if_aq.c revision 1.20 1 /* $NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed __aligned(4) aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed __aligned(4) aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed __aligned(4) fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed __aligned(4) fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed __aligned(4) fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed __aligned(4) fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed __aligned(8);
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed __aligned(4);
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed __aligned(8) aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed __aligned(8) aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 const struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 struct ethercom sc_ethercom;
1009 struct ether_addr sc_enaddr;
1010 struct ifmedia sc_media;
1011 int sc_ec_capenable; /* last ec_capenable */
1012 unsigned short sc_if_flags; /* last if_flags */
1013
1014 #ifdef AQ_EVENT_COUNTERS
1015 aq_hw_stats_s_t sc_statistics[2];
1016 int sc_statistics_idx;
1017 bool sc_poll_statistics;
1018
1019 AQ_EVCNT_DECL(uprc);
1020 AQ_EVCNT_DECL(mprc);
1021 AQ_EVCNT_DECL(bprc);
1022 AQ_EVCNT_DECL(erpt);
1023 AQ_EVCNT_DECL(uptc);
1024 AQ_EVCNT_DECL(mptc);
1025 AQ_EVCNT_DECL(bptc);
1026 AQ_EVCNT_DECL(erpr);
1027 AQ_EVCNT_DECL(mbtc);
1028 AQ_EVCNT_DECL(bbtc);
1029 AQ_EVCNT_DECL(mbrc);
1030 AQ_EVCNT_DECL(bbrc);
1031 AQ_EVCNT_DECL(ubrc);
1032 AQ_EVCNT_DECL(ubtc);
1033 AQ_EVCNT_DECL(ptc);
1034 AQ_EVCNT_DECL(prc);
1035 AQ_EVCNT_DECL(dpc);
1036 AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045 bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047 pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056 struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083 aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085 aq_link_eee_t *);
1086
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093 uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 .reset = fw1x_reset,
1117 .set_mode = fw1x_set_mode,
1118 .get_mode = fw1x_get_mode,
1119 .get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 .get_temperature = NULL
1122 #endif
1123 };
1124
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 .reset = fw2x_reset,
1127 .set_mode = fw2x_set_mode,
1128 .get_mode = fw2x_get_mode,
1129 .get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 .get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137
1138 static const struct aq_product {
1139 pci_vendor_id_t aq_vendor;
1140 pci_product_id_t aq_product;
1141 const char *aq_name;
1142 enum aq_media_type aq_media_type;
1143 aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1146 "Aquantia AQC100 10 Gigabit Network Adapter",
1147 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1148 },
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1150 "Aquantia AQC107 10 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1154 "Aquantia AQC108 5 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1158 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1162 "Aquantia AQC111 5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1166 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1170 "Aquantia AQC100S 10 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1174 "Aquantia AQC107S 10 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1178 "Aquantia AQC108S 5 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1182 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1186 "Aquantia AQC111S 5 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1190 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1194 "Aquantia D100 10 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1196 },
1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1198 "Aquantia D107 10 Gigabit Network Adapter",
1199 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1200 },
1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1202 "Aquantia D108 5 Gigabit Network Adapter",
1203 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1204 },
1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1206 "Aquantia D109 2.5 Gigabit Network Adapter",
1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1208 }
1209 };
1210
1211 static const struct aq_product *
1212 aq_lookup(const struct pci_attach_args *pa)
1213 {
1214 unsigned int i;
1215
1216 for (i = 0; i < __arraycount(aq_products); i++) {
1217 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1218 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1219 return &aq_products[i];
1220 }
1221 return NULL;
1222 }
1223
1224 static int
1225 aq_match(device_t parent, cfdata_t cf, void *aux)
1226 {
1227 struct pci_attach_args *pa = aux;
1228
1229 if (aq_lookup(pa) != NULL)
1230 return 1;
1231
1232 return 0;
1233 }
1234
1235 static void
1236 aq_attach(device_t parent, device_t self, void *aux)
1237 {
1238 struct aq_softc *sc = device_private(self);
1239 struct pci_attach_args *pa = aux;
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 pci_chipset_tag_t pc;
1242 pcitag_t tag;
1243 pcireg_t command, memtype, bar;
1244 const struct aq_product *aqp;
1245 int error;
1246
1247 sc->sc_dev = self;
1248 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1249 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1250
1251 sc->sc_pc = pc = pa->pa_pc;
1252 sc->sc_pcitag = tag = pa->pa_tag;
1253 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1254
1255 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1256 command |= PCI_COMMAND_MASTER_ENABLE;
1257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1258
1259 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1260 sc->sc_revision = PCI_REVISION(pa->pa_class);
1261
1262 aqp = aq_lookup(pa);
1263 KASSERT(aqp != NULL);
1264
1265 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1266
1267 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1268 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1269 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1270 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1271 return;
1272 }
1273 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1274 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1275 NULL, &sc->sc_iosize) != 0) {
1276 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1277 return;
1278 }
1279
1280 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1281
1282 /* max queue num is 8, and must be 2^n */
1283 if (ncpu >= 8)
1284 sc->sc_nqueues = 8;
1285 else if (ncpu >= 4)
1286 sc->sc_nqueues = 4;
1287 else if (ncpu >= 2)
1288 sc->sc_nqueues = 2;
1289 else
1290 sc->sc_nqueues = 1;
1291
1292 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1294 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1295 /* TX intrs + RX intrs + LINKSTAT intrs */
1296 sc->sc_use_txrx_independent_intr = true;
1297 sc->sc_poll_linkstat = false;
1298 sc->sc_msix = true;
1299 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1300 /* TX intrs + RX intrs */
1301 sc->sc_use_txrx_independent_intr = true;
1302 sc->sc_poll_linkstat = true;
1303 sc->sc_msix = true;
1304 } else
1305 #endif
1306 if (msixcount >= (sc->sc_nqueues + 1)) {
1307 /* TX/RX intrs LINKSTAT intrs */
1308 sc->sc_use_txrx_independent_intr = false;
1309 sc->sc_poll_linkstat = false;
1310 sc->sc_msix = true;
1311 } else if (msixcount >= sc->sc_nqueues) {
1312 /* TX/RX intrs */
1313 sc->sc_use_txrx_independent_intr = false;
1314 sc->sc_poll_linkstat = true;
1315 sc->sc_msix = true;
1316 } else {
1317 /* giving up using MSI-X */
1318 sc->sc_msix = false;
1319 }
1320
1321 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1322 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1323 sc->sc_poll_linkstat = true;
1324
1325 #ifdef AQ_FORCE_POLL_LINKSTAT
1326 sc->sc_poll_linkstat = true;
1327 #endif
1328
1329 aprint_debug_dev(sc->sc_dev,
1330 "ncpu=%d, pci_msix_count=%d."
1331 " allocate %d interrupts for %d%s queues%s\n",
1332 ncpu, msixcount,
1333 (sc->sc_use_txrx_independent_intr ?
1334 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1335 (sc->sc_poll_linkstat ? 0 : 1),
1336 sc->sc_nqueues,
1337 sc->sc_use_txrx_independent_intr ? "*2" : "",
1338 sc->sc_poll_linkstat ? "" : ", and link status");
1339
1340 if (sc->sc_msix)
1341 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1342 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1343 else
1344 error = ENODEV;
1345
1346 if (error != 0) {
1347 /* if MSI-X failed, fallback to MSI with single queue */
1348 sc->sc_use_txrx_independent_intr = false;
1349 sc->sc_poll_linkstat = false;
1350 sc->sc_msix = false;
1351 sc->sc_nqueues = 1;
1352 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1353 }
1354 if (error != 0) {
1355 /* if MSI failed, fallback to INTx */
1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1357 }
1358 if (error != 0)
1359 return;
1360
1361 callout_init(&sc->sc_tick_ch, 0);
1362 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1363
1364 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1365
1366 if (sc->sc_msix && (sc->sc_nqueues > 1))
1367 sc->sc_rss_enable = true;
1368 else
1369 sc->sc_rss_enable = false;
1370
1371 error = aq_txrx_rings_alloc(sc);
1372 if (error != 0)
1373 goto attach_failure;
1374
1375 error = aq_fw_reset(sc);
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 error = aq_fw_version_init(sc);
1380 if (error != 0)
1381 goto attach_failure;
1382
1383 error = aq_hw_init_ucp(sc);
1384 if (error < 0)
1385 goto attach_failure;
1386
1387 KASSERT(sc->sc_mbox_addr != 0);
1388 error = aq_hw_reset(sc);
1389 if (error != 0)
1390 goto attach_failure;
1391
1392 aq_get_mac_addr(sc);
1393 aq_init_rss(sc);
1394
1395 error = aq_hw_init(sc); /* initialize and interrupts */
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 sc->sc_media_type = aqp->aq_media_type;
1400 sc->sc_available_rates = aqp->aq_available_rates;
1401
1402 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1403 ifmedia_init(&sc->sc_media, IFM_IMASK,
1404 aq_ifmedia_change, aq_ifmedia_status);
1405 aq_initmedia(sc);
1406
1407 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1408 ifp->if_softc = sc;
1409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 ifp->if_extflags = IFEF_MPSAFE;
1411 ifp->if_baudrate = IF_Gbps(10);
1412 ifp->if_init = aq_init;
1413 ifp->if_ioctl = aq_ioctl;
1414 if (sc->sc_msix && (sc->sc_nqueues > 1))
1415 ifp->if_transmit = aq_transmit;
1416 ifp->if_start = aq_start;
1417 ifp->if_stop = aq_stop;
1418 ifp->if_watchdog = aq_watchdog;
1419 IFQ_SET_READY(&ifp->if_snd);
1420
1421 /* initialize capabilities */
1422 sc->sc_ethercom.ec_capabilities = 0;
1423 sc->sc_ethercom.ec_capenable = 0;
1424 #if notyet
1425 /* TODO */
1426 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1427 #endif
1428 sc->sc_ethercom.ec_capabilities |=
1429 ETHERCAP_JUMBO_MTU |
1430 ETHERCAP_VLAN_MTU |
1431 ETHERCAP_VLAN_HWTAGGING |
1432 ETHERCAP_VLAN_HWFILTER;
1433 sc->sc_ethercom.ec_capenable |=
1434 ETHERCAP_VLAN_HWTAGGING |
1435 ETHERCAP_VLAN_HWFILTER;
1436
1437 ifp->if_capabilities = 0;
1438 ifp->if_capenable = 0;
1439 #ifdef CONFIG_LRO_SUPPORT
1440 ifp->if_capabilities |= IFCAP_LRO;
1441 ifp->if_capenable |= IFCAP_LRO;
1442 #endif
1443 #if notyet
1444 /* TSO */
1445 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1446 #endif
1447
1448 #if notyet
1449 /*
1450 * XXX:
1451 * Rx L4 CSUM doesn't work well for fragment packet.
1452 * aq marks 'CHEDKED' and 'BAD' for them.
1453 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1454 *
1455 * TODO: test with LRO enabled
1456 */
1457 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1458 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1459 #endif
1460 /* TX hardware checksum offloadding */
1461 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1462 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1463 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1464 /* RX hardware checksum offloadding */
1465 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1466
1467 error = if_initialize(ifp);
1468 if (error != 0) {
1469 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
1470 error);
1471 goto attach_failure;
1472 }
1473 ifp->if_percpuq = if_percpuq_create(ifp);
1474 if_deferred_start_init(ifp, NULL);
1475 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1476 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1477 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1478 if_register(ifp);
1479
1480 aq_enable_intr(sc, true, false); /* only intr about link */
1481
1482 /* update media */
1483 aq_ifmedia_change(ifp);
1484
1485 #if NSYSMON_ENVSYS > 0
1486 /* temperature monitoring */
1487 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1488 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1489
1490 sc->sc_sme = sysmon_envsys_create();
1491 sc->sc_sme->sme_name = device_xname(self);
1492 sc->sc_sme->sme_cookie = sc;
1493 sc->sc_sme->sme_flags = 0;
1494 sc->sc_sme->sme_refresh = aq_temp_refresh;
1495 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1496 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1497 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1498
1499 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1500 sysmon_envsys_register(sc->sc_sme);
1501
1502 /*
1503 * for unknown reasons, the first call of fw2x_get_temperature()
1504 * will always fail (firmware matter?), so run once now.
1505 */
1506 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1507 }
1508 #endif
1509
1510 #ifdef AQ_EVENT_COUNTERS
1511 /* get starting statistics values */
1512 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1513 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1514 sc->sc_poll_statistics = true;
1515 }
1516
1517 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1518 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1519 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1520 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1521 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1522 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1523 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1524 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1525 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1526 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1527 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1528 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1529 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1530 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1531 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1532 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1533 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1534 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1535 #endif
1536
1537 return;
1538
1539 attach_failure:
1540 aq_detach(self, 0);
1541 }
1542
1543 static int
1544 aq_detach(device_t self, int flags __unused)
1545 {
1546 struct aq_softc *sc = device_private(self);
1547 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1548 int i, s;
1549
1550 if (sc->sc_iosize != 0) {
1551 if (ifp->if_softc != NULL) {
1552 s = splnet();
1553 aq_stop(ifp, 0);
1554 splx(s);
1555 }
1556
1557 for (i = 0; i < AQ_NINTR_MAX; i++) {
1558 if (sc->sc_ihs[i] != NULL) {
1559 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1560 sc->sc_ihs[i] = NULL;
1561 }
1562 }
1563 if (sc->sc_nintrs > 0) {
1564 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1565 sc->sc_nintrs);
1566 sc->sc_intrs = NULL;
1567 sc->sc_nintrs = 0;
1568 }
1569
1570 aq_txrx_rings_free(sc);
1571
1572 if (ifp->if_softc != NULL) {
1573 ether_ifdetach(ifp);
1574 if_detach(ifp);
1575 }
1576
1577 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1578 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1579 sc->sc_iosize = 0;
1580 }
1581
1582 callout_stop(&sc->sc_tick_ch);
1583
1584 #if NSYSMON_ENVSYS > 0
1585 if (sc->sc_sme != NULL) {
1586 /* all sensors associated with this will also be detached */
1587 sysmon_envsys_unregister(sc->sc_sme);
1588 sc->sc_sme = NULL;
1589 }
1590 #endif
1591
1592 #ifdef AQ_EVENT_COUNTERS
1593 AQ_EVCNT_DETACH(sc, uprc);
1594 AQ_EVCNT_DETACH(sc, mprc);
1595 AQ_EVCNT_DETACH(sc, bprc);
1596 AQ_EVCNT_DETACH(sc, erpt);
1597 AQ_EVCNT_DETACH(sc, uptc);
1598 AQ_EVCNT_DETACH(sc, mptc);
1599 AQ_EVCNT_DETACH(sc, bptc);
1600 AQ_EVCNT_DETACH(sc, erpr);
1601 AQ_EVCNT_DETACH(sc, mbtc);
1602 AQ_EVCNT_DETACH(sc, bbtc);
1603 AQ_EVCNT_DETACH(sc, mbrc);
1604 AQ_EVCNT_DETACH(sc, bbrc);
1605 AQ_EVCNT_DETACH(sc, ubrc);
1606 AQ_EVCNT_DETACH(sc, ubtc);
1607 AQ_EVCNT_DETACH(sc, ptc);
1608 AQ_EVCNT_DETACH(sc, prc);
1609 AQ_EVCNT_DETACH(sc, dpc);
1610 AQ_EVCNT_DETACH(sc, cprc);
1611 #endif
1612
1613 ifmedia_fini(&sc->sc_media);
1614
1615 mutex_destroy(&sc->sc_mpi_mutex);
1616 mutex_destroy(&sc->sc_mutex);
1617
1618 return 0;
1619 }
1620
1621 static int
1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1623 int (*func)(void *), void *arg, const char *xname)
1624 {
1625 char intrbuf[PCI_INTRSTR_LEN];
1626 pci_chipset_tag_t pc = sc->sc_pc;
1627 void *vih;
1628 const char *intrstr = NULL;
1629
1630 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1631 sizeof(intrbuf));
1632
1633 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1634
1635 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1636 IPL_NET, func, arg, xname);
1637 if (vih == NULL) {
1638 aprint_error_dev(sc->sc_dev,
1639 "unable to establish MSI-X%s%s for %s\n",
1640 intrstr ? " at " : "",
1641 intrstr ? intrstr : "", xname);
1642 return EIO;
1643 }
1644 sc->sc_ihs[intno] = vih;
1645
1646 if (affinity != NULL) {
1647 /* Round-robin affinity */
1648 kcpuset_zero(affinity);
1649 kcpuset_set(affinity, intno % ncpu);
1650 interrupt_distribute(vih, affinity, NULL);
1651 }
1652
1653 return 0;
1654 }
1655
1656 static int
1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1658 bool linkintr)
1659 {
1660 kcpuset_t *affinity;
1661 int error, intno, i;
1662 char intr_xname[INTRDEVNAMEBUF];
1663
1664 kcpuset_create(&affinity, false);
1665
1666 intno = 0;
1667
1668 if (txrx_independent) {
1669 for (i = 0; i < sc->sc_nqueues; i++) {
1670 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1671 device_xname(sc->sc_dev), i);
1672 sc->sc_rx_irq[i] = intno;
1673 error = aq_establish_intr(sc, intno++, affinity,
1674 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1675 if (error != 0)
1676 goto fail;
1677 }
1678 for (i = 0; i < sc->sc_nqueues; i++) {
1679 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1680 device_xname(sc->sc_dev), i);
1681 sc->sc_tx_irq[i] = intno;
1682 error = aq_establish_intr(sc, intno++, affinity,
1683 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1684 if (error != 0)
1685 goto fail;
1686 }
1687 } else {
1688 for (i = 0; i < sc->sc_nqueues; i++) {
1689 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1690 device_xname(sc->sc_dev), i);
1691 sc->sc_rx_irq[i] = intno;
1692 sc->sc_tx_irq[i] = intno;
1693 error = aq_establish_intr(sc, intno++, affinity,
1694 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1695 if (error != 0)
1696 goto fail;
1697 }
1698 }
1699
1700 if (linkintr) {
1701 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1702 device_xname(sc->sc_dev));
1703 sc->sc_linkstat_irq = intno;
1704 error = aq_establish_intr(sc, intno++, affinity,
1705 aq_link_intr, sc, intr_xname);
1706 if (error != 0)
1707 goto fail;
1708 }
1709
1710 kcpuset_destroy(affinity);
1711 return 0;
1712
1713 fail:
1714 for (i = 0; i < AQ_NINTR_MAX; i++) {
1715 if (sc->sc_ihs[i] != NULL) {
1716 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1717 sc->sc_ihs[i] = NULL;
1718 }
1719 }
1720
1721 kcpuset_destroy(affinity);
1722 return ENOMEM;
1723 }
1724
1725 static int
1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1727 bool txrx_independent, bool linkintr)
1728 {
1729 int error, nintr;
1730
1731 if (txrx_independent)
1732 nintr = nqueue * 2;
1733 else
1734 nintr = nqueue;
1735
1736 if (linkintr)
1737 nintr++;
1738
1739 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1740 if (error != 0) {
1741 aprint_error_dev(sc->sc_dev,
1742 "failed to allocate MSI-X interrupts\n");
1743 goto fail;
1744 }
1745
1746 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1747 if (error == 0) {
1748 sc->sc_nintrs = nintr;
1749 } else {
1750 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1751 sc->sc_nintrs = 0;
1752 }
1753 fail:
1754 return error;
1755
1756 }
1757
1758 static int
1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1760 pci_intr_type_t inttype)
1761 {
1762 int counts[PCI_INTR_TYPE_SIZE];
1763 int error, nintr;
1764
1765 nintr = 1;
1766
1767 memset(counts, 0, sizeof(counts));
1768 counts[inttype] = nintr;
1769
1770 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1771 if (error != 0) {
1772 aprint_error_dev(sc->sc_dev,
1773 "failed to allocate%s interrupts\n",
1774 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1775 return error;
1776 }
1777 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1778 device_xname(sc->sc_dev));
1779 if (error == 0) {
1780 sc->sc_nintrs = nintr;
1781 } else {
1782 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1783 sc->sc_nintrs = 0;
1784 }
1785 return error;
1786 }
1787
1788 static void
1789 global_software_reset(struct aq_softc *sc)
1790 {
1791 uint32_t v;
1792
1793 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1794 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1795 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1796 FW_MPI_RESETCTRL_RESET_DIS, 0);
1797
1798 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1799 v &= ~AQ_FW_SOFTRESET_DIS;
1800 v |= AQ_FW_SOFTRESET_RESET;
1801 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1802 }
1803
1804 static int
1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1806 {
1807 int timo;
1808
1809 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1810
1811 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1813 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1814
1815 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1816 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1817
1818 global_software_reset(sc);
1819
1820 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1821
1822 /* Wait for RBL to finish boot process. */
1823 #define RBL_TIMEOUT_MS 10000
1824 uint16_t rbl_status;
1825 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1826 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1827 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1828 break;
1829 msec_delay(1);
1830 }
1831 if (timo <= 0) {
1832 aprint_error_dev(sc->sc_dev,
1833 "RBL> RBL restart failed: timeout\n");
1834 return EBUSY;
1835 }
1836 switch (rbl_status) {
1837 case RBL_STATUS_SUCCESS:
1838 if (mode != NULL)
1839 *mode = FW_BOOT_MODE_RBL_FLASH;
1840 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1841 break;
1842 case RBL_STATUS_HOST_BOOT:
1843 if (mode != NULL)
1844 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1845 aprint_debug_dev(sc->sc_dev,
1846 "RBL> reset complete! [Host Bootload]\n");
1847 break;
1848 case RBL_STATUS_FAILURE:
1849 default:
1850 aprint_error_dev(sc->sc_dev,
1851 "unknown RBL status 0x%x\n", rbl_status);
1852 return EBUSY;
1853 }
1854
1855 return 0;
1856 }
1857
1858 static int
1859 mac_soft_reset_flb(struct aq_softc *sc)
1860 {
1861 uint32_t v;
1862 int timo;
1863
1864 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1865 /*
1866 * Let Felicity hardware to complete SMBUS transaction before
1867 * Global software reset.
1868 */
1869 msec_delay(50);
1870
1871 /*
1872 * If SPI burst transaction was interrupted(before running the script),
1873 * global software reset may not clear SPI interface.
1874 * Clean it up manually before global reset.
1875 */
1876 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1879 msec_delay(50);
1880
1881 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1882 v &= ~AQ_FW_SOFTRESET_DIS;
1883 v |= AQ_FW_SOFTRESET_RESET;
1884 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1885
1886 /* Kickstart. */
1887 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1888 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1889 if (!sc->sc_fast_start_enabled)
1890 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1891
1892 /*
1893 * For the case SPI burst transaction was interrupted (by MCP reset
1894 * above), wait until it is completed by hardware.
1895 */
1896 msec_delay(50);
1897
1898 /* MAC Kickstart */
1899 if (!sc->sc_fast_start_enabled) {
1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1901
1902 uint32_t flb_status;
1903 for (timo = 0; timo < 1000; timo++) {
1904 flb_status = AQ_READ_REG(sc,
1905 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1906 if (flb_status != 0)
1907 break;
1908 msec_delay(1);
1909 }
1910 if (flb_status == 0) {
1911 aprint_error_dev(sc->sc_dev,
1912 "FLB> MAC kickstart failed: timed out\n");
1913 return ETIMEDOUT;
1914 }
1915 aprint_debug_dev(sc->sc_dev,
1916 "FLB> MAC kickstart done, %d ms\n", timo);
1917 /* FW reset */
1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1919 /*
1920 * Let Felicity hardware complete SMBUS transaction before
1921 * Global software reset.
1922 */
1923 msec_delay(50);
1924 sc->sc_fast_start_enabled = true;
1925 }
1926 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1927
1928 /* PHY Kickstart: #undone */
1929 global_software_reset(sc);
1930
1931 for (timo = 0; timo < 1000; timo++) {
1932 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1933 break;
1934 msec_delay(10);
1935 }
1936 if (timo >= 1000) {
1937 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1938 return ETIMEDOUT;
1939 }
1940 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1941 return 0;
1942
1943 }
1944
1945 static int
1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1947 {
1948 if (sc->sc_rbl_enabled)
1949 return mac_soft_reset_rbl(sc, mode);
1950
1951 if (mode != NULL)
1952 *mode = FW_BOOT_MODE_FLB;
1953 return mac_soft_reset_flb(sc);
1954 }
1955
1956 static int
1957 aq_fw_read_version(struct aq_softc *sc)
1958 {
1959 int i, error = EBUSY;
1960 #define MAC_FW_START_TIMEOUT_MS 10000
1961 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1962 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1963 if (sc->sc_fw_version != 0) {
1964 error = 0;
1965 break;
1966 }
1967 delay(1000);
1968 }
1969 return error;
1970 }
1971
1972 static int
1973 aq_fw_reset(struct aq_softc *sc)
1974 {
1975 uint32_t ver, v, bootExitCode;
1976 int i, error;
1977
1978 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1979
1980 for (i = 1000; i > 0; i--) {
1981 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1982 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1983 if (v != 0x06000000 || bootExitCode != 0)
1984 break;
1985 }
1986 if (i <= 0) {
1987 aprint_error_dev(sc->sc_dev,
1988 "F/W reset failed. Neither RBL nor FLB started\n");
1989 return ETIMEDOUT;
1990 }
1991 sc->sc_rbl_enabled = (bootExitCode != 0);
1992
1993 /*
1994 * Having FW version 0 is an indicator that cold start
1995 * is in progress. This means two things:
1996 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1997 * 2) Driver may skip reset sequence and save time.
1998 */
1999 if (sc->sc_fast_start_enabled && (ver != 0)) {
2000 error = aq_fw_read_version(sc);
2001 /* Skip reset as it just completed */
2002 if (error == 0)
2003 return 0;
2004 }
2005
2006 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2007 error = mac_soft_reset(sc, &mode);
2008 if (error != 0) {
2009 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2010 return error;
2011 }
2012
2013 switch (mode) {
2014 case FW_BOOT_MODE_FLB:
2015 aprint_debug_dev(sc->sc_dev,
2016 "FLB> F/W successfully loaded from flash.\n");
2017 sc->sc_flash_present = true;
2018 return aq_fw_read_version(sc);
2019 case FW_BOOT_MODE_RBL_FLASH:
2020 aprint_debug_dev(sc->sc_dev,
2021 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2022 sc->sc_flash_present = true;
2023 return aq_fw_read_version(sc);
2024 case FW_BOOT_MODE_UNKNOWN:
2025 aprint_error_dev(sc->sc_dev,
2026 "F/W bootload error: unknown bootloader type\n");
2027 return ENOTSUP;
2028 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2029 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2030 break;
2031 }
2032
2033 /*
2034 * XXX: TODO: add support Host Boot
2035 */
2036 aprint_error_dev(sc->sc_dev,
2037 "RBL> F/W Host Bootload not implemented\n");
2038 return ENOTSUP;
2039 }
2040
2041 static int
2042 aq_hw_reset(struct aq_softc *sc)
2043 {
2044 int error;
2045
2046 /* disable irq */
2047 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2048
2049 /* apply */
2050 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2051
2052 /* wait ack 10 times by 1ms */
2053 WAIT_FOR(
2054 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2055 1000, 10, &error);
2056 if (error != 0) {
2057 aprint_error_dev(sc->sc_dev,
2058 "atlantic: IRQ reset failed: %d\n", error);
2059 return error;
2060 }
2061
2062 return sc->sc_fw_ops->reset(sc);
2063 }
2064
2065 static int
2066 aq_hw_init_ucp(struct aq_softc *sc)
2067 {
2068 int timo;
2069
2070 if (FW_VERSION_MAJOR(sc) == 1) {
2071 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2072 uint32_t data;
2073 cprng_fast(&data, sizeof(data));
2074 data &= 0xfefefefe;
2075 data |= 0x02020202;
2076 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2077 }
2078 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2079 }
2080
2081 for (timo = 100; timo > 0; timo--) {
2082 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2083 if (sc->sc_mbox_addr != 0)
2084 break;
2085 delay(1000);
2086 }
2087
2088 #define AQ_FW_MIN_VERSION 0x01050006
2089 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2090 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2091 aprint_error_dev(sc->sc_dev,
2092 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2093 " or later required, this is %d.%d.%d\n",
2094 FW_VERSION_MAJOR(sc),
2095 FW_VERSION_MINOR(sc),
2096 FW_VERSION_BUILD(sc));
2097 return ENOTSUP;
2098 }
2099
2100 return 0;
2101 }
2102
2103 static int
2104 aq_fw_version_init(struct aq_softc *sc)
2105 {
2106 int error = 0;
2107 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2108
2109 if (FW_VERSION_MAJOR(sc) == 1) {
2110 sc->sc_fw_ops = &aq_fw1x_ops;
2111 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2112 sc->sc_fw_ops = &aq_fw2x_ops;
2113 } else {
2114 aprint_error_dev(sc->sc_dev,
2115 "Unsupported F/W version %d.%d.%d\n",
2116 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2117 FW_VERSION_BUILD(sc));
2118 return ENOTSUP;
2119 }
2120 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2121 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2122
2123 /* detect revision */
2124 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2125 switch (hwrev & 0x0000000f) {
2126 case 0x01:
2127 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2128 fw_vers);
2129 sc->sc_features |= FEATURES_REV_A0 |
2130 FEATURES_MPI_AQ | FEATURES_MIPS;
2131 break;
2132 case 0x02:
2133 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2134 fw_vers);
2135 sc->sc_features |= FEATURES_REV_B0 |
2136 FEATURES_MPI_AQ | FEATURES_MIPS |
2137 FEATURES_TPO2 | FEATURES_RPF2;
2138 break;
2139 case 0x0A:
2140 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2141 fw_vers);
2142 sc->sc_features |= FEATURES_REV_B1 |
2143 FEATURES_MPI_AQ | FEATURES_MIPS |
2144 FEATURES_TPO2 | FEATURES_RPF2;
2145 break;
2146 default:
2147 aprint_error_dev(sc->sc_dev,
2148 "Unknown revision (0x%08x)\n", hwrev);
2149 error = ENOTSUP;
2150 break;
2151 }
2152 return error;
2153 }
2154
2155 static int
2156 fw1x_reset(struct aq_softc *sc)
2157 {
2158 struct aq_mailbox_header mbox;
2159 const int retryCount = 1000;
2160 uint32_t tid0;
2161 int i;
2162
2163 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2164
2165 for (i = 0; i < retryCount; ++i) {
2166 /*
2167 * Read the beginning of Statistics structure to capture
2168 * the Transaction ID.
2169 */
2170 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2171 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2172
2173 /* Successfully read the stats. */
2174 if (tid0 == ~0U) {
2175 /* We have read the initial value. */
2176 tid0 = mbox.transaction_id;
2177 continue;
2178 } else if (mbox.transaction_id != tid0) {
2179 /*
2180 * Compare transaction ID to initial value.
2181 * If it's different means f/w is alive.
2182 * We're done.
2183 */
2184 return 0;
2185 }
2186
2187 /*
2188 * Transaction ID value haven't changed since last time.
2189 * Try reading the stats again.
2190 */
2191 delay(10);
2192 }
2193 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2194 return EBUSY;
2195 }
2196
2197 static int
2198 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2199 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2200 {
2201 uint32_t mpictrl = 0;
2202 uint32_t mpispeed = 0;
2203
2204 if (speed & AQ_LINK_10G)
2205 mpispeed |= FW1X_CTRL_10G;
2206 if (speed & AQ_LINK_5G)
2207 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2208 if (speed & AQ_LINK_2G5)
2209 mpispeed |= FW1X_CTRL_2G5;
2210 if (speed & AQ_LINK_1G)
2211 mpispeed |= FW1X_CTRL_1G;
2212 if (speed & AQ_LINK_100M)
2213 mpispeed |= FW1X_CTRL_100M;
2214
2215 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2216 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2217 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2218 return 0;
2219 }
2220
2221 static int
2222 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2223 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2224 {
2225 uint32_t mpistate, mpi_speed;
2226 aq_link_speed_t speed = AQ_LINK_NONE;
2227
2228 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2229
2230 if (modep != NULL)
2231 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2232
2233 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2234 if (mpi_speed & FW1X_CTRL_10G)
2235 speed = AQ_LINK_10G;
2236 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2237 speed = AQ_LINK_5G;
2238 else if (mpi_speed & FW1X_CTRL_2G5)
2239 speed = AQ_LINK_2G5;
2240 else if (mpi_speed & FW1X_CTRL_1G)
2241 speed = AQ_LINK_1G;
2242 else if (mpi_speed & FW1X_CTRL_100M)
2243 speed = AQ_LINK_100M;
2244
2245 if (speedp != NULL)
2246 *speedp = speed;
2247
2248 if (fcp != NULL)
2249 *fcp = AQ_FC_NONE;
2250
2251 if (eeep != NULL)
2252 *eeep = AQ_EEE_DISABLE;
2253
2254 return 0;
2255 }
2256
2257 static int
2258 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2259 {
2260 int error;
2261
2262 error = aq_fw_downld_dwords(sc,
2263 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2264 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2265 if (error < 0) {
2266 device_printf(sc->sc_dev,
2267 "fw1x> download statistics data FAILED, error %d", error);
2268 return error;
2269 }
2270
2271 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2272 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2273 return 0;
2274 }
2275
2276 static int
2277 fw2x_reset(struct aq_softc *sc)
2278 {
2279 fw2x_capabilities_t caps = { 0 };
2280 int error;
2281
2282 error = aq_fw_downld_dwords(sc,
2283 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2284 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2285 if (error != 0) {
2286 aprint_error_dev(sc->sc_dev,
2287 "fw2x> can't get F/W capabilities mask, error %d\n",
2288 error);
2289 return error;
2290 }
2291 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2292
2293 char buf[256];
2294 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2295 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2296
2297 return 0;
2298 }
2299
2300 static int
2301 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2302 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2303 {
2304 uint64_t mpi_ctrl;
2305 int error = 0;
2306
2307 AQ_MPI_LOCK(sc);
2308
2309 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2310
2311 switch (mode) {
2312 case MPI_INIT:
2313 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2314 if (speed & AQ_LINK_10G)
2315 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2316 if (speed & AQ_LINK_5G)
2317 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2318 if (speed & AQ_LINK_2G5)
2319 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2320 if (speed & AQ_LINK_1G)
2321 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2322 if (speed & AQ_LINK_100M)
2323 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2324
2325 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2326
2327 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2328 if (eee == AQ_EEE_ENABLE)
2329 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2330
2331 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2332 if (fc & AQ_FC_RX)
2333 mpi_ctrl |= FW2X_CTRL_PAUSE;
2334 if (fc & AQ_FC_TX)
2335 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2336 break;
2337 case MPI_DEINIT:
2338 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2339 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2340 break;
2341 default:
2342 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2343 error = EINVAL;
2344 goto failure;
2345 }
2346 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2347
2348 failure:
2349 AQ_MPI_UNLOCK(sc);
2350 return error;
2351 }
2352
2353 static int
2354 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2355 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2356 {
2357 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2358
2359 if (modep != NULL) {
2360 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2361 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2362 *modep = MPI_INIT;
2363 else
2364 *modep = MPI_DEINIT;
2365 }
2366
2367 aq_link_speed_t speed = AQ_LINK_NONE;
2368 if (mpi_state & FW2X_CTRL_RATE_10G)
2369 speed = AQ_LINK_10G;
2370 else if (mpi_state & FW2X_CTRL_RATE_5G)
2371 speed = AQ_LINK_5G;
2372 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2373 speed = AQ_LINK_2G5;
2374 else if (mpi_state & FW2X_CTRL_RATE_1G)
2375 speed = AQ_LINK_1G;
2376 else if (mpi_state & FW2X_CTRL_RATE_100M)
2377 speed = AQ_LINK_100M;
2378
2379 if (speedp != NULL)
2380 *speedp = speed;
2381
2382 aq_link_fc_t fc = AQ_FC_NONE;
2383 if (mpi_state & FW2X_CTRL_PAUSE)
2384 fc |= AQ_FC_RX;
2385 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2386 fc |= AQ_FC_TX;
2387 if (fcp != NULL)
2388 *fcp = fc;
2389
2390 /* XXX: TODO: EEE */
2391 if (eeep != NULL)
2392 *eeep = AQ_EEE_DISABLE;
2393
2394 return 0;
2395 }
2396
2397 static int
2398 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2399 uint32_t timeout_ms, uint32_t try_count)
2400 {
2401 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2402 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2403 int error;
2404
2405 /* First, check that control and state values are consistent */
2406 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2407 device_printf(sc->sc_dev,
2408 "fw2x> MPI control (%#llx) and state (%#llx)"
2409 " are not consistent for mask %#llx!\n",
2410 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2411 (unsigned long long)mask);
2412 return EINVAL;
2413 }
2414
2415 /* Invert bits (toggle) in control register */
2416 mpi_ctrl ^= mask;
2417 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2418
2419 /* Clear all bits except masked */
2420 mpi_ctrl &= mask;
2421
2422 /* Wait for FW reflecting change in state register */
2423 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2424 1000 * timeout_ms, try_count, &error);
2425 if (error != 0) {
2426 device_printf(sc->sc_dev,
2427 "f/w2x> timeout while waiting for response"
2428 " in state register for bit %#llx!",
2429 (unsigned long long)mask);
2430 return error;
2431 }
2432 return 0;
2433 }
2434
2435 static int
2436 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2437 {
2438 int error;
2439
2440 AQ_MPI_LOCK(sc);
2441 /* Say to F/W to update the statistics */
2442 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2443 if (error != 0) {
2444 device_printf(sc->sc_dev,
2445 "fw2x> statistics update error %d\n", error);
2446 goto failure;
2447 }
2448
2449 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2450 error = aq_fw_downld_dwords(sc,
2451 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2452 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2453 if (error != 0) {
2454 device_printf(sc->sc_dev,
2455 "fw2x> download statistics data FAILED, error %d", error);
2456 goto failure;
2457 }
2458 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2459 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2460
2461 failure:
2462 AQ_MPI_UNLOCK(sc);
2463 return error;
2464 }
2465
2466 #if NSYSMON_ENVSYS > 0
2467 static int
2468 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2469 {
2470 int error;
2471 uint32_t value, celsius;
2472
2473 AQ_MPI_LOCK(sc);
2474
2475 /* Say to F/W to update the temperature */
2476 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2477 if (error != 0)
2478 goto failure;
2479
2480 error = aq_fw_downld_dwords(sc,
2481 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2482 &value, sizeof(value) / sizeof(uint32_t));
2483 if (error != 0)
2484 goto failure;
2485
2486 /* 1/256 decrees C to microkelvin */
2487 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2488 if (celsius == 0) {
2489 error = EIO;
2490 goto failure;
2491 }
2492 *temp = celsius * (1000000 / 256) + 273150000;
2493
2494 failure:
2495 AQ_MPI_UNLOCK(sc);
2496 return 0;
2497 }
2498 #endif
2499
2500 static int
2501 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2502 uint32_t cnt)
2503 {
2504 uint32_t v;
2505 int error = 0;
2506
2507 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2508 if (error != 0) {
2509 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2510 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2511 if (v == 0) {
2512 device_printf(sc->sc_dev,
2513 "%s:%d: timeout\n", __func__, __LINE__);
2514 return ETIMEDOUT;
2515 }
2516 }
2517
2518 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2519
2520 error = 0;
2521 for (; cnt > 0 && error == 0; cnt--) {
2522 /* execute mailbox interface */
2523 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2524 AQ_FW_MBOX_CMD_EXECUTE, 1);
2525 if (sc->sc_features & FEATURES_REV_B1) {
2526 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2527 1, 1000, &error);
2528 } else {
2529 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2530 AQ_FW_MBOX_CMD_BUSY) == 0,
2531 1, 1000, &error);
2532 }
2533 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2534 addr += sizeof(uint32_t);
2535 }
2536 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2537
2538 if (error != 0)
2539 device_printf(sc->sc_dev,
2540 "%s:%d: timeout\n", __func__, __LINE__);
2541
2542 return error;
2543 }
2544
2545 /* read my mac address */
2546 static int
2547 aq_get_mac_addr(struct aq_softc *sc)
2548 {
2549 uint32_t mac_addr[2];
2550 uint32_t efuse_shadow_addr;
2551 int err;
2552
2553 efuse_shadow_addr = 0;
2554 if (FW_VERSION_MAJOR(sc) >= 2)
2555 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2556 else
2557 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2558
2559 if (efuse_shadow_addr == 0) {
2560 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2561 return ENXIO;
2562 }
2563
2564 memset(mac_addr, 0, sizeof(mac_addr));
2565 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2566 mac_addr, __arraycount(mac_addr));
2567 if (err < 0)
2568 return err;
2569
2570 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2571 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2572 return ENXIO;
2573 }
2574
2575 mac_addr[0] = htobe32(mac_addr[0]);
2576 mac_addr[1] = htobe32(mac_addr[1]);
2577
2578 memcpy(sc->sc_enaddr.ether_addr_octet,
2579 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2580 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2581 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2582
2583 return 0;
2584 }
2585
2586 /* set multicast filter. index 0 for own address */
2587 static int
2588 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2589 {
2590 uint32_t h, l;
2591
2592 if (index >= AQ_HW_MAC_NUM)
2593 return EINVAL;
2594
2595 if (enaddr == NULL) {
2596 /* disable */
2597 AQ_WRITE_REG_BIT(sc,
2598 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2599 return 0;
2600 }
2601
2602 h = (enaddr[0] << 8) | (enaddr[1]);
2603 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2604 (enaddr[4] << 8) | (enaddr[5]);
2605
2606 /* disable, set, and enable */
2607 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2608 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2609 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2610 RPF_L2UC_MSW_MACADDR_HI, h);
2611 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2612 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2613
2614 return 0;
2615 }
2616
2617 static int
2618 aq_set_capability(struct aq_softc *sc)
2619 {
2620 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2621 int ip4csum_tx =
2622 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2623 int ip4csum_rx =
2624 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2625 int l4csum_tx = ((ifp->if_capenable &
2626 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2627 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2628 int l4csum_rx =
2629 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2630 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2631 uint32_t lso =
2632 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2633 0 : 0xffffffff;
2634 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2635 0 : 0xffffffff;
2636 uint32_t i, v;
2637
2638 /* TX checksums offloads*/
2639 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2640 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2641
2642 /* RX checksums offloads*/
2643 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2644 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2645
2646 /* LSO offloads*/
2647 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2648
2649 #define AQ_B0_LRO_RXD_MAX 16
2650 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2651 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2652 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2653 for (i = 0; i < AQ_RINGS_NUM; i++) {
2654 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2655 RPO_LRO_LDES_MAX_MASK(i), v);
2656 }
2657
2658 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2660 RPO_LRO_INACTIVE_IVAL, 0);
2661 /*
2662 * the LRO timebase divider is 5 uS (0x61a),
2663 * to get a maximum coalescing interval of 250 uS,
2664 * we need to multiply by 50(0x32) to get
2665 * the default value 250 uS
2666 */
2667 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2668 RPO_LRO_MAX_COALESCING_IVAL, 50);
2669 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2670 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2671 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2672 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2673 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2674 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2675 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2676 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2677 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2678 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2679
2680 return 0;
2681 }
2682
2683 static int
2684 aq_set_filter(struct aq_softc *sc)
2685 {
2686 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2687 struct ethercom *ec = &sc->sc_ethercom;
2688 struct ether_multi *enm;
2689 struct ether_multistep step;
2690 int idx, error = 0;
2691
2692 if (ifp->if_flags & IFF_PROMISC) {
2693 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2694 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2695 ec->ec_flags |= ETHER_F_ALLMULTI;
2696 goto done;
2697 }
2698
2699 /* clear all table */
2700 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2701 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2702 continue;
2703 aq_set_mac_addr(sc, idx, NULL);
2704 }
2705
2706 /* don't accept all multicast */
2707 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2708 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2709 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2710 RPF_MCAST_FILTER_EN, 0);
2711
2712 idx = 0;
2713 ETHER_LOCK(ec);
2714 ETHER_FIRST_MULTI(step, ec, enm);
2715 while (enm != NULL) {
2716 if (idx == AQ_HW_MAC_OWN)
2717 idx++;
2718
2719 if ((idx >= AQ_HW_MAC_NUM) ||
2720 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2721 /*
2722 * too many filters.
2723 * fallback to accept all multicast addresses.
2724 */
2725 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2726 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2727 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2728 RPF_MCAST_FILTER_EN, 1);
2729 ec->ec_flags |= ETHER_F_ALLMULTI;
2730 ETHER_UNLOCK(ec);
2731 goto done;
2732 }
2733
2734 /* add a filter */
2735 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2736
2737 ETHER_NEXT_MULTI(step, enm);
2738 }
2739 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2740 ETHER_UNLOCK(ec);
2741
2742 done:
2743 return error;
2744 }
2745
2746 static int
2747 aq_ifmedia_change(struct ifnet * const ifp)
2748 {
2749 struct aq_softc *sc = ifp->if_softc;
2750 aq_link_speed_t rate = AQ_LINK_NONE;
2751 aq_link_fc_t fc = AQ_FC_NONE;
2752 aq_link_eee_t eee = AQ_EEE_DISABLE;
2753
2754 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2755 return EINVAL;
2756
2757 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2758 case IFM_AUTO:
2759 rate = AQ_LINK_AUTO;
2760 break;
2761 case IFM_NONE:
2762 rate = AQ_LINK_NONE;
2763 break;
2764 case IFM_100_TX:
2765 rate = AQ_LINK_100M;
2766 break;
2767 case IFM_1000_T:
2768 rate = AQ_LINK_1G;
2769 break;
2770 case IFM_2500_T:
2771 rate = AQ_LINK_2G5;
2772 break;
2773 case IFM_5000_T:
2774 rate = AQ_LINK_5G;
2775 break;
2776 case IFM_10G_T:
2777 rate = AQ_LINK_10G;
2778 break;
2779 default:
2780 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2781 IFM_SUBTYPE(sc->sc_media.ifm_media));
2782 return ENODEV;
2783 }
2784
2785 if (sc->sc_media.ifm_media & IFM_FLOW)
2786 fc = AQ_FC_ALL;
2787
2788 /* XXX: todo EEE */
2789
2790 /* re-initialize hardware with new parameters */
2791 aq_set_linkmode(sc, rate, fc, eee);
2792
2793 return 0;
2794 }
2795
2796 static void
2797 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2798 {
2799 struct aq_softc *sc = ifp->if_softc;
2800
2801 /* update ifm_active */
2802 ifmr->ifm_active = IFM_ETHER;
2803 if (sc->sc_link_fc & AQ_FC_RX)
2804 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2805 if (sc->sc_link_fc & AQ_FC_TX)
2806 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2807
2808 switch (sc->sc_link_rate) {
2809 case AQ_LINK_100M:
2810 /* XXX: need to detect fulldup or halfdup */
2811 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2812 break;
2813 case AQ_LINK_1G:
2814 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2815 break;
2816 case AQ_LINK_2G5:
2817 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2818 break;
2819 case AQ_LINK_5G:
2820 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2821 break;
2822 case AQ_LINK_10G:
2823 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2824 break;
2825 default:
2826 ifmr->ifm_active |= IFM_NONE;
2827 break;
2828 }
2829
2830 /* update ifm_status */
2831 ifmr->ifm_status = IFM_AVALID;
2832 if (sc->sc_link_rate != AQ_LINK_NONE)
2833 ifmr->ifm_status |= IFM_ACTIVE;
2834 }
2835
2836 static void
2837 aq_initmedia(struct aq_softc *sc)
2838 {
2839 #define IFMEDIA_ETHER_ADD(sc, media) \
2840 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2841
2842 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2843 if (sc->sc_available_rates & AQ_LINK_100M) {
2844 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2845 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2846 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2847 }
2848 if (sc->sc_available_rates & AQ_LINK_1G) {
2849 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2850 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2851 }
2852 if (sc->sc_available_rates & AQ_LINK_2G5) {
2853 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2854 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2855 }
2856 if (sc->sc_available_rates & AQ_LINK_5G) {
2857 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2858 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2859 }
2860 if (sc->sc_available_rates & AQ_LINK_10G) {
2861 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2862 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2863 }
2864 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2865 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2866
2867 /* default: auto without flowcontrol */
2868 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2869 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2870 }
2871
2872 static int
2873 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2874 aq_link_eee_t eee)
2875 {
2876 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2877 }
2878
2879 static int
2880 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2881 aq_link_eee_t *eee)
2882 {
2883 aq_hw_fw_mpi_state_t mode;
2884 int error;
2885
2886 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2887 if (error != 0)
2888 return error;
2889 if (mode != MPI_INIT)
2890 return ENXIO;
2891
2892 return 0;
2893 }
2894
2895 static void
2896 aq_hw_init_tx_path(struct aq_softc *sc)
2897 {
2898 /* Tx TC/RSS number config */
2899 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2900
2901 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2902 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2903 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2904 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2905 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2906 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2907
2908 /* misc */
2909 AQ_WRITE_REG(sc, TX_TPO2_REG,
2910 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2911 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2912 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2913
2914 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2915 }
2916
2917 static void
2918 aq_hw_init_rx_path(struct aq_softc *sc)
2919 {
2920 int i;
2921
2922 /* clear setting */
2923 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2924 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2925 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2926 for (i = 0; i < 32; i++) {
2927 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2928 RPF_ETHERTYPE_FILTER_EN, 0);
2929 }
2930
2931 if (sc->sc_rss_enable) {
2932 /* Rx TC/RSS number config */
2933 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2934
2935 /* Rx flow control */
2936 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2937
2938 /* RSS Ring selection */
2939 switch (sc->sc_nqueues) {
2940 case 2:
2941 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2942 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2943 break;
2944 case 4:
2945 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2946 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2947 break;
2948 case 8:
2949 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2950 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2951 break;
2952 }
2953 }
2954
2955 /* L2 and Multicast filters */
2956 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2957 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2958 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2959 RPF_ACTION_HOST);
2960 }
2961 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2962 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2963
2964 /* Vlan filters */
2965 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2966 ETHERTYPE_QINQ);
2967 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2968 ETHERTYPE_VLAN);
2969 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2970
2971 if (sc->sc_features & FEATURES_REV_B) {
2972 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2973 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2974 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2975 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2976 }
2977
2978 /* misc */
2979 if (sc->sc_features & FEATURES_RPF2)
2980 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2981 else
2982 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2983
2984 /*
2985 * XXX: RX_TCP_RSS_HASH_REG:
2986 * linux set 0x000f0000
2987 * freebsd set 0x000f001e
2988 */
2989 /* RSS hash type set for IP/TCP */
2990 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2991 RX_TCP_RSS_HASH_TYPE, 0x001e);
2992
2993 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2994 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2995 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2996
2997 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2998 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2999 }
3000
3001 static void
3002 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3003 {
3004 int i;
3005
3006 if (sc->sc_intr_moderation_enable) {
3007 unsigned int tx_min, rx_min; /* 0-255 */
3008 unsigned int tx_max, rx_max; /* 0-511? */
3009
3010 switch (sc->sc_link_rate) {
3011 case AQ_LINK_100M:
3012 tx_min = 0x4f;
3013 tx_max = 0xff;
3014 rx_min = 0x04;
3015 rx_max = 0x50;
3016 break;
3017 case AQ_LINK_1G:
3018 default:
3019 tx_min = 0x4f;
3020 tx_max = 0xff;
3021 rx_min = 0x30;
3022 rx_max = 0x80;
3023 break;
3024 case AQ_LINK_2G5:
3025 tx_min = 0x4f;
3026 tx_max = 0xff;
3027 rx_min = 0x18;
3028 rx_max = 0xe0;
3029 break;
3030 case AQ_LINK_5G:
3031 tx_min = 0x4f;
3032 tx_max = 0xff;
3033 rx_min = 0x0c;
3034 rx_max = 0x70;
3035 break;
3036 case AQ_LINK_10G:
3037 tx_min = 0x4f;
3038 tx_max = 0x1ff;
3039 rx_min = 0x06; /* freebsd use 80 */
3040 rx_max = 0x38; /* freebsd use 120 */
3041 break;
3042 }
3043
3044 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3045 TX_DMA_INT_DESC_WRWB_EN, 0);
3046 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3047 TX_DMA_INT_DESC_MODERATE_EN, 1);
3048 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3049 RX_DMA_INT_DESC_WRWB_EN, 0);
3050 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3051 RX_DMA_INT_DESC_MODERATE_EN, 1);
3052
3053 for (i = 0; i < AQ_RINGS_NUM; i++) {
3054 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3055 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3056 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3057 TX_INTR_MODERATION_CTL_EN);
3058 }
3059 for (i = 0; i < AQ_RINGS_NUM; i++) {
3060 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3061 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3062 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3063 RX_INTR_MODERATION_CTL_EN);
3064 }
3065
3066 } else {
3067 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3068 TX_DMA_INT_DESC_WRWB_EN, 1);
3069 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3070 TX_DMA_INT_DESC_MODERATE_EN, 0);
3071 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3072 RX_DMA_INT_DESC_WRWB_EN, 1);
3073 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3074 RX_DMA_INT_DESC_MODERATE_EN, 0);
3075
3076 for (i = 0; i < AQ_RINGS_NUM; i++) {
3077 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3078 }
3079 for (i = 0; i < AQ_RINGS_NUM; i++) {
3080 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3081 }
3082 }
3083 }
3084
3085 static void
3086 aq_hw_qos_set(struct aq_softc *sc)
3087 {
3088 uint32_t tc = 0;
3089 uint32_t buff_size;
3090
3091 /* TPS Descriptor rate init */
3092 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3093 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3094
3095 /* TPS VM init */
3096 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3097
3098 /* TPS TC credits init */
3099 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3100 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3101
3102 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3103 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3104 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3105 TPS_DATA_TCT_WEIGHT, 0x64);
3106 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3107 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3108 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3109 TPS_DESC_TCT_WEIGHT, 0x1e);
3110
3111 /* Tx buf size */
3112 tc = 0;
3113 buff_size = AQ_HW_TXBUF_MAX;
3114 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3115 buff_size);
3116 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3117 (buff_size * (1024 / 32) * 66) / 100);
3118 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3119 (buff_size * (1024 / 32) * 50) / 100);
3120
3121 /* QoS Rx buf size per TC */
3122 tc = 0;
3123 buff_size = AQ_HW_RXBUF_MAX;
3124 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3125 buff_size);
3126 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3127 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3128 (buff_size * (1024 / 32) * 66) / 100);
3129 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3130 (buff_size * (1024 / 32) * 50) / 100);
3131
3132 /* QoS 802.1p priority -> TC mapping */
3133 int i_priority;
3134 for (i_priority = 0; i_priority < 8; i_priority++) {
3135 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3136 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3137 }
3138 }
3139
3140 /* called once from aq_attach */
3141 static int
3142 aq_init_rss(struct aq_softc *sc)
3143 {
3144 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3145 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3146 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3147 unsigned int i;
3148 int error;
3149
3150 /* initialize rss key */
3151 rss_getkey((uint8_t *)rss_key);
3152
3153 /* hash to ring table */
3154 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3155 rss_table[i] = i % sc->sc_nqueues;
3156 }
3157
3158 /*
3159 * set rss key
3160 */
3161 for (i = 0; i < __arraycount(rss_key); i++) {
3162 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3163 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3164 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3165 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3166 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3167 RPF_RSS_KEY_WR_EN, 1);
3168 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3169 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3170 if (error != 0) {
3171 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3172 __func__);
3173 goto rss_set_timeout;
3174 }
3175 }
3176
3177 /*
3178 * set rss indirection table
3179 *
3180 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3181 * we'll make it by __BITMAP(3) macros.
3182 */
3183 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3184 __BITMAP_ZERO(&bit3x64);
3185
3186 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3187 do { \
3188 if (val & 1) { \
3189 __BITMAP_SET((idx) * 3, (bitmap)); \
3190 } else { \
3191 __BITMAP_CLR((idx) * 3, (bitmap)); \
3192 } \
3193 if (val & 2) { \
3194 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3195 } else { \
3196 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3197 } \
3198 if (val & 4) { \
3199 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3200 } else { \
3201 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3202 } \
3203 } while (0 /* CONSTCOND */)
3204
3205 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3206 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3207 }
3208
3209 /* write 192bit data in steps of 16bit */
3210 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3211 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3212 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3213 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3214 RPF_RSS_REDIR_ADDR, i);
3215 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3216 RPF_RSS_REDIR_WR_EN, 1);
3217
3218 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3219 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3220 if (error != 0)
3221 break;
3222 }
3223
3224 rss_set_timeout:
3225 return error;
3226 }
3227
3228 static void
3229 aq_hw_l3_filter_set(struct aq_softc *sc)
3230 {
3231 int i;
3232
3233 /* clear all filter */
3234 for (i = 0; i < 8; i++) {
3235 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3236 RPF_L3_FILTER_L4_EN, 0);
3237 }
3238 }
3239
3240 static void
3241 aq_set_vlan_filters(struct aq_softc *sc)
3242 {
3243 struct ethercom *ec = &sc->sc_ethercom;
3244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3245 struct vlanid_list *vlanidp;
3246 int i;
3247
3248 ETHER_LOCK(ec);
3249
3250 /* disable all vlan filters */
3251 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3252 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3253
3254 /* count VID */
3255 i = 0;
3256 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3257 i++;
3258
3259 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3260 (ifp->if_flags & IFF_PROMISC) ||
3261 (i > RPF_VLAN_MAX_FILTERS)) {
3262 /*
3263 * no vlan hwfilter, in promiscuous mode, or too many VID?
3264 * must receive all VID
3265 */
3266 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3267 RPF_VLAN_MODE_PROMISC, 1);
3268 goto done;
3269 }
3270
3271 /* receive only selected VID */
3272 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3273 i = 0;
3274 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3275 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3276 RPF_VLAN_FILTER_EN, 1);
3277 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3278 RPF_VLAN_FILTER_RXQ_EN, 0);
3279 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3280 RPF_VLAN_FILTER_RXQ, 0);
3281 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3282 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3283 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3284 RPF_VLAN_FILTER_ID, vlanidp->vid);
3285 i++;
3286 }
3287
3288 done:
3289 ETHER_UNLOCK(ec);
3290 }
3291
3292 static int
3293 aq_hw_init(struct aq_softc *sc)
3294 {
3295 uint32_t v;
3296
3297 /* Force limit MRRS on RDM/TDM to 2K */
3298 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3299 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3300
3301 /*
3302 * TX DMA total request limit. B0 hardware is not capable to
3303 * handle more than (8K-MRRS) incoming DMA data.
3304 * Value 24 in 256byte units
3305 */
3306 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3307
3308 aq_hw_init_tx_path(sc);
3309 aq_hw_init_rx_path(sc);
3310
3311 aq_hw_interrupt_moderation_set(sc);
3312
3313 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3314 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3315
3316 aq_hw_qos_set(sc);
3317
3318 /* Enable interrupt */
3319 int irqmode;
3320 if (sc->sc_msix)
3321 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3322 else
3323 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3324
3325 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3326 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3327 sc->sc_msix ? 1 : 0);
3328 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3329
3330 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3331
3332 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3333 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3334 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3335 );
3336
3337 /* link interrupt */
3338 if (!sc->sc_msix)
3339 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3340 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3341 __BIT(7) | sc->sc_linkstat_irq);
3342
3343 return 0;
3344 }
3345
3346 static int
3347 aq_update_link_status(struct aq_softc *sc)
3348 {
3349 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3350 aq_link_speed_t rate = AQ_LINK_NONE;
3351 aq_link_fc_t fc = AQ_FC_NONE;
3352 aq_link_eee_t eee = AQ_EEE_DISABLE;
3353 unsigned int speed;
3354 int changed = 0;
3355
3356 aq_get_linkmode(sc, &rate, &fc, &eee);
3357
3358 if (sc->sc_link_rate != rate)
3359 changed = 1;
3360 if (sc->sc_link_fc != fc)
3361 changed = 1;
3362 if (sc->sc_link_eee != eee)
3363 changed = 1;
3364
3365 if (changed) {
3366 switch (rate) {
3367 case AQ_LINK_100M:
3368 speed = 100;
3369 break;
3370 case AQ_LINK_1G:
3371 speed = 1000;
3372 break;
3373 case AQ_LINK_2G5:
3374 speed = 2500;
3375 break;
3376 case AQ_LINK_5G:
3377 speed = 5000;
3378 break;
3379 case AQ_LINK_10G:
3380 speed = 10000;
3381 break;
3382 case AQ_LINK_NONE:
3383 default:
3384 speed = 0;
3385 break;
3386 }
3387
3388 if (sc->sc_link_rate == AQ_LINK_NONE) {
3389 /* link DOWN -> UP */
3390 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3391 speed);
3392 if_link_state_change(ifp, LINK_STATE_UP);
3393 } else if (rate == AQ_LINK_NONE) {
3394 /* link UP -> DOWN */
3395 device_printf(sc->sc_dev, "link is DOWN\n");
3396 if_link_state_change(ifp, LINK_STATE_DOWN);
3397 } else {
3398 device_printf(sc->sc_dev,
3399 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3400 speed, fc, eee);
3401 }
3402
3403 sc->sc_link_rate = rate;
3404 sc->sc_link_fc = fc;
3405 sc->sc_link_eee = eee;
3406
3407 /* update interrupt timing according to new link speed */
3408 aq_hw_interrupt_moderation_set(sc);
3409 }
3410
3411 return changed;
3412 }
3413
3414 #ifdef AQ_EVENT_COUNTERS
3415 static void
3416 aq_update_statistics(struct aq_softc *sc)
3417 {
3418 int prev = sc->sc_statistics_idx;
3419 int cur = prev ^ 1;
3420
3421 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3422
3423 /*
3424 * aq's internal statistics counter is 32bit.
3425 * cauculate delta, and add to evcount
3426 */
3427 #define ADD_DELTA(cur, prev, name) \
3428 do { \
3429 uint32_t n; \
3430 n = (uint32_t)(sc->sc_statistics[cur].name - \
3431 sc->sc_statistics[prev].name); \
3432 if (n != 0) { \
3433 AQ_EVCNT_ADD(sc, name, n); \
3434 } \
3435 } while (/*CONSTCOND*/0);
3436
3437 ADD_DELTA(cur, prev, uprc);
3438 ADD_DELTA(cur, prev, mprc);
3439 ADD_DELTA(cur, prev, bprc);
3440 ADD_DELTA(cur, prev, prc);
3441 ADD_DELTA(cur, prev, erpr);
3442 ADD_DELTA(cur, prev, uptc);
3443 ADD_DELTA(cur, prev, mptc);
3444 ADD_DELTA(cur, prev, bptc);
3445 ADD_DELTA(cur, prev, ptc);
3446 ADD_DELTA(cur, prev, erpt);
3447 ADD_DELTA(cur, prev, mbtc);
3448 ADD_DELTA(cur, prev, bbtc);
3449 ADD_DELTA(cur, prev, mbrc);
3450 ADD_DELTA(cur, prev, bbrc);
3451 ADD_DELTA(cur, prev, ubrc);
3452 ADD_DELTA(cur, prev, ubtc);
3453 ADD_DELTA(cur, prev, dpc);
3454 ADD_DELTA(cur, prev, cprc);
3455
3456 sc->sc_statistics_idx = cur;
3457 }
3458 #endif /* AQ_EVENT_COUNTERS */
3459
3460 /* allocate and map one DMA block */
3461 static int
3462 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3463 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3464 {
3465 int nsegs, error;
3466
3467 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3468 1, &nsegs, 0)) != 0) {
3469 aprint_error_dev(sc->sc_dev,
3470 "unable to allocate DMA buffer, error=%d\n", error);
3471 goto fail_alloc;
3472 }
3473
3474 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3475 BUS_DMA_COHERENT)) != 0) {
3476 aprint_error_dev(sc->sc_dev,
3477 "unable to map DMA buffer, error=%d\n", error);
3478 goto fail_map;
3479 }
3480
3481 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3482 0, mapp)) != 0) {
3483 aprint_error_dev(sc->sc_dev,
3484 "unable to create DMA map, error=%d\n", error);
3485 goto fail_create;
3486 }
3487
3488 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3489 0)) != 0) {
3490 aprint_error_dev(sc->sc_dev,
3491 "unable to load DMA map, error=%d\n", error);
3492 goto fail_load;
3493 }
3494
3495 *sizep = size;
3496 return 0;
3497
3498 fail_load:
3499 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3500 *mapp = NULL;
3501 fail_create:
3502 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3503 *addrp = NULL;
3504 fail_map:
3505 bus_dmamem_free(sc->sc_dmat, seg, 1);
3506 memset(seg, 0, sizeof(*seg));
3507 fail_alloc:
3508 *sizep = 0;
3509 return error;
3510 }
3511
3512 static void
3513 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3514 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3515 {
3516 if (*mapp != NULL) {
3517 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3518 *mapp = NULL;
3519 }
3520 if (*addrp != NULL) {
3521 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3522 *addrp = NULL;
3523 }
3524 if (*sizep != 0) {
3525 bus_dmamem_free(sc->sc_dmat, seg, 1);
3526 memset(seg, 0, sizeof(*seg));
3527 *sizep = 0;
3528 }
3529 }
3530
3531 static int
3532 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3533 {
3534 int i, error;
3535
3536 /* allocate tx descriptors */
3537 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3538 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3539 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3540 if (error != 0)
3541 return error;
3542
3543 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3544
3545 /* fill tx ring with dmamap */
3546 for (i = 0; i < AQ_TXD_NUM; i++) {
3547 #define AQ_MAXDMASIZE (16 * 1024)
3548 #define AQ_NTXSEGS 32
3549 /* XXX: TODO: error check */
3550 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3551 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3552 }
3553 return 0;
3554 }
3555
3556 static void
3557 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3558 {
3559 int i;
3560
3561 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3562 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3563
3564 for (i = 0; i < AQ_TXD_NUM; i++) {
3565 if (txring->txr_mbufs[i].dmamap != NULL) {
3566 if (txring->txr_mbufs[i].m != NULL) {
3567 bus_dmamap_unload(sc->sc_dmat,
3568 txring->txr_mbufs[i].dmamap);
3569 m_freem(txring->txr_mbufs[i].m);
3570 txring->txr_mbufs[i].m = NULL;
3571 }
3572 bus_dmamap_destroy(sc->sc_dmat,
3573 txring->txr_mbufs[i].dmamap);
3574 txring->txr_mbufs[i].dmamap = NULL;
3575 }
3576 }
3577 }
3578
3579 static int
3580 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3581 {
3582 int i, error;
3583
3584 /* allocate rx descriptors */
3585 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3586 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3587 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3588 if (error != 0)
3589 return error;
3590
3591 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3592
3593 /* fill rxring with dmamaps */
3594 for (i = 0; i < AQ_RXD_NUM; i++) {
3595 rxring->rxr_mbufs[i].m = NULL;
3596 /* XXX: TODO: error check */
3597 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3598 &rxring->rxr_mbufs[i].dmamap);
3599 }
3600 return 0;
3601 }
3602
3603 static void
3604 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3605 {
3606 int i;
3607
3608 /* free all mbufs allocated for RX */
3609 for (i = 0; i < AQ_RXD_NUM; i++) {
3610 if (rxring->rxr_mbufs[i].m != NULL) {
3611 bus_dmamap_unload(sc->sc_dmat,
3612 rxring->rxr_mbufs[i].dmamap);
3613 m_freem(rxring->rxr_mbufs[i].m);
3614 rxring->rxr_mbufs[i].m = NULL;
3615 }
3616 }
3617 }
3618
3619 static void
3620 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3621 {
3622 int i;
3623
3624 /* free all mbufs and dmamaps */
3625 aq_rxdrain(sc, rxring);
3626 for (i = 0; i < AQ_RXD_NUM; i++) {
3627 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3628 bus_dmamap_destroy(sc->sc_dmat,
3629 rxring->rxr_mbufs[i].dmamap);
3630 rxring->rxr_mbufs[i].dmamap = NULL;
3631 }
3632 }
3633
3634 /* free RX descriptor */
3635 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3636 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3637 }
3638
3639 static void
3640 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3641 struct mbuf *m)
3642 {
3643 int error;
3644
3645 /* if mbuf already exists, unload and free */
3646 if (rxring->rxr_mbufs[idx].m != NULL) {
3647 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3648 m_freem(rxring->rxr_mbufs[idx].m);
3649 rxring->rxr_mbufs[idx].m = NULL;
3650 }
3651
3652 rxring->rxr_mbufs[idx].m = m;
3653
3654 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3655 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3656 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3657 if (error) {
3658 device_printf(sc->sc_dev,
3659 "unable to load rx DMA map %d, error = %d\n", idx, error);
3660 panic("%s: unable to load rx DMA map. error=%d",
3661 __func__, error);
3662 }
3663 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3664 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3665 }
3666
3667 static inline void
3668 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3669 {
3670 /* refill rxdesc, and sync */
3671 rxring->rxr_rxdesc[idx].read.buf_addr =
3672 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3673 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3674 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3675 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3676 BUS_DMASYNC_PREWRITE);
3677 }
3678
3679 static struct mbuf *
3680 aq_alloc_mbuf(void)
3681 {
3682 struct mbuf *m;
3683
3684 MGETHDR(m, M_DONTWAIT, MT_DATA);
3685 if (m == NULL)
3686 return NULL;
3687
3688 MCLGET(m, M_DONTWAIT);
3689 if ((m->m_flags & M_EXT) == 0) {
3690 m_freem(m);
3691 return NULL;
3692 }
3693
3694 return m;
3695 }
3696
3697 /* allocate mbuf and unload dmamap */
3698 static int
3699 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3700 {
3701 struct mbuf *m;
3702
3703 m = aq_alloc_mbuf();
3704 if (m == NULL)
3705 return ENOBUFS;
3706
3707 aq_rxring_setmbuf(sc, rxring, idx, m);
3708 return 0;
3709 }
3710
3711 static int
3712 aq_txrx_rings_alloc(struct aq_softc *sc)
3713 {
3714 int n, error;
3715
3716 for (n = 0; n < sc->sc_nqueues; n++) {
3717 sc->sc_queue[n].sc = sc;
3718 sc->sc_queue[n].txring.txr_sc = sc;
3719 sc->sc_queue[n].txring.txr_index = n;
3720 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3721 IPL_NET);
3722 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3723 if (error != 0)
3724 goto failure;
3725
3726 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3727 if (error != 0)
3728 goto failure;
3729
3730 sc->sc_queue[n].rxring.rxr_sc = sc;
3731 sc->sc_queue[n].rxring.rxr_index = n;
3732 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3733 IPL_NET);
3734 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3735 if (error != 0)
3736 break;
3737 }
3738
3739 failure:
3740 return error;
3741 }
3742
3743 static void
3744 aq_txrx_rings_free(struct aq_softc *sc)
3745 {
3746 int n;
3747
3748 for (n = 0; n < sc->sc_nqueues; n++) {
3749 aq_txring_free(sc, &sc->sc_queue[n].txring);
3750 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3751
3752 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3753
3754 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3755 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3756 }
3757 }
3758
3759 static int
3760 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3761 {
3762 int error = 0;
3763 txring->txr_softint = NULL;
3764
3765 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3766 if (txring->txr_pcq == NULL) {
3767 aprint_error_dev(sc->sc_dev,
3768 "unable to allocate pcq for TXring[%d]\n",
3769 txring->txr_index);
3770 error = ENOMEM;
3771 goto done;
3772 }
3773
3774 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3775 aq_deferred_transmit, txring);
3776 if (txring->txr_softint == NULL) {
3777 aprint_error_dev(sc->sc_dev,
3778 "unable to establish softint for TXring[%d]\n",
3779 txring->txr_index);
3780 error = ENOENT;
3781 }
3782
3783 done:
3784 return error;
3785 }
3786
3787 static void
3788 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3789 {
3790 struct mbuf *m;
3791
3792 if (txring->txr_softint != NULL) {
3793 softint_disestablish(txring->txr_softint);
3794 txring->txr_softint = NULL;
3795 }
3796
3797 if (txring->txr_pcq != NULL) {
3798 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3799 m_freem(m);
3800 pcq_destroy(txring->txr_pcq);
3801 txring->txr_pcq = NULL;
3802 }
3803 }
3804
3805 #if NSYSMON_ENVSYS > 0
3806 static void
3807 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3808 {
3809 struct aq_softc *sc;
3810 uint32_t temp;
3811 int error;
3812
3813 sc = sme->sme_cookie;
3814
3815 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3816 if (error == 0) {
3817 edata->value_cur = temp;
3818 edata->state = ENVSYS_SVALID;
3819 } else {
3820 edata->state = ENVSYS_SINVALID;
3821 }
3822 }
3823 #endif
3824
3825 static void
3826 aq_tick(void *arg)
3827 {
3828 struct aq_softc *sc = arg;
3829
3830 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3831 sc->sc_detect_linkstat = false;
3832 aq_update_link_status(sc);
3833 }
3834
3835 #ifdef AQ_EVENT_COUNTERS
3836 if (sc->sc_poll_statistics)
3837 aq_update_statistics(sc);
3838 #endif
3839
3840 if (sc->sc_poll_linkstat
3841 #ifdef AQ_EVENT_COUNTERS
3842 || sc->sc_poll_statistics
3843 #endif
3844 ) {
3845 callout_schedule(&sc->sc_tick_ch, hz);
3846 }
3847 }
3848
3849 /* interrupt enable/disable */
3850 static void
3851 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3852 {
3853 uint32_t imask = 0;
3854 int i;
3855
3856 if (txrx) {
3857 for (i = 0; i < sc->sc_nqueues; i++) {
3858 imask |= __BIT(sc->sc_tx_irq[i]);
3859 imask |= __BIT(sc->sc_rx_irq[i]);
3860 }
3861 }
3862
3863 if (link)
3864 imask |= __BIT(sc->sc_linkstat_irq);
3865
3866 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3867 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3868 }
3869
3870 static int
3871 aq_legacy_intr(void *arg)
3872 {
3873 struct aq_softc *sc = arg;
3874 uint32_t status;
3875 int nintr = 0;
3876
3877 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3878 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3879
3880 if (status & __BIT(sc->sc_linkstat_irq)) {
3881 sc->sc_detect_linkstat = true;
3882 callout_schedule(&sc->sc_tick_ch, 0);
3883 nintr++;
3884 }
3885
3886 if (status & __BIT(sc->sc_rx_irq[0])) {
3887 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3888 }
3889
3890 if (status & __BIT(sc->sc_tx_irq[0])) {
3891 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3892 }
3893
3894 return nintr;
3895 }
3896
3897 static int
3898 aq_txrx_intr(void *arg)
3899 {
3900 struct aq_queue *queue = arg;
3901 struct aq_softc *sc = queue->sc;
3902 struct aq_txring *txring = &queue->txring;
3903 struct aq_rxring *rxring = &queue->rxring;
3904 uint32_t status;
3905 int nintr = 0;
3906 int txringidx, rxringidx, txirq, rxirq;
3907
3908 txringidx = txring->txr_index;
3909 rxringidx = rxring->rxr_index;
3910 txirq = sc->sc_tx_irq[txringidx];
3911 rxirq = sc->sc_rx_irq[rxringidx];
3912
3913 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3914 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3915 /* stray interrupt? */
3916 return 0;
3917 }
3918
3919 nintr += aq_rx_intr(rxring);
3920 nintr += aq_tx_intr(txring);
3921
3922 return nintr;
3923 }
3924
3925 static int
3926 aq_link_intr(void *arg)
3927 {
3928 struct aq_softc *sc = arg;
3929 uint32_t status;
3930 int nintr = 0;
3931
3932 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3933 if (status & __BIT(sc->sc_linkstat_irq)) {
3934 sc->sc_detect_linkstat = true;
3935 callout_schedule(&sc->sc_tick_ch, 0);
3936 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3937 __BIT(sc->sc_linkstat_irq));
3938 nintr++;
3939 }
3940
3941 return nintr;
3942 }
3943
3944 static void
3945 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3946 {
3947 const int ringidx = txring->txr_index;
3948 int i;
3949
3950 mutex_enter(&txring->txr_mutex);
3951
3952 txring->txr_prodidx = 0;
3953 txring->txr_considx = 0;
3954 txring->txr_nfree = AQ_TXD_NUM;
3955 txring->txr_active = false;
3956
3957 /* free mbufs untransmitted */
3958 for (i = 0; i < AQ_TXD_NUM; i++) {
3959 if (txring->txr_mbufs[i].m != NULL) {
3960 m_freem(txring->txr_mbufs[i].m);
3961 txring->txr_mbufs[i].m = NULL;
3962 }
3963 }
3964
3965 /* disable DMA */
3966 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3967
3968 if (start) {
3969 /* TX descriptor physical address */
3970 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3971 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3972 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3973 (uint32_t)((uint64_t)paddr >> 32));
3974
3975 /* TX descriptor size */
3976 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3977 AQ_TXD_NUM / 8);
3978
3979 /* reload TAIL pointer */
3980 txring->txr_prodidx = txring->txr_considx =
3981 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3982 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3983
3984 /* Mapping interrupt vector */
3985 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3986 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3987 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3988 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3989
3990 /* enable DMA */
3991 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3992 TX_DMA_DESC_EN, 1);
3993
3994 const int cpuid = 0; /* XXX? */
3995 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3996 TDM_DCAD_CPUID, cpuid);
3997 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3998 TDM_DCAD_CPUID_EN, 0);
3999
4000 txring->txr_active = true;
4001 }
4002
4003 mutex_exit(&txring->txr_mutex);
4004 }
4005
4006 static int
4007 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4008 {
4009 const int ringidx = rxring->rxr_index;
4010 int i;
4011 int error = 0;
4012
4013 mutex_enter(&rxring->rxr_mutex);
4014 rxring->rxr_active = false;
4015
4016 /* disable DMA */
4017 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4018
4019 /* free all RX mbufs */
4020 aq_rxdrain(sc, rxring);
4021
4022 if (start) {
4023 for (i = 0; i < AQ_RXD_NUM; i++) {
4024 error = aq_rxring_add(sc, rxring, i);
4025 if (error != 0) {
4026 aq_rxdrain(sc, rxring);
4027 return error;
4028 }
4029 aq_rxring_reset_desc(sc, rxring, i);
4030 }
4031
4032 /* RX descriptor physical address */
4033 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4034 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4035 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4036 (uint32_t)((uint64_t)paddr >> 32));
4037
4038 /* RX descriptor size */
4039 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4040 AQ_RXD_NUM / 8);
4041
4042 /* maximum receive frame size */
4043 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4044 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4045 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4046 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4047
4048 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4049 RX_DMA_DESC_HEADER_SPLIT, 0);
4050 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4051 RX_DMA_DESC_VLAN_STRIP,
4052 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4053 1 : 0);
4054
4055 /*
4056 * reload TAIL pointer, and update readidx
4057 * (HEAD pointer cannot write)
4058 */
4059 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4060 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4061 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4062 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4063
4064 /* Rx ring set mode */
4065
4066 /* Mapping interrupt vector */
4067 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4068 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4069 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4070 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4071
4072 const int cpuid = 0; /* XXX? */
4073 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4074 RX_DMA_DCAD_CPUID, cpuid);
4075 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4076 RX_DMA_DCAD_DESC_EN, 0);
4077 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4078 RX_DMA_DCAD_HEADER_EN, 0);
4079 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4080 RX_DMA_DCAD_PAYLOAD_EN, 0);
4081
4082 /* enable DMA. start receiving */
4083 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4084 RX_DMA_DESC_EN, 1);
4085
4086 rxring->rxr_active = true;
4087 }
4088
4089 mutex_exit(&rxring->rxr_mutex);
4090 return error;
4091 }
4092
4093 #define TXRING_NEXTIDX(idx) \
4094 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4095 #define RXRING_NEXTIDX(idx) \
4096 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4097
4098 static int
4099 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4100 {
4101 bus_dmamap_t map;
4102 struct mbuf *m = *mp;
4103 uint32_t ctl1, ctl1_ctx, ctl2;
4104 int idx, i, error;
4105
4106 idx = txring->txr_prodidx;
4107 map = txring->txr_mbufs[idx].dmamap;
4108
4109 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4110 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4111 if (error == EFBIG) {
4112 struct mbuf *n;
4113 n = m_defrag(m, M_DONTWAIT);
4114 if (n == NULL)
4115 return EFBIG;
4116 /* m_defrag() preserve m */
4117 KASSERT(n == m);
4118 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4119 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4120 }
4121 if (error != 0)
4122 return error;
4123
4124 /*
4125 * check spaces of free descriptors.
4126 * +1 is additional descriptor for context (vlan, etc,.)
4127 */
4128 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4129 device_printf(sc->sc_dev,
4130 "TX: not enough descriptors left %d for %d segs\n",
4131 txring->txr_nfree, map->dm_nsegs + 1);
4132 bus_dmamap_unload(sc->sc_dmat, map);
4133 return ENOBUFS;
4134 }
4135
4136 /* sync dma for mbuf */
4137 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4138 BUS_DMASYNC_PREWRITE);
4139
4140 ctl1_ctx = 0;
4141 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4142
4143 if (vlan_has_tag(m)) {
4144 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4145 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4146
4147 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4148 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4149
4150 /* fill context descriptor and forward index */
4151 txring->txr_txdesc[idx].buf_addr = 0;
4152 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4153 txring->txr_txdesc[idx].ctl2 = 0;
4154
4155 idx = TXRING_NEXTIDX(idx);
4156 txring->txr_nfree--;
4157 }
4158
4159 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4160 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4161 if (m->m_pkthdr.csum_flags &
4162 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4163 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4164 }
4165
4166 /* fill descriptor(s) */
4167 for (i = 0; i < map->dm_nsegs; i++) {
4168 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4169 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4170 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4171
4172 if (i == 0) {
4173 /* remember mbuf of these descriptors */
4174 txring->txr_mbufs[idx].m = m;
4175 } else {
4176 txring->txr_mbufs[idx].m = NULL;
4177 }
4178
4179 if (i == map->dm_nsegs - 1) {
4180 /* last segment, mark an EndOfPacket, and cause intr */
4181 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4182 }
4183
4184 txring->txr_txdesc[idx].buf_addr =
4185 htole64(map->dm_segs[i].ds_addr);
4186 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4187 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4188
4189 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4190 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4191 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4192
4193 idx = TXRING_NEXTIDX(idx);
4194 txring->txr_nfree--;
4195 }
4196
4197 txring->txr_prodidx = idx;
4198
4199 return 0;
4200 }
4201
4202 static int
4203 aq_tx_intr(void *arg)
4204 {
4205 struct aq_txring *txring = arg;
4206 struct aq_softc *sc = txring->txr_sc;
4207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4208 struct mbuf *m;
4209 const int ringidx = txring->txr_index;
4210 unsigned int idx, hw_head, n = 0;
4211
4212 mutex_enter(&txring->txr_mutex);
4213
4214 if (!txring->txr_active)
4215 goto tx_intr_done;
4216
4217 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4218 TX_DMA_DESC_HEAD_PTR);
4219 if (hw_head == txring->txr_considx) {
4220 goto tx_intr_done;
4221 }
4222
4223 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4224
4225 for (idx = txring->txr_considx; idx != hw_head;
4226 idx = TXRING_NEXTIDX(idx), n++) {
4227
4228 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4229 bus_dmamap_unload(sc->sc_dmat,
4230 txring->txr_mbufs[idx].dmamap);
4231
4232 if_statinc_ref(nsr, if_opackets);
4233 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4234 if (m->m_flags & M_MCAST)
4235 if_statinc_ref(nsr, if_omcasts);
4236
4237 m_freem(m);
4238 txring->txr_mbufs[idx].m = NULL;
4239 }
4240
4241 txring->txr_nfree++;
4242 }
4243 txring->txr_considx = idx;
4244
4245 IF_STAT_PUTREF(ifp);
4246
4247 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4248 ifp->if_flags &= ~IFF_OACTIVE;
4249
4250 /* no more pending TX packet, cancel watchdog */
4251 if (txring->txr_nfree >= AQ_TXD_NUM)
4252 ifp->if_timer = 0;
4253
4254 tx_intr_done:
4255 mutex_exit(&txring->txr_mutex);
4256
4257 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4258 return n;
4259 }
4260
4261 static int
4262 aq_rx_intr(void *arg)
4263 {
4264 struct aq_rxring *rxring = arg;
4265 struct aq_softc *sc = rxring->rxr_sc;
4266 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4267 const int ringidx = rxring->rxr_index;
4268 aq_rx_desc_t *rxd;
4269 struct mbuf *m, *m0, *mprev, *new_m;
4270 uint32_t rxd_type, rxd_hash __unused;
4271 uint16_t rxd_status, rxd_pktlen;
4272 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4273 unsigned int idx, n = 0;
4274
4275 mutex_enter(&rxring->rxr_mutex);
4276
4277 if (!rxring->rxr_active)
4278 goto rx_intr_done;
4279
4280 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4281 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4282 goto rx_intr_done;
4283 }
4284
4285 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4286
4287 m0 = mprev = NULL;
4288 for (idx = rxring->rxr_readidx;
4289 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4290 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4291
4292 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4293 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4294 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4295
4296 rxd = &rxring->rxr_rxdesc[idx];
4297 rxd_status = le16toh(rxd->wb.status);
4298
4299 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4300 break; /* not yet done */
4301
4302 rxd_type = le32toh(rxd->wb.type);
4303 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4304 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4305 rxd_hash = le32toh(rxd->wb.rss_hash);
4306 rxd_vlan = le16toh(rxd->wb.vlan);
4307
4308 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4309 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4310 if_statinc_ref(nsr, if_ierrors);
4311 goto rx_next;
4312 }
4313
4314 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4315 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4316 BUS_DMASYNC_POSTREAD);
4317 m = rxring->rxr_mbufs[idx].m;
4318
4319 new_m = aq_alloc_mbuf();
4320 if (new_m == NULL) {
4321 /*
4322 * cannot allocate new mbuf.
4323 * discard this packet, and reuse mbuf for next.
4324 */
4325 if_statinc_ref(nsr, if_iqdrops);
4326 goto rx_next;
4327 }
4328 rxring->rxr_mbufs[idx].m = NULL;
4329 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4330
4331 if (m0 == NULL) {
4332 m0 = m;
4333 } else {
4334 if (m->m_flags & M_PKTHDR)
4335 m_remove_pkthdr(m);
4336 mprev->m_next = m;
4337 }
4338 mprev = m;
4339
4340 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4341 m->m_len = MCLBYTES;
4342 } else {
4343 /* last buffer */
4344 m->m_len = rxd_pktlen % MCLBYTES;
4345 m0->m_pkthdr.len = rxd_pktlen;
4346 /* VLAN offloading */
4347 if ((sc->sc_ethercom.ec_capenable &
4348 ETHERCAP_VLAN_HWTAGGING) &&
4349 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4350 __SHIFTOUT(rxd_type,
4351 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4352 vlan_set_tag(m0, rxd_vlan);
4353 }
4354
4355 /* Checksum offloading */
4356 unsigned int pkttype_eth =
4357 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4358 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4359 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4360 __SHIFTOUT(rxd_type,
4361 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4362 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4363 if (__SHIFTOUT(rxd_status,
4364 RXDESC_STATUS_IPV4_CSUM_NG))
4365 m0->m_pkthdr.csum_flags |=
4366 M_CSUM_IPv4_BAD;
4367 }
4368 #if notyet
4369 /*
4370 * XXX: aq always marks BAD for fragmented packet.
4371 * we should peek L3 header, and ignore cksum flags
4372 * if the packet is fragmented.
4373 */
4374 if (__SHIFTOUT(rxd_type,
4375 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4376 bool checked = false;
4377 unsigned int pkttype_proto =
4378 __SHIFTOUT(rxd_type,
4379 RXDESC_TYPE_PKTTYPE_PROTO);
4380
4381 if (pkttype_proto ==
4382 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4383 if ((pkttype_eth ==
4384 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4385 (ifp->if_capabilities &
4386 IFCAP_CSUM_TCPv4_Rx)) {
4387 m0->m_pkthdr.csum_flags |=
4388 M_CSUM_TCPv4;
4389 checked = true;
4390 } else if ((pkttype_eth ==
4391 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4392 (ifp->if_capabilities &
4393 IFCAP_CSUM_TCPv6_Rx)) {
4394 m0->m_pkthdr.csum_flags |=
4395 M_CSUM_TCPv6;
4396 checked = true;
4397 }
4398 } else if (pkttype_proto ==
4399 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4400 if ((pkttype_eth ==
4401 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4402 (ifp->if_capabilities &
4403 IFCAP_CSUM_UDPv4_Rx)) {
4404 m0->m_pkthdr.csum_flags |=
4405 M_CSUM_UDPv4;
4406 checked = true;
4407 } else if ((pkttype_eth ==
4408 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4409 (ifp->if_capabilities &
4410 IFCAP_CSUM_UDPv6_Rx)) {
4411 m0->m_pkthdr.csum_flags |=
4412 M_CSUM_UDPv6;
4413 checked = true;
4414 }
4415 }
4416 if (checked &&
4417 (__SHIFTOUT(rxd_status,
4418 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4419 !__SHIFTOUT(rxd_status,
4420 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4421 m0->m_pkthdr.csum_flags |=
4422 M_CSUM_TCP_UDP_BAD;
4423 }
4424 }
4425 #endif
4426 m_set_rcvif(m0, ifp);
4427 if_statinc_ref(nsr, if_ipackets);
4428 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4429 if_percpuq_enqueue(ifp->if_percpuq, m0);
4430 m0 = mprev = NULL;
4431 }
4432
4433 rx_next:
4434 aq_rxring_reset_desc(sc, rxring, idx);
4435 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4436 }
4437 rxring->rxr_readidx = idx;
4438
4439 IF_STAT_PUTREF(ifp);
4440
4441 rx_intr_done:
4442 mutex_exit(&rxring->rxr_mutex);
4443
4444 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4445 return n;
4446 }
4447
4448 static int
4449 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4450 {
4451 struct ifnet *ifp = &ec->ec_if;
4452 struct aq_softc *sc = ifp->if_softc;
4453
4454 aq_set_vlan_filters(sc);
4455 return 0;
4456 }
4457
4458 static int
4459 aq_ifflags_cb(struct ethercom *ec)
4460 {
4461 struct ifnet *ifp = &ec->ec_if;
4462 struct aq_softc *sc = ifp->if_softc;
4463 int i, ecchange, error = 0;
4464 unsigned short iffchange;
4465
4466 AQ_LOCK(sc);
4467
4468 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4469 if ((iffchange & IFF_PROMISC) != 0)
4470 error = aq_set_filter(sc);
4471
4472 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4473 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4474 for (i = 0; i < AQ_RINGS_NUM; i++) {
4475 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4476 RX_DMA_DESC_VLAN_STRIP,
4477 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4478 1 : 0);
4479 }
4480 }
4481
4482 /* vlan configuration depends on also interface promiscuous mode */
4483 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4484 aq_set_vlan_filters(sc);
4485
4486 sc->sc_ec_capenable = ec->ec_capenable;
4487 sc->sc_if_flags = ifp->if_flags;
4488
4489 AQ_UNLOCK(sc);
4490
4491 return error;
4492 }
4493
4494 static int
4495 aq_init(struct ifnet *ifp)
4496 {
4497 struct aq_softc *sc = ifp->if_softc;
4498 int i, error = 0;
4499
4500 AQ_LOCK(sc);
4501
4502 aq_set_vlan_filters(sc);
4503 aq_set_capability(sc);
4504
4505 for (i = 0; i < sc->sc_nqueues; i++) {
4506 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4507 }
4508
4509 /* invalidate RX descriptor cache */
4510 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4511 AQ_READ_REG_BIT(sc,
4512 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4513
4514 /* start RX */
4515 for (i = 0; i < sc->sc_nqueues; i++) {
4516 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4517 if (error != 0) {
4518 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4519 __func__);
4520 goto aq_init_failure;
4521 }
4522 }
4523 aq_init_rss(sc);
4524 aq_hw_l3_filter_set(sc);
4525
4526 /* need to start callout? */
4527 if (sc->sc_poll_linkstat
4528 #ifdef AQ_EVENT_COUNTERS
4529 || sc->sc_poll_statistics
4530 #endif
4531 ) {
4532 callout_schedule(&sc->sc_tick_ch, hz);
4533 }
4534
4535 /* ready */
4536 ifp->if_flags |= IFF_RUNNING;
4537 ifp->if_flags &= ~IFF_OACTIVE;
4538
4539 /* start TX and RX */
4540 aq_enable_intr(sc, true, true);
4541 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4542 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4543
4544 aq_init_failure:
4545 sc->sc_if_flags = ifp->if_flags;
4546
4547 AQ_UNLOCK(sc);
4548
4549 return error;
4550 }
4551
4552 static void
4553 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4554 struct aq_txring *txring, bool is_transmit)
4555 {
4556 struct mbuf *m;
4557 int npkt, error;
4558
4559 if ((ifp->if_flags & IFF_RUNNING) == 0)
4560 return;
4561
4562 for (npkt = 0; ; npkt++) {
4563 if (is_transmit)
4564 m = pcq_peek(txring->txr_pcq);
4565 else
4566 IFQ_POLL(&ifp->if_snd, m);
4567
4568 if (m == NULL)
4569 break;
4570
4571 if (txring->txr_nfree < AQ_TXD_MIN)
4572 break;
4573
4574 if (is_transmit)
4575 pcq_get(txring->txr_pcq);
4576 else
4577 IFQ_DEQUEUE(&ifp->if_snd, m);
4578
4579 error = aq_encap_txring(sc, txring, &m);
4580 if (error != 0) {
4581 /* too many mbuf chains? or not enough descriptors? */
4582 m_freem(m);
4583 if_statinc(ifp, if_oerrors);
4584 if (txring->txr_index == 0 && error == ENOBUFS)
4585 ifp->if_flags |= IFF_OACTIVE;
4586 break;
4587 }
4588
4589 /* update tail ptr */
4590 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4591 txring->txr_prodidx);
4592
4593 /* Pass the packet to any BPF listeners */
4594 bpf_mtap(ifp, m, BPF_D_OUT);
4595 }
4596
4597 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4598 ifp->if_flags |= IFF_OACTIVE;
4599
4600 if (npkt)
4601 ifp->if_timer = 5;
4602 }
4603
4604 static void
4605 aq_start(struct ifnet *ifp)
4606 {
4607 struct aq_softc *sc;
4608 struct aq_txring *txring;
4609
4610 sc = ifp->if_softc;
4611 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4612
4613 mutex_enter(&txring->txr_mutex);
4614 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4615 aq_send_common_locked(ifp, sc, txring, false);
4616 mutex_exit(&txring->txr_mutex);
4617 }
4618
4619 static inline unsigned int
4620 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4621 {
4622 return (cpu_index(curcpu()) % sc->sc_nqueues);
4623 }
4624
4625 static int
4626 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4627 {
4628 struct aq_softc *sc = ifp->if_softc;
4629 struct aq_txring *txring;
4630 int ringidx;
4631
4632 ringidx = aq_select_txqueue(sc, m);
4633 txring = &sc->sc_queue[ringidx].txring;
4634
4635 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4636 m_freem(m);
4637 return ENOBUFS;
4638 }
4639
4640 if (mutex_tryenter(&txring->txr_mutex)) {
4641 aq_send_common_locked(ifp, sc, txring, true);
4642 mutex_exit(&txring->txr_mutex);
4643 } else {
4644 softint_schedule(txring->txr_softint);
4645 }
4646 return 0;
4647 }
4648
4649 static void
4650 aq_deferred_transmit(void *arg)
4651 {
4652 struct aq_txring *txring = arg;
4653 struct aq_softc *sc = txring->txr_sc;
4654 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4655
4656 mutex_enter(&txring->txr_mutex);
4657 if (pcq_peek(txring->txr_pcq) != NULL)
4658 aq_send_common_locked(ifp, sc, txring, true);
4659 mutex_exit(&txring->txr_mutex);
4660 }
4661
4662 static void
4663 aq_stop(struct ifnet *ifp, int disable)
4664 {
4665 struct aq_softc *sc = ifp->if_softc;
4666 int i;
4667
4668 AQ_LOCK(sc);
4669
4670 ifp->if_timer = 0;
4671
4672 /* disable tx/rx interrupts */
4673 aq_enable_intr(sc, true, false);
4674
4675 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4676 for (i = 0; i < sc->sc_nqueues; i++) {
4677 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4678 }
4679
4680 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4681 for (i = 0; i < sc->sc_nqueues; i++) {
4682 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4683 }
4684
4685 /* invalidate RX descriptor cache */
4686 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4687 AQ_READ_REG_BIT(sc,
4688 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4689
4690 ifp->if_timer = 0;
4691
4692 if (!disable) {
4693 /* when pmf stop, disable link status intr and callout */
4694 aq_enable_intr(sc, false, false);
4695 callout_stop(&sc->sc_tick_ch);
4696 }
4697
4698 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4699
4700 AQ_UNLOCK(sc);
4701 }
4702
4703 static void
4704 aq_watchdog(struct ifnet *ifp)
4705 {
4706 struct aq_softc *sc = ifp->if_softc;
4707 struct aq_txring *txring;
4708 int n, head, tail;
4709
4710 AQ_LOCK(sc);
4711
4712 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4713 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4714 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4715
4716 for (n = 0; n < sc->sc_nqueues; n++) {
4717 txring = &sc->sc_queue[n].txring;
4718 head = AQ_READ_REG_BIT(sc,
4719 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4720 TX_DMA_DESC_HEAD_PTR),
4721 tail = AQ_READ_REG(sc,
4722 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4723
4724 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4725 __func__, txring->txr_index, head, tail);
4726
4727 aq_tx_intr(txring);
4728 }
4729
4730 AQ_UNLOCK(sc);
4731
4732 aq_init(ifp);
4733 }
4734
4735 static int
4736 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4737 {
4738 struct aq_softc *sc __unused;
4739 struct ifreq *ifr __unused;
4740 int error, s;
4741
4742 sc = (struct aq_softc *)ifp->if_softc;
4743 ifr = (struct ifreq *)data;
4744 error = 0;
4745
4746 s = splnet();
4747 error = ether_ioctl(ifp, cmd, data);
4748 splx(s);
4749
4750 if (error != ENETRESET)
4751 return error;
4752
4753 switch (cmd) {
4754 case SIOCSIFCAP:
4755 error = aq_set_capability(sc);
4756 break;
4757 case SIOCADDMULTI:
4758 case SIOCDELMULTI:
4759 if ((ifp->if_flags & IFF_RUNNING) == 0)
4760 break;
4761
4762 /*
4763 * Multicast list has changed; set the hardware filter
4764 * accordingly.
4765 */
4766 error = aq_set_filter(sc);
4767 break;
4768 }
4769
4770 return error;
4771 }
4772
4773
4774 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4775
4776 #ifdef _MODULE
4777 #include "ioconf.c"
4778 #endif
4779
4780 static int
4781 if_aq_modcmd(modcmd_t cmd, void *opaque)
4782 {
4783 int error = 0;
4784
4785 switch (cmd) {
4786 case MODULE_CMD_INIT:
4787 #ifdef _MODULE
4788 error = config_init_component(cfdriver_ioconf_if_aq,
4789 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4790 #endif
4791 return error;
4792 case MODULE_CMD_FINI:
4793 #ifdef _MODULE
4794 error = config_fini_component(cfdriver_ioconf_if_aq,
4795 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4796 #endif
4797 return error;
4798 default:
4799 return ENOTTY;
4800 }
4801 }
4802