Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.1.2.3
      1 /*	$NetBSD: if_aq.c,v 1.1.2.3 2020/02/29 20:19:10 ad Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.1.2.3 2020/02/29 20:19:10 ad Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 /*
    120  * TERMINOLOGY
    121  *	MPI = MAC PHY INTERFACE?
    122  *	RPO = RX Protocol Offloading
    123  *	TPO = TX Protocol Offloading
    124  *	RPF = RX Packet Filter
    125  *	TPB = TX Packet buffer
    126  *	RPB = RX Packet buffer
    127  */
    128 
    129 /* registers */
    130 #define AQ_FW_SOFTRESET_REG			0x0000
    131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    133 
    134 #define AQ_FW_VERSION_REG			0x0018
    135 #define AQ_HW_REVISION_REG			0x001c
    136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    137 
    138 #define AQ_FW_MBOX_CMD_REG			0x0200
    139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    141 #define AQ_FW_MBOX_ADDR_REG			0x0208
    142 #define AQ_FW_MBOX_VAL_REG			0x020c
    143 
    144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    145 #define FW2X_LED_REG				0x031c
    146 #define  FW2X_LED_DEFAULT			0x00000000
    147 #define  FW2X_LED_NONE				0x0000003f
    148 #define  FW2X_LINKLED				__BITS(0,1)
    149 #define   FW2X_LINKLED_ACTIVE			0
    150 #define   FW2X_LINKLED_ON			1
    151 #define   FW2X_LINKLED_BLINK			2
    152 #define   FW2X_LINKLED_OFF			3
    153 #define  FW2X_STATUSLED				__BITS(2,5)
    154 #define   FW2X_STATUSLED_ORANGE			0
    155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    156 #define   FW2X_STATUSLED_OFF			3
    157 #define   FW2X_STATUSLED_GREEN			4
    158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    159 #define   FW2X_STATUSLED_GREEN_BLINK		10
    160 
    161 #define FW_MPI_MBOX_ADDR_REG			0x0360
    162 #define FW1X_MPI_INIT1_REG			0x0364
    163 #define FW1X_MPI_CONTROL_REG			0x0368
    164 #define FW1X_MPI_STATE_REG			0x036c
    165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    169 #define FW1X_MPI_INIT2_REG			0x0370
    170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    171 
    172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    175 #define FW_BOOT_EXIT_CODE_REG			0x0388
    176 #define  RBL_STATUS_DEAD			0x0000dead
    177 #define  RBL_STATUS_SUCCESS			0x0000abba
    178 #define  RBL_STATUS_FAILURE			0x00000bad
    179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    180 
    181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    183 
    184 #define AQ_FW_GLB_CTL2_REG			0x0404
    185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    186 
    187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    189 
    190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    191 
    192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    193 
    194 // msix bitmap */
    195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    199 #define AQ_INTR_AUTOMASK_REG			0x2090
    200 
    201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    209 
    210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    212 #define  AQ_B0_ERR_INT				8U
    213 
    214 #define AQ_INTR_CTRL_REG			0x2300
    215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    224 
    225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    226 
    227 #define FW_MPI_RESETCTRL_REG			0x4000
    228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    229 
    230 #define RX_SYSCONTROL_REG			0x5000
    231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    234 
    235 #define RX_TCP_RSS_HASH_REG			0x5040
    236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    238 
    239 /* for RPF_*_REG.ACTION */
    240 #define RPF_ACTION_DISCARD			0
    241 #define RPF_ACTION_HOST				1
    242 #define RPF_ACTION_MANAGEMENT			2
    243 #define RPF_ACTION_HOST_MANAGEMENT		3
    244 #define RPF_ACTION_WOL				4
    245 
    246 #define RPF_L2BC_REG				0x5100
    247 #define  RPF_L2BC_EN				__BIT(0)
    248 #define  RPF_L2BC_PROMISC			__BIT(3)
    249 #define  RPF_L2BC_ACTION			__BITS(12,14)
    250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    251 
    252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    257 #define  RPF_L2UC_MSW_EN			__BIT(31)
    258 #define AQ_HW_MAC_OWN			0	/* index of own address */
    259 #define AQ_HW_MAC_NUM			34
    260 
    261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
    262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    266 
    267 #define RPF_VLAN_MODE_REG			0x5280
    268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    271 
    272 #define RPF_VLAN_TPID_REG			0x5284
    273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    275 
    276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
    277 #define RPF_VLAN_MAX_FILTERS			16
    278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    284 
    285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    295 
    296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    315 /* parameters of RPF_L3_FILTER_REG[8] */
    316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    320 
    321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    323 
    324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    326 
    327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    332 
    333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    336 
    337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    339 
    340 #define RPO_HWCSUM_REG				0x5580
    341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    343 
    344 #define RPO_LRO_ENABLE_REG			0x5590
    345 
    346 #define RPO_LRO_CONF_REG			0x5594
    347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    351 #define RPO_LRO_RSC_MAX_REG			0x5598
    352 
    353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    356 #define RPO_LRO_TB_DIV_REG			0x5620
    357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    362 
    363 #define RPB_RPF_RX_REG				0x5700
    364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    367 
    368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    372 #define  RPB_RXB_XOFF_EN			__BIT(31)
    373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    375 
    376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    378 
    379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    382 
    383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    388 
    389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    394 #define  RX_DMA_DESC_RESET			__BIT(25)
    395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    397 #define  RX_DMA_DESC_EN				__BIT(31)
    398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    404 
    405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    411 
    412 #define RX_DMA_DCA_REG				0x6180
    413 #define  RX_DMA_DCA_EN				__BIT(31)
    414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    415 
    416 /* counters */
    417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    421 
    422 #define TX_SYSCONTROL_REG			0x7000
    423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    426 
    427 #define TX_TPO2_REG				0x7040
    428 #define  TX_TPO2_EN				__BIT(16)
    429 
    430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    432 #define TPS_DESC_RATE_REG			0x7310
    433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    439 
    440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    448 
    449 #define AQ_HW_TXBUF_MAX		160
    450 #define AQ_HW_RXBUF_MAX		320
    451 
    452 #define TPO_HWCSUM_REG				0x7800
    453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    455 
    456 #define TDM_LSO_EN_REG				0x7810
    457 
    458 #define THM_LSO_TCP_FLAG1_REG			0x7820
    459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    461 #define THM_LSO_TCP_FLAG2_REG			0x7824
    462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    463 
    464 #define TPB_TX_BUF_REG				0x7900
    465 #define  TPB_TX_BUF_EN				__BIT(0)
    466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    468 
    469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    475 
    476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    480 
    481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    486 #define  TX_DMA_DESC_EN				__BIT(31)
    487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    492 
    493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    495 #define  TDM_DCAD_CPUID				__BITS(7,0)
    496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    497 
    498 #define TDM_DCA_REG				0x8480
    499 #define  TDM_DCA_EN				__BIT(31)
    500 #define  TDM_DCA_MODE				__BITS(3,0)
    501 
    502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    507 
    508 #define FW1X_CTRL_10G				__BIT(0)
    509 #define FW1X_CTRL_5G				__BIT(1)
    510 #define FW1X_CTRL_5GSR				__BIT(2)
    511 #define FW1X_CTRL_2G5				__BIT(3)
    512 #define FW1X_CTRL_1G				__BIT(4)
    513 #define FW1X_CTRL_100M				__BIT(5)
    514 
    515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    527 #define FW2X_CTRL_RESERVED1			__BIT(32)
    528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    529 #define FW2X_CTRL_RESERVED2			__BIT(34)
    530 #define FW2X_CTRL_PAUSE				__BIT(35)
    531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    533 #define FW2X_CTRL_RESERVED3			__BIT(38)
    534 #define FW2X_CTRL_RESERVED4			__BIT(39)
    535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    539 #define FW2X_CTRL_RESERVED5			__BIT(44)
    540 #define FW2X_CTRL_RESERVED6			__BIT(45)
    541 #define FW2X_CTRL_RESERVED7			__BIT(46)
    542 #define FW2X_CTRL_RESERVED8			__BIT(47)
    543 #define FW2X_CTRL_RESERVED9			__BIT(48)
    544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    551 #define FW2X_CTRL_WOL				__BIT(56)
    552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    557 #define FW2X_CTRL_STATISTICS			__BIT(62)
    558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    559 
    560 #define FW2X_SNPRINTB			\
    561 	"\177\020"			\
    562 	"b\x23" "PAUSE\0"		\
    563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    564 	"b\x31" "CABLE-DIAG\0"		\
    565 	"b\x32" "TEMPERATURE\0"		\
    566 	"b\x33" "DOWNSHIFT\0"		\
    567 	"b\x34" "PTP-AVB\0"		\
    568 	"b\x35" "MEDIA-DETECT\0"	\
    569 	"b\x36" "LINK-DROP\0"		\
    570 	"b\x37" "SLEEP-PROXY\0"		\
    571 	"b\x38" "WOL\0"			\
    572 	"b\x39" "MAC-STOP\0"		\
    573 	"b\x3a" "EXT-LOOPBACK\0"	\
    574 	"b\x3b" "INT-LOOPBACK\0"	\
    575 	"b\x3c" "EFUSE-AGENT\0"		\
    576 	"b\x3d" "WOL-TIMER\0"		\
    577 	"b\x3e" "STATISTICS\0"		\
    578 	"b\x3f" "TRANSACTION-ID\0"	\
    579 	"\0"
    580 
    581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    586 #define FW2X_CTRL_RATE_MASK		\
    587 	(FW2X_CTRL_RATE_100M |		\
    588 	 FW2X_CTRL_RATE_1G |		\
    589 	 FW2X_CTRL_RATE_2G5 |		\
    590 	 FW2X_CTRL_RATE_5G |		\
    591 	 FW2X_CTRL_RATE_10G)
    592 #define FW2X_CTRL_EEE_MASK		\
    593 	(FW2X_CTRL_10BASET_EEE |	\
    594 	 FW2X_CTRL_100BASETX_EEE |	\
    595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    598 	 FW2X_CTRL_10GBASET_FD_EEE)
    599 
    600 typedef enum aq_fw_bootloader_mode {
    601 	FW_BOOT_MODE_UNKNOWN = 0,
    602 	FW_BOOT_MODE_FLB,
    603 	FW_BOOT_MODE_RBL_FLASH,
    604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    605 } aq_fw_bootloader_mode_t;
    606 
    607 #define AQ_WRITE_REG(sc, reg, val)				\
    608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    609 
    610 #define AQ_READ_REG(sc, reg)					\
    611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    612 
    613 #define AQ_READ64_REG(sc, reg)					\
    614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    616 
    617 #define AQ_WRITE64_REG(sc, reg, val)				\
    618 	do {							\
    619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    621 	} while (/* CONSTCOND */0)
    622 
    623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    625 
    626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    627 	do {							\
    628 		uint32_t _v;					\
    629 		_v = AQ_READ_REG((sc), (reg));			\
    630 		_v &= ~(mask);					\
    631 		if ((val) != 0)					\
    632 			_v |= __SHIFTIN((val), (mask));		\
    633 		AQ_WRITE_REG((sc), (reg), _v);			\
    634 	} while (/* CONSTCOND */ 0)
    635 
    636 #define WAIT_FOR(expr, us, n, errp)				\
    637 	do {							\
    638 		unsigned int _n;				\
    639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    640 			delay((us));				\
    641 		}						\
    642 		if ((errp != NULL)) {				\
    643 			if (_n == 0)				\
    644 				*(errp) = ETIMEDOUT;		\
    645 			else					\
    646 				*(errp) = 0;			\
    647 		}						\
    648 	} while (/* CONSTCOND */ 0)
    649 
    650 #define msec_delay(x)	DELAY(1000 * (x))
    651 
    652 typedef struct aq_mailbox_header {
    653 	uint32_t version;
    654 	uint32_t transaction_id;
    655 	int32_t error;
    656 } __packed aq_mailbox_header_t;
    657 
    658 typedef struct aq_hw_stats_s {
    659 	uint32_t uprc;
    660 	uint32_t mprc;
    661 	uint32_t bprc;
    662 	uint32_t erpt;
    663 	uint32_t uptc;
    664 	uint32_t mptc;
    665 	uint32_t bptc;
    666 	uint32_t erpr;
    667 	uint32_t mbtc;
    668 	uint32_t bbtc;
    669 	uint32_t mbrc;
    670 	uint32_t bbrc;
    671 	uint32_t ubrc;
    672 	uint32_t ubtc;
    673 	uint32_t ptc;
    674 	uint32_t prc;
    675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    677 } __packed aq_hw_stats_s_t;
    678 
    679 typedef struct fw1x_mailbox {
    680 	aq_mailbox_header_t header;
    681 	aq_hw_stats_s_t msm;
    682 } __packed fw1x_mailbox_t;
    683 
    684 typedef struct fw2x_msm_statistics {
    685 	uint32_t uprc;
    686 	uint32_t mprc;
    687 	uint32_t bprc;
    688 	uint32_t erpt;
    689 	uint32_t uptc;
    690 	uint32_t mptc;
    691 	uint32_t bptc;
    692 	uint32_t erpr;
    693 	uint32_t mbtc;
    694 	uint32_t bbtc;
    695 	uint32_t mbrc;
    696 	uint32_t bbrc;
    697 	uint32_t ubrc;
    698 	uint32_t ubtc;
    699 	uint32_t ptc;
    700 	uint32_t prc;
    701 } __packed fw2x_msm_statistics_t;
    702 
    703 typedef struct fw2x_phy_cable_diag_data {
    704 	uint32_t lane_data[4];
    705 } __packed fw2x_phy_cable_diag_data_t;
    706 
    707 typedef struct fw2x_capabilities {
    708 	uint32_t caps_lo;
    709 	uint32_t caps_hi;
    710 } __packed fw2x_capabilities_t;
    711 
    712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    713 	aq_mailbox_header_t header;
    714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    715 
    716 	uint32_t phy_info1;
    717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    719 	uint32_t phy_info2;
    720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    722 
    723 	fw2x_phy_cable_diag_data_t diag_data;
    724 	uint32_t reserved[8];
    725 
    726 	fw2x_capabilities_t caps;
    727 
    728 	/* ... */
    729 } __packed fw2x_mailbox_t;
    730 
    731 typedef enum aq_link_speed {
    732 	AQ_LINK_NONE	= 0,
    733 	AQ_LINK_100M	= (1 << 0),
    734 	AQ_LINK_1G	= (1 << 1),
    735 	AQ_LINK_2G5	= (1 << 2),
    736 	AQ_LINK_5G	= (1 << 3),
    737 	AQ_LINK_10G	= (1 << 4)
    738 } aq_link_speed_t;
    739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    740 			 AQ_LINK_5G | AQ_LINK_10G )
    741 #define AQ_LINK_AUTO	AQ_LINK_ALL
    742 
    743 typedef enum aq_link_fc {
    744 	AQ_FC_NONE = 0,
    745 	AQ_FC_RX = __BIT(0),
    746 	AQ_FC_TX = __BIT(1),
    747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    748 } aq_link_fc_t;
    749 
    750 typedef enum aq_link_eee {
    751 	AQ_EEE_DISABLE = 0,
    752 	AQ_EEE_ENABLE = 1
    753 } aq_link_eee_t;
    754 
    755 typedef enum aq_hw_fw_mpi_state {
    756 	MPI_DEINIT	= 0,
    757 	MPI_RESET	= 1,
    758 	MPI_INIT	= 2,
    759 	MPI_POWER	= 4
    760 } aq_hw_fw_mpi_state_t;
    761 
    762 enum aq_media_type {
    763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    764 	AQ_MEDIA_TYPE_FIBRE,
    765 	AQ_MEDIA_TYPE_TP
    766 };
    767 
    768 struct aq_rx_desc_read {
    769 	uint64_t buf_addr;
    770 	uint64_t hdr_addr;
    771 } __packed;
    772 
    773 struct aq_rx_desc_wb {
    774 	uint32_t type;
    775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    800 #define RXDESC_TYPE_SPH			__BIT(21)
    801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    802 	uint32_t rss_hash;
    803 	uint16_t status;
    804 #define RXDESC_STATUS_DD		__BIT(0)
    805 #define RXDESC_STATUS_EOP		__BIT(1)
    806 #define RXDESC_STATUS_MACERR		__BIT(2)
    807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    810 
    811 #define RXDESC_STATUS_STAT		__BITS(2,5)
    812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    814 	uint16_t pkt_len;
    815 	uint16_t next_desc_ptr;
    816 	uint16_t vlan;
    817 } __packed;
    818 
    819 typedef union aq_rx_desc {
    820 	struct aq_rx_desc_read read;
    821 	struct aq_rx_desc_wb wb;
    822 } __packed aq_rx_desc_t;
    823 
    824 typedef struct aq_tx_desc {
    825 	uint64_t buf_addr;
    826 	uint32_t ctl1;
    827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    843 	uint32_t ctl2;
    844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    847 } __packed aq_tx_desc_t;
    848 
    849 struct aq_txring {
    850 	struct aq_softc *txr_sc;
    851 	int txr_index;
    852 	kmutex_t txr_mutex;
    853 	bool txr_active;
    854 
    855 	pcq_t *txr_pcq;
    856 	void *txr_softint;
    857 
    858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    859 	bus_dmamap_t txr_txdesc_dmamap;
    860 	bus_dma_segment_t txr_txdesc_seg[1];
    861 	bus_size_t txr_txdesc_size;
    862 
    863 	struct {
    864 		struct mbuf *m;
    865 		bus_dmamap_t dmamap;
    866 	} txr_mbufs[AQ_TXD_NUM];
    867 	unsigned int txr_prodidx;
    868 	unsigned int txr_considx;
    869 	int txr_nfree;
    870 };
    871 
    872 struct aq_rxring {
    873 	struct aq_softc *rxr_sc;
    874 	int rxr_index;
    875 	kmutex_t rxr_mutex;
    876 	bool rxr_active;
    877 
    878 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    879 	bus_dmamap_t rxr_rxdesc_dmamap;
    880 	bus_dma_segment_t rxr_rxdesc_seg[1];
    881 	bus_size_t rxr_rxdesc_size;
    882 	struct {
    883 		struct mbuf *m;
    884 		bus_dmamap_t dmamap;
    885 	} rxr_mbufs[AQ_RXD_NUM];
    886 	unsigned int rxr_readidx;
    887 };
    888 
    889 struct aq_queue {
    890 	struct aq_softc *sc;
    891 	struct aq_txring txring;
    892 	struct aq_rxring rxring;
    893 };
    894 
    895 struct aq_softc;
    896 struct aq_firmware_ops {
    897 	int (*reset)(struct aq_softc *);
    898 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    899 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    900 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    901 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    902 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    903 #if NSYSMON_ENVSYS > 0
    904 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    905 #endif
    906 };
    907 
    908 #ifdef AQ_EVENT_COUNTERS
    909 #define AQ_EVCNT_DECL(name)						\
    910 	char sc_evcount_##name##_name[32];				\
    911 	struct evcnt sc_evcount_##name##_ev;
    912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    913 	do {								\
    914 		snprintf((sc)->sc_evcount_##name##_name,		\
    915 		    sizeof((sc)->sc_evcount_##name##_name),		\
    916 		    "%s", desc);					\
    917 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    918 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    919 		    (sc)->sc_evcount_##name##_name);			\
    920 	} while (/*CONSTCOND*/0)
    921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    922 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    923 #define AQ_EVCNT_DETACH(sc, name)					\
    924 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    925 #define AQ_EVCNT_ADD(sc, name, val)					\
    926 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    927 #endif /* AQ_EVENT_COUNTERS */
    928 
    929 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    930 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    931 
    932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    933 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    934 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    935 
    936 
    937 struct aq_softc {
    938 	device_t sc_dev;
    939 
    940 	bus_space_tag_t sc_iot;
    941 	bus_space_handle_t sc_ioh;
    942 	bus_size_t sc_iosize;
    943 	bus_dma_tag_t sc_dmat;;
    944 
    945 	void *sc_ihs[AQ_NINTR_MAX];
    946 	pci_intr_handle_t *sc_intrs;
    947 
    948 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    949 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    950 	int sc_linkstat_irq;
    951 	bool sc_use_txrx_independent_intr;
    952 	bool sc_poll_linkstat;
    953 	bool sc_detect_linkstat;
    954 
    955 #if NSYSMON_ENVSYS > 0
    956 	struct sysmon_envsys *sc_sme;
    957 	envsys_data_t sc_sensor_temp;
    958 #endif
    959 
    960 	callout_t sc_tick_ch;
    961 
    962 	int sc_nintrs;
    963 	bool sc_msix;
    964 
    965 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    966 	int sc_nqueues;
    967 
    968 	pci_chipset_tag_t sc_pc;
    969 	pcitag_t sc_pcitag;
    970 	uint16_t sc_product;
    971 	uint16_t sc_revision;
    972 
    973 	kmutex_t sc_mutex;
    974 	kmutex_t sc_mpi_mutex;
    975 
    976 	const struct aq_firmware_ops *sc_fw_ops;
    977 	uint64_t sc_fw_caps;
    978 	enum aq_media_type sc_media_type;
    979 	aq_link_speed_t sc_available_rates;
    980 
    981 	aq_link_speed_t sc_link_rate;
    982 	aq_link_fc_t sc_link_fc;
    983 	aq_link_eee_t sc_link_eee;
    984 
    985 	uint32_t sc_fw_version;
    986 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    987 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
    988 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
    989 	uint32_t sc_features;
    990 #define FEATURES_MIPS		0x00000001
    991 #define FEATURES_TPO2		0x00000002
    992 #define FEATURES_RPF2		0x00000004
    993 #define FEATURES_MPI_AQ		0x00000008
    994 #define FEATURES_REV_A0		0x10000000
    995 #define FEATURES_REV_A		(FEATURES_REV_A0)
    996 #define FEATURES_REV_B0		0x20000000
    997 #define FEATURES_REV_B1		0x40000000
    998 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
    999 	uint32_t sc_mbox_addr;
   1000 
   1001 	bool sc_rbl_enabled;
   1002 	bool sc_fast_start_enabled;
   1003 	bool sc_flash_present;
   1004 
   1005 	bool sc_intr_moderation_enable;
   1006 	bool sc_rss_enable;
   1007 
   1008 	struct ethercom sc_ethercom;
   1009 	struct ether_addr sc_enaddr;
   1010 	struct ifmedia sc_media;
   1011 	int sc_ec_capenable;		/* last ec_capenable */
   1012 	unsigned short sc_if_flags;	/* last if_flags */
   1013 
   1014 #ifdef AQ_EVENT_COUNTERS
   1015 	aq_hw_stats_s_t sc_statistics[2];
   1016 	int sc_statistics_idx;
   1017 	bool sc_poll_statistics;
   1018 
   1019 	AQ_EVCNT_DECL(uprc);
   1020 	AQ_EVCNT_DECL(mprc);
   1021 	AQ_EVCNT_DECL(bprc);
   1022 	AQ_EVCNT_DECL(erpt);
   1023 	AQ_EVCNT_DECL(uptc);
   1024 	AQ_EVCNT_DECL(mptc);
   1025 	AQ_EVCNT_DECL(bptc);
   1026 	AQ_EVCNT_DECL(erpr);
   1027 	AQ_EVCNT_DECL(mbtc);
   1028 	AQ_EVCNT_DECL(bbtc);
   1029 	AQ_EVCNT_DECL(mbrc);
   1030 	AQ_EVCNT_DECL(bbrc);
   1031 	AQ_EVCNT_DECL(ubrc);
   1032 	AQ_EVCNT_DECL(ubtc);
   1033 	AQ_EVCNT_DECL(ptc);
   1034 	AQ_EVCNT_DECL(prc);
   1035 	AQ_EVCNT_DECL(dpc);
   1036 	AQ_EVCNT_DECL(cprc);
   1037 #endif
   1038 };
   1039 
   1040 static int aq_match(device_t, cfdata_t, void *);
   1041 static void aq_attach(device_t, device_t, void *);
   1042 static int aq_detach(device_t, int);
   1043 
   1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1045     bool, bool);
   1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1047     pci_intr_type_t);
   1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1049 
   1050 static int aq_ifmedia_change(struct ifnet * const);
   1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
   1053 static int aq_ifflags_cb(struct ethercom *);
   1054 static int aq_init(struct ifnet *);
   1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1056     struct aq_txring *, bool);
   1057 static int aq_transmit(struct ifnet *, struct mbuf *);
   1058 static void aq_deferred_transmit(void *);
   1059 static void aq_start(struct ifnet *);
   1060 static void aq_stop(struct ifnet *, int);
   1061 static void aq_watchdog(struct ifnet *);
   1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1063 
   1064 static int aq_txrx_rings_alloc(struct aq_softc *);
   1065 static void aq_txrx_rings_free(struct aq_softc *);
   1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1068 
   1069 static void aq_initmedia(struct aq_softc *);
   1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1071 
   1072 #if NSYSMON_ENVSYS > 0
   1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1074 #endif
   1075 static void aq_tick(void *);
   1076 static int aq_legacy_intr(void *);
   1077 static int aq_link_intr(void *);
   1078 static int aq_txrx_intr(void *);
   1079 static int aq_tx_intr(void *);
   1080 static int aq_rx_intr(void *);
   1081 
   1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1083     aq_link_eee_t);
   1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1085     aq_link_eee_t *);
   1086 
   1087 static int aq_fw_reset(struct aq_softc *);
   1088 static int aq_fw_version_init(struct aq_softc *);
   1089 static int aq_hw_init(struct aq_softc *);
   1090 static int aq_hw_init_ucp(struct aq_softc *);
   1091 static int aq_hw_reset(struct aq_softc *);
   1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1093     uint32_t);
   1094 static int aq_get_mac_addr(struct aq_softc *);
   1095 static int aq_init_rss(struct aq_softc *);
   1096 static int aq_set_capability(struct aq_softc *);
   1097 
   1098 static int fw1x_reset(struct aq_softc *);
   1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1100     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1102     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1104 
   1105 static int fw2x_reset(struct aq_softc *);
   1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1111 #if NSYSMON_ENVSYS > 0
   1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1113 #endif
   1114 
   1115 static const struct aq_firmware_ops aq_fw1x_ops = {
   1116 	.reset = fw1x_reset,
   1117 	.set_mode = fw1x_set_mode,
   1118 	.get_mode = fw1x_get_mode,
   1119 	.get_stats = fw1x_get_stats,
   1120 #if NSYSMON_ENVSYS > 0
   1121 	.get_temperature = NULL
   1122 #endif
   1123 };
   1124 
   1125 static const struct aq_firmware_ops aq_fw2x_ops = {
   1126 	.reset = fw2x_reset,
   1127 	.set_mode = fw2x_set_mode,
   1128 	.get_mode = fw2x_get_mode,
   1129 	.get_stats = fw2x_get_stats,
   1130 #if NSYSMON_ENVSYS > 0
   1131 	.get_temperature = fw2x_get_temperature
   1132 #endif
   1133 };
   1134 
   1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1136     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1137 
   1138 static const struct aq_product {
   1139 	pci_vendor_id_t aq_vendor;
   1140 	pci_product_id_t aq_product;
   1141 	const char *aq_name;
   1142 	enum aq_media_type aq_media_type;
   1143 	aq_link_speed_t aq_available_rates;
   1144 } aq_products[] = {
   1145 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1146 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1147 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1148 	},
   1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1150 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1151 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1152 	},
   1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1154 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1156 	},
   1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1158 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1160 	},
   1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1162 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1164 	},
   1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1166 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1168 	},
   1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1170 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1171 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1172 	},
   1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1174 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1175 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1176 	},
   1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1178 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1180 	},
   1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1182 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1184 	},
   1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1186 	  "Aquantia D107 10 Gigabit Network Adapter",
   1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1188 	},
   1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1190 	  "Aquantia D108 5 Gigabit Network Adapter",
   1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1192 	},
   1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1194 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1195 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1196 	}
   1197 };
   1198 
   1199 static const struct aq_product *
   1200 aq_lookup(const struct pci_attach_args *pa)
   1201 {
   1202 	unsigned int i;
   1203 
   1204 	for (i = 0; i < __arraycount(aq_products); i++) {
   1205 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1206 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1207 			return &aq_products[i];
   1208 	}
   1209 	return NULL;
   1210 }
   1211 
   1212 static int
   1213 aq_match(device_t parent, cfdata_t cf, void *aux)
   1214 {
   1215 	struct pci_attach_args *pa = aux;
   1216 
   1217 	if (aq_lookup(pa) != NULL)
   1218 		return 1;
   1219 
   1220 	return 0;
   1221 }
   1222 
   1223 static void
   1224 aq_attach(device_t parent, device_t self, void *aux)
   1225 {
   1226 	struct aq_softc *sc = device_private(self);
   1227 	struct pci_attach_args *pa = aux;
   1228 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1229 	pci_chipset_tag_t pc;
   1230 	pcitag_t tag;
   1231 	pcireg_t command, memtype, bar;
   1232 	const struct aq_product *aqp;
   1233 	int error;
   1234 
   1235 	sc->sc_dev = self;
   1236 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1237 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1238 
   1239 	sc->sc_pc = pc = pa->pa_pc;
   1240 	sc->sc_pcitag = tag = pa->pa_tag;
   1241 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1242 
   1243 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1244 	command |= PCI_COMMAND_MASTER_ENABLE;
   1245 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1246 
   1247 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1248 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1249 
   1250 	aqp = aq_lookup(pa);
   1251 	KASSERT(aqp != NULL);
   1252 
   1253 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1254 
   1255 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1256 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1257 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1258 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1259 		return;
   1260 	}
   1261 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1262 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1263 	    NULL, &sc->sc_iosize) != 0) {
   1264 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1265 		return;
   1266 	}
   1267 
   1268 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1269 
   1270 	/* max queue num is 8, and must be 2^n */
   1271 	if (ncpu >= 8)
   1272 		sc->sc_nqueues = 8;
   1273 	else if (ncpu >= 4)
   1274 		sc->sc_nqueues = 4;
   1275 	else if (ncpu >= 2)
   1276 		sc->sc_nqueues = 2;
   1277 	else
   1278 		sc->sc_nqueues = 1;
   1279 
   1280 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1281 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1282 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1283 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1284 		sc->sc_use_txrx_independent_intr = true;
   1285 		sc->sc_poll_linkstat = false;
   1286 		sc->sc_msix = true;
   1287 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1288 		/* TX intrs + RX intrs */
   1289 		sc->sc_use_txrx_independent_intr = true;
   1290 		sc->sc_poll_linkstat = true;
   1291 		sc->sc_msix = true;
   1292 	} else
   1293 #endif
   1294 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1295 		/* TX/RX intrs LINKSTAT intrs */
   1296 		sc->sc_use_txrx_independent_intr = false;
   1297 		sc->sc_poll_linkstat = false;
   1298 		sc->sc_msix = true;
   1299 	} else if (msixcount >= sc->sc_nqueues) {
   1300 		/* TX/RX intrs */
   1301 		sc->sc_use_txrx_independent_intr = false;
   1302 		sc->sc_poll_linkstat = true;
   1303 		sc->sc_msix = true;
   1304 	} else {
   1305 		/* giving up using MSI-X */
   1306 		sc->sc_msix = false;
   1307 	}
   1308 
   1309 	aprint_debug_dev(sc->sc_dev,
   1310 	    "ncpu=%d, pci_msix_count=%d."
   1311 	    " allocate %d interrupts for %d%s queues%s\n",
   1312 	    ncpu, msixcount,
   1313 	    (sc->sc_use_txrx_independent_intr ?
   1314 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1315 	    (sc->sc_poll_linkstat ? 0 : 1),
   1316 	    sc->sc_nqueues,
   1317 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1318 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1319 
   1320 	if (sc->sc_msix)
   1321 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1322 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1323 	else
   1324 		error = ENODEV;
   1325 
   1326 	if (error != 0) {
   1327 		/* if MSI-X failed, fallback to MSI with single queue */
   1328 		sc->sc_use_txrx_independent_intr = false;
   1329 		sc->sc_poll_linkstat = false;
   1330 		sc->sc_msix = false;
   1331 		sc->sc_nqueues = 1;
   1332 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1333 	}
   1334 	if (error != 0) {
   1335 		/* if MSI failed, fallback to INTx */
   1336 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1337 	}
   1338 	if (error != 0)
   1339 		return;
   1340 
   1341 	callout_init(&sc->sc_tick_ch, 0);
   1342 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1343 
   1344 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1345 
   1346 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1347 		sc->sc_rss_enable = true;
   1348 	else
   1349 		sc->sc_rss_enable = false;
   1350 
   1351 	error = aq_txrx_rings_alloc(sc);
   1352 	if (error != 0)
   1353 		goto attach_failure;
   1354 
   1355 	error = aq_fw_reset(sc);
   1356 	if (error != 0)
   1357 		goto attach_failure;
   1358 
   1359 	error = aq_fw_version_init(sc);
   1360 	if (error != 0)
   1361 		goto attach_failure;
   1362 
   1363 	error = aq_hw_init_ucp(sc);
   1364 	if (error < 0)
   1365 		goto attach_failure;
   1366 
   1367 	KASSERT(sc->sc_mbox_addr != 0);
   1368 	error = aq_hw_reset(sc);
   1369 	if (error != 0)
   1370 		goto attach_failure;
   1371 
   1372 	aq_get_mac_addr(sc);
   1373 	aq_init_rss(sc);
   1374 
   1375 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1376 	if (error != 0)
   1377 		goto attach_failure;
   1378 
   1379 	sc->sc_media_type = aqp->aq_media_type;
   1380 	sc->sc_available_rates = aqp->aq_available_rates;
   1381 
   1382 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1383 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1384 	    aq_ifmedia_change, aq_ifmedia_status);
   1385 	aq_initmedia(sc);
   1386 
   1387 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1388 	ifp->if_softc = sc;
   1389 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1390 	ifp->if_baudrate = IF_Gbps(10);
   1391 	ifp->if_init = aq_init;
   1392 	ifp->if_ioctl = aq_ioctl;
   1393 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1394 		ifp->if_transmit = aq_transmit;
   1395 	ifp->if_start = aq_start;
   1396 	ifp->if_stop = aq_stop;
   1397 	ifp->if_watchdog = aq_watchdog;
   1398 	IFQ_SET_READY(&ifp->if_snd);
   1399 
   1400 	/* initialize capabilities */
   1401 	sc->sc_ethercom.ec_capabilities = 0;
   1402 	sc->sc_ethercom.ec_capenable = 0;
   1403 #if notyet
   1404 	/* TODO */
   1405 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1406 #endif
   1407 	sc->sc_ethercom.ec_capabilities |=
   1408 	    ETHERCAP_JUMBO_MTU |
   1409 	    ETHERCAP_VLAN_MTU |
   1410 	    ETHERCAP_VLAN_HWTAGGING |
   1411 	    ETHERCAP_VLAN_HWFILTER;
   1412 	sc->sc_ethercom.ec_capenable |=
   1413 	    ETHERCAP_VLAN_HWTAGGING |
   1414 	    ETHERCAP_VLAN_HWFILTER;
   1415 
   1416 	ifp->if_capabilities = 0;
   1417 	ifp->if_capenable = 0;
   1418 #ifdef CONFIG_LRO_SUPPORT
   1419 	ifp->if_capabilities |= IFCAP_LRO;
   1420 	ifp->if_capenable |= IFCAP_LRO;
   1421 #endif
   1422 #if notyet
   1423 	/* TSO */
   1424 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1425 #endif
   1426 
   1427 #if notyet
   1428 	/*
   1429 	 * XXX:
   1430 	 *   Rx L4 CSUM doesn't work well for fragment packet.
   1431 	 *   aq marks 'CHEDKED' and 'BAD' for them.
   1432 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
   1433 	 *
   1434 	 *   TODO: test with LRO enabled
   1435 	 */
   1436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1437 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1438 #endif
   1439 	/* TX hardware checksum offloadding */
   1440 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1441 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1443 	/* RX hardware checksum offloadding */
   1444 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1445 
   1446 	if_attach(ifp);
   1447 	if_deferred_start_init(ifp, NULL);
   1448 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1449 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
   1450 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1451 
   1452 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1453 
   1454 	/* update media */
   1455 	aq_ifmedia_change(ifp);
   1456 
   1457 #if NSYSMON_ENVSYS > 0
   1458 	/* temperature monitoring */
   1459 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1460 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1461 
   1462 		sc->sc_sme = sysmon_envsys_create();
   1463 		sc->sc_sme->sme_name = device_xname(self);
   1464 		sc->sc_sme->sme_cookie = sc;
   1465 		sc->sc_sme->sme_flags = 0;
   1466 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1467 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1468 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1469 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1470 
   1471 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1472 		sysmon_envsys_register(sc->sc_sme);
   1473 
   1474 		/*
   1475 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1476 		 * will always fail (firmware matter?), so run once now.
   1477 		 */
   1478 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1479 	}
   1480 #endif
   1481 
   1482 #ifdef AQ_EVENT_COUNTERS
   1483 	/* get starting statistics values */
   1484 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1485 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1486 		sc->sc_poll_statistics = true;
   1487 	}
   1488 
   1489 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1490 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1491 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1492 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1493 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1494 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1495 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1496 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1497 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1498 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1499 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1500 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1501 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1502 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1503 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1504 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1505 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1506 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1507 #endif
   1508 
   1509 	return;
   1510 
   1511  attach_failure:
   1512 	aq_detach(self, 0);
   1513 }
   1514 
   1515 static int
   1516 aq_detach(device_t self, int flags __unused)
   1517 {
   1518 	struct aq_softc *sc = device_private(self);
   1519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1520 	int i, s;
   1521 
   1522 	if (sc->sc_iosize != 0) {
   1523 		if (ifp->if_softc != NULL) {
   1524 			s = splnet();
   1525 			aq_stop(ifp, 0);
   1526 			splx(s);
   1527 		}
   1528 
   1529 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1530 			if (sc->sc_ihs[i] != NULL) {
   1531 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1532 				sc->sc_ihs[i] = NULL;
   1533 			}
   1534 		}
   1535 		if (sc->sc_nintrs > 0) {
   1536 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1537 			    sc->sc_nintrs);
   1538 			sc->sc_intrs = NULL;
   1539 			sc->sc_nintrs = 0;
   1540 		}
   1541 
   1542 		aq_txrx_rings_free(sc);
   1543 
   1544 		if (ifp->if_softc != NULL) {
   1545 			ether_ifdetach(ifp);
   1546 			if_detach(ifp);
   1547 		}
   1548 
   1549 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1550 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1551 		sc->sc_iosize = 0;
   1552 	}
   1553 
   1554 	callout_stop(&sc->sc_tick_ch);
   1555 
   1556 #if NSYSMON_ENVSYS > 0
   1557 	if (sc->sc_sme != NULL) {
   1558 		/* all sensors associated with this will also be detached */
   1559 		sysmon_envsys_unregister(sc->sc_sme);
   1560 		sc->sc_sme = NULL;
   1561 	}
   1562 #endif
   1563 
   1564 #ifdef AQ_EVENT_COUNTERS
   1565 	AQ_EVCNT_DETACH(sc, uprc);
   1566 	AQ_EVCNT_DETACH(sc, mprc);
   1567 	AQ_EVCNT_DETACH(sc, bprc);
   1568 	AQ_EVCNT_DETACH(sc, erpt);
   1569 	AQ_EVCNT_DETACH(sc, uptc);
   1570 	AQ_EVCNT_DETACH(sc, mptc);
   1571 	AQ_EVCNT_DETACH(sc, bptc);
   1572 	AQ_EVCNT_DETACH(sc, erpr);
   1573 	AQ_EVCNT_DETACH(sc, mbtc);
   1574 	AQ_EVCNT_DETACH(sc, bbtc);
   1575 	AQ_EVCNT_DETACH(sc, mbrc);
   1576 	AQ_EVCNT_DETACH(sc, bbrc);
   1577 	AQ_EVCNT_DETACH(sc, ubrc);
   1578 	AQ_EVCNT_DETACH(sc, ubtc);
   1579 	AQ_EVCNT_DETACH(sc, ptc);
   1580 	AQ_EVCNT_DETACH(sc, prc);
   1581 	AQ_EVCNT_DETACH(sc, dpc);
   1582 	AQ_EVCNT_DETACH(sc, cprc);
   1583 #endif
   1584 
   1585 	ifmedia_fini(&sc->sc_media);
   1586 
   1587 	mutex_destroy(&sc->sc_mpi_mutex);
   1588 	mutex_destroy(&sc->sc_mutex);
   1589 
   1590 	return 0;
   1591 }
   1592 
   1593 static int
   1594 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1595     int (*func)(void *), void *arg, const char *xname)
   1596 {
   1597 	char intrbuf[PCI_INTRSTR_LEN];
   1598 	pci_chipset_tag_t pc = sc->sc_pc;
   1599 	void *vih;
   1600 	const char *intrstr = NULL;
   1601 
   1602 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1603 	    sizeof(intrbuf));
   1604 
   1605 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1606 
   1607 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1608 	    IPL_NET, func, arg, xname);
   1609 	if (vih == NULL) {
   1610 		aprint_error_dev(sc->sc_dev,
   1611 		    "unable to establish MSI-X%s%s for %s\n",
   1612 		    intrstr ? " at " : "",
   1613 		    intrstr ? intrstr : "", xname);
   1614 		return EIO;
   1615 	}
   1616 	sc->sc_ihs[intno] = vih;
   1617 
   1618 	if (affinity != NULL) {
   1619 		/* Round-robin affinity */
   1620 		kcpuset_zero(affinity);
   1621 		kcpuset_set(affinity, intno % ncpu);
   1622 		interrupt_distribute(vih, affinity, NULL);
   1623 	}
   1624 
   1625 	return 0;
   1626 }
   1627 
   1628 static int
   1629 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1630     bool linkintr)
   1631 {
   1632 	kcpuset_t *affinity;
   1633 	int error, intno, i;
   1634 	char intr_xname[INTRDEVNAMEBUF];
   1635 
   1636 	kcpuset_create(&affinity, false);
   1637 
   1638 	intno = 0;
   1639 
   1640 	if (txrx_independent) {
   1641 		for (i = 0; i < sc->sc_nqueues; i++) {
   1642 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1643 			    device_xname(sc->sc_dev), i);
   1644 			sc->sc_rx_irq[i] = intno;
   1645 			error = aq_establish_intr(sc, intno++, affinity,
   1646 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1647 			if (error != 0)
   1648 				goto fail;
   1649 		}
   1650 		for (i = 0; i < sc->sc_nqueues; i++) {
   1651 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1652 			    device_xname(sc->sc_dev), i);
   1653 			sc->sc_tx_irq[i] = intno;
   1654 			error = aq_establish_intr(sc, intno++, affinity,
   1655 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1656 			if (error != 0)
   1657 				goto fail;
   1658 		}
   1659 	} else {
   1660 		for (i = 0; i < sc->sc_nqueues; i++) {
   1661 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1662 			    device_xname(sc->sc_dev), i);
   1663 			sc->sc_rx_irq[i] = intno;
   1664 			sc->sc_tx_irq[i] = intno;
   1665 			error = aq_establish_intr(sc, intno++, affinity,
   1666 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1667 			if (error != 0)
   1668 				goto fail;
   1669 		}
   1670 	}
   1671 
   1672 	if (linkintr) {
   1673 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1674 		    device_xname(sc->sc_dev));
   1675 		sc->sc_linkstat_irq = intno;
   1676 		error = aq_establish_intr(sc, intno++, affinity,
   1677 		    aq_link_intr, sc, intr_xname);
   1678 		if (error != 0)
   1679 			goto fail;
   1680 	}
   1681 
   1682 	kcpuset_destroy(affinity);
   1683 	return 0;
   1684 
   1685  fail:
   1686 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1687 		if (sc->sc_ihs[i] != NULL) {
   1688 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1689 			sc->sc_ihs[i] = NULL;
   1690 		}
   1691 	}
   1692 
   1693 	kcpuset_destroy(affinity);
   1694 	return ENOMEM;
   1695 }
   1696 
   1697 static int
   1698 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1699     bool txrx_independent, bool linkintr)
   1700 {
   1701 	int error, nintr;
   1702 
   1703 	if (txrx_independent)
   1704 		nintr = nqueue * 2;
   1705 	else
   1706 		nintr = nqueue;
   1707 
   1708 	if (linkintr)
   1709 		nintr++;
   1710 
   1711 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1712 	if (error != 0) {
   1713 		aprint_error_dev(sc->sc_dev,
   1714 		    "failed to allocate MSI-X interrupts\n");
   1715 		goto fail;
   1716 	}
   1717 
   1718 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1719 	if (error == 0) {
   1720 		sc->sc_nintrs = nintr;
   1721 	} else {
   1722 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1723 		sc->sc_nintrs = 0;
   1724 	}
   1725  fail:
   1726 	return error;
   1727 
   1728 }
   1729 
   1730 static int
   1731 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1732     pci_intr_type_t inttype)
   1733 {
   1734 	int counts[PCI_INTR_TYPE_SIZE];
   1735 	int error, nintr;
   1736 
   1737 	nintr = 1;
   1738 
   1739 	memset(counts, 0, sizeof(counts));
   1740 	counts[inttype] = nintr;
   1741 
   1742 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1743 	if (error != 0) {
   1744 		aprint_error_dev(sc->sc_dev,
   1745 		    "failed to allocate%s interrupts\n",
   1746 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1747 		return error;
   1748 	}
   1749 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1750 	    device_xname(sc->sc_dev));
   1751 	if (error == 0) {
   1752 		sc->sc_nintrs = nintr;
   1753 	} else {
   1754 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1755 		sc->sc_nintrs = 0;
   1756 	}
   1757 	return error;
   1758 }
   1759 
   1760 static void
   1761 global_software_reset(struct aq_softc *sc)
   1762 {
   1763 	uint32_t v;
   1764 
   1765 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1766 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1767 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1768 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1769 
   1770 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1771 	v &= ~AQ_FW_SOFTRESET_DIS;
   1772 	v |= AQ_FW_SOFTRESET_RESET;
   1773 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1774 }
   1775 
   1776 static int
   1777 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1778 {
   1779 	int timo;
   1780 
   1781 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1782 
   1783 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1784 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1785 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1786 
   1787 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1788 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1789 
   1790 	global_software_reset(sc);
   1791 
   1792 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1793 
   1794 	/* Wait for RBL to finish boot process. */
   1795 #define RBL_TIMEOUT_MS	10000
   1796 	uint16_t rbl_status;
   1797 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1798 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1799 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1800 			break;
   1801 		msec_delay(1);
   1802 	}
   1803 	if (timo <= 0) {
   1804 		aprint_error_dev(sc->sc_dev,
   1805 		    "RBL> RBL restart failed: timeout\n");
   1806 		return EBUSY;
   1807 	}
   1808 	switch (rbl_status) {
   1809 	case RBL_STATUS_SUCCESS:
   1810 		if (mode != NULL)
   1811 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1812 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1813 		break;
   1814 	case RBL_STATUS_HOST_BOOT:
   1815 		if (mode != NULL)
   1816 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1817 		aprint_debug_dev(sc->sc_dev,
   1818 		    "RBL> reset complete! [Host Bootload]\n");
   1819 		break;
   1820 	case RBL_STATUS_FAILURE:
   1821 	default:
   1822 		aprint_error_dev(sc->sc_dev,
   1823 		    "unknown RBL status 0x%x\n", rbl_status);
   1824 		return EBUSY;
   1825 	}
   1826 
   1827 	return 0;
   1828 }
   1829 
   1830 static int
   1831 mac_soft_reset_flb(struct aq_softc *sc)
   1832 {
   1833 	uint32_t v;
   1834 	int timo;
   1835 
   1836 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1837 	/*
   1838 	 * Let Felicity hardware to complete SMBUS transaction before
   1839 	 * Global software reset.
   1840 	 */
   1841 	msec_delay(50);
   1842 
   1843 	/*
   1844 	 * If SPI burst transaction was interrupted(before running the script),
   1845 	 * global software reset may not clear SPI interface.
   1846 	 * Clean it up manually before global reset.
   1847 	 */
   1848 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1849 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1850 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1851 	msec_delay(50);
   1852 
   1853 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1854 	v &= ~AQ_FW_SOFTRESET_DIS;
   1855 	v |= AQ_FW_SOFTRESET_RESET;
   1856 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1857 
   1858 	/* Kickstart. */
   1859 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1860 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1861 	if (!sc->sc_fast_start_enabled)
   1862 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1863 
   1864 	/*
   1865 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1866 	 * above), wait until it is completed by hardware.
   1867 	 */
   1868 	msec_delay(50);
   1869 
   1870 	/* MAC Kickstart */
   1871 	if (!sc->sc_fast_start_enabled) {
   1872 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1873 
   1874 		uint32_t flb_status;
   1875 		for (timo = 0; timo < 1000; timo++) {
   1876 			flb_status = AQ_READ_REG(sc,
   1877 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1878 			if (flb_status != 0)
   1879 				break;
   1880 			msec_delay(1);
   1881 		}
   1882 		if (flb_status == 0) {
   1883 			aprint_error_dev(sc->sc_dev,
   1884 			    "FLB> MAC kickstart failed: timed out\n");
   1885 			return ETIMEDOUT;
   1886 		}
   1887 		aprint_debug_dev(sc->sc_dev,
   1888 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1889 		/* FW reset */
   1890 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1891 		/*
   1892 		 * Let Felicity hardware complete SMBUS transaction before
   1893 		 * Global software reset.
   1894 		 */
   1895 		msec_delay(50);
   1896 		sc->sc_fast_start_enabled = true;
   1897 	}
   1898 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1899 
   1900 	/* PHY Kickstart: #undone */
   1901 	global_software_reset(sc);
   1902 
   1903 	for (timo = 0; timo < 1000; timo++) {
   1904 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1905 			break;
   1906 		msec_delay(10);
   1907 	}
   1908 	if (timo >= 1000) {
   1909 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1910 		return ETIMEDOUT;
   1911 	}
   1912 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1913 	return 0;
   1914 
   1915 }
   1916 
   1917 static int
   1918 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1919 {
   1920 	if (sc->sc_rbl_enabled)
   1921 		return mac_soft_reset_rbl(sc, mode);
   1922 
   1923 	if (mode != NULL)
   1924 		*mode = FW_BOOT_MODE_FLB;
   1925 	return mac_soft_reset_flb(sc);
   1926 }
   1927 
   1928 static int
   1929 aq_fw_read_version(struct aq_softc *sc)
   1930 {
   1931 	int i, error = EBUSY;
   1932 #define MAC_FW_START_TIMEOUT_MS	10000
   1933 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1934 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1935 		if (sc->sc_fw_version != 0) {
   1936 			error = 0;
   1937 			break;
   1938 		}
   1939 		delay(1000);
   1940 	}
   1941 	return error;
   1942 }
   1943 
   1944 static int
   1945 aq_fw_reset(struct aq_softc *sc)
   1946 {
   1947 	uint32_t ver, v, bootExitCode;
   1948 	int i, error;
   1949 
   1950 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1951 
   1952 	for (i = 1000; i > 0; i--) {
   1953 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1954 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1955 		if (v != 0x06000000 || bootExitCode != 0)
   1956 			break;
   1957 	}
   1958 	if (i <= 0) {
   1959 		aprint_error_dev(sc->sc_dev,
   1960 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1961 		return ETIMEDOUT;
   1962 	}
   1963 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1964 
   1965 	/*
   1966 	 * Having FW version 0 is an indicator that cold start
   1967 	 * is in progress. This means two things:
   1968 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1969 	 * 2) Driver may skip reset sequence and save time.
   1970 	 */
   1971 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   1972 		error = aq_fw_read_version(sc);
   1973 		/* Skip reset as it just completed */
   1974 		if (error == 0)
   1975 			return 0;
   1976 	}
   1977 
   1978 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   1979 	error = mac_soft_reset(sc, &mode);
   1980 	if (error != 0) {
   1981 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   1982 		return error;
   1983 	}
   1984 
   1985 	switch (mode) {
   1986 	case FW_BOOT_MODE_FLB:
   1987 		aprint_debug_dev(sc->sc_dev,
   1988 		    "FLB> F/W successfully loaded from flash.\n");
   1989 		sc->sc_flash_present = true;
   1990 		return aq_fw_read_version(sc);
   1991 	case FW_BOOT_MODE_RBL_FLASH:
   1992 		aprint_debug_dev(sc->sc_dev,
   1993 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   1994 		sc->sc_flash_present = true;
   1995 		return aq_fw_read_version(sc);
   1996 	case FW_BOOT_MODE_UNKNOWN:
   1997 		aprint_error_dev(sc->sc_dev,
   1998 		    "F/W bootload error: unknown bootloader type\n");
   1999 		return ENOTSUP;
   2000 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2001 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2002 		break;
   2003 	}
   2004 
   2005 	/*
   2006 	 * XXX: TODO: add support Host Boot
   2007 	 */
   2008 	aprint_error_dev(sc->sc_dev,
   2009 	    "RBL> F/W Host Bootload not implemented\n");
   2010 	return ENOTSUP;
   2011 }
   2012 
   2013 static int
   2014 aq_hw_reset(struct aq_softc *sc)
   2015 {
   2016 	int error;
   2017 
   2018 	/* disable irq */
   2019 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2020 
   2021 	/* apply */
   2022 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2023 
   2024 	/* wait ack 10 times by 1ms */
   2025 	WAIT_FOR(
   2026 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2027 	    1000, 10, &error);
   2028 	if (error != 0) {
   2029 		aprint_error_dev(sc->sc_dev,
   2030 		    "atlantic: IRQ reset failed: %d\n", error);
   2031 		return error;
   2032 	}
   2033 
   2034 	return sc->sc_fw_ops->reset(sc);
   2035 }
   2036 
   2037 static int
   2038 aq_hw_init_ucp(struct aq_softc *sc)
   2039 {
   2040 	int timo;
   2041 
   2042 	if (FW_VERSION_MAJOR(sc) == 1) {
   2043 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
   2044 			uint32_t data;
   2045 			cprng_fast(&data, sizeof(data));
   2046 			data &= 0xfefefefe;
   2047 			data |= 0x02020202;
   2048 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
   2049 		}
   2050 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2051 	}
   2052 
   2053 	for (timo = 100; timo > 0; timo--) {
   2054 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2055 		if (sc->sc_mbox_addr != 0)
   2056 			break;
   2057 		delay(1000);
   2058 	}
   2059 
   2060 #define AQ_FW_MIN_VERSION	0x01050006
   2061 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2062 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2063 		aprint_error_dev(sc->sc_dev,
   2064 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2065 		    " or later required, this is %d.%d.%d\n",
   2066 		    FW_VERSION_MAJOR(sc),
   2067 		    FW_VERSION_MINOR(sc),
   2068 		    FW_VERSION_BUILD(sc));
   2069 		return ENOTSUP;
   2070 	}
   2071 
   2072 	return 0;
   2073 }
   2074 
   2075 static int
   2076 aq_fw_version_init(struct aq_softc *sc)
   2077 {
   2078 	int error = 0;
   2079 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2080 
   2081 	if (FW_VERSION_MAJOR(sc) == 1) {
   2082 		sc->sc_fw_ops = &aq_fw1x_ops;
   2083 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2084 		sc->sc_fw_ops = &aq_fw2x_ops;
   2085 	} else {
   2086 		aprint_error_dev(sc->sc_dev,
   2087 		    "Unsupported F/W version %d.%d.%d\n",
   2088 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2089 		    FW_VERSION_BUILD(sc));
   2090 		return ENOTSUP;
   2091 	}
   2092 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2093 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2094 
   2095 	/* detect revision */
   2096 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2097 	switch (hwrev & 0x0000000f) {
   2098 	case 0x01:
   2099 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2100 		    fw_vers);
   2101 		sc->sc_features |= FEATURES_REV_A0 |
   2102 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2103 		break;
   2104 	case 0x02:
   2105 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2106 		    fw_vers);
   2107 		sc->sc_features |= FEATURES_REV_B0 |
   2108 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2109 		    FEATURES_TPO2 | FEATURES_RPF2;
   2110 		break;
   2111 	case 0x0A:
   2112 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2113 		    fw_vers);
   2114 		sc->sc_features |= FEATURES_REV_B1 |
   2115 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2116 		    FEATURES_TPO2 | FEATURES_RPF2;
   2117 		break;
   2118 	default:
   2119 		aprint_error_dev(sc->sc_dev,
   2120 		    "Unknown revision (0x%08x)\n", hwrev);
   2121 		error = ENOTSUP;
   2122 		break;
   2123 	}
   2124 	return error;
   2125 }
   2126 
   2127 static int
   2128 fw1x_reset(struct aq_softc *sc)
   2129 {
   2130 	struct aq_mailbox_header mbox;
   2131 	const int retryCount = 1000;
   2132 	uint32_t tid0;
   2133 	int i;
   2134 
   2135 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2136 
   2137 	for (i = 0; i < retryCount; ++i) {
   2138 		/*
   2139 		 * Read the beginning of Statistics structure to capture
   2140 		 * the Transaction ID.
   2141 		 */
   2142 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2143 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2144 
   2145 		/* Successfully read the stats. */
   2146 		if (tid0 == ~0U) {
   2147 			/* We have read the initial value. */
   2148 			tid0 = mbox.transaction_id;
   2149 			continue;
   2150 		} else if (mbox.transaction_id != tid0) {
   2151 			/*
   2152 			 * Compare transaction ID to initial value.
   2153 			 * If it's different means f/w is alive.
   2154 			 * We're done.
   2155 			 */
   2156 			return 0;
   2157 		}
   2158 
   2159 		/*
   2160 		 * Transaction ID value haven't changed since last time.
   2161 		 * Try reading the stats again.
   2162 		 */
   2163 		delay(10);
   2164 	}
   2165 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2166 	return EBUSY;
   2167 }
   2168 
   2169 static int
   2170 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2171     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2172 {
   2173 	uint32_t mpictrl = 0;
   2174 	uint32_t mpispeed = 0;
   2175 
   2176 	if (speed & AQ_LINK_10G)
   2177 		mpispeed |= FW1X_CTRL_10G;
   2178 	if (speed & AQ_LINK_5G)
   2179 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2180 	if (speed & AQ_LINK_2G5)
   2181 		mpispeed |= FW1X_CTRL_2G5;
   2182 	if (speed & AQ_LINK_1G)
   2183 		mpispeed |= FW1X_CTRL_1G;
   2184 	if (speed & AQ_LINK_100M)
   2185 		mpispeed |= FW1X_CTRL_100M;
   2186 
   2187 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2188 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2189 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2190 	return 0;
   2191 }
   2192 
   2193 static int
   2194 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2195     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2196 {
   2197 	uint32_t mpistate, mpi_speed;
   2198 	aq_link_speed_t speed = AQ_LINK_NONE;
   2199 
   2200 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2201 
   2202 	if (modep != NULL)
   2203 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2204 
   2205 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2206 	if (mpi_speed & FW1X_CTRL_10G)
   2207 		speed = AQ_LINK_10G;
   2208 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2209 		speed = AQ_LINK_5G;
   2210 	else if (mpi_speed & FW1X_CTRL_2G5)
   2211 		speed = AQ_LINK_2G5;
   2212 	else if (mpi_speed & FW1X_CTRL_1G)
   2213 		speed = AQ_LINK_1G;
   2214 	else if (mpi_speed & FW1X_CTRL_100M)
   2215 		speed = AQ_LINK_100M;
   2216 
   2217 	if (speedp != NULL)
   2218 		*speedp = speed;
   2219 
   2220 	if (fcp != NULL)
   2221 		*fcp = AQ_FC_NONE;
   2222 
   2223 	if (eeep != NULL)
   2224 		*eeep = AQ_EEE_DISABLE;
   2225 
   2226 	return 0;
   2227 }
   2228 
   2229 static int
   2230 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2231 {
   2232 	int error;
   2233 
   2234 	error = aq_fw_downld_dwords(sc,
   2235 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2236 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2237 	if (error < 0) {
   2238 		device_printf(sc->sc_dev,
   2239 		    "fw1x> download statistics data FAILED, error %d", error);
   2240 		return error;
   2241 	}
   2242 
   2243 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2244 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2245 	return 0;
   2246 }
   2247 
   2248 static int
   2249 fw2x_reset(struct aq_softc *sc)
   2250 {
   2251 	fw2x_capabilities_t caps = { 0 };
   2252 	int error;
   2253 
   2254 	error = aq_fw_downld_dwords(sc,
   2255 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2256 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2257 	if (error != 0) {
   2258 		aprint_error_dev(sc->sc_dev,
   2259 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2260 		    error);
   2261 		return error;
   2262 	}
   2263 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2264 
   2265 	char buf[256];
   2266 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2267 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2268 
   2269 	return 0;
   2270 }
   2271 
   2272 static int
   2273 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2274     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2275 {
   2276 	uint64_t mpi_ctrl;
   2277 	int error = 0;
   2278 
   2279 	AQ_MPI_LOCK(sc);
   2280 
   2281 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2282 
   2283 	switch (mode) {
   2284 	case MPI_INIT:
   2285 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2286 		if (speed & AQ_LINK_10G)
   2287 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2288 		if (speed & AQ_LINK_5G)
   2289 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2290 		if (speed & AQ_LINK_2G5)
   2291 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2292 		if (speed & AQ_LINK_1G)
   2293 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2294 		if (speed & AQ_LINK_100M)
   2295 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2296 
   2297 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2298 
   2299 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2300 		if (eee == AQ_EEE_ENABLE)
   2301 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2302 
   2303 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2304 		if (fc & AQ_FC_RX)
   2305 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2306 		if (fc & AQ_FC_TX)
   2307 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2308 		break;
   2309 	case MPI_DEINIT:
   2310 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2311 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2312 		break;
   2313 	default:
   2314 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2315 		error =  EINVAL;
   2316 		goto failure;
   2317 	}
   2318 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2319 
   2320  failure:
   2321 	AQ_MPI_UNLOCK(sc);
   2322 	return error;
   2323 }
   2324 
   2325 static int
   2326 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2327     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2328 {
   2329 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2330 
   2331 	if (modep != NULL) {
   2332 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2333 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2334 			*modep = MPI_INIT;
   2335 		else
   2336 			*modep = MPI_DEINIT;
   2337 	}
   2338 
   2339 	aq_link_speed_t speed = AQ_LINK_NONE;
   2340 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2341 		speed = AQ_LINK_10G;
   2342 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2343 		speed = AQ_LINK_5G;
   2344 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2345 		speed = AQ_LINK_2G5;
   2346 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2347 		speed = AQ_LINK_1G;
   2348 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2349 		speed = AQ_LINK_100M;
   2350 
   2351 	if (speedp != NULL)
   2352 		*speedp = speed;
   2353 
   2354 	aq_link_fc_t fc = AQ_FC_NONE;
   2355 	if (mpi_state & FW2X_CTRL_PAUSE)
   2356 		fc |= AQ_FC_RX;
   2357 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2358 		fc |= AQ_FC_TX;
   2359 	if (fcp != NULL)
   2360 		*fcp = fc;
   2361 
   2362 	/* XXX: TODO: EEE */
   2363 	if (eeep != NULL)
   2364 		*eeep = AQ_EEE_DISABLE;
   2365 
   2366 	return 0;
   2367 }
   2368 
   2369 static int
   2370 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2371     uint32_t timeout_ms, uint32_t try_count)
   2372 {
   2373 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2374 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2375 	int error;
   2376 
   2377 	/* First, check that control and state values are consistent */
   2378 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2379 		device_printf(sc->sc_dev,
   2380 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2381 		    " are not consistent for mask %#llx!\n",
   2382 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2383 		    (unsigned long long)mask);
   2384 		return EINVAL;
   2385 	}
   2386 
   2387 	/* Invert bits (toggle) in control register */
   2388 	mpi_ctrl ^= mask;
   2389 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2390 
   2391 	/* Clear all bits except masked */
   2392 	mpi_ctrl &= mask;
   2393 
   2394 	/* Wait for FW reflecting change in state register */
   2395 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2396 	    1000 * timeout_ms, try_count, &error);
   2397 	if (error != 0) {
   2398 		device_printf(sc->sc_dev,
   2399 		    "f/w2x> timeout while waiting for response"
   2400 		    " in state register for bit %#llx!",
   2401 		    (unsigned long long)mask);
   2402 		return error;
   2403 	}
   2404 	return 0;
   2405 }
   2406 
   2407 static int
   2408 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2409 {
   2410 	int error;
   2411 
   2412 	AQ_MPI_LOCK(sc);
   2413 	/* Say to F/W to update the statistics */
   2414 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2415 	if (error != 0) {
   2416 		device_printf(sc->sc_dev,
   2417 		    "fw2x> statistics update error %d\n", error);
   2418 		goto failure;
   2419 	}
   2420 
   2421 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2422 	error = aq_fw_downld_dwords(sc,
   2423 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2424 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2425 	if (error != 0) {
   2426 		device_printf(sc->sc_dev,
   2427 		    "fw2x> download statistics data FAILED, error %d", error);
   2428 		goto failure;
   2429 	}
   2430 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2431 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2432 
   2433  failure:
   2434 	AQ_MPI_UNLOCK(sc);
   2435 	return error;
   2436 }
   2437 
   2438 #if NSYSMON_ENVSYS > 0
   2439 static int
   2440 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2441 {
   2442 	int error;
   2443 	uint32_t value, celsius;
   2444 
   2445 	AQ_MPI_LOCK(sc);
   2446 
   2447 	/* Say to F/W to update the temperature */
   2448 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2449 	if (error != 0)
   2450 		goto failure;
   2451 
   2452 	error = aq_fw_downld_dwords(sc,
   2453 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2454 	    &value, sizeof(value) / sizeof(uint32_t));
   2455 	if (error != 0)
   2456 		goto failure;
   2457 
   2458 	/* 1/256 decrees C to microkelvin */
   2459 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2460 	if (celsius == 0) {
   2461 		error = EIO;
   2462 		goto failure;
   2463 	}
   2464 	*temp = celsius * (1000000 / 256) + 273150000;
   2465 
   2466  failure:
   2467 	AQ_MPI_UNLOCK(sc);
   2468 	return 0;
   2469 }
   2470 #endif
   2471 
   2472 static int
   2473 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2474     uint32_t cnt)
   2475 {
   2476 	uint32_t v;
   2477 	int error = 0;
   2478 
   2479 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2480 	if (error != 0) {
   2481 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2482 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2483 		if (v == 0) {
   2484 			device_printf(sc->sc_dev,
   2485 			    "%s:%d: timeout\n", __func__, __LINE__);
   2486 			return ETIMEDOUT;
   2487 		}
   2488 	}
   2489 
   2490 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2491 
   2492 	error = 0;
   2493 	for (; cnt > 0 && error == 0; cnt--) {
   2494 		/* execute mailbox interface */
   2495 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2496 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2497 		if (sc->sc_features & FEATURES_REV_B1) {
   2498 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2499 			    1, 1000, &error);
   2500 		} else {
   2501 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2502 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2503 			    1, 1000, &error);
   2504 		}
   2505 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2506 		addr += sizeof(uint32_t);
   2507 	}
   2508 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2509 
   2510 	if (error != 0)
   2511 		device_printf(sc->sc_dev,
   2512 		    "%s:%d: timeout\n", __func__, __LINE__);
   2513 
   2514 	return error;
   2515 }
   2516 
   2517 /* read my mac address */
   2518 static int
   2519 aq_get_mac_addr(struct aq_softc *sc)
   2520 {
   2521 	uint32_t mac_addr[2];
   2522 	uint32_t efuse_shadow_addr;
   2523 	int err;
   2524 
   2525 	efuse_shadow_addr = 0;
   2526 	if (FW_VERSION_MAJOR(sc) >= 2)
   2527 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2528 	else
   2529 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2530 
   2531 	if (efuse_shadow_addr == 0) {
   2532 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2533 		return ENXIO;
   2534 	}
   2535 
   2536 	memset(mac_addr, 0, sizeof(mac_addr));
   2537 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2538 	    mac_addr, __arraycount(mac_addr));
   2539 	if (err < 0)
   2540 		return err;
   2541 
   2542 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2543 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2544 		return ENXIO;
   2545 	}
   2546 
   2547 	mac_addr[0] = bswap32(mac_addr[0]);
   2548 	mac_addr[1] = bswap32(mac_addr[1]);
   2549 
   2550 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2551 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2552 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2553 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2554 
   2555 	return 0;
   2556 }
   2557 
   2558 /* set multicast filter. index 0 for own address */
   2559 static int
   2560 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2561 {
   2562 	uint32_t h, l;
   2563 
   2564 	if (index >= AQ_HW_MAC_NUM)
   2565 		return EINVAL;
   2566 
   2567 	if (enaddr == NULL) {
   2568 		/* disable */
   2569 		AQ_WRITE_REG_BIT(sc,
   2570 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2571 		return 0;
   2572 	}
   2573 
   2574 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2575 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2576 	    (enaddr[4] <<  8) | (enaddr[5]);
   2577 
   2578 	/* disable, set, and enable */
   2579 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2580 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2581 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2582 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2583 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2584 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2585 
   2586 	return 0;
   2587 }
   2588 
   2589 static int
   2590 aq_set_capability(struct aq_softc *sc)
   2591 {
   2592 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2593 	int ip4csum_tx =
   2594 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2595 	int ip4csum_rx =
   2596 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2597 	int l4csum_tx = ((ifp->if_capenable &
   2598 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2599 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2600 	int l4csum_rx =
   2601 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2602 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2603 	uint32_t lso =
   2604 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2605 	   0 : 0xffffffff;
   2606 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2607 	    0 : 0xffffffff;
   2608 	uint32_t i, v;
   2609 
   2610 	/* TX checksums offloads*/
   2611 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2612 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2613 
   2614 	/* RX checksums offloads*/
   2615 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2616 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2617 
   2618 	/* LSO offloads*/
   2619 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2620 
   2621 #define AQ_B0_LRO_RXD_MAX	16
   2622 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2623 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2624 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2625 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2626 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2627 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2628 	}
   2629 
   2630 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2631 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2632 	    RPO_LRO_INACTIVE_IVAL, 0);
   2633 	/*
   2634 	 * the LRO timebase divider is 5 uS (0x61a),
   2635 	 * to get a maximum coalescing interval of 250 uS,
   2636 	 * we need to multiply by 50(0x32) to get
   2637 	 * the default value 250 uS
   2638 	 */
   2639 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2640 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2641 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2642 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2643 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2644 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2645 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2646 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2647 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2648 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2649 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2650 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2651 
   2652 	return 0;
   2653 }
   2654 
   2655 static int
   2656 aq_set_filter(struct aq_softc *sc)
   2657 {
   2658 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2659 	struct ethercom *ec = &sc->sc_ethercom;
   2660 	struct ether_multi *enm;
   2661 	struct ether_multistep step;
   2662 	int idx, error = 0;
   2663 
   2664 	if (ifp->if_flags & IFF_PROMISC) {
   2665 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2666 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2667 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2668 		goto done;
   2669 	}
   2670 
   2671 	/* clear all table */
   2672 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2673 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2674 			continue;
   2675 		aq_set_mac_addr(sc, idx, NULL);
   2676 	}
   2677 
   2678 	/* don't accept all multicast */
   2679 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2680 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2681 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2682 	    RPF_MCAST_FILTER_EN, 0);
   2683 
   2684 	idx = 0;
   2685 	ETHER_LOCK(ec);
   2686 	ETHER_FIRST_MULTI(step, ec, enm);
   2687 	while (enm != NULL) {
   2688 		if (idx == AQ_HW_MAC_OWN)
   2689 			idx++;
   2690 
   2691 		if ((idx >= AQ_HW_MAC_NUM) ||
   2692 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2693 			/*
   2694 			 * too many filters.
   2695 			 * fallback to accept all multicast addresses.
   2696 			 */
   2697 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2698 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2699 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2700 			    RPF_MCAST_FILTER_EN, 1);
   2701 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2702 			ETHER_UNLOCK(ec);
   2703 			goto done;
   2704 		}
   2705 
   2706 		/* add a filter */
   2707 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2708 
   2709 		ETHER_NEXT_MULTI(step, enm);
   2710 	}
   2711 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2712 	ETHER_UNLOCK(ec);
   2713 
   2714  done:
   2715 	return error;
   2716 }
   2717 
   2718 static int
   2719 aq_ifmedia_change(struct ifnet * const ifp)
   2720 {
   2721 	struct aq_softc *sc = ifp->if_softc;
   2722 	aq_link_speed_t rate = AQ_LINK_NONE;
   2723 	aq_link_fc_t fc = AQ_FC_NONE;
   2724 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2725 
   2726 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2727 		return EINVAL;
   2728 
   2729 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2730 	case IFM_AUTO:
   2731 		rate = AQ_LINK_AUTO;
   2732 		break;
   2733 	case IFM_NONE:
   2734 		rate = AQ_LINK_NONE;
   2735 		break;
   2736 	case IFM_100_TX:
   2737 		rate = AQ_LINK_100M;
   2738 		break;
   2739 	case IFM_1000_T:
   2740 		rate = AQ_LINK_1G;
   2741 		break;
   2742 	case IFM_2500_T:
   2743 		rate = AQ_LINK_2G5;
   2744 		break;
   2745 	case IFM_5000_T:
   2746 		rate = AQ_LINK_5G;
   2747 		break;
   2748 	case IFM_10G_T:
   2749 		rate = AQ_LINK_10G;
   2750 		break;
   2751 	default:
   2752 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2753 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2754 		return ENODEV;
   2755 	}
   2756 
   2757 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2758 		fc = AQ_FC_ALL;
   2759 
   2760 	/* XXX: todo EEE */
   2761 
   2762 	/* re-initialize hardware with new parameters */
   2763 	aq_set_linkmode(sc, rate, fc, eee);
   2764 
   2765 	return 0;
   2766 }
   2767 
   2768 static void
   2769 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2770 {
   2771 	struct aq_softc *sc = ifp->if_softc;
   2772 
   2773 	/* update ifm_active */
   2774 	ifmr->ifm_active = IFM_ETHER;
   2775 	if (sc->sc_link_fc & AQ_FC_RX)
   2776 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
   2777 	if (sc->sc_link_fc & AQ_FC_TX)
   2778 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
   2779 
   2780 	switch (sc->sc_link_rate) {
   2781 	case AQ_LINK_100M:
   2782 		/* XXX: need to detect fulldup or halfdup */
   2783 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   2784 		break;
   2785 	case AQ_LINK_1G:
   2786 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
   2787 		break;
   2788 	case AQ_LINK_2G5:
   2789 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
   2790 		break;
   2791 	case AQ_LINK_5G:
   2792 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
   2793 		break;
   2794 	case AQ_LINK_10G:
   2795 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2796 		break;
   2797 	default:
   2798 		ifmr->ifm_active |= IFM_NONE;
   2799 		break;
   2800 	}
   2801 
   2802 	/* update ifm_status */
   2803 	ifmr->ifm_status = IFM_AVALID;
   2804 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2805 		ifmr->ifm_status |= IFM_ACTIVE;
   2806 }
   2807 
   2808 static void
   2809 aq_initmedia(struct aq_softc *sc)
   2810 {
   2811 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2812 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2813 
   2814 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2815 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2816 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2817 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2818 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2819 	}
   2820 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2821 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2822 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2823 	}
   2824 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2825 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2826 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2827 	}
   2828 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2829 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2830 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2831 	}
   2832 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2833 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2834 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2835 	}
   2836 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2837 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2838 
   2839 	/* default: auto without flowcontrol */
   2840 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2841 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2842 }
   2843 
   2844 static int
   2845 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2846     aq_link_eee_t eee)
   2847 {
   2848 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2849 }
   2850 
   2851 static int
   2852 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2853    aq_link_eee_t *eee)
   2854 {
   2855 	aq_hw_fw_mpi_state_t mode;
   2856 	int error;
   2857 
   2858 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2859 	if (error != 0)
   2860 		return error;
   2861 	if (mode != MPI_INIT)
   2862 		return ENXIO;
   2863 
   2864 	return 0;
   2865 }
   2866 
   2867 static void
   2868 aq_hw_init_tx_path(struct aq_softc *sc)
   2869 {
   2870 	/* Tx TC/RSS number config */
   2871 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2872 
   2873 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2874 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2875 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2876 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2877 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2878 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2879 
   2880 	/* misc */
   2881 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2882 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2883 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2884 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2885 
   2886 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2887 }
   2888 
   2889 static void
   2890 aq_hw_init_rx_path(struct aq_softc *sc)
   2891 {
   2892 	int i;
   2893 
   2894 	/* clear setting */
   2895 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2896 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2897 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2898 	for (i = 0; i < 32; i++) {
   2899 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2900 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2901 	}
   2902 
   2903 	if (sc->sc_rss_enable) {
   2904 		/* Rx TC/RSS number config */
   2905 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2906 
   2907 		/* Rx flow control */
   2908 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2909 
   2910 		/* RSS Ring selection */
   2911 		switch (sc->sc_nqueues) {
   2912 		case 2:
   2913 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2914 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2915 			break;
   2916 		case 4:
   2917 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2918 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2919 			break;
   2920 		case 8:
   2921 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2922 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2923 			break;
   2924 		}
   2925 	}
   2926 
   2927 	/* L2 and Multicast filters */
   2928 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2929 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2930 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2931 		    RPF_ACTION_HOST);
   2932 	}
   2933 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2934 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2935 
   2936 	/* Vlan filters */
   2937 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2938 	    ETHERTYPE_QINQ);
   2939 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2940 	    ETHERTYPE_VLAN);
   2941 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   2942 
   2943 	if (sc->sc_features & FEATURES_REV_B) {
   2944 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2945 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2946 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2947 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2948 	}
   2949 
   2950 	/* misc */
   2951 	if (sc->sc_features & FEATURES_RPF2)
   2952 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2953 	else
   2954 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2955 
   2956 	/*
   2957 	 * XXX: RX_TCP_RSS_HASH_REG:
   2958 	 *  linux   set 0x000f0000
   2959 	 *  freebsd set 0x000f001e
   2960 	 */
   2961 	/* RSS hash type set for IP/TCP */
   2962 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2963 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2964 
   2965 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   2966 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   2967 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   2968 
   2969 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   2970 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   2971 }
   2972 
   2973 static void
   2974 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   2975 {
   2976 	int i;
   2977 
   2978 	if (sc->sc_intr_moderation_enable) {
   2979 		unsigned int tx_min, rx_min;	/* 0-255 */
   2980 		unsigned int tx_max, rx_max;	/* 0-511? */
   2981 
   2982 		switch (sc->sc_link_rate) {
   2983 		case AQ_LINK_100M:
   2984 			tx_min = 0x4f;
   2985 			tx_max = 0xff;
   2986 			rx_min = 0x04;
   2987 			rx_max = 0x50;
   2988 			break;
   2989 		case AQ_LINK_1G:
   2990 		default:
   2991 			tx_min = 0x4f;
   2992 			tx_max = 0xff;
   2993 			rx_min = 0x30;
   2994 			rx_max = 0x80;
   2995 			break;
   2996 		case AQ_LINK_2G5:
   2997 			tx_min = 0x4f;
   2998 			tx_max = 0xff;
   2999 			rx_min = 0x18;
   3000 			rx_max = 0xe0;
   3001 			break;
   3002 		case AQ_LINK_5G:
   3003 			tx_min = 0x4f;
   3004 			tx_max = 0xff;
   3005 			rx_min = 0x0c;
   3006 			rx_max = 0x70;
   3007 			break;
   3008 		case AQ_LINK_10G:
   3009 			tx_min = 0x4f;
   3010 			tx_max = 0x1ff;
   3011 			rx_min = 0x06;	/* freebsd use 80 */
   3012 			rx_max = 0x38;	/* freebsd use 120 */
   3013 			break;
   3014 		}
   3015 
   3016 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3017 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3018 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3019 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3020 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3021 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3022 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3023 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3024 
   3025 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3026 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3027 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3028 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3029 			    TX_INTR_MODERATION_CTL_EN);
   3030 		}
   3031 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3032 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3033 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3034 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3035 			    RX_INTR_MODERATION_CTL_EN);
   3036 		}
   3037 
   3038 	} else {
   3039 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3040 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3041 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3042 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3043 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3044 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3045 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3046 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3047 
   3048 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3049 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3050 		}
   3051 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3052 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3053 		}
   3054 	}
   3055 }
   3056 
   3057 static void
   3058 aq_hw_qos_set(struct aq_softc *sc)
   3059 {
   3060 	uint32_t tc = 0;
   3061 	uint32_t buff_size;
   3062 
   3063 	/* TPS Descriptor rate init */
   3064 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3065 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3066 
   3067 	/* TPS VM init */
   3068 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3069 
   3070 	/* TPS TC credits init */
   3071 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3072 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3073 
   3074 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3075 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3076 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3077 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3078 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3079 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3080 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3081 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3082 
   3083 	/* Tx buf size */
   3084 	tc = 0;
   3085 	buff_size = AQ_HW_TXBUF_MAX;
   3086 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3087 	    buff_size);
   3088 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3089 	    (buff_size * (1024 / 32) * 66) / 100);
   3090 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3091 	    (buff_size * (1024 / 32) * 50) / 100);
   3092 
   3093 	/* QoS Rx buf size per TC */
   3094 	tc = 0;
   3095 	buff_size = AQ_HW_RXBUF_MAX;
   3096 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3097 	    buff_size);
   3098 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3099 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3100 	    (buff_size * (1024 / 32) * 66) / 100);
   3101 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3102 	    (buff_size * (1024 / 32) * 50) / 100);
   3103 
   3104 	/* QoS 802.1p priority -> TC mapping */
   3105 	int i_priority;
   3106 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3107 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3108 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3109 	}
   3110 }
   3111 
   3112 /* called once from aq_attach */
   3113 static int
   3114 aq_init_rss(struct aq_softc *sc)
   3115 {
   3116 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3117 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3118 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3119 	unsigned int i;
   3120 	int error;
   3121 
   3122 	/* initialize rss key */
   3123 	rss_getkey((uint8_t *)rss_key);
   3124 
   3125 	/* hash to ring table */
   3126 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3127 		rss_table[i] = i % sc->sc_nqueues;
   3128 	}
   3129 
   3130 	/*
   3131 	 * set rss key
   3132 	 */
   3133 	for (i = 0; i < __arraycount(rss_key); i++) {
   3134 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3135 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3136 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3137 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3138 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3139 		    RPF_RSS_KEY_WR_EN, 1);
   3140 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3141 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3142 		if (error != 0) {
   3143 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3144 			    __func__);
   3145 			goto rss_set_timeout;
   3146 		}
   3147 	}
   3148 
   3149 	/*
   3150 	 * set rss indirection table
   3151 	 *
   3152 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3153 	 * we'll make it by __BITMAP(3) macros.
   3154 	 */
   3155 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3156 	__BITMAP_ZERO(&bit3x64);
   3157 
   3158 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3159 	do {							\
   3160 		if (val & 1) {					\
   3161 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3162 		} else {					\
   3163 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3164 		}						\
   3165 		if (val & 2) {					\
   3166 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3167 		} else {					\
   3168 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3169 		}						\
   3170 		if (val & 4) {					\
   3171 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3172 		} else {					\
   3173 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3174 		}						\
   3175 	} while (0 /* CONSTCOND */)
   3176 
   3177 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3178 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3179 	}
   3180 
   3181 	/* write 192bit data in steps of 16bit */
   3182 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3183 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3184 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3185 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3186 		    RPF_RSS_REDIR_ADDR, i);
   3187 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3188 		    RPF_RSS_REDIR_WR_EN, 1);
   3189 
   3190 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3191 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3192 		if (error != 0)
   3193 			break;
   3194 	}
   3195 
   3196  rss_set_timeout:
   3197 	return error;
   3198 }
   3199 
   3200 static void
   3201 aq_hw_l3_filter_set(struct aq_softc *sc)
   3202 {
   3203 	int i;
   3204 
   3205 	/* clear all filter */
   3206 	for (i = 0; i < 8; i++) {
   3207 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3208 		    RPF_L3_FILTER_L4_EN, 0);
   3209 	}
   3210 }
   3211 
   3212 static void
   3213 aq_set_vlan_filters(struct aq_softc *sc)
   3214 {
   3215 	struct ethercom *ec = &sc->sc_ethercom;
   3216 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3217 	struct vlanid_list *vlanidp;
   3218 	int i;
   3219 
   3220 	ETHER_LOCK(ec);
   3221 
   3222 	/* disable all vlan filters */
   3223 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
   3224 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
   3225 
   3226 	/* count VID */
   3227 	i = 0;
   3228 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
   3229 		i++;
   3230 
   3231 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
   3232 	    (ifp->if_flags & IFF_PROMISC) ||
   3233 	    (i > RPF_VLAN_MAX_FILTERS)) {
   3234 		/*
   3235 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
   3236 		 * must receive all VID
   3237 		 */
   3238 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3239 		    RPF_VLAN_MODE_PROMISC, 1);
   3240 		goto done;
   3241 	}
   3242 
   3243 	/* receive only selected VID */
   3244 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   3245 	i = 0;
   3246 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
   3247 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3248 		    RPF_VLAN_FILTER_EN, 1);
   3249 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3250 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3251 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3252 		    RPF_VLAN_FILTER_RXQ, 0);
   3253 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3254 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
   3255 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3256 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
   3257 		i++;
   3258 	}
   3259 
   3260  done:
   3261 	ETHER_UNLOCK(ec);
   3262 }
   3263 
   3264 static int
   3265 aq_hw_init(struct aq_softc *sc)
   3266 {
   3267 	uint32_t v;
   3268 
   3269 	/* Force limit MRRS on RDM/TDM to 2K */
   3270 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3271 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3272 
   3273 	/*
   3274 	 * TX DMA total request limit. B0 hardware is not capable to
   3275 	 * handle more than (8K-MRRS) incoming DMA data.
   3276 	 * Value 24 in 256byte units
   3277 	 */
   3278 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3279 
   3280 	aq_hw_init_tx_path(sc);
   3281 	aq_hw_init_rx_path(sc);
   3282 
   3283 	aq_hw_interrupt_moderation_set(sc);
   3284 
   3285 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3286 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3287 
   3288 	aq_hw_qos_set(sc);
   3289 
   3290 	/* Enable interrupt */
   3291 	int irqmode;
   3292 	if (sc->sc_msix)
   3293 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3294 	else
   3295 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3296 
   3297 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3298 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3299 	    sc->sc_msix ? 1 : 0);
   3300 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3301 
   3302 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3303 
   3304 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3305 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3306 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3307 	);
   3308 
   3309 	/* link interrupt */
   3310 	if (!sc->sc_msix)
   3311 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3312 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3313 	    __BIT(7) | sc->sc_linkstat_irq);
   3314 
   3315 	return 0;
   3316 }
   3317 
   3318 static int
   3319 aq_update_link_status(struct aq_softc *sc)
   3320 {
   3321 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3322 	aq_link_speed_t rate = AQ_LINK_NONE;
   3323 	aq_link_fc_t fc = AQ_FC_NONE;
   3324 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3325 	unsigned int speed;
   3326 	int changed = 0;
   3327 
   3328 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3329 
   3330 	if (sc->sc_link_rate != rate)
   3331 		changed = 1;
   3332 	if (sc->sc_link_fc != fc)
   3333 		changed = 1;
   3334 	if (sc->sc_link_eee != eee)
   3335 		changed = 1;
   3336 
   3337 	if (changed) {
   3338 		switch (rate) {
   3339 		case AQ_LINK_100M:
   3340 			speed = 100;
   3341 			break;
   3342 		case AQ_LINK_1G:
   3343 			speed = 1000;
   3344 			break;
   3345 		case AQ_LINK_2G5:
   3346 			speed = 2500;
   3347 			break;
   3348 		case AQ_LINK_5G:
   3349 			speed = 5000;
   3350 			break;
   3351 		case AQ_LINK_10G:
   3352 			speed = 10000;
   3353 			break;
   3354 		case AQ_LINK_NONE:
   3355 		default:
   3356 			speed = 0;
   3357 			break;
   3358 		}
   3359 
   3360 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3361 			/* link DOWN -> UP */
   3362 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3363 			    speed);
   3364 			if_link_state_change(ifp, LINK_STATE_UP);
   3365 		} else if (rate == AQ_LINK_NONE) {
   3366 			/* link UP -> DOWN */
   3367 			device_printf(sc->sc_dev, "link is DOWN\n");
   3368 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3369 		} else {
   3370 			device_printf(sc->sc_dev,
   3371 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3372 			    speed, fc, eee);
   3373 		}
   3374 
   3375 		sc->sc_link_rate = rate;
   3376 		sc->sc_link_fc = fc;
   3377 		sc->sc_link_eee = eee;
   3378 
   3379 		/* update interrupt timing according to new link speed */
   3380 		aq_hw_interrupt_moderation_set(sc);
   3381 	}
   3382 
   3383 	return changed;
   3384 }
   3385 
   3386 #ifdef AQ_EVENT_COUNTERS
   3387 static void
   3388 aq_update_statistics(struct aq_softc *sc)
   3389 {
   3390 	int prev = sc->sc_statistics_idx;
   3391 	int cur = prev ^ 1;
   3392 
   3393 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3394 
   3395 	/*
   3396 	 * aq's internal statistics counter is 32bit.
   3397 	 * cauculate delta, and add to evcount
   3398 	 */
   3399 #define ADD_DELTA(cur, prev, name)				\
   3400 	do {							\
   3401 		uint32_t n;					\
   3402 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3403 		    sc->sc_statistics[prev].name);		\
   3404 		if (n != 0) {					\
   3405 			AQ_EVCNT_ADD(sc, name, n);		\
   3406 		}						\
   3407 	} while (/*CONSTCOND*/0);
   3408 
   3409 	ADD_DELTA(cur, prev, uprc);
   3410 	ADD_DELTA(cur, prev, mprc);
   3411 	ADD_DELTA(cur, prev, bprc);
   3412 	ADD_DELTA(cur, prev, prc);
   3413 	ADD_DELTA(cur, prev, erpr);
   3414 	ADD_DELTA(cur, prev, uptc);
   3415 	ADD_DELTA(cur, prev, mptc);
   3416 	ADD_DELTA(cur, prev, bptc);
   3417 	ADD_DELTA(cur, prev, ptc);
   3418 	ADD_DELTA(cur, prev, erpt);
   3419 	ADD_DELTA(cur, prev, mbtc);
   3420 	ADD_DELTA(cur, prev, bbtc);
   3421 	ADD_DELTA(cur, prev, mbrc);
   3422 	ADD_DELTA(cur, prev, bbrc);
   3423 	ADD_DELTA(cur, prev, ubrc);
   3424 	ADD_DELTA(cur, prev, ubtc);
   3425 	ADD_DELTA(cur, prev, dpc);
   3426 	ADD_DELTA(cur, prev, cprc);
   3427 
   3428 	sc->sc_statistics_idx = cur;
   3429 }
   3430 #endif /* AQ_EVENT_COUNTERS */
   3431 
   3432 /* allocate and map one DMA block */
   3433 static int
   3434 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3435     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3436 {
   3437 	int nsegs, error;
   3438 
   3439 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3440 	    1, &nsegs, 0)) != 0) {
   3441 		aprint_error_dev(sc->sc_dev,
   3442 		    "unable to allocate DMA buffer, error=%d\n", error);
   3443 		goto fail_alloc;
   3444 	}
   3445 
   3446 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3447 	    BUS_DMA_COHERENT)) != 0) {
   3448 		aprint_error_dev(sc->sc_dev,
   3449 		    "unable to map DMA buffer, error=%d\n", error);
   3450 		goto fail_map;
   3451 	}
   3452 
   3453 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3454 	    0, mapp)) != 0) {
   3455 		aprint_error_dev(sc->sc_dev,
   3456 		    "unable to create DMA map, error=%d\n", error);
   3457 		goto fail_create;
   3458 	}
   3459 
   3460 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3461 	    0)) != 0) {
   3462 		aprint_error_dev(sc->sc_dev,
   3463 		    "unable to load DMA map, error=%d\n", error);
   3464 		goto fail_load;
   3465 	}
   3466 
   3467 	*sizep = size;
   3468 	return 0;
   3469 
   3470  fail_load:
   3471 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3472 	*mapp = NULL;
   3473  fail_create:
   3474 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3475 	*addrp = NULL;
   3476  fail_map:
   3477 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3478 	memset(seg, 0, sizeof(*seg));
   3479  fail_alloc:
   3480 	*sizep = 0;
   3481 	return error;
   3482 }
   3483 
   3484 static void
   3485 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3486     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3487 {
   3488 	if (*mapp != NULL) {
   3489 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3490 		*mapp = NULL;
   3491 	}
   3492 	if (*addrp != NULL) {
   3493 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3494 		*addrp = NULL;
   3495 	}
   3496 	if (*sizep != 0) {
   3497 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3498 		memset(seg, 0, sizeof(*seg));
   3499 		*sizep = 0;
   3500 	}
   3501 }
   3502 
   3503 static int
   3504 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3505 {
   3506 	int i, error;
   3507 
   3508 	/* allocate tx descriptors */
   3509 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3510 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3511 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3512 	if (error != 0)
   3513 		return error;
   3514 
   3515 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3516 
   3517 	/* fill tx ring with dmamap */
   3518 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3519 #define AQ_MAXDMASIZE	(16 * 1024)
   3520 #define AQ_NTXSEGS	32
   3521 		/* XXX: TODO: error check */
   3522 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3523 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3524 	}
   3525 	return 0;
   3526 }
   3527 
   3528 static void
   3529 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3530 {
   3531 	int i;
   3532 
   3533 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3534 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3535 
   3536 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3537 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3538 			if (txring->txr_mbufs[i].m != NULL) {
   3539 				bus_dmamap_unload(sc->sc_dmat,
   3540 				    txring->txr_mbufs[i].dmamap);
   3541 				m_freem(txring->txr_mbufs[i].m);
   3542 				txring->txr_mbufs[i].m = NULL;
   3543 			}
   3544 			bus_dmamap_destroy(sc->sc_dmat,
   3545 			    txring->txr_mbufs[i].dmamap);
   3546 			txring->txr_mbufs[i].dmamap = NULL;
   3547 		}
   3548 	}
   3549 }
   3550 
   3551 static int
   3552 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3553 {
   3554 	int i, error;
   3555 
   3556 	/* allocate rx descriptors */
   3557 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3558 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3559 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3560 	if (error != 0)
   3561 		return error;
   3562 
   3563 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3564 
   3565 	/* fill rxring with dmamaps */
   3566 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3567 		rxring->rxr_mbufs[i].m = NULL;
   3568 		/* XXX: TODO: error check */
   3569 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3570 		    &rxring->rxr_mbufs[i].dmamap);
   3571 	}
   3572 	return 0;
   3573 }
   3574 
   3575 static void
   3576 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3577 {
   3578 	int i;
   3579 
   3580 	/* free all mbufs allocated for RX */
   3581 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3582 		if (rxring->rxr_mbufs[i].m != NULL) {
   3583 			bus_dmamap_unload(sc->sc_dmat,
   3584 			    rxring->rxr_mbufs[i].dmamap);
   3585 			m_freem(rxring->rxr_mbufs[i].m);
   3586 			rxring->rxr_mbufs[i].m = NULL;
   3587 		}
   3588 	}
   3589 }
   3590 
   3591 static void
   3592 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3593 {
   3594 	int i;
   3595 
   3596 	/* free all mbufs and dmamaps */
   3597 	aq_rxdrain(sc, rxring);
   3598 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3599 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3600 			bus_dmamap_destroy(sc->sc_dmat,
   3601 			    rxring->rxr_mbufs[i].dmamap);
   3602 			rxring->rxr_mbufs[i].dmamap = NULL;
   3603 		}
   3604 	}
   3605 
   3606 	/* free RX descriptor */
   3607 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3608 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3609 }
   3610 
   3611 static void
   3612 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3613     struct mbuf *m)
   3614 {
   3615 	int error;
   3616 
   3617 	/* if mbuf already exists, unload and free */
   3618 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3619 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3620 		m_freem(rxring->rxr_mbufs[idx].m);
   3621 		rxring->rxr_mbufs[idx].m = NULL;
   3622 	}
   3623 
   3624 	rxring->rxr_mbufs[idx].m = m;
   3625 
   3626 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3627 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3628 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3629 	if (error) {
   3630 		device_printf(sc->sc_dev,
   3631 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3632 		panic("%s: unable to load rx DMA map. error=%d",
   3633 		    __func__, error);
   3634 	}
   3635 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3636 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3637 }
   3638 
   3639 static inline void
   3640 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3641 {
   3642 	/* refill rxdesc, and sync */
   3643 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3644 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3645 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3646 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3647 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3648 	    BUS_DMASYNC_PREWRITE);
   3649 }
   3650 
   3651 static struct mbuf *
   3652 aq_alloc_mbuf(void)
   3653 {
   3654 	struct mbuf *m;
   3655 
   3656 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3657 	if (m == NULL)
   3658 		return NULL;
   3659 
   3660 	MCLGET(m, M_DONTWAIT);
   3661 	if ((m->m_flags & M_EXT) == 0) {
   3662 		m_freem(m);
   3663 		return NULL;
   3664 	}
   3665 
   3666 	return m;
   3667 }
   3668 
   3669 /* allocate mbuf and unload dmamap */
   3670 static int
   3671 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3672 {
   3673 	struct mbuf *m;
   3674 
   3675 	m = aq_alloc_mbuf();
   3676 	if (m == NULL)
   3677 		return ENOBUFS;
   3678 
   3679 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3680 	return 0;
   3681 }
   3682 
   3683 static int
   3684 aq_txrx_rings_alloc(struct aq_softc *sc)
   3685 {
   3686 	int n, error;
   3687 
   3688 	for (n = 0; n < sc->sc_nqueues; n++) {
   3689 		sc->sc_queue[n].sc = sc;
   3690 		sc->sc_queue[n].txring.txr_sc = sc;
   3691 		sc->sc_queue[n].txring.txr_index = n;
   3692 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3693 		    IPL_NET);
   3694 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3695 		if (error != 0)
   3696 			goto failure;
   3697 
   3698 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3699 		if (error != 0)
   3700 			goto failure;
   3701 
   3702 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3703 		sc->sc_queue[n].rxring.rxr_index = n;
   3704 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3705 		   IPL_NET);
   3706 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3707 		if (error != 0)
   3708 			break;
   3709 	}
   3710 
   3711  failure:
   3712 	return error;
   3713 }
   3714 
   3715 static void
   3716 aq_txrx_rings_free(struct aq_softc *sc)
   3717 {
   3718 	int n;
   3719 
   3720 	for (n = 0; n < sc->sc_nqueues; n++) {
   3721 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3722 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3723 
   3724 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3725 
   3726 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3727 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3728 	}
   3729 }
   3730 
   3731 static int
   3732 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3733 {
   3734 	int error = 0;
   3735 	txring->txr_softint = NULL;
   3736 
   3737 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3738 	if (txring->txr_pcq == NULL) {
   3739 		aprint_error_dev(sc->sc_dev,
   3740 		    "unable to allocate pcq for TXring[%d]\n",
   3741 		    txring->txr_index);
   3742 		error = ENOMEM;
   3743 		goto done;
   3744 	}
   3745 
   3746 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3747 	    aq_deferred_transmit, txring);
   3748 	if (txring->txr_softint == NULL) {
   3749 		aprint_error_dev(sc->sc_dev,
   3750 		    "unable to establish softint for TXring[%d]\n",
   3751 		    txring->txr_index);
   3752 		error = ENOENT;
   3753 	}
   3754 
   3755  done:
   3756 	return error;
   3757 }
   3758 
   3759 static void
   3760 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3761 {
   3762 	struct mbuf *m;
   3763 
   3764 	if (txring->txr_softint != NULL) {
   3765 		softint_disestablish(txring->txr_softint);
   3766 		txring->txr_softint = NULL;
   3767 	}
   3768 
   3769 	if (txring->txr_pcq != NULL) {
   3770 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3771 			m_freem(m);
   3772 		pcq_destroy(txring->txr_pcq);
   3773 		txring->txr_pcq = NULL;
   3774 	}
   3775 }
   3776 
   3777 #if NSYSMON_ENVSYS > 0
   3778 static void
   3779 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3780 {
   3781 	struct aq_softc *sc;
   3782 	uint32_t temp;
   3783 	int error;
   3784 
   3785 	sc = sme->sme_cookie;
   3786 
   3787 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3788 	if (error == 0) {
   3789 		edata->value_cur = temp;
   3790 		edata->state = ENVSYS_SVALID;
   3791 	} else {
   3792 		edata->state = ENVSYS_SINVALID;
   3793 	}
   3794 }
   3795 #endif
   3796 
   3797 static void
   3798 aq_tick(void *arg)
   3799 {
   3800 	struct aq_softc *sc = arg;
   3801 
   3802 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3803 		sc->sc_detect_linkstat = false;
   3804 		aq_update_link_status(sc);
   3805 	}
   3806 
   3807 #ifdef AQ_EVENT_COUNTERS
   3808 	if (sc->sc_poll_statistics)
   3809 		aq_update_statistics(sc);
   3810 #endif
   3811 
   3812 	if (sc->sc_poll_linkstat
   3813 #ifdef AQ_EVENT_COUNTERS
   3814 	    || sc->sc_poll_statistics
   3815 #endif
   3816 	    ) {
   3817 		callout_schedule(&sc->sc_tick_ch, hz);
   3818 	}
   3819 }
   3820 
   3821 /* interrupt enable/disable */
   3822 static void
   3823 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3824 {
   3825 	uint32_t imask = 0;
   3826 	int i;
   3827 
   3828 	if (txrx) {
   3829 		for (i = 0; i < sc->sc_nqueues; i++) {
   3830 			imask |= __BIT(sc->sc_tx_irq[i]);
   3831 			imask |= __BIT(sc->sc_rx_irq[i]);
   3832 		}
   3833 	}
   3834 
   3835 	if (link)
   3836 		imask |= __BIT(sc->sc_linkstat_irq);
   3837 
   3838 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3839 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3840 }
   3841 
   3842 static int
   3843 aq_legacy_intr(void *arg)
   3844 {
   3845 	struct aq_softc *sc = arg;
   3846 	uint32_t status;
   3847 	int nintr = 0;
   3848 
   3849 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3850 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3851 
   3852 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3853 		sc->sc_detect_linkstat = true;
   3854 		callout_schedule(&sc->sc_tick_ch, 0);
   3855 		nintr++;
   3856 	}
   3857 
   3858 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3859 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3860 	}
   3861 
   3862 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3863 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3864 	}
   3865 
   3866 	return nintr;
   3867 }
   3868 
   3869 static int
   3870 aq_txrx_intr(void *arg)
   3871 {
   3872 	struct aq_queue *queue = arg;
   3873 	struct aq_softc *sc = queue->sc;
   3874 	struct aq_txring *txring = &queue->txring;
   3875 	struct aq_rxring *rxring = &queue->rxring;
   3876 	uint32_t status;
   3877 	int nintr = 0;
   3878 	int txringidx, rxringidx, txirq, rxirq;
   3879 
   3880 	txringidx = txring->txr_index;
   3881 	rxringidx = rxring->rxr_index;
   3882 	txirq = sc->sc_tx_irq[txringidx];
   3883 	rxirq = sc->sc_rx_irq[rxringidx];
   3884 
   3885 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3886 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3887 		/* stray interrupt? */
   3888 		return 0;
   3889 	}
   3890 
   3891 	nintr += aq_rx_intr(rxring);
   3892 	nintr += aq_tx_intr(txring);
   3893 
   3894 	return nintr;
   3895 }
   3896 
   3897 static int
   3898 aq_link_intr(void *arg)
   3899 {
   3900 	struct aq_softc *sc = arg;
   3901 	uint32_t status;
   3902 	int nintr = 0;
   3903 
   3904 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3905 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3906 		sc->sc_detect_linkstat = true;
   3907 		callout_schedule(&sc->sc_tick_ch, 0);
   3908 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3909 		    __BIT(sc->sc_linkstat_irq));
   3910 		nintr++;
   3911 	}
   3912 
   3913 	return nintr;
   3914 }
   3915 
   3916 static void
   3917 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3918 {
   3919 	const int ringidx = txring->txr_index;
   3920 	int i;
   3921 
   3922 	mutex_enter(&txring->txr_mutex);
   3923 
   3924 	txring->txr_prodidx = 0;
   3925 	txring->txr_considx = 0;
   3926 	txring->txr_nfree = AQ_TXD_NUM;
   3927 	txring->txr_active = false;
   3928 
   3929 	/* free mbufs untransmitted */
   3930 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3931 		if (txring->txr_mbufs[i].m != NULL) {
   3932 			m_freem(txring->txr_mbufs[i].m);
   3933 			txring->txr_mbufs[i].m = NULL;
   3934 		}
   3935 	}
   3936 
   3937 	/* disable DMA */
   3938 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3939 
   3940 	if (start) {
   3941 		/* TX descriptor physical address */
   3942 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3943 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3944 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3945 		    (uint32_t)((uint64_t)paddr >> 32));
   3946 
   3947 		/* TX descriptor size */
   3948 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3949 		    AQ_TXD_NUM / 8);
   3950 
   3951 		/* reload TAIL pointer */
   3952 		txring->txr_prodidx = txring->txr_considx =
   3953 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3954 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3955 
   3956 		/* Mapping interrupt vector */
   3957 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3958 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3959 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3960 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3961 
   3962 		/* enable DMA */
   3963 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3964 		    TX_DMA_DESC_EN, 1);
   3965 
   3966 		const int cpuid = 0;	/* XXX? */
   3967 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3968 		    TDM_DCAD_CPUID, cpuid);
   3969 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3970 		    TDM_DCAD_CPUID_EN, 0);
   3971 
   3972 		txring->txr_active = true;
   3973 	}
   3974 
   3975 	mutex_exit(&txring->txr_mutex);
   3976 }
   3977 
   3978 static int
   3979 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   3980 {
   3981 	const int ringidx = rxring->rxr_index;
   3982 	int i;
   3983 	int error = 0;
   3984 
   3985 	mutex_enter(&rxring->rxr_mutex);
   3986 	rxring->rxr_active = false;
   3987 
   3988 	/* disable DMA */
   3989 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   3990 
   3991 	/* free all RX mbufs */
   3992 	aq_rxdrain(sc, rxring);
   3993 
   3994 	if (start) {
   3995 		for (i = 0; i < AQ_RXD_NUM; i++) {
   3996 			error = aq_rxring_add(sc, rxring, i);
   3997 			if (error != 0) {
   3998 				aq_rxdrain(sc, rxring);
   3999 				return error;
   4000 			}
   4001 			aq_rxring_reset_desc(sc, rxring, i);
   4002 		}
   4003 
   4004 		/* RX descriptor physical address */
   4005 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   4006 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   4007 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   4008 		    (uint32_t)((uint64_t)paddr >> 32));
   4009 
   4010 		/* RX descriptor size */
   4011 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   4012 		    AQ_RXD_NUM / 8);
   4013 
   4014 		/* maximum receive frame size */
   4015 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4016 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   4017 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4018 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   4019 
   4020 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4021 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   4022 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4023 		    RX_DMA_DESC_VLAN_STRIP,
   4024 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4025 		    1 : 0);
   4026 
   4027 		/*
   4028 		 * reload TAIL pointer, and update readidx
   4029 		 * (HEAD pointer cannot write)
   4030 		 */
   4031 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4032 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4033 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4034 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4035 
   4036 		/* Rx ring set mode */
   4037 
   4038 		/* Mapping interrupt vector */
   4039 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4040 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4041 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4042 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4043 
   4044 		const int cpuid = 0;	/* XXX? */
   4045 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4046 		    RX_DMA_DCAD_CPUID, cpuid);
   4047 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4048 		    RX_DMA_DCAD_DESC_EN, 0);
   4049 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4050 		    RX_DMA_DCAD_HEADER_EN, 0);
   4051 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4052 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4053 
   4054 		/* enable DMA. start receiving */
   4055 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4056 		    RX_DMA_DESC_EN, 1);
   4057 
   4058 		rxring->rxr_active = true;
   4059 	}
   4060 
   4061 	mutex_exit(&rxring->rxr_mutex);
   4062 	return error;
   4063 }
   4064 
   4065 #define TXRING_NEXTIDX(idx)	\
   4066 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4067 #define RXRING_NEXTIDX(idx)	\
   4068 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4069 
   4070 static int
   4071 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4072 {
   4073 	bus_dmamap_t map;
   4074 	struct mbuf *m = *mp;
   4075 	uint32_t ctl1, ctl1_ctx, ctl2;
   4076 	int idx, i, error;
   4077 
   4078 	idx = txring->txr_prodidx;
   4079 	map = txring->txr_mbufs[idx].dmamap;
   4080 
   4081 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4082 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4083 	if (error == EFBIG) {
   4084 		struct mbuf *n;
   4085 		n = m_defrag(m, M_DONTWAIT);
   4086 		if (n == NULL)
   4087 			return EFBIG;
   4088 		/* m_defrag() preserve m */
   4089 		KASSERT(n == m);
   4090 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4091 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4092 	}
   4093 	if (error != 0)
   4094 		return error;
   4095 
   4096 	/*
   4097 	 * check spaces of free descriptors.
   4098 	 * +1 is additional descriptor for context (vlan, etc,.)
   4099 	 */
   4100 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4101 		device_printf(sc->sc_dev,
   4102 		    "TX: not enough descriptors left %d for %d segs\n",
   4103 		    txring->txr_nfree, map->dm_nsegs + 1);
   4104 		bus_dmamap_unload(sc->sc_dmat, map);
   4105 		return ENOBUFS;
   4106 	}
   4107 
   4108 	/* sync dma for mbuf */
   4109 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4110 	    BUS_DMASYNC_PREWRITE);
   4111 
   4112 	ctl1_ctx = 0;
   4113 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4114 
   4115 	if (vlan_has_tag(m)) {
   4116 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4117 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4118 
   4119 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4120 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4121 
   4122 		/* fill context descriptor and forward index */
   4123 		txring->txr_txdesc[idx].buf_addr = 0;
   4124 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4125 		txring->txr_txdesc[idx].ctl2 = 0;
   4126 
   4127 		idx = TXRING_NEXTIDX(idx);
   4128 		txring->txr_nfree--;
   4129 	}
   4130 
   4131 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4132 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4133 	if (m->m_pkthdr.csum_flags &
   4134 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4135 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4136 	}
   4137 
   4138 	/* fill descriptor(s) */
   4139 	for (i = 0; i < map->dm_nsegs; i++) {
   4140 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4141 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4142 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4143 
   4144 		if (i == 0) {
   4145 			/* remember mbuf of these descriptors */
   4146 			txring->txr_mbufs[idx].m = m;
   4147 		} else {
   4148 			txring->txr_mbufs[idx].m = NULL;
   4149 		}
   4150 
   4151 		if (i == map->dm_nsegs - 1) {
   4152 			/* last segment, mark an EndOfPacket, and cause intr */
   4153 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4154 		}
   4155 
   4156 		txring->txr_txdesc[idx].buf_addr =
   4157 		    htole64(map->dm_segs[i].ds_addr);
   4158 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4159 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4160 
   4161 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4162 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4163 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4164 
   4165 		idx = TXRING_NEXTIDX(idx);
   4166 		txring->txr_nfree--;
   4167 	}
   4168 
   4169 	txring->txr_prodidx = idx;
   4170 
   4171 	return 0;
   4172 }
   4173 
   4174 static int
   4175 aq_tx_intr(void *arg)
   4176 {
   4177 	struct aq_txring *txring = arg;
   4178 	struct aq_softc *sc = txring->txr_sc;
   4179 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4180 	struct mbuf *m;
   4181 	const int ringidx = txring->txr_index;
   4182 	unsigned int idx, hw_head, n = 0;
   4183 
   4184 	mutex_enter(&txring->txr_mutex);
   4185 
   4186 	if (!txring->txr_active)
   4187 		goto tx_intr_done;
   4188 
   4189 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4190 	    TX_DMA_DESC_HEAD_PTR);
   4191 	if (hw_head == txring->txr_considx) {
   4192 		goto tx_intr_done;
   4193 	}
   4194 
   4195 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4196 
   4197 	for (idx = txring->txr_considx; idx != hw_head;
   4198 	    idx = TXRING_NEXTIDX(idx), n++) {
   4199 
   4200 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4201 			bus_dmamap_unload(sc->sc_dmat,
   4202 			    txring->txr_mbufs[idx].dmamap);
   4203 
   4204 			if_statinc_ref(nsr, if_opackets);
   4205 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   4206 			if (m->m_flags & M_MCAST)
   4207 				if_statinc_ref(nsr, if_omcasts);
   4208 
   4209 			m_freem(m);
   4210 			txring->txr_mbufs[idx].m = NULL;
   4211 		}
   4212 
   4213 		txring->txr_nfree++;
   4214 	}
   4215 	txring->txr_considx = idx;
   4216 
   4217 	IF_STAT_PUTREF(ifp);
   4218 
   4219 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4220 		ifp->if_flags &= ~IFF_OACTIVE;
   4221 
   4222 	/* no more pending TX packet, cancel watchdog */
   4223 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4224 		ifp->if_timer = 0;
   4225 
   4226  tx_intr_done:
   4227 	mutex_exit(&txring->txr_mutex);
   4228 
   4229 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4230 	return n;
   4231 }
   4232 
   4233 static int
   4234 aq_rx_intr(void *arg)
   4235 {
   4236 	struct aq_rxring *rxring = arg;
   4237 	struct aq_softc *sc = rxring->rxr_sc;
   4238 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4239 	const int ringidx = rxring->rxr_index;
   4240 	aq_rx_desc_t *rxd;
   4241 	struct mbuf *m, *m0, *mprev, *new_m;
   4242 	uint32_t rxd_type, rxd_hash __unused;
   4243 	uint16_t rxd_status, rxd_pktlen;
   4244 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4245 	unsigned int idx, n = 0;
   4246 
   4247 	mutex_enter(&rxring->rxr_mutex);
   4248 
   4249 	if (!rxring->rxr_active)
   4250 		goto rx_intr_done;
   4251 
   4252 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4253 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4254 		goto rx_intr_done;
   4255 	}
   4256 
   4257 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4258 
   4259 	m0 = mprev = NULL;
   4260 	for (idx = rxring->rxr_readidx;
   4261 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4262 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4263 
   4264 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4265 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4266 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4267 
   4268 		rxd = &rxring->rxr_rxdesc[idx];
   4269 		rxd_status = le16toh(rxd->wb.status);
   4270 
   4271 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4272 			break;	/* not yet done */
   4273 
   4274 		rxd_type = le32toh(rxd->wb.type);
   4275 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4276 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4277 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4278 		rxd_vlan = le16toh(rxd->wb.vlan);
   4279 
   4280 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4281 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4282 			if_statinc_ref(nsr, if_ierrors);
   4283 			goto rx_next;
   4284 		}
   4285 
   4286 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4287 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4288 		    BUS_DMASYNC_POSTREAD);
   4289 		m = rxring->rxr_mbufs[idx].m;
   4290 
   4291 		new_m = aq_alloc_mbuf();
   4292 		if (new_m == NULL) {
   4293 			/*
   4294 			 * cannot allocate new mbuf.
   4295 			 * discard this packet, and reuse mbuf for next.
   4296 			 */
   4297 			if_statinc_ref(nsr, if_iqdrops);
   4298 			goto rx_next;
   4299 		}
   4300 		rxring->rxr_mbufs[idx].m = NULL;
   4301 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4302 
   4303 		if (m0 == NULL) {
   4304 			m0 = m;
   4305 		} else {
   4306 			if (m->m_flags & M_PKTHDR)
   4307 				m_remove_pkthdr(m);
   4308 			mprev->m_next = m;
   4309 		}
   4310 		mprev = m;
   4311 
   4312 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4313 			m->m_len = MCLBYTES;
   4314 		} else {
   4315 			/* last buffer */
   4316 			m->m_len = rxd_pktlen % MCLBYTES;
   4317 			m0->m_pkthdr.len = rxd_pktlen;
   4318 			/* VLAN offloading */
   4319 			if ((sc->sc_ethercom.ec_capenable &
   4320 			    ETHERCAP_VLAN_HWTAGGING) &&
   4321 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4322 			    __SHIFTOUT(rxd_type,
   4323 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4324 				vlan_set_tag(m0, rxd_vlan);
   4325 			}
   4326 
   4327 			/* Checksum offloading */
   4328 			unsigned int pkttype_eth =
   4329 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4330 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4331 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4332 			    __SHIFTOUT(rxd_type,
   4333 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4334 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4335 				if (__SHIFTOUT(rxd_status,
   4336 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4337 					m0->m_pkthdr.csum_flags |=
   4338 					    M_CSUM_IPv4_BAD;
   4339 			}
   4340 #if notyet
   4341 			/*
   4342 			 * XXX: aq always marks BAD for fragmented packet.
   4343 			 * we should peek L3 header, and ignore cksum flags
   4344 			 * if the packet is fragmented.
   4345 			 */
   4346 			if (__SHIFTOUT(rxd_type,
   4347 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4348 				bool checked = false;
   4349 				unsigned int pkttype_proto =
   4350 				    __SHIFTOUT(rxd_type,
   4351 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4352 
   4353 				if (pkttype_proto ==
   4354 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4355 					if ((pkttype_eth ==
   4356 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4357 					    (ifp->if_capabilities &
   4358 					    IFCAP_CSUM_TCPv4_Rx)) {
   4359 						m0->m_pkthdr.csum_flags |=
   4360 						    M_CSUM_TCPv4;
   4361 						checked = true;
   4362 					} else if ((pkttype_eth ==
   4363 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4364 					    (ifp->if_capabilities &
   4365 					    IFCAP_CSUM_TCPv6_Rx)) {
   4366 						m0->m_pkthdr.csum_flags |=
   4367 						    M_CSUM_TCPv6;
   4368 						checked = true;
   4369 					}
   4370 				} else if (pkttype_proto ==
   4371 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4372 					if ((pkttype_eth ==
   4373 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4374 					    (ifp->if_capabilities &
   4375 					    IFCAP_CSUM_UDPv4_Rx)) {
   4376 						m0->m_pkthdr.csum_flags |=
   4377 						    M_CSUM_UDPv4;
   4378 						checked = true;
   4379 					} else if ((pkttype_eth ==
   4380 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4381 					    (ifp->if_capabilities &
   4382 					    IFCAP_CSUM_UDPv6_Rx)) {
   4383 						m0->m_pkthdr.csum_flags |=
   4384 						    M_CSUM_UDPv6;
   4385 						checked = true;
   4386 					}
   4387 				}
   4388 				if (checked &&
   4389 				    (__SHIFTOUT(rxd_status,
   4390 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4391 				    !__SHIFTOUT(rxd_status,
   4392 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4393 					m0->m_pkthdr.csum_flags |=
   4394 					    M_CSUM_TCP_UDP_BAD;
   4395 				}
   4396 			}
   4397 #endif
   4398 			m_set_rcvif(m0, ifp);
   4399 			if_statinc_ref(nsr, if_ipackets);
   4400 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
   4401 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4402 			m0 = mprev = NULL;
   4403 		}
   4404 
   4405  rx_next:
   4406 		aq_rxring_reset_desc(sc, rxring, idx);
   4407 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4408 	}
   4409 	rxring->rxr_readidx = idx;
   4410 
   4411 	IF_STAT_PUTREF(ifp);
   4412 
   4413  rx_intr_done:
   4414 	mutex_exit(&rxring->rxr_mutex);
   4415 
   4416 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4417 	return n;
   4418 }
   4419 
   4420 static int
   4421 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
   4422 {
   4423 	struct ifnet *ifp = &ec->ec_if;
   4424 	struct aq_softc *sc = ifp->if_softc;
   4425 
   4426 	aq_set_vlan_filters(sc);
   4427 	return 0;
   4428 }
   4429 
   4430 static int
   4431 aq_ifflags_cb(struct ethercom *ec)
   4432 {
   4433 	struct ifnet *ifp = &ec->ec_if;
   4434 	struct aq_softc *sc = ifp->if_softc;
   4435 	int i, ecchange, error = 0;
   4436 	unsigned short iffchange;
   4437 
   4438 	AQ_LOCK(sc);
   4439 
   4440 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4441 	if ((iffchange & IFF_PROMISC) != 0)
   4442 		error = aq_set_filter(sc);
   4443 
   4444 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4445 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4446 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4447 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4448 			    RX_DMA_DESC_VLAN_STRIP,
   4449 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4450 			    1 : 0);
   4451 		}
   4452 	}
   4453 
   4454 	/* vlan configuration depends on also interface promiscuous mode */
   4455 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
   4456 		aq_set_vlan_filters(sc);
   4457 
   4458 	sc->sc_ec_capenable = ec->ec_capenable;
   4459 	sc->sc_if_flags = ifp->if_flags;
   4460 
   4461 	AQ_UNLOCK(sc);
   4462 
   4463 	return error;
   4464 }
   4465 
   4466 static int
   4467 aq_init(struct ifnet *ifp)
   4468 {
   4469 	struct aq_softc *sc = ifp->if_softc;
   4470 	int i, error = 0;
   4471 
   4472 	AQ_LOCK(sc);
   4473 
   4474 	aq_set_vlan_filters(sc);
   4475 	aq_set_capability(sc);
   4476 
   4477 	for (i = 0; i < sc->sc_nqueues; i++) {
   4478 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4479 	}
   4480 
   4481 	/* invalidate RX descriptor cache */
   4482 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4483 	    AQ_READ_REG_BIT(sc,
   4484 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4485 
   4486 	/* start RX */
   4487 	for (i = 0; i < sc->sc_nqueues; i++) {
   4488 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4489 		if (error != 0) {
   4490 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4491 			    __func__);
   4492 			goto aq_init_failure;
   4493 		}
   4494 	}
   4495 	aq_init_rss(sc);
   4496 	aq_hw_l3_filter_set(sc);
   4497 
   4498 	/* need to start callout? */
   4499 	if (sc->sc_poll_linkstat
   4500 #ifdef AQ_EVENT_COUNTERS
   4501 	    || sc->sc_poll_statistics
   4502 #endif
   4503 	    ) {
   4504 		callout_schedule(&sc->sc_tick_ch, hz);
   4505 	}
   4506 
   4507 	/* ready */
   4508 	ifp->if_flags |= IFF_RUNNING;
   4509 	ifp->if_flags &= ~IFF_OACTIVE;
   4510 
   4511 	/* start TX and RX */
   4512 	aq_enable_intr(sc, true, true);
   4513 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4514 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4515 
   4516  aq_init_failure:
   4517 	sc->sc_if_flags = ifp->if_flags;
   4518 
   4519 	AQ_UNLOCK(sc);
   4520 
   4521 	return error;
   4522 }
   4523 
   4524 static void
   4525 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4526     struct aq_txring *txring, bool is_transmit)
   4527 {
   4528 	struct mbuf *m;
   4529 	int npkt, error;
   4530 
   4531 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4532 		return;
   4533 
   4534 	for (npkt = 0; ; npkt++) {
   4535 		if (is_transmit)
   4536 			m = pcq_peek(txring->txr_pcq);
   4537 		else
   4538 			IFQ_POLL(&ifp->if_snd, m);
   4539 
   4540 		if (m == NULL)
   4541 			break;
   4542 
   4543 		if (txring->txr_nfree < AQ_TXD_MIN)
   4544 			break;
   4545 
   4546 		if (is_transmit)
   4547 			pcq_get(txring->txr_pcq);
   4548 		else
   4549 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4550 
   4551 		error = aq_encap_txring(sc, txring, &m);
   4552 		if (error != 0) {
   4553 			/* too many mbuf chains? or not enough descriptors? */
   4554 			m_freem(m);
   4555 			if_statinc(ifp, if_oerrors);
   4556 			if (txring->txr_index == 0 && error == ENOBUFS)
   4557 				ifp->if_flags |= IFF_OACTIVE;
   4558 			break;
   4559 		}
   4560 
   4561 		/* update tail ptr */
   4562 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4563 		    txring->txr_prodidx);
   4564 
   4565 		/* Pass the packet to any BPF listeners */
   4566 		bpf_mtap(ifp, m, BPF_D_OUT);
   4567 	}
   4568 
   4569 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4570 		ifp->if_flags |= IFF_OACTIVE;
   4571 
   4572 	if (npkt)
   4573 		ifp->if_timer = 5;
   4574 }
   4575 
   4576 static void
   4577 aq_start(struct ifnet *ifp)
   4578 {
   4579 	struct aq_softc *sc;
   4580 	struct aq_txring *txring;
   4581 
   4582 	sc = ifp->if_softc;
   4583 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
   4584 
   4585 	mutex_enter(&txring->txr_mutex);
   4586 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4587 		aq_send_common_locked(ifp, sc, txring, false);
   4588 	mutex_exit(&txring->txr_mutex);
   4589 }
   4590 
   4591 static inline unsigned int
   4592 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4593 {
   4594 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4595 }
   4596 
   4597 static int
   4598 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4599 {
   4600 	struct aq_softc *sc = ifp->if_softc;
   4601 	struct aq_txring *txring;
   4602 	int ringidx;
   4603 
   4604 	ringidx = aq_select_txqueue(sc, m);
   4605 	txring = &sc->sc_queue[ringidx].txring;
   4606 
   4607 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4608 		m_freem(m);
   4609 		return ENOBUFS;
   4610 	}
   4611 
   4612 	if (mutex_tryenter(&txring->txr_mutex)) {
   4613 		aq_send_common_locked(ifp, sc, txring, true);
   4614 		mutex_exit(&txring->txr_mutex);
   4615 	} else {
   4616 		softint_schedule(txring->txr_softint);
   4617 	}
   4618 	return 0;
   4619 }
   4620 
   4621 static void
   4622 aq_deferred_transmit(void *arg)
   4623 {
   4624 	struct aq_txring *txring = arg;
   4625 	struct aq_softc *sc = txring->txr_sc;
   4626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4627 
   4628 	mutex_enter(&txring->txr_mutex);
   4629 	if (pcq_peek(txring->txr_pcq) != NULL)
   4630 		aq_send_common_locked(ifp, sc, txring, true);
   4631 	mutex_exit(&txring->txr_mutex);
   4632 }
   4633 
   4634 static void
   4635 aq_stop(struct ifnet *ifp, int disable)
   4636 {
   4637 	struct aq_softc *sc = ifp->if_softc;
   4638 	int i;
   4639 
   4640 	AQ_LOCK(sc);
   4641 
   4642 	ifp->if_timer = 0;
   4643 
   4644 	/* disable tx/rx interrupts */
   4645 	aq_enable_intr(sc, true, false);
   4646 
   4647 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4648 	for (i = 0; i < sc->sc_nqueues; i++) {
   4649 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4650 	}
   4651 
   4652 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4653 	for (i = 0; i < sc->sc_nqueues; i++) {
   4654 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4655 	}
   4656 
   4657 	/* invalidate RX descriptor cache */
   4658 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4659 	    AQ_READ_REG_BIT(sc,
   4660 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4661 
   4662 	ifp->if_timer = 0;
   4663 
   4664 	if (!disable) {
   4665 		/* when pmf stop, disable link status intr and callout */
   4666 		aq_enable_intr(sc, false, false);
   4667 		callout_stop(&sc->sc_tick_ch);
   4668 	}
   4669 
   4670 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4671 
   4672 	AQ_UNLOCK(sc);
   4673 }
   4674 
   4675 static void
   4676 aq_watchdog(struct ifnet *ifp)
   4677 {
   4678 	struct aq_softc *sc = ifp->if_softc;
   4679 	struct aq_txring *txring;
   4680 	int n, head, tail;
   4681 
   4682 	AQ_LOCK(sc);
   4683 
   4684 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4685 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4686 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4687 
   4688 	for (n = 0; n < sc->sc_nqueues; n++) {
   4689 		txring = &sc->sc_queue[n].txring;
   4690 		head = AQ_READ_REG_BIT(sc,
   4691 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4692 		    TX_DMA_DESC_HEAD_PTR),
   4693 		tail = AQ_READ_REG(sc,
   4694 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4695 
   4696 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4697 		    __func__, txring->txr_index, head, tail);
   4698 
   4699 		aq_tx_intr(txring);
   4700 	}
   4701 
   4702 	AQ_UNLOCK(sc);
   4703 
   4704 	aq_init(ifp);
   4705 }
   4706 
   4707 static int
   4708 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4709 {
   4710 	struct aq_softc *sc __unused;
   4711 	struct ifreq *ifr __unused;
   4712 	int error, s;
   4713 
   4714 	sc = (struct aq_softc *)ifp->if_softc;
   4715 	ifr = (struct ifreq *)data;
   4716 	error = 0;
   4717 
   4718 	s = splnet();
   4719 	error = ether_ioctl(ifp, cmd, data);
   4720 	splx(s);
   4721 
   4722 	if (error != ENETRESET)
   4723 		return error;
   4724 
   4725 	switch (cmd) {
   4726 	case SIOCSIFCAP:
   4727 		error = aq_set_capability(sc);
   4728 		break;
   4729 	case SIOCADDMULTI:
   4730 	case SIOCDELMULTI:
   4731 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4732 			break;
   4733 
   4734 		/*
   4735 		 * Multicast list has changed; set the hardware filter
   4736 		 * accordingly.
   4737 		 */
   4738 		error = aq_set_filter(sc);
   4739 		break;
   4740 	}
   4741 
   4742 	return error;
   4743 }
   4744 
   4745 
   4746 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4747 
   4748 #ifdef _MODULE
   4749 #include "ioconf.c"
   4750 #endif
   4751 
   4752 static int
   4753 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4754 {
   4755 	int error = 0;
   4756 
   4757 	switch (cmd) {
   4758 	case MODULE_CMD_INIT:
   4759 #ifdef _MODULE
   4760 		error = config_init_component(cfdriver_ioconf_if_aq,
   4761 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4762 #endif
   4763 		return error;
   4764 	case MODULE_CMD_FINI:
   4765 #ifdef _MODULE
   4766 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4767 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4768 #endif
   4769 		return error;
   4770 	default:
   4771 		return ENOTTY;
   4772 	}
   4773 }
   4774