if_aq.c revision 1.29 1 /* $NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857
858 pcq_t *txr_pcq;
859 void *txr_softint;
860
861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
862 bus_dmamap_t txr_txdesc_dmamap;
863 bus_dma_segment_t txr_txdesc_seg[1];
864 bus_size_t txr_txdesc_size;
865
866 struct {
867 struct mbuf *m;
868 bus_dmamap_t dmamap;
869 } txr_mbufs[AQ_TXD_NUM];
870 unsigned int txr_prodidx;
871 unsigned int txr_considx;
872 int txr_nfree;
873 };
874
875 struct aq_rxring {
876 struct aq_softc *rxr_sc;
877 int rxr_index;
878 kmutex_t rxr_mutex;
879 bool rxr_active;
880 bool rxr_discarding;
881 struct mbuf *rxr_receiving_m; /* receiving jumboframe */
882 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */
883
884 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
885 bus_dmamap_t rxr_rxdesc_dmamap;
886 bus_dma_segment_t rxr_rxdesc_seg[1];
887 bus_size_t rxr_rxdesc_size;
888 struct {
889 struct mbuf *m;
890 bus_dmamap_t dmamap;
891 } rxr_mbufs[AQ_RXD_NUM];
892 unsigned int rxr_readidx;
893 };
894
895 struct aq_queue {
896 struct aq_softc *sc;
897 struct aq_txring txring;
898 struct aq_rxring rxring;
899 };
900
901 struct aq_softc;
902 struct aq_firmware_ops {
903 int (*reset)(struct aq_softc *);
904 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
905 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
906 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
907 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
908 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
909 #if NSYSMON_ENVSYS > 0
910 int (*get_temperature)(struct aq_softc *, uint32_t *);
911 #endif
912 };
913
914 #ifdef AQ_EVENT_COUNTERS
915 #define AQ_EVCNT_DECL(name) \
916 char sc_evcount_##name##_name[32]; \
917 struct evcnt sc_evcount_##name##_ev;
918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
919 do { \
920 snprintf((sc)->sc_evcount_##name##_name, \
921 sizeof((sc)->sc_evcount_##name##_name), \
922 "%s", desc); \
923 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
924 (evtype), NULL, device_xname((sc)->sc_dev), \
925 (sc)->sc_evcount_##name##_name); \
926 } while (/*CONSTCOND*/0)
927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
928 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
929 #define AQ_EVCNT_DETACH(sc, name) \
930 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
931 #define AQ_EVCNT_ADD(sc, name, val) \
932 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
933 #endif /* AQ_EVENT_COUNTERS */
934
935 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
936 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
937
938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
939 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
940 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
941
942
943 struct aq_softc {
944 device_t sc_dev;
945
946 bus_space_tag_t sc_iot;
947 bus_space_handle_t sc_ioh;
948 bus_size_t sc_iosize;
949 bus_dma_tag_t sc_dmat;
950
951 void *sc_ihs[AQ_NINTR_MAX];
952 pci_intr_handle_t *sc_intrs;
953
954 int sc_tx_irq[AQ_RSSQUEUE_MAX];
955 int sc_rx_irq[AQ_RSSQUEUE_MAX];
956 int sc_linkstat_irq;
957 bool sc_use_txrx_independent_intr;
958 bool sc_poll_linkstat;
959 bool sc_detect_linkstat;
960
961 #if NSYSMON_ENVSYS > 0
962 struct sysmon_envsys *sc_sme;
963 envsys_data_t sc_sensor_temp;
964 #endif
965
966 callout_t sc_tick_ch;
967
968 int sc_nintrs;
969 bool sc_msix;
970
971 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
972 int sc_nqueues;
973
974 pci_chipset_tag_t sc_pc;
975 pcitag_t sc_pcitag;
976 uint16_t sc_product;
977 uint16_t sc_revision;
978
979 kmutex_t sc_mutex;
980 kmutex_t sc_mpi_mutex;
981
982 const struct aq_firmware_ops *sc_fw_ops;
983 uint64_t sc_fw_caps;
984 enum aq_media_type sc_media_type;
985 aq_link_speed_t sc_available_rates;
986
987 aq_link_speed_t sc_link_rate;
988 aq_link_fc_t sc_link_fc;
989 aq_link_eee_t sc_link_eee;
990
991 uint32_t sc_fw_version;
992 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
993 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
994 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
995 uint32_t sc_features;
996 #define FEATURES_MIPS 0x00000001
997 #define FEATURES_TPO2 0x00000002
998 #define FEATURES_RPF2 0x00000004
999 #define FEATURES_MPI_AQ 0x00000008
1000 #define FEATURES_REV_A0 0x10000000
1001 #define FEATURES_REV_A (FEATURES_REV_A0)
1002 #define FEATURES_REV_B0 0x20000000
1003 #define FEATURES_REV_B1 0x40000000
1004 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1005 uint32_t sc_max_mtu;
1006 uint32_t sc_mbox_addr;
1007
1008 bool sc_rbl_enabled;
1009 bool sc_fast_start_enabled;
1010 bool sc_flash_present;
1011
1012 bool sc_intr_moderation_enable;
1013 bool sc_rss_enable;
1014
1015 struct ethercom sc_ethercom;
1016 struct ether_addr sc_enaddr;
1017 struct ifmedia sc_media;
1018 int sc_ec_capenable; /* last ec_capenable */
1019 unsigned short sc_if_flags; /* last if_flags */
1020
1021 #ifdef AQ_EVENT_COUNTERS
1022 aq_hw_stats_s_t sc_statistics[2];
1023 int sc_statistics_idx;
1024 bool sc_poll_statistics;
1025
1026 AQ_EVCNT_DECL(uprc);
1027 AQ_EVCNT_DECL(mprc);
1028 AQ_EVCNT_DECL(bprc);
1029 AQ_EVCNT_DECL(erpt);
1030 AQ_EVCNT_DECL(uptc);
1031 AQ_EVCNT_DECL(mptc);
1032 AQ_EVCNT_DECL(bptc);
1033 AQ_EVCNT_DECL(erpr);
1034 AQ_EVCNT_DECL(mbtc);
1035 AQ_EVCNT_DECL(bbtc);
1036 AQ_EVCNT_DECL(mbrc);
1037 AQ_EVCNT_DECL(bbrc);
1038 AQ_EVCNT_DECL(ubrc);
1039 AQ_EVCNT_DECL(ubtc);
1040 AQ_EVCNT_DECL(ptc);
1041 AQ_EVCNT_DECL(prc);
1042 AQ_EVCNT_DECL(dpc);
1043 AQ_EVCNT_DECL(cprc);
1044 #endif
1045 };
1046
1047 static int aq_match(device_t, cfdata_t, void *);
1048 static void aq_attach(device_t, device_t, void *);
1049 static int aq_detach(device_t, int);
1050
1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1052 bool, bool);
1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1054 pci_intr_type_t);
1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1056
1057 static int aq_ifmedia_change(struct ifnet * const);
1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1060 static int aq_ifflags_cb(struct ethercom *);
1061 static int aq_init(struct ifnet *);
1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1063 struct aq_txring *, bool);
1064 static int aq_transmit(struct ifnet *, struct mbuf *);
1065 static void aq_deferred_transmit(void *);
1066 static void aq_start(struct ifnet *);
1067 static void aq_stop(struct ifnet *, int);
1068 static void aq_watchdog(struct ifnet *);
1069 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1070
1071 static int aq_txrx_rings_alloc(struct aq_softc *);
1072 static void aq_txrx_rings_free(struct aq_softc *);
1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1075
1076 static void aq_initmedia(struct aq_softc *);
1077 static void aq_enable_intr(struct aq_softc *, bool, bool);
1078
1079 #if NSYSMON_ENVSYS > 0
1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1081 #endif
1082 static void aq_tick(void *);
1083 static int aq_legacy_intr(void *);
1084 static int aq_link_intr(void *);
1085 static int aq_txrx_intr(void *);
1086 static int aq_tx_intr(void *);
1087 static int aq_rx_intr(void *);
1088
1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1090 aq_link_eee_t);
1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1092 aq_link_eee_t *);
1093
1094 static int aq_fw_reset(struct aq_softc *);
1095 static int aq_fw_version_init(struct aq_softc *);
1096 static int aq_hw_init(struct aq_softc *);
1097 static int aq_hw_init_ucp(struct aq_softc *);
1098 static int aq_hw_reset(struct aq_softc *);
1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1100 uint32_t);
1101 static int aq_get_mac_addr(struct aq_softc *);
1102 static int aq_init_rss(struct aq_softc *);
1103 static int aq_set_capability(struct aq_softc *);
1104
1105 static int fw1x_reset(struct aq_softc *);
1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111
1112 static int fw2x_reset(struct aq_softc *);
1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1114 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1116 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1118 #if NSYSMON_ENVSYS > 0
1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1120 #endif
1121
1122 static const struct aq_firmware_ops aq_fw1x_ops = {
1123 .reset = fw1x_reset,
1124 .set_mode = fw1x_set_mode,
1125 .get_mode = fw1x_get_mode,
1126 .get_stats = fw1x_get_stats,
1127 #if NSYSMON_ENVSYS > 0
1128 .get_temperature = NULL
1129 #endif
1130 };
1131
1132 static const struct aq_firmware_ops aq_fw2x_ops = {
1133 .reset = fw2x_reset,
1134 .set_mode = fw2x_set_mode,
1135 .get_mode = fw2x_get_mode,
1136 .get_stats = fw2x_get_stats,
1137 #if NSYSMON_ENVSYS > 0
1138 .get_temperature = fw2x_get_temperature
1139 #endif
1140 };
1141
1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1143 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1144
1145 static const struct aq_product {
1146 pci_vendor_id_t aq_vendor;
1147 pci_product_id_t aq_product;
1148 const char *aq_name;
1149 enum aq_media_type aq_media_type;
1150 aq_link_speed_t aq_available_rates;
1151 } aq_products[] = {
1152 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1153 "Aquantia AQC100 10 Gigabit Network Adapter",
1154 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1155 },
1156 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1157 "Aquantia AQC107 10 Gigabit Network Adapter",
1158 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1159 },
1160 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1161 "Aquantia AQC108 5 Gigabit Network Adapter",
1162 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1163 },
1164 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1165 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1166 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1167 },
1168 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1169 "Aquantia AQC111 5 Gigabit Network Adapter",
1170 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1171 },
1172 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1173 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1174 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1175 },
1176 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1177 "Aquantia AQC100S 10 Gigabit Network Adapter",
1178 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1179 },
1180 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1181 "Aquantia AQC107S 10 Gigabit Network Adapter",
1182 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1183 },
1184 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1185 "Aquantia AQC108S 5 Gigabit Network Adapter",
1186 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1187 },
1188 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1189 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1190 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1191 },
1192 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1193 "Aquantia AQC111S 5 Gigabit Network Adapter",
1194 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1195 },
1196 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1197 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1198 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1199 },
1200 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1201 "Aquantia D100 10 Gigabit Network Adapter",
1202 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1203 },
1204 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1205 "Aquantia D107 10 Gigabit Network Adapter",
1206 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1207 },
1208 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1209 "Aquantia D108 5 Gigabit Network Adapter",
1210 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1211 },
1212 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1213 "Aquantia D109 2.5 Gigabit Network Adapter",
1214 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1215 }
1216 };
1217
1218 static const struct aq_product *
1219 aq_lookup(const struct pci_attach_args *pa)
1220 {
1221 unsigned int i;
1222
1223 for (i = 0; i < __arraycount(aq_products); i++) {
1224 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1225 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1226 return &aq_products[i];
1227 }
1228 return NULL;
1229 }
1230
1231 static int
1232 aq_match(device_t parent, cfdata_t cf, void *aux)
1233 {
1234 struct pci_attach_args *pa = aux;
1235
1236 if (aq_lookup(pa) != NULL)
1237 return 1;
1238
1239 return 0;
1240 }
1241
1242 static void
1243 aq_attach(device_t parent, device_t self, void *aux)
1244 {
1245 struct aq_softc *sc = device_private(self);
1246 struct pci_attach_args *pa = aux;
1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 pci_chipset_tag_t pc;
1249 pcitag_t tag;
1250 pcireg_t command, memtype, bar;
1251 const struct aq_product *aqp;
1252 int error;
1253
1254 sc->sc_dev = self;
1255 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1256 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1257
1258 sc->sc_pc = pc = pa->pa_pc;
1259 sc->sc_pcitag = tag = pa->pa_tag;
1260 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1261
1262 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1263 command |= PCI_COMMAND_MASTER_ENABLE;
1264 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1265
1266 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1267 sc->sc_revision = PCI_REVISION(pa->pa_class);
1268
1269 aqp = aq_lookup(pa);
1270 KASSERT(aqp != NULL);
1271
1272 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1273
1274 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1275 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1276 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1277 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1278 return;
1279 }
1280 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1281 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1282 NULL, &sc->sc_iosize) != 0) {
1283 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1284 return;
1285 }
1286
1287 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1288
1289 /* max queue num is 8, and must be 2^n */
1290 if (ncpu >= 8)
1291 sc->sc_nqueues = 8;
1292 else if (ncpu >= 4)
1293 sc->sc_nqueues = 4;
1294 else if (ncpu >= 2)
1295 sc->sc_nqueues = 2;
1296 else
1297 sc->sc_nqueues = 1;
1298
1299 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1300 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1301 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1302 /* TX intrs + RX intrs + LINKSTAT intrs */
1303 sc->sc_use_txrx_independent_intr = true;
1304 sc->sc_poll_linkstat = false;
1305 sc->sc_msix = true;
1306 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1307 /* TX intrs + RX intrs */
1308 sc->sc_use_txrx_independent_intr = true;
1309 sc->sc_poll_linkstat = true;
1310 sc->sc_msix = true;
1311 } else
1312 #endif
1313 if (msixcount >= (sc->sc_nqueues + 1)) {
1314 /* TX/RX intrs LINKSTAT intrs */
1315 sc->sc_use_txrx_independent_intr = false;
1316 sc->sc_poll_linkstat = false;
1317 sc->sc_msix = true;
1318 } else if (msixcount >= sc->sc_nqueues) {
1319 /* TX/RX intrs */
1320 sc->sc_use_txrx_independent_intr = false;
1321 sc->sc_poll_linkstat = true;
1322 sc->sc_msix = true;
1323 } else {
1324 /* giving up using MSI-X */
1325 sc->sc_msix = false;
1326 }
1327
1328 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1329 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1330 sc->sc_poll_linkstat = true;
1331
1332 #ifdef AQ_FORCE_POLL_LINKSTAT
1333 sc->sc_poll_linkstat = true;
1334 #endif
1335
1336 aprint_debug_dev(sc->sc_dev,
1337 "ncpu=%d, pci_msix_count=%d."
1338 " allocate %d interrupts for %d%s queues%s\n",
1339 ncpu, msixcount,
1340 (sc->sc_use_txrx_independent_intr ?
1341 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1342 (sc->sc_poll_linkstat ? 0 : 1),
1343 sc->sc_nqueues,
1344 sc->sc_use_txrx_independent_intr ? "*2" : "",
1345 sc->sc_poll_linkstat ? "" : ", and link status");
1346
1347 if (sc->sc_msix)
1348 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1349 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1350 else
1351 error = ENODEV;
1352
1353 if (error != 0) {
1354 /* if MSI-X failed, fallback to MSI with single queue */
1355 sc->sc_use_txrx_independent_intr = false;
1356 sc->sc_poll_linkstat = false;
1357 sc->sc_msix = false;
1358 sc->sc_nqueues = 1;
1359 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1360 }
1361 if (error != 0) {
1362 /* if MSI failed, fallback to INTx */
1363 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1364 }
1365 if (error != 0)
1366 return;
1367
1368 callout_init(&sc->sc_tick_ch, 0);
1369 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1370
1371 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1372
1373 if (sc->sc_msix && (sc->sc_nqueues > 1))
1374 sc->sc_rss_enable = true;
1375 else
1376 sc->sc_rss_enable = false;
1377
1378 error = aq_txrx_rings_alloc(sc);
1379 if (error != 0)
1380 goto attach_failure;
1381
1382 error = aq_fw_reset(sc);
1383 if (error != 0)
1384 goto attach_failure;
1385
1386 error = aq_fw_version_init(sc);
1387 if (error != 0)
1388 goto attach_failure;
1389
1390 error = aq_hw_init_ucp(sc);
1391 if (error < 0)
1392 goto attach_failure;
1393
1394 KASSERT(sc->sc_mbox_addr != 0);
1395 error = aq_hw_reset(sc);
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 aq_get_mac_addr(sc);
1400 aq_init_rss(sc);
1401
1402 error = aq_hw_init(sc); /* initialize and interrupts */
1403 if (error != 0)
1404 goto attach_failure;
1405
1406 sc->sc_media_type = aqp->aq_media_type;
1407 sc->sc_available_rates = aqp->aq_available_rates;
1408
1409 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1410 ifmedia_init(&sc->sc_media, IFM_IMASK,
1411 aq_ifmedia_change, aq_ifmedia_status);
1412 aq_initmedia(sc);
1413
1414 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1415 ifp->if_softc = sc;
1416 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1417 ifp->if_extflags = IFEF_MPSAFE;
1418 ifp->if_baudrate = IF_Gbps(10);
1419 ifp->if_init = aq_init;
1420 ifp->if_ioctl = aq_ioctl;
1421 if (sc->sc_msix && (sc->sc_nqueues > 1))
1422 ifp->if_transmit = aq_transmit;
1423 ifp->if_start = aq_start;
1424 ifp->if_stop = aq_stop;
1425 ifp->if_watchdog = aq_watchdog;
1426 IFQ_SET_READY(&ifp->if_snd);
1427
1428 /* initialize capabilities */
1429 sc->sc_ethercom.ec_capabilities = 0;
1430 sc->sc_ethercom.ec_capenable = 0;
1431 #if notyet
1432 /* TODO */
1433 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1434 #endif
1435 sc->sc_ethercom.ec_capabilities |=
1436 ETHERCAP_JUMBO_MTU |
1437 ETHERCAP_VLAN_MTU |
1438 ETHERCAP_VLAN_HWTAGGING |
1439 ETHERCAP_VLAN_HWFILTER;
1440 sc->sc_ethercom.ec_capenable |=
1441 ETHERCAP_VLAN_HWTAGGING |
1442 ETHERCAP_VLAN_HWFILTER;
1443
1444 ifp->if_capabilities = 0;
1445 ifp->if_capenable = 0;
1446 #ifdef CONFIG_LRO_SUPPORT
1447 ifp->if_capabilities |= IFCAP_LRO;
1448 ifp->if_capenable |= IFCAP_LRO;
1449 #endif
1450 #if notyet
1451 /* TSO */
1452 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1453 #endif
1454
1455 /* TX hardware checksum offloading */
1456 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1457 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1458 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1459 /* RX hardware checksum offloading */
1460 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1461 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1462 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1463
1464 if_initialize(ifp);
1465 ifp->if_percpuq = if_percpuq_create(ifp);
1466 if_deferred_start_init(ifp, NULL);
1467 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1468 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1469 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1470 if_register(ifp);
1471
1472 aq_enable_intr(sc, true, false); /* only intr about link */
1473
1474 /* update media */
1475 aq_ifmedia_change(ifp);
1476
1477 #if NSYSMON_ENVSYS > 0
1478 /* temperature monitoring */
1479 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1480 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1481
1482 sc->sc_sme = sysmon_envsys_create();
1483 sc->sc_sme->sme_name = device_xname(self);
1484 sc->sc_sme->sme_cookie = sc;
1485 sc->sc_sme->sme_flags = 0;
1486 sc->sc_sme->sme_refresh = aq_temp_refresh;
1487 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1488 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1489 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1490
1491 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1492 if (sysmon_envsys_register(sc->sc_sme)) {
1493 sysmon_envsys_destroy(sc->sc_sme);
1494 sc->sc_sme = NULL;
1495 goto attach_failure;
1496 }
1497
1498 /*
1499 * for unknown reasons, the first call of fw2x_get_temperature()
1500 * will always fail (firmware matter?), so run once now.
1501 */
1502 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1503 }
1504 #endif
1505
1506 #ifdef AQ_EVENT_COUNTERS
1507 /* get starting statistics values */
1508 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1509 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1510 sc->sc_poll_statistics = true;
1511 }
1512
1513 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1514 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1515 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1516 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1517 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1518 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1519 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1520 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1521 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1522 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1523 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1524 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1525 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1526 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1527 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1528 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1529 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1530 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1531 #endif
1532
1533 if (pmf_device_register(self, NULL, NULL))
1534 pmf_class_network_register(self, ifp);
1535 else
1536 aprint_error_dev(self, "couldn't establish power handler\n");
1537
1538 return;
1539
1540 attach_failure:
1541 aq_detach(self, 0);
1542 }
1543
1544 static int
1545 aq_detach(device_t self, int flags __unused)
1546 {
1547 struct aq_softc *sc = device_private(self);
1548 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1549 int i, s;
1550
1551 if (sc->sc_iosize != 0) {
1552 if (ifp->if_softc != NULL) {
1553 s = splnet();
1554 aq_stop(ifp, 0);
1555 splx(s);
1556 }
1557
1558 for (i = 0; i < AQ_NINTR_MAX; i++) {
1559 if (sc->sc_ihs[i] != NULL) {
1560 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1561 sc->sc_ihs[i] = NULL;
1562 }
1563 }
1564 if (sc->sc_nintrs > 0) {
1565 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1566 sc->sc_nintrs);
1567 sc->sc_intrs = NULL;
1568 sc->sc_nintrs = 0;
1569 }
1570
1571 aq_txrx_rings_free(sc);
1572
1573 if (ifp->if_softc != NULL) {
1574 ether_ifdetach(ifp);
1575 if_detach(ifp);
1576 }
1577
1578 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1579 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1580 sc->sc_iosize = 0;
1581 }
1582
1583 callout_stop(&sc->sc_tick_ch);
1584
1585 #if NSYSMON_ENVSYS > 0
1586 if (sc->sc_sme != NULL) {
1587 /* all sensors associated with this will also be detached */
1588 sysmon_envsys_unregister(sc->sc_sme);
1589 }
1590 #endif
1591
1592 #ifdef AQ_EVENT_COUNTERS
1593 AQ_EVCNT_DETACH(sc, uprc);
1594 AQ_EVCNT_DETACH(sc, mprc);
1595 AQ_EVCNT_DETACH(sc, bprc);
1596 AQ_EVCNT_DETACH(sc, erpt);
1597 AQ_EVCNT_DETACH(sc, uptc);
1598 AQ_EVCNT_DETACH(sc, mptc);
1599 AQ_EVCNT_DETACH(sc, bptc);
1600 AQ_EVCNT_DETACH(sc, erpr);
1601 AQ_EVCNT_DETACH(sc, mbtc);
1602 AQ_EVCNT_DETACH(sc, bbtc);
1603 AQ_EVCNT_DETACH(sc, mbrc);
1604 AQ_EVCNT_DETACH(sc, bbrc);
1605 AQ_EVCNT_DETACH(sc, ubrc);
1606 AQ_EVCNT_DETACH(sc, ubtc);
1607 AQ_EVCNT_DETACH(sc, ptc);
1608 AQ_EVCNT_DETACH(sc, prc);
1609 AQ_EVCNT_DETACH(sc, dpc);
1610 AQ_EVCNT_DETACH(sc, cprc);
1611 #endif
1612
1613 ifmedia_fini(&sc->sc_media);
1614
1615 mutex_destroy(&sc->sc_mpi_mutex);
1616 mutex_destroy(&sc->sc_mutex);
1617
1618 return 0;
1619 }
1620
1621 static int
1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1623 int (*func)(void *), void *arg, const char *xname)
1624 {
1625 char intrbuf[PCI_INTRSTR_LEN];
1626 pci_chipset_tag_t pc = sc->sc_pc;
1627 void *vih;
1628 const char *intrstr = NULL;
1629
1630 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1631 sizeof(intrbuf));
1632
1633 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1634
1635 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1636 IPL_NET, func, arg, xname);
1637 if (vih == NULL) {
1638 aprint_error_dev(sc->sc_dev,
1639 "unable to establish MSI-X%s%s for %s\n",
1640 intrstr ? " at " : "",
1641 intrstr ? intrstr : "", xname);
1642 return EIO;
1643 }
1644 sc->sc_ihs[intno] = vih;
1645
1646 if (affinity != NULL) {
1647 /* Round-robin affinity */
1648 kcpuset_zero(affinity);
1649 kcpuset_set(affinity, intno % ncpu);
1650 interrupt_distribute(vih, affinity, NULL);
1651 }
1652
1653 return 0;
1654 }
1655
1656 static int
1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1658 bool linkintr)
1659 {
1660 kcpuset_t *affinity;
1661 int error, intno, i;
1662 char intr_xname[INTRDEVNAMEBUF];
1663
1664 kcpuset_create(&affinity, false);
1665
1666 intno = 0;
1667
1668 if (txrx_independent) {
1669 for (i = 0; i < sc->sc_nqueues; i++) {
1670 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1671 device_xname(sc->sc_dev), i);
1672 sc->sc_rx_irq[i] = intno;
1673 error = aq_establish_intr(sc, intno++, affinity,
1674 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1675 if (error != 0)
1676 goto fail;
1677 }
1678 for (i = 0; i < sc->sc_nqueues; i++) {
1679 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1680 device_xname(sc->sc_dev), i);
1681 sc->sc_tx_irq[i] = intno;
1682 error = aq_establish_intr(sc, intno++, affinity,
1683 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1684 if (error != 0)
1685 goto fail;
1686 }
1687 } else {
1688 for (i = 0; i < sc->sc_nqueues; i++) {
1689 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1690 device_xname(sc->sc_dev), i);
1691 sc->sc_rx_irq[i] = intno;
1692 sc->sc_tx_irq[i] = intno;
1693 error = aq_establish_intr(sc, intno++, affinity,
1694 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1695 if (error != 0)
1696 goto fail;
1697 }
1698 }
1699
1700 if (linkintr) {
1701 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1702 device_xname(sc->sc_dev));
1703 sc->sc_linkstat_irq = intno;
1704 error = aq_establish_intr(sc, intno++, affinity,
1705 aq_link_intr, sc, intr_xname);
1706 if (error != 0)
1707 goto fail;
1708 }
1709
1710 kcpuset_destroy(affinity);
1711 return 0;
1712
1713 fail:
1714 for (i = 0; i < AQ_NINTR_MAX; i++) {
1715 if (sc->sc_ihs[i] != NULL) {
1716 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1717 sc->sc_ihs[i] = NULL;
1718 }
1719 }
1720
1721 kcpuset_destroy(affinity);
1722 return ENOMEM;
1723 }
1724
1725 static int
1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1727 bool txrx_independent, bool linkintr)
1728 {
1729 int error, nintr;
1730
1731 if (txrx_independent)
1732 nintr = nqueue * 2;
1733 else
1734 nintr = nqueue;
1735
1736 if (linkintr)
1737 nintr++;
1738
1739 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1740 if (error != 0) {
1741 aprint_error_dev(sc->sc_dev,
1742 "failed to allocate MSI-X interrupts\n");
1743 goto fail;
1744 }
1745
1746 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1747 if (error == 0) {
1748 sc->sc_nintrs = nintr;
1749 } else {
1750 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1751 sc->sc_nintrs = 0;
1752 }
1753 fail:
1754 return error;
1755
1756 }
1757
1758 static int
1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1760 pci_intr_type_t inttype)
1761 {
1762 int counts[PCI_INTR_TYPE_SIZE];
1763 int error, nintr;
1764
1765 nintr = 1;
1766
1767 memset(counts, 0, sizeof(counts));
1768 counts[inttype] = nintr;
1769
1770 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1771 if (error != 0) {
1772 aprint_error_dev(sc->sc_dev,
1773 "failed to allocate%s interrupts\n",
1774 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1775 return error;
1776 }
1777 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1778 device_xname(sc->sc_dev));
1779 if (error == 0) {
1780 sc->sc_nintrs = nintr;
1781 } else {
1782 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1783 sc->sc_nintrs = 0;
1784 }
1785 return error;
1786 }
1787
1788 static void
1789 global_software_reset(struct aq_softc *sc)
1790 {
1791 uint32_t v;
1792
1793 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1794 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1795 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1796 FW_MPI_RESETCTRL_RESET_DIS, 0);
1797
1798 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1799 v &= ~AQ_FW_SOFTRESET_DIS;
1800 v |= AQ_FW_SOFTRESET_RESET;
1801 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1802 }
1803
1804 static int
1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1806 {
1807 int timo;
1808
1809 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1810
1811 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1813 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1814
1815 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1816 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1817
1818 global_software_reset(sc);
1819
1820 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1821
1822 /* Wait for RBL to finish boot process. */
1823 #define RBL_TIMEOUT_MS 10000
1824 uint16_t rbl_status;
1825 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1826 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1827 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1828 break;
1829 msec_delay(1);
1830 }
1831 if (timo <= 0) {
1832 aprint_error_dev(sc->sc_dev,
1833 "RBL> RBL restart failed: timeout\n");
1834 return EBUSY;
1835 }
1836 switch (rbl_status) {
1837 case RBL_STATUS_SUCCESS:
1838 if (mode != NULL)
1839 *mode = FW_BOOT_MODE_RBL_FLASH;
1840 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1841 break;
1842 case RBL_STATUS_HOST_BOOT:
1843 if (mode != NULL)
1844 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1845 aprint_debug_dev(sc->sc_dev,
1846 "RBL> reset complete! [Host Bootload]\n");
1847 break;
1848 case RBL_STATUS_FAILURE:
1849 default:
1850 aprint_error_dev(sc->sc_dev,
1851 "unknown RBL status 0x%x\n", rbl_status);
1852 return EBUSY;
1853 }
1854
1855 return 0;
1856 }
1857
1858 static int
1859 mac_soft_reset_flb(struct aq_softc *sc)
1860 {
1861 uint32_t v;
1862 int timo;
1863
1864 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1865 /*
1866 * Let Felicity hardware to complete SMBUS transaction before
1867 * Global software reset.
1868 */
1869 msec_delay(50);
1870
1871 /*
1872 * If SPI burst transaction was interrupted(before running the script),
1873 * global software reset may not clear SPI interface.
1874 * Clean it up manually before global reset.
1875 */
1876 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1879 msec_delay(50);
1880
1881 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1882 v &= ~AQ_FW_SOFTRESET_DIS;
1883 v |= AQ_FW_SOFTRESET_RESET;
1884 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1885
1886 /* Kickstart. */
1887 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1888 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1889 if (!sc->sc_fast_start_enabled)
1890 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1891
1892 /*
1893 * For the case SPI burst transaction was interrupted (by MCP reset
1894 * above), wait until it is completed by hardware.
1895 */
1896 msec_delay(50);
1897
1898 /* MAC Kickstart */
1899 if (!sc->sc_fast_start_enabled) {
1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1901
1902 uint32_t flb_status;
1903 for (timo = 0; timo < 1000; timo++) {
1904 flb_status = AQ_READ_REG(sc,
1905 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1906 if (flb_status != 0)
1907 break;
1908 msec_delay(1);
1909 }
1910 if (flb_status == 0) {
1911 aprint_error_dev(sc->sc_dev,
1912 "FLB> MAC kickstart failed: timed out\n");
1913 return ETIMEDOUT;
1914 }
1915 aprint_debug_dev(sc->sc_dev,
1916 "FLB> MAC kickstart done, %d ms\n", timo);
1917 /* FW reset */
1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1919 /*
1920 * Let Felicity hardware complete SMBUS transaction before
1921 * Global software reset.
1922 */
1923 msec_delay(50);
1924 sc->sc_fast_start_enabled = true;
1925 }
1926 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1927
1928 /* PHY Kickstart: #undone */
1929 global_software_reset(sc);
1930
1931 for (timo = 0; timo < 1000; timo++) {
1932 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1933 break;
1934 msec_delay(10);
1935 }
1936 if (timo >= 1000) {
1937 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1938 return ETIMEDOUT;
1939 }
1940 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1941 return 0;
1942
1943 }
1944
1945 static int
1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1947 {
1948 if (sc->sc_rbl_enabled)
1949 return mac_soft_reset_rbl(sc, mode);
1950
1951 if (mode != NULL)
1952 *mode = FW_BOOT_MODE_FLB;
1953 return mac_soft_reset_flb(sc);
1954 }
1955
1956 static int
1957 aq_fw_read_version(struct aq_softc *sc)
1958 {
1959 int i, error = EBUSY;
1960 #define MAC_FW_START_TIMEOUT_MS 10000
1961 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1962 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1963 if (sc->sc_fw_version != 0) {
1964 error = 0;
1965 break;
1966 }
1967 delay(1000);
1968 }
1969 return error;
1970 }
1971
1972 static int
1973 aq_fw_reset(struct aq_softc *sc)
1974 {
1975 uint32_t ver, v, bootExitCode;
1976 int i, error;
1977
1978 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1979
1980 for (i = 1000; i > 0; i--) {
1981 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1982 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1983 if (v != 0x06000000 || bootExitCode != 0)
1984 break;
1985 }
1986 if (i <= 0) {
1987 aprint_error_dev(sc->sc_dev,
1988 "F/W reset failed. Neither RBL nor FLB started\n");
1989 return ETIMEDOUT;
1990 }
1991 sc->sc_rbl_enabled = (bootExitCode != 0);
1992
1993 /*
1994 * Having FW version 0 is an indicator that cold start
1995 * is in progress. This means two things:
1996 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1997 * 2) Driver may skip reset sequence and save time.
1998 */
1999 if (sc->sc_fast_start_enabled && (ver != 0)) {
2000 error = aq_fw_read_version(sc);
2001 /* Skip reset as it just completed */
2002 if (error == 0)
2003 return 0;
2004 }
2005
2006 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2007 error = mac_soft_reset(sc, &mode);
2008 if (error != 0) {
2009 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2010 return error;
2011 }
2012
2013 switch (mode) {
2014 case FW_BOOT_MODE_FLB:
2015 aprint_debug_dev(sc->sc_dev,
2016 "FLB> F/W successfully loaded from flash.\n");
2017 sc->sc_flash_present = true;
2018 return aq_fw_read_version(sc);
2019 case FW_BOOT_MODE_RBL_FLASH:
2020 aprint_debug_dev(sc->sc_dev,
2021 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2022 sc->sc_flash_present = true;
2023 return aq_fw_read_version(sc);
2024 case FW_BOOT_MODE_UNKNOWN:
2025 aprint_error_dev(sc->sc_dev,
2026 "F/W bootload error: unknown bootloader type\n");
2027 return ENOTSUP;
2028 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2029 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2030 break;
2031 }
2032
2033 /*
2034 * XXX: TODO: add support Host Boot
2035 */
2036 aprint_error_dev(sc->sc_dev,
2037 "RBL> F/W Host Bootload not implemented\n");
2038 return ENOTSUP;
2039 }
2040
2041 static int
2042 aq_hw_reset(struct aq_softc *sc)
2043 {
2044 int error;
2045
2046 /* disable irq */
2047 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2048
2049 /* apply */
2050 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2051
2052 /* wait ack 10 times by 1ms */
2053 WAIT_FOR(
2054 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2055 1000, 10, &error);
2056 if (error != 0) {
2057 aprint_error_dev(sc->sc_dev,
2058 "atlantic: IRQ reset failed: %d\n", error);
2059 return error;
2060 }
2061
2062 return sc->sc_fw_ops->reset(sc);
2063 }
2064
2065 static int
2066 aq_hw_init_ucp(struct aq_softc *sc)
2067 {
2068 int timo;
2069
2070 if (FW_VERSION_MAJOR(sc) == 1) {
2071 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2072 uint32_t data;
2073 cprng_fast(&data, sizeof(data));
2074 data &= 0xfefefefe;
2075 data |= 0x02020202;
2076 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2077 }
2078 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2079 }
2080
2081 for (timo = 100; timo > 0; timo--) {
2082 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2083 if (sc->sc_mbox_addr != 0)
2084 break;
2085 delay(1000);
2086 }
2087
2088 #define AQ_FW_MIN_VERSION 0x01050006
2089 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2090 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2091 aprint_error_dev(sc->sc_dev,
2092 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2093 " or later required, this is %d.%d.%d\n",
2094 FW_VERSION_MAJOR(sc),
2095 FW_VERSION_MINOR(sc),
2096 FW_VERSION_BUILD(sc));
2097 return ENOTSUP;
2098 }
2099
2100 return 0;
2101 }
2102
2103 static int
2104 aq_fw_version_init(struct aq_softc *sc)
2105 {
2106 int error = 0;
2107 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2108
2109 if (FW_VERSION_MAJOR(sc) == 1) {
2110 sc->sc_fw_ops = &aq_fw1x_ops;
2111 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2112 sc->sc_fw_ops = &aq_fw2x_ops;
2113 } else {
2114 aprint_error_dev(sc->sc_dev,
2115 "Unsupported F/W version %d.%d.%d\n",
2116 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2117 FW_VERSION_BUILD(sc));
2118 return ENOTSUP;
2119 }
2120 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2121 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2122
2123 /* detect revision */
2124 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2125 switch (hwrev & 0x0000000f) {
2126 case 0x01:
2127 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2128 fw_vers);
2129 sc->sc_features |= FEATURES_REV_A0 |
2130 FEATURES_MPI_AQ | FEATURES_MIPS;
2131 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2132 break;
2133 case 0x02:
2134 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2135 fw_vers);
2136 sc->sc_features |= FEATURES_REV_B0 |
2137 FEATURES_MPI_AQ | FEATURES_MIPS |
2138 FEATURES_TPO2 | FEATURES_RPF2;
2139 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2140 break;
2141 case 0x0A:
2142 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2143 fw_vers);
2144 sc->sc_features |= FEATURES_REV_B1 |
2145 FEATURES_MPI_AQ | FEATURES_MIPS |
2146 FEATURES_TPO2 | FEATURES_RPF2;
2147 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2148 break;
2149 default:
2150 aprint_error_dev(sc->sc_dev,
2151 "Unknown revision (0x%08x)\n", hwrev);
2152 sc->sc_features = 0;
2153 sc->sc_max_mtu = ETHERMTU;
2154 error = ENOTSUP;
2155 break;
2156 }
2157 return error;
2158 }
2159
2160 static int
2161 fw1x_reset(struct aq_softc *sc)
2162 {
2163 struct aq_mailbox_header mbox;
2164 const int retryCount = 1000;
2165 uint32_t tid0;
2166 int i;
2167
2168 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2169
2170 for (i = 0; i < retryCount; ++i) {
2171 /*
2172 * Read the beginning of Statistics structure to capture
2173 * the Transaction ID.
2174 */
2175 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2176 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2177
2178 /* Successfully read the stats. */
2179 if (tid0 == ~0U) {
2180 /* We have read the initial value. */
2181 tid0 = mbox.transaction_id;
2182 continue;
2183 } else if (mbox.transaction_id != tid0) {
2184 /*
2185 * Compare transaction ID to initial value.
2186 * If it's different means f/w is alive.
2187 * We're done.
2188 */
2189 return 0;
2190 }
2191
2192 /*
2193 * Transaction ID value haven't changed since last time.
2194 * Try reading the stats again.
2195 */
2196 delay(10);
2197 }
2198 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2199 return EBUSY;
2200 }
2201
2202 static int
2203 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2204 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2205 {
2206 uint32_t mpictrl = 0;
2207 uint32_t mpispeed = 0;
2208
2209 if (speed & AQ_LINK_10G)
2210 mpispeed |= FW1X_CTRL_10G;
2211 if (speed & AQ_LINK_5G)
2212 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2213 if (speed & AQ_LINK_2G5)
2214 mpispeed |= FW1X_CTRL_2G5;
2215 if (speed & AQ_LINK_1G)
2216 mpispeed |= FW1X_CTRL_1G;
2217 if (speed & AQ_LINK_100M)
2218 mpispeed |= FW1X_CTRL_100M;
2219
2220 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2221 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2222 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2223 return 0;
2224 }
2225
2226 static int
2227 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2228 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2229 {
2230 uint32_t mpistate, mpi_speed;
2231 aq_link_speed_t speed = AQ_LINK_NONE;
2232
2233 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2234
2235 if (modep != NULL)
2236 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2237
2238 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2239 if (mpi_speed & FW1X_CTRL_10G)
2240 speed = AQ_LINK_10G;
2241 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2242 speed = AQ_LINK_5G;
2243 else if (mpi_speed & FW1X_CTRL_2G5)
2244 speed = AQ_LINK_2G5;
2245 else if (mpi_speed & FW1X_CTRL_1G)
2246 speed = AQ_LINK_1G;
2247 else if (mpi_speed & FW1X_CTRL_100M)
2248 speed = AQ_LINK_100M;
2249
2250 if (speedp != NULL)
2251 *speedp = speed;
2252
2253 if (fcp != NULL)
2254 *fcp = AQ_FC_NONE;
2255
2256 if (eeep != NULL)
2257 *eeep = AQ_EEE_DISABLE;
2258
2259 return 0;
2260 }
2261
2262 static int
2263 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2264 {
2265 int error;
2266
2267 error = aq_fw_downld_dwords(sc,
2268 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2269 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2270 if (error < 0) {
2271 device_printf(sc->sc_dev,
2272 "fw1x> download statistics data FAILED, error %d", error);
2273 return error;
2274 }
2275
2276 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2277 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2278 return 0;
2279 }
2280
2281 static int
2282 fw2x_reset(struct aq_softc *sc)
2283 {
2284 fw2x_capabilities_t caps = { 0 };
2285 int error;
2286
2287 error = aq_fw_downld_dwords(sc,
2288 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2289 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2290 if (error != 0) {
2291 aprint_error_dev(sc->sc_dev,
2292 "fw2x> can't get F/W capabilities mask, error %d\n",
2293 error);
2294 return error;
2295 }
2296 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2297
2298 char buf[256];
2299 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2300 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2301
2302 return 0;
2303 }
2304
2305 static int
2306 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2307 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2308 {
2309 uint64_t mpi_ctrl;
2310 int error = 0;
2311
2312 AQ_MPI_LOCK(sc);
2313
2314 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2315
2316 switch (mode) {
2317 case MPI_INIT:
2318 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2319 if (speed & AQ_LINK_10G)
2320 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2321 if (speed & AQ_LINK_5G)
2322 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2323 if (speed & AQ_LINK_2G5)
2324 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2325 if (speed & AQ_LINK_1G)
2326 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2327 if (speed & AQ_LINK_100M)
2328 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2329
2330 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2331
2332 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2333 if (eee == AQ_EEE_ENABLE)
2334 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2335
2336 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2337 if (fc & AQ_FC_RX)
2338 mpi_ctrl |= FW2X_CTRL_PAUSE;
2339 if (fc & AQ_FC_TX)
2340 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2341 break;
2342 case MPI_DEINIT:
2343 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2344 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2345 break;
2346 default:
2347 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2348 error = EINVAL;
2349 goto failure;
2350 }
2351 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2352
2353 failure:
2354 AQ_MPI_UNLOCK(sc);
2355 return error;
2356 }
2357
2358 static int
2359 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2360 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2361 {
2362 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2363
2364 if (modep != NULL) {
2365 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2366 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2367 *modep = MPI_INIT;
2368 else
2369 *modep = MPI_DEINIT;
2370 }
2371
2372 aq_link_speed_t speed = AQ_LINK_NONE;
2373 if (mpi_state & FW2X_CTRL_RATE_10G)
2374 speed = AQ_LINK_10G;
2375 else if (mpi_state & FW2X_CTRL_RATE_5G)
2376 speed = AQ_LINK_5G;
2377 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2378 speed = AQ_LINK_2G5;
2379 else if (mpi_state & FW2X_CTRL_RATE_1G)
2380 speed = AQ_LINK_1G;
2381 else if (mpi_state & FW2X_CTRL_RATE_100M)
2382 speed = AQ_LINK_100M;
2383
2384 if (speedp != NULL)
2385 *speedp = speed;
2386
2387 aq_link_fc_t fc = AQ_FC_NONE;
2388 if (mpi_state & FW2X_CTRL_PAUSE)
2389 fc |= AQ_FC_RX;
2390 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2391 fc |= AQ_FC_TX;
2392 if (fcp != NULL)
2393 *fcp = fc;
2394
2395 /* XXX: TODO: EEE */
2396 if (eeep != NULL)
2397 *eeep = AQ_EEE_DISABLE;
2398
2399 return 0;
2400 }
2401
2402 static int
2403 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2404 uint32_t timeout_ms, uint32_t try_count)
2405 {
2406 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2407 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2408 int error;
2409
2410 /* First, check that control and state values are consistent */
2411 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2412 device_printf(sc->sc_dev,
2413 "fw2x> MPI control (%#llx) and state (%#llx)"
2414 " are not consistent for mask %#llx!\n",
2415 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2416 (unsigned long long)mask);
2417 return EINVAL;
2418 }
2419
2420 /* Invert bits (toggle) in control register */
2421 mpi_ctrl ^= mask;
2422 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2423
2424 /* Clear all bits except masked */
2425 mpi_ctrl &= mask;
2426
2427 /* Wait for FW reflecting change in state register */
2428 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2429 1000 * timeout_ms, try_count, &error);
2430 if (error != 0) {
2431 device_printf(sc->sc_dev,
2432 "f/w2x> timeout while waiting for response"
2433 " in state register for bit %#llx!",
2434 (unsigned long long)mask);
2435 return error;
2436 }
2437 return 0;
2438 }
2439
2440 static int
2441 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2442 {
2443 int error;
2444
2445 AQ_MPI_LOCK(sc);
2446 /* Say to F/W to update the statistics */
2447 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2448 if (error != 0) {
2449 device_printf(sc->sc_dev,
2450 "fw2x> statistics update error %d\n", error);
2451 goto failure;
2452 }
2453
2454 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2455 error = aq_fw_downld_dwords(sc,
2456 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2457 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2458 if (error != 0) {
2459 device_printf(sc->sc_dev,
2460 "fw2x> download statistics data FAILED, error %d", error);
2461 goto failure;
2462 }
2463 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2464 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2465
2466 failure:
2467 AQ_MPI_UNLOCK(sc);
2468 return error;
2469 }
2470
2471 #if NSYSMON_ENVSYS > 0
2472 static int
2473 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2474 {
2475 int error;
2476 uint32_t value, celsius;
2477
2478 AQ_MPI_LOCK(sc);
2479
2480 /* Say to F/W to update the temperature */
2481 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2482 if (error != 0)
2483 goto failure;
2484
2485 error = aq_fw_downld_dwords(sc,
2486 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2487 &value, sizeof(value) / sizeof(uint32_t));
2488 if (error != 0)
2489 goto failure;
2490
2491 /* 1/256 decrees C to microkelvin */
2492 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2493 if (celsius == 0) {
2494 error = EIO;
2495 goto failure;
2496 }
2497 *temp = celsius * (1000000 / 256) + 273150000;
2498
2499 failure:
2500 AQ_MPI_UNLOCK(sc);
2501 return 0;
2502 }
2503 #endif
2504
2505 static int
2506 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2507 uint32_t cnt)
2508 {
2509 uint32_t v;
2510 int error = 0;
2511
2512 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2513 if (error != 0) {
2514 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2515 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2516 if (v == 0) {
2517 device_printf(sc->sc_dev,
2518 "%s:%d: timeout\n", __func__, __LINE__);
2519 return ETIMEDOUT;
2520 }
2521 }
2522
2523 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2524
2525 error = 0;
2526 for (; cnt > 0 && error == 0; cnt--) {
2527 /* execute mailbox interface */
2528 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2529 AQ_FW_MBOX_CMD_EXECUTE, 1);
2530 if (sc->sc_features & FEATURES_REV_B1) {
2531 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2532 1, 1000, &error);
2533 } else {
2534 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2535 AQ_FW_MBOX_CMD_BUSY) == 0,
2536 1, 1000, &error);
2537 }
2538 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2539 addr += sizeof(uint32_t);
2540 }
2541 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2542
2543 if (error != 0)
2544 device_printf(sc->sc_dev,
2545 "%s:%d: timeout\n", __func__, __LINE__);
2546
2547 return error;
2548 }
2549
2550 /* read my mac address */
2551 static int
2552 aq_get_mac_addr(struct aq_softc *sc)
2553 {
2554 uint32_t mac_addr[2];
2555 uint32_t efuse_shadow_addr;
2556 int err;
2557
2558 efuse_shadow_addr = 0;
2559 if (FW_VERSION_MAJOR(sc) >= 2)
2560 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2561 else
2562 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2563
2564 if (efuse_shadow_addr == 0) {
2565 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2566 return ENXIO;
2567 }
2568
2569 memset(mac_addr, 0, sizeof(mac_addr));
2570 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2571 mac_addr, __arraycount(mac_addr));
2572 if (err < 0)
2573 return err;
2574
2575 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2576 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2577 return ENXIO;
2578 }
2579
2580 mac_addr[0] = htobe32(mac_addr[0]);
2581 mac_addr[1] = htobe32(mac_addr[1]);
2582
2583 memcpy(sc->sc_enaddr.ether_addr_octet,
2584 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2585 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2586 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2587
2588 return 0;
2589 }
2590
2591 /* set multicast filter. index 0 for own address */
2592 static int
2593 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2594 {
2595 uint32_t h, l;
2596
2597 if (index >= AQ_HW_MAC_NUM)
2598 return EINVAL;
2599
2600 if (enaddr == NULL) {
2601 /* disable */
2602 AQ_WRITE_REG_BIT(sc,
2603 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2604 return 0;
2605 }
2606
2607 h = (enaddr[0] << 8) | (enaddr[1]);
2608 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2609 (enaddr[4] << 8) | (enaddr[5]);
2610
2611 /* disable, set, and enable */
2612 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2613 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2614 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2615 RPF_L2UC_MSW_MACADDR_HI, h);
2616 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2617 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2618
2619 return 0;
2620 }
2621
2622 static int
2623 aq_set_capability(struct aq_softc *sc)
2624 {
2625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2626 int ip4csum_tx =
2627 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2628 int ip4csum_rx =
2629 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2630 int l4csum_tx = ((ifp->if_capenable &
2631 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2632 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2633 int l4csum_rx =
2634 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2635 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2636 uint32_t lso =
2637 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2638 0 : 0xffffffff;
2639 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2640 0 : 0xffffffff;
2641 uint32_t i, v;
2642
2643 /* TX checksums offloads*/
2644 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2645 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2646
2647 /* RX checksums offloads*/
2648 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2649 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2650
2651 /* LSO offloads*/
2652 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2653
2654 #define AQ_B0_LRO_RXD_MAX 16
2655 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2656 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2657 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2658 for (i = 0; i < AQ_RINGS_NUM; i++) {
2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2660 RPO_LRO_LDES_MAX_MASK(i), v);
2661 }
2662
2663 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2664 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2665 RPO_LRO_INACTIVE_IVAL, 0);
2666 /*
2667 * the LRO timebase divider is 5 uS (0x61a),
2668 * to get a maximum coalescing interval of 250 uS,
2669 * we need to multiply by 50(0x32) to get
2670 * the default value 250 uS
2671 */
2672 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2673 RPO_LRO_MAX_COALESCING_IVAL, 50);
2674 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2675 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2676 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2677 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2678 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2679 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2680 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2681 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2682 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2683 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2684
2685 return 0;
2686 }
2687
2688 static int
2689 aq_set_filter(struct aq_softc *sc)
2690 {
2691 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2692 struct ethercom *ec = &sc->sc_ethercom;
2693 struct ether_multi *enm;
2694 struct ether_multistep step;
2695 int idx, error = 0;
2696
2697 if (ifp->if_flags & IFF_PROMISC) {
2698 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2699 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2700 ec->ec_flags |= ETHER_F_ALLMULTI;
2701 goto done;
2702 }
2703
2704 /* clear all table */
2705 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2706 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2707 continue;
2708 aq_set_mac_addr(sc, idx, NULL);
2709 }
2710
2711 /* don't accept all multicast */
2712 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2713 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2714 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2715 RPF_MCAST_FILTER_EN, 0);
2716
2717 idx = 0;
2718 ETHER_LOCK(ec);
2719 ETHER_FIRST_MULTI(step, ec, enm);
2720 while (enm != NULL) {
2721 if (idx == AQ_HW_MAC_OWN)
2722 idx++;
2723
2724 if ((idx >= AQ_HW_MAC_NUM) ||
2725 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2726 /*
2727 * too many filters.
2728 * fallback to accept all multicast addresses.
2729 */
2730 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2731 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2732 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2733 RPF_MCAST_FILTER_EN, 1);
2734 ec->ec_flags |= ETHER_F_ALLMULTI;
2735 ETHER_UNLOCK(ec);
2736 goto done;
2737 }
2738
2739 /* add a filter */
2740 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2741
2742 ETHER_NEXT_MULTI(step, enm);
2743 }
2744 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2745 ETHER_UNLOCK(ec);
2746
2747 done:
2748 return error;
2749 }
2750
2751 static int
2752 aq_ifmedia_change(struct ifnet * const ifp)
2753 {
2754 struct aq_softc *sc = ifp->if_softc;
2755 aq_link_speed_t rate = AQ_LINK_NONE;
2756 aq_link_fc_t fc = AQ_FC_NONE;
2757 aq_link_eee_t eee = AQ_EEE_DISABLE;
2758
2759 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2760 return EINVAL;
2761
2762 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2763 case IFM_AUTO:
2764 rate = AQ_LINK_AUTO;
2765 break;
2766 case IFM_NONE:
2767 rate = AQ_LINK_NONE;
2768 break;
2769 case IFM_100_TX:
2770 rate = AQ_LINK_100M;
2771 break;
2772 case IFM_1000_T:
2773 rate = AQ_LINK_1G;
2774 break;
2775 case IFM_2500_T:
2776 rate = AQ_LINK_2G5;
2777 break;
2778 case IFM_5000_T:
2779 rate = AQ_LINK_5G;
2780 break;
2781 case IFM_10G_T:
2782 rate = AQ_LINK_10G;
2783 break;
2784 default:
2785 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2786 IFM_SUBTYPE(sc->sc_media.ifm_media));
2787 return ENODEV;
2788 }
2789
2790 if (sc->sc_media.ifm_media & IFM_FLOW)
2791 fc = AQ_FC_ALL;
2792
2793 /* XXX: todo EEE */
2794
2795 /* re-initialize hardware with new parameters */
2796 aq_set_linkmode(sc, rate, fc, eee);
2797
2798 return 0;
2799 }
2800
2801 static void
2802 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2803 {
2804 struct aq_softc *sc = ifp->if_softc;
2805
2806 /* update ifm_active */
2807 ifmr->ifm_active = IFM_ETHER;
2808 if (sc->sc_link_fc & AQ_FC_RX)
2809 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2810 if (sc->sc_link_fc & AQ_FC_TX)
2811 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2812
2813 switch (sc->sc_link_rate) {
2814 case AQ_LINK_100M:
2815 /* XXX: need to detect fulldup or halfdup */
2816 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2817 break;
2818 case AQ_LINK_1G:
2819 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2820 break;
2821 case AQ_LINK_2G5:
2822 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2823 break;
2824 case AQ_LINK_5G:
2825 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2826 break;
2827 case AQ_LINK_10G:
2828 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2829 break;
2830 default:
2831 ifmr->ifm_active |= IFM_NONE;
2832 break;
2833 }
2834
2835 /* update ifm_status */
2836 ifmr->ifm_status = IFM_AVALID;
2837 if (sc->sc_link_rate != AQ_LINK_NONE)
2838 ifmr->ifm_status |= IFM_ACTIVE;
2839 }
2840
2841 static void
2842 aq_initmedia(struct aq_softc *sc)
2843 {
2844 #define IFMEDIA_ETHER_ADD(sc, media) \
2845 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2846
2847 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2848 if (sc->sc_available_rates & AQ_LINK_100M) {
2849 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2850 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2851 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2852 }
2853 if (sc->sc_available_rates & AQ_LINK_1G) {
2854 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2855 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2856 }
2857 if (sc->sc_available_rates & AQ_LINK_2G5) {
2858 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2859 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2860 }
2861 if (sc->sc_available_rates & AQ_LINK_5G) {
2862 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2863 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2864 }
2865 if (sc->sc_available_rates & AQ_LINK_10G) {
2866 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2867 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2868 }
2869 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2870 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2871
2872 /* default: auto without flowcontrol */
2873 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2874 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2875 }
2876
2877 static int
2878 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2879 aq_link_eee_t eee)
2880 {
2881 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2882 }
2883
2884 static int
2885 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2886 aq_link_eee_t *eee)
2887 {
2888 aq_hw_fw_mpi_state_t mode;
2889 int error;
2890
2891 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2892 if (error != 0)
2893 return error;
2894 if (mode != MPI_INIT)
2895 return ENXIO;
2896
2897 return 0;
2898 }
2899
2900 static void
2901 aq_hw_init_tx_path(struct aq_softc *sc)
2902 {
2903 /* Tx TC/RSS number config */
2904 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2905
2906 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2907 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2908 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2909 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2910 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2911 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2912
2913 /* misc */
2914 AQ_WRITE_REG(sc, TX_TPO2_REG,
2915 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2916 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2917 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2918
2919 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2920 }
2921
2922 static void
2923 aq_hw_init_rx_path(struct aq_softc *sc)
2924 {
2925 int i;
2926
2927 /* clear setting */
2928 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2929 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2930 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2931 for (i = 0; i < 32; i++) {
2932 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2933 RPF_ETHERTYPE_FILTER_EN, 0);
2934 }
2935
2936 if (sc->sc_rss_enable) {
2937 /* Rx TC/RSS number config */
2938 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2939
2940 /* Rx flow control */
2941 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2942
2943 /* RSS Ring selection */
2944 switch (sc->sc_nqueues) {
2945 case 2:
2946 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2947 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2948 break;
2949 case 4:
2950 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2951 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2952 break;
2953 case 8:
2954 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2955 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2956 break;
2957 }
2958 }
2959
2960 /* L2 and Multicast filters */
2961 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2962 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2963 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2964 RPF_ACTION_HOST);
2965 }
2966 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2967 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2968
2969 /* Vlan filters */
2970 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2971 ETHERTYPE_QINQ);
2972 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2973 ETHERTYPE_VLAN);
2974 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2975
2976 if (sc->sc_features & FEATURES_REV_B) {
2977 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2978 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2979 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2980 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2981 }
2982
2983 /* misc */
2984 if (sc->sc_features & FEATURES_RPF2)
2985 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2986 else
2987 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2988
2989 /*
2990 * XXX: RX_TCP_RSS_HASH_REG:
2991 * linux set 0x000f0000
2992 * freebsd set 0x000f001e
2993 */
2994 /* RSS hash type set for IP/TCP */
2995 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2996 RX_TCP_RSS_HASH_TYPE, 0x001e);
2997
2998 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2999 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3000 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3001
3002 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3003 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3004 }
3005
3006 static void
3007 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3008 {
3009 int i;
3010
3011 if (sc->sc_intr_moderation_enable) {
3012 unsigned int tx_min, rx_min; /* 0-255 */
3013 unsigned int tx_max, rx_max; /* 0-511? */
3014
3015 switch (sc->sc_link_rate) {
3016 case AQ_LINK_100M:
3017 tx_min = 0x4f;
3018 tx_max = 0xff;
3019 rx_min = 0x04;
3020 rx_max = 0x50;
3021 break;
3022 case AQ_LINK_1G:
3023 default:
3024 tx_min = 0x4f;
3025 tx_max = 0xff;
3026 rx_min = 0x30;
3027 rx_max = 0x80;
3028 break;
3029 case AQ_LINK_2G5:
3030 tx_min = 0x4f;
3031 tx_max = 0xff;
3032 rx_min = 0x18;
3033 rx_max = 0xe0;
3034 break;
3035 case AQ_LINK_5G:
3036 tx_min = 0x4f;
3037 tx_max = 0xff;
3038 rx_min = 0x0c;
3039 rx_max = 0x70;
3040 break;
3041 case AQ_LINK_10G:
3042 tx_min = 0x4f;
3043 tx_max = 0x1ff;
3044 rx_min = 0x06; /* freebsd use 80 */
3045 rx_max = 0x38; /* freebsd use 120 */
3046 break;
3047 }
3048
3049 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3050 TX_DMA_INT_DESC_WRWB_EN, 0);
3051 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3052 TX_DMA_INT_DESC_MODERATE_EN, 1);
3053 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3054 RX_DMA_INT_DESC_WRWB_EN, 0);
3055 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3056 RX_DMA_INT_DESC_MODERATE_EN, 1);
3057
3058 for (i = 0; i < AQ_RINGS_NUM; i++) {
3059 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3060 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3061 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3062 TX_INTR_MODERATION_CTL_EN);
3063 }
3064 for (i = 0; i < AQ_RINGS_NUM; i++) {
3065 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3066 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3067 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3068 RX_INTR_MODERATION_CTL_EN);
3069 }
3070
3071 } else {
3072 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3073 TX_DMA_INT_DESC_WRWB_EN, 1);
3074 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3075 TX_DMA_INT_DESC_MODERATE_EN, 0);
3076 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3077 RX_DMA_INT_DESC_WRWB_EN, 1);
3078 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3079 RX_DMA_INT_DESC_MODERATE_EN, 0);
3080
3081 for (i = 0; i < AQ_RINGS_NUM; i++) {
3082 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3083 }
3084 for (i = 0; i < AQ_RINGS_NUM; i++) {
3085 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3086 }
3087 }
3088 }
3089
3090 static void
3091 aq_hw_qos_set(struct aq_softc *sc)
3092 {
3093 uint32_t tc = 0;
3094 uint32_t buff_size;
3095
3096 /* TPS Descriptor rate init */
3097 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3099
3100 /* TPS VM init */
3101 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3102
3103 /* TPS TC credits init */
3104 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3105 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3106
3107 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3108 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3109 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3110 TPS_DATA_TCT_WEIGHT, 0x64);
3111 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3112 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3113 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3114 TPS_DESC_TCT_WEIGHT, 0x1e);
3115
3116 /* Tx buf size */
3117 tc = 0;
3118 buff_size = AQ_HW_TXBUF_MAX;
3119 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3120 buff_size);
3121 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3122 (buff_size * (1024 / 32) * 66) / 100);
3123 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3124 (buff_size * (1024 / 32) * 50) / 100);
3125
3126 /* QoS Rx buf size per TC */
3127 tc = 0;
3128 buff_size = AQ_HW_RXBUF_MAX;
3129 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3130 buff_size);
3131 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3132 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3133 (buff_size * (1024 / 32) * 66) / 100);
3134 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3135 (buff_size * (1024 / 32) * 50) / 100);
3136
3137 /* QoS 802.1p priority -> TC mapping */
3138 int i_priority;
3139 for (i_priority = 0; i_priority < 8; i_priority++) {
3140 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3141 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3142 }
3143 }
3144
3145 /* called once from aq_attach */
3146 static int
3147 aq_init_rss(struct aq_softc *sc)
3148 {
3149 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3150 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3151 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3152 unsigned int i;
3153 int error;
3154
3155 /* initialize rss key */
3156 rss_getkey((uint8_t *)rss_key);
3157
3158 /* hash to ring table */
3159 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3160 rss_table[i] = i % sc->sc_nqueues;
3161 }
3162
3163 /*
3164 * set rss key
3165 */
3166 for (i = 0; i < __arraycount(rss_key); i++) {
3167 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3168 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3169 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3170 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3171 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3172 RPF_RSS_KEY_WR_EN, 1);
3173 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3174 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3175 if (error != 0) {
3176 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3177 __func__);
3178 goto rss_set_timeout;
3179 }
3180 }
3181
3182 /*
3183 * set rss indirection table
3184 *
3185 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3186 * we'll make it by __BITMAP(3) macros.
3187 */
3188 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3189 __BITMAP_ZERO(&bit3x64);
3190
3191 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3192 do { \
3193 if (val & 1) { \
3194 __BITMAP_SET((idx) * 3, (bitmap)); \
3195 } else { \
3196 __BITMAP_CLR((idx) * 3, (bitmap)); \
3197 } \
3198 if (val & 2) { \
3199 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3200 } else { \
3201 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3202 } \
3203 if (val & 4) { \
3204 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3205 } else { \
3206 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3207 } \
3208 } while (0 /* CONSTCOND */)
3209
3210 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3211 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3212 }
3213
3214 /* write 192bit data in steps of 16bit */
3215 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3216 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3217 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3218 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3219 RPF_RSS_REDIR_ADDR, i);
3220 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3221 RPF_RSS_REDIR_WR_EN, 1);
3222
3223 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3224 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3225 if (error != 0)
3226 break;
3227 }
3228
3229 rss_set_timeout:
3230 return error;
3231 }
3232
3233 static void
3234 aq_hw_l3_filter_set(struct aq_softc *sc)
3235 {
3236 int i;
3237
3238 /* clear all filter */
3239 for (i = 0; i < 8; i++) {
3240 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3241 RPF_L3_FILTER_L4_EN, 0);
3242 }
3243 }
3244
3245 static void
3246 aq_set_vlan_filters(struct aq_softc *sc)
3247 {
3248 struct ethercom *ec = &sc->sc_ethercom;
3249 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3250 struct vlanid_list *vlanidp;
3251 int i;
3252
3253 ETHER_LOCK(ec);
3254
3255 /* disable all vlan filters */
3256 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3257 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3258
3259 /* count VID */
3260 i = 0;
3261 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3262 i++;
3263
3264 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3265 (ifp->if_flags & IFF_PROMISC) ||
3266 (i > RPF_VLAN_MAX_FILTERS)) {
3267 /*
3268 * no vlan hwfilter, in promiscuous mode, or too many VID?
3269 * must receive all VID
3270 */
3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3272 RPF_VLAN_MODE_PROMISC, 1);
3273 goto done;
3274 }
3275
3276 /* receive only selected VID */
3277 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3278 i = 0;
3279 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3280 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3281 RPF_VLAN_FILTER_EN, 1);
3282 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3283 RPF_VLAN_FILTER_RXQ_EN, 0);
3284 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3285 RPF_VLAN_FILTER_RXQ, 0);
3286 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3287 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3288 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3289 RPF_VLAN_FILTER_ID, vlanidp->vid);
3290 i++;
3291 }
3292
3293 done:
3294 ETHER_UNLOCK(ec);
3295 }
3296
3297 static int
3298 aq_hw_init(struct aq_softc *sc)
3299 {
3300 uint32_t v;
3301
3302 /* Force limit MRRS on RDM/TDM to 2K */
3303 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3304 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3305
3306 /*
3307 * TX DMA total request limit. B0 hardware is not capable to
3308 * handle more than (8K-MRRS) incoming DMA data.
3309 * Value 24 in 256byte units
3310 */
3311 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3312
3313 aq_hw_init_tx_path(sc);
3314 aq_hw_init_rx_path(sc);
3315
3316 aq_hw_interrupt_moderation_set(sc);
3317
3318 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3319 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3320
3321 aq_hw_qos_set(sc);
3322
3323 /* Enable interrupt */
3324 int irqmode;
3325 if (sc->sc_msix)
3326 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3327 else
3328 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3329
3330 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3331 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3332 sc->sc_msix ? 1 : 0);
3333 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3334
3335 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3336
3337 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3338 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3339 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3340 );
3341
3342 /* link interrupt */
3343 if (!sc->sc_msix)
3344 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3345 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3346 __BIT(7) | sc->sc_linkstat_irq);
3347
3348 return 0;
3349 }
3350
3351 static int
3352 aq_update_link_status(struct aq_softc *sc)
3353 {
3354 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3355 aq_link_speed_t rate = AQ_LINK_NONE;
3356 aq_link_fc_t fc = AQ_FC_NONE;
3357 aq_link_eee_t eee = AQ_EEE_DISABLE;
3358 unsigned int speed;
3359 int changed = 0;
3360
3361 aq_get_linkmode(sc, &rate, &fc, &eee);
3362
3363 if (sc->sc_link_rate != rate)
3364 changed = 1;
3365 if (sc->sc_link_fc != fc)
3366 changed = 1;
3367 if (sc->sc_link_eee != eee)
3368 changed = 1;
3369
3370 if (changed) {
3371 switch (rate) {
3372 case AQ_LINK_100M:
3373 speed = 100;
3374 break;
3375 case AQ_LINK_1G:
3376 speed = 1000;
3377 break;
3378 case AQ_LINK_2G5:
3379 speed = 2500;
3380 break;
3381 case AQ_LINK_5G:
3382 speed = 5000;
3383 break;
3384 case AQ_LINK_10G:
3385 speed = 10000;
3386 break;
3387 case AQ_LINK_NONE:
3388 default:
3389 speed = 0;
3390 break;
3391 }
3392
3393 if (sc->sc_link_rate == AQ_LINK_NONE) {
3394 /* link DOWN -> UP */
3395 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3396 speed);
3397 if_link_state_change(ifp, LINK_STATE_UP);
3398 } else if (rate == AQ_LINK_NONE) {
3399 /* link UP -> DOWN */
3400 device_printf(sc->sc_dev, "link is DOWN\n");
3401 if_link_state_change(ifp, LINK_STATE_DOWN);
3402 } else {
3403 device_printf(sc->sc_dev,
3404 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3405 speed, fc, eee);
3406 }
3407
3408 sc->sc_link_rate = rate;
3409 sc->sc_link_fc = fc;
3410 sc->sc_link_eee = eee;
3411
3412 /* update interrupt timing according to new link speed */
3413 aq_hw_interrupt_moderation_set(sc);
3414 }
3415
3416 return changed;
3417 }
3418
3419 #ifdef AQ_EVENT_COUNTERS
3420 static void
3421 aq_update_statistics(struct aq_softc *sc)
3422 {
3423 int prev = sc->sc_statistics_idx;
3424 int cur = prev ^ 1;
3425
3426 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3427
3428 /*
3429 * aq's internal statistics counter is 32bit.
3430 * cauculate delta, and add to evcount
3431 */
3432 #define ADD_DELTA(cur, prev, name) \
3433 do { \
3434 uint32_t n; \
3435 n = (uint32_t)(sc->sc_statistics[cur].name - \
3436 sc->sc_statistics[prev].name); \
3437 if (n != 0) { \
3438 AQ_EVCNT_ADD(sc, name, n); \
3439 } \
3440 } while (/*CONSTCOND*/0);
3441
3442 ADD_DELTA(cur, prev, uprc);
3443 ADD_DELTA(cur, prev, mprc);
3444 ADD_DELTA(cur, prev, bprc);
3445 ADD_DELTA(cur, prev, prc);
3446 ADD_DELTA(cur, prev, erpr);
3447 ADD_DELTA(cur, prev, uptc);
3448 ADD_DELTA(cur, prev, mptc);
3449 ADD_DELTA(cur, prev, bptc);
3450 ADD_DELTA(cur, prev, ptc);
3451 ADD_DELTA(cur, prev, erpt);
3452 ADD_DELTA(cur, prev, mbtc);
3453 ADD_DELTA(cur, prev, bbtc);
3454 ADD_DELTA(cur, prev, mbrc);
3455 ADD_DELTA(cur, prev, bbrc);
3456 ADD_DELTA(cur, prev, ubrc);
3457 ADD_DELTA(cur, prev, ubtc);
3458 ADD_DELTA(cur, prev, dpc);
3459 ADD_DELTA(cur, prev, cprc);
3460
3461 sc->sc_statistics_idx = cur;
3462 }
3463 #endif /* AQ_EVENT_COUNTERS */
3464
3465 /* allocate and map one DMA block */
3466 static int
3467 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3468 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3469 {
3470 int nsegs, error;
3471
3472 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3473 1, &nsegs, 0)) != 0) {
3474 aprint_error_dev(sc->sc_dev,
3475 "unable to allocate DMA buffer, error=%d\n", error);
3476 goto fail_alloc;
3477 }
3478
3479 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3480 BUS_DMA_COHERENT)) != 0) {
3481 aprint_error_dev(sc->sc_dev,
3482 "unable to map DMA buffer, error=%d\n", error);
3483 goto fail_map;
3484 }
3485
3486 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3487 0, mapp)) != 0) {
3488 aprint_error_dev(sc->sc_dev,
3489 "unable to create DMA map, error=%d\n", error);
3490 goto fail_create;
3491 }
3492
3493 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3494 0)) != 0) {
3495 aprint_error_dev(sc->sc_dev,
3496 "unable to load DMA map, error=%d\n", error);
3497 goto fail_load;
3498 }
3499
3500 *sizep = size;
3501 return 0;
3502
3503 fail_load:
3504 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3505 *mapp = NULL;
3506 fail_create:
3507 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3508 *addrp = NULL;
3509 fail_map:
3510 bus_dmamem_free(sc->sc_dmat, seg, 1);
3511 memset(seg, 0, sizeof(*seg));
3512 fail_alloc:
3513 *sizep = 0;
3514 return error;
3515 }
3516
3517 static void
3518 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3519 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3520 {
3521 if (*mapp != NULL) {
3522 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3523 *mapp = NULL;
3524 }
3525 if (*addrp != NULL) {
3526 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3527 *addrp = NULL;
3528 }
3529 if (*sizep != 0) {
3530 bus_dmamem_free(sc->sc_dmat, seg, 1);
3531 memset(seg, 0, sizeof(*seg));
3532 *sizep = 0;
3533 }
3534 }
3535
3536 static int
3537 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3538 {
3539 int i, error;
3540
3541 /* allocate tx descriptors */
3542 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3543 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3544 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3545 if (error != 0)
3546 return error;
3547
3548 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3549
3550 /* fill tx ring with dmamap */
3551 for (i = 0; i < AQ_TXD_NUM; i++) {
3552 #define AQ_MAXDMASIZE (16 * 1024)
3553 #define AQ_NTXSEGS 32
3554 /* XXX: TODO: error check */
3555 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3556 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3557 }
3558 return 0;
3559 }
3560
3561 static void
3562 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3563 {
3564 int i;
3565
3566 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3567 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3568
3569 for (i = 0; i < AQ_TXD_NUM; i++) {
3570 if (txring->txr_mbufs[i].dmamap != NULL) {
3571 if (txring->txr_mbufs[i].m != NULL) {
3572 bus_dmamap_unload(sc->sc_dmat,
3573 txring->txr_mbufs[i].dmamap);
3574 m_freem(txring->txr_mbufs[i].m);
3575 txring->txr_mbufs[i].m = NULL;
3576 }
3577 bus_dmamap_destroy(sc->sc_dmat,
3578 txring->txr_mbufs[i].dmamap);
3579 txring->txr_mbufs[i].dmamap = NULL;
3580 }
3581 }
3582 }
3583
3584 static int
3585 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3586 {
3587 int i, error;
3588
3589 /* allocate rx descriptors */
3590 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3591 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3592 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3593 if (error != 0)
3594 return error;
3595
3596 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3597
3598 /* fill rxring with dmamaps */
3599 for (i = 0; i < AQ_RXD_NUM; i++) {
3600 rxring->rxr_mbufs[i].m = NULL;
3601 /* XXX: TODO: error check */
3602 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3603 &rxring->rxr_mbufs[i].dmamap);
3604 }
3605 return 0;
3606 }
3607
3608 static void
3609 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3610 {
3611 int i;
3612
3613 /* free all mbufs allocated for RX */
3614 for (i = 0; i < AQ_RXD_NUM; i++) {
3615 if (rxring->rxr_mbufs[i].m != NULL) {
3616 bus_dmamap_unload(sc->sc_dmat,
3617 rxring->rxr_mbufs[i].dmamap);
3618 m_freem(rxring->rxr_mbufs[i].m);
3619 rxring->rxr_mbufs[i].m = NULL;
3620 }
3621 }
3622 }
3623
3624 static void
3625 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3626 {
3627 int i;
3628
3629 /* free all mbufs and dmamaps */
3630 aq_rxdrain(sc, rxring);
3631 for (i = 0; i < AQ_RXD_NUM; i++) {
3632 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3633 bus_dmamap_destroy(sc->sc_dmat,
3634 rxring->rxr_mbufs[i].dmamap);
3635 rxring->rxr_mbufs[i].dmamap = NULL;
3636 }
3637 }
3638
3639 /* free RX descriptor */
3640 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3641 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3642 }
3643
3644 static void
3645 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3646 struct mbuf *m)
3647 {
3648 int error;
3649
3650 /* if mbuf already exists, unload and free */
3651 if (rxring->rxr_mbufs[idx].m != NULL) {
3652 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3653 m_freem(rxring->rxr_mbufs[idx].m);
3654 rxring->rxr_mbufs[idx].m = NULL;
3655 }
3656
3657 rxring->rxr_mbufs[idx].m = m;
3658
3659 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3660 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3661 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3662 if (error) {
3663 device_printf(sc->sc_dev,
3664 "unable to load rx DMA map %d, error = %d\n", idx, error);
3665 panic("%s: unable to load rx DMA map. error=%d",
3666 __func__, error);
3667 }
3668 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3669 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3670 }
3671
3672 static inline void
3673 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3674 {
3675 /* refill rxdesc, and sync */
3676 rxring->rxr_rxdesc[idx].read.buf_addr =
3677 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3678 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3679 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3680 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3681 BUS_DMASYNC_PREWRITE);
3682 }
3683
3684 static struct mbuf *
3685 aq_alloc_mbuf(void)
3686 {
3687 struct mbuf *m;
3688
3689 MGETHDR(m, M_DONTWAIT, MT_DATA);
3690 if (m == NULL)
3691 return NULL;
3692
3693 MCLGET(m, M_DONTWAIT);
3694 if ((m->m_flags & M_EXT) == 0) {
3695 m_freem(m);
3696 return NULL;
3697 }
3698
3699 return m;
3700 }
3701
3702 /* allocate mbuf and unload dmamap */
3703 static int
3704 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3705 {
3706 struct mbuf *m;
3707
3708 m = aq_alloc_mbuf();
3709 if (m == NULL)
3710 return ENOBUFS;
3711
3712 aq_rxring_setmbuf(sc, rxring, idx, m);
3713 return 0;
3714 }
3715
3716 static int
3717 aq_txrx_rings_alloc(struct aq_softc *sc)
3718 {
3719 int n, error;
3720
3721 for (n = 0; n < sc->sc_nqueues; n++) {
3722 sc->sc_queue[n].sc = sc;
3723 sc->sc_queue[n].txring.txr_sc = sc;
3724 sc->sc_queue[n].txring.txr_index = n;
3725 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3726 IPL_NET);
3727 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3728 if (error != 0)
3729 goto failure;
3730
3731 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3732 if (error != 0)
3733 goto failure;
3734
3735 sc->sc_queue[n].rxring.rxr_sc = sc;
3736 sc->sc_queue[n].rxring.rxr_index = n;
3737 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3738 IPL_NET);
3739 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3740 if (error != 0)
3741 break;
3742 }
3743
3744 failure:
3745 return error;
3746 }
3747
3748 static void
3749 aq_txrx_rings_free(struct aq_softc *sc)
3750 {
3751 int n;
3752
3753 for (n = 0; n < sc->sc_nqueues; n++) {
3754 aq_txring_free(sc, &sc->sc_queue[n].txring);
3755 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3756
3757 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3758
3759 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3760 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3761 }
3762 }
3763
3764 static int
3765 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3766 {
3767 int error = 0;
3768 txring->txr_softint = NULL;
3769
3770 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3771 if (txring->txr_pcq == NULL) {
3772 aprint_error_dev(sc->sc_dev,
3773 "unable to allocate pcq for TXring[%d]\n",
3774 txring->txr_index);
3775 error = ENOMEM;
3776 goto done;
3777 }
3778
3779 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3780 aq_deferred_transmit, txring);
3781 if (txring->txr_softint == NULL) {
3782 aprint_error_dev(sc->sc_dev,
3783 "unable to establish softint for TXring[%d]\n",
3784 txring->txr_index);
3785 error = ENOENT;
3786 }
3787
3788 done:
3789 return error;
3790 }
3791
3792 static void
3793 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3794 {
3795 struct mbuf *m;
3796
3797 if (txring->txr_softint != NULL) {
3798 softint_disestablish(txring->txr_softint);
3799 txring->txr_softint = NULL;
3800 }
3801
3802 if (txring->txr_pcq != NULL) {
3803 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3804 m_freem(m);
3805 pcq_destroy(txring->txr_pcq);
3806 txring->txr_pcq = NULL;
3807 }
3808 }
3809
3810 #if NSYSMON_ENVSYS > 0
3811 static void
3812 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3813 {
3814 struct aq_softc *sc;
3815 uint32_t temp;
3816 int error;
3817
3818 sc = sme->sme_cookie;
3819
3820 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3821 if (error == 0) {
3822 edata->value_cur = temp;
3823 edata->state = ENVSYS_SVALID;
3824 } else {
3825 edata->state = ENVSYS_SINVALID;
3826 }
3827 }
3828 #endif
3829
3830 static void
3831 aq_tick(void *arg)
3832 {
3833 struct aq_softc *sc = arg;
3834
3835 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3836 sc->sc_detect_linkstat = false;
3837 aq_update_link_status(sc);
3838 }
3839
3840 #ifdef AQ_EVENT_COUNTERS
3841 if (sc->sc_poll_statistics)
3842 aq_update_statistics(sc);
3843 #endif
3844
3845 if (sc->sc_poll_linkstat
3846 #ifdef AQ_EVENT_COUNTERS
3847 || sc->sc_poll_statistics
3848 #endif
3849 ) {
3850 callout_schedule(&sc->sc_tick_ch, hz);
3851 }
3852 }
3853
3854 /* interrupt enable/disable */
3855 static void
3856 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3857 {
3858 uint32_t imask = 0;
3859 int i;
3860
3861 if (txrx) {
3862 for (i = 0; i < sc->sc_nqueues; i++) {
3863 imask |= __BIT(sc->sc_tx_irq[i]);
3864 imask |= __BIT(sc->sc_rx_irq[i]);
3865 }
3866 }
3867
3868 if (link)
3869 imask |= __BIT(sc->sc_linkstat_irq);
3870
3871 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3872 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3873 }
3874
3875 static int
3876 aq_legacy_intr(void *arg)
3877 {
3878 struct aq_softc *sc = arg;
3879 uint32_t status;
3880 int nintr = 0;
3881
3882 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3883 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3884
3885 if (status & __BIT(sc->sc_linkstat_irq)) {
3886 sc->sc_detect_linkstat = true;
3887 callout_schedule(&sc->sc_tick_ch, 0);
3888 nintr++;
3889 }
3890
3891 if (status & __BIT(sc->sc_rx_irq[0])) {
3892 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3893 }
3894
3895 if (status & __BIT(sc->sc_tx_irq[0])) {
3896 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3897 }
3898
3899 return nintr;
3900 }
3901
3902 static int
3903 aq_txrx_intr(void *arg)
3904 {
3905 struct aq_queue *queue = arg;
3906 struct aq_softc *sc = queue->sc;
3907 struct aq_txring *txring = &queue->txring;
3908 struct aq_rxring *rxring = &queue->rxring;
3909 uint32_t status;
3910 int nintr = 0;
3911 int txringidx, rxringidx, txirq, rxirq;
3912
3913 txringidx = txring->txr_index;
3914 rxringidx = rxring->rxr_index;
3915 txirq = sc->sc_tx_irq[txringidx];
3916 rxirq = sc->sc_rx_irq[rxringidx];
3917
3918 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3919 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3920 /* stray interrupt? */
3921 return 0;
3922 }
3923
3924 nintr += aq_rx_intr(rxring);
3925 nintr += aq_tx_intr(txring);
3926
3927 return nintr;
3928 }
3929
3930 static int
3931 aq_link_intr(void *arg)
3932 {
3933 struct aq_softc *sc = arg;
3934 uint32_t status;
3935 int nintr = 0;
3936
3937 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3938 if (status & __BIT(sc->sc_linkstat_irq)) {
3939 sc->sc_detect_linkstat = true;
3940 callout_schedule(&sc->sc_tick_ch, 0);
3941 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3942 __BIT(sc->sc_linkstat_irq));
3943 nintr++;
3944 }
3945
3946 return nintr;
3947 }
3948
3949 static void
3950 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3951 {
3952 const int ringidx = txring->txr_index;
3953 int i;
3954
3955 mutex_enter(&txring->txr_mutex);
3956
3957 txring->txr_prodidx = 0;
3958 txring->txr_considx = 0;
3959 txring->txr_nfree = AQ_TXD_NUM;
3960 txring->txr_active = false;
3961
3962 /* free mbufs untransmitted */
3963 for (i = 0; i < AQ_TXD_NUM; i++) {
3964 if (txring->txr_mbufs[i].m != NULL) {
3965 m_freem(txring->txr_mbufs[i].m);
3966 txring->txr_mbufs[i].m = NULL;
3967 }
3968 }
3969
3970 /* disable DMA */
3971 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3972
3973 if (start) {
3974 /* TX descriptor physical address */
3975 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3976 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3977 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3978 (uint32_t)((uint64_t)paddr >> 32));
3979
3980 /* TX descriptor size */
3981 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3982 AQ_TXD_NUM / 8);
3983
3984 /* reload TAIL pointer */
3985 txring->txr_prodidx = txring->txr_considx =
3986 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3987 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3988
3989 /* Mapping interrupt vector */
3990 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3991 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3992 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3993 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3994
3995 /* enable DMA */
3996 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3997 TX_DMA_DESC_EN, 1);
3998
3999 const int cpuid = 0; /* XXX? */
4000 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4001 TDM_DCAD_CPUID, cpuid);
4002 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4003 TDM_DCAD_CPUID_EN, 0);
4004
4005 txring->txr_active = true;
4006 }
4007
4008 mutex_exit(&txring->txr_mutex);
4009 }
4010
4011 static int
4012 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4013 {
4014 const int ringidx = rxring->rxr_index;
4015 int i;
4016 int error = 0;
4017
4018 mutex_enter(&rxring->rxr_mutex);
4019 rxring->rxr_active = false;
4020 rxring->rxr_discarding = false;
4021 if (rxring->rxr_receiving_m != NULL) {
4022 m_freem(rxring->rxr_receiving_m);
4023 rxring->rxr_receiving_m = NULL;
4024 rxring->rxr_receiving_m_last = NULL;
4025 }
4026
4027 /* disable DMA */
4028 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4029
4030 /* free all RX mbufs */
4031 aq_rxdrain(sc, rxring);
4032
4033 if (start) {
4034 for (i = 0; i < AQ_RXD_NUM; i++) {
4035 error = aq_rxring_add(sc, rxring, i);
4036 if (error != 0) {
4037 aq_rxdrain(sc, rxring);
4038 return error;
4039 }
4040 aq_rxring_reset_desc(sc, rxring, i);
4041 }
4042
4043 /* RX descriptor physical address */
4044 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4045 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4046 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4047 (uint32_t)((uint64_t)paddr >> 32));
4048
4049 /* RX descriptor size */
4050 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4051 AQ_RXD_NUM / 8);
4052
4053 /* maximum receive frame size */
4054 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4055 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4056 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4057 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4058
4059 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4060 RX_DMA_DESC_HEADER_SPLIT, 0);
4061 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4062 RX_DMA_DESC_VLAN_STRIP,
4063 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4064 1 : 0);
4065
4066 /*
4067 * reload TAIL pointer, and update readidx
4068 * (HEAD pointer cannot write)
4069 */
4070 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4071 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4072 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4073 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4074
4075 /* Rx ring set mode */
4076
4077 /* Mapping interrupt vector */
4078 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4079 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4080 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4081 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4082
4083 const int cpuid = 0; /* XXX? */
4084 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4085 RX_DMA_DCAD_CPUID, cpuid);
4086 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4087 RX_DMA_DCAD_DESC_EN, 0);
4088 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4089 RX_DMA_DCAD_HEADER_EN, 0);
4090 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4091 RX_DMA_DCAD_PAYLOAD_EN, 0);
4092
4093 /* enable DMA. start receiving */
4094 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4095 RX_DMA_DESC_EN, 1);
4096
4097 rxring->rxr_active = true;
4098 }
4099
4100 mutex_exit(&rxring->rxr_mutex);
4101 return error;
4102 }
4103
4104 #define TXRING_NEXTIDX(idx) \
4105 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4106 #define RXRING_NEXTIDX(idx) \
4107 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4108
4109 static int
4110 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4111 {
4112 bus_dmamap_t map;
4113 struct mbuf *m = *mp;
4114 uint32_t ctl1, ctl1_ctx, ctl2;
4115 int idx, i, error;
4116
4117 idx = txring->txr_prodidx;
4118 map = txring->txr_mbufs[idx].dmamap;
4119
4120 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4121 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4122 if (error == EFBIG) {
4123 struct mbuf *n;
4124 n = m_defrag(m, M_DONTWAIT);
4125 if (n == NULL)
4126 return EFBIG;
4127 /* m_defrag() preserve m */
4128 KASSERT(n == m);
4129 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4130 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4131 }
4132 if (error != 0)
4133 return error;
4134
4135 /*
4136 * check spaces of free descriptors.
4137 * +1 is additional descriptor for context (vlan, etc,.)
4138 */
4139 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4140 device_printf(sc->sc_dev,
4141 "TX: not enough descriptors left %d for %d segs\n",
4142 txring->txr_nfree, map->dm_nsegs + 1);
4143 bus_dmamap_unload(sc->sc_dmat, map);
4144 return ENOBUFS;
4145 }
4146
4147 /* sync dma for mbuf */
4148 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4149 BUS_DMASYNC_PREWRITE);
4150
4151 ctl1_ctx = 0;
4152 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4153
4154 if (vlan_has_tag(m)) {
4155 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4156 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4157
4158 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4159 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4160
4161 /* fill context descriptor and forward index */
4162 txring->txr_txdesc[idx].buf_addr = 0;
4163 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4164 txring->txr_txdesc[idx].ctl2 = 0;
4165
4166 idx = TXRING_NEXTIDX(idx);
4167 txring->txr_nfree--;
4168 }
4169
4170 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4171 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4172 if (m->m_pkthdr.csum_flags &
4173 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4174 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4175 }
4176
4177 /* fill descriptor(s) */
4178 for (i = 0; i < map->dm_nsegs; i++) {
4179 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4180 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4181 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4182
4183 if (i == 0) {
4184 /* remember mbuf of these descriptors */
4185 txring->txr_mbufs[idx].m = m;
4186 } else {
4187 txring->txr_mbufs[idx].m = NULL;
4188 }
4189
4190 if (i == map->dm_nsegs - 1) {
4191 /* last segment, mark an EndOfPacket, and cause intr */
4192 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4193 }
4194
4195 txring->txr_txdesc[idx].buf_addr =
4196 htole64(map->dm_segs[i].ds_addr);
4197 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4198 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4199
4200 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4201 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4202 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4203
4204 idx = TXRING_NEXTIDX(idx);
4205 txring->txr_nfree--;
4206 }
4207
4208 txring->txr_prodidx = idx;
4209
4210 return 0;
4211 }
4212
4213 static int
4214 aq_tx_intr(void *arg)
4215 {
4216 struct aq_txring *txring = arg;
4217 struct aq_softc *sc = txring->txr_sc;
4218 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4219 struct mbuf *m;
4220 const int ringidx = txring->txr_index;
4221 unsigned int idx, hw_head, n = 0;
4222
4223 mutex_enter(&txring->txr_mutex);
4224
4225 if (!txring->txr_active)
4226 goto tx_intr_done;
4227
4228 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4229 TX_DMA_DESC_HEAD_PTR);
4230 if (hw_head == txring->txr_considx) {
4231 goto tx_intr_done;
4232 }
4233
4234 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4235
4236 for (idx = txring->txr_considx; idx != hw_head;
4237 idx = TXRING_NEXTIDX(idx), n++) {
4238
4239 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4240 bus_dmamap_unload(sc->sc_dmat,
4241 txring->txr_mbufs[idx].dmamap);
4242
4243 if_statinc_ref(nsr, if_opackets);
4244 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4245 if (m->m_flags & M_MCAST)
4246 if_statinc_ref(nsr, if_omcasts);
4247
4248 m_freem(m);
4249 txring->txr_mbufs[idx].m = NULL;
4250 }
4251
4252 txring->txr_nfree++;
4253 }
4254 txring->txr_considx = idx;
4255
4256 IF_STAT_PUTREF(ifp);
4257
4258 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4259 ifp->if_flags &= ~IFF_OACTIVE;
4260
4261 /* no more pending TX packet, cancel watchdog */
4262 if (txring->txr_nfree >= AQ_TXD_NUM)
4263 ifp->if_timer = 0;
4264
4265 tx_intr_done:
4266 mutex_exit(&txring->txr_mutex);
4267
4268 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4269 return n;
4270 }
4271
4272 static int
4273 aq_rx_intr(void *arg)
4274 {
4275 struct aq_rxring *rxring = arg;
4276 struct aq_softc *sc = rxring->rxr_sc;
4277 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4278 const int ringidx = rxring->rxr_index;
4279 aq_rx_desc_t *rxd;
4280 struct mbuf *m, *m0, *mprev, *new_m;
4281 uint32_t rxd_type, rxd_hash __unused;
4282 uint16_t rxd_status, rxd_pktlen;
4283 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4284 unsigned int idx, n = 0;
4285 bool discarding;
4286
4287 mutex_enter(&rxring->rxr_mutex);
4288
4289 if (!rxring->rxr_active)
4290 goto rx_intr_done;
4291
4292 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4293 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4294 goto rx_intr_done;
4295 }
4296
4297 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4298
4299 /* restore ring context */
4300 discarding = rxring->rxr_discarding;
4301 m0 = rxring->rxr_receiving_m;
4302 mprev = rxring->rxr_receiving_m_last;
4303
4304 for (idx = rxring->rxr_readidx;
4305 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4306 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4307
4308 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4309 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4310 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4311
4312 rxd = &rxring->rxr_rxdesc[idx];
4313 rxd_status = le16toh(rxd->wb.status);
4314
4315 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4316 break; /* not yet done */
4317
4318 rxd_type = le32toh(rxd->wb.type);
4319 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4320 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4321 rxd_hash = le32toh(rxd->wb.rss_hash);
4322 rxd_vlan = le16toh(rxd->wb.vlan);
4323
4324 /*
4325 * Some segments are being dropped while receiving jumboframe.
4326 * Discard until EOP.
4327 */
4328 if (discarding)
4329 goto rx_next;
4330
4331 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4332 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4333 if_statinc_ref(nsr, if_ierrors);
4334 if (m0 != NULL) {
4335 m_freem(m0);
4336 m0 = mprev = NULL;
4337 }
4338 discarding = true;
4339 goto rx_next;
4340 }
4341
4342 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4343 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4344 BUS_DMASYNC_POSTREAD);
4345 m = rxring->rxr_mbufs[idx].m;
4346
4347 new_m = aq_alloc_mbuf();
4348 if (new_m == NULL) {
4349 /*
4350 * cannot allocate new mbuf.
4351 * discard this packet, and reuse mbuf for next.
4352 */
4353 if_statinc_ref(nsr, if_iqdrops);
4354 if (m0 != NULL) {
4355 m_freem(m0);
4356 m0 = mprev = NULL;
4357 }
4358 discarding = true;
4359 goto rx_next;
4360 }
4361 rxring->rxr_mbufs[idx].m = NULL;
4362 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4363
4364 if (m0 == NULL) {
4365 m0 = m;
4366 } else {
4367 if (m->m_flags & M_PKTHDR)
4368 m_remove_pkthdr(m);
4369 mprev->m_next = m;
4370 }
4371 mprev = m;
4372
4373 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4374 /* to be continued in the next segment */
4375 m->m_len = MCLBYTES;
4376 } else {
4377 /* the last segment */
4378 int mlen = rxd_pktlen % MCLBYTES;
4379 if (mlen == 0)
4380 mlen = MCLBYTES;
4381 m->m_len = mlen;
4382 m0->m_pkthdr.len = rxd_pktlen;
4383 /* VLAN offloading */
4384 if ((sc->sc_ethercom.ec_capenable &
4385 ETHERCAP_VLAN_HWTAGGING) &&
4386 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4387 __SHIFTOUT(rxd_type,
4388 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4389 vlan_set_tag(m0, rxd_vlan);
4390 }
4391
4392 /* Checksum offloading */
4393 unsigned int pkttype_eth =
4394 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4395 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4396 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4397 __SHIFTOUT(rxd_type,
4398 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4399 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4400 if (__SHIFTOUT(rxd_status,
4401 RXDESC_STATUS_IPV4_CSUM_NG))
4402 m0->m_pkthdr.csum_flags |=
4403 M_CSUM_IPv4_BAD;
4404 }
4405
4406 /*
4407 * aq will always mark BAD for fragment packets,
4408 * but this is not a problem because the IP stack
4409 * ignores the CSUM flag in fragment packets.
4410 */
4411 if (__SHIFTOUT(rxd_type,
4412 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4413 bool checked = false;
4414 unsigned int pkttype_proto =
4415 __SHIFTOUT(rxd_type,
4416 RXDESC_TYPE_PKTTYPE_PROTO);
4417
4418 if (pkttype_proto ==
4419 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4420 if ((pkttype_eth ==
4421 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4422 (ifp->if_capabilities &
4423 IFCAP_CSUM_TCPv4_Rx)) {
4424 m0->m_pkthdr.csum_flags |=
4425 M_CSUM_TCPv4;
4426 checked = true;
4427 } else if ((pkttype_eth ==
4428 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4429 (ifp->if_capabilities &
4430 IFCAP_CSUM_TCPv6_Rx)) {
4431 m0->m_pkthdr.csum_flags |=
4432 M_CSUM_TCPv6;
4433 checked = true;
4434 }
4435 } else if (pkttype_proto ==
4436 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4437 if ((pkttype_eth ==
4438 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4439 (ifp->if_capabilities &
4440 IFCAP_CSUM_UDPv4_Rx)) {
4441 m0->m_pkthdr.csum_flags |=
4442 M_CSUM_UDPv4;
4443 checked = true;
4444 } else if ((pkttype_eth ==
4445 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4446 (ifp->if_capabilities &
4447 IFCAP_CSUM_UDPv6_Rx)) {
4448 m0->m_pkthdr.csum_flags |=
4449 M_CSUM_UDPv6;
4450 checked = true;
4451 }
4452 }
4453 if (checked &&
4454 (__SHIFTOUT(rxd_status,
4455 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4456 !__SHIFTOUT(rxd_status,
4457 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4458 m0->m_pkthdr.csum_flags |=
4459 M_CSUM_TCP_UDP_BAD;
4460 }
4461 }
4462
4463 m_set_rcvif(m0, ifp);
4464 if_statinc_ref(nsr, if_ipackets);
4465 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4466 if_percpuq_enqueue(ifp->if_percpuq, m0);
4467 m0 = mprev = NULL;
4468 }
4469
4470 rx_next:
4471 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4472 discarding = false;
4473
4474 aq_rxring_reset_desc(sc, rxring, idx);
4475 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4476 }
4477 /* save ring context */
4478 rxring->rxr_readidx = idx;
4479 rxring->rxr_discarding = discarding;
4480 rxring->rxr_receiving_m = m0;
4481 rxring->rxr_receiving_m_last = mprev;
4482
4483 IF_STAT_PUTREF(ifp);
4484
4485 rx_intr_done:
4486 mutex_exit(&rxring->rxr_mutex);
4487
4488 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4489 return n;
4490 }
4491
4492 static int
4493 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4494 {
4495 struct ifnet *ifp = &ec->ec_if;
4496 struct aq_softc *sc = ifp->if_softc;
4497
4498 aq_set_vlan_filters(sc);
4499 return 0;
4500 }
4501
4502 static int
4503 aq_ifflags_cb(struct ethercom *ec)
4504 {
4505 struct ifnet *ifp = &ec->ec_if;
4506 struct aq_softc *sc = ifp->if_softc;
4507 int i, ecchange, error = 0;
4508 unsigned short iffchange;
4509
4510 AQ_LOCK(sc);
4511
4512 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4513 if ((iffchange & IFF_PROMISC) != 0)
4514 error = aq_set_filter(sc);
4515
4516 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4517 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4518 for (i = 0; i < AQ_RINGS_NUM; i++) {
4519 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4520 RX_DMA_DESC_VLAN_STRIP,
4521 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4522 1 : 0);
4523 }
4524 }
4525
4526 /* vlan configuration depends on also interface promiscuous mode */
4527 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4528 aq_set_vlan_filters(sc);
4529
4530 sc->sc_ec_capenable = ec->ec_capenable;
4531 sc->sc_if_flags = ifp->if_flags;
4532
4533 AQ_UNLOCK(sc);
4534
4535 return error;
4536 }
4537
4538 static int
4539 aq_init(struct ifnet *ifp)
4540 {
4541 struct aq_softc *sc = ifp->if_softc;
4542 int i, error = 0;
4543
4544 aq_stop(ifp, false);
4545
4546 AQ_LOCK(sc);
4547
4548 aq_set_vlan_filters(sc);
4549 aq_set_capability(sc);
4550
4551 for (i = 0; i < sc->sc_nqueues; i++) {
4552 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4553 }
4554
4555 /* invalidate RX descriptor cache */
4556 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4557 AQ_READ_REG_BIT(sc,
4558 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4559
4560 /* start RX */
4561 for (i = 0; i < sc->sc_nqueues; i++) {
4562 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4563 if (error != 0) {
4564 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4565 __func__);
4566 goto aq_init_failure;
4567 }
4568 }
4569 aq_init_rss(sc);
4570 aq_hw_l3_filter_set(sc);
4571
4572 /* need to start callout? */
4573 if (sc->sc_poll_linkstat
4574 #ifdef AQ_EVENT_COUNTERS
4575 || sc->sc_poll_statistics
4576 #endif
4577 ) {
4578 callout_schedule(&sc->sc_tick_ch, hz);
4579 }
4580
4581 /* ready */
4582 ifp->if_flags |= IFF_RUNNING;
4583 ifp->if_flags &= ~IFF_OACTIVE;
4584
4585 /* start TX and RX */
4586 aq_enable_intr(sc, true, true);
4587 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4588 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4589
4590 aq_init_failure:
4591 sc->sc_if_flags = ifp->if_flags;
4592
4593 AQ_UNLOCK(sc);
4594
4595 return error;
4596 }
4597
4598 static void
4599 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4600 struct aq_txring *txring, bool is_transmit)
4601 {
4602 struct mbuf *m;
4603 int npkt, error;
4604
4605 if ((ifp->if_flags & IFF_RUNNING) == 0)
4606 return;
4607
4608 for (npkt = 0; ; npkt++) {
4609 if (is_transmit)
4610 m = pcq_peek(txring->txr_pcq);
4611 else
4612 IFQ_POLL(&ifp->if_snd, m);
4613
4614 if (m == NULL)
4615 break;
4616
4617 if (txring->txr_nfree < AQ_TXD_MIN)
4618 break;
4619
4620 if (is_transmit)
4621 pcq_get(txring->txr_pcq);
4622 else
4623 IFQ_DEQUEUE(&ifp->if_snd, m);
4624
4625 error = aq_encap_txring(sc, txring, &m);
4626 if (error != 0) {
4627 /* too many mbuf chains? or not enough descriptors? */
4628 m_freem(m);
4629 if_statinc(ifp, if_oerrors);
4630 if (txring->txr_index == 0 && error == ENOBUFS)
4631 ifp->if_flags |= IFF_OACTIVE;
4632 break;
4633 }
4634
4635 /* update tail ptr */
4636 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4637 txring->txr_prodidx);
4638
4639 /* Pass the packet to any BPF listeners */
4640 bpf_mtap(ifp, m, BPF_D_OUT);
4641 }
4642
4643 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4644 ifp->if_flags |= IFF_OACTIVE;
4645
4646 if (npkt)
4647 ifp->if_timer = 5;
4648 }
4649
4650 static void
4651 aq_start(struct ifnet *ifp)
4652 {
4653 struct aq_softc *sc;
4654 struct aq_txring *txring;
4655
4656 sc = ifp->if_softc;
4657 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4658
4659 mutex_enter(&txring->txr_mutex);
4660 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4661 aq_send_common_locked(ifp, sc, txring, false);
4662 mutex_exit(&txring->txr_mutex);
4663 }
4664
4665 static inline unsigned int
4666 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4667 {
4668 return (cpu_index(curcpu()) % sc->sc_nqueues);
4669 }
4670
4671 static int
4672 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4673 {
4674 struct aq_softc *sc = ifp->if_softc;
4675 struct aq_txring *txring;
4676 int ringidx;
4677
4678 ringidx = aq_select_txqueue(sc, m);
4679 txring = &sc->sc_queue[ringidx].txring;
4680
4681 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4682 m_freem(m);
4683 return ENOBUFS;
4684 }
4685
4686 if (mutex_tryenter(&txring->txr_mutex)) {
4687 aq_send_common_locked(ifp, sc, txring, true);
4688 mutex_exit(&txring->txr_mutex);
4689 } else {
4690 softint_schedule(txring->txr_softint);
4691 }
4692 return 0;
4693 }
4694
4695 static void
4696 aq_deferred_transmit(void *arg)
4697 {
4698 struct aq_txring *txring = arg;
4699 struct aq_softc *sc = txring->txr_sc;
4700 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4701
4702 mutex_enter(&txring->txr_mutex);
4703 if (pcq_peek(txring->txr_pcq) != NULL)
4704 aq_send_common_locked(ifp, sc, txring, true);
4705 mutex_exit(&txring->txr_mutex);
4706 }
4707
4708 static void
4709 aq_stop(struct ifnet *ifp, int disable)
4710 {
4711 struct aq_softc *sc = ifp->if_softc;
4712 int i;
4713
4714 AQ_LOCK(sc);
4715
4716 ifp->if_timer = 0;
4717
4718 if ((ifp->if_flags & IFF_RUNNING) == 0)
4719 goto already_stopped;
4720
4721 /* disable tx/rx interrupts */
4722 aq_enable_intr(sc, true, false);
4723
4724 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4725 for (i = 0; i < sc->sc_nqueues; i++) {
4726 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4727 }
4728
4729 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4730 for (i = 0; i < sc->sc_nqueues; i++) {
4731 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4732 }
4733
4734 /* invalidate RX descriptor cache */
4735 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4736 AQ_READ_REG_BIT(sc,
4737 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4738
4739 ifp->if_timer = 0;
4740
4741 already_stopped:
4742 if (!disable) {
4743 /* when pmf stop, disable link status intr and callout */
4744 aq_enable_intr(sc, false, false);
4745 callout_stop(&sc->sc_tick_ch);
4746 }
4747
4748 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4749
4750 AQ_UNLOCK(sc);
4751 }
4752
4753 static void
4754 aq_watchdog(struct ifnet *ifp)
4755 {
4756 struct aq_softc *sc = ifp->if_softc;
4757 struct aq_txring *txring;
4758 int n, head, tail;
4759
4760 AQ_LOCK(sc);
4761
4762 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4763 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4764 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4765
4766 for (n = 0; n < sc->sc_nqueues; n++) {
4767 txring = &sc->sc_queue[n].txring;
4768 head = AQ_READ_REG_BIT(sc,
4769 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4770 TX_DMA_DESC_HEAD_PTR),
4771 tail = AQ_READ_REG(sc,
4772 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4773
4774 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4775 __func__, txring->txr_index, head, tail);
4776
4777 aq_tx_intr(txring);
4778 }
4779
4780 AQ_UNLOCK(sc);
4781
4782 aq_init(ifp);
4783 }
4784
4785 static int
4786 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4787 {
4788 struct aq_softc *sc __unused;
4789 struct ifreq *ifr __unused;
4790 int error, s;
4791
4792 sc = (struct aq_softc *)ifp->if_softc;
4793 ifr = (struct ifreq *)data;
4794 error = 0;
4795
4796 s = splnet();
4797 switch (cmd) {
4798 case SIOCSIFMTU:
4799 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4800 error = EINVAL;
4801 } else {
4802 ifp->if_mtu = ifr->ifr_mtu;
4803 error = 0; /* no need to reset (no ENETRESET) */
4804 }
4805 break;
4806 default:
4807 error = ether_ioctl(ifp, cmd, data);
4808 break;
4809 }
4810 splx(s);
4811
4812 if (error != ENETRESET)
4813 return error;
4814
4815 switch (cmd) {
4816 case SIOCSIFCAP:
4817 error = aq_set_capability(sc);
4818 break;
4819 case SIOCADDMULTI:
4820 case SIOCDELMULTI:
4821 if ((ifp->if_flags & IFF_RUNNING) == 0)
4822 break;
4823
4824 /*
4825 * Multicast list has changed; set the hardware filter
4826 * accordingly.
4827 */
4828 error = aq_set_filter(sc);
4829 break;
4830 }
4831
4832 return error;
4833 }
4834
4835
4836 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4837
4838 #ifdef _MODULE
4839 #include "ioconf.c"
4840 #endif
4841
4842 static int
4843 if_aq_modcmd(modcmd_t cmd, void *opaque)
4844 {
4845 int error = 0;
4846
4847 switch (cmd) {
4848 case MODULE_CMD_INIT:
4849 #ifdef _MODULE
4850 error = config_init_component(cfdriver_ioconf_if_aq,
4851 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4852 #endif
4853 return error;
4854 case MODULE_CMD_FINI:
4855 #ifdef _MODULE
4856 error = config_fini_component(cfdriver_ioconf_if_aq,
4857 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4858 #endif
4859 return error;
4860 default:
4861 return ENOTTY;
4862 }
4863 }
4864