Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.23
      1 /*	$NetBSD: if_aq.c,v 1.23 2021/04/15 09:05:24 ryo Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.23 2021/04/15 09:05:24 ryo Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 #define AQ_JUMBO_MTU_REV_A		9000
    120 #define AQ_JUMBO_MTU_REV_B		16338
    121 
    122 /*
    123  * TERMINOLOGY
    124  *	MPI = MAC PHY INTERFACE?
    125  *	RPO = RX Protocol Offloading
    126  *	TPO = TX Protocol Offloading
    127  *	RPF = RX Packet Filter
    128  *	TPB = TX Packet buffer
    129  *	RPB = RX Packet buffer
    130  */
    131 
    132 /* registers */
    133 #define AQ_FW_SOFTRESET_REG			0x0000
    134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    136 
    137 #define AQ_FW_VERSION_REG			0x0018
    138 #define AQ_HW_REVISION_REG			0x001c
    139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    140 
    141 #define AQ_FW_MBOX_CMD_REG			0x0200
    142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    144 #define AQ_FW_MBOX_ADDR_REG			0x0208
    145 #define AQ_FW_MBOX_VAL_REG			0x020c
    146 
    147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    148 #define FW2X_LED_REG				0x031c
    149 #define  FW2X_LED_DEFAULT			0x00000000
    150 #define  FW2X_LED_NONE				0x0000003f
    151 #define  FW2X_LINKLED				__BITS(0,1)
    152 #define   FW2X_LINKLED_ACTIVE			0
    153 #define   FW2X_LINKLED_ON			1
    154 #define   FW2X_LINKLED_BLINK			2
    155 #define   FW2X_LINKLED_OFF			3
    156 #define  FW2X_STATUSLED				__BITS(2,5)
    157 #define   FW2X_STATUSLED_ORANGE			0
    158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    159 #define   FW2X_STATUSLED_OFF			3
    160 #define   FW2X_STATUSLED_GREEN			4
    161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    162 #define   FW2X_STATUSLED_GREEN_BLINK		10
    163 
    164 #define FW_MPI_MBOX_ADDR_REG			0x0360
    165 #define FW1X_MPI_INIT1_REG			0x0364
    166 #define FW1X_MPI_CONTROL_REG			0x0368
    167 #define FW1X_MPI_STATE_REG			0x036c
    168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    172 #define FW1X_MPI_INIT2_REG			0x0370
    173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    174 
    175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    178 #define FW_BOOT_EXIT_CODE_REG			0x0388
    179 #define  RBL_STATUS_DEAD			0x0000dead
    180 #define  RBL_STATUS_SUCCESS			0x0000abba
    181 #define  RBL_STATUS_FAILURE			0x00000bad
    182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    183 
    184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    186 
    187 #define AQ_FW_GLB_CTL2_REG			0x0404
    188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    189 
    190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    192 
    193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    194 
    195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    196 
    197 // msix bitmap */
    198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    202 #define AQ_INTR_AUTOMASK_REG			0x2090
    203 
    204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    212 
    213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    215 #define  AQ_B0_ERR_INT				8U
    216 
    217 #define AQ_INTR_CTRL_REG			0x2300
    218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    227 
    228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    229 
    230 #define FW_MPI_RESETCTRL_REG			0x4000
    231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    232 
    233 #define RX_SYSCONTROL_REG			0x5000
    234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    237 
    238 #define RX_TCP_RSS_HASH_REG			0x5040
    239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    241 
    242 /* for RPF_*_REG.ACTION */
    243 #define RPF_ACTION_DISCARD			0
    244 #define RPF_ACTION_HOST				1
    245 #define RPF_ACTION_MANAGEMENT			2
    246 #define RPF_ACTION_HOST_MANAGEMENT		3
    247 #define RPF_ACTION_WOL				4
    248 
    249 #define RPF_L2BC_REG				0x5100
    250 #define  RPF_L2BC_EN				__BIT(0)
    251 #define  RPF_L2BC_PROMISC			__BIT(3)
    252 #define  RPF_L2BC_ACTION			__BITS(12,14)
    253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    254 
    255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    260 #define  RPF_L2UC_MSW_EN			__BIT(31)
    261 #define AQ_HW_MAC_OWN			0	/* index of own address */
    262 #define AQ_HW_MAC_NUM			34
    263 
    264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
    265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    269 
    270 #define RPF_VLAN_MODE_REG			0x5280
    271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    274 
    275 #define RPF_VLAN_TPID_REG			0x5284
    276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    278 
    279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
    280 #define RPF_VLAN_MAX_FILTERS			16
    281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    287 
    288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    298 
    299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    318 /* parameters of RPF_L3_FILTER_REG[8] */
    319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    323 
    324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    326 
    327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    329 
    330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    335 
    336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    339 
    340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    342 
    343 #define RPO_HWCSUM_REG				0x5580
    344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    346 
    347 #define RPO_LRO_ENABLE_REG			0x5590
    348 
    349 #define RPO_LRO_CONF_REG			0x5594
    350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    354 #define RPO_LRO_RSC_MAX_REG			0x5598
    355 
    356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    359 #define RPO_LRO_TB_DIV_REG			0x5620
    360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    365 
    366 #define RPB_RPF_RX_REG				0x5700
    367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    370 
    371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    375 #define  RPB_RXB_XOFF_EN			__BIT(31)
    376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    378 
    379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    381 
    382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    385 
    386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    391 
    392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    397 #define  RX_DMA_DESC_RESET			__BIT(25)
    398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    400 #define  RX_DMA_DESC_EN				__BIT(31)
    401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    407 
    408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    414 
    415 #define RX_DMA_DCA_REG				0x6180
    416 #define  RX_DMA_DCA_EN				__BIT(31)
    417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    418 
    419 /* counters */
    420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    424 
    425 #define TX_SYSCONTROL_REG			0x7000
    426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    429 
    430 #define TX_TPO2_REG				0x7040
    431 #define  TX_TPO2_EN				__BIT(16)
    432 
    433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    435 #define TPS_DESC_RATE_REG			0x7310
    436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    442 
    443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    451 
    452 #define AQ_HW_TXBUF_MAX		160
    453 #define AQ_HW_RXBUF_MAX		320
    454 
    455 #define TPO_HWCSUM_REG				0x7800
    456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    458 
    459 #define TDM_LSO_EN_REG				0x7810
    460 
    461 #define THM_LSO_TCP_FLAG1_REG			0x7820
    462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    464 #define THM_LSO_TCP_FLAG2_REG			0x7824
    465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    466 
    467 #define TPB_TX_BUF_REG				0x7900
    468 #define  TPB_TX_BUF_EN				__BIT(0)
    469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    471 
    472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    478 
    479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    483 
    484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    489 #define  TX_DMA_DESC_EN				__BIT(31)
    490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    495 
    496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    498 #define  TDM_DCAD_CPUID				__BITS(7,0)
    499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    500 
    501 #define TDM_DCA_REG				0x8480
    502 #define  TDM_DCA_EN				__BIT(31)
    503 #define  TDM_DCA_MODE				__BITS(3,0)
    504 
    505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    510 
    511 #define FW1X_CTRL_10G				__BIT(0)
    512 #define FW1X_CTRL_5G				__BIT(1)
    513 #define FW1X_CTRL_5GSR				__BIT(2)
    514 #define FW1X_CTRL_2G5				__BIT(3)
    515 #define FW1X_CTRL_1G				__BIT(4)
    516 #define FW1X_CTRL_100M				__BIT(5)
    517 
    518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    530 #define FW2X_CTRL_RESERVED1			__BIT(32)
    531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    532 #define FW2X_CTRL_RESERVED2			__BIT(34)
    533 #define FW2X_CTRL_PAUSE				__BIT(35)
    534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    536 #define FW2X_CTRL_RESERVED3			__BIT(38)
    537 #define FW2X_CTRL_RESERVED4			__BIT(39)
    538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    542 #define FW2X_CTRL_RESERVED5			__BIT(44)
    543 #define FW2X_CTRL_RESERVED6			__BIT(45)
    544 #define FW2X_CTRL_RESERVED7			__BIT(46)
    545 #define FW2X_CTRL_RESERVED8			__BIT(47)
    546 #define FW2X_CTRL_RESERVED9			__BIT(48)
    547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    554 #define FW2X_CTRL_WOL				__BIT(56)
    555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    560 #define FW2X_CTRL_STATISTICS			__BIT(62)
    561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    562 
    563 #define FW2X_SNPRINTB			\
    564 	"\177\020"			\
    565 	"b\x23" "PAUSE\0"		\
    566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    567 	"b\x31" "CABLE-DIAG\0"		\
    568 	"b\x32" "TEMPERATURE\0"		\
    569 	"b\x33" "DOWNSHIFT\0"		\
    570 	"b\x34" "PTP-AVB\0"		\
    571 	"b\x35" "MEDIA-DETECT\0"	\
    572 	"b\x36" "LINK-DROP\0"		\
    573 	"b\x37" "SLEEP-PROXY\0"		\
    574 	"b\x38" "WOL\0"			\
    575 	"b\x39" "MAC-STOP\0"		\
    576 	"b\x3a" "EXT-LOOPBACK\0"	\
    577 	"b\x3b" "INT-LOOPBACK\0"	\
    578 	"b\x3c" "EFUSE-AGENT\0"		\
    579 	"b\x3d" "WOL-TIMER\0"		\
    580 	"b\x3e" "STATISTICS\0"		\
    581 	"b\x3f" "TRANSACTION-ID\0"	\
    582 	"\0"
    583 
    584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    589 #define FW2X_CTRL_RATE_MASK		\
    590 	(FW2X_CTRL_RATE_100M |		\
    591 	 FW2X_CTRL_RATE_1G |		\
    592 	 FW2X_CTRL_RATE_2G5 |		\
    593 	 FW2X_CTRL_RATE_5G |		\
    594 	 FW2X_CTRL_RATE_10G)
    595 #define FW2X_CTRL_EEE_MASK		\
    596 	(FW2X_CTRL_10BASET_EEE |	\
    597 	 FW2X_CTRL_100BASETX_EEE |	\
    598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    601 	 FW2X_CTRL_10GBASET_FD_EEE)
    602 
    603 typedef enum aq_fw_bootloader_mode {
    604 	FW_BOOT_MODE_UNKNOWN = 0,
    605 	FW_BOOT_MODE_FLB,
    606 	FW_BOOT_MODE_RBL_FLASH,
    607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    608 } aq_fw_bootloader_mode_t;
    609 
    610 #define AQ_WRITE_REG(sc, reg, val)				\
    611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    612 
    613 #define AQ_READ_REG(sc, reg)					\
    614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    615 
    616 #define AQ_READ64_REG(sc, reg)					\
    617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    619 
    620 #define AQ_WRITE64_REG(sc, reg, val)				\
    621 	do {							\
    622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    624 	} while (/* CONSTCOND */0)
    625 
    626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    628 
    629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    630 	do {							\
    631 		uint32_t _v;					\
    632 		_v = AQ_READ_REG((sc), (reg));			\
    633 		_v &= ~(mask);					\
    634 		if ((val) != 0)					\
    635 			_v |= __SHIFTIN((val), (mask));		\
    636 		AQ_WRITE_REG((sc), (reg), _v);			\
    637 	} while (/* CONSTCOND */ 0)
    638 
    639 #define WAIT_FOR(expr, us, n, errp)				\
    640 	do {							\
    641 		unsigned int _n;				\
    642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    643 			delay((us));				\
    644 		}						\
    645 		if ((errp != NULL)) {				\
    646 			if (_n == 0)				\
    647 				*(errp) = ETIMEDOUT;		\
    648 			else					\
    649 				*(errp) = 0;			\
    650 		}						\
    651 	} while (/* CONSTCOND */ 0)
    652 
    653 #define msec_delay(x)	DELAY(1000 * (x))
    654 
    655 typedef struct aq_mailbox_header {
    656 	uint32_t version;
    657 	uint32_t transaction_id;
    658 	int32_t error;
    659 } __packed __aligned(4) aq_mailbox_header_t;
    660 
    661 typedef struct aq_hw_stats_s {
    662 	uint32_t uprc;
    663 	uint32_t mprc;
    664 	uint32_t bprc;
    665 	uint32_t erpt;
    666 	uint32_t uptc;
    667 	uint32_t mptc;
    668 	uint32_t bptc;
    669 	uint32_t erpr;
    670 	uint32_t mbtc;
    671 	uint32_t bbtc;
    672 	uint32_t mbrc;
    673 	uint32_t bbrc;
    674 	uint32_t ubrc;
    675 	uint32_t ubtc;
    676 	uint32_t ptc;
    677 	uint32_t prc;
    678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    680 } __packed __aligned(4) aq_hw_stats_s_t;
    681 
    682 typedef struct fw1x_mailbox {
    683 	aq_mailbox_header_t header;
    684 	aq_hw_stats_s_t msm;
    685 } __packed __aligned(4) fw1x_mailbox_t;
    686 
    687 typedef struct fw2x_msm_statistics {
    688 	uint32_t uprc;
    689 	uint32_t mprc;
    690 	uint32_t bprc;
    691 	uint32_t erpt;
    692 	uint32_t uptc;
    693 	uint32_t mptc;
    694 	uint32_t bptc;
    695 	uint32_t erpr;
    696 	uint32_t mbtc;
    697 	uint32_t bbtc;
    698 	uint32_t mbrc;
    699 	uint32_t bbrc;
    700 	uint32_t ubrc;
    701 	uint32_t ubtc;
    702 	uint32_t ptc;
    703 	uint32_t prc;
    704 } __packed __aligned(4) fw2x_msm_statistics_t;
    705 
    706 typedef struct fw2x_phy_cable_diag_data {
    707 	uint32_t lane_data[4];
    708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
    709 
    710 typedef struct fw2x_capabilities {
    711 	uint32_t caps_lo;
    712 	uint32_t caps_hi;
    713 } __packed __aligned(4) fw2x_capabilities_t;
    714 
    715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    716 	aq_mailbox_header_t header;
    717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    718 
    719 	uint32_t phy_info1;
    720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    722 	uint32_t phy_info2;
    723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    725 
    726 	fw2x_phy_cable_diag_data_t diag_data;
    727 	uint32_t reserved[8];
    728 
    729 	fw2x_capabilities_t caps;
    730 
    731 	/* ... */
    732 } __packed __aligned(4) fw2x_mailbox_t;
    733 
    734 typedef enum aq_link_speed {
    735 	AQ_LINK_NONE	= 0,
    736 	AQ_LINK_100M	= (1 << 0),
    737 	AQ_LINK_1G	= (1 << 1),
    738 	AQ_LINK_2G5	= (1 << 2),
    739 	AQ_LINK_5G	= (1 << 3),
    740 	AQ_LINK_10G	= (1 << 4)
    741 } aq_link_speed_t;
    742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    743 			 AQ_LINK_5G | AQ_LINK_10G )
    744 #define AQ_LINK_AUTO	AQ_LINK_ALL
    745 
    746 typedef enum aq_link_fc {
    747 	AQ_FC_NONE = 0,
    748 	AQ_FC_RX = __BIT(0),
    749 	AQ_FC_TX = __BIT(1),
    750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    751 } aq_link_fc_t;
    752 
    753 typedef enum aq_link_eee {
    754 	AQ_EEE_DISABLE = 0,
    755 	AQ_EEE_ENABLE = 1
    756 } aq_link_eee_t;
    757 
    758 typedef enum aq_hw_fw_mpi_state {
    759 	MPI_DEINIT	= 0,
    760 	MPI_RESET	= 1,
    761 	MPI_INIT	= 2,
    762 	MPI_POWER	= 4
    763 } aq_hw_fw_mpi_state_t;
    764 
    765 enum aq_media_type {
    766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    767 	AQ_MEDIA_TYPE_FIBRE,
    768 	AQ_MEDIA_TYPE_TP
    769 };
    770 
    771 struct aq_rx_desc_read {
    772 	uint64_t buf_addr;
    773 	uint64_t hdr_addr;
    774 } __packed __aligned(8);
    775 
    776 struct aq_rx_desc_wb {
    777 	uint32_t type;
    778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    803 #define RXDESC_TYPE_SPH			__BIT(21)
    804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    805 	uint32_t rss_hash;
    806 	uint16_t status;
    807 #define RXDESC_STATUS_DD		__BIT(0)
    808 #define RXDESC_STATUS_EOP		__BIT(1)
    809 #define RXDESC_STATUS_MACERR		__BIT(2)
    810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    813 
    814 #define RXDESC_STATUS_STAT		__BITS(2,5)
    815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    817 	uint16_t pkt_len;
    818 	uint16_t next_desc_ptr;
    819 	uint16_t vlan;
    820 } __packed __aligned(4);
    821 
    822 typedef union aq_rx_desc {
    823 	struct aq_rx_desc_read read;
    824 	struct aq_rx_desc_wb wb;
    825 } __packed __aligned(8) aq_rx_desc_t;
    826 
    827 typedef struct aq_tx_desc {
    828 	uint64_t buf_addr;
    829 	uint32_t ctl1;
    830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    846 	uint32_t ctl2;
    847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    850 } __packed __aligned(8) aq_tx_desc_t;
    851 
    852 struct aq_txring {
    853 	struct aq_softc *txr_sc;
    854 	int txr_index;
    855 	kmutex_t txr_mutex;
    856 	bool txr_active;
    857 
    858 	pcq_t *txr_pcq;
    859 	void *txr_softint;
    860 
    861 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    862 	bus_dmamap_t txr_txdesc_dmamap;
    863 	bus_dma_segment_t txr_txdesc_seg[1];
    864 	bus_size_t txr_txdesc_size;
    865 
    866 	struct {
    867 		struct mbuf *m;
    868 		bus_dmamap_t dmamap;
    869 	} txr_mbufs[AQ_TXD_NUM];
    870 	unsigned int txr_prodidx;
    871 	unsigned int txr_considx;
    872 	int txr_nfree;
    873 };
    874 
    875 struct aq_rxring {
    876 	struct aq_softc *rxr_sc;
    877 	int rxr_index;
    878 	kmutex_t rxr_mutex;
    879 	bool rxr_active;
    880 
    881 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    882 	bus_dmamap_t rxr_rxdesc_dmamap;
    883 	bus_dma_segment_t rxr_rxdesc_seg[1];
    884 	bus_size_t rxr_rxdesc_size;
    885 	struct {
    886 		struct mbuf *m;
    887 		bus_dmamap_t dmamap;
    888 	} rxr_mbufs[AQ_RXD_NUM];
    889 	unsigned int rxr_readidx;
    890 };
    891 
    892 struct aq_queue {
    893 	struct aq_softc *sc;
    894 	struct aq_txring txring;
    895 	struct aq_rxring rxring;
    896 };
    897 
    898 struct aq_softc;
    899 struct aq_firmware_ops {
    900 	int (*reset)(struct aq_softc *);
    901 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    902 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    903 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    904 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    905 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    906 #if NSYSMON_ENVSYS > 0
    907 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    908 #endif
    909 };
    910 
    911 #ifdef AQ_EVENT_COUNTERS
    912 #define AQ_EVCNT_DECL(name)						\
    913 	char sc_evcount_##name##_name[32];				\
    914 	struct evcnt sc_evcount_##name##_ev;
    915 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    916 	do {								\
    917 		snprintf((sc)->sc_evcount_##name##_name,		\
    918 		    sizeof((sc)->sc_evcount_##name##_name),		\
    919 		    "%s", desc);					\
    920 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    921 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    922 		    (sc)->sc_evcount_##name##_name);			\
    923 	} while (/*CONSTCOND*/0)
    924 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    925 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    926 #define AQ_EVCNT_DETACH(sc, name)					\
    927 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    928 #define AQ_EVCNT_ADD(sc, name, val)					\
    929 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    930 #endif /* AQ_EVENT_COUNTERS */
    931 
    932 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    933 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    934 
    935 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    936 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    937 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    938 
    939 
    940 struct aq_softc {
    941 	device_t sc_dev;
    942 
    943 	bus_space_tag_t sc_iot;
    944 	bus_space_handle_t sc_ioh;
    945 	bus_size_t sc_iosize;
    946 	bus_dma_tag_t sc_dmat;
    947 
    948 	void *sc_ihs[AQ_NINTR_MAX];
    949 	pci_intr_handle_t *sc_intrs;
    950 
    951 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    952 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    953 	int sc_linkstat_irq;
    954 	bool sc_use_txrx_independent_intr;
    955 	bool sc_poll_linkstat;
    956 	bool sc_detect_linkstat;
    957 
    958 #if NSYSMON_ENVSYS > 0
    959 	struct sysmon_envsys *sc_sme;
    960 	envsys_data_t sc_sensor_temp;
    961 #endif
    962 
    963 	callout_t sc_tick_ch;
    964 
    965 	int sc_nintrs;
    966 	bool sc_msix;
    967 
    968 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    969 	int sc_nqueues;
    970 
    971 	pci_chipset_tag_t sc_pc;
    972 	pcitag_t sc_pcitag;
    973 	uint16_t sc_product;
    974 	uint16_t sc_revision;
    975 
    976 	kmutex_t sc_mutex;
    977 	kmutex_t sc_mpi_mutex;
    978 
    979 	const struct aq_firmware_ops *sc_fw_ops;
    980 	uint64_t sc_fw_caps;
    981 	enum aq_media_type sc_media_type;
    982 	aq_link_speed_t sc_available_rates;
    983 
    984 	aq_link_speed_t sc_link_rate;
    985 	aq_link_fc_t sc_link_fc;
    986 	aq_link_eee_t sc_link_eee;
    987 
    988 	uint32_t sc_fw_version;
    989 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    990 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
    991 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
    992 	uint32_t sc_features;
    993 #define FEATURES_MIPS		0x00000001
    994 #define FEATURES_TPO2		0x00000002
    995 #define FEATURES_RPF2		0x00000004
    996 #define FEATURES_MPI_AQ		0x00000008
    997 #define FEATURES_REV_A0		0x10000000
    998 #define FEATURES_REV_A		(FEATURES_REV_A0)
    999 #define FEATURES_REV_B0		0x20000000
   1000 #define FEATURES_REV_B1		0x40000000
   1001 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
   1002 	uint32_t sc_max_mtu;
   1003 	uint32_t sc_mbox_addr;
   1004 
   1005 	bool sc_rbl_enabled;
   1006 	bool sc_fast_start_enabled;
   1007 	bool sc_flash_present;
   1008 
   1009 	bool sc_intr_moderation_enable;
   1010 	bool sc_rss_enable;
   1011 
   1012 	struct ethercom sc_ethercom;
   1013 	struct ether_addr sc_enaddr;
   1014 	struct ifmedia sc_media;
   1015 	int sc_ec_capenable;		/* last ec_capenable */
   1016 	unsigned short sc_if_flags;	/* last if_flags */
   1017 
   1018 #ifdef AQ_EVENT_COUNTERS
   1019 	aq_hw_stats_s_t sc_statistics[2];
   1020 	int sc_statistics_idx;
   1021 	bool sc_poll_statistics;
   1022 
   1023 	AQ_EVCNT_DECL(uprc);
   1024 	AQ_EVCNT_DECL(mprc);
   1025 	AQ_EVCNT_DECL(bprc);
   1026 	AQ_EVCNT_DECL(erpt);
   1027 	AQ_EVCNT_DECL(uptc);
   1028 	AQ_EVCNT_DECL(mptc);
   1029 	AQ_EVCNT_DECL(bptc);
   1030 	AQ_EVCNT_DECL(erpr);
   1031 	AQ_EVCNT_DECL(mbtc);
   1032 	AQ_EVCNT_DECL(bbtc);
   1033 	AQ_EVCNT_DECL(mbrc);
   1034 	AQ_EVCNT_DECL(bbrc);
   1035 	AQ_EVCNT_DECL(ubrc);
   1036 	AQ_EVCNT_DECL(ubtc);
   1037 	AQ_EVCNT_DECL(ptc);
   1038 	AQ_EVCNT_DECL(prc);
   1039 	AQ_EVCNT_DECL(dpc);
   1040 	AQ_EVCNT_DECL(cprc);
   1041 #endif
   1042 };
   1043 
   1044 static int aq_match(device_t, cfdata_t, void *);
   1045 static void aq_attach(device_t, device_t, void *);
   1046 static int aq_detach(device_t, int);
   1047 
   1048 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1049     bool, bool);
   1050 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1051     pci_intr_type_t);
   1052 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1053 
   1054 static int aq_ifmedia_change(struct ifnet * const);
   1055 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1056 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
   1057 static int aq_ifflags_cb(struct ethercom *);
   1058 static int aq_init(struct ifnet *);
   1059 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1060     struct aq_txring *, bool);
   1061 static int aq_transmit(struct ifnet *, struct mbuf *);
   1062 static void aq_deferred_transmit(void *);
   1063 static void aq_start(struct ifnet *);
   1064 static void aq_stop(struct ifnet *, int);
   1065 static void aq_watchdog(struct ifnet *);
   1066 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1067 
   1068 static int aq_txrx_rings_alloc(struct aq_softc *);
   1069 static void aq_txrx_rings_free(struct aq_softc *);
   1070 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1071 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1072 
   1073 static void aq_initmedia(struct aq_softc *);
   1074 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1075 
   1076 #if NSYSMON_ENVSYS > 0
   1077 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1078 #endif
   1079 static void aq_tick(void *);
   1080 static int aq_legacy_intr(void *);
   1081 static int aq_link_intr(void *);
   1082 static int aq_txrx_intr(void *);
   1083 static int aq_tx_intr(void *);
   1084 static int aq_rx_intr(void *);
   1085 
   1086 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1087     aq_link_eee_t);
   1088 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1089     aq_link_eee_t *);
   1090 
   1091 static int aq_fw_reset(struct aq_softc *);
   1092 static int aq_fw_version_init(struct aq_softc *);
   1093 static int aq_hw_init(struct aq_softc *);
   1094 static int aq_hw_init_ucp(struct aq_softc *);
   1095 static int aq_hw_reset(struct aq_softc *);
   1096 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1097     uint32_t);
   1098 static int aq_get_mac_addr(struct aq_softc *);
   1099 static int aq_init_rss(struct aq_softc *);
   1100 static int aq_set_capability(struct aq_softc *);
   1101 
   1102 static int fw1x_reset(struct aq_softc *);
   1103 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1104     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1105 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1106     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1107 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1108 
   1109 static int fw2x_reset(struct aq_softc *);
   1110 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1111     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1112 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1113     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1114 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1115 #if NSYSMON_ENVSYS > 0
   1116 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1117 #endif
   1118 
   1119 static const struct aq_firmware_ops aq_fw1x_ops = {
   1120 	.reset = fw1x_reset,
   1121 	.set_mode = fw1x_set_mode,
   1122 	.get_mode = fw1x_get_mode,
   1123 	.get_stats = fw1x_get_stats,
   1124 #if NSYSMON_ENVSYS > 0
   1125 	.get_temperature = NULL
   1126 #endif
   1127 };
   1128 
   1129 static const struct aq_firmware_ops aq_fw2x_ops = {
   1130 	.reset = fw2x_reset,
   1131 	.set_mode = fw2x_set_mode,
   1132 	.get_mode = fw2x_get_mode,
   1133 	.get_stats = fw2x_get_stats,
   1134 #if NSYSMON_ENVSYS > 0
   1135 	.get_temperature = fw2x_get_temperature
   1136 #endif
   1137 };
   1138 
   1139 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1140     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1141 
   1142 static const struct aq_product {
   1143 	pci_vendor_id_t aq_vendor;
   1144 	pci_product_id_t aq_product;
   1145 	const char *aq_name;
   1146 	enum aq_media_type aq_media_type;
   1147 	aq_link_speed_t aq_available_rates;
   1148 } aq_products[] = {
   1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
   1150 	  "Aquantia AQC100 10 Gigabit Network Adapter",
   1151 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1152 	},
   1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1154 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1156 	},
   1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1158 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1160 	},
   1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1162 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1164 	},
   1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1166 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1168 	},
   1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1170 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1171 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1172 	},
   1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
   1174 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
   1175 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1176 	},
   1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1178 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1180 	},
   1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1182 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1184 	},
   1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1186 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1188 	},
   1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1190 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1192 	},
   1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1194 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1195 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1196 	},
   1197 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
   1198 	  "Aquantia D100 10 Gigabit Network Adapter",
   1199 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1200 	},
   1201 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1202 	  "Aquantia D107 10 Gigabit Network Adapter",
   1203 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1204 	},
   1205 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1206 	  "Aquantia D108 5 Gigabit Network Adapter",
   1207 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1208 	},
   1209 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1210 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1211 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1212 	}
   1213 };
   1214 
   1215 static const struct aq_product *
   1216 aq_lookup(const struct pci_attach_args *pa)
   1217 {
   1218 	unsigned int i;
   1219 
   1220 	for (i = 0; i < __arraycount(aq_products); i++) {
   1221 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1222 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1223 			return &aq_products[i];
   1224 	}
   1225 	return NULL;
   1226 }
   1227 
   1228 static int
   1229 aq_match(device_t parent, cfdata_t cf, void *aux)
   1230 {
   1231 	struct pci_attach_args *pa = aux;
   1232 
   1233 	if (aq_lookup(pa) != NULL)
   1234 		return 1;
   1235 
   1236 	return 0;
   1237 }
   1238 
   1239 static void
   1240 aq_attach(device_t parent, device_t self, void *aux)
   1241 {
   1242 	struct aq_softc *sc = device_private(self);
   1243 	struct pci_attach_args *pa = aux;
   1244 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1245 	pci_chipset_tag_t pc;
   1246 	pcitag_t tag;
   1247 	pcireg_t command, memtype, bar;
   1248 	const struct aq_product *aqp;
   1249 	int error;
   1250 
   1251 	sc->sc_dev = self;
   1252 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1253 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1254 
   1255 	sc->sc_pc = pc = pa->pa_pc;
   1256 	sc->sc_pcitag = tag = pa->pa_tag;
   1257 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1258 
   1259 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1260 	command |= PCI_COMMAND_MASTER_ENABLE;
   1261 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1262 
   1263 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1264 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1265 
   1266 	aqp = aq_lookup(pa);
   1267 	KASSERT(aqp != NULL);
   1268 
   1269 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1270 
   1271 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1272 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1273 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1274 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1275 		return;
   1276 	}
   1277 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1278 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1279 	    NULL, &sc->sc_iosize) != 0) {
   1280 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1281 		return;
   1282 	}
   1283 
   1284 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1285 
   1286 	/* max queue num is 8, and must be 2^n */
   1287 	if (ncpu >= 8)
   1288 		sc->sc_nqueues = 8;
   1289 	else if (ncpu >= 4)
   1290 		sc->sc_nqueues = 4;
   1291 	else if (ncpu >= 2)
   1292 		sc->sc_nqueues = 2;
   1293 	else
   1294 		sc->sc_nqueues = 1;
   1295 
   1296 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1297 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1298 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1299 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1300 		sc->sc_use_txrx_independent_intr = true;
   1301 		sc->sc_poll_linkstat = false;
   1302 		sc->sc_msix = true;
   1303 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1304 		/* TX intrs + RX intrs */
   1305 		sc->sc_use_txrx_independent_intr = true;
   1306 		sc->sc_poll_linkstat = true;
   1307 		sc->sc_msix = true;
   1308 	} else
   1309 #endif
   1310 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1311 		/* TX/RX intrs LINKSTAT intrs */
   1312 		sc->sc_use_txrx_independent_intr = false;
   1313 		sc->sc_poll_linkstat = false;
   1314 		sc->sc_msix = true;
   1315 	} else if (msixcount >= sc->sc_nqueues) {
   1316 		/* TX/RX intrs */
   1317 		sc->sc_use_txrx_independent_intr = false;
   1318 		sc->sc_poll_linkstat = true;
   1319 		sc->sc_msix = true;
   1320 	} else {
   1321 		/* giving up using MSI-X */
   1322 		sc->sc_msix = false;
   1323 	}
   1324 
   1325 	/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
   1326 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
   1327 		sc->sc_poll_linkstat = true;
   1328 
   1329 #ifdef AQ_FORCE_POLL_LINKSTAT
   1330 	sc->sc_poll_linkstat = true;
   1331 #endif
   1332 
   1333 	aprint_debug_dev(sc->sc_dev,
   1334 	    "ncpu=%d, pci_msix_count=%d."
   1335 	    " allocate %d interrupts for %d%s queues%s\n",
   1336 	    ncpu, msixcount,
   1337 	    (sc->sc_use_txrx_independent_intr ?
   1338 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1339 	    (sc->sc_poll_linkstat ? 0 : 1),
   1340 	    sc->sc_nqueues,
   1341 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1342 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1343 
   1344 	if (sc->sc_msix)
   1345 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1346 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1347 	else
   1348 		error = ENODEV;
   1349 
   1350 	if (error != 0) {
   1351 		/* if MSI-X failed, fallback to MSI with single queue */
   1352 		sc->sc_use_txrx_independent_intr = false;
   1353 		sc->sc_poll_linkstat = false;
   1354 		sc->sc_msix = false;
   1355 		sc->sc_nqueues = 1;
   1356 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1357 	}
   1358 	if (error != 0) {
   1359 		/* if MSI failed, fallback to INTx */
   1360 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1361 	}
   1362 	if (error != 0)
   1363 		return;
   1364 
   1365 	callout_init(&sc->sc_tick_ch, 0);
   1366 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1367 
   1368 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1369 
   1370 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1371 		sc->sc_rss_enable = true;
   1372 	else
   1373 		sc->sc_rss_enable = false;
   1374 
   1375 	error = aq_txrx_rings_alloc(sc);
   1376 	if (error != 0)
   1377 		goto attach_failure;
   1378 
   1379 	error = aq_fw_reset(sc);
   1380 	if (error != 0)
   1381 		goto attach_failure;
   1382 
   1383 	error = aq_fw_version_init(sc);
   1384 	if (error != 0)
   1385 		goto attach_failure;
   1386 
   1387 	error = aq_hw_init_ucp(sc);
   1388 	if (error < 0)
   1389 		goto attach_failure;
   1390 
   1391 	KASSERT(sc->sc_mbox_addr != 0);
   1392 	error = aq_hw_reset(sc);
   1393 	if (error != 0)
   1394 		goto attach_failure;
   1395 
   1396 	aq_get_mac_addr(sc);
   1397 	aq_init_rss(sc);
   1398 
   1399 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1400 	if (error != 0)
   1401 		goto attach_failure;
   1402 
   1403 	sc->sc_media_type = aqp->aq_media_type;
   1404 	sc->sc_available_rates = aqp->aq_available_rates;
   1405 
   1406 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1407 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1408 	    aq_ifmedia_change, aq_ifmedia_status);
   1409 	aq_initmedia(sc);
   1410 
   1411 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1412 	ifp->if_softc = sc;
   1413 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1414 	ifp->if_extflags = IFEF_MPSAFE;
   1415 	ifp->if_baudrate = IF_Gbps(10);
   1416 	ifp->if_init = aq_init;
   1417 	ifp->if_ioctl = aq_ioctl;
   1418 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1419 		ifp->if_transmit = aq_transmit;
   1420 	ifp->if_start = aq_start;
   1421 	ifp->if_stop = aq_stop;
   1422 	ifp->if_watchdog = aq_watchdog;
   1423 	IFQ_SET_READY(&ifp->if_snd);
   1424 
   1425 	/* initialize capabilities */
   1426 	sc->sc_ethercom.ec_capabilities = 0;
   1427 	sc->sc_ethercom.ec_capenable = 0;
   1428 #if notyet
   1429 	/* TODO */
   1430 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1431 #endif
   1432 	sc->sc_ethercom.ec_capabilities |=
   1433 	    ETHERCAP_JUMBO_MTU |
   1434 	    ETHERCAP_VLAN_MTU |
   1435 	    ETHERCAP_VLAN_HWTAGGING |
   1436 	    ETHERCAP_VLAN_HWFILTER;
   1437 	sc->sc_ethercom.ec_capenable |=
   1438 	    ETHERCAP_VLAN_HWTAGGING |
   1439 	    ETHERCAP_VLAN_HWFILTER;
   1440 
   1441 	ifp->if_capabilities = 0;
   1442 	ifp->if_capenable = 0;
   1443 #ifdef CONFIG_LRO_SUPPORT
   1444 	ifp->if_capabilities |= IFCAP_LRO;
   1445 	ifp->if_capenable |= IFCAP_LRO;
   1446 #endif
   1447 #if notyet
   1448 	/* TSO */
   1449 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1450 #endif
   1451 
   1452 	/* TX hardware checksum offloadding */
   1453 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1454 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1455 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1456 	/* RX hardware checksum offloadding */
   1457 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1458 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1459 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1460 
   1461 	error = if_initialize(ifp);
   1462 	if (error != 0) {
   1463 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
   1464 		    error);
   1465 		goto attach_failure;
   1466 	}
   1467 	ifp->if_percpuq = if_percpuq_create(ifp);
   1468 	if_deferred_start_init(ifp, NULL);
   1469 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1470 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
   1471 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1472 	if_register(ifp);
   1473 
   1474 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1475 
   1476 	/* update media */
   1477 	aq_ifmedia_change(ifp);
   1478 
   1479 #if NSYSMON_ENVSYS > 0
   1480 	/* temperature monitoring */
   1481 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1482 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1483 
   1484 		sc->sc_sme = sysmon_envsys_create();
   1485 		sc->sc_sme->sme_name = device_xname(self);
   1486 		sc->sc_sme->sme_cookie = sc;
   1487 		sc->sc_sme->sme_flags = 0;
   1488 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1489 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1490 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1491 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1492 
   1493 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1494 		sysmon_envsys_register(sc->sc_sme);
   1495 
   1496 		/*
   1497 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1498 		 * will always fail (firmware matter?), so run once now.
   1499 		 */
   1500 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1501 	}
   1502 #endif
   1503 
   1504 #ifdef AQ_EVENT_COUNTERS
   1505 	/* get starting statistics values */
   1506 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1507 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1508 		sc->sc_poll_statistics = true;
   1509 	}
   1510 
   1511 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1512 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1513 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1514 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1515 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1516 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1517 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1518 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1519 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1520 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1521 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1522 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1523 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1524 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1525 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1526 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1527 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1528 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1529 #endif
   1530 
   1531 	return;
   1532 
   1533  attach_failure:
   1534 	aq_detach(self, 0);
   1535 }
   1536 
   1537 static int
   1538 aq_detach(device_t self, int flags __unused)
   1539 {
   1540 	struct aq_softc *sc = device_private(self);
   1541 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1542 	int i, s;
   1543 
   1544 	if (sc->sc_iosize != 0) {
   1545 		if (ifp->if_softc != NULL) {
   1546 			s = splnet();
   1547 			aq_stop(ifp, 0);
   1548 			splx(s);
   1549 		}
   1550 
   1551 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1552 			if (sc->sc_ihs[i] != NULL) {
   1553 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1554 				sc->sc_ihs[i] = NULL;
   1555 			}
   1556 		}
   1557 		if (sc->sc_nintrs > 0) {
   1558 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1559 			    sc->sc_nintrs);
   1560 			sc->sc_intrs = NULL;
   1561 			sc->sc_nintrs = 0;
   1562 		}
   1563 
   1564 		aq_txrx_rings_free(sc);
   1565 
   1566 		if (ifp->if_softc != NULL) {
   1567 			ether_ifdetach(ifp);
   1568 			if_detach(ifp);
   1569 		}
   1570 
   1571 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1572 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1573 		sc->sc_iosize = 0;
   1574 	}
   1575 
   1576 	callout_stop(&sc->sc_tick_ch);
   1577 
   1578 #if NSYSMON_ENVSYS > 0
   1579 	if (sc->sc_sme != NULL) {
   1580 		/* all sensors associated with this will also be detached */
   1581 		sysmon_envsys_unregister(sc->sc_sme);
   1582 		sc->sc_sme = NULL;
   1583 	}
   1584 #endif
   1585 
   1586 #ifdef AQ_EVENT_COUNTERS
   1587 	AQ_EVCNT_DETACH(sc, uprc);
   1588 	AQ_EVCNT_DETACH(sc, mprc);
   1589 	AQ_EVCNT_DETACH(sc, bprc);
   1590 	AQ_EVCNT_DETACH(sc, erpt);
   1591 	AQ_EVCNT_DETACH(sc, uptc);
   1592 	AQ_EVCNT_DETACH(sc, mptc);
   1593 	AQ_EVCNT_DETACH(sc, bptc);
   1594 	AQ_EVCNT_DETACH(sc, erpr);
   1595 	AQ_EVCNT_DETACH(sc, mbtc);
   1596 	AQ_EVCNT_DETACH(sc, bbtc);
   1597 	AQ_EVCNT_DETACH(sc, mbrc);
   1598 	AQ_EVCNT_DETACH(sc, bbrc);
   1599 	AQ_EVCNT_DETACH(sc, ubrc);
   1600 	AQ_EVCNT_DETACH(sc, ubtc);
   1601 	AQ_EVCNT_DETACH(sc, ptc);
   1602 	AQ_EVCNT_DETACH(sc, prc);
   1603 	AQ_EVCNT_DETACH(sc, dpc);
   1604 	AQ_EVCNT_DETACH(sc, cprc);
   1605 #endif
   1606 
   1607 	ifmedia_fini(&sc->sc_media);
   1608 
   1609 	mutex_destroy(&sc->sc_mpi_mutex);
   1610 	mutex_destroy(&sc->sc_mutex);
   1611 
   1612 	return 0;
   1613 }
   1614 
   1615 static int
   1616 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1617     int (*func)(void *), void *arg, const char *xname)
   1618 {
   1619 	char intrbuf[PCI_INTRSTR_LEN];
   1620 	pci_chipset_tag_t pc = sc->sc_pc;
   1621 	void *vih;
   1622 	const char *intrstr = NULL;
   1623 
   1624 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1625 	    sizeof(intrbuf));
   1626 
   1627 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1628 
   1629 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1630 	    IPL_NET, func, arg, xname);
   1631 	if (vih == NULL) {
   1632 		aprint_error_dev(sc->sc_dev,
   1633 		    "unable to establish MSI-X%s%s for %s\n",
   1634 		    intrstr ? " at " : "",
   1635 		    intrstr ? intrstr : "", xname);
   1636 		return EIO;
   1637 	}
   1638 	sc->sc_ihs[intno] = vih;
   1639 
   1640 	if (affinity != NULL) {
   1641 		/* Round-robin affinity */
   1642 		kcpuset_zero(affinity);
   1643 		kcpuset_set(affinity, intno % ncpu);
   1644 		interrupt_distribute(vih, affinity, NULL);
   1645 	}
   1646 
   1647 	return 0;
   1648 }
   1649 
   1650 static int
   1651 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1652     bool linkintr)
   1653 {
   1654 	kcpuset_t *affinity;
   1655 	int error, intno, i;
   1656 	char intr_xname[INTRDEVNAMEBUF];
   1657 
   1658 	kcpuset_create(&affinity, false);
   1659 
   1660 	intno = 0;
   1661 
   1662 	if (txrx_independent) {
   1663 		for (i = 0; i < sc->sc_nqueues; i++) {
   1664 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1665 			    device_xname(sc->sc_dev), i);
   1666 			sc->sc_rx_irq[i] = intno;
   1667 			error = aq_establish_intr(sc, intno++, affinity,
   1668 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1669 			if (error != 0)
   1670 				goto fail;
   1671 		}
   1672 		for (i = 0; i < sc->sc_nqueues; i++) {
   1673 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1674 			    device_xname(sc->sc_dev), i);
   1675 			sc->sc_tx_irq[i] = intno;
   1676 			error = aq_establish_intr(sc, intno++, affinity,
   1677 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1678 			if (error != 0)
   1679 				goto fail;
   1680 		}
   1681 	} else {
   1682 		for (i = 0; i < sc->sc_nqueues; i++) {
   1683 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1684 			    device_xname(sc->sc_dev), i);
   1685 			sc->sc_rx_irq[i] = intno;
   1686 			sc->sc_tx_irq[i] = intno;
   1687 			error = aq_establish_intr(sc, intno++, affinity,
   1688 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1689 			if (error != 0)
   1690 				goto fail;
   1691 		}
   1692 	}
   1693 
   1694 	if (linkintr) {
   1695 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1696 		    device_xname(sc->sc_dev));
   1697 		sc->sc_linkstat_irq = intno;
   1698 		error = aq_establish_intr(sc, intno++, affinity,
   1699 		    aq_link_intr, sc, intr_xname);
   1700 		if (error != 0)
   1701 			goto fail;
   1702 	}
   1703 
   1704 	kcpuset_destroy(affinity);
   1705 	return 0;
   1706 
   1707  fail:
   1708 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1709 		if (sc->sc_ihs[i] != NULL) {
   1710 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1711 			sc->sc_ihs[i] = NULL;
   1712 		}
   1713 	}
   1714 
   1715 	kcpuset_destroy(affinity);
   1716 	return ENOMEM;
   1717 }
   1718 
   1719 static int
   1720 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1721     bool txrx_independent, bool linkintr)
   1722 {
   1723 	int error, nintr;
   1724 
   1725 	if (txrx_independent)
   1726 		nintr = nqueue * 2;
   1727 	else
   1728 		nintr = nqueue;
   1729 
   1730 	if (linkintr)
   1731 		nintr++;
   1732 
   1733 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1734 	if (error != 0) {
   1735 		aprint_error_dev(sc->sc_dev,
   1736 		    "failed to allocate MSI-X interrupts\n");
   1737 		goto fail;
   1738 	}
   1739 
   1740 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1741 	if (error == 0) {
   1742 		sc->sc_nintrs = nintr;
   1743 	} else {
   1744 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1745 		sc->sc_nintrs = 0;
   1746 	}
   1747  fail:
   1748 	return error;
   1749 
   1750 }
   1751 
   1752 static int
   1753 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1754     pci_intr_type_t inttype)
   1755 {
   1756 	int counts[PCI_INTR_TYPE_SIZE];
   1757 	int error, nintr;
   1758 
   1759 	nintr = 1;
   1760 
   1761 	memset(counts, 0, sizeof(counts));
   1762 	counts[inttype] = nintr;
   1763 
   1764 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1765 	if (error != 0) {
   1766 		aprint_error_dev(sc->sc_dev,
   1767 		    "failed to allocate%s interrupts\n",
   1768 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1769 		return error;
   1770 	}
   1771 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1772 	    device_xname(sc->sc_dev));
   1773 	if (error == 0) {
   1774 		sc->sc_nintrs = nintr;
   1775 	} else {
   1776 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1777 		sc->sc_nintrs = 0;
   1778 	}
   1779 	return error;
   1780 }
   1781 
   1782 static void
   1783 global_software_reset(struct aq_softc *sc)
   1784 {
   1785 	uint32_t v;
   1786 
   1787 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1788 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1789 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1790 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1791 
   1792 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1793 	v &= ~AQ_FW_SOFTRESET_DIS;
   1794 	v |= AQ_FW_SOFTRESET_RESET;
   1795 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1796 }
   1797 
   1798 static int
   1799 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1800 {
   1801 	int timo;
   1802 
   1803 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1804 
   1805 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1806 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1807 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1808 
   1809 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1810 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1811 
   1812 	global_software_reset(sc);
   1813 
   1814 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1815 
   1816 	/* Wait for RBL to finish boot process. */
   1817 #define RBL_TIMEOUT_MS	10000
   1818 	uint16_t rbl_status;
   1819 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1820 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1821 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1822 			break;
   1823 		msec_delay(1);
   1824 	}
   1825 	if (timo <= 0) {
   1826 		aprint_error_dev(sc->sc_dev,
   1827 		    "RBL> RBL restart failed: timeout\n");
   1828 		return EBUSY;
   1829 	}
   1830 	switch (rbl_status) {
   1831 	case RBL_STATUS_SUCCESS:
   1832 		if (mode != NULL)
   1833 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1834 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1835 		break;
   1836 	case RBL_STATUS_HOST_BOOT:
   1837 		if (mode != NULL)
   1838 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1839 		aprint_debug_dev(sc->sc_dev,
   1840 		    "RBL> reset complete! [Host Bootload]\n");
   1841 		break;
   1842 	case RBL_STATUS_FAILURE:
   1843 	default:
   1844 		aprint_error_dev(sc->sc_dev,
   1845 		    "unknown RBL status 0x%x\n", rbl_status);
   1846 		return EBUSY;
   1847 	}
   1848 
   1849 	return 0;
   1850 }
   1851 
   1852 static int
   1853 mac_soft_reset_flb(struct aq_softc *sc)
   1854 {
   1855 	uint32_t v;
   1856 	int timo;
   1857 
   1858 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1859 	/*
   1860 	 * Let Felicity hardware to complete SMBUS transaction before
   1861 	 * Global software reset.
   1862 	 */
   1863 	msec_delay(50);
   1864 
   1865 	/*
   1866 	 * If SPI burst transaction was interrupted(before running the script),
   1867 	 * global software reset may not clear SPI interface.
   1868 	 * Clean it up manually before global reset.
   1869 	 */
   1870 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1871 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1872 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1873 	msec_delay(50);
   1874 
   1875 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1876 	v &= ~AQ_FW_SOFTRESET_DIS;
   1877 	v |= AQ_FW_SOFTRESET_RESET;
   1878 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1879 
   1880 	/* Kickstart. */
   1881 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1882 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1883 	if (!sc->sc_fast_start_enabled)
   1884 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1885 
   1886 	/*
   1887 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1888 	 * above), wait until it is completed by hardware.
   1889 	 */
   1890 	msec_delay(50);
   1891 
   1892 	/* MAC Kickstart */
   1893 	if (!sc->sc_fast_start_enabled) {
   1894 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1895 
   1896 		uint32_t flb_status;
   1897 		for (timo = 0; timo < 1000; timo++) {
   1898 			flb_status = AQ_READ_REG(sc,
   1899 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1900 			if (flb_status != 0)
   1901 				break;
   1902 			msec_delay(1);
   1903 		}
   1904 		if (flb_status == 0) {
   1905 			aprint_error_dev(sc->sc_dev,
   1906 			    "FLB> MAC kickstart failed: timed out\n");
   1907 			return ETIMEDOUT;
   1908 		}
   1909 		aprint_debug_dev(sc->sc_dev,
   1910 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1911 		/* FW reset */
   1912 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1913 		/*
   1914 		 * Let Felicity hardware complete SMBUS transaction before
   1915 		 * Global software reset.
   1916 		 */
   1917 		msec_delay(50);
   1918 		sc->sc_fast_start_enabled = true;
   1919 	}
   1920 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1921 
   1922 	/* PHY Kickstart: #undone */
   1923 	global_software_reset(sc);
   1924 
   1925 	for (timo = 0; timo < 1000; timo++) {
   1926 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1927 			break;
   1928 		msec_delay(10);
   1929 	}
   1930 	if (timo >= 1000) {
   1931 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1932 		return ETIMEDOUT;
   1933 	}
   1934 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1935 	return 0;
   1936 
   1937 }
   1938 
   1939 static int
   1940 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1941 {
   1942 	if (sc->sc_rbl_enabled)
   1943 		return mac_soft_reset_rbl(sc, mode);
   1944 
   1945 	if (mode != NULL)
   1946 		*mode = FW_BOOT_MODE_FLB;
   1947 	return mac_soft_reset_flb(sc);
   1948 }
   1949 
   1950 static int
   1951 aq_fw_read_version(struct aq_softc *sc)
   1952 {
   1953 	int i, error = EBUSY;
   1954 #define MAC_FW_START_TIMEOUT_MS	10000
   1955 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1956 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1957 		if (sc->sc_fw_version != 0) {
   1958 			error = 0;
   1959 			break;
   1960 		}
   1961 		delay(1000);
   1962 	}
   1963 	return error;
   1964 }
   1965 
   1966 static int
   1967 aq_fw_reset(struct aq_softc *sc)
   1968 {
   1969 	uint32_t ver, v, bootExitCode;
   1970 	int i, error;
   1971 
   1972 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1973 
   1974 	for (i = 1000; i > 0; i--) {
   1975 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1976 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1977 		if (v != 0x06000000 || bootExitCode != 0)
   1978 			break;
   1979 	}
   1980 	if (i <= 0) {
   1981 		aprint_error_dev(sc->sc_dev,
   1982 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1983 		return ETIMEDOUT;
   1984 	}
   1985 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1986 
   1987 	/*
   1988 	 * Having FW version 0 is an indicator that cold start
   1989 	 * is in progress. This means two things:
   1990 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1991 	 * 2) Driver may skip reset sequence and save time.
   1992 	 */
   1993 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   1994 		error = aq_fw_read_version(sc);
   1995 		/* Skip reset as it just completed */
   1996 		if (error == 0)
   1997 			return 0;
   1998 	}
   1999 
   2000 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   2001 	error = mac_soft_reset(sc, &mode);
   2002 	if (error != 0) {
   2003 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   2004 		return error;
   2005 	}
   2006 
   2007 	switch (mode) {
   2008 	case FW_BOOT_MODE_FLB:
   2009 		aprint_debug_dev(sc->sc_dev,
   2010 		    "FLB> F/W successfully loaded from flash.\n");
   2011 		sc->sc_flash_present = true;
   2012 		return aq_fw_read_version(sc);
   2013 	case FW_BOOT_MODE_RBL_FLASH:
   2014 		aprint_debug_dev(sc->sc_dev,
   2015 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   2016 		sc->sc_flash_present = true;
   2017 		return aq_fw_read_version(sc);
   2018 	case FW_BOOT_MODE_UNKNOWN:
   2019 		aprint_error_dev(sc->sc_dev,
   2020 		    "F/W bootload error: unknown bootloader type\n");
   2021 		return ENOTSUP;
   2022 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2023 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2024 		break;
   2025 	}
   2026 
   2027 	/*
   2028 	 * XXX: TODO: add support Host Boot
   2029 	 */
   2030 	aprint_error_dev(sc->sc_dev,
   2031 	    "RBL> F/W Host Bootload not implemented\n");
   2032 	return ENOTSUP;
   2033 }
   2034 
   2035 static int
   2036 aq_hw_reset(struct aq_softc *sc)
   2037 {
   2038 	int error;
   2039 
   2040 	/* disable irq */
   2041 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2042 
   2043 	/* apply */
   2044 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2045 
   2046 	/* wait ack 10 times by 1ms */
   2047 	WAIT_FOR(
   2048 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2049 	    1000, 10, &error);
   2050 	if (error != 0) {
   2051 		aprint_error_dev(sc->sc_dev,
   2052 		    "atlantic: IRQ reset failed: %d\n", error);
   2053 		return error;
   2054 	}
   2055 
   2056 	return sc->sc_fw_ops->reset(sc);
   2057 }
   2058 
   2059 static int
   2060 aq_hw_init_ucp(struct aq_softc *sc)
   2061 {
   2062 	int timo;
   2063 
   2064 	if (FW_VERSION_MAJOR(sc) == 1) {
   2065 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
   2066 			uint32_t data;
   2067 			cprng_fast(&data, sizeof(data));
   2068 			data &= 0xfefefefe;
   2069 			data |= 0x02020202;
   2070 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
   2071 		}
   2072 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2073 	}
   2074 
   2075 	for (timo = 100; timo > 0; timo--) {
   2076 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2077 		if (sc->sc_mbox_addr != 0)
   2078 			break;
   2079 		delay(1000);
   2080 	}
   2081 
   2082 #define AQ_FW_MIN_VERSION	0x01050006
   2083 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2084 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2085 		aprint_error_dev(sc->sc_dev,
   2086 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2087 		    " or later required, this is %d.%d.%d\n",
   2088 		    FW_VERSION_MAJOR(sc),
   2089 		    FW_VERSION_MINOR(sc),
   2090 		    FW_VERSION_BUILD(sc));
   2091 		return ENOTSUP;
   2092 	}
   2093 
   2094 	return 0;
   2095 }
   2096 
   2097 static int
   2098 aq_fw_version_init(struct aq_softc *sc)
   2099 {
   2100 	int error = 0;
   2101 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2102 
   2103 	if (FW_VERSION_MAJOR(sc) == 1) {
   2104 		sc->sc_fw_ops = &aq_fw1x_ops;
   2105 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2106 		sc->sc_fw_ops = &aq_fw2x_ops;
   2107 	} else {
   2108 		aprint_error_dev(sc->sc_dev,
   2109 		    "Unsupported F/W version %d.%d.%d\n",
   2110 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2111 		    FW_VERSION_BUILD(sc));
   2112 		return ENOTSUP;
   2113 	}
   2114 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2115 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2116 
   2117 	/* detect revision */
   2118 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2119 	switch (hwrev & 0x0000000f) {
   2120 	case 0x01:
   2121 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2122 		    fw_vers);
   2123 		sc->sc_features |= FEATURES_REV_A0 |
   2124 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2125 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
   2126 		break;
   2127 	case 0x02:
   2128 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2129 		    fw_vers);
   2130 		sc->sc_features |= FEATURES_REV_B0 |
   2131 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2132 		    FEATURES_TPO2 | FEATURES_RPF2;
   2133 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2134 		break;
   2135 	case 0x0A:
   2136 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2137 		    fw_vers);
   2138 		sc->sc_features |= FEATURES_REV_B1 |
   2139 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2140 		    FEATURES_TPO2 | FEATURES_RPF2;
   2141 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2142 		break;
   2143 	default:
   2144 		aprint_error_dev(sc->sc_dev,
   2145 		    "Unknown revision (0x%08x)\n", hwrev);
   2146 		sc->sc_features = 0;
   2147 		sc->sc_max_mtu = ETHERMTU;
   2148 		error = ENOTSUP;
   2149 		break;
   2150 	}
   2151 	return error;
   2152 }
   2153 
   2154 static int
   2155 fw1x_reset(struct aq_softc *sc)
   2156 {
   2157 	struct aq_mailbox_header mbox;
   2158 	const int retryCount = 1000;
   2159 	uint32_t tid0;
   2160 	int i;
   2161 
   2162 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2163 
   2164 	for (i = 0; i < retryCount; ++i) {
   2165 		/*
   2166 		 * Read the beginning of Statistics structure to capture
   2167 		 * the Transaction ID.
   2168 		 */
   2169 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2170 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2171 
   2172 		/* Successfully read the stats. */
   2173 		if (tid0 == ~0U) {
   2174 			/* We have read the initial value. */
   2175 			tid0 = mbox.transaction_id;
   2176 			continue;
   2177 		} else if (mbox.transaction_id != tid0) {
   2178 			/*
   2179 			 * Compare transaction ID to initial value.
   2180 			 * If it's different means f/w is alive.
   2181 			 * We're done.
   2182 			 */
   2183 			return 0;
   2184 		}
   2185 
   2186 		/*
   2187 		 * Transaction ID value haven't changed since last time.
   2188 		 * Try reading the stats again.
   2189 		 */
   2190 		delay(10);
   2191 	}
   2192 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2193 	return EBUSY;
   2194 }
   2195 
   2196 static int
   2197 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2198     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2199 {
   2200 	uint32_t mpictrl = 0;
   2201 	uint32_t mpispeed = 0;
   2202 
   2203 	if (speed & AQ_LINK_10G)
   2204 		mpispeed |= FW1X_CTRL_10G;
   2205 	if (speed & AQ_LINK_5G)
   2206 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2207 	if (speed & AQ_LINK_2G5)
   2208 		mpispeed |= FW1X_CTRL_2G5;
   2209 	if (speed & AQ_LINK_1G)
   2210 		mpispeed |= FW1X_CTRL_1G;
   2211 	if (speed & AQ_LINK_100M)
   2212 		mpispeed |= FW1X_CTRL_100M;
   2213 
   2214 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2215 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2216 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2217 	return 0;
   2218 }
   2219 
   2220 static int
   2221 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2222     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2223 {
   2224 	uint32_t mpistate, mpi_speed;
   2225 	aq_link_speed_t speed = AQ_LINK_NONE;
   2226 
   2227 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2228 
   2229 	if (modep != NULL)
   2230 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2231 
   2232 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2233 	if (mpi_speed & FW1X_CTRL_10G)
   2234 		speed = AQ_LINK_10G;
   2235 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2236 		speed = AQ_LINK_5G;
   2237 	else if (mpi_speed & FW1X_CTRL_2G5)
   2238 		speed = AQ_LINK_2G5;
   2239 	else if (mpi_speed & FW1X_CTRL_1G)
   2240 		speed = AQ_LINK_1G;
   2241 	else if (mpi_speed & FW1X_CTRL_100M)
   2242 		speed = AQ_LINK_100M;
   2243 
   2244 	if (speedp != NULL)
   2245 		*speedp = speed;
   2246 
   2247 	if (fcp != NULL)
   2248 		*fcp = AQ_FC_NONE;
   2249 
   2250 	if (eeep != NULL)
   2251 		*eeep = AQ_EEE_DISABLE;
   2252 
   2253 	return 0;
   2254 }
   2255 
   2256 static int
   2257 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2258 {
   2259 	int error;
   2260 
   2261 	error = aq_fw_downld_dwords(sc,
   2262 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2263 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2264 	if (error < 0) {
   2265 		device_printf(sc->sc_dev,
   2266 		    "fw1x> download statistics data FAILED, error %d", error);
   2267 		return error;
   2268 	}
   2269 
   2270 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2271 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2272 	return 0;
   2273 }
   2274 
   2275 static int
   2276 fw2x_reset(struct aq_softc *sc)
   2277 {
   2278 	fw2x_capabilities_t caps = { 0 };
   2279 	int error;
   2280 
   2281 	error = aq_fw_downld_dwords(sc,
   2282 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2283 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2284 	if (error != 0) {
   2285 		aprint_error_dev(sc->sc_dev,
   2286 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2287 		    error);
   2288 		return error;
   2289 	}
   2290 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2291 
   2292 	char buf[256];
   2293 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2294 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2295 
   2296 	return 0;
   2297 }
   2298 
   2299 static int
   2300 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2301     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2302 {
   2303 	uint64_t mpi_ctrl;
   2304 	int error = 0;
   2305 
   2306 	AQ_MPI_LOCK(sc);
   2307 
   2308 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2309 
   2310 	switch (mode) {
   2311 	case MPI_INIT:
   2312 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2313 		if (speed & AQ_LINK_10G)
   2314 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2315 		if (speed & AQ_LINK_5G)
   2316 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2317 		if (speed & AQ_LINK_2G5)
   2318 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2319 		if (speed & AQ_LINK_1G)
   2320 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2321 		if (speed & AQ_LINK_100M)
   2322 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2323 
   2324 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2325 
   2326 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2327 		if (eee == AQ_EEE_ENABLE)
   2328 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2329 
   2330 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2331 		if (fc & AQ_FC_RX)
   2332 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2333 		if (fc & AQ_FC_TX)
   2334 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2335 		break;
   2336 	case MPI_DEINIT:
   2337 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2338 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2339 		break;
   2340 	default:
   2341 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2342 		error =  EINVAL;
   2343 		goto failure;
   2344 	}
   2345 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2346 
   2347  failure:
   2348 	AQ_MPI_UNLOCK(sc);
   2349 	return error;
   2350 }
   2351 
   2352 static int
   2353 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2354     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2355 {
   2356 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2357 
   2358 	if (modep != NULL) {
   2359 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2360 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2361 			*modep = MPI_INIT;
   2362 		else
   2363 			*modep = MPI_DEINIT;
   2364 	}
   2365 
   2366 	aq_link_speed_t speed = AQ_LINK_NONE;
   2367 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2368 		speed = AQ_LINK_10G;
   2369 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2370 		speed = AQ_LINK_5G;
   2371 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2372 		speed = AQ_LINK_2G5;
   2373 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2374 		speed = AQ_LINK_1G;
   2375 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2376 		speed = AQ_LINK_100M;
   2377 
   2378 	if (speedp != NULL)
   2379 		*speedp = speed;
   2380 
   2381 	aq_link_fc_t fc = AQ_FC_NONE;
   2382 	if (mpi_state & FW2X_CTRL_PAUSE)
   2383 		fc |= AQ_FC_RX;
   2384 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2385 		fc |= AQ_FC_TX;
   2386 	if (fcp != NULL)
   2387 		*fcp = fc;
   2388 
   2389 	/* XXX: TODO: EEE */
   2390 	if (eeep != NULL)
   2391 		*eeep = AQ_EEE_DISABLE;
   2392 
   2393 	return 0;
   2394 }
   2395 
   2396 static int
   2397 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2398     uint32_t timeout_ms, uint32_t try_count)
   2399 {
   2400 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2401 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2402 	int error;
   2403 
   2404 	/* First, check that control and state values are consistent */
   2405 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2406 		device_printf(sc->sc_dev,
   2407 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2408 		    " are not consistent for mask %#llx!\n",
   2409 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2410 		    (unsigned long long)mask);
   2411 		return EINVAL;
   2412 	}
   2413 
   2414 	/* Invert bits (toggle) in control register */
   2415 	mpi_ctrl ^= mask;
   2416 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2417 
   2418 	/* Clear all bits except masked */
   2419 	mpi_ctrl &= mask;
   2420 
   2421 	/* Wait for FW reflecting change in state register */
   2422 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2423 	    1000 * timeout_ms, try_count, &error);
   2424 	if (error != 0) {
   2425 		device_printf(sc->sc_dev,
   2426 		    "f/w2x> timeout while waiting for response"
   2427 		    " in state register for bit %#llx!",
   2428 		    (unsigned long long)mask);
   2429 		return error;
   2430 	}
   2431 	return 0;
   2432 }
   2433 
   2434 static int
   2435 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2436 {
   2437 	int error;
   2438 
   2439 	AQ_MPI_LOCK(sc);
   2440 	/* Say to F/W to update the statistics */
   2441 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2442 	if (error != 0) {
   2443 		device_printf(sc->sc_dev,
   2444 		    "fw2x> statistics update error %d\n", error);
   2445 		goto failure;
   2446 	}
   2447 
   2448 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2449 	error = aq_fw_downld_dwords(sc,
   2450 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2451 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2452 	if (error != 0) {
   2453 		device_printf(sc->sc_dev,
   2454 		    "fw2x> download statistics data FAILED, error %d", error);
   2455 		goto failure;
   2456 	}
   2457 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2458 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2459 
   2460  failure:
   2461 	AQ_MPI_UNLOCK(sc);
   2462 	return error;
   2463 }
   2464 
   2465 #if NSYSMON_ENVSYS > 0
   2466 static int
   2467 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2468 {
   2469 	int error;
   2470 	uint32_t value, celsius;
   2471 
   2472 	AQ_MPI_LOCK(sc);
   2473 
   2474 	/* Say to F/W to update the temperature */
   2475 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2476 	if (error != 0)
   2477 		goto failure;
   2478 
   2479 	error = aq_fw_downld_dwords(sc,
   2480 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2481 	    &value, sizeof(value) / sizeof(uint32_t));
   2482 	if (error != 0)
   2483 		goto failure;
   2484 
   2485 	/* 1/256 decrees C to microkelvin */
   2486 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2487 	if (celsius == 0) {
   2488 		error = EIO;
   2489 		goto failure;
   2490 	}
   2491 	*temp = celsius * (1000000 / 256) + 273150000;
   2492 
   2493  failure:
   2494 	AQ_MPI_UNLOCK(sc);
   2495 	return 0;
   2496 }
   2497 #endif
   2498 
   2499 static int
   2500 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2501     uint32_t cnt)
   2502 {
   2503 	uint32_t v;
   2504 	int error = 0;
   2505 
   2506 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2507 	if (error != 0) {
   2508 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2509 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2510 		if (v == 0) {
   2511 			device_printf(sc->sc_dev,
   2512 			    "%s:%d: timeout\n", __func__, __LINE__);
   2513 			return ETIMEDOUT;
   2514 		}
   2515 	}
   2516 
   2517 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2518 
   2519 	error = 0;
   2520 	for (; cnt > 0 && error == 0; cnt--) {
   2521 		/* execute mailbox interface */
   2522 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2523 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2524 		if (sc->sc_features & FEATURES_REV_B1) {
   2525 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2526 			    1, 1000, &error);
   2527 		} else {
   2528 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2529 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2530 			    1, 1000, &error);
   2531 		}
   2532 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2533 		addr += sizeof(uint32_t);
   2534 	}
   2535 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2536 
   2537 	if (error != 0)
   2538 		device_printf(sc->sc_dev,
   2539 		    "%s:%d: timeout\n", __func__, __LINE__);
   2540 
   2541 	return error;
   2542 }
   2543 
   2544 /* read my mac address */
   2545 static int
   2546 aq_get_mac_addr(struct aq_softc *sc)
   2547 {
   2548 	uint32_t mac_addr[2];
   2549 	uint32_t efuse_shadow_addr;
   2550 	int err;
   2551 
   2552 	efuse_shadow_addr = 0;
   2553 	if (FW_VERSION_MAJOR(sc) >= 2)
   2554 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2555 	else
   2556 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2557 
   2558 	if (efuse_shadow_addr == 0) {
   2559 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2560 		return ENXIO;
   2561 	}
   2562 
   2563 	memset(mac_addr, 0, sizeof(mac_addr));
   2564 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2565 	    mac_addr, __arraycount(mac_addr));
   2566 	if (err < 0)
   2567 		return err;
   2568 
   2569 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2570 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2571 		return ENXIO;
   2572 	}
   2573 
   2574 	mac_addr[0] = htobe32(mac_addr[0]);
   2575 	mac_addr[1] = htobe32(mac_addr[1]);
   2576 
   2577 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2578 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2579 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2580 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2581 
   2582 	return 0;
   2583 }
   2584 
   2585 /* set multicast filter. index 0 for own address */
   2586 static int
   2587 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2588 {
   2589 	uint32_t h, l;
   2590 
   2591 	if (index >= AQ_HW_MAC_NUM)
   2592 		return EINVAL;
   2593 
   2594 	if (enaddr == NULL) {
   2595 		/* disable */
   2596 		AQ_WRITE_REG_BIT(sc,
   2597 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2598 		return 0;
   2599 	}
   2600 
   2601 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2602 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2603 	    (enaddr[4] <<  8) | (enaddr[5]);
   2604 
   2605 	/* disable, set, and enable */
   2606 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2607 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2608 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2609 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2610 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2611 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2612 
   2613 	return 0;
   2614 }
   2615 
   2616 static int
   2617 aq_set_capability(struct aq_softc *sc)
   2618 {
   2619 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2620 	int ip4csum_tx =
   2621 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2622 	int ip4csum_rx =
   2623 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2624 	int l4csum_tx = ((ifp->if_capenable &
   2625 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2626 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2627 	int l4csum_rx =
   2628 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2629 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2630 	uint32_t lso =
   2631 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2632 	   0 : 0xffffffff;
   2633 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2634 	    0 : 0xffffffff;
   2635 	uint32_t i, v;
   2636 
   2637 	/* TX checksums offloads*/
   2638 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2639 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2640 
   2641 	/* RX checksums offloads*/
   2642 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2643 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2644 
   2645 	/* LSO offloads*/
   2646 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2647 
   2648 #define AQ_B0_LRO_RXD_MAX	16
   2649 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2650 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2651 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2652 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2653 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2654 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2655 	}
   2656 
   2657 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2658 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2659 	    RPO_LRO_INACTIVE_IVAL, 0);
   2660 	/*
   2661 	 * the LRO timebase divider is 5 uS (0x61a),
   2662 	 * to get a maximum coalescing interval of 250 uS,
   2663 	 * we need to multiply by 50(0x32) to get
   2664 	 * the default value 250 uS
   2665 	 */
   2666 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2667 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2668 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2669 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2670 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2671 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2672 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2673 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2674 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2675 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2676 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2677 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2678 
   2679 	return 0;
   2680 }
   2681 
   2682 static int
   2683 aq_set_filter(struct aq_softc *sc)
   2684 {
   2685 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2686 	struct ethercom *ec = &sc->sc_ethercom;
   2687 	struct ether_multi *enm;
   2688 	struct ether_multistep step;
   2689 	int idx, error = 0;
   2690 
   2691 	if (ifp->if_flags & IFF_PROMISC) {
   2692 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2693 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2694 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2695 		goto done;
   2696 	}
   2697 
   2698 	/* clear all table */
   2699 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2700 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2701 			continue;
   2702 		aq_set_mac_addr(sc, idx, NULL);
   2703 	}
   2704 
   2705 	/* don't accept all multicast */
   2706 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2707 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2708 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2709 	    RPF_MCAST_FILTER_EN, 0);
   2710 
   2711 	idx = 0;
   2712 	ETHER_LOCK(ec);
   2713 	ETHER_FIRST_MULTI(step, ec, enm);
   2714 	while (enm != NULL) {
   2715 		if (idx == AQ_HW_MAC_OWN)
   2716 			idx++;
   2717 
   2718 		if ((idx >= AQ_HW_MAC_NUM) ||
   2719 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2720 			/*
   2721 			 * too many filters.
   2722 			 * fallback to accept all multicast addresses.
   2723 			 */
   2724 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2725 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2726 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2727 			    RPF_MCAST_FILTER_EN, 1);
   2728 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2729 			ETHER_UNLOCK(ec);
   2730 			goto done;
   2731 		}
   2732 
   2733 		/* add a filter */
   2734 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2735 
   2736 		ETHER_NEXT_MULTI(step, enm);
   2737 	}
   2738 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2739 	ETHER_UNLOCK(ec);
   2740 
   2741  done:
   2742 	return error;
   2743 }
   2744 
   2745 static int
   2746 aq_ifmedia_change(struct ifnet * const ifp)
   2747 {
   2748 	struct aq_softc *sc = ifp->if_softc;
   2749 	aq_link_speed_t rate = AQ_LINK_NONE;
   2750 	aq_link_fc_t fc = AQ_FC_NONE;
   2751 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2752 
   2753 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2754 		return EINVAL;
   2755 
   2756 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2757 	case IFM_AUTO:
   2758 		rate = AQ_LINK_AUTO;
   2759 		break;
   2760 	case IFM_NONE:
   2761 		rate = AQ_LINK_NONE;
   2762 		break;
   2763 	case IFM_100_TX:
   2764 		rate = AQ_LINK_100M;
   2765 		break;
   2766 	case IFM_1000_T:
   2767 		rate = AQ_LINK_1G;
   2768 		break;
   2769 	case IFM_2500_T:
   2770 		rate = AQ_LINK_2G5;
   2771 		break;
   2772 	case IFM_5000_T:
   2773 		rate = AQ_LINK_5G;
   2774 		break;
   2775 	case IFM_10G_T:
   2776 		rate = AQ_LINK_10G;
   2777 		break;
   2778 	default:
   2779 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2780 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2781 		return ENODEV;
   2782 	}
   2783 
   2784 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2785 		fc = AQ_FC_ALL;
   2786 
   2787 	/* XXX: todo EEE */
   2788 
   2789 	/* re-initialize hardware with new parameters */
   2790 	aq_set_linkmode(sc, rate, fc, eee);
   2791 
   2792 	return 0;
   2793 }
   2794 
   2795 static void
   2796 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2797 {
   2798 	struct aq_softc *sc = ifp->if_softc;
   2799 
   2800 	/* update ifm_active */
   2801 	ifmr->ifm_active = IFM_ETHER;
   2802 	if (sc->sc_link_fc & AQ_FC_RX)
   2803 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
   2804 	if (sc->sc_link_fc & AQ_FC_TX)
   2805 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
   2806 
   2807 	switch (sc->sc_link_rate) {
   2808 	case AQ_LINK_100M:
   2809 		/* XXX: need to detect fulldup or halfdup */
   2810 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   2811 		break;
   2812 	case AQ_LINK_1G:
   2813 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
   2814 		break;
   2815 	case AQ_LINK_2G5:
   2816 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
   2817 		break;
   2818 	case AQ_LINK_5G:
   2819 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
   2820 		break;
   2821 	case AQ_LINK_10G:
   2822 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2823 		break;
   2824 	default:
   2825 		ifmr->ifm_active |= IFM_NONE;
   2826 		break;
   2827 	}
   2828 
   2829 	/* update ifm_status */
   2830 	ifmr->ifm_status = IFM_AVALID;
   2831 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2832 		ifmr->ifm_status |= IFM_ACTIVE;
   2833 }
   2834 
   2835 static void
   2836 aq_initmedia(struct aq_softc *sc)
   2837 {
   2838 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2839 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2840 
   2841 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2842 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2843 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2844 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2845 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2846 	}
   2847 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2848 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2849 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2850 	}
   2851 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2852 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2853 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2854 	}
   2855 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2856 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2857 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2858 	}
   2859 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2860 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2861 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2862 	}
   2863 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2864 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2865 
   2866 	/* default: auto without flowcontrol */
   2867 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2868 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2869 }
   2870 
   2871 static int
   2872 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2873     aq_link_eee_t eee)
   2874 {
   2875 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2876 }
   2877 
   2878 static int
   2879 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2880    aq_link_eee_t *eee)
   2881 {
   2882 	aq_hw_fw_mpi_state_t mode;
   2883 	int error;
   2884 
   2885 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2886 	if (error != 0)
   2887 		return error;
   2888 	if (mode != MPI_INIT)
   2889 		return ENXIO;
   2890 
   2891 	return 0;
   2892 }
   2893 
   2894 static void
   2895 aq_hw_init_tx_path(struct aq_softc *sc)
   2896 {
   2897 	/* Tx TC/RSS number config */
   2898 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2899 
   2900 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2901 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2902 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2903 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2904 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2905 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2906 
   2907 	/* misc */
   2908 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2909 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2910 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2911 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2912 
   2913 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2914 }
   2915 
   2916 static void
   2917 aq_hw_init_rx_path(struct aq_softc *sc)
   2918 {
   2919 	int i;
   2920 
   2921 	/* clear setting */
   2922 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2923 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2924 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2925 	for (i = 0; i < 32; i++) {
   2926 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2927 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2928 	}
   2929 
   2930 	if (sc->sc_rss_enable) {
   2931 		/* Rx TC/RSS number config */
   2932 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2933 
   2934 		/* Rx flow control */
   2935 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2936 
   2937 		/* RSS Ring selection */
   2938 		switch (sc->sc_nqueues) {
   2939 		case 2:
   2940 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2941 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2942 			break;
   2943 		case 4:
   2944 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2945 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2946 			break;
   2947 		case 8:
   2948 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2949 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2950 			break;
   2951 		}
   2952 	}
   2953 
   2954 	/* L2 and Multicast filters */
   2955 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2956 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2957 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2958 		    RPF_ACTION_HOST);
   2959 	}
   2960 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2961 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2962 
   2963 	/* Vlan filters */
   2964 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2965 	    ETHERTYPE_QINQ);
   2966 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2967 	    ETHERTYPE_VLAN);
   2968 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   2969 
   2970 	if (sc->sc_features & FEATURES_REV_B) {
   2971 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2972 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2973 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2974 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2975 	}
   2976 
   2977 	/* misc */
   2978 	if (sc->sc_features & FEATURES_RPF2)
   2979 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2980 	else
   2981 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2982 
   2983 	/*
   2984 	 * XXX: RX_TCP_RSS_HASH_REG:
   2985 	 *  linux   set 0x000f0000
   2986 	 *  freebsd set 0x000f001e
   2987 	 */
   2988 	/* RSS hash type set for IP/TCP */
   2989 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2990 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2991 
   2992 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   2993 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   2994 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   2995 
   2996 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   2997 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   2998 }
   2999 
   3000 static void
   3001 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   3002 {
   3003 	int i;
   3004 
   3005 	if (sc->sc_intr_moderation_enable) {
   3006 		unsigned int tx_min, rx_min;	/* 0-255 */
   3007 		unsigned int tx_max, rx_max;	/* 0-511? */
   3008 
   3009 		switch (sc->sc_link_rate) {
   3010 		case AQ_LINK_100M:
   3011 			tx_min = 0x4f;
   3012 			tx_max = 0xff;
   3013 			rx_min = 0x04;
   3014 			rx_max = 0x50;
   3015 			break;
   3016 		case AQ_LINK_1G:
   3017 		default:
   3018 			tx_min = 0x4f;
   3019 			tx_max = 0xff;
   3020 			rx_min = 0x30;
   3021 			rx_max = 0x80;
   3022 			break;
   3023 		case AQ_LINK_2G5:
   3024 			tx_min = 0x4f;
   3025 			tx_max = 0xff;
   3026 			rx_min = 0x18;
   3027 			rx_max = 0xe0;
   3028 			break;
   3029 		case AQ_LINK_5G:
   3030 			tx_min = 0x4f;
   3031 			tx_max = 0xff;
   3032 			rx_min = 0x0c;
   3033 			rx_max = 0x70;
   3034 			break;
   3035 		case AQ_LINK_10G:
   3036 			tx_min = 0x4f;
   3037 			tx_max = 0x1ff;
   3038 			rx_min = 0x06;	/* freebsd use 80 */
   3039 			rx_max = 0x38;	/* freebsd use 120 */
   3040 			break;
   3041 		}
   3042 
   3043 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3044 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3045 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3046 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3047 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3048 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3049 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3050 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3051 
   3052 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3053 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3054 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3055 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3056 			    TX_INTR_MODERATION_CTL_EN);
   3057 		}
   3058 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3059 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3060 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3061 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3062 			    RX_INTR_MODERATION_CTL_EN);
   3063 		}
   3064 
   3065 	} else {
   3066 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3067 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3068 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3069 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3070 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3071 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3072 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3073 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3074 
   3075 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3076 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3077 		}
   3078 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3079 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3080 		}
   3081 	}
   3082 }
   3083 
   3084 static void
   3085 aq_hw_qos_set(struct aq_softc *sc)
   3086 {
   3087 	uint32_t tc = 0;
   3088 	uint32_t buff_size;
   3089 
   3090 	/* TPS Descriptor rate init */
   3091 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3092 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3093 
   3094 	/* TPS VM init */
   3095 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3096 
   3097 	/* TPS TC credits init */
   3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3099 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3100 
   3101 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3102 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3103 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3104 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3105 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3106 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3107 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3108 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3109 
   3110 	/* Tx buf size */
   3111 	tc = 0;
   3112 	buff_size = AQ_HW_TXBUF_MAX;
   3113 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3114 	    buff_size);
   3115 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3116 	    (buff_size * (1024 / 32) * 66) / 100);
   3117 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3118 	    (buff_size * (1024 / 32) * 50) / 100);
   3119 
   3120 	/* QoS Rx buf size per TC */
   3121 	tc = 0;
   3122 	buff_size = AQ_HW_RXBUF_MAX;
   3123 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3124 	    buff_size);
   3125 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3126 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3127 	    (buff_size * (1024 / 32) * 66) / 100);
   3128 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3129 	    (buff_size * (1024 / 32) * 50) / 100);
   3130 
   3131 	/* QoS 802.1p priority -> TC mapping */
   3132 	int i_priority;
   3133 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3134 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3135 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3136 	}
   3137 }
   3138 
   3139 /* called once from aq_attach */
   3140 static int
   3141 aq_init_rss(struct aq_softc *sc)
   3142 {
   3143 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3144 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3145 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3146 	unsigned int i;
   3147 	int error;
   3148 
   3149 	/* initialize rss key */
   3150 	rss_getkey((uint8_t *)rss_key);
   3151 
   3152 	/* hash to ring table */
   3153 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3154 		rss_table[i] = i % sc->sc_nqueues;
   3155 	}
   3156 
   3157 	/*
   3158 	 * set rss key
   3159 	 */
   3160 	for (i = 0; i < __arraycount(rss_key); i++) {
   3161 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3162 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3163 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3164 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3165 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3166 		    RPF_RSS_KEY_WR_EN, 1);
   3167 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3168 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3169 		if (error != 0) {
   3170 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3171 			    __func__);
   3172 			goto rss_set_timeout;
   3173 		}
   3174 	}
   3175 
   3176 	/*
   3177 	 * set rss indirection table
   3178 	 *
   3179 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3180 	 * we'll make it by __BITMAP(3) macros.
   3181 	 */
   3182 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3183 	__BITMAP_ZERO(&bit3x64);
   3184 
   3185 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3186 	do {							\
   3187 		if (val & 1) {					\
   3188 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3189 		} else {					\
   3190 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3191 		}						\
   3192 		if (val & 2) {					\
   3193 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3194 		} else {					\
   3195 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3196 		}						\
   3197 		if (val & 4) {					\
   3198 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3199 		} else {					\
   3200 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3201 		}						\
   3202 	} while (0 /* CONSTCOND */)
   3203 
   3204 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3205 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3206 	}
   3207 
   3208 	/* write 192bit data in steps of 16bit */
   3209 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3210 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3211 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3212 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3213 		    RPF_RSS_REDIR_ADDR, i);
   3214 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3215 		    RPF_RSS_REDIR_WR_EN, 1);
   3216 
   3217 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3218 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3219 		if (error != 0)
   3220 			break;
   3221 	}
   3222 
   3223  rss_set_timeout:
   3224 	return error;
   3225 }
   3226 
   3227 static void
   3228 aq_hw_l3_filter_set(struct aq_softc *sc)
   3229 {
   3230 	int i;
   3231 
   3232 	/* clear all filter */
   3233 	for (i = 0; i < 8; i++) {
   3234 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3235 		    RPF_L3_FILTER_L4_EN, 0);
   3236 	}
   3237 }
   3238 
   3239 static void
   3240 aq_set_vlan_filters(struct aq_softc *sc)
   3241 {
   3242 	struct ethercom *ec = &sc->sc_ethercom;
   3243 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3244 	struct vlanid_list *vlanidp;
   3245 	int i;
   3246 
   3247 	ETHER_LOCK(ec);
   3248 
   3249 	/* disable all vlan filters */
   3250 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
   3251 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
   3252 
   3253 	/* count VID */
   3254 	i = 0;
   3255 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
   3256 		i++;
   3257 
   3258 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
   3259 	    (ifp->if_flags & IFF_PROMISC) ||
   3260 	    (i > RPF_VLAN_MAX_FILTERS)) {
   3261 		/*
   3262 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
   3263 		 * must receive all VID
   3264 		 */
   3265 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3266 		    RPF_VLAN_MODE_PROMISC, 1);
   3267 		goto done;
   3268 	}
   3269 
   3270 	/* receive only selected VID */
   3271 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   3272 	i = 0;
   3273 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
   3274 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3275 		    RPF_VLAN_FILTER_EN, 1);
   3276 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3277 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3278 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3279 		    RPF_VLAN_FILTER_RXQ, 0);
   3280 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3281 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
   3282 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3283 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
   3284 		i++;
   3285 	}
   3286 
   3287  done:
   3288 	ETHER_UNLOCK(ec);
   3289 }
   3290 
   3291 static int
   3292 aq_hw_init(struct aq_softc *sc)
   3293 {
   3294 	uint32_t v;
   3295 
   3296 	/* Force limit MRRS on RDM/TDM to 2K */
   3297 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3298 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3299 
   3300 	/*
   3301 	 * TX DMA total request limit. B0 hardware is not capable to
   3302 	 * handle more than (8K-MRRS) incoming DMA data.
   3303 	 * Value 24 in 256byte units
   3304 	 */
   3305 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3306 
   3307 	aq_hw_init_tx_path(sc);
   3308 	aq_hw_init_rx_path(sc);
   3309 
   3310 	aq_hw_interrupt_moderation_set(sc);
   3311 
   3312 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3313 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3314 
   3315 	aq_hw_qos_set(sc);
   3316 
   3317 	/* Enable interrupt */
   3318 	int irqmode;
   3319 	if (sc->sc_msix)
   3320 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3321 	else
   3322 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3323 
   3324 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3325 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3326 	    sc->sc_msix ? 1 : 0);
   3327 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3328 
   3329 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3330 
   3331 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3332 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3333 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3334 	);
   3335 
   3336 	/* link interrupt */
   3337 	if (!sc->sc_msix)
   3338 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3339 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3340 	    __BIT(7) | sc->sc_linkstat_irq);
   3341 
   3342 	return 0;
   3343 }
   3344 
   3345 static int
   3346 aq_update_link_status(struct aq_softc *sc)
   3347 {
   3348 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3349 	aq_link_speed_t rate = AQ_LINK_NONE;
   3350 	aq_link_fc_t fc = AQ_FC_NONE;
   3351 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3352 	unsigned int speed;
   3353 	int changed = 0;
   3354 
   3355 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3356 
   3357 	if (sc->sc_link_rate != rate)
   3358 		changed = 1;
   3359 	if (sc->sc_link_fc != fc)
   3360 		changed = 1;
   3361 	if (sc->sc_link_eee != eee)
   3362 		changed = 1;
   3363 
   3364 	if (changed) {
   3365 		switch (rate) {
   3366 		case AQ_LINK_100M:
   3367 			speed = 100;
   3368 			break;
   3369 		case AQ_LINK_1G:
   3370 			speed = 1000;
   3371 			break;
   3372 		case AQ_LINK_2G5:
   3373 			speed = 2500;
   3374 			break;
   3375 		case AQ_LINK_5G:
   3376 			speed = 5000;
   3377 			break;
   3378 		case AQ_LINK_10G:
   3379 			speed = 10000;
   3380 			break;
   3381 		case AQ_LINK_NONE:
   3382 		default:
   3383 			speed = 0;
   3384 			break;
   3385 		}
   3386 
   3387 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3388 			/* link DOWN -> UP */
   3389 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3390 			    speed);
   3391 			if_link_state_change(ifp, LINK_STATE_UP);
   3392 		} else if (rate == AQ_LINK_NONE) {
   3393 			/* link UP -> DOWN */
   3394 			device_printf(sc->sc_dev, "link is DOWN\n");
   3395 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3396 		} else {
   3397 			device_printf(sc->sc_dev,
   3398 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3399 			    speed, fc, eee);
   3400 		}
   3401 
   3402 		sc->sc_link_rate = rate;
   3403 		sc->sc_link_fc = fc;
   3404 		sc->sc_link_eee = eee;
   3405 
   3406 		/* update interrupt timing according to new link speed */
   3407 		aq_hw_interrupt_moderation_set(sc);
   3408 	}
   3409 
   3410 	return changed;
   3411 }
   3412 
   3413 #ifdef AQ_EVENT_COUNTERS
   3414 static void
   3415 aq_update_statistics(struct aq_softc *sc)
   3416 {
   3417 	int prev = sc->sc_statistics_idx;
   3418 	int cur = prev ^ 1;
   3419 
   3420 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3421 
   3422 	/*
   3423 	 * aq's internal statistics counter is 32bit.
   3424 	 * cauculate delta, and add to evcount
   3425 	 */
   3426 #define ADD_DELTA(cur, prev, name)				\
   3427 	do {							\
   3428 		uint32_t n;					\
   3429 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3430 		    sc->sc_statistics[prev].name);		\
   3431 		if (n != 0) {					\
   3432 			AQ_EVCNT_ADD(sc, name, n);		\
   3433 		}						\
   3434 	} while (/*CONSTCOND*/0);
   3435 
   3436 	ADD_DELTA(cur, prev, uprc);
   3437 	ADD_DELTA(cur, prev, mprc);
   3438 	ADD_DELTA(cur, prev, bprc);
   3439 	ADD_DELTA(cur, prev, prc);
   3440 	ADD_DELTA(cur, prev, erpr);
   3441 	ADD_DELTA(cur, prev, uptc);
   3442 	ADD_DELTA(cur, prev, mptc);
   3443 	ADD_DELTA(cur, prev, bptc);
   3444 	ADD_DELTA(cur, prev, ptc);
   3445 	ADD_DELTA(cur, prev, erpt);
   3446 	ADD_DELTA(cur, prev, mbtc);
   3447 	ADD_DELTA(cur, prev, bbtc);
   3448 	ADD_DELTA(cur, prev, mbrc);
   3449 	ADD_DELTA(cur, prev, bbrc);
   3450 	ADD_DELTA(cur, prev, ubrc);
   3451 	ADD_DELTA(cur, prev, ubtc);
   3452 	ADD_DELTA(cur, prev, dpc);
   3453 	ADD_DELTA(cur, prev, cprc);
   3454 
   3455 	sc->sc_statistics_idx = cur;
   3456 }
   3457 #endif /* AQ_EVENT_COUNTERS */
   3458 
   3459 /* allocate and map one DMA block */
   3460 static int
   3461 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3462     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3463 {
   3464 	int nsegs, error;
   3465 
   3466 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3467 	    1, &nsegs, 0)) != 0) {
   3468 		aprint_error_dev(sc->sc_dev,
   3469 		    "unable to allocate DMA buffer, error=%d\n", error);
   3470 		goto fail_alloc;
   3471 	}
   3472 
   3473 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3474 	    BUS_DMA_COHERENT)) != 0) {
   3475 		aprint_error_dev(sc->sc_dev,
   3476 		    "unable to map DMA buffer, error=%d\n", error);
   3477 		goto fail_map;
   3478 	}
   3479 
   3480 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3481 	    0, mapp)) != 0) {
   3482 		aprint_error_dev(sc->sc_dev,
   3483 		    "unable to create DMA map, error=%d\n", error);
   3484 		goto fail_create;
   3485 	}
   3486 
   3487 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3488 	    0)) != 0) {
   3489 		aprint_error_dev(sc->sc_dev,
   3490 		    "unable to load DMA map, error=%d\n", error);
   3491 		goto fail_load;
   3492 	}
   3493 
   3494 	*sizep = size;
   3495 	return 0;
   3496 
   3497  fail_load:
   3498 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3499 	*mapp = NULL;
   3500  fail_create:
   3501 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3502 	*addrp = NULL;
   3503  fail_map:
   3504 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3505 	memset(seg, 0, sizeof(*seg));
   3506  fail_alloc:
   3507 	*sizep = 0;
   3508 	return error;
   3509 }
   3510 
   3511 static void
   3512 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3513     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3514 {
   3515 	if (*mapp != NULL) {
   3516 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3517 		*mapp = NULL;
   3518 	}
   3519 	if (*addrp != NULL) {
   3520 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3521 		*addrp = NULL;
   3522 	}
   3523 	if (*sizep != 0) {
   3524 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3525 		memset(seg, 0, sizeof(*seg));
   3526 		*sizep = 0;
   3527 	}
   3528 }
   3529 
   3530 static int
   3531 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3532 {
   3533 	int i, error;
   3534 
   3535 	/* allocate tx descriptors */
   3536 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3537 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3538 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3539 	if (error != 0)
   3540 		return error;
   3541 
   3542 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3543 
   3544 	/* fill tx ring with dmamap */
   3545 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3546 #define AQ_MAXDMASIZE	(16 * 1024)
   3547 #define AQ_NTXSEGS	32
   3548 		/* XXX: TODO: error check */
   3549 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3550 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3551 	}
   3552 	return 0;
   3553 }
   3554 
   3555 static void
   3556 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3557 {
   3558 	int i;
   3559 
   3560 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3561 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3562 
   3563 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3564 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3565 			if (txring->txr_mbufs[i].m != NULL) {
   3566 				bus_dmamap_unload(sc->sc_dmat,
   3567 				    txring->txr_mbufs[i].dmamap);
   3568 				m_freem(txring->txr_mbufs[i].m);
   3569 				txring->txr_mbufs[i].m = NULL;
   3570 			}
   3571 			bus_dmamap_destroy(sc->sc_dmat,
   3572 			    txring->txr_mbufs[i].dmamap);
   3573 			txring->txr_mbufs[i].dmamap = NULL;
   3574 		}
   3575 	}
   3576 }
   3577 
   3578 static int
   3579 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3580 {
   3581 	int i, error;
   3582 
   3583 	/* allocate rx descriptors */
   3584 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3585 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3586 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3587 	if (error != 0)
   3588 		return error;
   3589 
   3590 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3591 
   3592 	/* fill rxring with dmamaps */
   3593 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3594 		rxring->rxr_mbufs[i].m = NULL;
   3595 		/* XXX: TODO: error check */
   3596 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3597 		    &rxring->rxr_mbufs[i].dmamap);
   3598 	}
   3599 	return 0;
   3600 }
   3601 
   3602 static void
   3603 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3604 {
   3605 	int i;
   3606 
   3607 	/* free all mbufs allocated for RX */
   3608 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3609 		if (rxring->rxr_mbufs[i].m != NULL) {
   3610 			bus_dmamap_unload(sc->sc_dmat,
   3611 			    rxring->rxr_mbufs[i].dmamap);
   3612 			m_freem(rxring->rxr_mbufs[i].m);
   3613 			rxring->rxr_mbufs[i].m = NULL;
   3614 		}
   3615 	}
   3616 }
   3617 
   3618 static void
   3619 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3620 {
   3621 	int i;
   3622 
   3623 	/* free all mbufs and dmamaps */
   3624 	aq_rxdrain(sc, rxring);
   3625 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3626 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3627 			bus_dmamap_destroy(sc->sc_dmat,
   3628 			    rxring->rxr_mbufs[i].dmamap);
   3629 			rxring->rxr_mbufs[i].dmamap = NULL;
   3630 		}
   3631 	}
   3632 
   3633 	/* free RX descriptor */
   3634 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3635 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3636 }
   3637 
   3638 static void
   3639 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3640     struct mbuf *m)
   3641 {
   3642 	int error;
   3643 
   3644 	/* if mbuf already exists, unload and free */
   3645 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3646 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3647 		m_freem(rxring->rxr_mbufs[idx].m);
   3648 		rxring->rxr_mbufs[idx].m = NULL;
   3649 	}
   3650 
   3651 	rxring->rxr_mbufs[idx].m = m;
   3652 
   3653 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3654 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3655 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3656 	if (error) {
   3657 		device_printf(sc->sc_dev,
   3658 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3659 		panic("%s: unable to load rx DMA map. error=%d",
   3660 		    __func__, error);
   3661 	}
   3662 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3663 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3664 }
   3665 
   3666 static inline void
   3667 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3668 {
   3669 	/* refill rxdesc, and sync */
   3670 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3671 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3672 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3673 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3674 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3675 	    BUS_DMASYNC_PREWRITE);
   3676 }
   3677 
   3678 static struct mbuf *
   3679 aq_alloc_mbuf(void)
   3680 {
   3681 	struct mbuf *m;
   3682 
   3683 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3684 	if (m == NULL)
   3685 		return NULL;
   3686 
   3687 	MCLGET(m, M_DONTWAIT);
   3688 	if ((m->m_flags & M_EXT) == 0) {
   3689 		m_freem(m);
   3690 		return NULL;
   3691 	}
   3692 
   3693 	return m;
   3694 }
   3695 
   3696 /* allocate mbuf and unload dmamap */
   3697 static int
   3698 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3699 {
   3700 	struct mbuf *m;
   3701 
   3702 	m = aq_alloc_mbuf();
   3703 	if (m == NULL)
   3704 		return ENOBUFS;
   3705 
   3706 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3707 	return 0;
   3708 }
   3709 
   3710 static int
   3711 aq_txrx_rings_alloc(struct aq_softc *sc)
   3712 {
   3713 	int n, error;
   3714 
   3715 	for (n = 0; n < sc->sc_nqueues; n++) {
   3716 		sc->sc_queue[n].sc = sc;
   3717 		sc->sc_queue[n].txring.txr_sc = sc;
   3718 		sc->sc_queue[n].txring.txr_index = n;
   3719 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3720 		    IPL_NET);
   3721 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3722 		if (error != 0)
   3723 			goto failure;
   3724 
   3725 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3726 		if (error != 0)
   3727 			goto failure;
   3728 
   3729 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3730 		sc->sc_queue[n].rxring.rxr_index = n;
   3731 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3732 		   IPL_NET);
   3733 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3734 		if (error != 0)
   3735 			break;
   3736 	}
   3737 
   3738  failure:
   3739 	return error;
   3740 }
   3741 
   3742 static void
   3743 aq_txrx_rings_free(struct aq_softc *sc)
   3744 {
   3745 	int n;
   3746 
   3747 	for (n = 0; n < sc->sc_nqueues; n++) {
   3748 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3749 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3750 
   3751 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3752 
   3753 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3754 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3755 	}
   3756 }
   3757 
   3758 static int
   3759 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3760 {
   3761 	int error = 0;
   3762 	txring->txr_softint = NULL;
   3763 
   3764 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3765 	if (txring->txr_pcq == NULL) {
   3766 		aprint_error_dev(sc->sc_dev,
   3767 		    "unable to allocate pcq for TXring[%d]\n",
   3768 		    txring->txr_index);
   3769 		error = ENOMEM;
   3770 		goto done;
   3771 	}
   3772 
   3773 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3774 	    aq_deferred_transmit, txring);
   3775 	if (txring->txr_softint == NULL) {
   3776 		aprint_error_dev(sc->sc_dev,
   3777 		    "unable to establish softint for TXring[%d]\n",
   3778 		    txring->txr_index);
   3779 		error = ENOENT;
   3780 	}
   3781 
   3782  done:
   3783 	return error;
   3784 }
   3785 
   3786 static void
   3787 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3788 {
   3789 	struct mbuf *m;
   3790 
   3791 	if (txring->txr_softint != NULL) {
   3792 		softint_disestablish(txring->txr_softint);
   3793 		txring->txr_softint = NULL;
   3794 	}
   3795 
   3796 	if (txring->txr_pcq != NULL) {
   3797 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3798 			m_freem(m);
   3799 		pcq_destroy(txring->txr_pcq);
   3800 		txring->txr_pcq = NULL;
   3801 	}
   3802 }
   3803 
   3804 #if NSYSMON_ENVSYS > 0
   3805 static void
   3806 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3807 {
   3808 	struct aq_softc *sc;
   3809 	uint32_t temp;
   3810 	int error;
   3811 
   3812 	sc = sme->sme_cookie;
   3813 
   3814 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3815 	if (error == 0) {
   3816 		edata->value_cur = temp;
   3817 		edata->state = ENVSYS_SVALID;
   3818 	} else {
   3819 		edata->state = ENVSYS_SINVALID;
   3820 	}
   3821 }
   3822 #endif
   3823 
   3824 static void
   3825 aq_tick(void *arg)
   3826 {
   3827 	struct aq_softc *sc = arg;
   3828 
   3829 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3830 		sc->sc_detect_linkstat = false;
   3831 		aq_update_link_status(sc);
   3832 	}
   3833 
   3834 #ifdef AQ_EVENT_COUNTERS
   3835 	if (sc->sc_poll_statistics)
   3836 		aq_update_statistics(sc);
   3837 #endif
   3838 
   3839 	if (sc->sc_poll_linkstat
   3840 #ifdef AQ_EVENT_COUNTERS
   3841 	    || sc->sc_poll_statistics
   3842 #endif
   3843 	    ) {
   3844 		callout_schedule(&sc->sc_tick_ch, hz);
   3845 	}
   3846 }
   3847 
   3848 /* interrupt enable/disable */
   3849 static void
   3850 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3851 {
   3852 	uint32_t imask = 0;
   3853 	int i;
   3854 
   3855 	if (txrx) {
   3856 		for (i = 0; i < sc->sc_nqueues; i++) {
   3857 			imask |= __BIT(sc->sc_tx_irq[i]);
   3858 			imask |= __BIT(sc->sc_rx_irq[i]);
   3859 		}
   3860 	}
   3861 
   3862 	if (link)
   3863 		imask |= __BIT(sc->sc_linkstat_irq);
   3864 
   3865 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3866 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3867 }
   3868 
   3869 static int
   3870 aq_legacy_intr(void *arg)
   3871 {
   3872 	struct aq_softc *sc = arg;
   3873 	uint32_t status;
   3874 	int nintr = 0;
   3875 
   3876 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3877 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3878 
   3879 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3880 		sc->sc_detect_linkstat = true;
   3881 		callout_schedule(&sc->sc_tick_ch, 0);
   3882 		nintr++;
   3883 	}
   3884 
   3885 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3886 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3887 	}
   3888 
   3889 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3890 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3891 	}
   3892 
   3893 	return nintr;
   3894 }
   3895 
   3896 static int
   3897 aq_txrx_intr(void *arg)
   3898 {
   3899 	struct aq_queue *queue = arg;
   3900 	struct aq_softc *sc = queue->sc;
   3901 	struct aq_txring *txring = &queue->txring;
   3902 	struct aq_rxring *rxring = &queue->rxring;
   3903 	uint32_t status;
   3904 	int nintr = 0;
   3905 	int txringidx, rxringidx, txirq, rxirq;
   3906 
   3907 	txringidx = txring->txr_index;
   3908 	rxringidx = rxring->rxr_index;
   3909 	txirq = sc->sc_tx_irq[txringidx];
   3910 	rxirq = sc->sc_rx_irq[rxringidx];
   3911 
   3912 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3913 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3914 		/* stray interrupt? */
   3915 		return 0;
   3916 	}
   3917 
   3918 	nintr += aq_rx_intr(rxring);
   3919 	nintr += aq_tx_intr(txring);
   3920 
   3921 	return nintr;
   3922 }
   3923 
   3924 static int
   3925 aq_link_intr(void *arg)
   3926 {
   3927 	struct aq_softc *sc = arg;
   3928 	uint32_t status;
   3929 	int nintr = 0;
   3930 
   3931 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3932 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3933 		sc->sc_detect_linkstat = true;
   3934 		callout_schedule(&sc->sc_tick_ch, 0);
   3935 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3936 		    __BIT(sc->sc_linkstat_irq));
   3937 		nintr++;
   3938 	}
   3939 
   3940 	return nintr;
   3941 }
   3942 
   3943 static void
   3944 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3945 {
   3946 	const int ringidx = txring->txr_index;
   3947 	int i;
   3948 
   3949 	mutex_enter(&txring->txr_mutex);
   3950 
   3951 	txring->txr_prodidx = 0;
   3952 	txring->txr_considx = 0;
   3953 	txring->txr_nfree = AQ_TXD_NUM;
   3954 	txring->txr_active = false;
   3955 
   3956 	/* free mbufs untransmitted */
   3957 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3958 		if (txring->txr_mbufs[i].m != NULL) {
   3959 			m_freem(txring->txr_mbufs[i].m);
   3960 			txring->txr_mbufs[i].m = NULL;
   3961 		}
   3962 	}
   3963 
   3964 	/* disable DMA */
   3965 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3966 
   3967 	if (start) {
   3968 		/* TX descriptor physical address */
   3969 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3970 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3971 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3972 		    (uint32_t)((uint64_t)paddr >> 32));
   3973 
   3974 		/* TX descriptor size */
   3975 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3976 		    AQ_TXD_NUM / 8);
   3977 
   3978 		/* reload TAIL pointer */
   3979 		txring->txr_prodidx = txring->txr_considx =
   3980 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3981 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3982 
   3983 		/* Mapping interrupt vector */
   3984 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3985 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3986 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3987 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3988 
   3989 		/* enable DMA */
   3990 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3991 		    TX_DMA_DESC_EN, 1);
   3992 
   3993 		const int cpuid = 0;	/* XXX? */
   3994 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3995 		    TDM_DCAD_CPUID, cpuid);
   3996 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3997 		    TDM_DCAD_CPUID_EN, 0);
   3998 
   3999 		txring->txr_active = true;
   4000 	}
   4001 
   4002 	mutex_exit(&txring->txr_mutex);
   4003 }
   4004 
   4005 static int
   4006 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   4007 {
   4008 	const int ringidx = rxring->rxr_index;
   4009 	int i;
   4010 	int error = 0;
   4011 
   4012 	mutex_enter(&rxring->rxr_mutex);
   4013 	rxring->rxr_active = false;
   4014 
   4015 	/* disable DMA */
   4016 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   4017 
   4018 	/* free all RX mbufs */
   4019 	aq_rxdrain(sc, rxring);
   4020 
   4021 	if (start) {
   4022 		for (i = 0; i < AQ_RXD_NUM; i++) {
   4023 			error = aq_rxring_add(sc, rxring, i);
   4024 			if (error != 0) {
   4025 				aq_rxdrain(sc, rxring);
   4026 				return error;
   4027 			}
   4028 			aq_rxring_reset_desc(sc, rxring, i);
   4029 		}
   4030 
   4031 		/* RX descriptor physical address */
   4032 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   4033 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   4034 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   4035 		    (uint32_t)((uint64_t)paddr >> 32));
   4036 
   4037 		/* RX descriptor size */
   4038 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   4039 		    AQ_RXD_NUM / 8);
   4040 
   4041 		/* maximum receive frame size */
   4042 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4043 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   4044 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4045 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   4046 
   4047 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4048 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   4049 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4050 		    RX_DMA_DESC_VLAN_STRIP,
   4051 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4052 		    1 : 0);
   4053 
   4054 		/*
   4055 		 * reload TAIL pointer, and update readidx
   4056 		 * (HEAD pointer cannot write)
   4057 		 */
   4058 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4059 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4060 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4061 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4062 
   4063 		/* Rx ring set mode */
   4064 
   4065 		/* Mapping interrupt vector */
   4066 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4067 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4068 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4069 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4070 
   4071 		const int cpuid = 0;	/* XXX? */
   4072 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4073 		    RX_DMA_DCAD_CPUID, cpuid);
   4074 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4075 		    RX_DMA_DCAD_DESC_EN, 0);
   4076 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4077 		    RX_DMA_DCAD_HEADER_EN, 0);
   4078 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4079 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4080 
   4081 		/* enable DMA. start receiving */
   4082 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4083 		    RX_DMA_DESC_EN, 1);
   4084 
   4085 		rxring->rxr_active = true;
   4086 	}
   4087 
   4088 	mutex_exit(&rxring->rxr_mutex);
   4089 	return error;
   4090 }
   4091 
   4092 #define TXRING_NEXTIDX(idx)	\
   4093 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4094 #define RXRING_NEXTIDX(idx)	\
   4095 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4096 
   4097 static int
   4098 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4099 {
   4100 	bus_dmamap_t map;
   4101 	struct mbuf *m = *mp;
   4102 	uint32_t ctl1, ctl1_ctx, ctl2;
   4103 	int idx, i, error;
   4104 
   4105 	idx = txring->txr_prodidx;
   4106 	map = txring->txr_mbufs[idx].dmamap;
   4107 
   4108 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4109 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4110 	if (error == EFBIG) {
   4111 		struct mbuf *n;
   4112 		n = m_defrag(m, M_DONTWAIT);
   4113 		if (n == NULL)
   4114 			return EFBIG;
   4115 		/* m_defrag() preserve m */
   4116 		KASSERT(n == m);
   4117 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4118 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4119 	}
   4120 	if (error != 0)
   4121 		return error;
   4122 
   4123 	/*
   4124 	 * check spaces of free descriptors.
   4125 	 * +1 is additional descriptor for context (vlan, etc,.)
   4126 	 */
   4127 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4128 		device_printf(sc->sc_dev,
   4129 		    "TX: not enough descriptors left %d for %d segs\n",
   4130 		    txring->txr_nfree, map->dm_nsegs + 1);
   4131 		bus_dmamap_unload(sc->sc_dmat, map);
   4132 		return ENOBUFS;
   4133 	}
   4134 
   4135 	/* sync dma for mbuf */
   4136 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4137 	    BUS_DMASYNC_PREWRITE);
   4138 
   4139 	ctl1_ctx = 0;
   4140 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4141 
   4142 	if (vlan_has_tag(m)) {
   4143 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4144 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4145 
   4146 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4147 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4148 
   4149 		/* fill context descriptor and forward index */
   4150 		txring->txr_txdesc[idx].buf_addr = 0;
   4151 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4152 		txring->txr_txdesc[idx].ctl2 = 0;
   4153 
   4154 		idx = TXRING_NEXTIDX(idx);
   4155 		txring->txr_nfree--;
   4156 	}
   4157 
   4158 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4159 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4160 	if (m->m_pkthdr.csum_flags &
   4161 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4162 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4163 	}
   4164 
   4165 	/* fill descriptor(s) */
   4166 	for (i = 0; i < map->dm_nsegs; i++) {
   4167 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4168 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4169 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4170 
   4171 		if (i == 0) {
   4172 			/* remember mbuf of these descriptors */
   4173 			txring->txr_mbufs[idx].m = m;
   4174 		} else {
   4175 			txring->txr_mbufs[idx].m = NULL;
   4176 		}
   4177 
   4178 		if (i == map->dm_nsegs - 1) {
   4179 			/* last segment, mark an EndOfPacket, and cause intr */
   4180 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4181 		}
   4182 
   4183 		txring->txr_txdesc[idx].buf_addr =
   4184 		    htole64(map->dm_segs[i].ds_addr);
   4185 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4186 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4187 
   4188 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4189 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4190 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4191 
   4192 		idx = TXRING_NEXTIDX(idx);
   4193 		txring->txr_nfree--;
   4194 	}
   4195 
   4196 	txring->txr_prodidx = idx;
   4197 
   4198 	return 0;
   4199 }
   4200 
   4201 static int
   4202 aq_tx_intr(void *arg)
   4203 {
   4204 	struct aq_txring *txring = arg;
   4205 	struct aq_softc *sc = txring->txr_sc;
   4206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4207 	struct mbuf *m;
   4208 	const int ringidx = txring->txr_index;
   4209 	unsigned int idx, hw_head, n = 0;
   4210 
   4211 	mutex_enter(&txring->txr_mutex);
   4212 
   4213 	if (!txring->txr_active)
   4214 		goto tx_intr_done;
   4215 
   4216 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4217 	    TX_DMA_DESC_HEAD_PTR);
   4218 	if (hw_head == txring->txr_considx) {
   4219 		goto tx_intr_done;
   4220 	}
   4221 
   4222 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4223 
   4224 	for (idx = txring->txr_considx; idx != hw_head;
   4225 	    idx = TXRING_NEXTIDX(idx), n++) {
   4226 
   4227 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4228 			bus_dmamap_unload(sc->sc_dmat,
   4229 			    txring->txr_mbufs[idx].dmamap);
   4230 
   4231 			if_statinc_ref(nsr, if_opackets);
   4232 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   4233 			if (m->m_flags & M_MCAST)
   4234 				if_statinc_ref(nsr, if_omcasts);
   4235 
   4236 			m_freem(m);
   4237 			txring->txr_mbufs[idx].m = NULL;
   4238 		}
   4239 
   4240 		txring->txr_nfree++;
   4241 	}
   4242 	txring->txr_considx = idx;
   4243 
   4244 	IF_STAT_PUTREF(ifp);
   4245 
   4246 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4247 		ifp->if_flags &= ~IFF_OACTIVE;
   4248 
   4249 	/* no more pending TX packet, cancel watchdog */
   4250 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4251 		ifp->if_timer = 0;
   4252 
   4253  tx_intr_done:
   4254 	mutex_exit(&txring->txr_mutex);
   4255 
   4256 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4257 	return n;
   4258 }
   4259 
   4260 static int
   4261 aq_rx_intr(void *arg)
   4262 {
   4263 	struct aq_rxring *rxring = arg;
   4264 	struct aq_softc *sc = rxring->rxr_sc;
   4265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4266 	const int ringidx = rxring->rxr_index;
   4267 	aq_rx_desc_t *rxd;
   4268 	struct mbuf *m, *m0, *mprev, *new_m;
   4269 	uint32_t rxd_type, rxd_hash __unused;
   4270 	uint16_t rxd_status, rxd_pktlen;
   4271 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4272 	unsigned int idx, n = 0;
   4273 
   4274 	mutex_enter(&rxring->rxr_mutex);
   4275 
   4276 	if (!rxring->rxr_active)
   4277 		goto rx_intr_done;
   4278 
   4279 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4280 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4281 		goto rx_intr_done;
   4282 	}
   4283 
   4284 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4285 
   4286 	m0 = mprev = NULL;
   4287 	for (idx = rxring->rxr_readidx;
   4288 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4289 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4290 
   4291 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4292 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4293 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4294 
   4295 		rxd = &rxring->rxr_rxdesc[idx];
   4296 		rxd_status = le16toh(rxd->wb.status);
   4297 
   4298 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4299 			break;	/* not yet done */
   4300 
   4301 		rxd_type = le32toh(rxd->wb.type);
   4302 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4303 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4304 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4305 		rxd_vlan = le16toh(rxd->wb.vlan);
   4306 
   4307 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4308 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4309 			if_statinc_ref(nsr, if_ierrors);
   4310 			goto rx_next;
   4311 		}
   4312 
   4313 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4314 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4315 		    BUS_DMASYNC_POSTREAD);
   4316 		m = rxring->rxr_mbufs[idx].m;
   4317 
   4318 		new_m = aq_alloc_mbuf();
   4319 		if (new_m == NULL) {
   4320 			/*
   4321 			 * cannot allocate new mbuf.
   4322 			 * discard this packet, and reuse mbuf for next.
   4323 			 */
   4324 			if_statinc_ref(nsr, if_iqdrops);
   4325 			goto rx_next;
   4326 		}
   4327 		rxring->rxr_mbufs[idx].m = NULL;
   4328 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4329 
   4330 		if (m0 == NULL) {
   4331 			m0 = m;
   4332 		} else {
   4333 			if (m->m_flags & M_PKTHDR)
   4334 				m_remove_pkthdr(m);
   4335 			mprev->m_next = m;
   4336 		}
   4337 		mprev = m;
   4338 
   4339 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4340 			m->m_len = MCLBYTES;
   4341 		} else {
   4342 			/* last buffer */
   4343 			m->m_len = rxd_pktlen % MCLBYTES;
   4344 			m0->m_pkthdr.len = rxd_pktlen;
   4345 			/* VLAN offloading */
   4346 			if ((sc->sc_ethercom.ec_capenable &
   4347 			    ETHERCAP_VLAN_HWTAGGING) &&
   4348 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4349 			    __SHIFTOUT(rxd_type,
   4350 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4351 				vlan_set_tag(m0, rxd_vlan);
   4352 			}
   4353 
   4354 			/* Checksum offloading */
   4355 			unsigned int pkttype_eth =
   4356 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4357 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4358 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4359 			    __SHIFTOUT(rxd_type,
   4360 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4361 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4362 				if (__SHIFTOUT(rxd_status,
   4363 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4364 					m0->m_pkthdr.csum_flags |=
   4365 					    M_CSUM_IPv4_BAD;
   4366 			}
   4367 
   4368 			/*
   4369 			 * aq will always mark BAD for fragment packets,
   4370 			 * but this is not a problem because the IP stack
   4371 			 * ignores the CSUM flag in fragment packets.
   4372 			 */
   4373 			if (__SHIFTOUT(rxd_type,
   4374 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4375 				bool checked = false;
   4376 				unsigned int pkttype_proto =
   4377 				    __SHIFTOUT(rxd_type,
   4378 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4379 
   4380 				if (pkttype_proto ==
   4381 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4382 					if ((pkttype_eth ==
   4383 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4384 					    (ifp->if_capabilities &
   4385 					    IFCAP_CSUM_TCPv4_Rx)) {
   4386 						m0->m_pkthdr.csum_flags |=
   4387 						    M_CSUM_TCPv4;
   4388 						checked = true;
   4389 					} else if ((pkttype_eth ==
   4390 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4391 					    (ifp->if_capabilities &
   4392 					    IFCAP_CSUM_TCPv6_Rx)) {
   4393 						m0->m_pkthdr.csum_flags |=
   4394 						    M_CSUM_TCPv6;
   4395 						checked = true;
   4396 					}
   4397 				} else if (pkttype_proto ==
   4398 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4399 					if ((pkttype_eth ==
   4400 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4401 					    (ifp->if_capabilities &
   4402 					    IFCAP_CSUM_UDPv4_Rx)) {
   4403 						m0->m_pkthdr.csum_flags |=
   4404 						    M_CSUM_UDPv4;
   4405 						checked = true;
   4406 					} else if ((pkttype_eth ==
   4407 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4408 					    (ifp->if_capabilities &
   4409 					    IFCAP_CSUM_UDPv6_Rx)) {
   4410 						m0->m_pkthdr.csum_flags |=
   4411 						    M_CSUM_UDPv6;
   4412 						checked = true;
   4413 					}
   4414 				}
   4415 				if (checked &&
   4416 				    (__SHIFTOUT(rxd_status,
   4417 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4418 				    !__SHIFTOUT(rxd_status,
   4419 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4420 					m0->m_pkthdr.csum_flags |=
   4421 					    M_CSUM_TCP_UDP_BAD;
   4422 				}
   4423 			}
   4424 
   4425 			m_set_rcvif(m0, ifp);
   4426 			if_statinc_ref(nsr, if_ipackets);
   4427 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
   4428 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4429 			m0 = mprev = NULL;
   4430 		}
   4431 
   4432  rx_next:
   4433 		aq_rxring_reset_desc(sc, rxring, idx);
   4434 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4435 	}
   4436 	rxring->rxr_readidx = idx;
   4437 
   4438 	IF_STAT_PUTREF(ifp);
   4439 
   4440  rx_intr_done:
   4441 	mutex_exit(&rxring->rxr_mutex);
   4442 
   4443 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4444 	return n;
   4445 }
   4446 
   4447 static int
   4448 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
   4449 {
   4450 	struct ifnet *ifp = &ec->ec_if;
   4451 	struct aq_softc *sc = ifp->if_softc;
   4452 
   4453 	aq_set_vlan_filters(sc);
   4454 	return 0;
   4455 }
   4456 
   4457 static int
   4458 aq_ifflags_cb(struct ethercom *ec)
   4459 {
   4460 	struct ifnet *ifp = &ec->ec_if;
   4461 	struct aq_softc *sc = ifp->if_softc;
   4462 	int i, ecchange, error = 0;
   4463 	unsigned short iffchange;
   4464 
   4465 	AQ_LOCK(sc);
   4466 
   4467 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4468 	if ((iffchange & IFF_PROMISC) != 0)
   4469 		error = aq_set_filter(sc);
   4470 
   4471 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4472 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4473 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4474 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4475 			    RX_DMA_DESC_VLAN_STRIP,
   4476 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4477 			    1 : 0);
   4478 		}
   4479 	}
   4480 
   4481 	/* vlan configuration depends on also interface promiscuous mode */
   4482 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
   4483 		aq_set_vlan_filters(sc);
   4484 
   4485 	sc->sc_ec_capenable = ec->ec_capenable;
   4486 	sc->sc_if_flags = ifp->if_flags;
   4487 
   4488 	AQ_UNLOCK(sc);
   4489 
   4490 	return error;
   4491 }
   4492 
   4493 static int
   4494 aq_init(struct ifnet *ifp)
   4495 {
   4496 	struct aq_softc *sc = ifp->if_softc;
   4497 	int i, error = 0;
   4498 
   4499 	aq_stop(ifp, false);
   4500 
   4501 	AQ_LOCK(sc);
   4502 
   4503 	aq_set_vlan_filters(sc);
   4504 	aq_set_capability(sc);
   4505 
   4506 	for (i = 0; i < sc->sc_nqueues; i++) {
   4507 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4508 	}
   4509 
   4510 	/* invalidate RX descriptor cache */
   4511 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4512 	    AQ_READ_REG_BIT(sc,
   4513 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4514 
   4515 	/* start RX */
   4516 	for (i = 0; i < sc->sc_nqueues; i++) {
   4517 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4518 		if (error != 0) {
   4519 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4520 			    __func__);
   4521 			goto aq_init_failure;
   4522 		}
   4523 	}
   4524 	aq_init_rss(sc);
   4525 	aq_hw_l3_filter_set(sc);
   4526 
   4527 	/* need to start callout? */
   4528 	if (sc->sc_poll_linkstat
   4529 #ifdef AQ_EVENT_COUNTERS
   4530 	    || sc->sc_poll_statistics
   4531 #endif
   4532 	    ) {
   4533 		callout_schedule(&sc->sc_tick_ch, hz);
   4534 	}
   4535 
   4536 	/* ready */
   4537 	ifp->if_flags |= IFF_RUNNING;
   4538 	ifp->if_flags &= ~IFF_OACTIVE;
   4539 
   4540 	/* start TX and RX */
   4541 	aq_enable_intr(sc, true, true);
   4542 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4543 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4544 
   4545  aq_init_failure:
   4546 	sc->sc_if_flags = ifp->if_flags;
   4547 
   4548 	AQ_UNLOCK(sc);
   4549 
   4550 	return error;
   4551 }
   4552 
   4553 static void
   4554 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4555     struct aq_txring *txring, bool is_transmit)
   4556 {
   4557 	struct mbuf *m;
   4558 	int npkt, error;
   4559 
   4560 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4561 		return;
   4562 
   4563 	for (npkt = 0; ; npkt++) {
   4564 		if (is_transmit)
   4565 			m = pcq_peek(txring->txr_pcq);
   4566 		else
   4567 			IFQ_POLL(&ifp->if_snd, m);
   4568 
   4569 		if (m == NULL)
   4570 			break;
   4571 
   4572 		if (txring->txr_nfree < AQ_TXD_MIN)
   4573 			break;
   4574 
   4575 		if (is_transmit)
   4576 			pcq_get(txring->txr_pcq);
   4577 		else
   4578 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4579 
   4580 		error = aq_encap_txring(sc, txring, &m);
   4581 		if (error != 0) {
   4582 			/* too many mbuf chains? or not enough descriptors? */
   4583 			m_freem(m);
   4584 			if_statinc(ifp, if_oerrors);
   4585 			if (txring->txr_index == 0 && error == ENOBUFS)
   4586 				ifp->if_flags |= IFF_OACTIVE;
   4587 			break;
   4588 		}
   4589 
   4590 		/* update tail ptr */
   4591 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4592 		    txring->txr_prodidx);
   4593 
   4594 		/* Pass the packet to any BPF listeners */
   4595 		bpf_mtap(ifp, m, BPF_D_OUT);
   4596 	}
   4597 
   4598 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4599 		ifp->if_flags |= IFF_OACTIVE;
   4600 
   4601 	if (npkt)
   4602 		ifp->if_timer = 5;
   4603 }
   4604 
   4605 static void
   4606 aq_start(struct ifnet *ifp)
   4607 {
   4608 	struct aq_softc *sc;
   4609 	struct aq_txring *txring;
   4610 
   4611 	sc = ifp->if_softc;
   4612 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
   4613 
   4614 	mutex_enter(&txring->txr_mutex);
   4615 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4616 		aq_send_common_locked(ifp, sc, txring, false);
   4617 	mutex_exit(&txring->txr_mutex);
   4618 }
   4619 
   4620 static inline unsigned int
   4621 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4622 {
   4623 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4624 }
   4625 
   4626 static int
   4627 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4628 {
   4629 	struct aq_softc *sc = ifp->if_softc;
   4630 	struct aq_txring *txring;
   4631 	int ringidx;
   4632 
   4633 	ringidx = aq_select_txqueue(sc, m);
   4634 	txring = &sc->sc_queue[ringidx].txring;
   4635 
   4636 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4637 		m_freem(m);
   4638 		return ENOBUFS;
   4639 	}
   4640 
   4641 	if (mutex_tryenter(&txring->txr_mutex)) {
   4642 		aq_send_common_locked(ifp, sc, txring, true);
   4643 		mutex_exit(&txring->txr_mutex);
   4644 	} else {
   4645 		softint_schedule(txring->txr_softint);
   4646 	}
   4647 	return 0;
   4648 }
   4649 
   4650 static void
   4651 aq_deferred_transmit(void *arg)
   4652 {
   4653 	struct aq_txring *txring = arg;
   4654 	struct aq_softc *sc = txring->txr_sc;
   4655 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4656 
   4657 	mutex_enter(&txring->txr_mutex);
   4658 	if (pcq_peek(txring->txr_pcq) != NULL)
   4659 		aq_send_common_locked(ifp, sc, txring, true);
   4660 	mutex_exit(&txring->txr_mutex);
   4661 }
   4662 
   4663 static void
   4664 aq_stop(struct ifnet *ifp, int disable)
   4665 {
   4666 	struct aq_softc *sc = ifp->if_softc;
   4667 	int i;
   4668 
   4669 	AQ_LOCK(sc);
   4670 
   4671 	ifp->if_timer = 0;
   4672 
   4673 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4674 		goto already_stopped;
   4675 
   4676 	/* disable tx/rx interrupts */
   4677 	aq_enable_intr(sc, true, false);
   4678 
   4679 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4680 	for (i = 0; i < sc->sc_nqueues; i++) {
   4681 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4682 	}
   4683 
   4684 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4685 	for (i = 0; i < sc->sc_nqueues; i++) {
   4686 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4687 	}
   4688 
   4689 	/* invalidate RX descriptor cache */
   4690 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4691 	    AQ_READ_REG_BIT(sc,
   4692 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4693 
   4694 	ifp->if_timer = 0;
   4695 
   4696  already_stopped:
   4697 	if (!disable) {
   4698 		/* when pmf stop, disable link status intr and callout */
   4699 		aq_enable_intr(sc, false, false);
   4700 		callout_stop(&sc->sc_tick_ch);
   4701 	}
   4702 
   4703 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4704 
   4705 	AQ_UNLOCK(sc);
   4706 }
   4707 
   4708 static void
   4709 aq_watchdog(struct ifnet *ifp)
   4710 {
   4711 	struct aq_softc *sc = ifp->if_softc;
   4712 	struct aq_txring *txring;
   4713 	int n, head, tail;
   4714 
   4715 	AQ_LOCK(sc);
   4716 
   4717 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4718 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4719 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4720 
   4721 	for (n = 0; n < sc->sc_nqueues; n++) {
   4722 		txring = &sc->sc_queue[n].txring;
   4723 		head = AQ_READ_REG_BIT(sc,
   4724 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4725 		    TX_DMA_DESC_HEAD_PTR),
   4726 		tail = AQ_READ_REG(sc,
   4727 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4728 
   4729 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4730 		    __func__, txring->txr_index, head, tail);
   4731 
   4732 		aq_tx_intr(txring);
   4733 	}
   4734 
   4735 	AQ_UNLOCK(sc);
   4736 
   4737 	aq_init(ifp);
   4738 }
   4739 
   4740 static int
   4741 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4742 {
   4743 	struct aq_softc *sc __unused;
   4744 	struct ifreq *ifr __unused;
   4745 	int error, s;
   4746 
   4747 	sc = (struct aq_softc *)ifp->if_softc;
   4748 	ifr = (struct ifreq *)data;
   4749 	error = 0;
   4750 
   4751 	s = splnet();
   4752 	switch (cmd) {
   4753 	case SIOCSIFMTU:
   4754 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
   4755 			error = EINVAL;
   4756 		} else {
   4757 			ifp->if_mtu = ifr->ifr_mtu;
   4758 			error = 0;	/* no need to reset (no ENETRESET) */
   4759 		}
   4760 		break;
   4761 	default:
   4762 		error = ether_ioctl(ifp, cmd, data);
   4763 		break;
   4764 	}
   4765 	splx(s);
   4766 
   4767 	if (error != ENETRESET)
   4768 		return error;
   4769 
   4770 	switch (cmd) {
   4771 	case SIOCSIFCAP:
   4772 		error = aq_set_capability(sc);
   4773 		break;
   4774 	case SIOCADDMULTI:
   4775 	case SIOCDELMULTI:
   4776 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4777 			break;
   4778 
   4779 		/*
   4780 		 * Multicast list has changed; set the hardware filter
   4781 		 * accordingly.
   4782 		 */
   4783 		error = aq_set_filter(sc);
   4784 		break;
   4785 	}
   4786 
   4787 	return error;
   4788 }
   4789 
   4790 
   4791 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4792 
   4793 #ifdef _MODULE
   4794 #include "ioconf.c"
   4795 #endif
   4796 
   4797 static int
   4798 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4799 {
   4800 	int error = 0;
   4801 
   4802 	switch (cmd) {
   4803 	case MODULE_CMD_INIT:
   4804 #ifdef _MODULE
   4805 		error = config_init_component(cfdriver_ioconf_if_aq,
   4806 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4807 #endif
   4808 		return error;
   4809 	case MODULE_CMD_FINI:
   4810 #ifdef _MODULE
   4811 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4812 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4813 #endif
   4814 		return error;
   4815 	default:
   4816 		return ENOTTY;
   4817 	}
   4818 }
   4819