if_aq.c revision 1.23 1 /* $NetBSD: if_aq.c,v 1.23 2021/04/15 09:05:24 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.23 2021/04/15 09:05:24 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857
858 pcq_t *txr_pcq;
859 void *txr_softint;
860
861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
862 bus_dmamap_t txr_txdesc_dmamap;
863 bus_dma_segment_t txr_txdesc_seg[1];
864 bus_size_t txr_txdesc_size;
865
866 struct {
867 struct mbuf *m;
868 bus_dmamap_t dmamap;
869 } txr_mbufs[AQ_TXD_NUM];
870 unsigned int txr_prodidx;
871 unsigned int txr_considx;
872 int txr_nfree;
873 };
874
875 struct aq_rxring {
876 struct aq_softc *rxr_sc;
877 int rxr_index;
878 kmutex_t rxr_mutex;
879 bool rxr_active;
880
881 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
882 bus_dmamap_t rxr_rxdesc_dmamap;
883 bus_dma_segment_t rxr_rxdesc_seg[1];
884 bus_size_t rxr_rxdesc_size;
885 struct {
886 struct mbuf *m;
887 bus_dmamap_t dmamap;
888 } rxr_mbufs[AQ_RXD_NUM];
889 unsigned int rxr_readidx;
890 };
891
892 struct aq_queue {
893 struct aq_softc *sc;
894 struct aq_txring txring;
895 struct aq_rxring rxring;
896 };
897
898 struct aq_softc;
899 struct aq_firmware_ops {
900 int (*reset)(struct aq_softc *);
901 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
902 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
903 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
904 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
905 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
906 #if NSYSMON_ENVSYS > 0
907 int (*get_temperature)(struct aq_softc *, uint32_t *);
908 #endif
909 };
910
911 #ifdef AQ_EVENT_COUNTERS
912 #define AQ_EVCNT_DECL(name) \
913 char sc_evcount_##name##_name[32]; \
914 struct evcnt sc_evcount_##name##_ev;
915 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
916 do { \
917 snprintf((sc)->sc_evcount_##name##_name, \
918 sizeof((sc)->sc_evcount_##name##_name), \
919 "%s", desc); \
920 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
921 (evtype), NULL, device_xname((sc)->sc_dev), \
922 (sc)->sc_evcount_##name##_name); \
923 } while (/*CONSTCOND*/0)
924 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
925 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
926 #define AQ_EVCNT_DETACH(sc, name) \
927 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
928 #define AQ_EVCNT_ADD(sc, name, val) \
929 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
930 #endif /* AQ_EVENT_COUNTERS */
931
932 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
933 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
934
935 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
936 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
937 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
938
939
940 struct aq_softc {
941 device_t sc_dev;
942
943 bus_space_tag_t sc_iot;
944 bus_space_handle_t sc_ioh;
945 bus_size_t sc_iosize;
946 bus_dma_tag_t sc_dmat;
947
948 void *sc_ihs[AQ_NINTR_MAX];
949 pci_intr_handle_t *sc_intrs;
950
951 int sc_tx_irq[AQ_RSSQUEUE_MAX];
952 int sc_rx_irq[AQ_RSSQUEUE_MAX];
953 int sc_linkstat_irq;
954 bool sc_use_txrx_independent_intr;
955 bool sc_poll_linkstat;
956 bool sc_detect_linkstat;
957
958 #if NSYSMON_ENVSYS > 0
959 struct sysmon_envsys *sc_sme;
960 envsys_data_t sc_sensor_temp;
961 #endif
962
963 callout_t sc_tick_ch;
964
965 int sc_nintrs;
966 bool sc_msix;
967
968 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
969 int sc_nqueues;
970
971 pci_chipset_tag_t sc_pc;
972 pcitag_t sc_pcitag;
973 uint16_t sc_product;
974 uint16_t sc_revision;
975
976 kmutex_t sc_mutex;
977 kmutex_t sc_mpi_mutex;
978
979 const struct aq_firmware_ops *sc_fw_ops;
980 uint64_t sc_fw_caps;
981 enum aq_media_type sc_media_type;
982 aq_link_speed_t sc_available_rates;
983
984 aq_link_speed_t sc_link_rate;
985 aq_link_fc_t sc_link_fc;
986 aq_link_eee_t sc_link_eee;
987
988 uint32_t sc_fw_version;
989 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
990 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
991 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
992 uint32_t sc_features;
993 #define FEATURES_MIPS 0x00000001
994 #define FEATURES_TPO2 0x00000002
995 #define FEATURES_RPF2 0x00000004
996 #define FEATURES_MPI_AQ 0x00000008
997 #define FEATURES_REV_A0 0x10000000
998 #define FEATURES_REV_A (FEATURES_REV_A0)
999 #define FEATURES_REV_B0 0x20000000
1000 #define FEATURES_REV_B1 0x40000000
1001 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1002 uint32_t sc_max_mtu;
1003 uint32_t sc_mbox_addr;
1004
1005 bool sc_rbl_enabled;
1006 bool sc_fast_start_enabled;
1007 bool sc_flash_present;
1008
1009 bool sc_intr_moderation_enable;
1010 bool sc_rss_enable;
1011
1012 struct ethercom sc_ethercom;
1013 struct ether_addr sc_enaddr;
1014 struct ifmedia sc_media;
1015 int sc_ec_capenable; /* last ec_capenable */
1016 unsigned short sc_if_flags; /* last if_flags */
1017
1018 #ifdef AQ_EVENT_COUNTERS
1019 aq_hw_stats_s_t sc_statistics[2];
1020 int sc_statistics_idx;
1021 bool sc_poll_statistics;
1022
1023 AQ_EVCNT_DECL(uprc);
1024 AQ_EVCNT_DECL(mprc);
1025 AQ_EVCNT_DECL(bprc);
1026 AQ_EVCNT_DECL(erpt);
1027 AQ_EVCNT_DECL(uptc);
1028 AQ_EVCNT_DECL(mptc);
1029 AQ_EVCNT_DECL(bptc);
1030 AQ_EVCNT_DECL(erpr);
1031 AQ_EVCNT_DECL(mbtc);
1032 AQ_EVCNT_DECL(bbtc);
1033 AQ_EVCNT_DECL(mbrc);
1034 AQ_EVCNT_DECL(bbrc);
1035 AQ_EVCNT_DECL(ubrc);
1036 AQ_EVCNT_DECL(ubtc);
1037 AQ_EVCNT_DECL(ptc);
1038 AQ_EVCNT_DECL(prc);
1039 AQ_EVCNT_DECL(dpc);
1040 AQ_EVCNT_DECL(cprc);
1041 #endif
1042 };
1043
1044 static int aq_match(device_t, cfdata_t, void *);
1045 static void aq_attach(device_t, device_t, void *);
1046 static int aq_detach(device_t, int);
1047
1048 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1049 bool, bool);
1050 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1051 pci_intr_type_t);
1052 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1053
1054 static int aq_ifmedia_change(struct ifnet * const);
1055 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1056 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1057 static int aq_ifflags_cb(struct ethercom *);
1058 static int aq_init(struct ifnet *);
1059 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1060 struct aq_txring *, bool);
1061 static int aq_transmit(struct ifnet *, struct mbuf *);
1062 static void aq_deferred_transmit(void *);
1063 static void aq_start(struct ifnet *);
1064 static void aq_stop(struct ifnet *, int);
1065 static void aq_watchdog(struct ifnet *);
1066 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1067
1068 static int aq_txrx_rings_alloc(struct aq_softc *);
1069 static void aq_txrx_rings_free(struct aq_softc *);
1070 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1071 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1072
1073 static void aq_initmedia(struct aq_softc *);
1074 static void aq_enable_intr(struct aq_softc *, bool, bool);
1075
1076 #if NSYSMON_ENVSYS > 0
1077 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1078 #endif
1079 static void aq_tick(void *);
1080 static int aq_legacy_intr(void *);
1081 static int aq_link_intr(void *);
1082 static int aq_txrx_intr(void *);
1083 static int aq_tx_intr(void *);
1084 static int aq_rx_intr(void *);
1085
1086 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1087 aq_link_eee_t);
1088 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1089 aq_link_eee_t *);
1090
1091 static int aq_fw_reset(struct aq_softc *);
1092 static int aq_fw_version_init(struct aq_softc *);
1093 static int aq_hw_init(struct aq_softc *);
1094 static int aq_hw_init_ucp(struct aq_softc *);
1095 static int aq_hw_reset(struct aq_softc *);
1096 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1097 uint32_t);
1098 static int aq_get_mac_addr(struct aq_softc *);
1099 static int aq_init_rss(struct aq_softc *);
1100 static int aq_set_capability(struct aq_softc *);
1101
1102 static int fw1x_reset(struct aq_softc *);
1103 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1104 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1105 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1106 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1107 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1108
1109 static int fw2x_reset(struct aq_softc *);
1110 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1111 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1112 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1113 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1114 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1115 #if NSYSMON_ENVSYS > 0
1116 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1117 #endif
1118
1119 static const struct aq_firmware_ops aq_fw1x_ops = {
1120 .reset = fw1x_reset,
1121 .set_mode = fw1x_set_mode,
1122 .get_mode = fw1x_get_mode,
1123 .get_stats = fw1x_get_stats,
1124 #if NSYSMON_ENVSYS > 0
1125 .get_temperature = NULL
1126 #endif
1127 };
1128
1129 static const struct aq_firmware_ops aq_fw2x_ops = {
1130 .reset = fw2x_reset,
1131 .set_mode = fw2x_set_mode,
1132 .get_mode = fw2x_get_mode,
1133 .get_stats = fw2x_get_stats,
1134 #if NSYSMON_ENVSYS > 0
1135 .get_temperature = fw2x_get_temperature
1136 #endif
1137 };
1138
1139 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1140 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1141
1142 static const struct aq_product {
1143 pci_vendor_id_t aq_vendor;
1144 pci_product_id_t aq_product;
1145 const char *aq_name;
1146 enum aq_media_type aq_media_type;
1147 aq_link_speed_t aq_available_rates;
1148 } aq_products[] = {
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1150 "Aquantia AQC100 10 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1154 "Aquantia AQC107 10 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1158 "Aquantia AQC108 5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1162 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1166 "Aquantia AQC111 5 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1170 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1174 "Aquantia AQC100S 10 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1178 "Aquantia AQC107S 10 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1182 "Aquantia AQC108S 5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1186 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1190 "Aquantia AQC111S 5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1194 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1196 },
1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1198 "Aquantia D100 10 Gigabit Network Adapter",
1199 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1200 },
1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1202 "Aquantia D107 10 Gigabit Network Adapter",
1203 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1204 },
1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1206 "Aquantia D108 5 Gigabit Network Adapter",
1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1208 },
1209 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1210 "Aquantia D109 2.5 Gigabit Network Adapter",
1211 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1212 }
1213 };
1214
1215 static const struct aq_product *
1216 aq_lookup(const struct pci_attach_args *pa)
1217 {
1218 unsigned int i;
1219
1220 for (i = 0; i < __arraycount(aq_products); i++) {
1221 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1222 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1223 return &aq_products[i];
1224 }
1225 return NULL;
1226 }
1227
1228 static int
1229 aq_match(device_t parent, cfdata_t cf, void *aux)
1230 {
1231 struct pci_attach_args *pa = aux;
1232
1233 if (aq_lookup(pa) != NULL)
1234 return 1;
1235
1236 return 0;
1237 }
1238
1239 static void
1240 aq_attach(device_t parent, device_t self, void *aux)
1241 {
1242 struct aq_softc *sc = device_private(self);
1243 struct pci_attach_args *pa = aux;
1244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1245 pci_chipset_tag_t pc;
1246 pcitag_t tag;
1247 pcireg_t command, memtype, bar;
1248 const struct aq_product *aqp;
1249 int error;
1250
1251 sc->sc_dev = self;
1252 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1253 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1254
1255 sc->sc_pc = pc = pa->pa_pc;
1256 sc->sc_pcitag = tag = pa->pa_tag;
1257 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1258
1259 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1260 command |= PCI_COMMAND_MASTER_ENABLE;
1261 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1262
1263 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1264 sc->sc_revision = PCI_REVISION(pa->pa_class);
1265
1266 aqp = aq_lookup(pa);
1267 KASSERT(aqp != NULL);
1268
1269 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1270
1271 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1272 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1273 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1274 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1275 return;
1276 }
1277 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1278 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1279 NULL, &sc->sc_iosize) != 0) {
1280 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1281 return;
1282 }
1283
1284 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1285
1286 /* max queue num is 8, and must be 2^n */
1287 if (ncpu >= 8)
1288 sc->sc_nqueues = 8;
1289 else if (ncpu >= 4)
1290 sc->sc_nqueues = 4;
1291 else if (ncpu >= 2)
1292 sc->sc_nqueues = 2;
1293 else
1294 sc->sc_nqueues = 1;
1295
1296 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1297 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1298 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1299 /* TX intrs + RX intrs + LINKSTAT intrs */
1300 sc->sc_use_txrx_independent_intr = true;
1301 sc->sc_poll_linkstat = false;
1302 sc->sc_msix = true;
1303 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1304 /* TX intrs + RX intrs */
1305 sc->sc_use_txrx_independent_intr = true;
1306 sc->sc_poll_linkstat = true;
1307 sc->sc_msix = true;
1308 } else
1309 #endif
1310 if (msixcount >= (sc->sc_nqueues + 1)) {
1311 /* TX/RX intrs LINKSTAT intrs */
1312 sc->sc_use_txrx_independent_intr = false;
1313 sc->sc_poll_linkstat = false;
1314 sc->sc_msix = true;
1315 } else if (msixcount >= sc->sc_nqueues) {
1316 /* TX/RX intrs */
1317 sc->sc_use_txrx_independent_intr = false;
1318 sc->sc_poll_linkstat = true;
1319 sc->sc_msix = true;
1320 } else {
1321 /* giving up using MSI-X */
1322 sc->sc_msix = false;
1323 }
1324
1325 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1326 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1327 sc->sc_poll_linkstat = true;
1328
1329 #ifdef AQ_FORCE_POLL_LINKSTAT
1330 sc->sc_poll_linkstat = true;
1331 #endif
1332
1333 aprint_debug_dev(sc->sc_dev,
1334 "ncpu=%d, pci_msix_count=%d."
1335 " allocate %d interrupts for %d%s queues%s\n",
1336 ncpu, msixcount,
1337 (sc->sc_use_txrx_independent_intr ?
1338 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1339 (sc->sc_poll_linkstat ? 0 : 1),
1340 sc->sc_nqueues,
1341 sc->sc_use_txrx_independent_intr ? "*2" : "",
1342 sc->sc_poll_linkstat ? "" : ", and link status");
1343
1344 if (sc->sc_msix)
1345 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1346 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1347 else
1348 error = ENODEV;
1349
1350 if (error != 0) {
1351 /* if MSI-X failed, fallback to MSI with single queue */
1352 sc->sc_use_txrx_independent_intr = false;
1353 sc->sc_poll_linkstat = false;
1354 sc->sc_msix = false;
1355 sc->sc_nqueues = 1;
1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1357 }
1358 if (error != 0) {
1359 /* if MSI failed, fallback to INTx */
1360 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1361 }
1362 if (error != 0)
1363 return;
1364
1365 callout_init(&sc->sc_tick_ch, 0);
1366 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1367
1368 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1369
1370 if (sc->sc_msix && (sc->sc_nqueues > 1))
1371 sc->sc_rss_enable = true;
1372 else
1373 sc->sc_rss_enable = false;
1374
1375 error = aq_txrx_rings_alloc(sc);
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 error = aq_fw_reset(sc);
1380 if (error != 0)
1381 goto attach_failure;
1382
1383 error = aq_fw_version_init(sc);
1384 if (error != 0)
1385 goto attach_failure;
1386
1387 error = aq_hw_init_ucp(sc);
1388 if (error < 0)
1389 goto attach_failure;
1390
1391 KASSERT(sc->sc_mbox_addr != 0);
1392 error = aq_hw_reset(sc);
1393 if (error != 0)
1394 goto attach_failure;
1395
1396 aq_get_mac_addr(sc);
1397 aq_init_rss(sc);
1398
1399 error = aq_hw_init(sc); /* initialize and interrupts */
1400 if (error != 0)
1401 goto attach_failure;
1402
1403 sc->sc_media_type = aqp->aq_media_type;
1404 sc->sc_available_rates = aqp->aq_available_rates;
1405
1406 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1407 ifmedia_init(&sc->sc_media, IFM_IMASK,
1408 aq_ifmedia_change, aq_ifmedia_status);
1409 aq_initmedia(sc);
1410
1411 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1412 ifp->if_softc = sc;
1413 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1414 ifp->if_extflags = IFEF_MPSAFE;
1415 ifp->if_baudrate = IF_Gbps(10);
1416 ifp->if_init = aq_init;
1417 ifp->if_ioctl = aq_ioctl;
1418 if (sc->sc_msix && (sc->sc_nqueues > 1))
1419 ifp->if_transmit = aq_transmit;
1420 ifp->if_start = aq_start;
1421 ifp->if_stop = aq_stop;
1422 ifp->if_watchdog = aq_watchdog;
1423 IFQ_SET_READY(&ifp->if_snd);
1424
1425 /* initialize capabilities */
1426 sc->sc_ethercom.ec_capabilities = 0;
1427 sc->sc_ethercom.ec_capenable = 0;
1428 #if notyet
1429 /* TODO */
1430 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1431 #endif
1432 sc->sc_ethercom.ec_capabilities |=
1433 ETHERCAP_JUMBO_MTU |
1434 ETHERCAP_VLAN_MTU |
1435 ETHERCAP_VLAN_HWTAGGING |
1436 ETHERCAP_VLAN_HWFILTER;
1437 sc->sc_ethercom.ec_capenable |=
1438 ETHERCAP_VLAN_HWTAGGING |
1439 ETHERCAP_VLAN_HWFILTER;
1440
1441 ifp->if_capabilities = 0;
1442 ifp->if_capenable = 0;
1443 #ifdef CONFIG_LRO_SUPPORT
1444 ifp->if_capabilities |= IFCAP_LRO;
1445 ifp->if_capenable |= IFCAP_LRO;
1446 #endif
1447 #if notyet
1448 /* TSO */
1449 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1450 #endif
1451
1452 /* TX hardware checksum offloadding */
1453 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1454 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1455 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1456 /* RX hardware checksum offloadding */
1457 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1458 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1459 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1460
1461 error = if_initialize(ifp);
1462 if (error != 0) {
1463 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
1464 error);
1465 goto attach_failure;
1466 }
1467 ifp->if_percpuq = if_percpuq_create(ifp);
1468 if_deferred_start_init(ifp, NULL);
1469 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1470 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1471 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1472 if_register(ifp);
1473
1474 aq_enable_intr(sc, true, false); /* only intr about link */
1475
1476 /* update media */
1477 aq_ifmedia_change(ifp);
1478
1479 #if NSYSMON_ENVSYS > 0
1480 /* temperature monitoring */
1481 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1482 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1483
1484 sc->sc_sme = sysmon_envsys_create();
1485 sc->sc_sme->sme_name = device_xname(self);
1486 sc->sc_sme->sme_cookie = sc;
1487 sc->sc_sme->sme_flags = 0;
1488 sc->sc_sme->sme_refresh = aq_temp_refresh;
1489 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1490 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1491 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1492
1493 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1494 sysmon_envsys_register(sc->sc_sme);
1495
1496 /*
1497 * for unknown reasons, the first call of fw2x_get_temperature()
1498 * will always fail (firmware matter?), so run once now.
1499 */
1500 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1501 }
1502 #endif
1503
1504 #ifdef AQ_EVENT_COUNTERS
1505 /* get starting statistics values */
1506 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1507 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1508 sc->sc_poll_statistics = true;
1509 }
1510
1511 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1512 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1513 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1514 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1515 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1516 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1517 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1518 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1519 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1520 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1521 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1522 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1523 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1524 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1525 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1526 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1527 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1528 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1529 #endif
1530
1531 return;
1532
1533 attach_failure:
1534 aq_detach(self, 0);
1535 }
1536
1537 static int
1538 aq_detach(device_t self, int flags __unused)
1539 {
1540 struct aq_softc *sc = device_private(self);
1541 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1542 int i, s;
1543
1544 if (sc->sc_iosize != 0) {
1545 if (ifp->if_softc != NULL) {
1546 s = splnet();
1547 aq_stop(ifp, 0);
1548 splx(s);
1549 }
1550
1551 for (i = 0; i < AQ_NINTR_MAX; i++) {
1552 if (sc->sc_ihs[i] != NULL) {
1553 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1554 sc->sc_ihs[i] = NULL;
1555 }
1556 }
1557 if (sc->sc_nintrs > 0) {
1558 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1559 sc->sc_nintrs);
1560 sc->sc_intrs = NULL;
1561 sc->sc_nintrs = 0;
1562 }
1563
1564 aq_txrx_rings_free(sc);
1565
1566 if (ifp->if_softc != NULL) {
1567 ether_ifdetach(ifp);
1568 if_detach(ifp);
1569 }
1570
1571 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1572 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1573 sc->sc_iosize = 0;
1574 }
1575
1576 callout_stop(&sc->sc_tick_ch);
1577
1578 #if NSYSMON_ENVSYS > 0
1579 if (sc->sc_sme != NULL) {
1580 /* all sensors associated with this will also be detached */
1581 sysmon_envsys_unregister(sc->sc_sme);
1582 sc->sc_sme = NULL;
1583 }
1584 #endif
1585
1586 #ifdef AQ_EVENT_COUNTERS
1587 AQ_EVCNT_DETACH(sc, uprc);
1588 AQ_EVCNT_DETACH(sc, mprc);
1589 AQ_EVCNT_DETACH(sc, bprc);
1590 AQ_EVCNT_DETACH(sc, erpt);
1591 AQ_EVCNT_DETACH(sc, uptc);
1592 AQ_EVCNT_DETACH(sc, mptc);
1593 AQ_EVCNT_DETACH(sc, bptc);
1594 AQ_EVCNT_DETACH(sc, erpr);
1595 AQ_EVCNT_DETACH(sc, mbtc);
1596 AQ_EVCNT_DETACH(sc, bbtc);
1597 AQ_EVCNT_DETACH(sc, mbrc);
1598 AQ_EVCNT_DETACH(sc, bbrc);
1599 AQ_EVCNT_DETACH(sc, ubrc);
1600 AQ_EVCNT_DETACH(sc, ubtc);
1601 AQ_EVCNT_DETACH(sc, ptc);
1602 AQ_EVCNT_DETACH(sc, prc);
1603 AQ_EVCNT_DETACH(sc, dpc);
1604 AQ_EVCNT_DETACH(sc, cprc);
1605 #endif
1606
1607 ifmedia_fini(&sc->sc_media);
1608
1609 mutex_destroy(&sc->sc_mpi_mutex);
1610 mutex_destroy(&sc->sc_mutex);
1611
1612 return 0;
1613 }
1614
1615 static int
1616 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1617 int (*func)(void *), void *arg, const char *xname)
1618 {
1619 char intrbuf[PCI_INTRSTR_LEN];
1620 pci_chipset_tag_t pc = sc->sc_pc;
1621 void *vih;
1622 const char *intrstr = NULL;
1623
1624 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1625 sizeof(intrbuf));
1626
1627 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1628
1629 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1630 IPL_NET, func, arg, xname);
1631 if (vih == NULL) {
1632 aprint_error_dev(sc->sc_dev,
1633 "unable to establish MSI-X%s%s for %s\n",
1634 intrstr ? " at " : "",
1635 intrstr ? intrstr : "", xname);
1636 return EIO;
1637 }
1638 sc->sc_ihs[intno] = vih;
1639
1640 if (affinity != NULL) {
1641 /* Round-robin affinity */
1642 kcpuset_zero(affinity);
1643 kcpuset_set(affinity, intno % ncpu);
1644 interrupt_distribute(vih, affinity, NULL);
1645 }
1646
1647 return 0;
1648 }
1649
1650 static int
1651 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1652 bool linkintr)
1653 {
1654 kcpuset_t *affinity;
1655 int error, intno, i;
1656 char intr_xname[INTRDEVNAMEBUF];
1657
1658 kcpuset_create(&affinity, false);
1659
1660 intno = 0;
1661
1662 if (txrx_independent) {
1663 for (i = 0; i < sc->sc_nqueues; i++) {
1664 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1665 device_xname(sc->sc_dev), i);
1666 sc->sc_rx_irq[i] = intno;
1667 error = aq_establish_intr(sc, intno++, affinity,
1668 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1669 if (error != 0)
1670 goto fail;
1671 }
1672 for (i = 0; i < sc->sc_nqueues; i++) {
1673 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1674 device_xname(sc->sc_dev), i);
1675 sc->sc_tx_irq[i] = intno;
1676 error = aq_establish_intr(sc, intno++, affinity,
1677 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1678 if (error != 0)
1679 goto fail;
1680 }
1681 } else {
1682 for (i = 0; i < sc->sc_nqueues; i++) {
1683 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1684 device_xname(sc->sc_dev), i);
1685 sc->sc_rx_irq[i] = intno;
1686 sc->sc_tx_irq[i] = intno;
1687 error = aq_establish_intr(sc, intno++, affinity,
1688 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1689 if (error != 0)
1690 goto fail;
1691 }
1692 }
1693
1694 if (linkintr) {
1695 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1696 device_xname(sc->sc_dev));
1697 sc->sc_linkstat_irq = intno;
1698 error = aq_establish_intr(sc, intno++, affinity,
1699 aq_link_intr, sc, intr_xname);
1700 if (error != 0)
1701 goto fail;
1702 }
1703
1704 kcpuset_destroy(affinity);
1705 return 0;
1706
1707 fail:
1708 for (i = 0; i < AQ_NINTR_MAX; i++) {
1709 if (sc->sc_ihs[i] != NULL) {
1710 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1711 sc->sc_ihs[i] = NULL;
1712 }
1713 }
1714
1715 kcpuset_destroy(affinity);
1716 return ENOMEM;
1717 }
1718
1719 static int
1720 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1721 bool txrx_independent, bool linkintr)
1722 {
1723 int error, nintr;
1724
1725 if (txrx_independent)
1726 nintr = nqueue * 2;
1727 else
1728 nintr = nqueue;
1729
1730 if (linkintr)
1731 nintr++;
1732
1733 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1734 if (error != 0) {
1735 aprint_error_dev(sc->sc_dev,
1736 "failed to allocate MSI-X interrupts\n");
1737 goto fail;
1738 }
1739
1740 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1741 if (error == 0) {
1742 sc->sc_nintrs = nintr;
1743 } else {
1744 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1745 sc->sc_nintrs = 0;
1746 }
1747 fail:
1748 return error;
1749
1750 }
1751
1752 static int
1753 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1754 pci_intr_type_t inttype)
1755 {
1756 int counts[PCI_INTR_TYPE_SIZE];
1757 int error, nintr;
1758
1759 nintr = 1;
1760
1761 memset(counts, 0, sizeof(counts));
1762 counts[inttype] = nintr;
1763
1764 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1765 if (error != 0) {
1766 aprint_error_dev(sc->sc_dev,
1767 "failed to allocate%s interrupts\n",
1768 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1769 return error;
1770 }
1771 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1772 device_xname(sc->sc_dev));
1773 if (error == 0) {
1774 sc->sc_nintrs = nintr;
1775 } else {
1776 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1777 sc->sc_nintrs = 0;
1778 }
1779 return error;
1780 }
1781
1782 static void
1783 global_software_reset(struct aq_softc *sc)
1784 {
1785 uint32_t v;
1786
1787 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1788 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1789 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1790 FW_MPI_RESETCTRL_RESET_DIS, 0);
1791
1792 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1793 v &= ~AQ_FW_SOFTRESET_DIS;
1794 v |= AQ_FW_SOFTRESET_RESET;
1795 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1796 }
1797
1798 static int
1799 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1800 {
1801 int timo;
1802
1803 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1804
1805 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1806 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1807 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1808
1809 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1810 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1811
1812 global_software_reset(sc);
1813
1814 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1815
1816 /* Wait for RBL to finish boot process. */
1817 #define RBL_TIMEOUT_MS 10000
1818 uint16_t rbl_status;
1819 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1820 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1821 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1822 break;
1823 msec_delay(1);
1824 }
1825 if (timo <= 0) {
1826 aprint_error_dev(sc->sc_dev,
1827 "RBL> RBL restart failed: timeout\n");
1828 return EBUSY;
1829 }
1830 switch (rbl_status) {
1831 case RBL_STATUS_SUCCESS:
1832 if (mode != NULL)
1833 *mode = FW_BOOT_MODE_RBL_FLASH;
1834 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1835 break;
1836 case RBL_STATUS_HOST_BOOT:
1837 if (mode != NULL)
1838 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1839 aprint_debug_dev(sc->sc_dev,
1840 "RBL> reset complete! [Host Bootload]\n");
1841 break;
1842 case RBL_STATUS_FAILURE:
1843 default:
1844 aprint_error_dev(sc->sc_dev,
1845 "unknown RBL status 0x%x\n", rbl_status);
1846 return EBUSY;
1847 }
1848
1849 return 0;
1850 }
1851
1852 static int
1853 mac_soft_reset_flb(struct aq_softc *sc)
1854 {
1855 uint32_t v;
1856 int timo;
1857
1858 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1859 /*
1860 * Let Felicity hardware to complete SMBUS transaction before
1861 * Global software reset.
1862 */
1863 msec_delay(50);
1864
1865 /*
1866 * If SPI burst transaction was interrupted(before running the script),
1867 * global software reset may not clear SPI interface.
1868 * Clean it up manually before global reset.
1869 */
1870 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1871 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1872 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1873 msec_delay(50);
1874
1875 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1876 v &= ~AQ_FW_SOFTRESET_DIS;
1877 v |= AQ_FW_SOFTRESET_RESET;
1878 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1879
1880 /* Kickstart. */
1881 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1882 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1883 if (!sc->sc_fast_start_enabled)
1884 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1885
1886 /*
1887 * For the case SPI burst transaction was interrupted (by MCP reset
1888 * above), wait until it is completed by hardware.
1889 */
1890 msec_delay(50);
1891
1892 /* MAC Kickstart */
1893 if (!sc->sc_fast_start_enabled) {
1894 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1895
1896 uint32_t flb_status;
1897 for (timo = 0; timo < 1000; timo++) {
1898 flb_status = AQ_READ_REG(sc,
1899 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1900 if (flb_status != 0)
1901 break;
1902 msec_delay(1);
1903 }
1904 if (flb_status == 0) {
1905 aprint_error_dev(sc->sc_dev,
1906 "FLB> MAC kickstart failed: timed out\n");
1907 return ETIMEDOUT;
1908 }
1909 aprint_debug_dev(sc->sc_dev,
1910 "FLB> MAC kickstart done, %d ms\n", timo);
1911 /* FW reset */
1912 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1913 /*
1914 * Let Felicity hardware complete SMBUS transaction before
1915 * Global software reset.
1916 */
1917 msec_delay(50);
1918 sc->sc_fast_start_enabled = true;
1919 }
1920 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1921
1922 /* PHY Kickstart: #undone */
1923 global_software_reset(sc);
1924
1925 for (timo = 0; timo < 1000; timo++) {
1926 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1927 break;
1928 msec_delay(10);
1929 }
1930 if (timo >= 1000) {
1931 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1932 return ETIMEDOUT;
1933 }
1934 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1935 return 0;
1936
1937 }
1938
1939 static int
1940 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1941 {
1942 if (sc->sc_rbl_enabled)
1943 return mac_soft_reset_rbl(sc, mode);
1944
1945 if (mode != NULL)
1946 *mode = FW_BOOT_MODE_FLB;
1947 return mac_soft_reset_flb(sc);
1948 }
1949
1950 static int
1951 aq_fw_read_version(struct aq_softc *sc)
1952 {
1953 int i, error = EBUSY;
1954 #define MAC_FW_START_TIMEOUT_MS 10000
1955 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1956 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1957 if (sc->sc_fw_version != 0) {
1958 error = 0;
1959 break;
1960 }
1961 delay(1000);
1962 }
1963 return error;
1964 }
1965
1966 static int
1967 aq_fw_reset(struct aq_softc *sc)
1968 {
1969 uint32_t ver, v, bootExitCode;
1970 int i, error;
1971
1972 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1973
1974 for (i = 1000; i > 0; i--) {
1975 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1976 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1977 if (v != 0x06000000 || bootExitCode != 0)
1978 break;
1979 }
1980 if (i <= 0) {
1981 aprint_error_dev(sc->sc_dev,
1982 "F/W reset failed. Neither RBL nor FLB started\n");
1983 return ETIMEDOUT;
1984 }
1985 sc->sc_rbl_enabled = (bootExitCode != 0);
1986
1987 /*
1988 * Having FW version 0 is an indicator that cold start
1989 * is in progress. This means two things:
1990 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1991 * 2) Driver may skip reset sequence and save time.
1992 */
1993 if (sc->sc_fast_start_enabled && (ver != 0)) {
1994 error = aq_fw_read_version(sc);
1995 /* Skip reset as it just completed */
1996 if (error == 0)
1997 return 0;
1998 }
1999
2000 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2001 error = mac_soft_reset(sc, &mode);
2002 if (error != 0) {
2003 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2004 return error;
2005 }
2006
2007 switch (mode) {
2008 case FW_BOOT_MODE_FLB:
2009 aprint_debug_dev(sc->sc_dev,
2010 "FLB> F/W successfully loaded from flash.\n");
2011 sc->sc_flash_present = true;
2012 return aq_fw_read_version(sc);
2013 case FW_BOOT_MODE_RBL_FLASH:
2014 aprint_debug_dev(sc->sc_dev,
2015 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2016 sc->sc_flash_present = true;
2017 return aq_fw_read_version(sc);
2018 case FW_BOOT_MODE_UNKNOWN:
2019 aprint_error_dev(sc->sc_dev,
2020 "F/W bootload error: unknown bootloader type\n");
2021 return ENOTSUP;
2022 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2023 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2024 break;
2025 }
2026
2027 /*
2028 * XXX: TODO: add support Host Boot
2029 */
2030 aprint_error_dev(sc->sc_dev,
2031 "RBL> F/W Host Bootload not implemented\n");
2032 return ENOTSUP;
2033 }
2034
2035 static int
2036 aq_hw_reset(struct aq_softc *sc)
2037 {
2038 int error;
2039
2040 /* disable irq */
2041 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2042
2043 /* apply */
2044 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2045
2046 /* wait ack 10 times by 1ms */
2047 WAIT_FOR(
2048 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2049 1000, 10, &error);
2050 if (error != 0) {
2051 aprint_error_dev(sc->sc_dev,
2052 "atlantic: IRQ reset failed: %d\n", error);
2053 return error;
2054 }
2055
2056 return sc->sc_fw_ops->reset(sc);
2057 }
2058
2059 static int
2060 aq_hw_init_ucp(struct aq_softc *sc)
2061 {
2062 int timo;
2063
2064 if (FW_VERSION_MAJOR(sc) == 1) {
2065 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2066 uint32_t data;
2067 cprng_fast(&data, sizeof(data));
2068 data &= 0xfefefefe;
2069 data |= 0x02020202;
2070 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2071 }
2072 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2073 }
2074
2075 for (timo = 100; timo > 0; timo--) {
2076 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2077 if (sc->sc_mbox_addr != 0)
2078 break;
2079 delay(1000);
2080 }
2081
2082 #define AQ_FW_MIN_VERSION 0x01050006
2083 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2084 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2085 aprint_error_dev(sc->sc_dev,
2086 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2087 " or later required, this is %d.%d.%d\n",
2088 FW_VERSION_MAJOR(sc),
2089 FW_VERSION_MINOR(sc),
2090 FW_VERSION_BUILD(sc));
2091 return ENOTSUP;
2092 }
2093
2094 return 0;
2095 }
2096
2097 static int
2098 aq_fw_version_init(struct aq_softc *sc)
2099 {
2100 int error = 0;
2101 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2102
2103 if (FW_VERSION_MAJOR(sc) == 1) {
2104 sc->sc_fw_ops = &aq_fw1x_ops;
2105 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2106 sc->sc_fw_ops = &aq_fw2x_ops;
2107 } else {
2108 aprint_error_dev(sc->sc_dev,
2109 "Unsupported F/W version %d.%d.%d\n",
2110 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2111 FW_VERSION_BUILD(sc));
2112 return ENOTSUP;
2113 }
2114 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2115 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2116
2117 /* detect revision */
2118 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2119 switch (hwrev & 0x0000000f) {
2120 case 0x01:
2121 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2122 fw_vers);
2123 sc->sc_features |= FEATURES_REV_A0 |
2124 FEATURES_MPI_AQ | FEATURES_MIPS;
2125 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2126 break;
2127 case 0x02:
2128 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2129 fw_vers);
2130 sc->sc_features |= FEATURES_REV_B0 |
2131 FEATURES_MPI_AQ | FEATURES_MIPS |
2132 FEATURES_TPO2 | FEATURES_RPF2;
2133 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2134 break;
2135 case 0x0A:
2136 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2137 fw_vers);
2138 sc->sc_features |= FEATURES_REV_B1 |
2139 FEATURES_MPI_AQ | FEATURES_MIPS |
2140 FEATURES_TPO2 | FEATURES_RPF2;
2141 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2142 break;
2143 default:
2144 aprint_error_dev(sc->sc_dev,
2145 "Unknown revision (0x%08x)\n", hwrev);
2146 sc->sc_features = 0;
2147 sc->sc_max_mtu = ETHERMTU;
2148 error = ENOTSUP;
2149 break;
2150 }
2151 return error;
2152 }
2153
2154 static int
2155 fw1x_reset(struct aq_softc *sc)
2156 {
2157 struct aq_mailbox_header mbox;
2158 const int retryCount = 1000;
2159 uint32_t tid0;
2160 int i;
2161
2162 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2163
2164 for (i = 0; i < retryCount; ++i) {
2165 /*
2166 * Read the beginning of Statistics structure to capture
2167 * the Transaction ID.
2168 */
2169 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2170 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2171
2172 /* Successfully read the stats. */
2173 if (tid0 == ~0U) {
2174 /* We have read the initial value. */
2175 tid0 = mbox.transaction_id;
2176 continue;
2177 } else if (mbox.transaction_id != tid0) {
2178 /*
2179 * Compare transaction ID to initial value.
2180 * If it's different means f/w is alive.
2181 * We're done.
2182 */
2183 return 0;
2184 }
2185
2186 /*
2187 * Transaction ID value haven't changed since last time.
2188 * Try reading the stats again.
2189 */
2190 delay(10);
2191 }
2192 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2193 return EBUSY;
2194 }
2195
2196 static int
2197 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2198 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2199 {
2200 uint32_t mpictrl = 0;
2201 uint32_t mpispeed = 0;
2202
2203 if (speed & AQ_LINK_10G)
2204 mpispeed |= FW1X_CTRL_10G;
2205 if (speed & AQ_LINK_5G)
2206 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2207 if (speed & AQ_LINK_2G5)
2208 mpispeed |= FW1X_CTRL_2G5;
2209 if (speed & AQ_LINK_1G)
2210 mpispeed |= FW1X_CTRL_1G;
2211 if (speed & AQ_LINK_100M)
2212 mpispeed |= FW1X_CTRL_100M;
2213
2214 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2215 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2216 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2217 return 0;
2218 }
2219
2220 static int
2221 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2222 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2223 {
2224 uint32_t mpistate, mpi_speed;
2225 aq_link_speed_t speed = AQ_LINK_NONE;
2226
2227 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2228
2229 if (modep != NULL)
2230 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2231
2232 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2233 if (mpi_speed & FW1X_CTRL_10G)
2234 speed = AQ_LINK_10G;
2235 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2236 speed = AQ_LINK_5G;
2237 else if (mpi_speed & FW1X_CTRL_2G5)
2238 speed = AQ_LINK_2G5;
2239 else if (mpi_speed & FW1X_CTRL_1G)
2240 speed = AQ_LINK_1G;
2241 else if (mpi_speed & FW1X_CTRL_100M)
2242 speed = AQ_LINK_100M;
2243
2244 if (speedp != NULL)
2245 *speedp = speed;
2246
2247 if (fcp != NULL)
2248 *fcp = AQ_FC_NONE;
2249
2250 if (eeep != NULL)
2251 *eeep = AQ_EEE_DISABLE;
2252
2253 return 0;
2254 }
2255
2256 static int
2257 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2258 {
2259 int error;
2260
2261 error = aq_fw_downld_dwords(sc,
2262 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2263 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2264 if (error < 0) {
2265 device_printf(sc->sc_dev,
2266 "fw1x> download statistics data FAILED, error %d", error);
2267 return error;
2268 }
2269
2270 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2271 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2272 return 0;
2273 }
2274
2275 static int
2276 fw2x_reset(struct aq_softc *sc)
2277 {
2278 fw2x_capabilities_t caps = { 0 };
2279 int error;
2280
2281 error = aq_fw_downld_dwords(sc,
2282 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2283 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2284 if (error != 0) {
2285 aprint_error_dev(sc->sc_dev,
2286 "fw2x> can't get F/W capabilities mask, error %d\n",
2287 error);
2288 return error;
2289 }
2290 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2291
2292 char buf[256];
2293 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2294 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2295
2296 return 0;
2297 }
2298
2299 static int
2300 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2301 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2302 {
2303 uint64_t mpi_ctrl;
2304 int error = 0;
2305
2306 AQ_MPI_LOCK(sc);
2307
2308 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2309
2310 switch (mode) {
2311 case MPI_INIT:
2312 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2313 if (speed & AQ_LINK_10G)
2314 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2315 if (speed & AQ_LINK_5G)
2316 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2317 if (speed & AQ_LINK_2G5)
2318 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2319 if (speed & AQ_LINK_1G)
2320 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2321 if (speed & AQ_LINK_100M)
2322 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2323
2324 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2325
2326 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2327 if (eee == AQ_EEE_ENABLE)
2328 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2329
2330 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2331 if (fc & AQ_FC_RX)
2332 mpi_ctrl |= FW2X_CTRL_PAUSE;
2333 if (fc & AQ_FC_TX)
2334 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2335 break;
2336 case MPI_DEINIT:
2337 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2338 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2339 break;
2340 default:
2341 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2342 error = EINVAL;
2343 goto failure;
2344 }
2345 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2346
2347 failure:
2348 AQ_MPI_UNLOCK(sc);
2349 return error;
2350 }
2351
2352 static int
2353 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2354 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2355 {
2356 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2357
2358 if (modep != NULL) {
2359 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2360 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2361 *modep = MPI_INIT;
2362 else
2363 *modep = MPI_DEINIT;
2364 }
2365
2366 aq_link_speed_t speed = AQ_LINK_NONE;
2367 if (mpi_state & FW2X_CTRL_RATE_10G)
2368 speed = AQ_LINK_10G;
2369 else if (mpi_state & FW2X_CTRL_RATE_5G)
2370 speed = AQ_LINK_5G;
2371 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2372 speed = AQ_LINK_2G5;
2373 else if (mpi_state & FW2X_CTRL_RATE_1G)
2374 speed = AQ_LINK_1G;
2375 else if (mpi_state & FW2X_CTRL_RATE_100M)
2376 speed = AQ_LINK_100M;
2377
2378 if (speedp != NULL)
2379 *speedp = speed;
2380
2381 aq_link_fc_t fc = AQ_FC_NONE;
2382 if (mpi_state & FW2X_CTRL_PAUSE)
2383 fc |= AQ_FC_RX;
2384 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2385 fc |= AQ_FC_TX;
2386 if (fcp != NULL)
2387 *fcp = fc;
2388
2389 /* XXX: TODO: EEE */
2390 if (eeep != NULL)
2391 *eeep = AQ_EEE_DISABLE;
2392
2393 return 0;
2394 }
2395
2396 static int
2397 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2398 uint32_t timeout_ms, uint32_t try_count)
2399 {
2400 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2401 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2402 int error;
2403
2404 /* First, check that control and state values are consistent */
2405 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2406 device_printf(sc->sc_dev,
2407 "fw2x> MPI control (%#llx) and state (%#llx)"
2408 " are not consistent for mask %#llx!\n",
2409 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2410 (unsigned long long)mask);
2411 return EINVAL;
2412 }
2413
2414 /* Invert bits (toggle) in control register */
2415 mpi_ctrl ^= mask;
2416 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2417
2418 /* Clear all bits except masked */
2419 mpi_ctrl &= mask;
2420
2421 /* Wait for FW reflecting change in state register */
2422 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2423 1000 * timeout_ms, try_count, &error);
2424 if (error != 0) {
2425 device_printf(sc->sc_dev,
2426 "f/w2x> timeout while waiting for response"
2427 " in state register for bit %#llx!",
2428 (unsigned long long)mask);
2429 return error;
2430 }
2431 return 0;
2432 }
2433
2434 static int
2435 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2436 {
2437 int error;
2438
2439 AQ_MPI_LOCK(sc);
2440 /* Say to F/W to update the statistics */
2441 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2442 if (error != 0) {
2443 device_printf(sc->sc_dev,
2444 "fw2x> statistics update error %d\n", error);
2445 goto failure;
2446 }
2447
2448 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2449 error = aq_fw_downld_dwords(sc,
2450 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2451 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2452 if (error != 0) {
2453 device_printf(sc->sc_dev,
2454 "fw2x> download statistics data FAILED, error %d", error);
2455 goto failure;
2456 }
2457 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2458 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2459
2460 failure:
2461 AQ_MPI_UNLOCK(sc);
2462 return error;
2463 }
2464
2465 #if NSYSMON_ENVSYS > 0
2466 static int
2467 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2468 {
2469 int error;
2470 uint32_t value, celsius;
2471
2472 AQ_MPI_LOCK(sc);
2473
2474 /* Say to F/W to update the temperature */
2475 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2476 if (error != 0)
2477 goto failure;
2478
2479 error = aq_fw_downld_dwords(sc,
2480 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2481 &value, sizeof(value) / sizeof(uint32_t));
2482 if (error != 0)
2483 goto failure;
2484
2485 /* 1/256 decrees C to microkelvin */
2486 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2487 if (celsius == 0) {
2488 error = EIO;
2489 goto failure;
2490 }
2491 *temp = celsius * (1000000 / 256) + 273150000;
2492
2493 failure:
2494 AQ_MPI_UNLOCK(sc);
2495 return 0;
2496 }
2497 #endif
2498
2499 static int
2500 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2501 uint32_t cnt)
2502 {
2503 uint32_t v;
2504 int error = 0;
2505
2506 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2507 if (error != 0) {
2508 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2509 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2510 if (v == 0) {
2511 device_printf(sc->sc_dev,
2512 "%s:%d: timeout\n", __func__, __LINE__);
2513 return ETIMEDOUT;
2514 }
2515 }
2516
2517 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2518
2519 error = 0;
2520 for (; cnt > 0 && error == 0; cnt--) {
2521 /* execute mailbox interface */
2522 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2523 AQ_FW_MBOX_CMD_EXECUTE, 1);
2524 if (sc->sc_features & FEATURES_REV_B1) {
2525 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2526 1, 1000, &error);
2527 } else {
2528 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2529 AQ_FW_MBOX_CMD_BUSY) == 0,
2530 1, 1000, &error);
2531 }
2532 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2533 addr += sizeof(uint32_t);
2534 }
2535 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2536
2537 if (error != 0)
2538 device_printf(sc->sc_dev,
2539 "%s:%d: timeout\n", __func__, __LINE__);
2540
2541 return error;
2542 }
2543
2544 /* read my mac address */
2545 static int
2546 aq_get_mac_addr(struct aq_softc *sc)
2547 {
2548 uint32_t mac_addr[2];
2549 uint32_t efuse_shadow_addr;
2550 int err;
2551
2552 efuse_shadow_addr = 0;
2553 if (FW_VERSION_MAJOR(sc) >= 2)
2554 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2555 else
2556 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2557
2558 if (efuse_shadow_addr == 0) {
2559 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2560 return ENXIO;
2561 }
2562
2563 memset(mac_addr, 0, sizeof(mac_addr));
2564 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2565 mac_addr, __arraycount(mac_addr));
2566 if (err < 0)
2567 return err;
2568
2569 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2570 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2571 return ENXIO;
2572 }
2573
2574 mac_addr[0] = htobe32(mac_addr[0]);
2575 mac_addr[1] = htobe32(mac_addr[1]);
2576
2577 memcpy(sc->sc_enaddr.ether_addr_octet,
2578 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2579 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2580 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2581
2582 return 0;
2583 }
2584
2585 /* set multicast filter. index 0 for own address */
2586 static int
2587 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2588 {
2589 uint32_t h, l;
2590
2591 if (index >= AQ_HW_MAC_NUM)
2592 return EINVAL;
2593
2594 if (enaddr == NULL) {
2595 /* disable */
2596 AQ_WRITE_REG_BIT(sc,
2597 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2598 return 0;
2599 }
2600
2601 h = (enaddr[0] << 8) | (enaddr[1]);
2602 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2603 (enaddr[4] << 8) | (enaddr[5]);
2604
2605 /* disable, set, and enable */
2606 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2607 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2608 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2609 RPF_L2UC_MSW_MACADDR_HI, h);
2610 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2611 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2612
2613 return 0;
2614 }
2615
2616 static int
2617 aq_set_capability(struct aq_softc *sc)
2618 {
2619 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2620 int ip4csum_tx =
2621 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2622 int ip4csum_rx =
2623 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2624 int l4csum_tx = ((ifp->if_capenable &
2625 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2626 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2627 int l4csum_rx =
2628 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2629 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2630 uint32_t lso =
2631 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2632 0 : 0xffffffff;
2633 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2634 0 : 0xffffffff;
2635 uint32_t i, v;
2636
2637 /* TX checksums offloads*/
2638 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2639 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2640
2641 /* RX checksums offloads*/
2642 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2643 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2644
2645 /* LSO offloads*/
2646 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2647
2648 #define AQ_B0_LRO_RXD_MAX 16
2649 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2650 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2651 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2652 for (i = 0; i < AQ_RINGS_NUM; i++) {
2653 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2654 RPO_LRO_LDES_MAX_MASK(i), v);
2655 }
2656
2657 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2658 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2659 RPO_LRO_INACTIVE_IVAL, 0);
2660 /*
2661 * the LRO timebase divider is 5 uS (0x61a),
2662 * to get a maximum coalescing interval of 250 uS,
2663 * we need to multiply by 50(0x32) to get
2664 * the default value 250 uS
2665 */
2666 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2667 RPO_LRO_MAX_COALESCING_IVAL, 50);
2668 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2669 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2670 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2671 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2672 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2673 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2674 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2675 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2676 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2677 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2678
2679 return 0;
2680 }
2681
2682 static int
2683 aq_set_filter(struct aq_softc *sc)
2684 {
2685 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2686 struct ethercom *ec = &sc->sc_ethercom;
2687 struct ether_multi *enm;
2688 struct ether_multistep step;
2689 int idx, error = 0;
2690
2691 if (ifp->if_flags & IFF_PROMISC) {
2692 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2693 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2694 ec->ec_flags |= ETHER_F_ALLMULTI;
2695 goto done;
2696 }
2697
2698 /* clear all table */
2699 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2700 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2701 continue;
2702 aq_set_mac_addr(sc, idx, NULL);
2703 }
2704
2705 /* don't accept all multicast */
2706 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2707 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2708 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2709 RPF_MCAST_FILTER_EN, 0);
2710
2711 idx = 0;
2712 ETHER_LOCK(ec);
2713 ETHER_FIRST_MULTI(step, ec, enm);
2714 while (enm != NULL) {
2715 if (idx == AQ_HW_MAC_OWN)
2716 idx++;
2717
2718 if ((idx >= AQ_HW_MAC_NUM) ||
2719 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2720 /*
2721 * too many filters.
2722 * fallback to accept all multicast addresses.
2723 */
2724 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2725 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2726 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2727 RPF_MCAST_FILTER_EN, 1);
2728 ec->ec_flags |= ETHER_F_ALLMULTI;
2729 ETHER_UNLOCK(ec);
2730 goto done;
2731 }
2732
2733 /* add a filter */
2734 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2735
2736 ETHER_NEXT_MULTI(step, enm);
2737 }
2738 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2739 ETHER_UNLOCK(ec);
2740
2741 done:
2742 return error;
2743 }
2744
2745 static int
2746 aq_ifmedia_change(struct ifnet * const ifp)
2747 {
2748 struct aq_softc *sc = ifp->if_softc;
2749 aq_link_speed_t rate = AQ_LINK_NONE;
2750 aq_link_fc_t fc = AQ_FC_NONE;
2751 aq_link_eee_t eee = AQ_EEE_DISABLE;
2752
2753 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2754 return EINVAL;
2755
2756 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2757 case IFM_AUTO:
2758 rate = AQ_LINK_AUTO;
2759 break;
2760 case IFM_NONE:
2761 rate = AQ_LINK_NONE;
2762 break;
2763 case IFM_100_TX:
2764 rate = AQ_LINK_100M;
2765 break;
2766 case IFM_1000_T:
2767 rate = AQ_LINK_1G;
2768 break;
2769 case IFM_2500_T:
2770 rate = AQ_LINK_2G5;
2771 break;
2772 case IFM_5000_T:
2773 rate = AQ_LINK_5G;
2774 break;
2775 case IFM_10G_T:
2776 rate = AQ_LINK_10G;
2777 break;
2778 default:
2779 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2780 IFM_SUBTYPE(sc->sc_media.ifm_media));
2781 return ENODEV;
2782 }
2783
2784 if (sc->sc_media.ifm_media & IFM_FLOW)
2785 fc = AQ_FC_ALL;
2786
2787 /* XXX: todo EEE */
2788
2789 /* re-initialize hardware with new parameters */
2790 aq_set_linkmode(sc, rate, fc, eee);
2791
2792 return 0;
2793 }
2794
2795 static void
2796 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2797 {
2798 struct aq_softc *sc = ifp->if_softc;
2799
2800 /* update ifm_active */
2801 ifmr->ifm_active = IFM_ETHER;
2802 if (sc->sc_link_fc & AQ_FC_RX)
2803 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2804 if (sc->sc_link_fc & AQ_FC_TX)
2805 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2806
2807 switch (sc->sc_link_rate) {
2808 case AQ_LINK_100M:
2809 /* XXX: need to detect fulldup or halfdup */
2810 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2811 break;
2812 case AQ_LINK_1G:
2813 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2814 break;
2815 case AQ_LINK_2G5:
2816 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2817 break;
2818 case AQ_LINK_5G:
2819 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2820 break;
2821 case AQ_LINK_10G:
2822 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2823 break;
2824 default:
2825 ifmr->ifm_active |= IFM_NONE;
2826 break;
2827 }
2828
2829 /* update ifm_status */
2830 ifmr->ifm_status = IFM_AVALID;
2831 if (sc->sc_link_rate != AQ_LINK_NONE)
2832 ifmr->ifm_status |= IFM_ACTIVE;
2833 }
2834
2835 static void
2836 aq_initmedia(struct aq_softc *sc)
2837 {
2838 #define IFMEDIA_ETHER_ADD(sc, media) \
2839 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2840
2841 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2842 if (sc->sc_available_rates & AQ_LINK_100M) {
2843 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2844 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2845 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2846 }
2847 if (sc->sc_available_rates & AQ_LINK_1G) {
2848 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2849 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2850 }
2851 if (sc->sc_available_rates & AQ_LINK_2G5) {
2852 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2853 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2854 }
2855 if (sc->sc_available_rates & AQ_LINK_5G) {
2856 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2857 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2858 }
2859 if (sc->sc_available_rates & AQ_LINK_10G) {
2860 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2861 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2862 }
2863 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2864 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2865
2866 /* default: auto without flowcontrol */
2867 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2868 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2869 }
2870
2871 static int
2872 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2873 aq_link_eee_t eee)
2874 {
2875 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2876 }
2877
2878 static int
2879 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2880 aq_link_eee_t *eee)
2881 {
2882 aq_hw_fw_mpi_state_t mode;
2883 int error;
2884
2885 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2886 if (error != 0)
2887 return error;
2888 if (mode != MPI_INIT)
2889 return ENXIO;
2890
2891 return 0;
2892 }
2893
2894 static void
2895 aq_hw_init_tx_path(struct aq_softc *sc)
2896 {
2897 /* Tx TC/RSS number config */
2898 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2899
2900 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2901 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2902 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2903 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2904 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2905 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2906
2907 /* misc */
2908 AQ_WRITE_REG(sc, TX_TPO2_REG,
2909 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2910 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2911 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2912
2913 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2914 }
2915
2916 static void
2917 aq_hw_init_rx_path(struct aq_softc *sc)
2918 {
2919 int i;
2920
2921 /* clear setting */
2922 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2923 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2924 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2925 for (i = 0; i < 32; i++) {
2926 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2927 RPF_ETHERTYPE_FILTER_EN, 0);
2928 }
2929
2930 if (sc->sc_rss_enable) {
2931 /* Rx TC/RSS number config */
2932 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2933
2934 /* Rx flow control */
2935 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2936
2937 /* RSS Ring selection */
2938 switch (sc->sc_nqueues) {
2939 case 2:
2940 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2941 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2942 break;
2943 case 4:
2944 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2945 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2946 break;
2947 case 8:
2948 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2949 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2950 break;
2951 }
2952 }
2953
2954 /* L2 and Multicast filters */
2955 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2956 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2957 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2958 RPF_ACTION_HOST);
2959 }
2960 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2961 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2962
2963 /* Vlan filters */
2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2965 ETHERTYPE_QINQ);
2966 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2967 ETHERTYPE_VLAN);
2968 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2969
2970 if (sc->sc_features & FEATURES_REV_B) {
2971 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2972 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2973 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2974 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2975 }
2976
2977 /* misc */
2978 if (sc->sc_features & FEATURES_RPF2)
2979 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2980 else
2981 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2982
2983 /*
2984 * XXX: RX_TCP_RSS_HASH_REG:
2985 * linux set 0x000f0000
2986 * freebsd set 0x000f001e
2987 */
2988 /* RSS hash type set for IP/TCP */
2989 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2990 RX_TCP_RSS_HASH_TYPE, 0x001e);
2991
2992 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2993 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2994 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2995
2996 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2997 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2998 }
2999
3000 static void
3001 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3002 {
3003 int i;
3004
3005 if (sc->sc_intr_moderation_enable) {
3006 unsigned int tx_min, rx_min; /* 0-255 */
3007 unsigned int tx_max, rx_max; /* 0-511? */
3008
3009 switch (sc->sc_link_rate) {
3010 case AQ_LINK_100M:
3011 tx_min = 0x4f;
3012 tx_max = 0xff;
3013 rx_min = 0x04;
3014 rx_max = 0x50;
3015 break;
3016 case AQ_LINK_1G:
3017 default:
3018 tx_min = 0x4f;
3019 tx_max = 0xff;
3020 rx_min = 0x30;
3021 rx_max = 0x80;
3022 break;
3023 case AQ_LINK_2G5:
3024 tx_min = 0x4f;
3025 tx_max = 0xff;
3026 rx_min = 0x18;
3027 rx_max = 0xe0;
3028 break;
3029 case AQ_LINK_5G:
3030 tx_min = 0x4f;
3031 tx_max = 0xff;
3032 rx_min = 0x0c;
3033 rx_max = 0x70;
3034 break;
3035 case AQ_LINK_10G:
3036 tx_min = 0x4f;
3037 tx_max = 0x1ff;
3038 rx_min = 0x06; /* freebsd use 80 */
3039 rx_max = 0x38; /* freebsd use 120 */
3040 break;
3041 }
3042
3043 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3044 TX_DMA_INT_DESC_WRWB_EN, 0);
3045 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3046 TX_DMA_INT_DESC_MODERATE_EN, 1);
3047 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3048 RX_DMA_INT_DESC_WRWB_EN, 0);
3049 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3050 RX_DMA_INT_DESC_MODERATE_EN, 1);
3051
3052 for (i = 0; i < AQ_RINGS_NUM; i++) {
3053 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3054 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3055 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3056 TX_INTR_MODERATION_CTL_EN);
3057 }
3058 for (i = 0; i < AQ_RINGS_NUM; i++) {
3059 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3060 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3061 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3062 RX_INTR_MODERATION_CTL_EN);
3063 }
3064
3065 } else {
3066 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3067 TX_DMA_INT_DESC_WRWB_EN, 1);
3068 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3069 TX_DMA_INT_DESC_MODERATE_EN, 0);
3070 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3071 RX_DMA_INT_DESC_WRWB_EN, 1);
3072 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3073 RX_DMA_INT_DESC_MODERATE_EN, 0);
3074
3075 for (i = 0; i < AQ_RINGS_NUM; i++) {
3076 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3077 }
3078 for (i = 0; i < AQ_RINGS_NUM; i++) {
3079 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3080 }
3081 }
3082 }
3083
3084 static void
3085 aq_hw_qos_set(struct aq_softc *sc)
3086 {
3087 uint32_t tc = 0;
3088 uint32_t buff_size;
3089
3090 /* TPS Descriptor rate init */
3091 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3092 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3093
3094 /* TPS VM init */
3095 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3096
3097 /* TPS TC credits init */
3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3099 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3100
3101 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3102 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3103 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3104 TPS_DATA_TCT_WEIGHT, 0x64);
3105 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3106 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3107 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3108 TPS_DESC_TCT_WEIGHT, 0x1e);
3109
3110 /* Tx buf size */
3111 tc = 0;
3112 buff_size = AQ_HW_TXBUF_MAX;
3113 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3114 buff_size);
3115 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3116 (buff_size * (1024 / 32) * 66) / 100);
3117 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3118 (buff_size * (1024 / 32) * 50) / 100);
3119
3120 /* QoS Rx buf size per TC */
3121 tc = 0;
3122 buff_size = AQ_HW_RXBUF_MAX;
3123 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3124 buff_size);
3125 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3126 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3127 (buff_size * (1024 / 32) * 66) / 100);
3128 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3129 (buff_size * (1024 / 32) * 50) / 100);
3130
3131 /* QoS 802.1p priority -> TC mapping */
3132 int i_priority;
3133 for (i_priority = 0; i_priority < 8; i_priority++) {
3134 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3135 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3136 }
3137 }
3138
3139 /* called once from aq_attach */
3140 static int
3141 aq_init_rss(struct aq_softc *sc)
3142 {
3143 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3144 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3145 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3146 unsigned int i;
3147 int error;
3148
3149 /* initialize rss key */
3150 rss_getkey((uint8_t *)rss_key);
3151
3152 /* hash to ring table */
3153 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3154 rss_table[i] = i % sc->sc_nqueues;
3155 }
3156
3157 /*
3158 * set rss key
3159 */
3160 for (i = 0; i < __arraycount(rss_key); i++) {
3161 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3162 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3163 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3164 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3165 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3166 RPF_RSS_KEY_WR_EN, 1);
3167 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3168 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3169 if (error != 0) {
3170 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3171 __func__);
3172 goto rss_set_timeout;
3173 }
3174 }
3175
3176 /*
3177 * set rss indirection table
3178 *
3179 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3180 * we'll make it by __BITMAP(3) macros.
3181 */
3182 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3183 __BITMAP_ZERO(&bit3x64);
3184
3185 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3186 do { \
3187 if (val & 1) { \
3188 __BITMAP_SET((idx) * 3, (bitmap)); \
3189 } else { \
3190 __BITMAP_CLR((idx) * 3, (bitmap)); \
3191 } \
3192 if (val & 2) { \
3193 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3194 } else { \
3195 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3196 } \
3197 if (val & 4) { \
3198 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3199 } else { \
3200 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3201 } \
3202 } while (0 /* CONSTCOND */)
3203
3204 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3205 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3206 }
3207
3208 /* write 192bit data in steps of 16bit */
3209 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3210 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3211 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3212 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3213 RPF_RSS_REDIR_ADDR, i);
3214 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3215 RPF_RSS_REDIR_WR_EN, 1);
3216
3217 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3218 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3219 if (error != 0)
3220 break;
3221 }
3222
3223 rss_set_timeout:
3224 return error;
3225 }
3226
3227 static void
3228 aq_hw_l3_filter_set(struct aq_softc *sc)
3229 {
3230 int i;
3231
3232 /* clear all filter */
3233 for (i = 0; i < 8; i++) {
3234 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3235 RPF_L3_FILTER_L4_EN, 0);
3236 }
3237 }
3238
3239 static void
3240 aq_set_vlan_filters(struct aq_softc *sc)
3241 {
3242 struct ethercom *ec = &sc->sc_ethercom;
3243 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3244 struct vlanid_list *vlanidp;
3245 int i;
3246
3247 ETHER_LOCK(ec);
3248
3249 /* disable all vlan filters */
3250 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3251 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3252
3253 /* count VID */
3254 i = 0;
3255 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3256 i++;
3257
3258 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3259 (ifp->if_flags & IFF_PROMISC) ||
3260 (i > RPF_VLAN_MAX_FILTERS)) {
3261 /*
3262 * no vlan hwfilter, in promiscuous mode, or too many VID?
3263 * must receive all VID
3264 */
3265 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3266 RPF_VLAN_MODE_PROMISC, 1);
3267 goto done;
3268 }
3269
3270 /* receive only selected VID */
3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3272 i = 0;
3273 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3274 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3275 RPF_VLAN_FILTER_EN, 1);
3276 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3277 RPF_VLAN_FILTER_RXQ_EN, 0);
3278 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3279 RPF_VLAN_FILTER_RXQ, 0);
3280 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3281 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3282 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3283 RPF_VLAN_FILTER_ID, vlanidp->vid);
3284 i++;
3285 }
3286
3287 done:
3288 ETHER_UNLOCK(ec);
3289 }
3290
3291 static int
3292 aq_hw_init(struct aq_softc *sc)
3293 {
3294 uint32_t v;
3295
3296 /* Force limit MRRS on RDM/TDM to 2K */
3297 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3298 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3299
3300 /*
3301 * TX DMA total request limit. B0 hardware is not capable to
3302 * handle more than (8K-MRRS) incoming DMA data.
3303 * Value 24 in 256byte units
3304 */
3305 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3306
3307 aq_hw_init_tx_path(sc);
3308 aq_hw_init_rx_path(sc);
3309
3310 aq_hw_interrupt_moderation_set(sc);
3311
3312 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3313 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3314
3315 aq_hw_qos_set(sc);
3316
3317 /* Enable interrupt */
3318 int irqmode;
3319 if (sc->sc_msix)
3320 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3321 else
3322 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3323
3324 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3325 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3326 sc->sc_msix ? 1 : 0);
3327 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3328
3329 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3330
3331 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3332 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3333 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3334 );
3335
3336 /* link interrupt */
3337 if (!sc->sc_msix)
3338 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3339 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3340 __BIT(7) | sc->sc_linkstat_irq);
3341
3342 return 0;
3343 }
3344
3345 static int
3346 aq_update_link_status(struct aq_softc *sc)
3347 {
3348 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3349 aq_link_speed_t rate = AQ_LINK_NONE;
3350 aq_link_fc_t fc = AQ_FC_NONE;
3351 aq_link_eee_t eee = AQ_EEE_DISABLE;
3352 unsigned int speed;
3353 int changed = 0;
3354
3355 aq_get_linkmode(sc, &rate, &fc, &eee);
3356
3357 if (sc->sc_link_rate != rate)
3358 changed = 1;
3359 if (sc->sc_link_fc != fc)
3360 changed = 1;
3361 if (sc->sc_link_eee != eee)
3362 changed = 1;
3363
3364 if (changed) {
3365 switch (rate) {
3366 case AQ_LINK_100M:
3367 speed = 100;
3368 break;
3369 case AQ_LINK_1G:
3370 speed = 1000;
3371 break;
3372 case AQ_LINK_2G5:
3373 speed = 2500;
3374 break;
3375 case AQ_LINK_5G:
3376 speed = 5000;
3377 break;
3378 case AQ_LINK_10G:
3379 speed = 10000;
3380 break;
3381 case AQ_LINK_NONE:
3382 default:
3383 speed = 0;
3384 break;
3385 }
3386
3387 if (sc->sc_link_rate == AQ_LINK_NONE) {
3388 /* link DOWN -> UP */
3389 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3390 speed);
3391 if_link_state_change(ifp, LINK_STATE_UP);
3392 } else if (rate == AQ_LINK_NONE) {
3393 /* link UP -> DOWN */
3394 device_printf(sc->sc_dev, "link is DOWN\n");
3395 if_link_state_change(ifp, LINK_STATE_DOWN);
3396 } else {
3397 device_printf(sc->sc_dev,
3398 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3399 speed, fc, eee);
3400 }
3401
3402 sc->sc_link_rate = rate;
3403 sc->sc_link_fc = fc;
3404 sc->sc_link_eee = eee;
3405
3406 /* update interrupt timing according to new link speed */
3407 aq_hw_interrupt_moderation_set(sc);
3408 }
3409
3410 return changed;
3411 }
3412
3413 #ifdef AQ_EVENT_COUNTERS
3414 static void
3415 aq_update_statistics(struct aq_softc *sc)
3416 {
3417 int prev = sc->sc_statistics_idx;
3418 int cur = prev ^ 1;
3419
3420 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3421
3422 /*
3423 * aq's internal statistics counter is 32bit.
3424 * cauculate delta, and add to evcount
3425 */
3426 #define ADD_DELTA(cur, prev, name) \
3427 do { \
3428 uint32_t n; \
3429 n = (uint32_t)(sc->sc_statistics[cur].name - \
3430 sc->sc_statistics[prev].name); \
3431 if (n != 0) { \
3432 AQ_EVCNT_ADD(sc, name, n); \
3433 } \
3434 } while (/*CONSTCOND*/0);
3435
3436 ADD_DELTA(cur, prev, uprc);
3437 ADD_DELTA(cur, prev, mprc);
3438 ADD_DELTA(cur, prev, bprc);
3439 ADD_DELTA(cur, prev, prc);
3440 ADD_DELTA(cur, prev, erpr);
3441 ADD_DELTA(cur, prev, uptc);
3442 ADD_DELTA(cur, prev, mptc);
3443 ADD_DELTA(cur, prev, bptc);
3444 ADD_DELTA(cur, prev, ptc);
3445 ADD_DELTA(cur, prev, erpt);
3446 ADD_DELTA(cur, prev, mbtc);
3447 ADD_DELTA(cur, prev, bbtc);
3448 ADD_DELTA(cur, prev, mbrc);
3449 ADD_DELTA(cur, prev, bbrc);
3450 ADD_DELTA(cur, prev, ubrc);
3451 ADD_DELTA(cur, prev, ubtc);
3452 ADD_DELTA(cur, prev, dpc);
3453 ADD_DELTA(cur, prev, cprc);
3454
3455 sc->sc_statistics_idx = cur;
3456 }
3457 #endif /* AQ_EVENT_COUNTERS */
3458
3459 /* allocate and map one DMA block */
3460 static int
3461 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3462 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3463 {
3464 int nsegs, error;
3465
3466 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3467 1, &nsegs, 0)) != 0) {
3468 aprint_error_dev(sc->sc_dev,
3469 "unable to allocate DMA buffer, error=%d\n", error);
3470 goto fail_alloc;
3471 }
3472
3473 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3474 BUS_DMA_COHERENT)) != 0) {
3475 aprint_error_dev(sc->sc_dev,
3476 "unable to map DMA buffer, error=%d\n", error);
3477 goto fail_map;
3478 }
3479
3480 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3481 0, mapp)) != 0) {
3482 aprint_error_dev(sc->sc_dev,
3483 "unable to create DMA map, error=%d\n", error);
3484 goto fail_create;
3485 }
3486
3487 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3488 0)) != 0) {
3489 aprint_error_dev(sc->sc_dev,
3490 "unable to load DMA map, error=%d\n", error);
3491 goto fail_load;
3492 }
3493
3494 *sizep = size;
3495 return 0;
3496
3497 fail_load:
3498 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3499 *mapp = NULL;
3500 fail_create:
3501 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3502 *addrp = NULL;
3503 fail_map:
3504 bus_dmamem_free(sc->sc_dmat, seg, 1);
3505 memset(seg, 0, sizeof(*seg));
3506 fail_alloc:
3507 *sizep = 0;
3508 return error;
3509 }
3510
3511 static void
3512 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3513 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3514 {
3515 if (*mapp != NULL) {
3516 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3517 *mapp = NULL;
3518 }
3519 if (*addrp != NULL) {
3520 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3521 *addrp = NULL;
3522 }
3523 if (*sizep != 0) {
3524 bus_dmamem_free(sc->sc_dmat, seg, 1);
3525 memset(seg, 0, sizeof(*seg));
3526 *sizep = 0;
3527 }
3528 }
3529
3530 static int
3531 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3532 {
3533 int i, error;
3534
3535 /* allocate tx descriptors */
3536 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3537 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3538 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3539 if (error != 0)
3540 return error;
3541
3542 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3543
3544 /* fill tx ring with dmamap */
3545 for (i = 0; i < AQ_TXD_NUM; i++) {
3546 #define AQ_MAXDMASIZE (16 * 1024)
3547 #define AQ_NTXSEGS 32
3548 /* XXX: TODO: error check */
3549 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3550 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3551 }
3552 return 0;
3553 }
3554
3555 static void
3556 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3557 {
3558 int i;
3559
3560 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3561 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3562
3563 for (i = 0; i < AQ_TXD_NUM; i++) {
3564 if (txring->txr_mbufs[i].dmamap != NULL) {
3565 if (txring->txr_mbufs[i].m != NULL) {
3566 bus_dmamap_unload(sc->sc_dmat,
3567 txring->txr_mbufs[i].dmamap);
3568 m_freem(txring->txr_mbufs[i].m);
3569 txring->txr_mbufs[i].m = NULL;
3570 }
3571 bus_dmamap_destroy(sc->sc_dmat,
3572 txring->txr_mbufs[i].dmamap);
3573 txring->txr_mbufs[i].dmamap = NULL;
3574 }
3575 }
3576 }
3577
3578 static int
3579 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3580 {
3581 int i, error;
3582
3583 /* allocate rx descriptors */
3584 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3585 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3586 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3587 if (error != 0)
3588 return error;
3589
3590 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3591
3592 /* fill rxring with dmamaps */
3593 for (i = 0; i < AQ_RXD_NUM; i++) {
3594 rxring->rxr_mbufs[i].m = NULL;
3595 /* XXX: TODO: error check */
3596 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3597 &rxring->rxr_mbufs[i].dmamap);
3598 }
3599 return 0;
3600 }
3601
3602 static void
3603 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3604 {
3605 int i;
3606
3607 /* free all mbufs allocated for RX */
3608 for (i = 0; i < AQ_RXD_NUM; i++) {
3609 if (rxring->rxr_mbufs[i].m != NULL) {
3610 bus_dmamap_unload(sc->sc_dmat,
3611 rxring->rxr_mbufs[i].dmamap);
3612 m_freem(rxring->rxr_mbufs[i].m);
3613 rxring->rxr_mbufs[i].m = NULL;
3614 }
3615 }
3616 }
3617
3618 static void
3619 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3620 {
3621 int i;
3622
3623 /* free all mbufs and dmamaps */
3624 aq_rxdrain(sc, rxring);
3625 for (i = 0; i < AQ_RXD_NUM; i++) {
3626 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3627 bus_dmamap_destroy(sc->sc_dmat,
3628 rxring->rxr_mbufs[i].dmamap);
3629 rxring->rxr_mbufs[i].dmamap = NULL;
3630 }
3631 }
3632
3633 /* free RX descriptor */
3634 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3635 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3636 }
3637
3638 static void
3639 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3640 struct mbuf *m)
3641 {
3642 int error;
3643
3644 /* if mbuf already exists, unload and free */
3645 if (rxring->rxr_mbufs[idx].m != NULL) {
3646 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3647 m_freem(rxring->rxr_mbufs[idx].m);
3648 rxring->rxr_mbufs[idx].m = NULL;
3649 }
3650
3651 rxring->rxr_mbufs[idx].m = m;
3652
3653 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3654 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3655 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3656 if (error) {
3657 device_printf(sc->sc_dev,
3658 "unable to load rx DMA map %d, error = %d\n", idx, error);
3659 panic("%s: unable to load rx DMA map. error=%d",
3660 __func__, error);
3661 }
3662 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3663 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3664 }
3665
3666 static inline void
3667 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3668 {
3669 /* refill rxdesc, and sync */
3670 rxring->rxr_rxdesc[idx].read.buf_addr =
3671 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3672 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3673 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3674 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3675 BUS_DMASYNC_PREWRITE);
3676 }
3677
3678 static struct mbuf *
3679 aq_alloc_mbuf(void)
3680 {
3681 struct mbuf *m;
3682
3683 MGETHDR(m, M_DONTWAIT, MT_DATA);
3684 if (m == NULL)
3685 return NULL;
3686
3687 MCLGET(m, M_DONTWAIT);
3688 if ((m->m_flags & M_EXT) == 0) {
3689 m_freem(m);
3690 return NULL;
3691 }
3692
3693 return m;
3694 }
3695
3696 /* allocate mbuf and unload dmamap */
3697 static int
3698 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3699 {
3700 struct mbuf *m;
3701
3702 m = aq_alloc_mbuf();
3703 if (m == NULL)
3704 return ENOBUFS;
3705
3706 aq_rxring_setmbuf(sc, rxring, idx, m);
3707 return 0;
3708 }
3709
3710 static int
3711 aq_txrx_rings_alloc(struct aq_softc *sc)
3712 {
3713 int n, error;
3714
3715 for (n = 0; n < sc->sc_nqueues; n++) {
3716 sc->sc_queue[n].sc = sc;
3717 sc->sc_queue[n].txring.txr_sc = sc;
3718 sc->sc_queue[n].txring.txr_index = n;
3719 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3720 IPL_NET);
3721 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3722 if (error != 0)
3723 goto failure;
3724
3725 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3726 if (error != 0)
3727 goto failure;
3728
3729 sc->sc_queue[n].rxring.rxr_sc = sc;
3730 sc->sc_queue[n].rxring.rxr_index = n;
3731 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3732 IPL_NET);
3733 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3734 if (error != 0)
3735 break;
3736 }
3737
3738 failure:
3739 return error;
3740 }
3741
3742 static void
3743 aq_txrx_rings_free(struct aq_softc *sc)
3744 {
3745 int n;
3746
3747 for (n = 0; n < sc->sc_nqueues; n++) {
3748 aq_txring_free(sc, &sc->sc_queue[n].txring);
3749 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3750
3751 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3752
3753 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3754 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3755 }
3756 }
3757
3758 static int
3759 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3760 {
3761 int error = 0;
3762 txring->txr_softint = NULL;
3763
3764 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3765 if (txring->txr_pcq == NULL) {
3766 aprint_error_dev(sc->sc_dev,
3767 "unable to allocate pcq for TXring[%d]\n",
3768 txring->txr_index);
3769 error = ENOMEM;
3770 goto done;
3771 }
3772
3773 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3774 aq_deferred_transmit, txring);
3775 if (txring->txr_softint == NULL) {
3776 aprint_error_dev(sc->sc_dev,
3777 "unable to establish softint for TXring[%d]\n",
3778 txring->txr_index);
3779 error = ENOENT;
3780 }
3781
3782 done:
3783 return error;
3784 }
3785
3786 static void
3787 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3788 {
3789 struct mbuf *m;
3790
3791 if (txring->txr_softint != NULL) {
3792 softint_disestablish(txring->txr_softint);
3793 txring->txr_softint = NULL;
3794 }
3795
3796 if (txring->txr_pcq != NULL) {
3797 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3798 m_freem(m);
3799 pcq_destroy(txring->txr_pcq);
3800 txring->txr_pcq = NULL;
3801 }
3802 }
3803
3804 #if NSYSMON_ENVSYS > 0
3805 static void
3806 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3807 {
3808 struct aq_softc *sc;
3809 uint32_t temp;
3810 int error;
3811
3812 sc = sme->sme_cookie;
3813
3814 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3815 if (error == 0) {
3816 edata->value_cur = temp;
3817 edata->state = ENVSYS_SVALID;
3818 } else {
3819 edata->state = ENVSYS_SINVALID;
3820 }
3821 }
3822 #endif
3823
3824 static void
3825 aq_tick(void *arg)
3826 {
3827 struct aq_softc *sc = arg;
3828
3829 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3830 sc->sc_detect_linkstat = false;
3831 aq_update_link_status(sc);
3832 }
3833
3834 #ifdef AQ_EVENT_COUNTERS
3835 if (sc->sc_poll_statistics)
3836 aq_update_statistics(sc);
3837 #endif
3838
3839 if (sc->sc_poll_linkstat
3840 #ifdef AQ_EVENT_COUNTERS
3841 || sc->sc_poll_statistics
3842 #endif
3843 ) {
3844 callout_schedule(&sc->sc_tick_ch, hz);
3845 }
3846 }
3847
3848 /* interrupt enable/disable */
3849 static void
3850 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3851 {
3852 uint32_t imask = 0;
3853 int i;
3854
3855 if (txrx) {
3856 for (i = 0; i < sc->sc_nqueues; i++) {
3857 imask |= __BIT(sc->sc_tx_irq[i]);
3858 imask |= __BIT(sc->sc_rx_irq[i]);
3859 }
3860 }
3861
3862 if (link)
3863 imask |= __BIT(sc->sc_linkstat_irq);
3864
3865 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3866 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3867 }
3868
3869 static int
3870 aq_legacy_intr(void *arg)
3871 {
3872 struct aq_softc *sc = arg;
3873 uint32_t status;
3874 int nintr = 0;
3875
3876 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3877 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3878
3879 if (status & __BIT(sc->sc_linkstat_irq)) {
3880 sc->sc_detect_linkstat = true;
3881 callout_schedule(&sc->sc_tick_ch, 0);
3882 nintr++;
3883 }
3884
3885 if (status & __BIT(sc->sc_rx_irq[0])) {
3886 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3887 }
3888
3889 if (status & __BIT(sc->sc_tx_irq[0])) {
3890 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3891 }
3892
3893 return nintr;
3894 }
3895
3896 static int
3897 aq_txrx_intr(void *arg)
3898 {
3899 struct aq_queue *queue = arg;
3900 struct aq_softc *sc = queue->sc;
3901 struct aq_txring *txring = &queue->txring;
3902 struct aq_rxring *rxring = &queue->rxring;
3903 uint32_t status;
3904 int nintr = 0;
3905 int txringidx, rxringidx, txirq, rxirq;
3906
3907 txringidx = txring->txr_index;
3908 rxringidx = rxring->rxr_index;
3909 txirq = sc->sc_tx_irq[txringidx];
3910 rxirq = sc->sc_rx_irq[rxringidx];
3911
3912 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3913 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3914 /* stray interrupt? */
3915 return 0;
3916 }
3917
3918 nintr += aq_rx_intr(rxring);
3919 nintr += aq_tx_intr(txring);
3920
3921 return nintr;
3922 }
3923
3924 static int
3925 aq_link_intr(void *arg)
3926 {
3927 struct aq_softc *sc = arg;
3928 uint32_t status;
3929 int nintr = 0;
3930
3931 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3932 if (status & __BIT(sc->sc_linkstat_irq)) {
3933 sc->sc_detect_linkstat = true;
3934 callout_schedule(&sc->sc_tick_ch, 0);
3935 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3936 __BIT(sc->sc_linkstat_irq));
3937 nintr++;
3938 }
3939
3940 return nintr;
3941 }
3942
3943 static void
3944 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3945 {
3946 const int ringidx = txring->txr_index;
3947 int i;
3948
3949 mutex_enter(&txring->txr_mutex);
3950
3951 txring->txr_prodidx = 0;
3952 txring->txr_considx = 0;
3953 txring->txr_nfree = AQ_TXD_NUM;
3954 txring->txr_active = false;
3955
3956 /* free mbufs untransmitted */
3957 for (i = 0; i < AQ_TXD_NUM; i++) {
3958 if (txring->txr_mbufs[i].m != NULL) {
3959 m_freem(txring->txr_mbufs[i].m);
3960 txring->txr_mbufs[i].m = NULL;
3961 }
3962 }
3963
3964 /* disable DMA */
3965 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3966
3967 if (start) {
3968 /* TX descriptor physical address */
3969 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3970 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3971 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3972 (uint32_t)((uint64_t)paddr >> 32));
3973
3974 /* TX descriptor size */
3975 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3976 AQ_TXD_NUM / 8);
3977
3978 /* reload TAIL pointer */
3979 txring->txr_prodidx = txring->txr_considx =
3980 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3981 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3982
3983 /* Mapping interrupt vector */
3984 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3985 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3986 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3987 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3988
3989 /* enable DMA */
3990 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3991 TX_DMA_DESC_EN, 1);
3992
3993 const int cpuid = 0; /* XXX? */
3994 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3995 TDM_DCAD_CPUID, cpuid);
3996 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3997 TDM_DCAD_CPUID_EN, 0);
3998
3999 txring->txr_active = true;
4000 }
4001
4002 mutex_exit(&txring->txr_mutex);
4003 }
4004
4005 static int
4006 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4007 {
4008 const int ringidx = rxring->rxr_index;
4009 int i;
4010 int error = 0;
4011
4012 mutex_enter(&rxring->rxr_mutex);
4013 rxring->rxr_active = false;
4014
4015 /* disable DMA */
4016 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4017
4018 /* free all RX mbufs */
4019 aq_rxdrain(sc, rxring);
4020
4021 if (start) {
4022 for (i = 0; i < AQ_RXD_NUM; i++) {
4023 error = aq_rxring_add(sc, rxring, i);
4024 if (error != 0) {
4025 aq_rxdrain(sc, rxring);
4026 return error;
4027 }
4028 aq_rxring_reset_desc(sc, rxring, i);
4029 }
4030
4031 /* RX descriptor physical address */
4032 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4033 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4034 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4035 (uint32_t)((uint64_t)paddr >> 32));
4036
4037 /* RX descriptor size */
4038 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4039 AQ_RXD_NUM / 8);
4040
4041 /* maximum receive frame size */
4042 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4043 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4044 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4045 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4046
4047 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4048 RX_DMA_DESC_HEADER_SPLIT, 0);
4049 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4050 RX_DMA_DESC_VLAN_STRIP,
4051 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4052 1 : 0);
4053
4054 /*
4055 * reload TAIL pointer, and update readidx
4056 * (HEAD pointer cannot write)
4057 */
4058 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4059 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4060 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4061 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4062
4063 /* Rx ring set mode */
4064
4065 /* Mapping interrupt vector */
4066 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4067 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4068 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4069 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4070
4071 const int cpuid = 0; /* XXX? */
4072 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4073 RX_DMA_DCAD_CPUID, cpuid);
4074 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4075 RX_DMA_DCAD_DESC_EN, 0);
4076 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4077 RX_DMA_DCAD_HEADER_EN, 0);
4078 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4079 RX_DMA_DCAD_PAYLOAD_EN, 0);
4080
4081 /* enable DMA. start receiving */
4082 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4083 RX_DMA_DESC_EN, 1);
4084
4085 rxring->rxr_active = true;
4086 }
4087
4088 mutex_exit(&rxring->rxr_mutex);
4089 return error;
4090 }
4091
4092 #define TXRING_NEXTIDX(idx) \
4093 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4094 #define RXRING_NEXTIDX(idx) \
4095 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4096
4097 static int
4098 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4099 {
4100 bus_dmamap_t map;
4101 struct mbuf *m = *mp;
4102 uint32_t ctl1, ctl1_ctx, ctl2;
4103 int idx, i, error;
4104
4105 idx = txring->txr_prodidx;
4106 map = txring->txr_mbufs[idx].dmamap;
4107
4108 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4109 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4110 if (error == EFBIG) {
4111 struct mbuf *n;
4112 n = m_defrag(m, M_DONTWAIT);
4113 if (n == NULL)
4114 return EFBIG;
4115 /* m_defrag() preserve m */
4116 KASSERT(n == m);
4117 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4118 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4119 }
4120 if (error != 0)
4121 return error;
4122
4123 /*
4124 * check spaces of free descriptors.
4125 * +1 is additional descriptor for context (vlan, etc,.)
4126 */
4127 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4128 device_printf(sc->sc_dev,
4129 "TX: not enough descriptors left %d for %d segs\n",
4130 txring->txr_nfree, map->dm_nsegs + 1);
4131 bus_dmamap_unload(sc->sc_dmat, map);
4132 return ENOBUFS;
4133 }
4134
4135 /* sync dma for mbuf */
4136 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4137 BUS_DMASYNC_PREWRITE);
4138
4139 ctl1_ctx = 0;
4140 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4141
4142 if (vlan_has_tag(m)) {
4143 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4144 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4145
4146 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4147 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4148
4149 /* fill context descriptor and forward index */
4150 txring->txr_txdesc[idx].buf_addr = 0;
4151 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4152 txring->txr_txdesc[idx].ctl2 = 0;
4153
4154 idx = TXRING_NEXTIDX(idx);
4155 txring->txr_nfree--;
4156 }
4157
4158 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4159 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4160 if (m->m_pkthdr.csum_flags &
4161 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4162 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4163 }
4164
4165 /* fill descriptor(s) */
4166 for (i = 0; i < map->dm_nsegs; i++) {
4167 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4168 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4169 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4170
4171 if (i == 0) {
4172 /* remember mbuf of these descriptors */
4173 txring->txr_mbufs[idx].m = m;
4174 } else {
4175 txring->txr_mbufs[idx].m = NULL;
4176 }
4177
4178 if (i == map->dm_nsegs - 1) {
4179 /* last segment, mark an EndOfPacket, and cause intr */
4180 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4181 }
4182
4183 txring->txr_txdesc[idx].buf_addr =
4184 htole64(map->dm_segs[i].ds_addr);
4185 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4186 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4187
4188 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4189 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4190 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4191
4192 idx = TXRING_NEXTIDX(idx);
4193 txring->txr_nfree--;
4194 }
4195
4196 txring->txr_prodidx = idx;
4197
4198 return 0;
4199 }
4200
4201 static int
4202 aq_tx_intr(void *arg)
4203 {
4204 struct aq_txring *txring = arg;
4205 struct aq_softc *sc = txring->txr_sc;
4206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4207 struct mbuf *m;
4208 const int ringidx = txring->txr_index;
4209 unsigned int idx, hw_head, n = 0;
4210
4211 mutex_enter(&txring->txr_mutex);
4212
4213 if (!txring->txr_active)
4214 goto tx_intr_done;
4215
4216 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4217 TX_DMA_DESC_HEAD_PTR);
4218 if (hw_head == txring->txr_considx) {
4219 goto tx_intr_done;
4220 }
4221
4222 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4223
4224 for (idx = txring->txr_considx; idx != hw_head;
4225 idx = TXRING_NEXTIDX(idx), n++) {
4226
4227 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4228 bus_dmamap_unload(sc->sc_dmat,
4229 txring->txr_mbufs[idx].dmamap);
4230
4231 if_statinc_ref(nsr, if_opackets);
4232 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4233 if (m->m_flags & M_MCAST)
4234 if_statinc_ref(nsr, if_omcasts);
4235
4236 m_freem(m);
4237 txring->txr_mbufs[idx].m = NULL;
4238 }
4239
4240 txring->txr_nfree++;
4241 }
4242 txring->txr_considx = idx;
4243
4244 IF_STAT_PUTREF(ifp);
4245
4246 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4247 ifp->if_flags &= ~IFF_OACTIVE;
4248
4249 /* no more pending TX packet, cancel watchdog */
4250 if (txring->txr_nfree >= AQ_TXD_NUM)
4251 ifp->if_timer = 0;
4252
4253 tx_intr_done:
4254 mutex_exit(&txring->txr_mutex);
4255
4256 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4257 return n;
4258 }
4259
4260 static int
4261 aq_rx_intr(void *arg)
4262 {
4263 struct aq_rxring *rxring = arg;
4264 struct aq_softc *sc = rxring->rxr_sc;
4265 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4266 const int ringidx = rxring->rxr_index;
4267 aq_rx_desc_t *rxd;
4268 struct mbuf *m, *m0, *mprev, *new_m;
4269 uint32_t rxd_type, rxd_hash __unused;
4270 uint16_t rxd_status, rxd_pktlen;
4271 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4272 unsigned int idx, n = 0;
4273
4274 mutex_enter(&rxring->rxr_mutex);
4275
4276 if (!rxring->rxr_active)
4277 goto rx_intr_done;
4278
4279 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4280 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4281 goto rx_intr_done;
4282 }
4283
4284 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4285
4286 m0 = mprev = NULL;
4287 for (idx = rxring->rxr_readidx;
4288 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4289 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4290
4291 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4292 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4293 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4294
4295 rxd = &rxring->rxr_rxdesc[idx];
4296 rxd_status = le16toh(rxd->wb.status);
4297
4298 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4299 break; /* not yet done */
4300
4301 rxd_type = le32toh(rxd->wb.type);
4302 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4303 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4304 rxd_hash = le32toh(rxd->wb.rss_hash);
4305 rxd_vlan = le16toh(rxd->wb.vlan);
4306
4307 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4308 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4309 if_statinc_ref(nsr, if_ierrors);
4310 goto rx_next;
4311 }
4312
4313 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4314 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4315 BUS_DMASYNC_POSTREAD);
4316 m = rxring->rxr_mbufs[idx].m;
4317
4318 new_m = aq_alloc_mbuf();
4319 if (new_m == NULL) {
4320 /*
4321 * cannot allocate new mbuf.
4322 * discard this packet, and reuse mbuf for next.
4323 */
4324 if_statinc_ref(nsr, if_iqdrops);
4325 goto rx_next;
4326 }
4327 rxring->rxr_mbufs[idx].m = NULL;
4328 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4329
4330 if (m0 == NULL) {
4331 m0 = m;
4332 } else {
4333 if (m->m_flags & M_PKTHDR)
4334 m_remove_pkthdr(m);
4335 mprev->m_next = m;
4336 }
4337 mprev = m;
4338
4339 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4340 m->m_len = MCLBYTES;
4341 } else {
4342 /* last buffer */
4343 m->m_len = rxd_pktlen % MCLBYTES;
4344 m0->m_pkthdr.len = rxd_pktlen;
4345 /* VLAN offloading */
4346 if ((sc->sc_ethercom.ec_capenable &
4347 ETHERCAP_VLAN_HWTAGGING) &&
4348 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4349 __SHIFTOUT(rxd_type,
4350 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4351 vlan_set_tag(m0, rxd_vlan);
4352 }
4353
4354 /* Checksum offloading */
4355 unsigned int pkttype_eth =
4356 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4357 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4358 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4359 __SHIFTOUT(rxd_type,
4360 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4361 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4362 if (__SHIFTOUT(rxd_status,
4363 RXDESC_STATUS_IPV4_CSUM_NG))
4364 m0->m_pkthdr.csum_flags |=
4365 M_CSUM_IPv4_BAD;
4366 }
4367
4368 /*
4369 * aq will always mark BAD for fragment packets,
4370 * but this is not a problem because the IP stack
4371 * ignores the CSUM flag in fragment packets.
4372 */
4373 if (__SHIFTOUT(rxd_type,
4374 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4375 bool checked = false;
4376 unsigned int pkttype_proto =
4377 __SHIFTOUT(rxd_type,
4378 RXDESC_TYPE_PKTTYPE_PROTO);
4379
4380 if (pkttype_proto ==
4381 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4382 if ((pkttype_eth ==
4383 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4384 (ifp->if_capabilities &
4385 IFCAP_CSUM_TCPv4_Rx)) {
4386 m0->m_pkthdr.csum_flags |=
4387 M_CSUM_TCPv4;
4388 checked = true;
4389 } else if ((pkttype_eth ==
4390 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4391 (ifp->if_capabilities &
4392 IFCAP_CSUM_TCPv6_Rx)) {
4393 m0->m_pkthdr.csum_flags |=
4394 M_CSUM_TCPv6;
4395 checked = true;
4396 }
4397 } else if (pkttype_proto ==
4398 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4399 if ((pkttype_eth ==
4400 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4401 (ifp->if_capabilities &
4402 IFCAP_CSUM_UDPv4_Rx)) {
4403 m0->m_pkthdr.csum_flags |=
4404 M_CSUM_UDPv4;
4405 checked = true;
4406 } else if ((pkttype_eth ==
4407 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4408 (ifp->if_capabilities &
4409 IFCAP_CSUM_UDPv6_Rx)) {
4410 m0->m_pkthdr.csum_flags |=
4411 M_CSUM_UDPv6;
4412 checked = true;
4413 }
4414 }
4415 if (checked &&
4416 (__SHIFTOUT(rxd_status,
4417 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4418 !__SHIFTOUT(rxd_status,
4419 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4420 m0->m_pkthdr.csum_flags |=
4421 M_CSUM_TCP_UDP_BAD;
4422 }
4423 }
4424
4425 m_set_rcvif(m0, ifp);
4426 if_statinc_ref(nsr, if_ipackets);
4427 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4428 if_percpuq_enqueue(ifp->if_percpuq, m0);
4429 m0 = mprev = NULL;
4430 }
4431
4432 rx_next:
4433 aq_rxring_reset_desc(sc, rxring, idx);
4434 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4435 }
4436 rxring->rxr_readidx = idx;
4437
4438 IF_STAT_PUTREF(ifp);
4439
4440 rx_intr_done:
4441 mutex_exit(&rxring->rxr_mutex);
4442
4443 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4444 return n;
4445 }
4446
4447 static int
4448 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4449 {
4450 struct ifnet *ifp = &ec->ec_if;
4451 struct aq_softc *sc = ifp->if_softc;
4452
4453 aq_set_vlan_filters(sc);
4454 return 0;
4455 }
4456
4457 static int
4458 aq_ifflags_cb(struct ethercom *ec)
4459 {
4460 struct ifnet *ifp = &ec->ec_if;
4461 struct aq_softc *sc = ifp->if_softc;
4462 int i, ecchange, error = 0;
4463 unsigned short iffchange;
4464
4465 AQ_LOCK(sc);
4466
4467 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4468 if ((iffchange & IFF_PROMISC) != 0)
4469 error = aq_set_filter(sc);
4470
4471 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4472 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4473 for (i = 0; i < AQ_RINGS_NUM; i++) {
4474 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4475 RX_DMA_DESC_VLAN_STRIP,
4476 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4477 1 : 0);
4478 }
4479 }
4480
4481 /* vlan configuration depends on also interface promiscuous mode */
4482 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4483 aq_set_vlan_filters(sc);
4484
4485 sc->sc_ec_capenable = ec->ec_capenable;
4486 sc->sc_if_flags = ifp->if_flags;
4487
4488 AQ_UNLOCK(sc);
4489
4490 return error;
4491 }
4492
4493 static int
4494 aq_init(struct ifnet *ifp)
4495 {
4496 struct aq_softc *sc = ifp->if_softc;
4497 int i, error = 0;
4498
4499 aq_stop(ifp, false);
4500
4501 AQ_LOCK(sc);
4502
4503 aq_set_vlan_filters(sc);
4504 aq_set_capability(sc);
4505
4506 for (i = 0; i < sc->sc_nqueues; i++) {
4507 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4508 }
4509
4510 /* invalidate RX descriptor cache */
4511 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4512 AQ_READ_REG_BIT(sc,
4513 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4514
4515 /* start RX */
4516 for (i = 0; i < sc->sc_nqueues; i++) {
4517 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4518 if (error != 0) {
4519 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4520 __func__);
4521 goto aq_init_failure;
4522 }
4523 }
4524 aq_init_rss(sc);
4525 aq_hw_l3_filter_set(sc);
4526
4527 /* need to start callout? */
4528 if (sc->sc_poll_linkstat
4529 #ifdef AQ_EVENT_COUNTERS
4530 || sc->sc_poll_statistics
4531 #endif
4532 ) {
4533 callout_schedule(&sc->sc_tick_ch, hz);
4534 }
4535
4536 /* ready */
4537 ifp->if_flags |= IFF_RUNNING;
4538 ifp->if_flags &= ~IFF_OACTIVE;
4539
4540 /* start TX and RX */
4541 aq_enable_intr(sc, true, true);
4542 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4543 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4544
4545 aq_init_failure:
4546 sc->sc_if_flags = ifp->if_flags;
4547
4548 AQ_UNLOCK(sc);
4549
4550 return error;
4551 }
4552
4553 static void
4554 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4555 struct aq_txring *txring, bool is_transmit)
4556 {
4557 struct mbuf *m;
4558 int npkt, error;
4559
4560 if ((ifp->if_flags & IFF_RUNNING) == 0)
4561 return;
4562
4563 for (npkt = 0; ; npkt++) {
4564 if (is_transmit)
4565 m = pcq_peek(txring->txr_pcq);
4566 else
4567 IFQ_POLL(&ifp->if_snd, m);
4568
4569 if (m == NULL)
4570 break;
4571
4572 if (txring->txr_nfree < AQ_TXD_MIN)
4573 break;
4574
4575 if (is_transmit)
4576 pcq_get(txring->txr_pcq);
4577 else
4578 IFQ_DEQUEUE(&ifp->if_snd, m);
4579
4580 error = aq_encap_txring(sc, txring, &m);
4581 if (error != 0) {
4582 /* too many mbuf chains? or not enough descriptors? */
4583 m_freem(m);
4584 if_statinc(ifp, if_oerrors);
4585 if (txring->txr_index == 0 && error == ENOBUFS)
4586 ifp->if_flags |= IFF_OACTIVE;
4587 break;
4588 }
4589
4590 /* update tail ptr */
4591 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4592 txring->txr_prodidx);
4593
4594 /* Pass the packet to any BPF listeners */
4595 bpf_mtap(ifp, m, BPF_D_OUT);
4596 }
4597
4598 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4599 ifp->if_flags |= IFF_OACTIVE;
4600
4601 if (npkt)
4602 ifp->if_timer = 5;
4603 }
4604
4605 static void
4606 aq_start(struct ifnet *ifp)
4607 {
4608 struct aq_softc *sc;
4609 struct aq_txring *txring;
4610
4611 sc = ifp->if_softc;
4612 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4613
4614 mutex_enter(&txring->txr_mutex);
4615 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4616 aq_send_common_locked(ifp, sc, txring, false);
4617 mutex_exit(&txring->txr_mutex);
4618 }
4619
4620 static inline unsigned int
4621 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4622 {
4623 return (cpu_index(curcpu()) % sc->sc_nqueues);
4624 }
4625
4626 static int
4627 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4628 {
4629 struct aq_softc *sc = ifp->if_softc;
4630 struct aq_txring *txring;
4631 int ringidx;
4632
4633 ringidx = aq_select_txqueue(sc, m);
4634 txring = &sc->sc_queue[ringidx].txring;
4635
4636 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4637 m_freem(m);
4638 return ENOBUFS;
4639 }
4640
4641 if (mutex_tryenter(&txring->txr_mutex)) {
4642 aq_send_common_locked(ifp, sc, txring, true);
4643 mutex_exit(&txring->txr_mutex);
4644 } else {
4645 softint_schedule(txring->txr_softint);
4646 }
4647 return 0;
4648 }
4649
4650 static void
4651 aq_deferred_transmit(void *arg)
4652 {
4653 struct aq_txring *txring = arg;
4654 struct aq_softc *sc = txring->txr_sc;
4655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4656
4657 mutex_enter(&txring->txr_mutex);
4658 if (pcq_peek(txring->txr_pcq) != NULL)
4659 aq_send_common_locked(ifp, sc, txring, true);
4660 mutex_exit(&txring->txr_mutex);
4661 }
4662
4663 static void
4664 aq_stop(struct ifnet *ifp, int disable)
4665 {
4666 struct aq_softc *sc = ifp->if_softc;
4667 int i;
4668
4669 AQ_LOCK(sc);
4670
4671 ifp->if_timer = 0;
4672
4673 if ((ifp->if_flags & IFF_RUNNING) == 0)
4674 goto already_stopped;
4675
4676 /* disable tx/rx interrupts */
4677 aq_enable_intr(sc, true, false);
4678
4679 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4680 for (i = 0; i < sc->sc_nqueues; i++) {
4681 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4682 }
4683
4684 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4685 for (i = 0; i < sc->sc_nqueues; i++) {
4686 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4687 }
4688
4689 /* invalidate RX descriptor cache */
4690 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4691 AQ_READ_REG_BIT(sc,
4692 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4693
4694 ifp->if_timer = 0;
4695
4696 already_stopped:
4697 if (!disable) {
4698 /* when pmf stop, disable link status intr and callout */
4699 aq_enable_intr(sc, false, false);
4700 callout_stop(&sc->sc_tick_ch);
4701 }
4702
4703 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4704
4705 AQ_UNLOCK(sc);
4706 }
4707
4708 static void
4709 aq_watchdog(struct ifnet *ifp)
4710 {
4711 struct aq_softc *sc = ifp->if_softc;
4712 struct aq_txring *txring;
4713 int n, head, tail;
4714
4715 AQ_LOCK(sc);
4716
4717 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4718 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4719 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4720
4721 for (n = 0; n < sc->sc_nqueues; n++) {
4722 txring = &sc->sc_queue[n].txring;
4723 head = AQ_READ_REG_BIT(sc,
4724 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4725 TX_DMA_DESC_HEAD_PTR),
4726 tail = AQ_READ_REG(sc,
4727 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4728
4729 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4730 __func__, txring->txr_index, head, tail);
4731
4732 aq_tx_intr(txring);
4733 }
4734
4735 AQ_UNLOCK(sc);
4736
4737 aq_init(ifp);
4738 }
4739
4740 static int
4741 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4742 {
4743 struct aq_softc *sc __unused;
4744 struct ifreq *ifr __unused;
4745 int error, s;
4746
4747 sc = (struct aq_softc *)ifp->if_softc;
4748 ifr = (struct ifreq *)data;
4749 error = 0;
4750
4751 s = splnet();
4752 switch (cmd) {
4753 case SIOCSIFMTU:
4754 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4755 error = EINVAL;
4756 } else {
4757 ifp->if_mtu = ifr->ifr_mtu;
4758 error = 0; /* no need to reset (no ENETRESET) */
4759 }
4760 break;
4761 default:
4762 error = ether_ioctl(ifp, cmd, data);
4763 break;
4764 }
4765 splx(s);
4766
4767 if (error != ENETRESET)
4768 return error;
4769
4770 switch (cmd) {
4771 case SIOCSIFCAP:
4772 error = aq_set_capability(sc);
4773 break;
4774 case SIOCADDMULTI:
4775 case SIOCDELMULTI:
4776 if ((ifp->if_flags & IFF_RUNNING) == 0)
4777 break;
4778
4779 /*
4780 * Multicast list has changed; set the hardware filter
4781 * accordingly.
4782 */
4783 error = aq_set_filter(sc);
4784 break;
4785 }
4786
4787 return error;
4788 }
4789
4790
4791 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4792
4793 #ifdef _MODULE
4794 #include "ioconf.c"
4795 #endif
4796
4797 static int
4798 if_aq_modcmd(modcmd_t cmd, void *opaque)
4799 {
4800 int error = 0;
4801
4802 switch (cmd) {
4803 case MODULE_CMD_INIT:
4804 #ifdef _MODULE
4805 error = config_init_component(cfdriver_ioconf_if_aq,
4806 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4807 #endif
4808 return error;
4809 case MODULE_CMD_FINI:
4810 #ifdef _MODULE
4811 error = config_fini_component(cfdriver_ioconf_if_aq,
4812 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4813 #endif
4814 return error;
4815 default:
4816 return ENOTTY;
4817 }
4818 }
4819