if_aq.c revision 1.2 1 /* $NetBSD: if_aq.c,v 1.2 2020/01/17 05:11:04 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.2 2020/01/17 05:11:04 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/types.h>
73 #include <sys/bitops.h>
74 #include <sys/cprng.h>
75 #include <sys/cpu.h>
76 #include <sys/interrupt.h>
77 #include <sys/module.h>
78 #include <sys/pcq.h>
79
80 #include <net/bpf.h>
81 #include <net/if.h>
82 #include <net/if_dl.h>
83 #include <net/if_media.h>
84 #include <net/if_ether.h>
85 #include <net/rss_config.h>
86
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcidevs.h>
90
91 /* driver configuration */
92 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
93 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
94 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
95
96 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
97 /* TX + RX + LINK. must be <= 32 */
98 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
99
100 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
101 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
102 /* minimum required to send a packet (vlan needs additional TX descriptor) */
103 #define AQ_TXD_MIN (1 + 1)
104
105
106 /* hardware specification */
107 #define AQ_RINGS_NUM 32
108 #define AQ_RSSQUEUE_MAX 8
109 #define AQ_RX_DESCRIPTOR_MIN 32
110 #define AQ_TX_DESCRIPTOR_MIN 32
111 #define AQ_RX_DESCRIPTOR_MAX 8184
112 #define AQ_TX_DESCRIPTOR_MAX 8184
113 #define AQ_TRAFFICCLASS_NUM 8
114 #define AQ_RSS_HASHKEY_SIZE 40
115 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
116
117 /*
118 * TERMINOLOGY
119 * MPI = MAC PHY INTERFACE?
120 * RPO = RX Protocol Offloading
121 * TPO = TX Protocol Offloading
122 * RPF = RX Packet Filter
123 * TPB = TX Packet buffer
124 * RPB = RX Packet buffer
125 */
126
127 /* registers */
128 #define AQ_FW_SOFTRESET_REG 0x0000
129 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
130 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
131
132 #define AQ_FW_VERSION_REG 0x0018
133 #define AQ_HW_REVISION_REG 0x001c
134 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
135
136 #define AQ_FW_MBOX_CMD_REG 0x0200
137 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
138 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
139 #define AQ_FW_MBOX_ADDR_REG 0x0208
140 #define AQ_FW_MBOX_VAL_REG 0x020c
141
142 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
143 #define FW2X_LED_REG 0x031c
144 #define FW2X_LED_DEFAULT 0x00000000
145 #define FW2X_LED_NONE 0x0000003f
146 #define FW2X_LINKLED __BITS(0,1)
147 #define FW2X_LINKLED_ACTIVE 0
148 #define FW2X_LINKLED_ON 1
149 #define FW2X_LINKLED_BLINK 2
150 #define FW2X_LINKLED_OFF 3
151 #define FW2X_STATUSLED __BITS(2,5)
152 #define FW2X_STATUSLED_ORANGE 0
153 #define FW2X_STATUSLED_ORANGE_BLINK 2
154 #define FW2X_STATUSLED_OFF 3
155 #define FW2X_STATUSLED_GREEN 4
156 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
157 #define FW2X_STATUSLED_GREEN_BLINK 10
158
159 #define FW_MPI_MBOX_ADDR_REG 0x0360
160 #define FW1X_MPI_INIT1_REG 0x0364
161 #define FW1X_MPI_CONTROL_REG 0x0368
162 #define FW1X_MPI_STATE_REG 0x036c
163 #define FW1X_MPI_STATE_MODE __BITS(7,0)
164 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
165 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
166 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
167 #define FW1X_MPI_INIT2_REG 0x0370
168 #define FW1X_MPI_EFUSEADDR_REG 0x0374
169
170 #define FW2X_MPI_EFUSEADDR_REG 0x0364
171 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
172 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
173 #define FW_BOOT_EXIT_CODE_REG 0x0388
174 #define RBL_STATUS_DEAD 0x0000dead
175 #define RBL_STATUS_SUCCESS 0x0000abba
176 #define RBL_STATUS_FAILURE 0x00000bad
177 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
178
179 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
180 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
181
182 #define AQ_FW_GLB_CTL2_REG 0x0404
183 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
184
185 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
186 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
187
188 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
189
190 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
191
192 // msix bitmap */
193 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
194 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
195 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
196 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
197 #define AQ_INTR_AUTOMASK_REG 0x2090
198
199 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
200 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
201 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
202 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
203 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
204 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
205 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
207
208 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
209 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
210 #define AQ_B0_ERR_INT 8
211
212 #define AQ_INTR_CTRL_REG 0x2300
213 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
214 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
215 #define AQ_INTR_CTRL_IRQMODE_MSI 1
216 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
217 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
218 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
219 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
220 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
221 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
222
223 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
224
225 #define FW_MPI_RESETCTRL_REG 0x4000
226 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
227
228 #define RX_SYSCONTROL_REG 0x5000
229 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
230 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
231 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
232
233 #define RX_TCP_RSS_HASH_REG 0x5040
234 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
235 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
236
237 /* for RPF_*_REG.ACTION */
238 #define RPF_ACTION_DISCARD 0
239 #define RPF_ACTION_HOST 1
240 #define RPF_ACTION_MANAGEMENT 2
241 #define RPF_ACTION_HOST_MANAGEMENT 3
242 #define RPF_ACTION_WOL 4
243
244 #define RPF_L2BC_REG 0x5100
245 #define RPF_L2BC_EN __BIT(0)
246 #define RPF_L2BC_PROMISC __BIT(3)
247 #define RPF_L2BC_ACTION __BITS(12,14)
248 #define RPF_L2BC_THRESHOLD __BITS(31,16)
249
250 /* RPF_L2UC_*_REG[34] (actual [38]?) */
251 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
252 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
253 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
254 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
255 #define RPF_L2UC_MSW_EN __BIT(31)
256 #define AQ_HW_MAC_OWN 0 /* index of own address */
257 #define AQ_HW_MAC_NUM 34
258
259 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
260 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
261 #define RPF_MCAST_FILTER_EN __BIT(31)
262 #define RPF_MCAST_FILTER_MASK_REG 0x5270
263 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
264
265 #define RPF_VLAN_MODE_REG 0x5280
266 #define RPF_VLAN_MODE_PROMISC __BIT(1)
267 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
268 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
269
270 #define RPF_VLAN_TPID_REG 0x5284
271 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
272 #define RPF_VLAN_TPID_INNER __BITS(15,0)
273
274 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
275 #define RPF_VLAN_MAX_FILTERS 16
276 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
277 #define RPF_VLAN_FILTER_EN __BIT(31)
278 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
279 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
280 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
281 #define RPF_VLAN_FILTER_ID __BITS(11,0)
282
283 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
284 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
285 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
286 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
287 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
288 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
289 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
290 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
291 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
292 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
293
294 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
295 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
296 #define RPF_L3_FILTER_L4_EN __BIT(31)
297 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
298 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
299 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
300 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
301 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
302 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
303 #define RPF_L3_FILTER_ARP_EN __BIT(24)
304 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
305 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
306 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
307 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
308 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
309 #define RPF_L3_FILTER_L4_PROTO_TCP 0
310 #define RPF_L3_FILTER_L4_PROTO_UDP 1
311 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
312 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
313 /* parameters of RPF_L3_FILTER_REG[8] */
314 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
315 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
316 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
317 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
318
319 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
320 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
321
322 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
323 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
324
325 #define RPF_RSS_KEY_ADDR_REG 0x54d0
326 #define RPF_RSS_KEY_ADDR __BITS(4,0)
327 #define RPF_RSS_KEY_WR_EN __BIT(5)
328 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
329 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
330
331 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
332 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
333 #define RPF_RSS_REDIR_WR_EN __BIT(4)
334
335 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
336 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
337
338 #define RPO_HWCSUM_REG 0x5580
339 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
340 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
341
342 #define RPO_LRO_ENABLE_REG 0x5590
343
344 #define RPO_LRO_CONF_REG 0x5594
345 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
346 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
347 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
348 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
349 #define RPO_LRO_RSC_MAX_REG 0x5598
350
351 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
352 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
353 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
354 #define RPO_LRO_TB_DIV_REG 0x5620
355 #define RPO_LRO_TB_DIV __BITS(20,31)
356 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
357 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
358 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
359 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
360
361 #define RPB_RPF_RX_REG 0x5700
362 #define RPB_RPF_RX_TC_MODE __BIT(8)
363 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
364 #define RPB_RPF_RX_BUF_EN __BIT(0)
365
366 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
367 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
368 #define RPB_RXB_BUFSIZE __BITS(8,0)
369 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
370 #define RPB_RXB_XOFF_EN __BIT(31)
371 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
372 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
373
374 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
375 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
376
377 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
378 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
379 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
380
381 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
382 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
383 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
384 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
385 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
386
387 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
388 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
389 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
390 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
391 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
392 #define RX_DMA_DESC_RESET __BIT(25)
393 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
394 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
395 #define RX_DMA_DESC_EN __BIT(31)
396 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
397 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
398 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
399 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
400 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
401 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
402
403 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
404 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
405 #define RX_DMA_DCAD_CPUID __BITS(7,0)
406 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
407 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
408 #define RX_DMA_DCAD_DESC_EN __BIT(31)
409
410 #define RX_DMA_DCA_REG 0x6180
411 #define RX_DMA_DCA_EN __BIT(31)
412 #define RX_DMA_DCA_MODE __BITS(3,0)
413
414 /* counters */
415 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
416 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
417 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
418 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
419
420 #define TX_SYSCONTROL_REG 0x7000
421 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
422 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
423 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
424
425 #define TX_TPO2_REG 0x7040
426 #define TX_TPO2_EN __BIT(16)
427
428 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
429 #define TPS_DESC_VM_ARB_MODE __BIT(0)
430 #define TPS_DESC_RATE_REG 0x7310
431 #define TPS_DESC_RATE_TA_RST __BIT(31)
432 #define TPS_DESC_RATE_LIM __BITS(10,0)
433 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
434 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
435 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
436 #define TPS_DATA_TC_ARB_MODE __BIT(0)
437
438 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
439 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
440 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
441 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
442 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
443 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
444 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
445 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
446
447 #define AQ_HW_TXBUF_MAX 160
448 #define AQ_HW_RXBUF_MAX 320
449
450 #define TPO_HWCSUM_REG 0x7800
451 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
452 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
453
454 #define TDM_LSO_EN_REG 0x7810
455
456 #define THM_LSO_TCP_FLAG1_REG 0x7820
457 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
458 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
459 #define THM_LSO_TCP_FLAG2_REG 0x7824
460 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
461
462 #define TPB_TX_BUF_REG 0x7900
463 #define TPB_TX_BUF_EN __BIT(0)
464 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
465 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
466
467 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
468 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
469 #define TPB_TXB_BUFSIZE __BITS(7,0)
470 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
471 #define TPB_TXB_THRESH_HI __BITS(16,28)
472 #define TPB_TXB_THRESH_LO __BITS(12,0)
473
474 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
475 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
476 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
477 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
478
479 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
480 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
481 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
482 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
483 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
484 #define TX_DMA_DESC_EN __BIT(31)
485 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
486 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
487 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
488 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
489 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
490
491 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
492 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
493 #define TDM_DCAD_CPUID __BITS(7,0)
494 #define TDM_DCAD_CPUID_EN __BIT(31)
495
496 #define TDM_DCA_REG 0x8480
497 #define TDM_DCA_EN __BIT(31)
498 #define TDM_DCA_MODE __BITS(3,0)
499
500 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
501 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
502 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
503 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
504 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
505
506 #define FW1X_CTRL_10G __BIT(0)
507 #define FW1X_CTRL_5G __BIT(1)
508 #define FW1X_CTRL_5GSR __BIT(2)
509 #define FW1X_CTRL_2G5 __BIT(3)
510 #define FW1X_CTRL_1G __BIT(4)
511 #define FW1X_CTRL_100M __BIT(5)
512
513 #define FW2X_CTRL_10BASET_HD __BIT(0)
514 #define FW2X_CTRL_10BASET_FD __BIT(1)
515 #define FW2X_CTRL_100BASETX_HD __BIT(2)
516 #define FW2X_CTRL_100BASET4_HD __BIT(3)
517 #define FW2X_CTRL_100BASET2_HD __BIT(4)
518 #define FW2X_CTRL_100BASETX_FD __BIT(5)
519 #define FW2X_CTRL_100BASET2_FD __BIT(6)
520 #define FW2X_CTRL_1000BASET_HD __BIT(7)
521 #define FW2X_CTRL_1000BASET_FD __BIT(8)
522 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
523 #define FW2X_CTRL_5GBASET_FD __BIT(10)
524 #define FW2X_CTRL_10GBASET_FD __BIT(11)
525 #define FW2X_CTRL_RESERVED1 __BIT(32)
526 #define FW2X_CTRL_10BASET_EEE __BIT(33)
527 #define FW2X_CTRL_RESERVED2 __BIT(34)
528 #define FW2X_CTRL_PAUSE __BIT(35)
529 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
530 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
531 #define FW2X_CTRL_RESERVED3 __BIT(38)
532 #define FW2X_CTRL_RESERVED4 __BIT(39)
533 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
534 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
535 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
536 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
537 #define FW2X_CTRL_RESERVED5 __BIT(44)
538 #define FW2X_CTRL_RESERVED6 __BIT(45)
539 #define FW2X_CTRL_RESERVED7 __BIT(46)
540 #define FW2X_CTRL_RESERVED8 __BIT(47)
541 #define FW2X_CTRL_RESERVED9 __BIT(48)
542 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
543 #define FW2X_CTRL_TEMPERATURE __BIT(50)
544 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
545 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
546 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
547 #define FW2X_CTRL_LINK_DROP __BIT(54)
548 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
549 #define FW2X_CTRL_WOL __BIT(56)
550 #define FW2X_CTRL_MAC_STOP __BIT(57)
551 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
552 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
553 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
554 #define FW2X_CTRL_WOL_TIMER __BIT(61)
555 #define FW2X_CTRL_STATISTICS __BIT(62)
556 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
557
558 #define FW2X_SNPRINTB \
559 "\177\020" \
560 "b\x23" "PAUSE\0" \
561 "b\x24" "ASYMMETRIC-PAUSE\0" \
562 "b\x31" "CABLE-DIAG\0" \
563 "b\x32" "TEMPERATURE\0" \
564 "b\x33" "DOWNSHIFT\0" \
565 "b\x34" "PTP-AVB\0" \
566 "b\x35" "MEDIA-DETECT\0" \
567 "b\x36" "LINK-DROP\0" \
568 "b\x37" "SLEEP-PROXY\0" \
569 "b\x38" "WOL\0" \
570 "b\x39" "MAC-STOP\0" \
571 "b\x3a" "EXT-LOOPBACK\0" \
572 "b\x3b" "INT-LOOPBACK\0" \
573 "b\x3c" "EFUSE-AGENT\0" \
574 "b\x3d" "WOL-TIMER\0" \
575 "b\x3e" "STATISTICS\0" \
576 "b\x3f" "TRANSACTION-ID\0" \
577 "\0"
578
579 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
580 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
581 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
582 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
583 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
584 #define FW2X_CTRL_RATE_MASK \
585 (FW2X_CTRL_RATE_100M | \
586 FW2X_CTRL_RATE_1G | \
587 FW2X_CTRL_RATE_2G5 | \
588 FW2X_CTRL_RATE_5G | \
589 FW2X_CTRL_RATE_10G)
590 #define FW2X_CTRL_EEE_MASK \
591 (FW2X_CTRL_10BASET_EEE | \
592 FW2X_CTRL_100BASETX_EEE | \
593 FW2X_CTRL_1000BASET_FD_EEE | \
594 FW2X_CTRL_2P5GBASET_FD_EEE | \
595 FW2X_CTRL_5GBASET_FD_EEE | \
596 FW2X_CTRL_10GBASET_FD_EEE)
597
598 typedef enum aq_fw_bootloader_mode {
599 FW_BOOT_MODE_UNKNOWN = 0,
600 FW_BOOT_MODE_FLB,
601 FW_BOOT_MODE_RBL_FLASH,
602 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
603 } aq_fw_bootloader_mode_t;
604
605 #define AQ_WRITE_REG(sc, reg, val) \
606 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
607
608 #define AQ_READ_REG(sc, reg) \
609 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
610
611 #define AQ_READ64_REG(sc, reg) \
612 ((uint64_t)AQ_READ_REG(sc, reg) | \
613 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
614
615 #define AQ_WRITE64_REG(sc, reg, val) \
616 do { \
617 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
618 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
619 } while (/* CONSTCOND */0)
620
621 #define AQ_READ_REG_BIT(sc, reg, mask) \
622 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
623
624 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
625 do { \
626 uint32_t _v; \
627 _v = AQ_READ_REG((sc), (reg)); \
628 _v &= ~(mask); \
629 if ((val) != 0) \
630 _v |= __SHIFTIN((val), (mask)); \
631 AQ_WRITE_REG((sc), (reg), _v); \
632 } while (/* CONSTCOND */ 0)
633
634 #define WAIT_FOR(expr, us, n, errp) \
635 do { \
636 unsigned int _n; \
637 for (_n = n; (!(expr)) && _n != 0; --_n) { \
638 delay((us)); \
639 } \
640 if ((errp != NULL)) { \
641 if (_n == 0) \
642 *(errp) = ETIMEDOUT; \
643 else \
644 *(errp) = 0; \
645 } \
646 } while (/* CONSTCOND */ 0)
647
648 #define msec_delay(x) DELAY(1000 * (x))
649
650 typedef struct aq_mailbox_header {
651 uint32_t version;
652 uint32_t transaction_id;
653 int32_t error;
654 } __packed aq_mailbox_header_t;
655
656 typedef struct aq_hw_stats_s {
657 uint32_t uprc;
658 uint32_t mprc;
659 uint32_t bprc;
660 uint32_t erpt;
661 uint32_t uptc;
662 uint32_t mptc;
663 uint32_t bptc;
664 uint32_t erpr;
665 uint32_t mbtc;
666 uint32_t bbtc;
667 uint32_t mbrc;
668 uint32_t bbrc;
669 uint32_t ubrc;
670 uint32_t ubtc;
671 uint32_t ptc;
672 uint32_t prc;
673 uint32_t dpc; /* not exists in fw2x_msm_statistics */
674 uint32_t cprc; /* not exists in fw2x_msm_statistics */
675 } __packed aq_hw_stats_s_t;
676
677 typedef struct fw1x_mailbox {
678 aq_mailbox_header_t header;
679 aq_hw_stats_s_t msm;
680 } __packed fw1x_mailbox_t;
681
682 typedef struct fw2x_msm_statistics {
683 uint32_t uprc;
684 uint32_t mprc;
685 uint32_t bprc;
686 uint32_t erpt;
687 uint32_t uptc;
688 uint32_t mptc;
689 uint32_t bptc;
690 uint32_t erpr;
691 uint32_t mbtc;
692 uint32_t bbtc;
693 uint32_t mbrc;
694 uint32_t bbrc;
695 uint32_t ubrc;
696 uint32_t ubtc;
697 uint32_t ptc;
698 uint32_t prc;
699 } __packed fw2x_msm_statistics_t;
700
701 typedef struct fw2x_phy_cable_diag_data {
702 uint32_t lane_data[4];
703 } __packed fw2x_phy_cable_diag_data_t;
704
705 typedef struct fw2x_capabilities {
706 uint32_t caps_lo;
707 uint32_t caps_hi;
708 } __packed fw2x_capabilities_t;
709
710 typedef struct fw2x_mailbox { /* struct fwHostInterface */
711 aq_mailbox_header_t header;
712 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
713 uint16_t phy_h_bit;
714 uint16_t phy_fault_code;
715 int16_t phy_temperature;
716 uint8_t cable_len;
717 uint8_t reserved1;
718 fw2x_phy_cable_diag_data_t diag_data;
719 uint32_t reserved[8];
720
721 fw2x_capabilities_t caps;
722
723 /* ... */
724 } __packed fw2x_mailbox_t;
725
726 typedef enum aq_link_speed {
727 AQ_LINK_NONE = 0,
728 AQ_LINK_100M = (1 << 0),
729 AQ_LINK_1G = (1 << 1),
730 AQ_LINK_2G5 = (1 << 2),
731 AQ_LINK_5G = (1 << 3),
732 AQ_LINK_10G = (1 << 4)
733 } aq_link_speed_t;
734 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
735 AQ_LINK_5G | AQ_LINK_10G )
736 #define AQ_LINK_AUTO AQ_LINK_ALL
737
738 typedef enum aq_link_fc {
739 AQ_FC_NONE = 0,
740 AQ_FC_RX = __BIT(0),
741 AQ_FC_TX = __BIT(1),
742 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
743 } aq_link_fc_t;
744
745 typedef enum aq_link_eee {
746 AQ_EEE_DISABLE = 0,
747 AQ_EEE_ENABLE = 1
748 } aq_link_eee_t;
749
750 typedef enum aq_hw_fw_mpi_state {
751 MPI_DEINIT = 0,
752 MPI_RESET = 1,
753 MPI_INIT = 2,
754 MPI_POWER = 4
755 } aq_hw_fw_mpi_state_t;
756
757 enum aq_media_type {
758 AQ_MEDIA_TYPE_UNKNOWN = 0,
759 AQ_MEDIA_TYPE_FIBRE,
760 AQ_MEDIA_TYPE_TP
761 };
762
763 struct aq_rx_desc_read {
764 uint64_t buf_addr;
765 uint64_t hdr_addr;
766 } __packed;
767
768 struct aq_rx_desc_wb {
769 uint32_t type;
770 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
771 #define RXDESC_TYPE_RSSTYPE_NONE 0
772 #define RXDESC_TYPE_RSSTYPE_IPV4 2
773 #define RXDESC_TYPE_RSSTYPE_IPV6 3
774 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
775 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
776 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
777 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
778 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
779 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
780 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
781 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
782 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
783 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
784 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
785 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
786 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
787 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
789 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
790 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
791 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
792 #define RXDESC_TYPE_RESERVED __BITS(18,13)
793 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
794 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
795 #define RXDESC_TYPE_SPH __BIT(21)
796 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
797 uint32_t rss_hash;
798 uint16_t status;
799 #define RXDESC_STATUS_DD __BIT(0)
800 #define RXDESC_STATUS_EOP __BIT(1)
801 #define RXDESC_STATUS_MACERR __BIT(2)
802 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
803 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
804 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
805
806 #define RXDESC_STATUS_STAT __BITS(2,5)
807 #define RXDESC_STATUS_ESTAT __BITS(6,11)
808 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
809 uint16_t pkt_len;
810 uint16_t next_desc_ptr;
811 uint16_t vlan;
812 } __packed;
813
814 typedef union aq_rx_desc {
815 struct aq_rx_desc_read read;
816 struct aq_rx_desc_wb wb;
817 } __packed aq_rx_desc_t;
818
819 typedef struct aq_tx_desc {
820 uint64_t buf_addr;
821 uint32_t ctl1;
822 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
823 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
824 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
825 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
826 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
827 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
828 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
829 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
830 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
831 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
832 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
835 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
836 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
837 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
838 uint32_t ctl2;
839 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
840 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
841 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
842 } __packed aq_tx_desc_t;
843
844 struct aq_txring {
845 struct aq_softc *txr_sc;
846 int txr_index;
847 kmutex_t txr_mutex;
848 bool txr_active;
849
850 pcq_t *txr_pcq;
851 void *txr_softint;
852
853 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
854 bus_dmamap_t txr_txdesc_dmamap;
855 bus_dma_segment_t txr_txdesc_seg[1];
856 bus_size_t txr_txdesc_size;
857
858 struct {
859 struct mbuf *m;
860 bus_dmamap_t dmamap;
861 } txr_mbufs[AQ_TXD_NUM];
862 unsigned int txr_prodidx;
863 unsigned int txr_considx;
864 int txr_nfree;
865 };
866
867 struct aq_rxring {
868 struct aq_softc *rxr_sc;
869 int rxr_index;
870 kmutex_t rxr_mutex;
871 bool rxr_active;
872
873 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
874 bus_dmamap_t rxr_rxdesc_dmamap;
875 bus_dma_segment_t rxr_rxdesc_seg[1];
876 bus_size_t rxr_rxdesc_size;
877 struct {
878 struct mbuf *m;
879 bus_dmamap_t dmamap;
880 } rxr_mbufs[AQ_RXD_NUM];
881 unsigned int rxr_readidx;
882 };
883
884 struct aq_queue {
885 struct aq_softc *sc;
886 struct aq_txring txring;
887 struct aq_rxring rxring;
888 };
889
890 struct aq_softc;
891 struct aq_firmware_ops {
892 int (*reset)(struct aq_softc *);
893 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
894 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
895 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
896 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
897 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
898 };
899
900 #ifdef AQ_EVENT_COUNTERS
901 #define AQ_EVCNT_DECL(name) \
902 char sc_evcount_##name##_name[32]; \
903 struct evcnt sc_evcount_##name##_ev;
904 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
905 do { \
906 snprintf((sc)->sc_evcount_##name##_name, \
907 sizeof((sc)->sc_evcount_##name##_name), \
908 "%s", desc); \
909 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
910 (evtype), NULL, device_xname((sc)->sc_dev), \
911 (sc)->sc_evcount_##name##_name); \
912 } while (/*CONSTCOND*/0)
913 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
914 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
915 #define AQ_EVCNT_DETACH(sc, name) \
916 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
917 #define AQ_EVCNT_ADD(sc, name, val) \
918 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
919 #endif /* AQ_EVENT_COUNTERS */
920
921 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
922 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
923
924 struct aq_softc {
925 device_t sc_dev;
926
927 bus_space_tag_t sc_iot;
928 bus_space_handle_t sc_ioh;
929 bus_size_t sc_iosize;
930 bus_dma_tag_t sc_dmat;;
931
932 void *sc_ihs[AQ_NINTR_MAX];
933 pci_intr_handle_t *sc_intrs;
934
935 int sc_tx_irq[AQ_RSSQUEUE_MAX];
936 int sc_rx_irq[AQ_RSSQUEUE_MAX];
937 int sc_linkstat_irq;
938 bool sc_use_txrx_independent_intr;
939 bool sc_poll_linkstat;
940 bool sc_detect_linkstat;
941
942 callout_t sc_tick_ch;
943
944 int sc_nintrs;
945 bool sc_msix;
946
947 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
948 int sc_nqueues;
949
950 pci_chipset_tag_t sc_pc;
951 pcitag_t sc_pcitag;
952 uint16_t sc_product;
953 uint16_t sc_revision;
954
955 kmutex_t sc_mutex;
956
957 struct aq_firmware_ops *sc_fw_ops;
958 uint64_t sc_fw_caps;
959 enum aq_media_type sc_media_type;
960 aq_link_speed_t sc_available_rates;
961
962 aq_link_speed_t sc_link_rate;
963 aq_link_fc_t sc_link_fc;
964 aq_link_eee_t sc_link_eee;
965
966 uint32_t sc_fw_version;
967 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
968 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
969 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
970 uint32_t sc_features;
971 #define FEATURES_MIPS 0x00000001
972 #define FEATURES_TPO2 0x00000002
973 #define FEATURES_RPF2 0x00000004
974 #define FEATURES_MPI_AQ 0x00000008
975 #define FEATURES_REV_A0 0x10000000
976 #define FEATURES_REV_A (FEATURES_REV_A0)
977 #define FEATURES_REV_B0 0x20000000
978 #define FEATURES_REV_B1 0x40000000
979 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
980 uint32_t sc_mbox_addr;
981
982 bool sc_rbl_enabled;
983 bool sc_fast_start_enabled;
984 bool sc_flash_present;
985
986 bool sc_intr_moderation_enable;
987 bool sc_rss_enable;
988
989 int sc_media_active;
990
991 struct ethercom sc_ethercom;
992 struct ether_addr sc_enaddr;
993 struct ifmedia sc_media;
994 int sc_ec_capenable; /* last ec_capenable */
995 unsigned short sc_if_flags; /* last if_flags */
996
997 #ifdef AQ_EVENT_COUNTERS
998 aq_hw_stats_s_t sc_statistics[2];
999 int sc_statistics_idx;
1000 bool sc_poll_statistics;
1001
1002 AQ_EVCNT_DECL(uprc);
1003 AQ_EVCNT_DECL(mprc);
1004 AQ_EVCNT_DECL(bprc);
1005 AQ_EVCNT_DECL(erpt);
1006 AQ_EVCNT_DECL(uptc);
1007 AQ_EVCNT_DECL(mptc);
1008 AQ_EVCNT_DECL(bptc);
1009 AQ_EVCNT_DECL(erpr);
1010 AQ_EVCNT_DECL(mbtc);
1011 AQ_EVCNT_DECL(bbtc);
1012 AQ_EVCNT_DECL(mbrc);
1013 AQ_EVCNT_DECL(bbrc);
1014 AQ_EVCNT_DECL(ubrc);
1015 AQ_EVCNT_DECL(ubtc);
1016 AQ_EVCNT_DECL(ptc);
1017 AQ_EVCNT_DECL(prc);
1018 AQ_EVCNT_DECL(dpc);
1019 AQ_EVCNT_DECL(cprc);
1020 #endif
1021 };
1022
1023 static int aq_match(device_t, cfdata_t, void *);
1024 static void aq_attach(device_t, device_t, void *);
1025 static int aq_detach(device_t, int);
1026
1027 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1028 bool, bool);
1029 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1030 pci_intr_type_t);
1031 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1032
1033 static int aq_ifmedia_change(struct ifnet * const);
1034 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1035 static int aq_ifflags_cb(struct ethercom *);
1036 static int aq_init(struct ifnet *);
1037 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1038 struct aq_txring *, bool);
1039 static int aq_transmit(struct ifnet *, struct mbuf *);
1040 static void aq_deferred_transmit(void *);
1041 static void aq_start(struct ifnet *);
1042 static void aq_stop(struct ifnet *, int);
1043 static void aq_watchdog(struct ifnet *);
1044 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1045
1046 static int aq_txrx_rings_alloc(struct aq_softc *);
1047 static void aq_txrx_rings_free(struct aq_softc *);
1048 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1049 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1050
1051 static void aq_initmedia(struct aq_softc *);
1052 static void aq_enable_intr(struct aq_softc *, bool, bool);
1053
1054 static void aq_tick(void *);
1055 static int aq_legacy_intr(void *);
1056 static int aq_link_intr(void *);
1057 static int aq_txrx_intr(void *);
1058 static int aq_tx_intr(void *);
1059 static int aq_rx_intr(void *);
1060
1061 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1062 aq_link_eee_t);
1063 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1064 aq_link_eee_t *);
1065
1066 static int aq_fw_reset(struct aq_softc *);
1067 static int aq_fw_version_init(struct aq_softc *);
1068 static int aq_hw_init(struct aq_softc *);
1069 static int aq_hw_init_ucp(struct aq_softc *);
1070 static int aq_hw_reset(struct aq_softc *);
1071 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1072 uint32_t);
1073 static int aq_get_mac_addr(struct aq_softc *);
1074 static int aq_init_rss(struct aq_softc *);
1075 static int aq_set_capability(struct aq_softc *);
1076
1077 static int fw1x_reset(struct aq_softc *);
1078 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1079 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1080 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1081 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1082 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1083
1084 static int fw2x_reset(struct aq_softc *);
1085 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1086 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1087 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1088 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1089 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1090
1091 static struct aq_firmware_ops aq_fw1x_ops = {
1092 .reset = fw1x_reset,
1093 .set_mode = fw1x_set_mode,
1094 .get_mode = fw1x_get_mode,
1095 .get_stats = fw1x_get_stats
1096 };
1097
1098 static struct aq_firmware_ops aq_fw2x_ops = {
1099 .reset = fw2x_reset,
1100 .set_mode = fw2x_set_mode,
1101 .get_mode = fw2x_get_mode,
1102 .get_stats = fw2x_get_stats
1103 };
1104
1105 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1106 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1107
1108 static const struct aq_product {
1109 pci_vendor_id_t aq_vendor;
1110 pci_product_id_t aq_product;
1111 const char *aq_name;
1112 enum aq_media_type aq_media_type;
1113 aq_link_speed_t aq_available_rates;
1114 } aq_products[] = {
1115 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1116 "Aquantia AQC107 10 Gigabit Network Adapter",
1117 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1118 },
1119 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1120 "Aquantia AQC108 5 Gigabit Network Adapter",
1121 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1122 },
1123 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1124 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1125 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1126 },
1127 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1128 "Aquantia AQC111 5 Gigabit Network Adapter",
1129 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1130 },
1131 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1132 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1133 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1134 },
1135 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1136 "Aquantia AQC107S 10 Gigabit Network Adapter",
1137 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1138 },
1139 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1140 "Aquantia AQC108S 5 Gigabit Network Adapter",
1141 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1142 },
1143 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1144 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1145 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1146 },
1147 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1148 "Aquantia AQC111S 5 Gigabit Network Adapter",
1149 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1150 },
1151 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1152 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1153 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1154 },
1155 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1156 "Aquantia D107 10 Gigabit Network Adapter",
1157 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1158 },
1159 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1160 "Aquantia D108 5 Gigabit Network Adapter",
1161 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1162 },
1163 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1164 "Aquantia D109 2.5 Gigabit Network Adapter",
1165 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1166 }
1167 };
1168
1169 static const struct aq_product *
1170 aq_lookup(const struct pci_attach_args *pa)
1171 {
1172 unsigned int i;
1173
1174 for (i = 0; i < __arraycount(aq_products); i++) {
1175 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1176 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1177 return &aq_products[i];
1178 }
1179 return NULL;
1180 }
1181
1182 static int
1183 aq_match(device_t parent, cfdata_t cf, void *aux)
1184 {
1185 struct pci_attach_args *pa = aux;
1186
1187 if (aq_lookup(pa) != NULL)
1188 return 1;
1189
1190 return 0;
1191 }
1192
1193 static void
1194 aq_attach(device_t parent, device_t self, void *aux)
1195 {
1196 struct aq_softc *sc = device_private(self);
1197 struct pci_attach_args *pa = aux;
1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 pci_chipset_tag_t pc;
1200 pcitag_t tag;
1201 pcireg_t command, memtype, bar;
1202 const struct aq_product *aqp;
1203 int error;
1204
1205 sc->sc_dev = self;
1206 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1207
1208 sc->sc_pc = pc = pa->pa_pc;
1209 sc->sc_pcitag = tag = pa->pa_tag;
1210 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1211
1212 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1213 command |= PCI_COMMAND_MASTER_ENABLE;
1214 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1215
1216 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1217 sc->sc_revision = PCI_REVISION(pa->pa_class);
1218
1219 aqp = aq_lookup(pa);
1220 KASSERT(aqp != NULL);
1221
1222 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1223
1224 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1225 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1226 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1227 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1228 return;
1229 }
1230 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1231 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1232 NULL, &sc->sc_iosize) != 0) {
1233 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1234 return;
1235 }
1236
1237 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1238
1239 /* max queue num is 8, and must be 2^n */
1240 if (ncpu >= 8)
1241 sc->sc_nqueues = 8;
1242 else if (ncpu >= 4)
1243 sc->sc_nqueues = 4;
1244 else if (ncpu >= 2)
1245 sc->sc_nqueues = 2;
1246 else
1247 sc->sc_nqueues = 1;
1248
1249 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1250 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1251 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1252 /* TX intrs + RX intrs + LINKSTAT intrs */
1253 sc->sc_use_txrx_independent_intr = true;
1254 sc->sc_poll_linkstat = false;
1255 sc->sc_msix = true;
1256 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1257 /* TX intrs + RX intrs */
1258 sc->sc_use_txrx_independent_intr = true;
1259 sc->sc_poll_linkstat = true;
1260 sc->sc_msix = true;
1261 } else
1262 #endif
1263 if (msixcount >= (sc->sc_nqueues + 1)) {
1264 /* TX/RX intrs LINKSTAT intrs */
1265 sc->sc_use_txrx_independent_intr = false;
1266 sc->sc_poll_linkstat = false;
1267 sc->sc_msix = true;
1268 } else if (msixcount >= sc->sc_nqueues) {
1269 /* TX/RX intrs */
1270 sc->sc_use_txrx_independent_intr = false;
1271 sc->sc_poll_linkstat = true;
1272 sc->sc_msix = true;
1273 } else {
1274 /* giving up using MSI-X */
1275 sc->sc_msix = false;
1276 }
1277
1278 aprint_debug_dev(sc->sc_dev,
1279 "ncpu=%d, pci_msix_count=%d."
1280 " allocate %d interrupts for %d%s queues%s\n",
1281 ncpu, msixcount,
1282 (sc->sc_use_txrx_independent_intr ?
1283 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1284 (sc->sc_poll_linkstat ? 0 : 1),
1285 sc->sc_nqueues,
1286 sc->sc_use_txrx_independent_intr ? "*2" : "",
1287 sc->sc_poll_linkstat ? "" : ", and link status");
1288
1289 if (sc->sc_msix)
1290 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1291 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1292 else
1293 error = ENODEV;
1294
1295 if (error != 0) {
1296 /* if MSI-X failed, fallback to MSI with single queue */
1297 sc->sc_use_txrx_independent_intr = false;
1298 sc->sc_poll_linkstat = false;
1299 sc->sc_msix = false;
1300 sc->sc_nqueues = 1;
1301 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1302 }
1303 if (error != 0) {
1304 /* if MSI failed, fallback to INTx */
1305 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1306 }
1307 if (error != 0)
1308 return;
1309
1310 callout_init(&sc->sc_tick_ch, 0);
1311 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1312
1313 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1314
1315 if (sc->sc_msix && (sc->sc_nqueues > 1))
1316 sc->sc_rss_enable = true;
1317 else
1318 sc->sc_rss_enable = false;
1319
1320 error = aq_txrx_rings_alloc(sc);
1321 if (error != 0)
1322 goto attach_failure;
1323
1324 error = aq_fw_reset(sc);
1325 if (error != 0)
1326 goto attach_failure;
1327
1328 error = aq_fw_version_init(sc);
1329 if (error != 0)
1330 goto attach_failure;
1331
1332 error = aq_hw_init_ucp(sc);
1333 if (error < 0)
1334 goto attach_failure;
1335
1336 KASSERT(sc->sc_mbox_addr != 0);
1337 error = aq_hw_reset(sc);
1338 if (error != 0)
1339 goto attach_failure;
1340
1341 aq_get_mac_addr(sc);
1342 aq_init_rss(sc);
1343
1344 error = aq_hw_init(sc); /* initialize and interrupts */
1345 if (error != 0)
1346 goto attach_failure;
1347
1348 sc->sc_media_type = aqp->aq_media_type;
1349 sc->sc_available_rates = aqp->aq_available_rates;
1350
1351 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1352 ifmedia_init(&sc->sc_media, IFM_IMASK,
1353 aq_ifmedia_change, aq_ifmedia_status);
1354 aq_initmedia(sc);
1355
1356 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1357 ifp->if_softc = sc;
1358 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1359 ifp->if_baudrate = IF_Gbps(10);
1360 ifp->if_init = aq_init;
1361 ifp->if_ioctl = aq_ioctl;
1362 if (sc->sc_msix && (sc->sc_nqueues > 1))
1363 ifp->if_transmit = aq_transmit;
1364 ifp->if_start = aq_start;
1365 ifp->if_stop = aq_stop;
1366 ifp->if_watchdog = aq_watchdog;
1367 IFQ_SET_READY(&ifp->if_snd);
1368
1369 /* initialize capabilities */
1370 sc->sc_ethercom.ec_capabilities = 0;
1371 sc->sc_ethercom.ec_capenable = 0;
1372 #if notyet
1373 /* TODO */
1374 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1375 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
1376 #endif
1377 sc->sc_ethercom.ec_capabilities |=
1378 ETHERCAP_JUMBO_MTU |
1379 ETHERCAP_VLAN_MTU |
1380 ETHERCAP_VLAN_HWTAGGING;
1381 sc->sc_ethercom.ec_capenable |=
1382 ETHERCAP_VLAN_HWTAGGING;
1383
1384 ifp->if_capabilities = 0;
1385 ifp->if_capenable = 0;
1386 #ifdef CONFIG_LRO_SUPPORT
1387 ifp->if_capabilities |= IFCAP_LRO;
1388 ifp->if_capenable |= IFCAP_LRO;
1389 #endif
1390 #if notyet
1391 /* TSO */
1392 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1393 #endif
1394
1395 #if notyet
1396 /*
1397 * XXX:
1398 * Rx L4 CSUM doesn't work well for fragment packet.
1399 * aq marks 'CHEDKED' and 'BAD' for them.
1400 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1401 *
1402 * TODO: test with LRO enabled
1403 */
1404 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1405 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1406 #endif
1407 /* TX hardware checksum offloadding */
1408 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1409 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1410 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1411 /* RX hardware checksum offloadding */
1412 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1413
1414 if_attach(ifp);
1415 if_deferred_start_init(ifp, NULL);
1416 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1417 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1418
1419 aq_enable_intr(sc, true, false); /* only intr about link */
1420
1421 /* update media */
1422 aq_ifmedia_change(ifp);
1423
1424 #ifdef AQ_EVENT_COUNTERS
1425 /* get starting statistics values */
1426 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1427 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1428 sc->sc_poll_statistics = true;
1429 }
1430
1431 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1432 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1433 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1434 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1435 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1436 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1437 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1438 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1439 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1440 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1441 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1442 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1443 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1444 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1445 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1446 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1447 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1448 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1449 #endif
1450
1451 return;
1452
1453 attach_failure:
1454 aq_detach(self, 0);
1455 }
1456
1457 static int
1458 aq_detach(device_t self, int flags __unused)
1459 {
1460 struct aq_softc *sc = device_private(self);
1461 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1462 int i, s;
1463
1464 if (sc->sc_iosize != 0) {
1465 if (ifp->if_softc != NULL) {
1466 s = splnet();
1467 aq_stop(ifp, 0);
1468 splx(s);
1469 }
1470
1471 for (i = 0; i < AQ_NINTR_MAX; i++) {
1472 if (sc->sc_ihs[i] != NULL) {
1473 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1474 sc->sc_ihs[i] = NULL;
1475 }
1476 }
1477 if (sc->sc_nintrs > 0) {
1478 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1479 sc->sc_nintrs);
1480 sc->sc_intrs = NULL;
1481 sc->sc_nintrs = 0;
1482 }
1483
1484 aq_txrx_rings_free(sc);
1485
1486 if (ifp->if_softc != NULL) {
1487 ether_ifdetach(ifp);
1488 if_detach(ifp);
1489 }
1490
1491 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1492 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1493 sc->sc_iosize = 0;
1494 }
1495
1496 callout_stop(&sc->sc_tick_ch);
1497
1498 #ifdef AQ_EVENT_COUNTERS
1499 AQ_EVCNT_DETACH(sc, uprc);
1500 AQ_EVCNT_DETACH(sc, mprc);
1501 AQ_EVCNT_DETACH(sc, bprc);
1502 AQ_EVCNT_DETACH(sc, erpt);
1503 AQ_EVCNT_DETACH(sc, uptc);
1504 AQ_EVCNT_DETACH(sc, mptc);
1505 AQ_EVCNT_DETACH(sc, bptc);
1506 AQ_EVCNT_DETACH(sc, erpr);
1507 AQ_EVCNT_DETACH(sc, mbtc);
1508 AQ_EVCNT_DETACH(sc, bbtc);
1509 AQ_EVCNT_DETACH(sc, mbrc);
1510 AQ_EVCNT_DETACH(sc, bbrc);
1511 AQ_EVCNT_DETACH(sc, ubrc);
1512 AQ_EVCNT_DETACH(sc, ubtc);
1513 AQ_EVCNT_DETACH(sc, ptc);
1514 AQ_EVCNT_DETACH(sc, prc);
1515 AQ_EVCNT_DETACH(sc, dpc);
1516 AQ_EVCNT_DETACH(sc, cprc);
1517 #endif
1518
1519 mutex_destroy(&sc->sc_mutex);
1520
1521 return 0;
1522 }
1523
1524 static int
1525 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1526 int (*func)(void *), void *arg, const char *xname)
1527 {
1528 char intrbuf[PCI_INTRSTR_LEN];
1529 pci_chipset_tag_t pc = sc->sc_pc;
1530 void *vih;
1531 const char *intrstr = NULL;
1532
1533 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1534 sizeof(intrbuf));
1535
1536 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1537
1538 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1539 IPL_NET, func, arg, xname);
1540 if (vih == NULL) {
1541 aprint_error_dev(sc->sc_dev,
1542 "unable to establish MSI-X%s%s for %s\n",
1543 intrstr ? " at " : "",
1544 intrstr ? intrstr : "", xname);
1545 return EIO;
1546 }
1547 sc->sc_ihs[intno] = vih;
1548
1549 if (affinity != NULL) {
1550 /* Round-robin affinity */
1551 kcpuset_zero(affinity);
1552 kcpuset_set(affinity, intno % ncpu);
1553 interrupt_distribute(vih, affinity, NULL);
1554 }
1555
1556 return 0;
1557 }
1558
1559 static int
1560 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1561 bool linkintr)
1562 {
1563 kcpuset_t *affinity;
1564 int error, intno, i;
1565 char intr_xname[INTRDEVNAMEBUF];
1566
1567 kcpuset_create(&affinity, false);
1568
1569 intno = 0;
1570
1571 if (txrx_independent) {
1572 for (i = 0; i < sc->sc_nqueues; i++) {
1573 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1574 device_xname(sc->sc_dev), i);
1575 sc->sc_rx_irq[i] = intno;
1576 error = aq_establish_intr(sc, intno++, affinity,
1577 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1578 if (error != 0)
1579 goto fail;
1580 }
1581 for (i = 0; i < sc->sc_nqueues; i++) {
1582 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1583 device_xname(sc->sc_dev), i);
1584 sc->sc_tx_irq[i] = intno;
1585 error = aq_establish_intr(sc, intno++, affinity,
1586 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1587 if (error != 0)
1588 goto fail;
1589 }
1590 } else {
1591 for (i = 0; i < sc->sc_nqueues; i++) {
1592 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1593 device_xname(sc->sc_dev), i);
1594 sc->sc_rx_irq[i] = intno;
1595 sc->sc_tx_irq[i] = intno;
1596 error = aq_establish_intr(sc, intno++, affinity,
1597 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1598 if (error != 0)
1599 goto fail;
1600 }
1601 }
1602
1603 if (linkintr) {
1604 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1605 device_xname(sc->sc_dev));
1606 sc->sc_linkstat_irq = intno;
1607 error = aq_establish_intr(sc, intno++, affinity,
1608 aq_link_intr, sc, intr_xname);
1609 if (error != 0)
1610 goto fail;
1611 }
1612
1613 kcpuset_destroy(affinity);
1614 return 0;
1615
1616 fail:
1617 for (i = 0; i < AQ_NINTR_MAX; i++) {
1618 if (sc->sc_ihs[i] != NULL) {
1619 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1620 sc->sc_ihs[i] = NULL;
1621 }
1622 }
1623
1624 kcpuset_destroy(affinity);
1625 return ENOMEM;
1626 }
1627
1628 static int
1629 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1630 bool txrx_independent, bool linkintr)
1631 {
1632 int error, nintr;
1633
1634 if (txrx_independent)
1635 nintr = nqueue * 2;
1636 else
1637 nintr = nqueue;
1638
1639 if (linkintr)
1640 nintr++;
1641
1642 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1643 if (error != 0) {
1644 aprint_error_dev(sc->sc_dev,
1645 "failed to allocate MSI-X interrupts\n");
1646 goto fail;
1647 }
1648
1649 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1650 if (error == 0) {
1651 sc->sc_nintrs = nintr;
1652 } else {
1653 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1654 sc->sc_nintrs = 0;
1655 }
1656 fail:
1657 return error;
1658
1659 }
1660
1661 static int
1662 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1663 pci_intr_type_t inttype)
1664 {
1665 int counts[PCI_INTR_TYPE_SIZE];
1666 int error, nintr;
1667
1668 nintr = 1;
1669
1670 memset(counts, 0, sizeof(counts));
1671 counts[inttype] = nintr;
1672
1673 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1674 if (error != 0) {
1675 aprint_error_dev(sc->sc_dev,
1676 "failed to allocate%s interrupts\n",
1677 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1678 return error;
1679 }
1680 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1681 device_xname(sc->sc_dev));
1682 if (error == 0) {
1683 sc->sc_nintrs = nintr;
1684 } else {
1685 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1686 sc->sc_nintrs = 0;
1687 }
1688 return error;
1689 }
1690
1691 static void
1692 global_software_reset(struct aq_softc *sc)
1693 {
1694 uint32_t v;
1695
1696 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1697 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1698 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1699 FW_MPI_RESETCTRL_RESET_DIS, 0);
1700
1701 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1702 v &= ~AQ_FW_SOFTRESET_DIS;
1703 v |= AQ_FW_SOFTRESET_RESET;
1704 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1705 }
1706
1707 static int
1708 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1709 {
1710 int timo;
1711
1712 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1713
1714 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1715 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1716 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1717
1718 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1719 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1720
1721 global_software_reset(sc);
1722
1723 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1724
1725 /* Wait for RBL to finish boot process. */
1726 #define RBL_TIMEOUT_MS 10000
1727 uint16_t rbl_status;
1728 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1729 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1730 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1731 break;
1732 msec_delay(1);
1733 }
1734 if (timo <= 0) {
1735 aprint_error_dev(sc->sc_dev,
1736 "RBL> RBL restart failed: timeout\n");
1737 return EBUSY;
1738 }
1739 switch (rbl_status) {
1740 case RBL_STATUS_SUCCESS:
1741 if (mode != NULL)
1742 *mode = FW_BOOT_MODE_RBL_FLASH;
1743 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1744 break;
1745 case RBL_STATUS_HOST_BOOT:
1746 if (mode != NULL)
1747 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1748 aprint_debug_dev(sc->sc_dev,
1749 "RBL> reset complete! [Host Bootload]\n");
1750 break;
1751 case RBL_STATUS_FAILURE:
1752 default:
1753 aprint_error_dev(sc->sc_dev,
1754 "unknown RBL status 0x%x\n", rbl_status);
1755 return EBUSY;
1756 }
1757
1758 return 0;
1759 }
1760
1761 static int
1762 mac_soft_reset_flb(struct aq_softc *sc)
1763 {
1764 uint32_t v;
1765 int timo;
1766
1767 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1768 /*
1769 * Let Felicity hardware to complete SMBUS transaction before
1770 * Global software reset.
1771 */
1772 msec_delay(50);
1773
1774 /*
1775 * If SPI burst transaction was interrupted(before running the script),
1776 * global software reset may not clear SPI interface.
1777 * Clean it up manually before global reset.
1778 */
1779 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1780 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1781 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1782 msec_delay(50);
1783
1784 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1785 v &= ~AQ_FW_SOFTRESET_DIS;
1786 v |= AQ_FW_SOFTRESET_RESET;
1787 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1788
1789 /* Kickstart. */
1790 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1791 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1792 if (!sc->sc_fast_start_enabled)
1793 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1794
1795 /*
1796 * For the case SPI burst transaction was interrupted (by MCP reset
1797 * above), wait until it is completed by hardware.
1798 */
1799 msec_delay(50);
1800
1801 /* MAC Kickstart */
1802 if (!sc->sc_fast_start_enabled) {
1803 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1804
1805 uint32_t flb_status;
1806 for (timo = 0; timo < 1000; timo++) {
1807 flb_status = AQ_READ_REG(sc,
1808 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1809 if (flb_status != 0)
1810 break;
1811 msec_delay(1);
1812 }
1813 if (flb_status == 0) {
1814 aprint_error_dev(sc->sc_dev,
1815 "FLB> MAC kickstart failed: timed out\n");
1816 return ETIMEDOUT;
1817 }
1818 aprint_debug_dev(sc->sc_dev,
1819 "FLB> MAC kickstart done, %d ms\n", timo);
1820 /* FW reset */
1821 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1822 /*
1823 * Let Felicity hardware complete SMBUS transaction before
1824 * Global software reset.
1825 */
1826 msec_delay(50);
1827 sc->sc_fast_start_enabled = true;
1828 }
1829 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1830
1831 /* PHY Kickstart: #undone */
1832 global_software_reset(sc);
1833
1834 for (timo = 0; timo < 1000; timo++) {
1835 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1836 break;
1837 msec_delay(10);
1838 }
1839 if (timo >= 1000) {
1840 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1841 return ETIMEDOUT;
1842 }
1843 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1844 return 0;
1845
1846 }
1847
1848 static int
1849 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1850 {
1851 if (sc->sc_rbl_enabled)
1852 return mac_soft_reset_rbl(sc, mode);
1853
1854 if (mode != NULL)
1855 *mode = FW_BOOT_MODE_FLB;
1856 return mac_soft_reset_flb(sc);
1857 }
1858
1859 static int
1860 aq_fw_read_version(struct aq_softc *sc)
1861 {
1862 int i, error = EBUSY;
1863 #define MAC_FW_START_TIMEOUT_MS 10000
1864 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1865 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1866 if (sc->sc_fw_version != 0) {
1867 error = 0;
1868 break;
1869 }
1870 delay(1000);
1871 }
1872 return error;
1873 }
1874
1875 static int
1876 aq_fw_reset(struct aq_softc *sc)
1877 {
1878 uint32_t ver, v, bootExitCode;
1879 int i, error;
1880
1881 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1882
1883 for (i = 1000; i > 0; i--) {
1884 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1885 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1886 if (v != 0x06000000 || bootExitCode != 0)
1887 break;
1888 }
1889 if (i <= 0) {
1890 aprint_error_dev(sc->sc_dev,
1891 "F/W reset failed. Neither RBL nor FLB started\n");
1892 return ETIMEDOUT;
1893 }
1894 sc->sc_rbl_enabled = (bootExitCode != 0);
1895
1896 /*
1897 * Having FW version 0 is an indicator that cold start
1898 * is in progress. This means two things:
1899 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1900 * 2) Driver may skip reset sequence and save time.
1901 */
1902 if (sc->sc_fast_start_enabled && (ver != 0)) {
1903 error = aq_fw_read_version(sc);
1904 /* Skip reset as it just completed */
1905 if (error == 0)
1906 return 0;
1907 }
1908
1909 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1910 error = mac_soft_reset(sc, &mode);
1911 if (error != 0) {
1912 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1913 return error;
1914 }
1915
1916 switch (mode) {
1917 case FW_BOOT_MODE_FLB:
1918 aprint_debug_dev(sc->sc_dev,
1919 "FLB> F/W successfully loaded from flash.\n");
1920 sc->sc_flash_present = true;
1921 return aq_fw_read_version(sc);
1922 case FW_BOOT_MODE_RBL_FLASH:
1923 aprint_debug_dev(sc->sc_dev,
1924 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
1925 sc->sc_flash_present = true;
1926 return aq_fw_read_version(sc);
1927 case FW_BOOT_MODE_UNKNOWN:
1928 aprint_error_dev(sc->sc_dev,
1929 "F/W bootload error: unknown bootloader type\n");
1930 return ENOTSUP;
1931 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
1932 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
1933 break;
1934 }
1935
1936 /*
1937 * XXX: TODO: add support Host Boot
1938 */
1939 aprint_error_dev(sc->sc_dev,
1940 "RBL> F/W Host Bootload not implemented\n");
1941 return ENOTSUP;
1942 }
1943
1944 static int
1945 aq_hw_reset(struct aq_softc *sc)
1946 {
1947 int error;
1948
1949 /* disable irq */
1950 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
1951
1952 /* apply */
1953 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
1954
1955 /* wait ack 10 times by 1ms */
1956 WAIT_FOR(
1957 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
1958 1000, 10, &error);
1959 if (error != 0) {
1960 aprint_error_dev(sc->sc_dev,
1961 "atlantic: IRQ reset failed: %d\n", error);
1962 return error;
1963 }
1964
1965 return sc->sc_fw_ops->reset(sc);
1966 }
1967
1968 static int
1969 aq_hw_init_ucp(struct aq_softc *sc)
1970 {
1971 int timo;
1972
1973 if (FW_VERSION_MAJOR(sc) == 1) {
1974 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
1975 uint32_t data;
1976 cprng_fast(&data, sizeof(data));
1977 data &= 0xfefefefe;
1978 data |= 0x02020202;
1979 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
1980 }
1981 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
1982 }
1983
1984 for (timo = 100; timo > 0; timo--) {
1985 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
1986 if (sc->sc_mbox_addr != 0)
1987 break;
1988 delay(1000);
1989 }
1990
1991 #define AQ_FW_MIN_VERSION 0x01050006
1992 #define AQ_FW_MIN_VERSION_STR "1.5.6"
1993 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
1994 aprint_error_dev(sc->sc_dev,
1995 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
1996 " or later required, this is %d.%d.%d\n",
1997 FW_VERSION_MAJOR(sc),
1998 FW_VERSION_MINOR(sc),
1999 FW_VERSION_BUILD(sc));
2000 return ENOTSUP;
2001 }
2002
2003 return 0;
2004 }
2005
2006 static int
2007 aq_fw_version_init(struct aq_softc *sc)
2008 {
2009 int error = 0;
2010 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2011
2012 if (FW_VERSION_MAJOR(sc) == 1) {
2013 sc->sc_fw_ops = &aq_fw1x_ops;
2014 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2015 sc->sc_fw_ops = &aq_fw2x_ops;
2016 } else {
2017 aprint_error_dev(sc->sc_dev,
2018 "Unsupported F/W version %d.%d.%d\n",
2019 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2020 FW_VERSION_BUILD(sc));
2021 return ENOTSUP;
2022 }
2023 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2024 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2025
2026 /* detect revision */
2027 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2028 switch (hwrev & 0x0000000f) {
2029 case 0x01:
2030 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2031 fw_vers);
2032 sc->sc_features |= FEATURES_REV_A0 |
2033 FEATURES_MPI_AQ | FEATURES_MIPS;
2034 break;
2035 case 0x02:
2036 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2037 fw_vers);
2038 sc->sc_features |= FEATURES_REV_B0 |
2039 FEATURES_MPI_AQ | FEATURES_MIPS |
2040 FEATURES_TPO2 | FEATURES_RPF2;
2041 break;
2042 case 0x0A:
2043 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2044 fw_vers);
2045 sc->sc_features |= FEATURES_REV_B1 |
2046 FEATURES_MPI_AQ | FEATURES_MIPS |
2047 FEATURES_TPO2 | FEATURES_RPF2;
2048 break;
2049 default:
2050 aprint_error_dev(sc->sc_dev,
2051 "Unknown revision (0x%08x)\n", hwrev);
2052 error = ENOTSUP;
2053 break;
2054 }
2055 return error;
2056 }
2057
2058 static int
2059 fw1x_reset(struct aq_softc *sc)
2060 {
2061 struct aq_mailbox_header mbox;
2062 const int retryCount = 1000;
2063 uint32_t tid0;
2064 int i;
2065
2066 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2067
2068 for (i = 0; i < retryCount; ++i) {
2069 /*
2070 * Read the beginning of Statistics structure to capture
2071 * the Transaction ID.
2072 */
2073 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2074 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2075
2076 /* Successfully read the stats. */
2077 if (tid0 == ~0U) {
2078 /* We have read the initial value. */
2079 tid0 = mbox.transaction_id;
2080 continue;
2081 } else if (mbox.transaction_id != tid0) {
2082 /*
2083 * Compare transaction ID to initial value.
2084 * If it's different means f/w is alive.
2085 * We're done.
2086 */
2087 return 0;
2088 }
2089
2090 /*
2091 * Transaction ID value haven't changed since last time.
2092 * Try reading the stats again.
2093 */
2094 delay(10);
2095 }
2096 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2097 return EBUSY;
2098 }
2099
2100 static int
2101 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2102 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2103 {
2104 uint32_t mpictrl = 0;
2105 uint32_t mpispeed = 0;
2106
2107 if (speed & AQ_LINK_10G)
2108 mpispeed |= FW1X_CTRL_10G;
2109 if (speed & AQ_LINK_5G)
2110 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2111 if (speed & AQ_LINK_2G5)
2112 mpispeed |= FW1X_CTRL_2G5;
2113 if (speed & AQ_LINK_1G)
2114 mpispeed |= FW1X_CTRL_1G;
2115 if (speed & AQ_LINK_100M)
2116 mpispeed |= FW1X_CTRL_100M;
2117
2118 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2119 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2120 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2121 return 0;
2122 }
2123
2124 static int
2125 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2126 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2127 {
2128 uint32_t mpistate, mpi_speed;
2129 aq_link_speed_t speed = AQ_LINK_NONE;
2130
2131 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2132
2133 if (modep != NULL)
2134 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2135
2136 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2137 if (mpi_speed & FW1X_CTRL_10G)
2138 speed = AQ_LINK_10G;
2139 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2140 speed = AQ_LINK_5G;
2141 else if (mpi_speed & FW1X_CTRL_2G5)
2142 speed = AQ_LINK_2G5;
2143 else if (mpi_speed & FW1X_CTRL_1G)
2144 speed = AQ_LINK_1G;
2145 else if (mpi_speed & FW1X_CTRL_100M)
2146 speed = AQ_LINK_100M;
2147
2148 if (speedp != NULL)
2149 *speedp = speed;
2150
2151 if (fcp != NULL)
2152 *fcp = AQ_FC_NONE;
2153
2154 if (eeep != NULL)
2155 *eeep = AQ_EEE_DISABLE;
2156
2157 return 0;
2158 }
2159
2160 static int
2161 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2162 {
2163 int error;
2164
2165 error = aq_fw_downld_dwords(sc,
2166 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2167 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2168 if (error < 0) {
2169 device_printf(sc->sc_dev,
2170 "fw1x> download statistics data FAILED, error %d", error);
2171 return error;
2172 }
2173
2174 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2175 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2176 return 0;
2177 }
2178
2179 static int
2180 fw2x_reset(struct aq_softc *sc)
2181 {
2182 fw2x_capabilities_t caps = { 0 };
2183 int error;
2184
2185 error = aq_fw_downld_dwords(sc,
2186 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2187 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2188 if (error != 0) {
2189 aprint_error_dev(sc->sc_dev,
2190 "fw2x> can't get F/W capabilities mask, error %d\n",
2191 error);
2192 return error;
2193 }
2194 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2195
2196 char buf[256];
2197 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2198 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2199
2200 return 0;
2201 }
2202
2203 static int
2204 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2205 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2206 {
2207 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2208
2209 switch (mode) {
2210 case MPI_INIT:
2211 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2212 if (speed & AQ_LINK_10G)
2213 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2214 if (speed & AQ_LINK_5G)
2215 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2216 if (speed & AQ_LINK_2G5)
2217 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2218 if (speed & AQ_LINK_1G)
2219 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2220 if (speed & AQ_LINK_100M)
2221 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2222
2223 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2224
2225 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2226 if (eee == AQ_EEE_ENABLE)
2227 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2228
2229 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2230 if (fc & AQ_FC_RX)
2231 mpi_ctrl |= FW2X_CTRL_PAUSE;
2232 if (fc & AQ_FC_TX)
2233 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2234 break;
2235 case MPI_DEINIT:
2236 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2237 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2238 break;
2239 default:
2240 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2241 return EINVAL;
2242 }
2243
2244 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2245 return 0;
2246 }
2247
2248 static int
2249 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2250 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2251 {
2252 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2253
2254 if (modep != NULL) {
2255 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2256 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2257 *modep = MPI_INIT;
2258 else
2259 *modep = MPI_DEINIT;
2260 }
2261
2262 aq_link_speed_t speed = AQ_LINK_NONE;
2263 if (mpi_state & FW2X_CTRL_RATE_10G)
2264 speed = AQ_LINK_10G;
2265 else if (mpi_state & FW2X_CTRL_RATE_5G)
2266 speed = AQ_LINK_5G;
2267 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2268 speed = AQ_LINK_2G5;
2269 else if (mpi_state & FW2X_CTRL_RATE_1G)
2270 speed = AQ_LINK_1G;
2271 else if (mpi_state & FW2X_CTRL_RATE_100M)
2272 speed = AQ_LINK_100M;
2273
2274 if (speedp != NULL)
2275 *speedp = speed;
2276
2277 aq_link_fc_t fc = AQ_FC_NONE;
2278 if (mpi_state & FW2X_CTRL_PAUSE)
2279 fc |= AQ_FC_RX;
2280 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2281 fc |= AQ_FC_TX;
2282 if (fcp != NULL)
2283 *fcp = fc;
2284
2285 /* XXX: TODO: EEE */
2286 if (eeep != NULL)
2287 *eeep = AQ_EEE_DISABLE;
2288
2289 return 0;
2290 }
2291
2292 static int
2293 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2294 uint32_t timeout_ms, uint32_t try_count)
2295 {
2296 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2297 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2298 int error;
2299
2300 /* First, check that control and state values are consistent */
2301 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2302 device_printf(sc->sc_dev,
2303 "fw2x> MPI control (%#llx) and state (%#llx)"
2304 " are not consistent for mask %#llx!\n",
2305 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2306 (unsigned long long)mask);
2307 return EINVAL;
2308 }
2309
2310 /* Invert bits (toggle) in control register */
2311 mpi_ctrl ^= mask;
2312 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2313
2314 /* Clear all bits except masked */
2315 mpi_ctrl &= mask;
2316
2317 /* Wait for FW reflecting change in state register */
2318 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2319 1000 * timeout_ms, try_count, &error);
2320 if (error != 0) {
2321 device_printf(sc->sc_dev,
2322 "f/w2x> timeout while waiting for response"
2323 " in state register for bit %#llx!",
2324 (unsigned long long)mask);
2325 return error;
2326 }
2327 return 0;
2328 }
2329
2330 static int
2331 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2332 {
2333 int error;
2334
2335 /* Say to F/W to update the statistics */
2336 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2337 if (error != 0) {
2338 device_printf(sc->sc_dev,
2339 "fw2x> statistics update error %d\n", error);
2340 return error;
2341 }
2342
2343 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2344 error = aq_fw_downld_dwords(sc,
2345 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2346 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2347 if (error != 0) {
2348 device_printf(sc->sc_dev,
2349 "fw2x> download statistics data FAILED, error %d", error);
2350 return error;
2351 }
2352 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2353 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2354
2355 return 0;
2356 }
2357
2358 static int
2359 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2360 uint32_t cnt)
2361 {
2362 uint32_t v;
2363 int error = 0;
2364
2365 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2366 if (error != 0) {
2367 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2368 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2369 if (v == 0) {
2370 device_printf(sc->sc_dev,
2371 "%s:%d: timeout\n", __func__, __LINE__);
2372 return ETIMEDOUT;
2373 }
2374 }
2375
2376 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2377
2378 error = 0;
2379 for (; cnt > 0 && error == 0; cnt--) {
2380 /* execute mailbox interface */
2381 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2382 AQ_FW_MBOX_CMD_EXECUTE, 1);
2383 if (sc->sc_features & FEATURES_REV_B1) {
2384 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2385 1, 1000, &error);
2386 } else {
2387 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2388 AQ_FW_MBOX_CMD_BUSY) == 0,
2389 1, 1000, &error);
2390 }
2391 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2392 addr += sizeof(uint32_t);
2393 }
2394 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2395
2396 if (error != 0)
2397 device_printf(sc->sc_dev,
2398 "%s:%d: timeout\n", __func__, __LINE__);
2399
2400 return error;
2401 }
2402
2403 /* read my mac address */
2404 static int
2405 aq_get_mac_addr(struct aq_softc *sc)
2406 {
2407 uint32_t mac_addr[2];
2408 uint32_t efuse_shadow_addr;
2409 int err;
2410
2411 efuse_shadow_addr = 0;
2412 if (FW_VERSION_MAJOR(sc) >= 2)
2413 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2414 else
2415 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2416
2417 if (efuse_shadow_addr == 0) {
2418 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2419 return ENXIO;
2420 }
2421
2422 memset(mac_addr, 0, sizeof(mac_addr));
2423 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2424 mac_addr, __arraycount(mac_addr));
2425 if (err < 0)
2426 return err;
2427
2428 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2429 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2430 return ENXIO;
2431 }
2432
2433 mac_addr[0] = bswap32(mac_addr[0]);
2434 mac_addr[1] = bswap32(mac_addr[1]);
2435
2436 memcpy(sc->sc_enaddr.ether_addr_octet,
2437 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2438 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2439 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2440
2441 return 0;
2442 }
2443
2444 /* set multicast filter. index 0 for own address */
2445 static int
2446 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2447 {
2448 uint32_t h, l;
2449
2450 if (index >= AQ_HW_MAC_NUM)
2451 return EINVAL;
2452
2453 if (enaddr == NULL) {
2454 /* disable */
2455 AQ_WRITE_REG_BIT(sc,
2456 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2457 return 0;
2458 }
2459
2460 h = (enaddr[0] << 8) | (enaddr[1]);
2461 l = (enaddr[2] << 24) | (enaddr[3] << 16) |
2462 (enaddr[4] << 8) | (enaddr[5]);
2463
2464 /* disable, set, and enable */
2465 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2466 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2467 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2468 RPF_L2UC_MSW_MACADDR_HI, h);
2469 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2470 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2471
2472 return 0;
2473 }
2474
2475 static int
2476 aq_set_capability(struct aq_softc *sc)
2477 {
2478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2479 int ip4csum_tx =
2480 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2481 int ip4csum_rx =
2482 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2483 int l4csum_tx = ((ifp->if_capenable &
2484 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2485 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2486 int l4csum_rx =
2487 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2488 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2489 uint32_t lso =
2490 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2491 0 : 0xffffffff;
2492 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2493 0 : 0xffffffff;
2494 uint32_t i, v;
2495
2496 /* TX checksums offloads*/
2497 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2498 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2499
2500 /* RX checksums offloads*/
2501 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2502 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2503
2504 /* LSO offloads*/
2505 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2506
2507 #define AQ_B0_LRO_RXD_MAX 16
2508 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2509 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2510 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2511 for (i = 0; i < AQ_RINGS_NUM; i++) {
2512 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2513 RPO_LRO_LDES_MAX_MASK(i), v);
2514 }
2515
2516 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2517 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2518 RPO_LRO_INACTIVE_IVAL, 0);
2519 /*
2520 * the LRO timebase divider is 5 uS (0x61a),
2521 * to get a maximum coalescing interval of 250 uS,
2522 * we need to multiply by 50(0x32) to get
2523 * the default value 250 uS
2524 */
2525 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2526 RPO_LRO_MAX_COALESCING_IVAL, 50);
2527 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2528 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2529 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2530 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2531 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2532 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2533 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2534 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2535 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2536 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2537
2538 return 0;
2539 }
2540
2541 static int
2542 aq_set_filter(struct aq_softc *sc)
2543 {
2544 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2545 struct ethercom *ec = &sc->sc_ethercom;
2546 struct ether_multi *enm;
2547 struct ether_multistep step;
2548 int idx, error = 0;
2549
2550 if (ifp->if_flags & IFF_PROMISC) {
2551 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2552 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2553 ec->ec_flags |= ETHER_F_ALLMULTI;
2554 goto done;
2555 }
2556
2557 /* clear all table */
2558 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2559 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2560 continue;
2561 aq_set_mac_addr(sc, idx, NULL);
2562 }
2563
2564 /* don't accept all multicast */
2565 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2566 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2567 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2568 RPF_MCAST_FILTER_EN, 0);
2569
2570 idx = 0;
2571 ETHER_LOCK(ec);
2572 ETHER_FIRST_MULTI(step, ec, enm);
2573 while (enm != NULL) {
2574 if (idx == AQ_HW_MAC_OWN)
2575 idx++;
2576
2577 if ((idx >= AQ_HW_MAC_NUM) ||
2578 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2579 /*
2580 * too many filters.
2581 * fallback to accept all multicast addresses.
2582 */
2583 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2584 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2585 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2586 RPF_MCAST_FILTER_EN, 1);
2587 ec->ec_flags |= ETHER_F_ALLMULTI;
2588 ETHER_UNLOCK(ec);
2589 goto done;
2590 }
2591
2592 /* add a filter */
2593 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2594
2595 ETHER_NEXT_MULTI(step, enm);
2596 }
2597 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2598 ETHER_UNLOCK(ec);
2599
2600 done:
2601 return error;
2602 }
2603
2604 static void
2605 aq_mediastatus_update(struct aq_softc *sc)
2606 {
2607 sc->sc_media_active = 0;
2608
2609 if (sc->sc_link_fc & AQ_FC_RX)
2610 sc->sc_media_active |= IFM_ETH_RXPAUSE;
2611 if (sc->sc_link_fc & AQ_FC_TX)
2612 sc->sc_media_active |= IFM_ETH_TXPAUSE;
2613
2614 switch (sc->sc_link_rate) {
2615 case AQ_LINK_100M:
2616 /* XXX: need to detect fulldup or halfdup */
2617 sc->sc_media_active |= IFM_100_TX | IFM_FDX;
2618 break;
2619 case AQ_LINK_1G:
2620 sc->sc_media_active |= IFM_1000_T | IFM_FDX;
2621 break;
2622 case AQ_LINK_2G5:
2623 sc->sc_media_active |= IFM_2500_T | IFM_FDX;
2624 break;
2625 case AQ_LINK_5G:
2626 sc->sc_media_active |= IFM_5000_T | IFM_FDX;
2627 break;
2628 case AQ_LINK_10G:
2629 sc->sc_media_active |= IFM_10G_T | IFM_FDX;
2630 break;
2631 default:
2632 sc->sc_media_active |= IFM_NONE;
2633 break;
2634 }
2635 }
2636
2637 static int
2638 aq_ifmedia_change(struct ifnet * const ifp)
2639 {
2640 struct aq_softc *sc = ifp->if_softc;
2641 aq_link_speed_t rate = AQ_LINK_NONE;
2642 aq_link_fc_t fc = AQ_FC_NONE;
2643 aq_link_eee_t eee = AQ_EEE_DISABLE;
2644
2645 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2646 return EINVAL;
2647
2648 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2649 case IFM_AUTO:
2650 rate = AQ_LINK_AUTO;
2651 break;
2652 case IFM_NONE:
2653 rate = AQ_LINK_NONE;
2654 break;
2655 case IFM_100_TX:
2656 rate = AQ_LINK_100M;
2657 break;
2658 case IFM_1000_T:
2659 rate = AQ_LINK_1G;
2660 break;
2661 case IFM_2500_T:
2662 rate = AQ_LINK_2G5;
2663 break;
2664 case IFM_5000_T:
2665 rate = AQ_LINK_5G;
2666 break;
2667 case IFM_10G_T:
2668 rate = AQ_LINK_10G;
2669 break;
2670 default:
2671 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2672 IFM_SUBTYPE(sc->sc_media.ifm_media));
2673 return ENODEV;
2674 }
2675
2676 if (sc->sc_media.ifm_media & IFM_FLOW)
2677 fc = AQ_FC_ALL;
2678
2679 /* XXX: todo EEE */
2680
2681 /* re-initialize hardware with new parameters */
2682 aq_set_linkmode(sc, rate, fc, eee);
2683
2684 return 0;
2685 }
2686
2687 static void
2688 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2689 {
2690 struct aq_softc *sc = ifp->if_softc;
2691
2692 ifmr->ifm_active = IFM_ETHER;
2693 ifmr->ifm_status = IFM_AVALID;
2694
2695 if (sc->sc_link_rate != AQ_LINK_NONE)
2696 ifmr->ifm_status |= IFM_ACTIVE;
2697
2698 ifmr->ifm_active |= sc->sc_media_active;
2699 }
2700
2701 static void
2702 aq_initmedia(struct aq_softc *sc)
2703 {
2704 #define IFMEDIA_ETHER_ADD(sc, media) \
2705 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2706
2707 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2708 if (sc->sc_available_rates & AQ_LINK_100M) {
2709 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2710 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2711 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2712 }
2713 if (sc->sc_available_rates & AQ_LINK_1G) {
2714 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2715 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2716 }
2717 if (sc->sc_available_rates & AQ_LINK_2G5) {
2718 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2719 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2720 }
2721 if (sc->sc_available_rates & AQ_LINK_5G) {
2722 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2723 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2724 }
2725 if (sc->sc_available_rates & AQ_LINK_10G) {
2726 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2727 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2728 }
2729 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2730 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2731
2732 /* default: auto without flowcontrol */
2733 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2734 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2735 }
2736
2737 static int
2738 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2739 aq_link_eee_t eee)
2740 {
2741 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2742 }
2743
2744 static int
2745 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2746 aq_link_eee_t *eee)
2747 {
2748 aq_hw_fw_mpi_state_t mode;
2749 int error;
2750
2751 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2752 if (error != 0)
2753 return error;
2754 if (mode != MPI_INIT)
2755 return ENXIO;
2756
2757 return 0;
2758 }
2759
2760 static void
2761 aq_hw_init_tx_path(struct aq_softc *sc)
2762 {
2763 /* Tx TC/RSS number config */
2764 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2765
2766 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2767 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2768 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2769 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2770 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2771 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2772
2773 /* misc */
2774 AQ_WRITE_REG(sc, TX_TPO2_REG,
2775 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2776 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2777 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2778
2779 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2780 }
2781
2782 static void
2783 aq_hw_init_rx_path(struct aq_softc *sc)
2784 {
2785 int i;
2786
2787 /* clear setting */
2788 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2789 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2790 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2791 for (i = 0; i < 32; i++) {
2792 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2793 RPF_ETHERTYPE_FILTER_EN, 0);
2794 }
2795
2796 if (sc->sc_rss_enable) {
2797 /* Rx TC/RSS number config */
2798 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2799
2800 /* Rx flow control */
2801 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2802
2803 /* RSS Ring selection */
2804 switch (sc->sc_nqueues) {
2805 case 2:
2806 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2807 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2808 break;
2809 case 4:
2810 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2811 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2812 break;
2813 case 8:
2814 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2815 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2816 break;
2817 }
2818 }
2819
2820 /* L2 and Multicast filters */
2821 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2822 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2823 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2824 RPF_ACTION_HOST);
2825 }
2826 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2827 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2828
2829 /* Vlan filters */
2830 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2831 ETHERTYPE_QINQ);
2832 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2833 ETHERTYPE_VLAN);
2834 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
2835
2836 if (sc->sc_features & FEATURES_REV_B) {
2837 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2838 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2839 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2840 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2841 }
2842
2843 /* misc */
2844 if (sc->sc_features & FEATURES_RPF2)
2845 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2846 else
2847 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2848
2849 /*
2850 * XXX: RX_TCP_RSS_HASH_REG:
2851 * linux set 0x000f0000
2852 * freebsd set 0x000f001e
2853 */
2854 /* RSS hash type set for IP/TCP */
2855 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2856 RX_TCP_RSS_HASH_TYPE, 0x001e);
2857
2858 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2859 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2860 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2861
2862 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2863 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2864 }
2865
2866 static void
2867 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2868 {
2869 int i;
2870
2871 if (sc->sc_intr_moderation_enable) {
2872 unsigned int tx_min, rx_min; /* 0-255 */
2873 unsigned int tx_max, rx_max; /* 0-511? */
2874
2875 switch (sc->sc_link_rate) {
2876 case AQ_LINK_100M:
2877 tx_min = 0x4f;
2878 tx_max = 0xff;
2879 rx_min = 0x04;
2880 rx_max = 0x50;
2881 break;
2882 case AQ_LINK_1G:
2883 default:
2884 tx_min = 0x4f;
2885 tx_max = 0xff;
2886 rx_min = 0x30;
2887 rx_max = 0x80;
2888 break;
2889 case AQ_LINK_2G5:
2890 tx_min = 0x4f;
2891 tx_max = 0xff;
2892 rx_min = 0x18;
2893 rx_max = 0xe0;
2894 break;
2895 case AQ_LINK_5G:
2896 tx_min = 0x4f;
2897 tx_max = 0xff;
2898 rx_min = 0x0c;
2899 rx_max = 0x70;
2900 break;
2901 case AQ_LINK_10G:
2902 tx_min = 0x4f;
2903 tx_max = 0x1ff;
2904 rx_min = 0x06; /* freebsd use 80 */
2905 rx_max = 0x38; /* freebsd use 120 */
2906 break;
2907 }
2908
2909 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
2910 TX_DMA_INT_DESC_WRWB_EN, 0);
2911 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
2912 TX_DMA_INT_DESC_MODERATE_EN, 1);
2913 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
2914 RX_DMA_INT_DESC_WRWB_EN, 0);
2915 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
2916 RX_DMA_INT_DESC_MODERATE_EN, 1);
2917
2918 for (i = 0; i < AQ_RINGS_NUM; i++) {
2919 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
2920 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
2921 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
2922 TX_INTR_MODERATION_CTL_EN);
2923 }
2924 for (i = 0; i < AQ_RINGS_NUM; i++) {
2925 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
2926 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
2927 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
2928 RX_INTR_MODERATION_CTL_EN);
2929 }
2930
2931 } else {
2932 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
2933 TX_DMA_INT_DESC_WRWB_EN, 1);
2934 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
2935 TX_DMA_INT_DESC_MODERATE_EN, 0);
2936 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
2937 RX_DMA_INT_DESC_WRWB_EN, 1);
2938 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
2939 RX_DMA_INT_DESC_MODERATE_EN, 0);
2940
2941 for (i = 0; i < AQ_RINGS_NUM; i++) {
2942 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
2943 }
2944 for (i = 0; i < AQ_RINGS_NUM; i++) {
2945 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
2946 }
2947 }
2948 }
2949
2950 static void
2951 aq_hw_qos_set(struct aq_softc *sc)
2952 {
2953 uint32_t tc = 0;
2954 uint32_t buff_size;
2955
2956 /* TPS Descriptor rate init */
2957 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
2958 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
2959
2960 /* TPS VM init */
2961 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
2962
2963 /* TPS TC credits init */
2964 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
2965 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
2966
2967 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
2968 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
2969 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
2970 TPS_DATA_TCT_WEIGHT, 0x64);
2971 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
2972 TPS_DESC_TCT_CREDIT_MAX, 0x50);
2973 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
2974 TPS_DESC_TCT_WEIGHT, 0x1e);
2975
2976 /* Tx buf size */
2977 tc = 0;
2978 buff_size = AQ_HW_TXBUF_MAX;
2979 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
2980 buff_size);
2981 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
2982 (buff_size * (1024 / 32) * 66) / 100);
2983 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
2984 (buff_size * (1024 / 32) * 50) / 100);
2985
2986 /* QoS Rx buf size per TC */
2987 tc = 0;
2988 buff_size = AQ_HW_RXBUF_MAX;
2989 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
2990 buff_size);
2991 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
2992 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
2993 (buff_size * (1024 / 32) * 66) / 100);
2994 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
2995 (buff_size * (1024 / 32) * 50) / 100);
2996
2997 /* QoS 802.1p priority -> TC mapping */
2998 int i_priority;
2999 for (i_priority = 0; i_priority < 8; i_priority++) {
3000 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3001 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3002 }
3003 }
3004
3005 /* called once from aq_attach */
3006 static int
3007 aq_init_rss(struct aq_softc *sc)
3008 {
3009 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3010 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3011 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3012 unsigned int i;
3013 int error;
3014
3015 /* initialize rss key */
3016 rss_getkey((uint8_t *)rss_key);
3017
3018 /* hash to ring table */
3019 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3020 rss_table[i] = i % sc->sc_nqueues;
3021 }
3022
3023 /*
3024 * set rss key
3025 */
3026 for (i = 0; i < __arraycount(rss_key); i++) {
3027 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3028 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3029 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3030 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3031 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3032 RPF_RSS_KEY_WR_EN, 1);
3033 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3034 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3035 if (error != 0) {
3036 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3037 __func__);
3038 goto rss_set_timeout;
3039 }
3040 }
3041
3042 /*
3043 * set rss indirection table
3044 *
3045 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3046 * we'll make it by __BITMAP(3) macros.
3047 */
3048 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3049 __BITMAP_ZERO(&bit3x64);
3050
3051 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3052 do { \
3053 if (val & 1) { \
3054 __BITMAP_SET((idx) * 3, (bitmap)); \
3055 } else { \
3056 __BITMAP_CLR((idx) * 3, (bitmap)); \
3057 } \
3058 if (val & 2) { \
3059 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3060 } else { \
3061 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3062 } \
3063 if (val & 4) { \
3064 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3065 } else { \
3066 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3067 } \
3068 } while (0 /* CONSTCOND */)
3069
3070 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3071 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3072 }
3073
3074 /* write 192bit data in steps of 16bit */
3075 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3076 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3077 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3078 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3079 RPF_RSS_REDIR_ADDR, i);
3080 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3081 RPF_RSS_REDIR_WR_EN, 1);
3082
3083 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3084 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3085 if (error != 0)
3086 break;
3087 }
3088
3089 rss_set_timeout:
3090 return error;
3091 }
3092
3093 static void
3094 aq_hw_l3_filter_set(struct aq_softc *sc)
3095 {
3096 int i;
3097
3098 /* clear all filter */
3099 for (i = 0; i < 8; i++) {
3100 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3101 RPF_L3_FILTER_L4_EN, 0);
3102 }
3103 }
3104
3105 static void
3106 aq_update_vlan_filters(struct aq_softc *sc)
3107 {
3108 /* XXX: notyet. vlan always promisc */
3109 int i;
3110
3111 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
3112 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3113 RPF_VLAN_FILTER_EN, 0);
3114 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3115 RPF_VLAN_FILTER_RXQ_EN, 0);
3116 }
3117 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
3118 }
3119
3120 static int
3121 aq_hw_init(struct aq_softc *sc)
3122 {
3123 uint32_t v;
3124
3125 /* Force limit MRRS on RDM/TDM to 2K */
3126 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3127 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3128
3129 /*
3130 * TX DMA total request limit. B0 hardware is not capable to
3131 * handle more than (8K-MRRS) incoming DMA data.
3132 * Value 24 in 256byte units
3133 */
3134 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3135
3136 aq_hw_init_tx_path(sc);
3137 aq_hw_init_rx_path(sc);
3138
3139 aq_hw_interrupt_moderation_set(sc);
3140
3141 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3142 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3143
3144 aq_hw_qos_set(sc);
3145
3146 /* Enable interrupt */
3147 int irqmode;
3148 if (sc->sc_msix)
3149 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3150 else
3151 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3152
3153 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3154 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3155 sc->sc_msix ? 1 : 0);
3156 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3157
3158 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3159
3160 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3161 ((AQ_B0_ERR_INT << 24) | (1 << 31)) |
3162 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3163 );
3164
3165 /* link interrupt */
3166 if (!sc->sc_msix)
3167 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3168 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3169 __BIT(7) | sc->sc_linkstat_irq);
3170
3171 return 0;
3172 }
3173
3174 static int
3175 aq_update_link_status(struct aq_softc *sc)
3176 {
3177 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3178 aq_link_speed_t rate = AQ_LINK_NONE;
3179 aq_link_fc_t fc = AQ_FC_NONE;
3180 aq_link_eee_t eee = AQ_EEE_DISABLE;
3181 unsigned int speed;
3182 int changed = 0;
3183
3184 aq_get_linkmode(sc, &rate, &fc, &eee);
3185
3186 if (sc->sc_link_rate != rate)
3187 changed = 1;
3188 if (sc->sc_link_fc != fc)
3189 changed = 1;
3190 if (sc->sc_link_eee != eee)
3191 changed = 1;
3192
3193 if (changed) {
3194 switch (rate) {
3195 case AQ_LINK_100M:
3196 speed = 100;
3197 break;
3198 case AQ_LINK_1G:
3199 speed = 1000;
3200 break;
3201 case AQ_LINK_2G5:
3202 speed = 2500;
3203 break;
3204 case AQ_LINK_5G:
3205 speed = 5000;
3206 break;
3207 case AQ_LINK_10G:
3208 speed = 10000;
3209 break;
3210 case AQ_LINK_NONE:
3211 default:
3212 speed = 0;
3213 break;
3214 }
3215
3216 if (sc->sc_link_rate == AQ_LINK_NONE) {
3217 /* link DOWN -> UP */
3218 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3219 speed);
3220 if_link_state_change(ifp, LINK_STATE_UP);
3221 } else if (rate == AQ_LINK_NONE) {
3222 /* link UP -> DOWN */
3223 device_printf(sc->sc_dev, "link is DOWN\n");
3224 if_link_state_change(ifp, LINK_STATE_DOWN);
3225 } else {
3226 device_printf(sc->sc_dev,
3227 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3228 speed, fc, eee);
3229 }
3230
3231 sc->sc_link_rate = rate;
3232 sc->sc_link_fc = fc;
3233 sc->sc_link_eee = eee;
3234
3235 aq_mediastatus_update(sc);
3236
3237 /* update interrupt timing according to new link speed */
3238 aq_hw_interrupt_moderation_set(sc);
3239 }
3240
3241 return changed;
3242 }
3243
3244 #ifdef AQ_EVENT_COUNTERS
3245 static void
3246 aq_update_statistics(struct aq_softc *sc)
3247 {
3248 int prev = sc->sc_statistics_idx;
3249 int cur = prev ^ 1;
3250
3251 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3252
3253 /*
3254 * aq's internal statistics counter is 32bit.
3255 * cauculate delta, and add to evcount
3256 */
3257 #define ADD_DELTA(cur, prev, name) \
3258 do { \
3259 uint32_t n; \
3260 n = (uint32_t)(sc->sc_statistics[cur].name - \
3261 sc->sc_statistics[prev].name); \
3262 if (n != 0) { \
3263 AQ_EVCNT_ADD(sc, name, n); \
3264 } \
3265 } while (/*CONSTCOND*/0);
3266
3267 ADD_DELTA(cur, prev, uprc);
3268 ADD_DELTA(cur, prev, mprc);
3269 ADD_DELTA(cur, prev, bprc);
3270 ADD_DELTA(cur, prev, prc);
3271 ADD_DELTA(cur, prev, erpr);
3272 ADD_DELTA(cur, prev, uptc);
3273 ADD_DELTA(cur, prev, mptc);
3274 ADD_DELTA(cur, prev, bptc);
3275 ADD_DELTA(cur, prev, ptc);
3276 ADD_DELTA(cur, prev, erpt);
3277 ADD_DELTA(cur, prev, mbtc);
3278 ADD_DELTA(cur, prev, bbtc);
3279 ADD_DELTA(cur, prev, mbrc);
3280 ADD_DELTA(cur, prev, bbrc);
3281 ADD_DELTA(cur, prev, ubrc);
3282 ADD_DELTA(cur, prev, ubtc);
3283 ADD_DELTA(cur, prev, dpc);
3284 ADD_DELTA(cur, prev, cprc);
3285
3286 sc->sc_statistics_idx = cur;
3287 }
3288 #endif /* AQ_EVENT_COUNTERS */
3289
3290 /* allocate and map one DMA block */
3291 static int
3292 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3293 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3294 {
3295 int nsegs, error;
3296
3297 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3298 1, &nsegs, 0)) != 0) {
3299 aprint_error_dev(sc->sc_dev,
3300 "unable to allocate DMA buffer, error=%d\n", error);
3301 goto fail_alloc;
3302 }
3303
3304 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3305 BUS_DMA_COHERENT)) != 0) {
3306 aprint_error_dev(sc->sc_dev,
3307 "unable to map DMA buffer, error=%d\n", error);
3308 goto fail_map;
3309 }
3310
3311 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3312 0, mapp)) != 0) {
3313 aprint_error_dev(sc->sc_dev,
3314 "unable to create DMA map, error=%d\n", error);
3315 goto fail_create;
3316 }
3317
3318 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3319 0)) != 0) {
3320 aprint_error_dev(sc->sc_dev,
3321 "unable to load DMA map, error=%d\n", error);
3322 goto fail_load;
3323 }
3324
3325 *sizep = size;
3326 return 0;
3327
3328 fail_load:
3329 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3330 *mapp = NULL;
3331 fail_create:
3332 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3333 *addrp = NULL;
3334 fail_map:
3335 bus_dmamem_free(sc->sc_dmat, seg, 1);
3336 memset(seg, 0, sizeof(*seg));
3337 fail_alloc:
3338 *sizep = 0;
3339 return error;
3340 }
3341
3342 static void
3343 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3344 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3345 {
3346 if (*mapp != NULL) {
3347 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3348 *mapp = NULL;
3349 }
3350 if (*addrp != NULL) {
3351 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3352 *addrp = NULL;
3353 }
3354 if (*sizep != 0) {
3355 bus_dmamem_free(sc->sc_dmat, seg, 1);
3356 memset(seg, 0, sizeof(*seg));
3357 *sizep = 0;
3358 }
3359 }
3360
3361 static int
3362 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3363 {
3364 int i, error;
3365
3366 /* allocate tx descriptors */
3367 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3368 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3369 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3370 if (error != 0)
3371 return error;
3372
3373 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3374
3375 /* fill tx ring with dmamap */
3376 for (i = 0; i < AQ_TXD_NUM; i++) {
3377 #define AQ_MAXDMASIZE (16 * 1024)
3378 #define AQ_NTXSEGS 32
3379 /* XXX: TODO: error check */
3380 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3381 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3382 }
3383 return 0;
3384 }
3385
3386 static void
3387 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3388 {
3389 int i;
3390
3391 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3392 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3393
3394 for (i = 0; i < AQ_TXD_NUM; i++) {
3395 if (txring->txr_mbufs[i].dmamap != NULL) {
3396 if (txring->txr_mbufs[i].m != NULL) {
3397 bus_dmamap_unload(sc->sc_dmat,
3398 txring->txr_mbufs[i].dmamap);
3399 m_freem(txring->txr_mbufs[i].m);
3400 txring->txr_mbufs[i].m = NULL;
3401 }
3402 bus_dmamap_destroy(sc->sc_dmat,
3403 txring->txr_mbufs[i].dmamap);
3404 txring->txr_mbufs[i].dmamap = NULL;
3405 }
3406 }
3407 }
3408
3409 static int
3410 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3411 {
3412 int i, error;
3413
3414 /* allocate rx descriptors */
3415 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3416 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3417 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3418 if (error != 0)
3419 return error;
3420
3421 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3422
3423 /* fill rxring with dmamaps */
3424 for (i = 0; i < AQ_RXD_NUM; i++) {
3425 rxring->rxr_mbufs[i].m = NULL;
3426 /* XXX: TODO: error check */
3427 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3428 &rxring->rxr_mbufs[i].dmamap);
3429 }
3430 return 0;
3431 }
3432
3433 static void
3434 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3435 {
3436 int i;
3437
3438 /* free all mbufs allocated for RX */
3439 for (i = 0; i < AQ_RXD_NUM; i++) {
3440 if (rxring->rxr_mbufs[i].m != NULL) {
3441 bus_dmamap_unload(sc->sc_dmat,
3442 rxring->rxr_mbufs[i].dmamap);
3443 m_freem(rxring->rxr_mbufs[i].m);
3444 rxring->rxr_mbufs[i].m = NULL;
3445 }
3446 }
3447 }
3448
3449 static void
3450 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3451 {
3452 int i;
3453
3454 /* free all mbufs and dmamaps */
3455 aq_rxdrain(sc, rxring);
3456 for (i = 0; i < AQ_RXD_NUM; i++) {
3457 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3458 bus_dmamap_destroy(sc->sc_dmat,
3459 rxring->rxr_mbufs[i].dmamap);
3460 rxring->rxr_mbufs[i].dmamap = NULL;
3461 }
3462 }
3463
3464 /* free RX descriptor */
3465 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3466 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3467 }
3468
3469 static void
3470 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3471 struct mbuf *m)
3472 {
3473 int error;
3474
3475 /* if mbuf already exists, unload and free */
3476 if (rxring->rxr_mbufs[idx].m != NULL) {
3477 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3478 m_freem(rxring->rxr_mbufs[idx].m);
3479 rxring->rxr_mbufs[idx].m = NULL;
3480 }
3481
3482 rxring->rxr_mbufs[idx].m = m;
3483
3484 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3485 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3486 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3487 if (error) {
3488 device_printf(sc->sc_dev,
3489 "unable to load rx DMA map %d, error = %d\n", idx, error);
3490 panic("%s: unable to load rx DMA map. error=%d",
3491 __func__, error);
3492 }
3493 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3494 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3495 }
3496
3497 static inline void
3498 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3499 {
3500 /* refill rxdesc, and sync */
3501 rxring->rxr_rxdesc[idx].read.buf_addr =
3502 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3503 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3504 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3505 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3506 BUS_DMASYNC_PREWRITE);
3507 }
3508
3509 static struct mbuf *
3510 aq_alloc_mbuf(void)
3511 {
3512 struct mbuf *m;
3513
3514 MGETHDR(m, M_DONTWAIT, MT_DATA);
3515 if (m == NULL)
3516 return NULL;
3517
3518 MCLGET(m, M_DONTWAIT);
3519 if ((m->m_flags & M_EXT) == 0) {
3520 m_freem(m);
3521 return NULL;
3522 }
3523
3524 return m;
3525 }
3526
3527 /* allocate mbuf and unload dmamap */
3528 static int
3529 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3530 {
3531 struct mbuf *m;
3532
3533 m = aq_alloc_mbuf();
3534 if (m == NULL)
3535 return ENOBUFS;
3536
3537 aq_rxring_setmbuf(sc, rxring, idx, m);
3538 return 0;
3539 }
3540
3541 static int
3542 aq_txrx_rings_alloc(struct aq_softc *sc)
3543 {
3544 int n, error;
3545
3546 for (n = 0; n < sc->sc_nqueues; n++) {
3547 sc->sc_queue[n].sc = sc;
3548 sc->sc_queue[n].txring.txr_sc = sc;
3549 sc->sc_queue[n].txring.txr_index = n;
3550 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3551 IPL_NET);
3552 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3553 if (error != 0)
3554 goto failure;
3555
3556 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3557 if (error != 0)
3558 goto failure;
3559
3560 sc->sc_queue[n].rxring.rxr_sc = sc;
3561 sc->sc_queue[n].rxring.rxr_index = n;
3562 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3563 IPL_NET);
3564 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3565 if (error != 0)
3566 break;
3567 }
3568
3569 failure:
3570 return error;
3571 }
3572
3573 static void
3574 aq_txrx_rings_free(struct aq_softc *sc)
3575 {
3576 int n;
3577
3578 for (n = 0; n < sc->sc_nqueues; n++) {
3579 aq_txring_free(sc, &sc->sc_queue[n].txring);
3580 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3581
3582 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3583
3584 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3585 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3586 }
3587 }
3588
3589 static int
3590 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3591 {
3592 int error = 0;
3593 txring->txr_softint = NULL;
3594
3595 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3596 if (txring->txr_pcq == NULL) {
3597 aprint_error_dev(sc->sc_dev,
3598 "unable to allocate pcq for TXring[%d]\n",
3599 txring->txr_index);
3600 error = ENOMEM;
3601 goto done;
3602 }
3603
3604 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3605 aq_deferred_transmit, txring);
3606 if (txring->txr_softint == NULL) {
3607 aprint_error_dev(sc->sc_dev,
3608 "unable to establish softint for TXring[%d]\n",
3609 txring->txr_index);
3610 error = ENOENT;
3611 }
3612
3613 done:
3614 return error;
3615 }
3616
3617 static void
3618 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3619 {
3620 struct mbuf *m;
3621
3622 if (txring->txr_softint != NULL) {
3623 softint_disestablish(txring->txr_softint);
3624 txring->txr_softint = NULL;
3625 }
3626
3627 if (txring->txr_pcq != NULL) {
3628 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3629 m_freem(m);
3630 pcq_destroy(txring->txr_pcq);
3631 txring->txr_pcq = NULL;
3632 }
3633 }
3634
3635 static void
3636 aq_tick(void *arg)
3637 {
3638 struct aq_softc *sc = arg;
3639
3640 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3641 sc->sc_detect_linkstat = false;
3642 aq_update_link_status(sc);
3643 }
3644
3645 #ifdef AQ_EVENT_COUNTERS
3646 if (sc->sc_poll_statistics)
3647 aq_update_statistics(sc);
3648 #endif
3649
3650 if (sc->sc_poll_linkstat
3651 #ifdef AQ_EVENT_COUNTERS
3652 || sc->sc_poll_statistics
3653 #endif
3654 ) {
3655 callout_schedule(&sc->sc_tick_ch, hz);
3656 }
3657 }
3658
3659 /* interrupt enable/disable */
3660 static void
3661 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3662 {
3663 uint32_t imask = 0;
3664 int i;
3665
3666 if (txrx) {
3667 for (i = 0; i < sc->sc_nqueues; i++) {
3668 imask |= __BIT(sc->sc_tx_irq[i]);
3669 imask |= __BIT(sc->sc_rx_irq[i]);
3670 }
3671 }
3672
3673 if (link)
3674 imask |= __BIT(sc->sc_linkstat_irq);
3675
3676 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3677 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3678 }
3679
3680 static int
3681 aq_legacy_intr(void *arg)
3682 {
3683 struct aq_softc *sc = arg;
3684 uint32_t status;
3685 int nintr = 0;
3686
3687 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3688 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3689
3690 if (status & __BIT(sc->sc_linkstat_irq)) {
3691 sc->sc_detect_linkstat = true;
3692 callout_schedule(&sc->sc_tick_ch, 0);
3693 nintr++;
3694 }
3695
3696 if (status & __BIT(sc->sc_rx_irq[0])) {
3697 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3698 }
3699
3700 if (status & __BIT(sc->sc_tx_irq[0])) {
3701 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3702 }
3703
3704 return nintr;
3705 }
3706
3707 static int
3708 aq_txrx_intr(void *arg)
3709 {
3710 struct aq_queue *queue = arg;
3711 struct aq_softc *sc = queue->sc;
3712 struct aq_txring *txring = &queue->txring;
3713 struct aq_rxring *rxring = &queue->rxring;
3714 uint32_t status;
3715 int nintr = 0;
3716 int txringidx, rxringidx, txirq, rxirq;
3717
3718 txringidx = txring->txr_index;
3719 rxringidx = rxring->rxr_index;
3720 txirq = sc->sc_tx_irq[txringidx];
3721 rxirq = sc->sc_rx_irq[rxringidx];
3722
3723 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3724 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3725 /* stray interrupt? */
3726 return 0;
3727 }
3728
3729 nintr += aq_rx_intr(rxring);
3730 nintr += aq_tx_intr(txring);
3731
3732 return nintr;
3733 }
3734
3735 static int
3736 aq_link_intr(void *arg)
3737 {
3738 struct aq_softc *sc = arg;
3739 uint32_t status;
3740 int nintr = 0;
3741
3742 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3743 if (status & __BIT(sc->sc_linkstat_irq)) {
3744 sc->sc_detect_linkstat = true;
3745 callout_schedule(&sc->sc_tick_ch, 0);
3746 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3747 __BIT(sc->sc_linkstat_irq));
3748 nintr++;
3749 }
3750
3751 return nintr;
3752 }
3753
3754 static void
3755 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3756 {
3757 const int ringidx = txring->txr_index;
3758 int i;
3759
3760 mutex_enter(&txring->txr_mutex);
3761
3762 txring->txr_prodidx = 0;
3763 txring->txr_considx = 0;
3764 txring->txr_nfree = AQ_TXD_NUM;
3765 txring->txr_active = false;
3766
3767 /* free mbufs untransmitted */
3768 for (i = 0; i < AQ_TXD_NUM; i++) {
3769 if (txring->txr_mbufs[i].m != NULL) {
3770 m_freem(txring->txr_mbufs[i].m);
3771 txring->txr_mbufs[i].m = NULL;
3772 }
3773 }
3774
3775 /* disable DMA */
3776 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3777
3778 if (start) {
3779 /* TX descriptor physical address */
3780 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3781 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3782 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3783 (uint32_t)((uint64_t)paddr >> 32));
3784
3785 /* TX descriptor size */
3786 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3787 AQ_TXD_NUM / 8);
3788
3789 /* reload TAIL pointer */
3790 txring->txr_prodidx = txring->txr_considx =
3791 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3792 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3793
3794 /* Mapping interrupt vector */
3795 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3796 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3797 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3798 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3799
3800 /* enable DMA */
3801 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3802 TX_DMA_DESC_EN, 1);
3803
3804 const int cpuid = 0; /* XXX? */
3805 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3806 TDM_DCAD_CPUID, cpuid);
3807 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3808 TDM_DCAD_CPUID_EN, 0);
3809
3810 txring->txr_active = true;
3811 }
3812
3813 mutex_exit(&txring->txr_mutex);
3814 }
3815
3816 static int
3817 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3818 {
3819 const int ringidx = rxring->rxr_index;
3820 int i;
3821 int error = 0;
3822
3823 mutex_enter(&rxring->rxr_mutex);
3824 rxring->rxr_active = false;
3825
3826 /* disable DMA */
3827 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3828
3829 /* free all RX mbufs */
3830 aq_rxdrain(sc, rxring);
3831
3832 if (start) {
3833 for (i = 0; i < AQ_RXD_NUM; i++) {
3834 error = aq_rxring_add(sc, rxring, i);
3835 if (error != 0) {
3836 aq_rxdrain(sc, rxring);
3837 return error;
3838 }
3839 aq_rxring_reset_desc(sc, rxring, i);
3840 }
3841
3842 /* RX descriptor physical address */
3843 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
3844 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3845 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3846 (uint32_t)((uint64_t)paddr >> 32));
3847
3848 /* RX descriptor size */
3849 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
3850 AQ_RXD_NUM / 8);
3851
3852 /* maximum receive frame size */
3853 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3854 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
3855 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3856 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
3857
3858 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3859 RX_DMA_DESC_HEADER_SPLIT, 0);
3860 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3861 RX_DMA_DESC_VLAN_STRIP,
3862 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
3863 1 : 0);
3864
3865 /*
3866 * reload TAIL pointer, and update readidx
3867 * (HEAD pointer cannot write)
3868 */
3869 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
3870 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
3871 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
3872 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
3873
3874 /* Rx ring set mode */
3875
3876 /* Mapping interrupt vector */
3877 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
3878 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
3879 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
3880 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
3881
3882 const int cpuid = 0; /* XXX? */
3883 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
3884 RX_DMA_DCAD_CPUID, cpuid);
3885 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
3886 RX_DMA_DCAD_DESC_EN, 0);
3887 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
3888 RX_DMA_DCAD_HEADER_EN, 0);
3889 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
3890 RX_DMA_DCAD_PAYLOAD_EN, 0);
3891
3892 /* enable DMA. start receiving */
3893 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3894 RX_DMA_DESC_EN, 1);
3895
3896 rxring->rxr_active = true;
3897 }
3898
3899 mutex_exit(&rxring->rxr_mutex);
3900 return error;
3901 }
3902
3903 #define TXRING_NEXTIDX(idx) \
3904 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
3905 #define RXRING_NEXTIDX(idx) \
3906 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
3907
3908 static int
3909 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
3910 {
3911 bus_dmamap_t map;
3912 struct mbuf *m = *mp;
3913 uint32_t ctl1, ctl1_ctx, ctl2;
3914 int idx, i, error;
3915
3916 idx = txring->txr_prodidx;
3917 map = txring->txr_mbufs[idx].dmamap;
3918
3919 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
3920 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3921 if (error == EFBIG) {
3922 struct mbuf *n;
3923 n = m_defrag(m, M_DONTWAIT);
3924 if (n == NULL)
3925 return EFBIG;
3926 /* m_defrag() preserve m */
3927 KASSERT(n == m);
3928 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
3929 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
3930 }
3931 if (error != 0)
3932 return error;
3933
3934 /*
3935 * check spaces of free descriptors.
3936 * +1 is additional descriptor for context (vlan, etc,.)
3937 */
3938 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
3939 device_printf(sc->sc_dev,
3940 "TX: not enough descriptors left %d for %d segs\n",
3941 txring->txr_nfree, map->dm_nsegs + 1);
3942 bus_dmamap_unload(sc->sc_dmat, map);
3943 return ENOBUFS;
3944 }
3945
3946 /* sync dma for mbuf */
3947 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
3948 BUS_DMASYNC_PREWRITE);
3949
3950 ctl1_ctx = 0;
3951 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
3952
3953 if (vlan_has_tag(m)) {
3954 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
3955 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
3956
3957 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
3958 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
3959
3960 /* fill context descriptor and forward index */
3961 txring->txr_txdesc[idx].buf_addr = 0;
3962 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
3963 txring->txr_txdesc[idx].ctl2 = 0;
3964
3965 idx = TXRING_NEXTIDX(idx);
3966 txring->txr_nfree--;
3967 }
3968
3969 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
3970 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
3971 if (m->m_pkthdr.csum_flags &
3972 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
3973 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
3974 }
3975
3976 /* fill descriptor(s) */
3977 for (i = 0; i < map->dm_nsegs; i++) {
3978 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
3979 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
3980 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
3981
3982 if (i == 0) {
3983 /* remember mbuf of these descriptors */
3984 txring->txr_mbufs[idx].m = m;
3985 } else {
3986 txring->txr_mbufs[idx].m = NULL;
3987 }
3988
3989 if (i == map->dm_nsegs - 1) {
3990 /* last segment, mark an EndOfPacket, and cause intr */
3991 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
3992 }
3993
3994 txring->txr_txdesc[idx].buf_addr =
3995 htole64(map->dm_segs[i].ds_addr);
3996 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
3997 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
3998
3999 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4000 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4001 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4002
4003 idx = TXRING_NEXTIDX(idx);
4004 txring->txr_nfree--;
4005 }
4006
4007 txring->txr_prodidx = idx;
4008
4009 return 0;
4010 }
4011
4012 static int
4013 aq_tx_intr(void *arg)
4014 {
4015 struct aq_txring *txring = arg;
4016 struct aq_softc *sc = txring->txr_sc;
4017 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4018 const int ringidx = txring->txr_index;
4019 unsigned int idx, hw_head, n = 0;
4020
4021 mutex_enter(&txring->txr_mutex);
4022
4023 if (!txring->txr_active)
4024 goto tx_intr_done;
4025
4026 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4027 TX_DMA_DESC_HEAD_PTR);
4028 if (hw_head == txring->txr_considx) {
4029 goto tx_intr_done;
4030 }
4031
4032 for (idx = txring->txr_considx; idx != hw_head;
4033 idx = TXRING_NEXTIDX(idx), n++) {
4034
4035 if (txring->txr_mbufs[idx].m != NULL) {
4036 bus_dmamap_unload(sc->sc_dmat,
4037 txring->txr_mbufs[idx].dmamap);
4038 m_freem(txring->txr_mbufs[idx].m);
4039 txring->txr_mbufs[idx].m = NULL;
4040 ifp->if_opackets++;
4041 }
4042
4043 txring->txr_nfree++;
4044 }
4045 txring->txr_considx = idx;
4046
4047 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4048 ifp->if_flags &= ~IFF_OACTIVE;
4049
4050 /* no more pending TX packet, cancel watchdog */
4051 if (txring->txr_nfree >= AQ_TXD_NUM)
4052 ifp->if_timer = 0;
4053
4054 tx_intr_done:
4055 mutex_exit(&txring->txr_mutex);
4056
4057 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4058 return n;
4059 }
4060
4061 static int
4062 aq_rx_intr(void *arg)
4063 {
4064 struct aq_rxring *rxring = arg;
4065 struct aq_softc *sc = rxring->rxr_sc;
4066 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4067 const int ringidx = rxring->rxr_index;
4068 aq_rx_desc_t *rxd;
4069 struct mbuf *m, *m0, *mprev, *new_m;
4070 uint32_t rxd_type, rxd_hash __unused;
4071 uint16_t rxd_status, rxd_pktlen;
4072 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4073 unsigned int idx, n = 0;
4074
4075 mutex_enter(&rxring->rxr_mutex);
4076
4077 if (!rxring->rxr_active)
4078 goto rx_intr_done;
4079
4080 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4081 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4082 goto rx_intr_done;
4083 }
4084
4085 m0 = mprev = NULL;
4086 for (idx = rxring->rxr_readidx;
4087 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4088 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4089
4090 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4091 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4092 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4093
4094 rxd = &rxring->rxr_rxdesc[idx];
4095 rxd_status = le16toh(rxd->wb.status);
4096
4097 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4098 break; /* not yet done */
4099
4100 rxd_type = le32toh(rxd->wb.type);
4101 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4102 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4103 rxd_hash = le32toh(rxd->wb.rss_hash);
4104 rxd_vlan = le16toh(rxd->wb.vlan);
4105
4106 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4107 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4108 ifp->if_ierrors++;
4109 goto rx_next;
4110 }
4111
4112 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4113 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4114 BUS_DMASYNC_POSTREAD);
4115 m = rxring->rxr_mbufs[idx].m;
4116
4117 new_m = aq_alloc_mbuf();
4118 if (new_m == NULL) {
4119 /*
4120 * cannot allocate new mbuf.
4121 * discard this packet, and reuse mbuf for next.
4122 */
4123 goto rx_next;
4124 }
4125 rxring->rxr_mbufs[idx].m = NULL;
4126 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4127
4128 if (m0 == NULL) {
4129 m0 = m;
4130 } else {
4131 if (m->m_flags & M_PKTHDR)
4132 m_remove_pkthdr(m);
4133 mprev->m_next = m;
4134 }
4135 mprev = m;
4136
4137 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4138 m->m_len = MCLBYTES;
4139 } else {
4140 /* last buffer */
4141 m->m_len = rxd_pktlen % MCLBYTES;
4142 m0->m_pkthdr.len = rxd_pktlen;
4143 /* VLAN offloading */
4144 if ((sc->sc_ethercom.ec_capenable &
4145 ETHERCAP_VLAN_HWTAGGING) &&
4146 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4147 __SHIFTOUT(rxd_type,
4148 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4149 vlan_set_tag(m0, rxd_vlan);
4150 }
4151
4152 /* Checksum offloading */
4153 unsigned int pkttype_eth =
4154 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4155 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4156 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4157 __SHIFTOUT(rxd_type,
4158 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4159 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4160 if (__SHIFTOUT(rxd_status,
4161 RXDESC_STATUS_IPV4_CSUM_NG))
4162 m0->m_pkthdr.csum_flags |=
4163 M_CSUM_IPv4_BAD;
4164 }
4165 #if notyet
4166 /*
4167 * XXX: aq always marks BAD for fragmented packet.
4168 * we should peek L3 header, and ignore cksum flags
4169 * if the packet is fragmented.
4170 */
4171 if (__SHIFTOUT(rxd_type,
4172 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4173 bool checked = false;
4174 unsigned int pkttype_proto =
4175 __SHIFTOUT(rxd_type,
4176 RXDESC_TYPE_PKTTYPE_PROTO);
4177
4178 if (pkttype_proto ==
4179 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4180 if ((pkttype_eth ==
4181 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4182 (ifp->if_capabilities &
4183 IFCAP_CSUM_TCPv4_Rx)) {
4184 m0->m_pkthdr.csum_flags |=
4185 M_CSUM_TCPv4;
4186 checked = true;
4187 } else if ((pkttype_eth ==
4188 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4189 (ifp->if_capabilities &
4190 IFCAP_CSUM_TCPv6_Rx)) {
4191 m0->m_pkthdr.csum_flags |=
4192 M_CSUM_TCPv6;
4193 checked = true;
4194 }
4195 } else if (pkttype_proto ==
4196 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4197 if ((pkttype_eth ==
4198 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4199 (ifp->if_capabilities &
4200 IFCAP_CSUM_UDPv4_Rx)) {
4201 m0->m_pkthdr.csum_flags |=
4202 M_CSUM_UDPv4;
4203 checked = true;
4204 } else if ((pkttype_eth ==
4205 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4206 (ifp->if_capabilities &
4207 IFCAP_CSUM_UDPv6_Rx)) {
4208 m0->m_pkthdr.csum_flags |=
4209 M_CSUM_UDPv6;
4210 checked = true;
4211 }
4212 }
4213 if (checked &&
4214 (__SHIFTOUT(rxd_status,
4215 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4216 !__SHIFTOUT(rxd_status,
4217 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4218 m0->m_pkthdr.csum_flags |=
4219 M_CSUM_TCP_UDP_BAD;
4220 }
4221 }
4222 #endif
4223
4224 m_set_rcvif(m0, ifp);
4225 if_percpuq_enqueue(ifp->if_percpuq, m0);
4226
4227 m0 = mprev = NULL;
4228 }
4229
4230 rx_next:
4231 aq_rxring_reset_desc(sc, rxring, idx);
4232 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4233 }
4234 rxring->rxr_readidx = idx;
4235
4236 rx_intr_done:
4237 mutex_exit(&rxring->rxr_mutex);
4238
4239 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4240 return n;
4241 }
4242
4243 static int
4244 aq_ifflags_cb(struct ethercom *ec)
4245 {
4246 struct ifnet *ifp = &ec->ec_if;
4247 struct aq_softc *sc = ifp->if_softc;
4248 int i, ecchange, error = 0;
4249 unsigned short iffchange;
4250
4251 AQ_LOCK(sc);
4252
4253 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4254 if ((iffchange & IFF_PROMISC) != 0)
4255 error = aq_set_filter(sc);
4256
4257 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4258 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4259 for (i = 0; i < AQ_RINGS_NUM; i++) {
4260 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4261 RX_DMA_DESC_VLAN_STRIP,
4262 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4263 1 : 0);
4264 }
4265 }
4266
4267 sc->sc_ec_capenable = ec->ec_capenable;
4268 sc->sc_if_flags = ifp->if_flags;
4269
4270 AQ_UNLOCK(sc);
4271
4272 return error;
4273 }
4274
4275 static int
4276 aq_init(struct ifnet *ifp)
4277 {
4278 struct aq_softc *sc = ifp->if_softc;
4279 int i, error = 0;
4280
4281 AQ_LOCK(sc);
4282
4283 aq_update_vlan_filters(sc);
4284 aq_set_capability(sc);
4285
4286 for (i = 0; i < sc->sc_nqueues; i++) {
4287 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4288 }
4289
4290 /* invalidate RX descriptor cache */
4291 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4292 AQ_READ_REG_BIT(sc,
4293 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4294
4295 /* start RX */
4296 for (i = 0; i < sc->sc_nqueues; i++) {
4297 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4298 if (error != 0) {
4299 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4300 __func__);
4301 goto aq_init_failure;
4302 }
4303 }
4304 aq_init_rss(sc);
4305 aq_hw_l3_filter_set(sc);
4306
4307 /* need to start callout? */
4308 if (sc->sc_poll_linkstat
4309 #ifdef AQ_EVENT_COUNTERS
4310 || sc->sc_poll_statistics
4311 #endif
4312 ) {
4313 callout_schedule(&sc->sc_tick_ch, hz);
4314 }
4315
4316 /* ready */
4317 ifp->if_flags |= IFF_RUNNING;
4318 ifp->if_flags &= ~IFF_OACTIVE;
4319
4320 /* start TX and RX */
4321 aq_enable_intr(sc, true, true);
4322 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4323 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4324
4325 aq_init_failure:
4326 sc->sc_if_flags = ifp->if_flags;
4327
4328 AQ_UNLOCK(sc);
4329
4330 return error;
4331 }
4332
4333 static void
4334 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4335 struct aq_txring *txring, bool is_transmit)
4336 {
4337 struct mbuf *m;
4338 int npkt, error;
4339
4340 if ((ifp->if_flags & IFF_RUNNING) == 0)
4341 return;
4342
4343 for (npkt = 0; ; npkt++) {
4344 if (is_transmit)
4345 m = pcq_peek(txring->txr_pcq);
4346 else
4347 IFQ_POLL(&ifp->if_snd, m);
4348
4349 if (m == NULL)
4350 break;
4351
4352 if (txring->txr_nfree < AQ_TXD_MIN)
4353 break;
4354
4355 if (is_transmit)
4356 pcq_get(txring->txr_pcq);
4357 else
4358 IFQ_DEQUEUE(&ifp->if_snd, m);
4359
4360 error = aq_encap_txring(sc, txring, &m);
4361 if (error != 0) {
4362 /* too many mbuf chains? or not enough descriptors? */
4363 m_freem(m);
4364 ifp->if_oerrors++;
4365 if (txring->txr_index == 0 && error == ENOBUFS)
4366 ifp->if_flags |= IFF_OACTIVE;
4367 break;
4368 }
4369
4370 /* update tail ptr */
4371 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4372 txring->txr_prodidx);
4373
4374 /* Pass the packet to any BPF listeners */
4375 bpf_mtap(ifp, m, BPF_D_OUT);
4376 }
4377
4378 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4379 ifp->if_flags |= IFF_OACTIVE;
4380
4381 if (npkt)
4382 ifp->if_timer = 5;
4383 }
4384
4385 static void
4386 aq_start(struct ifnet *ifp)
4387 {
4388 struct aq_softc *sc;
4389 struct aq_txring *txring;
4390
4391 sc = ifp->if_softc;
4392 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4393
4394 mutex_enter(&txring->txr_mutex);
4395 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4396 aq_send_common_locked(ifp, sc, txring, false);
4397 mutex_exit(&txring->txr_mutex);
4398 }
4399
4400 static inline unsigned int
4401 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4402 {
4403 return (cpu_index(curcpu()) % sc->sc_nqueues);
4404 }
4405
4406 static int
4407 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4408 {
4409 struct aq_softc *sc = ifp->if_softc;
4410 struct aq_txring *txring;
4411 int ringidx;
4412
4413 ringidx = aq_select_txqueue(sc, m);
4414 txring = &sc->sc_queue[ringidx].txring;
4415
4416 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4417 m_freem(m);
4418 return ENOBUFS;
4419 }
4420
4421 if (mutex_tryenter(&txring->txr_mutex)) {
4422 aq_send_common_locked(ifp, sc, txring, true);
4423 mutex_exit(&txring->txr_mutex);
4424 } else {
4425 softint_schedule(txring->txr_softint);
4426 }
4427 return 0;
4428 }
4429
4430 static void
4431 aq_deferred_transmit(void *arg)
4432 {
4433 struct aq_txring *txring = arg;
4434 struct aq_softc *sc = txring->txr_sc;
4435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4436
4437 mutex_enter(&txring->txr_mutex);
4438 if (pcq_peek(txring->txr_pcq) != NULL)
4439 aq_send_common_locked(ifp, sc, txring, true);
4440 mutex_exit(&txring->txr_mutex);
4441 }
4442
4443 static void
4444 aq_stop(struct ifnet *ifp, int disable)
4445 {
4446 struct aq_softc *sc = ifp->if_softc;
4447 int i;
4448
4449 AQ_LOCK(sc);
4450
4451 ifp->if_timer = 0;
4452
4453 /* disable tx/rx interrupts */
4454 aq_enable_intr(sc, true, false);
4455
4456 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4457 for (i = 0; i < sc->sc_nqueues; i++) {
4458 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4459 }
4460
4461 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4462 for (i = 0; i < sc->sc_nqueues; i++) {
4463 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4464 }
4465
4466 /* invalidate RX descriptor cache */
4467 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4468 AQ_READ_REG_BIT(sc,
4469 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4470
4471 ifp->if_timer = 0;
4472
4473 if (!disable) {
4474 /* when pmf stop, disable link status intr and callout */
4475 aq_enable_intr(sc, false, false);
4476 callout_stop(&sc->sc_tick_ch);
4477 }
4478
4479 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4480
4481 AQ_UNLOCK(sc);
4482 }
4483
4484 static void
4485 aq_watchdog(struct ifnet *ifp)
4486 {
4487 struct aq_softc *sc = ifp->if_softc;
4488 struct aq_txring *txring;
4489 int n, head, tail;
4490
4491 AQ_LOCK(sc);
4492
4493 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4494 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4495 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4496
4497 for (n = 0; n < sc->sc_nqueues; n++) {
4498 txring = &sc->sc_queue[n].txring;
4499 head = AQ_READ_REG_BIT(sc,
4500 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4501 TX_DMA_DESC_HEAD_PTR),
4502 tail = AQ_READ_REG(sc,
4503 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4504
4505 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4506 __func__, txring->txr_index, head, tail);
4507
4508 aq_tx_intr(txring);
4509 }
4510
4511 AQ_UNLOCK(sc);
4512
4513 aq_init(ifp);
4514 }
4515
4516 static int
4517 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4518 {
4519 struct aq_softc *sc __unused;
4520 struct ifreq *ifr __unused;
4521 int error, s;
4522
4523 sc = (struct aq_softc *)ifp->if_softc;
4524 ifr = (struct ifreq *)data;
4525 error = 0;
4526
4527 s = splnet();
4528 error = ether_ioctl(ifp, cmd, data);
4529 splx(s);
4530
4531 if (error != ENETRESET)
4532 return error;
4533
4534 switch (cmd) {
4535 case SIOCSIFCAP:
4536 error = aq_set_capability(sc);
4537 break;
4538 case SIOCADDMULTI:
4539 case SIOCDELMULTI:
4540 if ((ifp->if_flags & IFF_RUNNING) == 0)
4541 break;
4542
4543 /*
4544 * Multicast list has changed; set the hardware filter
4545 * accordingly.
4546 */
4547 error = aq_set_filter(sc);
4548 break;
4549 }
4550
4551 return error;
4552 }
4553
4554
4555 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4556
4557 #ifdef _MODULE
4558 #include "ioconf.c"
4559 #endif
4560
4561 static int
4562 if_aq_modcmd(modcmd_t cmd, void *opaque)
4563 {
4564 int error = 0;
4565
4566 switch (cmd) {
4567 case MODULE_CMD_INIT:
4568 #ifdef _MODULE
4569 error = config_init_component(cfdriver_ioconf_if_aq,
4570 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4571 #endif
4572 return error;
4573 case MODULE_CMD_FINI:
4574 #ifdef _MODULE
4575 error = config_fini_component(cfdriver_ioconf_if_aq,
4576 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4577 #endif
4578 return error;
4579 default:
4580 return ENOTTY;
4581 }
4582 }
4583