if_aq.c revision 1.16 1 /* $NetBSD: if_aq.c,v 1.16 2020/04/24 04:55:40 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.16 2020/04/24 04:55:40 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed;
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed;
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 const struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 struct ethercom sc_ethercom;
1009 struct ether_addr sc_enaddr;
1010 struct ifmedia sc_media;
1011 int sc_ec_capenable; /* last ec_capenable */
1012 unsigned short sc_if_flags; /* last if_flags */
1013
1014 #ifdef AQ_EVENT_COUNTERS
1015 aq_hw_stats_s_t sc_statistics[2];
1016 int sc_statistics_idx;
1017 bool sc_poll_statistics;
1018
1019 AQ_EVCNT_DECL(uprc);
1020 AQ_EVCNT_DECL(mprc);
1021 AQ_EVCNT_DECL(bprc);
1022 AQ_EVCNT_DECL(erpt);
1023 AQ_EVCNT_DECL(uptc);
1024 AQ_EVCNT_DECL(mptc);
1025 AQ_EVCNT_DECL(bptc);
1026 AQ_EVCNT_DECL(erpr);
1027 AQ_EVCNT_DECL(mbtc);
1028 AQ_EVCNT_DECL(bbtc);
1029 AQ_EVCNT_DECL(mbrc);
1030 AQ_EVCNT_DECL(bbrc);
1031 AQ_EVCNT_DECL(ubrc);
1032 AQ_EVCNT_DECL(ubtc);
1033 AQ_EVCNT_DECL(ptc);
1034 AQ_EVCNT_DECL(prc);
1035 AQ_EVCNT_DECL(dpc);
1036 AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045 bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047 pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056 struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083 aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085 aq_link_eee_t *);
1086
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093 uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 .reset = fw1x_reset,
1117 .set_mode = fw1x_set_mode,
1118 .get_mode = fw1x_get_mode,
1119 .get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 .get_temperature = NULL
1122 #endif
1123 };
1124
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 .reset = fw2x_reset,
1127 .set_mode = fw2x_set_mode,
1128 .get_mode = fw2x_get_mode,
1129 .get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 .get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137
1138 static const struct aq_product {
1139 pci_vendor_id_t aq_vendor;
1140 pci_product_id_t aq_product;
1141 const char *aq_name;
1142 enum aq_media_type aq_media_type;
1143 aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1146 "Aquantia AQC100 10 Gigabit Network Adapter",
1147 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1148 },
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1150 "Aquantia AQC107 10 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1154 "Aquantia AQC108 5 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1158 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1162 "Aquantia AQC111 5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1166 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1170 "Aquantia AQC100S 10 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1174 "Aquantia AQC107S 10 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1178 "Aquantia AQC108S 5 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1182 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1186 "Aquantia AQC111S 5 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1190 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1194 "Aquantia D100 10 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1196 },
1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1198 "Aquantia D107 10 Gigabit Network Adapter",
1199 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1200 },
1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1202 "Aquantia D108 5 Gigabit Network Adapter",
1203 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1204 },
1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1206 "Aquantia D109 2.5 Gigabit Network Adapter",
1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1208 }
1209 };
1210
1211 static const struct aq_product *
1212 aq_lookup(const struct pci_attach_args *pa)
1213 {
1214 unsigned int i;
1215
1216 for (i = 0; i < __arraycount(aq_products); i++) {
1217 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1218 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1219 return &aq_products[i];
1220 }
1221 return NULL;
1222 }
1223
1224 static int
1225 aq_match(device_t parent, cfdata_t cf, void *aux)
1226 {
1227 struct pci_attach_args *pa = aux;
1228
1229 if (aq_lookup(pa) != NULL)
1230 return 1;
1231
1232 return 0;
1233 }
1234
1235 static void
1236 aq_attach(device_t parent, device_t self, void *aux)
1237 {
1238 struct aq_softc *sc = device_private(self);
1239 struct pci_attach_args *pa = aux;
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 pci_chipset_tag_t pc;
1242 pcitag_t tag;
1243 pcireg_t command, memtype, bar;
1244 const struct aq_product *aqp;
1245 int error;
1246
1247 sc->sc_dev = self;
1248 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1249 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1250
1251 sc->sc_pc = pc = pa->pa_pc;
1252 sc->sc_pcitag = tag = pa->pa_tag;
1253 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1254
1255 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1256 command |= PCI_COMMAND_MASTER_ENABLE;
1257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1258
1259 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1260 sc->sc_revision = PCI_REVISION(pa->pa_class);
1261
1262 aqp = aq_lookup(pa);
1263 KASSERT(aqp != NULL);
1264
1265 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1266
1267 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1268 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1269 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1270 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1271 return;
1272 }
1273 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1274 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1275 NULL, &sc->sc_iosize) != 0) {
1276 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1277 return;
1278 }
1279
1280 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1281
1282 /* max queue num is 8, and must be 2^n */
1283 if (ncpu >= 8)
1284 sc->sc_nqueues = 8;
1285 else if (ncpu >= 4)
1286 sc->sc_nqueues = 4;
1287 else if (ncpu >= 2)
1288 sc->sc_nqueues = 2;
1289 else
1290 sc->sc_nqueues = 1;
1291
1292 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1294 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1295 /* TX intrs + RX intrs + LINKSTAT intrs */
1296 sc->sc_use_txrx_independent_intr = true;
1297 sc->sc_poll_linkstat = false;
1298 sc->sc_msix = true;
1299 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1300 /* TX intrs + RX intrs */
1301 sc->sc_use_txrx_independent_intr = true;
1302 sc->sc_poll_linkstat = true;
1303 sc->sc_msix = true;
1304 } else
1305 #endif
1306 if (msixcount >= (sc->sc_nqueues + 1)) {
1307 /* TX/RX intrs LINKSTAT intrs */
1308 sc->sc_use_txrx_independent_intr = false;
1309 sc->sc_poll_linkstat = false;
1310 sc->sc_msix = true;
1311 } else if (msixcount >= sc->sc_nqueues) {
1312 /* TX/RX intrs */
1313 sc->sc_use_txrx_independent_intr = false;
1314 sc->sc_poll_linkstat = true;
1315 sc->sc_msix = true;
1316 } else {
1317 /* giving up using MSI-X */
1318 sc->sc_msix = false;
1319 }
1320
1321 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1322 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1323 sc->sc_poll_linkstat = true;
1324
1325 #ifdef AQ_FORCE_POLL_LINKSTAT
1326 sc->sc_poll_linkstat = true;
1327 #endif
1328
1329 aprint_debug_dev(sc->sc_dev,
1330 "ncpu=%d, pci_msix_count=%d."
1331 " allocate %d interrupts for %d%s queues%s\n",
1332 ncpu, msixcount,
1333 (sc->sc_use_txrx_independent_intr ?
1334 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1335 (sc->sc_poll_linkstat ? 0 : 1),
1336 sc->sc_nqueues,
1337 sc->sc_use_txrx_independent_intr ? "*2" : "",
1338 sc->sc_poll_linkstat ? "" : ", and link status");
1339
1340 if (sc->sc_msix)
1341 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1342 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1343 else
1344 error = ENODEV;
1345
1346 if (error != 0) {
1347 /* if MSI-X failed, fallback to MSI with single queue */
1348 sc->sc_use_txrx_independent_intr = false;
1349 sc->sc_poll_linkstat = false;
1350 sc->sc_msix = false;
1351 sc->sc_nqueues = 1;
1352 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1353 }
1354 if (error != 0) {
1355 /* if MSI failed, fallback to INTx */
1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1357 }
1358 if (error != 0)
1359 return;
1360
1361 callout_init(&sc->sc_tick_ch, 0);
1362 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1363
1364 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1365
1366 if (sc->sc_msix && (sc->sc_nqueues > 1))
1367 sc->sc_rss_enable = true;
1368 else
1369 sc->sc_rss_enable = false;
1370
1371 error = aq_txrx_rings_alloc(sc);
1372 if (error != 0)
1373 goto attach_failure;
1374
1375 error = aq_fw_reset(sc);
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 error = aq_fw_version_init(sc);
1380 if (error != 0)
1381 goto attach_failure;
1382
1383 error = aq_hw_init_ucp(sc);
1384 if (error < 0)
1385 goto attach_failure;
1386
1387 KASSERT(sc->sc_mbox_addr != 0);
1388 error = aq_hw_reset(sc);
1389 if (error != 0)
1390 goto attach_failure;
1391
1392 aq_get_mac_addr(sc);
1393 aq_init_rss(sc);
1394
1395 error = aq_hw_init(sc); /* initialize and interrupts */
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 sc->sc_media_type = aqp->aq_media_type;
1400 sc->sc_available_rates = aqp->aq_available_rates;
1401
1402 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1403 ifmedia_init(&sc->sc_media, IFM_IMASK,
1404 aq_ifmedia_change, aq_ifmedia_status);
1405 aq_initmedia(sc);
1406
1407 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1408 ifp->if_softc = sc;
1409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 ifp->if_baudrate = IF_Gbps(10);
1411 ifp->if_init = aq_init;
1412 ifp->if_ioctl = aq_ioctl;
1413 if (sc->sc_msix && (sc->sc_nqueues > 1))
1414 ifp->if_transmit = aq_transmit;
1415 ifp->if_start = aq_start;
1416 ifp->if_stop = aq_stop;
1417 ifp->if_watchdog = aq_watchdog;
1418 IFQ_SET_READY(&ifp->if_snd);
1419
1420 /* initialize capabilities */
1421 sc->sc_ethercom.ec_capabilities = 0;
1422 sc->sc_ethercom.ec_capenable = 0;
1423 #if notyet
1424 /* TODO */
1425 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1426 #endif
1427 sc->sc_ethercom.ec_capabilities |=
1428 ETHERCAP_JUMBO_MTU |
1429 ETHERCAP_VLAN_MTU |
1430 ETHERCAP_VLAN_HWTAGGING |
1431 ETHERCAP_VLAN_HWFILTER;
1432 sc->sc_ethercom.ec_capenable |=
1433 ETHERCAP_VLAN_HWTAGGING |
1434 ETHERCAP_VLAN_HWFILTER;
1435
1436 ifp->if_capabilities = 0;
1437 ifp->if_capenable = 0;
1438 #ifdef CONFIG_LRO_SUPPORT
1439 ifp->if_capabilities |= IFCAP_LRO;
1440 ifp->if_capenable |= IFCAP_LRO;
1441 #endif
1442 #if notyet
1443 /* TSO */
1444 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1445 #endif
1446
1447 #if notyet
1448 /*
1449 * XXX:
1450 * Rx L4 CSUM doesn't work well for fragment packet.
1451 * aq marks 'CHEDKED' and 'BAD' for them.
1452 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1453 *
1454 * TODO: test with LRO enabled
1455 */
1456 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1457 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1458 #endif
1459 /* TX hardware checksum offloadding */
1460 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1461 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1462 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1463 /* RX hardware checksum offloadding */
1464 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1465
1466 if_attach(ifp);
1467 if_deferred_start_init(ifp, NULL);
1468 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1469 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1470 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1471
1472 aq_enable_intr(sc, true, false); /* only intr about link */
1473
1474 /* update media */
1475 aq_ifmedia_change(ifp);
1476
1477 #if NSYSMON_ENVSYS > 0
1478 /* temperature monitoring */
1479 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1480 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1481
1482 sc->sc_sme = sysmon_envsys_create();
1483 sc->sc_sme->sme_name = device_xname(self);
1484 sc->sc_sme->sme_cookie = sc;
1485 sc->sc_sme->sme_flags = 0;
1486 sc->sc_sme->sme_refresh = aq_temp_refresh;
1487 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1488 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1489 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1490
1491 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1492 sysmon_envsys_register(sc->sc_sme);
1493
1494 /*
1495 * for unknown reasons, the first call of fw2x_get_temperature()
1496 * will always fail (firmware matter?), so run once now.
1497 */
1498 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1499 }
1500 #endif
1501
1502 #ifdef AQ_EVENT_COUNTERS
1503 /* get starting statistics values */
1504 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1505 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1506 sc->sc_poll_statistics = true;
1507 }
1508
1509 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1510 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1511 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1512 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1513 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1514 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1515 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1516 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1517 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1518 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1519 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1520 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1521 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1522 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1523 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1524 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1525 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1526 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1527 #endif
1528
1529 return;
1530
1531 attach_failure:
1532 aq_detach(self, 0);
1533 }
1534
1535 static int
1536 aq_detach(device_t self, int flags __unused)
1537 {
1538 struct aq_softc *sc = device_private(self);
1539 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 int i, s;
1541
1542 if (sc->sc_iosize != 0) {
1543 if (ifp->if_softc != NULL) {
1544 s = splnet();
1545 aq_stop(ifp, 0);
1546 splx(s);
1547 }
1548
1549 for (i = 0; i < AQ_NINTR_MAX; i++) {
1550 if (sc->sc_ihs[i] != NULL) {
1551 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1552 sc->sc_ihs[i] = NULL;
1553 }
1554 }
1555 if (sc->sc_nintrs > 0) {
1556 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1557 sc->sc_nintrs);
1558 sc->sc_intrs = NULL;
1559 sc->sc_nintrs = 0;
1560 }
1561
1562 aq_txrx_rings_free(sc);
1563
1564 if (ifp->if_softc != NULL) {
1565 ether_ifdetach(ifp);
1566 if_detach(ifp);
1567 }
1568
1569 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1570 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1571 sc->sc_iosize = 0;
1572 }
1573
1574 callout_stop(&sc->sc_tick_ch);
1575
1576 #if NSYSMON_ENVSYS > 0
1577 if (sc->sc_sme != NULL) {
1578 /* all sensors associated with this will also be detached */
1579 sysmon_envsys_unregister(sc->sc_sme);
1580 sc->sc_sme = NULL;
1581 }
1582 #endif
1583
1584 #ifdef AQ_EVENT_COUNTERS
1585 AQ_EVCNT_DETACH(sc, uprc);
1586 AQ_EVCNT_DETACH(sc, mprc);
1587 AQ_EVCNT_DETACH(sc, bprc);
1588 AQ_EVCNT_DETACH(sc, erpt);
1589 AQ_EVCNT_DETACH(sc, uptc);
1590 AQ_EVCNT_DETACH(sc, mptc);
1591 AQ_EVCNT_DETACH(sc, bptc);
1592 AQ_EVCNT_DETACH(sc, erpr);
1593 AQ_EVCNT_DETACH(sc, mbtc);
1594 AQ_EVCNT_DETACH(sc, bbtc);
1595 AQ_EVCNT_DETACH(sc, mbrc);
1596 AQ_EVCNT_DETACH(sc, bbrc);
1597 AQ_EVCNT_DETACH(sc, ubrc);
1598 AQ_EVCNT_DETACH(sc, ubtc);
1599 AQ_EVCNT_DETACH(sc, ptc);
1600 AQ_EVCNT_DETACH(sc, prc);
1601 AQ_EVCNT_DETACH(sc, dpc);
1602 AQ_EVCNT_DETACH(sc, cprc);
1603 #endif
1604
1605 ifmedia_fini(&sc->sc_media);
1606
1607 mutex_destroy(&sc->sc_mpi_mutex);
1608 mutex_destroy(&sc->sc_mutex);
1609
1610 return 0;
1611 }
1612
1613 static int
1614 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1615 int (*func)(void *), void *arg, const char *xname)
1616 {
1617 char intrbuf[PCI_INTRSTR_LEN];
1618 pci_chipset_tag_t pc = sc->sc_pc;
1619 void *vih;
1620 const char *intrstr = NULL;
1621
1622 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1623 sizeof(intrbuf));
1624
1625 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1626
1627 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1628 IPL_NET, func, arg, xname);
1629 if (vih == NULL) {
1630 aprint_error_dev(sc->sc_dev,
1631 "unable to establish MSI-X%s%s for %s\n",
1632 intrstr ? " at " : "",
1633 intrstr ? intrstr : "", xname);
1634 return EIO;
1635 }
1636 sc->sc_ihs[intno] = vih;
1637
1638 if (affinity != NULL) {
1639 /* Round-robin affinity */
1640 kcpuset_zero(affinity);
1641 kcpuset_set(affinity, intno % ncpu);
1642 interrupt_distribute(vih, affinity, NULL);
1643 }
1644
1645 return 0;
1646 }
1647
1648 static int
1649 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1650 bool linkintr)
1651 {
1652 kcpuset_t *affinity;
1653 int error, intno, i;
1654 char intr_xname[INTRDEVNAMEBUF];
1655
1656 kcpuset_create(&affinity, false);
1657
1658 intno = 0;
1659
1660 if (txrx_independent) {
1661 for (i = 0; i < sc->sc_nqueues; i++) {
1662 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1663 device_xname(sc->sc_dev), i);
1664 sc->sc_rx_irq[i] = intno;
1665 error = aq_establish_intr(sc, intno++, affinity,
1666 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1667 if (error != 0)
1668 goto fail;
1669 }
1670 for (i = 0; i < sc->sc_nqueues; i++) {
1671 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1672 device_xname(sc->sc_dev), i);
1673 sc->sc_tx_irq[i] = intno;
1674 error = aq_establish_intr(sc, intno++, affinity,
1675 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1676 if (error != 0)
1677 goto fail;
1678 }
1679 } else {
1680 for (i = 0; i < sc->sc_nqueues; i++) {
1681 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1682 device_xname(sc->sc_dev), i);
1683 sc->sc_rx_irq[i] = intno;
1684 sc->sc_tx_irq[i] = intno;
1685 error = aq_establish_intr(sc, intno++, affinity,
1686 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1687 if (error != 0)
1688 goto fail;
1689 }
1690 }
1691
1692 if (linkintr) {
1693 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1694 device_xname(sc->sc_dev));
1695 sc->sc_linkstat_irq = intno;
1696 error = aq_establish_intr(sc, intno++, affinity,
1697 aq_link_intr, sc, intr_xname);
1698 if (error != 0)
1699 goto fail;
1700 }
1701
1702 kcpuset_destroy(affinity);
1703 return 0;
1704
1705 fail:
1706 for (i = 0; i < AQ_NINTR_MAX; i++) {
1707 if (sc->sc_ihs[i] != NULL) {
1708 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1709 sc->sc_ihs[i] = NULL;
1710 }
1711 }
1712
1713 kcpuset_destroy(affinity);
1714 return ENOMEM;
1715 }
1716
1717 static int
1718 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1719 bool txrx_independent, bool linkintr)
1720 {
1721 int error, nintr;
1722
1723 if (txrx_independent)
1724 nintr = nqueue * 2;
1725 else
1726 nintr = nqueue;
1727
1728 if (linkintr)
1729 nintr++;
1730
1731 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1732 if (error != 0) {
1733 aprint_error_dev(sc->sc_dev,
1734 "failed to allocate MSI-X interrupts\n");
1735 goto fail;
1736 }
1737
1738 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1739 if (error == 0) {
1740 sc->sc_nintrs = nintr;
1741 } else {
1742 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1743 sc->sc_nintrs = 0;
1744 }
1745 fail:
1746 return error;
1747
1748 }
1749
1750 static int
1751 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1752 pci_intr_type_t inttype)
1753 {
1754 int counts[PCI_INTR_TYPE_SIZE];
1755 int error, nintr;
1756
1757 nintr = 1;
1758
1759 memset(counts, 0, sizeof(counts));
1760 counts[inttype] = nintr;
1761
1762 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1763 if (error != 0) {
1764 aprint_error_dev(sc->sc_dev,
1765 "failed to allocate%s interrupts\n",
1766 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1767 return error;
1768 }
1769 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1770 device_xname(sc->sc_dev));
1771 if (error == 0) {
1772 sc->sc_nintrs = nintr;
1773 } else {
1774 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1775 sc->sc_nintrs = 0;
1776 }
1777 return error;
1778 }
1779
1780 static void
1781 global_software_reset(struct aq_softc *sc)
1782 {
1783 uint32_t v;
1784
1785 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1786 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1787 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1788 FW_MPI_RESETCTRL_RESET_DIS, 0);
1789
1790 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1791 v &= ~AQ_FW_SOFTRESET_DIS;
1792 v |= AQ_FW_SOFTRESET_RESET;
1793 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1794 }
1795
1796 static int
1797 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1798 {
1799 int timo;
1800
1801 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1802
1803 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1804 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1805 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1806
1807 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1808 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1809
1810 global_software_reset(sc);
1811
1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1813
1814 /* Wait for RBL to finish boot process. */
1815 #define RBL_TIMEOUT_MS 10000
1816 uint16_t rbl_status;
1817 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1818 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1819 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1820 break;
1821 msec_delay(1);
1822 }
1823 if (timo <= 0) {
1824 aprint_error_dev(sc->sc_dev,
1825 "RBL> RBL restart failed: timeout\n");
1826 return EBUSY;
1827 }
1828 switch (rbl_status) {
1829 case RBL_STATUS_SUCCESS:
1830 if (mode != NULL)
1831 *mode = FW_BOOT_MODE_RBL_FLASH;
1832 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1833 break;
1834 case RBL_STATUS_HOST_BOOT:
1835 if (mode != NULL)
1836 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1837 aprint_debug_dev(sc->sc_dev,
1838 "RBL> reset complete! [Host Bootload]\n");
1839 break;
1840 case RBL_STATUS_FAILURE:
1841 default:
1842 aprint_error_dev(sc->sc_dev,
1843 "unknown RBL status 0x%x\n", rbl_status);
1844 return EBUSY;
1845 }
1846
1847 return 0;
1848 }
1849
1850 static int
1851 mac_soft_reset_flb(struct aq_softc *sc)
1852 {
1853 uint32_t v;
1854 int timo;
1855
1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1857 /*
1858 * Let Felicity hardware to complete SMBUS transaction before
1859 * Global software reset.
1860 */
1861 msec_delay(50);
1862
1863 /*
1864 * If SPI burst transaction was interrupted(before running the script),
1865 * global software reset may not clear SPI interface.
1866 * Clean it up manually before global reset.
1867 */
1868 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1869 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1870 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1871 msec_delay(50);
1872
1873 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1874 v &= ~AQ_FW_SOFTRESET_DIS;
1875 v |= AQ_FW_SOFTRESET_RESET;
1876 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1877
1878 /* Kickstart. */
1879 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1880 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1881 if (!sc->sc_fast_start_enabled)
1882 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1883
1884 /*
1885 * For the case SPI burst transaction was interrupted (by MCP reset
1886 * above), wait until it is completed by hardware.
1887 */
1888 msec_delay(50);
1889
1890 /* MAC Kickstart */
1891 if (!sc->sc_fast_start_enabled) {
1892 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1893
1894 uint32_t flb_status;
1895 for (timo = 0; timo < 1000; timo++) {
1896 flb_status = AQ_READ_REG(sc,
1897 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1898 if (flb_status != 0)
1899 break;
1900 msec_delay(1);
1901 }
1902 if (flb_status == 0) {
1903 aprint_error_dev(sc->sc_dev,
1904 "FLB> MAC kickstart failed: timed out\n");
1905 return ETIMEDOUT;
1906 }
1907 aprint_debug_dev(sc->sc_dev,
1908 "FLB> MAC kickstart done, %d ms\n", timo);
1909 /* FW reset */
1910 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1911 /*
1912 * Let Felicity hardware complete SMBUS transaction before
1913 * Global software reset.
1914 */
1915 msec_delay(50);
1916 sc->sc_fast_start_enabled = true;
1917 }
1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1919
1920 /* PHY Kickstart: #undone */
1921 global_software_reset(sc);
1922
1923 for (timo = 0; timo < 1000; timo++) {
1924 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1925 break;
1926 msec_delay(10);
1927 }
1928 if (timo >= 1000) {
1929 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1930 return ETIMEDOUT;
1931 }
1932 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1933 return 0;
1934
1935 }
1936
1937 static int
1938 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1939 {
1940 if (sc->sc_rbl_enabled)
1941 return mac_soft_reset_rbl(sc, mode);
1942
1943 if (mode != NULL)
1944 *mode = FW_BOOT_MODE_FLB;
1945 return mac_soft_reset_flb(sc);
1946 }
1947
1948 static int
1949 aq_fw_read_version(struct aq_softc *sc)
1950 {
1951 int i, error = EBUSY;
1952 #define MAC_FW_START_TIMEOUT_MS 10000
1953 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1954 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1955 if (sc->sc_fw_version != 0) {
1956 error = 0;
1957 break;
1958 }
1959 delay(1000);
1960 }
1961 return error;
1962 }
1963
1964 static int
1965 aq_fw_reset(struct aq_softc *sc)
1966 {
1967 uint32_t ver, v, bootExitCode;
1968 int i, error;
1969
1970 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1971
1972 for (i = 1000; i > 0; i--) {
1973 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1974 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1975 if (v != 0x06000000 || bootExitCode != 0)
1976 break;
1977 }
1978 if (i <= 0) {
1979 aprint_error_dev(sc->sc_dev,
1980 "F/W reset failed. Neither RBL nor FLB started\n");
1981 return ETIMEDOUT;
1982 }
1983 sc->sc_rbl_enabled = (bootExitCode != 0);
1984
1985 /*
1986 * Having FW version 0 is an indicator that cold start
1987 * is in progress. This means two things:
1988 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1989 * 2) Driver may skip reset sequence and save time.
1990 */
1991 if (sc->sc_fast_start_enabled && (ver != 0)) {
1992 error = aq_fw_read_version(sc);
1993 /* Skip reset as it just completed */
1994 if (error == 0)
1995 return 0;
1996 }
1997
1998 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1999 error = mac_soft_reset(sc, &mode);
2000 if (error != 0) {
2001 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2002 return error;
2003 }
2004
2005 switch (mode) {
2006 case FW_BOOT_MODE_FLB:
2007 aprint_debug_dev(sc->sc_dev,
2008 "FLB> F/W successfully loaded from flash.\n");
2009 sc->sc_flash_present = true;
2010 return aq_fw_read_version(sc);
2011 case FW_BOOT_MODE_RBL_FLASH:
2012 aprint_debug_dev(sc->sc_dev,
2013 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2014 sc->sc_flash_present = true;
2015 return aq_fw_read_version(sc);
2016 case FW_BOOT_MODE_UNKNOWN:
2017 aprint_error_dev(sc->sc_dev,
2018 "F/W bootload error: unknown bootloader type\n");
2019 return ENOTSUP;
2020 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2021 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2022 break;
2023 }
2024
2025 /*
2026 * XXX: TODO: add support Host Boot
2027 */
2028 aprint_error_dev(sc->sc_dev,
2029 "RBL> F/W Host Bootload not implemented\n");
2030 return ENOTSUP;
2031 }
2032
2033 static int
2034 aq_hw_reset(struct aq_softc *sc)
2035 {
2036 int error;
2037
2038 /* disable irq */
2039 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2040
2041 /* apply */
2042 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2043
2044 /* wait ack 10 times by 1ms */
2045 WAIT_FOR(
2046 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2047 1000, 10, &error);
2048 if (error != 0) {
2049 aprint_error_dev(sc->sc_dev,
2050 "atlantic: IRQ reset failed: %d\n", error);
2051 return error;
2052 }
2053
2054 return sc->sc_fw_ops->reset(sc);
2055 }
2056
2057 static int
2058 aq_hw_init_ucp(struct aq_softc *sc)
2059 {
2060 int timo;
2061
2062 if (FW_VERSION_MAJOR(sc) == 1) {
2063 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2064 uint32_t data;
2065 cprng_fast(&data, sizeof(data));
2066 data &= 0xfefefefe;
2067 data |= 0x02020202;
2068 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2069 }
2070 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2071 }
2072
2073 for (timo = 100; timo > 0; timo--) {
2074 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2075 if (sc->sc_mbox_addr != 0)
2076 break;
2077 delay(1000);
2078 }
2079
2080 #define AQ_FW_MIN_VERSION 0x01050006
2081 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2082 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2083 aprint_error_dev(sc->sc_dev,
2084 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2085 " or later required, this is %d.%d.%d\n",
2086 FW_VERSION_MAJOR(sc),
2087 FW_VERSION_MINOR(sc),
2088 FW_VERSION_BUILD(sc));
2089 return ENOTSUP;
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int
2096 aq_fw_version_init(struct aq_softc *sc)
2097 {
2098 int error = 0;
2099 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2100
2101 if (FW_VERSION_MAJOR(sc) == 1) {
2102 sc->sc_fw_ops = &aq_fw1x_ops;
2103 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2104 sc->sc_fw_ops = &aq_fw2x_ops;
2105 } else {
2106 aprint_error_dev(sc->sc_dev,
2107 "Unsupported F/W version %d.%d.%d\n",
2108 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2109 FW_VERSION_BUILD(sc));
2110 return ENOTSUP;
2111 }
2112 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2113 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2114
2115 /* detect revision */
2116 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2117 switch (hwrev & 0x0000000f) {
2118 case 0x01:
2119 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2120 fw_vers);
2121 sc->sc_features |= FEATURES_REV_A0 |
2122 FEATURES_MPI_AQ | FEATURES_MIPS;
2123 break;
2124 case 0x02:
2125 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2126 fw_vers);
2127 sc->sc_features |= FEATURES_REV_B0 |
2128 FEATURES_MPI_AQ | FEATURES_MIPS |
2129 FEATURES_TPO2 | FEATURES_RPF2;
2130 break;
2131 case 0x0A:
2132 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2133 fw_vers);
2134 sc->sc_features |= FEATURES_REV_B1 |
2135 FEATURES_MPI_AQ | FEATURES_MIPS |
2136 FEATURES_TPO2 | FEATURES_RPF2;
2137 break;
2138 default:
2139 aprint_error_dev(sc->sc_dev,
2140 "Unknown revision (0x%08x)\n", hwrev);
2141 error = ENOTSUP;
2142 break;
2143 }
2144 return error;
2145 }
2146
2147 static int
2148 fw1x_reset(struct aq_softc *sc)
2149 {
2150 struct aq_mailbox_header mbox;
2151 const int retryCount = 1000;
2152 uint32_t tid0;
2153 int i;
2154
2155 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2156
2157 for (i = 0; i < retryCount; ++i) {
2158 /*
2159 * Read the beginning of Statistics structure to capture
2160 * the Transaction ID.
2161 */
2162 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2163 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2164
2165 /* Successfully read the stats. */
2166 if (tid0 == ~0U) {
2167 /* We have read the initial value. */
2168 tid0 = mbox.transaction_id;
2169 continue;
2170 } else if (mbox.transaction_id != tid0) {
2171 /*
2172 * Compare transaction ID to initial value.
2173 * If it's different means f/w is alive.
2174 * We're done.
2175 */
2176 return 0;
2177 }
2178
2179 /*
2180 * Transaction ID value haven't changed since last time.
2181 * Try reading the stats again.
2182 */
2183 delay(10);
2184 }
2185 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2186 return EBUSY;
2187 }
2188
2189 static int
2190 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2191 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2192 {
2193 uint32_t mpictrl = 0;
2194 uint32_t mpispeed = 0;
2195
2196 if (speed & AQ_LINK_10G)
2197 mpispeed |= FW1X_CTRL_10G;
2198 if (speed & AQ_LINK_5G)
2199 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2200 if (speed & AQ_LINK_2G5)
2201 mpispeed |= FW1X_CTRL_2G5;
2202 if (speed & AQ_LINK_1G)
2203 mpispeed |= FW1X_CTRL_1G;
2204 if (speed & AQ_LINK_100M)
2205 mpispeed |= FW1X_CTRL_100M;
2206
2207 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2208 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2209 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2210 return 0;
2211 }
2212
2213 static int
2214 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2215 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2216 {
2217 uint32_t mpistate, mpi_speed;
2218 aq_link_speed_t speed = AQ_LINK_NONE;
2219
2220 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2221
2222 if (modep != NULL)
2223 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2224
2225 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2226 if (mpi_speed & FW1X_CTRL_10G)
2227 speed = AQ_LINK_10G;
2228 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2229 speed = AQ_LINK_5G;
2230 else if (mpi_speed & FW1X_CTRL_2G5)
2231 speed = AQ_LINK_2G5;
2232 else if (mpi_speed & FW1X_CTRL_1G)
2233 speed = AQ_LINK_1G;
2234 else if (mpi_speed & FW1X_CTRL_100M)
2235 speed = AQ_LINK_100M;
2236
2237 if (speedp != NULL)
2238 *speedp = speed;
2239
2240 if (fcp != NULL)
2241 *fcp = AQ_FC_NONE;
2242
2243 if (eeep != NULL)
2244 *eeep = AQ_EEE_DISABLE;
2245
2246 return 0;
2247 }
2248
2249 static int
2250 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2251 {
2252 int error;
2253
2254 error = aq_fw_downld_dwords(sc,
2255 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2256 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2257 if (error < 0) {
2258 device_printf(sc->sc_dev,
2259 "fw1x> download statistics data FAILED, error %d", error);
2260 return error;
2261 }
2262
2263 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2264 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2265 return 0;
2266 }
2267
2268 static int
2269 fw2x_reset(struct aq_softc *sc)
2270 {
2271 fw2x_capabilities_t caps = { 0 };
2272 int error;
2273
2274 error = aq_fw_downld_dwords(sc,
2275 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2276 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2277 if (error != 0) {
2278 aprint_error_dev(sc->sc_dev,
2279 "fw2x> can't get F/W capabilities mask, error %d\n",
2280 error);
2281 return error;
2282 }
2283 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2284
2285 char buf[256];
2286 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2287 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2288
2289 return 0;
2290 }
2291
2292 static int
2293 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2294 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2295 {
2296 uint64_t mpi_ctrl;
2297 int error = 0;
2298
2299 AQ_MPI_LOCK(sc);
2300
2301 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2302
2303 switch (mode) {
2304 case MPI_INIT:
2305 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2306 if (speed & AQ_LINK_10G)
2307 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2308 if (speed & AQ_LINK_5G)
2309 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2310 if (speed & AQ_LINK_2G5)
2311 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2312 if (speed & AQ_LINK_1G)
2313 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2314 if (speed & AQ_LINK_100M)
2315 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2316
2317 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2318
2319 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2320 if (eee == AQ_EEE_ENABLE)
2321 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2322
2323 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2324 if (fc & AQ_FC_RX)
2325 mpi_ctrl |= FW2X_CTRL_PAUSE;
2326 if (fc & AQ_FC_TX)
2327 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2328 break;
2329 case MPI_DEINIT:
2330 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2331 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2332 break;
2333 default:
2334 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2335 error = EINVAL;
2336 goto failure;
2337 }
2338 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2339
2340 failure:
2341 AQ_MPI_UNLOCK(sc);
2342 return error;
2343 }
2344
2345 static int
2346 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2347 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2348 {
2349 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2350
2351 if (modep != NULL) {
2352 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2353 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2354 *modep = MPI_INIT;
2355 else
2356 *modep = MPI_DEINIT;
2357 }
2358
2359 aq_link_speed_t speed = AQ_LINK_NONE;
2360 if (mpi_state & FW2X_CTRL_RATE_10G)
2361 speed = AQ_LINK_10G;
2362 else if (mpi_state & FW2X_CTRL_RATE_5G)
2363 speed = AQ_LINK_5G;
2364 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2365 speed = AQ_LINK_2G5;
2366 else if (mpi_state & FW2X_CTRL_RATE_1G)
2367 speed = AQ_LINK_1G;
2368 else if (mpi_state & FW2X_CTRL_RATE_100M)
2369 speed = AQ_LINK_100M;
2370
2371 if (speedp != NULL)
2372 *speedp = speed;
2373
2374 aq_link_fc_t fc = AQ_FC_NONE;
2375 if (mpi_state & FW2X_CTRL_PAUSE)
2376 fc |= AQ_FC_RX;
2377 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2378 fc |= AQ_FC_TX;
2379 if (fcp != NULL)
2380 *fcp = fc;
2381
2382 /* XXX: TODO: EEE */
2383 if (eeep != NULL)
2384 *eeep = AQ_EEE_DISABLE;
2385
2386 return 0;
2387 }
2388
2389 static int
2390 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2391 uint32_t timeout_ms, uint32_t try_count)
2392 {
2393 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2394 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2395 int error;
2396
2397 /* First, check that control and state values are consistent */
2398 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2399 device_printf(sc->sc_dev,
2400 "fw2x> MPI control (%#llx) and state (%#llx)"
2401 " are not consistent for mask %#llx!\n",
2402 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2403 (unsigned long long)mask);
2404 return EINVAL;
2405 }
2406
2407 /* Invert bits (toggle) in control register */
2408 mpi_ctrl ^= mask;
2409 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2410
2411 /* Clear all bits except masked */
2412 mpi_ctrl &= mask;
2413
2414 /* Wait for FW reflecting change in state register */
2415 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2416 1000 * timeout_ms, try_count, &error);
2417 if (error != 0) {
2418 device_printf(sc->sc_dev,
2419 "f/w2x> timeout while waiting for response"
2420 " in state register for bit %#llx!",
2421 (unsigned long long)mask);
2422 return error;
2423 }
2424 return 0;
2425 }
2426
2427 static int
2428 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2429 {
2430 int error;
2431
2432 AQ_MPI_LOCK(sc);
2433 /* Say to F/W to update the statistics */
2434 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2435 if (error != 0) {
2436 device_printf(sc->sc_dev,
2437 "fw2x> statistics update error %d\n", error);
2438 goto failure;
2439 }
2440
2441 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2442 error = aq_fw_downld_dwords(sc,
2443 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2444 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2445 if (error != 0) {
2446 device_printf(sc->sc_dev,
2447 "fw2x> download statistics data FAILED, error %d", error);
2448 goto failure;
2449 }
2450 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2451 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2452
2453 failure:
2454 AQ_MPI_UNLOCK(sc);
2455 return error;
2456 }
2457
2458 #if NSYSMON_ENVSYS > 0
2459 static int
2460 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2461 {
2462 int error;
2463 uint32_t value, celsius;
2464
2465 AQ_MPI_LOCK(sc);
2466
2467 /* Say to F/W to update the temperature */
2468 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2469 if (error != 0)
2470 goto failure;
2471
2472 error = aq_fw_downld_dwords(sc,
2473 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2474 &value, sizeof(value) / sizeof(uint32_t));
2475 if (error != 0)
2476 goto failure;
2477
2478 /* 1/256 decrees C to microkelvin */
2479 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2480 if (celsius == 0) {
2481 error = EIO;
2482 goto failure;
2483 }
2484 *temp = celsius * (1000000 / 256) + 273150000;
2485
2486 failure:
2487 AQ_MPI_UNLOCK(sc);
2488 return 0;
2489 }
2490 #endif
2491
2492 static int
2493 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2494 uint32_t cnt)
2495 {
2496 uint32_t v;
2497 int error = 0;
2498
2499 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2500 if (error != 0) {
2501 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2502 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2503 if (v == 0) {
2504 device_printf(sc->sc_dev,
2505 "%s:%d: timeout\n", __func__, __LINE__);
2506 return ETIMEDOUT;
2507 }
2508 }
2509
2510 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2511
2512 error = 0;
2513 for (; cnt > 0 && error == 0; cnt--) {
2514 /* execute mailbox interface */
2515 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2516 AQ_FW_MBOX_CMD_EXECUTE, 1);
2517 if (sc->sc_features & FEATURES_REV_B1) {
2518 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2519 1, 1000, &error);
2520 } else {
2521 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2522 AQ_FW_MBOX_CMD_BUSY) == 0,
2523 1, 1000, &error);
2524 }
2525 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2526 addr += sizeof(uint32_t);
2527 }
2528 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2529
2530 if (error != 0)
2531 device_printf(sc->sc_dev,
2532 "%s:%d: timeout\n", __func__, __LINE__);
2533
2534 return error;
2535 }
2536
2537 /* read my mac address */
2538 static int
2539 aq_get_mac_addr(struct aq_softc *sc)
2540 {
2541 uint32_t mac_addr[2];
2542 uint32_t efuse_shadow_addr;
2543 int err;
2544
2545 efuse_shadow_addr = 0;
2546 if (FW_VERSION_MAJOR(sc) >= 2)
2547 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2548 else
2549 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2550
2551 if (efuse_shadow_addr == 0) {
2552 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2553 return ENXIO;
2554 }
2555
2556 memset(mac_addr, 0, sizeof(mac_addr));
2557 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2558 mac_addr, __arraycount(mac_addr));
2559 if (err < 0)
2560 return err;
2561
2562 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2563 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2564 return ENXIO;
2565 }
2566
2567 mac_addr[0] = bswap32(mac_addr[0]);
2568 mac_addr[1] = bswap32(mac_addr[1]);
2569
2570 memcpy(sc->sc_enaddr.ether_addr_octet,
2571 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2572 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2573 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2574
2575 return 0;
2576 }
2577
2578 /* set multicast filter. index 0 for own address */
2579 static int
2580 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2581 {
2582 uint32_t h, l;
2583
2584 if (index >= AQ_HW_MAC_NUM)
2585 return EINVAL;
2586
2587 if (enaddr == NULL) {
2588 /* disable */
2589 AQ_WRITE_REG_BIT(sc,
2590 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2591 return 0;
2592 }
2593
2594 h = (enaddr[0] << 8) | (enaddr[1]);
2595 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2596 (enaddr[4] << 8) | (enaddr[5]);
2597
2598 /* disable, set, and enable */
2599 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2600 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2601 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2602 RPF_L2UC_MSW_MACADDR_HI, h);
2603 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2604 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2605
2606 return 0;
2607 }
2608
2609 static int
2610 aq_set_capability(struct aq_softc *sc)
2611 {
2612 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2613 int ip4csum_tx =
2614 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2615 int ip4csum_rx =
2616 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2617 int l4csum_tx = ((ifp->if_capenable &
2618 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2619 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2620 int l4csum_rx =
2621 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2622 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2623 uint32_t lso =
2624 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2625 0 : 0xffffffff;
2626 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2627 0 : 0xffffffff;
2628 uint32_t i, v;
2629
2630 /* TX checksums offloads*/
2631 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2632 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2633
2634 /* RX checksums offloads*/
2635 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2636 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2637
2638 /* LSO offloads*/
2639 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2640
2641 #define AQ_B0_LRO_RXD_MAX 16
2642 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2643 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2644 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2645 for (i = 0; i < AQ_RINGS_NUM; i++) {
2646 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2647 RPO_LRO_LDES_MAX_MASK(i), v);
2648 }
2649
2650 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2651 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2652 RPO_LRO_INACTIVE_IVAL, 0);
2653 /*
2654 * the LRO timebase divider is 5 uS (0x61a),
2655 * to get a maximum coalescing interval of 250 uS,
2656 * we need to multiply by 50(0x32) to get
2657 * the default value 250 uS
2658 */
2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2660 RPO_LRO_MAX_COALESCING_IVAL, 50);
2661 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2662 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2663 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2664 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2665 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2666 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2667 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2668 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2669 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2670 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2671
2672 return 0;
2673 }
2674
2675 static int
2676 aq_set_filter(struct aq_softc *sc)
2677 {
2678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2679 struct ethercom *ec = &sc->sc_ethercom;
2680 struct ether_multi *enm;
2681 struct ether_multistep step;
2682 int idx, error = 0;
2683
2684 if (ifp->if_flags & IFF_PROMISC) {
2685 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2686 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2687 ec->ec_flags |= ETHER_F_ALLMULTI;
2688 goto done;
2689 }
2690
2691 /* clear all table */
2692 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2693 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2694 continue;
2695 aq_set_mac_addr(sc, idx, NULL);
2696 }
2697
2698 /* don't accept all multicast */
2699 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2700 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2701 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2702 RPF_MCAST_FILTER_EN, 0);
2703
2704 idx = 0;
2705 ETHER_LOCK(ec);
2706 ETHER_FIRST_MULTI(step, ec, enm);
2707 while (enm != NULL) {
2708 if (idx == AQ_HW_MAC_OWN)
2709 idx++;
2710
2711 if ((idx >= AQ_HW_MAC_NUM) ||
2712 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2713 /*
2714 * too many filters.
2715 * fallback to accept all multicast addresses.
2716 */
2717 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2718 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2719 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2720 RPF_MCAST_FILTER_EN, 1);
2721 ec->ec_flags |= ETHER_F_ALLMULTI;
2722 ETHER_UNLOCK(ec);
2723 goto done;
2724 }
2725
2726 /* add a filter */
2727 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2728
2729 ETHER_NEXT_MULTI(step, enm);
2730 }
2731 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2732 ETHER_UNLOCK(ec);
2733
2734 done:
2735 return error;
2736 }
2737
2738 static int
2739 aq_ifmedia_change(struct ifnet * const ifp)
2740 {
2741 struct aq_softc *sc = ifp->if_softc;
2742 aq_link_speed_t rate = AQ_LINK_NONE;
2743 aq_link_fc_t fc = AQ_FC_NONE;
2744 aq_link_eee_t eee = AQ_EEE_DISABLE;
2745
2746 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2747 return EINVAL;
2748
2749 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2750 case IFM_AUTO:
2751 rate = AQ_LINK_AUTO;
2752 break;
2753 case IFM_NONE:
2754 rate = AQ_LINK_NONE;
2755 break;
2756 case IFM_100_TX:
2757 rate = AQ_LINK_100M;
2758 break;
2759 case IFM_1000_T:
2760 rate = AQ_LINK_1G;
2761 break;
2762 case IFM_2500_T:
2763 rate = AQ_LINK_2G5;
2764 break;
2765 case IFM_5000_T:
2766 rate = AQ_LINK_5G;
2767 break;
2768 case IFM_10G_T:
2769 rate = AQ_LINK_10G;
2770 break;
2771 default:
2772 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2773 IFM_SUBTYPE(sc->sc_media.ifm_media));
2774 return ENODEV;
2775 }
2776
2777 if (sc->sc_media.ifm_media & IFM_FLOW)
2778 fc = AQ_FC_ALL;
2779
2780 /* XXX: todo EEE */
2781
2782 /* re-initialize hardware with new parameters */
2783 aq_set_linkmode(sc, rate, fc, eee);
2784
2785 return 0;
2786 }
2787
2788 static void
2789 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2790 {
2791 struct aq_softc *sc = ifp->if_softc;
2792
2793 /* update ifm_active */
2794 ifmr->ifm_active = IFM_ETHER;
2795 if (sc->sc_link_fc & AQ_FC_RX)
2796 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2797 if (sc->sc_link_fc & AQ_FC_TX)
2798 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2799
2800 switch (sc->sc_link_rate) {
2801 case AQ_LINK_100M:
2802 /* XXX: need to detect fulldup or halfdup */
2803 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2804 break;
2805 case AQ_LINK_1G:
2806 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2807 break;
2808 case AQ_LINK_2G5:
2809 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2810 break;
2811 case AQ_LINK_5G:
2812 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2813 break;
2814 case AQ_LINK_10G:
2815 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2816 break;
2817 default:
2818 ifmr->ifm_active |= IFM_NONE;
2819 break;
2820 }
2821
2822 /* update ifm_status */
2823 ifmr->ifm_status = IFM_AVALID;
2824 if (sc->sc_link_rate != AQ_LINK_NONE)
2825 ifmr->ifm_status |= IFM_ACTIVE;
2826 }
2827
2828 static void
2829 aq_initmedia(struct aq_softc *sc)
2830 {
2831 #define IFMEDIA_ETHER_ADD(sc, media) \
2832 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2833
2834 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2835 if (sc->sc_available_rates & AQ_LINK_100M) {
2836 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2837 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2838 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2839 }
2840 if (sc->sc_available_rates & AQ_LINK_1G) {
2841 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2842 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2843 }
2844 if (sc->sc_available_rates & AQ_LINK_2G5) {
2845 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2846 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2847 }
2848 if (sc->sc_available_rates & AQ_LINK_5G) {
2849 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2850 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2851 }
2852 if (sc->sc_available_rates & AQ_LINK_10G) {
2853 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2854 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2855 }
2856 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2857 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2858
2859 /* default: auto without flowcontrol */
2860 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2861 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2862 }
2863
2864 static int
2865 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2866 aq_link_eee_t eee)
2867 {
2868 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2869 }
2870
2871 static int
2872 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2873 aq_link_eee_t *eee)
2874 {
2875 aq_hw_fw_mpi_state_t mode;
2876 int error;
2877
2878 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2879 if (error != 0)
2880 return error;
2881 if (mode != MPI_INIT)
2882 return ENXIO;
2883
2884 return 0;
2885 }
2886
2887 static void
2888 aq_hw_init_tx_path(struct aq_softc *sc)
2889 {
2890 /* Tx TC/RSS number config */
2891 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2892
2893 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2894 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2895 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2896 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2897 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2898 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2899
2900 /* misc */
2901 AQ_WRITE_REG(sc, TX_TPO2_REG,
2902 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2903 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2904 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2905
2906 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2907 }
2908
2909 static void
2910 aq_hw_init_rx_path(struct aq_softc *sc)
2911 {
2912 int i;
2913
2914 /* clear setting */
2915 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2916 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2917 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2918 for (i = 0; i < 32; i++) {
2919 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2920 RPF_ETHERTYPE_FILTER_EN, 0);
2921 }
2922
2923 if (sc->sc_rss_enable) {
2924 /* Rx TC/RSS number config */
2925 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2926
2927 /* Rx flow control */
2928 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2929
2930 /* RSS Ring selection */
2931 switch (sc->sc_nqueues) {
2932 case 2:
2933 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2934 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2935 break;
2936 case 4:
2937 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2938 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2939 break;
2940 case 8:
2941 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2942 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2943 break;
2944 }
2945 }
2946
2947 /* L2 and Multicast filters */
2948 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2949 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2950 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2951 RPF_ACTION_HOST);
2952 }
2953 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2954 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2955
2956 /* Vlan filters */
2957 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2958 ETHERTYPE_QINQ);
2959 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2960 ETHERTYPE_VLAN);
2961 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2962
2963 if (sc->sc_features & FEATURES_REV_B) {
2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2965 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2966 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2967 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2968 }
2969
2970 /* misc */
2971 if (sc->sc_features & FEATURES_RPF2)
2972 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2973 else
2974 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2975
2976 /*
2977 * XXX: RX_TCP_RSS_HASH_REG:
2978 * linux set 0x000f0000
2979 * freebsd set 0x000f001e
2980 */
2981 /* RSS hash type set for IP/TCP */
2982 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2983 RX_TCP_RSS_HASH_TYPE, 0x001e);
2984
2985 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2986 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2987 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2988
2989 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2990 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2991 }
2992
2993 static void
2994 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2995 {
2996 int i;
2997
2998 if (sc->sc_intr_moderation_enable) {
2999 unsigned int tx_min, rx_min; /* 0-255 */
3000 unsigned int tx_max, rx_max; /* 0-511? */
3001
3002 switch (sc->sc_link_rate) {
3003 case AQ_LINK_100M:
3004 tx_min = 0x4f;
3005 tx_max = 0xff;
3006 rx_min = 0x04;
3007 rx_max = 0x50;
3008 break;
3009 case AQ_LINK_1G:
3010 default:
3011 tx_min = 0x4f;
3012 tx_max = 0xff;
3013 rx_min = 0x30;
3014 rx_max = 0x80;
3015 break;
3016 case AQ_LINK_2G5:
3017 tx_min = 0x4f;
3018 tx_max = 0xff;
3019 rx_min = 0x18;
3020 rx_max = 0xe0;
3021 break;
3022 case AQ_LINK_5G:
3023 tx_min = 0x4f;
3024 tx_max = 0xff;
3025 rx_min = 0x0c;
3026 rx_max = 0x70;
3027 break;
3028 case AQ_LINK_10G:
3029 tx_min = 0x4f;
3030 tx_max = 0x1ff;
3031 rx_min = 0x06; /* freebsd use 80 */
3032 rx_max = 0x38; /* freebsd use 120 */
3033 break;
3034 }
3035
3036 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3037 TX_DMA_INT_DESC_WRWB_EN, 0);
3038 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3039 TX_DMA_INT_DESC_MODERATE_EN, 1);
3040 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3041 RX_DMA_INT_DESC_WRWB_EN, 0);
3042 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3043 RX_DMA_INT_DESC_MODERATE_EN, 1);
3044
3045 for (i = 0; i < AQ_RINGS_NUM; i++) {
3046 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3047 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3048 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3049 TX_INTR_MODERATION_CTL_EN);
3050 }
3051 for (i = 0; i < AQ_RINGS_NUM; i++) {
3052 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3053 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3054 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3055 RX_INTR_MODERATION_CTL_EN);
3056 }
3057
3058 } else {
3059 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3060 TX_DMA_INT_DESC_WRWB_EN, 1);
3061 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3062 TX_DMA_INT_DESC_MODERATE_EN, 0);
3063 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3064 RX_DMA_INT_DESC_WRWB_EN, 1);
3065 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3066 RX_DMA_INT_DESC_MODERATE_EN, 0);
3067
3068 for (i = 0; i < AQ_RINGS_NUM; i++) {
3069 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3070 }
3071 for (i = 0; i < AQ_RINGS_NUM; i++) {
3072 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3073 }
3074 }
3075 }
3076
3077 static void
3078 aq_hw_qos_set(struct aq_softc *sc)
3079 {
3080 uint32_t tc = 0;
3081 uint32_t buff_size;
3082
3083 /* TPS Descriptor rate init */
3084 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3085 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3086
3087 /* TPS VM init */
3088 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3089
3090 /* TPS TC credits init */
3091 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3092 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3093
3094 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3095 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3096 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3097 TPS_DATA_TCT_WEIGHT, 0x64);
3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3099 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3100 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3101 TPS_DESC_TCT_WEIGHT, 0x1e);
3102
3103 /* Tx buf size */
3104 tc = 0;
3105 buff_size = AQ_HW_TXBUF_MAX;
3106 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3107 buff_size);
3108 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3109 (buff_size * (1024 / 32) * 66) / 100);
3110 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3111 (buff_size * (1024 / 32) * 50) / 100);
3112
3113 /* QoS Rx buf size per TC */
3114 tc = 0;
3115 buff_size = AQ_HW_RXBUF_MAX;
3116 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3117 buff_size);
3118 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3119 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3120 (buff_size * (1024 / 32) * 66) / 100);
3121 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3122 (buff_size * (1024 / 32) * 50) / 100);
3123
3124 /* QoS 802.1p priority -> TC mapping */
3125 int i_priority;
3126 for (i_priority = 0; i_priority < 8; i_priority++) {
3127 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3128 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3129 }
3130 }
3131
3132 /* called once from aq_attach */
3133 static int
3134 aq_init_rss(struct aq_softc *sc)
3135 {
3136 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3137 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3138 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3139 unsigned int i;
3140 int error;
3141
3142 /* initialize rss key */
3143 rss_getkey((uint8_t *)rss_key);
3144
3145 /* hash to ring table */
3146 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3147 rss_table[i] = i % sc->sc_nqueues;
3148 }
3149
3150 /*
3151 * set rss key
3152 */
3153 for (i = 0; i < __arraycount(rss_key); i++) {
3154 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3155 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3156 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3157 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3158 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3159 RPF_RSS_KEY_WR_EN, 1);
3160 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3161 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3162 if (error != 0) {
3163 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3164 __func__);
3165 goto rss_set_timeout;
3166 }
3167 }
3168
3169 /*
3170 * set rss indirection table
3171 *
3172 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3173 * we'll make it by __BITMAP(3) macros.
3174 */
3175 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3176 __BITMAP_ZERO(&bit3x64);
3177
3178 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3179 do { \
3180 if (val & 1) { \
3181 __BITMAP_SET((idx) * 3, (bitmap)); \
3182 } else { \
3183 __BITMAP_CLR((idx) * 3, (bitmap)); \
3184 } \
3185 if (val & 2) { \
3186 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3187 } else { \
3188 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3189 } \
3190 if (val & 4) { \
3191 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3192 } else { \
3193 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3194 } \
3195 } while (0 /* CONSTCOND */)
3196
3197 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3198 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3199 }
3200
3201 /* write 192bit data in steps of 16bit */
3202 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3203 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3204 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3205 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3206 RPF_RSS_REDIR_ADDR, i);
3207 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3208 RPF_RSS_REDIR_WR_EN, 1);
3209
3210 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3211 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3212 if (error != 0)
3213 break;
3214 }
3215
3216 rss_set_timeout:
3217 return error;
3218 }
3219
3220 static void
3221 aq_hw_l3_filter_set(struct aq_softc *sc)
3222 {
3223 int i;
3224
3225 /* clear all filter */
3226 for (i = 0; i < 8; i++) {
3227 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3228 RPF_L3_FILTER_L4_EN, 0);
3229 }
3230 }
3231
3232 static void
3233 aq_set_vlan_filters(struct aq_softc *sc)
3234 {
3235 struct ethercom *ec = &sc->sc_ethercom;
3236 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3237 struct vlanid_list *vlanidp;
3238 int i;
3239
3240 ETHER_LOCK(ec);
3241
3242 /* disable all vlan filters */
3243 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3244 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3245
3246 /* count VID */
3247 i = 0;
3248 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3249 i++;
3250
3251 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3252 (ifp->if_flags & IFF_PROMISC) ||
3253 (i > RPF_VLAN_MAX_FILTERS)) {
3254 /*
3255 * no vlan hwfilter, in promiscuous mode, or too many VID?
3256 * must receive all VID
3257 */
3258 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3259 RPF_VLAN_MODE_PROMISC, 1);
3260 goto done;
3261 }
3262
3263 /* receive only selected VID */
3264 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3265 i = 0;
3266 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3267 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3268 RPF_VLAN_FILTER_EN, 1);
3269 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3270 RPF_VLAN_FILTER_RXQ_EN, 0);
3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3272 RPF_VLAN_FILTER_RXQ, 0);
3273 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3274 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3275 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3276 RPF_VLAN_FILTER_ID, vlanidp->vid);
3277 i++;
3278 }
3279
3280 done:
3281 ETHER_UNLOCK(ec);
3282 }
3283
3284 static int
3285 aq_hw_init(struct aq_softc *sc)
3286 {
3287 uint32_t v;
3288
3289 /* Force limit MRRS on RDM/TDM to 2K */
3290 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3291 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3292
3293 /*
3294 * TX DMA total request limit. B0 hardware is not capable to
3295 * handle more than (8K-MRRS) incoming DMA data.
3296 * Value 24 in 256byte units
3297 */
3298 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3299
3300 aq_hw_init_tx_path(sc);
3301 aq_hw_init_rx_path(sc);
3302
3303 aq_hw_interrupt_moderation_set(sc);
3304
3305 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3306 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3307
3308 aq_hw_qos_set(sc);
3309
3310 /* Enable interrupt */
3311 int irqmode;
3312 if (sc->sc_msix)
3313 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3314 else
3315 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3316
3317 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3318 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3319 sc->sc_msix ? 1 : 0);
3320 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3321
3322 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3323
3324 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3325 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3326 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3327 );
3328
3329 /* link interrupt */
3330 if (!sc->sc_msix)
3331 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3332 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3333 __BIT(7) | sc->sc_linkstat_irq);
3334
3335 return 0;
3336 }
3337
3338 static int
3339 aq_update_link_status(struct aq_softc *sc)
3340 {
3341 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3342 aq_link_speed_t rate = AQ_LINK_NONE;
3343 aq_link_fc_t fc = AQ_FC_NONE;
3344 aq_link_eee_t eee = AQ_EEE_DISABLE;
3345 unsigned int speed;
3346 int changed = 0;
3347
3348 aq_get_linkmode(sc, &rate, &fc, &eee);
3349
3350 if (sc->sc_link_rate != rate)
3351 changed = 1;
3352 if (sc->sc_link_fc != fc)
3353 changed = 1;
3354 if (sc->sc_link_eee != eee)
3355 changed = 1;
3356
3357 if (changed) {
3358 switch (rate) {
3359 case AQ_LINK_100M:
3360 speed = 100;
3361 break;
3362 case AQ_LINK_1G:
3363 speed = 1000;
3364 break;
3365 case AQ_LINK_2G5:
3366 speed = 2500;
3367 break;
3368 case AQ_LINK_5G:
3369 speed = 5000;
3370 break;
3371 case AQ_LINK_10G:
3372 speed = 10000;
3373 break;
3374 case AQ_LINK_NONE:
3375 default:
3376 speed = 0;
3377 break;
3378 }
3379
3380 if (sc->sc_link_rate == AQ_LINK_NONE) {
3381 /* link DOWN -> UP */
3382 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3383 speed);
3384 if_link_state_change(ifp, LINK_STATE_UP);
3385 } else if (rate == AQ_LINK_NONE) {
3386 /* link UP -> DOWN */
3387 device_printf(sc->sc_dev, "link is DOWN\n");
3388 if_link_state_change(ifp, LINK_STATE_DOWN);
3389 } else {
3390 device_printf(sc->sc_dev,
3391 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3392 speed, fc, eee);
3393 }
3394
3395 sc->sc_link_rate = rate;
3396 sc->sc_link_fc = fc;
3397 sc->sc_link_eee = eee;
3398
3399 /* update interrupt timing according to new link speed */
3400 aq_hw_interrupt_moderation_set(sc);
3401 }
3402
3403 return changed;
3404 }
3405
3406 #ifdef AQ_EVENT_COUNTERS
3407 static void
3408 aq_update_statistics(struct aq_softc *sc)
3409 {
3410 int prev = sc->sc_statistics_idx;
3411 int cur = prev ^ 1;
3412
3413 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3414
3415 /*
3416 * aq's internal statistics counter is 32bit.
3417 * cauculate delta, and add to evcount
3418 */
3419 #define ADD_DELTA(cur, prev, name) \
3420 do { \
3421 uint32_t n; \
3422 n = (uint32_t)(sc->sc_statistics[cur].name - \
3423 sc->sc_statistics[prev].name); \
3424 if (n != 0) { \
3425 AQ_EVCNT_ADD(sc, name, n); \
3426 } \
3427 } while (/*CONSTCOND*/0);
3428
3429 ADD_DELTA(cur, prev, uprc);
3430 ADD_DELTA(cur, prev, mprc);
3431 ADD_DELTA(cur, prev, bprc);
3432 ADD_DELTA(cur, prev, prc);
3433 ADD_DELTA(cur, prev, erpr);
3434 ADD_DELTA(cur, prev, uptc);
3435 ADD_DELTA(cur, prev, mptc);
3436 ADD_DELTA(cur, prev, bptc);
3437 ADD_DELTA(cur, prev, ptc);
3438 ADD_DELTA(cur, prev, erpt);
3439 ADD_DELTA(cur, prev, mbtc);
3440 ADD_DELTA(cur, prev, bbtc);
3441 ADD_DELTA(cur, prev, mbrc);
3442 ADD_DELTA(cur, prev, bbrc);
3443 ADD_DELTA(cur, prev, ubrc);
3444 ADD_DELTA(cur, prev, ubtc);
3445 ADD_DELTA(cur, prev, dpc);
3446 ADD_DELTA(cur, prev, cprc);
3447
3448 sc->sc_statistics_idx = cur;
3449 }
3450 #endif /* AQ_EVENT_COUNTERS */
3451
3452 /* allocate and map one DMA block */
3453 static int
3454 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3455 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3456 {
3457 int nsegs, error;
3458
3459 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3460 1, &nsegs, 0)) != 0) {
3461 aprint_error_dev(sc->sc_dev,
3462 "unable to allocate DMA buffer, error=%d\n", error);
3463 goto fail_alloc;
3464 }
3465
3466 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3467 BUS_DMA_COHERENT)) != 0) {
3468 aprint_error_dev(sc->sc_dev,
3469 "unable to map DMA buffer, error=%d\n", error);
3470 goto fail_map;
3471 }
3472
3473 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3474 0, mapp)) != 0) {
3475 aprint_error_dev(sc->sc_dev,
3476 "unable to create DMA map, error=%d\n", error);
3477 goto fail_create;
3478 }
3479
3480 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3481 0)) != 0) {
3482 aprint_error_dev(sc->sc_dev,
3483 "unable to load DMA map, error=%d\n", error);
3484 goto fail_load;
3485 }
3486
3487 *sizep = size;
3488 return 0;
3489
3490 fail_load:
3491 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3492 *mapp = NULL;
3493 fail_create:
3494 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3495 *addrp = NULL;
3496 fail_map:
3497 bus_dmamem_free(sc->sc_dmat, seg, 1);
3498 memset(seg, 0, sizeof(*seg));
3499 fail_alloc:
3500 *sizep = 0;
3501 return error;
3502 }
3503
3504 static void
3505 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3506 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3507 {
3508 if (*mapp != NULL) {
3509 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3510 *mapp = NULL;
3511 }
3512 if (*addrp != NULL) {
3513 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3514 *addrp = NULL;
3515 }
3516 if (*sizep != 0) {
3517 bus_dmamem_free(sc->sc_dmat, seg, 1);
3518 memset(seg, 0, sizeof(*seg));
3519 *sizep = 0;
3520 }
3521 }
3522
3523 static int
3524 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3525 {
3526 int i, error;
3527
3528 /* allocate tx descriptors */
3529 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3530 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3531 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3532 if (error != 0)
3533 return error;
3534
3535 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3536
3537 /* fill tx ring with dmamap */
3538 for (i = 0; i < AQ_TXD_NUM; i++) {
3539 #define AQ_MAXDMASIZE (16 * 1024)
3540 #define AQ_NTXSEGS 32
3541 /* XXX: TODO: error check */
3542 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3543 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3544 }
3545 return 0;
3546 }
3547
3548 static void
3549 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3550 {
3551 int i;
3552
3553 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3554 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3555
3556 for (i = 0; i < AQ_TXD_NUM; i++) {
3557 if (txring->txr_mbufs[i].dmamap != NULL) {
3558 if (txring->txr_mbufs[i].m != NULL) {
3559 bus_dmamap_unload(sc->sc_dmat,
3560 txring->txr_mbufs[i].dmamap);
3561 m_freem(txring->txr_mbufs[i].m);
3562 txring->txr_mbufs[i].m = NULL;
3563 }
3564 bus_dmamap_destroy(sc->sc_dmat,
3565 txring->txr_mbufs[i].dmamap);
3566 txring->txr_mbufs[i].dmamap = NULL;
3567 }
3568 }
3569 }
3570
3571 static int
3572 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3573 {
3574 int i, error;
3575
3576 /* allocate rx descriptors */
3577 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3578 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3579 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3580 if (error != 0)
3581 return error;
3582
3583 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3584
3585 /* fill rxring with dmamaps */
3586 for (i = 0; i < AQ_RXD_NUM; i++) {
3587 rxring->rxr_mbufs[i].m = NULL;
3588 /* XXX: TODO: error check */
3589 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3590 &rxring->rxr_mbufs[i].dmamap);
3591 }
3592 return 0;
3593 }
3594
3595 static void
3596 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3597 {
3598 int i;
3599
3600 /* free all mbufs allocated for RX */
3601 for (i = 0; i < AQ_RXD_NUM; i++) {
3602 if (rxring->rxr_mbufs[i].m != NULL) {
3603 bus_dmamap_unload(sc->sc_dmat,
3604 rxring->rxr_mbufs[i].dmamap);
3605 m_freem(rxring->rxr_mbufs[i].m);
3606 rxring->rxr_mbufs[i].m = NULL;
3607 }
3608 }
3609 }
3610
3611 static void
3612 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3613 {
3614 int i;
3615
3616 /* free all mbufs and dmamaps */
3617 aq_rxdrain(sc, rxring);
3618 for (i = 0; i < AQ_RXD_NUM; i++) {
3619 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3620 bus_dmamap_destroy(sc->sc_dmat,
3621 rxring->rxr_mbufs[i].dmamap);
3622 rxring->rxr_mbufs[i].dmamap = NULL;
3623 }
3624 }
3625
3626 /* free RX descriptor */
3627 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3628 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3629 }
3630
3631 static void
3632 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3633 struct mbuf *m)
3634 {
3635 int error;
3636
3637 /* if mbuf already exists, unload and free */
3638 if (rxring->rxr_mbufs[idx].m != NULL) {
3639 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3640 m_freem(rxring->rxr_mbufs[idx].m);
3641 rxring->rxr_mbufs[idx].m = NULL;
3642 }
3643
3644 rxring->rxr_mbufs[idx].m = m;
3645
3646 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3647 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3648 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3649 if (error) {
3650 device_printf(sc->sc_dev,
3651 "unable to load rx DMA map %d, error = %d\n", idx, error);
3652 panic("%s: unable to load rx DMA map. error=%d",
3653 __func__, error);
3654 }
3655 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3656 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3657 }
3658
3659 static inline void
3660 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3661 {
3662 /* refill rxdesc, and sync */
3663 rxring->rxr_rxdesc[idx].read.buf_addr =
3664 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3665 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3666 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3667 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3668 BUS_DMASYNC_PREWRITE);
3669 }
3670
3671 static struct mbuf *
3672 aq_alloc_mbuf(void)
3673 {
3674 struct mbuf *m;
3675
3676 MGETHDR(m, M_DONTWAIT, MT_DATA);
3677 if (m == NULL)
3678 return NULL;
3679
3680 MCLGET(m, M_DONTWAIT);
3681 if ((m->m_flags & M_EXT) == 0) {
3682 m_freem(m);
3683 return NULL;
3684 }
3685
3686 return m;
3687 }
3688
3689 /* allocate mbuf and unload dmamap */
3690 static int
3691 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3692 {
3693 struct mbuf *m;
3694
3695 m = aq_alloc_mbuf();
3696 if (m == NULL)
3697 return ENOBUFS;
3698
3699 aq_rxring_setmbuf(sc, rxring, idx, m);
3700 return 0;
3701 }
3702
3703 static int
3704 aq_txrx_rings_alloc(struct aq_softc *sc)
3705 {
3706 int n, error;
3707
3708 for (n = 0; n < sc->sc_nqueues; n++) {
3709 sc->sc_queue[n].sc = sc;
3710 sc->sc_queue[n].txring.txr_sc = sc;
3711 sc->sc_queue[n].txring.txr_index = n;
3712 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3713 IPL_NET);
3714 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3715 if (error != 0)
3716 goto failure;
3717
3718 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3719 if (error != 0)
3720 goto failure;
3721
3722 sc->sc_queue[n].rxring.rxr_sc = sc;
3723 sc->sc_queue[n].rxring.rxr_index = n;
3724 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3725 IPL_NET);
3726 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3727 if (error != 0)
3728 break;
3729 }
3730
3731 failure:
3732 return error;
3733 }
3734
3735 static void
3736 aq_txrx_rings_free(struct aq_softc *sc)
3737 {
3738 int n;
3739
3740 for (n = 0; n < sc->sc_nqueues; n++) {
3741 aq_txring_free(sc, &sc->sc_queue[n].txring);
3742 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3743
3744 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3745
3746 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3747 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3748 }
3749 }
3750
3751 static int
3752 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3753 {
3754 int error = 0;
3755 txring->txr_softint = NULL;
3756
3757 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3758 if (txring->txr_pcq == NULL) {
3759 aprint_error_dev(sc->sc_dev,
3760 "unable to allocate pcq for TXring[%d]\n",
3761 txring->txr_index);
3762 error = ENOMEM;
3763 goto done;
3764 }
3765
3766 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3767 aq_deferred_transmit, txring);
3768 if (txring->txr_softint == NULL) {
3769 aprint_error_dev(sc->sc_dev,
3770 "unable to establish softint for TXring[%d]\n",
3771 txring->txr_index);
3772 error = ENOENT;
3773 }
3774
3775 done:
3776 return error;
3777 }
3778
3779 static void
3780 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3781 {
3782 struct mbuf *m;
3783
3784 if (txring->txr_softint != NULL) {
3785 softint_disestablish(txring->txr_softint);
3786 txring->txr_softint = NULL;
3787 }
3788
3789 if (txring->txr_pcq != NULL) {
3790 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3791 m_freem(m);
3792 pcq_destroy(txring->txr_pcq);
3793 txring->txr_pcq = NULL;
3794 }
3795 }
3796
3797 #if NSYSMON_ENVSYS > 0
3798 static void
3799 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3800 {
3801 struct aq_softc *sc;
3802 uint32_t temp;
3803 int error;
3804
3805 sc = sme->sme_cookie;
3806
3807 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3808 if (error == 0) {
3809 edata->value_cur = temp;
3810 edata->state = ENVSYS_SVALID;
3811 } else {
3812 edata->state = ENVSYS_SINVALID;
3813 }
3814 }
3815 #endif
3816
3817 static void
3818 aq_tick(void *arg)
3819 {
3820 struct aq_softc *sc = arg;
3821
3822 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3823 sc->sc_detect_linkstat = false;
3824 aq_update_link_status(sc);
3825 }
3826
3827 #ifdef AQ_EVENT_COUNTERS
3828 if (sc->sc_poll_statistics)
3829 aq_update_statistics(sc);
3830 #endif
3831
3832 if (sc->sc_poll_linkstat
3833 #ifdef AQ_EVENT_COUNTERS
3834 || sc->sc_poll_statistics
3835 #endif
3836 ) {
3837 callout_schedule(&sc->sc_tick_ch, hz);
3838 }
3839 }
3840
3841 /* interrupt enable/disable */
3842 static void
3843 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3844 {
3845 uint32_t imask = 0;
3846 int i;
3847
3848 if (txrx) {
3849 for (i = 0; i < sc->sc_nqueues; i++) {
3850 imask |= __BIT(sc->sc_tx_irq[i]);
3851 imask |= __BIT(sc->sc_rx_irq[i]);
3852 }
3853 }
3854
3855 if (link)
3856 imask |= __BIT(sc->sc_linkstat_irq);
3857
3858 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3859 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3860 }
3861
3862 static int
3863 aq_legacy_intr(void *arg)
3864 {
3865 struct aq_softc *sc = arg;
3866 uint32_t status;
3867 int nintr = 0;
3868
3869 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3870 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3871
3872 if (status & __BIT(sc->sc_linkstat_irq)) {
3873 sc->sc_detect_linkstat = true;
3874 callout_schedule(&sc->sc_tick_ch, 0);
3875 nintr++;
3876 }
3877
3878 if (status & __BIT(sc->sc_rx_irq[0])) {
3879 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3880 }
3881
3882 if (status & __BIT(sc->sc_tx_irq[0])) {
3883 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3884 }
3885
3886 return nintr;
3887 }
3888
3889 static int
3890 aq_txrx_intr(void *arg)
3891 {
3892 struct aq_queue *queue = arg;
3893 struct aq_softc *sc = queue->sc;
3894 struct aq_txring *txring = &queue->txring;
3895 struct aq_rxring *rxring = &queue->rxring;
3896 uint32_t status;
3897 int nintr = 0;
3898 int txringidx, rxringidx, txirq, rxirq;
3899
3900 txringidx = txring->txr_index;
3901 rxringidx = rxring->rxr_index;
3902 txirq = sc->sc_tx_irq[txringidx];
3903 rxirq = sc->sc_rx_irq[rxringidx];
3904
3905 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3906 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3907 /* stray interrupt? */
3908 return 0;
3909 }
3910
3911 nintr += aq_rx_intr(rxring);
3912 nintr += aq_tx_intr(txring);
3913
3914 return nintr;
3915 }
3916
3917 static int
3918 aq_link_intr(void *arg)
3919 {
3920 struct aq_softc *sc = arg;
3921 uint32_t status;
3922 int nintr = 0;
3923
3924 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3925 if (status & __BIT(sc->sc_linkstat_irq)) {
3926 sc->sc_detect_linkstat = true;
3927 callout_schedule(&sc->sc_tick_ch, 0);
3928 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3929 __BIT(sc->sc_linkstat_irq));
3930 nintr++;
3931 }
3932
3933 return nintr;
3934 }
3935
3936 static void
3937 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3938 {
3939 const int ringidx = txring->txr_index;
3940 int i;
3941
3942 mutex_enter(&txring->txr_mutex);
3943
3944 txring->txr_prodidx = 0;
3945 txring->txr_considx = 0;
3946 txring->txr_nfree = AQ_TXD_NUM;
3947 txring->txr_active = false;
3948
3949 /* free mbufs untransmitted */
3950 for (i = 0; i < AQ_TXD_NUM; i++) {
3951 if (txring->txr_mbufs[i].m != NULL) {
3952 m_freem(txring->txr_mbufs[i].m);
3953 txring->txr_mbufs[i].m = NULL;
3954 }
3955 }
3956
3957 /* disable DMA */
3958 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3959
3960 if (start) {
3961 /* TX descriptor physical address */
3962 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3963 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3964 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3965 (uint32_t)((uint64_t)paddr >> 32));
3966
3967 /* TX descriptor size */
3968 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3969 AQ_TXD_NUM / 8);
3970
3971 /* reload TAIL pointer */
3972 txring->txr_prodidx = txring->txr_considx =
3973 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3974 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3975
3976 /* Mapping interrupt vector */
3977 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3978 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3979 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3980 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3981
3982 /* enable DMA */
3983 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3984 TX_DMA_DESC_EN, 1);
3985
3986 const int cpuid = 0; /* XXX? */
3987 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3988 TDM_DCAD_CPUID, cpuid);
3989 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3990 TDM_DCAD_CPUID_EN, 0);
3991
3992 txring->txr_active = true;
3993 }
3994
3995 mutex_exit(&txring->txr_mutex);
3996 }
3997
3998 static int
3999 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4000 {
4001 const int ringidx = rxring->rxr_index;
4002 int i;
4003 int error = 0;
4004
4005 mutex_enter(&rxring->rxr_mutex);
4006 rxring->rxr_active = false;
4007
4008 /* disable DMA */
4009 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4010
4011 /* free all RX mbufs */
4012 aq_rxdrain(sc, rxring);
4013
4014 if (start) {
4015 for (i = 0; i < AQ_RXD_NUM; i++) {
4016 error = aq_rxring_add(sc, rxring, i);
4017 if (error != 0) {
4018 aq_rxdrain(sc, rxring);
4019 return error;
4020 }
4021 aq_rxring_reset_desc(sc, rxring, i);
4022 }
4023
4024 /* RX descriptor physical address */
4025 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4026 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4027 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4028 (uint32_t)((uint64_t)paddr >> 32));
4029
4030 /* RX descriptor size */
4031 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4032 AQ_RXD_NUM / 8);
4033
4034 /* maximum receive frame size */
4035 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4036 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4037 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4038 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4039
4040 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4041 RX_DMA_DESC_HEADER_SPLIT, 0);
4042 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4043 RX_DMA_DESC_VLAN_STRIP,
4044 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4045 1 : 0);
4046
4047 /*
4048 * reload TAIL pointer, and update readidx
4049 * (HEAD pointer cannot write)
4050 */
4051 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4052 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4053 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4054 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4055
4056 /* Rx ring set mode */
4057
4058 /* Mapping interrupt vector */
4059 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4060 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4061 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4062 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4063
4064 const int cpuid = 0; /* XXX? */
4065 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4066 RX_DMA_DCAD_CPUID, cpuid);
4067 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4068 RX_DMA_DCAD_DESC_EN, 0);
4069 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4070 RX_DMA_DCAD_HEADER_EN, 0);
4071 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4072 RX_DMA_DCAD_PAYLOAD_EN, 0);
4073
4074 /* enable DMA. start receiving */
4075 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4076 RX_DMA_DESC_EN, 1);
4077
4078 rxring->rxr_active = true;
4079 }
4080
4081 mutex_exit(&rxring->rxr_mutex);
4082 return error;
4083 }
4084
4085 #define TXRING_NEXTIDX(idx) \
4086 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4087 #define RXRING_NEXTIDX(idx) \
4088 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4089
4090 static int
4091 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4092 {
4093 bus_dmamap_t map;
4094 struct mbuf *m = *mp;
4095 uint32_t ctl1, ctl1_ctx, ctl2;
4096 int idx, i, error;
4097
4098 idx = txring->txr_prodidx;
4099 map = txring->txr_mbufs[idx].dmamap;
4100
4101 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4102 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4103 if (error == EFBIG) {
4104 struct mbuf *n;
4105 n = m_defrag(m, M_DONTWAIT);
4106 if (n == NULL)
4107 return EFBIG;
4108 /* m_defrag() preserve m */
4109 KASSERT(n == m);
4110 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4111 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4112 }
4113 if (error != 0)
4114 return error;
4115
4116 /*
4117 * check spaces of free descriptors.
4118 * +1 is additional descriptor for context (vlan, etc,.)
4119 */
4120 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4121 device_printf(sc->sc_dev,
4122 "TX: not enough descriptors left %d for %d segs\n",
4123 txring->txr_nfree, map->dm_nsegs + 1);
4124 bus_dmamap_unload(sc->sc_dmat, map);
4125 return ENOBUFS;
4126 }
4127
4128 /* sync dma for mbuf */
4129 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4130 BUS_DMASYNC_PREWRITE);
4131
4132 ctl1_ctx = 0;
4133 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4134
4135 if (vlan_has_tag(m)) {
4136 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4137 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4138
4139 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4140 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4141
4142 /* fill context descriptor and forward index */
4143 txring->txr_txdesc[idx].buf_addr = 0;
4144 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4145 txring->txr_txdesc[idx].ctl2 = 0;
4146
4147 idx = TXRING_NEXTIDX(idx);
4148 txring->txr_nfree--;
4149 }
4150
4151 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4152 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4153 if (m->m_pkthdr.csum_flags &
4154 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4155 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4156 }
4157
4158 /* fill descriptor(s) */
4159 for (i = 0; i < map->dm_nsegs; i++) {
4160 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4161 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4162 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4163
4164 if (i == 0) {
4165 /* remember mbuf of these descriptors */
4166 txring->txr_mbufs[idx].m = m;
4167 } else {
4168 txring->txr_mbufs[idx].m = NULL;
4169 }
4170
4171 if (i == map->dm_nsegs - 1) {
4172 /* last segment, mark an EndOfPacket, and cause intr */
4173 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4174 }
4175
4176 txring->txr_txdesc[idx].buf_addr =
4177 htole64(map->dm_segs[i].ds_addr);
4178 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4179 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4180
4181 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4182 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4183 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4184
4185 idx = TXRING_NEXTIDX(idx);
4186 txring->txr_nfree--;
4187 }
4188
4189 txring->txr_prodidx = idx;
4190
4191 return 0;
4192 }
4193
4194 static int
4195 aq_tx_intr(void *arg)
4196 {
4197 struct aq_txring *txring = arg;
4198 struct aq_softc *sc = txring->txr_sc;
4199 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4200 struct mbuf *m;
4201 const int ringidx = txring->txr_index;
4202 unsigned int idx, hw_head, n = 0;
4203
4204 mutex_enter(&txring->txr_mutex);
4205
4206 if (!txring->txr_active)
4207 goto tx_intr_done;
4208
4209 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4210 TX_DMA_DESC_HEAD_PTR);
4211 if (hw_head == txring->txr_considx) {
4212 goto tx_intr_done;
4213 }
4214
4215 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4216
4217 for (idx = txring->txr_considx; idx != hw_head;
4218 idx = TXRING_NEXTIDX(idx), n++) {
4219
4220 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4221 bus_dmamap_unload(sc->sc_dmat,
4222 txring->txr_mbufs[idx].dmamap);
4223
4224 if_statinc_ref(nsr, if_opackets);
4225 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4226 if (m->m_flags & M_MCAST)
4227 if_statinc_ref(nsr, if_omcasts);
4228
4229 m_freem(m);
4230 txring->txr_mbufs[idx].m = NULL;
4231 }
4232
4233 txring->txr_nfree++;
4234 }
4235 txring->txr_considx = idx;
4236
4237 IF_STAT_PUTREF(ifp);
4238
4239 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4240 ifp->if_flags &= ~IFF_OACTIVE;
4241
4242 /* no more pending TX packet, cancel watchdog */
4243 if (txring->txr_nfree >= AQ_TXD_NUM)
4244 ifp->if_timer = 0;
4245
4246 tx_intr_done:
4247 mutex_exit(&txring->txr_mutex);
4248
4249 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4250 return n;
4251 }
4252
4253 static int
4254 aq_rx_intr(void *arg)
4255 {
4256 struct aq_rxring *rxring = arg;
4257 struct aq_softc *sc = rxring->rxr_sc;
4258 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4259 const int ringidx = rxring->rxr_index;
4260 aq_rx_desc_t *rxd;
4261 struct mbuf *m, *m0, *mprev, *new_m;
4262 uint32_t rxd_type, rxd_hash __unused;
4263 uint16_t rxd_status, rxd_pktlen;
4264 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4265 unsigned int idx, n = 0;
4266
4267 mutex_enter(&rxring->rxr_mutex);
4268
4269 if (!rxring->rxr_active)
4270 goto rx_intr_done;
4271
4272 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4273 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4274 goto rx_intr_done;
4275 }
4276
4277 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4278
4279 m0 = mprev = NULL;
4280 for (idx = rxring->rxr_readidx;
4281 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4282 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4283
4284 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4285 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4286 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4287
4288 rxd = &rxring->rxr_rxdesc[idx];
4289 rxd_status = le16toh(rxd->wb.status);
4290
4291 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4292 break; /* not yet done */
4293
4294 rxd_type = le32toh(rxd->wb.type);
4295 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4296 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4297 rxd_hash = le32toh(rxd->wb.rss_hash);
4298 rxd_vlan = le16toh(rxd->wb.vlan);
4299
4300 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4301 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4302 if_statinc_ref(nsr, if_ierrors);
4303 goto rx_next;
4304 }
4305
4306 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4307 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4308 BUS_DMASYNC_POSTREAD);
4309 m = rxring->rxr_mbufs[idx].m;
4310
4311 new_m = aq_alloc_mbuf();
4312 if (new_m == NULL) {
4313 /*
4314 * cannot allocate new mbuf.
4315 * discard this packet, and reuse mbuf for next.
4316 */
4317 if_statinc_ref(nsr, if_iqdrops);
4318 goto rx_next;
4319 }
4320 rxring->rxr_mbufs[idx].m = NULL;
4321 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4322
4323 if (m0 == NULL) {
4324 m0 = m;
4325 } else {
4326 if (m->m_flags & M_PKTHDR)
4327 m_remove_pkthdr(m);
4328 mprev->m_next = m;
4329 }
4330 mprev = m;
4331
4332 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4333 m->m_len = MCLBYTES;
4334 } else {
4335 /* last buffer */
4336 m->m_len = rxd_pktlen % MCLBYTES;
4337 m0->m_pkthdr.len = rxd_pktlen;
4338 /* VLAN offloading */
4339 if ((sc->sc_ethercom.ec_capenable &
4340 ETHERCAP_VLAN_HWTAGGING) &&
4341 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4342 __SHIFTOUT(rxd_type,
4343 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4344 vlan_set_tag(m0, rxd_vlan);
4345 }
4346
4347 /* Checksum offloading */
4348 unsigned int pkttype_eth =
4349 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4350 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4351 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4352 __SHIFTOUT(rxd_type,
4353 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4354 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4355 if (__SHIFTOUT(rxd_status,
4356 RXDESC_STATUS_IPV4_CSUM_NG))
4357 m0->m_pkthdr.csum_flags |=
4358 M_CSUM_IPv4_BAD;
4359 }
4360 #if notyet
4361 /*
4362 * XXX: aq always marks BAD for fragmented packet.
4363 * we should peek L3 header, and ignore cksum flags
4364 * if the packet is fragmented.
4365 */
4366 if (__SHIFTOUT(rxd_type,
4367 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4368 bool checked = false;
4369 unsigned int pkttype_proto =
4370 __SHIFTOUT(rxd_type,
4371 RXDESC_TYPE_PKTTYPE_PROTO);
4372
4373 if (pkttype_proto ==
4374 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4375 if ((pkttype_eth ==
4376 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4377 (ifp->if_capabilities &
4378 IFCAP_CSUM_TCPv4_Rx)) {
4379 m0->m_pkthdr.csum_flags |=
4380 M_CSUM_TCPv4;
4381 checked = true;
4382 } else if ((pkttype_eth ==
4383 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4384 (ifp->if_capabilities &
4385 IFCAP_CSUM_TCPv6_Rx)) {
4386 m0->m_pkthdr.csum_flags |=
4387 M_CSUM_TCPv6;
4388 checked = true;
4389 }
4390 } else if (pkttype_proto ==
4391 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4392 if ((pkttype_eth ==
4393 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4394 (ifp->if_capabilities &
4395 IFCAP_CSUM_UDPv4_Rx)) {
4396 m0->m_pkthdr.csum_flags |=
4397 M_CSUM_UDPv4;
4398 checked = true;
4399 } else if ((pkttype_eth ==
4400 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4401 (ifp->if_capabilities &
4402 IFCAP_CSUM_UDPv6_Rx)) {
4403 m0->m_pkthdr.csum_flags |=
4404 M_CSUM_UDPv6;
4405 checked = true;
4406 }
4407 }
4408 if (checked &&
4409 (__SHIFTOUT(rxd_status,
4410 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4411 !__SHIFTOUT(rxd_status,
4412 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4413 m0->m_pkthdr.csum_flags |=
4414 M_CSUM_TCP_UDP_BAD;
4415 }
4416 }
4417 #endif
4418 m_set_rcvif(m0, ifp);
4419 if_statinc_ref(nsr, if_ipackets);
4420 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4421 if_percpuq_enqueue(ifp->if_percpuq, m0);
4422 m0 = mprev = NULL;
4423 }
4424
4425 rx_next:
4426 aq_rxring_reset_desc(sc, rxring, idx);
4427 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4428 }
4429 rxring->rxr_readidx = idx;
4430
4431 IF_STAT_PUTREF(ifp);
4432
4433 rx_intr_done:
4434 mutex_exit(&rxring->rxr_mutex);
4435
4436 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4437 return n;
4438 }
4439
4440 static int
4441 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4442 {
4443 struct ifnet *ifp = &ec->ec_if;
4444 struct aq_softc *sc = ifp->if_softc;
4445
4446 aq_set_vlan_filters(sc);
4447 return 0;
4448 }
4449
4450 static int
4451 aq_ifflags_cb(struct ethercom *ec)
4452 {
4453 struct ifnet *ifp = &ec->ec_if;
4454 struct aq_softc *sc = ifp->if_softc;
4455 int i, ecchange, error = 0;
4456 unsigned short iffchange;
4457
4458 AQ_LOCK(sc);
4459
4460 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4461 if ((iffchange & IFF_PROMISC) != 0)
4462 error = aq_set_filter(sc);
4463
4464 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4465 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4466 for (i = 0; i < AQ_RINGS_NUM; i++) {
4467 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4468 RX_DMA_DESC_VLAN_STRIP,
4469 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4470 1 : 0);
4471 }
4472 }
4473
4474 /* vlan configuration depends on also interface promiscuous mode */
4475 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4476 aq_set_vlan_filters(sc);
4477
4478 sc->sc_ec_capenable = ec->ec_capenable;
4479 sc->sc_if_flags = ifp->if_flags;
4480
4481 AQ_UNLOCK(sc);
4482
4483 return error;
4484 }
4485
4486 static int
4487 aq_init(struct ifnet *ifp)
4488 {
4489 struct aq_softc *sc = ifp->if_softc;
4490 int i, error = 0;
4491
4492 AQ_LOCK(sc);
4493
4494 aq_set_vlan_filters(sc);
4495 aq_set_capability(sc);
4496
4497 for (i = 0; i < sc->sc_nqueues; i++) {
4498 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4499 }
4500
4501 /* invalidate RX descriptor cache */
4502 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4503 AQ_READ_REG_BIT(sc,
4504 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4505
4506 /* start RX */
4507 for (i = 0; i < sc->sc_nqueues; i++) {
4508 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4509 if (error != 0) {
4510 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4511 __func__);
4512 goto aq_init_failure;
4513 }
4514 }
4515 aq_init_rss(sc);
4516 aq_hw_l3_filter_set(sc);
4517
4518 /* need to start callout? */
4519 if (sc->sc_poll_linkstat
4520 #ifdef AQ_EVENT_COUNTERS
4521 || sc->sc_poll_statistics
4522 #endif
4523 ) {
4524 callout_schedule(&sc->sc_tick_ch, hz);
4525 }
4526
4527 /* ready */
4528 ifp->if_flags |= IFF_RUNNING;
4529 ifp->if_flags &= ~IFF_OACTIVE;
4530
4531 /* start TX and RX */
4532 aq_enable_intr(sc, true, true);
4533 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4534 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4535
4536 aq_init_failure:
4537 sc->sc_if_flags = ifp->if_flags;
4538
4539 AQ_UNLOCK(sc);
4540
4541 return error;
4542 }
4543
4544 static void
4545 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4546 struct aq_txring *txring, bool is_transmit)
4547 {
4548 struct mbuf *m;
4549 int npkt, error;
4550
4551 if ((ifp->if_flags & IFF_RUNNING) == 0)
4552 return;
4553
4554 for (npkt = 0; ; npkt++) {
4555 if (is_transmit)
4556 m = pcq_peek(txring->txr_pcq);
4557 else
4558 IFQ_POLL(&ifp->if_snd, m);
4559
4560 if (m == NULL)
4561 break;
4562
4563 if (txring->txr_nfree < AQ_TXD_MIN)
4564 break;
4565
4566 if (is_transmit)
4567 pcq_get(txring->txr_pcq);
4568 else
4569 IFQ_DEQUEUE(&ifp->if_snd, m);
4570
4571 error = aq_encap_txring(sc, txring, &m);
4572 if (error != 0) {
4573 /* too many mbuf chains? or not enough descriptors? */
4574 m_freem(m);
4575 if_statinc(ifp, if_oerrors);
4576 if (txring->txr_index == 0 && error == ENOBUFS)
4577 ifp->if_flags |= IFF_OACTIVE;
4578 break;
4579 }
4580
4581 /* update tail ptr */
4582 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4583 txring->txr_prodidx);
4584
4585 /* Pass the packet to any BPF listeners */
4586 bpf_mtap(ifp, m, BPF_D_OUT);
4587 }
4588
4589 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4590 ifp->if_flags |= IFF_OACTIVE;
4591
4592 if (npkt)
4593 ifp->if_timer = 5;
4594 }
4595
4596 static void
4597 aq_start(struct ifnet *ifp)
4598 {
4599 struct aq_softc *sc;
4600 struct aq_txring *txring;
4601
4602 sc = ifp->if_softc;
4603 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4604
4605 mutex_enter(&txring->txr_mutex);
4606 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4607 aq_send_common_locked(ifp, sc, txring, false);
4608 mutex_exit(&txring->txr_mutex);
4609 }
4610
4611 static inline unsigned int
4612 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4613 {
4614 return (cpu_index(curcpu()) % sc->sc_nqueues);
4615 }
4616
4617 static int
4618 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4619 {
4620 struct aq_softc *sc = ifp->if_softc;
4621 struct aq_txring *txring;
4622 int ringidx;
4623
4624 ringidx = aq_select_txqueue(sc, m);
4625 txring = &sc->sc_queue[ringidx].txring;
4626
4627 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4628 m_freem(m);
4629 return ENOBUFS;
4630 }
4631
4632 if (mutex_tryenter(&txring->txr_mutex)) {
4633 aq_send_common_locked(ifp, sc, txring, true);
4634 mutex_exit(&txring->txr_mutex);
4635 } else {
4636 softint_schedule(txring->txr_softint);
4637 }
4638 return 0;
4639 }
4640
4641 static void
4642 aq_deferred_transmit(void *arg)
4643 {
4644 struct aq_txring *txring = arg;
4645 struct aq_softc *sc = txring->txr_sc;
4646 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4647
4648 mutex_enter(&txring->txr_mutex);
4649 if (pcq_peek(txring->txr_pcq) != NULL)
4650 aq_send_common_locked(ifp, sc, txring, true);
4651 mutex_exit(&txring->txr_mutex);
4652 }
4653
4654 static void
4655 aq_stop(struct ifnet *ifp, int disable)
4656 {
4657 struct aq_softc *sc = ifp->if_softc;
4658 int i;
4659
4660 AQ_LOCK(sc);
4661
4662 ifp->if_timer = 0;
4663
4664 /* disable tx/rx interrupts */
4665 aq_enable_intr(sc, true, false);
4666
4667 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4668 for (i = 0; i < sc->sc_nqueues; i++) {
4669 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4670 }
4671
4672 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4673 for (i = 0; i < sc->sc_nqueues; i++) {
4674 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4675 }
4676
4677 /* invalidate RX descriptor cache */
4678 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4679 AQ_READ_REG_BIT(sc,
4680 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4681
4682 ifp->if_timer = 0;
4683
4684 if (!disable) {
4685 /* when pmf stop, disable link status intr and callout */
4686 aq_enable_intr(sc, false, false);
4687 callout_stop(&sc->sc_tick_ch);
4688 }
4689
4690 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4691
4692 AQ_UNLOCK(sc);
4693 }
4694
4695 static void
4696 aq_watchdog(struct ifnet *ifp)
4697 {
4698 struct aq_softc *sc = ifp->if_softc;
4699 struct aq_txring *txring;
4700 int n, head, tail;
4701
4702 AQ_LOCK(sc);
4703
4704 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4705 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4706 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4707
4708 for (n = 0; n < sc->sc_nqueues; n++) {
4709 txring = &sc->sc_queue[n].txring;
4710 head = AQ_READ_REG_BIT(sc,
4711 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4712 TX_DMA_DESC_HEAD_PTR),
4713 tail = AQ_READ_REG(sc,
4714 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4715
4716 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4717 __func__, txring->txr_index, head, tail);
4718
4719 aq_tx_intr(txring);
4720 }
4721
4722 AQ_UNLOCK(sc);
4723
4724 aq_init(ifp);
4725 }
4726
4727 static int
4728 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4729 {
4730 struct aq_softc *sc __unused;
4731 struct ifreq *ifr __unused;
4732 int error, s;
4733
4734 sc = (struct aq_softc *)ifp->if_softc;
4735 ifr = (struct ifreq *)data;
4736 error = 0;
4737
4738 s = splnet();
4739 error = ether_ioctl(ifp, cmd, data);
4740 splx(s);
4741
4742 if (error != ENETRESET)
4743 return error;
4744
4745 switch (cmd) {
4746 case SIOCSIFCAP:
4747 error = aq_set_capability(sc);
4748 break;
4749 case SIOCADDMULTI:
4750 case SIOCDELMULTI:
4751 if ((ifp->if_flags & IFF_RUNNING) == 0)
4752 break;
4753
4754 /*
4755 * Multicast list has changed; set the hardware filter
4756 * accordingly.
4757 */
4758 error = aq_set_filter(sc);
4759 break;
4760 }
4761
4762 return error;
4763 }
4764
4765
4766 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4767
4768 #ifdef _MODULE
4769 #include "ioconf.c"
4770 #endif
4771
4772 static int
4773 if_aq_modcmd(modcmd_t cmd, void *opaque)
4774 {
4775 int error = 0;
4776
4777 switch (cmd) {
4778 case MODULE_CMD_INIT:
4779 #ifdef _MODULE
4780 error = config_init_component(cfdriver_ioconf_if_aq,
4781 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4782 #endif
4783 return error;
4784 case MODULE_CMD_FINI:
4785 #ifdef _MODULE
4786 error = config_fini_component(cfdriver_ioconf_if_aq,
4787 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4788 #endif
4789 return error;
4790 default:
4791 return ENOTTY;
4792 }
4793 }
4794