 #define ATPHY_DBG_DATA 0x1E
353
354 /* Enable hibernation mode. */
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_ADDR, 0x0B);
357 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 ATPHY_DBG_DATA, 0xBC00);
359 /* Set Class A/B for all modes. */
360 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
361 ATPHY_DBG_ADDR, 0x00);
362 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 ATPHY_DBG_DATA, 0x02EF);
364 /* Enable 10BT power saving. */
365 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
366 ATPHY_DBG_ADDR, 0x12);
367 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 ATPHY_DBG_DATA, 0x4C04);
369 /* Adjust 1000T power. */
370 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
371 ATPHY_DBG_ADDR, 0x04);
372 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 ATPHY_DBG_ADDR, 0x8BBB);
374 /* 10BT center tap voltage. */
375 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
376 ATPHY_DBG_ADDR, 0x05);
377 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
378 ATPHY_DBG_ADDR, 0x2C46);
379
380 #undef ATPHY_DBG_ADDR
381 #undef ATPHY_DBG_DATA
382 DELAY(1000);
383 }
384
385 void
386 ale_attach(device_t parent, device_t self, void *aux)
387 {
388 struct ale_softc *sc = device_private(self);
389 struct pci_attach_args *pa = aux;
390 pci_chipset_tag_t pc = pa->pa_pc;
391 pci_intr_handle_t ih;
392 const char *intrstr;
393 struct ifnet *ifp;
394 pcireg_t memtype;
395 int mii_flags, error = 0;
396 uint32_t rxf_len, txf_len;
397 const char *chipname;
398
399 aprint_naive("\n");
400 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
401
402 sc->sc_dev = self;
403 sc->sc_dmat = pa->pa_dmat;
404 sc->sc_pct = pa->pa_pc;
405 sc->sc_pcitag = pa->pa_tag;
406
407 /*
408 * Allocate IO memory
409 */
410 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
411 switch (memtype) {
412 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
413 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
414 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
415 break;
416 default:
417 aprint_error_dev(self, "invalid base address register\n");
418 break;
419 }
420
421 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
422 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
423 aprint_error_dev(self, "could not map mem space\n");
424 return;
425 }
426
427 if (pci_intr_map(pa, &ih) != 0) {
428 aprint_error_dev(self, "could not map interrupt\n");
429 goto fail;
430 }
431
432 /*
433 * Allocate IRQ
434 */
435 intrstr = pci_intr_string(sc->sc_pct, ih);
436 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
437 if (sc->sc_irq_handle == NULL) {
438 aprint_error_dev(self, "could not establish interrupt");
439 if (intrstr != NULL)
440 aprint_error(" at %s", intrstr);
441 aprint_error("\n");
442 goto fail;
443 }
444
445 /* Set PHY address. */
446 sc->ale_phyaddr = ALE_PHY_ADDR;
447
448 /* Reset PHY. */
449 ale_phy_reset(sc);
450
451 /* Reset the ethernet controller. */
452 ale_reset(sc);
453
454 /* Get PCI and chip id/revision. */
455 sc->ale_rev = PCI_REVISION(pa->pa_class);
456 if (sc->ale_rev >= 0xF0) {
457 /* L2E Rev. B. AR8114 */
458 sc->ale_flags |= ALE_FLAG_FASTETHER;
459 chipname = "AR8114 (L2E RevB)";
460 } else {
461 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 /* L1E AR8121 */
463 sc->ale_flags |= ALE_FLAG_JUMBO;
464 chipname = "AR8121 (L1E)";
465 } else {
466 /* L2E Rev. A. AR8113 */
467 sc->ale_flags |= ALE_FLAG_FASTETHER;
468 chipname = "AR8113 (L2E RevA)";
469 }
470 }
471 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
472
473 /*
474 * All known controllers seems to require 4 bytes alignment
475 * of Tx buffers to make Tx checksum offload with custom
476 * checksum generation method work.
477 */
478 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
479
480 /*
481 * All known controllers seems to have issues on Rx checksum
482 * offload for fragmented IP datagrams.
483 */
484 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
485
486 /*
487 * Don't use Tx CMB. It is known to cause RRS update failure
488 * under certain circumstances. Typical phenomenon of the
489 * issue would be unexpected sequence number encountered in
490 * Rx handler.
491 */
492 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 MASTER_CHIP_REV_SHIFT;
495 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
497
498 /*
499 * Uninitialized hardware returns an invalid chip id/revision
500 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
501 */
502 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 rxf_len == 0xFFFFFFF) {
506 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 "%u Rx FIFO -- not initialized?\n",
508 sc->ale_chip_rev, txf_len, rxf_len);
509 goto fail;
510 }
511
512 if (aledebug) {
513 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 txf_len, rxf_len);
515 }
516
517 /* Set max allowable DMA size. */
518 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
520
521 callout_init(&sc->sc_tick_ch, 0);
522 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
523
524 error = ale_dma_alloc(sc);
525 if (error)
526 goto fail;
527
528 /* Load station address. */
529 ale_get_macaddr(sc);
530
531 aprint_normal_dev(self, "Ethernet address %s\n",
532 ether_sprintf(sc->ale_eaddr));
533
534 ifp = &sc->sc_ec.ec_if;
535 ifp->if_softc = sc;
536 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 ifp->if_init = ale_init;
538 ifp->if_ioctl = ale_ioctl;
539 ifp->if_start = ale_start;
540 ifp->if_stop = ale_stop;
541 ifp->if_watchdog = ale_watchdog;
542 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 IFQ_SET_READY(&ifp->if_snd);
544 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
545
546 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
547
548 #ifdef ALE_CHECKSUM
549 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
552 #endif
553
554 #if NVLAN > 0
555 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 #endif
557
558 /* Set up MII bus. */
559 sc->sc_miibus.mii_ifp = ifp;
560 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
561 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
562 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
563
564 sc->sc_ec.ec_mii = &sc->sc_miibus;
565 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
566 ale_mediastatus);
567 mii_flags = 0;
568 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 mii_flags |= MIIF_DOPAUSE;
570 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
571 MII_OFFSET_ANY, mii_flags);
572
573 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
574 aprint_error_dev(self, "no PHY found!\n");
575 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
576 0, NULL);
577 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
578 } else
579 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
580
581 if_attach(ifp);
582 ether_ifattach(ifp, sc->ale_eaddr);
583
584 if (!pmf_device_register(self, NULL, NULL))
585 aprint_error_dev(self, "couldn't establish power handler\n");
586 else
587 pmf_class_network_register(self, ifp);
588
589 return;
590 fail:
591 ale_dma_free(sc);
592 if (sc->sc_irq_handle != NULL) {
593 pci_intr_disestablish(pc, sc->sc_irq_handle);
594 sc->sc_irq_handle = NULL;
595 }
596 if (sc->sc_mem_size) {
597 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
598 sc->sc_mem_size = 0;
599 }
600 }
601
602 static int
603 ale_detach(device_t self, int flags)
604 {
605 struct ale_softc *sc = device_private(self);
606 struct ifnet *ifp = &sc->sc_ec.ec_if;
607 int s;
608
609 pmf_device_deregister(self);
610 s = splnet();
611 ale_stop(ifp, 0);
612 splx(s);
613
614 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
615
616 /* Delete all remaining media. */
617 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
618
619 ether_ifdetach(ifp);
620 if_detach(ifp);
621 ale_dma_free(sc);
622
623 if (sc->sc_irq_handle != NULL) {
624 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
625 sc->sc_irq_handle = NULL;
626 }
627 if (sc->sc_mem_size) {
628 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
629 sc->sc_mem_size = 0;
630 }
631
632 return 0;
633 }
634
635
636 static int
637 ale_dma_alloc(struct ale_softc *sc)
638 {
639 struct ale_txdesc *txd;
640 int nsegs, error, guard_size, i;
641
642 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
643 guard_size = ALE_JUMBO_FRAMELEN;
644 else
645 guard_size = ALE_MAX_FRAMELEN;
646 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
647 ALE_RX_PAGE_ALIGN);
648
649 /*
650 * Create DMA stuffs for TX ring
651 */
652 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
653 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
654 if (error) {
655 sc->ale_cdata.ale_tx_ring_map = NULL;
656 return ENOBUFS;
657 }
658
659 /* Allocate DMA'able memory for TX ring */
660 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
661 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
662 &nsegs, BUS_DMA_WAITOK);
663 if (error) {
664 printf("%s: could not allocate DMA'able memory for Tx ring, "
665 "error = %i\n", device_xname(sc->sc_dev), error);
666 return error;
667 }
668
669 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
670 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
671 BUS_DMA_NOWAIT);
672 if (error)
673 return ENOBUFS;
674
675 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
676
677 /* Load the DMA map for Tx ring. */
678 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
679 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 if (error) {
681 printf("%s: could not load DMA'able memory for Tx ring.\n",
682 device_xname(sc->sc_dev));
683 bus_dmamem_free(sc->sc_dmat,
684 &sc->ale_cdata.ale_tx_ring_seg, 1);
685 return error;
686 }
687 sc->ale_cdata.ale_tx_ring_paddr =
688 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
689
690 for (i = 0; i < ALE_RX_PAGES; i++) {
691 /*
692 * Create DMA stuffs for RX pages
693 */
694 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
695 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
696 &sc->ale_cdata.ale_rx_page[i].page_map);
697 if (error) {
698 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
699 return ENOBUFS;
700 }
701
702 /* Allocate DMA'able memory for RX pages */
703 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
704 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
705 1, &nsegs, BUS_DMA_WAITOK);
706 if (error) {
707 printf("%s: could not allocate DMA'able memory for "
708 "Rx ring.\n", device_xname(sc->sc_dev));
709 return error;
710 }
711 error = bus_dmamem_map(sc->sc_dmat,
712 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
713 sc->ale_pagesize,
714 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
715 BUS_DMA_NOWAIT);
716 if (error)
717 return ENOBUFS;
718
719 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
720 sc->ale_pagesize);
721
722 /* Load the DMA map for Rx pages. */
723 error = bus_dmamap_load(sc->sc_dmat,
724 sc->ale_cdata.ale_rx_page[i].page_map,
725 sc->ale_cdata.ale_rx_page[i].page_addr,
726 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
727 if (error) {
728 printf("%s: could not load DMA'able memory for "
729 "Rx pages.\n", device_xname(sc->sc_dev));
730 bus_dmamem_free(sc->sc_dmat,
731 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
732 return error;
733 }
734 sc->ale_cdata.ale_rx_page[i].page_paddr =
735 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
736 }
737
738 /*
739 * Create DMA stuffs for Tx CMB.
740 */
741 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
742 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
743 if (error) {
744 sc->ale_cdata.ale_tx_cmb_map = NULL;
745 return ENOBUFS;
746 }
747
748 /* Allocate DMA'able memory for Tx CMB. */
749 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
750 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
751
752 if (error) {
753 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 device_xname(sc->sc_dev));
755 return error;
756 }
757
758 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
759 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
760 BUS_DMA_NOWAIT);
761 if (error)
762 return ENOBUFS;
763
764 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
765
766 /* Load the DMA map for Tx CMB. */
767 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
768 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
769 if (error) {
770 printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 device_xname(sc->sc_dev));
772 bus_dmamem_free(sc->sc_dmat,
773 &sc->ale_cdata.ale_tx_cmb_seg, 1);
774 return error;
775 }
776
777 sc->ale_cdata.ale_tx_cmb_paddr =
778 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
779
780 for (i = 0; i < ALE_RX_PAGES; i++) {
781 /*
782 * Create DMA stuffs for Rx CMB.
783 */
784 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
785 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
786 &sc->ale_cdata.ale_rx_page[i].cmb_map);
787 if (error) {
788 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
789 return ENOBUFS;
790 }
791
792 /* Allocate DMA'able memory for Rx CMB */
793 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
794 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
795 &nsegs, BUS_DMA_WAITOK);
796 if (error) {
797 printf("%s: could not allocate DMA'able memory for "
798 "Rx CMB\n", device_xname(sc->sc_dev));
799 return error;
800 }
801 error = bus_dmamem_map(sc->sc_dmat,
802 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
803 ALE_RX_CMB_SZ,
804 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
805 BUS_DMA_NOWAIT);
806 if (error)
807 return ENOBUFS;
808
809 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
810
811 /* Load the DMA map for Rx CMB */
812 error = bus_dmamap_load(sc->sc_dmat,
813 sc->ale_cdata.ale_rx_page[i].cmb_map,
814 sc->ale_cdata.ale_rx_page[i].cmb_addr,
815 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
816 if (error) {
817 printf("%s: could not load DMA'able memory for Rx CMB"
818 "\n", device_xname(sc->sc_dev));
819 bus_dmamem_free(sc->sc_dmat,
820 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
821 return error;
822 }
823 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
824 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
825 }
826
827
828 /* Create DMA maps for Tx buffers. */
829 for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 txd = &sc->ale_cdata.ale_txdesc[i];
831 txd->tx_m = NULL;
832 txd->tx_dmamap = NULL;
833 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
834 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
835 &txd->tx_dmamap);
836 if (error) {
837 txd->tx_dmamap = NULL;
838 printf("%s: could not create Tx dmamap.\n",
839 device_xname(sc->sc_dev));
840 return error;
841 }
842 }
843
844 return 0;
845 }
846
847 static void
848 ale_dma_free(struct ale_softc *sc)
849 {
850 struct ale_txdesc *txd;
851 int i;
852
853 /* Tx buffers. */
854 for (i = 0; i < ALE_TX_RING_CNT; i++) {
855 txd = &sc->ale_cdata.ale_txdesc[i];
856 if (txd->tx_dmamap != NULL) {
857 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
858 txd->tx_dmamap = NULL;
859 }
860 }
861
862 /* Tx descriptor ring. */
863 if (sc->ale_cdata.ale_tx_ring_map != NULL)
864 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
865 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
866 sc->ale_cdata.ale_tx_ring != NULL)
867 bus_dmamem_free(sc->sc_dmat,
868 &sc->ale_cdata.ale_tx_ring_seg, 1);
869 sc->ale_cdata.ale_tx_ring = NULL;
870 sc->ale_cdata.ale_tx_ring_map = NULL;
871
872 /* Rx page block. */
873 for (i = 0; i < ALE_RX_PAGES; i++) {
874 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
875 bus_dmamap_unload(sc->sc_dmat,
876 sc->ale_cdata.ale_rx_page[i].page_map);
877 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
878 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
879 bus_dmamem_free(sc->sc_dmat,
880 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
881 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
882 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
883 }
884
885 /* Rx CMB. */
886 for (i = 0; i < ALE_RX_PAGES; i++) {
887 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
888 bus_dmamap_unload(sc->sc_dmat,
889 sc->ale_cdata.ale_rx_page[i].cmb_map);
890 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
891 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
892 bus_dmamem_free(sc->sc_dmat,
893 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
894 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
895 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
896 }
897
898 /* Tx CMB. */
899 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
900 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
901 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
902 sc->ale_cdata.ale_tx_cmb != NULL)
903 bus_dmamem_free(sc->sc_dmat,
904 &sc->ale_cdata.ale_tx_cmb_seg, 1);
905 sc->ale_cdata.ale_tx_cmb = NULL;
906 sc->ale_cdata.ale_tx_cmb_map = NULL;
907
908 }
909
910 static int
911 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
912 {
913 struct ale_txdesc *txd, *txd_last;
914 struct tx_desc *desc;
915 struct mbuf *m;
916 bus_dmamap_t map;
917 uint32_t cflags, poff, vtag;
918 int error, i, nsegs, prod;
919 #if NVLAN > 0
920 struct m_tag *mtag;
921 #endif
922
923 m = *m_head;
924 cflags = vtag = 0;
925 poff = 0;
926
927 prod = sc->ale_cdata.ale_tx_prod;
928 txd = &sc->ale_cdata.ale_txdesc[prod];
929 txd_last = txd;
930 map = txd->tx_dmamap;
931
932 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
933 if (error == EFBIG) {
934 error = 0;
935
936 MGETHDR(m, M_DONTWAIT, MT_DATA);
937 if (m == NULL) {
938 printf("%s: can't defrag TX mbuf\n",
939 device_xname(sc->sc_dev));
940 m_freem(*m_head);
941 *m_head = NULL;
942 return ENOBUFS;
943 }
944
945 M_COPY_PKTHDR(m, *m_head);
946 if ((*m_head)->m_pkthdr.len > MHLEN) {
947 MCLGET(m, M_DONTWAIT);
948 if (!(m->m_flags & M_EXT)) {
949 m_freem(*m_head);
950 m_freem(m);
951 *m_head = NULL;
952 return ENOBUFS;
953 }
954 }
955 m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
956 mtod(m, void *));
957 m_freem(*m_head);
958 m->m_len = m->m_pkthdr.len;
959 *m_head = m;
960
961 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
962 BUS_DMA_NOWAIT);
963
964 if (error != 0) {
965 printf("%s: could not load defragged TX mbuf\n",
966 device_xname(sc->sc_dev));
967 if (!error) {
968 bus_dmamap_unload(sc->sc_dmat, map);
969 error = EFBIG;
970 }
971 m_freem(*m_head);
972 *m_head = NULL;
973 return error;
974 }
975 } else if (error) {
976 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
977 return error;
978 }
979
980 nsegs = map->dm_nsegs;
981
982 if (nsegs == 0) {
983 m_freem(*m_head);
984 *m_head = NULL;
985 return EIO;
986 }
987
988 /* Check descriptor overrun. */
989 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
990 bus_dmamap_unload(sc->sc_dmat, map);
991 return ENOBUFS;
992 }
993 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
994 BUS_DMASYNC_PREWRITE);
995
996 m = *m_head;
997 /* Configure Tx checksum offload. */
998 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
999 /*
1000 * AR81xx supports Tx custom checksum offload feature
1001 * that offloads single 16bit checksum computation.
1002 * So you can choose one among IP, TCP and UDP.
1003 * Normally driver sets checksum start/insertion
1004 * position from the information of TCP/UDP frame as
1005 * TCP/UDP checksum takes more time than that of IP.
1006 * However it seems that custom checksum offload
1007 * requires 4 bytes aligned Tx buffers due to hardware
1008 * bug.
1009 * AR81xx also supports explicit Tx checksum computation
1010 * if it is told that the size of IP header and TCP
1011 * header(for UDP, the header size does not matter
1012 * because it's fixed length). However with this scheme
1013 * TSO does not work so you have to choose one either
1014 * TSO or explicit Tx checksum offload. I chosen TSO
1015 * plus custom checksum offload with work-around which
1016 * will cover most common usage for this consumer
1017 * ethernet controller. The work-around takes a lot of
1018 * CPU cycles if Tx buffer is not aligned on 4 bytes
1019 * boundary, though.
1020 */
1021 cflags |= ALE_TD_CXSUM;
1022 /* Set checksum start offset. */
1023 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1024 }
1025
1026 #if NVLAN > 0
1027 /* Configure VLAN hardware tag insertion. */
1028 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1029 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1030 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1031 cflags |= ALE_TD_INSERT_VLAN_TAG;
1032 }
1033 #endif
1034
1035 desc = NULL;
1036 for (i = 0; i < nsegs; i++) {
1037 desc = &sc->ale_cdata.ale_tx_ring[prod];
1038 desc->addr = htole64(map->dm_segs[i].ds_addr);
1039 desc->len =
1040 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1041 desc->flags = htole32(cflags);
1042 sc->ale_cdata.ale_tx_cnt++;
1043 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1044 }
1045 /* Update producer index. */
1046 sc->ale_cdata.ale_tx_prod = prod;
1047
1048 /* Finally set EOP on the last descriptor. */
1049 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1050 desc = &sc->ale_cdata.ale_tx_ring[prod];
1051 desc->flags |= htole32(ALE_TD_EOP);
1052
1053 /* Swap dmamap of the first and the last. */
1054 txd = &sc->ale_cdata.ale_txdesc[prod];
1055 map = txd_last->tx_dmamap;
1056 txd_last->tx_dmamap = txd->tx_dmamap;
1057 txd->tx_dmamap = map;
1058 txd->tx_m = m;
1059
1060 /* Sync descriptors. */
1061 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1062 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1063
1064 return 0;
1065 }
1066
1067 static void
1068 ale_start(struct ifnet *ifp)
1069 {
1070 struct ale_softc *sc = ifp->if_softc;
1071 struct mbuf *m_head;
1072 int enq;
1073
1074 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1075 return;
1076
1077 /* Reclaim transmitted frames. */
1078 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1079 ale_txeof(sc);
1080
1081 enq = 0;
1082 for (;;) {
1083 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1084 if (m_head == NULL)
1085 break;
1086
1087 /*
1088 * Pack the data into the transmit ring. If we
1089 * don't have room, set the OACTIVE flag and wait
1090 * for the NIC to drain the ring.
1091 */
1092 if (ale_encap(sc, &m_head)) {
1093 if (m_head == NULL)
1094 break;
1095 ifp->if_flags |= IFF_OACTIVE;
1096 break;
1097 }
1098 enq = 1;
1099
1100 #if NBPFILTER > 0
1101 /*
1102 * If there's a BPF listener, bounce a copy of this frame
1103 * to him.
1104 */
1105 if (ifp->if_bpf != NULL)
1106 bpf_mtap(ifp->if_bpf, m_head);
1107 #endif
1108 }
1109
1110 if (enq) {
1111 /* Kick. */
1112 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1113 sc->ale_cdata.ale_tx_prod);
1114
1115 /* Set a timeout in case the chip goes out to lunch. */
1116 ifp->if_timer = ALE_TX_TIMEOUT;
1117 }
1118 }
1119
1120 static void
1121 ale_watchdog(struct ifnet *ifp)
1122 {
1123 struct ale_softc *sc = ifp->if_softc;
1124
1125 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1126 printf("%s: watchdog timeout (missed link)\n",
1127 device_xname(sc->sc_dev));
1128 ifp->if_oerrors++;
1129 ale_init(ifp);
1130 return;
1131 }
1132
1133 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1134 ifp->if_oerrors++;
1135 ale_init(ifp);
1136
1137 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1138 ale_start(ifp);
1139 }
1140
1141 static int
1142 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1143 {
1144 struct ale_softc *sc = ifp->if_softc;
1145 int s, error;
1146
1147 s = splnet();
1148
1149 error = ether_ioctl(ifp, cmd, data);
1150 if (error == ENETRESET) {
1151 if (ifp->if_flags & IFF_RUNNING)
1152 ale_rxfilter(sc);
1153 error = 0;
1154 }
1155
1156 splx(s);
1157 return error;
1158 }
1159
1160 static void
1161 ale_mac_config(struct ale_softc *sc)
1162 {
1163 struct mii_data *mii;
1164 uint32_t reg;
1165
1166 mii = &sc->sc_miibus;
1167 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1168 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1169 MAC_CFG_SPEED_MASK);
1170
1171 /* Reprogram MAC with resolved speed/duplex. */
1172 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1173 case IFM_10_T:
1174 case IFM_100_TX:
1175 reg |= MAC_CFG_SPEED_10_100;
1176 break;
1177 case IFM_1000_T:
1178 reg |= MAC_CFG_SPEED_1000;
1179 break;
1180 }
1181 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1182 reg |= MAC_CFG_FULL_DUPLEX;
1183 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1184 reg |= MAC_CFG_TX_FC;
1185 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1186 reg |= MAC_CFG_RX_FC;
1187 }
1188 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1189 }
1190
1191 static void
1192 ale_stats_clear(struct ale_softc *sc)
1193 {
1194 struct smb sb;
1195 uint32_t *reg;
1196 int i;
1197
1198 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1199 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1200 i += sizeof(uint32_t);
1201 }
1202 /* Read Tx statistics. */
1203 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1204 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1205 i += sizeof(uint32_t);
1206 }
1207 }
1208
1209 static void
1210 ale_stats_update(struct ale_softc *sc)
1211 {
1212 struct ifnet *ifp = &sc->sc_ec.ec_if;
1213 struct ale_hw_stats *stat;
1214 struct smb sb, *smb;
1215 uint32_t *reg;
1216 int i;
1217
1218 stat = &sc->ale_stats;
1219 smb = &sb;
1220
1221 /* Read Rx statistics. */
1222 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1223 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1224 i += sizeof(uint32_t);
1225 }
1226 /* Read Tx statistics. */
1227 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1228 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1229 i += sizeof(uint32_t);
1230 }
1231
1232 /* Rx stats. */
1233 stat->rx_frames += smb->rx_frames;
1234 stat->rx_bcast_frames += smb->rx_bcast_frames;
1235 stat->rx_mcast_frames += smb->rx_mcast_frames;
1236 stat->rx_pause_frames += smb->rx_pause_frames;
1237 stat->rx_control_frames += smb->rx_control_frames;
1238 stat->rx_crcerrs += smb->rx_crcerrs;
1239 stat->rx_lenerrs += smb->rx_lenerrs;
1240 stat->rx_bytes += smb->rx_bytes;
1241 stat->rx_runts += smb->rx_runts;
1242 stat->rx_fragments += smb->rx_fragments;
1243 stat->rx_pkts_64 += smb->rx_pkts_64;
1244 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1245 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1246 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1247 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1248 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1249 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1250 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1251 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1252 stat->rx_rrs_errs += smb->rx_rrs_errs;
1253 stat->rx_alignerrs += smb->rx_alignerrs;
1254 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1255 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1256 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1257
1258 /* Tx stats. */
1259 stat->tx_frames += smb->tx_frames;
1260 stat->tx_bcast_frames += smb->tx_bcast_frames;
1261 stat->tx_mcast_frames += smb->tx_mcast_frames;
1262 stat->tx_pause_frames += smb->tx_pause_frames;
1263 stat->tx_excess_defer += smb->tx_excess_defer;
1264 stat->tx_control_frames += smb->tx_control_frames;
1265 stat->tx_deferred += smb->tx_deferred;
1266 stat->tx_bytes += smb->tx_bytes;
1267 stat->tx_pkts_64 += smb->tx_pkts_64;
1268 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1269 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1270 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1271 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1272 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1273 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1274 stat->tx_single_colls += smb->tx_single_colls;
1275 stat->tx_multi_colls += smb->tx_multi_colls;
1276 stat->tx_late_colls += smb->tx_late_colls;
1277 stat->tx_excess_colls += smb->tx_excess_colls;
1278 stat->tx_abort += smb->tx_abort;
1279 stat->tx_underrun += smb->tx_underrun;
1280 stat->tx_desc_underrun += smb->tx_desc_underrun;
1281 stat->tx_lenerrs += smb->tx_lenerrs;
1282 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1283 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1284 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1285
1286 /* Update counters in ifnet. */
1287 ifp->if_opackets += smb->tx_frames;
1288
1289 ifp->if_collisions += smb->tx_single_colls +
1290 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1291 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1292
1293 /*
1294 * XXX
1295 * tx_pkts_truncated counter looks suspicious. It constantly
1296 * increments with no sign of Tx errors. This may indicate
1297 * the counter name is not correct one so I've removed the
1298 * counter in output errors.
1299 */
1300 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1301 smb->tx_underrun;
1302
1303 ifp->if_ipackets += smb->rx_frames;
1304
1305 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1306 smb->rx_runts + smb->rx_pkts_truncated +
1307 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1308 smb->rx_alignerrs;
1309 }
1310
1311 static int
1312 ale_intr(void *xsc)
1313 {
1314 struct ale_softc *sc = xsc;
1315 struct ifnet *ifp = &sc->sc_ec.ec_if;
1316 uint32_t status;
1317
1318 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1319 if ((status & ALE_INTRS) == 0)
1320 return 0;
1321
1322 /* Acknowledge and disable interrupts. */
1323 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1324
1325 if (ifp->if_flags & IFF_RUNNING) {
1326 int error;
1327
1328 error = ale_rxeof(sc);
1329 if (error) {
1330 sc->ale_stats.reset_brk_seq++;
1331 ale_init(ifp);
1332 return 0;
1333 }
1334
1335 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1336 if (status & INTR_DMA_RD_TO_RST)
1337 printf("%s: DMA read error! -- resetting\n",
1338 device_xname(sc->sc_dev));
1339 if (status & INTR_DMA_WR_TO_RST)
1340 printf("%s: DMA write error! -- resetting\n",
1341 device_xname(sc->sc_dev));
1342 ale_init(ifp);
1343 return 0;
1344 }
1345
1346 ale_txeof(sc);
1347 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1348 ale_start(ifp);
1349 }
1350
1351 /* Re-enable interrupts. */
1352 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1353 return 1;
1354 }
1355
1356 static void
1357 ale_txeof(struct ale_softc *sc)
1358 {
1359 struct ifnet *ifp = &sc->sc_ec.ec_if;
1360 struct ale_txdesc *txd;
1361 uint32_t cons, prod;
1362 int prog;
1363
1364 if (sc->ale_cdata.ale_tx_cnt == 0)
1365 return;
1366
1367 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1368 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1369 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1370 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1371 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1372 BUS_DMASYNC_POSTREAD);
1373 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1374 } else
1375 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1376 cons = sc->ale_cdata.ale_tx_cons;
1377 /*
1378 * Go through our Tx list and free mbufs for those
1379 * frames which have been transmitted.
1380 */
1381 for (prog = 0; cons != prod; prog++,
1382 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1383 if (sc->ale_cdata.ale_tx_cnt <= 0)
1384 break;
1385 prog++;
1386 ifp->if_flags &= ~IFF_OACTIVE;
1387 sc->ale_cdata.ale_tx_cnt--;
1388 txd = &sc->ale_cdata.ale_txdesc[cons];
1389 if (txd->tx_m != NULL) {
1390 /* Reclaim transmitted mbufs. */
1391 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1392 m_freem(txd->tx_m);
1393 txd->tx_m = NULL;
1394 }
1395 }
1396
1397 if (prog > 0) {
1398 sc->ale_cdata.ale_tx_cons = cons;
1399 /*
1400 * Unarm watchdog timer only when there is no pending
1401 * Tx descriptors in queue.
1402 */
1403 if (sc->ale_cdata.ale_tx_cnt == 0)
1404 ifp->if_timer = 0;
1405 }
1406 }
1407
1408 static void
1409 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1410 uint32_t length, uint32_t *prod)
1411 {
1412 struct ale_rx_page *rx_page;
1413
1414 rx_page = *page;
1415 /* Update consumer position. */
1416 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1417 ALE_RX_PAGE_ALIGN);
1418 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1419 /*
1420 * End of Rx page reached, let hardware reuse
1421 * this page.
1422 */
1423 rx_page->cons = 0;
1424 *rx_page->cmb_addr = 0;
1425 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1426 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1427 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1428 RXF_VALID);
1429 /* Switch to alternate Rx page. */
1430 sc->ale_cdata.ale_rx_curp ^= 1;
1431 rx_page = *page =
1432 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1433 /* Page flipped, sync CMB and Rx page. */
1434 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1435 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1436 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1437 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1438 /* Sync completed, cache updated producer index. */
1439 *prod = *rx_page->cmb_addr;
1440 }
1441 }
1442
1443
1444 /*
1445 * It seems that AR81xx controller can compute partial checksum.
1446 * The partial checksum value can be used to accelerate checksum
1447 * computation for fragmented TCP/UDP packets. Upper network stack
1448 * already takes advantage of the partial checksum value in IP
1449 * reassembly stage. But I'm not sure the correctness of the
1450 * partial hardware checksum assistance due to lack of data sheet.
1451 * In addition, the Rx feature of controller that requires copying
1452 * for every frames effectively nullifies one of most nice offload
1453 * capability of controller.
1454 */
1455 static void
1456 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1457 {
1458 if (status & ALE_RD_IPCSUM_NOK)
1459 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1460
1461 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1462 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1463 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1464 (status & ALE_RD_TCP_UDPCSUM_NOK))
1465 {
1466 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1467 }
1468 } else {
1469 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1470 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1471 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1472 }
1473 }
1474 }
1475 /*
1476 * Don't mark bad checksum for TCP/UDP frames
1477 * as fragmented frames may always have set
1478 * bad checksummed bit of frame status.
1479 */
1480 }
1481
1482 /* Process received frames. */
1483 static int
1484 ale_rxeof(struct ale_softc *sc)
1485 {
1486 struct ifnet *ifp = &sc->sc_ec.ec_if;
1487 struct ale_rx_page *rx_page;
1488 struct rx_rs *rs;
1489 struct mbuf *m;
1490 uint32_t length, prod, seqno, status;
1491 int prog;
1492
1493 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1494 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1495 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1496 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1497 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1498 /*
1499 * Don't directly access producer index as hardware may
1500 * update it while Rx handler is in progress. It would
1501 * be even better if there is a way to let hardware
1502 * know how far driver processed its received frames.
1503 * Alternatively, hardware could provide a way to disable
1504 * CMB updates until driver acknowledges the end of CMB
1505 * access.
1506 */
1507 prod = *rx_page->cmb_addr;
1508 for (prog = 0; ; prog++) {
1509 if (rx_page->cons >= prod)
1510 break;
1511 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1512 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1513 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1514 /*
1515 * Normally I believe this should not happen unless
1516 * severe driver bug or corrupted memory. However
1517 * it seems to happen under certain conditions which
1518 * is triggered by abrupt Rx events such as initiation
1519 * of bulk transfer of remote host. It's not easy to
1520 * reproduce this and I doubt it could be related
1521 * with FIFO overflow of hardware or activity of Tx
1522 * CMB updates. I also remember similar behaviour
1523 * seen on RealTek 8139 which uses resembling Rx
1524 * scheme.
1525 */
1526 if (aledebug)
1527 printf("%s: garbled seq: %u, expected: %u -- "
1528 "resetting!\n", device_xname(sc->sc_dev),
1529 seqno, sc->ale_cdata.ale_rx_seqno);
1530 return EIO;
1531 }
1532 /* Frame received. */
1533 sc->ale_cdata.ale_rx_seqno++;
1534 length = ALE_RX_BYTES(le32toh(rs->length));
1535 status = le32toh(rs->flags);
1536 if (status & ALE_RD_ERROR) {
1537 /*
1538 * We want to pass the following frames to upper
1539 * layer regardless of error status of Rx return
1540 * status.
1541 *
1542 * o IP/TCP/UDP checksum is bad.
1543 * o frame length and protocol specific length
1544 * does not match.
1545 */
1546 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1547 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1548 ALE_RD_TRUNC)) {
1549 ale_rx_update_page(sc, &rx_page, length, &prod);
1550 continue;
1551 }
1552 }
1553 /*
1554 * m_devget(9) is major bottle-neck of ale(4)(It comes
1555 * from hardware limitation). For jumbo frames we could
1556 * get a slightly better performance if driver use
1557 * m_getjcl(9) with proper buffer size argument. However
1558 * that would make code more complicated and I don't
1559 * think users would expect good Rx performance numbers
1560 * on these low-end consumer ethernet controller.
1561 */
1562 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1563 0, ifp, NULL);
1564 if (m == NULL) {
1565 ifp->if_iqdrops++;
1566 ale_rx_update_page(sc, &rx_page, length, &prod);
1567 continue;
1568 }
1569 if (status & ALE_RD_IPV4)
1570 ale_rxcsum(sc, m, status);
1571 #if NVLAN > 0
1572 if (status & ALE_RD_VLAN) {
1573 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1574 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1575 }
1576 #endif
1577
1578
1579 #if NBPFILTER > 0
1580 if (ifp->if_bpf)
1581 bpf_mtap(ifp->if_bpf, m);
1582 #endif
1583
1584 /* Pass it to upper layer. */
1585 ether_input(ifp, m);
1586
1587 ale_rx_update_page(sc, &rx_page, length, &prod);
1588 }
1589
1590 return 0;
1591 }
1592
1593 static void
1594 ale_tick(void *xsc)
1595 {
1596 struct ale_softc *sc = xsc;
1597 struct mii_data *mii = &sc->sc_miibus;
1598 int s;
1599
1600 s = splnet();
1601 mii_tick(mii);
1602 ale_stats_update(sc);
1603 splx(s);
1604
1605 callout_schedule(&sc->sc_tick_ch, hz);
1606 }
1607
1608 static void
1609 ale_reset(struct ale_softc *sc)
1610 {
1611 uint32_t reg;
1612 int i;
1613
1614 /* Initialize PCIe module. From Linux. */
1615 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1616
1617 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1618 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1619 DELAY(10);
1620 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1621 break;
1622 }
1623 if (i == 0)
1624 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1625
1626 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1627 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1628 break;
1629 DELAY(10);
1630 }
1631
1632 if (i == 0)
1633 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1634 reg);
1635 }
1636
1637 static int
1638 ale_init(struct ifnet *ifp)
1639 {
1640 struct ale_softc *sc = ifp->if_softc;
1641 struct mii_data *mii;
1642 uint8_t eaddr[ETHER_ADDR_LEN];
1643 bus_addr_t paddr;
1644 uint32_t reg, rxf_hi, rxf_lo;
1645
1646 /*
1647 * Cancel any pending I/O.
1648 */
1649 ale_stop(ifp, 0);
1650
1651 /*
1652 * Reset the chip to a known state.
1653 */
1654 ale_reset(sc);
1655
1656 /* Initialize Tx descriptors, DMA memory blocks. */
1657 ale_init_rx_pages(sc);
1658 ale_init_tx_ring(sc);
1659
1660 /* Reprogram the station address. */
1661 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1662 CSR_WRITE_4(sc, ALE_PAR0,
1663 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1664 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1665
1666 /*
1667 * Clear WOL status and disable all WOL feature as WOL
1668 * would interfere Rx operation under normal environments.
1669 */
1670 CSR_READ_4(sc, ALE_WOL_CFG);
1671 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1672
1673 /*
1674 * Set Tx descriptor/RXF0/CMB base addresses. They share
1675 * the same high address part of DMAable region.
1676 */
1677 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1678 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1679 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1680 CSR_WRITE_4(sc, ALE_TPD_CNT,
1681 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1682
1683 /* Set Rx page base address, note we use single queue. */
1684 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1685 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1686 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1687 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1688
1689 /* Set Tx/Rx CMB addresses. */
1690 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1691 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1692 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1693 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1694 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1695 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1696
1697 /* Mark RXF0 is valid. */
1698 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1699 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1700 /*
1701 * No need to initialize RFX1/RXF2/RXF3. We don't use
1702 * multi-queue yet.
1703 */
1704
1705 /* Set Rx page size, excluding guard frame size. */
1706 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1707
1708 /* Tell hardware that we're ready to load DMA blocks. */
1709 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1710
1711 /* Set Rx/Tx interrupt trigger threshold. */
1712 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1713 (4 << INT_TRIG_TX_THRESH_SHIFT));
1714 /*
1715 * XXX
1716 * Set interrupt trigger timer, its purpose and relation
1717 * with interrupt moderation mechanism is not clear yet.
1718 */
1719 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1720 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1721 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1722
1723 /* Configure interrupt moderation timer. */
1724 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1725 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1726 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1727 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1728 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1729 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1730 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1731 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1732 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1733 reg |= MASTER_IM_RX_TIMER_ENB;
1734 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1735 reg |= MASTER_IM_TX_TIMER_ENB;
1736 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1737 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1738
1739 /* Set Maximum frame size of controller. */
1740 if (ifp->if_mtu < ETHERMTU)
1741 sc->ale_max_frame_size = ETHERMTU;
1742 else
1743 sc->ale_max_frame_size = ifp->if_mtu;
1744 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1745 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1746
1747 /* Configure IPG/IFG parameters. */
1748 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1749 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1750 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1751 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1752 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1753
1754 /* Set parameters for half-duplex media. */
1755 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1756 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1757 HDPX_CFG_LCOL_MASK) |
1758 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1759 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1760 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1761 HDPX_CFG_ABEBT_MASK) |
1762 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1763 HDPX_CFG_JAMIPG_MASK));
1764
1765 /* Configure Tx jumbo frame parameters. */
1766 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1767 if (ifp->if_mtu < ETHERMTU)
1768 reg = sc->ale_max_frame_size;
1769 else if (ifp->if_mtu < 6 * 1024)
1770 reg = (sc->ale_max_frame_size * 2) / 3;
1771 else
1772 reg = sc->ale_max_frame_size / 2;
1773 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1774 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1775 TX_JUMBO_THRESH_UNIT_SHIFT);
1776 }
1777
1778 /* Configure TxQ. */
1779 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1780 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1781 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1782 TXQ_CFG_TPD_BURST_MASK;
1783 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1784
1785 /* Configure Rx jumbo frame & flow control parameters. */
1786 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1787 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1788 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1789 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1790 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1791 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1792 RX_JUMBO_LKAH_MASK));
1793 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1794 rxf_hi = (reg * 7) / 10;
1795 rxf_lo = (reg * 3)/ 10;
1796 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1797 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1798 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1799 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1800 RX_FIFO_PAUSE_THRESH_HI_MASK));
1801 }
1802
1803 /* Disable RSS. */
1804 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1805 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1806
1807 /* Configure RxQ. */
1808 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1809 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1810
1811 /* Configure DMA parameters. */
1812 reg = 0;
1813 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1814 reg |= DMA_CFG_TXCMB_ENB;
1815 CSR_WRITE_4(sc, ALE_DMA_CFG,
1816 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1817 sc->ale_dma_rd_burst | reg |
1818 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1819 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1820 DMA_CFG_RD_DELAY_CNT_MASK) |
1821 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1822 DMA_CFG_WR_DELAY_CNT_MASK));
1823
1824 /*
1825 * Hardware can be configured to issue SMB interrupt based
1826 * on programmed interval. Since there is a callout that is
1827 * invoked for every hz in driver we use that instead of
1828 * relying on periodic SMB interrupt.
1829 */
1830 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1831
1832 /* Clear MAC statistics. */
1833 ale_stats_clear(sc);
1834
1835 /*
1836 * Configure Tx/Rx MACs.
1837 * - Auto-padding for short frames.
1838 * - Enable CRC generation.
1839 * Actual reconfiguration of MAC for resolved speed/duplex
1840 * is followed after detection of link establishment.
1841 * AR81xx always does checksum computation regardless of
1842 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1843 * cause Rx handling issue for fragmented IP datagrams due
1844 * to silicon bug.
1845 */
1846 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1847 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1848 MAC_CFG_PREAMBLE_MASK);
1849 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1850 reg |= MAC_CFG_SPEED_10_100;
1851 else
1852 reg |= MAC_CFG_SPEED_1000;
1853 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1854
1855 /* Set up the receive filter. */
1856 ale_rxfilter(sc);
1857 ale_rxvlan(sc);
1858
1859 /* Acknowledge all pending interrupts and clear it. */
1860 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1861 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1862 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1863
1864 sc->ale_flags &= ~ALE_FLAG_LINK;
1865
1866 /* Switch to the current media. */
1867 mii = &sc->sc_miibus;
1868 mii_mediachg(mii);
1869
1870 callout_schedule(&sc->sc_tick_ch, hz);
1871
1872 ifp->if_flags |= IFF_RUNNING;
1873 ifp->if_flags &= ~IFF_OACTIVE;
1874
1875 return 0;
1876 }
1877
1878 static void
1879 ale_stop(struct ifnet *ifp, int disable)
1880 {
1881 struct ale_softc *sc = ifp->if_softc;
1882 struct ale_txdesc *txd;
1883 uint32_t reg;
1884 int i;
1885
1886 callout_stop(&sc->sc_tick_ch);
1887
1888 /*
1889 * Mark the interface down and cancel the watchdog timer.
1890 */
1891 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1892 ifp->if_timer = 0;
1893
1894 sc->ale_flags &= ~ALE_FLAG_LINK;
1895
1896 ale_stats_update(sc);
1897
1898 mii_down(&sc->sc_miibus);
1899
1900 /* Disable interrupts. */
1901 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1902 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1903
1904 /* Disable queue processing and DMA. */
1905 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1906 reg &= ~TXQ_CFG_ENB;
1907 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1908 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1909 reg &= ~RXQ_CFG_ENB;
1910 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1911 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1912 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1913 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1914 DELAY(1000);
1915
1916 /* Stop Rx/Tx MACs. */
1917 ale_stop_mac(sc);
1918
1919 /* Disable interrupts again? XXX */
1920 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1921
1922 /*
1923 * Free TX mbufs still in the queues.
1924 */
1925 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1926 txd = &sc->ale_cdata.ale_txdesc[i];
1927 if (txd->tx_m != NULL) {
1928 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1929 m_freem(txd->tx_m);
1930 txd->tx_m = NULL;
1931 }
1932 }
1933 }
1934
1935 static void
1936 ale_stop_mac(struct ale_softc *sc)
1937 {
1938 uint32_t reg;
1939 int i;
1940
1941 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1942 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1943 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1944 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1945 }
1946
1947 for (i = ALE_TIMEOUT; i > 0; i--) {
1948 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1949 if (reg == 0)
1950 break;
1951 DELAY(10);
1952 }
1953 if (i == 0)
1954 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1955 device_xname(sc->sc_dev), reg);
1956 }
1957
1958 static void
1959 ale_init_tx_ring(struct ale_softc *sc)
1960 {
1961 struct ale_txdesc *txd;
1962 int i;
1963
1964 sc->ale_cdata.ale_tx_prod = 0;
1965 sc->ale_cdata.ale_tx_cons = 0;
1966 sc->ale_cdata.ale_tx_cnt = 0;
1967
1968 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1969 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1970 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1971 txd = &sc->ale_cdata.ale_txdesc[i];
1972 txd->tx_m = NULL;
1973 }
1974 *sc->ale_cdata.ale_tx_cmb = 0;
1975 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1976 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1978 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1979 }
1980
1981 static void
1982 ale_init_rx_pages(struct ale_softc *sc)
1983 {
1984 struct ale_rx_page *rx_page;
1985 int i;
1986
1987 sc->ale_cdata.ale_rx_seqno = 0;
1988 sc->ale_cdata.ale_rx_curp = 0;
1989
1990 for (i = 0; i < ALE_RX_PAGES; i++) {
1991 rx_page = &sc->ale_cdata.ale_rx_page[i];
1992 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1993 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1994 rx_page->cons = 0;
1995 *rx_page->cmb_addr = 0;
1996 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1997 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1998 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1999 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2000 }
2001 }
2002
2003 static void
2004 ale_rxvlan(struct ale_softc *sc)
2005 {
2006 struct ifnet *ifp = &sc->sc_ec.ec_if;
2007 uint32_t reg;
2008
2009 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2010 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2011 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
2012 reg |= MAC_CFG_VLAN_TAG_STRIP;
2013 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2014 }
2015
2016 static void
2017 ale_rxfilter(struct ale_softc *sc)
2018 {
2019 struct ethercom *ec = &sc->sc_ec;
2020 struct ifnet *ifp = &ec->ec_if;
2021 struct ether_multi *enm;
2022 struct ether_multistep step;
2023 uint32_t crc;
2024 uint32_t mchash[2];
2025 uint32_t rxcfg;
2026
2027 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2028 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2029
2030 /*
2031 * Always accept broadcast frames.
2032 */
2033 rxcfg |= MAC_CFG_BCAST;
2034
2035 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2036 ec->ec_multicnt > 0) {
2037 allmulti:
2038 if (ifp->if_flags & IFF_PROMISC)
2039 rxcfg |= MAC_CFG_PROMISC;
2040 else
2041 rxcfg |= MAC_CFG_ALLMULTI;
2042 mchash[0] = mchash[1] = 0xFFFFFFFF;
2043 } else {
2044 /* Program new filter. */
2045 memset(mchash, 0, sizeof(mchash));
2046
2047 ETHER_FIRST_MULTI(step, ec, enm);
2048 while (enm != NULL) {
2049 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2050 ETHER_ADDR_LEN)) {
2051 ifp->if_flags |= IFF_ALLMULTI;
2052 goto allmulti;
2053 }
2054 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2055
2056 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2057 ETHER_NEXT_MULTI(step, enm);
2058 }
2059 }
2060
2061 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2062 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2063 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2064 }
2065