if_aq.c revision 1.1.2.3 1 /* $NetBSD: if_aq.c,v 1.1.2.3 2020/02/29 20:19:10 ad Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.1.2.3 2020/02/29 20:19:10 ad Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed;
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed;
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 const struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 struct ethercom sc_ethercom;
1009 struct ether_addr sc_enaddr;
1010 struct ifmedia sc_media;
1011 int sc_ec_capenable; /* last ec_capenable */
1012 unsigned short sc_if_flags; /* last if_flags */
1013
1014 #ifdef AQ_EVENT_COUNTERS
1015 aq_hw_stats_s_t sc_statistics[2];
1016 int sc_statistics_idx;
1017 bool sc_poll_statistics;
1018
1019 AQ_EVCNT_DECL(uprc);
1020 AQ_EVCNT_DECL(mprc);
1021 AQ_EVCNT_DECL(bprc);
1022 AQ_EVCNT_DECL(erpt);
1023 AQ_EVCNT_DECL(uptc);
1024 AQ_EVCNT_DECL(mptc);
1025 AQ_EVCNT_DECL(bptc);
1026 AQ_EVCNT_DECL(erpr);
1027 AQ_EVCNT_DECL(mbtc);
1028 AQ_EVCNT_DECL(bbtc);
1029 AQ_EVCNT_DECL(mbrc);
1030 AQ_EVCNT_DECL(bbrc);
1031 AQ_EVCNT_DECL(ubrc);
1032 AQ_EVCNT_DECL(ubtc);
1033 AQ_EVCNT_DECL(ptc);
1034 AQ_EVCNT_DECL(prc);
1035 AQ_EVCNT_DECL(dpc);
1036 AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045 bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047 pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056 struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083 aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085 aq_link_eee_t *);
1086
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093 uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 .reset = fw1x_reset,
1117 .set_mode = fw1x_set_mode,
1118 .get_mode = fw1x_get_mode,
1119 .get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 .get_temperature = NULL
1122 #endif
1123 };
1124
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 .reset = fw2x_reset,
1127 .set_mode = fw2x_set_mode,
1128 .get_mode = fw2x_get_mode,
1129 .get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 .get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137
1138 static const struct aq_product {
1139 pci_vendor_id_t aq_vendor;
1140 pci_product_id_t aq_product;
1141 const char *aq_name;
1142 enum aq_media_type aq_media_type;
1143 aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1146 "Aquantia AQC107 10 Gigabit Network Adapter",
1147 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1148 },
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1150 "Aquantia AQC108 5 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1154 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1158 "Aquantia AQC111 5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1162 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1166 "Aquantia AQC107S 10 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1170 "Aquantia AQC108S 5 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1174 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1178 "Aquantia AQC111S 5 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1182 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1186 "Aquantia D107 10 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1190 "Aquantia D108 5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1194 "Aquantia D109 2.5 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1196 }
1197 };
1198
1199 static const struct aq_product *
1200 aq_lookup(const struct pci_attach_args *pa)
1201 {
1202 unsigned int i;
1203
1204 for (i = 0; i < __arraycount(aq_products); i++) {
1205 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1206 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1207 return &aq_products[i];
1208 }
1209 return NULL;
1210 }
1211
1212 static int
1213 aq_match(device_t parent, cfdata_t cf, void *aux)
1214 {
1215 struct pci_attach_args *pa = aux;
1216
1217 if (aq_lookup(pa) != NULL)
1218 return 1;
1219
1220 return 0;
1221 }
1222
1223 static void
1224 aq_attach(device_t parent, device_t self, void *aux)
1225 {
1226 struct aq_softc *sc = device_private(self);
1227 struct pci_attach_args *pa = aux;
1228 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1229 pci_chipset_tag_t pc;
1230 pcitag_t tag;
1231 pcireg_t command, memtype, bar;
1232 const struct aq_product *aqp;
1233 int error;
1234
1235 sc->sc_dev = self;
1236 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1237 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1238
1239 sc->sc_pc = pc = pa->pa_pc;
1240 sc->sc_pcitag = tag = pa->pa_tag;
1241 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1242
1243 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1244 command |= PCI_COMMAND_MASTER_ENABLE;
1245 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1246
1247 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1248 sc->sc_revision = PCI_REVISION(pa->pa_class);
1249
1250 aqp = aq_lookup(pa);
1251 KASSERT(aqp != NULL);
1252
1253 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1254
1255 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1256 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1257 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1258 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1259 return;
1260 }
1261 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1262 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1263 NULL, &sc->sc_iosize) != 0) {
1264 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1265 return;
1266 }
1267
1268 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1269
1270 /* max queue num is 8, and must be 2^n */
1271 if (ncpu >= 8)
1272 sc->sc_nqueues = 8;
1273 else if (ncpu >= 4)
1274 sc->sc_nqueues = 4;
1275 else if (ncpu >= 2)
1276 sc->sc_nqueues = 2;
1277 else
1278 sc->sc_nqueues = 1;
1279
1280 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1281 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1282 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1283 /* TX intrs + RX intrs + LINKSTAT intrs */
1284 sc->sc_use_txrx_independent_intr = true;
1285 sc->sc_poll_linkstat = false;
1286 sc->sc_msix = true;
1287 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1288 /* TX intrs + RX intrs */
1289 sc->sc_use_txrx_independent_intr = true;
1290 sc->sc_poll_linkstat = true;
1291 sc->sc_msix = true;
1292 } else
1293 #endif
1294 if (msixcount >= (sc->sc_nqueues + 1)) {
1295 /* TX/RX intrs LINKSTAT intrs */
1296 sc->sc_use_txrx_independent_intr = false;
1297 sc->sc_poll_linkstat = false;
1298 sc->sc_msix = true;
1299 } else if (msixcount >= sc->sc_nqueues) {
1300 /* TX/RX intrs */
1301 sc->sc_use_txrx_independent_intr = false;
1302 sc->sc_poll_linkstat = true;
1303 sc->sc_msix = true;
1304 } else {
1305 /* giving up using MSI-X */
1306 sc->sc_msix = false;
1307 }
1308
1309 aprint_debug_dev(sc->sc_dev,
1310 "ncpu=%d, pci_msix_count=%d."
1311 " allocate %d interrupts for %d%s queues%s\n",
1312 ncpu, msixcount,
1313 (sc->sc_use_txrx_independent_intr ?
1314 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1315 (sc->sc_poll_linkstat ? 0 : 1),
1316 sc->sc_nqueues,
1317 sc->sc_use_txrx_independent_intr ? "*2" : "",
1318 sc->sc_poll_linkstat ? "" : ", and link status");
1319
1320 if (sc->sc_msix)
1321 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1322 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1323 else
1324 error = ENODEV;
1325
1326 if (error != 0) {
1327 /* if MSI-X failed, fallback to MSI with single queue */
1328 sc->sc_use_txrx_independent_intr = false;
1329 sc->sc_poll_linkstat = false;
1330 sc->sc_msix = false;
1331 sc->sc_nqueues = 1;
1332 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1333 }
1334 if (error != 0) {
1335 /* if MSI failed, fallback to INTx */
1336 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1337 }
1338 if (error != 0)
1339 return;
1340
1341 callout_init(&sc->sc_tick_ch, 0);
1342 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1343
1344 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1345
1346 if (sc->sc_msix && (sc->sc_nqueues > 1))
1347 sc->sc_rss_enable = true;
1348 else
1349 sc->sc_rss_enable = false;
1350
1351 error = aq_txrx_rings_alloc(sc);
1352 if (error != 0)
1353 goto attach_failure;
1354
1355 error = aq_fw_reset(sc);
1356 if (error != 0)
1357 goto attach_failure;
1358
1359 error = aq_fw_version_init(sc);
1360 if (error != 0)
1361 goto attach_failure;
1362
1363 error = aq_hw_init_ucp(sc);
1364 if (error < 0)
1365 goto attach_failure;
1366
1367 KASSERT(sc->sc_mbox_addr != 0);
1368 error = aq_hw_reset(sc);
1369 if (error != 0)
1370 goto attach_failure;
1371
1372 aq_get_mac_addr(sc);
1373 aq_init_rss(sc);
1374
1375 error = aq_hw_init(sc); /* initialize and interrupts */
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 sc->sc_media_type = aqp->aq_media_type;
1380 sc->sc_available_rates = aqp->aq_available_rates;
1381
1382 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1383 ifmedia_init(&sc->sc_media, IFM_IMASK,
1384 aq_ifmedia_change, aq_ifmedia_status);
1385 aq_initmedia(sc);
1386
1387 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1388 ifp->if_softc = sc;
1389 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390 ifp->if_baudrate = IF_Gbps(10);
1391 ifp->if_init = aq_init;
1392 ifp->if_ioctl = aq_ioctl;
1393 if (sc->sc_msix && (sc->sc_nqueues > 1))
1394 ifp->if_transmit = aq_transmit;
1395 ifp->if_start = aq_start;
1396 ifp->if_stop = aq_stop;
1397 ifp->if_watchdog = aq_watchdog;
1398 IFQ_SET_READY(&ifp->if_snd);
1399
1400 /* initialize capabilities */
1401 sc->sc_ethercom.ec_capabilities = 0;
1402 sc->sc_ethercom.ec_capenable = 0;
1403 #if notyet
1404 /* TODO */
1405 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1406 #endif
1407 sc->sc_ethercom.ec_capabilities |=
1408 ETHERCAP_JUMBO_MTU |
1409 ETHERCAP_VLAN_MTU |
1410 ETHERCAP_VLAN_HWTAGGING |
1411 ETHERCAP_VLAN_HWFILTER;
1412 sc->sc_ethercom.ec_capenable |=
1413 ETHERCAP_VLAN_HWTAGGING |
1414 ETHERCAP_VLAN_HWFILTER;
1415
1416 ifp->if_capabilities = 0;
1417 ifp->if_capenable = 0;
1418 #ifdef CONFIG_LRO_SUPPORT
1419 ifp->if_capabilities |= IFCAP_LRO;
1420 ifp->if_capenable |= IFCAP_LRO;
1421 #endif
1422 #if notyet
1423 /* TSO */
1424 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1425 #endif
1426
1427 #if notyet
1428 /*
1429 * XXX:
1430 * Rx L4 CSUM doesn't work well for fragment packet.
1431 * aq marks 'CHEDKED' and 'BAD' for them.
1432 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1433 *
1434 * TODO: test with LRO enabled
1435 */
1436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1437 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1438 #endif
1439 /* TX hardware checksum offloadding */
1440 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1441 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1442 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1443 /* RX hardware checksum offloadding */
1444 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1445
1446 if_attach(ifp);
1447 if_deferred_start_init(ifp, NULL);
1448 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1449 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1450 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1451
1452 aq_enable_intr(sc, true, false); /* only intr about link */
1453
1454 /* update media */
1455 aq_ifmedia_change(ifp);
1456
1457 #if NSYSMON_ENVSYS > 0
1458 /* temperature monitoring */
1459 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1460 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1461
1462 sc->sc_sme = sysmon_envsys_create();
1463 sc->sc_sme->sme_name = device_xname(self);
1464 sc->sc_sme->sme_cookie = sc;
1465 sc->sc_sme->sme_flags = 0;
1466 sc->sc_sme->sme_refresh = aq_temp_refresh;
1467 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1468 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1469 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1470
1471 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1472 sysmon_envsys_register(sc->sc_sme);
1473
1474 /*
1475 * for unknown reasons, the first call of fw2x_get_temperature()
1476 * will always fail (firmware matter?), so run once now.
1477 */
1478 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1479 }
1480 #endif
1481
1482 #ifdef AQ_EVENT_COUNTERS
1483 /* get starting statistics values */
1484 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1485 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1486 sc->sc_poll_statistics = true;
1487 }
1488
1489 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1490 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1491 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1492 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1493 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1494 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1495 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1496 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1497 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1498 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1499 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1500 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1501 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1502 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1503 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1504 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1505 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1506 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1507 #endif
1508
1509 return;
1510
1511 attach_failure:
1512 aq_detach(self, 0);
1513 }
1514
1515 static int
1516 aq_detach(device_t self, int flags __unused)
1517 {
1518 struct aq_softc *sc = device_private(self);
1519 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1520 int i, s;
1521
1522 if (sc->sc_iosize != 0) {
1523 if (ifp->if_softc != NULL) {
1524 s = splnet();
1525 aq_stop(ifp, 0);
1526 splx(s);
1527 }
1528
1529 for (i = 0; i < AQ_NINTR_MAX; i++) {
1530 if (sc->sc_ihs[i] != NULL) {
1531 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1532 sc->sc_ihs[i] = NULL;
1533 }
1534 }
1535 if (sc->sc_nintrs > 0) {
1536 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1537 sc->sc_nintrs);
1538 sc->sc_intrs = NULL;
1539 sc->sc_nintrs = 0;
1540 }
1541
1542 aq_txrx_rings_free(sc);
1543
1544 if (ifp->if_softc != NULL) {
1545 ether_ifdetach(ifp);
1546 if_detach(ifp);
1547 }
1548
1549 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1550 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1551 sc->sc_iosize = 0;
1552 }
1553
1554 callout_stop(&sc->sc_tick_ch);
1555
1556 #if NSYSMON_ENVSYS > 0
1557 if (sc->sc_sme != NULL) {
1558 /* all sensors associated with this will also be detached */
1559 sysmon_envsys_unregister(sc->sc_sme);
1560 sc->sc_sme = NULL;
1561 }
1562 #endif
1563
1564 #ifdef AQ_EVENT_COUNTERS
1565 AQ_EVCNT_DETACH(sc, uprc);
1566 AQ_EVCNT_DETACH(sc, mprc);
1567 AQ_EVCNT_DETACH(sc, bprc);
1568 AQ_EVCNT_DETACH(sc, erpt);
1569 AQ_EVCNT_DETACH(sc, uptc);
1570 AQ_EVCNT_DETACH(sc, mptc);
1571 AQ_EVCNT_DETACH(sc, bptc);
1572 AQ_EVCNT_DETACH(sc, erpr);
1573 AQ_EVCNT_DETACH(sc, mbtc);
1574 AQ_EVCNT_DETACH(sc, bbtc);
1575 AQ_EVCNT_DETACH(sc, mbrc);
1576 AQ_EVCNT_DETACH(sc, bbrc);
1577 AQ_EVCNT_DETACH(sc, ubrc);
1578 AQ_EVCNT_DETACH(sc, ubtc);
1579 AQ_EVCNT_DETACH(sc, ptc);
1580 AQ_EVCNT_DETACH(sc, prc);
1581 AQ_EVCNT_DETACH(sc, dpc);
1582 AQ_EVCNT_DETACH(sc, cprc);
1583 #endif
1584
1585 ifmedia_fini(&sc->sc_media);
1586
1587 mutex_destroy(&sc->sc_mpi_mutex);
1588 mutex_destroy(&sc->sc_mutex);
1589
1590 return 0;
1591 }
1592
1593 static int
1594 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1595 int (*func)(void *), void *arg, const char *xname)
1596 {
1597 char intrbuf[PCI_INTRSTR_LEN];
1598 pci_chipset_tag_t pc = sc->sc_pc;
1599 void *vih;
1600 const char *intrstr = NULL;
1601
1602 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1603 sizeof(intrbuf));
1604
1605 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1606
1607 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1608 IPL_NET, func, arg, xname);
1609 if (vih == NULL) {
1610 aprint_error_dev(sc->sc_dev,
1611 "unable to establish MSI-X%s%s for %s\n",
1612 intrstr ? " at " : "",
1613 intrstr ? intrstr : "", xname);
1614 return EIO;
1615 }
1616 sc->sc_ihs[intno] = vih;
1617
1618 if (affinity != NULL) {
1619 /* Round-robin affinity */
1620 kcpuset_zero(affinity);
1621 kcpuset_set(affinity, intno % ncpu);
1622 interrupt_distribute(vih, affinity, NULL);
1623 }
1624
1625 return 0;
1626 }
1627
1628 static int
1629 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1630 bool linkintr)
1631 {
1632 kcpuset_t *affinity;
1633 int error, intno, i;
1634 char intr_xname[INTRDEVNAMEBUF];
1635
1636 kcpuset_create(&affinity, false);
1637
1638 intno = 0;
1639
1640 if (txrx_independent) {
1641 for (i = 0; i < sc->sc_nqueues; i++) {
1642 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1643 device_xname(sc->sc_dev), i);
1644 sc->sc_rx_irq[i] = intno;
1645 error = aq_establish_intr(sc, intno++, affinity,
1646 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1647 if (error != 0)
1648 goto fail;
1649 }
1650 for (i = 0; i < sc->sc_nqueues; i++) {
1651 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1652 device_xname(sc->sc_dev), i);
1653 sc->sc_tx_irq[i] = intno;
1654 error = aq_establish_intr(sc, intno++, affinity,
1655 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1656 if (error != 0)
1657 goto fail;
1658 }
1659 } else {
1660 for (i = 0; i < sc->sc_nqueues; i++) {
1661 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1662 device_xname(sc->sc_dev), i);
1663 sc->sc_rx_irq[i] = intno;
1664 sc->sc_tx_irq[i] = intno;
1665 error = aq_establish_intr(sc, intno++, affinity,
1666 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1667 if (error != 0)
1668 goto fail;
1669 }
1670 }
1671
1672 if (linkintr) {
1673 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1674 device_xname(sc->sc_dev));
1675 sc->sc_linkstat_irq = intno;
1676 error = aq_establish_intr(sc, intno++, affinity,
1677 aq_link_intr, sc, intr_xname);
1678 if (error != 0)
1679 goto fail;
1680 }
1681
1682 kcpuset_destroy(affinity);
1683 return 0;
1684
1685 fail:
1686 for (i = 0; i < AQ_NINTR_MAX; i++) {
1687 if (sc->sc_ihs[i] != NULL) {
1688 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1689 sc->sc_ihs[i] = NULL;
1690 }
1691 }
1692
1693 kcpuset_destroy(affinity);
1694 return ENOMEM;
1695 }
1696
1697 static int
1698 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1699 bool txrx_independent, bool linkintr)
1700 {
1701 int error, nintr;
1702
1703 if (txrx_independent)
1704 nintr = nqueue * 2;
1705 else
1706 nintr = nqueue;
1707
1708 if (linkintr)
1709 nintr++;
1710
1711 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1712 if (error != 0) {
1713 aprint_error_dev(sc->sc_dev,
1714 "failed to allocate MSI-X interrupts\n");
1715 goto fail;
1716 }
1717
1718 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1719 if (error == 0) {
1720 sc->sc_nintrs = nintr;
1721 } else {
1722 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1723 sc->sc_nintrs = 0;
1724 }
1725 fail:
1726 return error;
1727
1728 }
1729
1730 static int
1731 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1732 pci_intr_type_t inttype)
1733 {
1734 int counts[PCI_INTR_TYPE_SIZE];
1735 int error, nintr;
1736
1737 nintr = 1;
1738
1739 memset(counts, 0, sizeof(counts));
1740 counts[inttype] = nintr;
1741
1742 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1743 if (error != 0) {
1744 aprint_error_dev(sc->sc_dev,
1745 "failed to allocate%s interrupts\n",
1746 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1747 return error;
1748 }
1749 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1750 device_xname(sc->sc_dev));
1751 if (error == 0) {
1752 sc->sc_nintrs = nintr;
1753 } else {
1754 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1755 sc->sc_nintrs = 0;
1756 }
1757 return error;
1758 }
1759
1760 static void
1761 global_software_reset(struct aq_softc *sc)
1762 {
1763 uint32_t v;
1764
1765 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1766 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1767 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1768 FW_MPI_RESETCTRL_RESET_DIS, 0);
1769
1770 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1771 v &= ~AQ_FW_SOFTRESET_DIS;
1772 v |= AQ_FW_SOFTRESET_RESET;
1773 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1774 }
1775
1776 static int
1777 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1778 {
1779 int timo;
1780
1781 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1782
1783 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1784 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1785 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1786
1787 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1788 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1789
1790 global_software_reset(sc);
1791
1792 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1793
1794 /* Wait for RBL to finish boot process. */
1795 #define RBL_TIMEOUT_MS 10000
1796 uint16_t rbl_status;
1797 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1798 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1799 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1800 break;
1801 msec_delay(1);
1802 }
1803 if (timo <= 0) {
1804 aprint_error_dev(sc->sc_dev,
1805 "RBL> RBL restart failed: timeout\n");
1806 return EBUSY;
1807 }
1808 switch (rbl_status) {
1809 case RBL_STATUS_SUCCESS:
1810 if (mode != NULL)
1811 *mode = FW_BOOT_MODE_RBL_FLASH;
1812 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1813 break;
1814 case RBL_STATUS_HOST_BOOT:
1815 if (mode != NULL)
1816 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1817 aprint_debug_dev(sc->sc_dev,
1818 "RBL> reset complete! [Host Bootload]\n");
1819 break;
1820 case RBL_STATUS_FAILURE:
1821 default:
1822 aprint_error_dev(sc->sc_dev,
1823 "unknown RBL status 0x%x\n", rbl_status);
1824 return EBUSY;
1825 }
1826
1827 return 0;
1828 }
1829
1830 static int
1831 mac_soft_reset_flb(struct aq_softc *sc)
1832 {
1833 uint32_t v;
1834 int timo;
1835
1836 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1837 /*
1838 * Let Felicity hardware to complete SMBUS transaction before
1839 * Global software reset.
1840 */
1841 msec_delay(50);
1842
1843 /*
1844 * If SPI burst transaction was interrupted(before running the script),
1845 * global software reset may not clear SPI interface.
1846 * Clean it up manually before global reset.
1847 */
1848 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1849 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1850 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1851 msec_delay(50);
1852
1853 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1854 v &= ~AQ_FW_SOFTRESET_DIS;
1855 v |= AQ_FW_SOFTRESET_RESET;
1856 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1857
1858 /* Kickstart. */
1859 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1860 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1861 if (!sc->sc_fast_start_enabled)
1862 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1863
1864 /*
1865 * For the case SPI burst transaction was interrupted (by MCP reset
1866 * above), wait until it is completed by hardware.
1867 */
1868 msec_delay(50);
1869
1870 /* MAC Kickstart */
1871 if (!sc->sc_fast_start_enabled) {
1872 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1873
1874 uint32_t flb_status;
1875 for (timo = 0; timo < 1000; timo++) {
1876 flb_status = AQ_READ_REG(sc,
1877 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1878 if (flb_status != 0)
1879 break;
1880 msec_delay(1);
1881 }
1882 if (flb_status == 0) {
1883 aprint_error_dev(sc->sc_dev,
1884 "FLB> MAC kickstart failed: timed out\n");
1885 return ETIMEDOUT;
1886 }
1887 aprint_debug_dev(sc->sc_dev,
1888 "FLB> MAC kickstart done, %d ms\n", timo);
1889 /* FW reset */
1890 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1891 /*
1892 * Let Felicity hardware complete SMBUS transaction before
1893 * Global software reset.
1894 */
1895 msec_delay(50);
1896 sc->sc_fast_start_enabled = true;
1897 }
1898 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1899
1900 /* PHY Kickstart: #undone */
1901 global_software_reset(sc);
1902
1903 for (timo = 0; timo < 1000; timo++) {
1904 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1905 break;
1906 msec_delay(10);
1907 }
1908 if (timo >= 1000) {
1909 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1910 return ETIMEDOUT;
1911 }
1912 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1913 return 0;
1914
1915 }
1916
1917 static int
1918 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1919 {
1920 if (sc->sc_rbl_enabled)
1921 return mac_soft_reset_rbl(sc, mode);
1922
1923 if (mode != NULL)
1924 *mode = FW_BOOT_MODE_FLB;
1925 return mac_soft_reset_flb(sc);
1926 }
1927
1928 static int
1929 aq_fw_read_version(struct aq_softc *sc)
1930 {
1931 int i, error = EBUSY;
1932 #define MAC_FW_START_TIMEOUT_MS 10000
1933 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1934 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1935 if (sc->sc_fw_version != 0) {
1936 error = 0;
1937 break;
1938 }
1939 delay(1000);
1940 }
1941 return error;
1942 }
1943
1944 static int
1945 aq_fw_reset(struct aq_softc *sc)
1946 {
1947 uint32_t ver, v, bootExitCode;
1948 int i, error;
1949
1950 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1951
1952 for (i = 1000; i > 0; i--) {
1953 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1954 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1955 if (v != 0x06000000 || bootExitCode != 0)
1956 break;
1957 }
1958 if (i <= 0) {
1959 aprint_error_dev(sc->sc_dev,
1960 "F/W reset failed. Neither RBL nor FLB started\n");
1961 return ETIMEDOUT;
1962 }
1963 sc->sc_rbl_enabled = (bootExitCode != 0);
1964
1965 /*
1966 * Having FW version 0 is an indicator that cold start
1967 * is in progress. This means two things:
1968 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1969 * 2) Driver may skip reset sequence and save time.
1970 */
1971 if (sc->sc_fast_start_enabled && (ver != 0)) {
1972 error = aq_fw_read_version(sc);
1973 /* Skip reset as it just completed */
1974 if (error == 0)
1975 return 0;
1976 }
1977
1978 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1979 error = mac_soft_reset(sc, &mode);
1980 if (error != 0) {
1981 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1982 return error;
1983 }
1984
1985 switch (mode) {
1986 case FW_BOOT_MODE_FLB:
1987 aprint_debug_dev(sc->sc_dev,
1988 "FLB> F/W successfully loaded from flash.\n");
1989 sc->sc_flash_present = true;
1990 return aq_fw_read_version(sc);
1991 case FW_BOOT_MODE_RBL_FLASH:
1992 aprint_debug_dev(sc->sc_dev,
1993 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
1994 sc->sc_flash_present = true;
1995 return aq_fw_read_version(sc);
1996 case FW_BOOT_MODE_UNKNOWN:
1997 aprint_error_dev(sc->sc_dev,
1998 "F/W bootload error: unknown bootloader type\n");
1999 return ENOTSUP;
2000 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2001 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2002 break;
2003 }
2004
2005 /*
2006 * XXX: TODO: add support Host Boot
2007 */
2008 aprint_error_dev(sc->sc_dev,
2009 "RBL> F/W Host Bootload not implemented\n");
2010 return ENOTSUP;
2011 }
2012
2013 static int
2014 aq_hw_reset(struct aq_softc *sc)
2015 {
2016 int error;
2017
2018 /* disable irq */
2019 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2020
2021 /* apply */
2022 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2023
2024 /* wait ack 10 times by 1ms */
2025 WAIT_FOR(
2026 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2027 1000, 10, &error);
2028 if (error != 0) {
2029 aprint_error_dev(sc->sc_dev,
2030 "atlantic: IRQ reset failed: %d\n", error);
2031 return error;
2032 }
2033
2034 return sc->sc_fw_ops->reset(sc);
2035 }
2036
2037 static int
2038 aq_hw_init_ucp(struct aq_softc *sc)
2039 {
2040 int timo;
2041
2042 if (FW_VERSION_MAJOR(sc) == 1) {
2043 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2044 uint32_t data;
2045 cprng_fast(&data, sizeof(data));
2046 data &= 0xfefefefe;
2047 data |= 0x02020202;
2048 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2049 }
2050 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2051 }
2052
2053 for (timo = 100; timo > 0; timo--) {
2054 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2055 if (sc->sc_mbox_addr != 0)
2056 break;
2057 delay(1000);
2058 }
2059
2060 #define AQ_FW_MIN_VERSION 0x01050006
2061 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2062 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2063 aprint_error_dev(sc->sc_dev,
2064 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2065 " or later required, this is %d.%d.%d\n",
2066 FW_VERSION_MAJOR(sc),
2067 FW_VERSION_MINOR(sc),
2068 FW_VERSION_BUILD(sc));
2069 return ENOTSUP;
2070 }
2071
2072 return 0;
2073 }
2074
2075 static int
2076 aq_fw_version_init(struct aq_softc *sc)
2077 {
2078 int error = 0;
2079 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2080
2081 if (FW_VERSION_MAJOR(sc) == 1) {
2082 sc->sc_fw_ops = &aq_fw1x_ops;
2083 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2084 sc->sc_fw_ops = &aq_fw2x_ops;
2085 } else {
2086 aprint_error_dev(sc->sc_dev,
2087 "Unsupported F/W version %d.%d.%d\n",
2088 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2089 FW_VERSION_BUILD(sc));
2090 return ENOTSUP;
2091 }
2092 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2093 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2094
2095 /* detect revision */
2096 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2097 switch (hwrev & 0x0000000f) {
2098 case 0x01:
2099 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2100 fw_vers);
2101 sc->sc_features |= FEATURES_REV_A0 |
2102 FEATURES_MPI_AQ | FEATURES_MIPS;
2103 break;
2104 case 0x02:
2105 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2106 fw_vers);
2107 sc->sc_features |= FEATURES_REV_B0 |
2108 FEATURES_MPI_AQ | FEATURES_MIPS |
2109 FEATURES_TPO2 | FEATURES_RPF2;
2110 break;
2111 case 0x0A:
2112 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2113 fw_vers);
2114 sc->sc_features |= FEATURES_REV_B1 |
2115 FEATURES_MPI_AQ | FEATURES_MIPS |
2116 FEATURES_TPO2 | FEATURES_RPF2;
2117 break;
2118 default:
2119 aprint_error_dev(sc->sc_dev,
2120 "Unknown revision (0x%08x)\n", hwrev);
2121 error = ENOTSUP;
2122 break;
2123 }
2124 return error;
2125 }
2126
2127 static int
2128 fw1x_reset(struct aq_softc *sc)
2129 {
2130 struct aq_mailbox_header mbox;
2131 const int retryCount = 1000;
2132 uint32_t tid0;
2133 int i;
2134
2135 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2136
2137 for (i = 0; i < retryCount; ++i) {
2138 /*
2139 * Read the beginning of Statistics structure to capture
2140 * the Transaction ID.
2141 */
2142 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2143 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2144
2145 /* Successfully read the stats. */
2146 if (tid0 == ~0U) {
2147 /* We have read the initial value. */
2148 tid0 = mbox.transaction_id;
2149 continue;
2150 } else if (mbox.transaction_id != tid0) {
2151 /*
2152 * Compare transaction ID to initial value.
2153 * If it's different means f/w is alive.
2154 * We're done.
2155 */
2156 return 0;
2157 }
2158
2159 /*
2160 * Transaction ID value haven't changed since last time.
2161 * Try reading the stats again.
2162 */
2163 delay(10);
2164 }
2165 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2166 return EBUSY;
2167 }
2168
2169 static int
2170 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2171 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2172 {
2173 uint32_t mpictrl = 0;
2174 uint32_t mpispeed = 0;
2175
2176 if (speed & AQ_LINK_10G)
2177 mpispeed |= FW1X_CTRL_10G;
2178 if (speed & AQ_LINK_5G)
2179 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2180 if (speed & AQ_LINK_2G5)
2181 mpispeed |= FW1X_CTRL_2G5;
2182 if (speed & AQ_LINK_1G)
2183 mpispeed |= FW1X_CTRL_1G;
2184 if (speed & AQ_LINK_100M)
2185 mpispeed |= FW1X_CTRL_100M;
2186
2187 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2188 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2189 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2190 return 0;
2191 }
2192
2193 static int
2194 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2195 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2196 {
2197 uint32_t mpistate, mpi_speed;
2198 aq_link_speed_t speed = AQ_LINK_NONE;
2199
2200 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2201
2202 if (modep != NULL)
2203 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2204
2205 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2206 if (mpi_speed & FW1X_CTRL_10G)
2207 speed = AQ_LINK_10G;
2208 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2209 speed = AQ_LINK_5G;
2210 else if (mpi_speed & FW1X_CTRL_2G5)
2211 speed = AQ_LINK_2G5;
2212 else if (mpi_speed & FW1X_CTRL_1G)
2213 speed = AQ_LINK_1G;
2214 else if (mpi_speed & FW1X_CTRL_100M)
2215 speed = AQ_LINK_100M;
2216
2217 if (speedp != NULL)
2218 *speedp = speed;
2219
2220 if (fcp != NULL)
2221 *fcp = AQ_FC_NONE;
2222
2223 if (eeep != NULL)
2224 *eeep = AQ_EEE_DISABLE;
2225
2226 return 0;
2227 }
2228
2229 static int
2230 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2231 {
2232 int error;
2233
2234 error = aq_fw_downld_dwords(sc,
2235 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2236 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2237 if (error < 0) {
2238 device_printf(sc->sc_dev,
2239 "fw1x> download statistics data FAILED, error %d", error);
2240 return error;
2241 }
2242
2243 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2244 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2245 return 0;
2246 }
2247
2248 static int
2249 fw2x_reset(struct aq_softc *sc)
2250 {
2251 fw2x_capabilities_t caps = { 0 };
2252 int error;
2253
2254 error = aq_fw_downld_dwords(sc,
2255 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2256 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2257 if (error != 0) {
2258 aprint_error_dev(sc->sc_dev,
2259 "fw2x> can't get F/W capabilities mask, error %d\n",
2260 error);
2261 return error;
2262 }
2263 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2264
2265 char buf[256];
2266 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2267 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2268
2269 return 0;
2270 }
2271
2272 static int
2273 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2274 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2275 {
2276 uint64_t mpi_ctrl;
2277 int error = 0;
2278
2279 AQ_MPI_LOCK(sc);
2280
2281 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2282
2283 switch (mode) {
2284 case MPI_INIT:
2285 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2286 if (speed & AQ_LINK_10G)
2287 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2288 if (speed & AQ_LINK_5G)
2289 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2290 if (speed & AQ_LINK_2G5)
2291 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2292 if (speed & AQ_LINK_1G)
2293 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2294 if (speed & AQ_LINK_100M)
2295 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2296
2297 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2298
2299 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2300 if (eee == AQ_EEE_ENABLE)
2301 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2302
2303 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2304 if (fc & AQ_FC_RX)
2305 mpi_ctrl |= FW2X_CTRL_PAUSE;
2306 if (fc & AQ_FC_TX)
2307 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2308 break;
2309 case MPI_DEINIT:
2310 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2311 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2312 break;
2313 default:
2314 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2315 error = EINVAL;
2316 goto failure;
2317 }
2318 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2319
2320 failure:
2321 AQ_MPI_UNLOCK(sc);
2322 return error;
2323 }
2324
2325 static int
2326 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2327 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2328 {
2329 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2330
2331 if (modep != NULL) {
2332 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2333 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2334 *modep = MPI_INIT;
2335 else
2336 *modep = MPI_DEINIT;
2337 }
2338
2339 aq_link_speed_t speed = AQ_LINK_NONE;
2340 if (mpi_state & FW2X_CTRL_RATE_10G)
2341 speed = AQ_LINK_10G;
2342 else if (mpi_state & FW2X_CTRL_RATE_5G)
2343 speed = AQ_LINK_5G;
2344 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2345 speed = AQ_LINK_2G5;
2346 else if (mpi_state & FW2X_CTRL_RATE_1G)
2347 speed = AQ_LINK_1G;
2348 else if (mpi_state & FW2X_CTRL_RATE_100M)
2349 speed = AQ_LINK_100M;
2350
2351 if (speedp != NULL)
2352 *speedp = speed;
2353
2354 aq_link_fc_t fc = AQ_FC_NONE;
2355 if (mpi_state & FW2X_CTRL_PAUSE)
2356 fc |= AQ_FC_RX;
2357 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2358 fc |= AQ_FC_TX;
2359 if (fcp != NULL)
2360 *fcp = fc;
2361
2362 /* XXX: TODO: EEE */
2363 if (eeep != NULL)
2364 *eeep = AQ_EEE_DISABLE;
2365
2366 return 0;
2367 }
2368
2369 static int
2370 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2371 uint32_t timeout_ms, uint32_t try_count)
2372 {
2373 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2374 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2375 int error;
2376
2377 /* First, check that control and state values are consistent */
2378 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2379 device_printf(sc->sc_dev,
2380 "fw2x> MPI control (%#llx) and state (%#llx)"
2381 " are not consistent for mask %#llx!\n",
2382 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2383 (unsigned long long)mask);
2384 return EINVAL;
2385 }
2386
2387 /* Invert bits (toggle) in control register */
2388 mpi_ctrl ^= mask;
2389 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2390
2391 /* Clear all bits except masked */
2392 mpi_ctrl &= mask;
2393
2394 /* Wait for FW reflecting change in state register */
2395 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2396 1000 * timeout_ms, try_count, &error);
2397 if (error != 0) {
2398 device_printf(sc->sc_dev,
2399 "f/w2x> timeout while waiting for response"
2400 " in state register for bit %#llx!",
2401 (unsigned long long)mask);
2402 return error;
2403 }
2404 return 0;
2405 }
2406
2407 static int
2408 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2409 {
2410 int error;
2411
2412 AQ_MPI_LOCK(sc);
2413 /* Say to F/W to update the statistics */
2414 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2415 if (error != 0) {
2416 device_printf(sc->sc_dev,
2417 "fw2x> statistics update error %d\n", error);
2418 goto failure;
2419 }
2420
2421 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2422 error = aq_fw_downld_dwords(sc,
2423 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2424 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2425 if (error != 0) {
2426 device_printf(sc->sc_dev,
2427 "fw2x> download statistics data FAILED, error %d", error);
2428 goto failure;
2429 }
2430 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2431 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2432
2433 failure:
2434 AQ_MPI_UNLOCK(sc);
2435 return error;
2436 }
2437
2438 #if NSYSMON_ENVSYS > 0
2439 static int
2440 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2441 {
2442 int error;
2443 uint32_t value, celsius;
2444
2445 AQ_MPI_LOCK(sc);
2446
2447 /* Say to F/W to update the temperature */
2448 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2449 if (error != 0)
2450 goto failure;
2451
2452 error = aq_fw_downld_dwords(sc,
2453 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2454 &value, sizeof(value) / sizeof(uint32_t));
2455 if (error != 0)
2456 goto failure;
2457
2458 /* 1/256 decrees C to microkelvin */
2459 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2460 if (celsius == 0) {
2461 error = EIO;
2462 goto failure;
2463 }
2464 *temp = celsius * (1000000 / 256) + 273150000;
2465
2466 failure:
2467 AQ_MPI_UNLOCK(sc);
2468 return 0;
2469 }
2470 #endif
2471
2472 static int
2473 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2474 uint32_t cnt)
2475 {
2476 uint32_t v;
2477 int error = 0;
2478
2479 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2480 if (error != 0) {
2481 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2482 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2483 if (v == 0) {
2484 device_printf(sc->sc_dev,
2485 "%s:%d: timeout\n", __func__, __LINE__);
2486 return ETIMEDOUT;
2487 }
2488 }
2489
2490 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2491
2492 error = 0;
2493 for (; cnt > 0 && error == 0; cnt--) {
2494 /* execute mailbox interface */
2495 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2496 AQ_FW_MBOX_CMD_EXECUTE, 1);
2497 if (sc->sc_features & FEATURES_REV_B1) {
2498 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2499 1, 1000, &error);
2500 } else {
2501 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2502 AQ_FW_MBOX_CMD_BUSY) == 0,
2503 1, 1000, &error);
2504 }
2505 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2506 addr += sizeof(uint32_t);
2507 }
2508 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2509
2510 if (error != 0)
2511 device_printf(sc->sc_dev,
2512 "%s:%d: timeout\n", __func__, __LINE__);
2513
2514 return error;
2515 }
2516
2517 /* read my mac address */
2518 static int
2519 aq_get_mac_addr(struct aq_softc *sc)
2520 {
2521 uint32_t mac_addr[2];
2522 uint32_t efuse_shadow_addr;
2523 int err;
2524
2525 efuse_shadow_addr = 0;
2526 if (FW_VERSION_MAJOR(sc) >= 2)
2527 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2528 else
2529 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2530
2531 if (efuse_shadow_addr == 0) {
2532 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2533 return ENXIO;
2534 }
2535
2536 memset(mac_addr, 0, sizeof(mac_addr));
2537 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2538 mac_addr, __arraycount(mac_addr));
2539 if (err < 0)
2540 return err;
2541
2542 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2543 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2544 return ENXIO;
2545 }
2546
2547 mac_addr[0] = bswap32(mac_addr[0]);
2548 mac_addr[1] = bswap32(mac_addr[1]);
2549
2550 memcpy(sc->sc_enaddr.ether_addr_octet,
2551 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2552 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2553 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2554
2555 return 0;
2556 }
2557
2558 /* set multicast filter. index 0 for own address */
2559 static int
2560 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2561 {
2562 uint32_t h, l;
2563
2564 if (index >= AQ_HW_MAC_NUM)
2565 return EINVAL;
2566
2567 if (enaddr == NULL) {
2568 /* disable */
2569 AQ_WRITE_REG_BIT(sc,
2570 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2571 return 0;
2572 }
2573
2574 h = (enaddr[0] << 8) | (enaddr[1]);
2575 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2576 (enaddr[4] << 8) | (enaddr[5]);
2577
2578 /* disable, set, and enable */
2579 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2580 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2581 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2582 RPF_L2UC_MSW_MACADDR_HI, h);
2583 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2584 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2585
2586 return 0;
2587 }
2588
2589 static int
2590 aq_set_capability(struct aq_softc *sc)
2591 {
2592 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2593 int ip4csum_tx =
2594 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2595 int ip4csum_rx =
2596 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2597 int l4csum_tx = ((ifp->if_capenable &
2598 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2599 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2600 int l4csum_rx =
2601 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2602 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2603 uint32_t lso =
2604 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2605 0 : 0xffffffff;
2606 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2607 0 : 0xffffffff;
2608 uint32_t i, v;
2609
2610 /* TX checksums offloads*/
2611 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2612 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2613
2614 /* RX checksums offloads*/
2615 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2616 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2617
2618 /* LSO offloads*/
2619 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2620
2621 #define AQ_B0_LRO_RXD_MAX 16
2622 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2623 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2624 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2625 for (i = 0; i < AQ_RINGS_NUM; i++) {
2626 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2627 RPO_LRO_LDES_MAX_MASK(i), v);
2628 }
2629
2630 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2631 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2632 RPO_LRO_INACTIVE_IVAL, 0);
2633 /*
2634 * the LRO timebase divider is 5 uS (0x61a),
2635 * to get a maximum coalescing interval of 250 uS,
2636 * we need to multiply by 50(0x32) to get
2637 * the default value 250 uS
2638 */
2639 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2640 RPO_LRO_MAX_COALESCING_IVAL, 50);
2641 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2642 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2643 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2644 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2645 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2646 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2647 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2648 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2649 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2650 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2651
2652 return 0;
2653 }
2654
2655 static int
2656 aq_set_filter(struct aq_softc *sc)
2657 {
2658 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2659 struct ethercom *ec = &sc->sc_ethercom;
2660 struct ether_multi *enm;
2661 struct ether_multistep step;
2662 int idx, error = 0;
2663
2664 if (ifp->if_flags & IFF_PROMISC) {
2665 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2666 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2667 ec->ec_flags |= ETHER_F_ALLMULTI;
2668 goto done;
2669 }
2670
2671 /* clear all table */
2672 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2673 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2674 continue;
2675 aq_set_mac_addr(sc, idx, NULL);
2676 }
2677
2678 /* don't accept all multicast */
2679 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2680 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2681 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2682 RPF_MCAST_FILTER_EN, 0);
2683
2684 idx = 0;
2685 ETHER_LOCK(ec);
2686 ETHER_FIRST_MULTI(step, ec, enm);
2687 while (enm != NULL) {
2688 if (idx == AQ_HW_MAC_OWN)
2689 idx++;
2690
2691 if ((idx >= AQ_HW_MAC_NUM) ||
2692 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2693 /*
2694 * too many filters.
2695 * fallback to accept all multicast addresses.
2696 */
2697 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2698 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2699 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2700 RPF_MCAST_FILTER_EN, 1);
2701 ec->ec_flags |= ETHER_F_ALLMULTI;
2702 ETHER_UNLOCK(ec);
2703 goto done;
2704 }
2705
2706 /* add a filter */
2707 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2708
2709 ETHER_NEXT_MULTI(step, enm);
2710 }
2711 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2712 ETHER_UNLOCK(ec);
2713
2714 done:
2715 return error;
2716 }
2717
2718 static int
2719 aq_ifmedia_change(struct ifnet * const ifp)
2720 {
2721 struct aq_softc *sc = ifp->if_softc;
2722 aq_link_speed_t rate = AQ_LINK_NONE;
2723 aq_link_fc_t fc = AQ_FC_NONE;
2724 aq_link_eee_t eee = AQ_EEE_DISABLE;
2725
2726 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2727 return EINVAL;
2728
2729 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2730 case IFM_AUTO:
2731 rate = AQ_LINK_AUTO;
2732 break;
2733 case IFM_NONE:
2734 rate = AQ_LINK_NONE;
2735 break;
2736 case IFM_100_TX:
2737 rate = AQ_LINK_100M;
2738 break;
2739 case IFM_1000_T:
2740 rate = AQ_LINK_1G;
2741 break;
2742 case IFM_2500_T:
2743 rate = AQ_LINK_2G5;
2744 break;
2745 case IFM_5000_T:
2746 rate = AQ_LINK_5G;
2747 break;
2748 case IFM_10G_T:
2749 rate = AQ_LINK_10G;
2750 break;
2751 default:
2752 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2753 IFM_SUBTYPE(sc->sc_media.ifm_media));
2754 return ENODEV;
2755 }
2756
2757 if (sc->sc_media.ifm_media & IFM_FLOW)
2758 fc = AQ_FC_ALL;
2759
2760 /* XXX: todo EEE */
2761
2762 /* re-initialize hardware with new parameters */
2763 aq_set_linkmode(sc, rate, fc, eee);
2764
2765 return 0;
2766 }
2767
2768 static void
2769 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2770 {
2771 struct aq_softc *sc = ifp->if_softc;
2772
2773 /* update ifm_active */
2774 ifmr->ifm_active = IFM_ETHER;
2775 if (sc->sc_link_fc & AQ_FC_RX)
2776 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2777 if (sc->sc_link_fc & AQ_FC_TX)
2778 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2779
2780 switch (sc->sc_link_rate) {
2781 case AQ_LINK_100M:
2782 /* XXX: need to detect fulldup or halfdup */
2783 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2784 break;
2785 case AQ_LINK_1G:
2786 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2787 break;
2788 case AQ_LINK_2G5:
2789 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2790 break;
2791 case AQ_LINK_5G:
2792 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2793 break;
2794 case AQ_LINK_10G:
2795 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2796 break;
2797 default:
2798 ifmr->ifm_active |= IFM_NONE;
2799 break;
2800 }
2801
2802 /* update ifm_status */
2803 ifmr->ifm_status = IFM_AVALID;
2804 if (sc->sc_link_rate != AQ_LINK_NONE)
2805 ifmr->ifm_status |= IFM_ACTIVE;
2806 }
2807
2808 static void
2809 aq_initmedia(struct aq_softc *sc)
2810 {
2811 #define IFMEDIA_ETHER_ADD(sc, media) \
2812 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2813
2814 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2815 if (sc->sc_available_rates & AQ_LINK_100M) {
2816 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2817 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2818 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2819 }
2820 if (sc->sc_available_rates & AQ_LINK_1G) {
2821 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2822 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2823 }
2824 if (sc->sc_available_rates & AQ_LINK_2G5) {
2825 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2826 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2827 }
2828 if (sc->sc_available_rates & AQ_LINK_5G) {
2829 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2830 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2831 }
2832 if (sc->sc_available_rates & AQ_LINK_10G) {
2833 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2834 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2835 }
2836 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2837 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2838
2839 /* default: auto without flowcontrol */
2840 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2841 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2842 }
2843
2844 static int
2845 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2846 aq_link_eee_t eee)
2847 {
2848 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2849 }
2850
2851 static int
2852 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2853 aq_link_eee_t *eee)
2854 {
2855 aq_hw_fw_mpi_state_t mode;
2856 int error;
2857
2858 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2859 if (error != 0)
2860 return error;
2861 if (mode != MPI_INIT)
2862 return ENXIO;
2863
2864 return 0;
2865 }
2866
2867 static void
2868 aq_hw_init_tx_path(struct aq_softc *sc)
2869 {
2870 /* Tx TC/RSS number config */
2871 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2872
2873 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2874 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2875 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2876 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2877 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2878 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2879
2880 /* misc */
2881 AQ_WRITE_REG(sc, TX_TPO2_REG,
2882 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2883 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2884 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2885
2886 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2887 }
2888
2889 static void
2890 aq_hw_init_rx_path(struct aq_softc *sc)
2891 {
2892 int i;
2893
2894 /* clear setting */
2895 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2896 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2897 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2898 for (i = 0; i < 32; i++) {
2899 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2900 RPF_ETHERTYPE_FILTER_EN, 0);
2901 }
2902
2903 if (sc->sc_rss_enable) {
2904 /* Rx TC/RSS number config */
2905 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2906
2907 /* Rx flow control */
2908 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2909
2910 /* RSS Ring selection */
2911 switch (sc->sc_nqueues) {
2912 case 2:
2913 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2914 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2915 break;
2916 case 4:
2917 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2918 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2919 break;
2920 case 8:
2921 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2922 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2923 break;
2924 }
2925 }
2926
2927 /* L2 and Multicast filters */
2928 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2929 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2930 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2931 RPF_ACTION_HOST);
2932 }
2933 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2934 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2935
2936 /* Vlan filters */
2937 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2938 ETHERTYPE_QINQ);
2939 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2940 ETHERTYPE_VLAN);
2941 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2942
2943 if (sc->sc_features & FEATURES_REV_B) {
2944 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2945 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2946 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2947 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2948 }
2949
2950 /* misc */
2951 if (sc->sc_features & FEATURES_RPF2)
2952 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2953 else
2954 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2955
2956 /*
2957 * XXX: RX_TCP_RSS_HASH_REG:
2958 * linux set 0x000f0000
2959 * freebsd set 0x000f001e
2960 */
2961 /* RSS hash type set for IP/TCP */
2962 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2963 RX_TCP_RSS_HASH_TYPE, 0x001e);
2964
2965 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2966 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2967 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2968
2969 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2970 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2971 }
2972
2973 static void
2974 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2975 {
2976 int i;
2977
2978 if (sc->sc_intr_moderation_enable) {
2979 unsigned int tx_min, rx_min; /* 0-255 */
2980 unsigned int tx_max, rx_max; /* 0-511? */
2981
2982 switch (sc->sc_link_rate) {
2983 case AQ_LINK_100M:
2984 tx_min = 0x4f;
2985 tx_max = 0xff;
2986 rx_min = 0x04;
2987 rx_max = 0x50;
2988 break;
2989 case AQ_LINK_1G:
2990 default:
2991 tx_min = 0x4f;
2992 tx_max = 0xff;
2993 rx_min = 0x30;
2994 rx_max = 0x80;
2995 break;
2996 case AQ_LINK_2G5:
2997 tx_min = 0x4f;
2998 tx_max = 0xff;
2999 rx_min = 0x18;
3000 rx_max = 0xe0;
3001 break;
3002 case AQ_LINK_5G:
3003 tx_min = 0x4f;
3004 tx_max = 0xff;
3005 rx_min = 0x0c;
3006 rx_max = 0x70;
3007 break;
3008 case AQ_LINK_10G:
3009 tx_min = 0x4f;
3010 tx_max = 0x1ff;
3011 rx_min = 0x06; /* freebsd use 80 */
3012 rx_max = 0x38; /* freebsd use 120 */
3013 break;
3014 }
3015
3016 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3017 TX_DMA_INT_DESC_WRWB_EN, 0);
3018 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3019 TX_DMA_INT_DESC_MODERATE_EN, 1);
3020 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3021 RX_DMA_INT_DESC_WRWB_EN, 0);
3022 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3023 RX_DMA_INT_DESC_MODERATE_EN, 1);
3024
3025 for (i = 0; i < AQ_RINGS_NUM; i++) {
3026 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3027 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3028 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3029 TX_INTR_MODERATION_CTL_EN);
3030 }
3031 for (i = 0; i < AQ_RINGS_NUM; i++) {
3032 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3033 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3034 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3035 RX_INTR_MODERATION_CTL_EN);
3036 }
3037
3038 } else {
3039 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3040 TX_DMA_INT_DESC_WRWB_EN, 1);
3041 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3042 TX_DMA_INT_DESC_MODERATE_EN, 0);
3043 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3044 RX_DMA_INT_DESC_WRWB_EN, 1);
3045 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3046 RX_DMA_INT_DESC_MODERATE_EN, 0);
3047
3048 for (i = 0; i < AQ_RINGS_NUM; i++) {
3049 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3050 }
3051 for (i = 0; i < AQ_RINGS_NUM; i++) {
3052 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3053 }
3054 }
3055 }
3056
3057 static void
3058 aq_hw_qos_set(struct aq_softc *sc)
3059 {
3060 uint32_t tc = 0;
3061 uint32_t buff_size;
3062
3063 /* TPS Descriptor rate init */
3064 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3065 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3066
3067 /* TPS VM init */
3068 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3069
3070 /* TPS TC credits init */
3071 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3072 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3073
3074 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3075 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3076 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3077 TPS_DATA_TCT_WEIGHT, 0x64);
3078 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3079 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3080 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3081 TPS_DESC_TCT_WEIGHT, 0x1e);
3082
3083 /* Tx buf size */
3084 tc = 0;
3085 buff_size = AQ_HW_TXBUF_MAX;
3086 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3087 buff_size);
3088 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3089 (buff_size * (1024 / 32) * 66) / 100);
3090 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3091 (buff_size * (1024 / 32) * 50) / 100);
3092
3093 /* QoS Rx buf size per TC */
3094 tc = 0;
3095 buff_size = AQ_HW_RXBUF_MAX;
3096 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3097 buff_size);
3098 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3099 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3100 (buff_size * (1024 / 32) * 66) / 100);
3101 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3102 (buff_size * (1024 / 32) * 50) / 100);
3103
3104 /* QoS 802.1p priority -> TC mapping */
3105 int i_priority;
3106 for (i_priority = 0; i_priority < 8; i_priority++) {
3107 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3108 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3109 }
3110 }
3111
3112 /* called once from aq_attach */
3113 static int
3114 aq_init_rss(struct aq_softc *sc)
3115 {
3116 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3117 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3118 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3119 unsigned int i;
3120 int error;
3121
3122 /* initialize rss key */
3123 rss_getkey((uint8_t *)rss_key);
3124
3125 /* hash to ring table */
3126 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3127 rss_table[i] = i % sc->sc_nqueues;
3128 }
3129
3130 /*
3131 * set rss key
3132 */
3133 for (i = 0; i < __arraycount(rss_key); i++) {
3134 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3135 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3136 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3137 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3138 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3139 RPF_RSS_KEY_WR_EN, 1);
3140 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3141 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3142 if (error != 0) {
3143 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3144 __func__);
3145 goto rss_set_timeout;
3146 }
3147 }
3148
3149 /*
3150 * set rss indirection table
3151 *
3152 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3153 * we'll make it by __BITMAP(3) macros.
3154 */
3155 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3156 __BITMAP_ZERO(&bit3x64);
3157
3158 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3159 do { \
3160 if (val & 1) { \
3161 __BITMAP_SET((idx) * 3, (bitmap)); \
3162 } else { \
3163 __BITMAP_CLR((idx) * 3, (bitmap)); \
3164 } \
3165 if (val & 2) { \
3166 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3167 } else { \
3168 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3169 } \
3170 if (val & 4) { \
3171 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3172 } else { \
3173 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3174 } \
3175 } while (0 /* CONSTCOND */)
3176
3177 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3178 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3179 }
3180
3181 /* write 192bit data in steps of 16bit */
3182 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3183 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3184 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3185 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3186 RPF_RSS_REDIR_ADDR, i);
3187 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3188 RPF_RSS_REDIR_WR_EN, 1);
3189
3190 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3191 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3192 if (error != 0)
3193 break;
3194 }
3195
3196 rss_set_timeout:
3197 return error;
3198 }
3199
3200 static void
3201 aq_hw_l3_filter_set(struct aq_softc *sc)
3202 {
3203 int i;
3204
3205 /* clear all filter */
3206 for (i = 0; i < 8; i++) {
3207 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3208 RPF_L3_FILTER_L4_EN, 0);
3209 }
3210 }
3211
3212 static void
3213 aq_set_vlan_filters(struct aq_softc *sc)
3214 {
3215 struct ethercom *ec = &sc->sc_ethercom;
3216 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3217 struct vlanid_list *vlanidp;
3218 int i;
3219
3220 ETHER_LOCK(ec);
3221
3222 /* disable all vlan filters */
3223 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3224 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3225
3226 /* count VID */
3227 i = 0;
3228 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3229 i++;
3230
3231 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3232 (ifp->if_flags & IFF_PROMISC) ||
3233 (i > RPF_VLAN_MAX_FILTERS)) {
3234 /*
3235 * no vlan hwfilter, in promiscuous mode, or too many VID?
3236 * must receive all VID
3237 */
3238 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3239 RPF_VLAN_MODE_PROMISC, 1);
3240 goto done;
3241 }
3242
3243 /* receive only selected VID */
3244 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3245 i = 0;
3246 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3247 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3248 RPF_VLAN_FILTER_EN, 1);
3249 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3250 RPF_VLAN_FILTER_RXQ_EN, 0);
3251 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3252 RPF_VLAN_FILTER_RXQ, 0);
3253 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3254 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3255 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3256 RPF_VLAN_FILTER_ID, vlanidp->vid);
3257 i++;
3258 }
3259
3260 done:
3261 ETHER_UNLOCK(ec);
3262 }
3263
3264 static int
3265 aq_hw_init(struct aq_softc *sc)
3266 {
3267 uint32_t v;
3268
3269 /* Force limit MRRS on RDM/TDM to 2K */
3270 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3271 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3272
3273 /*
3274 * TX DMA total request limit. B0 hardware is not capable to
3275 * handle more than (8K-MRRS) incoming DMA data.
3276 * Value 24 in 256byte units
3277 */
3278 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3279
3280 aq_hw_init_tx_path(sc);
3281 aq_hw_init_rx_path(sc);
3282
3283 aq_hw_interrupt_moderation_set(sc);
3284
3285 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3286 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3287
3288 aq_hw_qos_set(sc);
3289
3290 /* Enable interrupt */
3291 int irqmode;
3292 if (sc->sc_msix)
3293 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3294 else
3295 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3296
3297 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3298 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3299 sc->sc_msix ? 1 : 0);
3300 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3301
3302 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3303
3304 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3305 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3306 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3307 );
3308
3309 /* link interrupt */
3310 if (!sc->sc_msix)
3311 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3312 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3313 __BIT(7) | sc->sc_linkstat_irq);
3314
3315 return 0;
3316 }
3317
3318 static int
3319 aq_update_link_status(struct aq_softc *sc)
3320 {
3321 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3322 aq_link_speed_t rate = AQ_LINK_NONE;
3323 aq_link_fc_t fc = AQ_FC_NONE;
3324 aq_link_eee_t eee = AQ_EEE_DISABLE;
3325 unsigned int speed;
3326 int changed = 0;
3327
3328 aq_get_linkmode(sc, &rate, &fc, &eee);
3329
3330 if (sc->sc_link_rate != rate)
3331 changed = 1;
3332 if (sc->sc_link_fc != fc)
3333 changed = 1;
3334 if (sc->sc_link_eee != eee)
3335 changed = 1;
3336
3337 if (changed) {
3338 switch (rate) {
3339 case AQ_LINK_100M:
3340 speed = 100;
3341 break;
3342 case AQ_LINK_1G:
3343 speed = 1000;
3344 break;
3345 case AQ_LINK_2G5:
3346 speed = 2500;
3347 break;
3348 case AQ_LINK_5G:
3349 speed = 5000;
3350 break;
3351 case AQ_LINK_10G:
3352 speed = 10000;
3353 break;
3354 case AQ_LINK_NONE:
3355 default:
3356 speed = 0;
3357 break;
3358 }
3359
3360 if (sc->sc_link_rate == AQ_LINK_NONE) {
3361 /* link DOWN -> UP */
3362 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3363 speed);
3364 if_link_state_change(ifp, LINK_STATE_UP);
3365 } else if (rate == AQ_LINK_NONE) {
3366 /* link UP -> DOWN */
3367 device_printf(sc->sc_dev, "link is DOWN\n");
3368 if_link_state_change(ifp, LINK_STATE_DOWN);
3369 } else {
3370 device_printf(sc->sc_dev,
3371 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3372 speed, fc, eee);
3373 }
3374
3375 sc->sc_link_rate = rate;
3376 sc->sc_link_fc = fc;
3377 sc->sc_link_eee = eee;
3378
3379 /* update interrupt timing according to new link speed */
3380 aq_hw_interrupt_moderation_set(sc);
3381 }
3382
3383 return changed;
3384 }
3385
3386 #ifdef AQ_EVENT_COUNTERS
3387 static void
3388 aq_update_statistics(struct aq_softc *sc)
3389 {
3390 int prev = sc->sc_statistics_idx;
3391 int cur = prev ^ 1;
3392
3393 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3394
3395 /*
3396 * aq's internal statistics counter is 32bit.
3397 * cauculate delta, and add to evcount
3398 */
3399 #define ADD_DELTA(cur, prev, name) \
3400 do { \
3401 uint32_t n; \
3402 n = (uint32_t)(sc->sc_statistics[cur].name - \
3403 sc->sc_statistics[prev].name); \
3404 if (n != 0) { \
3405 AQ_EVCNT_ADD(sc, name, n); \
3406 } \
3407 } while (/*CONSTCOND*/0);
3408
3409 ADD_DELTA(cur, prev, uprc);
3410 ADD_DELTA(cur, prev, mprc);
3411 ADD_DELTA(cur, prev, bprc);
3412 ADD_DELTA(cur, prev, prc);
3413 ADD_DELTA(cur, prev, erpr);
3414 ADD_DELTA(cur, prev, uptc);
3415 ADD_DELTA(cur, prev, mptc);
3416 ADD_DELTA(cur, prev, bptc);
3417 ADD_DELTA(cur, prev, ptc);
3418 ADD_DELTA(cur, prev, erpt);
3419 ADD_DELTA(cur, prev, mbtc);
3420 ADD_DELTA(cur, prev, bbtc);
3421 ADD_DELTA(cur, prev, mbrc);
3422 ADD_DELTA(cur, prev, bbrc);
3423 ADD_DELTA(cur, prev, ubrc);
3424 ADD_DELTA(cur, prev, ubtc);
3425 ADD_DELTA(cur, prev, dpc);
3426 ADD_DELTA(cur, prev, cprc);
3427
3428 sc->sc_statistics_idx = cur;
3429 }
3430 #endif /* AQ_EVENT_COUNTERS */
3431
3432 /* allocate and map one DMA block */
3433 static int
3434 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3435 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3436 {
3437 int nsegs, error;
3438
3439 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3440 1, &nsegs, 0)) != 0) {
3441 aprint_error_dev(sc->sc_dev,
3442 "unable to allocate DMA buffer, error=%d\n", error);
3443 goto fail_alloc;
3444 }
3445
3446 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3447 BUS_DMA_COHERENT)) != 0) {
3448 aprint_error_dev(sc->sc_dev,
3449 "unable to map DMA buffer, error=%d\n", error);
3450 goto fail_map;
3451 }
3452
3453 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3454 0, mapp)) != 0) {
3455 aprint_error_dev(sc->sc_dev,
3456 "unable to create DMA map, error=%d\n", error);
3457 goto fail_create;
3458 }
3459
3460 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3461 0)) != 0) {
3462 aprint_error_dev(sc->sc_dev,
3463 "unable to load DMA map, error=%d\n", error);
3464 goto fail_load;
3465 }
3466
3467 *sizep = size;
3468 return 0;
3469
3470 fail_load:
3471 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3472 *mapp = NULL;
3473 fail_create:
3474 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3475 *addrp = NULL;
3476 fail_map:
3477 bus_dmamem_free(sc->sc_dmat, seg, 1);
3478 memset(seg, 0, sizeof(*seg));
3479 fail_alloc:
3480 *sizep = 0;
3481 return error;
3482 }
3483
3484 static void
3485 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3486 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3487 {
3488 if (*mapp != NULL) {
3489 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3490 *mapp = NULL;
3491 }
3492 if (*addrp != NULL) {
3493 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3494 *addrp = NULL;
3495 }
3496 if (*sizep != 0) {
3497 bus_dmamem_free(sc->sc_dmat, seg, 1);
3498 memset(seg, 0, sizeof(*seg));
3499 *sizep = 0;
3500 }
3501 }
3502
3503 static int
3504 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3505 {
3506 int i, error;
3507
3508 /* allocate tx descriptors */
3509 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3510 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3511 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3512 if (error != 0)
3513 return error;
3514
3515 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3516
3517 /* fill tx ring with dmamap */
3518 for (i = 0; i < AQ_TXD_NUM; i++) {
3519 #define AQ_MAXDMASIZE (16 * 1024)
3520 #define AQ_NTXSEGS 32
3521 /* XXX: TODO: error check */
3522 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3523 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3524 }
3525 return 0;
3526 }
3527
3528 static void
3529 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3530 {
3531 int i;
3532
3533 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3534 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3535
3536 for (i = 0; i < AQ_TXD_NUM; i++) {
3537 if (txring->txr_mbufs[i].dmamap != NULL) {
3538 if (txring->txr_mbufs[i].m != NULL) {
3539 bus_dmamap_unload(sc->sc_dmat,
3540 txring->txr_mbufs[i].dmamap);
3541 m_freem(txring->txr_mbufs[i].m);
3542 txring->txr_mbufs[i].m = NULL;
3543 }
3544 bus_dmamap_destroy(sc->sc_dmat,
3545 txring->txr_mbufs[i].dmamap);
3546 txring->txr_mbufs[i].dmamap = NULL;
3547 }
3548 }
3549 }
3550
3551 static int
3552 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3553 {
3554 int i, error;
3555
3556 /* allocate rx descriptors */
3557 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3558 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3559 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3560 if (error != 0)
3561 return error;
3562
3563 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3564
3565 /* fill rxring with dmamaps */
3566 for (i = 0; i < AQ_RXD_NUM; i++) {
3567 rxring->rxr_mbufs[i].m = NULL;
3568 /* XXX: TODO: error check */
3569 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3570 &rxring->rxr_mbufs[i].dmamap);
3571 }
3572 return 0;
3573 }
3574
3575 static void
3576 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3577 {
3578 int i;
3579
3580 /* free all mbufs allocated for RX */
3581 for (i = 0; i < AQ_RXD_NUM; i++) {
3582 if (rxring->rxr_mbufs[i].m != NULL) {
3583 bus_dmamap_unload(sc->sc_dmat,
3584 rxring->rxr_mbufs[i].dmamap);
3585 m_freem(rxring->rxr_mbufs[i].m);
3586 rxring->rxr_mbufs[i].m = NULL;
3587 }
3588 }
3589 }
3590
3591 static void
3592 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3593 {
3594 int i;
3595
3596 /* free all mbufs and dmamaps */
3597 aq_rxdrain(sc, rxring);
3598 for (i = 0; i < AQ_RXD_NUM; i++) {
3599 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3600 bus_dmamap_destroy(sc->sc_dmat,
3601 rxring->rxr_mbufs[i].dmamap);
3602 rxring->rxr_mbufs[i].dmamap = NULL;
3603 }
3604 }
3605
3606 /* free RX descriptor */
3607 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3608 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3609 }
3610
3611 static void
3612 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3613 struct mbuf *m)
3614 {
3615 int error;
3616
3617 /* if mbuf already exists, unload and free */
3618 if (rxring->rxr_mbufs[idx].m != NULL) {
3619 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3620 m_freem(rxring->rxr_mbufs[idx].m);
3621 rxring->rxr_mbufs[idx].m = NULL;
3622 }
3623
3624 rxring->rxr_mbufs[idx].m = m;
3625
3626 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3627 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3628 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3629 if (error) {
3630 device_printf(sc->sc_dev,
3631 "unable to load rx DMA map %d, error = %d\n", idx, error);
3632 panic("%s: unable to load rx DMA map. error=%d",
3633 __func__, error);
3634 }
3635 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3636 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3637 }
3638
3639 static inline void
3640 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3641 {
3642 /* refill rxdesc, and sync */
3643 rxring->rxr_rxdesc[idx].read.buf_addr =
3644 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3645 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3646 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3647 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3648 BUS_DMASYNC_PREWRITE);
3649 }
3650
3651 static struct mbuf *
3652 aq_alloc_mbuf(void)
3653 {
3654 struct mbuf *m;
3655
3656 MGETHDR(m, M_DONTWAIT, MT_DATA);
3657 if (m == NULL)
3658 return NULL;
3659
3660 MCLGET(m, M_DONTWAIT);
3661 if ((m->m_flags & M_EXT) == 0) {
3662 m_freem(m);
3663 return NULL;
3664 }
3665
3666 return m;
3667 }
3668
3669 /* allocate mbuf and unload dmamap */
3670 static int
3671 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3672 {
3673 struct mbuf *m;
3674
3675 m = aq_alloc_mbuf();
3676 if (m == NULL)
3677 return ENOBUFS;
3678
3679 aq_rxring_setmbuf(sc, rxring, idx, m);
3680 return 0;
3681 }
3682
3683 static int
3684 aq_txrx_rings_alloc(struct aq_softc *sc)
3685 {
3686 int n, error;
3687
3688 for (n = 0; n < sc->sc_nqueues; n++) {
3689 sc->sc_queue[n].sc = sc;
3690 sc->sc_queue[n].txring.txr_sc = sc;
3691 sc->sc_queue[n].txring.txr_index = n;
3692 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3693 IPL_NET);
3694 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3695 if (error != 0)
3696 goto failure;
3697
3698 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3699 if (error != 0)
3700 goto failure;
3701
3702 sc->sc_queue[n].rxring.rxr_sc = sc;
3703 sc->sc_queue[n].rxring.rxr_index = n;
3704 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3705 IPL_NET);
3706 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3707 if (error != 0)
3708 break;
3709 }
3710
3711 failure:
3712 return error;
3713 }
3714
3715 static void
3716 aq_txrx_rings_free(struct aq_softc *sc)
3717 {
3718 int n;
3719
3720 for (n = 0; n < sc->sc_nqueues; n++) {
3721 aq_txring_free(sc, &sc->sc_queue[n].txring);
3722 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3723
3724 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3725
3726 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3727 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3728 }
3729 }
3730
3731 static int
3732 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3733 {
3734 int error = 0;
3735 txring->txr_softint = NULL;
3736
3737 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3738 if (txring->txr_pcq == NULL) {
3739 aprint_error_dev(sc->sc_dev,
3740 "unable to allocate pcq for TXring[%d]\n",
3741 txring->txr_index);
3742 error = ENOMEM;
3743 goto done;
3744 }
3745
3746 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3747 aq_deferred_transmit, txring);
3748 if (txring->txr_softint == NULL) {
3749 aprint_error_dev(sc->sc_dev,
3750 "unable to establish softint for TXring[%d]\n",
3751 txring->txr_index);
3752 error = ENOENT;
3753 }
3754
3755 done:
3756 return error;
3757 }
3758
3759 static void
3760 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3761 {
3762 struct mbuf *m;
3763
3764 if (txring->txr_softint != NULL) {
3765 softint_disestablish(txring->txr_softint);
3766 txring->txr_softint = NULL;
3767 }
3768
3769 if (txring->txr_pcq != NULL) {
3770 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3771 m_freem(m);
3772 pcq_destroy(txring->txr_pcq);
3773 txring->txr_pcq = NULL;
3774 }
3775 }
3776
3777 #if NSYSMON_ENVSYS > 0
3778 static void
3779 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3780 {
3781 struct aq_softc *sc;
3782 uint32_t temp;
3783 int error;
3784
3785 sc = sme->sme_cookie;
3786
3787 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3788 if (error == 0) {
3789 edata->value_cur = temp;
3790 edata->state = ENVSYS_SVALID;
3791 } else {
3792 edata->state = ENVSYS_SINVALID;
3793 }
3794 }
3795 #endif
3796
3797 static void
3798 aq_tick(void *arg)
3799 {
3800 struct aq_softc *sc = arg;
3801
3802 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3803 sc->sc_detect_linkstat = false;
3804 aq_update_link_status(sc);
3805 }
3806
3807 #ifdef AQ_EVENT_COUNTERS
3808 if (sc->sc_poll_statistics)
3809 aq_update_statistics(sc);
3810 #endif
3811
3812 if (sc->sc_poll_linkstat
3813 #ifdef AQ_EVENT_COUNTERS
3814 || sc->sc_poll_statistics
3815 #endif
3816 ) {
3817 callout_schedule(&sc->sc_tick_ch, hz);
3818 }
3819 }
3820
3821 /* interrupt enable/disable */
3822 static void
3823 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3824 {
3825 uint32_t imask = 0;
3826 int i;
3827
3828 if (txrx) {
3829 for (i = 0; i < sc->sc_nqueues; i++) {
3830 imask |= __BIT(sc->sc_tx_irq[i]);
3831 imask |= __BIT(sc->sc_rx_irq[i]);
3832 }
3833 }
3834
3835 if (link)
3836 imask |= __BIT(sc->sc_linkstat_irq);
3837
3838 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3839 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3840 }
3841
3842 static int
3843 aq_legacy_intr(void *arg)
3844 {
3845 struct aq_softc *sc = arg;
3846 uint32_t status;
3847 int nintr = 0;
3848
3849 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3850 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3851
3852 if (status & __BIT(sc->sc_linkstat_irq)) {
3853 sc->sc_detect_linkstat = true;
3854 callout_schedule(&sc->sc_tick_ch, 0);
3855 nintr++;
3856 }
3857
3858 if (status & __BIT(sc->sc_rx_irq[0])) {
3859 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3860 }
3861
3862 if (status & __BIT(sc->sc_tx_irq[0])) {
3863 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3864 }
3865
3866 return nintr;
3867 }
3868
3869 static int
3870 aq_txrx_intr(void *arg)
3871 {
3872 struct aq_queue *queue = arg;
3873 struct aq_softc *sc = queue->sc;
3874 struct aq_txring *txring = &queue->txring;
3875 struct aq_rxring *rxring = &queue->rxring;
3876 uint32_t status;
3877 int nintr = 0;
3878 int txringidx, rxringidx, txirq, rxirq;
3879
3880 txringidx = txring->txr_index;
3881 rxringidx = rxring->rxr_index;
3882 txirq = sc->sc_tx_irq[txringidx];
3883 rxirq = sc->sc_rx_irq[rxringidx];
3884
3885 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3886 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3887 /* stray interrupt? */
3888 return 0;
3889 }
3890
3891 nintr += aq_rx_intr(rxring);
3892 nintr += aq_tx_intr(txring);
3893
3894 return nintr;
3895 }
3896
3897 static int
3898 aq_link_intr(void *arg)
3899 {
3900 struct aq_softc *sc = arg;
3901 uint32_t status;
3902 int nintr = 0;
3903
3904 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3905 if (status & __BIT(sc->sc_linkstat_irq)) {
3906 sc->sc_detect_linkstat = true;
3907 callout_schedule(&sc->sc_tick_ch, 0);
3908 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3909 __BIT(sc->sc_linkstat_irq));
3910 nintr++;
3911 }
3912
3913 return nintr;
3914 }
3915
3916 static void
3917 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3918 {
3919 const int ringidx = txring->txr_index;
3920 int i;
3921
3922 mutex_enter(&txring->txr_mutex);
3923
3924 txring->txr_prodidx = 0;
3925 txring->txr_considx = 0;
3926 txring->txr_nfree = AQ_TXD_NUM;
3927 txring->txr_active = false;
3928
3929 /* free mbufs untransmitted */
3930 for (i = 0; i < AQ_TXD_NUM; i++) {
3931 if (txring->txr_mbufs[i].m != NULL) {
3932 m_freem(txring->txr_mbufs[i].m);
3933 txring->txr_mbufs[i].m = NULL;
3934 }
3935 }
3936
3937 /* disable DMA */
3938 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3939
3940 if (start) {
3941 /* TX descriptor physical address */
3942 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3943 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3944 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3945 (uint32_t)((uint64_t)paddr >> 32));
3946
3947 /* TX descriptor size */
3948 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3949 AQ_TXD_NUM / 8);
3950
3951 /* reload TAIL pointer */
3952 txring->txr_prodidx = txring->txr_considx =
3953 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3954 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3955
3956 /* Mapping interrupt vector */
3957 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3958 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3959 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3960 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3961
3962 /* enable DMA */
3963 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3964 TX_DMA_DESC_EN, 1);
3965
3966 const int cpuid = 0; /* XXX? */
3967 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3968 TDM_DCAD_CPUID, cpuid);
3969 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3970 TDM_DCAD_CPUID_EN, 0);
3971
3972 txring->txr_active = true;
3973 }
3974
3975 mutex_exit(&txring->txr_mutex);
3976 }
3977
3978 static int
3979 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3980 {
3981 const int ringidx = rxring->rxr_index;
3982 int i;
3983 int error = 0;
3984
3985 mutex_enter(&rxring->rxr_mutex);
3986 rxring->rxr_active = false;
3987
3988 /* disable DMA */
3989 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3990
3991 /* free all RX mbufs */
3992 aq_rxdrain(sc, rxring);
3993
3994 if (start) {
3995 for (i = 0; i < AQ_RXD_NUM; i++) {
3996 error = aq_rxring_add(sc, rxring, i);
3997 if (error != 0) {
3998 aq_rxdrain(sc, rxring);
3999 return error;
4000 }
4001 aq_rxring_reset_desc(sc, rxring, i);
4002 }
4003
4004 /* RX descriptor physical address */
4005 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4006 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4007 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4008 (uint32_t)((uint64_t)paddr >> 32));
4009
4010 /* RX descriptor size */
4011 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4012 AQ_RXD_NUM / 8);
4013
4014 /* maximum receive frame size */
4015 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4016 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4017 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4018 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4019
4020 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4021 RX_DMA_DESC_HEADER_SPLIT, 0);
4022 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4023 RX_DMA_DESC_VLAN_STRIP,
4024 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4025 1 : 0);
4026
4027 /*
4028 * reload TAIL pointer, and update readidx
4029 * (HEAD pointer cannot write)
4030 */
4031 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4032 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4033 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4034 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4035
4036 /* Rx ring set mode */
4037
4038 /* Mapping interrupt vector */
4039 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4040 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4041 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4042 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4043
4044 const int cpuid = 0; /* XXX? */
4045 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4046 RX_DMA_DCAD_CPUID, cpuid);
4047 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4048 RX_DMA_DCAD_DESC_EN, 0);
4049 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4050 RX_DMA_DCAD_HEADER_EN, 0);
4051 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4052 RX_DMA_DCAD_PAYLOAD_EN, 0);
4053
4054 /* enable DMA. start receiving */
4055 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4056 RX_DMA_DESC_EN, 1);
4057
4058 rxring->rxr_active = true;
4059 }
4060
4061 mutex_exit(&rxring->rxr_mutex);
4062 return error;
4063 }
4064
4065 #define TXRING_NEXTIDX(idx) \
4066 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4067 #define RXRING_NEXTIDX(idx) \
4068 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4069
4070 static int
4071 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4072 {
4073 bus_dmamap_t map;
4074 struct mbuf *m = *mp;
4075 uint32_t ctl1, ctl1_ctx, ctl2;
4076 int idx, i, error;
4077
4078 idx = txring->txr_prodidx;
4079 map = txring->txr_mbufs[idx].dmamap;
4080
4081 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4082 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4083 if (error == EFBIG) {
4084 struct mbuf *n;
4085 n = m_defrag(m, M_DONTWAIT);
4086 if (n == NULL)
4087 return EFBIG;
4088 /* m_defrag() preserve m */
4089 KASSERT(n == m);
4090 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4091 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4092 }
4093 if (error != 0)
4094 return error;
4095
4096 /*
4097 * check spaces of free descriptors.
4098 * +1 is additional descriptor for context (vlan, etc,.)
4099 */
4100 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4101 device_printf(sc->sc_dev,
4102 "TX: not enough descriptors left %d for %d segs\n",
4103 txring->txr_nfree, map->dm_nsegs + 1);
4104 bus_dmamap_unload(sc->sc_dmat, map);
4105 return ENOBUFS;
4106 }
4107
4108 /* sync dma for mbuf */
4109 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4110 BUS_DMASYNC_PREWRITE);
4111
4112 ctl1_ctx = 0;
4113 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4114
4115 if (vlan_has_tag(m)) {
4116 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4117 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4118
4119 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4120 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4121
4122 /* fill context descriptor and forward index */
4123 txring->txr_txdesc[idx].buf_addr = 0;
4124 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4125 txring->txr_txdesc[idx].ctl2 = 0;
4126
4127 idx = TXRING_NEXTIDX(idx);
4128 txring->txr_nfree--;
4129 }
4130
4131 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4132 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4133 if (m->m_pkthdr.csum_flags &
4134 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4135 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4136 }
4137
4138 /* fill descriptor(s) */
4139 for (i = 0; i < map->dm_nsegs; i++) {
4140 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4141 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4142 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4143
4144 if (i == 0) {
4145 /* remember mbuf of these descriptors */
4146 txring->txr_mbufs[idx].m = m;
4147 } else {
4148 txring->txr_mbufs[idx].m = NULL;
4149 }
4150
4151 if (i == map->dm_nsegs - 1) {
4152 /* last segment, mark an EndOfPacket, and cause intr */
4153 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4154 }
4155
4156 txring->txr_txdesc[idx].buf_addr =
4157 htole64(map->dm_segs[i].ds_addr);
4158 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4159 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4160
4161 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4162 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4163 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4164
4165 idx = TXRING_NEXTIDX(idx);
4166 txring->txr_nfree--;
4167 }
4168
4169 txring->txr_prodidx = idx;
4170
4171 return 0;
4172 }
4173
4174 static int
4175 aq_tx_intr(void *arg)
4176 {
4177 struct aq_txring *txring = arg;
4178 struct aq_softc *sc = txring->txr_sc;
4179 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4180 struct mbuf *m;
4181 const int ringidx = txring->txr_index;
4182 unsigned int idx, hw_head, n = 0;
4183
4184 mutex_enter(&txring->txr_mutex);
4185
4186 if (!txring->txr_active)
4187 goto tx_intr_done;
4188
4189 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4190 TX_DMA_DESC_HEAD_PTR);
4191 if (hw_head == txring->txr_considx) {
4192 goto tx_intr_done;
4193 }
4194
4195 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4196
4197 for (idx = txring->txr_considx; idx != hw_head;
4198 idx = TXRING_NEXTIDX(idx), n++) {
4199
4200 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4201 bus_dmamap_unload(sc->sc_dmat,
4202 txring->txr_mbufs[idx].dmamap);
4203
4204 if_statinc_ref(nsr, if_opackets);
4205 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4206 if (m->m_flags & M_MCAST)
4207 if_statinc_ref(nsr, if_omcasts);
4208
4209 m_freem(m);
4210 txring->txr_mbufs[idx].m = NULL;
4211 }
4212
4213 txring->txr_nfree++;
4214 }
4215 txring->txr_considx = idx;
4216
4217 IF_STAT_PUTREF(ifp);
4218
4219 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4220 ifp->if_flags &= ~IFF_OACTIVE;
4221
4222 /* no more pending TX packet, cancel watchdog */
4223 if (txring->txr_nfree >= AQ_TXD_NUM)
4224 ifp->if_timer = 0;
4225
4226 tx_intr_done:
4227 mutex_exit(&txring->txr_mutex);
4228
4229 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4230 return n;
4231 }
4232
4233 static int
4234 aq_rx_intr(void *arg)
4235 {
4236 struct aq_rxring *rxring = arg;
4237 struct aq_softc *sc = rxring->rxr_sc;
4238 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4239 const int ringidx = rxring->rxr_index;
4240 aq_rx_desc_t *rxd;
4241 struct mbuf *m, *m0, *mprev, *new_m;
4242 uint32_t rxd_type, rxd_hash __unused;
4243 uint16_t rxd_status, rxd_pktlen;
4244 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4245 unsigned int idx, n = 0;
4246
4247 mutex_enter(&rxring->rxr_mutex);
4248
4249 if (!rxring->rxr_active)
4250 goto rx_intr_done;
4251
4252 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4253 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4254 goto rx_intr_done;
4255 }
4256
4257 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4258
4259 m0 = mprev = NULL;
4260 for (idx = rxring->rxr_readidx;
4261 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4262 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4263
4264 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4265 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4266 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4267
4268 rxd = &rxring->rxr_rxdesc[idx];
4269 rxd_status = le16toh(rxd->wb.status);
4270
4271 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4272 break; /* not yet done */
4273
4274 rxd_type = le32toh(rxd->wb.type);
4275 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4276 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4277 rxd_hash = le32toh(rxd->wb.rss_hash);
4278 rxd_vlan = le16toh(rxd->wb.vlan);
4279
4280 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4281 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4282 if_statinc_ref(nsr, if_ierrors);
4283 goto rx_next;
4284 }
4285
4286 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4287 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4288 BUS_DMASYNC_POSTREAD);
4289 m = rxring->rxr_mbufs[idx].m;
4290
4291 new_m = aq_alloc_mbuf();
4292 if (new_m == NULL) {
4293 /*
4294 * cannot allocate new mbuf.
4295 * discard this packet, and reuse mbuf for next.
4296 */
4297 if_statinc_ref(nsr, if_iqdrops);
4298 goto rx_next;
4299 }
4300 rxring->rxr_mbufs[idx].m = NULL;
4301 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4302
4303 if (m0 == NULL) {
4304 m0 = m;
4305 } else {
4306 if (m->m_flags & M_PKTHDR)
4307 m_remove_pkthdr(m);
4308 mprev->m_next = m;
4309 }
4310 mprev = m;
4311
4312 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4313 m->m_len = MCLBYTES;
4314 } else {
4315 /* last buffer */
4316 m->m_len = rxd_pktlen % MCLBYTES;
4317 m0->m_pkthdr.len = rxd_pktlen;
4318 /* VLAN offloading */
4319 if ((sc->sc_ethercom.ec_capenable &
4320 ETHERCAP_VLAN_HWTAGGING) &&
4321 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4322 __SHIFTOUT(rxd_type,
4323 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4324 vlan_set_tag(m0, rxd_vlan);
4325 }
4326
4327 /* Checksum offloading */
4328 unsigned int pkttype_eth =
4329 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4330 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4331 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4332 __SHIFTOUT(rxd_type,
4333 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4334 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4335 if (__SHIFTOUT(rxd_status,
4336 RXDESC_STATUS_IPV4_CSUM_NG))
4337 m0->m_pkthdr.csum_flags |=
4338 M_CSUM_IPv4_BAD;
4339 }
4340 #if notyet
4341 /*
4342 * XXX: aq always marks BAD for fragmented packet.
4343 * we should peek L3 header, and ignore cksum flags
4344 * if the packet is fragmented.
4345 */
4346 if (__SHIFTOUT(rxd_type,
4347 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4348 bool checked = false;
4349 unsigned int pkttype_proto =
4350 __SHIFTOUT(rxd_type,
4351 RXDESC_TYPE_PKTTYPE_PROTO);
4352
4353 if (pkttype_proto ==
4354 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4355 if ((pkttype_eth ==
4356 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4357 (ifp->if_capabilities &
4358 IFCAP_CSUM_TCPv4_Rx)) {
4359 m0->m_pkthdr.csum_flags |=
4360 M_CSUM_TCPv4;
4361 checked = true;
4362 } else if ((pkttype_eth ==
4363 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4364 (ifp->if_capabilities &
4365 IFCAP_CSUM_TCPv6_Rx)) {
4366 m0->m_pkthdr.csum_flags |=
4367 M_CSUM_TCPv6;
4368 checked = true;
4369 }
4370 } else if (pkttype_proto ==
4371 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4372 if ((pkttype_eth ==
4373 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4374 (ifp->if_capabilities &
4375 IFCAP_CSUM_UDPv4_Rx)) {
4376 m0->m_pkthdr.csum_flags |=
4377 M_CSUM_UDPv4;
4378 checked = true;
4379 } else if ((pkttype_eth ==
4380 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4381 (ifp->if_capabilities &
4382 IFCAP_CSUM_UDPv6_Rx)) {
4383 m0->m_pkthdr.csum_flags |=
4384 M_CSUM_UDPv6;
4385 checked = true;
4386 }
4387 }
4388 if (checked &&
4389 (__SHIFTOUT(rxd_status,
4390 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4391 !__SHIFTOUT(rxd_status,
4392 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4393 m0->m_pkthdr.csum_flags |=
4394 M_CSUM_TCP_UDP_BAD;
4395 }
4396 }
4397 #endif
4398 m_set_rcvif(m0, ifp);
4399 if_statinc_ref(nsr, if_ipackets);
4400 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4401 if_percpuq_enqueue(ifp->if_percpuq, m0);
4402 m0 = mprev = NULL;
4403 }
4404
4405 rx_next:
4406 aq_rxring_reset_desc(sc, rxring, idx);
4407 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4408 }
4409 rxring->rxr_readidx = idx;
4410
4411 IF_STAT_PUTREF(ifp);
4412
4413 rx_intr_done:
4414 mutex_exit(&rxring->rxr_mutex);
4415
4416 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4417 return n;
4418 }
4419
4420 static int
4421 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4422 {
4423 struct ifnet *ifp = &ec->ec_if;
4424 struct aq_softc *sc = ifp->if_softc;
4425
4426 aq_set_vlan_filters(sc);
4427 return 0;
4428 }
4429
4430 static int
4431 aq_ifflags_cb(struct ethercom *ec)
4432 {
4433 struct ifnet *ifp = &ec->ec_if;
4434 struct aq_softc *sc = ifp->if_softc;
4435 int i, ecchange, error = 0;
4436 unsigned short iffchange;
4437
4438 AQ_LOCK(sc);
4439
4440 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4441 if ((iffchange & IFF_PROMISC) != 0)
4442 error = aq_set_filter(sc);
4443
4444 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4445 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4446 for (i = 0; i < AQ_RINGS_NUM; i++) {
4447 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4448 RX_DMA_DESC_VLAN_STRIP,
4449 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4450 1 : 0);
4451 }
4452 }
4453
4454 /* vlan configuration depends on also interface promiscuous mode */
4455 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4456 aq_set_vlan_filters(sc);
4457
4458 sc->sc_ec_capenable = ec->ec_capenable;
4459 sc->sc_if_flags = ifp->if_flags;
4460
4461 AQ_UNLOCK(sc);
4462
4463 return error;
4464 }
4465
4466 static int
4467 aq_init(struct ifnet *ifp)
4468 {
4469 struct aq_softc *sc = ifp->if_softc;
4470 int i, error = 0;
4471
4472 AQ_LOCK(sc);
4473
4474 aq_set_vlan_filters(sc);
4475 aq_set_capability(sc);
4476
4477 for (i = 0; i < sc->sc_nqueues; i++) {
4478 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4479 }
4480
4481 /* invalidate RX descriptor cache */
4482 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4483 AQ_READ_REG_BIT(sc,
4484 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4485
4486 /* start RX */
4487 for (i = 0; i < sc->sc_nqueues; i++) {
4488 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4489 if (error != 0) {
4490 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4491 __func__);
4492 goto aq_init_failure;
4493 }
4494 }
4495 aq_init_rss(sc);
4496 aq_hw_l3_filter_set(sc);
4497
4498 /* need to start callout? */
4499 if (sc->sc_poll_linkstat
4500 #ifdef AQ_EVENT_COUNTERS
4501 || sc->sc_poll_statistics
4502 #endif
4503 ) {
4504 callout_schedule(&sc->sc_tick_ch, hz);
4505 }
4506
4507 /* ready */
4508 ifp->if_flags |= IFF_RUNNING;
4509 ifp->if_flags &= ~IFF_OACTIVE;
4510
4511 /* start TX and RX */
4512 aq_enable_intr(sc, true, true);
4513 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4514 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4515
4516 aq_init_failure:
4517 sc->sc_if_flags = ifp->if_flags;
4518
4519 AQ_UNLOCK(sc);
4520
4521 return error;
4522 }
4523
4524 static void
4525 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4526 struct aq_txring *txring, bool is_transmit)
4527 {
4528 struct mbuf *m;
4529 int npkt, error;
4530
4531 if ((ifp->if_flags & IFF_RUNNING) == 0)
4532 return;
4533
4534 for (npkt = 0; ; npkt++) {
4535 if (is_transmit)
4536 m = pcq_peek(txring->txr_pcq);
4537 else
4538 IFQ_POLL(&ifp->if_snd, m);
4539
4540 if (m == NULL)
4541 break;
4542
4543 if (txring->txr_nfree < AQ_TXD_MIN)
4544 break;
4545
4546 if (is_transmit)
4547 pcq_get(txring->txr_pcq);
4548 else
4549 IFQ_DEQUEUE(&ifp->if_snd, m);
4550
4551 error = aq_encap_txring(sc, txring, &m);
4552 if (error != 0) {
4553 /* too many mbuf chains? or not enough descriptors? */
4554 m_freem(m);
4555 if_statinc(ifp, if_oerrors);
4556 if (txring->txr_index == 0 && error == ENOBUFS)
4557 ifp->if_flags |= IFF_OACTIVE;
4558 break;
4559 }
4560
4561 /* update tail ptr */
4562 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4563 txring->txr_prodidx);
4564
4565 /* Pass the packet to any BPF listeners */
4566 bpf_mtap(ifp, m, BPF_D_OUT);
4567 }
4568
4569 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4570 ifp->if_flags |= IFF_OACTIVE;
4571
4572 if (npkt)
4573 ifp->if_timer = 5;
4574 }
4575
4576 static void
4577 aq_start(struct ifnet *ifp)
4578 {
4579 struct aq_softc *sc;
4580 struct aq_txring *txring;
4581
4582 sc = ifp->if_softc;
4583 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4584
4585 mutex_enter(&txring->txr_mutex);
4586 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4587 aq_send_common_locked(ifp, sc, txring, false);
4588 mutex_exit(&txring->txr_mutex);
4589 }
4590
4591 static inline unsigned int
4592 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4593 {
4594 return (cpu_index(curcpu()) % sc->sc_nqueues);
4595 }
4596
4597 static int
4598 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4599 {
4600 struct aq_softc *sc = ifp->if_softc;
4601 struct aq_txring *txring;
4602 int ringidx;
4603
4604 ringidx = aq_select_txqueue(sc, m);
4605 txring = &sc->sc_queue[ringidx].txring;
4606
4607 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4608 m_freem(m);
4609 return ENOBUFS;
4610 }
4611
4612 if (mutex_tryenter(&txring->txr_mutex)) {
4613 aq_send_common_locked(ifp, sc, txring, true);
4614 mutex_exit(&txring->txr_mutex);
4615 } else {
4616 softint_schedule(txring->txr_softint);
4617 }
4618 return 0;
4619 }
4620
4621 static void
4622 aq_deferred_transmit(void *arg)
4623 {
4624 struct aq_txring *txring = arg;
4625 struct aq_softc *sc = txring->txr_sc;
4626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4627
4628 mutex_enter(&txring->txr_mutex);
4629 if (pcq_peek(txring->txr_pcq) != NULL)
4630 aq_send_common_locked(ifp, sc, txring, true);
4631 mutex_exit(&txring->txr_mutex);
4632 }
4633
4634 static void
4635 aq_stop(struct ifnet *ifp, int disable)
4636 {
4637 struct aq_softc *sc = ifp->if_softc;
4638 int i;
4639
4640 AQ_LOCK(sc);
4641
4642 ifp->if_timer = 0;
4643
4644 /* disable tx/rx interrupts */
4645 aq_enable_intr(sc, true, false);
4646
4647 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4648 for (i = 0; i < sc->sc_nqueues; i++) {
4649 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4650 }
4651
4652 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4653 for (i = 0; i < sc->sc_nqueues; i++) {
4654 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4655 }
4656
4657 /* invalidate RX descriptor cache */
4658 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4659 AQ_READ_REG_BIT(sc,
4660 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4661
4662 ifp->if_timer = 0;
4663
4664 if (!disable) {
4665 /* when pmf stop, disable link status intr and callout */
4666 aq_enable_intr(sc, false, false);
4667 callout_stop(&sc->sc_tick_ch);
4668 }
4669
4670 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4671
4672 AQ_UNLOCK(sc);
4673 }
4674
4675 static void
4676 aq_watchdog(struct ifnet *ifp)
4677 {
4678 struct aq_softc *sc = ifp->if_softc;
4679 struct aq_txring *txring;
4680 int n, head, tail;
4681
4682 AQ_LOCK(sc);
4683
4684 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4685 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4686 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4687
4688 for (n = 0; n < sc->sc_nqueues; n++) {
4689 txring = &sc->sc_queue[n].txring;
4690 head = AQ_READ_REG_BIT(sc,
4691 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4692 TX_DMA_DESC_HEAD_PTR),
4693 tail = AQ_READ_REG(sc,
4694 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4695
4696 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4697 __func__, txring->txr_index, head, tail);
4698
4699 aq_tx_intr(txring);
4700 }
4701
4702 AQ_UNLOCK(sc);
4703
4704 aq_init(ifp);
4705 }
4706
4707 static int
4708 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4709 {
4710 struct aq_softc *sc __unused;
4711 struct ifreq *ifr __unused;
4712 int error, s;
4713
4714 sc = (struct aq_softc *)ifp->if_softc;
4715 ifr = (struct ifreq *)data;
4716 error = 0;
4717
4718 s = splnet();
4719 error = ether_ioctl(ifp, cmd, data);
4720 splx(s);
4721
4722 if (error != ENETRESET)
4723 return error;
4724
4725 switch (cmd) {
4726 case SIOCSIFCAP:
4727 error = aq_set_capability(sc);
4728 break;
4729 case SIOCADDMULTI:
4730 case SIOCDELMULTI:
4731 if ((ifp->if_flags & IFF_RUNNING) == 0)
4732 break;
4733
4734 /*
4735 * Multicast list has changed; set the hardware filter
4736 * accordingly.
4737 */
4738 error = aq_set_filter(sc);
4739 break;
4740 }
4741
4742 return error;
4743 }
4744
4745
4746 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4747
4748 #ifdef _MODULE
4749 #include "ioconf.c"
4750 #endif
4751
4752 static int
4753 if_aq_modcmd(modcmd_t cmd, void *opaque)
4754 {
4755 int error = 0;
4756
4757 switch (cmd) {
4758 case MODULE_CMD_INIT:
4759 #ifdef _MODULE
4760 error = config_init_component(cfdriver_ioconf_if_aq,
4761 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4762 #endif
4763 return error;
4764 case MODULE_CMD_FINI:
4765 #ifdef _MODULE
4766 error = config_fini_component(cfdriver_ioconf_if_aq,
4767 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4768 #endif
4769 return error;
4770 default:
4771 return ENOTTY;
4772 }
4773 }
4774