if_aq.c revision 1.27 1 /* $NetBSD: if_aq.c,v 1.27 2021/06/16 00:21:18 riastradh Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.27 2021/06/16 00:21:18 riastradh Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857
858 pcq_t *txr_pcq;
859 void *txr_softint;
860
861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
862 bus_dmamap_t txr_txdesc_dmamap;
863 bus_dma_segment_t txr_txdesc_seg[1];
864 bus_size_t txr_txdesc_size;
865
866 struct {
867 struct mbuf *m;
868 bus_dmamap_t dmamap;
869 } txr_mbufs[AQ_TXD_NUM];
870 unsigned int txr_prodidx;
871 unsigned int txr_considx;
872 int txr_nfree;
873 };
874
875 struct aq_rxring {
876 struct aq_softc *rxr_sc;
877 int rxr_index;
878 kmutex_t rxr_mutex;
879 bool rxr_active;
880
881 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
882 bus_dmamap_t rxr_rxdesc_dmamap;
883 bus_dma_segment_t rxr_rxdesc_seg[1];
884 bus_size_t rxr_rxdesc_size;
885 struct {
886 struct mbuf *m;
887 bus_dmamap_t dmamap;
888 } rxr_mbufs[AQ_RXD_NUM];
889 unsigned int rxr_readidx;
890 };
891
892 struct aq_queue {
893 struct aq_softc *sc;
894 struct aq_txring txring;
895 struct aq_rxring rxring;
896 };
897
898 struct aq_softc;
899 struct aq_firmware_ops {
900 int (*reset)(struct aq_softc *);
901 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
902 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
903 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
904 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
905 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
906 #if NSYSMON_ENVSYS > 0
907 int (*get_temperature)(struct aq_softc *, uint32_t *);
908 #endif
909 };
910
911 #ifdef AQ_EVENT_COUNTERS
912 #define AQ_EVCNT_DECL(name) \
913 char sc_evcount_##name##_name[32]; \
914 struct evcnt sc_evcount_##name##_ev;
915 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
916 do { \
917 snprintf((sc)->sc_evcount_##name##_name, \
918 sizeof((sc)->sc_evcount_##name##_name), \
919 "%s", desc); \
920 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
921 (evtype), NULL, device_xname((sc)->sc_dev), \
922 (sc)->sc_evcount_##name##_name); \
923 } while (/*CONSTCOND*/0)
924 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
925 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
926 #define AQ_EVCNT_DETACH(sc, name) \
927 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
928 #define AQ_EVCNT_ADD(sc, name, val) \
929 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
930 #endif /* AQ_EVENT_COUNTERS */
931
932 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
933 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
934
935 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
936 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
937 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
938
939
940 struct aq_softc {
941 device_t sc_dev;
942
943 bus_space_tag_t sc_iot;
944 bus_space_handle_t sc_ioh;
945 bus_size_t sc_iosize;
946 bus_dma_tag_t sc_dmat;
947
948 void *sc_ihs[AQ_NINTR_MAX];
949 pci_intr_handle_t *sc_intrs;
950
951 int sc_tx_irq[AQ_RSSQUEUE_MAX];
952 int sc_rx_irq[AQ_RSSQUEUE_MAX];
953 int sc_linkstat_irq;
954 bool sc_use_txrx_independent_intr;
955 bool sc_poll_linkstat;
956 bool sc_detect_linkstat;
957
958 #if NSYSMON_ENVSYS > 0
959 struct sysmon_envsys *sc_sme;
960 envsys_data_t sc_sensor_temp;
961 #endif
962
963 callout_t sc_tick_ch;
964
965 int sc_nintrs;
966 bool sc_msix;
967
968 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
969 int sc_nqueues;
970
971 pci_chipset_tag_t sc_pc;
972 pcitag_t sc_pcitag;
973 uint16_t sc_product;
974 uint16_t sc_revision;
975
976 kmutex_t sc_mutex;
977 kmutex_t sc_mpi_mutex;
978
979 const struct aq_firmware_ops *sc_fw_ops;
980 uint64_t sc_fw_caps;
981 enum aq_media_type sc_media_type;
982 aq_link_speed_t sc_available_rates;
983
984 aq_link_speed_t sc_link_rate;
985 aq_link_fc_t sc_link_fc;
986 aq_link_eee_t sc_link_eee;
987
988 uint32_t sc_fw_version;
989 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
990 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
991 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
992 uint32_t sc_features;
993 #define FEATURES_MIPS 0x00000001
994 #define FEATURES_TPO2 0x00000002
995 #define FEATURES_RPF2 0x00000004
996 #define FEATURES_MPI_AQ 0x00000008
997 #define FEATURES_REV_A0 0x10000000
998 #define FEATURES_REV_A (FEATURES_REV_A0)
999 #define FEATURES_REV_B0 0x20000000
1000 #define FEATURES_REV_B1 0x40000000
1001 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1002 uint32_t sc_max_mtu;
1003 uint32_t sc_mbox_addr;
1004
1005 bool sc_rbl_enabled;
1006 bool sc_fast_start_enabled;
1007 bool sc_flash_present;
1008
1009 bool sc_intr_moderation_enable;
1010 bool sc_rss_enable;
1011
1012 struct ethercom sc_ethercom;
1013 struct ether_addr sc_enaddr;
1014 struct ifmedia sc_media;
1015 int sc_ec_capenable; /* last ec_capenable */
1016 unsigned short sc_if_flags; /* last if_flags */
1017
1018 #ifdef AQ_EVENT_COUNTERS
1019 aq_hw_stats_s_t sc_statistics[2];
1020 int sc_statistics_idx;
1021 bool sc_poll_statistics;
1022
1023 AQ_EVCNT_DECL(uprc);
1024 AQ_EVCNT_DECL(mprc);
1025 AQ_EVCNT_DECL(bprc);
1026 AQ_EVCNT_DECL(erpt);
1027 AQ_EVCNT_DECL(uptc);
1028 AQ_EVCNT_DECL(mptc);
1029 AQ_EVCNT_DECL(bptc);
1030 AQ_EVCNT_DECL(erpr);
1031 AQ_EVCNT_DECL(mbtc);
1032 AQ_EVCNT_DECL(bbtc);
1033 AQ_EVCNT_DECL(mbrc);
1034 AQ_EVCNT_DECL(bbrc);
1035 AQ_EVCNT_DECL(ubrc);
1036 AQ_EVCNT_DECL(ubtc);
1037 AQ_EVCNT_DECL(ptc);
1038 AQ_EVCNT_DECL(prc);
1039 AQ_EVCNT_DECL(dpc);
1040 AQ_EVCNT_DECL(cprc);
1041 #endif
1042 };
1043
1044 static int aq_match(device_t, cfdata_t, void *);
1045 static void aq_attach(device_t, device_t, void *);
1046 static int aq_detach(device_t, int);
1047
1048 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1049 bool, bool);
1050 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1051 pci_intr_type_t);
1052 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1053
1054 static int aq_ifmedia_change(struct ifnet * const);
1055 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1056 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1057 static int aq_ifflags_cb(struct ethercom *);
1058 static int aq_init(struct ifnet *);
1059 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1060 struct aq_txring *, bool);
1061 static int aq_transmit(struct ifnet *, struct mbuf *);
1062 static void aq_deferred_transmit(void *);
1063 static void aq_start(struct ifnet *);
1064 static void aq_stop(struct ifnet *, int);
1065 static void aq_watchdog(struct ifnet *);
1066 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1067
1068 static int aq_txrx_rings_alloc(struct aq_softc *);
1069 static void aq_txrx_rings_free(struct aq_softc *);
1070 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1071 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1072
1073 static void aq_initmedia(struct aq_softc *);
1074 static void aq_enable_intr(struct aq_softc *, bool, bool);
1075
1076 #if NSYSMON_ENVSYS > 0
1077 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1078 #endif
1079 static void aq_tick(void *);
1080 static int aq_legacy_intr(void *);
1081 static int aq_link_intr(void *);
1082 static int aq_txrx_intr(void *);
1083 static int aq_tx_intr(void *);
1084 static int aq_rx_intr(void *);
1085
1086 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1087 aq_link_eee_t);
1088 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1089 aq_link_eee_t *);
1090
1091 static int aq_fw_reset(struct aq_softc *);
1092 static int aq_fw_version_init(struct aq_softc *);
1093 static int aq_hw_init(struct aq_softc *);
1094 static int aq_hw_init_ucp(struct aq_softc *);
1095 static int aq_hw_reset(struct aq_softc *);
1096 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1097 uint32_t);
1098 static int aq_get_mac_addr(struct aq_softc *);
1099 static int aq_init_rss(struct aq_softc *);
1100 static int aq_set_capability(struct aq_softc *);
1101
1102 static int fw1x_reset(struct aq_softc *);
1103 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1104 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1105 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1106 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1107 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1108
1109 static int fw2x_reset(struct aq_softc *);
1110 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1111 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1112 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1113 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1114 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1115 #if NSYSMON_ENVSYS > 0
1116 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1117 #endif
1118
1119 static const struct aq_firmware_ops aq_fw1x_ops = {
1120 .reset = fw1x_reset,
1121 .set_mode = fw1x_set_mode,
1122 .get_mode = fw1x_get_mode,
1123 .get_stats = fw1x_get_stats,
1124 #if NSYSMON_ENVSYS > 0
1125 .get_temperature = NULL
1126 #endif
1127 };
1128
1129 static const struct aq_firmware_ops aq_fw2x_ops = {
1130 .reset = fw2x_reset,
1131 .set_mode = fw2x_set_mode,
1132 .get_mode = fw2x_get_mode,
1133 .get_stats = fw2x_get_stats,
1134 #if NSYSMON_ENVSYS > 0
1135 .get_temperature = fw2x_get_temperature
1136 #endif
1137 };
1138
1139 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1140 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1141
1142 static const struct aq_product {
1143 pci_vendor_id_t aq_vendor;
1144 pci_product_id_t aq_product;
1145 const char *aq_name;
1146 enum aq_media_type aq_media_type;
1147 aq_link_speed_t aq_available_rates;
1148 } aq_products[] = {
1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1150 "Aquantia AQC100 10 Gigabit Network Adapter",
1151 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1152 },
1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1154 "Aquantia AQC107 10 Gigabit Network Adapter",
1155 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1156 },
1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1158 "Aquantia AQC108 5 Gigabit Network Adapter",
1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1160 },
1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1162 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1164 },
1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1166 "Aquantia AQC111 5 Gigabit Network Adapter",
1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1168 },
1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1170 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1171 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1172 },
1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1174 "Aquantia AQC100S 10 Gigabit Network Adapter",
1175 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1176 },
1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1178 "Aquantia AQC107S 10 Gigabit Network Adapter",
1179 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1180 },
1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1182 "Aquantia AQC108S 5 Gigabit Network Adapter",
1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1184 },
1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1186 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1188 },
1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1190 "Aquantia AQC111S 5 Gigabit Network Adapter",
1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1192 },
1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1194 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1195 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1196 },
1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1198 "Aquantia D100 10 Gigabit Network Adapter",
1199 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1200 },
1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1202 "Aquantia D107 10 Gigabit Network Adapter",
1203 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1204 },
1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1206 "Aquantia D108 5 Gigabit Network Adapter",
1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1208 },
1209 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1210 "Aquantia D109 2.5 Gigabit Network Adapter",
1211 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1212 }
1213 };
1214
1215 static const struct aq_product *
1216 aq_lookup(const struct pci_attach_args *pa)
1217 {
1218 unsigned int i;
1219
1220 for (i = 0; i < __arraycount(aq_products); i++) {
1221 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1222 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1223 return &aq_products[i];
1224 }
1225 return NULL;
1226 }
1227
1228 static int
1229 aq_match(device_t parent, cfdata_t cf, void *aux)
1230 {
1231 struct pci_attach_args *pa = aux;
1232
1233 if (aq_lookup(pa) != NULL)
1234 return 1;
1235
1236 return 0;
1237 }
1238
1239 static void
1240 aq_attach(device_t parent, device_t self, void *aux)
1241 {
1242 struct aq_softc *sc = device_private(self);
1243 struct pci_attach_args *pa = aux;
1244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1245 pci_chipset_tag_t pc;
1246 pcitag_t tag;
1247 pcireg_t command, memtype, bar;
1248 const struct aq_product *aqp;
1249 int error;
1250
1251 sc->sc_dev = self;
1252 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1253 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1254
1255 sc->sc_pc = pc = pa->pa_pc;
1256 sc->sc_pcitag = tag = pa->pa_tag;
1257 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1258
1259 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1260 command |= PCI_COMMAND_MASTER_ENABLE;
1261 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1262
1263 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1264 sc->sc_revision = PCI_REVISION(pa->pa_class);
1265
1266 aqp = aq_lookup(pa);
1267 KASSERT(aqp != NULL);
1268
1269 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1270
1271 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1272 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1273 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1274 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1275 return;
1276 }
1277 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1278 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1279 NULL, &sc->sc_iosize) != 0) {
1280 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1281 return;
1282 }
1283
1284 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1285
1286 /* max queue num is 8, and must be 2^n */
1287 if (ncpu >= 8)
1288 sc->sc_nqueues = 8;
1289 else if (ncpu >= 4)
1290 sc->sc_nqueues = 4;
1291 else if (ncpu >= 2)
1292 sc->sc_nqueues = 2;
1293 else
1294 sc->sc_nqueues = 1;
1295
1296 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1297 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1298 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1299 /* TX intrs + RX intrs + LINKSTAT intrs */
1300 sc->sc_use_txrx_independent_intr = true;
1301 sc->sc_poll_linkstat = false;
1302 sc->sc_msix = true;
1303 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1304 /* TX intrs + RX intrs */
1305 sc->sc_use_txrx_independent_intr = true;
1306 sc->sc_poll_linkstat = true;
1307 sc->sc_msix = true;
1308 } else
1309 #endif
1310 if (msixcount >= (sc->sc_nqueues + 1)) {
1311 /* TX/RX intrs LINKSTAT intrs */
1312 sc->sc_use_txrx_independent_intr = false;
1313 sc->sc_poll_linkstat = false;
1314 sc->sc_msix = true;
1315 } else if (msixcount >= sc->sc_nqueues) {
1316 /* TX/RX intrs */
1317 sc->sc_use_txrx_independent_intr = false;
1318 sc->sc_poll_linkstat = true;
1319 sc->sc_msix = true;
1320 } else {
1321 /* giving up using MSI-X */
1322 sc->sc_msix = false;
1323 }
1324
1325 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1326 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1327 sc->sc_poll_linkstat = true;
1328
1329 #ifdef AQ_FORCE_POLL_LINKSTAT
1330 sc->sc_poll_linkstat = true;
1331 #endif
1332
1333 aprint_debug_dev(sc->sc_dev,
1334 "ncpu=%d, pci_msix_count=%d."
1335 " allocate %d interrupts for %d%s queues%s\n",
1336 ncpu, msixcount,
1337 (sc->sc_use_txrx_independent_intr ?
1338 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1339 (sc->sc_poll_linkstat ? 0 : 1),
1340 sc->sc_nqueues,
1341 sc->sc_use_txrx_independent_intr ? "*2" : "",
1342 sc->sc_poll_linkstat ? "" : ", and link status");
1343
1344 if (sc->sc_msix)
1345 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1346 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1347 else
1348 error = ENODEV;
1349
1350 if (error != 0) {
1351 /* if MSI-X failed, fallback to MSI with single queue */
1352 sc->sc_use_txrx_independent_intr = false;
1353 sc->sc_poll_linkstat = false;
1354 sc->sc_msix = false;
1355 sc->sc_nqueues = 1;
1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1357 }
1358 if (error != 0) {
1359 /* if MSI failed, fallback to INTx */
1360 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1361 }
1362 if (error != 0)
1363 return;
1364
1365 callout_init(&sc->sc_tick_ch, 0);
1366 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1367
1368 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1369
1370 if (sc->sc_msix && (sc->sc_nqueues > 1))
1371 sc->sc_rss_enable = true;
1372 else
1373 sc->sc_rss_enable = false;
1374
1375 error = aq_txrx_rings_alloc(sc);
1376 if (error != 0)
1377 goto attach_failure;
1378
1379 error = aq_fw_reset(sc);
1380 if (error != 0)
1381 goto attach_failure;
1382
1383 error = aq_fw_version_init(sc);
1384 if (error != 0)
1385 goto attach_failure;
1386
1387 error = aq_hw_init_ucp(sc);
1388 if (error < 0)
1389 goto attach_failure;
1390
1391 KASSERT(sc->sc_mbox_addr != 0);
1392 error = aq_hw_reset(sc);
1393 if (error != 0)
1394 goto attach_failure;
1395
1396 aq_get_mac_addr(sc);
1397 aq_init_rss(sc);
1398
1399 error = aq_hw_init(sc); /* initialize and interrupts */
1400 if (error != 0)
1401 goto attach_failure;
1402
1403 sc->sc_media_type = aqp->aq_media_type;
1404 sc->sc_available_rates = aqp->aq_available_rates;
1405
1406 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1407 ifmedia_init(&sc->sc_media, IFM_IMASK,
1408 aq_ifmedia_change, aq_ifmedia_status);
1409 aq_initmedia(sc);
1410
1411 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1412 ifp->if_softc = sc;
1413 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1414 ifp->if_extflags = IFEF_MPSAFE;
1415 ifp->if_baudrate = IF_Gbps(10);
1416 ifp->if_init = aq_init;
1417 ifp->if_ioctl = aq_ioctl;
1418 if (sc->sc_msix && (sc->sc_nqueues > 1))
1419 ifp->if_transmit = aq_transmit;
1420 ifp->if_start = aq_start;
1421 ifp->if_stop = aq_stop;
1422 ifp->if_watchdog = aq_watchdog;
1423 IFQ_SET_READY(&ifp->if_snd);
1424
1425 /* initialize capabilities */
1426 sc->sc_ethercom.ec_capabilities = 0;
1427 sc->sc_ethercom.ec_capenable = 0;
1428 #if notyet
1429 /* TODO */
1430 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1431 #endif
1432 sc->sc_ethercom.ec_capabilities |=
1433 ETHERCAP_JUMBO_MTU |
1434 ETHERCAP_VLAN_MTU |
1435 ETHERCAP_VLAN_HWTAGGING |
1436 ETHERCAP_VLAN_HWFILTER;
1437 sc->sc_ethercom.ec_capenable |=
1438 ETHERCAP_VLAN_HWTAGGING |
1439 ETHERCAP_VLAN_HWFILTER;
1440
1441 ifp->if_capabilities = 0;
1442 ifp->if_capenable = 0;
1443 #ifdef CONFIG_LRO_SUPPORT
1444 ifp->if_capabilities |= IFCAP_LRO;
1445 ifp->if_capenable |= IFCAP_LRO;
1446 #endif
1447 #if notyet
1448 /* TSO */
1449 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1450 #endif
1451
1452 /* TX hardware checksum offloading */
1453 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1454 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1455 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1456 /* RX hardware checksum offloading */
1457 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1458 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1459 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1460
1461 if_initialize(ifp);
1462 ifp->if_percpuq = if_percpuq_create(ifp);
1463 if_deferred_start_init(ifp, NULL);
1464 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1465 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1466 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1467 if_register(ifp);
1468
1469 aq_enable_intr(sc, true, false); /* only intr about link */
1470
1471 /* update media */
1472 aq_ifmedia_change(ifp);
1473
1474 #if NSYSMON_ENVSYS > 0
1475 /* temperature monitoring */
1476 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1477 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1478
1479 sc->sc_sme = sysmon_envsys_create();
1480 sc->sc_sme->sme_name = device_xname(self);
1481 sc->sc_sme->sme_cookie = sc;
1482 sc->sc_sme->sme_flags = 0;
1483 sc->sc_sme->sme_refresh = aq_temp_refresh;
1484 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1485 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1486 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1487
1488 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1489 if (sysmon_envsys_register(sc->sc_sme)) {
1490 sysmon_envsys_destroy(sc->sc_sme);
1491 sc->sc_sme = NULL;
1492 goto attach_failure;
1493 }
1494
1495 /*
1496 * for unknown reasons, the first call of fw2x_get_temperature()
1497 * will always fail (firmware matter?), so run once now.
1498 */
1499 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1500 }
1501 #endif
1502
1503 #ifdef AQ_EVENT_COUNTERS
1504 /* get starting statistics values */
1505 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1506 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1507 sc->sc_poll_statistics = true;
1508 }
1509
1510 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1511 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1512 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1513 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1514 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1515 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1516 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1517 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1518 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1519 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1520 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1521 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1522 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1523 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1524 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1525 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1526 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1527 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1528 #endif
1529
1530 return;
1531
1532 attach_failure:
1533 aq_detach(self, 0);
1534 }
1535
1536 static int
1537 aq_detach(device_t self, int flags __unused)
1538 {
1539 struct aq_softc *sc = device_private(self);
1540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1541 int i, s;
1542
1543 if (sc->sc_iosize != 0) {
1544 if (ifp->if_softc != NULL) {
1545 s = splnet();
1546 aq_stop(ifp, 0);
1547 splx(s);
1548 }
1549
1550 for (i = 0; i < AQ_NINTR_MAX; i++) {
1551 if (sc->sc_ihs[i] != NULL) {
1552 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1553 sc->sc_ihs[i] = NULL;
1554 }
1555 }
1556 if (sc->sc_nintrs > 0) {
1557 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1558 sc->sc_nintrs);
1559 sc->sc_intrs = NULL;
1560 sc->sc_nintrs = 0;
1561 }
1562
1563 aq_txrx_rings_free(sc);
1564
1565 if (ifp->if_softc != NULL) {
1566 ether_ifdetach(ifp);
1567 if_detach(ifp);
1568 }
1569
1570 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1571 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1572 sc->sc_iosize = 0;
1573 }
1574
1575 callout_stop(&sc->sc_tick_ch);
1576
1577 #if NSYSMON_ENVSYS > 0
1578 if (sc->sc_sme != NULL) {
1579 /* all sensors associated with this will also be detached */
1580 sysmon_envsys_unregister(sc->sc_sme);
1581 }
1582 #endif
1583
1584 #ifdef AQ_EVENT_COUNTERS
1585 AQ_EVCNT_DETACH(sc, uprc);
1586 AQ_EVCNT_DETACH(sc, mprc);
1587 AQ_EVCNT_DETACH(sc, bprc);
1588 AQ_EVCNT_DETACH(sc, erpt);
1589 AQ_EVCNT_DETACH(sc, uptc);
1590 AQ_EVCNT_DETACH(sc, mptc);
1591 AQ_EVCNT_DETACH(sc, bptc);
1592 AQ_EVCNT_DETACH(sc, erpr);
1593 AQ_EVCNT_DETACH(sc, mbtc);
1594 AQ_EVCNT_DETACH(sc, bbtc);
1595 AQ_EVCNT_DETACH(sc, mbrc);
1596 AQ_EVCNT_DETACH(sc, bbrc);
1597 AQ_EVCNT_DETACH(sc, ubrc);
1598 AQ_EVCNT_DETACH(sc, ubtc);
1599 AQ_EVCNT_DETACH(sc, ptc);
1600 AQ_EVCNT_DETACH(sc, prc);
1601 AQ_EVCNT_DETACH(sc, dpc);
1602 AQ_EVCNT_DETACH(sc, cprc);
1603 #endif
1604
1605 ifmedia_fini(&sc->sc_media);
1606
1607 mutex_destroy(&sc->sc_mpi_mutex);
1608 mutex_destroy(&sc->sc_mutex);
1609
1610 return 0;
1611 }
1612
1613 static int
1614 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1615 int (*func)(void *), void *arg, const char *xname)
1616 {
1617 char intrbuf[PCI_INTRSTR_LEN];
1618 pci_chipset_tag_t pc = sc->sc_pc;
1619 void *vih;
1620 const char *intrstr = NULL;
1621
1622 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1623 sizeof(intrbuf));
1624
1625 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1626
1627 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1628 IPL_NET, func, arg, xname);
1629 if (vih == NULL) {
1630 aprint_error_dev(sc->sc_dev,
1631 "unable to establish MSI-X%s%s for %s\n",
1632 intrstr ? " at " : "",
1633 intrstr ? intrstr : "", xname);
1634 return EIO;
1635 }
1636 sc->sc_ihs[intno] = vih;
1637
1638 if (affinity != NULL) {
1639 /* Round-robin affinity */
1640 kcpuset_zero(affinity);
1641 kcpuset_set(affinity, intno % ncpu);
1642 interrupt_distribute(vih, affinity, NULL);
1643 }
1644
1645 return 0;
1646 }
1647
1648 static int
1649 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1650 bool linkintr)
1651 {
1652 kcpuset_t *affinity;
1653 int error, intno, i;
1654 char intr_xname[INTRDEVNAMEBUF];
1655
1656 kcpuset_create(&affinity, false);
1657
1658 intno = 0;
1659
1660 if (txrx_independent) {
1661 for (i = 0; i < sc->sc_nqueues; i++) {
1662 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1663 device_xname(sc->sc_dev), i);
1664 sc->sc_rx_irq[i] = intno;
1665 error = aq_establish_intr(sc, intno++, affinity,
1666 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1667 if (error != 0)
1668 goto fail;
1669 }
1670 for (i = 0; i < sc->sc_nqueues; i++) {
1671 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1672 device_xname(sc->sc_dev), i);
1673 sc->sc_tx_irq[i] = intno;
1674 error = aq_establish_intr(sc, intno++, affinity,
1675 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1676 if (error != 0)
1677 goto fail;
1678 }
1679 } else {
1680 for (i = 0; i < sc->sc_nqueues; i++) {
1681 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1682 device_xname(sc->sc_dev), i);
1683 sc->sc_rx_irq[i] = intno;
1684 sc->sc_tx_irq[i] = intno;
1685 error = aq_establish_intr(sc, intno++, affinity,
1686 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1687 if (error != 0)
1688 goto fail;
1689 }
1690 }
1691
1692 if (linkintr) {
1693 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1694 device_xname(sc->sc_dev));
1695 sc->sc_linkstat_irq = intno;
1696 error = aq_establish_intr(sc, intno++, affinity,
1697 aq_link_intr, sc, intr_xname);
1698 if (error != 0)
1699 goto fail;
1700 }
1701
1702 kcpuset_destroy(affinity);
1703 return 0;
1704
1705 fail:
1706 for (i = 0; i < AQ_NINTR_MAX; i++) {
1707 if (sc->sc_ihs[i] != NULL) {
1708 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1709 sc->sc_ihs[i] = NULL;
1710 }
1711 }
1712
1713 kcpuset_destroy(affinity);
1714 return ENOMEM;
1715 }
1716
1717 static int
1718 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1719 bool txrx_independent, bool linkintr)
1720 {
1721 int error, nintr;
1722
1723 if (txrx_independent)
1724 nintr = nqueue * 2;
1725 else
1726 nintr = nqueue;
1727
1728 if (linkintr)
1729 nintr++;
1730
1731 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1732 if (error != 0) {
1733 aprint_error_dev(sc->sc_dev,
1734 "failed to allocate MSI-X interrupts\n");
1735 goto fail;
1736 }
1737
1738 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1739 if (error == 0) {
1740 sc->sc_nintrs = nintr;
1741 } else {
1742 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1743 sc->sc_nintrs = 0;
1744 }
1745 fail:
1746 return error;
1747
1748 }
1749
1750 static int
1751 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1752 pci_intr_type_t inttype)
1753 {
1754 int counts[PCI_INTR_TYPE_SIZE];
1755 int error, nintr;
1756
1757 nintr = 1;
1758
1759 memset(counts, 0, sizeof(counts));
1760 counts[inttype] = nintr;
1761
1762 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1763 if (error != 0) {
1764 aprint_error_dev(sc->sc_dev,
1765 "failed to allocate%s interrupts\n",
1766 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1767 return error;
1768 }
1769 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1770 device_xname(sc->sc_dev));
1771 if (error == 0) {
1772 sc->sc_nintrs = nintr;
1773 } else {
1774 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1775 sc->sc_nintrs = 0;
1776 }
1777 return error;
1778 }
1779
1780 static void
1781 global_software_reset(struct aq_softc *sc)
1782 {
1783 uint32_t v;
1784
1785 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1786 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1787 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1788 FW_MPI_RESETCTRL_RESET_DIS, 0);
1789
1790 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1791 v &= ~AQ_FW_SOFTRESET_DIS;
1792 v |= AQ_FW_SOFTRESET_RESET;
1793 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1794 }
1795
1796 static int
1797 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1798 {
1799 int timo;
1800
1801 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1802
1803 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1804 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1805 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1806
1807 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1808 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1809
1810 global_software_reset(sc);
1811
1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1813
1814 /* Wait for RBL to finish boot process. */
1815 #define RBL_TIMEOUT_MS 10000
1816 uint16_t rbl_status;
1817 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1818 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1819 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1820 break;
1821 msec_delay(1);
1822 }
1823 if (timo <= 0) {
1824 aprint_error_dev(sc->sc_dev,
1825 "RBL> RBL restart failed: timeout\n");
1826 return EBUSY;
1827 }
1828 switch (rbl_status) {
1829 case RBL_STATUS_SUCCESS:
1830 if (mode != NULL)
1831 *mode = FW_BOOT_MODE_RBL_FLASH;
1832 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1833 break;
1834 case RBL_STATUS_HOST_BOOT:
1835 if (mode != NULL)
1836 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1837 aprint_debug_dev(sc->sc_dev,
1838 "RBL> reset complete! [Host Bootload]\n");
1839 break;
1840 case RBL_STATUS_FAILURE:
1841 default:
1842 aprint_error_dev(sc->sc_dev,
1843 "unknown RBL status 0x%x\n", rbl_status);
1844 return EBUSY;
1845 }
1846
1847 return 0;
1848 }
1849
1850 static int
1851 mac_soft_reset_flb(struct aq_softc *sc)
1852 {
1853 uint32_t v;
1854 int timo;
1855
1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1857 /*
1858 * Let Felicity hardware to complete SMBUS transaction before
1859 * Global software reset.
1860 */
1861 msec_delay(50);
1862
1863 /*
1864 * If SPI burst transaction was interrupted(before running the script),
1865 * global software reset may not clear SPI interface.
1866 * Clean it up manually before global reset.
1867 */
1868 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1869 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1870 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1871 msec_delay(50);
1872
1873 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1874 v &= ~AQ_FW_SOFTRESET_DIS;
1875 v |= AQ_FW_SOFTRESET_RESET;
1876 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1877
1878 /* Kickstart. */
1879 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1880 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1881 if (!sc->sc_fast_start_enabled)
1882 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1883
1884 /*
1885 * For the case SPI burst transaction was interrupted (by MCP reset
1886 * above), wait until it is completed by hardware.
1887 */
1888 msec_delay(50);
1889
1890 /* MAC Kickstart */
1891 if (!sc->sc_fast_start_enabled) {
1892 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1893
1894 uint32_t flb_status;
1895 for (timo = 0; timo < 1000; timo++) {
1896 flb_status = AQ_READ_REG(sc,
1897 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1898 if (flb_status != 0)
1899 break;
1900 msec_delay(1);
1901 }
1902 if (flb_status == 0) {
1903 aprint_error_dev(sc->sc_dev,
1904 "FLB> MAC kickstart failed: timed out\n");
1905 return ETIMEDOUT;
1906 }
1907 aprint_debug_dev(sc->sc_dev,
1908 "FLB> MAC kickstart done, %d ms\n", timo);
1909 /* FW reset */
1910 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1911 /*
1912 * Let Felicity hardware complete SMBUS transaction before
1913 * Global software reset.
1914 */
1915 msec_delay(50);
1916 sc->sc_fast_start_enabled = true;
1917 }
1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1919
1920 /* PHY Kickstart: #undone */
1921 global_software_reset(sc);
1922
1923 for (timo = 0; timo < 1000; timo++) {
1924 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1925 break;
1926 msec_delay(10);
1927 }
1928 if (timo >= 1000) {
1929 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1930 return ETIMEDOUT;
1931 }
1932 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1933 return 0;
1934
1935 }
1936
1937 static int
1938 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1939 {
1940 if (sc->sc_rbl_enabled)
1941 return mac_soft_reset_rbl(sc, mode);
1942
1943 if (mode != NULL)
1944 *mode = FW_BOOT_MODE_FLB;
1945 return mac_soft_reset_flb(sc);
1946 }
1947
1948 static int
1949 aq_fw_read_version(struct aq_softc *sc)
1950 {
1951 int i, error = EBUSY;
1952 #define MAC_FW_START_TIMEOUT_MS 10000
1953 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1954 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1955 if (sc->sc_fw_version != 0) {
1956 error = 0;
1957 break;
1958 }
1959 delay(1000);
1960 }
1961 return error;
1962 }
1963
1964 static int
1965 aq_fw_reset(struct aq_softc *sc)
1966 {
1967 uint32_t ver, v, bootExitCode;
1968 int i, error;
1969
1970 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1971
1972 for (i = 1000; i > 0; i--) {
1973 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1974 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1975 if (v != 0x06000000 || bootExitCode != 0)
1976 break;
1977 }
1978 if (i <= 0) {
1979 aprint_error_dev(sc->sc_dev,
1980 "F/W reset failed. Neither RBL nor FLB started\n");
1981 return ETIMEDOUT;
1982 }
1983 sc->sc_rbl_enabled = (bootExitCode != 0);
1984
1985 /*
1986 * Having FW version 0 is an indicator that cold start
1987 * is in progress. This means two things:
1988 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1989 * 2) Driver may skip reset sequence and save time.
1990 */
1991 if (sc->sc_fast_start_enabled && (ver != 0)) {
1992 error = aq_fw_read_version(sc);
1993 /* Skip reset as it just completed */
1994 if (error == 0)
1995 return 0;
1996 }
1997
1998 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1999 error = mac_soft_reset(sc, &mode);
2000 if (error != 0) {
2001 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2002 return error;
2003 }
2004
2005 switch (mode) {
2006 case FW_BOOT_MODE_FLB:
2007 aprint_debug_dev(sc->sc_dev,
2008 "FLB> F/W successfully loaded from flash.\n");
2009 sc->sc_flash_present = true;
2010 return aq_fw_read_version(sc);
2011 case FW_BOOT_MODE_RBL_FLASH:
2012 aprint_debug_dev(sc->sc_dev,
2013 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2014 sc->sc_flash_present = true;
2015 return aq_fw_read_version(sc);
2016 case FW_BOOT_MODE_UNKNOWN:
2017 aprint_error_dev(sc->sc_dev,
2018 "F/W bootload error: unknown bootloader type\n");
2019 return ENOTSUP;
2020 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2021 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2022 break;
2023 }
2024
2025 /*
2026 * XXX: TODO: add support Host Boot
2027 */
2028 aprint_error_dev(sc->sc_dev,
2029 "RBL> F/W Host Bootload not implemented\n");
2030 return ENOTSUP;
2031 }
2032
2033 static int
2034 aq_hw_reset(struct aq_softc *sc)
2035 {
2036 int error;
2037
2038 /* disable irq */
2039 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2040
2041 /* apply */
2042 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2043
2044 /* wait ack 10 times by 1ms */
2045 WAIT_FOR(
2046 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2047 1000, 10, &error);
2048 if (error != 0) {
2049 aprint_error_dev(sc->sc_dev,
2050 "atlantic: IRQ reset failed: %d\n", error);
2051 return error;
2052 }
2053
2054 return sc->sc_fw_ops->reset(sc);
2055 }
2056
2057 static int
2058 aq_hw_init_ucp(struct aq_softc *sc)
2059 {
2060 int timo;
2061
2062 if (FW_VERSION_MAJOR(sc) == 1) {
2063 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2064 uint32_t data;
2065 cprng_fast(&data, sizeof(data));
2066 data &= 0xfefefefe;
2067 data |= 0x02020202;
2068 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2069 }
2070 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2071 }
2072
2073 for (timo = 100; timo > 0; timo--) {
2074 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2075 if (sc->sc_mbox_addr != 0)
2076 break;
2077 delay(1000);
2078 }
2079
2080 #define AQ_FW_MIN_VERSION 0x01050006
2081 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2082 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2083 aprint_error_dev(sc->sc_dev,
2084 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2085 " or later required, this is %d.%d.%d\n",
2086 FW_VERSION_MAJOR(sc),
2087 FW_VERSION_MINOR(sc),
2088 FW_VERSION_BUILD(sc));
2089 return ENOTSUP;
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int
2096 aq_fw_version_init(struct aq_softc *sc)
2097 {
2098 int error = 0;
2099 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2100
2101 if (FW_VERSION_MAJOR(sc) == 1) {
2102 sc->sc_fw_ops = &aq_fw1x_ops;
2103 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2104 sc->sc_fw_ops = &aq_fw2x_ops;
2105 } else {
2106 aprint_error_dev(sc->sc_dev,
2107 "Unsupported F/W version %d.%d.%d\n",
2108 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2109 FW_VERSION_BUILD(sc));
2110 return ENOTSUP;
2111 }
2112 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2113 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2114
2115 /* detect revision */
2116 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2117 switch (hwrev & 0x0000000f) {
2118 case 0x01:
2119 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2120 fw_vers);
2121 sc->sc_features |= FEATURES_REV_A0 |
2122 FEATURES_MPI_AQ | FEATURES_MIPS;
2123 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2124 break;
2125 case 0x02:
2126 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2127 fw_vers);
2128 sc->sc_features |= FEATURES_REV_B0 |
2129 FEATURES_MPI_AQ | FEATURES_MIPS |
2130 FEATURES_TPO2 | FEATURES_RPF2;
2131 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2132 break;
2133 case 0x0A:
2134 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2135 fw_vers);
2136 sc->sc_features |= FEATURES_REV_B1 |
2137 FEATURES_MPI_AQ | FEATURES_MIPS |
2138 FEATURES_TPO2 | FEATURES_RPF2;
2139 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2140 break;
2141 default:
2142 aprint_error_dev(sc->sc_dev,
2143 "Unknown revision (0x%08x)\n", hwrev);
2144 sc->sc_features = 0;
2145 sc->sc_max_mtu = ETHERMTU;
2146 error = ENOTSUP;
2147 break;
2148 }
2149 return error;
2150 }
2151
2152 static int
2153 fw1x_reset(struct aq_softc *sc)
2154 {
2155 struct aq_mailbox_header mbox;
2156 const int retryCount = 1000;
2157 uint32_t tid0;
2158 int i;
2159
2160 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2161
2162 for (i = 0; i < retryCount; ++i) {
2163 /*
2164 * Read the beginning of Statistics structure to capture
2165 * the Transaction ID.
2166 */
2167 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2168 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2169
2170 /* Successfully read the stats. */
2171 if (tid0 == ~0U) {
2172 /* We have read the initial value. */
2173 tid0 = mbox.transaction_id;
2174 continue;
2175 } else if (mbox.transaction_id != tid0) {
2176 /*
2177 * Compare transaction ID to initial value.
2178 * If it's different means f/w is alive.
2179 * We're done.
2180 */
2181 return 0;
2182 }
2183
2184 /*
2185 * Transaction ID value haven't changed since last time.
2186 * Try reading the stats again.
2187 */
2188 delay(10);
2189 }
2190 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2191 return EBUSY;
2192 }
2193
2194 static int
2195 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2196 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2197 {
2198 uint32_t mpictrl = 0;
2199 uint32_t mpispeed = 0;
2200
2201 if (speed & AQ_LINK_10G)
2202 mpispeed |= FW1X_CTRL_10G;
2203 if (speed & AQ_LINK_5G)
2204 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2205 if (speed & AQ_LINK_2G5)
2206 mpispeed |= FW1X_CTRL_2G5;
2207 if (speed & AQ_LINK_1G)
2208 mpispeed |= FW1X_CTRL_1G;
2209 if (speed & AQ_LINK_100M)
2210 mpispeed |= FW1X_CTRL_100M;
2211
2212 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2213 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2214 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2215 return 0;
2216 }
2217
2218 static int
2219 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2220 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2221 {
2222 uint32_t mpistate, mpi_speed;
2223 aq_link_speed_t speed = AQ_LINK_NONE;
2224
2225 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2226
2227 if (modep != NULL)
2228 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2229
2230 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2231 if (mpi_speed & FW1X_CTRL_10G)
2232 speed = AQ_LINK_10G;
2233 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2234 speed = AQ_LINK_5G;
2235 else if (mpi_speed & FW1X_CTRL_2G5)
2236 speed = AQ_LINK_2G5;
2237 else if (mpi_speed & FW1X_CTRL_1G)
2238 speed = AQ_LINK_1G;
2239 else if (mpi_speed & FW1X_CTRL_100M)
2240 speed = AQ_LINK_100M;
2241
2242 if (speedp != NULL)
2243 *speedp = speed;
2244
2245 if (fcp != NULL)
2246 *fcp = AQ_FC_NONE;
2247
2248 if (eeep != NULL)
2249 *eeep = AQ_EEE_DISABLE;
2250
2251 return 0;
2252 }
2253
2254 static int
2255 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2256 {
2257 int error;
2258
2259 error = aq_fw_downld_dwords(sc,
2260 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2261 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2262 if (error < 0) {
2263 device_printf(sc->sc_dev,
2264 "fw1x> download statistics data FAILED, error %d", error);
2265 return error;
2266 }
2267
2268 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2269 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2270 return 0;
2271 }
2272
2273 static int
2274 fw2x_reset(struct aq_softc *sc)
2275 {
2276 fw2x_capabilities_t caps = { 0 };
2277 int error;
2278
2279 error = aq_fw_downld_dwords(sc,
2280 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2281 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2282 if (error != 0) {
2283 aprint_error_dev(sc->sc_dev,
2284 "fw2x> can't get F/W capabilities mask, error %d\n",
2285 error);
2286 return error;
2287 }
2288 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2289
2290 char buf[256];
2291 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2292 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2293
2294 return 0;
2295 }
2296
2297 static int
2298 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2299 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2300 {
2301 uint64_t mpi_ctrl;
2302 int error = 0;
2303
2304 AQ_MPI_LOCK(sc);
2305
2306 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2307
2308 switch (mode) {
2309 case MPI_INIT:
2310 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2311 if (speed & AQ_LINK_10G)
2312 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2313 if (speed & AQ_LINK_5G)
2314 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2315 if (speed & AQ_LINK_2G5)
2316 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2317 if (speed & AQ_LINK_1G)
2318 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2319 if (speed & AQ_LINK_100M)
2320 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2321
2322 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2323
2324 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2325 if (eee == AQ_EEE_ENABLE)
2326 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2327
2328 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2329 if (fc & AQ_FC_RX)
2330 mpi_ctrl |= FW2X_CTRL_PAUSE;
2331 if (fc & AQ_FC_TX)
2332 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2333 break;
2334 case MPI_DEINIT:
2335 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2336 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2337 break;
2338 default:
2339 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2340 error = EINVAL;
2341 goto failure;
2342 }
2343 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2344
2345 failure:
2346 AQ_MPI_UNLOCK(sc);
2347 return error;
2348 }
2349
2350 static int
2351 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2352 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2353 {
2354 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2355
2356 if (modep != NULL) {
2357 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2358 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2359 *modep = MPI_INIT;
2360 else
2361 *modep = MPI_DEINIT;
2362 }
2363
2364 aq_link_speed_t speed = AQ_LINK_NONE;
2365 if (mpi_state & FW2X_CTRL_RATE_10G)
2366 speed = AQ_LINK_10G;
2367 else if (mpi_state & FW2X_CTRL_RATE_5G)
2368 speed = AQ_LINK_5G;
2369 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2370 speed = AQ_LINK_2G5;
2371 else if (mpi_state & FW2X_CTRL_RATE_1G)
2372 speed = AQ_LINK_1G;
2373 else if (mpi_state & FW2X_CTRL_RATE_100M)
2374 speed = AQ_LINK_100M;
2375
2376 if (speedp != NULL)
2377 *speedp = speed;
2378
2379 aq_link_fc_t fc = AQ_FC_NONE;
2380 if (mpi_state & FW2X_CTRL_PAUSE)
2381 fc |= AQ_FC_RX;
2382 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2383 fc |= AQ_FC_TX;
2384 if (fcp != NULL)
2385 *fcp = fc;
2386
2387 /* XXX: TODO: EEE */
2388 if (eeep != NULL)
2389 *eeep = AQ_EEE_DISABLE;
2390
2391 return 0;
2392 }
2393
2394 static int
2395 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2396 uint32_t timeout_ms, uint32_t try_count)
2397 {
2398 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2399 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2400 int error;
2401
2402 /* First, check that control and state values are consistent */
2403 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2404 device_printf(sc->sc_dev,
2405 "fw2x> MPI control (%#llx) and state (%#llx)"
2406 " are not consistent for mask %#llx!\n",
2407 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2408 (unsigned long long)mask);
2409 return EINVAL;
2410 }
2411
2412 /* Invert bits (toggle) in control register */
2413 mpi_ctrl ^= mask;
2414 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2415
2416 /* Clear all bits except masked */
2417 mpi_ctrl &= mask;
2418
2419 /* Wait for FW reflecting change in state register */
2420 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2421 1000 * timeout_ms, try_count, &error);
2422 if (error != 0) {
2423 device_printf(sc->sc_dev,
2424 "f/w2x> timeout while waiting for response"
2425 " in state register for bit %#llx!",
2426 (unsigned long long)mask);
2427 return error;
2428 }
2429 return 0;
2430 }
2431
2432 static int
2433 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2434 {
2435 int error;
2436
2437 AQ_MPI_LOCK(sc);
2438 /* Say to F/W to update the statistics */
2439 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2440 if (error != 0) {
2441 device_printf(sc->sc_dev,
2442 "fw2x> statistics update error %d\n", error);
2443 goto failure;
2444 }
2445
2446 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2447 error = aq_fw_downld_dwords(sc,
2448 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2449 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2450 if (error != 0) {
2451 device_printf(sc->sc_dev,
2452 "fw2x> download statistics data FAILED, error %d", error);
2453 goto failure;
2454 }
2455 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2456 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2457
2458 failure:
2459 AQ_MPI_UNLOCK(sc);
2460 return error;
2461 }
2462
2463 #if NSYSMON_ENVSYS > 0
2464 static int
2465 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2466 {
2467 int error;
2468 uint32_t value, celsius;
2469
2470 AQ_MPI_LOCK(sc);
2471
2472 /* Say to F/W to update the temperature */
2473 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2474 if (error != 0)
2475 goto failure;
2476
2477 error = aq_fw_downld_dwords(sc,
2478 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2479 &value, sizeof(value) / sizeof(uint32_t));
2480 if (error != 0)
2481 goto failure;
2482
2483 /* 1/256 decrees C to microkelvin */
2484 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2485 if (celsius == 0) {
2486 error = EIO;
2487 goto failure;
2488 }
2489 *temp = celsius * (1000000 / 256) + 273150000;
2490
2491 failure:
2492 AQ_MPI_UNLOCK(sc);
2493 return 0;
2494 }
2495 #endif
2496
2497 static int
2498 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2499 uint32_t cnt)
2500 {
2501 uint32_t v;
2502 int error = 0;
2503
2504 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2505 if (error != 0) {
2506 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2507 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2508 if (v == 0) {
2509 device_printf(sc->sc_dev,
2510 "%s:%d: timeout\n", __func__, __LINE__);
2511 return ETIMEDOUT;
2512 }
2513 }
2514
2515 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2516
2517 error = 0;
2518 for (; cnt > 0 && error == 0; cnt--) {
2519 /* execute mailbox interface */
2520 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2521 AQ_FW_MBOX_CMD_EXECUTE, 1);
2522 if (sc->sc_features & FEATURES_REV_B1) {
2523 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2524 1, 1000, &error);
2525 } else {
2526 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2527 AQ_FW_MBOX_CMD_BUSY) == 0,
2528 1, 1000, &error);
2529 }
2530 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2531 addr += sizeof(uint32_t);
2532 }
2533 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2534
2535 if (error != 0)
2536 device_printf(sc->sc_dev,
2537 "%s:%d: timeout\n", __func__, __LINE__);
2538
2539 return error;
2540 }
2541
2542 /* read my mac address */
2543 static int
2544 aq_get_mac_addr(struct aq_softc *sc)
2545 {
2546 uint32_t mac_addr[2];
2547 uint32_t efuse_shadow_addr;
2548 int err;
2549
2550 efuse_shadow_addr = 0;
2551 if (FW_VERSION_MAJOR(sc) >= 2)
2552 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2553 else
2554 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2555
2556 if (efuse_shadow_addr == 0) {
2557 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2558 return ENXIO;
2559 }
2560
2561 memset(mac_addr, 0, sizeof(mac_addr));
2562 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2563 mac_addr, __arraycount(mac_addr));
2564 if (err < 0)
2565 return err;
2566
2567 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2568 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2569 return ENXIO;
2570 }
2571
2572 mac_addr[0] = htobe32(mac_addr[0]);
2573 mac_addr[1] = htobe32(mac_addr[1]);
2574
2575 memcpy(sc->sc_enaddr.ether_addr_octet,
2576 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2577 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2578 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2579
2580 return 0;
2581 }
2582
2583 /* set multicast filter. index 0 for own address */
2584 static int
2585 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2586 {
2587 uint32_t h, l;
2588
2589 if (index >= AQ_HW_MAC_NUM)
2590 return EINVAL;
2591
2592 if (enaddr == NULL) {
2593 /* disable */
2594 AQ_WRITE_REG_BIT(sc,
2595 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2596 return 0;
2597 }
2598
2599 h = (enaddr[0] << 8) | (enaddr[1]);
2600 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2601 (enaddr[4] << 8) | (enaddr[5]);
2602
2603 /* disable, set, and enable */
2604 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2605 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2606 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2607 RPF_L2UC_MSW_MACADDR_HI, h);
2608 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2609 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2610
2611 return 0;
2612 }
2613
2614 static int
2615 aq_set_capability(struct aq_softc *sc)
2616 {
2617 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2618 int ip4csum_tx =
2619 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2620 int ip4csum_rx =
2621 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2622 int l4csum_tx = ((ifp->if_capenable &
2623 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2624 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2625 int l4csum_rx =
2626 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2627 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2628 uint32_t lso =
2629 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2630 0 : 0xffffffff;
2631 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2632 0 : 0xffffffff;
2633 uint32_t i, v;
2634
2635 /* TX checksums offloads*/
2636 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2637 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2638
2639 /* RX checksums offloads*/
2640 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2641 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2642
2643 /* LSO offloads*/
2644 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2645
2646 #define AQ_B0_LRO_RXD_MAX 16
2647 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2648 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2649 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2650 for (i = 0; i < AQ_RINGS_NUM; i++) {
2651 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2652 RPO_LRO_LDES_MAX_MASK(i), v);
2653 }
2654
2655 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2656 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2657 RPO_LRO_INACTIVE_IVAL, 0);
2658 /*
2659 * the LRO timebase divider is 5 uS (0x61a),
2660 * to get a maximum coalescing interval of 250 uS,
2661 * we need to multiply by 50(0x32) to get
2662 * the default value 250 uS
2663 */
2664 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2665 RPO_LRO_MAX_COALESCING_IVAL, 50);
2666 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2667 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2668 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2669 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2670 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2671 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2672 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2673 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2674 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2675 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2676
2677 return 0;
2678 }
2679
2680 static int
2681 aq_set_filter(struct aq_softc *sc)
2682 {
2683 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2684 struct ethercom *ec = &sc->sc_ethercom;
2685 struct ether_multi *enm;
2686 struct ether_multistep step;
2687 int idx, error = 0;
2688
2689 if (ifp->if_flags & IFF_PROMISC) {
2690 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2691 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2692 ec->ec_flags |= ETHER_F_ALLMULTI;
2693 goto done;
2694 }
2695
2696 /* clear all table */
2697 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2698 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2699 continue;
2700 aq_set_mac_addr(sc, idx, NULL);
2701 }
2702
2703 /* don't accept all multicast */
2704 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2705 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2706 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2707 RPF_MCAST_FILTER_EN, 0);
2708
2709 idx = 0;
2710 ETHER_LOCK(ec);
2711 ETHER_FIRST_MULTI(step, ec, enm);
2712 while (enm != NULL) {
2713 if (idx == AQ_HW_MAC_OWN)
2714 idx++;
2715
2716 if ((idx >= AQ_HW_MAC_NUM) ||
2717 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2718 /*
2719 * too many filters.
2720 * fallback to accept all multicast addresses.
2721 */
2722 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2723 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2724 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2725 RPF_MCAST_FILTER_EN, 1);
2726 ec->ec_flags |= ETHER_F_ALLMULTI;
2727 ETHER_UNLOCK(ec);
2728 goto done;
2729 }
2730
2731 /* add a filter */
2732 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2733
2734 ETHER_NEXT_MULTI(step, enm);
2735 }
2736 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2737 ETHER_UNLOCK(ec);
2738
2739 done:
2740 return error;
2741 }
2742
2743 static int
2744 aq_ifmedia_change(struct ifnet * const ifp)
2745 {
2746 struct aq_softc *sc = ifp->if_softc;
2747 aq_link_speed_t rate = AQ_LINK_NONE;
2748 aq_link_fc_t fc = AQ_FC_NONE;
2749 aq_link_eee_t eee = AQ_EEE_DISABLE;
2750
2751 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2752 return EINVAL;
2753
2754 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2755 case IFM_AUTO:
2756 rate = AQ_LINK_AUTO;
2757 break;
2758 case IFM_NONE:
2759 rate = AQ_LINK_NONE;
2760 break;
2761 case IFM_100_TX:
2762 rate = AQ_LINK_100M;
2763 break;
2764 case IFM_1000_T:
2765 rate = AQ_LINK_1G;
2766 break;
2767 case IFM_2500_T:
2768 rate = AQ_LINK_2G5;
2769 break;
2770 case IFM_5000_T:
2771 rate = AQ_LINK_5G;
2772 break;
2773 case IFM_10G_T:
2774 rate = AQ_LINK_10G;
2775 break;
2776 default:
2777 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2778 IFM_SUBTYPE(sc->sc_media.ifm_media));
2779 return ENODEV;
2780 }
2781
2782 if (sc->sc_media.ifm_media & IFM_FLOW)
2783 fc = AQ_FC_ALL;
2784
2785 /* XXX: todo EEE */
2786
2787 /* re-initialize hardware with new parameters */
2788 aq_set_linkmode(sc, rate, fc, eee);
2789
2790 return 0;
2791 }
2792
2793 static void
2794 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2795 {
2796 struct aq_softc *sc = ifp->if_softc;
2797
2798 /* update ifm_active */
2799 ifmr->ifm_active = IFM_ETHER;
2800 if (sc->sc_link_fc & AQ_FC_RX)
2801 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2802 if (sc->sc_link_fc & AQ_FC_TX)
2803 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2804
2805 switch (sc->sc_link_rate) {
2806 case AQ_LINK_100M:
2807 /* XXX: need to detect fulldup or halfdup */
2808 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2809 break;
2810 case AQ_LINK_1G:
2811 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2812 break;
2813 case AQ_LINK_2G5:
2814 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2815 break;
2816 case AQ_LINK_5G:
2817 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2818 break;
2819 case AQ_LINK_10G:
2820 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2821 break;
2822 default:
2823 ifmr->ifm_active |= IFM_NONE;
2824 break;
2825 }
2826
2827 /* update ifm_status */
2828 ifmr->ifm_status = IFM_AVALID;
2829 if (sc->sc_link_rate != AQ_LINK_NONE)
2830 ifmr->ifm_status |= IFM_ACTIVE;
2831 }
2832
2833 static void
2834 aq_initmedia(struct aq_softc *sc)
2835 {
2836 #define IFMEDIA_ETHER_ADD(sc, media) \
2837 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2838
2839 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2840 if (sc->sc_available_rates & AQ_LINK_100M) {
2841 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2842 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2843 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2844 }
2845 if (sc->sc_available_rates & AQ_LINK_1G) {
2846 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2847 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2848 }
2849 if (sc->sc_available_rates & AQ_LINK_2G5) {
2850 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2851 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2852 }
2853 if (sc->sc_available_rates & AQ_LINK_5G) {
2854 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2855 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2856 }
2857 if (sc->sc_available_rates & AQ_LINK_10G) {
2858 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2859 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2860 }
2861 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2862 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2863
2864 /* default: auto without flowcontrol */
2865 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2866 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2867 }
2868
2869 static int
2870 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2871 aq_link_eee_t eee)
2872 {
2873 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2874 }
2875
2876 static int
2877 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2878 aq_link_eee_t *eee)
2879 {
2880 aq_hw_fw_mpi_state_t mode;
2881 int error;
2882
2883 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2884 if (error != 0)
2885 return error;
2886 if (mode != MPI_INIT)
2887 return ENXIO;
2888
2889 return 0;
2890 }
2891
2892 static void
2893 aq_hw_init_tx_path(struct aq_softc *sc)
2894 {
2895 /* Tx TC/RSS number config */
2896 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2897
2898 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2899 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2900 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2901 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2902 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2903 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2904
2905 /* misc */
2906 AQ_WRITE_REG(sc, TX_TPO2_REG,
2907 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2908 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2909 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2910
2911 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2912 }
2913
2914 static void
2915 aq_hw_init_rx_path(struct aq_softc *sc)
2916 {
2917 int i;
2918
2919 /* clear setting */
2920 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2921 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2922 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2923 for (i = 0; i < 32; i++) {
2924 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2925 RPF_ETHERTYPE_FILTER_EN, 0);
2926 }
2927
2928 if (sc->sc_rss_enable) {
2929 /* Rx TC/RSS number config */
2930 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2931
2932 /* Rx flow control */
2933 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2934
2935 /* RSS Ring selection */
2936 switch (sc->sc_nqueues) {
2937 case 2:
2938 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2939 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2940 break;
2941 case 4:
2942 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2943 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2944 break;
2945 case 8:
2946 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2947 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2948 break;
2949 }
2950 }
2951
2952 /* L2 and Multicast filters */
2953 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2954 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2955 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2956 RPF_ACTION_HOST);
2957 }
2958 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2959 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2960
2961 /* Vlan filters */
2962 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2963 ETHERTYPE_QINQ);
2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2965 ETHERTYPE_VLAN);
2966 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2967
2968 if (sc->sc_features & FEATURES_REV_B) {
2969 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2970 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2971 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2972 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2973 }
2974
2975 /* misc */
2976 if (sc->sc_features & FEATURES_RPF2)
2977 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2978 else
2979 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2980
2981 /*
2982 * XXX: RX_TCP_RSS_HASH_REG:
2983 * linux set 0x000f0000
2984 * freebsd set 0x000f001e
2985 */
2986 /* RSS hash type set for IP/TCP */
2987 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2988 RX_TCP_RSS_HASH_TYPE, 0x001e);
2989
2990 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2991 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2992 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2993
2994 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2995 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2996 }
2997
2998 static void
2999 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3000 {
3001 int i;
3002
3003 if (sc->sc_intr_moderation_enable) {
3004 unsigned int tx_min, rx_min; /* 0-255 */
3005 unsigned int tx_max, rx_max; /* 0-511? */
3006
3007 switch (sc->sc_link_rate) {
3008 case AQ_LINK_100M:
3009 tx_min = 0x4f;
3010 tx_max = 0xff;
3011 rx_min = 0x04;
3012 rx_max = 0x50;
3013 break;
3014 case AQ_LINK_1G:
3015 default:
3016 tx_min = 0x4f;
3017 tx_max = 0xff;
3018 rx_min = 0x30;
3019 rx_max = 0x80;
3020 break;
3021 case AQ_LINK_2G5:
3022 tx_min = 0x4f;
3023 tx_max = 0xff;
3024 rx_min = 0x18;
3025 rx_max = 0xe0;
3026 break;
3027 case AQ_LINK_5G:
3028 tx_min = 0x4f;
3029 tx_max = 0xff;
3030 rx_min = 0x0c;
3031 rx_max = 0x70;
3032 break;
3033 case AQ_LINK_10G:
3034 tx_min = 0x4f;
3035 tx_max = 0x1ff;
3036 rx_min = 0x06; /* freebsd use 80 */
3037 rx_max = 0x38; /* freebsd use 120 */
3038 break;
3039 }
3040
3041 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3042 TX_DMA_INT_DESC_WRWB_EN, 0);
3043 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3044 TX_DMA_INT_DESC_MODERATE_EN, 1);
3045 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3046 RX_DMA_INT_DESC_WRWB_EN, 0);
3047 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3048 RX_DMA_INT_DESC_MODERATE_EN, 1);
3049
3050 for (i = 0; i < AQ_RINGS_NUM; i++) {
3051 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3052 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3053 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3054 TX_INTR_MODERATION_CTL_EN);
3055 }
3056 for (i = 0; i < AQ_RINGS_NUM; i++) {
3057 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3058 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3059 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3060 RX_INTR_MODERATION_CTL_EN);
3061 }
3062
3063 } else {
3064 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3065 TX_DMA_INT_DESC_WRWB_EN, 1);
3066 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3067 TX_DMA_INT_DESC_MODERATE_EN, 0);
3068 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3069 RX_DMA_INT_DESC_WRWB_EN, 1);
3070 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3071 RX_DMA_INT_DESC_MODERATE_EN, 0);
3072
3073 for (i = 0; i < AQ_RINGS_NUM; i++) {
3074 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3075 }
3076 for (i = 0; i < AQ_RINGS_NUM; i++) {
3077 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3078 }
3079 }
3080 }
3081
3082 static void
3083 aq_hw_qos_set(struct aq_softc *sc)
3084 {
3085 uint32_t tc = 0;
3086 uint32_t buff_size;
3087
3088 /* TPS Descriptor rate init */
3089 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3090 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3091
3092 /* TPS VM init */
3093 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3094
3095 /* TPS TC credits init */
3096 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3097 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3098
3099 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3100 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3101 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3102 TPS_DATA_TCT_WEIGHT, 0x64);
3103 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3104 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3105 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3106 TPS_DESC_TCT_WEIGHT, 0x1e);
3107
3108 /* Tx buf size */
3109 tc = 0;
3110 buff_size = AQ_HW_TXBUF_MAX;
3111 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3112 buff_size);
3113 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3114 (buff_size * (1024 / 32) * 66) / 100);
3115 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3116 (buff_size * (1024 / 32) * 50) / 100);
3117
3118 /* QoS Rx buf size per TC */
3119 tc = 0;
3120 buff_size = AQ_HW_RXBUF_MAX;
3121 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3122 buff_size);
3123 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3124 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3125 (buff_size * (1024 / 32) * 66) / 100);
3126 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3127 (buff_size * (1024 / 32) * 50) / 100);
3128
3129 /* QoS 802.1p priority -> TC mapping */
3130 int i_priority;
3131 for (i_priority = 0; i_priority < 8; i_priority++) {
3132 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3133 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3134 }
3135 }
3136
3137 /* called once from aq_attach */
3138 static int
3139 aq_init_rss(struct aq_softc *sc)
3140 {
3141 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3142 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3143 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3144 unsigned int i;
3145 int error;
3146
3147 /* initialize rss key */
3148 rss_getkey((uint8_t *)rss_key);
3149
3150 /* hash to ring table */
3151 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3152 rss_table[i] = i % sc->sc_nqueues;
3153 }
3154
3155 /*
3156 * set rss key
3157 */
3158 for (i = 0; i < __arraycount(rss_key); i++) {
3159 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3160 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3161 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3162 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3163 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3164 RPF_RSS_KEY_WR_EN, 1);
3165 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3166 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3167 if (error != 0) {
3168 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3169 __func__);
3170 goto rss_set_timeout;
3171 }
3172 }
3173
3174 /*
3175 * set rss indirection table
3176 *
3177 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3178 * we'll make it by __BITMAP(3) macros.
3179 */
3180 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3181 __BITMAP_ZERO(&bit3x64);
3182
3183 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3184 do { \
3185 if (val & 1) { \
3186 __BITMAP_SET((idx) * 3, (bitmap)); \
3187 } else { \
3188 __BITMAP_CLR((idx) * 3, (bitmap)); \
3189 } \
3190 if (val & 2) { \
3191 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3192 } else { \
3193 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3194 } \
3195 if (val & 4) { \
3196 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3197 } else { \
3198 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3199 } \
3200 } while (0 /* CONSTCOND */)
3201
3202 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3203 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3204 }
3205
3206 /* write 192bit data in steps of 16bit */
3207 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3208 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3209 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3210 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3211 RPF_RSS_REDIR_ADDR, i);
3212 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3213 RPF_RSS_REDIR_WR_EN, 1);
3214
3215 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3216 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3217 if (error != 0)
3218 break;
3219 }
3220
3221 rss_set_timeout:
3222 return error;
3223 }
3224
3225 static void
3226 aq_hw_l3_filter_set(struct aq_softc *sc)
3227 {
3228 int i;
3229
3230 /* clear all filter */
3231 for (i = 0; i < 8; i++) {
3232 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3233 RPF_L3_FILTER_L4_EN, 0);
3234 }
3235 }
3236
3237 static void
3238 aq_set_vlan_filters(struct aq_softc *sc)
3239 {
3240 struct ethercom *ec = &sc->sc_ethercom;
3241 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3242 struct vlanid_list *vlanidp;
3243 int i;
3244
3245 ETHER_LOCK(ec);
3246
3247 /* disable all vlan filters */
3248 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3249 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3250
3251 /* count VID */
3252 i = 0;
3253 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3254 i++;
3255
3256 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3257 (ifp->if_flags & IFF_PROMISC) ||
3258 (i > RPF_VLAN_MAX_FILTERS)) {
3259 /*
3260 * no vlan hwfilter, in promiscuous mode, or too many VID?
3261 * must receive all VID
3262 */
3263 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3264 RPF_VLAN_MODE_PROMISC, 1);
3265 goto done;
3266 }
3267
3268 /* receive only selected VID */
3269 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3270 i = 0;
3271 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3272 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3273 RPF_VLAN_FILTER_EN, 1);
3274 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3275 RPF_VLAN_FILTER_RXQ_EN, 0);
3276 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3277 RPF_VLAN_FILTER_RXQ, 0);
3278 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3279 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3280 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3281 RPF_VLAN_FILTER_ID, vlanidp->vid);
3282 i++;
3283 }
3284
3285 done:
3286 ETHER_UNLOCK(ec);
3287 }
3288
3289 static int
3290 aq_hw_init(struct aq_softc *sc)
3291 {
3292 uint32_t v;
3293
3294 /* Force limit MRRS on RDM/TDM to 2K */
3295 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3296 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3297
3298 /*
3299 * TX DMA total request limit. B0 hardware is not capable to
3300 * handle more than (8K-MRRS) incoming DMA data.
3301 * Value 24 in 256byte units
3302 */
3303 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3304
3305 aq_hw_init_tx_path(sc);
3306 aq_hw_init_rx_path(sc);
3307
3308 aq_hw_interrupt_moderation_set(sc);
3309
3310 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3311 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3312
3313 aq_hw_qos_set(sc);
3314
3315 /* Enable interrupt */
3316 int irqmode;
3317 if (sc->sc_msix)
3318 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3319 else
3320 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3321
3322 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3323 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3324 sc->sc_msix ? 1 : 0);
3325 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3326
3327 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3328
3329 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3330 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3331 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3332 );
3333
3334 /* link interrupt */
3335 if (!sc->sc_msix)
3336 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3337 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3338 __BIT(7) | sc->sc_linkstat_irq);
3339
3340 return 0;
3341 }
3342
3343 static int
3344 aq_update_link_status(struct aq_softc *sc)
3345 {
3346 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3347 aq_link_speed_t rate = AQ_LINK_NONE;
3348 aq_link_fc_t fc = AQ_FC_NONE;
3349 aq_link_eee_t eee = AQ_EEE_DISABLE;
3350 unsigned int speed;
3351 int changed = 0;
3352
3353 aq_get_linkmode(sc, &rate, &fc, &eee);
3354
3355 if (sc->sc_link_rate != rate)
3356 changed = 1;
3357 if (sc->sc_link_fc != fc)
3358 changed = 1;
3359 if (sc->sc_link_eee != eee)
3360 changed = 1;
3361
3362 if (changed) {
3363 switch (rate) {
3364 case AQ_LINK_100M:
3365 speed = 100;
3366 break;
3367 case AQ_LINK_1G:
3368 speed = 1000;
3369 break;
3370 case AQ_LINK_2G5:
3371 speed = 2500;
3372 break;
3373 case AQ_LINK_5G:
3374 speed = 5000;
3375 break;
3376 case AQ_LINK_10G:
3377 speed = 10000;
3378 break;
3379 case AQ_LINK_NONE:
3380 default:
3381 speed = 0;
3382 break;
3383 }
3384
3385 if (sc->sc_link_rate == AQ_LINK_NONE) {
3386 /* link DOWN -> UP */
3387 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3388 speed);
3389 if_link_state_change(ifp, LINK_STATE_UP);
3390 } else if (rate == AQ_LINK_NONE) {
3391 /* link UP -> DOWN */
3392 device_printf(sc->sc_dev, "link is DOWN\n");
3393 if_link_state_change(ifp, LINK_STATE_DOWN);
3394 } else {
3395 device_printf(sc->sc_dev,
3396 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3397 speed, fc, eee);
3398 }
3399
3400 sc->sc_link_rate = rate;
3401 sc->sc_link_fc = fc;
3402 sc->sc_link_eee = eee;
3403
3404 /* update interrupt timing according to new link speed */
3405 aq_hw_interrupt_moderation_set(sc);
3406 }
3407
3408 return changed;
3409 }
3410
3411 #ifdef AQ_EVENT_COUNTERS
3412 static void
3413 aq_update_statistics(struct aq_softc *sc)
3414 {
3415 int prev = sc->sc_statistics_idx;
3416 int cur = prev ^ 1;
3417
3418 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3419
3420 /*
3421 * aq's internal statistics counter is 32bit.
3422 * cauculate delta, and add to evcount
3423 */
3424 #define ADD_DELTA(cur, prev, name) \
3425 do { \
3426 uint32_t n; \
3427 n = (uint32_t)(sc->sc_statistics[cur].name - \
3428 sc->sc_statistics[prev].name); \
3429 if (n != 0) { \
3430 AQ_EVCNT_ADD(sc, name, n); \
3431 } \
3432 } while (/*CONSTCOND*/0);
3433
3434 ADD_DELTA(cur, prev, uprc);
3435 ADD_DELTA(cur, prev, mprc);
3436 ADD_DELTA(cur, prev, bprc);
3437 ADD_DELTA(cur, prev, prc);
3438 ADD_DELTA(cur, prev, erpr);
3439 ADD_DELTA(cur, prev, uptc);
3440 ADD_DELTA(cur, prev, mptc);
3441 ADD_DELTA(cur, prev, bptc);
3442 ADD_DELTA(cur, prev, ptc);
3443 ADD_DELTA(cur, prev, erpt);
3444 ADD_DELTA(cur, prev, mbtc);
3445 ADD_DELTA(cur, prev, bbtc);
3446 ADD_DELTA(cur, prev, mbrc);
3447 ADD_DELTA(cur, prev, bbrc);
3448 ADD_DELTA(cur, prev, ubrc);
3449 ADD_DELTA(cur, prev, ubtc);
3450 ADD_DELTA(cur, prev, dpc);
3451 ADD_DELTA(cur, prev, cprc);
3452
3453 sc->sc_statistics_idx = cur;
3454 }
3455 #endif /* AQ_EVENT_COUNTERS */
3456
3457 /* allocate and map one DMA block */
3458 static int
3459 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3460 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3461 {
3462 int nsegs, error;
3463
3464 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3465 1, &nsegs, 0)) != 0) {
3466 aprint_error_dev(sc->sc_dev,
3467 "unable to allocate DMA buffer, error=%d\n", error);
3468 goto fail_alloc;
3469 }
3470
3471 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3472 BUS_DMA_COHERENT)) != 0) {
3473 aprint_error_dev(sc->sc_dev,
3474 "unable to map DMA buffer, error=%d\n", error);
3475 goto fail_map;
3476 }
3477
3478 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3479 0, mapp)) != 0) {
3480 aprint_error_dev(sc->sc_dev,
3481 "unable to create DMA map, error=%d\n", error);
3482 goto fail_create;
3483 }
3484
3485 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3486 0)) != 0) {
3487 aprint_error_dev(sc->sc_dev,
3488 "unable to load DMA map, error=%d\n", error);
3489 goto fail_load;
3490 }
3491
3492 *sizep = size;
3493 return 0;
3494
3495 fail_load:
3496 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3497 *mapp = NULL;
3498 fail_create:
3499 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3500 *addrp = NULL;
3501 fail_map:
3502 bus_dmamem_free(sc->sc_dmat, seg, 1);
3503 memset(seg, 0, sizeof(*seg));
3504 fail_alloc:
3505 *sizep = 0;
3506 return error;
3507 }
3508
3509 static void
3510 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3511 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3512 {
3513 if (*mapp != NULL) {
3514 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3515 *mapp = NULL;
3516 }
3517 if (*addrp != NULL) {
3518 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3519 *addrp = NULL;
3520 }
3521 if (*sizep != 0) {
3522 bus_dmamem_free(sc->sc_dmat, seg, 1);
3523 memset(seg, 0, sizeof(*seg));
3524 *sizep = 0;
3525 }
3526 }
3527
3528 static int
3529 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3530 {
3531 int i, error;
3532
3533 /* allocate tx descriptors */
3534 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3535 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3536 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3537 if (error != 0)
3538 return error;
3539
3540 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3541
3542 /* fill tx ring with dmamap */
3543 for (i = 0; i < AQ_TXD_NUM; i++) {
3544 #define AQ_MAXDMASIZE (16 * 1024)
3545 #define AQ_NTXSEGS 32
3546 /* XXX: TODO: error check */
3547 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3548 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3549 }
3550 return 0;
3551 }
3552
3553 static void
3554 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3555 {
3556 int i;
3557
3558 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3559 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3560
3561 for (i = 0; i < AQ_TXD_NUM; i++) {
3562 if (txring->txr_mbufs[i].dmamap != NULL) {
3563 if (txring->txr_mbufs[i].m != NULL) {
3564 bus_dmamap_unload(sc->sc_dmat,
3565 txring->txr_mbufs[i].dmamap);
3566 m_freem(txring->txr_mbufs[i].m);
3567 txring->txr_mbufs[i].m = NULL;
3568 }
3569 bus_dmamap_destroy(sc->sc_dmat,
3570 txring->txr_mbufs[i].dmamap);
3571 txring->txr_mbufs[i].dmamap = NULL;
3572 }
3573 }
3574 }
3575
3576 static int
3577 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3578 {
3579 int i, error;
3580
3581 /* allocate rx descriptors */
3582 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3583 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3584 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3585 if (error != 0)
3586 return error;
3587
3588 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3589
3590 /* fill rxring with dmamaps */
3591 for (i = 0; i < AQ_RXD_NUM; i++) {
3592 rxring->rxr_mbufs[i].m = NULL;
3593 /* XXX: TODO: error check */
3594 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3595 &rxring->rxr_mbufs[i].dmamap);
3596 }
3597 return 0;
3598 }
3599
3600 static void
3601 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3602 {
3603 int i;
3604
3605 /* free all mbufs allocated for RX */
3606 for (i = 0; i < AQ_RXD_NUM; i++) {
3607 if (rxring->rxr_mbufs[i].m != NULL) {
3608 bus_dmamap_unload(sc->sc_dmat,
3609 rxring->rxr_mbufs[i].dmamap);
3610 m_freem(rxring->rxr_mbufs[i].m);
3611 rxring->rxr_mbufs[i].m = NULL;
3612 }
3613 }
3614 }
3615
3616 static void
3617 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3618 {
3619 int i;
3620
3621 /* free all mbufs and dmamaps */
3622 aq_rxdrain(sc, rxring);
3623 for (i = 0; i < AQ_RXD_NUM; i++) {
3624 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3625 bus_dmamap_destroy(sc->sc_dmat,
3626 rxring->rxr_mbufs[i].dmamap);
3627 rxring->rxr_mbufs[i].dmamap = NULL;
3628 }
3629 }
3630
3631 /* free RX descriptor */
3632 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3633 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3634 }
3635
3636 static void
3637 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3638 struct mbuf *m)
3639 {
3640 int error;
3641
3642 /* if mbuf already exists, unload and free */
3643 if (rxring->rxr_mbufs[idx].m != NULL) {
3644 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3645 m_freem(rxring->rxr_mbufs[idx].m);
3646 rxring->rxr_mbufs[idx].m = NULL;
3647 }
3648
3649 rxring->rxr_mbufs[idx].m = m;
3650
3651 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3652 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3653 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3654 if (error) {
3655 device_printf(sc->sc_dev,
3656 "unable to load rx DMA map %d, error = %d\n", idx, error);
3657 panic("%s: unable to load rx DMA map. error=%d",
3658 __func__, error);
3659 }
3660 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3661 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3662 }
3663
3664 static inline void
3665 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3666 {
3667 /* refill rxdesc, and sync */
3668 rxring->rxr_rxdesc[idx].read.buf_addr =
3669 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3670 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3671 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3672 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3673 BUS_DMASYNC_PREWRITE);
3674 }
3675
3676 static struct mbuf *
3677 aq_alloc_mbuf(void)
3678 {
3679 struct mbuf *m;
3680
3681 MGETHDR(m, M_DONTWAIT, MT_DATA);
3682 if (m == NULL)
3683 return NULL;
3684
3685 MCLGET(m, M_DONTWAIT);
3686 if ((m->m_flags & M_EXT) == 0) {
3687 m_freem(m);
3688 return NULL;
3689 }
3690
3691 return m;
3692 }
3693
3694 /* allocate mbuf and unload dmamap */
3695 static int
3696 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3697 {
3698 struct mbuf *m;
3699
3700 m = aq_alloc_mbuf();
3701 if (m == NULL)
3702 return ENOBUFS;
3703
3704 aq_rxring_setmbuf(sc, rxring, idx, m);
3705 return 0;
3706 }
3707
3708 static int
3709 aq_txrx_rings_alloc(struct aq_softc *sc)
3710 {
3711 int n, error;
3712
3713 for (n = 0; n < sc->sc_nqueues; n++) {
3714 sc->sc_queue[n].sc = sc;
3715 sc->sc_queue[n].txring.txr_sc = sc;
3716 sc->sc_queue[n].txring.txr_index = n;
3717 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3718 IPL_NET);
3719 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3720 if (error != 0)
3721 goto failure;
3722
3723 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3724 if (error != 0)
3725 goto failure;
3726
3727 sc->sc_queue[n].rxring.rxr_sc = sc;
3728 sc->sc_queue[n].rxring.rxr_index = n;
3729 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3730 IPL_NET);
3731 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3732 if (error != 0)
3733 break;
3734 }
3735
3736 failure:
3737 return error;
3738 }
3739
3740 static void
3741 aq_txrx_rings_free(struct aq_softc *sc)
3742 {
3743 int n;
3744
3745 for (n = 0; n < sc->sc_nqueues; n++) {
3746 aq_txring_free(sc, &sc->sc_queue[n].txring);
3747 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3748
3749 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3750
3751 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3752 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3753 }
3754 }
3755
3756 static int
3757 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3758 {
3759 int error = 0;
3760 txring->txr_softint = NULL;
3761
3762 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3763 if (txring->txr_pcq == NULL) {
3764 aprint_error_dev(sc->sc_dev,
3765 "unable to allocate pcq for TXring[%d]\n",
3766 txring->txr_index);
3767 error = ENOMEM;
3768 goto done;
3769 }
3770
3771 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3772 aq_deferred_transmit, txring);
3773 if (txring->txr_softint == NULL) {
3774 aprint_error_dev(sc->sc_dev,
3775 "unable to establish softint for TXring[%d]\n",
3776 txring->txr_index);
3777 error = ENOENT;
3778 }
3779
3780 done:
3781 return error;
3782 }
3783
3784 static void
3785 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3786 {
3787 struct mbuf *m;
3788
3789 if (txring->txr_softint != NULL) {
3790 softint_disestablish(txring->txr_softint);
3791 txring->txr_softint = NULL;
3792 }
3793
3794 if (txring->txr_pcq != NULL) {
3795 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3796 m_freem(m);
3797 pcq_destroy(txring->txr_pcq);
3798 txring->txr_pcq = NULL;
3799 }
3800 }
3801
3802 #if NSYSMON_ENVSYS > 0
3803 static void
3804 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3805 {
3806 struct aq_softc *sc;
3807 uint32_t temp;
3808 int error;
3809
3810 sc = sme->sme_cookie;
3811
3812 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3813 if (error == 0) {
3814 edata->value_cur = temp;
3815 edata->state = ENVSYS_SVALID;
3816 } else {
3817 edata->state = ENVSYS_SINVALID;
3818 }
3819 }
3820 #endif
3821
3822 static void
3823 aq_tick(void *arg)
3824 {
3825 struct aq_softc *sc = arg;
3826
3827 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3828 sc->sc_detect_linkstat = false;
3829 aq_update_link_status(sc);
3830 }
3831
3832 #ifdef AQ_EVENT_COUNTERS
3833 if (sc->sc_poll_statistics)
3834 aq_update_statistics(sc);
3835 #endif
3836
3837 if (sc->sc_poll_linkstat
3838 #ifdef AQ_EVENT_COUNTERS
3839 || sc->sc_poll_statistics
3840 #endif
3841 ) {
3842 callout_schedule(&sc->sc_tick_ch, hz);
3843 }
3844 }
3845
3846 /* interrupt enable/disable */
3847 static void
3848 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3849 {
3850 uint32_t imask = 0;
3851 int i;
3852
3853 if (txrx) {
3854 for (i = 0; i < sc->sc_nqueues; i++) {
3855 imask |= __BIT(sc->sc_tx_irq[i]);
3856 imask |= __BIT(sc->sc_rx_irq[i]);
3857 }
3858 }
3859
3860 if (link)
3861 imask |= __BIT(sc->sc_linkstat_irq);
3862
3863 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3864 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3865 }
3866
3867 static int
3868 aq_legacy_intr(void *arg)
3869 {
3870 struct aq_softc *sc = arg;
3871 uint32_t status;
3872 int nintr = 0;
3873
3874 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3875 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3876
3877 if (status & __BIT(sc->sc_linkstat_irq)) {
3878 sc->sc_detect_linkstat = true;
3879 callout_schedule(&sc->sc_tick_ch, 0);
3880 nintr++;
3881 }
3882
3883 if (status & __BIT(sc->sc_rx_irq[0])) {
3884 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3885 }
3886
3887 if (status & __BIT(sc->sc_tx_irq[0])) {
3888 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3889 }
3890
3891 return nintr;
3892 }
3893
3894 static int
3895 aq_txrx_intr(void *arg)
3896 {
3897 struct aq_queue *queue = arg;
3898 struct aq_softc *sc = queue->sc;
3899 struct aq_txring *txring = &queue->txring;
3900 struct aq_rxring *rxring = &queue->rxring;
3901 uint32_t status;
3902 int nintr = 0;
3903 int txringidx, rxringidx, txirq, rxirq;
3904
3905 txringidx = txring->txr_index;
3906 rxringidx = rxring->rxr_index;
3907 txirq = sc->sc_tx_irq[txringidx];
3908 rxirq = sc->sc_rx_irq[rxringidx];
3909
3910 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3911 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3912 /* stray interrupt? */
3913 return 0;
3914 }
3915
3916 nintr += aq_rx_intr(rxring);
3917 nintr += aq_tx_intr(txring);
3918
3919 return nintr;
3920 }
3921
3922 static int
3923 aq_link_intr(void *arg)
3924 {
3925 struct aq_softc *sc = arg;
3926 uint32_t status;
3927 int nintr = 0;
3928
3929 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3930 if (status & __BIT(sc->sc_linkstat_irq)) {
3931 sc->sc_detect_linkstat = true;
3932 callout_schedule(&sc->sc_tick_ch, 0);
3933 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3934 __BIT(sc->sc_linkstat_irq));
3935 nintr++;
3936 }
3937
3938 return nintr;
3939 }
3940
3941 static void
3942 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3943 {
3944 const int ringidx = txring->txr_index;
3945 int i;
3946
3947 mutex_enter(&txring->txr_mutex);
3948
3949 txring->txr_prodidx = 0;
3950 txring->txr_considx = 0;
3951 txring->txr_nfree = AQ_TXD_NUM;
3952 txring->txr_active = false;
3953
3954 /* free mbufs untransmitted */
3955 for (i = 0; i < AQ_TXD_NUM; i++) {
3956 if (txring->txr_mbufs[i].m != NULL) {
3957 m_freem(txring->txr_mbufs[i].m);
3958 txring->txr_mbufs[i].m = NULL;
3959 }
3960 }
3961
3962 /* disable DMA */
3963 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3964
3965 if (start) {
3966 /* TX descriptor physical address */
3967 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3968 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3969 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3970 (uint32_t)((uint64_t)paddr >> 32));
3971
3972 /* TX descriptor size */
3973 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3974 AQ_TXD_NUM / 8);
3975
3976 /* reload TAIL pointer */
3977 txring->txr_prodidx = txring->txr_considx =
3978 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3979 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3980
3981 /* Mapping interrupt vector */
3982 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3983 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3984 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3985 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3986
3987 /* enable DMA */
3988 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3989 TX_DMA_DESC_EN, 1);
3990
3991 const int cpuid = 0; /* XXX? */
3992 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3993 TDM_DCAD_CPUID, cpuid);
3994 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3995 TDM_DCAD_CPUID_EN, 0);
3996
3997 txring->txr_active = true;
3998 }
3999
4000 mutex_exit(&txring->txr_mutex);
4001 }
4002
4003 static int
4004 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4005 {
4006 const int ringidx = rxring->rxr_index;
4007 int i;
4008 int error = 0;
4009
4010 mutex_enter(&rxring->rxr_mutex);
4011 rxring->rxr_active = false;
4012
4013 /* disable DMA */
4014 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4015
4016 /* free all RX mbufs */
4017 aq_rxdrain(sc, rxring);
4018
4019 if (start) {
4020 for (i = 0; i < AQ_RXD_NUM; i++) {
4021 error = aq_rxring_add(sc, rxring, i);
4022 if (error != 0) {
4023 aq_rxdrain(sc, rxring);
4024 return error;
4025 }
4026 aq_rxring_reset_desc(sc, rxring, i);
4027 }
4028
4029 /* RX descriptor physical address */
4030 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4031 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4032 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4033 (uint32_t)((uint64_t)paddr >> 32));
4034
4035 /* RX descriptor size */
4036 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4037 AQ_RXD_NUM / 8);
4038
4039 /* maximum receive frame size */
4040 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4041 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4042 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4043 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4044
4045 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4046 RX_DMA_DESC_HEADER_SPLIT, 0);
4047 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4048 RX_DMA_DESC_VLAN_STRIP,
4049 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4050 1 : 0);
4051
4052 /*
4053 * reload TAIL pointer, and update readidx
4054 * (HEAD pointer cannot write)
4055 */
4056 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4057 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4058 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4059 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4060
4061 /* Rx ring set mode */
4062
4063 /* Mapping interrupt vector */
4064 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4065 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4066 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4067 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4068
4069 const int cpuid = 0; /* XXX? */
4070 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4071 RX_DMA_DCAD_CPUID, cpuid);
4072 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4073 RX_DMA_DCAD_DESC_EN, 0);
4074 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4075 RX_DMA_DCAD_HEADER_EN, 0);
4076 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4077 RX_DMA_DCAD_PAYLOAD_EN, 0);
4078
4079 /* enable DMA. start receiving */
4080 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4081 RX_DMA_DESC_EN, 1);
4082
4083 rxring->rxr_active = true;
4084 }
4085
4086 mutex_exit(&rxring->rxr_mutex);
4087 return error;
4088 }
4089
4090 #define TXRING_NEXTIDX(idx) \
4091 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4092 #define RXRING_NEXTIDX(idx) \
4093 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4094
4095 static int
4096 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4097 {
4098 bus_dmamap_t map;
4099 struct mbuf *m = *mp;
4100 uint32_t ctl1, ctl1_ctx, ctl2;
4101 int idx, i, error;
4102
4103 idx = txring->txr_prodidx;
4104 map = txring->txr_mbufs[idx].dmamap;
4105
4106 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4107 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4108 if (error == EFBIG) {
4109 struct mbuf *n;
4110 n = m_defrag(m, M_DONTWAIT);
4111 if (n == NULL)
4112 return EFBIG;
4113 /* m_defrag() preserve m */
4114 KASSERT(n == m);
4115 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4116 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4117 }
4118 if (error != 0)
4119 return error;
4120
4121 /*
4122 * check spaces of free descriptors.
4123 * +1 is additional descriptor for context (vlan, etc,.)
4124 */
4125 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4126 device_printf(sc->sc_dev,
4127 "TX: not enough descriptors left %d for %d segs\n",
4128 txring->txr_nfree, map->dm_nsegs + 1);
4129 bus_dmamap_unload(sc->sc_dmat, map);
4130 return ENOBUFS;
4131 }
4132
4133 /* sync dma for mbuf */
4134 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4135 BUS_DMASYNC_PREWRITE);
4136
4137 ctl1_ctx = 0;
4138 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4139
4140 if (vlan_has_tag(m)) {
4141 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4142 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4143
4144 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4145 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4146
4147 /* fill context descriptor and forward index */
4148 txring->txr_txdesc[idx].buf_addr = 0;
4149 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4150 txring->txr_txdesc[idx].ctl2 = 0;
4151
4152 idx = TXRING_NEXTIDX(idx);
4153 txring->txr_nfree--;
4154 }
4155
4156 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4157 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4158 if (m->m_pkthdr.csum_flags &
4159 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4160 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4161 }
4162
4163 /* fill descriptor(s) */
4164 for (i = 0; i < map->dm_nsegs; i++) {
4165 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4166 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4167 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4168
4169 if (i == 0) {
4170 /* remember mbuf of these descriptors */
4171 txring->txr_mbufs[idx].m = m;
4172 } else {
4173 txring->txr_mbufs[idx].m = NULL;
4174 }
4175
4176 if (i == map->dm_nsegs - 1) {
4177 /* last segment, mark an EndOfPacket, and cause intr */
4178 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4179 }
4180
4181 txring->txr_txdesc[idx].buf_addr =
4182 htole64(map->dm_segs[i].ds_addr);
4183 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4184 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4185
4186 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4187 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4188 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4189
4190 idx = TXRING_NEXTIDX(idx);
4191 txring->txr_nfree--;
4192 }
4193
4194 txring->txr_prodidx = idx;
4195
4196 return 0;
4197 }
4198
4199 static int
4200 aq_tx_intr(void *arg)
4201 {
4202 struct aq_txring *txring = arg;
4203 struct aq_softc *sc = txring->txr_sc;
4204 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4205 struct mbuf *m;
4206 const int ringidx = txring->txr_index;
4207 unsigned int idx, hw_head, n = 0;
4208
4209 mutex_enter(&txring->txr_mutex);
4210
4211 if (!txring->txr_active)
4212 goto tx_intr_done;
4213
4214 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4215 TX_DMA_DESC_HEAD_PTR);
4216 if (hw_head == txring->txr_considx) {
4217 goto tx_intr_done;
4218 }
4219
4220 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4221
4222 for (idx = txring->txr_considx; idx != hw_head;
4223 idx = TXRING_NEXTIDX(idx), n++) {
4224
4225 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4226 bus_dmamap_unload(sc->sc_dmat,
4227 txring->txr_mbufs[idx].dmamap);
4228
4229 if_statinc_ref(nsr, if_opackets);
4230 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4231 if (m->m_flags & M_MCAST)
4232 if_statinc_ref(nsr, if_omcasts);
4233
4234 m_freem(m);
4235 txring->txr_mbufs[idx].m = NULL;
4236 }
4237
4238 txring->txr_nfree++;
4239 }
4240 txring->txr_considx = idx;
4241
4242 IF_STAT_PUTREF(ifp);
4243
4244 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4245 ifp->if_flags &= ~IFF_OACTIVE;
4246
4247 /* no more pending TX packet, cancel watchdog */
4248 if (txring->txr_nfree >= AQ_TXD_NUM)
4249 ifp->if_timer = 0;
4250
4251 tx_intr_done:
4252 mutex_exit(&txring->txr_mutex);
4253
4254 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4255 return n;
4256 }
4257
4258 static int
4259 aq_rx_intr(void *arg)
4260 {
4261 struct aq_rxring *rxring = arg;
4262 struct aq_softc *sc = rxring->rxr_sc;
4263 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4264 const int ringidx = rxring->rxr_index;
4265 aq_rx_desc_t *rxd;
4266 struct mbuf *m, *m0, *mprev, *new_m;
4267 uint32_t rxd_type, rxd_hash __unused;
4268 uint16_t rxd_status, rxd_pktlen;
4269 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4270 unsigned int idx, n = 0;
4271
4272 mutex_enter(&rxring->rxr_mutex);
4273
4274 if (!rxring->rxr_active)
4275 goto rx_intr_done;
4276
4277 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4278 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4279 goto rx_intr_done;
4280 }
4281
4282 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4283
4284 m0 = mprev = NULL;
4285 for (idx = rxring->rxr_readidx;
4286 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4287 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4288
4289 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4290 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4291 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4292
4293 rxd = &rxring->rxr_rxdesc[idx];
4294 rxd_status = le16toh(rxd->wb.status);
4295
4296 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4297 break; /* not yet done */
4298
4299 rxd_type = le32toh(rxd->wb.type);
4300 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4301 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4302 rxd_hash = le32toh(rxd->wb.rss_hash);
4303 rxd_vlan = le16toh(rxd->wb.vlan);
4304
4305 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4306 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4307 if_statinc_ref(nsr, if_ierrors);
4308 goto rx_next;
4309 }
4310
4311 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4312 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4313 BUS_DMASYNC_POSTREAD);
4314 m = rxring->rxr_mbufs[idx].m;
4315
4316 new_m = aq_alloc_mbuf();
4317 if (new_m == NULL) {
4318 /*
4319 * cannot allocate new mbuf.
4320 * discard this packet, and reuse mbuf for next.
4321 */
4322 if_statinc_ref(nsr, if_iqdrops);
4323 goto rx_next;
4324 }
4325 rxring->rxr_mbufs[idx].m = NULL;
4326 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4327
4328 if (m0 == NULL) {
4329 m0 = m;
4330 } else {
4331 if (m->m_flags & M_PKTHDR)
4332 m_remove_pkthdr(m);
4333 mprev->m_next = m;
4334 }
4335 mprev = m;
4336
4337 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4338 m->m_len = MCLBYTES;
4339 } else {
4340 /* last buffer */
4341 int mlen = rxd_pktlen % MCLBYTES;
4342 if (mlen == 0)
4343 mlen = MCLBYTES;
4344 m->m_len = mlen;
4345 m0->m_pkthdr.len = rxd_pktlen;
4346 /* VLAN offloading */
4347 if ((sc->sc_ethercom.ec_capenable &
4348 ETHERCAP_VLAN_HWTAGGING) &&
4349 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4350 __SHIFTOUT(rxd_type,
4351 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4352 vlan_set_tag(m0, rxd_vlan);
4353 }
4354
4355 /* Checksum offloading */
4356 unsigned int pkttype_eth =
4357 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4358 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4359 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4360 __SHIFTOUT(rxd_type,
4361 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4362 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4363 if (__SHIFTOUT(rxd_status,
4364 RXDESC_STATUS_IPV4_CSUM_NG))
4365 m0->m_pkthdr.csum_flags |=
4366 M_CSUM_IPv4_BAD;
4367 }
4368
4369 /*
4370 * aq will always mark BAD for fragment packets,
4371 * but this is not a problem because the IP stack
4372 * ignores the CSUM flag in fragment packets.
4373 */
4374 if (__SHIFTOUT(rxd_type,
4375 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4376 bool checked = false;
4377 unsigned int pkttype_proto =
4378 __SHIFTOUT(rxd_type,
4379 RXDESC_TYPE_PKTTYPE_PROTO);
4380
4381 if (pkttype_proto ==
4382 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4383 if ((pkttype_eth ==
4384 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4385 (ifp->if_capabilities &
4386 IFCAP_CSUM_TCPv4_Rx)) {
4387 m0->m_pkthdr.csum_flags |=
4388 M_CSUM_TCPv4;
4389 checked = true;
4390 } else if ((pkttype_eth ==
4391 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4392 (ifp->if_capabilities &
4393 IFCAP_CSUM_TCPv6_Rx)) {
4394 m0->m_pkthdr.csum_flags |=
4395 M_CSUM_TCPv6;
4396 checked = true;
4397 }
4398 } else if (pkttype_proto ==
4399 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4400 if ((pkttype_eth ==
4401 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4402 (ifp->if_capabilities &
4403 IFCAP_CSUM_UDPv4_Rx)) {
4404 m0->m_pkthdr.csum_flags |=
4405 M_CSUM_UDPv4;
4406 checked = true;
4407 } else if ((pkttype_eth ==
4408 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4409 (ifp->if_capabilities &
4410 IFCAP_CSUM_UDPv6_Rx)) {
4411 m0->m_pkthdr.csum_flags |=
4412 M_CSUM_UDPv6;
4413 checked = true;
4414 }
4415 }
4416 if (checked &&
4417 (__SHIFTOUT(rxd_status,
4418 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4419 !__SHIFTOUT(rxd_status,
4420 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4421 m0->m_pkthdr.csum_flags |=
4422 M_CSUM_TCP_UDP_BAD;
4423 }
4424 }
4425
4426 m_set_rcvif(m0, ifp);
4427 if_statinc_ref(nsr, if_ipackets);
4428 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4429 if_percpuq_enqueue(ifp->if_percpuq, m0);
4430 m0 = mprev = NULL;
4431 }
4432
4433 rx_next:
4434 aq_rxring_reset_desc(sc, rxring, idx);
4435 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4436 }
4437 rxring->rxr_readidx = idx;
4438
4439 IF_STAT_PUTREF(ifp);
4440
4441 rx_intr_done:
4442 mutex_exit(&rxring->rxr_mutex);
4443
4444 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4445 return n;
4446 }
4447
4448 static int
4449 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4450 {
4451 struct ifnet *ifp = &ec->ec_if;
4452 struct aq_softc *sc = ifp->if_softc;
4453
4454 aq_set_vlan_filters(sc);
4455 return 0;
4456 }
4457
4458 static int
4459 aq_ifflags_cb(struct ethercom *ec)
4460 {
4461 struct ifnet *ifp = &ec->ec_if;
4462 struct aq_softc *sc = ifp->if_softc;
4463 int i, ecchange, error = 0;
4464 unsigned short iffchange;
4465
4466 AQ_LOCK(sc);
4467
4468 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4469 if ((iffchange & IFF_PROMISC) != 0)
4470 error = aq_set_filter(sc);
4471
4472 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4473 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4474 for (i = 0; i < AQ_RINGS_NUM; i++) {
4475 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4476 RX_DMA_DESC_VLAN_STRIP,
4477 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4478 1 : 0);
4479 }
4480 }
4481
4482 /* vlan configuration depends on also interface promiscuous mode */
4483 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4484 aq_set_vlan_filters(sc);
4485
4486 sc->sc_ec_capenable = ec->ec_capenable;
4487 sc->sc_if_flags = ifp->if_flags;
4488
4489 AQ_UNLOCK(sc);
4490
4491 return error;
4492 }
4493
4494 static int
4495 aq_init(struct ifnet *ifp)
4496 {
4497 struct aq_softc *sc = ifp->if_softc;
4498 int i, error = 0;
4499
4500 aq_stop(ifp, false);
4501
4502 AQ_LOCK(sc);
4503
4504 aq_set_vlan_filters(sc);
4505 aq_set_capability(sc);
4506
4507 for (i = 0; i < sc->sc_nqueues; i++) {
4508 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4509 }
4510
4511 /* invalidate RX descriptor cache */
4512 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4513 AQ_READ_REG_BIT(sc,
4514 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4515
4516 /* start RX */
4517 for (i = 0; i < sc->sc_nqueues; i++) {
4518 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4519 if (error != 0) {
4520 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4521 __func__);
4522 goto aq_init_failure;
4523 }
4524 }
4525 aq_init_rss(sc);
4526 aq_hw_l3_filter_set(sc);
4527
4528 /* need to start callout? */
4529 if (sc->sc_poll_linkstat
4530 #ifdef AQ_EVENT_COUNTERS
4531 || sc->sc_poll_statistics
4532 #endif
4533 ) {
4534 callout_schedule(&sc->sc_tick_ch, hz);
4535 }
4536
4537 /* ready */
4538 ifp->if_flags |= IFF_RUNNING;
4539 ifp->if_flags &= ~IFF_OACTIVE;
4540
4541 /* start TX and RX */
4542 aq_enable_intr(sc, true, true);
4543 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4544 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4545
4546 aq_init_failure:
4547 sc->sc_if_flags = ifp->if_flags;
4548
4549 AQ_UNLOCK(sc);
4550
4551 return error;
4552 }
4553
4554 static void
4555 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4556 struct aq_txring *txring, bool is_transmit)
4557 {
4558 struct mbuf *m;
4559 int npkt, error;
4560
4561 if ((ifp->if_flags & IFF_RUNNING) == 0)
4562 return;
4563
4564 for (npkt = 0; ; npkt++) {
4565 if (is_transmit)
4566 m = pcq_peek(txring->txr_pcq);
4567 else
4568 IFQ_POLL(&ifp->if_snd, m);
4569
4570 if (m == NULL)
4571 break;
4572
4573 if (txring->txr_nfree < AQ_TXD_MIN)
4574 break;
4575
4576 if (is_transmit)
4577 pcq_get(txring->txr_pcq);
4578 else
4579 IFQ_DEQUEUE(&ifp->if_snd, m);
4580
4581 error = aq_encap_txring(sc, txring, &m);
4582 if (error != 0) {
4583 /* too many mbuf chains? or not enough descriptors? */
4584 m_freem(m);
4585 if_statinc(ifp, if_oerrors);
4586 if (txring->txr_index == 0 && error == ENOBUFS)
4587 ifp->if_flags |= IFF_OACTIVE;
4588 break;
4589 }
4590
4591 /* update tail ptr */
4592 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4593 txring->txr_prodidx);
4594
4595 /* Pass the packet to any BPF listeners */
4596 bpf_mtap(ifp, m, BPF_D_OUT);
4597 }
4598
4599 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4600 ifp->if_flags |= IFF_OACTIVE;
4601
4602 if (npkt)
4603 ifp->if_timer = 5;
4604 }
4605
4606 static void
4607 aq_start(struct ifnet *ifp)
4608 {
4609 struct aq_softc *sc;
4610 struct aq_txring *txring;
4611
4612 sc = ifp->if_softc;
4613 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4614
4615 mutex_enter(&txring->txr_mutex);
4616 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4617 aq_send_common_locked(ifp, sc, txring, false);
4618 mutex_exit(&txring->txr_mutex);
4619 }
4620
4621 static inline unsigned int
4622 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4623 {
4624 return (cpu_index(curcpu()) % sc->sc_nqueues);
4625 }
4626
4627 static int
4628 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4629 {
4630 struct aq_softc *sc = ifp->if_softc;
4631 struct aq_txring *txring;
4632 int ringidx;
4633
4634 ringidx = aq_select_txqueue(sc, m);
4635 txring = &sc->sc_queue[ringidx].txring;
4636
4637 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4638 m_freem(m);
4639 return ENOBUFS;
4640 }
4641
4642 if (mutex_tryenter(&txring->txr_mutex)) {
4643 aq_send_common_locked(ifp, sc, txring, true);
4644 mutex_exit(&txring->txr_mutex);
4645 } else {
4646 softint_schedule(txring->txr_softint);
4647 }
4648 return 0;
4649 }
4650
4651 static void
4652 aq_deferred_transmit(void *arg)
4653 {
4654 struct aq_txring *txring = arg;
4655 struct aq_softc *sc = txring->txr_sc;
4656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4657
4658 mutex_enter(&txring->txr_mutex);
4659 if (pcq_peek(txring->txr_pcq) != NULL)
4660 aq_send_common_locked(ifp, sc, txring, true);
4661 mutex_exit(&txring->txr_mutex);
4662 }
4663
4664 static void
4665 aq_stop(struct ifnet *ifp, int disable)
4666 {
4667 struct aq_softc *sc = ifp->if_softc;
4668 int i;
4669
4670 AQ_LOCK(sc);
4671
4672 ifp->if_timer = 0;
4673
4674 if ((ifp->if_flags & IFF_RUNNING) == 0)
4675 goto already_stopped;
4676
4677 /* disable tx/rx interrupts */
4678 aq_enable_intr(sc, true, false);
4679
4680 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4681 for (i = 0; i < sc->sc_nqueues; i++) {
4682 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4683 }
4684
4685 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4686 for (i = 0; i < sc->sc_nqueues; i++) {
4687 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4688 }
4689
4690 /* invalidate RX descriptor cache */
4691 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4692 AQ_READ_REG_BIT(sc,
4693 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4694
4695 ifp->if_timer = 0;
4696
4697 already_stopped:
4698 if (!disable) {
4699 /* when pmf stop, disable link status intr and callout */
4700 aq_enable_intr(sc, false, false);
4701 callout_stop(&sc->sc_tick_ch);
4702 }
4703
4704 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4705
4706 AQ_UNLOCK(sc);
4707 }
4708
4709 static void
4710 aq_watchdog(struct ifnet *ifp)
4711 {
4712 struct aq_softc *sc = ifp->if_softc;
4713 struct aq_txring *txring;
4714 int n, head, tail;
4715
4716 AQ_LOCK(sc);
4717
4718 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4719 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4720 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4721
4722 for (n = 0; n < sc->sc_nqueues; n++) {
4723 txring = &sc->sc_queue[n].txring;
4724 head = AQ_READ_REG_BIT(sc,
4725 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4726 TX_DMA_DESC_HEAD_PTR),
4727 tail = AQ_READ_REG(sc,
4728 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4729
4730 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4731 __func__, txring->txr_index, head, tail);
4732
4733 aq_tx_intr(txring);
4734 }
4735
4736 AQ_UNLOCK(sc);
4737
4738 aq_init(ifp);
4739 }
4740
4741 static int
4742 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4743 {
4744 struct aq_softc *sc __unused;
4745 struct ifreq *ifr __unused;
4746 int error, s;
4747
4748 sc = (struct aq_softc *)ifp->if_softc;
4749 ifr = (struct ifreq *)data;
4750 error = 0;
4751
4752 s = splnet();
4753 switch (cmd) {
4754 case SIOCSIFMTU:
4755 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4756 error = EINVAL;
4757 } else {
4758 ifp->if_mtu = ifr->ifr_mtu;
4759 error = 0; /* no need to reset (no ENETRESET) */
4760 }
4761 break;
4762 default:
4763 error = ether_ioctl(ifp, cmd, data);
4764 break;
4765 }
4766 splx(s);
4767
4768 if (error != ENETRESET)
4769 return error;
4770
4771 switch (cmd) {
4772 case SIOCSIFCAP:
4773 error = aq_set_capability(sc);
4774 break;
4775 case SIOCADDMULTI:
4776 case SIOCDELMULTI:
4777 if ((ifp->if_flags & IFF_RUNNING) == 0)
4778 break;
4779
4780 /*
4781 * Multicast list has changed; set the hardware filter
4782 * accordingly.
4783 */
4784 error = aq_set_filter(sc);
4785 break;
4786 }
4787
4788 return error;
4789 }
4790
4791
4792 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4793
4794 #ifdef _MODULE
4795 #include "ioconf.c"
4796 #endif
4797
4798 static int
4799 if_aq_modcmd(modcmd_t cmd, void *opaque)
4800 {
4801 int error = 0;
4802
4803 switch (cmd) {
4804 case MODULE_CMD_INIT:
4805 #ifdef _MODULE
4806 error = config_init_component(cfdriver_ioconf_if_aq,
4807 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4808 #endif
4809 return error;
4810 case MODULE_CMD_FINI:
4811 #ifdef _MODULE
4812 error = config_fini_component(cfdriver_ioconf_if_aq,
4813 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4814 #endif
4815 return error;
4816 default:
4817 return ENOTTY;
4818 }
4819 }
4820