if_aq.c revision 1.22 1 /* $NetBSD: if_aq.c,v 1.22 2021/04/15 09:04:42 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.22 2021/04/15 09:04:42 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed __aligned(4) aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed __aligned(4) aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed __aligned(4) fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed __aligned(4) fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed __aligned(4) fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed __aligned(4) fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed __aligned(8);
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed __aligned(4);
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed __aligned(8) aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed __aligned(8) aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 const struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 struct ethercom sc_ethercom;
1009 struct ether_addr sc_enaddr;
1010 struct ifmedia sc_media;
1011 int sc_ec_capenable; /* last ec_capenable */
1012 unsigned short sc_if_flags; /* last if_flags */
1013
1014 #ifdef AQ_EVENT_COUNTERS
1015 aq_hw_stats_s_t sc_statistics[2];
1016 int sc_statistics_idx;
1017 bool sc_poll_statistics;
1018
1019 AQ_EVCNT_DECL(uprc);
1020 AQ_EVCNT_DECL(mprc);
1021 AQ_EVCNT_DECL(bprc);
1022 AQ_EVCNT_DECL(erpt);
1023 AQ_EVCNT_DECL(uptc);
1024 AQ_EVCNT_DECL(mptc);
1025 AQ_EVCNT_DECL(bptc);
1026 AQ_EVCNT_DECL(erpr);
1027 AQ_EVCNT_DECL(mbtc);
1028 AQ_EVCNT_DECL(bbtc);
1029 AQ_EVCNT_DECL(mbrc);
1030 AQ_EVCNT_DECL(bbrc);
1031 AQ_EVCNT_DECL(ubrc);
1032 AQ_EVCNT_DECL(ubtc);
1033 AQ_EVCNT_DECL(ptc);
1034 AQ_EVCNT_DECL(prc);
1035 AQ_EVCNT_DECL(dpc);
1036 AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045 bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047 pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056 struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083 aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085 aq_link_eee_t *);
1086
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093 uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 .reset = fw1x_reset,
1117 .set_mode = fw1x_set_mode,
1118 .get_mode = fw1x_get_mode,
1119 .get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 .get_temperature = NULL
1122 #endif
1123 };
1124
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 .reset = fw2x_reset,
1127 .set_mode = fw2x_set_mode,
1128 .get_mode = fw2x_get_mode,
1129 .get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 .get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137
1138 static const struct aq_product {
1139 pci_vendor_id_t aq_vendor;
1140 pci_product_id_t aq_product;
1141 const char *aq_name;
1142 enum aq_media_type aq_media_type;
1143 aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1146 "Aquantia AQC100 10 Gigabit Network Adapter",
1147 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1148 },
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1150 "Aquantia AQC107 10 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1154 "Aquantia AQC108 5 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1158 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1162 "Aquantia AQC111 5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1166 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1170 "Aquantia AQC100S 10 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1174 "Aquantia AQC107S 10 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1178 "Aquantia AQC108S 5 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1182 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1186 "Aquantia AQC111S 5 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1190 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1194 "Aquantia D100 10 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1196 },
1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1198 "Aquantia D107 10 Gigabit Network Adapter",
1199 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1200 },
1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1202 "Aquantia D108 5 Gigabit Network Adapter",
1203 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1204 },
1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1206 "Aquantia D109 2.5 Gigabit Network Adapter",
1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1208 }
1209 };
1210
1211 static const struct aq_product *
1212 aq_lookup(const struct pci_attach_args *pa)
1213 {
1214 unsigned int i;
1215
1216 for (i = 0; i < __arraycount(aq_products); i++) {
1217 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1218 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1219 return &aq_products[i];
1220 }
1221 return NULL;
1222 }
1223
1224 static int
1225 aq_match(device_t parent, cfdata_t cf, void *aux)
1226 {
1227 struct pci_attach_args *pa = aux;
1228
1229 if (aq_lookup(pa) != NULL)
1230 return 1;
1231
1232 return 0;
1233 }
1234
1235 static void
1236 aq_attach(device_t parent, device_t self, void *aux)
1237 {
1238 struct aq_softc *sc = device_private(self);
1239 struct pci_attach_args *pa = aux;
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 pci_chipset_tag_t pc;
1242 pcitag_t tag;
1243 pcireg_t command, memtype, bar;
1244 const struct aq_product *aqp;
1245 int error;
1246
1247 sc->sc_dev = self;
1248 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1249 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1250
1251 sc->sc_pc = pc = pa->pa_pc;
1252 sc->sc_pcitag = tag = pa->pa_tag;
1253 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1254
1255 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1256 command |= PCI_COMMAND_MASTER_ENABLE;
1257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1258
1259 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1260 sc->sc_revision = PCI_REVISION(pa->pa_class);
1261
1262 aqp = aq_lookup(pa);
1263 KASSERT(aqp != NULL);
1264
1265 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1266
1267 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1268 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1269 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1270 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1271 return;
1272 }
1273 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1274 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1275 NULL, &sc->sc_iosize) != 0) {
1276 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1277 return;
1278 }
1279
1280 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1281
1282 /* max queue num is 8, and must be 2^n */
1283 if (ncpu >= 8)
1284 sc->sc_nqueues = 8;
1285 else if (ncpu >= 4)
1286 sc->sc_nqueues = 4;
1287 else if (ncpu >= 2)
1288 sc->sc_nqueues = 2;
1289 else
1290 sc->sc_nqueues = 1;
1291
1292 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1294 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1295 /* TX intrs + RX intrs + LINKSTAT intrs */
1296 sc->sc_use_txrx_independent_intr = true;
1297 sc->sc_poll_linkstat = false;
1298 sc->sc_msix = true;
1299 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1300 /* TX intrs + RX intrs */
1301 sc->sc_use_txrx_independent_intr = true;
1302 sc->sc_poll_linkstat = true;
1303 sc->sc_msix = true;
1304 } else
1305 #endif
1306 if (msixcount >= (sc->sc_nqueues + 1)) {
1307 /* TX/RX intrs LINKSTAT intrs */
1308 sc->sc_use_txrx_independent_intr = false;
1309 sc->sc_poll_linkstat = false;
1310 sc->sc_msix = true;
1311 } else if (msixcount >= sc->sc_nqueues) {
1312 /* TX/RX intrs */
1313 sc->sc_use_txrx_independent_intr = false;
1314 sc->sc_poll_linkstat = true;
1315 sc->sc_msix = true;
1316 } else {
1317 /* giving up using MSI-X */
1318 sc->sc_msix = false;
1319 }
1320
1321 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1322 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1323 sc->sc_poll_linkstat = true;
1324
1325 #ifdef AQ_FORCE_POLL_LINKSTAT
1326 sc->sc_poll_linkstat = true;
1327 #endif
1328
1329 aprint_debug_dev(sc->sc_dev,
1330 "ncpu=%d, pci_msix_count=%d."
1331 " allocate %d interrupts for %d%s queues%s\n",
1332 ncpu, msixcount,
1333 (sc->sc_use_txrx_independent_intr ?
1334 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1335 (sc->sc_poll_linkstat ? 0 : 1),
1336 sc->sc_nqueues,
1337 sc->sc_use_txrx_independent_intr ? "*2" : "",
1338 sc->sc_poll_linkstat ? "" : ", and link status");
1339
1340 if (sc->sc_msix)
1341 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1342 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1343 else
1344 error = ENODEV;
1345
1346 if (error != 0) {
1347 /* if MSI-X failed, fallback to MSI with single queue */
1348 sc->sc_use_txrx_independent_intr = false;
1349 sc->sc_poll_linkstat = false;
1350 sc->sc_msix = false;
1351 sc->sc_nqueues = 1;
1352 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1353 }
1354 if (error != 0) {
1355 /* if MSI failed, fallback to INTx */
1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1357 }
1358 if (error != 0)
1359 return;
1360
1361 callout_init(&sc->sc_tick_ch, 0);
1362 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1363
1364 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1365
1366 if (sc->sc_msix && (sc->sc_nqueues > 1))
1367 sc->sc_rss_enable = true;
1368 else
1369 sc->sc_rss_enable = false;
1370
1371 error = aq_txrx_rings_alloc(sc);
1372 if (error != 0)
1373 goto attach_failure;
1374
1375 error = aq_fw_reset(sc);
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 error = aq_fw_version_init(sc);
1380 if (error != 0)
1381 goto attach_failure;
1382
1383 error = aq_hw_init_ucp(sc);
1384 if (error < 0)
1385 goto attach_failure;
1386
1387 KASSERT(sc->sc_mbox_addr != 0);
1388 error = aq_hw_reset(sc);
1389 if (error != 0)
1390 goto attach_failure;
1391
1392 aq_get_mac_addr(sc);
1393 aq_init_rss(sc);
1394
1395 error = aq_hw_init(sc); /* initialize and interrupts */
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 sc->sc_media_type = aqp->aq_media_type;
1400 sc->sc_available_rates = aqp->aq_available_rates;
1401
1402 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1403 ifmedia_init(&sc->sc_media, IFM_IMASK,
1404 aq_ifmedia_change, aq_ifmedia_status);
1405 aq_initmedia(sc);
1406
1407 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1408 ifp->if_softc = sc;
1409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 ifp->if_extflags = IFEF_MPSAFE;
1411 ifp->if_baudrate = IF_Gbps(10);
1412 ifp->if_init = aq_init;
1413 ifp->if_ioctl = aq_ioctl;
1414 if (sc->sc_msix && (sc->sc_nqueues > 1))
1415 ifp->if_transmit = aq_transmit;
1416 ifp->if_start = aq_start;
1417 ifp->if_stop = aq_stop;
1418 ifp->if_watchdog = aq_watchdog;
1419 IFQ_SET_READY(&ifp->if_snd);
1420
1421 /* initialize capabilities */
1422 sc->sc_ethercom.ec_capabilities = 0;
1423 sc->sc_ethercom.ec_capenable = 0;
1424 #if notyet
1425 /* TODO */
1426 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1427 #endif
1428 sc->sc_ethercom.ec_capabilities |=
1429 ETHERCAP_JUMBO_MTU |
1430 ETHERCAP_VLAN_MTU |
1431 ETHERCAP_VLAN_HWTAGGING |
1432 ETHERCAP_VLAN_HWFILTER;
1433 sc->sc_ethercom.ec_capenable |=
1434 ETHERCAP_VLAN_HWTAGGING |
1435 ETHERCAP_VLAN_HWFILTER;
1436
1437 ifp->if_capabilities = 0;
1438 ifp->if_capenable = 0;
1439 #ifdef CONFIG_LRO_SUPPORT
1440 ifp->if_capabilities |= IFCAP_LRO;
1441 ifp->if_capenable |= IFCAP_LRO;
1442 #endif
1443 #if notyet
1444 /* TSO */
1445 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1446 #endif
1447
1448 /* TX hardware checksum offloadding */
1449 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1450 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1451 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1452 /* RX hardware checksum offloadding */
1453 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1454 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1455 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1456
1457 error = if_initialize(ifp);
1458 if (error != 0) {
1459 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
1460 error);
1461 goto attach_failure;
1462 }
1463 ifp->if_percpuq = if_percpuq_create(ifp);
1464 if_deferred_start_init(ifp, NULL);
1465 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1466 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1467 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1468 if_register(ifp);
1469
1470 aq_enable_intr(sc, true, false); /* only intr about link */
1471
1472 /* update media */
1473 aq_ifmedia_change(ifp);
1474
1475 #if NSYSMON_ENVSYS > 0
1476 /* temperature monitoring */
1477 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1478 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1479
1480 sc->sc_sme = sysmon_envsys_create();
1481 sc->sc_sme->sme_name = device_xname(self);
1482 sc->sc_sme->sme_cookie = sc;
1483 sc->sc_sme->sme_flags = 0;
1484 sc->sc_sme->sme_refresh = aq_temp_refresh;
1485 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1486 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1487 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1488
1489 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1490 sysmon_envsys_register(sc->sc_sme);
1491
1492 /*
1493 * for unknown reasons, the first call of fw2x_get_temperature()
1494 * will always fail (firmware matter?), so run once now.
1495 */
1496 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1497 }
1498 #endif
1499
1500 #ifdef AQ_EVENT_COUNTERS
1501 /* get starting statistics values */
1502 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1503 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1504 sc->sc_poll_statistics = true;
1505 }
1506
1507 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1508 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1509 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1510 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1511 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1512 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1513 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1514 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1515 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1516 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1517 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1518 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1519 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1520 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1521 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1522 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1523 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1524 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1525 #endif
1526
1527 return;
1528
1529 attach_failure:
1530 aq_detach(self, 0);
1531 }
1532
1533 static int
1534 aq_detach(device_t self, int flags __unused)
1535 {
1536 struct aq_softc *sc = device_private(self);
1537 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1538 int i, s;
1539
1540 if (sc->sc_iosize != 0) {
1541 if (ifp->if_softc != NULL) {
1542 s = splnet();
1543 aq_stop(ifp, 0);
1544 splx(s);
1545 }
1546
1547 for (i = 0; i < AQ_NINTR_MAX; i++) {
1548 if (sc->sc_ihs[i] != NULL) {
1549 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1550 sc->sc_ihs[i] = NULL;
1551 }
1552 }
1553 if (sc->sc_nintrs > 0) {
1554 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1555 sc->sc_nintrs);
1556 sc->sc_intrs = NULL;
1557 sc->sc_nintrs = 0;
1558 }
1559
1560 aq_txrx_rings_free(sc);
1561
1562 if (ifp->if_softc != NULL) {
1563 ether_ifdetach(ifp);
1564 if_detach(ifp);
1565 }
1566
1567 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1568 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1569 sc->sc_iosize = 0;
1570 }
1571
1572 callout_stop(&sc->sc_tick_ch);
1573
1574 #if NSYSMON_ENVSYS > 0
1575 if (sc->sc_sme != NULL) {
1576 /* all sensors associated with this will also be detached */
1577 sysmon_envsys_unregister(sc->sc_sme);
1578 sc->sc_sme = NULL;
1579 }
1580 #endif
1581
1582 #ifdef AQ_EVENT_COUNTERS
1583 AQ_EVCNT_DETACH(sc, uprc);
1584 AQ_EVCNT_DETACH(sc, mprc);
1585 AQ_EVCNT_DETACH(sc, bprc);
1586 AQ_EVCNT_DETACH(sc, erpt);
1587 AQ_EVCNT_DETACH(sc, uptc);
1588 AQ_EVCNT_DETACH(sc, mptc);
1589 AQ_EVCNT_DETACH(sc, bptc);
1590 AQ_EVCNT_DETACH(sc, erpr);
1591 AQ_EVCNT_DETACH(sc, mbtc);
1592 AQ_EVCNT_DETACH(sc, bbtc);
1593 AQ_EVCNT_DETACH(sc, mbrc);
1594 AQ_EVCNT_DETACH(sc, bbrc);
1595 AQ_EVCNT_DETACH(sc, ubrc);
1596 AQ_EVCNT_DETACH(sc, ubtc);
1597 AQ_EVCNT_DETACH(sc, ptc);
1598 AQ_EVCNT_DETACH(sc, prc);
1599 AQ_EVCNT_DETACH(sc, dpc);
1600 AQ_EVCNT_DETACH(sc, cprc);
1601 #endif
1602
1603 ifmedia_fini(&sc->sc_media);
1604
1605 mutex_destroy(&sc->sc_mpi_mutex);
1606 mutex_destroy(&sc->sc_mutex);
1607
1608 return 0;
1609 }
1610
1611 static int
1612 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1613 int (*func)(void *), void *arg, const char *xname)
1614 {
1615 char intrbuf[PCI_INTRSTR_LEN];
1616 pci_chipset_tag_t pc = sc->sc_pc;
1617 void *vih;
1618 const char *intrstr = NULL;
1619
1620 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1621 sizeof(intrbuf));
1622
1623 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1624
1625 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1626 IPL_NET, func, arg, xname);
1627 if (vih == NULL) {
1628 aprint_error_dev(sc->sc_dev,
1629 "unable to establish MSI-X%s%s for %s\n",
1630 intrstr ? " at " : "",
1631 intrstr ? intrstr : "", xname);
1632 return EIO;
1633 }
1634 sc->sc_ihs[intno] = vih;
1635
1636 if (affinity != NULL) {
1637 /* Round-robin affinity */
1638 kcpuset_zero(affinity);
1639 kcpuset_set(affinity, intno % ncpu);
1640 interrupt_distribute(vih, affinity, NULL);
1641 }
1642
1643 return 0;
1644 }
1645
1646 static int
1647 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1648 bool linkintr)
1649 {
1650 kcpuset_t *affinity;
1651 int error, intno, i;
1652 char intr_xname[INTRDEVNAMEBUF];
1653
1654 kcpuset_create(&affinity, false);
1655
1656 intno = 0;
1657
1658 if (txrx_independent) {
1659 for (i = 0; i < sc->sc_nqueues; i++) {
1660 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1661 device_xname(sc->sc_dev), i);
1662 sc->sc_rx_irq[i] = intno;
1663 error = aq_establish_intr(sc, intno++, affinity,
1664 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1665 if (error != 0)
1666 goto fail;
1667 }
1668 for (i = 0; i < sc->sc_nqueues; i++) {
1669 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1670 device_xname(sc->sc_dev), i);
1671 sc->sc_tx_irq[i] = intno;
1672 error = aq_establish_intr(sc, intno++, affinity,
1673 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1674 if (error != 0)
1675 goto fail;
1676 }
1677 } else {
1678 for (i = 0; i < sc->sc_nqueues; i++) {
1679 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1680 device_xname(sc->sc_dev), i);
1681 sc->sc_rx_irq[i] = intno;
1682 sc->sc_tx_irq[i] = intno;
1683 error = aq_establish_intr(sc, intno++, affinity,
1684 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1685 if (error != 0)
1686 goto fail;
1687 }
1688 }
1689
1690 if (linkintr) {
1691 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1692 device_xname(sc->sc_dev));
1693 sc->sc_linkstat_irq = intno;
1694 error = aq_establish_intr(sc, intno++, affinity,
1695 aq_link_intr, sc, intr_xname);
1696 if (error != 0)
1697 goto fail;
1698 }
1699
1700 kcpuset_destroy(affinity);
1701 return 0;
1702
1703 fail:
1704 for (i = 0; i < AQ_NINTR_MAX; i++) {
1705 if (sc->sc_ihs[i] != NULL) {
1706 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1707 sc->sc_ihs[i] = NULL;
1708 }
1709 }
1710
1711 kcpuset_destroy(affinity);
1712 return ENOMEM;
1713 }
1714
1715 static int
1716 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1717 bool txrx_independent, bool linkintr)
1718 {
1719 int error, nintr;
1720
1721 if (txrx_independent)
1722 nintr = nqueue * 2;
1723 else
1724 nintr = nqueue;
1725
1726 if (linkintr)
1727 nintr++;
1728
1729 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1730 if (error != 0) {
1731 aprint_error_dev(sc->sc_dev,
1732 "failed to allocate MSI-X interrupts\n");
1733 goto fail;
1734 }
1735
1736 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1737 if (error == 0) {
1738 sc->sc_nintrs = nintr;
1739 } else {
1740 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1741 sc->sc_nintrs = 0;
1742 }
1743 fail:
1744 return error;
1745
1746 }
1747
1748 static int
1749 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1750 pci_intr_type_t inttype)
1751 {
1752 int counts[PCI_INTR_TYPE_SIZE];
1753 int error, nintr;
1754
1755 nintr = 1;
1756
1757 memset(counts, 0, sizeof(counts));
1758 counts[inttype] = nintr;
1759
1760 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1761 if (error != 0) {
1762 aprint_error_dev(sc->sc_dev,
1763 "failed to allocate%s interrupts\n",
1764 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1765 return error;
1766 }
1767 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1768 device_xname(sc->sc_dev));
1769 if (error == 0) {
1770 sc->sc_nintrs = nintr;
1771 } else {
1772 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1773 sc->sc_nintrs = 0;
1774 }
1775 return error;
1776 }
1777
1778 static void
1779 global_software_reset(struct aq_softc *sc)
1780 {
1781 uint32_t v;
1782
1783 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1784 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1785 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1786 FW_MPI_RESETCTRL_RESET_DIS, 0);
1787
1788 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1789 v &= ~AQ_FW_SOFTRESET_DIS;
1790 v |= AQ_FW_SOFTRESET_RESET;
1791 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1792 }
1793
1794 static int
1795 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1796 {
1797 int timo;
1798
1799 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1800
1801 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1802 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1803 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1804
1805 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1806 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1807
1808 global_software_reset(sc);
1809
1810 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1811
1812 /* Wait for RBL to finish boot process. */
1813 #define RBL_TIMEOUT_MS 10000
1814 uint16_t rbl_status;
1815 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1816 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1817 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1818 break;
1819 msec_delay(1);
1820 }
1821 if (timo <= 0) {
1822 aprint_error_dev(sc->sc_dev,
1823 "RBL> RBL restart failed: timeout\n");
1824 return EBUSY;
1825 }
1826 switch (rbl_status) {
1827 case RBL_STATUS_SUCCESS:
1828 if (mode != NULL)
1829 *mode = FW_BOOT_MODE_RBL_FLASH;
1830 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1831 break;
1832 case RBL_STATUS_HOST_BOOT:
1833 if (mode != NULL)
1834 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1835 aprint_debug_dev(sc->sc_dev,
1836 "RBL> reset complete! [Host Bootload]\n");
1837 break;
1838 case RBL_STATUS_FAILURE:
1839 default:
1840 aprint_error_dev(sc->sc_dev,
1841 "unknown RBL status 0x%x\n", rbl_status);
1842 return EBUSY;
1843 }
1844
1845 return 0;
1846 }
1847
1848 static int
1849 mac_soft_reset_flb(struct aq_softc *sc)
1850 {
1851 uint32_t v;
1852 int timo;
1853
1854 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1855 /*
1856 * Let Felicity hardware to complete SMBUS transaction before
1857 * Global software reset.
1858 */
1859 msec_delay(50);
1860
1861 /*
1862 * If SPI burst transaction was interrupted(before running the script),
1863 * global software reset may not clear SPI interface.
1864 * Clean it up manually before global reset.
1865 */
1866 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1867 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1868 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1869 msec_delay(50);
1870
1871 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1872 v &= ~AQ_FW_SOFTRESET_DIS;
1873 v |= AQ_FW_SOFTRESET_RESET;
1874 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1875
1876 /* Kickstart. */
1877 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1878 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1879 if (!sc->sc_fast_start_enabled)
1880 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1881
1882 /*
1883 * For the case SPI burst transaction was interrupted (by MCP reset
1884 * above), wait until it is completed by hardware.
1885 */
1886 msec_delay(50);
1887
1888 /* MAC Kickstart */
1889 if (!sc->sc_fast_start_enabled) {
1890 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1891
1892 uint32_t flb_status;
1893 for (timo = 0; timo < 1000; timo++) {
1894 flb_status = AQ_READ_REG(sc,
1895 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1896 if (flb_status != 0)
1897 break;
1898 msec_delay(1);
1899 }
1900 if (flb_status == 0) {
1901 aprint_error_dev(sc->sc_dev,
1902 "FLB> MAC kickstart failed: timed out\n");
1903 return ETIMEDOUT;
1904 }
1905 aprint_debug_dev(sc->sc_dev,
1906 "FLB> MAC kickstart done, %d ms\n", timo);
1907 /* FW reset */
1908 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1909 /*
1910 * Let Felicity hardware complete SMBUS transaction before
1911 * Global software reset.
1912 */
1913 msec_delay(50);
1914 sc->sc_fast_start_enabled = true;
1915 }
1916 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1917
1918 /* PHY Kickstart: #undone */
1919 global_software_reset(sc);
1920
1921 for (timo = 0; timo < 1000; timo++) {
1922 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1923 break;
1924 msec_delay(10);
1925 }
1926 if (timo >= 1000) {
1927 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1928 return ETIMEDOUT;
1929 }
1930 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1931 return 0;
1932
1933 }
1934
1935 static int
1936 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1937 {
1938 if (sc->sc_rbl_enabled)
1939 return mac_soft_reset_rbl(sc, mode);
1940
1941 if (mode != NULL)
1942 *mode = FW_BOOT_MODE_FLB;
1943 return mac_soft_reset_flb(sc);
1944 }
1945
1946 static int
1947 aq_fw_read_version(struct aq_softc *sc)
1948 {
1949 int i, error = EBUSY;
1950 #define MAC_FW_START_TIMEOUT_MS 10000
1951 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1952 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1953 if (sc->sc_fw_version != 0) {
1954 error = 0;
1955 break;
1956 }
1957 delay(1000);
1958 }
1959 return error;
1960 }
1961
1962 static int
1963 aq_fw_reset(struct aq_softc *sc)
1964 {
1965 uint32_t ver, v, bootExitCode;
1966 int i, error;
1967
1968 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1969
1970 for (i = 1000; i > 0; i--) {
1971 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1972 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1973 if (v != 0x06000000 || bootExitCode != 0)
1974 break;
1975 }
1976 if (i <= 0) {
1977 aprint_error_dev(sc->sc_dev,
1978 "F/W reset failed. Neither RBL nor FLB started\n");
1979 return ETIMEDOUT;
1980 }
1981 sc->sc_rbl_enabled = (bootExitCode != 0);
1982
1983 /*
1984 * Having FW version 0 is an indicator that cold start
1985 * is in progress. This means two things:
1986 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1987 * 2) Driver may skip reset sequence and save time.
1988 */
1989 if (sc->sc_fast_start_enabled && (ver != 0)) {
1990 error = aq_fw_read_version(sc);
1991 /* Skip reset as it just completed */
1992 if (error == 0)
1993 return 0;
1994 }
1995
1996 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1997 error = mac_soft_reset(sc, &mode);
1998 if (error != 0) {
1999 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2000 return error;
2001 }
2002
2003 switch (mode) {
2004 case FW_BOOT_MODE_FLB:
2005 aprint_debug_dev(sc->sc_dev,
2006 "FLB> F/W successfully loaded from flash.\n");
2007 sc->sc_flash_present = true;
2008 return aq_fw_read_version(sc);
2009 case FW_BOOT_MODE_RBL_FLASH:
2010 aprint_debug_dev(sc->sc_dev,
2011 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2012 sc->sc_flash_present = true;
2013 return aq_fw_read_version(sc);
2014 case FW_BOOT_MODE_UNKNOWN:
2015 aprint_error_dev(sc->sc_dev,
2016 "F/W bootload error: unknown bootloader type\n");
2017 return ENOTSUP;
2018 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2019 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2020 break;
2021 }
2022
2023 /*
2024 * XXX: TODO: add support Host Boot
2025 */
2026 aprint_error_dev(sc->sc_dev,
2027 "RBL> F/W Host Bootload not implemented\n");
2028 return ENOTSUP;
2029 }
2030
2031 static int
2032 aq_hw_reset(struct aq_softc *sc)
2033 {
2034 int error;
2035
2036 /* disable irq */
2037 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2038
2039 /* apply */
2040 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2041
2042 /* wait ack 10 times by 1ms */
2043 WAIT_FOR(
2044 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2045 1000, 10, &error);
2046 if (error != 0) {
2047 aprint_error_dev(sc->sc_dev,
2048 "atlantic: IRQ reset failed: %d\n", error);
2049 return error;
2050 }
2051
2052 return sc->sc_fw_ops->reset(sc);
2053 }
2054
2055 static int
2056 aq_hw_init_ucp(struct aq_softc *sc)
2057 {
2058 int timo;
2059
2060 if (FW_VERSION_MAJOR(sc) == 1) {
2061 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2062 uint32_t data;
2063 cprng_fast(&data, sizeof(data));
2064 data &= 0xfefefefe;
2065 data |= 0x02020202;
2066 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2067 }
2068 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2069 }
2070
2071 for (timo = 100; timo > 0; timo--) {
2072 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2073 if (sc->sc_mbox_addr != 0)
2074 break;
2075 delay(1000);
2076 }
2077
2078 #define AQ_FW_MIN_VERSION 0x01050006
2079 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2080 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2081 aprint_error_dev(sc->sc_dev,
2082 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2083 " or later required, this is %d.%d.%d\n",
2084 FW_VERSION_MAJOR(sc),
2085 FW_VERSION_MINOR(sc),
2086 FW_VERSION_BUILD(sc));
2087 return ENOTSUP;
2088 }
2089
2090 return 0;
2091 }
2092
2093 static int
2094 aq_fw_version_init(struct aq_softc *sc)
2095 {
2096 int error = 0;
2097 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2098
2099 if (FW_VERSION_MAJOR(sc) == 1) {
2100 sc->sc_fw_ops = &aq_fw1x_ops;
2101 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2102 sc->sc_fw_ops = &aq_fw2x_ops;
2103 } else {
2104 aprint_error_dev(sc->sc_dev,
2105 "Unsupported F/W version %d.%d.%d\n",
2106 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2107 FW_VERSION_BUILD(sc));
2108 return ENOTSUP;
2109 }
2110 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2111 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2112
2113 /* detect revision */
2114 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2115 switch (hwrev & 0x0000000f) {
2116 case 0x01:
2117 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2118 fw_vers);
2119 sc->sc_features |= FEATURES_REV_A0 |
2120 FEATURES_MPI_AQ | FEATURES_MIPS;
2121 break;
2122 case 0x02:
2123 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2124 fw_vers);
2125 sc->sc_features |= FEATURES_REV_B0 |
2126 FEATURES_MPI_AQ | FEATURES_MIPS |
2127 FEATURES_TPO2 | FEATURES_RPF2;
2128 break;
2129 case 0x0A:
2130 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2131 fw_vers);
2132 sc->sc_features |= FEATURES_REV_B1 |
2133 FEATURES_MPI_AQ | FEATURES_MIPS |
2134 FEATURES_TPO2 | FEATURES_RPF2;
2135 break;
2136 default:
2137 aprint_error_dev(sc->sc_dev,
2138 "Unknown revision (0x%08x)\n", hwrev);
2139 error = ENOTSUP;
2140 break;
2141 }
2142 return error;
2143 }
2144
2145 static int
2146 fw1x_reset(struct aq_softc *sc)
2147 {
2148 struct aq_mailbox_header mbox;
2149 const int retryCount = 1000;
2150 uint32_t tid0;
2151 int i;
2152
2153 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2154
2155 for (i = 0; i < retryCount; ++i) {
2156 /*
2157 * Read the beginning of Statistics structure to capture
2158 * the Transaction ID.
2159 */
2160 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2161 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2162
2163 /* Successfully read the stats. */
2164 if (tid0 == ~0U) {
2165 /* We have read the initial value. */
2166 tid0 = mbox.transaction_id;
2167 continue;
2168 } else if (mbox.transaction_id != tid0) {
2169 /*
2170 * Compare transaction ID to initial value.
2171 * If it's different means f/w is alive.
2172 * We're done.
2173 */
2174 return 0;
2175 }
2176
2177 /*
2178 * Transaction ID value haven't changed since last time.
2179 * Try reading the stats again.
2180 */
2181 delay(10);
2182 }
2183 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2184 return EBUSY;
2185 }
2186
2187 static int
2188 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2189 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2190 {
2191 uint32_t mpictrl = 0;
2192 uint32_t mpispeed = 0;
2193
2194 if (speed & AQ_LINK_10G)
2195 mpispeed |= FW1X_CTRL_10G;
2196 if (speed & AQ_LINK_5G)
2197 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2198 if (speed & AQ_LINK_2G5)
2199 mpispeed |= FW1X_CTRL_2G5;
2200 if (speed & AQ_LINK_1G)
2201 mpispeed |= FW1X_CTRL_1G;
2202 if (speed & AQ_LINK_100M)
2203 mpispeed |= FW1X_CTRL_100M;
2204
2205 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2206 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2207 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2208 return 0;
2209 }
2210
2211 static int
2212 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2213 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2214 {
2215 uint32_t mpistate, mpi_speed;
2216 aq_link_speed_t speed = AQ_LINK_NONE;
2217
2218 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2219
2220 if (modep != NULL)
2221 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2222
2223 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2224 if (mpi_speed & FW1X_CTRL_10G)
2225 speed = AQ_LINK_10G;
2226 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2227 speed = AQ_LINK_5G;
2228 else if (mpi_speed & FW1X_CTRL_2G5)
2229 speed = AQ_LINK_2G5;
2230 else if (mpi_speed & FW1X_CTRL_1G)
2231 speed = AQ_LINK_1G;
2232 else if (mpi_speed & FW1X_CTRL_100M)
2233 speed = AQ_LINK_100M;
2234
2235 if (speedp != NULL)
2236 *speedp = speed;
2237
2238 if (fcp != NULL)
2239 *fcp = AQ_FC_NONE;
2240
2241 if (eeep != NULL)
2242 *eeep = AQ_EEE_DISABLE;
2243
2244 return 0;
2245 }
2246
2247 static int
2248 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2249 {
2250 int error;
2251
2252 error = aq_fw_downld_dwords(sc,
2253 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2254 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2255 if (error < 0) {
2256 device_printf(sc->sc_dev,
2257 "fw1x> download statistics data FAILED, error %d", error);
2258 return error;
2259 }
2260
2261 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2262 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2263 return 0;
2264 }
2265
2266 static int
2267 fw2x_reset(struct aq_softc *sc)
2268 {
2269 fw2x_capabilities_t caps = { 0 };
2270 int error;
2271
2272 error = aq_fw_downld_dwords(sc,
2273 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2274 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2275 if (error != 0) {
2276 aprint_error_dev(sc->sc_dev,
2277 "fw2x> can't get F/W capabilities mask, error %d\n",
2278 error);
2279 return error;
2280 }
2281 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2282
2283 char buf[256];
2284 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2285 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2286
2287 return 0;
2288 }
2289
2290 static int
2291 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2292 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2293 {
2294 uint64_t mpi_ctrl;
2295 int error = 0;
2296
2297 AQ_MPI_LOCK(sc);
2298
2299 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2300
2301 switch (mode) {
2302 case MPI_INIT:
2303 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2304 if (speed & AQ_LINK_10G)
2305 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2306 if (speed & AQ_LINK_5G)
2307 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2308 if (speed & AQ_LINK_2G5)
2309 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2310 if (speed & AQ_LINK_1G)
2311 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2312 if (speed & AQ_LINK_100M)
2313 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2314
2315 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2316
2317 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2318 if (eee == AQ_EEE_ENABLE)
2319 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2320
2321 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2322 if (fc & AQ_FC_RX)
2323 mpi_ctrl |= FW2X_CTRL_PAUSE;
2324 if (fc & AQ_FC_TX)
2325 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2326 break;
2327 case MPI_DEINIT:
2328 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2329 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2330 break;
2331 default:
2332 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2333 error = EINVAL;
2334 goto failure;
2335 }
2336 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2337
2338 failure:
2339 AQ_MPI_UNLOCK(sc);
2340 return error;
2341 }
2342
2343 static int
2344 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2345 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2346 {
2347 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2348
2349 if (modep != NULL) {
2350 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2351 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2352 *modep = MPI_INIT;
2353 else
2354 *modep = MPI_DEINIT;
2355 }
2356
2357 aq_link_speed_t speed = AQ_LINK_NONE;
2358 if (mpi_state & FW2X_CTRL_RATE_10G)
2359 speed = AQ_LINK_10G;
2360 else if (mpi_state & FW2X_CTRL_RATE_5G)
2361 speed = AQ_LINK_5G;
2362 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2363 speed = AQ_LINK_2G5;
2364 else if (mpi_state & FW2X_CTRL_RATE_1G)
2365 speed = AQ_LINK_1G;
2366 else if (mpi_state & FW2X_CTRL_RATE_100M)
2367 speed = AQ_LINK_100M;
2368
2369 if (speedp != NULL)
2370 *speedp = speed;
2371
2372 aq_link_fc_t fc = AQ_FC_NONE;
2373 if (mpi_state & FW2X_CTRL_PAUSE)
2374 fc |= AQ_FC_RX;
2375 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2376 fc |= AQ_FC_TX;
2377 if (fcp != NULL)
2378 *fcp = fc;
2379
2380 /* XXX: TODO: EEE */
2381 if (eeep != NULL)
2382 *eeep = AQ_EEE_DISABLE;
2383
2384 return 0;
2385 }
2386
2387 static int
2388 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2389 uint32_t timeout_ms, uint32_t try_count)
2390 {
2391 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2392 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2393 int error;
2394
2395 /* First, check that control and state values are consistent */
2396 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2397 device_printf(sc->sc_dev,
2398 "fw2x> MPI control (%#llx) and state (%#llx)"
2399 " are not consistent for mask %#llx!\n",
2400 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2401 (unsigned long long)mask);
2402 return EINVAL;
2403 }
2404
2405 /* Invert bits (toggle) in control register */
2406 mpi_ctrl ^= mask;
2407 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2408
2409 /* Clear all bits except masked */
2410 mpi_ctrl &= mask;
2411
2412 /* Wait for FW reflecting change in state register */
2413 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2414 1000 * timeout_ms, try_count, &error);
2415 if (error != 0) {
2416 device_printf(sc->sc_dev,
2417 "f/w2x> timeout while waiting for response"
2418 " in state register for bit %#llx!",
2419 (unsigned long long)mask);
2420 return error;
2421 }
2422 return 0;
2423 }
2424
2425 static int
2426 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2427 {
2428 int error;
2429
2430 AQ_MPI_LOCK(sc);
2431 /* Say to F/W to update the statistics */
2432 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2433 if (error != 0) {
2434 device_printf(sc->sc_dev,
2435 "fw2x> statistics update error %d\n", error);
2436 goto failure;
2437 }
2438
2439 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2440 error = aq_fw_downld_dwords(sc,
2441 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2442 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2443 if (error != 0) {
2444 device_printf(sc->sc_dev,
2445 "fw2x> download statistics data FAILED, error %d", error);
2446 goto failure;
2447 }
2448 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2449 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2450
2451 failure:
2452 AQ_MPI_UNLOCK(sc);
2453 return error;
2454 }
2455
2456 #if NSYSMON_ENVSYS > 0
2457 static int
2458 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2459 {
2460 int error;
2461 uint32_t value, celsius;
2462
2463 AQ_MPI_LOCK(sc);
2464
2465 /* Say to F/W to update the temperature */
2466 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2467 if (error != 0)
2468 goto failure;
2469
2470 error = aq_fw_downld_dwords(sc,
2471 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2472 &value, sizeof(value) / sizeof(uint32_t));
2473 if (error != 0)
2474 goto failure;
2475
2476 /* 1/256 decrees C to microkelvin */
2477 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2478 if (celsius == 0) {
2479 error = EIO;
2480 goto failure;
2481 }
2482 *temp = celsius * (1000000 / 256) + 273150000;
2483
2484 failure:
2485 AQ_MPI_UNLOCK(sc);
2486 return 0;
2487 }
2488 #endif
2489
2490 static int
2491 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2492 uint32_t cnt)
2493 {
2494 uint32_t v;
2495 int error = 0;
2496
2497 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2498 if (error != 0) {
2499 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2500 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2501 if (v == 0) {
2502 device_printf(sc->sc_dev,
2503 "%s:%d: timeout\n", __func__, __LINE__);
2504 return ETIMEDOUT;
2505 }
2506 }
2507
2508 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2509
2510 error = 0;
2511 for (; cnt > 0 && error == 0; cnt--) {
2512 /* execute mailbox interface */
2513 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2514 AQ_FW_MBOX_CMD_EXECUTE, 1);
2515 if (sc->sc_features & FEATURES_REV_B1) {
2516 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2517 1, 1000, &error);
2518 } else {
2519 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2520 AQ_FW_MBOX_CMD_BUSY) == 0,
2521 1, 1000, &error);
2522 }
2523 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2524 addr += sizeof(uint32_t);
2525 }
2526 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2527
2528 if (error != 0)
2529 device_printf(sc->sc_dev,
2530 "%s:%d: timeout\n", __func__, __LINE__);
2531
2532 return error;
2533 }
2534
2535 /* read my mac address */
2536 static int
2537 aq_get_mac_addr(struct aq_softc *sc)
2538 {
2539 uint32_t mac_addr[2];
2540 uint32_t efuse_shadow_addr;
2541 int err;
2542
2543 efuse_shadow_addr = 0;
2544 if (FW_VERSION_MAJOR(sc) >= 2)
2545 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2546 else
2547 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2548
2549 if (efuse_shadow_addr == 0) {
2550 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2551 return ENXIO;
2552 }
2553
2554 memset(mac_addr, 0, sizeof(mac_addr));
2555 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2556 mac_addr, __arraycount(mac_addr));
2557 if (err < 0)
2558 return err;
2559
2560 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2561 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2562 return ENXIO;
2563 }
2564
2565 mac_addr[0] = htobe32(mac_addr[0]);
2566 mac_addr[1] = htobe32(mac_addr[1]);
2567
2568 memcpy(sc->sc_enaddr.ether_addr_octet,
2569 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2570 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2571 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2572
2573 return 0;
2574 }
2575
2576 /* set multicast filter. index 0 for own address */
2577 static int
2578 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2579 {
2580 uint32_t h, l;
2581
2582 if (index >= AQ_HW_MAC_NUM)
2583 return EINVAL;
2584
2585 if (enaddr == NULL) {
2586 /* disable */
2587 AQ_WRITE_REG_BIT(sc,
2588 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2589 return 0;
2590 }
2591
2592 h = (enaddr[0] << 8) | (enaddr[1]);
2593 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2594 (enaddr[4] << 8) | (enaddr[5]);
2595
2596 /* disable, set, and enable */
2597 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2598 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2599 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2600 RPF_L2UC_MSW_MACADDR_HI, h);
2601 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2602 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2603
2604 return 0;
2605 }
2606
2607 static int
2608 aq_set_capability(struct aq_softc *sc)
2609 {
2610 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2611 int ip4csum_tx =
2612 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2613 int ip4csum_rx =
2614 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2615 int l4csum_tx = ((ifp->if_capenable &
2616 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2617 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2618 int l4csum_rx =
2619 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2620 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2621 uint32_t lso =
2622 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2623 0 : 0xffffffff;
2624 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2625 0 : 0xffffffff;
2626 uint32_t i, v;
2627
2628 /* TX checksums offloads*/
2629 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2630 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2631
2632 /* RX checksums offloads*/
2633 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2634 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2635
2636 /* LSO offloads*/
2637 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2638
2639 #define AQ_B0_LRO_RXD_MAX 16
2640 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2641 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2642 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2643 for (i = 0; i < AQ_RINGS_NUM; i++) {
2644 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2645 RPO_LRO_LDES_MAX_MASK(i), v);
2646 }
2647
2648 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2649 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2650 RPO_LRO_INACTIVE_IVAL, 0);
2651 /*
2652 * the LRO timebase divider is 5 uS (0x61a),
2653 * to get a maximum coalescing interval of 250 uS,
2654 * we need to multiply by 50(0x32) to get
2655 * the default value 250 uS
2656 */
2657 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2658 RPO_LRO_MAX_COALESCING_IVAL, 50);
2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2660 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2661 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2662 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2663 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2664 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2665 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2666 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2667 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2668 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2669
2670 return 0;
2671 }
2672
2673 static int
2674 aq_set_filter(struct aq_softc *sc)
2675 {
2676 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2677 struct ethercom *ec = &sc->sc_ethercom;
2678 struct ether_multi *enm;
2679 struct ether_multistep step;
2680 int idx, error = 0;
2681
2682 if (ifp->if_flags & IFF_PROMISC) {
2683 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2684 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2685 ec->ec_flags |= ETHER_F_ALLMULTI;
2686 goto done;
2687 }
2688
2689 /* clear all table */
2690 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2691 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2692 continue;
2693 aq_set_mac_addr(sc, idx, NULL);
2694 }
2695
2696 /* don't accept all multicast */
2697 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2698 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2699 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2700 RPF_MCAST_FILTER_EN, 0);
2701
2702 idx = 0;
2703 ETHER_LOCK(ec);
2704 ETHER_FIRST_MULTI(step, ec, enm);
2705 while (enm != NULL) {
2706 if (idx == AQ_HW_MAC_OWN)
2707 idx++;
2708
2709 if ((idx >= AQ_HW_MAC_NUM) ||
2710 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2711 /*
2712 * too many filters.
2713 * fallback to accept all multicast addresses.
2714 */
2715 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2716 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2717 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2718 RPF_MCAST_FILTER_EN, 1);
2719 ec->ec_flags |= ETHER_F_ALLMULTI;
2720 ETHER_UNLOCK(ec);
2721 goto done;
2722 }
2723
2724 /* add a filter */
2725 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2726
2727 ETHER_NEXT_MULTI(step, enm);
2728 }
2729 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2730 ETHER_UNLOCK(ec);
2731
2732 done:
2733 return error;
2734 }
2735
2736 static int
2737 aq_ifmedia_change(struct ifnet * const ifp)
2738 {
2739 struct aq_softc *sc = ifp->if_softc;
2740 aq_link_speed_t rate = AQ_LINK_NONE;
2741 aq_link_fc_t fc = AQ_FC_NONE;
2742 aq_link_eee_t eee = AQ_EEE_DISABLE;
2743
2744 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2745 return EINVAL;
2746
2747 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2748 case IFM_AUTO:
2749 rate = AQ_LINK_AUTO;
2750 break;
2751 case IFM_NONE:
2752 rate = AQ_LINK_NONE;
2753 break;
2754 case IFM_100_TX:
2755 rate = AQ_LINK_100M;
2756 break;
2757 case IFM_1000_T:
2758 rate = AQ_LINK_1G;
2759 break;
2760 case IFM_2500_T:
2761 rate = AQ_LINK_2G5;
2762 break;
2763 case IFM_5000_T:
2764 rate = AQ_LINK_5G;
2765 break;
2766 case IFM_10G_T:
2767 rate = AQ_LINK_10G;
2768 break;
2769 default:
2770 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2771 IFM_SUBTYPE(sc->sc_media.ifm_media));
2772 return ENODEV;
2773 }
2774
2775 if (sc->sc_media.ifm_media & IFM_FLOW)
2776 fc = AQ_FC_ALL;
2777
2778 /* XXX: todo EEE */
2779
2780 /* re-initialize hardware with new parameters */
2781 aq_set_linkmode(sc, rate, fc, eee);
2782
2783 return 0;
2784 }
2785
2786 static void
2787 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2788 {
2789 struct aq_softc *sc = ifp->if_softc;
2790
2791 /* update ifm_active */
2792 ifmr->ifm_active = IFM_ETHER;
2793 if (sc->sc_link_fc & AQ_FC_RX)
2794 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2795 if (sc->sc_link_fc & AQ_FC_TX)
2796 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2797
2798 switch (sc->sc_link_rate) {
2799 case AQ_LINK_100M:
2800 /* XXX: need to detect fulldup or halfdup */
2801 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2802 break;
2803 case AQ_LINK_1G:
2804 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2805 break;
2806 case AQ_LINK_2G5:
2807 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2808 break;
2809 case AQ_LINK_5G:
2810 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2811 break;
2812 case AQ_LINK_10G:
2813 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2814 break;
2815 default:
2816 ifmr->ifm_active |= IFM_NONE;
2817 break;
2818 }
2819
2820 /* update ifm_status */
2821 ifmr->ifm_status = IFM_AVALID;
2822 if (sc->sc_link_rate != AQ_LINK_NONE)
2823 ifmr->ifm_status |= IFM_ACTIVE;
2824 }
2825
2826 static void
2827 aq_initmedia(struct aq_softc *sc)
2828 {
2829 #define IFMEDIA_ETHER_ADD(sc, media) \
2830 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2831
2832 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2833 if (sc->sc_available_rates & AQ_LINK_100M) {
2834 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2835 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2836 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2837 }
2838 if (sc->sc_available_rates & AQ_LINK_1G) {
2839 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2840 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2841 }
2842 if (sc->sc_available_rates & AQ_LINK_2G5) {
2843 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2844 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2845 }
2846 if (sc->sc_available_rates & AQ_LINK_5G) {
2847 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2848 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2849 }
2850 if (sc->sc_available_rates & AQ_LINK_10G) {
2851 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2852 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2853 }
2854 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2855 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2856
2857 /* default: auto without flowcontrol */
2858 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2859 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2860 }
2861
2862 static int
2863 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2864 aq_link_eee_t eee)
2865 {
2866 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2867 }
2868
2869 static int
2870 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2871 aq_link_eee_t *eee)
2872 {
2873 aq_hw_fw_mpi_state_t mode;
2874 int error;
2875
2876 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2877 if (error != 0)
2878 return error;
2879 if (mode != MPI_INIT)
2880 return ENXIO;
2881
2882 return 0;
2883 }
2884
2885 static void
2886 aq_hw_init_tx_path(struct aq_softc *sc)
2887 {
2888 /* Tx TC/RSS number config */
2889 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2890
2891 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2892 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2893 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2894 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2895 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2896 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2897
2898 /* misc */
2899 AQ_WRITE_REG(sc, TX_TPO2_REG,
2900 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2901 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2902 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2903
2904 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2905 }
2906
2907 static void
2908 aq_hw_init_rx_path(struct aq_softc *sc)
2909 {
2910 int i;
2911
2912 /* clear setting */
2913 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2914 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2915 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2916 for (i = 0; i < 32; i++) {
2917 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2918 RPF_ETHERTYPE_FILTER_EN, 0);
2919 }
2920
2921 if (sc->sc_rss_enable) {
2922 /* Rx TC/RSS number config */
2923 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2924
2925 /* Rx flow control */
2926 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2927
2928 /* RSS Ring selection */
2929 switch (sc->sc_nqueues) {
2930 case 2:
2931 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2932 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2933 break;
2934 case 4:
2935 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2936 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2937 break;
2938 case 8:
2939 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2940 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2941 break;
2942 }
2943 }
2944
2945 /* L2 and Multicast filters */
2946 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2947 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2948 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2949 RPF_ACTION_HOST);
2950 }
2951 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2952 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2953
2954 /* Vlan filters */
2955 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2956 ETHERTYPE_QINQ);
2957 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2958 ETHERTYPE_VLAN);
2959 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2960
2961 if (sc->sc_features & FEATURES_REV_B) {
2962 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2963 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2965 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2966 }
2967
2968 /* misc */
2969 if (sc->sc_features & FEATURES_RPF2)
2970 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2971 else
2972 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2973
2974 /*
2975 * XXX: RX_TCP_RSS_HASH_REG:
2976 * linux set 0x000f0000
2977 * freebsd set 0x000f001e
2978 */
2979 /* RSS hash type set for IP/TCP */
2980 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2981 RX_TCP_RSS_HASH_TYPE, 0x001e);
2982
2983 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2984 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2985 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2986
2987 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2988 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2989 }
2990
2991 static void
2992 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2993 {
2994 int i;
2995
2996 if (sc->sc_intr_moderation_enable) {
2997 unsigned int tx_min, rx_min; /* 0-255 */
2998 unsigned int tx_max, rx_max; /* 0-511? */
2999
3000 switch (sc->sc_link_rate) {
3001 case AQ_LINK_100M:
3002 tx_min = 0x4f;
3003 tx_max = 0xff;
3004 rx_min = 0x04;
3005 rx_max = 0x50;
3006 break;
3007 case AQ_LINK_1G:
3008 default:
3009 tx_min = 0x4f;
3010 tx_max = 0xff;
3011 rx_min = 0x30;
3012 rx_max = 0x80;
3013 break;
3014 case AQ_LINK_2G5:
3015 tx_min = 0x4f;
3016 tx_max = 0xff;
3017 rx_min = 0x18;
3018 rx_max = 0xe0;
3019 break;
3020 case AQ_LINK_5G:
3021 tx_min = 0x4f;
3022 tx_max = 0xff;
3023 rx_min = 0x0c;
3024 rx_max = 0x70;
3025 break;
3026 case AQ_LINK_10G:
3027 tx_min = 0x4f;
3028 tx_max = 0x1ff;
3029 rx_min = 0x06; /* freebsd use 80 */
3030 rx_max = 0x38; /* freebsd use 120 */
3031 break;
3032 }
3033
3034 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3035 TX_DMA_INT_DESC_WRWB_EN, 0);
3036 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3037 TX_DMA_INT_DESC_MODERATE_EN, 1);
3038 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3039 RX_DMA_INT_DESC_WRWB_EN, 0);
3040 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3041 RX_DMA_INT_DESC_MODERATE_EN, 1);
3042
3043 for (i = 0; i < AQ_RINGS_NUM; i++) {
3044 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3045 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3046 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3047 TX_INTR_MODERATION_CTL_EN);
3048 }
3049 for (i = 0; i < AQ_RINGS_NUM; i++) {
3050 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3051 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3052 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3053 RX_INTR_MODERATION_CTL_EN);
3054 }
3055
3056 } else {
3057 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3058 TX_DMA_INT_DESC_WRWB_EN, 1);
3059 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3060 TX_DMA_INT_DESC_MODERATE_EN, 0);
3061 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3062 RX_DMA_INT_DESC_WRWB_EN, 1);
3063 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3064 RX_DMA_INT_DESC_MODERATE_EN, 0);
3065
3066 for (i = 0; i < AQ_RINGS_NUM; i++) {
3067 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3068 }
3069 for (i = 0; i < AQ_RINGS_NUM; i++) {
3070 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3071 }
3072 }
3073 }
3074
3075 static void
3076 aq_hw_qos_set(struct aq_softc *sc)
3077 {
3078 uint32_t tc = 0;
3079 uint32_t buff_size;
3080
3081 /* TPS Descriptor rate init */
3082 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3083 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3084
3085 /* TPS VM init */
3086 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3087
3088 /* TPS TC credits init */
3089 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3090 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3091
3092 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3093 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3094 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3095 TPS_DATA_TCT_WEIGHT, 0x64);
3096 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3097 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3099 TPS_DESC_TCT_WEIGHT, 0x1e);
3100
3101 /* Tx buf size */
3102 tc = 0;
3103 buff_size = AQ_HW_TXBUF_MAX;
3104 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3105 buff_size);
3106 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3107 (buff_size * (1024 / 32) * 66) / 100);
3108 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3109 (buff_size * (1024 / 32) * 50) / 100);
3110
3111 /* QoS Rx buf size per TC */
3112 tc = 0;
3113 buff_size = AQ_HW_RXBUF_MAX;
3114 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3115 buff_size);
3116 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3117 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3118 (buff_size * (1024 / 32) * 66) / 100);
3119 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3120 (buff_size * (1024 / 32) * 50) / 100);
3121
3122 /* QoS 802.1p priority -> TC mapping */
3123 int i_priority;
3124 for (i_priority = 0; i_priority < 8; i_priority++) {
3125 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3126 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3127 }
3128 }
3129
3130 /* called once from aq_attach */
3131 static int
3132 aq_init_rss(struct aq_softc *sc)
3133 {
3134 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3135 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3136 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3137 unsigned int i;
3138 int error;
3139
3140 /* initialize rss key */
3141 rss_getkey((uint8_t *)rss_key);
3142
3143 /* hash to ring table */
3144 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3145 rss_table[i] = i % sc->sc_nqueues;
3146 }
3147
3148 /*
3149 * set rss key
3150 */
3151 for (i = 0; i < __arraycount(rss_key); i++) {
3152 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3153 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3154 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3155 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3156 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3157 RPF_RSS_KEY_WR_EN, 1);
3158 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3159 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3160 if (error != 0) {
3161 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3162 __func__);
3163 goto rss_set_timeout;
3164 }
3165 }
3166
3167 /*
3168 * set rss indirection table
3169 *
3170 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3171 * we'll make it by __BITMAP(3) macros.
3172 */
3173 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3174 __BITMAP_ZERO(&bit3x64);
3175
3176 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3177 do { \
3178 if (val & 1) { \
3179 __BITMAP_SET((idx) * 3, (bitmap)); \
3180 } else { \
3181 __BITMAP_CLR((idx) * 3, (bitmap)); \
3182 } \
3183 if (val & 2) { \
3184 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3185 } else { \
3186 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3187 } \
3188 if (val & 4) { \
3189 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3190 } else { \
3191 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3192 } \
3193 } while (0 /* CONSTCOND */)
3194
3195 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3196 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3197 }
3198
3199 /* write 192bit data in steps of 16bit */
3200 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3201 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3202 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3203 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3204 RPF_RSS_REDIR_ADDR, i);
3205 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3206 RPF_RSS_REDIR_WR_EN, 1);
3207
3208 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3209 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3210 if (error != 0)
3211 break;
3212 }
3213
3214 rss_set_timeout:
3215 return error;
3216 }
3217
3218 static void
3219 aq_hw_l3_filter_set(struct aq_softc *sc)
3220 {
3221 int i;
3222
3223 /* clear all filter */
3224 for (i = 0; i < 8; i++) {
3225 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3226 RPF_L3_FILTER_L4_EN, 0);
3227 }
3228 }
3229
3230 static void
3231 aq_set_vlan_filters(struct aq_softc *sc)
3232 {
3233 struct ethercom *ec = &sc->sc_ethercom;
3234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3235 struct vlanid_list *vlanidp;
3236 int i;
3237
3238 ETHER_LOCK(ec);
3239
3240 /* disable all vlan filters */
3241 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3242 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3243
3244 /* count VID */
3245 i = 0;
3246 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3247 i++;
3248
3249 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3250 (ifp->if_flags & IFF_PROMISC) ||
3251 (i > RPF_VLAN_MAX_FILTERS)) {
3252 /*
3253 * no vlan hwfilter, in promiscuous mode, or too many VID?
3254 * must receive all VID
3255 */
3256 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3257 RPF_VLAN_MODE_PROMISC, 1);
3258 goto done;
3259 }
3260
3261 /* receive only selected VID */
3262 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3263 i = 0;
3264 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3265 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3266 RPF_VLAN_FILTER_EN, 1);
3267 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3268 RPF_VLAN_FILTER_RXQ_EN, 0);
3269 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3270 RPF_VLAN_FILTER_RXQ, 0);
3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3272 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3273 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3274 RPF_VLAN_FILTER_ID, vlanidp->vid);
3275 i++;
3276 }
3277
3278 done:
3279 ETHER_UNLOCK(ec);
3280 }
3281
3282 static int
3283 aq_hw_init(struct aq_softc *sc)
3284 {
3285 uint32_t v;
3286
3287 /* Force limit MRRS on RDM/TDM to 2K */
3288 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3289 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3290
3291 /*
3292 * TX DMA total request limit. B0 hardware is not capable to
3293 * handle more than (8K-MRRS) incoming DMA data.
3294 * Value 24 in 256byte units
3295 */
3296 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3297
3298 aq_hw_init_tx_path(sc);
3299 aq_hw_init_rx_path(sc);
3300
3301 aq_hw_interrupt_moderation_set(sc);
3302
3303 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3304 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3305
3306 aq_hw_qos_set(sc);
3307
3308 /* Enable interrupt */
3309 int irqmode;
3310 if (sc->sc_msix)
3311 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3312 else
3313 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3314
3315 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3316 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3317 sc->sc_msix ? 1 : 0);
3318 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3319
3320 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3321
3322 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3323 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3324 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3325 );
3326
3327 /* link interrupt */
3328 if (!sc->sc_msix)
3329 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3330 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3331 __BIT(7) | sc->sc_linkstat_irq);
3332
3333 return 0;
3334 }
3335
3336 static int
3337 aq_update_link_status(struct aq_softc *sc)
3338 {
3339 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3340 aq_link_speed_t rate = AQ_LINK_NONE;
3341 aq_link_fc_t fc = AQ_FC_NONE;
3342 aq_link_eee_t eee = AQ_EEE_DISABLE;
3343 unsigned int speed;
3344 int changed = 0;
3345
3346 aq_get_linkmode(sc, &rate, &fc, &eee);
3347
3348 if (sc->sc_link_rate != rate)
3349 changed = 1;
3350 if (sc->sc_link_fc != fc)
3351 changed = 1;
3352 if (sc->sc_link_eee != eee)
3353 changed = 1;
3354
3355 if (changed) {
3356 switch (rate) {
3357 case AQ_LINK_100M:
3358 speed = 100;
3359 break;
3360 case AQ_LINK_1G:
3361 speed = 1000;
3362 break;
3363 case AQ_LINK_2G5:
3364 speed = 2500;
3365 break;
3366 case AQ_LINK_5G:
3367 speed = 5000;
3368 break;
3369 case AQ_LINK_10G:
3370 speed = 10000;
3371 break;
3372 case AQ_LINK_NONE:
3373 default:
3374 speed = 0;
3375 break;
3376 }
3377
3378 if (sc->sc_link_rate == AQ_LINK_NONE) {
3379 /* link DOWN -> UP */
3380 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3381 speed);
3382 if_link_state_change(ifp, LINK_STATE_UP);
3383 } else if (rate == AQ_LINK_NONE) {
3384 /* link UP -> DOWN */
3385 device_printf(sc->sc_dev, "link is DOWN\n");
3386 if_link_state_change(ifp, LINK_STATE_DOWN);
3387 } else {
3388 device_printf(sc->sc_dev,
3389 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3390 speed, fc, eee);
3391 }
3392
3393 sc->sc_link_rate = rate;
3394 sc->sc_link_fc = fc;
3395 sc->sc_link_eee = eee;
3396
3397 /* update interrupt timing according to new link speed */
3398 aq_hw_interrupt_moderation_set(sc);
3399 }
3400
3401 return changed;
3402 }
3403
3404 #ifdef AQ_EVENT_COUNTERS
3405 static void
3406 aq_update_statistics(struct aq_softc *sc)
3407 {
3408 int prev = sc->sc_statistics_idx;
3409 int cur = prev ^ 1;
3410
3411 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3412
3413 /*
3414 * aq's internal statistics counter is 32bit.
3415 * cauculate delta, and add to evcount
3416 */
3417 #define ADD_DELTA(cur, prev, name) \
3418 do { \
3419 uint32_t n; \
3420 n = (uint32_t)(sc->sc_statistics[cur].name - \
3421 sc->sc_statistics[prev].name); \
3422 if (n != 0) { \
3423 AQ_EVCNT_ADD(sc, name, n); \
3424 } \
3425 } while (/*CONSTCOND*/0);
3426
3427 ADD_DELTA(cur, prev, uprc);
3428 ADD_DELTA(cur, prev, mprc);
3429 ADD_DELTA(cur, prev, bprc);
3430 ADD_DELTA(cur, prev, prc);
3431 ADD_DELTA(cur, prev, erpr);
3432 ADD_DELTA(cur, prev, uptc);
3433 ADD_DELTA(cur, prev, mptc);
3434 ADD_DELTA(cur, prev, bptc);
3435 ADD_DELTA(cur, prev, ptc);
3436 ADD_DELTA(cur, prev, erpt);
3437 ADD_DELTA(cur, prev, mbtc);
3438 ADD_DELTA(cur, prev, bbtc);
3439 ADD_DELTA(cur, prev, mbrc);
3440 ADD_DELTA(cur, prev, bbrc);
3441 ADD_DELTA(cur, prev, ubrc);
3442 ADD_DELTA(cur, prev, ubtc);
3443 ADD_DELTA(cur, prev, dpc);
3444 ADD_DELTA(cur, prev, cprc);
3445
3446 sc->sc_statistics_idx = cur;
3447 }
3448 #endif /* AQ_EVENT_COUNTERS */
3449
3450 /* allocate and map one DMA block */
3451 static int
3452 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3453 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3454 {
3455 int nsegs, error;
3456
3457 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3458 1, &nsegs, 0)) != 0) {
3459 aprint_error_dev(sc->sc_dev,
3460 "unable to allocate DMA buffer, error=%d\n", error);
3461 goto fail_alloc;
3462 }
3463
3464 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3465 BUS_DMA_COHERENT)) != 0) {
3466 aprint_error_dev(sc->sc_dev,
3467 "unable to map DMA buffer, error=%d\n", error);
3468 goto fail_map;
3469 }
3470
3471 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3472 0, mapp)) != 0) {
3473 aprint_error_dev(sc->sc_dev,
3474 "unable to create DMA map, error=%d\n", error);
3475 goto fail_create;
3476 }
3477
3478 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3479 0)) != 0) {
3480 aprint_error_dev(sc->sc_dev,
3481 "unable to load DMA map, error=%d\n", error);
3482 goto fail_load;
3483 }
3484
3485 *sizep = size;
3486 return 0;
3487
3488 fail_load:
3489 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3490 *mapp = NULL;
3491 fail_create:
3492 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3493 *addrp = NULL;
3494 fail_map:
3495 bus_dmamem_free(sc->sc_dmat, seg, 1);
3496 memset(seg, 0, sizeof(*seg));
3497 fail_alloc:
3498 *sizep = 0;
3499 return error;
3500 }
3501
3502 static void
3503 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3504 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3505 {
3506 if (*mapp != NULL) {
3507 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3508 *mapp = NULL;
3509 }
3510 if (*addrp != NULL) {
3511 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3512 *addrp = NULL;
3513 }
3514 if (*sizep != 0) {
3515 bus_dmamem_free(sc->sc_dmat, seg, 1);
3516 memset(seg, 0, sizeof(*seg));
3517 *sizep = 0;
3518 }
3519 }
3520
3521 static int
3522 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3523 {
3524 int i, error;
3525
3526 /* allocate tx descriptors */
3527 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3528 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3529 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3530 if (error != 0)
3531 return error;
3532
3533 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3534
3535 /* fill tx ring with dmamap */
3536 for (i = 0; i < AQ_TXD_NUM; i++) {
3537 #define AQ_MAXDMASIZE (16 * 1024)
3538 #define AQ_NTXSEGS 32
3539 /* XXX: TODO: error check */
3540 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3541 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3542 }
3543 return 0;
3544 }
3545
3546 static void
3547 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3548 {
3549 int i;
3550
3551 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3552 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3553
3554 for (i = 0; i < AQ_TXD_NUM; i++) {
3555 if (txring->txr_mbufs[i].dmamap != NULL) {
3556 if (txring->txr_mbufs[i].m != NULL) {
3557 bus_dmamap_unload(sc->sc_dmat,
3558 txring->txr_mbufs[i].dmamap);
3559 m_freem(txring->txr_mbufs[i].m);
3560 txring->txr_mbufs[i].m = NULL;
3561 }
3562 bus_dmamap_destroy(sc->sc_dmat,
3563 txring->txr_mbufs[i].dmamap);
3564 txring->txr_mbufs[i].dmamap = NULL;
3565 }
3566 }
3567 }
3568
3569 static int
3570 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3571 {
3572 int i, error;
3573
3574 /* allocate rx descriptors */
3575 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3576 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3577 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3578 if (error != 0)
3579 return error;
3580
3581 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3582
3583 /* fill rxring with dmamaps */
3584 for (i = 0; i < AQ_RXD_NUM; i++) {
3585 rxring->rxr_mbufs[i].m = NULL;
3586 /* XXX: TODO: error check */
3587 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3588 &rxring->rxr_mbufs[i].dmamap);
3589 }
3590 return 0;
3591 }
3592
3593 static void
3594 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3595 {
3596 int i;
3597
3598 /* free all mbufs allocated for RX */
3599 for (i = 0; i < AQ_RXD_NUM; i++) {
3600 if (rxring->rxr_mbufs[i].m != NULL) {
3601 bus_dmamap_unload(sc->sc_dmat,
3602 rxring->rxr_mbufs[i].dmamap);
3603 m_freem(rxring->rxr_mbufs[i].m);
3604 rxring->rxr_mbufs[i].m = NULL;
3605 }
3606 }
3607 }
3608
3609 static void
3610 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3611 {
3612 int i;
3613
3614 /* free all mbufs and dmamaps */
3615 aq_rxdrain(sc, rxring);
3616 for (i = 0; i < AQ_RXD_NUM; i++) {
3617 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3618 bus_dmamap_destroy(sc->sc_dmat,
3619 rxring->rxr_mbufs[i].dmamap);
3620 rxring->rxr_mbufs[i].dmamap = NULL;
3621 }
3622 }
3623
3624 /* free RX descriptor */
3625 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3626 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3627 }
3628
3629 static void
3630 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3631 struct mbuf *m)
3632 {
3633 int error;
3634
3635 /* if mbuf already exists, unload and free */
3636 if (rxring->rxr_mbufs[idx].m != NULL) {
3637 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3638 m_freem(rxring->rxr_mbufs[idx].m);
3639 rxring->rxr_mbufs[idx].m = NULL;
3640 }
3641
3642 rxring->rxr_mbufs[idx].m = m;
3643
3644 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3645 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3646 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3647 if (error) {
3648 device_printf(sc->sc_dev,
3649 "unable to load rx DMA map %d, error = %d\n", idx, error);
3650 panic("%s: unable to load rx DMA map. error=%d",
3651 __func__, error);
3652 }
3653 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3654 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3655 }
3656
3657 static inline void
3658 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3659 {
3660 /* refill rxdesc, and sync */
3661 rxring->rxr_rxdesc[idx].read.buf_addr =
3662 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3663 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3664 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3665 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3666 BUS_DMASYNC_PREWRITE);
3667 }
3668
3669 static struct mbuf *
3670 aq_alloc_mbuf(void)
3671 {
3672 struct mbuf *m;
3673
3674 MGETHDR(m, M_DONTWAIT, MT_DATA);
3675 if (m == NULL)
3676 return NULL;
3677
3678 MCLGET(m, M_DONTWAIT);
3679 if ((m->m_flags & M_EXT) == 0) {
3680 m_freem(m);
3681 return NULL;
3682 }
3683
3684 return m;
3685 }
3686
3687 /* allocate mbuf and unload dmamap */
3688 static int
3689 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3690 {
3691 struct mbuf *m;
3692
3693 m = aq_alloc_mbuf();
3694 if (m == NULL)
3695 return ENOBUFS;
3696
3697 aq_rxring_setmbuf(sc, rxring, idx, m);
3698 return 0;
3699 }
3700
3701 static int
3702 aq_txrx_rings_alloc(struct aq_softc *sc)
3703 {
3704 int n, error;
3705
3706 for (n = 0; n < sc->sc_nqueues; n++) {
3707 sc->sc_queue[n].sc = sc;
3708 sc->sc_queue[n].txring.txr_sc = sc;
3709 sc->sc_queue[n].txring.txr_index = n;
3710 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3711 IPL_NET);
3712 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3713 if (error != 0)
3714 goto failure;
3715
3716 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3717 if (error != 0)
3718 goto failure;
3719
3720 sc->sc_queue[n].rxring.rxr_sc = sc;
3721 sc->sc_queue[n].rxring.rxr_index = n;
3722 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3723 IPL_NET);
3724 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3725 if (error != 0)
3726 break;
3727 }
3728
3729 failure:
3730 return error;
3731 }
3732
3733 static void
3734 aq_txrx_rings_free(struct aq_softc *sc)
3735 {
3736 int n;
3737
3738 for (n = 0; n < sc->sc_nqueues; n++) {
3739 aq_txring_free(sc, &sc->sc_queue[n].txring);
3740 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3741
3742 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3743
3744 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3745 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3746 }
3747 }
3748
3749 static int
3750 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3751 {
3752 int error = 0;
3753 txring->txr_softint = NULL;
3754
3755 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3756 if (txring->txr_pcq == NULL) {
3757 aprint_error_dev(sc->sc_dev,
3758 "unable to allocate pcq for TXring[%d]\n",
3759 txring->txr_index);
3760 error = ENOMEM;
3761 goto done;
3762 }
3763
3764 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3765 aq_deferred_transmit, txring);
3766 if (txring->txr_softint == NULL) {
3767 aprint_error_dev(sc->sc_dev,
3768 "unable to establish softint for TXring[%d]\n",
3769 txring->txr_index);
3770 error = ENOENT;
3771 }
3772
3773 done:
3774 return error;
3775 }
3776
3777 static void
3778 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3779 {
3780 struct mbuf *m;
3781
3782 if (txring->txr_softint != NULL) {
3783 softint_disestablish(txring->txr_softint);
3784 txring->txr_softint = NULL;
3785 }
3786
3787 if (txring->txr_pcq != NULL) {
3788 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3789 m_freem(m);
3790 pcq_destroy(txring->txr_pcq);
3791 txring->txr_pcq = NULL;
3792 }
3793 }
3794
3795 #if NSYSMON_ENVSYS > 0
3796 static void
3797 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3798 {
3799 struct aq_softc *sc;
3800 uint32_t temp;
3801 int error;
3802
3803 sc = sme->sme_cookie;
3804
3805 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3806 if (error == 0) {
3807 edata->value_cur = temp;
3808 edata->state = ENVSYS_SVALID;
3809 } else {
3810 edata->state = ENVSYS_SINVALID;
3811 }
3812 }
3813 #endif
3814
3815 static void
3816 aq_tick(void *arg)
3817 {
3818 struct aq_softc *sc = arg;
3819
3820 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3821 sc->sc_detect_linkstat = false;
3822 aq_update_link_status(sc);
3823 }
3824
3825 #ifdef AQ_EVENT_COUNTERS
3826 if (sc->sc_poll_statistics)
3827 aq_update_statistics(sc);
3828 #endif
3829
3830 if (sc->sc_poll_linkstat
3831 #ifdef AQ_EVENT_COUNTERS
3832 || sc->sc_poll_statistics
3833 #endif
3834 ) {
3835 callout_schedule(&sc->sc_tick_ch, hz);
3836 }
3837 }
3838
3839 /* interrupt enable/disable */
3840 static void
3841 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3842 {
3843 uint32_t imask = 0;
3844 int i;
3845
3846 if (txrx) {
3847 for (i = 0; i < sc->sc_nqueues; i++) {
3848 imask |= __BIT(sc->sc_tx_irq[i]);
3849 imask |= __BIT(sc->sc_rx_irq[i]);
3850 }
3851 }
3852
3853 if (link)
3854 imask |= __BIT(sc->sc_linkstat_irq);
3855
3856 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3857 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3858 }
3859
3860 static int
3861 aq_legacy_intr(void *arg)
3862 {
3863 struct aq_softc *sc = arg;
3864 uint32_t status;
3865 int nintr = 0;
3866
3867 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3868 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3869
3870 if (status & __BIT(sc->sc_linkstat_irq)) {
3871 sc->sc_detect_linkstat = true;
3872 callout_schedule(&sc->sc_tick_ch, 0);
3873 nintr++;
3874 }
3875
3876 if (status & __BIT(sc->sc_rx_irq[0])) {
3877 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3878 }
3879
3880 if (status & __BIT(sc->sc_tx_irq[0])) {
3881 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3882 }
3883
3884 return nintr;
3885 }
3886
3887 static int
3888 aq_txrx_intr(void *arg)
3889 {
3890 struct aq_queue *queue = arg;
3891 struct aq_softc *sc = queue->sc;
3892 struct aq_txring *txring = &queue->txring;
3893 struct aq_rxring *rxring = &queue->rxring;
3894 uint32_t status;
3895 int nintr = 0;
3896 int txringidx, rxringidx, txirq, rxirq;
3897
3898 txringidx = txring->txr_index;
3899 rxringidx = rxring->rxr_index;
3900 txirq = sc->sc_tx_irq[txringidx];
3901 rxirq = sc->sc_rx_irq[rxringidx];
3902
3903 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3904 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3905 /* stray interrupt? */
3906 return 0;
3907 }
3908
3909 nintr += aq_rx_intr(rxring);
3910 nintr += aq_tx_intr(txring);
3911
3912 return nintr;
3913 }
3914
3915 static int
3916 aq_link_intr(void *arg)
3917 {
3918 struct aq_softc *sc = arg;
3919 uint32_t status;
3920 int nintr = 0;
3921
3922 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3923 if (status & __BIT(sc->sc_linkstat_irq)) {
3924 sc->sc_detect_linkstat = true;
3925 callout_schedule(&sc->sc_tick_ch, 0);
3926 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3927 __BIT(sc->sc_linkstat_irq));
3928 nintr++;
3929 }
3930
3931 return nintr;
3932 }
3933
3934 static void
3935 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3936 {
3937 const int ringidx = txring->txr_index;
3938 int i;
3939
3940 mutex_enter(&txring->txr_mutex);
3941
3942 txring->txr_prodidx = 0;
3943 txring->txr_considx = 0;
3944 txring->txr_nfree = AQ_TXD_NUM;
3945 txring->txr_active = false;
3946
3947 /* free mbufs untransmitted */
3948 for (i = 0; i < AQ_TXD_NUM; i++) {
3949 if (txring->txr_mbufs[i].m != NULL) {
3950 m_freem(txring->txr_mbufs[i].m);
3951 txring->txr_mbufs[i].m = NULL;
3952 }
3953 }
3954
3955 /* disable DMA */
3956 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3957
3958 if (start) {
3959 /* TX descriptor physical address */
3960 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3961 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3962 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3963 (uint32_t)((uint64_t)paddr >> 32));
3964
3965 /* TX descriptor size */
3966 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3967 AQ_TXD_NUM / 8);
3968
3969 /* reload TAIL pointer */
3970 txring->txr_prodidx = txring->txr_considx =
3971 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3972 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3973
3974 /* Mapping interrupt vector */
3975 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3976 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3977 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3978 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3979
3980 /* enable DMA */
3981 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3982 TX_DMA_DESC_EN, 1);
3983
3984 const int cpuid = 0; /* XXX? */
3985 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3986 TDM_DCAD_CPUID, cpuid);
3987 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3988 TDM_DCAD_CPUID_EN, 0);
3989
3990 txring->txr_active = true;
3991 }
3992
3993 mutex_exit(&txring->txr_mutex);
3994 }
3995
3996 static int
3997 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3998 {
3999 const int ringidx = rxring->rxr_index;
4000 int i;
4001 int error = 0;
4002
4003 mutex_enter(&rxring->rxr_mutex);
4004 rxring->rxr_active = false;
4005
4006 /* disable DMA */
4007 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4008
4009 /* free all RX mbufs */
4010 aq_rxdrain(sc, rxring);
4011
4012 if (start) {
4013 for (i = 0; i < AQ_RXD_NUM; i++) {
4014 error = aq_rxring_add(sc, rxring, i);
4015 if (error != 0) {
4016 aq_rxdrain(sc, rxring);
4017 return error;
4018 }
4019 aq_rxring_reset_desc(sc, rxring, i);
4020 }
4021
4022 /* RX descriptor physical address */
4023 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4024 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4025 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4026 (uint32_t)((uint64_t)paddr >> 32));
4027
4028 /* RX descriptor size */
4029 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4030 AQ_RXD_NUM / 8);
4031
4032 /* maximum receive frame size */
4033 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4034 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4035 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4036 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4037
4038 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4039 RX_DMA_DESC_HEADER_SPLIT, 0);
4040 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4041 RX_DMA_DESC_VLAN_STRIP,
4042 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4043 1 : 0);
4044
4045 /*
4046 * reload TAIL pointer, and update readidx
4047 * (HEAD pointer cannot write)
4048 */
4049 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4050 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4051 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4052 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4053
4054 /* Rx ring set mode */
4055
4056 /* Mapping interrupt vector */
4057 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4058 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4059 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4060 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4061
4062 const int cpuid = 0; /* XXX? */
4063 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4064 RX_DMA_DCAD_CPUID, cpuid);
4065 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4066 RX_DMA_DCAD_DESC_EN, 0);
4067 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4068 RX_DMA_DCAD_HEADER_EN, 0);
4069 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4070 RX_DMA_DCAD_PAYLOAD_EN, 0);
4071
4072 /* enable DMA. start receiving */
4073 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4074 RX_DMA_DESC_EN, 1);
4075
4076 rxring->rxr_active = true;
4077 }
4078
4079 mutex_exit(&rxring->rxr_mutex);
4080 return error;
4081 }
4082
4083 #define TXRING_NEXTIDX(idx) \
4084 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4085 #define RXRING_NEXTIDX(idx) \
4086 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4087
4088 static int
4089 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4090 {
4091 bus_dmamap_t map;
4092 struct mbuf *m = *mp;
4093 uint32_t ctl1, ctl1_ctx, ctl2;
4094 int idx, i, error;
4095
4096 idx = txring->txr_prodidx;
4097 map = txring->txr_mbufs[idx].dmamap;
4098
4099 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4100 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4101 if (error == EFBIG) {
4102 struct mbuf *n;
4103 n = m_defrag(m, M_DONTWAIT);
4104 if (n == NULL)
4105 return EFBIG;
4106 /* m_defrag() preserve m */
4107 KASSERT(n == m);
4108 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4109 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4110 }
4111 if (error != 0)
4112 return error;
4113
4114 /*
4115 * check spaces of free descriptors.
4116 * +1 is additional descriptor for context (vlan, etc,.)
4117 */
4118 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4119 device_printf(sc->sc_dev,
4120 "TX: not enough descriptors left %d for %d segs\n",
4121 txring->txr_nfree, map->dm_nsegs + 1);
4122 bus_dmamap_unload(sc->sc_dmat, map);
4123 return ENOBUFS;
4124 }
4125
4126 /* sync dma for mbuf */
4127 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4128 BUS_DMASYNC_PREWRITE);
4129
4130 ctl1_ctx = 0;
4131 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4132
4133 if (vlan_has_tag(m)) {
4134 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4135 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4136
4137 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4138 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4139
4140 /* fill context descriptor and forward index */
4141 txring->txr_txdesc[idx].buf_addr = 0;
4142 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4143 txring->txr_txdesc[idx].ctl2 = 0;
4144
4145 idx = TXRING_NEXTIDX(idx);
4146 txring->txr_nfree--;
4147 }
4148
4149 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4150 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4151 if (m->m_pkthdr.csum_flags &
4152 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4153 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4154 }
4155
4156 /* fill descriptor(s) */
4157 for (i = 0; i < map->dm_nsegs; i++) {
4158 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4159 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4160 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4161
4162 if (i == 0) {
4163 /* remember mbuf of these descriptors */
4164 txring->txr_mbufs[idx].m = m;
4165 } else {
4166 txring->txr_mbufs[idx].m = NULL;
4167 }
4168
4169 if (i == map->dm_nsegs - 1) {
4170 /* last segment, mark an EndOfPacket, and cause intr */
4171 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4172 }
4173
4174 txring->txr_txdesc[idx].buf_addr =
4175 htole64(map->dm_segs[i].ds_addr);
4176 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4177 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4178
4179 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4180 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4181 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4182
4183 idx = TXRING_NEXTIDX(idx);
4184 txring->txr_nfree--;
4185 }
4186
4187 txring->txr_prodidx = idx;
4188
4189 return 0;
4190 }
4191
4192 static int
4193 aq_tx_intr(void *arg)
4194 {
4195 struct aq_txring *txring = arg;
4196 struct aq_softc *sc = txring->txr_sc;
4197 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4198 struct mbuf *m;
4199 const int ringidx = txring->txr_index;
4200 unsigned int idx, hw_head, n = 0;
4201
4202 mutex_enter(&txring->txr_mutex);
4203
4204 if (!txring->txr_active)
4205 goto tx_intr_done;
4206
4207 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4208 TX_DMA_DESC_HEAD_PTR);
4209 if (hw_head == txring->txr_considx) {
4210 goto tx_intr_done;
4211 }
4212
4213 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4214
4215 for (idx = txring->txr_considx; idx != hw_head;
4216 idx = TXRING_NEXTIDX(idx), n++) {
4217
4218 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4219 bus_dmamap_unload(sc->sc_dmat,
4220 txring->txr_mbufs[idx].dmamap);
4221
4222 if_statinc_ref(nsr, if_opackets);
4223 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4224 if (m->m_flags & M_MCAST)
4225 if_statinc_ref(nsr, if_omcasts);
4226
4227 m_freem(m);
4228 txring->txr_mbufs[idx].m = NULL;
4229 }
4230
4231 txring->txr_nfree++;
4232 }
4233 txring->txr_considx = idx;
4234
4235 IF_STAT_PUTREF(ifp);
4236
4237 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4238 ifp->if_flags &= ~IFF_OACTIVE;
4239
4240 /* no more pending TX packet, cancel watchdog */
4241 if (txring->txr_nfree >= AQ_TXD_NUM)
4242 ifp->if_timer = 0;
4243
4244 tx_intr_done:
4245 mutex_exit(&txring->txr_mutex);
4246
4247 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4248 return n;
4249 }
4250
4251 static int
4252 aq_rx_intr(void *arg)
4253 {
4254 struct aq_rxring *rxring = arg;
4255 struct aq_softc *sc = rxring->rxr_sc;
4256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4257 const int ringidx = rxring->rxr_index;
4258 aq_rx_desc_t *rxd;
4259 struct mbuf *m, *m0, *mprev, *new_m;
4260 uint32_t rxd_type, rxd_hash __unused;
4261 uint16_t rxd_status, rxd_pktlen;
4262 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4263 unsigned int idx, n = 0;
4264
4265 mutex_enter(&rxring->rxr_mutex);
4266
4267 if (!rxring->rxr_active)
4268 goto rx_intr_done;
4269
4270 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4271 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4272 goto rx_intr_done;
4273 }
4274
4275 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4276
4277 m0 = mprev = NULL;
4278 for (idx = rxring->rxr_readidx;
4279 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4280 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4281
4282 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4283 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4284 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4285
4286 rxd = &rxring->rxr_rxdesc[idx];
4287 rxd_status = le16toh(rxd->wb.status);
4288
4289 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4290 break; /* not yet done */
4291
4292 rxd_type = le32toh(rxd->wb.type);
4293 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4294 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4295 rxd_hash = le32toh(rxd->wb.rss_hash);
4296 rxd_vlan = le16toh(rxd->wb.vlan);
4297
4298 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4299 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4300 if_statinc_ref(nsr, if_ierrors);
4301 goto rx_next;
4302 }
4303
4304 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4305 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4306 BUS_DMASYNC_POSTREAD);
4307 m = rxring->rxr_mbufs[idx].m;
4308
4309 new_m = aq_alloc_mbuf();
4310 if (new_m == NULL) {
4311 /*
4312 * cannot allocate new mbuf.
4313 * discard this packet, and reuse mbuf for next.
4314 */
4315 if_statinc_ref(nsr, if_iqdrops);
4316 goto rx_next;
4317 }
4318 rxring->rxr_mbufs[idx].m = NULL;
4319 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4320
4321 if (m0 == NULL) {
4322 m0 = m;
4323 } else {
4324 if (m->m_flags & M_PKTHDR)
4325 m_remove_pkthdr(m);
4326 mprev->m_next = m;
4327 }
4328 mprev = m;
4329
4330 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4331 m->m_len = MCLBYTES;
4332 } else {
4333 /* last buffer */
4334 m->m_len = rxd_pktlen % MCLBYTES;
4335 m0->m_pkthdr.len = rxd_pktlen;
4336 /* VLAN offloading */
4337 if ((sc->sc_ethercom.ec_capenable &
4338 ETHERCAP_VLAN_HWTAGGING) &&
4339 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4340 __SHIFTOUT(rxd_type,
4341 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4342 vlan_set_tag(m0, rxd_vlan);
4343 }
4344
4345 /* Checksum offloading */
4346 unsigned int pkttype_eth =
4347 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4348 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4349 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4350 __SHIFTOUT(rxd_type,
4351 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4352 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4353 if (__SHIFTOUT(rxd_status,
4354 RXDESC_STATUS_IPV4_CSUM_NG))
4355 m0->m_pkthdr.csum_flags |=
4356 M_CSUM_IPv4_BAD;
4357 }
4358
4359 /*
4360 * aq will always mark BAD for fragment packets,
4361 * but this is not a problem because the IP stack
4362 * ignores the CSUM flag in fragment packets.
4363 */
4364 if (__SHIFTOUT(rxd_type,
4365 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4366 bool checked = false;
4367 unsigned int pkttype_proto =
4368 __SHIFTOUT(rxd_type,
4369 RXDESC_TYPE_PKTTYPE_PROTO);
4370
4371 if (pkttype_proto ==
4372 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4373 if ((pkttype_eth ==
4374 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4375 (ifp->if_capabilities &
4376 IFCAP_CSUM_TCPv4_Rx)) {
4377 m0->m_pkthdr.csum_flags |=
4378 M_CSUM_TCPv4;
4379 checked = true;
4380 } else if ((pkttype_eth ==
4381 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4382 (ifp->if_capabilities &
4383 IFCAP_CSUM_TCPv6_Rx)) {
4384 m0->m_pkthdr.csum_flags |=
4385 M_CSUM_TCPv6;
4386 checked = true;
4387 }
4388 } else if (pkttype_proto ==
4389 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4390 if ((pkttype_eth ==
4391 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4392 (ifp->if_capabilities &
4393 IFCAP_CSUM_UDPv4_Rx)) {
4394 m0->m_pkthdr.csum_flags |=
4395 M_CSUM_UDPv4;
4396 checked = true;
4397 } else if ((pkttype_eth ==
4398 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4399 (ifp->if_capabilities &
4400 IFCAP_CSUM_UDPv6_Rx)) {
4401 m0->m_pkthdr.csum_flags |=
4402 M_CSUM_UDPv6;
4403 checked = true;
4404 }
4405 }
4406 if (checked &&
4407 (__SHIFTOUT(rxd_status,
4408 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4409 !__SHIFTOUT(rxd_status,
4410 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4411 m0->m_pkthdr.csum_flags |=
4412 M_CSUM_TCP_UDP_BAD;
4413 }
4414 }
4415
4416 m_set_rcvif(m0, ifp);
4417 if_statinc_ref(nsr, if_ipackets);
4418 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4419 if_percpuq_enqueue(ifp->if_percpuq, m0);
4420 m0 = mprev = NULL;
4421 }
4422
4423 rx_next:
4424 aq_rxring_reset_desc(sc, rxring, idx);
4425 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4426 }
4427 rxring->rxr_readidx = idx;
4428
4429 IF_STAT_PUTREF(ifp);
4430
4431 rx_intr_done:
4432 mutex_exit(&rxring->rxr_mutex);
4433
4434 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4435 return n;
4436 }
4437
4438 static int
4439 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4440 {
4441 struct ifnet *ifp = &ec->ec_if;
4442 struct aq_softc *sc = ifp->if_softc;
4443
4444 aq_set_vlan_filters(sc);
4445 return 0;
4446 }
4447
4448 static int
4449 aq_ifflags_cb(struct ethercom *ec)
4450 {
4451 struct ifnet *ifp = &ec->ec_if;
4452 struct aq_softc *sc = ifp->if_softc;
4453 int i, ecchange, error = 0;
4454 unsigned short iffchange;
4455
4456 AQ_LOCK(sc);
4457
4458 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4459 if ((iffchange & IFF_PROMISC) != 0)
4460 error = aq_set_filter(sc);
4461
4462 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4463 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4464 for (i = 0; i < AQ_RINGS_NUM; i++) {
4465 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4466 RX_DMA_DESC_VLAN_STRIP,
4467 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4468 1 : 0);
4469 }
4470 }
4471
4472 /* vlan configuration depends on also interface promiscuous mode */
4473 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4474 aq_set_vlan_filters(sc);
4475
4476 sc->sc_ec_capenable = ec->ec_capenable;
4477 sc->sc_if_flags = ifp->if_flags;
4478
4479 AQ_UNLOCK(sc);
4480
4481 return error;
4482 }
4483
4484 static int
4485 aq_init(struct ifnet *ifp)
4486 {
4487 struct aq_softc *sc = ifp->if_softc;
4488 int i, error = 0;
4489
4490 aq_stop(ifp, false);
4491
4492 AQ_LOCK(sc);
4493
4494 aq_set_vlan_filters(sc);
4495 aq_set_capability(sc);
4496
4497 for (i = 0; i < sc->sc_nqueues; i++) {
4498 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4499 }
4500
4501 /* invalidate RX descriptor cache */
4502 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4503 AQ_READ_REG_BIT(sc,
4504 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4505
4506 /* start RX */
4507 for (i = 0; i < sc->sc_nqueues; i++) {
4508 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4509 if (error != 0) {
4510 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4511 __func__);
4512 goto aq_init_failure;
4513 }
4514 }
4515 aq_init_rss(sc);
4516 aq_hw_l3_filter_set(sc);
4517
4518 /* need to start callout? */
4519 if (sc->sc_poll_linkstat
4520 #ifdef AQ_EVENT_COUNTERS
4521 || sc->sc_poll_statistics
4522 #endif
4523 ) {
4524 callout_schedule(&sc->sc_tick_ch, hz);
4525 }
4526
4527 /* ready */
4528 ifp->if_flags |= IFF_RUNNING;
4529 ifp->if_flags &= ~IFF_OACTIVE;
4530
4531 /* start TX and RX */
4532 aq_enable_intr(sc, true, true);
4533 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4534 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4535
4536 aq_init_failure:
4537 sc->sc_if_flags = ifp->if_flags;
4538
4539 AQ_UNLOCK(sc);
4540
4541 return error;
4542 }
4543
4544 static void
4545 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4546 struct aq_txring *txring, bool is_transmit)
4547 {
4548 struct mbuf *m;
4549 int npkt, error;
4550
4551 if ((ifp->if_flags & IFF_RUNNING) == 0)
4552 return;
4553
4554 for (npkt = 0; ; npkt++) {
4555 if (is_transmit)
4556 m = pcq_peek(txring->txr_pcq);
4557 else
4558 IFQ_POLL(&ifp->if_snd, m);
4559
4560 if (m == NULL)
4561 break;
4562
4563 if (txring->txr_nfree < AQ_TXD_MIN)
4564 break;
4565
4566 if (is_transmit)
4567 pcq_get(txring->txr_pcq);
4568 else
4569 IFQ_DEQUEUE(&ifp->if_snd, m);
4570
4571 error = aq_encap_txring(sc, txring, &m);
4572 if (error != 0) {
4573 /* too many mbuf chains? or not enough descriptors? */
4574 m_freem(m);
4575 if_statinc(ifp, if_oerrors);
4576 if (txring->txr_index == 0 && error == ENOBUFS)
4577 ifp->if_flags |= IFF_OACTIVE;
4578 break;
4579 }
4580
4581 /* update tail ptr */
4582 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4583 txring->txr_prodidx);
4584
4585 /* Pass the packet to any BPF listeners */
4586 bpf_mtap(ifp, m, BPF_D_OUT);
4587 }
4588
4589 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4590 ifp->if_flags |= IFF_OACTIVE;
4591
4592 if (npkt)
4593 ifp->if_timer = 5;
4594 }
4595
4596 static void
4597 aq_start(struct ifnet *ifp)
4598 {
4599 struct aq_softc *sc;
4600 struct aq_txring *txring;
4601
4602 sc = ifp->if_softc;
4603 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4604
4605 mutex_enter(&txring->txr_mutex);
4606 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4607 aq_send_common_locked(ifp, sc, txring, false);
4608 mutex_exit(&txring->txr_mutex);
4609 }
4610
4611 static inline unsigned int
4612 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4613 {
4614 return (cpu_index(curcpu()) % sc->sc_nqueues);
4615 }
4616
4617 static int
4618 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4619 {
4620 struct aq_softc *sc = ifp->if_softc;
4621 struct aq_txring *txring;
4622 int ringidx;
4623
4624 ringidx = aq_select_txqueue(sc, m);
4625 txring = &sc->sc_queue[ringidx].txring;
4626
4627 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4628 m_freem(m);
4629 return ENOBUFS;
4630 }
4631
4632 if (mutex_tryenter(&txring->txr_mutex)) {
4633 aq_send_common_locked(ifp, sc, txring, true);
4634 mutex_exit(&txring->txr_mutex);
4635 } else {
4636 softint_schedule(txring->txr_softint);
4637 }
4638 return 0;
4639 }
4640
4641 static void
4642 aq_deferred_transmit(void *arg)
4643 {
4644 struct aq_txring *txring = arg;
4645 struct aq_softc *sc = txring->txr_sc;
4646 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4647
4648 mutex_enter(&txring->txr_mutex);
4649 if (pcq_peek(txring->txr_pcq) != NULL)
4650 aq_send_common_locked(ifp, sc, txring, true);
4651 mutex_exit(&txring->txr_mutex);
4652 }
4653
4654 static void
4655 aq_stop(struct ifnet *ifp, int disable)
4656 {
4657 struct aq_softc *sc = ifp->if_softc;
4658 int i;
4659
4660 AQ_LOCK(sc);
4661
4662 ifp->if_timer = 0;
4663
4664 if ((ifp->if_flags & IFF_RUNNING) == 0)
4665 goto already_stopped;
4666
4667 /* disable tx/rx interrupts */
4668 aq_enable_intr(sc, true, false);
4669
4670 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4671 for (i = 0; i < sc->sc_nqueues; i++) {
4672 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4673 }
4674
4675 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4676 for (i = 0; i < sc->sc_nqueues; i++) {
4677 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4678 }
4679
4680 /* invalidate RX descriptor cache */
4681 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4682 AQ_READ_REG_BIT(sc,
4683 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4684
4685 ifp->if_timer = 0;
4686
4687 already_stopped:
4688 if (!disable) {
4689 /* when pmf stop, disable link status intr and callout */
4690 aq_enable_intr(sc, false, false);
4691 callout_stop(&sc->sc_tick_ch);
4692 }
4693
4694 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4695
4696 AQ_UNLOCK(sc);
4697 }
4698
4699 static void
4700 aq_watchdog(struct ifnet *ifp)
4701 {
4702 struct aq_softc *sc = ifp->if_softc;
4703 struct aq_txring *txring;
4704 int n, head, tail;
4705
4706 AQ_LOCK(sc);
4707
4708 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4709 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4710 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4711
4712 for (n = 0; n < sc->sc_nqueues; n++) {
4713 txring = &sc->sc_queue[n].txring;
4714 head = AQ_READ_REG_BIT(sc,
4715 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4716 TX_DMA_DESC_HEAD_PTR),
4717 tail = AQ_READ_REG(sc,
4718 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4719
4720 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4721 __func__, txring->txr_index, head, tail);
4722
4723 aq_tx_intr(txring);
4724 }
4725
4726 AQ_UNLOCK(sc);
4727
4728 aq_init(ifp);
4729 }
4730
4731 static int
4732 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4733 {
4734 struct aq_softc *sc __unused;
4735 struct ifreq *ifr __unused;
4736 int error, s;
4737
4738 sc = (struct aq_softc *)ifp->if_softc;
4739 ifr = (struct ifreq *)data;
4740 error = 0;
4741
4742 s = splnet();
4743 error = ether_ioctl(ifp, cmd, data);
4744 splx(s);
4745
4746 if (error != ENETRESET)
4747 return error;
4748
4749 switch (cmd) {
4750 case SIOCSIFCAP:
4751 error = aq_set_capability(sc);
4752 break;
4753 case SIOCADDMULTI:
4754 case SIOCDELMULTI:
4755 if ((ifp->if_flags & IFF_RUNNING) == 0)
4756 break;
4757
4758 /*
4759 * Multicast list has changed; set the hardware filter
4760 * accordingly.
4761 */
4762 error = aq_set_filter(sc);
4763 break;
4764 }
4765
4766 return error;
4767 }
4768
4769
4770 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4771
4772 #ifdef _MODULE
4773 #include "ioconf.c"
4774 #endif
4775
4776 static int
4777 if_aq_modcmd(modcmd_t cmd, void *opaque)
4778 {
4779 int error = 0;
4780
4781 switch (cmd) {
4782 case MODULE_CMD_INIT:
4783 #ifdef _MODULE
4784 error = config_init_component(cfdriver_ioconf_if_aq,
4785 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4786 #endif
4787 return error;
4788 case MODULE_CMD_FINI:
4789 #ifdef _MODULE
4790 error = config_fini_component(cfdriver_ioconf_if_aq,
4791 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4792 #endif
4793 return error;
4794 default:
4795 return ENOTTY;
4796 }
4797 }
4798