Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.32
      1 /*	$NetBSD: if_aq.c,v 1.32 2022/09/08 07:05:42 skrll Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.32 2022/09/08 07:05:42 skrll Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 #define AQ_JUMBO_MTU_REV_A		9000
    120 #define AQ_JUMBO_MTU_REV_B		16338
    121 
    122 /*
    123  * TERMINOLOGY
    124  *	MPI = MAC PHY INTERFACE?
    125  *	RPO = RX Protocol Offloading
    126  *	TPO = TX Protocol Offloading
    127  *	RPF = RX Packet Filter
    128  *	TPB = TX Packet buffer
    129  *	RPB = RX Packet buffer
    130  */
    131 
    132 /* registers */
    133 #define AQ_FW_SOFTRESET_REG			0x0000
    134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    136 
    137 #define AQ_FW_VERSION_REG			0x0018
    138 #define AQ_HW_REVISION_REG			0x001c
    139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    140 
    141 #define AQ_FW_MBOX_CMD_REG			0x0200
    142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    144 #define AQ_FW_MBOX_ADDR_REG			0x0208
    145 #define AQ_FW_MBOX_VAL_REG			0x020c
    146 
    147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    148 #define FW2X_LED_REG				0x031c
    149 #define  FW2X_LED_DEFAULT			0x00000000
    150 #define  FW2X_LED_NONE				0x0000003f
    151 #define  FW2X_LINKLED				__BITS(0,1)
    152 #define   FW2X_LINKLED_ACTIVE			0
    153 #define   FW2X_LINKLED_ON			1
    154 #define   FW2X_LINKLED_BLINK			2
    155 #define   FW2X_LINKLED_OFF			3
    156 #define  FW2X_STATUSLED				__BITS(2,5)
    157 #define   FW2X_STATUSLED_ORANGE			0
    158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    159 #define   FW2X_STATUSLED_OFF			3
    160 #define   FW2X_STATUSLED_GREEN			4
    161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    162 #define   FW2X_STATUSLED_GREEN_BLINK		10
    163 
    164 #define FW_MPI_MBOX_ADDR_REG			0x0360
    165 #define FW1X_MPI_INIT1_REG			0x0364
    166 #define FW1X_MPI_CONTROL_REG			0x0368
    167 #define FW1X_MPI_STATE_REG			0x036c
    168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    172 #define FW1X_MPI_INIT2_REG			0x0370
    173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    174 
    175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    178 #define FW_BOOT_EXIT_CODE_REG			0x0388
    179 #define  RBL_STATUS_DEAD			0x0000dead
    180 #define  RBL_STATUS_SUCCESS			0x0000abba
    181 #define  RBL_STATUS_FAILURE			0x00000bad
    182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    183 
    184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    186 
    187 #define AQ_FW_GLB_CTL2_REG			0x0404
    188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    189 
    190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    192 
    193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    194 
    195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    196 
    197 // msix bitmap */
    198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    202 #define AQ_INTR_AUTOMASK_REG			0x2090
    203 
    204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    212 
    213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    215 #define  AQ_B0_ERR_INT				8U
    216 
    217 #define AQ_INTR_CTRL_REG			0x2300
    218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    227 
    228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    229 
    230 #define FW_MPI_RESETCTRL_REG			0x4000
    231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    232 
    233 #define RX_SYSCONTROL_REG			0x5000
    234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    237 
    238 #define RX_TCP_RSS_HASH_REG			0x5040
    239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    241 
    242 /* for RPF_*_REG.ACTION */
    243 #define RPF_ACTION_DISCARD			0
    244 #define RPF_ACTION_HOST				1
    245 #define RPF_ACTION_MANAGEMENT			2
    246 #define RPF_ACTION_HOST_MANAGEMENT		3
    247 #define RPF_ACTION_WOL				4
    248 
    249 #define RPF_L2BC_REG				0x5100
    250 #define  RPF_L2BC_EN				__BIT(0)
    251 #define  RPF_L2BC_PROMISC			__BIT(3)
    252 #define  RPF_L2BC_ACTION			__BITS(12,14)
    253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    254 
    255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    260 #define  RPF_L2UC_MSW_EN			__BIT(31)
    261 #define AQ_HW_MAC_OWN			0	/* index of own address */
    262 #define AQ_HW_MAC_NUM			34
    263 
    264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
    265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    269 
    270 #define RPF_VLAN_MODE_REG			0x5280
    271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    274 
    275 #define RPF_VLAN_TPID_REG			0x5284
    276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    278 
    279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
    280 #define RPF_VLAN_MAX_FILTERS			16
    281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    287 
    288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    298 
    299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    318 /* parameters of RPF_L3_FILTER_REG[8] */
    319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    323 
    324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    326 
    327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    329 
    330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    335 
    336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    339 
    340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    342 
    343 #define RPO_HWCSUM_REG				0x5580
    344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    346 
    347 #define RPO_LRO_ENABLE_REG			0x5590
    348 
    349 #define RPO_LRO_CONF_REG			0x5594
    350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    354 #define RPO_LRO_RSC_MAX_REG			0x5598
    355 
    356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    359 #define RPO_LRO_TB_DIV_REG			0x5620
    360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    365 
    366 #define RPB_RPF_RX_REG				0x5700
    367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    370 
    371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    375 #define  RPB_RXB_XOFF_EN			__BIT(31)
    376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    378 
    379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    381 
    382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    385 
    386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    391 
    392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    397 #define  RX_DMA_DESC_RESET			__BIT(25)
    398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    400 #define  RX_DMA_DESC_EN				__BIT(31)
    401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    407 
    408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    414 
    415 #define RX_DMA_DCA_REG				0x6180
    416 #define  RX_DMA_DCA_EN				__BIT(31)
    417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    418 
    419 /* counters */
    420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    424 
    425 #define TX_SYSCONTROL_REG			0x7000
    426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    429 
    430 #define TX_TPO2_REG				0x7040
    431 #define  TX_TPO2_EN				__BIT(16)
    432 
    433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    435 #define TPS_DESC_RATE_REG			0x7310
    436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    442 
    443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    451 
    452 #define AQ_HW_TXBUF_MAX		160
    453 #define AQ_HW_RXBUF_MAX		320
    454 
    455 #define TPO_HWCSUM_REG				0x7800
    456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    458 
    459 #define TDM_LSO_EN_REG				0x7810
    460 
    461 #define THM_LSO_TCP_FLAG1_REG			0x7820
    462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    464 #define THM_LSO_TCP_FLAG2_REG			0x7824
    465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    466 
    467 #define TPB_TX_BUF_REG				0x7900
    468 #define  TPB_TX_BUF_EN				__BIT(0)
    469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    471 
    472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    478 
    479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    483 
    484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    489 #define  TX_DMA_DESC_EN				__BIT(31)
    490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    495 
    496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    498 #define  TDM_DCAD_CPUID				__BITS(7,0)
    499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    500 
    501 #define TDM_DCA_REG				0x8480
    502 #define  TDM_DCA_EN				__BIT(31)
    503 #define  TDM_DCA_MODE				__BITS(3,0)
    504 
    505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    510 
    511 #define FW1X_CTRL_10G				__BIT(0)
    512 #define FW1X_CTRL_5G				__BIT(1)
    513 #define FW1X_CTRL_5GSR				__BIT(2)
    514 #define FW1X_CTRL_2G5				__BIT(3)
    515 #define FW1X_CTRL_1G				__BIT(4)
    516 #define FW1X_CTRL_100M				__BIT(5)
    517 
    518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    530 #define FW2X_CTRL_RESERVED1			__BIT(32)
    531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    532 #define FW2X_CTRL_RESERVED2			__BIT(34)
    533 #define FW2X_CTRL_PAUSE				__BIT(35)
    534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    536 #define FW2X_CTRL_RESERVED3			__BIT(38)
    537 #define FW2X_CTRL_RESERVED4			__BIT(39)
    538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    542 #define FW2X_CTRL_RESERVED5			__BIT(44)
    543 #define FW2X_CTRL_RESERVED6			__BIT(45)
    544 #define FW2X_CTRL_RESERVED7			__BIT(46)
    545 #define FW2X_CTRL_RESERVED8			__BIT(47)
    546 #define FW2X_CTRL_RESERVED9			__BIT(48)
    547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    554 #define FW2X_CTRL_WOL				__BIT(56)
    555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    560 #define FW2X_CTRL_STATISTICS			__BIT(62)
    561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    562 
    563 #define FW2X_SNPRINTB			\
    564 	"\177\020"			\
    565 	"b\x23" "PAUSE\0"		\
    566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    567 	"b\x31" "CABLE-DIAG\0"		\
    568 	"b\x32" "TEMPERATURE\0"		\
    569 	"b\x33" "DOWNSHIFT\0"		\
    570 	"b\x34" "PTP-AVB\0"		\
    571 	"b\x35" "MEDIA-DETECT\0"	\
    572 	"b\x36" "LINK-DROP\0"		\
    573 	"b\x37" "SLEEP-PROXY\0"		\
    574 	"b\x38" "WOL\0"			\
    575 	"b\x39" "MAC-STOP\0"		\
    576 	"b\x3a" "EXT-LOOPBACK\0"	\
    577 	"b\x3b" "INT-LOOPBACK\0"	\
    578 	"b\x3c" "EFUSE-AGENT\0"		\
    579 	"b\x3d" "WOL-TIMER\0"		\
    580 	"b\x3e" "STATISTICS\0"		\
    581 	"b\x3f" "TRANSACTION-ID\0"	\
    582 	"\0"
    583 
    584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    589 #define FW2X_CTRL_RATE_MASK		\
    590 	(FW2X_CTRL_RATE_100M |		\
    591 	 FW2X_CTRL_RATE_1G |		\
    592 	 FW2X_CTRL_RATE_2G5 |		\
    593 	 FW2X_CTRL_RATE_5G |		\
    594 	 FW2X_CTRL_RATE_10G)
    595 #define FW2X_CTRL_EEE_MASK		\
    596 	(FW2X_CTRL_10BASET_EEE |	\
    597 	 FW2X_CTRL_100BASETX_EEE |	\
    598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    601 	 FW2X_CTRL_10GBASET_FD_EEE)
    602 
    603 typedef enum aq_fw_bootloader_mode {
    604 	FW_BOOT_MODE_UNKNOWN = 0,
    605 	FW_BOOT_MODE_FLB,
    606 	FW_BOOT_MODE_RBL_FLASH,
    607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    608 } aq_fw_bootloader_mode_t;
    609 
    610 #define AQ_WRITE_REG(sc, reg, val)				\
    611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    612 
    613 #define AQ_READ_REG(sc, reg)					\
    614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    615 
    616 #define AQ_READ64_REG(sc, reg)					\
    617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    619 
    620 #define AQ_WRITE64_REG(sc, reg, val)				\
    621 	do {							\
    622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    624 	} while (/* CONSTCOND */0)
    625 
    626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    628 
    629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    630 	do {							\
    631 		uint32_t _v;					\
    632 		_v = AQ_READ_REG((sc), (reg));			\
    633 		_v &= ~(mask);					\
    634 		if ((val) != 0)					\
    635 			_v |= __SHIFTIN((val), (mask));		\
    636 		AQ_WRITE_REG((sc), (reg), _v);			\
    637 	} while (/* CONSTCOND */ 0)
    638 
    639 #define WAIT_FOR(expr, us, n, errp)				\
    640 	do {							\
    641 		unsigned int _n;				\
    642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    643 			delay((us));				\
    644 		}						\
    645 		if ((errp != NULL)) {				\
    646 			if (_n == 0)				\
    647 				*(errp) = ETIMEDOUT;		\
    648 			else					\
    649 				*(errp) = 0;			\
    650 		}						\
    651 	} while (/* CONSTCOND */ 0)
    652 
    653 #define msec_delay(x)	DELAY(1000 * (x))
    654 
    655 typedef struct aq_mailbox_header {
    656 	uint32_t version;
    657 	uint32_t transaction_id;
    658 	int32_t error;
    659 } __packed __aligned(4) aq_mailbox_header_t;
    660 
    661 typedef struct aq_hw_stats_s {
    662 	uint32_t uprc;
    663 	uint32_t mprc;
    664 	uint32_t bprc;
    665 	uint32_t erpt;
    666 	uint32_t uptc;
    667 	uint32_t mptc;
    668 	uint32_t bptc;
    669 	uint32_t erpr;
    670 	uint32_t mbtc;
    671 	uint32_t bbtc;
    672 	uint32_t mbrc;
    673 	uint32_t bbrc;
    674 	uint32_t ubrc;
    675 	uint32_t ubtc;
    676 	uint32_t ptc;
    677 	uint32_t prc;
    678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    680 } __packed __aligned(4) aq_hw_stats_s_t;
    681 
    682 typedef struct fw1x_mailbox {
    683 	aq_mailbox_header_t header;
    684 	aq_hw_stats_s_t msm;
    685 } __packed __aligned(4) fw1x_mailbox_t;
    686 
    687 typedef struct fw2x_msm_statistics {
    688 	uint32_t uprc;
    689 	uint32_t mprc;
    690 	uint32_t bprc;
    691 	uint32_t erpt;
    692 	uint32_t uptc;
    693 	uint32_t mptc;
    694 	uint32_t bptc;
    695 	uint32_t erpr;
    696 	uint32_t mbtc;
    697 	uint32_t bbtc;
    698 	uint32_t mbrc;
    699 	uint32_t bbrc;
    700 	uint32_t ubrc;
    701 	uint32_t ubtc;
    702 	uint32_t ptc;
    703 	uint32_t prc;
    704 } __packed __aligned(4) fw2x_msm_statistics_t;
    705 
    706 typedef struct fw2x_phy_cable_diag_data {
    707 	uint32_t lane_data[4];
    708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
    709 
    710 typedef struct fw2x_capabilities {
    711 	uint32_t caps_lo;
    712 	uint32_t caps_hi;
    713 } __packed __aligned(4) fw2x_capabilities_t;
    714 
    715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    716 	aq_mailbox_header_t header;
    717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    718 
    719 	uint32_t phy_info1;
    720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    722 	uint32_t phy_info2;
    723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    725 
    726 	fw2x_phy_cable_diag_data_t diag_data;
    727 	uint32_t reserved[8];
    728 
    729 	fw2x_capabilities_t caps;
    730 
    731 	/* ... */
    732 } __packed __aligned(4) fw2x_mailbox_t;
    733 
    734 typedef enum aq_link_speed {
    735 	AQ_LINK_NONE	= 0,
    736 	AQ_LINK_100M	= (1 << 0),
    737 	AQ_LINK_1G	= (1 << 1),
    738 	AQ_LINK_2G5	= (1 << 2),
    739 	AQ_LINK_5G	= (1 << 3),
    740 	AQ_LINK_10G	= (1 << 4)
    741 } aq_link_speed_t;
    742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    743 			 AQ_LINK_5G | AQ_LINK_10G )
    744 #define AQ_LINK_AUTO	AQ_LINK_ALL
    745 
    746 typedef enum aq_link_fc {
    747 	AQ_FC_NONE = 0,
    748 	AQ_FC_RX = __BIT(0),
    749 	AQ_FC_TX = __BIT(1),
    750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    751 } aq_link_fc_t;
    752 
    753 typedef enum aq_link_eee {
    754 	AQ_EEE_DISABLE = 0,
    755 	AQ_EEE_ENABLE = 1
    756 } aq_link_eee_t;
    757 
    758 typedef enum aq_hw_fw_mpi_state {
    759 	MPI_DEINIT	= 0,
    760 	MPI_RESET	= 1,
    761 	MPI_INIT	= 2,
    762 	MPI_POWER	= 4
    763 } aq_hw_fw_mpi_state_t;
    764 
    765 enum aq_media_type {
    766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    767 	AQ_MEDIA_TYPE_FIBRE,
    768 	AQ_MEDIA_TYPE_TP
    769 };
    770 
    771 struct aq_rx_desc_read {
    772 	uint64_t buf_addr;
    773 	uint64_t hdr_addr;
    774 } __packed __aligned(8);
    775 
    776 struct aq_rx_desc_wb {
    777 	uint32_t type;
    778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    803 #define RXDESC_TYPE_SPH			__BIT(21)
    804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    805 	uint32_t rss_hash;
    806 	uint16_t status;
    807 #define RXDESC_STATUS_DD		__BIT(0)
    808 #define RXDESC_STATUS_EOP		__BIT(1)
    809 #define RXDESC_STATUS_MACERR		__BIT(2)
    810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    813 
    814 #define RXDESC_STATUS_STAT		__BITS(2,5)
    815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    817 	uint16_t pkt_len;
    818 	uint16_t next_desc_ptr;
    819 	uint16_t vlan;
    820 } __packed __aligned(4);
    821 
    822 typedef union aq_rx_desc {
    823 	struct aq_rx_desc_read read;
    824 	struct aq_rx_desc_wb wb;
    825 } __packed __aligned(8) aq_rx_desc_t;
    826 
    827 typedef struct aq_tx_desc {
    828 	uint64_t buf_addr;
    829 	uint32_t ctl1;
    830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    846 	uint32_t ctl2;
    847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    850 } __packed __aligned(8) aq_tx_desc_t;
    851 
    852 struct aq_txring {
    853 	struct aq_softc *txr_sc;
    854 	int txr_index;
    855 	kmutex_t txr_mutex;
    856 	bool txr_active;
    857 
    858 	pcq_t *txr_pcq;
    859 	void *txr_softint;
    860 
    861 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    862 	bus_dmamap_t txr_txdesc_dmamap;
    863 	bus_dma_segment_t txr_txdesc_seg[1];
    864 	bus_size_t txr_txdesc_size;
    865 
    866 	struct {
    867 		struct mbuf *m;
    868 		bus_dmamap_t dmamap;
    869 	} txr_mbufs[AQ_TXD_NUM];
    870 	unsigned int txr_prodidx;
    871 	unsigned int txr_considx;
    872 	int txr_nfree;
    873 };
    874 
    875 struct aq_rxring {
    876 	struct aq_softc *rxr_sc;
    877 	int rxr_index;
    878 	kmutex_t rxr_mutex;
    879 	bool rxr_active;
    880 	bool rxr_discarding;
    881 	struct mbuf *rxr_receiving_m;		/* receiving jumboframe */
    882 	struct mbuf *rxr_receiving_m_last;	/* last mbuf of jumboframe */
    883 
    884 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    885 	bus_dmamap_t rxr_rxdesc_dmamap;
    886 	bus_dma_segment_t rxr_rxdesc_seg[1];
    887 	bus_size_t rxr_rxdesc_size;
    888 	struct {
    889 		struct mbuf *m;
    890 		bus_dmamap_t dmamap;
    891 	} rxr_mbufs[AQ_RXD_NUM];
    892 	unsigned int rxr_readidx;
    893 };
    894 
    895 struct aq_queue {
    896 	struct aq_softc *sc;
    897 	struct aq_txring txring;
    898 	struct aq_rxring rxring;
    899 };
    900 
    901 struct aq_softc;
    902 struct aq_firmware_ops {
    903 	int (*reset)(struct aq_softc *);
    904 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    905 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    906 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    907 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    908 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    909 #if NSYSMON_ENVSYS > 0
    910 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    911 #endif
    912 };
    913 
    914 #ifdef AQ_EVENT_COUNTERS
    915 #define AQ_EVCNT_DECL(name)						\
    916 	char sc_evcount_##name##_name[32];				\
    917 	struct evcnt sc_evcount_##name##_ev;
    918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    919 	do {								\
    920 		snprintf((sc)->sc_evcount_##name##_name,		\
    921 		    sizeof((sc)->sc_evcount_##name##_name),		\
    922 		    "%s", desc);					\
    923 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    924 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    925 		    (sc)->sc_evcount_##name##_name);			\
    926 	} while (/*CONSTCOND*/0)
    927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    928 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    929 #define AQ_EVCNT_DETACH(sc, name)					\
    930 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    931 #define AQ_EVCNT_ADD(sc, name, val)					\
    932 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    933 #endif /* AQ_EVENT_COUNTERS */
    934 
    935 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    936 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    937 
    938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    939 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    940 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    941 
    942 
    943 struct aq_softc {
    944 	device_t sc_dev;
    945 
    946 	bus_space_tag_t sc_iot;
    947 	bus_space_handle_t sc_ioh;
    948 	bus_size_t sc_iosize;
    949 	bus_dma_tag_t sc_dmat;
    950 
    951 	void *sc_ihs[AQ_NINTR_MAX];
    952 	pci_intr_handle_t *sc_intrs;
    953 
    954 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    955 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    956 	int sc_linkstat_irq;
    957 	bool sc_use_txrx_independent_intr;
    958 	bool sc_poll_linkstat;
    959 	bool sc_detect_linkstat;
    960 
    961 #if NSYSMON_ENVSYS > 0
    962 	struct sysmon_envsys *sc_sme;
    963 	envsys_data_t sc_sensor_temp;
    964 #endif
    965 
    966 	callout_t sc_tick_ch;
    967 
    968 	int sc_nintrs;
    969 	bool sc_msix;
    970 
    971 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    972 	int sc_nqueues;
    973 
    974 	pci_chipset_tag_t sc_pc;
    975 	pcitag_t sc_pcitag;
    976 	uint16_t sc_product;
    977 	uint16_t sc_revision;
    978 
    979 	kmutex_t sc_mutex;
    980 	kmutex_t sc_mpi_mutex;
    981 
    982 	const struct aq_firmware_ops *sc_fw_ops;
    983 	uint64_t sc_fw_caps;
    984 	enum aq_media_type sc_media_type;
    985 	aq_link_speed_t sc_available_rates;
    986 
    987 	aq_link_speed_t sc_link_rate;
    988 	aq_link_fc_t sc_link_fc;
    989 	aq_link_eee_t sc_link_eee;
    990 
    991 	uint32_t sc_fw_version;
    992 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    993 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
    994 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
    995 	uint32_t sc_features;
    996 #define FEATURES_MIPS		0x00000001
    997 #define FEATURES_TPO2		0x00000002
    998 #define FEATURES_RPF2		0x00000004
    999 #define FEATURES_MPI_AQ		0x00000008
   1000 #define FEATURES_REV_A0		0x10000000
   1001 #define FEATURES_REV_A		(FEATURES_REV_A0)
   1002 #define FEATURES_REV_B0		0x20000000
   1003 #define FEATURES_REV_B1		0x40000000
   1004 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
   1005 	uint32_t sc_max_mtu;
   1006 	uint32_t sc_mbox_addr;
   1007 
   1008 	bool sc_rbl_enabled;
   1009 	bool sc_fast_start_enabled;
   1010 	bool sc_flash_present;
   1011 
   1012 	bool sc_intr_moderation_enable;
   1013 	bool sc_rss_enable;
   1014 
   1015 	struct ethercom sc_ethercom;
   1016 	struct ether_addr sc_enaddr;
   1017 	struct ifmedia sc_media;
   1018 	int sc_ec_capenable;		/* last ec_capenable */
   1019 	unsigned short sc_if_flags;	/* last if_flags */
   1020 
   1021 #ifdef AQ_EVENT_COUNTERS
   1022 	aq_hw_stats_s_t sc_statistics[2];
   1023 	int sc_statistics_idx;
   1024 	bool sc_poll_statistics;
   1025 
   1026 	AQ_EVCNT_DECL(uprc);
   1027 	AQ_EVCNT_DECL(mprc);
   1028 	AQ_EVCNT_DECL(bprc);
   1029 	AQ_EVCNT_DECL(erpt);
   1030 	AQ_EVCNT_DECL(uptc);
   1031 	AQ_EVCNT_DECL(mptc);
   1032 	AQ_EVCNT_DECL(bptc);
   1033 	AQ_EVCNT_DECL(erpr);
   1034 	AQ_EVCNT_DECL(mbtc);
   1035 	AQ_EVCNT_DECL(bbtc);
   1036 	AQ_EVCNT_DECL(mbrc);
   1037 	AQ_EVCNT_DECL(bbrc);
   1038 	AQ_EVCNT_DECL(ubrc);
   1039 	AQ_EVCNT_DECL(ubtc);
   1040 	AQ_EVCNT_DECL(ptc);
   1041 	AQ_EVCNT_DECL(prc);
   1042 	AQ_EVCNT_DECL(dpc);
   1043 	AQ_EVCNT_DECL(cprc);
   1044 #endif
   1045 };
   1046 
   1047 static int aq_match(device_t, cfdata_t, void *);
   1048 static void aq_attach(device_t, device_t, void *);
   1049 static int aq_detach(device_t, int);
   1050 
   1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1052     bool, bool);
   1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1054     pci_intr_type_t);
   1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1056 
   1057 static int aq_ifmedia_change(struct ifnet * const);
   1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
   1060 static int aq_ifflags_cb(struct ethercom *);
   1061 static int aq_init(struct ifnet *);
   1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1063     struct aq_txring *, bool);
   1064 static int aq_transmit(struct ifnet *, struct mbuf *);
   1065 static void aq_deferred_transmit(void *);
   1066 static void aq_start(struct ifnet *);
   1067 static void aq_stop(struct ifnet *, int);
   1068 static void aq_watchdog(struct ifnet *);
   1069 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1070 
   1071 static int aq_txrx_rings_alloc(struct aq_softc *);
   1072 static void aq_txrx_rings_free(struct aq_softc *);
   1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1075 
   1076 static void aq_initmedia(struct aq_softc *);
   1077 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1078 
   1079 #if NSYSMON_ENVSYS > 0
   1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1081 #endif
   1082 static void aq_tick(void *);
   1083 static int aq_legacy_intr(void *);
   1084 static int aq_link_intr(void *);
   1085 static int aq_txrx_intr(void *);
   1086 static int aq_tx_intr(void *);
   1087 static int aq_rx_intr(void *);
   1088 
   1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1090     aq_link_eee_t);
   1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1092     aq_link_eee_t *);
   1093 
   1094 static int aq_fw_reset(struct aq_softc *);
   1095 static int aq_fw_version_init(struct aq_softc *);
   1096 static int aq_hw_init(struct aq_softc *);
   1097 static int aq_hw_init_ucp(struct aq_softc *);
   1098 static int aq_hw_reset(struct aq_softc *);
   1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1100     uint32_t);
   1101 static int aq_get_mac_addr(struct aq_softc *);
   1102 static int aq_init_rss(struct aq_softc *);
   1103 static int aq_set_capability(struct aq_softc *);
   1104 
   1105 static int fw1x_reset(struct aq_softc *);
   1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1111 
   1112 static int fw2x_reset(struct aq_softc *);
   1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1114     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1116     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1118 #if NSYSMON_ENVSYS > 0
   1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1120 #endif
   1121 
   1122 static const struct aq_firmware_ops aq_fw1x_ops = {
   1123 	.reset = fw1x_reset,
   1124 	.set_mode = fw1x_set_mode,
   1125 	.get_mode = fw1x_get_mode,
   1126 	.get_stats = fw1x_get_stats,
   1127 #if NSYSMON_ENVSYS > 0
   1128 	.get_temperature = NULL
   1129 #endif
   1130 };
   1131 
   1132 static const struct aq_firmware_ops aq_fw2x_ops = {
   1133 	.reset = fw2x_reset,
   1134 	.set_mode = fw2x_set_mode,
   1135 	.get_mode = fw2x_get_mode,
   1136 	.get_stats = fw2x_get_stats,
   1137 #if NSYSMON_ENVSYS > 0
   1138 	.get_temperature = fw2x_get_temperature
   1139 #endif
   1140 };
   1141 
   1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1143     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1144 
   1145 static const struct aq_product {
   1146 	pci_vendor_id_t aq_vendor;
   1147 	pci_product_id_t aq_product;
   1148 	const char *aq_name;
   1149 	enum aq_media_type aq_media_type;
   1150 	aq_link_speed_t aq_available_rates;
   1151 } aq_products[] = {
   1152 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
   1153 	  "Aquantia AQC100 10 Gigabit Network Adapter",
   1154 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1155 	},
   1156 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1157 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1158 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1159 	},
   1160 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1161 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1162 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1163 	},
   1164 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1165 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1166 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1167 	},
   1168 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1169 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1170 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1171 	},
   1172 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1173 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1174 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1175 	},
   1176 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
   1177 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
   1178 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1179 	},
   1180 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1181 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1182 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1183 	},
   1184 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1185 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1186 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1187 	},
   1188 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1189 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1190 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1191 	},
   1192 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1193 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1194 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1195 	},
   1196 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1197 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1198 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1199 	},
   1200 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
   1201 	  "Aquantia D100 10 Gigabit Network Adapter",
   1202 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1203 	},
   1204 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1205 	  "Aquantia D107 10 Gigabit Network Adapter",
   1206 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1207 	},
   1208 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1209 	  "Aquantia D108 5 Gigabit Network Adapter",
   1210 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1211 	},
   1212 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1213 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1214 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1215 	}
   1216 };
   1217 
   1218 static const struct aq_product *
   1219 aq_lookup(const struct pci_attach_args *pa)
   1220 {
   1221 	unsigned int i;
   1222 
   1223 	for (i = 0; i < __arraycount(aq_products); i++) {
   1224 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1225 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1226 			return &aq_products[i];
   1227 	}
   1228 	return NULL;
   1229 }
   1230 
   1231 static int
   1232 aq_match(device_t parent, cfdata_t cf, void *aux)
   1233 {
   1234 	struct pci_attach_args * const pa = aux;
   1235 
   1236 	if (aq_lookup(pa) != NULL)
   1237 		return 1;
   1238 
   1239 	return 0;
   1240 }
   1241 
   1242 static void
   1243 aq_attach(device_t parent, device_t self, void *aux)
   1244 {
   1245 	struct aq_softc * const sc = device_private(self);
   1246 	struct pci_attach_args * const pa = aux;
   1247 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   1248 	pci_chipset_tag_t pc;
   1249 	pcitag_t tag;
   1250 	pcireg_t command, memtype, bar;
   1251 	const struct aq_product *aqp;
   1252 	int error;
   1253 
   1254 	sc->sc_dev = self;
   1255 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1256 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1257 
   1258 	sc->sc_pc = pc = pa->pa_pc;
   1259 	sc->sc_pcitag = tag = pa->pa_tag;
   1260 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1261 
   1262 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1263 	command |= PCI_COMMAND_MASTER_ENABLE;
   1264 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1265 
   1266 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1267 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1268 
   1269 	aqp = aq_lookup(pa);
   1270 	KASSERT(aqp != NULL);
   1271 
   1272 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1273 
   1274 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1275 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1276 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1277 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1278 		return;
   1279 	}
   1280 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1281 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1282 	    NULL, &sc->sc_iosize) != 0) {
   1283 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1284 		return;
   1285 	}
   1286 
   1287 	error = aq_fw_reset(sc);
   1288 	if (error != 0)
   1289 		goto attach_failure;
   1290 
   1291 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1292 
   1293 	/* max queue num is 8, and must be 2^n */
   1294 	if (ncpu >= 8)
   1295 		sc->sc_nqueues = 8;
   1296 	else if (ncpu >= 4)
   1297 		sc->sc_nqueues = 4;
   1298 	else if (ncpu >= 2)
   1299 		sc->sc_nqueues = 2;
   1300 	else
   1301 		sc->sc_nqueues = 1;
   1302 
   1303 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1304 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1305 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1306 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1307 		sc->sc_use_txrx_independent_intr = true;
   1308 		sc->sc_poll_linkstat = false;
   1309 		sc->sc_msix = true;
   1310 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1311 		/* TX intrs + RX intrs */
   1312 		sc->sc_use_txrx_independent_intr = true;
   1313 		sc->sc_poll_linkstat = true;
   1314 		sc->sc_msix = true;
   1315 	} else
   1316 #endif
   1317 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1318 		/* TX/RX intrs LINKSTAT intrs */
   1319 		sc->sc_use_txrx_independent_intr = false;
   1320 		sc->sc_poll_linkstat = false;
   1321 		sc->sc_msix = true;
   1322 	} else if (msixcount >= sc->sc_nqueues) {
   1323 		/* TX/RX intrs */
   1324 		sc->sc_use_txrx_independent_intr = false;
   1325 		sc->sc_poll_linkstat = true;
   1326 		sc->sc_msix = true;
   1327 	} else {
   1328 		/* giving up using MSI-X */
   1329 		sc->sc_msix = false;
   1330 	}
   1331 
   1332 	/* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
   1333 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
   1334 	    FW_VERSION_MAJOR(sc) == 1)
   1335 		sc->sc_poll_linkstat = true;
   1336 
   1337 #ifdef AQ_FORCE_POLL_LINKSTAT
   1338 	sc->sc_poll_linkstat = true;
   1339 #endif
   1340 
   1341 	aprint_debug_dev(sc->sc_dev,
   1342 	    "ncpu=%d, pci_msix_count=%d."
   1343 	    " allocate %d interrupts for %d%s queues%s\n",
   1344 	    ncpu, msixcount,
   1345 	    (sc->sc_use_txrx_independent_intr ?
   1346 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1347 	    (sc->sc_poll_linkstat ? 0 : 1),
   1348 	    sc->sc_nqueues,
   1349 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1350 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1351 
   1352 	if (sc->sc_msix)
   1353 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1354 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1355 	else
   1356 		error = ENODEV;
   1357 
   1358 	if (error != 0) {
   1359 		/* if MSI-X failed, fallback to MSI with single queue */
   1360 		sc->sc_use_txrx_independent_intr = false;
   1361 		sc->sc_poll_linkstat = false;
   1362 		sc->sc_msix = false;
   1363 		sc->sc_nqueues = 1;
   1364 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1365 	}
   1366 	if (error != 0) {
   1367 		/* if MSI failed, fallback to INTx */
   1368 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1369 	}
   1370 	if (error != 0)
   1371 		goto attach_failure;
   1372 
   1373 	callout_init(&sc->sc_tick_ch, 0);
   1374 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1375 
   1376 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1377 
   1378 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1379 		sc->sc_rss_enable = true;
   1380 	else
   1381 		sc->sc_rss_enable = false;
   1382 
   1383 	error = aq_txrx_rings_alloc(sc);
   1384 	if (error != 0)
   1385 		goto attach_failure;
   1386 
   1387 	error = aq_fw_version_init(sc);
   1388 	if (error != 0)
   1389 		goto attach_failure;
   1390 
   1391 	error = aq_hw_init_ucp(sc);
   1392 	if (error < 0)
   1393 		goto attach_failure;
   1394 
   1395 	KASSERT(sc->sc_mbox_addr != 0);
   1396 	error = aq_hw_reset(sc);
   1397 	if (error != 0)
   1398 		goto attach_failure;
   1399 
   1400 	aq_get_mac_addr(sc);
   1401 	aq_init_rss(sc);
   1402 
   1403 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1404 	if (error != 0)
   1405 		goto attach_failure;
   1406 
   1407 	sc->sc_media_type = aqp->aq_media_type;
   1408 	sc->sc_available_rates = aqp->aq_available_rates;
   1409 
   1410 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1411 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1412 	    aq_ifmedia_change, aq_ifmedia_status);
   1413 	aq_initmedia(sc);
   1414 
   1415 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1416 	ifp->if_softc = sc;
   1417 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1418 	ifp->if_extflags = IFEF_MPSAFE;
   1419 	ifp->if_baudrate = IF_Gbps(10);
   1420 	ifp->if_init = aq_init;
   1421 	ifp->if_ioctl = aq_ioctl;
   1422 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1423 		ifp->if_transmit = aq_transmit;
   1424 	ifp->if_start = aq_start;
   1425 	ifp->if_stop = aq_stop;
   1426 	ifp->if_watchdog = aq_watchdog;
   1427 	IFQ_SET_READY(&ifp->if_snd);
   1428 
   1429 	/* initialize capabilities */
   1430 	sc->sc_ethercom.ec_capabilities = 0;
   1431 	sc->sc_ethercom.ec_capenable = 0;
   1432 #if notyet
   1433 	/* TODO */
   1434 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1435 #endif
   1436 	sc->sc_ethercom.ec_capabilities |=
   1437 	    ETHERCAP_JUMBO_MTU |
   1438 	    ETHERCAP_VLAN_MTU |
   1439 	    ETHERCAP_VLAN_HWTAGGING |
   1440 	    ETHERCAP_VLAN_HWFILTER;
   1441 	sc->sc_ethercom.ec_capenable |=
   1442 	    ETHERCAP_VLAN_HWTAGGING |
   1443 	    ETHERCAP_VLAN_HWFILTER;
   1444 
   1445 	ifp->if_capabilities = 0;
   1446 	ifp->if_capenable = 0;
   1447 #ifdef CONFIG_LRO_SUPPORT
   1448 	ifp->if_capabilities |= IFCAP_LRO;
   1449 	ifp->if_capenable |= IFCAP_LRO;
   1450 #endif
   1451 #if notyet
   1452 	/* TSO */
   1453 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1454 #endif
   1455 
   1456 	/* TX hardware checksum offloading */
   1457 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1458 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1459 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1460 	/* RX hardware checksum offloading */
   1461 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1462 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1463 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1464 
   1465 	if_initialize(ifp);
   1466 	ifp->if_percpuq = if_percpuq_create(ifp);
   1467 	if_deferred_start_init(ifp, NULL);
   1468 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1469 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
   1470 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1471 	if_register(ifp);
   1472 
   1473 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1474 
   1475 	/* update media */
   1476 	aq_ifmedia_change(ifp);
   1477 
   1478 #if NSYSMON_ENVSYS > 0
   1479 	/* temperature monitoring */
   1480 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1481 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1482 
   1483 		sc->sc_sme = sysmon_envsys_create();
   1484 		sc->sc_sme->sme_name = device_xname(self);
   1485 		sc->sc_sme->sme_cookie = sc;
   1486 		sc->sc_sme->sme_flags = 0;
   1487 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1488 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1489 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1490 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1491 
   1492 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1493 		if (sysmon_envsys_register(sc->sc_sme)) {
   1494 			sysmon_envsys_destroy(sc->sc_sme);
   1495 			sc->sc_sme = NULL;
   1496 			goto attach_failure;
   1497 		}
   1498 
   1499 		/*
   1500 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1501 		 * will always fail (firmware matter?), so run once now.
   1502 		 */
   1503 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1504 	}
   1505 #endif
   1506 
   1507 #ifdef AQ_EVENT_COUNTERS
   1508 	/* get starting statistics values */
   1509 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1510 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1511 		sc->sc_poll_statistics = true;
   1512 	}
   1513 
   1514 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1515 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1516 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1517 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1518 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1519 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1520 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1521 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1522 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1523 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1524 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1525 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1526 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1527 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1528 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1529 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1530 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1531 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1532 #endif
   1533 
   1534 	if (pmf_device_register(self, NULL, NULL))
   1535 		pmf_class_network_register(self, ifp);
   1536 	else
   1537 		aprint_error_dev(self, "couldn't establish power handler\n");
   1538 
   1539 	return;
   1540 
   1541  attach_failure:
   1542 	aq_detach(self, 0);
   1543 }
   1544 
   1545 static int
   1546 aq_detach(device_t self, int flags __unused)
   1547 {
   1548 	struct aq_softc * const sc = device_private(self);
   1549 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   1550 	int i;
   1551 
   1552 	if (sc->sc_iosize != 0) {
   1553 		if (ifp->if_softc != NULL) {
   1554 			const int s = splnet();
   1555 			aq_stop(ifp, 0);
   1556 			splx(s);
   1557 		}
   1558 
   1559 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1560 			if (sc->sc_ihs[i] != NULL) {
   1561 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1562 				sc->sc_ihs[i] = NULL;
   1563 			}
   1564 		}
   1565 		if (sc->sc_nintrs > 0) {
   1566 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1567 			    sc->sc_nintrs);
   1568 			sc->sc_intrs = NULL;
   1569 			sc->sc_nintrs = 0;
   1570 		}
   1571 
   1572 		aq_txrx_rings_free(sc);
   1573 
   1574 		if (ifp->if_softc != NULL) {
   1575 			ether_ifdetach(ifp);
   1576 			if_detach(ifp);
   1577 		}
   1578 
   1579 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1580 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1581 		sc->sc_iosize = 0;
   1582 	}
   1583 
   1584 	callout_stop(&sc->sc_tick_ch);
   1585 
   1586 #if NSYSMON_ENVSYS > 0
   1587 	if (sc->sc_sme != NULL) {
   1588 		/* all sensors associated with this will also be detached */
   1589 		sysmon_envsys_unregister(sc->sc_sme);
   1590 	}
   1591 #endif
   1592 
   1593 #ifdef AQ_EVENT_COUNTERS
   1594 	AQ_EVCNT_DETACH(sc, uprc);
   1595 	AQ_EVCNT_DETACH(sc, mprc);
   1596 	AQ_EVCNT_DETACH(sc, bprc);
   1597 	AQ_EVCNT_DETACH(sc, erpt);
   1598 	AQ_EVCNT_DETACH(sc, uptc);
   1599 	AQ_EVCNT_DETACH(sc, mptc);
   1600 	AQ_EVCNT_DETACH(sc, bptc);
   1601 	AQ_EVCNT_DETACH(sc, erpr);
   1602 	AQ_EVCNT_DETACH(sc, mbtc);
   1603 	AQ_EVCNT_DETACH(sc, bbtc);
   1604 	AQ_EVCNT_DETACH(sc, mbrc);
   1605 	AQ_EVCNT_DETACH(sc, bbrc);
   1606 	AQ_EVCNT_DETACH(sc, ubrc);
   1607 	AQ_EVCNT_DETACH(sc, ubtc);
   1608 	AQ_EVCNT_DETACH(sc, ptc);
   1609 	AQ_EVCNT_DETACH(sc, prc);
   1610 	AQ_EVCNT_DETACH(sc, dpc);
   1611 	AQ_EVCNT_DETACH(sc, cprc);
   1612 #endif
   1613 
   1614 	ifmedia_fini(&sc->sc_media);
   1615 
   1616 	mutex_destroy(&sc->sc_mpi_mutex);
   1617 	mutex_destroy(&sc->sc_mutex);
   1618 
   1619 	return 0;
   1620 }
   1621 
   1622 static int
   1623 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1624     int (*func)(void *), void *arg, const char *xname)
   1625 {
   1626 	char intrbuf[PCI_INTRSTR_LEN];
   1627 	pci_chipset_tag_t pc = sc->sc_pc;
   1628 	void *vih;
   1629 	const char *intrstr = NULL;
   1630 
   1631 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1632 	    sizeof(intrbuf));
   1633 
   1634 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1635 
   1636 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1637 	    IPL_NET, func, arg, xname);
   1638 	if (vih == NULL) {
   1639 		aprint_error_dev(sc->sc_dev,
   1640 		    "unable to establish MSI-X%s%s for %s\n",
   1641 		    intrstr ? " at " : "",
   1642 		    intrstr ? intrstr : "", xname);
   1643 		return EIO;
   1644 	}
   1645 	sc->sc_ihs[intno] = vih;
   1646 
   1647 	if (affinity != NULL) {
   1648 		/* Round-robin affinity */
   1649 		kcpuset_zero(affinity);
   1650 		kcpuset_set(affinity, intno % ncpu);
   1651 		interrupt_distribute(vih, affinity, NULL);
   1652 	}
   1653 
   1654 	return 0;
   1655 }
   1656 
   1657 static int
   1658 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1659     bool linkintr)
   1660 {
   1661 	kcpuset_t *affinity;
   1662 	int error, intno, i;
   1663 	char intr_xname[INTRDEVNAMEBUF];
   1664 
   1665 	kcpuset_create(&affinity, false);
   1666 
   1667 	intno = 0;
   1668 
   1669 	if (txrx_independent) {
   1670 		for (i = 0; i < sc->sc_nqueues; i++) {
   1671 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1672 			    device_xname(sc->sc_dev), i);
   1673 			sc->sc_rx_irq[i] = intno;
   1674 			error = aq_establish_intr(sc, intno++, affinity,
   1675 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1676 			if (error != 0)
   1677 				goto fail;
   1678 		}
   1679 		for (i = 0; i < sc->sc_nqueues; i++) {
   1680 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1681 			    device_xname(sc->sc_dev), i);
   1682 			sc->sc_tx_irq[i] = intno;
   1683 			error = aq_establish_intr(sc, intno++, affinity,
   1684 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1685 			if (error != 0)
   1686 				goto fail;
   1687 		}
   1688 	} else {
   1689 		for (i = 0; i < sc->sc_nqueues; i++) {
   1690 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1691 			    device_xname(sc->sc_dev), i);
   1692 			sc->sc_rx_irq[i] = intno;
   1693 			sc->sc_tx_irq[i] = intno;
   1694 			error = aq_establish_intr(sc, intno++, affinity,
   1695 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1696 			if (error != 0)
   1697 				goto fail;
   1698 		}
   1699 	}
   1700 
   1701 	if (linkintr) {
   1702 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1703 		    device_xname(sc->sc_dev));
   1704 		sc->sc_linkstat_irq = intno;
   1705 		error = aq_establish_intr(sc, intno++, affinity,
   1706 		    aq_link_intr, sc, intr_xname);
   1707 		if (error != 0)
   1708 			goto fail;
   1709 	}
   1710 
   1711 	kcpuset_destroy(affinity);
   1712 	return 0;
   1713 
   1714  fail:
   1715 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1716 		if (sc->sc_ihs[i] != NULL) {
   1717 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1718 			sc->sc_ihs[i] = NULL;
   1719 		}
   1720 	}
   1721 
   1722 	kcpuset_destroy(affinity);
   1723 	return ENOMEM;
   1724 }
   1725 
   1726 static int
   1727 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1728     bool txrx_independent, bool linkintr)
   1729 {
   1730 	int error, nintr;
   1731 
   1732 	if (txrx_independent)
   1733 		nintr = nqueue * 2;
   1734 	else
   1735 		nintr = nqueue;
   1736 
   1737 	if (linkintr)
   1738 		nintr++;
   1739 
   1740 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1741 	if (error != 0) {
   1742 		aprint_error_dev(sc->sc_dev,
   1743 		    "failed to allocate MSI-X interrupts\n");
   1744 		goto fail;
   1745 	}
   1746 
   1747 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1748 	if (error == 0) {
   1749 		sc->sc_nintrs = nintr;
   1750 	} else {
   1751 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1752 		sc->sc_nintrs = 0;
   1753 	}
   1754  fail:
   1755 	return error;
   1756 
   1757 }
   1758 
   1759 static int
   1760 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1761     pci_intr_type_t inttype)
   1762 {
   1763 	int counts[PCI_INTR_TYPE_SIZE];
   1764 	int error, nintr;
   1765 
   1766 	nintr = 1;
   1767 
   1768 	memset(counts, 0, sizeof(counts));
   1769 	counts[inttype] = nintr;
   1770 
   1771 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1772 	if (error != 0) {
   1773 		aprint_error_dev(sc->sc_dev,
   1774 		    "failed to allocate%s interrupts\n",
   1775 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1776 		return error;
   1777 	}
   1778 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1779 	    device_xname(sc->sc_dev));
   1780 	if (error == 0) {
   1781 		sc->sc_nintrs = nintr;
   1782 	} else {
   1783 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1784 		sc->sc_nintrs = 0;
   1785 	}
   1786 	return error;
   1787 }
   1788 
   1789 static void
   1790 global_software_reset(struct aq_softc *sc)
   1791 {
   1792 	uint32_t v;
   1793 
   1794 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1795 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1796 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1797 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1798 
   1799 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1800 	v &= ~AQ_FW_SOFTRESET_DIS;
   1801 	v |= AQ_FW_SOFTRESET_RESET;
   1802 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1803 }
   1804 
   1805 static int
   1806 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1807 {
   1808 	int timo;
   1809 
   1810 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1811 
   1812 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1813 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1814 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1815 
   1816 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1817 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1818 
   1819 	global_software_reset(sc);
   1820 
   1821 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1822 
   1823 	/* Wait for RBL to finish boot process. */
   1824 #define RBL_TIMEOUT_MS	10000
   1825 	uint16_t rbl_status;
   1826 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1827 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1828 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1829 			break;
   1830 		msec_delay(1);
   1831 	}
   1832 	if (timo <= 0) {
   1833 		aprint_error_dev(sc->sc_dev,
   1834 		    "RBL> RBL restart failed: timeout\n");
   1835 		return EBUSY;
   1836 	}
   1837 	switch (rbl_status) {
   1838 	case RBL_STATUS_SUCCESS:
   1839 		if (mode != NULL)
   1840 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1841 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1842 		break;
   1843 	case RBL_STATUS_HOST_BOOT:
   1844 		if (mode != NULL)
   1845 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1846 		aprint_debug_dev(sc->sc_dev,
   1847 		    "RBL> reset complete! [Host Bootload]\n");
   1848 		break;
   1849 	case RBL_STATUS_FAILURE:
   1850 	default:
   1851 		aprint_error_dev(sc->sc_dev,
   1852 		    "unknown RBL status 0x%x\n", rbl_status);
   1853 		return EBUSY;
   1854 	}
   1855 
   1856 	return 0;
   1857 }
   1858 
   1859 static int
   1860 mac_soft_reset_flb(struct aq_softc *sc)
   1861 {
   1862 	uint32_t v;
   1863 	int timo;
   1864 
   1865 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1866 	/*
   1867 	 * Let Felicity hardware to complete SMBUS transaction before
   1868 	 * Global software reset.
   1869 	 */
   1870 	msec_delay(50);
   1871 
   1872 	/*
   1873 	 * If SPI burst transaction was interrupted(before running the script),
   1874 	 * global software reset may not clear SPI interface.
   1875 	 * Clean it up manually before global reset.
   1876 	 */
   1877 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1878 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1879 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1880 	msec_delay(50);
   1881 
   1882 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1883 	v &= ~AQ_FW_SOFTRESET_DIS;
   1884 	v |= AQ_FW_SOFTRESET_RESET;
   1885 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1886 
   1887 	/* Kickstart. */
   1888 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1889 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1890 	if (!sc->sc_fast_start_enabled)
   1891 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1892 
   1893 	/*
   1894 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1895 	 * above), wait until it is completed by hardware.
   1896 	 */
   1897 	msec_delay(50);
   1898 
   1899 	/* MAC Kickstart */
   1900 	if (!sc->sc_fast_start_enabled) {
   1901 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1902 
   1903 		uint32_t flb_status;
   1904 		for (timo = 0; timo < 1000; timo++) {
   1905 			flb_status = AQ_READ_REG(sc,
   1906 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1907 			if (flb_status != 0)
   1908 				break;
   1909 			msec_delay(1);
   1910 		}
   1911 		if (flb_status == 0) {
   1912 			aprint_error_dev(sc->sc_dev,
   1913 			    "FLB> MAC kickstart failed: timed out\n");
   1914 			return ETIMEDOUT;
   1915 		}
   1916 		aprint_debug_dev(sc->sc_dev,
   1917 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1918 		/* FW reset */
   1919 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1920 		/*
   1921 		 * Let Felicity hardware complete SMBUS transaction before
   1922 		 * Global software reset.
   1923 		 */
   1924 		msec_delay(50);
   1925 		sc->sc_fast_start_enabled = true;
   1926 	}
   1927 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1928 
   1929 	/* PHY Kickstart: #undone */
   1930 	global_software_reset(sc);
   1931 
   1932 	for (timo = 0; timo < 1000; timo++) {
   1933 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1934 			break;
   1935 		msec_delay(10);
   1936 	}
   1937 	if (timo >= 1000) {
   1938 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1939 		return ETIMEDOUT;
   1940 	}
   1941 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1942 	return 0;
   1943 
   1944 }
   1945 
   1946 static int
   1947 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1948 {
   1949 	if (sc->sc_rbl_enabled)
   1950 		return mac_soft_reset_rbl(sc, mode);
   1951 
   1952 	if (mode != NULL)
   1953 		*mode = FW_BOOT_MODE_FLB;
   1954 	return mac_soft_reset_flb(sc);
   1955 }
   1956 
   1957 static int
   1958 aq_fw_read_version(struct aq_softc *sc)
   1959 {
   1960 	int i, error = EBUSY;
   1961 #define MAC_FW_START_TIMEOUT_MS	10000
   1962 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1963 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1964 		if (sc->sc_fw_version != 0) {
   1965 			error = 0;
   1966 			break;
   1967 		}
   1968 		delay(1000);
   1969 	}
   1970 	return error;
   1971 }
   1972 
   1973 static int
   1974 aq_fw_reset(struct aq_softc *sc)
   1975 {
   1976 	uint32_t ver, v, bootExitCode;
   1977 	int i, error;
   1978 
   1979 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1980 
   1981 	for (i = 1000; i > 0; i--) {
   1982 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1983 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1984 		if (v != 0x06000000 || bootExitCode != 0)
   1985 			break;
   1986 	}
   1987 	if (i <= 0) {
   1988 		aprint_error_dev(sc->sc_dev,
   1989 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1990 		return ETIMEDOUT;
   1991 	}
   1992 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1993 
   1994 	/*
   1995 	 * Having FW version 0 is an indicator that cold start
   1996 	 * is in progress. This means two things:
   1997 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1998 	 * 2) Driver may skip reset sequence and save time.
   1999 	 */
   2000 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   2001 		error = aq_fw_read_version(sc);
   2002 		/* Skip reset as it just completed */
   2003 		if (error == 0)
   2004 			return 0;
   2005 	}
   2006 
   2007 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   2008 	error = mac_soft_reset(sc, &mode);
   2009 	if (error != 0) {
   2010 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   2011 		return error;
   2012 	}
   2013 
   2014 	switch (mode) {
   2015 	case FW_BOOT_MODE_FLB:
   2016 		aprint_debug_dev(sc->sc_dev,
   2017 		    "FLB> F/W successfully loaded from flash.\n");
   2018 		sc->sc_flash_present = true;
   2019 		return aq_fw_read_version(sc);
   2020 	case FW_BOOT_MODE_RBL_FLASH:
   2021 		aprint_debug_dev(sc->sc_dev,
   2022 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   2023 		sc->sc_flash_present = true;
   2024 		return aq_fw_read_version(sc);
   2025 	case FW_BOOT_MODE_UNKNOWN:
   2026 		aprint_error_dev(sc->sc_dev,
   2027 		    "F/W bootload error: unknown bootloader type\n");
   2028 		return ENOTSUP;
   2029 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2030 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2031 		break;
   2032 	}
   2033 
   2034 	/*
   2035 	 * XXX: TODO: add support Host Boot
   2036 	 */
   2037 	aprint_error_dev(sc->sc_dev,
   2038 	    "RBL> F/W Host Bootload not implemented\n");
   2039 	return ENOTSUP;
   2040 }
   2041 
   2042 static int
   2043 aq_hw_reset(struct aq_softc *sc)
   2044 {
   2045 	int error;
   2046 
   2047 	/* disable irq */
   2048 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2049 
   2050 	/* apply */
   2051 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2052 
   2053 	/* wait ack 10 times by 1ms */
   2054 	WAIT_FOR(
   2055 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2056 	    1000, 10, &error);
   2057 	if (error != 0) {
   2058 		aprint_error_dev(sc->sc_dev,
   2059 		    "atlantic: IRQ reset failed: %d\n", error);
   2060 		return error;
   2061 	}
   2062 
   2063 	return sc->sc_fw_ops->reset(sc);
   2064 }
   2065 
   2066 static int
   2067 aq_hw_init_ucp(struct aq_softc *sc)
   2068 {
   2069 	int timo;
   2070 
   2071 	if (FW_VERSION_MAJOR(sc) == 1) {
   2072 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
   2073 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
   2074 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2075 	}
   2076 
   2077 	/* Wait a maximum of 10sec. It usually takes about 5sec. */
   2078 	for (timo = 10000; timo > 0; timo--) {
   2079 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2080 		if (sc->sc_mbox_addr != 0)
   2081 			break;
   2082 		delay(1000);
   2083 	}
   2084 	if (sc->sc_mbox_addr == 0) {
   2085 		aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
   2086 		return ETIMEDOUT;
   2087 	}
   2088 
   2089 #define AQ_FW_MIN_VERSION	0x01050006
   2090 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2091 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2092 		aprint_error_dev(sc->sc_dev,
   2093 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2094 		    " or later required, this is %d.%d.%d\n",
   2095 		    FW_VERSION_MAJOR(sc),
   2096 		    FW_VERSION_MINOR(sc),
   2097 		    FW_VERSION_BUILD(sc));
   2098 		return ENOTSUP;
   2099 	}
   2100 
   2101 	return 0;
   2102 }
   2103 
   2104 static int
   2105 aq_fw_version_init(struct aq_softc *sc)
   2106 {
   2107 	int error = 0;
   2108 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2109 
   2110 	if (FW_VERSION_MAJOR(sc) == 1) {
   2111 		sc->sc_fw_ops = &aq_fw1x_ops;
   2112 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2113 		sc->sc_fw_ops = &aq_fw2x_ops;
   2114 	} else {
   2115 		aprint_error_dev(sc->sc_dev,
   2116 		    "Unsupported F/W version %d.%d.%d\n",
   2117 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2118 		    FW_VERSION_BUILD(sc));
   2119 		return ENOTSUP;
   2120 	}
   2121 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2122 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2123 
   2124 	/* detect revision */
   2125 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2126 	switch (hwrev & 0x0000000f) {
   2127 	case 0x01:
   2128 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2129 		    fw_vers);
   2130 		sc->sc_features |= FEATURES_REV_A0 |
   2131 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2132 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
   2133 		break;
   2134 	case 0x02:
   2135 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2136 		    fw_vers);
   2137 		sc->sc_features |= FEATURES_REV_B0 |
   2138 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2139 		    FEATURES_TPO2 | FEATURES_RPF2;
   2140 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2141 		break;
   2142 	case 0x0A:
   2143 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2144 		    fw_vers);
   2145 		sc->sc_features |= FEATURES_REV_B1 |
   2146 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2147 		    FEATURES_TPO2 | FEATURES_RPF2;
   2148 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2149 		break;
   2150 	default:
   2151 		aprint_error_dev(sc->sc_dev,
   2152 		    "Unknown revision (0x%08x)\n", hwrev);
   2153 		sc->sc_features = 0;
   2154 		sc->sc_max_mtu = ETHERMTU;
   2155 		error = ENOTSUP;
   2156 		break;
   2157 	}
   2158 	return error;
   2159 }
   2160 
   2161 static int
   2162 fw1x_reset(struct aq_softc *sc)
   2163 {
   2164 	struct aq_mailbox_header mbox;
   2165 	const int retryCount = 1000;
   2166 	uint32_t tid0;
   2167 	int i;
   2168 
   2169 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2170 
   2171 	for (i = 0; i < retryCount; ++i) {
   2172 		/*
   2173 		 * Read the beginning of Statistics structure to capture
   2174 		 * the Transaction ID.
   2175 		 */
   2176 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2177 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2178 
   2179 		/* Successfully read the stats. */
   2180 		if (tid0 == ~0U) {
   2181 			/* We have read the initial value. */
   2182 			tid0 = mbox.transaction_id;
   2183 			continue;
   2184 		} else if (mbox.transaction_id != tid0) {
   2185 			/*
   2186 			 * Compare transaction ID to initial value.
   2187 			 * If it's different means f/w is alive.
   2188 			 * We're done.
   2189 			 */
   2190 			return 0;
   2191 		}
   2192 
   2193 		/*
   2194 		 * Transaction ID value haven't changed since last time.
   2195 		 * Try reading the stats again.
   2196 		 */
   2197 		delay(10);
   2198 	}
   2199 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2200 	return EBUSY;
   2201 }
   2202 
   2203 static int
   2204 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2205     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2206 {
   2207 	uint32_t mpictrl = 0;
   2208 	uint32_t mpispeed = 0;
   2209 
   2210 	if (speed & AQ_LINK_10G)
   2211 		mpispeed |= FW1X_CTRL_10G;
   2212 	if (speed & AQ_LINK_5G)
   2213 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2214 	if (speed & AQ_LINK_2G5)
   2215 		mpispeed |= FW1X_CTRL_2G5;
   2216 	if (speed & AQ_LINK_1G)
   2217 		mpispeed |= FW1X_CTRL_1G;
   2218 	if (speed & AQ_LINK_100M)
   2219 		mpispeed |= FW1X_CTRL_100M;
   2220 
   2221 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2222 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2223 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2224 	return 0;
   2225 }
   2226 
   2227 static int
   2228 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2229     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2230 {
   2231 	uint32_t mpistate, mpi_speed;
   2232 	aq_link_speed_t speed = AQ_LINK_NONE;
   2233 
   2234 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2235 
   2236 	if (modep != NULL)
   2237 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2238 
   2239 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2240 	if (mpi_speed & FW1X_CTRL_10G)
   2241 		speed = AQ_LINK_10G;
   2242 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2243 		speed = AQ_LINK_5G;
   2244 	else if (mpi_speed & FW1X_CTRL_2G5)
   2245 		speed = AQ_LINK_2G5;
   2246 	else if (mpi_speed & FW1X_CTRL_1G)
   2247 		speed = AQ_LINK_1G;
   2248 	else if (mpi_speed & FW1X_CTRL_100M)
   2249 		speed = AQ_LINK_100M;
   2250 
   2251 	if (speedp != NULL)
   2252 		*speedp = speed;
   2253 
   2254 	if (fcp != NULL)
   2255 		*fcp = AQ_FC_NONE;
   2256 
   2257 	if (eeep != NULL)
   2258 		*eeep = AQ_EEE_DISABLE;
   2259 
   2260 	return 0;
   2261 }
   2262 
   2263 static int
   2264 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2265 {
   2266 	int error;
   2267 
   2268 	error = aq_fw_downld_dwords(sc,
   2269 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2270 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2271 	if (error < 0) {
   2272 		device_printf(sc->sc_dev,
   2273 		    "fw1x> download statistics data FAILED, error %d", error);
   2274 		return error;
   2275 	}
   2276 
   2277 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2278 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2279 	return 0;
   2280 }
   2281 
   2282 static int
   2283 fw2x_reset(struct aq_softc *sc)
   2284 {
   2285 	fw2x_capabilities_t caps = { 0 };
   2286 	int error;
   2287 
   2288 	error = aq_fw_downld_dwords(sc,
   2289 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2290 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2291 	if (error != 0) {
   2292 		aprint_error_dev(sc->sc_dev,
   2293 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2294 		    error);
   2295 		return error;
   2296 	}
   2297 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2298 
   2299 	char buf[256];
   2300 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2301 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2302 
   2303 	return 0;
   2304 }
   2305 
   2306 static int
   2307 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2308     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2309 {
   2310 	uint64_t mpi_ctrl;
   2311 	int error = 0;
   2312 
   2313 	AQ_MPI_LOCK(sc);
   2314 
   2315 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2316 
   2317 	switch (mode) {
   2318 	case MPI_INIT:
   2319 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2320 		if (speed & AQ_LINK_10G)
   2321 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2322 		if (speed & AQ_LINK_5G)
   2323 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2324 		if (speed & AQ_LINK_2G5)
   2325 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2326 		if (speed & AQ_LINK_1G)
   2327 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2328 		if (speed & AQ_LINK_100M)
   2329 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2330 
   2331 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2332 
   2333 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2334 		if (eee == AQ_EEE_ENABLE)
   2335 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2336 
   2337 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2338 		if (fc & AQ_FC_RX)
   2339 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2340 		if (fc & AQ_FC_TX)
   2341 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2342 		break;
   2343 	case MPI_DEINIT:
   2344 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2345 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2346 		break;
   2347 	default:
   2348 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2349 		error =  EINVAL;
   2350 		goto failure;
   2351 	}
   2352 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2353 
   2354  failure:
   2355 	AQ_MPI_UNLOCK(sc);
   2356 	return error;
   2357 }
   2358 
   2359 static int
   2360 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2361     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2362 {
   2363 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2364 
   2365 	if (modep != NULL) {
   2366 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2367 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2368 			*modep = MPI_INIT;
   2369 		else
   2370 			*modep = MPI_DEINIT;
   2371 	}
   2372 
   2373 	aq_link_speed_t speed = AQ_LINK_NONE;
   2374 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2375 		speed = AQ_LINK_10G;
   2376 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2377 		speed = AQ_LINK_5G;
   2378 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2379 		speed = AQ_LINK_2G5;
   2380 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2381 		speed = AQ_LINK_1G;
   2382 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2383 		speed = AQ_LINK_100M;
   2384 
   2385 	if (speedp != NULL)
   2386 		*speedp = speed;
   2387 
   2388 	aq_link_fc_t fc = AQ_FC_NONE;
   2389 	if (mpi_state & FW2X_CTRL_PAUSE)
   2390 		fc |= AQ_FC_RX;
   2391 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2392 		fc |= AQ_FC_TX;
   2393 	if (fcp != NULL)
   2394 		*fcp = fc;
   2395 
   2396 	/* XXX: TODO: EEE */
   2397 	if (eeep != NULL)
   2398 		*eeep = AQ_EEE_DISABLE;
   2399 
   2400 	return 0;
   2401 }
   2402 
   2403 static int
   2404 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2405     uint32_t timeout_ms, uint32_t try_count)
   2406 {
   2407 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2408 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2409 	int error;
   2410 
   2411 	/* First, check that control and state values are consistent */
   2412 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2413 		device_printf(sc->sc_dev,
   2414 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2415 		    " are not consistent for mask %#llx!\n",
   2416 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2417 		    (unsigned long long)mask);
   2418 		return EINVAL;
   2419 	}
   2420 
   2421 	/* Invert bits (toggle) in control register */
   2422 	mpi_ctrl ^= mask;
   2423 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2424 
   2425 	/* Clear all bits except masked */
   2426 	mpi_ctrl &= mask;
   2427 
   2428 	/* Wait for FW reflecting change in state register */
   2429 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2430 	    1000 * timeout_ms, try_count, &error);
   2431 	if (error != 0) {
   2432 		device_printf(sc->sc_dev,
   2433 		    "f/w2x> timeout while waiting for response"
   2434 		    " in state register for bit %#llx!",
   2435 		    (unsigned long long)mask);
   2436 		return error;
   2437 	}
   2438 	return 0;
   2439 }
   2440 
   2441 static int
   2442 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2443 {
   2444 	int error;
   2445 
   2446 	AQ_MPI_LOCK(sc);
   2447 	/* Say to F/W to update the statistics */
   2448 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2449 	if (error != 0) {
   2450 		device_printf(sc->sc_dev,
   2451 		    "fw2x> statistics update error %d\n", error);
   2452 		goto failure;
   2453 	}
   2454 
   2455 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2456 	error = aq_fw_downld_dwords(sc,
   2457 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2458 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2459 	if (error != 0) {
   2460 		device_printf(sc->sc_dev,
   2461 		    "fw2x> download statistics data FAILED, error %d", error);
   2462 		goto failure;
   2463 	}
   2464 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2465 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2466 
   2467  failure:
   2468 	AQ_MPI_UNLOCK(sc);
   2469 	return error;
   2470 }
   2471 
   2472 #if NSYSMON_ENVSYS > 0
   2473 static int
   2474 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2475 {
   2476 	int error;
   2477 	uint32_t value, celsius;
   2478 
   2479 	AQ_MPI_LOCK(sc);
   2480 
   2481 	/* Say to F/W to update the temperature */
   2482 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2483 	if (error != 0)
   2484 		goto failure;
   2485 
   2486 	error = aq_fw_downld_dwords(sc,
   2487 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2488 	    &value, sizeof(value) / sizeof(uint32_t));
   2489 	if (error != 0)
   2490 		goto failure;
   2491 
   2492 	/* 1/256 decrees C to microkelvin */
   2493 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2494 	if (celsius == 0) {
   2495 		error = EIO;
   2496 		goto failure;
   2497 	}
   2498 	*temp = celsius * (1000000 / 256) + 273150000;
   2499 
   2500  failure:
   2501 	AQ_MPI_UNLOCK(sc);
   2502 	return 0;
   2503 }
   2504 #endif
   2505 
   2506 static int
   2507 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2508     uint32_t cnt)
   2509 {
   2510 	uint32_t v;
   2511 	int error = 0;
   2512 
   2513 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2514 	if (error != 0) {
   2515 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2516 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2517 		if (v == 0) {
   2518 			device_printf(sc->sc_dev,
   2519 			    "%s:%d: timeout\n", __func__, __LINE__);
   2520 			return ETIMEDOUT;
   2521 		}
   2522 	}
   2523 
   2524 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2525 
   2526 	error = 0;
   2527 	for (; cnt > 0 && error == 0; cnt--) {
   2528 		/* execute mailbox interface */
   2529 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2530 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2531 		if (sc->sc_features & FEATURES_REV_B1) {
   2532 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2533 			    1, 1000, &error);
   2534 		} else {
   2535 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2536 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2537 			    1, 1000, &error);
   2538 		}
   2539 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2540 		addr += sizeof(uint32_t);
   2541 	}
   2542 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2543 
   2544 	if (error != 0)
   2545 		device_printf(sc->sc_dev,
   2546 		    "%s:%d: timeout\n", __func__, __LINE__);
   2547 
   2548 	return error;
   2549 }
   2550 
   2551 /* read my mac address */
   2552 static int
   2553 aq_get_mac_addr(struct aq_softc *sc)
   2554 {
   2555 	uint32_t mac_addr[2];
   2556 	uint32_t efuse_shadow_addr;
   2557 	int err;
   2558 
   2559 	efuse_shadow_addr = 0;
   2560 	if (FW_VERSION_MAJOR(sc) >= 2)
   2561 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2562 	else
   2563 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2564 
   2565 	if (efuse_shadow_addr == 0) {
   2566 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2567 		return ENXIO;
   2568 	}
   2569 
   2570 	memset(mac_addr, 0, sizeof(mac_addr));
   2571 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2572 	    mac_addr, __arraycount(mac_addr));
   2573 	if (err < 0)
   2574 		return err;
   2575 
   2576 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2577 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2578 		return ENXIO;
   2579 	}
   2580 
   2581 	mac_addr[0] = htobe32(mac_addr[0]);
   2582 	mac_addr[1] = htobe32(mac_addr[1]);
   2583 
   2584 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2585 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2586 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2587 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2588 
   2589 	return 0;
   2590 }
   2591 
   2592 /* set multicast filter. index 0 for own address */
   2593 static int
   2594 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2595 {
   2596 	uint32_t h, l;
   2597 
   2598 	if (index >= AQ_HW_MAC_NUM)
   2599 		return EINVAL;
   2600 
   2601 	if (enaddr == NULL) {
   2602 		/* disable */
   2603 		AQ_WRITE_REG_BIT(sc,
   2604 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2605 		return 0;
   2606 	}
   2607 
   2608 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2609 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2610 	    (enaddr[4] <<  8) | (enaddr[5]);
   2611 
   2612 	/* disable, set, and enable */
   2613 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2614 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2615 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2616 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2617 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2618 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2619 
   2620 	return 0;
   2621 }
   2622 
   2623 static int
   2624 aq_set_capability(struct aq_softc *sc)
   2625 {
   2626 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2627 	int ip4csum_tx =
   2628 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2629 	int ip4csum_rx =
   2630 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2631 	int l4csum_tx = ((ifp->if_capenable &
   2632 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2633 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2634 	int l4csum_rx =
   2635 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2636 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2637 	uint32_t lso =
   2638 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2639 	   0 : 0xffffffff;
   2640 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2641 	    0 : 0xffffffff;
   2642 	uint32_t i, v;
   2643 
   2644 	/* TX checksums offloads*/
   2645 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2646 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2647 
   2648 	/* RX checksums offloads*/
   2649 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2650 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2651 
   2652 	/* LSO offloads*/
   2653 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2654 
   2655 #define AQ_B0_LRO_RXD_MAX	16
   2656 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2657 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2658 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2659 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2660 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2661 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2662 	}
   2663 
   2664 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2665 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2666 	    RPO_LRO_INACTIVE_IVAL, 0);
   2667 	/*
   2668 	 * the LRO timebase divider is 5 uS (0x61a),
   2669 	 * to get a maximum coalescing interval of 250 uS,
   2670 	 * we need to multiply by 50(0x32) to get
   2671 	 * the default value 250 uS
   2672 	 */
   2673 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2674 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2675 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2676 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2677 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2678 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2679 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2680 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2681 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2682 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2683 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2684 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2685 
   2686 	return 0;
   2687 }
   2688 
   2689 static int
   2690 aq_set_filter(struct aq_softc *sc)
   2691 {
   2692 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2693 	struct ethercom * const ec = &sc->sc_ethercom;
   2694 	struct ether_multi *enm;
   2695 	struct ether_multistep step;
   2696 	int idx, error = 0;
   2697 
   2698 	if (ifp->if_flags & IFF_PROMISC) {
   2699 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2700 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2701 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2702 		goto done;
   2703 	}
   2704 
   2705 	/* clear all table */
   2706 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2707 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2708 			continue;
   2709 		aq_set_mac_addr(sc, idx, NULL);
   2710 	}
   2711 
   2712 	/* don't accept all multicast */
   2713 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2714 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2715 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2716 	    RPF_MCAST_FILTER_EN, 0);
   2717 
   2718 	idx = 0;
   2719 	ETHER_LOCK(ec);
   2720 	ETHER_FIRST_MULTI(step, ec, enm);
   2721 	while (enm != NULL) {
   2722 		if (idx == AQ_HW_MAC_OWN)
   2723 			idx++;
   2724 
   2725 		if ((idx >= AQ_HW_MAC_NUM) ||
   2726 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2727 			/*
   2728 			 * too many filters.
   2729 			 * fallback to accept all multicast addresses.
   2730 			 */
   2731 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2732 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2733 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2734 			    RPF_MCAST_FILTER_EN, 1);
   2735 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2736 			ETHER_UNLOCK(ec);
   2737 			goto done;
   2738 		}
   2739 
   2740 		/* add a filter */
   2741 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2742 
   2743 		ETHER_NEXT_MULTI(step, enm);
   2744 	}
   2745 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2746 	ETHER_UNLOCK(ec);
   2747 
   2748  done:
   2749 	return error;
   2750 }
   2751 
   2752 static int
   2753 aq_ifmedia_change(struct ifnet * const ifp)
   2754 {
   2755 	struct aq_softc * const sc = ifp->if_softc;
   2756 	aq_link_speed_t rate = AQ_LINK_NONE;
   2757 	aq_link_fc_t fc = AQ_FC_NONE;
   2758 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2759 
   2760 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2761 		return EINVAL;
   2762 
   2763 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2764 	case IFM_AUTO:
   2765 		rate = AQ_LINK_AUTO;
   2766 		break;
   2767 	case IFM_NONE:
   2768 		rate = AQ_LINK_NONE;
   2769 		break;
   2770 	case IFM_100_TX:
   2771 		rate = AQ_LINK_100M;
   2772 		break;
   2773 	case IFM_1000_T:
   2774 		rate = AQ_LINK_1G;
   2775 		break;
   2776 	case IFM_2500_T:
   2777 		rate = AQ_LINK_2G5;
   2778 		break;
   2779 	case IFM_5000_T:
   2780 		rate = AQ_LINK_5G;
   2781 		break;
   2782 	case IFM_10G_T:
   2783 		rate = AQ_LINK_10G;
   2784 		break;
   2785 	default:
   2786 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2787 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2788 		return ENODEV;
   2789 	}
   2790 
   2791 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2792 		fc = AQ_FC_ALL;
   2793 
   2794 	/* XXX: todo EEE */
   2795 
   2796 	/* re-initialize hardware with new parameters */
   2797 	aq_set_linkmode(sc, rate, fc, eee);
   2798 
   2799 	return 0;
   2800 }
   2801 
   2802 static void
   2803 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2804 {
   2805 	struct aq_softc * const sc = ifp->if_softc;
   2806 
   2807 	/* update ifm_active */
   2808 	ifmr->ifm_active = IFM_ETHER;
   2809 	if (sc->sc_link_fc & AQ_FC_RX)
   2810 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
   2811 	if (sc->sc_link_fc & AQ_FC_TX)
   2812 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
   2813 
   2814 	switch (sc->sc_link_rate) {
   2815 	case AQ_LINK_100M:
   2816 		/* XXX: need to detect fulldup or halfdup */
   2817 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   2818 		break;
   2819 	case AQ_LINK_1G:
   2820 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
   2821 		break;
   2822 	case AQ_LINK_2G5:
   2823 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
   2824 		break;
   2825 	case AQ_LINK_5G:
   2826 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
   2827 		break;
   2828 	case AQ_LINK_10G:
   2829 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2830 		break;
   2831 	default:
   2832 		ifmr->ifm_active |= IFM_NONE;
   2833 		break;
   2834 	}
   2835 
   2836 	/* update ifm_status */
   2837 	ifmr->ifm_status = IFM_AVALID;
   2838 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2839 		ifmr->ifm_status |= IFM_ACTIVE;
   2840 }
   2841 
   2842 static void
   2843 aq_initmedia(struct aq_softc *sc)
   2844 {
   2845 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2846 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2847 
   2848 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2849 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2850 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2851 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2852 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2853 	}
   2854 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2855 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2856 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2857 	}
   2858 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2859 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2860 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2861 	}
   2862 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2863 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2864 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2865 	}
   2866 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2867 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2868 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2869 	}
   2870 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2871 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2872 
   2873 	/* default: auto without flowcontrol */
   2874 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2875 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2876 }
   2877 
   2878 static int
   2879 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2880     aq_link_eee_t eee)
   2881 {
   2882 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2883 }
   2884 
   2885 static int
   2886 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2887    aq_link_eee_t *eee)
   2888 {
   2889 	aq_hw_fw_mpi_state_t mode;
   2890 	int error;
   2891 
   2892 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2893 	if (error != 0)
   2894 		return error;
   2895 	if (mode != MPI_INIT)
   2896 		return ENXIO;
   2897 
   2898 	return 0;
   2899 }
   2900 
   2901 static void
   2902 aq_hw_init_tx_path(struct aq_softc *sc)
   2903 {
   2904 	/* Tx TC/RSS number config */
   2905 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2906 
   2907 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2908 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2909 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2910 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2911 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2912 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2913 
   2914 	/* misc */
   2915 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2916 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2917 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2918 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2919 
   2920 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2921 }
   2922 
   2923 static void
   2924 aq_hw_init_rx_path(struct aq_softc *sc)
   2925 {
   2926 	int i;
   2927 
   2928 	/* clear setting */
   2929 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2930 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2931 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2932 	for (i = 0; i < 32; i++) {
   2933 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2934 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2935 	}
   2936 
   2937 	if (sc->sc_rss_enable) {
   2938 		/* Rx TC/RSS number config */
   2939 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2940 
   2941 		/* Rx flow control */
   2942 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2943 
   2944 		/* RSS Ring selection */
   2945 		switch (sc->sc_nqueues) {
   2946 		case 2:
   2947 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2948 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2949 			break;
   2950 		case 4:
   2951 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2952 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2953 			break;
   2954 		case 8:
   2955 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2956 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2957 			break;
   2958 		}
   2959 	}
   2960 
   2961 	/* L2 and Multicast filters */
   2962 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2963 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2964 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2965 		    RPF_ACTION_HOST);
   2966 	}
   2967 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2968 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2969 
   2970 	/* Vlan filters */
   2971 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2972 	    ETHERTYPE_QINQ);
   2973 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2974 	    ETHERTYPE_VLAN);
   2975 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   2976 
   2977 	if (sc->sc_features & FEATURES_REV_B) {
   2978 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2979 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2980 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2981 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2982 	}
   2983 
   2984 	/* misc */
   2985 	if (sc->sc_features & FEATURES_RPF2)
   2986 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2987 	else
   2988 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2989 
   2990 	/*
   2991 	 * XXX: RX_TCP_RSS_HASH_REG:
   2992 	 *  linux   set 0x000f0000
   2993 	 *  freebsd set 0x000f001e
   2994 	 */
   2995 	/* RSS hash type set for IP/TCP */
   2996 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2997 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2998 
   2999 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   3000 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   3001 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   3002 
   3003 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   3004 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   3005 }
   3006 
   3007 static void
   3008 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   3009 {
   3010 	int i;
   3011 
   3012 	if (sc->sc_intr_moderation_enable) {
   3013 		unsigned int tx_min, rx_min;	/* 0-255 */
   3014 		unsigned int tx_max, rx_max;	/* 0-511? */
   3015 
   3016 		switch (sc->sc_link_rate) {
   3017 		case AQ_LINK_100M:
   3018 			tx_min = 0x4f;
   3019 			tx_max = 0xff;
   3020 			rx_min = 0x04;
   3021 			rx_max = 0x50;
   3022 			break;
   3023 		case AQ_LINK_1G:
   3024 		default:
   3025 			tx_min = 0x4f;
   3026 			tx_max = 0xff;
   3027 			rx_min = 0x30;
   3028 			rx_max = 0x80;
   3029 			break;
   3030 		case AQ_LINK_2G5:
   3031 			tx_min = 0x4f;
   3032 			tx_max = 0xff;
   3033 			rx_min = 0x18;
   3034 			rx_max = 0xe0;
   3035 			break;
   3036 		case AQ_LINK_5G:
   3037 			tx_min = 0x4f;
   3038 			tx_max = 0xff;
   3039 			rx_min = 0x0c;
   3040 			rx_max = 0x70;
   3041 			break;
   3042 		case AQ_LINK_10G:
   3043 			tx_min = 0x4f;
   3044 			tx_max = 0x1ff;
   3045 			rx_min = 0x06;	/* freebsd use 80 */
   3046 			rx_max = 0x38;	/* freebsd use 120 */
   3047 			break;
   3048 		}
   3049 
   3050 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3051 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3052 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3053 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3054 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3055 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3056 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3057 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3058 
   3059 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3060 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3061 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3062 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3063 			    TX_INTR_MODERATION_CTL_EN);
   3064 		}
   3065 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3066 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3067 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3068 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3069 			    RX_INTR_MODERATION_CTL_EN);
   3070 		}
   3071 
   3072 	} else {
   3073 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3074 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3075 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3076 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3077 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3078 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3079 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3080 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3081 
   3082 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3083 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3084 		}
   3085 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3086 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3087 		}
   3088 	}
   3089 }
   3090 
   3091 static void
   3092 aq_hw_qos_set(struct aq_softc *sc)
   3093 {
   3094 	uint32_t tc = 0;
   3095 	uint32_t buff_size;
   3096 
   3097 	/* TPS Descriptor rate init */
   3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3099 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3100 
   3101 	/* TPS VM init */
   3102 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3103 
   3104 	/* TPS TC credits init */
   3105 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3106 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3107 
   3108 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3109 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3110 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3111 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3112 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3113 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3114 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3115 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3116 
   3117 	/* Tx buf size */
   3118 	tc = 0;
   3119 	buff_size = AQ_HW_TXBUF_MAX;
   3120 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3121 	    buff_size);
   3122 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3123 	    (buff_size * (1024 / 32) * 66) / 100);
   3124 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3125 	    (buff_size * (1024 / 32) * 50) / 100);
   3126 
   3127 	/* QoS Rx buf size per TC */
   3128 	tc = 0;
   3129 	buff_size = AQ_HW_RXBUF_MAX;
   3130 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3131 	    buff_size);
   3132 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3133 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3134 	    (buff_size * (1024 / 32) * 66) / 100);
   3135 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3136 	    (buff_size * (1024 / 32) * 50) / 100);
   3137 
   3138 	/* QoS 802.1p priority -> TC mapping */
   3139 	int i_priority;
   3140 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3141 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3142 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3143 	}
   3144 }
   3145 
   3146 /* called once from aq_attach */
   3147 static int
   3148 aq_init_rss(struct aq_softc *sc)
   3149 {
   3150 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3151 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3152 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3153 	unsigned int i;
   3154 	int error;
   3155 
   3156 	/* initialize rss key */
   3157 	rss_getkey((uint8_t *)rss_key);
   3158 
   3159 	/* hash to ring table */
   3160 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3161 		rss_table[i] = i % sc->sc_nqueues;
   3162 	}
   3163 
   3164 	/*
   3165 	 * set rss key
   3166 	 */
   3167 	for (i = 0; i < __arraycount(rss_key); i++) {
   3168 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3169 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3170 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3171 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3172 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3173 		    RPF_RSS_KEY_WR_EN, 1);
   3174 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3175 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3176 		if (error != 0) {
   3177 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3178 			    __func__);
   3179 			goto rss_set_timeout;
   3180 		}
   3181 	}
   3182 
   3183 	/*
   3184 	 * set rss indirection table
   3185 	 *
   3186 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3187 	 * we'll make it by __BITMAP(3) macros.
   3188 	 */
   3189 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3190 	__BITMAP_ZERO(&bit3x64);
   3191 
   3192 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3193 	do {							\
   3194 		if (val & 1) {					\
   3195 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3196 		} else {					\
   3197 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3198 		}						\
   3199 		if (val & 2) {					\
   3200 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3201 		} else {					\
   3202 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3203 		}						\
   3204 		if (val & 4) {					\
   3205 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3206 		} else {					\
   3207 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3208 		}						\
   3209 	} while (0 /* CONSTCOND */)
   3210 
   3211 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3212 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3213 	}
   3214 
   3215 	/* write 192bit data in steps of 16bit */
   3216 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3217 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3218 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3219 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3220 		    RPF_RSS_REDIR_ADDR, i);
   3221 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3222 		    RPF_RSS_REDIR_WR_EN, 1);
   3223 
   3224 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3225 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3226 		if (error != 0)
   3227 			break;
   3228 	}
   3229 
   3230  rss_set_timeout:
   3231 	return error;
   3232 }
   3233 
   3234 static void
   3235 aq_hw_l3_filter_set(struct aq_softc *sc)
   3236 {
   3237 	int i;
   3238 
   3239 	/* clear all filter */
   3240 	for (i = 0; i < 8; i++) {
   3241 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3242 		    RPF_L3_FILTER_L4_EN, 0);
   3243 	}
   3244 }
   3245 
   3246 static void
   3247 aq_set_vlan_filters(struct aq_softc *sc)
   3248 {
   3249 	struct ethercom * const ec = &sc->sc_ethercom;
   3250 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   3251 	struct vlanid_list *vlanidp;
   3252 	int i;
   3253 
   3254 	ETHER_LOCK(ec);
   3255 
   3256 	/* disable all vlan filters */
   3257 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
   3258 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
   3259 
   3260 	/* count VID */
   3261 	i = 0;
   3262 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
   3263 		i++;
   3264 
   3265 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
   3266 	    (ifp->if_flags & IFF_PROMISC) ||
   3267 	    (i > RPF_VLAN_MAX_FILTERS)) {
   3268 		/*
   3269 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
   3270 		 * must receive all VID
   3271 		 */
   3272 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3273 		    RPF_VLAN_MODE_PROMISC, 1);
   3274 		goto done;
   3275 	}
   3276 
   3277 	/* receive only selected VID */
   3278 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   3279 	i = 0;
   3280 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
   3281 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3282 		    RPF_VLAN_FILTER_EN, 1);
   3283 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3284 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3285 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3286 		    RPF_VLAN_FILTER_RXQ, 0);
   3287 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3288 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
   3289 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3290 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
   3291 		i++;
   3292 	}
   3293 
   3294  done:
   3295 	ETHER_UNLOCK(ec);
   3296 }
   3297 
   3298 static int
   3299 aq_hw_init(struct aq_softc *sc)
   3300 {
   3301 	uint32_t v;
   3302 
   3303 	/* Force limit MRRS on RDM/TDM to 2K */
   3304 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3305 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3306 
   3307 	/*
   3308 	 * TX DMA total request limit. B0 hardware is not capable to
   3309 	 * handle more than (8K-MRRS) incoming DMA data.
   3310 	 * Value 24 in 256byte units
   3311 	 */
   3312 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3313 
   3314 	aq_hw_init_tx_path(sc);
   3315 	aq_hw_init_rx_path(sc);
   3316 
   3317 	aq_hw_interrupt_moderation_set(sc);
   3318 
   3319 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3320 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3321 
   3322 	aq_hw_qos_set(sc);
   3323 
   3324 	/* Enable interrupt */
   3325 	int irqmode;
   3326 	if (sc->sc_msix)
   3327 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3328 	else
   3329 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3330 
   3331 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3332 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3333 	    sc->sc_msix ? 1 : 0);
   3334 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3335 
   3336 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3337 
   3338 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3339 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3340 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3341 	);
   3342 
   3343 	/* link interrupt */
   3344 	if (!sc->sc_msix)
   3345 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3346 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3347 	    __BIT(7) | sc->sc_linkstat_irq);
   3348 
   3349 	return 0;
   3350 }
   3351 
   3352 static int
   3353 aq_update_link_status(struct aq_softc *sc)
   3354 {
   3355 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   3356 	aq_link_speed_t rate = AQ_LINK_NONE;
   3357 	aq_link_fc_t fc = AQ_FC_NONE;
   3358 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3359 	unsigned int speed;
   3360 	int changed = 0;
   3361 
   3362 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3363 
   3364 	if (sc->sc_link_rate != rate)
   3365 		changed = 1;
   3366 	if (sc->sc_link_fc != fc)
   3367 		changed = 1;
   3368 	if (sc->sc_link_eee != eee)
   3369 		changed = 1;
   3370 
   3371 	if (changed) {
   3372 		switch (rate) {
   3373 		case AQ_LINK_100M:
   3374 			speed = 100;
   3375 			break;
   3376 		case AQ_LINK_1G:
   3377 			speed = 1000;
   3378 			break;
   3379 		case AQ_LINK_2G5:
   3380 			speed = 2500;
   3381 			break;
   3382 		case AQ_LINK_5G:
   3383 			speed = 5000;
   3384 			break;
   3385 		case AQ_LINK_10G:
   3386 			speed = 10000;
   3387 			break;
   3388 		case AQ_LINK_NONE:
   3389 		default:
   3390 			speed = 0;
   3391 			break;
   3392 		}
   3393 
   3394 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3395 			/* link DOWN -> UP */
   3396 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3397 			    speed);
   3398 			if_link_state_change(ifp, LINK_STATE_UP);
   3399 		} else if (rate == AQ_LINK_NONE) {
   3400 			/* link UP -> DOWN */
   3401 			device_printf(sc->sc_dev, "link is DOWN\n");
   3402 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3403 		} else {
   3404 			device_printf(sc->sc_dev,
   3405 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3406 			    speed, fc, eee);
   3407 		}
   3408 
   3409 		sc->sc_link_rate = rate;
   3410 		sc->sc_link_fc = fc;
   3411 		sc->sc_link_eee = eee;
   3412 
   3413 		/* update interrupt timing according to new link speed */
   3414 		aq_hw_interrupt_moderation_set(sc);
   3415 	}
   3416 
   3417 	return changed;
   3418 }
   3419 
   3420 #ifdef AQ_EVENT_COUNTERS
   3421 static void
   3422 aq_update_statistics(struct aq_softc *sc)
   3423 {
   3424 	int prev = sc->sc_statistics_idx;
   3425 	int cur = prev ^ 1;
   3426 
   3427 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3428 
   3429 	/*
   3430 	 * aq's internal statistics counter is 32bit.
   3431 	 * cauculate delta, and add to evcount
   3432 	 */
   3433 #define ADD_DELTA(cur, prev, name)				\
   3434 	do {							\
   3435 		uint32_t n;					\
   3436 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3437 		    sc->sc_statistics[prev].name);		\
   3438 		if (n != 0) {					\
   3439 			AQ_EVCNT_ADD(sc, name, n);		\
   3440 		}						\
   3441 	} while (/*CONSTCOND*/0);
   3442 
   3443 	ADD_DELTA(cur, prev, uprc);
   3444 	ADD_DELTA(cur, prev, mprc);
   3445 	ADD_DELTA(cur, prev, bprc);
   3446 	ADD_DELTA(cur, prev, prc);
   3447 	ADD_DELTA(cur, prev, erpr);
   3448 	ADD_DELTA(cur, prev, uptc);
   3449 	ADD_DELTA(cur, prev, mptc);
   3450 	ADD_DELTA(cur, prev, bptc);
   3451 	ADD_DELTA(cur, prev, ptc);
   3452 	ADD_DELTA(cur, prev, erpt);
   3453 	ADD_DELTA(cur, prev, mbtc);
   3454 	ADD_DELTA(cur, prev, bbtc);
   3455 	ADD_DELTA(cur, prev, mbrc);
   3456 	ADD_DELTA(cur, prev, bbrc);
   3457 	ADD_DELTA(cur, prev, ubrc);
   3458 	ADD_DELTA(cur, prev, ubtc);
   3459 	ADD_DELTA(cur, prev, dpc);
   3460 	ADD_DELTA(cur, prev, cprc);
   3461 
   3462 	sc->sc_statistics_idx = cur;
   3463 }
   3464 #endif /* AQ_EVENT_COUNTERS */
   3465 
   3466 /* allocate and map one DMA block */
   3467 static int
   3468 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3469     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3470 {
   3471 	int nsegs, error;
   3472 
   3473 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3474 	    1, &nsegs, 0)) != 0) {
   3475 		aprint_error_dev(sc->sc_dev,
   3476 		    "unable to allocate DMA buffer, error=%d\n", error);
   3477 		goto fail_alloc;
   3478 	}
   3479 
   3480 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3481 	    BUS_DMA_COHERENT)) != 0) {
   3482 		aprint_error_dev(sc->sc_dev,
   3483 		    "unable to map DMA buffer, error=%d\n", error);
   3484 		goto fail_map;
   3485 	}
   3486 
   3487 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3488 	    0, mapp)) != 0) {
   3489 		aprint_error_dev(sc->sc_dev,
   3490 		    "unable to create DMA map, error=%d\n", error);
   3491 		goto fail_create;
   3492 	}
   3493 
   3494 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3495 	    0)) != 0) {
   3496 		aprint_error_dev(sc->sc_dev,
   3497 		    "unable to load DMA map, error=%d\n", error);
   3498 		goto fail_load;
   3499 	}
   3500 
   3501 	*sizep = size;
   3502 	return 0;
   3503 
   3504  fail_load:
   3505 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3506 	*mapp = NULL;
   3507  fail_create:
   3508 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3509 	*addrp = NULL;
   3510  fail_map:
   3511 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3512 	memset(seg, 0, sizeof(*seg));
   3513  fail_alloc:
   3514 	*sizep = 0;
   3515 	return error;
   3516 }
   3517 
   3518 static void
   3519 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3520     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3521 {
   3522 	if (*mapp != NULL) {
   3523 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3524 		*mapp = NULL;
   3525 	}
   3526 	if (*addrp != NULL) {
   3527 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3528 		*addrp = NULL;
   3529 	}
   3530 	if (*sizep != 0) {
   3531 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3532 		memset(seg, 0, sizeof(*seg));
   3533 		*sizep = 0;
   3534 	}
   3535 }
   3536 
   3537 static int
   3538 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3539 {
   3540 	int i, error;
   3541 
   3542 	/* allocate tx descriptors */
   3543 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3544 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3545 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3546 	if (error != 0)
   3547 		return error;
   3548 
   3549 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3550 
   3551 	/* fill tx ring with dmamap */
   3552 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3553 #define AQ_MAXDMASIZE	(16 * 1024)
   3554 #define AQ_NTXSEGS	32
   3555 		/* XXX: TODO: error check */
   3556 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3557 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3558 	}
   3559 	return 0;
   3560 }
   3561 
   3562 static void
   3563 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3564 {
   3565 	int i;
   3566 
   3567 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3568 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3569 
   3570 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3571 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3572 			if (txring->txr_mbufs[i].m != NULL) {
   3573 				bus_dmamap_unload(sc->sc_dmat,
   3574 				    txring->txr_mbufs[i].dmamap);
   3575 				m_freem(txring->txr_mbufs[i].m);
   3576 				txring->txr_mbufs[i].m = NULL;
   3577 			}
   3578 			bus_dmamap_destroy(sc->sc_dmat,
   3579 			    txring->txr_mbufs[i].dmamap);
   3580 			txring->txr_mbufs[i].dmamap = NULL;
   3581 		}
   3582 	}
   3583 }
   3584 
   3585 static int
   3586 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3587 {
   3588 	int i, error;
   3589 
   3590 	/* allocate rx descriptors */
   3591 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3592 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3593 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3594 	if (error != 0)
   3595 		return error;
   3596 
   3597 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3598 
   3599 	/* fill rxring with dmamaps */
   3600 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3601 		rxring->rxr_mbufs[i].m = NULL;
   3602 		/* XXX: TODO: error check */
   3603 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3604 		    &rxring->rxr_mbufs[i].dmamap);
   3605 	}
   3606 	return 0;
   3607 }
   3608 
   3609 static void
   3610 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3611 {
   3612 	int i;
   3613 
   3614 	/* free all mbufs allocated for RX */
   3615 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3616 		if (rxring->rxr_mbufs[i].m != NULL) {
   3617 			bus_dmamap_unload(sc->sc_dmat,
   3618 			    rxring->rxr_mbufs[i].dmamap);
   3619 			m_freem(rxring->rxr_mbufs[i].m);
   3620 			rxring->rxr_mbufs[i].m = NULL;
   3621 		}
   3622 	}
   3623 }
   3624 
   3625 static void
   3626 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3627 {
   3628 	int i;
   3629 
   3630 	/* free all mbufs and dmamaps */
   3631 	aq_rxdrain(sc, rxring);
   3632 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3633 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3634 			bus_dmamap_destroy(sc->sc_dmat,
   3635 			    rxring->rxr_mbufs[i].dmamap);
   3636 			rxring->rxr_mbufs[i].dmamap = NULL;
   3637 		}
   3638 	}
   3639 
   3640 	/* free RX descriptor */
   3641 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3642 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3643 }
   3644 
   3645 static void
   3646 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3647     struct mbuf *m)
   3648 {
   3649 	int error;
   3650 
   3651 	/* if mbuf already exists, unload and free */
   3652 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3653 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3654 		m_freem(rxring->rxr_mbufs[idx].m);
   3655 		rxring->rxr_mbufs[idx].m = NULL;
   3656 	}
   3657 
   3658 	rxring->rxr_mbufs[idx].m = m;
   3659 
   3660 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3661 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3662 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3663 	if (error) {
   3664 		device_printf(sc->sc_dev,
   3665 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3666 		panic("%s: unable to load rx DMA map. error=%d",
   3667 		    __func__, error);
   3668 	}
   3669 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3670 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3671 }
   3672 
   3673 static inline void
   3674 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3675 {
   3676 	/* refill rxdesc, and sync */
   3677 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3678 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3679 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3680 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3681 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3682 	    BUS_DMASYNC_PREWRITE);
   3683 }
   3684 
   3685 static struct mbuf *
   3686 aq_alloc_mbuf(void)
   3687 {
   3688 	struct mbuf *m;
   3689 
   3690 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3691 	if (m == NULL)
   3692 		return NULL;
   3693 
   3694 	MCLGET(m, M_DONTWAIT);
   3695 	if ((m->m_flags & M_EXT) == 0) {
   3696 		m_freem(m);
   3697 		return NULL;
   3698 	}
   3699 
   3700 	return m;
   3701 }
   3702 
   3703 /* allocate mbuf and unload dmamap */
   3704 static int
   3705 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3706 {
   3707 	struct mbuf *m;
   3708 
   3709 	m = aq_alloc_mbuf();
   3710 	if (m == NULL)
   3711 		return ENOBUFS;
   3712 
   3713 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3714 	return 0;
   3715 }
   3716 
   3717 static int
   3718 aq_txrx_rings_alloc(struct aq_softc *sc)
   3719 {
   3720 	int n, error;
   3721 
   3722 	for (n = 0; n < sc->sc_nqueues; n++) {
   3723 		sc->sc_queue[n].sc = sc;
   3724 		sc->sc_queue[n].txring.txr_sc = sc;
   3725 		sc->sc_queue[n].txring.txr_index = n;
   3726 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3727 		    IPL_NET);
   3728 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3729 		if (error != 0)
   3730 			goto failure;
   3731 
   3732 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3733 		if (error != 0)
   3734 			goto failure;
   3735 
   3736 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3737 		sc->sc_queue[n].rxring.rxr_index = n;
   3738 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3739 		   IPL_NET);
   3740 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3741 		if (error != 0)
   3742 			break;
   3743 	}
   3744 
   3745  failure:
   3746 	return error;
   3747 }
   3748 
   3749 static void
   3750 aq_txrx_rings_free(struct aq_softc *sc)
   3751 {
   3752 	int n;
   3753 
   3754 	for (n = 0; n < sc->sc_nqueues; n++) {
   3755 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3756 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3757 
   3758 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3759 
   3760 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3761 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3762 	}
   3763 }
   3764 
   3765 static int
   3766 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3767 {
   3768 	int error = 0;
   3769 	txring->txr_softint = NULL;
   3770 
   3771 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3772 	if (txring->txr_pcq == NULL) {
   3773 		aprint_error_dev(sc->sc_dev,
   3774 		    "unable to allocate pcq for TXring[%d]\n",
   3775 		    txring->txr_index);
   3776 		error = ENOMEM;
   3777 		goto done;
   3778 	}
   3779 
   3780 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3781 	    aq_deferred_transmit, txring);
   3782 	if (txring->txr_softint == NULL) {
   3783 		aprint_error_dev(sc->sc_dev,
   3784 		    "unable to establish softint for TXring[%d]\n",
   3785 		    txring->txr_index);
   3786 		error = ENOENT;
   3787 	}
   3788 
   3789  done:
   3790 	return error;
   3791 }
   3792 
   3793 static void
   3794 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3795 {
   3796 	struct mbuf *m;
   3797 
   3798 	if (txring->txr_softint != NULL) {
   3799 		softint_disestablish(txring->txr_softint);
   3800 		txring->txr_softint = NULL;
   3801 	}
   3802 
   3803 	if (txring->txr_pcq != NULL) {
   3804 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3805 			m_freem(m);
   3806 		pcq_destroy(txring->txr_pcq);
   3807 		txring->txr_pcq = NULL;
   3808 	}
   3809 }
   3810 
   3811 #if NSYSMON_ENVSYS > 0
   3812 static void
   3813 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3814 {
   3815 	struct aq_softc *sc;
   3816 	uint32_t temp;
   3817 	int error;
   3818 
   3819 	sc = sme->sme_cookie;
   3820 
   3821 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3822 	if (error == 0) {
   3823 		edata->value_cur = temp;
   3824 		edata->state = ENVSYS_SVALID;
   3825 	} else {
   3826 		edata->state = ENVSYS_SINVALID;
   3827 	}
   3828 }
   3829 #endif
   3830 
   3831 static void
   3832 aq_tick(void *arg)
   3833 {
   3834 	struct aq_softc *sc = arg;
   3835 
   3836 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3837 		sc->sc_detect_linkstat = false;
   3838 		aq_update_link_status(sc);
   3839 	}
   3840 
   3841 #ifdef AQ_EVENT_COUNTERS
   3842 	if (sc->sc_poll_statistics)
   3843 		aq_update_statistics(sc);
   3844 #endif
   3845 
   3846 	if (sc->sc_poll_linkstat
   3847 #ifdef AQ_EVENT_COUNTERS
   3848 	    || sc->sc_poll_statistics
   3849 #endif
   3850 	    ) {
   3851 		callout_schedule(&sc->sc_tick_ch, hz);
   3852 	}
   3853 }
   3854 
   3855 /* interrupt enable/disable */
   3856 static void
   3857 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3858 {
   3859 	uint32_t imask = 0;
   3860 	int i;
   3861 
   3862 	if (txrx) {
   3863 		for (i = 0; i < sc->sc_nqueues; i++) {
   3864 			imask |= __BIT(sc->sc_tx_irq[i]);
   3865 			imask |= __BIT(sc->sc_rx_irq[i]);
   3866 		}
   3867 	}
   3868 
   3869 	if (link)
   3870 		imask |= __BIT(sc->sc_linkstat_irq);
   3871 
   3872 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3873 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3874 }
   3875 
   3876 static int
   3877 aq_legacy_intr(void *arg)
   3878 {
   3879 	struct aq_softc *sc = arg;
   3880 	uint32_t status;
   3881 	int nintr = 0;
   3882 
   3883 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3884 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3885 
   3886 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3887 		sc->sc_detect_linkstat = true;
   3888 		callout_schedule(&sc->sc_tick_ch, 0);
   3889 		nintr++;
   3890 	}
   3891 
   3892 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3893 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3894 	}
   3895 
   3896 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3897 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3898 	}
   3899 
   3900 	return nintr;
   3901 }
   3902 
   3903 static int
   3904 aq_txrx_intr(void *arg)
   3905 {
   3906 	struct aq_queue *queue = arg;
   3907 	struct aq_softc *sc = queue->sc;
   3908 	struct aq_txring *txring = &queue->txring;
   3909 	struct aq_rxring *rxring = &queue->rxring;
   3910 	uint32_t status;
   3911 	int nintr = 0;
   3912 	int txringidx, rxringidx, txirq, rxirq;
   3913 
   3914 	txringidx = txring->txr_index;
   3915 	rxringidx = rxring->rxr_index;
   3916 	txirq = sc->sc_tx_irq[txringidx];
   3917 	rxirq = sc->sc_rx_irq[rxringidx];
   3918 
   3919 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3920 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3921 		/* stray interrupt? */
   3922 		return 0;
   3923 	}
   3924 
   3925 	nintr += aq_rx_intr(rxring);
   3926 	nintr += aq_tx_intr(txring);
   3927 
   3928 	return nintr;
   3929 }
   3930 
   3931 static int
   3932 aq_link_intr(void *arg)
   3933 {
   3934 	struct aq_softc *sc = arg;
   3935 	uint32_t status;
   3936 	int nintr = 0;
   3937 
   3938 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3939 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3940 		sc->sc_detect_linkstat = true;
   3941 		callout_schedule(&sc->sc_tick_ch, 0);
   3942 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3943 		    __BIT(sc->sc_linkstat_irq));
   3944 		nintr++;
   3945 	}
   3946 
   3947 	return nintr;
   3948 }
   3949 
   3950 static void
   3951 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3952 {
   3953 	const int ringidx = txring->txr_index;
   3954 	int i;
   3955 
   3956 	mutex_enter(&txring->txr_mutex);
   3957 
   3958 	txring->txr_prodidx = 0;
   3959 	txring->txr_considx = 0;
   3960 	txring->txr_nfree = AQ_TXD_NUM;
   3961 	txring->txr_active = false;
   3962 
   3963 	/* free mbufs untransmitted */
   3964 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3965 		if (txring->txr_mbufs[i].m != NULL) {
   3966 			m_freem(txring->txr_mbufs[i].m);
   3967 			txring->txr_mbufs[i].m = NULL;
   3968 		}
   3969 	}
   3970 
   3971 	/* disable DMA */
   3972 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3973 
   3974 	if (start) {
   3975 		/* TX descriptor physical address */
   3976 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3977 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3978 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3979 		    (uint32_t)((uint64_t)paddr >> 32));
   3980 
   3981 		/* TX descriptor size */
   3982 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3983 		    AQ_TXD_NUM / 8);
   3984 
   3985 		/* reload TAIL pointer */
   3986 		txring->txr_prodidx = txring->txr_considx =
   3987 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3988 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3989 
   3990 		/* Mapping interrupt vector */
   3991 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3992 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3993 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3994 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3995 
   3996 		/* enable DMA */
   3997 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3998 		    TX_DMA_DESC_EN, 1);
   3999 
   4000 		const int cpuid = 0;	/* XXX? */
   4001 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   4002 		    TDM_DCAD_CPUID, cpuid);
   4003 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   4004 		    TDM_DCAD_CPUID_EN, 0);
   4005 
   4006 		txring->txr_active = true;
   4007 	}
   4008 
   4009 	mutex_exit(&txring->txr_mutex);
   4010 }
   4011 
   4012 static int
   4013 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   4014 {
   4015 	const int ringidx = rxring->rxr_index;
   4016 	int i;
   4017 	int error = 0;
   4018 
   4019 	mutex_enter(&rxring->rxr_mutex);
   4020 	rxring->rxr_active = false;
   4021 	rxring->rxr_discarding = false;
   4022 	if (rxring->rxr_receiving_m != NULL) {
   4023 		m_freem(rxring->rxr_receiving_m);
   4024 		rxring->rxr_receiving_m = NULL;
   4025 		rxring->rxr_receiving_m_last = NULL;
   4026 	}
   4027 
   4028 	/* disable DMA */
   4029 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   4030 
   4031 	/* free all RX mbufs */
   4032 	aq_rxdrain(sc, rxring);
   4033 
   4034 	if (start) {
   4035 		for (i = 0; i < AQ_RXD_NUM; i++) {
   4036 			error = aq_rxring_add(sc, rxring, i);
   4037 			if (error != 0) {
   4038 				aq_rxdrain(sc, rxring);
   4039 				return error;
   4040 			}
   4041 			aq_rxring_reset_desc(sc, rxring, i);
   4042 		}
   4043 
   4044 		/* RX descriptor physical address */
   4045 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   4046 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   4047 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   4048 		    (uint32_t)((uint64_t)paddr >> 32));
   4049 
   4050 		/* RX descriptor size */
   4051 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   4052 		    AQ_RXD_NUM / 8);
   4053 
   4054 		/* maximum receive frame size */
   4055 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4056 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   4057 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4058 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   4059 
   4060 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4061 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   4062 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4063 		    RX_DMA_DESC_VLAN_STRIP,
   4064 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4065 		    1 : 0);
   4066 
   4067 		/*
   4068 		 * reload TAIL pointer, and update readidx
   4069 		 * (HEAD pointer cannot write)
   4070 		 */
   4071 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4072 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4073 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4074 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4075 
   4076 		/* Rx ring set mode */
   4077 
   4078 		/* Mapping interrupt vector */
   4079 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4080 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4081 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4082 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4083 
   4084 		const int cpuid = 0;	/* XXX? */
   4085 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4086 		    RX_DMA_DCAD_CPUID, cpuid);
   4087 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4088 		    RX_DMA_DCAD_DESC_EN, 0);
   4089 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4090 		    RX_DMA_DCAD_HEADER_EN, 0);
   4091 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4092 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4093 
   4094 		/* enable DMA. start receiving */
   4095 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4096 		    RX_DMA_DESC_EN, 1);
   4097 
   4098 		rxring->rxr_active = true;
   4099 	}
   4100 
   4101 	mutex_exit(&rxring->rxr_mutex);
   4102 	return error;
   4103 }
   4104 
   4105 #define TXRING_NEXTIDX(idx)	\
   4106 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4107 #define RXRING_NEXTIDX(idx)	\
   4108 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4109 
   4110 static int
   4111 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4112 {
   4113 	bus_dmamap_t map;
   4114 	struct mbuf *m = *mp;
   4115 	uint32_t ctl1, ctl1_ctx, ctl2;
   4116 	int idx, i, error;
   4117 
   4118 	idx = txring->txr_prodidx;
   4119 	map = txring->txr_mbufs[idx].dmamap;
   4120 
   4121 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4122 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4123 	if (error == EFBIG) {
   4124 		struct mbuf *n;
   4125 		n = m_defrag(m, M_DONTWAIT);
   4126 		if (n == NULL)
   4127 			return EFBIG;
   4128 		/* m_defrag() preserve m */
   4129 		KASSERT(n == m);
   4130 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4131 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4132 	}
   4133 	if (error != 0)
   4134 		return error;
   4135 
   4136 	/*
   4137 	 * check spaces of free descriptors.
   4138 	 * +1 is additional descriptor for context (vlan, etc,.)
   4139 	 */
   4140 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4141 		device_printf(sc->sc_dev,
   4142 		    "TX: not enough descriptors left %d for %d segs\n",
   4143 		    txring->txr_nfree, map->dm_nsegs + 1);
   4144 		bus_dmamap_unload(sc->sc_dmat, map);
   4145 		return ENOBUFS;
   4146 	}
   4147 
   4148 	/* sync dma for mbuf */
   4149 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4150 	    BUS_DMASYNC_PREWRITE);
   4151 
   4152 	ctl1_ctx = 0;
   4153 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4154 
   4155 	if (vlan_has_tag(m)) {
   4156 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4157 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4158 
   4159 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4160 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4161 
   4162 		/* fill context descriptor and forward index */
   4163 		txring->txr_txdesc[idx].buf_addr = 0;
   4164 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4165 		txring->txr_txdesc[idx].ctl2 = 0;
   4166 
   4167 		idx = TXRING_NEXTIDX(idx);
   4168 		txring->txr_nfree--;
   4169 	}
   4170 
   4171 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4172 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4173 	if (m->m_pkthdr.csum_flags &
   4174 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4175 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4176 	}
   4177 
   4178 	/* fill descriptor(s) */
   4179 	for (i = 0; i < map->dm_nsegs; i++) {
   4180 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4181 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4182 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4183 
   4184 		if (i == 0) {
   4185 			/* remember mbuf of these descriptors */
   4186 			txring->txr_mbufs[idx].m = m;
   4187 		} else {
   4188 			txring->txr_mbufs[idx].m = NULL;
   4189 		}
   4190 
   4191 		if (i == map->dm_nsegs - 1) {
   4192 			/* last segment, mark an EndOfPacket, and cause intr */
   4193 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4194 		}
   4195 
   4196 		txring->txr_txdesc[idx].buf_addr =
   4197 		    htole64(map->dm_segs[i].ds_addr);
   4198 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4199 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4200 
   4201 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4202 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4203 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4204 
   4205 		idx = TXRING_NEXTIDX(idx);
   4206 		txring->txr_nfree--;
   4207 	}
   4208 
   4209 	txring->txr_prodidx = idx;
   4210 
   4211 	return 0;
   4212 }
   4213 
   4214 static int
   4215 aq_tx_intr(void *arg)
   4216 {
   4217 	struct aq_txring * const txring = arg;
   4218 	struct aq_softc * const sc = txring->txr_sc;
   4219 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4220 	struct mbuf *m;
   4221 	const int ringidx = txring->txr_index;
   4222 	unsigned int idx, hw_head, n = 0;
   4223 
   4224 	mutex_enter(&txring->txr_mutex);
   4225 
   4226 	if (!txring->txr_active)
   4227 		goto tx_intr_done;
   4228 
   4229 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4230 	    TX_DMA_DESC_HEAD_PTR);
   4231 	if (hw_head == txring->txr_considx) {
   4232 		goto tx_intr_done;
   4233 	}
   4234 
   4235 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4236 
   4237 	for (idx = txring->txr_considx; idx != hw_head;
   4238 	    idx = TXRING_NEXTIDX(idx), n++) {
   4239 
   4240 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4241 			bus_dmamap_unload(sc->sc_dmat,
   4242 			    txring->txr_mbufs[idx].dmamap);
   4243 
   4244 			if_statinc_ref(nsr, if_opackets);
   4245 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   4246 			if (m->m_flags & M_MCAST)
   4247 				if_statinc_ref(nsr, if_omcasts);
   4248 
   4249 			m_freem(m);
   4250 			txring->txr_mbufs[idx].m = NULL;
   4251 		}
   4252 
   4253 		txring->txr_nfree++;
   4254 	}
   4255 	txring->txr_considx = idx;
   4256 
   4257 	IF_STAT_PUTREF(ifp);
   4258 
   4259 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4260 		ifp->if_flags &= ~IFF_OACTIVE;
   4261 
   4262 	/* no more pending TX packet, cancel watchdog */
   4263 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4264 		ifp->if_timer = 0;
   4265 
   4266  tx_intr_done:
   4267 	mutex_exit(&txring->txr_mutex);
   4268 
   4269 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4270 	return n;
   4271 }
   4272 
   4273 static int
   4274 aq_rx_intr(void *arg)
   4275 {
   4276 	struct aq_rxring * const rxring = arg;
   4277 	struct aq_softc * const sc = rxring->rxr_sc;
   4278 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4279 	const int ringidx = rxring->rxr_index;
   4280 	aq_rx_desc_t *rxd;
   4281 	struct mbuf *m, *m0, *mprev, *new_m;
   4282 	uint32_t rxd_type, rxd_hash __unused;
   4283 	uint16_t rxd_status, rxd_pktlen;
   4284 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4285 	unsigned int idx, n = 0;
   4286 	bool discarding;
   4287 
   4288 	mutex_enter(&rxring->rxr_mutex);
   4289 
   4290 	if (!rxring->rxr_active)
   4291 		goto rx_intr_done;
   4292 
   4293 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4294 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4295 		goto rx_intr_done;
   4296 	}
   4297 
   4298 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4299 
   4300 	/* restore ring context */
   4301 	discarding = rxring->rxr_discarding;
   4302 	m0 = rxring->rxr_receiving_m;
   4303 	mprev = rxring->rxr_receiving_m_last;
   4304 
   4305 	for (idx = rxring->rxr_readidx;
   4306 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4307 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4308 
   4309 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4310 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4311 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4312 
   4313 		rxd = &rxring->rxr_rxdesc[idx];
   4314 		rxd_status = le16toh(rxd->wb.status);
   4315 
   4316 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4317 			break;	/* not yet done */
   4318 
   4319 		rxd_type = le32toh(rxd->wb.type);
   4320 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4321 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4322 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4323 		rxd_vlan = le16toh(rxd->wb.vlan);
   4324 
   4325 		/*
   4326 		 * Some segments are being dropped while receiving jumboframe.
   4327 		 * Discard until EOP.
   4328 		 */
   4329 		if (discarding)
   4330 			goto rx_next;
   4331 
   4332 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4333 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4334 			if_statinc_ref(nsr, if_ierrors);
   4335 			if (m0 != NULL) {
   4336 				m_freem(m0);
   4337 				m0 = mprev = NULL;
   4338 			}
   4339 			discarding = true;
   4340 			goto rx_next;
   4341 		}
   4342 
   4343 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4344 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4345 		    BUS_DMASYNC_POSTREAD);
   4346 		m = rxring->rxr_mbufs[idx].m;
   4347 
   4348 		new_m = aq_alloc_mbuf();
   4349 		if (new_m == NULL) {
   4350 			/*
   4351 			 * cannot allocate new mbuf.
   4352 			 * discard this packet, and reuse mbuf for next.
   4353 			 */
   4354 			if_statinc_ref(nsr, if_iqdrops);
   4355 			if (m0 != NULL) {
   4356 				m_freem(m0);
   4357 				m0 = mprev = NULL;
   4358 			}
   4359 			discarding = true;
   4360 			goto rx_next;
   4361 		}
   4362 		rxring->rxr_mbufs[idx].m = NULL;
   4363 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4364 
   4365 		if (m0 == NULL) {
   4366 			m0 = m;
   4367 		} else {
   4368 			if (m->m_flags & M_PKTHDR)
   4369 				m_remove_pkthdr(m);
   4370 			mprev->m_next = m;
   4371 		}
   4372 		mprev = m;
   4373 
   4374 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4375 			/* to be continued in the next segment */
   4376 			m->m_len = MCLBYTES;
   4377 		} else {
   4378 			/* the last segment */
   4379 			int mlen = rxd_pktlen % MCLBYTES;
   4380 			if (mlen == 0)
   4381 				mlen = MCLBYTES;
   4382 			m->m_len = mlen;
   4383 			m0->m_pkthdr.len = rxd_pktlen;
   4384 			/* VLAN offloading */
   4385 			if ((sc->sc_ethercom.ec_capenable &
   4386 			    ETHERCAP_VLAN_HWTAGGING) &&
   4387 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4388 			    __SHIFTOUT(rxd_type,
   4389 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4390 				vlan_set_tag(m0, rxd_vlan);
   4391 			}
   4392 
   4393 			/* Checksum offloading */
   4394 			unsigned int pkttype_eth =
   4395 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4396 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4397 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4398 			    __SHIFTOUT(rxd_type,
   4399 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4400 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4401 				if (__SHIFTOUT(rxd_status,
   4402 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4403 					m0->m_pkthdr.csum_flags |=
   4404 					    M_CSUM_IPv4_BAD;
   4405 			}
   4406 
   4407 			/*
   4408 			 * aq will always mark BAD for fragment packets,
   4409 			 * but this is not a problem because the IP stack
   4410 			 * ignores the CSUM flag in fragment packets.
   4411 			 */
   4412 			if (__SHIFTOUT(rxd_type,
   4413 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4414 				bool checked = false;
   4415 				unsigned int pkttype_proto =
   4416 				    __SHIFTOUT(rxd_type,
   4417 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4418 
   4419 				if (pkttype_proto ==
   4420 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4421 					if ((pkttype_eth ==
   4422 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4423 					    (ifp->if_capabilities &
   4424 					    IFCAP_CSUM_TCPv4_Rx)) {
   4425 						m0->m_pkthdr.csum_flags |=
   4426 						    M_CSUM_TCPv4;
   4427 						checked = true;
   4428 					} else if ((pkttype_eth ==
   4429 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4430 					    (ifp->if_capabilities &
   4431 					    IFCAP_CSUM_TCPv6_Rx)) {
   4432 						m0->m_pkthdr.csum_flags |=
   4433 						    M_CSUM_TCPv6;
   4434 						checked = true;
   4435 					}
   4436 				} else if (pkttype_proto ==
   4437 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4438 					if ((pkttype_eth ==
   4439 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4440 					    (ifp->if_capabilities &
   4441 					    IFCAP_CSUM_UDPv4_Rx)) {
   4442 						m0->m_pkthdr.csum_flags |=
   4443 						    M_CSUM_UDPv4;
   4444 						checked = true;
   4445 					} else if ((pkttype_eth ==
   4446 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4447 					    (ifp->if_capabilities &
   4448 					    IFCAP_CSUM_UDPv6_Rx)) {
   4449 						m0->m_pkthdr.csum_flags |=
   4450 						    M_CSUM_UDPv6;
   4451 						checked = true;
   4452 					}
   4453 				}
   4454 				if (checked &&
   4455 				    (__SHIFTOUT(rxd_status,
   4456 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4457 				    !__SHIFTOUT(rxd_status,
   4458 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4459 					m0->m_pkthdr.csum_flags |=
   4460 					    M_CSUM_TCP_UDP_BAD;
   4461 				}
   4462 			}
   4463 
   4464 			m_set_rcvif(m0, ifp);
   4465 			if_statinc_ref(nsr, if_ipackets);
   4466 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
   4467 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4468 			m0 = mprev = NULL;
   4469 		}
   4470 
   4471  rx_next:
   4472 		if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
   4473 			discarding = false;
   4474 
   4475 		aq_rxring_reset_desc(sc, rxring, idx);
   4476 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4477 	}
   4478 	/* save ring context */
   4479 	rxring->rxr_readidx = idx;
   4480 	rxring->rxr_discarding = discarding;
   4481 	rxring->rxr_receiving_m = m0;
   4482 	rxring->rxr_receiving_m_last = mprev;
   4483 
   4484 	IF_STAT_PUTREF(ifp);
   4485 
   4486  rx_intr_done:
   4487 	mutex_exit(&rxring->rxr_mutex);
   4488 
   4489 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4490 	return n;
   4491 }
   4492 
   4493 static int
   4494 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
   4495 {
   4496 	struct ifnet *ifp = &ec->ec_if;
   4497 	struct aq_softc * const sc = ifp->if_softc;
   4498 
   4499 	aq_set_vlan_filters(sc);
   4500 	return 0;
   4501 }
   4502 
   4503 static int
   4504 aq_ifflags_cb(struct ethercom *ec)
   4505 {
   4506 	struct ifnet * const ifp = &ec->ec_if;
   4507 	struct aq_softc * const sc = ifp->if_softc;
   4508 	int i, ecchange, error = 0;
   4509 	unsigned short iffchange;
   4510 
   4511 	AQ_LOCK(sc);
   4512 
   4513 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4514 	if ((iffchange & IFF_PROMISC) != 0)
   4515 		error = aq_set_filter(sc);
   4516 
   4517 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4518 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4519 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4520 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4521 			    RX_DMA_DESC_VLAN_STRIP,
   4522 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4523 			    1 : 0);
   4524 		}
   4525 	}
   4526 
   4527 	/* vlan configuration depends on also interface promiscuous mode */
   4528 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
   4529 		aq_set_vlan_filters(sc);
   4530 
   4531 	sc->sc_ec_capenable = ec->ec_capenable;
   4532 	sc->sc_if_flags = ifp->if_flags;
   4533 
   4534 	AQ_UNLOCK(sc);
   4535 
   4536 	return error;
   4537 }
   4538 
   4539 static int
   4540 aq_init(struct ifnet *ifp)
   4541 {
   4542 	struct aq_softc * const sc = ifp->if_softc;
   4543 	int i, error = 0;
   4544 
   4545 	aq_stop(ifp, false);
   4546 
   4547 	AQ_LOCK(sc);
   4548 
   4549 	aq_set_vlan_filters(sc);
   4550 	aq_set_capability(sc);
   4551 
   4552 	for (i = 0; i < sc->sc_nqueues; i++) {
   4553 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4554 	}
   4555 
   4556 	/* invalidate RX descriptor cache */
   4557 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4558 	    AQ_READ_REG_BIT(sc,
   4559 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4560 
   4561 	/* start RX */
   4562 	for (i = 0; i < sc->sc_nqueues; i++) {
   4563 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4564 		if (error != 0) {
   4565 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4566 			    __func__);
   4567 			goto aq_init_failure;
   4568 		}
   4569 	}
   4570 	aq_init_rss(sc);
   4571 	aq_hw_l3_filter_set(sc);
   4572 
   4573 	/* need to start callout? */
   4574 	if (sc->sc_poll_linkstat
   4575 #ifdef AQ_EVENT_COUNTERS
   4576 	    || sc->sc_poll_statistics
   4577 #endif
   4578 	    ) {
   4579 		callout_schedule(&sc->sc_tick_ch, hz);
   4580 	}
   4581 
   4582 	/* ready */
   4583 	ifp->if_flags |= IFF_RUNNING;
   4584 	ifp->if_flags &= ~IFF_OACTIVE;
   4585 
   4586 	/* start TX and RX */
   4587 	aq_enable_intr(sc, true, true);
   4588 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4589 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4590 
   4591  aq_init_failure:
   4592 	sc->sc_if_flags = ifp->if_flags;
   4593 
   4594 	AQ_UNLOCK(sc);
   4595 
   4596 	return error;
   4597 }
   4598 
   4599 static void
   4600 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4601     struct aq_txring *txring, bool is_transmit)
   4602 {
   4603 	struct mbuf *m;
   4604 	int npkt, error;
   4605 
   4606 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4607 		return;
   4608 
   4609 	for (npkt = 0; ; npkt++) {
   4610 		if (is_transmit)
   4611 			m = pcq_peek(txring->txr_pcq);
   4612 		else
   4613 			IFQ_POLL(&ifp->if_snd, m);
   4614 
   4615 		if (m == NULL)
   4616 			break;
   4617 
   4618 		if (txring->txr_nfree < AQ_TXD_MIN)
   4619 			break;
   4620 
   4621 		if (is_transmit)
   4622 			pcq_get(txring->txr_pcq);
   4623 		else
   4624 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4625 
   4626 		error = aq_encap_txring(sc, txring, &m);
   4627 		if (error != 0) {
   4628 			/* too many mbuf chains? or not enough descriptors? */
   4629 			m_freem(m);
   4630 			if_statinc(ifp, if_oerrors);
   4631 			if (txring->txr_index == 0 && error == ENOBUFS)
   4632 				ifp->if_flags |= IFF_OACTIVE;
   4633 			break;
   4634 		}
   4635 
   4636 		/* update tail ptr */
   4637 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4638 		    txring->txr_prodidx);
   4639 
   4640 		/* Pass the packet to any BPF listeners */
   4641 		bpf_mtap(ifp, m, BPF_D_OUT);
   4642 	}
   4643 
   4644 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4645 		ifp->if_flags |= IFF_OACTIVE;
   4646 
   4647 	if (npkt)
   4648 		ifp->if_timer = 5;
   4649 }
   4650 
   4651 static void
   4652 aq_start(struct ifnet *ifp)
   4653 {
   4654 	struct aq_softc * const sc = ifp->if_softc;
   4655 	/* aq_start() always use TX ring[0] */
   4656 	struct aq_txring * const txring = &sc->sc_queue[0].txring;
   4657 
   4658 	mutex_enter(&txring->txr_mutex);
   4659 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4660 		aq_send_common_locked(ifp, sc, txring, false);
   4661 	mutex_exit(&txring->txr_mutex);
   4662 }
   4663 
   4664 static inline unsigned int
   4665 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4666 {
   4667 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4668 }
   4669 
   4670 static int
   4671 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4672 {
   4673 	struct aq_softc * const sc = ifp->if_softc;
   4674 	const int ringidx = aq_select_txqueue(sc, m);
   4675 	struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
   4676 
   4677 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4678 		m_freem(m);
   4679 		return ENOBUFS;
   4680 	}
   4681 
   4682 	if (mutex_tryenter(&txring->txr_mutex)) {
   4683 		aq_send_common_locked(ifp, sc, txring, true);
   4684 		mutex_exit(&txring->txr_mutex);
   4685 	} else {
   4686 		softint_schedule(txring->txr_softint);
   4687 	}
   4688 	return 0;
   4689 }
   4690 
   4691 static void
   4692 aq_deferred_transmit(void *arg)
   4693 {
   4694 	struct aq_txring * const txring = arg;
   4695 	struct aq_softc * const sc = txring->txr_sc;
   4696 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4697 
   4698 	mutex_enter(&txring->txr_mutex);
   4699 	if (pcq_peek(txring->txr_pcq) != NULL)
   4700 		aq_send_common_locked(ifp, sc, txring, true);
   4701 	mutex_exit(&txring->txr_mutex);
   4702 }
   4703 
   4704 static void
   4705 aq_stop(struct ifnet *ifp, int disable)
   4706 {
   4707 	struct aq_softc * const sc = ifp->if_softc;
   4708 	int i;
   4709 
   4710 	AQ_LOCK(sc);
   4711 
   4712 	ifp->if_timer = 0;
   4713 
   4714 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4715 		goto already_stopped;
   4716 
   4717 	/* disable tx/rx interrupts */
   4718 	aq_enable_intr(sc, true, false);
   4719 
   4720 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4721 	for (i = 0; i < sc->sc_nqueues; i++) {
   4722 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4723 	}
   4724 
   4725 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4726 	for (i = 0; i < sc->sc_nqueues; i++) {
   4727 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4728 	}
   4729 
   4730 	/* invalidate RX descriptor cache */
   4731 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4732 	    AQ_READ_REG_BIT(sc,
   4733 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4734 
   4735 	ifp->if_timer = 0;
   4736 
   4737  already_stopped:
   4738 	if (!disable) {
   4739 		/* when pmf stop, disable link status intr and callout */
   4740 		aq_enable_intr(sc, false, false);
   4741 		callout_stop(&sc->sc_tick_ch);
   4742 	}
   4743 
   4744 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4745 
   4746 	AQ_UNLOCK(sc);
   4747 }
   4748 
   4749 static void
   4750 aq_watchdog(struct ifnet *ifp)
   4751 {
   4752 	struct aq_softc * const sc = ifp->if_softc;
   4753 	int n, head, tail;
   4754 
   4755 	AQ_LOCK(sc);
   4756 
   4757 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4758 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4759 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4760 
   4761 	for (n = 0; n < sc->sc_nqueues; n++) {
   4762 		struct aq_txring * const txring = &sc->sc_queue[n].txring;
   4763 		head = AQ_READ_REG_BIT(sc,
   4764 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4765 		    TX_DMA_DESC_HEAD_PTR),
   4766 		tail = AQ_READ_REG(sc,
   4767 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4768 
   4769 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4770 		    __func__, txring->txr_index, head, tail);
   4771 
   4772 		aq_tx_intr(txring);
   4773 	}
   4774 
   4775 	AQ_UNLOCK(sc);
   4776 
   4777 	aq_init(ifp);
   4778 }
   4779 
   4780 static int
   4781 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4782 {
   4783 	struct aq_softc * const sc = ifp->if_softc;
   4784 	struct ifreq * const ifr = data;
   4785 	int error = 0;
   4786 
   4787 	const int s = splnet();
   4788 	switch (cmd) {
   4789 	case SIOCSIFMTU:
   4790 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
   4791 			error = EINVAL;
   4792 		} else {
   4793 			ifp->if_mtu = ifr->ifr_mtu;
   4794 			error = 0;	/* no need to reset (no ENETRESET) */
   4795 		}
   4796 		break;
   4797 	default:
   4798 		error = ether_ioctl(ifp, cmd, data);
   4799 		break;
   4800 	}
   4801 	splx(s);
   4802 
   4803 	if (error != ENETRESET)
   4804 		return error;
   4805 
   4806 	switch (cmd) {
   4807 	case SIOCSIFCAP:
   4808 		error = aq_set_capability(sc);
   4809 		break;
   4810 	case SIOCADDMULTI:
   4811 	case SIOCDELMULTI:
   4812 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4813 			break;
   4814 
   4815 		/*
   4816 		 * Multicast list has changed; set the hardware filter
   4817 		 * accordingly.
   4818 		 */
   4819 		error = aq_set_filter(sc);
   4820 		break;
   4821 	}
   4822 
   4823 	return error;
   4824 }
   4825 
   4826 
   4827 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4828 
   4829 #ifdef _MODULE
   4830 #include "ioconf.c"
   4831 #endif
   4832 
   4833 static int
   4834 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4835 {
   4836 	int error = 0;
   4837 
   4838 	switch (cmd) {
   4839 	case MODULE_CMD_INIT:
   4840 #ifdef _MODULE
   4841 		error = config_init_component(cfdriver_ioconf_if_aq,
   4842 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4843 #endif
   4844 		return error;
   4845 	case MODULE_CMD_FINI:
   4846 #ifdef _MODULE
   4847 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4848 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4849 #endif
   4850 		return error;
   4851 	default:
   4852 		return ENOTTY;
   4853 	}
   4854 }
   4855