Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.2
      1 /*	$NetBSD: if_aq.c,v 1.2 2020/01/17 05:11:04 ryo Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.2 2020/01/17 05:11:04 ryo Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #endif
     70 
     71 #include <sys/param.h>
     72 #include <sys/types.h>
     73 #include <sys/bitops.h>
     74 #include <sys/cprng.h>
     75 #include <sys/cpu.h>
     76 #include <sys/interrupt.h>
     77 #include <sys/module.h>
     78 #include <sys/pcq.h>
     79 
     80 #include <net/bpf.h>
     81 #include <net/if.h>
     82 #include <net/if_dl.h>
     83 #include <net/if_media.h>
     84 #include <net/if_ether.h>
     85 #include <net/rss_config.h>
     86 
     87 #include <dev/pci/pcivar.h>
     88 #include <dev/pci/pcireg.h>
     89 #include <dev/pci/pcidevs.h>
     90 
     91 /* driver configuration */
     92 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     93 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     94 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     95 
     96 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     97 					/* TX + RX + LINK. must be <= 32 */
     98 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
     99 
    100 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    101 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    102 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    103 #define AQ_TXD_MIN			(1 + 1)
    104 
    105 
    106 /* hardware specification */
    107 #define AQ_RINGS_NUM			32
    108 #define AQ_RSSQUEUE_MAX			8
    109 #define AQ_RX_DESCRIPTOR_MIN		32
    110 #define AQ_TX_DESCRIPTOR_MIN		32
    111 #define AQ_RX_DESCRIPTOR_MAX		8184
    112 #define AQ_TX_DESCRIPTOR_MAX		8184
    113 #define AQ_TRAFFICCLASS_NUM		8
    114 #define AQ_RSS_HASHKEY_SIZE		40
    115 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    116 
    117 /*
    118  * TERMINOLOGY
    119  *	MPI = MAC PHY INTERFACE?
    120  *	RPO = RX Protocol Offloading
    121  *	TPO = TX Protocol Offloading
    122  *	RPF = RX Packet Filter
    123  *	TPB = TX Packet buffer
    124  *	RPB = RX Packet buffer
    125  */
    126 
    127 /* registers */
    128 #define AQ_FW_SOFTRESET_REG			0x0000
    129 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    130 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    131 
    132 #define AQ_FW_VERSION_REG			0x0018
    133 #define AQ_HW_REVISION_REG			0x001c
    134 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    135 
    136 #define AQ_FW_MBOX_CMD_REG			0x0200
    137 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    138 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    139 #define AQ_FW_MBOX_ADDR_REG			0x0208
    140 #define AQ_FW_MBOX_VAL_REG			0x020c
    141 
    142 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    143 #define FW2X_LED_REG				0x031c
    144 #define  FW2X_LED_DEFAULT			0x00000000
    145 #define  FW2X_LED_NONE				0x0000003f
    146 #define  FW2X_LINKLED				__BITS(0,1)
    147 #define   FW2X_LINKLED_ACTIVE			0
    148 #define   FW2X_LINKLED_ON			1
    149 #define   FW2X_LINKLED_BLINK			2
    150 #define   FW2X_LINKLED_OFF			3
    151 #define  FW2X_STATUSLED				__BITS(2,5)
    152 #define   FW2X_STATUSLED_ORANGE			0
    153 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    154 #define   FW2X_STATUSLED_OFF			3
    155 #define   FW2X_STATUSLED_GREEN			4
    156 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    157 #define   FW2X_STATUSLED_GREEN_BLINK		10
    158 
    159 #define FW_MPI_MBOX_ADDR_REG			0x0360
    160 #define FW1X_MPI_INIT1_REG			0x0364
    161 #define FW1X_MPI_CONTROL_REG			0x0368
    162 #define FW1X_MPI_STATE_REG			0x036c
    163 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    164 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    165 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    166 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    167 #define FW1X_MPI_INIT2_REG			0x0370
    168 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    169 
    170 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    171 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    172 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    173 #define FW_BOOT_EXIT_CODE_REG			0x0388
    174 #define  RBL_STATUS_DEAD			0x0000dead
    175 #define  RBL_STATUS_SUCCESS			0x0000abba
    176 #define  RBL_STATUS_FAILURE			0x00000bad
    177 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    178 
    179 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    180 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    181 
    182 #define AQ_FW_GLB_CTL2_REG			0x0404
    183 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    184 
    185 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    186 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    187 
    188 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    189 
    190 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    191 
    192 // msix bitmap */
    193 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    194 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    195 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    196 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    197 #define AQ_INTR_AUTOMASK_REG			0x2090
    198 
    199 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    200 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    201 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    202 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    203 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    204 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    205 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    206 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    207 
    208 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    209 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    210 #define  AQ_B0_ERR_INT				8
    211 
    212 #define AQ_INTR_CTRL_REG			0x2300
    213 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    214 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    215 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    216 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    217 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    218 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    219 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    220 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    221 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    222 
    223 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    224 
    225 #define FW_MPI_RESETCTRL_REG			0x4000
    226 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    227 
    228 #define RX_SYSCONTROL_REG			0x5000
    229 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    230 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    231 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    232 
    233 #define RX_TCP_RSS_HASH_REG			0x5040
    234 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    235 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    236 
    237 /* for RPF_*_REG.ACTION */
    238 #define RPF_ACTION_DISCARD			0
    239 #define RPF_ACTION_HOST				1
    240 #define RPF_ACTION_MANAGEMENT			2
    241 #define RPF_ACTION_HOST_MANAGEMENT		3
    242 #define RPF_ACTION_WOL				4
    243 
    244 #define RPF_L2BC_REG				0x5100
    245 #define  RPF_L2BC_EN				__BIT(0)
    246 #define  RPF_L2BC_PROMISC			__BIT(3)
    247 #define  RPF_L2BC_ACTION			__BITS(12,14)
    248 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    249 
    250 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    251 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    252 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    253 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    254 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    255 #define  RPF_L2UC_MSW_EN			__BIT(31)
    256 #define AQ_HW_MAC_OWN			0	/* index of own address */
    257 #define AQ_HW_MAC_NUM			34
    258 
    259 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
    260 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    261 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    262 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    263 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    264 
    265 #define RPF_VLAN_MODE_REG			0x5280
    266 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    267 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    268 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    269 
    270 #define RPF_VLAN_TPID_REG			0x5284
    271 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    272 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    273 
    274 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
    275 #define RPF_VLAN_MAX_FILTERS			16
    276 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    277 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    278 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    279 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    280 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    281 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    282 
    283 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    284 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    285 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    286 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    287 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    288 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    289 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    290 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    291 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    292 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    293 
    294 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    295 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    296 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    297 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    298 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    299 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    300 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    301 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    302 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    303 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    304 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    305 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    306 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    307 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    308 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    309 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    310 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    311 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    312 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    313 /* parameters of RPF_L3_FILTER_REG[8] */
    314 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    315 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    316 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    317 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    318 
    319 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    320 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    321 
    322 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    323 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    324 
    325 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    326 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    327 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    328 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    329 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    330 
    331 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    332 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    333 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    334 
    335 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    336 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    337 
    338 #define RPO_HWCSUM_REG				0x5580
    339 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    340 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    341 
    342 #define RPO_LRO_ENABLE_REG			0x5590
    343 
    344 #define RPO_LRO_CONF_REG			0x5594
    345 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    346 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    347 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    348 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    349 #define RPO_LRO_RSC_MAX_REG			0x5598
    350 
    351 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    352 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    353 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    354 #define RPO_LRO_TB_DIV_REG			0x5620
    355 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    356 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    357 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    358 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    359 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    360 
    361 #define RPB_RPF_RX_REG				0x5700
    362 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    363 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    364 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    365 
    366 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    367 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    368 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    369 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    370 #define  RPB_RXB_XOFF_EN			__BIT(31)
    371 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    372 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    373 
    374 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    375 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    376 
    377 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    378 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    379 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    380 
    381 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    382 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    383 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    384 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    385 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    386 
    387 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    388 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    389 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    390 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    391 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    392 #define  RX_DMA_DESC_RESET			__BIT(25)
    393 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    394 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    395 #define  RX_DMA_DESC_EN				__BIT(31)
    396 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    397 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    398 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    399 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    400 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    401 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    402 
    403 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    404 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    405 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    406 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    407 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    408 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    409 
    410 #define RX_DMA_DCA_REG				0x6180
    411 #define  RX_DMA_DCA_EN				__BIT(31)
    412 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    413 
    414 /* counters */
    415 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    416 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    417 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    418 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    419 
    420 #define TX_SYSCONTROL_REG			0x7000
    421 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    422 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    423 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    424 
    425 #define TX_TPO2_REG				0x7040
    426 #define  TX_TPO2_EN				__BIT(16)
    427 
    428 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    429 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    430 #define TPS_DESC_RATE_REG			0x7310
    431 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    432 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    433 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    434 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    435 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    436 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    437 
    438 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    439 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    440 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    441 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    442 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    443 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    444 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    445 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    446 
    447 #define AQ_HW_TXBUF_MAX		160
    448 #define AQ_HW_RXBUF_MAX		320
    449 
    450 #define TPO_HWCSUM_REG				0x7800
    451 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    452 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    453 
    454 #define TDM_LSO_EN_REG				0x7810
    455 
    456 #define THM_LSO_TCP_FLAG1_REG			0x7820
    457 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    458 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    459 #define THM_LSO_TCP_FLAG2_REG			0x7824
    460 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    461 
    462 #define TPB_TX_BUF_REG				0x7900
    463 #define  TPB_TX_BUF_EN				__BIT(0)
    464 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    465 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    466 
    467 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    468 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    469 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    470 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    471 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    472 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    473 
    474 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    475 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    476 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    477 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    478 
    479 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    480 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    481 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    482 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    483 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    484 #define  TX_DMA_DESC_EN				__BIT(31)
    485 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    486 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    487 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    488 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    489 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    490 
    491 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    492 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    493 #define  TDM_DCAD_CPUID				__BITS(7,0)
    494 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    495 
    496 #define TDM_DCA_REG				0x8480
    497 #define  TDM_DCA_EN				__BIT(31)
    498 #define  TDM_DCA_MODE				__BITS(3,0)
    499 
    500 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    501 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    502 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    503 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    504 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    505 
    506 #define FW1X_CTRL_10G				__BIT(0)
    507 #define FW1X_CTRL_5G				__BIT(1)
    508 #define FW1X_CTRL_5GSR				__BIT(2)
    509 #define FW1X_CTRL_2G5				__BIT(3)
    510 #define FW1X_CTRL_1G				__BIT(4)
    511 #define FW1X_CTRL_100M				__BIT(5)
    512 
    513 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    514 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    515 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    516 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    517 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    518 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    519 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    520 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    521 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    522 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    523 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    524 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    525 #define FW2X_CTRL_RESERVED1			__BIT(32)
    526 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    527 #define FW2X_CTRL_RESERVED2			__BIT(34)
    528 #define FW2X_CTRL_PAUSE				__BIT(35)
    529 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    530 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    531 #define FW2X_CTRL_RESERVED3			__BIT(38)
    532 #define FW2X_CTRL_RESERVED4			__BIT(39)
    533 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    534 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    535 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    536 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    537 #define FW2X_CTRL_RESERVED5			__BIT(44)
    538 #define FW2X_CTRL_RESERVED6			__BIT(45)
    539 #define FW2X_CTRL_RESERVED7			__BIT(46)
    540 #define FW2X_CTRL_RESERVED8			__BIT(47)
    541 #define FW2X_CTRL_RESERVED9			__BIT(48)
    542 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    543 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    544 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    545 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    546 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    547 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    548 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    549 #define FW2X_CTRL_WOL				__BIT(56)
    550 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    551 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    552 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    553 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    554 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    555 #define FW2X_CTRL_STATISTICS			__BIT(62)
    556 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    557 
    558 #define FW2X_SNPRINTB			\
    559 	"\177\020"			\
    560 	"b\x23" "PAUSE\0"		\
    561 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    562 	"b\x31" "CABLE-DIAG\0"		\
    563 	"b\x32" "TEMPERATURE\0"		\
    564 	"b\x33" "DOWNSHIFT\0"		\
    565 	"b\x34" "PTP-AVB\0"		\
    566 	"b\x35" "MEDIA-DETECT\0"	\
    567 	"b\x36" "LINK-DROP\0"		\
    568 	"b\x37" "SLEEP-PROXY\0"		\
    569 	"b\x38" "WOL\0"			\
    570 	"b\x39" "MAC-STOP\0"		\
    571 	"b\x3a" "EXT-LOOPBACK\0"	\
    572 	"b\x3b" "INT-LOOPBACK\0"	\
    573 	"b\x3c" "EFUSE-AGENT\0"		\
    574 	"b\x3d" "WOL-TIMER\0"		\
    575 	"b\x3e" "STATISTICS\0"		\
    576 	"b\x3f" "TRANSACTION-ID\0"	\
    577 	"\0"
    578 
    579 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    580 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    581 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    582 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    583 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    584 #define FW2X_CTRL_RATE_MASK		\
    585 	(FW2X_CTRL_RATE_100M |		\
    586 	 FW2X_CTRL_RATE_1G |		\
    587 	 FW2X_CTRL_RATE_2G5 |		\
    588 	 FW2X_CTRL_RATE_5G |		\
    589 	 FW2X_CTRL_RATE_10G)
    590 #define FW2X_CTRL_EEE_MASK		\
    591 	(FW2X_CTRL_10BASET_EEE |	\
    592 	 FW2X_CTRL_100BASETX_EEE |	\
    593 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    594 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    595 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    596 	 FW2X_CTRL_10GBASET_FD_EEE)
    597 
    598 typedef enum aq_fw_bootloader_mode {
    599 	FW_BOOT_MODE_UNKNOWN = 0,
    600 	FW_BOOT_MODE_FLB,
    601 	FW_BOOT_MODE_RBL_FLASH,
    602 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    603 } aq_fw_bootloader_mode_t;
    604 
    605 #define AQ_WRITE_REG(sc, reg, val)				\
    606 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    607 
    608 #define AQ_READ_REG(sc, reg)					\
    609 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    610 
    611 #define AQ_READ64_REG(sc, reg)					\
    612 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    613 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    614 
    615 #define AQ_WRITE64_REG(sc, reg, val)				\
    616 	do {							\
    617 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    618 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    619 	} while (/* CONSTCOND */0)
    620 
    621 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    622 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    623 
    624 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    625 	do {							\
    626 		uint32_t _v;					\
    627 		_v = AQ_READ_REG((sc), (reg));			\
    628 		_v &= ~(mask);					\
    629 		if ((val) != 0)					\
    630 			_v |= __SHIFTIN((val), (mask));		\
    631 		AQ_WRITE_REG((sc), (reg), _v);			\
    632 	} while (/* CONSTCOND */ 0)
    633 
    634 #define WAIT_FOR(expr, us, n, errp)				\
    635 	do {							\
    636 		unsigned int _n;				\
    637 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    638 			delay((us));				\
    639 		}						\
    640 		if ((errp != NULL)) {				\
    641 			if (_n == 0)				\
    642 				*(errp) = ETIMEDOUT;		\
    643 			else					\
    644 				*(errp) = 0;			\
    645 		}						\
    646 	} while (/* CONSTCOND */ 0)
    647 
    648 #define msec_delay(x)	DELAY(1000 * (x))
    649 
    650 typedef struct aq_mailbox_header {
    651 	uint32_t version;
    652 	uint32_t transaction_id;
    653 	int32_t error;
    654 } __packed aq_mailbox_header_t;
    655 
    656 typedef struct aq_hw_stats_s {
    657 	uint32_t uprc;
    658 	uint32_t mprc;
    659 	uint32_t bprc;
    660 	uint32_t erpt;
    661 	uint32_t uptc;
    662 	uint32_t mptc;
    663 	uint32_t bptc;
    664 	uint32_t erpr;
    665 	uint32_t mbtc;
    666 	uint32_t bbtc;
    667 	uint32_t mbrc;
    668 	uint32_t bbrc;
    669 	uint32_t ubrc;
    670 	uint32_t ubtc;
    671 	uint32_t ptc;
    672 	uint32_t prc;
    673 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    674 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    675 } __packed aq_hw_stats_s_t;
    676 
    677 typedef struct fw1x_mailbox {
    678 	aq_mailbox_header_t header;
    679 	aq_hw_stats_s_t msm;
    680 } __packed fw1x_mailbox_t;
    681 
    682 typedef struct fw2x_msm_statistics {
    683 	uint32_t uprc;
    684 	uint32_t mprc;
    685 	uint32_t bprc;
    686 	uint32_t erpt;
    687 	uint32_t uptc;
    688 	uint32_t mptc;
    689 	uint32_t bptc;
    690 	uint32_t erpr;
    691 	uint32_t mbtc;
    692 	uint32_t bbtc;
    693 	uint32_t mbrc;
    694 	uint32_t bbrc;
    695 	uint32_t ubrc;
    696 	uint32_t ubtc;
    697 	uint32_t ptc;
    698 	uint32_t prc;
    699 } __packed fw2x_msm_statistics_t;
    700 
    701 typedef struct fw2x_phy_cable_diag_data {
    702 	uint32_t lane_data[4];
    703 } __packed fw2x_phy_cable_diag_data_t;
    704 
    705 typedef struct fw2x_capabilities {
    706 	uint32_t caps_lo;
    707 	uint32_t caps_hi;
    708 } __packed fw2x_capabilities_t;
    709 
    710 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    711 	aq_mailbox_header_t header;
    712 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    713 	uint16_t phy_h_bit;
    714 	uint16_t phy_fault_code;
    715 	int16_t phy_temperature;
    716 	uint8_t cable_len;
    717 	uint8_t reserved1;
    718 	fw2x_phy_cable_diag_data_t diag_data;
    719 	uint32_t reserved[8];
    720 
    721 	fw2x_capabilities_t caps;
    722 
    723 	/* ... */
    724 } __packed fw2x_mailbox_t;
    725 
    726 typedef enum aq_link_speed {
    727 	AQ_LINK_NONE	= 0,
    728 	AQ_LINK_100M	= (1 << 0),
    729 	AQ_LINK_1G	= (1 << 1),
    730 	AQ_LINK_2G5	= (1 << 2),
    731 	AQ_LINK_5G	= (1 << 3),
    732 	AQ_LINK_10G	= (1 << 4)
    733 } aq_link_speed_t;
    734 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    735 			 AQ_LINK_5G | AQ_LINK_10G )
    736 #define AQ_LINK_AUTO	AQ_LINK_ALL
    737 
    738 typedef enum aq_link_fc {
    739 	AQ_FC_NONE = 0,
    740 	AQ_FC_RX = __BIT(0),
    741 	AQ_FC_TX = __BIT(1),
    742 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    743 } aq_link_fc_t;
    744 
    745 typedef enum aq_link_eee {
    746 	AQ_EEE_DISABLE = 0,
    747 	AQ_EEE_ENABLE = 1
    748 } aq_link_eee_t;
    749 
    750 typedef enum aq_hw_fw_mpi_state {
    751 	MPI_DEINIT	= 0,
    752 	MPI_RESET	= 1,
    753 	MPI_INIT	= 2,
    754 	MPI_POWER	= 4
    755 } aq_hw_fw_mpi_state_t;
    756 
    757 enum aq_media_type {
    758 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    759 	AQ_MEDIA_TYPE_FIBRE,
    760 	AQ_MEDIA_TYPE_TP
    761 };
    762 
    763 struct aq_rx_desc_read {
    764 	uint64_t buf_addr;
    765 	uint64_t hdr_addr;
    766 } __packed;
    767 
    768 struct aq_rx_desc_wb {
    769 	uint32_t type;
    770 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    771 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    772 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    773 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    774 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    775 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    776 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    777 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    778 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    779 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    780 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    781 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    782 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    783 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    784 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    785 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    786 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    787 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    788 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    789 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    790 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    791 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    792 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    793 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    794 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    795 #define RXDESC_TYPE_SPH			__BIT(21)
    796 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    797 	uint32_t rss_hash;
    798 	uint16_t status;
    799 #define RXDESC_STATUS_DD		__BIT(0)
    800 #define RXDESC_STATUS_EOP		__BIT(1)
    801 #define RXDESC_STATUS_MACERR		__BIT(2)
    802 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    803 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    804 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    805 
    806 #define RXDESC_STATUS_STAT		__BITS(2,5)
    807 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    808 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    809 	uint16_t pkt_len;
    810 	uint16_t next_desc_ptr;
    811 	uint16_t vlan;
    812 } __packed;
    813 
    814 typedef union aq_rx_desc {
    815 	struct aq_rx_desc_read read;
    816 	struct aq_rx_desc_wb wb;
    817 } __packed aq_rx_desc_t;
    818 
    819 typedef struct aq_tx_desc {
    820 	uint64_t buf_addr;
    821 	uint32_t ctl1;
    822 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    823 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    824 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    825 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    826 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    827 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    828 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    829 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    830 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    831 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    832 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    833 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    834 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    835 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    836 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    837 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    838 	uint32_t ctl2;
    839 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    840 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    841 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    842 } __packed aq_tx_desc_t;
    843 
    844 struct aq_txring {
    845 	struct aq_softc *txr_sc;
    846 	int txr_index;
    847 	kmutex_t txr_mutex;
    848 	bool txr_active;
    849 
    850 	pcq_t *txr_pcq;
    851 	void *txr_softint;
    852 
    853 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    854 	bus_dmamap_t txr_txdesc_dmamap;
    855 	bus_dma_segment_t txr_txdesc_seg[1];
    856 	bus_size_t txr_txdesc_size;
    857 
    858 	struct {
    859 		struct mbuf *m;
    860 		bus_dmamap_t dmamap;
    861 	} txr_mbufs[AQ_TXD_NUM];
    862 	unsigned int txr_prodidx;
    863 	unsigned int txr_considx;
    864 	int txr_nfree;
    865 };
    866 
    867 struct aq_rxring {
    868 	struct aq_softc *rxr_sc;
    869 	int rxr_index;
    870 	kmutex_t rxr_mutex;
    871 	bool rxr_active;
    872 
    873 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    874 	bus_dmamap_t rxr_rxdesc_dmamap;
    875 	bus_dma_segment_t rxr_rxdesc_seg[1];
    876 	bus_size_t rxr_rxdesc_size;
    877 	struct {
    878 		struct mbuf *m;
    879 		bus_dmamap_t dmamap;
    880 	} rxr_mbufs[AQ_RXD_NUM];
    881 	unsigned int rxr_readidx;
    882 };
    883 
    884 struct aq_queue {
    885 	struct aq_softc *sc;
    886 	struct aq_txring txring;
    887 	struct aq_rxring rxring;
    888 };
    889 
    890 struct aq_softc;
    891 struct aq_firmware_ops {
    892 	int (*reset)(struct aq_softc *);
    893 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    894 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    895 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    896 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    897 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    898 };
    899 
    900 #ifdef AQ_EVENT_COUNTERS
    901 #define AQ_EVCNT_DECL(name)						\
    902 	char sc_evcount_##name##_name[32];				\
    903 	struct evcnt sc_evcount_##name##_ev;
    904 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    905 	do {								\
    906 		snprintf((sc)->sc_evcount_##name##_name,		\
    907 		    sizeof((sc)->sc_evcount_##name##_name),		\
    908 		    "%s", desc);					\
    909 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    910 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    911 		    (sc)->sc_evcount_##name##_name);			\
    912 	} while (/*CONSTCOND*/0)
    913 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    914 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    915 #define AQ_EVCNT_DETACH(sc, name)					\
    916 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    917 #define AQ_EVCNT_ADD(sc, name, val)					\
    918 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    919 #endif /* AQ_EVENT_COUNTERS */
    920 
    921 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    922 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    923 
    924 struct aq_softc {
    925 	device_t sc_dev;
    926 
    927 	bus_space_tag_t sc_iot;
    928 	bus_space_handle_t sc_ioh;
    929 	bus_size_t sc_iosize;
    930 	bus_dma_tag_t sc_dmat;;
    931 
    932 	void *sc_ihs[AQ_NINTR_MAX];
    933 	pci_intr_handle_t *sc_intrs;
    934 
    935 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    936 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    937 	int sc_linkstat_irq;
    938 	bool sc_use_txrx_independent_intr;
    939 	bool sc_poll_linkstat;
    940 	bool sc_detect_linkstat;
    941 
    942 	callout_t sc_tick_ch;
    943 
    944 	int sc_nintrs;
    945 	bool sc_msix;
    946 
    947 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    948 	int sc_nqueues;
    949 
    950 	pci_chipset_tag_t sc_pc;
    951 	pcitag_t sc_pcitag;
    952 	uint16_t sc_product;
    953 	uint16_t sc_revision;
    954 
    955 	kmutex_t sc_mutex;
    956 
    957 	struct aq_firmware_ops *sc_fw_ops;
    958 	uint64_t sc_fw_caps;
    959 	enum aq_media_type sc_media_type;
    960 	aq_link_speed_t sc_available_rates;
    961 
    962 	aq_link_speed_t sc_link_rate;
    963 	aq_link_fc_t sc_link_fc;
    964 	aq_link_eee_t sc_link_eee;
    965 
    966 	uint32_t sc_fw_version;
    967 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    968 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
    969 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
    970 	uint32_t sc_features;
    971 #define FEATURES_MIPS		0x00000001
    972 #define FEATURES_TPO2		0x00000002
    973 #define FEATURES_RPF2		0x00000004
    974 #define FEATURES_MPI_AQ		0x00000008
    975 #define FEATURES_REV_A0		0x10000000
    976 #define FEATURES_REV_A		(FEATURES_REV_A0)
    977 #define FEATURES_REV_B0		0x20000000
    978 #define FEATURES_REV_B1		0x40000000
    979 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
    980 	uint32_t sc_mbox_addr;
    981 
    982 	bool sc_rbl_enabled;
    983 	bool sc_fast_start_enabled;
    984 	bool sc_flash_present;
    985 
    986 	bool sc_intr_moderation_enable;
    987 	bool sc_rss_enable;
    988 
    989 	int sc_media_active;
    990 
    991 	struct ethercom sc_ethercom;
    992 	struct ether_addr sc_enaddr;
    993 	struct ifmedia sc_media;
    994 	int sc_ec_capenable;		/* last ec_capenable */
    995 	unsigned short sc_if_flags;	/* last if_flags */
    996 
    997 #ifdef AQ_EVENT_COUNTERS
    998 	aq_hw_stats_s_t sc_statistics[2];
    999 	int sc_statistics_idx;
   1000 	bool sc_poll_statistics;
   1001 
   1002 	AQ_EVCNT_DECL(uprc);
   1003 	AQ_EVCNT_DECL(mprc);
   1004 	AQ_EVCNT_DECL(bprc);
   1005 	AQ_EVCNT_DECL(erpt);
   1006 	AQ_EVCNT_DECL(uptc);
   1007 	AQ_EVCNT_DECL(mptc);
   1008 	AQ_EVCNT_DECL(bptc);
   1009 	AQ_EVCNT_DECL(erpr);
   1010 	AQ_EVCNT_DECL(mbtc);
   1011 	AQ_EVCNT_DECL(bbtc);
   1012 	AQ_EVCNT_DECL(mbrc);
   1013 	AQ_EVCNT_DECL(bbrc);
   1014 	AQ_EVCNT_DECL(ubrc);
   1015 	AQ_EVCNT_DECL(ubtc);
   1016 	AQ_EVCNT_DECL(ptc);
   1017 	AQ_EVCNT_DECL(prc);
   1018 	AQ_EVCNT_DECL(dpc);
   1019 	AQ_EVCNT_DECL(cprc);
   1020 #endif
   1021 };
   1022 
   1023 static int aq_match(device_t, cfdata_t, void *);
   1024 static void aq_attach(device_t, device_t, void *);
   1025 static int aq_detach(device_t, int);
   1026 
   1027 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1028     bool, bool);
   1029 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1030     pci_intr_type_t);
   1031 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1032 
   1033 static int aq_ifmedia_change(struct ifnet * const);
   1034 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1035 static int aq_ifflags_cb(struct ethercom *);
   1036 static int aq_init(struct ifnet *);
   1037 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1038     struct aq_txring *, bool);
   1039 static int aq_transmit(struct ifnet *, struct mbuf *);
   1040 static void aq_deferred_transmit(void *);
   1041 static void aq_start(struct ifnet *);
   1042 static void aq_stop(struct ifnet *, int);
   1043 static void aq_watchdog(struct ifnet *);
   1044 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1045 
   1046 static int aq_txrx_rings_alloc(struct aq_softc *);
   1047 static void aq_txrx_rings_free(struct aq_softc *);
   1048 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1049 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1050 
   1051 static void aq_initmedia(struct aq_softc *);
   1052 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1053 
   1054 static void aq_tick(void *);
   1055 static int aq_legacy_intr(void *);
   1056 static int aq_link_intr(void *);
   1057 static int aq_txrx_intr(void *);
   1058 static int aq_tx_intr(void *);
   1059 static int aq_rx_intr(void *);
   1060 
   1061 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1062     aq_link_eee_t);
   1063 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1064     aq_link_eee_t *);
   1065 
   1066 static int aq_fw_reset(struct aq_softc *);
   1067 static int aq_fw_version_init(struct aq_softc *);
   1068 static int aq_hw_init(struct aq_softc *);
   1069 static int aq_hw_init_ucp(struct aq_softc *);
   1070 static int aq_hw_reset(struct aq_softc *);
   1071 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1072     uint32_t);
   1073 static int aq_get_mac_addr(struct aq_softc *);
   1074 static int aq_init_rss(struct aq_softc *);
   1075 static int aq_set_capability(struct aq_softc *);
   1076 
   1077 static int fw1x_reset(struct aq_softc *);
   1078 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1079     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1080 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1081     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1082 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1083 
   1084 static int fw2x_reset(struct aq_softc *);
   1085 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1086     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1087 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1088     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1089 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1090 
   1091 static struct aq_firmware_ops aq_fw1x_ops = {
   1092 	.reset = fw1x_reset,
   1093 	.set_mode = fw1x_set_mode,
   1094 	.get_mode = fw1x_get_mode,
   1095 	.get_stats = fw1x_get_stats
   1096 };
   1097 
   1098 static struct aq_firmware_ops aq_fw2x_ops = {
   1099 	.reset = fw2x_reset,
   1100 	.set_mode = fw2x_set_mode,
   1101 	.get_mode = fw2x_get_mode,
   1102 	.get_stats = fw2x_get_stats
   1103 };
   1104 
   1105 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1106     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1107 
   1108 static const struct aq_product {
   1109 	pci_vendor_id_t aq_vendor;
   1110 	pci_product_id_t aq_product;
   1111 	const char *aq_name;
   1112 	enum aq_media_type aq_media_type;
   1113 	aq_link_speed_t aq_available_rates;
   1114 } aq_products[] = {
   1115 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1116 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1117 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1118 	},
   1119 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1120 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1121 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1122 	},
   1123 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1124 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1125 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1126 	},
   1127 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1128 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1129 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1130 	},
   1131 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1132 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1133 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1134 	},
   1135 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1136 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1137 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1138 	},
   1139 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1140 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1141 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1142 	},
   1143 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1144 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1145 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1146 	},
   1147 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1148 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1149 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1150 	},
   1151 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1152 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1153 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1154 	},
   1155 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1156 	  "Aquantia D107 10 Gigabit Network Adapter",
   1157 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1158 	},
   1159 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1160 	  "Aquantia D108 5 Gigabit Network Adapter",
   1161 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1162 	},
   1163 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1164 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1165 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1166 	}
   1167 };
   1168 
   1169 static const struct aq_product *
   1170 aq_lookup(const struct pci_attach_args *pa)
   1171 {
   1172 	unsigned int i;
   1173 
   1174 	for (i = 0; i < __arraycount(aq_products); i++) {
   1175 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1176 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1177 			return &aq_products[i];
   1178 	}
   1179 	return NULL;
   1180 }
   1181 
   1182 static int
   1183 aq_match(device_t parent, cfdata_t cf, void *aux)
   1184 {
   1185 	struct pci_attach_args *pa = aux;
   1186 
   1187 	if (aq_lookup(pa) != NULL)
   1188 		return 1;
   1189 
   1190 	return 0;
   1191 }
   1192 
   1193 static void
   1194 aq_attach(device_t parent, device_t self, void *aux)
   1195 {
   1196 	struct aq_softc *sc = device_private(self);
   1197 	struct pci_attach_args *pa = aux;
   1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1199 	pci_chipset_tag_t pc;
   1200 	pcitag_t tag;
   1201 	pcireg_t command, memtype, bar;
   1202 	const struct aq_product *aqp;
   1203 	int error;
   1204 
   1205 	sc->sc_dev = self;
   1206 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1207 
   1208 	sc->sc_pc = pc = pa->pa_pc;
   1209 	sc->sc_pcitag = tag = pa->pa_tag;
   1210 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1211 
   1212 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1213 	command |= PCI_COMMAND_MASTER_ENABLE;
   1214 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1215 
   1216 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1217 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1218 
   1219 	aqp = aq_lookup(pa);
   1220 	KASSERT(aqp != NULL);
   1221 
   1222 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1223 
   1224 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1225 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1226 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1227 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1228 		return;
   1229 	}
   1230 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1231 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1232 	    NULL, &sc->sc_iosize) != 0) {
   1233 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1234 		return;
   1235 	}
   1236 
   1237 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1238 
   1239 	/* max queue num is 8, and must be 2^n */
   1240 	if (ncpu >= 8)
   1241 		sc->sc_nqueues = 8;
   1242 	else if (ncpu >= 4)
   1243 		sc->sc_nqueues = 4;
   1244 	else if (ncpu >= 2)
   1245 		sc->sc_nqueues = 2;
   1246 	else
   1247 		sc->sc_nqueues = 1;
   1248 
   1249 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1250 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1251 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1252 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1253 		sc->sc_use_txrx_independent_intr = true;
   1254 		sc->sc_poll_linkstat = false;
   1255 		sc->sc_msix = true;
   1256 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1257 		/* TX intrs + RX intrs */
   1258 		sc->sc_use_txrx_independent_intr = true;
   1259 		sc->sc_poll_linkstat = true;
   1260 		sc->sc_msix = true;
   1261 	} else
   1262 #endif
   1263 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1264 		/* TX/RX intrs LINKSTAT intrs */
   1265 		sc->sc_use_txrx_independent_intr = false;
   1266 		sc->sc_poll_linkstat = false;
   1267 		sc->sc_msix = true;
   1268 	} else if (msixcount >= sc->sc_nqueues) {
   1269 		/* TX/RX intrs */
   1270 		sc->sc_use_txrx_independent_intr = false;
   1271 		sc->sc_poll_linkstat = true;
   1272 		sc->sc_msix = true;
   1273 	} else {
   1274 		/* giving up using MSI-X */
   1275 		sc->sc_msix = false;
   1276 	}
   1277 
   1278 	aprint_debug_dev(sc->sc_dev,
   1279 	    "ncpu=%d, pci_msix_count=%d."
   1280 	    " allocate %d interrupts for %d%s queues%s\n",
   1281 	    ncpu, msixcount,
   1282 	    (sc->sc_use_txrx_independent_intr ?
   1283 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1284 	    (sc->sc_poll_linkstat ? 0 : 1),
   1285 	    sc->sc_nqueues,
   1286 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1287 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1288 
   1289 	if (sc->sc_msix)
   1290 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1291 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1292 	else
   1293 		error = ENODEV;
   1294 
   1295 	if (error != 0) {
   1296 		/* if MSI-X failed, fallback to MSI with single queue */
   1297 		sc->sc_use_txrx_independent_intr = false;
   1298 		sc->sc_poll_linkstat = false;
   1299 		sc->sc_msix = false;
   1300 		sc->sc_nqueues = 1;
   1301 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1302 	}
   1303 	if (error != 0) {
   1304 		/* if MSI failed, fallback to INTx */
   1305 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1306 	}
   1307 	if (error != 0)
   1308 		return;
   1309 
   1310 	callout_init(&sc->sc_tick_ch, 0);
   1311 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1312 
   1313 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1314 
   1315 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1316 		sc->sc_rss_enable = true;
   1317 	else
   1318 		sc->sc_rss_enable = false;
   1319 
   1320 	error = aq_txrx_rings_alloc(sc);
   1321 	if (error != 0)
   1322 		goto attach_failure;
   1323 
   1324 	error = aq_fw_reset(sc);
   1325 	if (error != 0)
   1326 		goto attach_failure;
   1327 
   1328 	error = aq_fw_version_init(sc);
   1329 	if (error != 0)
   1330 		goto attach_failure;
   1331 
   1332 	error = aq_hw_init_ucp(sc);
   1333 	if (error < 0)
   1334 		goto attach_failure;
   1335 
   1336 	KASSERT(sc->sc_mbox_addr != 0);
   1337 	error = aq_hw_reset(sc);
   1338 	if (error != 0)
   1339 		goto attach_failure;
   1340 
   1341 	aq_get_mac_addr(sc);
   1342 	aq_init_rss(sc);
   1343 
   1344 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1345 	if (error != 0)
   1346 		goto attach_failure;
   1347 
   1348 	sc->sc_media_type = aqp->aq_media_type;
   1349 	sc->sc_available_rates = aqp->aq_available_rates;
   1350 
   1351 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1352 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1353 	    aq_ifmedia_change, aq_ifmedia_status);
   1354 	aq_initmedia(sc);
   1355 
   1356 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1357 	ifp->if_softc = sc;
   1358 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1359 	ifp->if_baudrate = IF_Gbps(10);
   1360 	ifp->if_init = aq_init;
   1361 	ifp->if_ioctl = aq_ioctl;
   1362 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1363 		ifp->if_transmit = aq_transmit;
   1364 	ifp->if_start = aq_start;
   1365 	ifp->if_stop = aq_stop;
   1366 	ifp->if_watchdog = aq_watchdog;
   1367 	IFQ_SET_READY(&ifp->if_snd);
   1368 
   1369 	/* initialize capabilities */
   1370 	sc->sc_ethercom.ec_capabilities = 0;
   1371 	sc->sc_ethercom.ec_capenable = 0;
   1372 #if notyet
   1373 	/* TODO */
   1374 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1375 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
   1376 #endif
   1377 	sc->sc_ethercom.ec_capabilities |=
   1378 	    ETHERCAP_JUMBO_MTU |
   1379 	    ETHERCAP_VLAN_MTU |
   1380 	    ETHERCAP_VLAN_HWTAGGING;
   1381 	sc->sc_ethercom.ec_capenable |=
   1382 	    ETHERCAP_VLAN_HWTAGGING;
   1383 
   1384 	ifp->if_capabilities = 0;
   1385 	ifp->if_capenable = 0;
   1386 #ifdef CONFIG_LRO_SUPPORT
   1387 	ifp->if_capabilities |= IFCAP_LRO;
   1388 	ifp->if_capenable |= IFCAP_LRO;
   1389 #endif
   1390 #if notyet
   1391 	/* TSO */
   1392 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1393 #endif
   1394 
   1395 #if notyet
   1396 	/*
   1397 	 * XXX:
   1398 	 *   Rx L4 CSUM doesn't work well for fragment packet.
   1399 	 *   aq marks 'CHEDKED' and 'BAD' for them.
   1400 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
   1401 	 *
   1402 	 *   TODO: test with LRO enabled
   1403 	 */
   1404 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1405 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1406 #endif
   1407 	/* TX hardware checksum offloadding */
   1408 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1409 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1410 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1411 	/* RX hardware checksum offloadding */
   1412 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1413 
   1414 	if_attach(ifp);
   1415 	if_deferred_start_init(ifp, NULL);
   1416 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1417 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1418 
   1419 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1420 
   1421 	/* update media */
   1422 	aq_ifmedia_change(ifp);
   1423 
   1424 #ifdef AQ_EVENT_COUNTERS
   1425 	/* get starting statistics values */
   1426 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1427 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1428 		sc->sc_poll_statistics = true;
   1429 	}
   1430 
   1431 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1432 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1433 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1434 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1435 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1436 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1437 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1438 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1439 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1440 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1441 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1442 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1443 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1444 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1445 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1446 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1447 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1448 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1449 #endif
   1450 
   1451 	return;
   1452 
   1453  attach_failure:
   1454 	aq_detach(self, 0);
   1455 }
   1456 
   1457 static int
   1458 aq_detach(device_t self, int flags __unused)
   1459 {
   1460 	struct aq_softc *sc = device_private(self);
   1461 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1462 	int i, s;
   1463 
   1464 	if (sc->sc_iosize != 0) {
   1465 		if (ifp->if_softc != NULL) {
   1466 			s = splnet();
   1467 			aq_stop(ifp, 0);
   1468 			splx(s);
   1469 		}
   1470 
   1471 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1472 			if (sc->sc_ihs[i] != NULL) {
   1473 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1474 				sc->sc_ihs[i] = NULL;
   1475 			}
   1476 		}
   1477 		if (sc->sc_nintrs > 0) {
   1478 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1479 			    sc->sc_nintrs);
   1480 			sc->sc_intrs = NULL;
   1481 			sc->sc_nintrs = 0;
   1482 		}
   1483 
   1484 		aq_txrx_rings_free(sc);
   1485 
   1486 		if (ifp->if_softc != NULL) {
   1487 			ether_ifdetach(ifp);
   1488 			if_detach(ifp);
   1489 		}
   1490 
   1491 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1492 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1493 		sc->sc_iosize = 0;
   1494 	}
   1495 
   1496 	callout_stop(&sc->sc_tick_ch);
   1497 
   1498 #ifdef AQ_EVENT_COUNTERS
   1499 	AQ_EVCNT_DETACH(sc, uprc);
   1500 	AQ_EVCNT_DETACH(sc, mprc);
   1501 	AQ_EVCNT_DETACH(sc, bprc);
   1502 	AQ_EVCNT_DETACH(sc, erpt);
   1503 	AQ_EVCNT_DETACH(sc, uptc);
   1504 	AQ_EVCNT_DETACH(sc, mptc);
   1505 	AQ_EVCNT_DETACH(sc, bptc);
   1506 	AQ_EVCNT_DETACH(sc, erpr);
   1507 	AQ_EVCNT_DETACH(sc, mbtc);
   1508 	AQ_EVCNT_DETACH(sc, bbtc);
   1509 	AQ_EVCNT_DETACH(sc, mbrc);
   1510 	AQ_EVCNT_DETACH(sc, bbrc);
   1511 	AQ_EVCNT_DETACH(sc, ubrc);
   1512 	AQ_EVCNT_DETACH(sc, ubtc);
   1513 	AQ_EVCNT_DETACH(sc, ptc);
   1514 	AQ_EVCNT_DETACH(sc, prc);
   1515 	AQ_EVCNT_DETACH(sc, dpc);
   1516 	AQ_EVCNT_DETACH(sc, cprc);
   1517 #endif
   1518 
   1519 	mutex_destroy(&sc->sc_mutex);
   1520 
   1521 	return 0;
   1522 }
   1523 
   1524 static int
   1525 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1526     int (*func)(void *), void *arg, const char *xname)
   1527 {
   1528 	char intrbuf[PCI_INTRSTR_LEN];
   1529 	pci_chipset_tag_t pc = sc->sc_pc;
   1530 	void *vih;
   1531 	const char *intrstr = NULL;
   1532 
   1533 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1534 	    sizeof(intrbuf));
   1535 
   1536 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1537 
   1538 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1539 	    IPL_NET, func, arg, xname);
   1540 	if (vih == NULL) {
   1541 		aprint_error_dev(sc->sc_dev,
   1542 		    "unable to establish MSI-X%s%s for %s\n",
   1543 		    intrstr ? " at " : "",
   1544 		    intrstr ? intrstr : "", xname);
   1545 		return EIO;
   1546 	}
   1547 	sc->sc_ihs[intno] = vih;
   1548 
   1549 	if (affinity != NULL) {
   1550 		/* Round-robin affinity */
   1551 		kcpuset_zero(affinity);
   1552 		kcpuset_set(affinity, intno % ncpu);
   1553 		interrupt_distribute(vih, affinity, NULL);
   1554 	}
   1555 
   1556 	return 0;
   1557 }
   1558 
   1559 static int
   1560 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1561     bool linkintr)
   1562 {
   1563 	kcpuset_t *affinity;
   1564 	int error, intno, i;
   1565 	char intr_xname[INTRDEVNAMEBUF];
   1566 
   1567 	kcpuset_create(&affinity, false);
   1568 
   1569 	intno = 0;
   1570 
   1571 	if (txrx_independent) {
   1572 		for (i = 0; i < sc->sc_nqueues; i++) {
   1573 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1574 			    device_xname(sc->sc_dev), i);
   1575 			sc->sc_rx_irq[i] = intno;
   1576 			error = aq_establish_intr(sc, intno++, affinity,
   1577 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1578 			if (error != 0)
   1579 				goto fail;
   1580 		}
   1581 		for (i = 0; i < sc->sc_nqueues; i++) {
   1582 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1583 			    device_xname(sc->sc_dev), i);
   1584 			sc->sc_tx_irq[i] = intno;
   1585 			error = aq_establish_intr(sc, intno++, affinity,
   1586 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1587 			if (error != 0)
   1588 				goto fail;
   1589 		}
   1590 	} else {
   1591 		for (i = 0; i < sc->sc_nqueues; i++) {
   1592 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1593 			    device_xname(sc->sc_dev), i);
   1594 			sc->sc_rx_irq[i] = intno;
   1595 			sc->sc_tx_irq[i] = intno;
   1596 			error = aq_establish_intr(sc, intno++, affinity,
   1597 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1598 			if (error != 0)
   1599 				goto fail;
   1600 		}
   1601 	}
   1602 
   1603 	if (linkintr) {
   1604 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1605 		    device_xname(sc->sc_dev));
   1606 		sc->sc_linkstat_irq = intno;
   1607 		error = aq_establish_intr(sc, intno++, affinity,
   1608 		    aq_link_intr, sc, intr_xname);
   1609 		if (error != 0)
   1610 			goto fail;
   1611 	}
   1612 
   1613 	kcpuset_destroy(affinity);
   1614 	return 0;
   1615 
   1616  fail:
   1617 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1618 		if (sc->sc_ihs[i] != NULL) {
   1619 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1620 			sc->sc_ihs[i] = NULL;
   1621 		}
   1622 	}
   1623 
   1624 	kcpuset_destroy(affinity);
   1625 	return ENOMEM;
   1626 }
   1627 
   1628 static int
   1629 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1630     bool txrx_independent, bool linkintr)
   1631 {
   1632 	int error, nintr;
   1633 
   1634 	if (txrx_independent)
   1635 		nintr = nqueue * 2;
   1636 	else
   1637 		nintr = nqueue;
   1638 
   1639 	if (linkintr)
   1640 		nintr++;
   1641 
   1642 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1643 	if (error != 0) {
   1644 		aprint_error_dev(sc->sc_dev,
   1645 		    "failed to allocate MSI-X interrupts\n");
   1646 		goto fail;
   1647 	}
   1648 
   1649 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1650 	if (error == 0) {
   1651 		sc->sc_nintrs = nintr;
   1652 	} else {
   1653 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1654 		sc->sc_nintrs = 0;
   1655 	}
   1656  fail:
   1657 	return error;
   1658 
   1659 }
   1660 
   1661 static int
   1662 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1663     pci_intr_type_t inttype)
   1664 {
   1665 	int counts[PCI_INTR_TYPE_SIZE];
   1666 	int error, nintr;
   1667 
   1668 	nintr = 1;
   1669 
   1670 	memset(counts, 0, sizeof(counts));
   1671 	counts[inttype] = nintr;
   1672 
   1673 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1674 	if (error != 0) {
   1675 		aprint_error_dev(sc->sc_dev,
   1676 		    "failed to allocate%s interrupts\n",
   1677 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1678 		return error;
   1679 	}
   1680 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1681 	    device_xname(sc->sc_dev));
   1682 	if (error == 0) {
   1683 		sc->sc_nintrs = nintr;
   1684 	} else {
   1685 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1686 		sc->sc_nintrs = 0;
   1687 	}
   1688 	return error;
   1689 }
   1690 
   1691 static void
   1692 global_software_reset(struct aq_softc *sc)
   1693 {
   1694 	uint32_t v;
   1695 
   1696 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1697 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1698 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1699 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1700 
   1701 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1702 	v &= ~AQ_FW_SOFTRESET_DIS;
   1703 	v |= AQ_FW_SOFTRESET_RESET;
   1704 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1705 }
   1706 
   1707 static int
   1708 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1709 {
   1710 	int timo;
   1711 
   1712 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1713 
   1714 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1715 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1716 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1717 
   1718 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1719 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1720 
   1721 	global_software_reset(sc);
   1722 
   1723 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1724 
   1725 	/* Wait for RBL to finish boot process. */
   1726 #define RBL_TIMEOUT_MS	10000
   1727 	uint16_t rbl_status;
   1728 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1729 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1730 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1731 			break;
   1732 		msec_delay(1);
   1733 	}
   1734 	if (timo <= 0) {
   1735 		aprint_error_dev(sc->sc_dev,
   1736 		    "RBL> RBL restart failed: timeout\n");
   1737 		return EBUSY;
   1738 	}
   1739 	switch (rbl_status) {
   1740 	case RBL_STATUS_SUCCESS:
   1741 		if (mode != NULL)
   1742 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1743 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1744 		break;
   1745 	case RBL_STATUS_HOST_BOOT:
   1746 		if (mode != NULL)
   1747 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1748 		aprint_debug_dev(sc->sc_dev,
   1749 		    "RBL> reset complete! [Host Bootload]\n");
   1750 		break;
   1751 	case RBL_STATUS_FAILURE:
   1752 	default:
   1753 		aprint_error_dev(sc->sc_dev,
   1754 		    "unknown RBL status 0x%x\n", rbl_status);
   1755 		return EBUSY;
   1756 	}
   1757 
   1758 	return 0;
   1759 }
   1760 
   1761 static int
   1762 mac_soft_reset_flb(struct aq_softc *sc)
   1763 {
   1764 	uint32_t v;
   1765 	int timo;
   1766 
   1767 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1768 	/*
   1769 	 * Let Felicity hardware to complete SMBUS transaction before
   1770 	 * Global software reset.
   1771 	 */
   1772 	msec_delay(50);
   1773 
   1774 	/*
   1775 	 * If SPI burst transaction was interrupted(before running the script),
   1776 	 * global software reset may not clear SPI interface.
   1777 	 * Clean it up manually before global reset.
   1778 	 */
   1779 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1780 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1781 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1782 	msec_delay(50);
   1783 
   1784 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1785 	v &= ~AQ_FW_SOFTRESET_DIS;
   1786 	v |= AQ_FW_SOFTRESET_RESET;
   1787 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1788 
   1789 	/* Kickstart. */
   1790 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1791 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1792 	if (!sc->sc_fast_start_enabled)
   1793 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1794 
   1795 	/*
   1796 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1797 	 * above), wait until it is completed by hardware.
   1798 	 */
   1799 	msec_delay(50);
   1800 
   1801 	/* MAC Kickstart */
   1802 	if (!sc->sc_fast_start_enabled) {
   1803 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1804 
   1805 		uint32_t flb_status;
   1806 		for (timo = 0; timo < 1000; timo++) {
   1807 			flb_status = AQ_READ_REG(sc,
   1808 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1809 			if (flb_status != 0)
   1810 				break;
   1811 			msec_delay(1);
   1812 		}
   1813 		if (flb_status == 0) {
   1814 			aprint_error_dev(sc->sc_dev,
   1815 			    "FLB> MAC kickstart failed: timed out\n");
   1816 			return ETIMEDOUT;
   1817 		}
   1818 		aprint_debug_dev(sc->sc_dev,
   1819 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1820 		/* FW reset */
   1821 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1822 		/*
   1823 		 * Let Felicity hardware complete SMBUS transaction before
   1824 		 * Global software reset.
   1825 		 */
   1826 		msec_delay(50);
   1827 		sc->sc_fast_start_enabled = true;
   1828 	}
   1829 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1830 
   1831 	/* PHY Kickstart: #undone */
   1832 	global_software_reset(sc);
   1833 
   1834 	for (timo = 0; timo < 1000; timo++) {
   1835 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1836 			break;
   1837 		msec_delay(10);
   1838 	}
   1839 	if (timo >= 1000) {
   1840 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1841 		return ETIMEDOUT;
   1842 	}
   1843 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1844 	return 0;
   1845 
   1846 }
   1847 
   1848 static int
   1849 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1850 {
   1851 	if (sc->sc_rbl_enabled)
   1852 		return mac_soft_reset_rbl(sc, mode);
   1853 
   1854 	if (mode != NULL)
   1855 		*mode = FW_BOOT_MODE_FLB;
   1856 	return mac_soft_reset_flb(sc);
   1857 }
   1858 
   1859 static int
   1860 aq_fw_read_version(struct aq_softc *sc)
   1861 {
   1862 	int i, error = EBUSY;
   1863 #define MAC_FW_START_TIMEOUT_MS	10000
   1864 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1865 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1866 		if (sc->sc_fw_version != 0) {
   1867 			error = 0;
   1868 			break;
   1869 		}
   1870 		delay(1000);
   1871 	}
   1872 	return error;
   1873 }
   1874 
   1875 static int
   1876 aq_fw_reset(struct aq_softc *sc)
   1877 {
   1878 	uint32_t ver, v, bootExitCode;
   1879 	int i, error;
   1880 
   1881 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1882 
   1883 	for (i = 1000; i > 0; i--) {
   1884 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1885 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1886 		if (v != 0x06000000 || bootExitCode != 0)
   1887 			break;
   1888 	}
   1889 	if (i <= 0) {
   1890 		aprint_error_dev(sc->sc_dev,
   1891 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1892 		return ETIMEDOUT;
   1893 	}
   1894 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1895 
   1896 	/*
   1897 	 * Having FW version 0 is an indicator that cold start
   1898 	 * is in progress. This means two things:
   1899 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1900 	 * 2) Driver may skip reset sequence and save time.
   1901 	 */
   1902 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   1903 		error = aq_fw_read_version(sc);
   1904 		/* Skip reset as it just completed */
   1905 		if (error == 0)
   1906 			return 0;
   1907 	}
   1908 
   1909 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   1910 	error = mac_soft_reset(sc, &mode);
   1911 	if (error != 0) {
   1912 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   1913 		return error;
   1914 	}
   1915 
   1916 	switch (mode) {
   1917 	case FW_BOOT_MODE_FLB:
   1918 		aprint_debug_dev(sc->sc_dev,
   1919 		    "FLB> F/W successfully loaded from flash.\n");
   1920 		sc->sc_flash_present = true;
   1921 		return aq_fw_read_version(sc);
   1922 	case FW_BOOT_MODE_RBL_FLASH:
   1923 		aprint_debug_dev(sc->sc_dev,
   1924 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   1925 		sc->sc_flash_present = true;
   1926 		return aq_fw_read_version(sc);
   1927 	case FW_BOOT_MODE_UNKNOWN:
   1928 		aprint_error_dev(sc->sc_dev,
   1929 		    "F/W bootload error: unknown bootloader type\n");
   1930 		return ENOTSUP;
   1931 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   1932 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   1933 		break;
   1934 	}
   1935 
   1936 	/*
   1937 	 * XXX: TODO: add support Host Boot
   1938 	 */
   1939 	aprint_error_dev(sc->sc_dev,
   1940 	    "RBL> F/W Host Bootload not implemented\n");
   1941 	return ENOTSUP;
   1942 }
   1943 
   1944 static int
   1945 aq_hw_reset(struct aq_softc *sc)
   1946 {
   1947 	int error;
   1948 
   1949 	/* disable irq */
   1950 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   1951 
   1952 	/* apply */
   1953 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   1954 
   1955 	/* wait ack 10 times by 1ms */
   1956 	WAIT_FOR(
   1957 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   1958 	    1000, 10, &error);
   1959 	if (error != 0) {
   1960 		aprint_error_dev(sc->sc_dev,
   1961 		    "atlantic: IRQ reset failed: %d\n", error);
   1962 		return error;
   1963 	}
   1964 
   1965 	return sc->sc_fw_ops->reset(sc);
   1966 }
   1967 
   1968 static int
   1969 aq_hw_init_ucp(struct aq_softc *sc)
   1970 {
   1971 	int timo;
   1972 
   1973 	if (FW_VERSION_MAJOR(sc) == 1) {
   1974 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
   1975 			uint32_t data;
   1976 			cprng_fast(&data, sizeof(data));
   1977 			data &= 0xfefefefe;
   1978 			data |= 0x02020202;
   1979 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
   1980 		}
   1981 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   1982 	}
   1983 
   1984 	for (timo = 100; timo > 0; timo--) {
   1985 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   1986 		if (sc->sc_mbox_addr != 0)
   1987 			break;
   1988 		delay(1000);
   1989 	}
   1990 
   1991 #define AQ_FW_MIN_VERSION	0x01050006
   1992 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   1993 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   1994 		aprint_error_dev(sc->sc_dev,
   1995 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   1996 		    " or later required, this is %d.%d.%d\n",
   1997 		    FW_VERSION_MAJOR(sc),
   1998 		    FW_VERSION_MINOR(sc),
   1999 		    FW_VERSION_BUILD(sc));
   2000 		return ENOTSUP;
   2001 	}
   2002 
   2003 	return 0;
   2004 }
   2005 
   2006 static int
   2007 aq_fw_version_init(struct aq_softc *sc)
   2008 {
   2009 	int error = 0;
   2010 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2011 
   2012 	if (FW_VERSION_MAJOR(sc) == 1) {
   2013 		sc->sc_fw_ops = &aq_fw1x_ops;
   2014 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2015 		sc->sc_fw_ops = &aq_fw2x_ops;
   2016 	} else {
   2017 		aprint_error_dev(sc->sc_dev,
   2018 		    "Unsupported F/W version %d.%d.%d\n",
   2019 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2020 		    FW_VERSION_BUILD(sc));
   2021 		return ENOTSUP;
   2022 	}
   2023 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2024 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2025 
   2026 	/* detect revision */
   2027 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2028 	switch (hwrev & 0x0000000f) {
   2029 	case 0x01:
   2030 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2031 		    fw_vers);
   2032 		sc->sc_features |= FEATURES_REV_A0 |
   2033 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2034 		break;
   2035 	case 0x02:
   2036 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2037 		    fw_vers);
   2038 		sc->sc_features |= FEATURES_REV_B0 |
   2039 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2040 		    FEATURES_TPO2 | FEATURES_RPF2;
   2041 		break;
   2042 	case 0x0A:
   2043 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2044 		    fw_vers);
   2045 		sc->sc_features |= FEATURES_REV_B1 |
   2046 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2047 		    FEATURES_TPO2 | FEATURES_RPF2;
   2048 		break;
   2049 	default:
   2050 		aprint_error_dev(sc->sc_dev,
   2051 		    "Unknown revision (0x%08x)\n", hwrev);
   2052 		error = ENOTSUP;
   2053 		break;
   2054 	}
   2055 	return error;
   2056 }
   2057 
   2058 static int
   2059 fw1x_reset(struct aq_softc *sc)
   2060 {
   2061 	struct aq_mailbox_header mbox;
   2062 	const int retryCount = 1000;
   2063 	uint32_t tid0;
   2064 	int i;
   2065 
   2066 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2067 
   2068 	for (i = 0; i < retryCount; ++i) {
   2069 		/*
   2070 		 * Read the beginning of Statistics structure to capture
   2071 		 * the Transaction ID.
   2072 		 */
   2073 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2074 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2075 
   2076 		/* Successfully read the stats. */
   2077 		if (tid0 == ~0U) {
   2078 			/* We have read the initial value. */
   2079 			tid0 = mbox.transaction_id;
   2080 			continue;
   2081 		} else if (mbox.transaction_id != tid0) {
   2082 			/*
   2083 			 * Compare transaction ID to initial value.
   2084 			 * If it's different means f/w is alive.
   2085 			 * We're done.
   2086 			 */
   2087 			return 0;
   2088 		}
   2089 
   2090 		/*
   2091 		 * Transaction ID value haven't changed since last time.
   2092 		 * Try reading the stats again.
   2093 		 */
   2094 		delay(10);
   2095 	}
   2096 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2097 	return EBUSY;
   2098 }
   2099 
   2100 static int
   2101 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2102     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2103 {
   2104 	uint32_t mpictrl = 0;
   2105 	uint32_t mpispeed = 0;
   2106 
   2107 	if (speed & AQ_LINK_10G)
   2108 		mpispeed |= FW1X_CTRL_10G;
   2109 	if (speed & AQ_LINK_5G)
   2110 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2111 	if (speed & AQ_LINK_2G5)
   2112 		mpispeed |= FW1X_CTRL_2G5;
   2113 	if (speed & AQ_LINK_1G)
   2114 		mpispeed |= FW1X_CTRL_1G;
   2115 	if (speed & AQ_LINK_100M)
   2116 		mpispeed |= FW1X_CTRL_100M;
   2117 
   2118 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2119 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2120 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2121 	return 0;
   2122 }
   2123 
   2124 static int
   2125 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2126     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2127 {
   2128 	uint32_t mpistate, mpi_speed;
   2129 	aq_link_speed_t speed = AQ_LINK_NONE;
   2130 
   2131 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2132 
   2133 	if (modep != NULL)
   2134 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2135 
   2136 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2137 	if (mpi_speed & FW1X_CTRL_10G)
   2138 		speed = AQ_LINK_10G;
   2139 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2140 		speed = AQ_LINK_5G;
   2141 	else if (mpi_speed & FW1X_CTRL_2G5)
   2142 		speed = AQ_LINK_2G5;
   2143 	else if (mpi_speed & FW1X_CTRL_1G)
   2144 		speed = AQ_LINK_1G;
   2145 	else if (mpi_speed & FW1X_CTRL_100M)
   2146 		speed = AQ_LINK_100M;
   2147 
   2148 	if (speedp != NULL)
   2149 		*speedp = speed;
   2150 
   2151 	if (fcp != NULL)
   2152 		*fcp = AQ_FC_NONE;
   2153 
   2154 	if (eeep != NULL)
   2155 		*eeep = AQ_EEE_DISABLE;
   2156 
   2157 	return 0;
   2158 }
   2159 
   2160 static int
   2161 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2162 {
   2163 	int error;
   2164 
   2165 	error = aq_fw_downld_dwords(sc,
   2166 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2167 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2168 	if (error < 0) {
   2169 		device_printf(sc->sc_dev,
   2170 		    "fw1x> download statistics data FAILED, error %d", error);
   2171 		return error;
   2172 	}
   2173 
   2174 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2175 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2176 	return 0;
   2177 }
   2178 
   2179 static int
   2180 fw2x_reset(struct aq_softc *sc)
   2181 {
   2182 	fw2x_capabilities_t caps = { 0 };
   2183 	int error;
   2184 
   2185 	error = aq_fw_downld_dwords(sc,
   2186 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2187 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2188 	if (error != 0) {
   2189 		aprint_error_dev(sc->sc_dev,
   2190 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2191 		    error);
   2192 		return error;
   2193 	}
   2194 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2195 
   2196 	char buf[256];
   2197 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2198 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2199 
   2200 	return 0;
   2201 }
   2202 
   2203 static int
   2204 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2205     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2206 {
   2207 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2208 
   2209 	switch (mode) {
   2210 	case MPI_INIT:
   2211 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2212 		if (speed & AQ_LINK_10G)
   2213 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2214 		if (speed & AQ_LINK_5G)
   2215 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2216 		if (speed & AQ_LINK_2G5)
   2217 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2218 		if (speed & AQ_LINK_1G)
   2219 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2220 		if (speed & AQ_LINK_100M)
   2221 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2222 
   2223 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2224 
   2225 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2226 		if (eee == AQ_EEE_ENABLE)
   2227 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2228 
   2229 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2230 		if (fc & AQ_FC_RX)
   2231 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2232 		if (fc & AQ_FC_TX)
   2233 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2234 		break;
   2235 	case MPI_DEINIT:
   2236 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2237 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2238 		break;
   2239 	default:
   2240 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2241 		return EINVAL;
   2242 	}
   2243 
   2244 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2245 	return 0;
   2246 }
   2247 
   2248 static int
   2249 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2250     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2251 {
   2252 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2253 
   2254 	if (modep != NULL) {
   2255 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2256 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2257 			*modep = MPI_INIT;
   2258 		else
   2259 			*modep = MPI_DEINIT;
   2260 	}
   2261 
   2262 	aq_link_speed_t speed = AQ_LINK_NONE;
   2263 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2264 		speed = AQ_LINK_10G;
   2265 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2266 		speed = AQ_LINK_5G;
   2267 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2268 		speed = AQ_LINK_2G5;
   2269 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2270 		speed = AQ_LINK_1G;
   2271 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2272 		speed = AQ_LINK_100M;
   2273 
   2274 	if (speedp != NULL)
   2275 		*speedp = speed;
   2276 
   2277 	aq_link_fc_t fc = AQ_FC_NONE;
   2278 	if (mpi_state & FW2X_CTRL_PAUSE)
   2279 		fc |= AQ_FC_RX;
   2280 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2281 		fc |= AQ_FC_TX;
   2282 	if (fcp != NULL)
   2283 		*fcp = fc;
   2284 
   2285 	/* XXX: TODO: EEE */
   2286 	if (eeep != NULL)
   2287 		*eeep = AQ_EEE_DISABLE;
   2288 
   2289 	return 0;
   2290 }
   2291 
   2292 static int
   2293 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2294     uint32_t timeout_ms, uint32_t try_count)
   2295 {
   2296 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2297 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2298 	int error;
   2299 
   2300 	/* First, check that control and state values are consistent */
   2301 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2302 		device_printf(sc->sc_dev,
   2303 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2304 		    " are not consistent for mask %#llx!\n",
   2305 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2306 		    (unsigned long long)mask);
   2307 		return EINVAL;
   2308 	}
   2309 
   2310 	/* Invert bits (toggle) in control register */
   2311 	mpi_ctrl ^= mask;
   2312 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2313 
   2314 	/* Clear all bits except masked */
   2315 	mpi_ctrl &= mask;
   2316 
   2317 	/* Wait for FW reflecting change in state register */
   2318 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2319 	    1000 * timeout_ms, try_count, &error);
   2320 	if (error != 0) {
   2321 		device_printf(sc->sc_dev,
   2322 		    "f/w2x> timeout while waiting for response"
   2323 		    " in state register for bit %#llx!",
   2324 		    (unsigned long long)mask);
   2325 		return error;
   2326 	}
   2327 	return 0;
   2328 }
   2329 
   2330 static int
   2331 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2332 {
   2333 	int error;
   2334 
   2335 	/* Say to F/W to update the statistics */
   2336 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2337 	if (error != 0) {
   2338 		device_printf(sc->sc_dev,
   2339 		    "fw2x> statistics update error %d\n", error);
   2340 		return error;
   2341 	}
   2342 
   2343 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2344 	error = aq_fw_downld_dwords(sc,
   2345 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2346 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2347 	if (error != 0) {
   2348 		device_printf(sc->sc_dev,
   2349 		    "fw2x> download statistics data FAILED, error %d", error);
   2350 		return error;
   2351 	}
   2352 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2353 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2354 
   2355 	return 0;
   2356 }
   2357 
   2358 static int
   2359 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2360     uint32_t cnt)
   2361 {
   2362 	uint32_t v;
   2363 	int error = 0;
   2364 
   2365 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2366 	if (error != 0) {
   2367 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2368 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2369 		if (v == 0) {
   2370 			device_printf(sc->sc_dev,
   2371 			    "%s:%d: timeout\n", __func__, __LINE__);
   2372 			return ETIMEDOUT;
   2373 		}
   2374 	}
   2375 
   2376 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2377 
   2378 	error = 0;
   2379 	for (; cnt > 0 && error == 0; cnt--) {
   2380 		/* execute mailbox interface */
   2381 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2382 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2383 		if (sc->sc_features & FEATURES_REV_B1) {
   2384 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2385 			    1, 1000, &error);
   2386 		} else {
   2387 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2388 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2389 			    1, 1000, &error);
   2390 		}
   2391 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2392 		addr += sizeof(uint32_t);
   2393 	}
   2394 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2395 
   2396 	if (error != 0)
   2397 		device_printf(sc->sc_dev,
   2398 		    "%s:%d: timeout\n", __func__, __LINE__);
   2399 
   2400 	return error;
   2401 }
   2402 
   2403 /* read my mac address */
   2404 static int
   2405 aq_get_mac_addr(struct aq_softc *sc)
   2406 {
   2407 	uint32_t mac_addr[2];
   2408 	uint32_t efuse_shadow_addr;
   2409 	int err;
   2410 
   2411 	efuse_shadow_addr = 0;
   2412 	if (FW_VERSION_MAJOR(sc) >= 2)
   2413 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2414 	else
   2415 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2416 
   2417 	if (efuse_shadow_addr == 0) {
   2418 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2419 		return ENXIO;
   2420 	}
   2421 
   2422 	memset(mac_addr, 0, sizeof(mac_addr));
   2423 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2424 	    mac_addr, __arraycount(mac_addr));
   2425 	if (err < 0)
   2426 		return err;
   2427 
   2428 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2429 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2430 		return ENXIO;
   2431 	}
   2432 
   2433 	mac_addr[0] = bswap32(mac_addr[0]);
   2434 	mac_addr[1] = bswap32(mac_addr[1]);
   2435 
   2436 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2437 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2438 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2439 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2440 
   2441 	return 0;
   2442 }
   2443 
   2444 /* set multicast filter. index 0 for own address */
   2445 static int
   2446 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2447 {
   2448 	uint32_t h, l;
   2449 
   2450 	if (index >= AQ_HW_MAC_NUM)
   2451 		return EINVAL;
   2452 
   2453 	if (enaddr == NULL) {
   2454 		/* disable */
   2455 		AQ_WRITE_REG_BIT(sc,
   2456 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2457 		return 0;
   2458 	}
   2459 
   2460 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2461 	l = (enaddr[2] << 24) | (enaddr[3] << 16) |
   2462 	    (enaddr[4] <<  8) | (enaddr[5]);
   2463 
   2464 	/* disable, set, and enable */
   2465 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2466 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2467 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2468 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2469 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2470 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2471 
   2472 	return 0;
   2473 }
   2474 
   2475 static int
   2476 aq_set_capability(struct aq_softc *sc)
   2477 {
   2478 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2479 	int ip4csum_tx =
   2480 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2481 	int ip4csum_rx =
   2482 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2483 	int l4csum_tx = ((ifp->if_capenable &
   2484 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2485 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2486 	int l4csum_rx =
   2487 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2488 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2489 	uint32_t lso =
   2490 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2491 	   0 : 0xffffffff;
   2492 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2493 	    0 : 0xffffffff;
   2494 	uint32_t i, v;
   2495 
   2496 	/* TX checksums offloads*/
   2497 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2498 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2499 
   2500 	/* RX checksums offloads*/
   2501 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2502 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2503 
   2504 	/* LSO offloads*/
   2505 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2506 
   2507 #define AQ_B0_LRO_RXD_MAX	16
   2508 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2509 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2510 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2511 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2512 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2513 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2514 	}
   2515 
   2516 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2517 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2518 	    RPO_LRO_INACTIVE_IVAL, 0);
   2519 	/*
   2520 	 * the LRO timebase divider is 5 uS (0x61a),
   2521 	 * to get a maximum coalescing interval of 250 uS,
   2522 	 * we need to multiply by 50(0x32) to get
   2523 	 * the default value 250 uS
   2524 	 */
   2525 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2526 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2527 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2528 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2529 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2530 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2531 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2532 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2533 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2534 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2535 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2536 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2537 
   2538 	return 0;
   2539 }
   2540 
   2541 static int
   2542 aq_set_filter(struct aq_softc *sc)
   2543 {
   2544 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2545 	struct ethercom *ec = &sc->sc_ethercom;
   2546 	struct ether_multi *enm;
   2547 	struct ether_multistep step;
   2548 	int idx, error = 0;
   2549 
   2550 	if (ifp->if_flags & IFF_PROMISC) {
   2551 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2552 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2553 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2554 		goto done;
   2555 	}
   2556 
   2557 	/* clear all table */
   2558 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2559 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2560 			continue;
   2561 		aq_set_mac_addr(sc, idx, NULL);
   2562 	}
   2563 
   2564 	/* don't accept all multicast */
   2565 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2566 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2567 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2568 	    RPF_MCAST_FILTER_EN, 0);
   2569 
   2570 	idx = 0;
   2571 	ETHER_LOCK(ec);
   2572 	ETHER_FIRST_MULTI(step, ec, enm);
   2573 	while (enm != NULL) {
   2574 		if (idx == AQ_HW_MAC_OWN)
   2575 			idx++;
   2576 
   2577 		if ((idx >= AQ_HW_MAC_NUM) ||
   2578 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2579 			/*
   2580 			 * too many filters.
   2581 			 * fallback to accept all multicast addresses.
   2582 			 */
   2583 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2584 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2585 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2586 			    RPF_MCAST_FILTER_EN, 1);
   2587 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2588 			ETHER_UNLOCK(ec);
   2589 			goto done;
   2590 		}
   2591 
   2592 		/* add a filter */
   2593 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2594 
   2595 		ETHER_NEXT_MULTI(step, enm);
   2596 	}
   2597 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2598 	ETHER_UNLOCK(ec);
   2599 
   2600  done:
   2601 	return error;
   2602 }
   2603 
   2604 static void
   2605 aq_mediastatus_update(struct aq_softc *sc)
   2606 {
   2607 	sc->sc_media_active = 0;
   2608 
   2609 	if (sc->sc_link_fc & AQ_FC_RX)
   2610 		sc->sc_media_active |= IFM_ETH_RXPAUSE;
   2611 	if (sc->sc_link_fc & AQ_FC_TX)
   2612 		sc->sc_media_active |= IFM_ETH_TXPAUSE;
   2613 
   2614 	switch (sc->sc_link_rate) {
   2615 	case AQ_LINK_100M:
   2616 		/* XXX: need to detect fulldup or halfdup */
   2617 		sc->sc_media_active |= IFM_100_TX | IFM_FDX;
   2618 		break;
   2619 	case AQ_LINK_1G:
   2620 		sc->sc_media_active |= IFM_1000_T | IFM_FDX;
   2621 		break;
   2622 	case AQ_LINK_2G5:
   2623 		sc->sc_media_active |= IFM_2500_T | IFM_FDX;
   2624 		break;
   2625 	case AQ_LINK_5G:
   2626 		sc->sc_media_active |= IFM_5000_T | IFM_FDX;
   2627 		break;
   2628 	case AQ_LINK_10G:
   2629 		sc->sc_media_active |= IFM_10G_T | IFM_FDX;
   2630 		break;
   2631 	default:
   2632 		sc->sc_media_active |= IFM_NONE;
   2633 		break;
   2634 	}
   2635 }
   2636 
   2637 static int
   2638 aq_ifmedia_change(struct ifnet * const ifp)
   2639 {
   2640 	struct aq_softc *sc = ifp->if_softc;
   2641 	aq_link_speed_t rate = AQ_LINK_NONE;
   2642 	aq_link_fc_t fc = AQ_FC_NONE;
   2643 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2644 
   2645 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2646 		return EINVAL;
   2647 
   2648 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2649 	case IFM_AUTO:
   2650 		rate = AQ_LINK_AUTO;
   2651 		break;
   2652 	case IFM_NONE:
   2653 		rate = AQ_LINK_NONE;
   2654 		break;
   2655 	case IFM_100_TX:
   2656 		rate = AQ_LINK_100M;
   2657 		break;
   2658 	case IFM_1000_T:
   2659 		rate = AQ_LINK_1G;
   2660 		break;
   2661 	case IFM_2500_T:
   2662 		rate = AQ_LINK_2G5;
   2663 		break;
   2664 	case IFM_5000_T:
   2665 		rate = AQ_LINK_5G;
   2666 		break;
   2667 	case IFM_10G_T:
   2668 		rate = AQ_LINK_10G;
   2669 		break;
   2670 	default:
   2671 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2672 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2673 		return ENODEV;
   2674 	}
   2675 
   2676 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2677 		fc = AQ_FC_ALL;
   2678 
   2679 	/* XXX: todo EEE */
   2680 
   2681 	/* re-initialize hardware with new parameters */
   2682 	aq_set_linkmode(sc, rate, fc, eee);
   2683 
   2684 	return 0;
   2685 }
   2686 
   2687 static void
   2688 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2689 {
   2690 	struct aq_softc *sc = ifp->if_softc;
   2691 
   2692 	ifmr->ifm_active = IFM_ETHER;
   2693 	ifmr->ifm_status = IFM_AVALID;
   2694 
   2695 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2696 		ifmr->ifm_status |= IFM_ACTIVE;
   2697 
   2698 	ifmr->ifm_active |= sc->sc_media_active;
   2699 }
   2700 
   2701 static void
   2702 aq_initmedia(struct aq_softc *sc)
   2703 {
   2704 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2705 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2706 
   2707 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2708 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2709 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2710 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2711 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2712 	}
   2713 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2714 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2715 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2716 	}
   2717 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2718 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2719 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2720 	}
   2721 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2722 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2723 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2724 	}
   2725 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2726 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2727 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2728 	}
   2729 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2730 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2731 
   2732 	/* default: auto without flowcontrol */
   2733 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2734 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2735 }
   2736 
   2737 static int
   2738 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2739     aq_link_eee_t eee)
   2740 {
   2741 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2742 }
   2743 
   2744 static int
   2745 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2746    aq_link_eee_t *eee)
   2747 {
   2748 	aq_hw_fw_mpi_state_t mode;
   2749 	int error;
   2750 
   2751 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2752 	if (error != 0)
   2753 		return error;
   2754 	if (mode != MPI_INIT)
   2755 		return ENXIO;
   2756 
   2757 	return 0;
   2758 }
   2759 
   2760 static void
   2761 aq_hw_init_tx_path(struct aq_softc *sc)
   2762 {
   2763 	/* Tx TC/RSS number config */
   2764 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2765 
   2766 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2767 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2768 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2769 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2770 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2771 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2772 
   2773 	/* misc */
   2774 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2775 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2776 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2777 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2778 
   2779 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2780 }
   2781 
   2782 static void
   2783 aq_hw_init_rx_path(struct aq_softc *sc)
   2784 {
   2785 	int i;
   2786 
   2787 	/* clear setting */
   2788 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2789 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2790 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2791 	for (i = 0; i < 32; i++) {
   2792 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2793 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2794 	}
   2795 
   2796 	if (sc->sc_rss_enable) {
   2797 		/* Rx TC/RSS number config */
   2798 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2799 
   2800 		/* Rx flow control */
   2801 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2802 
   2803 		/* RSS Ring selection */
   2804 		switch (sc->sc_nqueues) {
   2805 		case 2:
   2806 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2807 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2808 			break;
   2809 		case 4:
   2810 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2811 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2812 			break;
   2813 		case 8:
   2814 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2815 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2816 			break;
   2817 		}
   2818 	}
   2819 
   2820 	/* L2 and Multicast filters */
   2821 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2822 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2823 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2824 		    RPF_ACTION_HOST);
   2825 	}
   2826 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2827 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2828 
   2829 	/* Vlan filters */
   2830 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2831 	    ETHERTYPE_QINQ);
   2832 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2833 	    ETHERTYPE_VLAN);
   2834 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   2835 
   2836 	if (sc->sc_features & FEATURES_REV_B) {
   2837 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2838 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2839 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2840 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2841 	}
   2842 
   2843 	/* misc */
   2844 	if (sc->sc_features & FEATURES_RPF2)
   2845 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2846 	else
   2847 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2848 
   2849 	/*
   2850 	 * XXX: RX_TCP_RSS_HASH_REG:
   2851 	 *  linux   set 0x000f0000
   2852 	 *  freebsd set 0x000f001e
   2853 	 */
   2854 	/* RSS hash type set for IP/TCP */
   2855 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2856 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2857 
   2858 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   2859 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   2860 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   2861 
   2862 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   2863 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   2864 }
   2865 
   2866 static void
   2867 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   2868 {
   2869 	int i;
   2870 
   2871 	if (sc->sc_intr_moderation_enable) {
   2872 		unsigned int tx_min, rx_min;	/* 0-255 */
   2873 		unsigned int tx_max, rx_max;	/* 0-511? */
   2874 
   2875 		switch (sc->sc_link_rate) {
   2876 		case AQ_LINK_100M:
   2877 			tx_min = 0x4f;
   2878 			tx_max = 0xff;
   2879 			rx_min = 0x04;
   2880 			rx_max = 0x50;
   2881 			break;
   2882 		case AQ_LINK_1G:
   2883 		default:
   2884 			tx_min = 0x4f;
   2885 			tx_max = 0xff;
   2886 			rx_min = 0x30;
   2887 			rx_max = 0x80;
   2888 			break;
   2889 		case AQ_LINK_2G5:
   2890 			tx_min = 0x4f;
   2891 			tx_max = 0xff;
   2892 			rx_min = 0x18;
   2893 			rx_max = 0xe0;
   2894 			break;
   2895 		case AQ_LINK_5G:
   2896 			tx_min = 0x4f;
   2897 			tx_max = 0xff;
   2898 			rx_min = 0x0c;
   2899 			rx_max = 0x70;
   2900 			break;
   2901 		case AQ_LINK_10G:
   2902 			tx_min = 0x4f;
   2903 			tx_max = 0x1ff;
   2904 			rx_min = 0x06;	/* freebsd use 80 */
   2905 			rx_max = 0x38;	/* freebsd use 120 */
   2906 			break;
   2907 		}
   2908 
   2909 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   2910 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   2911 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   2912 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   2913 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   2914 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   2915 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   2916 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   2917 
   2918 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   2919 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   2920 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   2921 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   2922 			    TX_INTR_MODERATION_CTL_EN);
   2923 		}
   2924 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   2925 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   2926 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   2927 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   2928 			    RX_INTR_MODERATION_CTL_EN);
   2929 		}
   2930 
   2931 	} else {
   2932 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   2933 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   2934 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   2935 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   2936 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   2937 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   2938 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   2939 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   2940 
   2941 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   2942 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   2943 		}
   2944 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   2945 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   2946 		}
   2947 	}
   2948 }
   2949 
   2950 static void
   2951 aq_hw_qos_set(struct aq_softc *sc)
   2952 {
   2953 	uint32_t tc = 0;
   2954 	uint32_t buff_size;
   2955 
   2956 	/* TPS Descriptor rate init */
   2957 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   2958 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   2959 
   2960 	/* TPS VM init */
   2961 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   2962 
   2963 	/* TPS TC credits init */
   2964 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   2965 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   2966 
   2967 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   2968 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   2969 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   2970 	    TPS_DATA_TCT_WEIGHT, 0x64);
   2971 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   2972 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   2973 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   2974 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   2975 
   2976 	/* Tx buf size */
   2977 	tc = 0;
   2978 	buff_size = AQ_HW_TXBUF_MAX;
   2979 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   2980 	    buff_size);
   2981 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   2982 	    (buff_size * (1024 / 32) * 66) / 100);
   2983 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   2984 	    (buff_size * (1024 / 32) * 50) / 100);
   2985 
   2986 	/* QoS Rx buf size per TC */
   2987 	tc = 0;
   2988 	buff_size = AQ_HW_RXBUF_MAX;
   2989 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   2990 	    buff_size);
   2991 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   2992 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   2993 	    (buff_size * (1024 / 32) * 66) / 100);
   2994 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   2995 	    (buff_size * (1024 / 32) * 50) / 100);
   2996 
   2997 	/* QoS 802.1p priority -> TC mapping */
   2998 	int i_priority;
   2999 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3000 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3001 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3002 	}
   3003 }
   3004 
   3005 /* called once from aq_attach */
   3006 static int
   3007 aq_init_rss(struct aq_softc *sc)
   3008 {
   3009 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3010 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3011 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3012 	unsigned int i;
   3013 	int error;
   3014 
   3015 	/* initialize rss key */
   3016 	rss_getkey((uint8_t *)rss_key);
   3017 
   3018 	/* hash to ring table */
   3019 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3020 		rss_table[i] = i % sc->sc_nqueues;
   3021 	}
   3022 
   3023 	/*
   3024 	 * set rss key
   3025 	 */
   3026 	for (i = 0; i < __arraycount(rss_key); i++) {
   3027 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3028 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3029 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3030 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3031 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3032 		    RPF_RSS_KEY_WR_EN, 1);
   3033 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3034 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3035 		if (error != 0) {
   3036 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3037 			    __func__);
   3038 			goto rss_set_timeout;
   3039 		}
   3040 	}
   3041 
   3042 	/*
   3043 	 * set rss indirection table
   3044 	 *
   3045 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3046 	 * we'll make it by __BITMAP(3) macros.
   3047 	 */
   3048 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3049 	__BITMAP_ZERO(&bit3x64);
   3050 
   3051 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3052 	do {							\
   3053 		if (val & 1) {					\
   3054 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3055 		} else {					\
   3056 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3057 		}						\
   3058 		if (val & 2) {					\
   3059 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3060 		} else {					\
   3061 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3062 		}						\
   3063 		if (val & 4) {					\
   3064 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3065 		} else {					\
   3066 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3067 		}						\
   3068 	} while (0 /* CONSTCOND */)
   3069 
   3070 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3071 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3072 	}
   3073 
   3074 	/* write 192bit data in steps of 16bit */
   3075 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3076 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3077 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3078 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3079 		    RPF_RSS_REDIR_ADDR, i);
   3080 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3081 		    RPF_RSS_REDIR_WR_EN, 1);
   3082 
   3083 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3084 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3085 		if (error != 0)
   3086 			break;
   3087 	}
   3088 
   3089  rss_set_timeout:
   3090 	return error;
   3091 }
   3092 
   3093 static void
   3094 aq_hw_l3_filter_set(struct aq_softc *sc)
   3095 {
   3096 	int i;
   3097 
   3098 	/* clear all filter */
   3099 	for (i = 0; i < 8; i++) {
   3100 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3101 		    RPF_L3_FILTER_L4_EN, 0);
   3102 	}
   3103 }
   3104 
   3105 static void
   3106 aq_update_vlan_filters(struct aq_softc *sc)
   3107 {
   3108 	/* XXX: notyet. vlan always promisc */
   3109 	int i;
   3110 
   3111 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
   3112 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3113 		    RPF_VLAN_FILTER_EN, 0);
   3114 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3115 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3116 	}
   3117 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   3118 }
   3119 
   3120 static int
   3121 aq_hw_init(struct aq_softc *sc)
   3122 {
   3123 	uint32_t v;
   3124 
   3125 	/* Force limit MRRS on RDM/TDM to 2K */
   3126 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3127 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3128 
   3129 	/*
   3130 	 * TX DMA total request limit. B0 hardware is not capable to
   3131 	 * handle more than (8K-MRRS) incoming DMA data.
   3132 	 * Value 24 in 256byte units
   3133 	 */
   3134 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3135 
   3136 	aq_hw_init_tx_path(sc);
   3137 	aq_hw_init_rx_path(sc);
   3138 
   3139 	aq_hw_interrupt_moderation_set(sc);
   3140 
   3141 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3142 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3143 
   3144 	aq_hw_qos_set(sc);
   3145 
   3146 	/* Enable interrupt */
   3147 	int irqmode;
   3148 	if (sc->sc_msix)
   3149 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3150 	else
   3151 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3152 
   3153 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3154 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3155 	    sc->sc_msix ? 1 : 0);
   3156 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3157 
   3158 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3159 
   3160 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3161 	    ((AQ_B0_ERR_INT << 24) | (1 << 31)) |
   3162 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3163 	);
   3164 
   3165 	/* link interrupt */
   3166 	if (!sc->sc_msix)
   3167 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3168 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3169 	    __BIT(7) | sc->sc_linkstat_irq);
   3170 
   3171 	return 0;
   3172 }
   3173 
   3174 static int
   3175 aq_update_link_status(struct aq_softc *sc)
   3176 {
   3177 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3178 	aq_link_speed_t rate = AQ_LINK_NONE;
   3179 	aq_link_fc_t fc = AQ_FC_NONE;
   3180 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3181 	unsigned int speed;
   3182 	int changed = 0;
   3183 
   3184 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3185 
   3186 	if (sc->sc_link_rate != rate)
   3187 		changed = 1;
   3188 	if (sc->sc_link_fc != fc)
   3189 		changed = 1;
   3190 	if (sc->sc_link_eee != eee)
   3191 		changed = 1;
   3192 
   3193 	if (changed) {
   3194 		switch (rate) {
   3195 		case AQ_LINK_100M:
   3196 			speed = 100;
   3197 			break;
   3198 		case AQ_LINK_1G:
   3199 			speed = 1000;
   3200 			break;
   3201 		case AQ_LINK_2G5:
   3202 			speed = 2500;
   3203 			break;
   3204 		case AQ_LINK_5G:
   3205 			speed = 5000;
   3206 			break;
   3207 		case AQ_LINK_10G:
   3208 			speed = 10000;
   3209 			break;
   3210 		case AQ_LINK_NONE:
   3211 		default:
   3212 			speed = 0;
   3213 			break;
   3214 		}
   3215 
   3216 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3217 			/* link DOWN -> UP */
   3218 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3219 			    speed);
   3220 			if_link_state_change(ifp, LINK_STATE_UP);
   3221 		} else if (rate == AQ_LINK_NONE) {
   3222 			/* link UP -> DOWN */
   3223 			device_printf(sc->sc_dev, "link is DOWN\n");
   3224 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3225 		} else {
   3226 			device_printf(sc->sc_dev,
   3227 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3228 			    speed, fc, eee);
   3229 		}
   3230 
   3231 		sc->sc_link_rate = rate;
   3232 		sc->sc_link_fc = fc;
   3233 		sc->sc_link_eee = eee;
   3234 
   3235 		aq_mediastatus_update(sc);
   3236 
   3237 		/* update interrupt timing according to new link speed */
   3238 		aq_hw_interrupt_moderation_set(sc);
   3239 	}
   3240 
   3241 	return changed;
   3242 }
   3243 
   3244 #ifdef AQ_EVENT_COUNTERS
   3245 static void
   3246 aq_update_statistics(struct aq_softc *sc)
   3247 {
   3248 	int prev = sc->sc_statistics_idx;
   3249 	int cur = prev ^ 1;
   3250 
   3251 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3252 
   3253 	/*
   3254 	 * aq's internal statistics counter is 32bit.
   3255 	 * cauculate delta, and add to evcount
   3256 	 */
   3257 #define ADD_DELTA(cur, prev, name)				\
   3258 	do {							\
   3259 		uint32_t n;					\
   3260 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3261 		    sc->sc_statistics[prev].name);		\
   3262 		if (n != 0) {					\
   3263 			AQ_EVCNT_ADD(sc, name, n);		\
   3264 		}						\
   3265 	} while (/*CONSTCOND*/0);
   3266 
   3267 	ADD_DELTA(cur, prev, uprc);
   3268 	ADD_DELTA(cur, prev, mprc);
   3269 	ADD_DELTA(cur, prev, bprc);
   3270 	ADD_DELTA(cur, prev, prc);
   3271 	ADD_DELTA(cur, prev, erpr);
   3272 	ADD_DELTA(cur, prev, uptc);
   3273 	ADD_DELTA(cur, prev, mptc);
   3274 	ADD_DELTA(cur, prev, bptc);
   3275 	ADD_DELTA(cur, prev, ptc);
   3276 	ADD_DELTA(cur, prev, erpt);
   3277 	ADD_DELTA(cur, prev, mbtc);
   3278 	ADD_DELTA(cur, prev, bbtc);
   3279 	ADD_DELTA(cur, prev, mbrc);
   3280 	ADD_DELTA(cur, prev, bbrc);
   3281 	ADD_DELTA(cur, prev, ubrc);
   3282 	ADD_DELTA(cur, prev, ubtc);
   3283 	ADD_DELTA(cur, prev, dpc);
   3284 	ADD_DELTA(cur, prev, cprc);
   3285 
   3286 	sc->sc_statistics_idx = cur;
   3287 }
   3288 #endif /* AQ_EVENT_COUNTERS */
   3289 
   3290 /* allocate and map one DMA block */
   3291 static int
   3292 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3293     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3294 {
   3295 	int nsegs, error;
   3296 
   3297 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3298 	    1, &nsegs, 0)) != 0) {
   3299 		aprint_error_dev(sc->sc_dev,
   3300 		    "unable to allocate DMA buffer, error=%d\n", error);
   3301 		goto fail_alloc;
   3302 	}
   3303 
   3304 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3305 	    BUS_DMA_COHERENT)) != 0) {
   3306 		aprint_error_dev(sc->sc_dev,
   3307 		    "unable to map DMA buffer, error=%d\n", error);
   3308 		goto fail_map;
   3309 	}
   3310 
   3311 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3312 	    0, mapp)) != 0) {
   3313 		aprint_error_dev(sc->sc_dev,
   3314 		    "unable to create DMA map, error=%d\n", error);
   3315 		goto fail_create;
   3316 	}
   3317 
   3318 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3319 	    0)) != 0) {
   3320 		aprint_error_dev(sc->sc_dev,
   3321 		    "unable to load DMA map, error=%d\n", error);
   3322 		goto fail_load;
   3323 	}
   3324 
   3325 	*sizep = size;
   3326 	return 0;
   3327 
   3328  fail_load:
   3329 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3330 	*mapp = NULL;
   3331  fail_create:
   3332 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3333 	*addrp = NULL;
   3334  fail_map:
   3335 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3336 	memset(seg, 0, sizeof(*seg));
   3337  fail_alloc:
   3338 	*sizep = 0;
   3339 	return error;
   3340 }
   3341 
   3342 static void
   3343 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3344     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3345 {
   3346 	if (*mapp != NULL) {
   3347 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3348 		*mapp = NULL;
   3349 	}
   3350 	if (*addrp != NULL) {
   3351 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3352 		*addrp = NULL;
   3353 	}
   3354 	if (*sizep != 0) {
   3355 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3356 		memset(seg, 0, sizeof(*seg));
   3357 		*sizep = 0;
   3358 	}
   3359 }
   3360 
   3361 static int
   3362 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3363 {
   3364 	int i, error;
   3365 
   3366 	/* allocate tx descriptors */
   3367 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3368 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3369 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3370 	if (error != 0)
   3371 		return error;
   3372 
   3373 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3374 
   3375 	/* fill tx ring with dmamap */
   3376 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3377 #define AQ_MAXDMASIZE	(16 * 1024)
   3378 #define AQ_NTXSEGS	32
   3379 		/* XXX: TODO: error check */
   3380 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3381 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3382 	}
   3383 	return 0;
   3384 }
   3385 
   3386 static void
   3387 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3388 {
   3389 	int i;
   3390 
   3391 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3392 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3393 
   3394 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3395 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3396 			if (txring->txr_mbufs[i].m != NULL) {
   3397 				bus_dmamap_unload(sc->sc_dmat,
   3398 				    txring->txr_mbufs[i].dmamap);
   3399 				m_freem(txring->txr_mbufs[i].m);
   3400 				txring->txr_mbufs[i].m = NULL;
   3401 			}
   3402 			bus_dmamap_destroy(sc->sc_dmat,
   3403 			    txring->txr_mbufs[i].dmamap);
   3404 			txring->txr_mbufs[i].dmamap = NULL;
   3405 		}
   3406 	}
   3407 }
   3408 
   3409 static int
   3410 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3411 {
   3412 	int i, error;
   3413 
   3414 	/* allocate rx descriptors */
   3415 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3416 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3417 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3418 	if (error != 0)
   3419 		return error;
   3420 
   3421 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3422 
   3423 	/* fill rxring with dmamaps */
   3424 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3425 		rxring->rxr_mbufs[i].m = NULL;
   3426 		/* XXX: TODO: error check */
   3427 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3428 		    &rxring->rxr_mbufs[i].dmamap);
   3429 	}
   3430 	return 0;
   3431 }
   3432 
   3433 static void
   3434 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3435 {
   3436 	int i;
   3437 
   3438 	/* free all mbufs allocated for RX */
   3439 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3440 		if (rxring->rxr_mbufs[i].m != NULL) {
   3441 			bus_dmamap_unload(sc->sc_dmat,
   3442 			    rxring->rxr_mbufs[i].dmamap);
   3443 			m_freem(rxring->rxr_mbufs[i].m);
   3444 			rxring->rxr_mbufs[i].m = NULL;
   3445 		}
   3446 	}
   3447 }
   3448 
   3449 static void
   3450 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3451 {
   3452 	int i;
   3453 
   3454 	/* free all mbufs and dmamaps */
   3455 	aq_rxdrain(sc, rxring);
   3456 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3457 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3458 			bus_dmamap_destroy(sc->sc_dmat,
   3459 			    rxring->rxr_mbufs[i].dmamap);
   3460 			rxring->rxr_mbufs[i].dmamap = NULL;
   3461 		}
   3462 	}
   3463 
   3464 	/* free RX descriptor */
   3465 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3466 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3467 }
   3468 
   3469 static void
   3470 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3471     struct mbuf *m)
   3472 {
   3473 	int error;
   3474 
   3475 	/* if mbuf already exists, unload and free */
   3476 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3477 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3478 		m_freem(rxring->rxr_mbufs[idx].m);
   3479 		rxring->rxr_mbufs[idx].m = NULL;
   3480 	}
   3481 
   3482 	rxring->rxr_mbufs[idx].m = m;
   3483 
   3484 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3485 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3486 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3487 	if (error) {
   3488 		device_printf(sc->sc_dev,
   3489 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3490 		panic("%s: unable to load rx DMA map. error=%d",
   3491 		    __func__, error);
   3492 	}
   3493 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3494 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3495 }
   3496 
   3497 static inline void
   3498 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3499 {
   3500 	/* refill rxdesc, and sync */
   3501 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3502 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3503 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3504 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3505 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3506 	    BUS_DMASYNC_PREWRITE);
   3507 }
   3508 
   3509 static struct mbuf *
   3510 aq_alloc_mbuf(void)
   3511 {
   3512 	struct mbuf *m;
   3513 
   3514 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3515 	if (m == NULL)
   3516 		return NULL;
   3517 
   3518 	MCLGET(m, M_DONTWAIT);
   3519 	if ((m->m_flags & M_EXT) == 0) {
   3520 		m_freem(m);
   3521 		return NULL;
   3522 	}
   3523 
   3524 	return m;
   3525 }
   3526 
   3527 /* allocate mbuf and unload dmamap */
   3528 static int
   3529 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3530 {
   3531 	struct mbuf *m;
   3532 
   3533 	m = aq_alloc_mbuf();
   3534 	if (m == NULL)
   3535 		return ENOBUFS;
   3536 
   3537 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3538 	return 0;
   3539 }
   3540 
   3541 static int
   3542 aq_txrx_rings_alloc(struct aq_softc *sc)
   3543 {
   3544 	int n, error;
   3545 
   3546 	for (n = 0; n < sc->sc_nqueues; n++) {
   3547 		sc->sc_queue[n].sc = sc;
   3548 		sc->sc_queue[n].txring.txr_sc = sc;
   3549 		sc->sc_queue[n].txring.txr_index = n;
   3550 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3551 		    IPL_NET);
   3552 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3553 		if (error != 0)
   3554 			goto failure;
   3555 
   3556 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3557 		if (error != 0)
   3558 			goto failure;
   3559 
   3560 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3561 		sc->sc_queue[n].rxring.rxr_index = n;
   3562 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3563 		   IPL_NET);
   3564 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3565 		if (error != 0)
   3566 			break;
   3567 	}
   3568 
   3569  failure:
   3570 	return error;
   3571 }
   3572 
   3573 static void
   3574 aq_txrx_rings_free(struct aq_softc *sc)
   3575 {
   3576 	int n;
   3577 
   3578 	for (n = 0; n < sc->sc_nqueues; n++) {
   3579 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3580 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3581 
   3582 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3583 
   3584 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3585 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3586 	}
   3587 }
   3588 
   3589 static int
   3590 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3591 {
   3592 	int error = 0;
   3593 	txring->txr_softint = NULL;
   3594 
   3595 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3596 	if (txring->txr_pcq == NULL) {
   3597 		aprint_error_dev(sc->sc_dev,
   3598 		    "unable to allocate pcq for TXring[%d]\n",
   3599 		    txring->txr_index);
   3600 		error = ENOMEM;
   3601 		goto done;
   3602 	}
   3603 
   3604 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3605 	    aq_deferred_transmit, txring);
   3606 	if (txring->txr_softint == NULL) {
   3607 		aprint_error_dev(sc->sc_dev,
   3608 		    "unable to establish softint for TXring[%d]\n",
   3609 		    txring->txr_index);
   3610 		error = ENOENT;
   3611 	}
   3612 
   3613  done:
   3614 	return error;
   3615 }
   3616 
   3617 static void
   3618 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3619 {
   3620 	struct mbuf *m;
   3621 
   3622 	if (txring->txr_softint != NULL) {
   3623 		softint_disestablish(txring->txr_softint);
   3624 		txring->txr_softint = NULL;
   3625 	}
   3626 
   3627 	if (txring->txr_pcq != NULL) {
   3628 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3629 			m_freem(m);
   3630 		pcq_destroy(txring->txr_pcq);
   3631 		txring->txr_pcq = NULL;
   3632 	}
   3633 }
   3634 
   3635 static void
   3636 aq_tick(void *arg)
   3637 {
   3638 	struct aq_softc *sc = arg;
   3639 
   3640 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3641 		sc->sc_detect_linkstat = false;
   3642 		aq_update_link_status(sc);
   3643 	}
   3644 
   3645 #ifdef AQ_EVENT_COUNTERS
   3646 	if (sc->sc_poll_statistics)
   3647 		aq_update_statistics(sc);
   3648 #endif
   3649 
   3650 	if (sc->sc_poll_linkstat
   3651 #ifdef AQ_EVENT_COUNTERS
   3652 	    || sc->sc_poll_statistics
   3653 #endif
   3654 	    ) {
   3655 		callout_schedule(&sc->sc_tick_ch, hz);
   3656 	}
   3657 }
   3658 
   3659 /* interrupt enable/disable */
   3660 static void
   3661 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3662 {
   3663 	uint32_t imask = 0;
   3664 	int i;
   3665 
   3666 	if (txrx) {
   3667 		for (i = 0; i < sc->sc_nqueues; i++) {
   3668 			imask |= __BIT(sc->sc_tx_irq[i]);
   3669 			imask |= __BIT(sc->sc_rx_irq[i]);
   3670 		}
   3671 	}
   3672 
   3673 	if (link)
   3674 		imask |= __BIT(sc->sc_linkstat_irq);
   3675 
   3676 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3677 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3678 }
   3679 
   3680 static int
   3681 aq_legacy_intr(void *arg)
   3682 {
   3683 	struct aq_softc *sc = arg;
   3684 	uint32_t status;
   3685 	int nintr = 0;
   3686 
   3687 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3688 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3689 
   3690 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3691 		sc->sc_detect_linkstat = true;
   3692 		callout_schedule(&sc->sc_tick_ch, 0);
   3693 		nintr++;
   3694 	}
   3695 
   3696 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3697 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3698 	}
   3699 
   3700 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3701 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3702 	}
   3703 
   3704 	return nintr;
   3705 }
   3706 
   3707 static int
   3708 aq_txrx_intr(void *arg)
   3709 {
   3710 	struct aq_queue *queue = arg;
   3711 	struct aq_softc *sc = queue->sc;
   3712 	struct aq_txring *txring = &queue->txring;
   3713 	struct aq_rxring *rxring = &queue->rxring;
   3714 	uint32_t status;
   3715 	int nintr = 0;
   3716 	int txringidx, rxringidx, txirq, rxirq;
   3717 
   3718 	txringidx = txring->txr_index;
   3719 	rxringidx = rxring->rxr_index;
   3720 	txirq = sc->sc_tx_irq[txringidx];
   3721 	rxirq = sc->sc_rx_irq[rxringidx];
   3722 
   3723 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3724 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3725 		/* stray interrupt? */
   3726 		return 0;
   3727 	}
   3728 
   3729 	nintr += aq_rx_intr(rxring);
   3730 	nintr += aq_tx_intr(txring);
   3731 
   3732 	return nintr;
   3733 }
   3734 
   3735 static int
   3736 aq_link_intr(void *arg)
   3737 {
   3738 	struct aq_softc *sc = arg;
   3739 	uint32_t status;
   3740 	int nintr = 0;
   3741 
   3742 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3743 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3744 		sc->sc_detect_linkstat = true;
   3745 		callout_schedule(&sc->sc_tick_ch, 0);
   3746 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3747 		    __BIT(sc->sc_linkstat_irq));
   3748 		nintr++;
   3749 	}
   3750 
   3751 	return nintr;
   3752 }
   3753 
   3754 static void
   3755 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3756 {
   3757 	const int ringidx = txring->txr_index;
   3758 	int i;
   3759 
   3760 	mutex_enter(&txring->txr_mutex);
   3761 
   3762 	txring->txr_prodidx = 0;
   3763 	txring->txr_considx = 0;
   3764 	txring->txr_nfree = AQ_TXD_NUM;
   3765 	txring->txr_active = false;
   3766 
   3767 	/* free mbufs untransmitted */
   3768 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3769 		if (txring->txr_mbufs[i].m != NULL) {
   3770 			m_freem(txring->txr_mbufs[i].m);
   3771 			txring->txr_mbufs[i].m = NULL;
   3772 		}
   3773 	}
   3774 
   3775 	/* disable DMA */
   3776 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3777 
   3778 	if (start) {
   3779 		/* TX descriptor physical address */
   3780 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3781 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3782 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3783 		    (uint32_t)((uint64_t)paddr >> 32));
   3784 
   3785 		/* TX descriptor size */
   3786 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3787 		    AQ_TXD_NUM / 8);
   3788 
   3789 		/* reload TAIL pointer */
   3790 		txring->txr_prodidx = txring->txr_considx =
   3791 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3792 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3793 
   3794 		/* Mapping interrupt vector */
   3795 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3796 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3797 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3798 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3799 
   3800 		/* enable DMA */
   3801 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3802 		    TX_DMA_DESC_EN, 1);
   3803 
   3804 		const int cpuid = 0;	/* XXX? */
   3805 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3806 		    TDM_DCAD_CPUID, cpuid);
   3807 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3808 		    TDM_DCAD_CPUID_EN, 0);
   3809 
   3810 		txring->txr_active = true;
   3811 	}
   3812 
   3813 	mutex_exit(&txring->txr_mutex);
   3814 }
   3815 
   3816 static int
   3817 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   3818 {
   3819 	const int ringidx = rxring->rxr_index;
   3820 	int i;
   3821 	int error = 0;
   3822 
   3823 	mutex_enter(&rxring->rxr_mutex);
   3824 	rxring->rxr_active = false;
   3825 
   3826 	/* disable DMA */
   3827 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   3828 
   3829 	/* free all RX mbufs */
   3830 	aq_rxdrain(sc, rxring);
   3831 
   3832 	if (start) {
   3833 		for (i = 0; i < AQ_RXD_NUM; i++) {
   3834 			error = aq_rxring_add(sc, rxring, i);
   3835 			if (error != 0) {
   3836 				aq_rxdrain(sc, rxring);
   3837 				return error;
   3838 			}
   3839 			aq_rxring_reset_desc(sc, rxring, i);
   3840 		}
   3841 
   3842 		/* RX descriptor physical address */
   3843 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   3844 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3845 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3846 		    (uint32_t)((uint64_t)paddr >> 32));
   3847 
   3848 		/* RX descriptor size */
   3849 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   3850 		    AQ_RXD_NUM / 8);
   3851 
   3852 		/* maximum receive frame size */
   3853 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3854 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   3855 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3856 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   3857 
   3858 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   3859 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   3860 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   3861 		    RX_DMA_DESC_VLAN_STRIP,
   3862 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   3863 		    1 : 0);
   3864 
   3865 		/*
   3866 		 * reload TAIL pointer, and update readidx
   3867 		 * (HEAD pointer cannot write)
   3868 		 */
   3869 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   3870 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   3871 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   3872 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   3873 
   3874 		/* Rx ring set mode */
   3875 
   3876 		/* Mapping interrupt vector */
   3877 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   3878 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   3879 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   3880 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   3881 
   3882 		const int cpuid = 0;	/* XXX? */
   3883 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   3884 		    RX_DMA_DCAD_CPUID, cpuid);
   3885 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   3886 		    RX_DMA_DCAD_DESC_EN, 0);
   3887 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   3888 		    RX_DMA_DCAD_HEADER_EN, 0);
   3889 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   3890 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   3891 
   3892 		/* enable DMA. start receiving */
   3893 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   3894 		    RX_DMA_DESC_EN, 1);
   3895 
   3896 		rxring->rxr_active = true;
   3897 	}
   3898 
   3899 	mutex_exit(&rxring->rxr_mutex);
   3900 	return error;
   3901 }
   3902 
   3903 #define TXRING_NEXTIDX(idx)	\
   3904 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   3905 #define RXRING_NEXTIDX(idx)	\
   3906 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   3907 
   3908 static int
   3909 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   3910 {
   3911 	bus_dmamap_t map;
   3912 	struct mbuf *m = *mp;
   3913 	uint32_t ctl1, ctl1_ctx, ctl2;
   3914 	int idx, i, error;
   3915 
   3916 	idx = txring->txr_prodidx;
   3917 	map = txring->txr_mbufs[idx].dmamap;
   3918 
   3919 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   3920 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   3921 	if (error == EFBIG) {
   3922 		struct mbuf *n;
   3923 		n = m_defrag(m, M_DONTWAIT);
   3924 		if (n == NULL)
   3925 			return EFBIG;
   3926 		/* m_defrag() preserve m */
   3927 		KASSERT(n == m);
   3928 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   3929 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   3930 	}
   3931 	if (error != 0)
   3932 		return error;
   3933 
   3934 	/*
   3935 	 * check spaces of free descriptors.
   3936 	 * +1 is additional descriptor for context (vlan, etc,.)
   3937 	 */
   3938 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   3939 		device_printf(sc->sc_dev,
   3940 		    "TX: not enough descriptors left %d for %d segs\n",
   3941 		    txring->txr_nfree, map->dm_nsegs + 1);
   3942 		bus_dmamap_unload(sc->sc_dmat, map);
   3943 		return ENOBUFS;
   3944 	}
   3945 
   3946 	/* sync dma for mbuf */
   3947 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   3948 	    BUS_DMASYNC_PREWRITE);
   3949 
   3950 	ctl1_ctx = 0;
   3951 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   3952 
   3953 	if (vlan_has_tag(m)) {
   3954 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   3955 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   3956 
   3957 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   3958 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   3959 
   3960 		/* fill context descriptor and forward index */
   3961 		txring->txr_txdesc[idx].buf_addr = 0;
   3962 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   3963 		txring->txr_txdesc[idx].ctl2 = 0;
   3964 
   3965 		idx = TXRING_NEXTIDX(idx);
   3966 		txring->txr_nfree--;
   3967 	}
   3968 
   3969 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3970 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   3971 	if (m->m_pkthdr.csum_flags &
   3972 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   3973 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   3974 	}
   3975 
   3976 	/* fill descriptor(s) */
   3977 	for (i = 0; i < map->dm_nsegs; i++) {
   3978 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   3979 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   3980 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   3981 
   3982 		if (i == 0) {
   3983 			/* remember mbuf of these descriptors */
   3984 			txring->txr_mbufs[idx].m = m;
   3985 		} else {
   3986 			txring->txr_mbufs[idx].m = NULL;
   3987 		}
   3988 
   3989 		if (i == map->dm_nsegs - 1) {
   3990 			/* last segment, mark an EndOfPacket, and cause intr */
   3991 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   3992 		}
   3993 
   3994 		txring->txr_txdesc[idx].buf_addr =
   3995 		    htole64(map->dm_segs[i].ds_addr);
   3996 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   3997 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   3998 
   3999 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4000 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4001 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4002 
   4003 		idx = TXRING_NEXTIDX(idx);
   4004 		txring->txr_nfree--;
   4005 	}
   4006 
   4007 	txring->txr_prodidx = idx;
   4008 
   4009 	return 0;
   4010 }
   4011 
   4012 static int
   4013 aq_tx_intr(void *arg)
   4014 {
   4015 	struct aq_txring *txring = arg;
   4016 	struct aq_softc *sc = txring->txr_sc;
   4017 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4018 	const int ringidx = txring->txr_index;
   4019 	unsigned int idx, hw_head, n = 0;
   4020 
   4021 	mutex_enter(&txring->txr_mutex);
   4022 
   4023 	if (!txring->txr_active)
   4024 		goto tx_intr_done;
   4025 
   4026 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4027 	    TX_DMA_DESC_HEAD_PTR);
   4028 	if (hw_head == txring->txr_considx) {
   4029 		goto tx_intr_done;
   4030 	}
   4031 
   4032 	for (idx = txring->txr_considx; idx != hw_head;
   4033 	    idx = TXRING_NEXTIDX(idx), n++) {
   4034 
   4035 		if (txring->txr_mbufs[idx].m != NULL) {
   4036 			bus_dmamap_unload(sc->sc_dmat,
   4037 			    txring->txr_mbufs[idx].dmamap);
   4038 			m_freem(txring->txr_mbufs[idx].m);
   4039 			txring->txr_mbufs[idx].m = NULL;
   4040 			ifp->if_opackets++;
   4041 		}
   4042 
   4043 		txring->txr_nfree++;
   4044 	}
   4045 	txring->txr_considx = idx;
   4046 
   4047 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4048 		ifp->if_flags &= ~IFF_OACTIVE;
   4049 
   4050 	/* no more pending TX packet, cancel watchdog */
   4051 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4052 		ifp->if_timer = 0;
   4053 
   4054  tx_intr_done:
   4055 	mutex_exit(&txring->txr_mutex);
   4056 
   4057 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4058 	return n;
   4059 }
   4060 
   4061 static int
   4062 aq_rx_intr(void *arg)
   4063 {
   4064 	struct aq_rxring *rxring = arg;
   4065 	struct aq_softc *sc = rxring->rxr_sc;
   4066 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4067 	const int ringidx = rxring->rxr_index;
   4068 	aq_rx_desc_t *rxd;
   4069 	struct mbuf *m, *m0, *mprev, *new_m;
   4070 	uint32_t rxd_type, rxd_hash __unused;
   4071 	uint16_t rxd_status, rxd_pktlen;
   4072 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4073 	unsigned int idx, n = 0;
   4074 
   4075 	mutex_enter(&rxring->rxr_mutex);
   4076 
   4077 	if (!rxring->rxr_active)
   4078 		goto rx_intr_done;
   4079 
   4080 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4081 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4082 		goto rx_intr_done;
   4083 	}
   4084 
   4085 	m0 = mprev = NULL;
   4086 	for (idx = rxring->rxr_readidx;
   4087 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4088 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4089 
   4090 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4091 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4092 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4093 
   4094 		rxd = &rxring->rxr_rxdesc[idx];
   4095 		rxd_status = le16toh(rxd->wb.status);
   4096 
   4097 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4098 			break;	/* not yet done */
   4099 
   4100 		rxd_type = le32toh(rxd->wb.type);
   4101 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4102 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4103 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4104 		rxd_vlan = le16toh(rxd->wb.vlan);
   4105 
   4106 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4107 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4108 			ifp->if_ierrors++;
   4109 			goto rx_next;
   4110 		}
   4111 
   4112 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4113 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4114 		    BUS_DMASYNC_POSTREAD);
   4115 		m = rxring->rxr_mbufs[idx].m;
   4116 
   4117 		new_m = aq_alloc_mbuf();
   4118 		if (new_m == NULL) {
   4119 			/*
   4120 			 * cannot allocate new mbuf.
   4121 			 * discard this packet, and reuse mbuf for next.
   4122 			 */
   4123 			goto rx_next;
   4124 		}
   4125 		rxring->rxr_mbufs[idx].m = NULL;
   4126 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4127 
   4128 		if (m0 == NULL) {
   4129 			m0 = m;
   4130 		} else {
   4131 			if (m->m_flags & M_PKTHDR)
   4132 				m_remove_pkthdr(m);
   4133 			mprev->m_next = m;
   4134 		}
   4135 		mprev = m;
   4136 
   4137 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4138 			m->m_len = MCLBYTES;
   4139 		} else {
   4140 			/* last buffer */
   4141 			m->m_len = rxd_pktlen % MCLBYTES;
   4142 			m0->m_pkthdr.len = rxd_pktlen;
   4143 			/* VLAN offloading */
   4144 			if ((sc->sc_ethercom.ec_capenable &
   4145 			    ETHERCAP_VLAN_HWTAGGING) &&
   4146 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4147 			    __SHIFTOUT(rxd_type,
   4148 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4149 				vlan_set_tag(m0, rxd_vlan);
   4150 			}
   4151 
   4152 			/* Checksum offloading */
   4153 			unsigned int pkttype_eth =
   4154 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4155 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4156 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4157 			    __SHIFTOUT(rxd_type,
   4158 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4159 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4160 				if (__SHIFTOUT(rxd_status,
   4161 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4162 					m0->m_pkthdr.csum_flags |=
   4163 					    M_CSUM_IPv4_BAD;
   4164 			}
   4165 #if notyet
   4166 			/*
   4167 			 * XXX: aq always marks BAD for fragmented packet.
   4168 			 * we should peek L3 header, and ignore cksum flags
   4169 			 * if the packet is fragmented.
   4170 			 */
   4171 			if (__SHIFTOUT(rxd_type,
   4172 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4173 				bool checked = false;
   4174 				unsigned int pkttype_proto =
   4175 				    __SHIFTOUT(rxd_type,
   4176 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4177 
   4178 				if (pkttype_proto ==
   4179 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4180 					if ((pkttype_eth ==
   4181 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4182 					    (ifp->if_capabilities &
   4183 					    IFCAP_CSUM_TCPv4_Rx)) {
   4184 						m0->m_pkthdr.csum_flags |=
   4185 						    M_CSUM_TCPv4;
   4186 						checked = true;
   4187 					} else if ((pkttype_eth ==
   4188 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4189 					    (ifp->if_capabilities &
   4190 					    IFCAP_CSUM_TCPv6_Rx)) {
   4191 						m0->m_pkthdr.csum_flags |=
   4192 						    M_CSUM_TCPv6;
   4193 						checked = true;
   4194 					}
   4195 				} else if (pkttype_proto ==
   4196 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4197 					if ((pkttype_eth ==
   4198 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4199 					    (ifp->if_capabilities &
   4200 					    IFCAP_CSUM_UDPv4_Rx)) {
   4201 						m0->m_pkthdr.csum_flags |=
   4202 						    M_CSUM_UDPv4;
   4203 						checked = true;
   4204 					} else if ((pkttype_eth ==
   4205 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4206 					    (ifp->if_capabilities &
   4207 					    IFCAP_CSUM_UDPv6_Rx)) {
   4208 						m0->m_pkthdr.csum_flags |=
   4209 						    M_CSUM_UDPv6;
   4210 						checked = true;
   4211 					}
   4212 				}
   4213 				if (checked &&
   4214 				    (__SHIFTOUT(rxd_status,
   4215 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4216 				    !__SHIFTOUT(rxd_status,
   4217 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4218 					m0->m_pkthdr.csum_flags |=
   4219 					    M_CSUM_TCP_UDP_BAD;
   4220 				}
   4221 			}
   4222 #endif
   4223 
   4224 			m_set_rcvif(m0, ifp);
   4225 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4226 
   4227 			m0 = mprev = NULL;
   4228 		}
   4229 
   4230  rx_next:
   4231 		aq_rxring_reset_desc(sc, rxring, idx);
   4232 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4233 	}
   4234 	rxring->rxr_readidx = idx;
   4235 
   4236  rx_intr_done:
   4237 	mutex_exit(&rxring->rxr_mutex);
   4238 
   4239 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4240 	return n;
   4241 }
   4242 
   4243 static int
   4244 aq_ifflags_cb(struct ethercom *ec)
   4245 {
   4246 	struct ifnet *ifp = &ec->ec_if;
   4247 	struct aq_softc *sc = ifp->if_softc;
   4248 	int i, ecchange, error = 0;
   4249 	unsigned short iffchange;
   4250 
   4251 	AQ_LOCK(sc);
   4252 
   4253 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4254 	if ((iffchange & IFF_PROMISC) != 0)
   4255 		error = aq_set_filter(sc);
   4256 
   4257 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4258 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4259 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4260 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4261 			    RX_DMA_DESC_VLAN_STRIP,
   4262 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4263 			    1 : 0);
   4264 		}
   4265 	}
   4266 
   4267 	sc->sc_ec_capenable = ec->ec_capenable;
   4268 	sc->sc_if_flags = ifp->if_flags;
   4269 
   4270 	AQ_UNLOCK(sc);
   4271 
   4272 	return error;
   4273 }
   4274 
   4275 static int
   4276 aq_init(struct ifnet *ifp)
   4277 {
   4278 	struct aq_softc *sc = ifp->if_softc;
   4279 	int i, error = 0;
   4280 
   4281 	AQ_LOCK(sc);
   4282 
   4283 	aq_update_vlan_filters(sc);
   4284 	aq_set_capability(sc);
   4285 
   4286 	for (i = 0; i < sc->sc_nqueues; i++) {
   4287 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4288 	}
   4289 
   4290 	/* invalidate RX descriptor cache */
   4291 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4292 	    AQ_READ_REG_BIT(sc,
   4293 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4294 
   4295 	/* start RX */
   4296 	for (i = 0; i < sc->sc_nqueues; i++) {
   4297 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4298 		if (error != 0) {
   4299 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4300 			    __func__);
   4301 			goto aq_init_failure;
   4302 		}
   4303 	}
   4304 	aq_init_rss(sc);
   4305 	aq_hw_l3_filter_set(sc);
   4306 
   4307 	/* need to start callout? */
   4308 	if (sc->sc_poll_linkstat
   4309 #ifdef AQ_EVENT_COUNTERS
   4310 	    || sc->sc_poll_statistics
   4311 #endif
   4312 	    ) {
   4313 		callout_schedule(&sc->sc_tick_ch, hz);
   4314 	}
   4315 
   4316 	/* ready */
   4317 	ifp->if_flags |= IFF_RUNNING;
   4318 	ifp->if_flags &= ~IFF_OACTIVE;
   4319 
   4320 	/* start TX and RX */
   4321 	aq_enable_intr(sc, true, true);
   4322 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4323 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4324 
   4325  aq_init_failure:
   4326 	sc->sc_if_flags = ifp->if_flags;
   4327 
   4328 	AQ_UNLOCK(sc);
   4329 
   4330 	return error;
   4331 }
   4332 
   4333 static void
   4334 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4335     struct aq_txring *txring, bool is_transmit)
   4336 {
   4337 	struct mbuf *m;
   4338 	int npkt, error;
   4339 
   4340 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4341 		return;
   4342 
   4343 	for (npkt = 0; ; npkt++) {
   4344 		if (is_transmit)
   4345 			m = pcq_peek(txring->txr_pcq);
   4346 		else
   4347 			IFQ_POLL(&ifp->if_snd, m);
   4348 
   4349 		if (m == NULL)
   4350 			break;
   4351 
   4352 		if (txring->txr_nfree < AQ_TXD_MIN)
   4353 			break;
   4354 
   4355 		if (is_transmit)
   4356 			pcq_get(txring->txr_pcq);
   4357 		else
   4358 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4359 
   4360 		error = aq_encap_txring(sc, txring, &m);
   4361 		if (error != 0) {
   4362 			/* too many mbuf chains? or not enough descriptors? */
   4363 			m_freem(m);
   4364 			ifp->if_oerrors++;
   4365 			if (txring->txr_index == 0 && error == ENOBUFS)
   4366 				ifp->if_flags |= IFF_OACTIVE;
   4367 			break;
   4368 		}
   4369 
   4370 		/* update tail ptr */
   4371 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4372 		    txring->txr_prodidx);
   4373 
   4374 		/* Pass the packet to any BPF listeners */
   4375 		bpf_mtap(ifp, m, BPF_D_OUT);
   4376 	}
   4377 
   4378 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4379 		ifp->if_flags |= IFF_OACTIVE;
   4380 
   4381 	if (npkt)
   4382 		ifp->if_timer = 5;
   4383 }
   4384 
   4385 static void
   4386 aq_start(struct ifnet *ifp)
   4387 {
   4388 	struct aq_softc *sc;
   4389 	struct aq_txring *txring;
   4390 
   4391 	sc = ifp->if_softc;
   4392 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
   4393 
   4394 	mutex_enter(&txring->txr_mutex);
   4395 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4396 		aq_send_common_locked(ifp, sc, txring, false);
   4397 	mutex_exit(&txring->txr_mutex);
   4398 }
   4399 
   4400 static inline unsigned int
   4401 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4402 {
   4403 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4404 }
   4405 
   4406 static int
   4407 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4408 {
   4409 	struct aq_softc *sc = ifp->if_softc;
   4410 	struct aq_txring *txring;
   4411 	int ringidx;
   4412 
   4413 	ringidx = aq_select_txqueue(sc, m);
   4414 	txring = &sc->sc_queue[ringidx].txring;
   4415 
   4416 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4417 		m_freem(m);
   4418 		return ENOBUFS;
   4419 	}
   4420 
   4421 	if (mutex_tryenter(&txring->txr_mutex)) {
   4422 		aq_send_common_locked(ifp, sc, txring, true);
   4423 		mutex_exit(&txring->txr_mutex);
   4424 	} else {
   4425 		softint_schedule(txring->txr_softint);
   4426 	}
   4427 	return 0;
   4428 }
   4429 
   4430 static void
   4431 aq_deferred_transmit(void *arg)
   4432 {
   4433 	struct aq_txring *txring = arg;
   4434 	struct aq_softc *sc = txring->txr_sc;
   4435 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4436 
   4437 	mutex_enter(&txring->txr_mutex);
   4438 	if (pcq_peek(txring->txr_pcq) != NULL)
   4439 		aq_send_common_locked(ifp, sc, txring, true);
   4440 	mutex_exit(&txring->txr_mutex);
   4441 }
   4442 
   4443 static void
   4444 aq_stop(struct ifnet *ifp, int disable)
   4445 {
   4446 	struct aq_softc *sc = ifp->if_softc;
   4447 	int i;
   4448 
   4449 	AQ_LOCK(sc);
   4450 
   4451 	ifp->if_timer = 0;
   4452 
   4453 	/* disable tx/rx interrupts */
   4454 	aq_enable_intr(sc, true, false);
   4455 
   4456 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4457 	for (i = 0; i < sc->sc_nqueues; i++) {
   4458 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4459 	}
   4460 
   4461 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4462 	for (i = 0; i < sc->sc_nqueues; i++) {
   4463 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4464 	}
   4465 
   4466 	/* invalidate RX descriptor cache */
   4467 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4468 	    AQ_READ_REG_BIT(sc,
   4469 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4470 
   4471 	ifp->if_timer = 0;
   4472 
   4473 	if (!disable) {
   4474 		/* when pmf stop, disable link status intr and callout */
   4475 		aq_enable_intr(sc, false, false);
   4476 		callout_stop(&sc->sc_tick_ch);
   4477 	}
   4478 
   4479 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4480 
   4481 	AQ_UNLOCK(sc);
   4482 }
   4483 
   4484 static void
   4485 aq_watchdog(struct ifnet *ifp)
   4486 {
   4487 	struct aq_softc *sc = ifp->if_softc;
   4488 	struct aq_txring *txring;
   4489 	int n, head, tail;
   4490 
   4491 	AQ_LOCK(sc);
   4492 
   4493 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4494 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4495 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4496 
   4497 	for (n = 0; n < sc->sc_nqueues; n++) {
   4498 		txring = &sc->sc_queue[n].txring;
   4499 		head = AQ_READ_REG_BIT(sc,
   4500 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4501 		    TX_DMA_DESC_HEAD_PTR),
   4502 		tail = AQ_READ_REG(sc,
   4503 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4504 
   4505 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4506 		    __func__, txring->txr_index, head, tail);
   4507 
   4508 		aq_tx_intr(txring);
   4509 	}
   4510 
   4511 	AQ_UNLOCK(sc);
   4512 
   4513 	aq_init(ifp);
   4514 }
   4515 
   4516 static int
   4517 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4518 {
   4519 	struct aq_softc *sc __unused;
   4520 	struct ifreq *ifr __unused;
   4521 	int error, s;
   4522 
   4523 	sc = (struct aq_softc *)ifp->if_softc;
   4524 	ifr = (struct ifreq *)data;
   4525 	error = 0;
   4526 
   4527 	s = splnet();
   4528 	error = ether_ioctl(ifp, cmd, data);
   4529 	splx(s);
   4530 
   4531 	if (error != ENETRESET)
   4532 		return error;
   4533 
   4534 	switch (cmd) {
   4535 	case SIOCSIFCAP:
   4536 		error = aq_set_capability(sc);
   4537 		break;
   4538 	case SIOCADDMULTI:
   4539 	case SIOCDELMULTI:
   4540 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4541 			break;
   4542 
   4543 		/*
   4544 		 * Multicast list has changed; set the hardware filter
   4545 		 * accordingly.
   4546 		 */
   4547 		error = aq_set_filter(sc);
   4548 		break;
   4549 	}
   4550 
   4551 	return error;
   4552 }
   4553 
   4554 
   4555 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4556 
   4557 #ifdef _MODULE
   4558 #include "ioconf.c"
   4559 #endif
   4560 
   4561 static int
   4562 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4563 {
   4564 	int error = 0;
   4565 
   4566 	switch (cmd) {
   4567 	case MODULE_CMD_INIT:
   4568 #ifdef _MODULE
   4569 		error = config_init_component(cfdriver_ioconf_if_aq,
   4570 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4571 #endif
   4572 		return error;
   4573 	case MODULE_CMD_FINI:
   4574 #ifdef _MODULE
   4575 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4576 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4577 #endif
   4578 		return error;
   4579 	default:
   4580 		return ENOTTY;
   4581 	}
   4582 }
   4583