if_aq.c revision 1.32 1 /* $NetBSD: if_aq.c,v 1.32 2022/09/08 07:05:42 skrll Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.32 2022/09/08 07:05:42 skrll Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857
858 pcq_t *txr_pcq;
859 void *txr_softint;
860
861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
862 bus_dmamap_t txr_txdesc_dmamap;
863 bus_dma_segment_t txr_txdesc_seg[1];
864 bus_size_t txr_txdesc_size;
865
866 struct {
867 struct mbuf *m;
868 bus_dmamap_t dmamap;
869 } txr_mbufs[AQ_TXD_NUM];
870 unsigned int txr_prodidx;
871 unsigned int txr_considx;
872 int txr_nfree;
873 };
874
875 struct aq_rxring {
876 struct aq_softc *rxr_sc;
877 int rxr_index;
878 kmutex_t rxr_mutex;
879 bool rxr_active;
880 bool rxr_discarding;
881 struct mbuf *rxr_receiving_m; /* receiving jumboframe */
882 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */
883
884 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
885 bus_dmamap_t rxr_rxdesc_dmamap;
886 bus_dma_segment_t rxr_rxdesc_seg[1];
887 bus_size_t rxr_rxdesc_size;
888 struct {
889 struct mbuf *m;
890 bus_dmamap_t dmamap;
891 } rxr_mbufs[AQ_RXD_NUM];
892 unsigned int rxr_readidx;
893 };
894
895 struct aq_queue {
896 struct aq_softc *sc;
897 struct aq_txring txring;
898 struct aq_rxring rxring;
899 };
900
901 struct aq_softc;
902 struct aq_firmware_ops {
903 int (*reset)(struct aq_softc *);
904 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
905 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
906 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
907 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
908 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
909 #if NSYSMON_ENVSYS > 0
910 int (*get_temperature)(struct aq_softc *, uint32_t *);
911 #endif
912 };
913
914 #ifdef AQ_EVENT_COUNTERS
915 #define AQ_EVCNT_DECL(name) \
916 char sc_evcount_##name##_name[32]; \
917 struct evcnt sc_evcount_##name##_ev;
918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
919 do { \
920 snprintf((sc)->sc_evcount_##name##_name, \
921 sizeof((sc)->sc_evcount_##name##_name), \
922 "%s", desc); \
923 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
924 (evtype), NULL, device_xname((sc)->sc_dev), \
925 (sc)->sc_evcount_##name##_name); \
926 } while (/*CONSTCOND*/0)
927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
928 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
929 #define AQ_EVCNT_DETACH(sc, name) \
930 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
931 #define AQ_EVCNT_ADD(sc, name, val) \
932 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
933 #endif /* AQ_EVENT_COUNTERS */
934
935 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
936 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
937
938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
939 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
940 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
941
942
943 struct aq_softc {
944 device_t sc_dev;
945
946 bus_space_tag_t sc_iot;
947 bus_space_handle_t sc_ioh;
948 bus_size_t sc_iosize;
949 bus_dma_tag_t sc_dmat;
950
951 void *sc_ihs[AQ_NINTR_MAX];
952 pci_intr_handle_t *sc_intrs;
953
954 int sc_tx_irq[AQ_RSSQUEUE_MAX];
955 int sc_rx_irq[AQ_RSSQUEUE_MAX];
956 int sc_linkstat_irq;
957 bool sc_use_txrx_independent_intr;
958 bool sc_poll_linkstat;
959 bool sc_detect_linkstat;
960
961 #if NSYSMON_ENVSYS > 0
962 struct sysmon_envsys *sc_sme;
963 envsys_data_t sc_sensor_temp;
964 #endif
965
966 callout_t sc_tick_ch;
967
968 int sc_nintrs;
969 bool sc_msix;
970
971 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
972 int sc_nqueues;
973
974 pci_chipset_tag_t sc_pc;
975 pcitag_t sc_pcitag;
976 uint16_t sc_product;
977 uint16_t sc_revision;
978
979 kmutex_t sc_mutex;
980 kmutex_t sc_mpi_mutex;
981
982 const struct aq_firmware_ops *sc_fw_ops;
983 uint64_t sc_fw_caps;
984 enum aq_media_type sc_media_type;
985 aq_link_speed_t sc_available_rates;
986
987 aq_link_speed_t sc_link_rate;
988 aq_link_fc_t sc_link_fc;
989 aq_link_eee_t sc_link_eee;
990
991 uint32_t sc_fw_version;
992 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
993 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
994 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
995 uint32_t sc_features;
996 #define FEATURES_MIPS 0x00000001
997 #define FEATURES_TPO2 0x00000002
998 #define FEATURES_RPF2 0x00000004
999 #define FEATURES_MPI_AQ 0x00000008
1000 #define FEATURES_REV_A0 0x10000000
1001 #define FEATURES_REV_A (FEATURES_REV_A0)
1002 #define FEATURES_REV_B0 0x20000000
1003 #define FEATURES_REV_B1 0x40000000
1004 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1005 uint32_t sc_max_mtu;
1006 uint32_t sc_mbox_addr;
1007
1008 bool sc_rbl_enabled;
1009 bool sc_fast_start_enabled;
1010 bool sc_flash_present;
1011
1012 bool sc_intr_moderation_enable;
1013 bool sc_rss_enable;
1014
1015 struct ethercom sc_ethercom;
1016 struct ether_addr sc_enaddr;
1017 struct ifmedia sc_media;
1018 int sc_ec_capenable; /* last ec_capenable */
1019 unsigned short sc_if_flags; /* last if_flags */
1020
1021 #ifdef AQ_EVENT_COUNTERS
1022 aq_hw_stats_s_t sc_statistics[2];
1023 int sc_statistics_idx;
1024 bool sc_poll_statistics;
1025
1026 AQ_EVCNT_DECL(uprc);
1027 AQ_EVCNT_DECL(mprc);
1028 AQ_EVCNT_DECL(bprc);
1029 AQ_EVCNT_DECL(erpt);
1030 AQ_EVCNT_DECL(uptc);
1031 AQ_EVCNT_DECL(mptc);
1032 AQ_EVCNT_DECL(bptc);
1033 AQ_EVCNT_DECL(erpr);
1034 AQ_EVCNT_DECL(mbtc);
1035 AQ_EVCNT_DECL(bbtc);
1036 AQ_EVCNT_DECL(mbrc);
1037 AQ_EVCNT_DECL(bbrc);
1038 AQ_EVCNT_DECL(ubrc);
1039 AQ_EVCNT_DECL(ubtc);
1040 AQ_EVCNT_DECL(ptc);
1041 AQ_EVCNT_DECL(prc);
1042 AQ_EVCNT_DECL(dpc);
1043 AQ_EVCNT_DECL(cprc);
1044 #endif
1045 };
1046
1047 static int aq_match(device_t, cfdata_t, void *);
1048 static void aq_attach(device_t, device_t, void *);
1049 static int aq_detach(device_t, int);
1050
1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1052 bool, bool);
1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1054 pci_intr_type_t);
1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1056
1057 static int aq_ifmedia_change(struct ifnet * const);
1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1060 static int aq_ifflags_cb(struct ethercom *);
1061 static int aq_init(struct ifnet *);
1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1063 struct aq_txring *, bool);
1064 static int aq_transmit(struct ifnet *, struct mbuf *);
1065 static void aq_deferred_transmit(void *);
1066 static void aq_start(struct ifnet *);
1067 static void aq_stop(struct ifnet *, int);
1068 static void aq_watchdog(struct ifnet *);
1069 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1070
1071 static int aq_txrx_rings_alloc(struct aq_softc *);
1072 static void aq_txrx_rings_free(struct aq_softc *);
1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1075
1076 static void aq_initmedia(struct aq_softc *);
1077 static void aq_enable_intr(struct aq_softc *, bool, bool);
1078
1079 #if NSYSMON_ENVSYS > 0
1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1081 #endif
1082 static void aq_tick(void *);
1083 static int aq_legacy_intr(void *);
1084 static int aq_link_intr(void *);
1085 static int aq_txrx_intr(void *);
1086 static int aq_tx_intr(void *);
1087 static int aq_rx_intr(void *);
1088
1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1090 aq_link_eee_t);
1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1092 aq_link_eee_t *);
1093
1094 static int aq_fw_reset(struct aq_softc *);
1095 static int aq_fw_version_init(struct aq_softc *);
1096 static int aq_hw_init(struct aq_softc *);
1097 static int aq_hw_init_ucp(struct aq_softc *);
1098 static int aq_hw_reset(struct aq_softc *);
1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1100 uint32_t);
1101 static int aq_get_mac_addr(struct aq_softc *);
1102 static int aq_init_rss(struct aq_softc *);
1103 static int aq_set_capability(struct aq_softc *);
1104
1105 static int fw1x_reset(struct aq_softc *);
1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111
1112 static int fw2x_reset(struct aq_softc *);
1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1114 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1116 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1118 #if NSYSMON_ENVSYS > 0
1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1120 #endif
1121
1122 static const struct aq_firmware_ops aq_fw1x_ops = {
1123 .reset = fw1x_reset,
1124 .set_mode = fw1x_set_mode,
1125 .get_mode = fw1x_get_mode,
1126 .get_stats = fw1x_get_stats,
1127 #if NSYSMON_ENVSYS > 0
1128 .get_temperature = NULL
1129 #endif
1130 };
1131
1132 static const struct aq_firmware_ops aq_fw2x_ops = {
1133 .reset = fw2x_reset,
1134 .set_mode = fw2x_set_mode,
1135 .get_mode = fw2x_get_mode,
1136 .get_stats = fw2x_get_stats,
1137 #if NSYSMON_ENVSYS > 0
1138 .get_temperature = fw2x_get_temperature
1139 #endif
1140 };
1141
1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1143 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1144
1145 static const struct aq_product {
1146 pci_vendor_id_t aq_vendor;
1147 pci_product_id_t aq_product;
1148 const char *aq_name;
1149 enum aq_media_type aq_media_type;
1150 aq_link_speed_t aq_available_rates;
1151 } aq_products[] = {
1152 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1153 "Aquantia AQC100 10 Gigabit Network Adapter",
1154 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1155 },
1156 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1157 "Aquantia AQC107 10 Gigabit Network Adapter",
1158 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1159 },
1160 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1161 "Aquantia AQC108 5 Gigabit Network Adapter",
1162 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1163 },
1164 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1165 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1166 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1167 },
1168 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1169 "Aquantia AQC111 5 Gigabit Network Adapter",
1170 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1171 },
1172 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1173 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1174 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1175 },
1176 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1177 "Aquantia AQC100S 10 Gigabit Network Adapter",
1178 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1179 },
1180 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1181 "Aquantia AQC107S 10 Gigabit Network Adapter",
1182 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1183 },
1184 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1185 "Aquantia AQC108S 5 Gigabit Network Adapter",
1186 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1187 },
1188 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1189 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1190 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1191 },
1192 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1193 "Aquantia AQC111S 5 Gigabit Network Adapter",
1194 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1195 },
1196 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1197 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1198 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1199 },
1200 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1201 "Aquantia D100 10 Gigabit Network Adapter",
1202 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1203 },
1204 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1205 "Aquantia D107 10 Gigabit Network Adapter",
1206 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1207 },
1208 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1209 "Aquantia D108 5 Gigabit Network Adapter",
1210 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1211 },
1212 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1213 "Aquantia D109 2.5 Gigabit Network Adapter",
1214 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1215 }
1216 };
1217
1218 static const struct aq_product *
1219 aq_lookup(const struct pci_attach_args *pa)
1220 {
1221 unsigned int i;
1222
1223 for (i = 0; i < __arraycount(aq_products); i++) {
1224 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1225 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1226 return &aq_products[i];
1227 }
1228 return NULL;
1229 }
1230
1231 static int
1232 aq_match(device_t parent, cfdata_t cf, void *aux)
1233 {
1234 struct pci_attach_args * const pa = aux;
1235
1236 if (aq_lookup(pa) != NULL)
1237 return 1;
1238
1239 return 0;
1240 }
1241
1242 static void
1243 aq_attach(device_t parent, device_t self, void *aux)
1244 {
1245 struct aq_softc * const sc = device_private(self);
1246 struct pci_attach_args * const pa = aux;
1247 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1248 pci_chipset_tag_t pc;
1249 pcitag_t tag;
1250 pcireg_t command, memtype, bar;
1251 const struct aq_product *aqp;
1252 int error;
1253
1254 sc->sc_dev = self;
1255 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1256 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1257
1258 sc->sc_pc = pc = pa->pa_pc;
1259 sc->sc_pcitag = tag = pa->pa_tag;
1260 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1261
1262 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1263 command |= PCI_COMMAND_MASTER_ENABLE;
1264 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1265
1266 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1267 sc->sc_revision = PCI_REVISION(pa->pa_class);
1268
1269 aqp = aq_lookup(pa);
1270 KASSERT(aqp != NULL);
1271
1272 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1273
1274 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1275 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1276 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1277 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1278 return;
1279 }
1280 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1281 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1282 NULL, &sc->sc_iosize) != 0) {
1283 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1284 return;
1285 }
1286
1287 error = aq_fw_reset(sc);
1288 if (error != 0)
1289 goto attach_failure;
1290
1291 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1292
1293 /* max queue num is 8, and must be 2^n */
1294 if (ncpu >= 8)
1295 sc->sc_nqueues = 8;
1296 else if (ncpu >= 4)
1297 sc->sc_nqueues = 4;
1298 else if (ncpu >= 2)
1299 sc->sc_nqueues = 2;
1300 else
1301 sc->sc_nqueues = 1;
1302
1303 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1304 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1305 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1306 /* TX intrs + RX intrs + LINKSTAT intrs */
1307 sc->sc_use_txrx_independent_intr = true;
1308 sc->sc_poll_linkstat = false;
1309 sc->sc_msix = true;
1310 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1311 /* TX intrs + RX intrs */
1312 sc->sc_use_txrx_independent_intr = true;
1313 sc->sc_poll_linkstat = true;
1314 sc->sc_msix = true;
1315 } else
1316 #endif
1317 if (msixcount >= (sc->sc_nqueues + 1)) {
1318 /* TX/RX intrs LINKSTAT intrs */
1319 sc->sc_use_txrx_independent_intr = false;
1320 sc->sc_poll_linkstat = false;
1321 sc->sc_msix = true;
1322 } else if (msixcount >= sc->sc_nqueues) {
1323 /* TX/RX intrs */
1324 sc->sc_use_txrx_independent_intr = false;
1325 sc->sc_poll_linkstat = true;
1326 sc->sc_msix = true;
1327 } else {
1328 /* giving up using MSI-X */
1329 sc->sc_msix = false;
1330 }
1331
1332 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1333 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1334 FW_VERSION_MAJOR(sc) == 1)
1335 sc->sc_poll_linkstat = true;
1336
1337 #ifdef AQ_FORCE_POLL_LINKSTAT
1338 sc->sc_poll_linkstat = true;
1339 #endif
1340
1341 aprint_debug_dev(sc->sc_dev,
1342 "ncpu=%d, pci_msix_count=%d."
1343 " allocate %d interrupts for %d%s queues%s\n",
1344 ncpu, msixcount,
1345 (sc->sc_use_txrx_independent_intr ?
1346 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1347 (sc->sc_poll_linkstat ? 0 : 1),
1348 sc->sc_nqueues,
1349 sc->sc_use_txrx_independent_intr ? "*2" : "",
1350 sc->sc_poll_linkstat ? "" : ", and link status");
1351
1352 if (sc->sc_msix)
1353 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1354 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1355 else
1356 error = ENODEV;
1357
1358 if (error != 0) {
1359 /* if MSI-X failed, fallback to MSI with single queue */
1360 sc->sc_use_txrx_independent_intr = false;
1361 sc->sc_poll_linkstat = false;
1362 sc->sc_msix = false;
1363 sc->sc_nqueues = 1;
1364 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1365 }
1366 if (error != 0) {
1367 /* if MSI failed, fallback to INTx */
1368 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1369 }
1370 if (error != 0)
1371 goto attach_failure;
1372
1373 callout_init(&sc->sc_tick_ch, 0);
1374 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1375
1376 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1377
1378 if (sc->sc_msix && (sc->sc_nqueues > 1))
1379 sc->sc_rss_enable = true;
1380 else
1381 sc->sc_rss_enable = false;
1382
1383 error = aq_txrx_rings_alloc(sc);
1384 if (error != 0)
1385 goto attach_failure;
1386
1387 error = aq_fw_version_init(sc);
1388 if (error != 0)
1389 goto attach_failure;
1390
1391 error = aq_hw_init_ucp(sc);
1392 if (error < 0)
1393 goto attach_failure;
1394
1395 KASSERT(sc->sc_mbox_addr != 0);
1396 error = aq_hw_reset(sc);
1397 if (error != 0)
1398 goto attach_failure;
1399
1400 aq_get_mac_addr(sc);
1401 aq_init_rss(sc);
1402
1403 error = aq_hw_init(sc); /* initialize and interrupts */
1404 if (error != 0)
1405 goto attach_failure;
1406
1407 sc->sc_media_type = aqp->aq_media_type;
1408 sc->sc_available_rates = aqp->aq_available_rates;
1409
1410 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1411 ifmedia_init(&sc->sc_media, IFM_IMASK,
1412 aq_ifmedia_change, aq_ifmedia_status);
1413 aq_initmedia(sc);
1414
1415 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1416 ifp->if_softc = sc;
1417 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1418 ifp->if_extflags = IFEF_MPSAFE;
1419 ifp->if_baudrate = IF_Gbps(10);
1420 ifp->if_init = aq_init;
1421 ifp->if_ioctl = aq_ioctl;
1422 if (sc->sc_msix && (sc->sc_nqueues > 1))
1423 ifp->if_transmit = aq_transmit;
1424 ifp->if_start = aq_start;
1425 ifp->if_stop = aq_stop;
1426 ifp->if_watchdog = aq_watchdog;
1427 IFQ_SET_READY(&ifp->if_snd);
1428
1429 /* initialize capabilities */
1430 sc->sc_ethercom.ec_capabilities = 0;
1431 sc->sc_ethercom.ec_capenable = 0;
1432 #if notyet
1433 /* TODO */
1434 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1435 #endif
1436 sc->sc_ethercom.ec_capabilities |=
1437 ETHERCAP_JUMBO_MTU |
1438 ETHERCAP_VLAN_MTU |
1439 ETHERCAP_VLAN_HWTAGGING |
1440 ETHERCAP_VLAN_HWFILTER;
1441 sc->sc_ethercom.ec_capenable |=
1442 ETHERCAP_VLAN_HWTAGGING |
1443 ETHERCAP_VLAN_HWFILTER;
1444
1445 ifp->if_capabilities = 0;
1446 ifp->if_capenable = 0;
1447 #ifdef CONFIG_LRO_SUPPORT
1448 ifp->if_capabilities |= IFCAP_LRO;
1449 ifp->if_capenable |= IFCAP_LRO;
1450 #endif
1451 #if notyet
1452 /* TSO */
1453 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1454 #endif
1455
1456 /* TX hardware checksum offloading */
1457 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1458 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1459 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1460 /* RX hardware checksum offloading */
1461 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1462 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1463 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1464
1465 if_initialize(ifp);
1466 ifp->if_percpuq = if_percpuq_create(ifp);
1467 if_deferred_start_init(ifp, NULL);
1468 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1469 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1470 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1471 if_register(ifp);
1472
1473 aq_enable_intr(sc, true, false); /* only intr about link */
1474
1475 /* update media */
1476 aq_ifmedia_change(ifp);
1477
1478 #if NSYSMON_ENVSYS > 0
1479 /* temperature monitoring */
1480 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1481 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1482
1483 sc->sc_sme = sysmon_envsys_create();
1484 sc->sc_sme->sme_name = device_xname(self);
1485 sc->sc_sme->sme_cookie = sc;
1486 sc->sc_sme->sme_flags = 0;
1487 sc->sc_sme->sme_refresh = aq_temp_refresh;
1488 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1489 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1490 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1491
1492 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1493 if (sysmon_envsys_register(sc->sc_sme)) {
1494 sysmon_envsys_destroy(sc->sc_sme);
1495 sc->sc_sme = NULL;
1496 goto attach_failure;
1497 }
1498
1499 /*
1500 * for unknown reasons, the first call of fw2x_get_temperature()
1501 * will always fail (firmware matter?), so run once now.
1502 */
1503 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1504 }
1505 #endif
1506
1507 #ifdef AQ_EVENT_COUNTERS
1508 /* get starting statistics values */
1509 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1510 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1511 sc->sc_poll_statistics = true;
1512 }
1513
1514 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1515 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1516 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1517 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1518 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1519 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1520 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1521 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1522 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1523 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1524 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1525 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1526 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1527 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1528 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1529 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1530 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1531 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1532 #endif
1533
1534 if (pmf_device_register(self, NULL, NULL))
1535 pmf_class_network_register(self, ifp);
1536 else
1537 aprint_error_dev(self, "couldn't establish power handler\n");
1538
1539 return;
1540
1541 attach_failure:
1542 aq_detach(self, 0);
1543 }
1544
1545 static int
1546 aq_detach(device_t self, int flags __unused)
1547 {
1548 struct aq_softc * const sc = device_private(self);
1549 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1550 int i;
1551
1552 if (sc->sc_iosize != 0) {
1553 if (ifp->if_softc != NULL) {
1554 const int s = splnet();
1555 aq_stop(ifp, 0);
1556 splx(s);
1557 }
1558
1559 for (i = 0; i < AQ_NINTR_MAX; i++) {
1560 if (sc->sc_ihs[i] != NULL) {
1561 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1562 sc->sc_ihs[i] = NULL;
1563 }
1564 }
1565 if (sc->sc_nintrs > 0) {
1566 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1567 sc->sc_nintrs);
1568 sc->sc_intrs = NULL;
1569 sc->sc_nintrs = 0;
1570 }
1571
1572 aq_txrx_rings_free(sc);
1573
1574 if (ifp->if_softc != NULL) {
1575 ether_ifdetach(ifp);
1576 if_detach(ifp);
1577 }
1578
1579 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1580 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1581 sc->sc_iosize = 0;
1582 }
1583
1584 callout_stop(&sc->sc_tick_ch);
1585
1586 #if NSYSMON_ENVSYS > 0
1587 if (sc->sc_sme != NULL) {
1588 /* all sensors associated with this will also be detached */
1589 sysmon_envsys_unregister(sc->sc_sme);
1590 }
1591 #endif
1592
1593 #ifdef AQ_EVENT_COUNTERS
1594 AQ_EVCNT_DETACH(sc, uprc);
1595 AQ_EVCNT_DETACH(sc, mprc);
1596 AQ_EVCNT_DETACH(sc, bprc);
1597 AQ_EVCNT_DETACH(sc, erpt);
1598 AQ_EVCNT_DETACH(sc, uptc);
1599 AQ_EVCNT_DETACH(sc, mptc);
1600 AQ_EVCNT_DETACH(sc, bptc);
1601 AQ_EVCNT_DETACH(sc, erpr);
1602 AQ_EVCNT_DETACH(sc, mbtc);
1603 AQ_EVCNT_DETACH(sc, bbtc);
1604 AQ_EVCNT_DETACH(sc, mbrc);
1605 AQ_EVCNT_DETACH(sc, bbrc);
1606 AQ_EVCNT_DETACH(sc, ubrc);
1607 AQ_EVCNT_DETACH(sc, ubtc);
1608 AQ_EVCNT_DETACH(sc, ptc);
1609 AQ_EVCNT_DETACH(sc, prc);
1610 AQ_EVCNT_DETACH(sc, dpc);
1611 AQ_EVCNT_DETACH(sc, cprc);
1612 #endif
1613
1614 ifmedia_fini(&sc->sc_media);
1615
1616 mutex_destroy(&sc->sc_mpi_mutex);
1617 mutex_destroy(&sc->sc_mutex);
1618
1619 return 0;
1620 }
1621
1622 static int
1623 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1624 int (*func)(void *), void *arg, const char *xname)
1625 {
1626 char intrbuf[PCI_INTRSTR_LEN];
1627 pci_chipset_tag_t pc = sc->sc_pc;
1628 void *vih;
1629 const char *intrstr = NULL;
1630
1631 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1632 sizeof(intrbuf));
1633
1634 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1635
1636 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1637 IPL_NET, func, arg, xname);
1638 if (vih == NULL) {
1639 aprint_error_dev(sc->sc_dev,
1640 "unable to establish MSI-X%s%s for %s\n",
1641 intrstr ? " at " : "",
1642 intrstr ? intrstr : "", xname);
1643 return EIO;
1644 }
1645 sc->sc_ihs[intno] = vih;
1646
1647 if (affinity != NULL) {
1648 /* Round-robin affinity */
1649 kcpuset_zero(affinity);
1650 kcpuset_set(affinity, intno % ncpu);
1651 interrupt_distribute(vih, affinity, NULL);
1652 }
1653
1654 return 0;
1655 }
1656
1657 static int
1658 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1659 bool linkintr)
1660 {
1661 kcpuset_t *affinity;
1662 int error, intno, i;
1663 char intr_xname[INTRDEVNAMEBUF];
1664
1665 kcpuset_create(&affinity, false);
1666
1667 intno = 0;
1668
1669 if (txrx_independent) {
1670 for (i = 0; i < sc->sc_nqueues; i++) {
1671 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1672 device_xname(sc->sc_dev), i);
1673 sc->sc_rx_irq[i] = intno;
1674 error = aq_establish_intr(sc, intno++, affinity,
1675 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1676 if (error != 0)
1677 goto fail;
1678 }
1679 for (i = 0; i < sc->sc_nqueues; i++) {
1680 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1681 device_xname(sc->sc_dev), i);
1682 sc->sc_tx_irq[i] = intno;
1683 error = aq_establish_intr(sc, intno++, affinity,
1684 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1685 if (error != 0)
1686 goto fail;
1687 }
1688 } else {
1689 for (i = 0; i < sc->sc_nqueues; i++) {
1690 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1691 device_xname(sc->sc_dev), i);
1692 sc->sc_rx_irq[i] = intno;
1693 sc->sc_tx_irq[i] = intno;
1694 error = aq_establish_intr(sc, intno++, affinity,
1695 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1696 if (error != 0)
1697 goto fail;
1698 }
1699 }
1700
1701 if (linkintr) {
1702 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1703 device_xname(sc->sc_dev));
1704 sc->sc_linkstat_irq = intno;
1705 error = aq_establish_intr(sc, intno++, affinity,
1706 aq_link_intr, sc, intr_xname);
1707 if (error != 0)
1708 goto fail;
1709 }
1710
1711 kcpuset_destroy(affinity);
1712 return 0;
1713
1714 fail:
1715 for (i = 0; i < AQ_NINTR_MAX; i++) {
1716 if (sc->sc_ihs[i] != NULL) {
1717 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1718 sc->sc_ihs[i] = NULL;
1719 }
1720 }
1721
1722 kcpuset_destroy(affinity);
1723 return ENOMEM;
1724 }
1725
1726 static int
1727 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1728 bool txrx_independent, bool linkintr)
1729 {
1730 int error, nintr;
1731
1732 if (txrx_independent)
1733 nintr = nqueue * 2;
1734 else
1735 nintr = nqueue;
1736
1737 if (linkintr)
1738 nintr++;
1739
1740 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1741 if (error != 0) {
1742 aprint_error_dev(sc->sc_dev,
1743 "failed to allocate MSI-X interrupts\n");
1744 goto fail;
1745 }
1746
1747 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1748 if (error == 0) {
1749 sc->sc_nintrs = nintr;
1750 } else {
1751 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1752 sc->sc_nintrs = 0;
1753 }
1754 fail:
1755 return error;
1756
1757 }
1758
1759 static int
1760 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1761 pci_intr_type_t inttype)
1762 {
1763 int counts[PCI_INTR_TYPE_SIZE];
1764 int error, nintr;
1765
1766 nintr = 1;
1767
1768 memset(counts, 0, sizeof(counts));
1769 counts[inttype] = nintr;
1770
1771 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1772 if (error != 0) {
1773 aprint_error_dev(sc->sc_dev,
1774 "failed to allocate%s interrupts\n",
1775 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1776 return error;
1777 }
1778 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1779 device_xname(sc->sc_dev));
1780 if (error == 0) {
1781 sc->sc_nintrs = nintr;
1782 } else {
1783 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1784 sc->sc_nintrs = 0;
1785 }
1786 return error;
1787 }
1788
1789 static void
1790 global_software_reset(struct aq_softc *sc)
1791 {
1792 uint32_t v;
1793
1794 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1795 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1796 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1797 FW_MPI_RESETCTRL_RESET_DIS, 0);
1798
1799 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1800 v &= ~AQ_FW_SOFTRESET_DIS;
1801 v |= AQ_FW_SOFTRESET_RESET;
1802 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1803 }
1804
1805 static int
1806 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1807 {
1808 int timo;
1809
1810 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1811
1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1813 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1814 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1815
1816 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1817 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1818
1819 global_software_reset(sc);
1820
1821 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1822
1823 /* Wait for RBL to finish boot process. */
1824 #define RBL_TIMEOUT_MS 10000
1825 uint16_t rbl_status;
1826 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1827 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1828 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1829 break;
1830 msec_delay(1);
1831 }
1832 if (timo <= 0) {
1833 aprint_error_dev(sc->sc_dev,
1834 "RBL> RBL restart failed: timeout\n");
1835 return EBUSY;
1836 }
1837 switch (rbl_status) {
1838 case RBL_STATUS_SUCCESS:
1839 if (mode != NULL)
1840 *mode = FW_BOOT_MODE_RBL_FLASH;
1841 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1842 break;
1843 case RBL_STATUS_HOST_BOOT:
1844 if (mode != NULL)
1845 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1846 aprint_debug_dev(sc->sc_dev,
1847 "RBL> reset complete! [Host Bootload]\n");
1848 break;
1849 case RBL_STATUS_FAILURE:
1850 default:
1851 aprint_error_dev(sc->sc_dev,
1852 "unknown RBL status 0x%x\n", rbl_status);
1853 return EBUSY;
1854 }
1855
1856 return 0;
1857 }
1858
1859 static int
1860 mac_soft_reset_flb(struct aq_softc *sc)
1861 {
1862 uint32_t v;
1863 int timo;
1864
1865 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1866 /*
1867 * Let Felicity hardware to complete SMBUS transaction before
1868 * Global software reset.
1869 */
1870 msec_delay(50);
1871
1872 /*
1873 * If SPI burst transaction was interrupted(before running the script),
1874 * global software reset may not clear SPI interface.
1875 * Clean it up manually before global reset.
1876 */
1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1879 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1880 msec_delay(50);
1881
1882 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1883 v &= ~AQ_FW_SOFTRESET_DIS;
1884 v |= AQ_FW_SOFTRESET_RESET;
1885 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1886
1887 /* Kickstart. */
1888 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1889 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1890 if (!sc->sc_fast_start_enabled)
1891 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1892
1893 /*
1894 * For the case SPI burst transaction was interrupted (by MCP reset
1895 * above), wait until it is completed by hardware.
1896 */
1897 msec_delay(50);
1898
1899 /* MAC Kickstart */
1900 if (!sc->sc_fast_start_enabled) {
1901 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1902
1903 uint32_t flb_status;
1904 for (timo = 0; timo < 1000; timo++) {
1905 flb_status = AQ_READ_REG(sc,
1906 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1907 if (flb_status != 0)
1908 break;
1909 msec_delay(1);
1910 }
1911 if (flb_status == 0) {
1912 aprint_error_dev(sc->sc_dev,
1913 "FLB> MAC kickstart failed: timed out\n");
1914 return ETIMEDOUT;
1915 }
1916 aprint_debug_dev(sc->sc_dev,
1917 "FLB> MAC kickstart done, %d ms\n", timo);
1918 /* FW reset */
1919 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1920 /*
1921 * Let Felicity hardware complete SMBUS transaction before
1922 * Global software reset.
1923 */
1924 msec_delay(50);
1925 sc->sc_fast_start_enabled = true;
1926 }
1927 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1928
1929 /* PHY Kickstart: #undone */
1930 global_software_reset(sc);
1931
1932 for (timo = 0; timo < 1000; timo++) {
1933 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1934 break;
1935 msec_delay(10);
1936 }
1937 if (timo >= 1000) {
1938 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1939 return ETIMEDOUT;
1940 }
1941 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1942 return 0;
1943
1944 }
1945
1946 static int
1947 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1948 {
1949 if (sc->sc_rbl_enabled)
1950 return mac_soft_reset_rbl(sc, mode);
1951
1952 if (mode != NULL)
1953 *mode = FW_BOOT_MODE_FLB;
1954 return mac_soft_reset_flb(sc);
1955 }
1956
1957 static int
1958 aq_fw_read_version(struct aq_softc *sc)
1959 {
1960 int i, error = EBUSY;
1961 #define MAC_FW_START_TIMEOUT_MS 10000
1962 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1963 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1964 if (sc->sc_fw_version != 0) {
1965 error = 0;
1966 break;
1967 }
1968 delay(1000);
1969 }
1970 return error;
1971 }
1972
1973 static int
1974 aq_fw_reset(struct aq_softc *sc)
1975 {
1976 uint32_t ver, v, bootExitCode;
1977 int i, error;
1978
1979 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1980
1981 for (i = 1000; i > 0; i--) {
1982 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1983 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1984 if (v != 0x06000000 || bootExitCode != 0)
1985 break;
1986 }
1987 if (i <= 0) {
1988 aprint_error_dev(sc->sc_dev,
1989 "F/W reset failed. Neither RBL nor FLB started\n");
1990 return ETIMEDOUT;
1991 }
1992 sc->sc_rbl_enabled = (bootExitCode != 0);
1993
1994 /*
1995 * Having FW version 0 is an indicator that cold start
1996 * is in progress. This means two things:
1997 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1998 * 2) Driver may skip reset sequence and save time.
1999 */
2000 if (sc->sc_fast_start_enabled && (ver != 0)) {
2001 error = aq_fw_read_version(sc);
2002 /* Skip reset as it just completed */
2003 if (error == 0)
2004 return 0;
2005 }
2006
2007 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2008 error = mac_soft_reset(sc, &mode);
2009 if (error != 0) {
2010 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2011 return error;
2012 }
2013
2014 switch (mode) {
2015 case FW_BOOT_MODE_FLB:
2016 aprint_debug_dev(sc->sc_dev,
2017 "FLB> F/W successfully loaded from flash.\n");
2018 sc->sc_flash_present = true;
2019 return aq_fw_read_version(sc);
2020 case FW_BOOT_MODE_RBL_FLASH:
2021 aprint_debug_dev(sc->sc_dev,
2022 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2023 sc->sc_flash_present = true;
2024 return aq_fw_read_version(sc);
2025 case FW_BOOT_MODE_UNKNOWN:
2026 aprint_error_dev(sc->sc_dev,
2027 "F/W bootload error: unknown bootloader type\n");
2028 return ENOTSUP;
2029 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2030 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2031 break;
2032 }
2033
2034 /*
2035 * XXX: TODO: add support Host Boot
2036 */
2037 aprint_error_dev(sc->sc_dev,
2038 "RBL> F/W Host Bootload not implemented\n");
2039 return ENOTSUP;
2040 }
2041
2042 static int
2043 aq_hw_reset(struct aq_softc *sc)
2044 {
2045 int error;
2046
2047 /* disable irq */
2048 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2049
2050 /* apply */
2051 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2052
2053 /* wait ack 10 times by 1ms */
2054 WAIT_FOR(
2055 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2056 1000, 10, &error);
2057 if (error != 0) {
2058 aprint_error_dev(sc->sc_dev,
2059 "atlantic: IRQ reset failed: %d\n", error);
2060 return error;
2061 }
2062
2063 return sc->sc_fw_ops->reset(sc);
2064 }
2065
2066 static int
2067 aq_hw_init_ucp(struct aq_softc *sc)
2068 {
2069 int timo;
2070
2071 if (FW_VERSION_MAJOR(sc) == 1) {
2072 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2073 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2074 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2075 }
2076
2077 /* Wait a maximum of 10sec. It usually takes about 5sec. */
2078 for (timo = 10000; timo > 0; timo--) {
2079 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2080 if (sc->sc_mbox_addr != 0)
2081 break;
2082 delay(1000);
2083 }
2084 if (sc->sc_mbox_addr == 0) {
2085 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2086 return ETIMEDOUT;
2087 }
2088
2089 #define AQ_FW_MIN_VERSION 0x01050006
2090 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2091 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2092 aprint_error_dev(sc->sc_dev,
2093 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2094 " or later required, this is %d.%d.%d\n",
2095 FW_VERSION_MAJOR(sc),
2096 FW_VERSION_MINOR(sc),
2097 FW_VERSION_BUILD(sc));
2098 return ENOTSUP;
2099 }
2100
2101 return 0;
2102 }
2103
2104 static int
2105 aq_fw_version_init(struct aq_softc *sc)
2106 {
2107 int error = 0;
2108 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2109
2110 if (FW_VERSION_MAJOR(sc) == 1) {
2111 sc->sc_fw_ops = &aq_fw1x_ops;
2112 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2113 sc->sc_fw_ops = &aq_fw2x_ops;
2114 } else {
2115 aprint_error_dev(sc->sc_dev,
2116 "Unsupported F/W version %d.%d.%d\n",
2117 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2118 FW_VERSION_BUILD(sc));
2119 return ENOTSUP;
2120 }
2121 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2122 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2123
2124 /* detect revision */
2125 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2126 switch (hwrev & 0x0000000f) {
2127 case 0x01:
2128 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2129 fw_vers);
2130 sc->sc_features |= FEATURES_REV_A0 |
2131 FEATURES_MPI_AQ | FEATURES_MIPS;
2132 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2133 break;
2134 case 0x02:
2135 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2136 fw_vers);
2137 sc->sc_features |= FEATURES_REV_B0 |
2138 FEATURES_MPI_AQ | FEATURES_MIPS |
2139 FEATURES_TPO2 | FEATURES_RPF2;
2140 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2141 break;
2142 case 0x0A:
2143 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2144 fw_vers);
2145 sc->sc_features |= FEATURES_REV_B1 |
2146 FEATURES_MPI_AQ | FEATURES_MIPS |
2147 FEATURES_TPO2 | FEATURES_RPF2;
2148 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2149 break;
2150 default:
2151 aprint_error_dev(sc->sc_dev,
2152 "Unknown revision (0x%08x)\n", hwrev);
2153 sc->sc_features = 0;
2154 sc->sc_max_mtu = ETHERMTU;
2155 error = ENOTSUP;
2156 break;
2157 }
2158 return error;
2159 }
2160
2161 static int
2162 fw1x_reset(struct aq_softc *sc)
2163 {
2164 struct aq_mailbox_header mbox;
2165 const int retryCount = 1000;
2166 uint32_t tid0;
2167 int i;
2168
2169 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2170
2171 for (i = 0; i < retryCount; ++i) {
2172 /*
2173 * Read the beginning of Statistics structure to capture
2174 * the Transaction ID.
2175 */
2176 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2177 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2178
2179 /* Successfully read the stats. */
2180 if (tid0 == ~0U) {
2181 /* We have read the initial value. */
2182 tid0 = mbox.transaction_id;
2183 continue;
2184 } else if (mbox.transaction_id != tid0) {
2185 /*
2186 * Compare transaction ID to initial value.
2187 * If it's different means f/w is alive.
2188 * We're done.
2189 */
2190 return 0;
2191 }
2192
2193 /*
2194 * Transaction ID value haven't changed since last time.
2195 * Try reading the stats again.
2196 */
2197 delay(10);
2198 }
2199 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2200 return EBUSY;
2201 }
2202
2203 static int
2204 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2205 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2206 {
2207 uint32_t mpictrl = 0;
2208 uint32_t mpispeed = 0;
2209
2210 if (speed & AQ_LINK_10G)
2211 mpispeed |= FW1X_CTRL_10G;
2212 if (speed & AQ_LINK_5G)
2213 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2214 if (speed & AQ_LINK_2G5)
2215 mpispeed |= FW1X_CTRL_2G5;
2216 if (speed & AQ_LINK_1G)
2217 mpispeed |= FW1X_CTRL_1G;
2218 if (speed & AQ_LINK_100M)
2219 mpispeed |= FW1X_CTRL_100M;
2220
2221 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2222 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2223 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2224 return 0;
2225 }
2226
2227 static int
2228 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2229 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2230 {
2231 uint32_t mpistate, mpi_speed;
2232 aq_link_speed_t speed = AQ_LINK_NONE;
2233
2234 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2235
2236 if (modep != NULL)
2237 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2238
2239 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2240 if (mpi_speed & FW1X_CTRL_10G)
2241 speed = AQ_LINK_10G;
2242 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2243 speed = AQ_LINK_5G;
2244 else if (mpi_speed & FW1X_CTRL_2G5)
2245 speed = AQ_LINK_2G5;
2246 else if (mpi_speed & FW1X_CTRL_1G)
2247 speed = AQ_LINK_1G;
2248 else if (mpi_speed & FW1X_CTRL_100M)
2249 speed = AQ_LINK_100M;
2250
2251 if (speedp != NULL)
2252 *speedp = speed;
2253
2254 if (fcp != NULL)
2255 *fcp = AQ_FC_NONE;
2256
2257 if (eeep != NULL)
2258 *eeep = AQ_EEE_DISABLE;
2259
2260 return 0;
2261 }
2262
2263 static int
2264 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2265 {
2266 int error;
2267
2268 error = aq_fw_downld_dwords(sc,
2269 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2270 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2271 if (error < 0) {
2272 device_printf(sc->sc_dev,
2273 "fw1x> download statistics data FAILED, error %d", error);
2274 return error;
2275 }
2276
2277 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2278 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2279 return 0;
2280 }
2281
2282 static int
2283 fw2x_reset(struct aq_softc *sc)
2284 {
2285 fw2x_capabilities_t caps = { 0 };
2286 int error;
2287
2288 error = aq_fw_downld_dwords(sc,
2289 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2290 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2291 if (error != 0) {
2292 aprint_error_dev(sc->sc_dev,
2293 "fw2x> can't get F/W capabilities mask, error %d\n",
2294 error);
2295 return error;
2296 }
2297 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2298
2299 char buf[256];
2300 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2301 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2302
2303 return 0;
2304 }
2305
2306 static int
2307 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2308 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2309 {
2310 uint64_t mpi_ctrl;
2311 int error = 0;
2312
2313 AQ_MPI_LOCK(sc);
2314
2315 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2316
2317 switch (mode) {
2318 case MPI_INIT:
2319 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2320 if (speed & AQ_LINK_10G)
2321 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2322 if (speed & AQ_LINK_5G)
2323 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2324 if (speed & AQ_LINK_2G5)
2325 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2326 if (speed & AQ_LINK_1G)
2327 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2328 if (speed & AQ_LINK_100M)
2329 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2330
2331 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2332
2333 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2334 if (eee == AQ_EEE_ENABLE)
2335 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2336
2337 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2338 if (fc & AQ_FC_RX)
2339 mpi_ctrl |= FW2X_CTRL_PAUSE;
2340 if (fc & AQ_FC_TX)
2341 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2342 break;
2343 case MPI_DEINIT:
2344 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2345 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2346 break;
2347 default:
2348 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2349 error = EINVAL;
2350 goto failure;
2351 }
2352 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2353
2354 failure:
2355 AQ_MPI_UNLOCK(sc);
2356 return error;
2357 }
2358
2359 static int
2360 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2361 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2362 {
2363 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2364
2365 if (modep != NULL) {
2366 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2367 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2368 *modep = MPI_INIT;
2369 else
2370 *modep = MPI_DEINIT;
2371 }
2372
2373 aq_link_speed_t speed = AQ_LINK_NONE;
2374 if (mpi_state & FW2X_CTRL_RATE_10G)
2375 speed = AQ_LINK_10G;
2376 else if (mpi_state & FW2X_CTRL_RATE_5G)
2377 speed = AQ_LINK_5G;
2378 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2379 speed = AQ_LINK_2G5;
2380 else if (mpi_state & FW2X_CTRL_RATE_1G)
2381 speed = AQ_LINK_1G;
2382 else if (mpi_state & FW2X_CTRL_RATE_100M)
2383 speed = AQ_LINK_100M;
2384
2385 if (speedp != NULL)
2386 *speedp = speed;
2387
2388 aq_link_fc_t fc = AQ_FC_NONE;
2389 if (mpi_state & FW2X_CTRL_PAUSE)
2390 fc |= AQ_FC_RX;
2391 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2392 fc |= AQ_FC_TX;
2393 if (fcp != NULL)
2394 *fcp = fc;
2395
2396 /* XXX: TODO: EEE */
2397 if (eeep != NULL)
2398 *eeep = AQ_EEE_DISABLE;
2399
2400 return 0;
2401 }
2402
2403 static int
2404 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2405 uint32_t timeout_ms, uint32_t try_count)
2406 {
2407 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2408 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2409 int error;
2410
2411 /* First, check that control and state values are consistent */
2412 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2413 device_printf(sc->sc_dev,
2414 "fw2x> MPI control (%#llx) and state (%#llx)"
2415 " are not consistent for mask %#llx!\n",
2416 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2417 (unsigned long long)mask);
2418 return EINVAL;
2419 }
2420
2421 /* Invert bits (toggle) in control register */
2422 mpi_ctrl ^= mask;
2423 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2424
2425 /* Clear all bits except masked */
2426 mpi_ctrl &= mask;
2427
2428 /* Wait for FW reflecting change in state register */
2429 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2430 1000 * timeout_ms, try_count, &error);
2431 if (error != 0) {
2432 device_printf(sc->sc_dev,
2433 "f/w2x> timeout while waiting for response"
2434 " in state register for bit %#llx!",
2435 (unsigned long long)mask);
2436 return error;
2437 }
2438 return 0;
2439 }
2440
2441 static int
2442 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2443 {
2444 int error;
2445
2446 AQ_MPI_LOCK(sc);
2447 /* Say to F/W to update the statistics */
2448 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2449 if (error != 0) {
2450 device_printf(sc->sc_dev,
2451 "fw2x> statistics update error %d\n", error);
2452 goto failure;
2453 }
2454
2455 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2456 error = aq_fw_downld_dwords(sc,
2457 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2458 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2459 if (error != 0) {
2460 device_printf(sc->sc_dev,
2461 "fw2x> download statistics data FAILED, error %d", error);
2462 goto failure;
2463 }
2464 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2465 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2466
2467 failure:
2468 AQ_MPI_UNLOCK(sc);
2469 return error;
2470 }
2471
2472 #if NSYSMON_ENVSYS > 0
2473 static int
2474 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2475 {
2476 int error;
2477 uint32_t value, celsius;
2478
2479 AQ_MPI_LOCK(sc);
2480
2481 /* Say to F/W to update the temperature */
2482 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2483 if (error != 0)
2484 goto failure;
2485
2486 error = aq_fw_downld_dwords(sc,
2487 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2488 &value, sizeof(value) / sizeof(uint32_t));
2489 if (error != 0)
2490 goto failure;
2491
2492 /* 1/256 decrees C to microkelvin */
2493 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2494 if (celsius == 0) {
2495 error = EIO;
2496 goto failure;
2497 }
2498 *temp = celsius * (1000000 / 256) + 273150000;
2499
2500 failure:
2501 AQ_MPI_UNLOCK(sc);
2502 return 0;
2503 }
2504 #endif
2505
2506 static int
2507 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2508 uint32_t cnt)
2509 {
2510 uint32_t v;
2511 int error = 0;
2512
2513 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2514 if (error != 0) {
2515 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2516 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2517 if (v == 0) {
2518 device_printf(sc->sc_dev,
2519 "%s:%d: timeout\n", __func__, __LINE__);
2520 return ETIMEDOUT;
2521 }
2522 }
2523
2524 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2525
2526 error = 0;
2527 for (; cnt > 0 && error == 0; cnt--) {
2528 /* execute mailbox interface */
2529 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2530 AQ_FW_MBOX_CMD_EXECUTE, 1);
2531 if (sc->sc_features & FEATURES_REV_B1) {
2532 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2533 1, 1000, &error);
2534 } else {
2535 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2536 AQ_FW_MBOX_CMD_BUSY) == 0,
2537 1, 1000, &error);
2538 }
2539 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2540 addr += sizeof(uint32_t);
2541 }
2542 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2543
2544 if (error != 0)
2545 device_printf(sc->sc_dev,
2546 "%s:%d: timeout\n", __func__, __LINE__);
2547
2548 return error;
2549 }
2550
2551 /* read my mac address */
2552 static int
2553 aq_get_mac_addr(struct aq_softc *sc)
2554 {
2555 uint32_t mac_addr[2];
2556 uint32_t efuse_shadow_addr;
2557 int err;
2558
2559 efuse_shadow_addr = 0;
2560 if (FW_VERSION_MAJOR(sc) >= 2)
2561 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2562 else
2563 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2564
2565 if (efuse_shadow_addr == 0) {
2566 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2567 return ENXIO;
2568 }
2569
2570 memset(mac_addr, 0, sizeof(mac_addr));
2571 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2572 mac_addr, __arraycount(mac_addr));
2573 if (err < 0)
2574 return err;
2575
2576 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2577 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2578 return ENXIO;
2579 }
2580
2581 mac_addr[0] = htobe32(mac_addr[0]);
2582 mac_addr[1] = htobe32(mac_addr[1]);
2583
2584 memcpy(sc->sc_enaddr.ether_addr_octet,
2585 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2586 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2587 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2588
2589 return 0;
2590 }
2591
2592 /* set multicast filter. index 0 for own address */
2593 static int
2594 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2595 {
2596 uint32_t h, l;
2597
2598 if (index >= AQ_HW_MAC_NUM)
2599 return EINVAL;
2600
2601 if (enaddr == NULL) {
2602 /* disable */
2603 AQ_WRITE_REG_BIT(sc,
2604 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2605 return 0;
2606 }
2607
2608 h = (enaddr[0] << 8) | (enaddr[1]);
2609 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2610 (enaddr[4] << 8) | (enaddr[5]);
2611
2612 /* disable, set, and enable */
2613 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2614 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2615 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2616 RPF_L2UC_MSW_MACADDR_HI, h);
2617 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2618 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2619
2620 return 0;
2621 }
2622
2623 static int
2624 aq_set_capability(struct aq_softc *sc)
2625 {
2626 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2627 int ip4csum_tx =
2628 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2629 int ip4csum_rx =
2630 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2631 int l4csum_tx = ((ifp->if_capenable &
2632 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2633 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2634 int l4csum_rx =
2635 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2636 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2637 uint32_t lso =
2638 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2639 0 : 0xffffffff;
2640 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2641 0 : 0xffffffff;
2642 uint32_t i, v;
2643
2644 /* TX checksums offloads*/
2645 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2646 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2647
2648 /* RX checksums offloads*/
2649 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2650 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2651
2652 /* LSO offloads*/
2653 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2654
2655 #define AQ_B0_LRO_RXD_MAX 16
2656 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2657 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2658 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2659 for (i = 0; i < AQ_RINGS_NUM; i++) {
2660 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2661 RPO_LRO_LDES_MAX_MASK(i), v);
2662 }
2663
2664 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2665 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2666 RPO_LRO_INACTIVE_IVAL, 0);
2667 /*
2668 * the LRO timebase divider is 5 uS (0x61a),
2669 * to get a maximum coalescing interval of 250 uS,
2670 * we need to multiply by 50(0x32) to get
2671 * the default value 250 uS
2672 */
2673 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2674 RPO_LRO_MAX_COALESCING_IVAL, 50);
2675 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2676 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2677 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2678 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2679 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2680 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2681 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2682 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2683 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2684 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2685
2686 return 0;
2687 }
2688
2689 static int
2690 aq_set_filter(struct aq_softc *sc)
2691 {
2692 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2693 struct ethercom * const ec = &sc->sc_ethercom;
2694 struct ether_multi *enm;
2695 struct ether_multistep step;
2696 int idx, error = 0;
2697
2698 if (ifp->if_flags & IFF_PROMISC) {
2699 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2700 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2701 ec->ec_flags |= ETHER_F_ALLMULTI;
2702 goto done;
2703 }
2704
2705 /* clear all table */
2706 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2707 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2708 continue;
2709 aq_set_mac_addr(sc, idx, NULL);
2710 }
2711
2712 /* don't accept all multicast */
2713 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2714 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2715 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2716 RPF_MCAST_FILTER_EN, 0);
2717
2718 idx = 0;
2719 ETHER_LOCK(ec);
2720 ETHER_FIRST_MULTI(step, ec, enm);
2721 while (enm != NULL) {
2722 if (idx == AQ_HW_MAC_OWN)
2723 idx++;
2724
2725 if ((idx >= AQ_HW_MAC_NUM) ||
2726 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2727 /*
2728 * too many filters.
2729 * fallback to accept all multicast addresses.
2730 */
2731 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2732 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2733 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2734 RPF_MCAST_FILTER_EN, 1);
2735 ec->ec_flags |= ETHER_F_ALLMULTI;
2736 ETHER_UNLOCK(ec);
2737 goto done;
2738 }
2739
2740 /* add a filter */
2741 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2742
2743 ETHER_NEXT_MULTI(step, enm);
2744 }
2745 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2746 ETHER_UNLOCK(ec);
2747
2748 done:
2749 return error;
2750 }
2751
2752 static int
2753 aq_ifmedia_change(struct ifnet * const ifp)
2754 {
2755 struct aq_softc * const sc = ifp->if_softc;
2756 aq_link_speed_t rate = AQ_LINK_NONE;
2757 aq_link_fc_t fc = AQ_FC_NONE;
2758 aq_link_eee_t eee = AQ_EEE_DISABLE;
2759
2760 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2761 return EINVAL;
2762
2763 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2764 case IFM_AUTO:
2765 rate = AQ_LINK_AUTO;
2766 break;
2767 case IFM_NONE:
2768 rate = AQ_LINK_NONE;
2769 break;
2770 case IFM_100_TX:
2771 rate = AQ_LINK_100M;
2772 break;
2773 case IFM_1000_T:
2774 rate = AQ_LINK_1G;
2775 break;
2776 case IFM_2500_T:
2777 rate = AQ_LINK_2G5;
2778 break;
2779 case IFM_5000_T:
2780 rate = AQ_LINK_5G;
2781 break;
2782 case IFM_10G_T:
2783 rate = AQ_LINK_10G;
2784 break;
2785 default:
2786 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2787 IFM_SUBTYPE(sc->sc_media.ifm_media));
2788 return ENODEV;
2789 }
2790
2791 if (sc->sc_media.ifm_media & IFM_FLOW)
2792 fc = AQ_FC_ALL;
2793
2794 /* XXX: todo EEE */
2795
2796 /* re-initialize hardware with new parameters */
2797 aq_set_linkmode(sc, rate, fc, eee);
2798
2799 return 0;
2800 }
2801
2802 static void
2803 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2804 {
2805 struct aq_softc * const sc = ifp->if_softc;
2806
2807 /* update ifm_active */
2808 ifmr->ifm_active = IFM_ETHER;
2809 if (sc->sc_link_fc & AQ_FC_RX)
2810 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2811 if (sc->sc_link_fc & AQ_FC_TX)
2812 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2813
2814 switch (sc->sc_link_rate) {
2815 case AQ_LINK_100M:
2816 /* XXX: need to detect fulldup or halfdup */
2817 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2818 break;
2819 case AQ_LINK_1G:
2820 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2821 break;
2822 case AQ_LINK_2G5:
2823 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2824 break;
2825 case AQ_LINK_5G:
2826 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2827 break;
2828 case AQ_LINK_10G:
2829 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2830 break;
2831 default:
2832 ifmr->ifm_active |= IFM_NONE;
2833 break;
2834 }
2835
2836 /* update ifm_status */
2837 ifmr->ifm_status = IFM_AVALID;
2838 if (sc->sc_link_rate != AQ_LINK_NONE)
2839 ifmr->ifm_status |= IFM_ACTIVE;
2840 }
2841
2842 static void
2843 aq_initmedia(struct aq_softc *sc)
2844 {
2845 #define IFMEDIA_ETHER_ADD(sc, media) \
2846 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2847
2848 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2849 if (sc->sc_available_rates & AQ_LINK_100M) {
2850 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2851 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2852 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2853 }
2854 if (sc->sc_available_rates & AQ_LINK_1G) {
2855 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2856 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2857 }
2858 if (sc->sc_available_rates & AQ_LINK_2G5) {
2859 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2860 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2861 }
2862 if (sc->sc_available_rates & AQ_LINK_5G) {
2863 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2864 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2865 }
2866 if (sc->sc_available_rates & AQ_LINK_10G) {
2867 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2868 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2869 }
2870 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2871 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2872
2873 /* default: auto without flowcontrol */
2874 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2875 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2876 }
2877
2878 static int
2879 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2880 aq_link_eee_t eee)
2881 {
2882 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2883 }
2884
2885 static int
2886 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2887 aq_link_eee_t *eee)
2888 {
2889 aq_hw_fw_mpi_state_t mode;
2890 int error;
2891
2892 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2893 if (error != 0)
2894 return error;
2895 if (mode != MPI_INIT)
2896 return ENXIO;
2897
2898 return 0;
2899 }
2900
2901 static void
2902 aq_hw_init_tx_path(struct aq_softc *sc)
2903 {
2904 /* Tx TC/RSS number config */
2905 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2906
2907 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2908 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2909 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2910 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2911 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2912 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2913
2914 /* misc */
2915 AQ_WRITE_REG(sc, TX_TPO2_REG,
2916 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2917 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2918 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2919
2920 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2921 }
2922
2923 static void
2924 aq_hw_init_rx_path(struct aq_softc *sc)
2925 {
2926 int i;
2927
2928 /* clear setting */
2929 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2930 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2931 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2932 for (i = 0; i < 32; i++) {
2933 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2934 RPF_ETHERTYPE_FILTER_EN, 0);
2935 }
2936
2937 if (sc->sc_rss_enable) {
2938 /* Rx TC/RSS number config */
2939 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2940
2941 /* Rx flow control */
2942 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2943
2944 /* RSS Ring selection */
2945 switch (sc->sc_nqueues) {
2946 case 2:
2947 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2948 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2949 break;
2950 case 4:
2951 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2952 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2953 break;
2954 case 8:
2955 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2956 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2957 break;
2958 }
2959 }
2960
2961 /* L2 and Multicast filters */
2962 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2963 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2964 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2965 RPF_ACTION_HOST);
2966 }
2967 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2968 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2969
2970 /* Vlan filters */
2971 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2972 ETHERTYPE_QINQ);
2973 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2974 ETHERTYPE_VLAN);
2975 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2976
2977 if (sc->sc_features & FEATURES_REV_B) {
2978 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2979 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2980 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2981 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2982 }
2983
2984 /* misc */
2985 if (sc->sc_features & FEATURES_RPF2)
2986 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2987 else
2988 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2989
2990 /*
2991 * XXX: RX_TCP_RSS_HASH_REG:
2992 * linux set 0x000f0000
2993 * freebsd set 0x000f001e
2994 */
2995 /* RSS hash type set for IP/TCP */
2996 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2997 RX_TCP_RSS_HASH_TYPE, 0x001e);
2998
2999 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3000 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3001 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3002
3003 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3004 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3005 }
3006
3007 static void
3008 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3009 {
3010 int i;
3011
3012 if (sc->sc_intr_moderation_enable) {
3013 unsigned int tx_min, rx_min; /* 0-255 */
3014 unsigned int tx_max, rx_max; /* 0-511? */
3015
3016 switch (sc->sc_link_rate) {
3017 case AQ_LINK_100M:
3018 tx_min = 0x4f;
3019 tx_max = 0xff;
3020 rx_min = 0x04;
3021 rx_max = 0x50;
3022 break;
3023 case AQ_LINK_1G:
3024 default:
3025 tx_min = 0x4f;
3026 tx_max = 0xff;
3027 rx_min = 0x30;
3028 rx_max = 0x80;
3029 break;
3030 case AQ_LINK_2G5:
3031 tx_min = 0x4f;
3032 tx_max = 0xff;
3033 rx_min = 0x18;
3034 rx_max = 0xe0;
3035 break;
3036 case AQ_LINK_5G:
3037 tx_min = 0x4f;
3038 tx_max = 0xff;
3039 rx_min = 0x0c;
3040 rx_max = 0x70;
3041 break;
3042 case AQ_LINK_10G:
3043 tx_min = 0x4f;
3044 tx_max = 0x1ff;
3045 rx_min = 0x06; /* freebsd use 80 */
3046 rx_max = 0x38; /* freebsd use 120 */
3047 break;
3048 }
3049
3050 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3051 TX_DMA_INT_DESC_WRWB_EN, 0);
3052 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3053 TX_DMA_INT_DESC_MODERATE_EN, 1);
3054 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3055 RX_DMA_INT_DESC_WRWB_EN, 0);
3056 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3057 RX_DMA_INT_DESC_MODERATE_EN, 1);
3058
3059 for (i = 0; i < AQ_RINGS_NUM; i++) {
3060 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3061 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3062 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3063 TX_INTR_MODERATION_CTL_EN);
3064 }
3065 for (i = 0; i < AQ_RINGS_NUM; i++) {
3066 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3067 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3068 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3069 RX_INTR_MODERATION_CTL_EN);
3070 }
3071
3072 } else {
3073 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3074 TX_DMA_INT_DESC_WRWB_EN, 1);
3075 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3076 TX_DMA_INT_DESC_MODERATE_EN, 0);
3077 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3078 RX_DMA_INT_DESC_WRWB_EN, 1);
3079 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3080 RX_DMA_INT_DESC_MODERATE_EN, 0);
3081
3082 for (i = 0; i < AQ_RINGS_NUM; i++) {
3083 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3084 }
3085 for (i = 0; i < AQ_RINGS_NUM; i++) {
3086 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3087 }
3088 }
3089 }
3090
3091 static void
3092 aq_hw_qos_set(struct aq_softc *sc)
3093 {
3094 uint32_t tc = 0;
3095 uint32_t buff_size;
3096
3097 /* TPS Descriptor rate init */
3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3099 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3100
3101 /* TPS VM init */
3102 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3103
3104 /* TPS TC credits init */
3105 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3106 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3107
3108 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3109 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3110 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3111 TPS_DATA_TCT_WEIGHT, 0x64);
3112 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3113 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3114 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3115 TPS_DESC_TCT_WEIGHT, 0x1e);
3116
3117 /* Tx buf size */
3118 tc = 0;
3119 buff_size = AQ_HW_TXBUF_MAX;
3120 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3121 buff_size);
3122 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3123 (buff_size * (1024 / 32) * 66) / 100);
3124 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3125 (buff_size * (1024 / 32) * 50) / 100);
3126
3127 /* QoS Rx buf size per TC */
3128 tc = 0;
3129 buff_size = AQ_HW_RXBUF_MAX;
3130 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3131 buff_size);
3132 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3133 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3134 (buff_size * (1024 / 32) * 66) / 100);
3135 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3136 (buff_size * (1024 / 32) * 50) / 100);
3137
3138 /* QoS 802.1p priority -> TC mapping */
3139 int i_priority;
3140 for (i_priority = 0; i_priority < 8; i_priority++) {
3141 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3142 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3143 }
3144 }
3145
3146 /* called once from aq_attach */
3147 static int
3148 aq_init_rss(struct aq_softc *sc)
3149 {
3150 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3151 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3152 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3153 unsigned int i;
3154 int error;
3155
3156 /* initialize rss key */
3157 rss_getkey((uint8_t *)rss_key);
3158
3159 /* hash to ring table */
3160 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3161 rss_table[i] = i % sc->sc_nqueues;
3162 }
3163
3164 /*
3165 * set rss key
3166 */
3167 for (i = 0; i < __arraycount(rss_key); i++) {
3168 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3169 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3170 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3171 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3172 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3173 RPF_RSS_KEY_WR_EN, 1);
3174 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3175 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3176 if (error != 0) {
3177 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3178 __func__);
3179 goto rss_set_timeout;
3180 }
3181 }
3182
3183 /*
3184 * set rss indirection table
3185 *
3186 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3187 * we'll make it by __BITMAP(3) macros.
3188 */
3189 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3190 __BITMAP_ZERO(&bit3x64);
3191
3192 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3193 do { \
3194 if (val & 1) { \
3195 __BITMAP_SET((idx) * 3, (bitmap)); \
3196 } else { \
3197 __BITMAP_CLR((idx) * 3, (bitmap)); \
3198 } \
3199 if (val & 2) { \
3200 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3201 } else { \
3202 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3203 } \
3204 if (val & 4) { \
3205 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3206 } else { \
3207 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3208 } \
3209 } while (0 /* CONSTCOND */)
3210
3211 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3212 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3213 }
3214
3215 /* write 192bit data in steps of 16bit */
3216 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3217 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3218 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3219 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3220 RPF_RSS_REDIR_ADDR, i);
3221 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3222 RPF_RSS_REDIR_WR_EN, 1);
3223
3224 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3225 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3226 if (error != 0)
3227 break;
3228 }
3229
3230 rss_set_timeout:
3231 return error;
3232 }
3233
3234 static void
3235 aq_hw_l3_filter_set(struct aq_softc *sc)
3236 {
3237 int i;
3238
3239 /* clear all filter */
3240 for (i = 0; i < 8; i++) {
3241 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3242 RPF_L3_FILTER_L4_EN, 0);
3243 }
3244 }
3245
3246 static void
3247 aq_set_vlan_filters(struct aq_softc *sc)
3248 {
3249 struct ethercom * const ec = &sc->sc_ethercom;
3250 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3251 struct vlanid_list *vlanidp;
3252 int i;
3253
3254 ETHER_LOCK(ec);
3255
3256 /* disable all vlan filters */
3257 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3258 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3259
3260 /* count VID */
3261 i = 0;
3262 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3263 i++;
3264
3265 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3266 (ifp->if_flags & IFF_PROMISC) ||
3267 (i > RPF_VLAN_MAX_FILTERS)) {
3268 /*
3269 * no vlan hwfilter, in promiscuous mode, or too many VID?
3270 * must receive all VID
3271 */
3272 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3273 RPF_VLAN_MODE_PROMISC, 1);
3274 goto done;
3275 }
3276
3277 /* receive only selected VID */
3278 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3279 i = 0;
3280 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3281 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3282 RPF_VLAN_FILTER_EN, 1);
3283 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3284 RPF_VLAN_FILTER_RXQ_EN, 0);
3285 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3286 RPF_VLAN_FILTER_RXQ, 0);
3287 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3288 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3289 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3290 RPF_VLAN_FILTER_ID, vlanidp->vid);
3291 i++;
3292 }
3293
3294 done:
3295 ETHER_UNLOCK(ec);
3296 }
3297
3298 static int
3299 aq_hw_init(struct aq_softc *sc)
3300 {
3301 uint32_t v;
3302
3303 /* Force limit MRRS on RDM/TDM to 2K */
3304 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3305 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3306
3307 /*
3308 * TX DMA total request limit. B0 hardware is not capable to
3309 * handle more than (8K-MRRS) incoming DMA data.
3310 * Value 24 in 256byte units
3311 */
3312 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3313
3314 aq_hw_init_tx_path(sc);
3315 aq_hw_init_rx_path(sc);
3316
3317 aq_hw_interrupt_moderation_set(sc);
3318
3319 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3320 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3321
3322 aq_hw_qos_set(sc);
3323
3324 /* Enable interrupt */
3325 int irqmode;
3326 if (sc->sc_msix)
3327 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3328 else
3329 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3330
3331 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3332 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3333 sc->sc_msix ? 1 : 0);
3334 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3335
3336 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3337
3338 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3339 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3340 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3341 );
3342
3343 /* link interrupt */
3344 if (!sc->sc_msix)
3345 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3346 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3347 __BIT(7) | sc->sc_linkstat_irq);
3348
3349 return 0;
3350 }
3351
3352 static int
3353 aq_update_link_status(struct aq_softc *sc)
3354 {
3355 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3356 aq_link_speed_t rate = AQ_LINK_NONE;
3357 aq_link_fc_t fc = AQ_FC_NONE;
3358 aq_link_eee_t eee = AQ_EEE_DISABLE;
3359 unsigned int speed;
3360 int changed = 0;
3361
3362 aq_get_linkmode(sc, &rate, &fc, &eee);
3363
3364 if (sc->sc_link_rate != rate)
3365 changed = 1;
3366 if (sc->sc_link_fc != fc)
3367 changed = 1;
3368 if (sc->sc_link_eee != eee)
3369 changed = 1;
3370
3371 if (changed) {
3372 switch (rate) {
3373 case AQ_LINK_100M:
3374 speed = 100;
3375 break;
3376 case AQ_LINK_1G:
3377 speed = 1000;
3378 break;
3379 case AQ_LINK_2G5:
3380 speed = 2500;
3381 break;
3382 case AQ_LINK_5G:
3383 speed = 5000;
3384 break;
3385 case AQ_LINK_10G:
3386 speed = 10000;
3387 break;
3388 case AQ_LINK_NONE:
3389 default:
3390 speed = 0;
3391 break;
3392 }
3393
3394 if (sc->sc_link_rate == AQ_LINK_NONE) {
3395 /* link DOWN -> UP */
3396 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3397 speed);
3398 if_link_state_change(ifp, LINK_STATE_UP);
3399 } else if (rate == AQ_LINK_NONE) {
3400 /* link UP -> DOWN */
3401 device_printf(sc->sc_dev, "link is DOWN\n");
3402 if_link_state_change(ifp, LINK_STATE_DOWN);
3403 } else {
3404 device_printf(sc->sc_dev,
3405 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3406 speed, fc, eee);
3407 }
3408
3409 sc->sc_link_rate = rate;
3410 sc->sc_link_fc = fc;
3411 sc->sc_link_eee = eee;
3412
3413 /* update interrupt timing according to new link speed */
3414 aq_hw_interrupt_moderation_set(sc);
3415 }
3416
3417 return changed;
3418 }
3419
3420 #ifdef AQ_EVENT_COUNTERS
3421 static void
3422 aq_update_statistics(struct aq_softc *sc)
3423 {
3424 int prev = sc->sc_statistics_idx;
3425 int cur = prev ^ 1;
3426
3427 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3428
3429 /*
3430 * aq's internal statistics counter is 32bit.
3431 * cauculate delta, and add to evcount
3432 */
3433 #define ADD_DELTA(cur, prev, name) \
3434 do { \
3435 uint32_t n; \
3436 n = (uint32_t)(sc->sc_statistics[cur].name - \
3437 sc->sc_statistics[prev].name); \
3438 if (n != 0) { \
3439 AQ_EVCNT_ADD(sc, name, n); \
3440 } \
3441 } while (/*CONSTCOND*/0);
3442
3443 ADD_DELTA(cur, prev, uprc);
3444 ADD_DELTA(cur, prev, mprc);
3445 ADD_DELTA(cur, prev, bprc);
3446 ADD_DELTA(cur, prev, prc);
3447 ADD_DELTA(cur, prev, erpr);
3448 ADD_DELTA(cur, prev, uptc);
3449 ADD_DELTA(cur, prev, mptc);
3450 ADD_DELTA(cur, prev, bptc);
3451 ADD_DELTA(cur, prev, ptc);
3452 ADD_DELTA(cur, prev, erpt);
3453 ADD_DELTA(cur, prev, mbtc);
3454 ADD_DELTA(cur, prev, bbtc);
3455 ADD_DELTA(cur, prev, mbrc);
3456 ADD_DELTA(cur, prev, bbrc);
3457 ADD_DELTA(cur, prev, ubrc);
3458 ADD_DELTA(cur, prev, ubtc);
3459 ADD_DELTA(cur, prev, dpc);
3460 ADD_DELTA(cur, prev, cprc);
3461
3462 sc->sc_statistics_idx = cur;
3463 }
3464 #endif /* AQ_EVENT_COUNTERS */
3465
3466 /* allocate and map one DMA block */
3467 static int
3468 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3469 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3470 {
3471 int nsegs, error;
3472
3473 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3474 1, &nsegs, 0)) != 0) {
3475 aprint_error_dev(sc->sc_dev,
3476 "unable to allocate DMA buffer, error=%d\n", error);
3477 goto fail_alloc;
3478 }
3479
3480 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3481 BUS_DMA_COHERENT)) != 0) {
3482 aprint_error_dev(sc->sc_dev,
3483 "unable to map DMA buffer, error=%d\n", error);
3484 goto fail_map;
3485 }
3486
3487 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3488 0, mapp)) != 0) {
3489 aprint_error_dev(sc->sc_dev,
3490 "unable to create DMA map, error=%d\n", error);
3491 goto fail_create;
3492 }
3493
3494 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3495 0)) != 0) {
3496 aprint_error_dev(sc->sc_dev,
3497 "unable to load DMA map, error=%d\n", error);
3498 goto fail_load;
3499 }
3500
3501 *sizep = size;
3502 return 0;
3503
3504 fail_load:
3505 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3506 *mapp = NULL;
3507 fail_create:
3508 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3509 *addrp = NULL;
3510 fail_map:
3511 bus_dmamem_free(sc->sc_dmat, seg, 1);
3512 memset(seg, 0, sizeof(*seg));
3513 fail_alloc:
3514 *sizep = 0;
3515 return error;
3516 }
3517
3518 static void
3519 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3520 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3521 {
3522 if (*mapp != NULL) {
3523 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3524 *mapp = NULL;
3525 }
3526 if (*addrp != NULL) {
3527 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3528 *addrp = NULL;
3529 }
3530 if (*sizep != 0) {
3531 bus_dmamem_free(sc->sc_dmat, seg, 1);
3532 memset(seg, 0, sizeof(*seg));
3533 *sizep = 0;
3534 }
3535 }
3536
3537 static int
3538 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3539 {
3540 int i, error;
3541
3542 /* allocate tx descriptors */
3543 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3544 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3545 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3546 if (error != 0)
3547 return error;
3548
3549 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3550
3551 /* fill tx ring with dmamap */
3552 for (i = 0; i < AQ_TXD_NUM; i++) {
3553 #define AQ_MAXDMASIZE (16 * 1024)
3554 #define AQ_NTXSEGS 32
3555 /* XXX: TODO: error check */
3556 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3557 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3558 }
3559 return 0;
3560 }
3561
3562 static void
3563 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3564 {
3565 int i;
3566
3567 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3568 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3569
3570 for (i = 0; i < AQ_TXD_NUM; i++) {
3571 if (txring->txr_mbufs[i].dmamap != NULL) {
3572 if (txring->txr_mbufs[i].m != NULL) {
3573 bus_dmamap_unload(sc->sc_dmat,
3574 txring->txr_mbufs[i].dmamap);
3575 m_freem(txring->txr_mbufs[i].m);
3576 txring->txr_mbufs[i].m = NULL;
3577 }
3578 bus_dmamap_destroy(sc->sc_dmat,
3579 txring->txr_mbufs[i].dmamap);
3580 txring->txr_mbufs[i].dmamap = NULL;
3581 }
3582 }
3583 }
3584
3585 static int
3586 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3587 {
3588 int i, error;
3589
3590 /* allocate rx descriptors */
3591 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3592 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3593 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3594 if (error != 0)
3595 return error;
3596
3597 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3598
3599 /* fill rxring with dmamaps */
3600 for (i = 0; i < AQ_RXD_NUM; i++) {
3601 rxring->rxr_mbufs[i].m = NULL;
3602 /* XXX: TODO: error check */
3603 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3604 &rxring->rxr_mbufs[i].dmamap);
3605 }
3606 return 0;
3607 }
3608
3609 static void
3610 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3611 {
3612 int i;
3613
3614 /* free all mbufs allocated for RX */
3615 for (i = 0; i < AQ_RXD_NUM; i++) {
3616 if (rxring->rxr_mbufs[i].m != NULL) {
3617 bus_dmamap_unload(sc->sc_dmat,
3618 rxring->rxr_mbufs[i].dmamap);
3619 m_freem(rxring->rxr_mbufs[i].m);
3620 rxring->rxr_mbufs[i].m = NULL;
3621 }
3622 }
3623 }
3624
3625 static void
3626 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3627 {
3628 int i;
3629
3630 /* free all mbufs and dmamaps */
3631 aq_rxdrain(sc, rxring);
3632 for (i = 0; i < AQ_RXD_NUM; i++) {
3633 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3634 bus_dmamap_destroy(sc->sc_dmat,
3635 rxring->rxr_mbufs[i].dmamap);
3636 rxring->rxr_mbufs[i].dmamap = NULL;
3637 }
3638 }
3639
3640 /* free RX descriptor */
3641 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3642 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3643 }
3644
3645 static void
3646 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3647 struct mbuf *m)
3648 {
3649 int error;
3650
3651 /* if mbuf already exists, unload and free */
3652 if (rxring->rxr_mbufs[idx].m != NULL) {
3653 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3654 m_freem(rxring->rxr_mbufs[idx].m);
3655 rxring->rxr_mbufs[idx].m = NULL;
3656 }
3657
3658 rxring->rxr_mbufs[idx].m = m;
3659
3660 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3661 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3662 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3663 if (error) {
3664 device_printf(sc->sc_dev,
3665 "unable to load rx DMA map %d, error = %d\n", idx, error);
3666 panic("%s: unable to load rx DMA map. error=%d",
3667 __func__, error);
3668 }
3669 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3670 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3671 }
3672
3673 static inline void
3674 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3675 {
3676 /* refill rxdesc, and sync */
3677 rxring->rxr_rxdesc[idx].read.buf_addr =
3678 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3679 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3680 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3681 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3682 BUS_DMASYNC_PREWRITE);
3683 }
3684
3685 static struct mbuf *
3686 aq_alloc_mbuf(void)
3687 {
3688 struct mbuf *m;
3689
3690 MGETHDR(m, M_DONTWAIT, MT_DATA);
3691 if (m == NULL)
3692 return NULL;
3693
3694 MCLGET(m, M_DONTWAIT);
3695 if ((m->m_flags & M_EXT) == 0) {
3696 m_freem(m);
3697 return NULL;
3698 }
3699
3700 return m;
3701 }
3702
3703 /* allocate mbuf and unload dmamap */
3704 static int
3705 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3706 {
3707 struct mbuf *m;
3708
3709 m = aq_alloc_mbuf();
3710 if (m == NULL)
3711 return ENOBUFS;
3712
3713 aq_rxring_setmbuf(sc, rxring, idx, m);
3714 return 0;
3715 }
3716
3717 static int
3718 aq_txrx_rings_alloc(struct aq_softc *sc)
3719 {
3720 int n, error;
3721
3722 for (n = 0; n < sc->sc_nqueues; n++) {
3723 sc->sc_queue[n].sc = sc;
3724 sc->sc_queue[n].txring.txr_sc = sc;
3725 sc->sc_queue[n].txring.txr_index = n;
3726 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3727 IPL_NET);
3728 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3729 if (error != 0)
3730 goto failure;
3731
3732 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3733 if (error != 0)
3734 goto failure;
3735
3736 sc->sc_queue[n].rxring.rxr_sc = sc;
3737 sc->sc_queue[n].rxring.rxr_index = n;
3738 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3739 IPL_NET);
3740 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3741 if (error != 0)
3742 break;
3743 }
3744
3745 failure:
3746 return error;
3747 }
3748
3749 static void
3750 aq_txrx_rings_free(struct aq_softc *sc)
3751 {
3752 int n;
3753
3754 for (n = 0; n < sc->sc_nqueues; n++) {
3755 aq_txring_free(sc, &sc->sc_queue[n].txring);
3756 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3757
3758 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3759
3760 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3761 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3762 }
3763 }
3764
3765 static int
3766 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3767 {
3768 int error = 0;
3769 txring->txr_softint = NULL;
3770
3771 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3772 if (txring->txr_pcq == NULL) {
3773 aprint_error_dev(sc->sc_dev,
3774 "unable to allocate pcq for TXring[%d]\n",
3775 txring->txr_index);
3776 error = ENOMEM;
3777 goto done;
3778 }
3779
3780 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3781 aq_deferred_transmit, txring);
3782 if (txring->txr_softint == NULL) {
3783 aprint_error_dev(sc->sc_dev,
3784 "unable to establish softint for TXring[%d]\n",
3785 txring->txr_index);
3786 error = ENOENT;
3787 }
3788
3789 done:
3790 return error;
3791 }
3792
3793 static void
3794 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3795 {
3796 struct mbuf *m;
3797
3798 if (txring->txr_softint != NULL) {
3799 softint_disestablish(txring->txr_softint);
3800 txring->txr_softint = NULL;
3801 }
3802
3803 if (txring->txr_pcq != NULL) {
3804 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3805 m_freem(m);
3806 pcq_destroy(txring->txr_pcq);
3807 txring->txr_pcq = NULL;
3808 }
3809 }
3810
3811 #if NSYSMON_ENVSYS > 0
3812 static void
3813 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3814 {
3815 struct aq_softc *sc;
3816 uint32_t temp;
3817 int error;
3818
3819 sc = sme->sme_cookie;
3820
3821 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3822 if (error == 0) {
3823 edata->value_cur = temp;
3824 edata->state = ENVSYS_SVALID;
3825 } else {
3826 edata->state = ENVSYS_SINVALID;
3827 }
3828 }
3829 #endif
3830
3831 static void
3832 aq_tick(void *arg)
3833 {
3834 struct aq_softc *sc = arg;
3835
3836 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3837 sc->sc_detect_linkstat = false;
3838 aq_update_link_status(sc);
3839 }
3840
3841 #ifdef AQ_EVENT_COUNTERS
3842 if (sc->sc_poll_statistics)
3843 aq_update_statistics(sc);
3844 #endif
3845
3846 if (sc->sc_poll_linkstat
3847 #ifdef AQ_EVENT_COUNTERS
3848 || sc->sc_poll_statistics
3849 #endif
3850 ) {
3851 callout_schedule(&sc->sc_tick_ch, hz);
3852 }
3853 }
3854
3855 /* interrupt enable/disable */
3856 static void
3857 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3858 {
3859 uint32_t imask = 0;
3860 int i;
3861
3862 if (txrx) {
3863 for (i = 0; i < sc->sc_nqueues; i++) {
3864 imask |= __BIT(sc->sc_tx_irq[i]);
3865 imask |= __BIT(sc->sc_rx_irq[i]);
3866 }
3867 }
3868
3869 if (link)
3870 imask |= __BIT(sc->sc_linkstat_irq);
3871
3872 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3873 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3874 }
3875
3876 static int
3877 aq_legacy_intr(void *arg)
3878 {
3879 struct aq_softc *sc = arg;
3880 uint32_t status;
3881 int nintr = 0;
3882
3883 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3884 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3885
3886 if (status & __BIT(sc->sc_linkstat_irq)) {
3887 sc->sc_detect_linkstat = true;
3888 callout_schedule(&sc->sc_tick_ch, 0);
3889 nintr++;
3890 }
3891
3892 if (status & __BIT(sc->sc_rx_irq[0])) {
3893 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3894 }
3895
3896 if (status & __BIT(sc->sc_tx_irq[0])) {
3897 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3898 }
3899
3900 return nintr;
3901 }
3902
3903 static int
3904 aq_txrx_intr(void *arg)
3905 {
3906 struct aq_queue *queue = arg;
3907 struct aq_softc *sc = queue->sc;
3908 struct aq_txring *txring = &queue->txring;
3909 struct aq_rxring *rxring = &queue->rxring;
3910 uint32_t status;
3911 int nintr = 0;
3912 int txringidx, rxringidx, txirq, rxirq;
3913
3914 txringidx = txring->txr_index;
3915 rxringidx = rxring->rxr_index;
3916 txirq = sc->sc_tx_irq[txringidx];
3917 rxirq = sc->sc_rx_irq[rxringidx];
3918
3919 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3920 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3921 /* stray interrupt? */
3922 return 0;
3923 }
3924
3925 nintr += aq_rx_intr(rxring);
3926 nintr += aq_tx_intr(txring);
3927
3928 return nintr;
3929 }
3930
3931 static int
3932 aq_link_intr(void *arg)
3933 {
3934 struct aq_softc *sc = arg;
3935 uint32_t status;
3936 int nintr = 0;
3937
3938 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3939 if (status & __BIT(sc->sc_linkstat_irq)) {
3940 sc->sc_detect_linkstat = true;
3941 callout_schedule(&sc->sc_tick_ch, 0);
3942 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3943 __BIT(sc->sc_linkstat_irq));
3944 nintr++;
3945 }
3946
3947 return nintr;
3948 }
3949
3950 static void
3951 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3952 {
3953 const int ringidx = txring->txr_index;
3954 int i;
3955
3956 mutex_enter(&txring->txr_mutex);
3957
3958 txring->txr_prodidx = 0;
3959 txring->txr_considx = 0;
3960 txring->txr_nfree = AQ_TXD_NUM;
3961 txring->txr_active = false;
3962
3963 /* free mbufs untransmitted */
3964 for (i = 0; i < AQ_TXD_NUM; i++) {
3965 if (txring->txr_mbufs[i].m != NULL) {
3966 m_freem(txring->txr_mbufs[i].m);
3967 txring->txr_mbufs[i].m = NULL;
3968 }
3969 }
3970
3971 /* disable DMA */
3972 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3973
3974 if (start) {
3975 /* TX descriptor physical address */
3976 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3977 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3978 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3979 (uint32_t)((uint64_t)paddr >> 32));
3980
3981 /* TX descriptor size */
3982 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3983 AQ_TXD_NUM / 8);
3984
3985 /* reload TAIL pointer */
3986 txring->txr_prodidx = txring->txr_considx =
3987 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3988 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3989
3990 /* Mapping interrupt vector */
3991 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3992 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3993 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3994 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3995
3996 /* enable DMA */
3997 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3998 TX_DMA_DESC_EN, 1);
3999
4000 const int cpuid = 0; /* XXX? */
4001 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4002 TDM_DCAD_CPUID, cpuid);
4003 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4004 TDM_DCAD_CPUID_EN, 0);
4005
4006 txring->txr_active = true;
4007 }
4008
4009 mutex_exit(&txring->txr_mutex);
4010 }
4011
4012 static int
4013 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4014 {
4015 const int ringidx = rxring->rxr_index;
4016 int i;
4017 int error = 0;
4018
4019 mutex_enter(&rxring->rxr_mutex);
4020 rxring->rxr_active = false;
4021 rxring->rxr_discarding = false;
4022 if (rxring->rxr_receiving_m != NULL) {
4023 m_freem(rxring->rxr_receiving_m);
4024 rxring->rxr_receiving_m = NULL;
4025 rxring->rxr_receiving_m_last = NULL;
4026 }
4027
4028 /* disable DMA */
4029 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4030
4031 /* free all RX mbufs */
4032 aq_rxdrain(sc, rxring);
4033
4034 if (start) {
4035 for (i = 0; i < AQ_RXD_NUM; i++) {
4036 error = aq_rxring_add(sc, rxring, i);
4037 if (error != 0) {
4038 aq_rxdrain(sc, rxring);
4039 return error;
4040 }
4041 aq_rxring_reset_desc(sc, rxring, i);
4042 }
4043
4044 /* RX descriptor physical address */
4045 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4046 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4047 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4048 (uint32_t)((uint64_t)paddr >> 32));
4049
4050 /* RX descriptor size */
4051 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4052 AQ_RXD_NUM / 8);
4053
4054 /* maximum receive frame size */
4055 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4056 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4057 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4058 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4059
4060 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4061 RX_DMA_DESC_HEADER_SPLIT, 0);
4062 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4063 RX_DMA_DESC_VLAN_STRIP,
4064 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4065 1 : 0);
4066
4067 /*
4068 * reload TAIL pointer, and update readidx
4069 * (HEAD pointer cannot write)
4070 */
4071 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4072 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4073 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4074 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4075
4076 /* Rx ring set mode */
4077
4078 /* Mapping interrupt vector */
4079 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4080 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4081 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4082 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4083
4084 const int cpuid = 0; /* XXX? */
4085 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4086 RX_DMA_DCAD_CPUID, cpuid);
4087 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4088 RX_DMA_DCAD_DESC_EN, 0);
4089 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4090 RX_DMA_DCAD_HEADER_EN, 0);
4091 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4092 RX_DMA_DCAD_PAYLOAD_EN, 0);
4093
4094 /* enable DMA. start receiving */
4095 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4096 RX_DMA_DESC_EN, 1);
4097
4098 rxring->rxr_active = true;
4099 }
4100
4101 mutex_exit(&rxring->rxr_mutex);
4102 return error;
4103 }
4104
4105 #define TXRING_NEXTIDX(idx) \
4106 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4107 #define RXRING_NEXTIDX(idx) \
4108 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4109
4110 static int
4111 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4112 {
4113 bus_dmamap_t map;
4114 struct mbuf *m = *mp;
4115 uint32_t ctl1, ctl1_ctx, ctl2;
4116 int idx, i, error;
4117
4118 idx = txring->txr_prodidx;
4119 map = txring->txr_mbufs[idx].dmamap;
4120
4121 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4122 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4123 if (error == EFBIG) {
4124 struct mbuf *n;
4125 n = m_defrag(m, M_DONTWAIT);
4126 if (n == NULL)
4127 return EFBIG;
4128 /* m_defrag() preserve m */
4129 KASSERT(n == m);
4130 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4131 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4132 }
4133 if (error != 0)
4134 return error;
4135
4136 /*
4137 * check spaces of free descriptors.
4138 * +1 is additional descriptor for context (vlan, etc,.)
4139 */
4140 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4141 device_printf(sc->sc_dev,
4142 "TX: not enough descriptors left %d for %d segs\n",
4143 txring->txr_nfree, map->dm_nsegs + 1);
4144 bus_dmamap_unload(sc->sc_dmat, map);
4145 return ENOBUFS;
4146 }
4147
4148 /* sync dma for mbuf */
4149 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4150 BUS_DMASYNC_PREWRITE);
4151
4152 ctl1_ctx = 0;
4153 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4154
4155 if (vlan_has_tag(m)) {
4156 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4157 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4158
4159 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4160 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4161
4162 /* fill context descriptor and forward index */
4163 txring->txr_txdesc[idx].buf_addr = 0;
4164 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4165 txring->txr_txdesc[idx].ctl2 = 0;
4166
4167 idx = TXRING_NEXTIDX(idx);
4168 txring->txr_nfree--;
4169 }
4170
4171 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4172 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4173 if (m->m_pkthdr.csum_flags &
4174 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4175 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4176 }
4177
4178 /* fill descriptor(s) */
4179 for (i = 0; i < map->dm_nsegs; i++) {
4180 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4181 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4182 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4183
4184 if (i == 0) {
4185 /* remember mbuf of these descriptors */
4186 txring->txr_mbufs[idx].m = m;
4187 } else {
4188 txring->txr_mbufs[idx].m = NULL;
4189 }
4190
4191 if (i == map->dm_nsegs - 1) {
4192 /* last segment, mark an EndOfPacket, and cause intr */
4193 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4194 }
4195
4196 txring->txr_txdesc[idx].buf_addr =
4197 htole64(map->dm_segs[i].ds_addr);
4198 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4199 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4200
4201 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4202 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4203 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4204
4205 idx = TXRING_NEXTIDX(idx);
4206 txring->txr_nfree--;
4207 }
4208
4209 txring->txr_prodidx = idx;
4210
4211 return 0;
4212 }
4213
4214 static int
4215 aq_tx_intr(void *arg)
4216 {
4217 struct aq_txring * const txring = arg;
4218 struct aq_softc * const sc = txring->txr_sc;
4219 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4220 struct mbuf *m;
4221 const int ringidx = txring->txr_index;
4222 unsigned int idx, hw_head, n = 0;
4223
4224 mutex_enter(&txring->txr_mutex);
4225
4226 if (!txring->txr_active)
4227 goto tx_intr_done;
4228
4229 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4230 TX_DMA_DESC_HEAD_PTR);
4231 if (hw_head == txring->txr_considx) {
4232 goto tx_intr_done;
4233 }
4234
4235 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4236
4237 for (idx = txring->txr_considx; idx != hw_head;
4238 idx = TXRING_NEXTIDX(idx), n++) {
4239
4240 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4241 bus_dmamap_unload(sc->sc_dmat,
4242 txring->txr_mbufs[idx].dmamap);
4243
4244 if_statinc_ref(nsr, if_opackets);
4245 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4246 if (m->m_flags & M_MCAST)
4247 if_statinc_ref(nsr, if_omcasts);
4248
4249 m_freem(m);
4250 txring->txr_mbufs[idx].m = NULL;
4251 }
4252
4253 txring->txr_nfree++;
4254 }
4255 txring->txr_considx = idx;
4256
4257 IF_STAT_PUTREF(ifp);
4258
4259 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4260 ifp->if_flags &= ~IFF_OACTIVE;
4261
4262 /* no more pending TX packet, cancel watchdog */
4263 if (txring->txr_nfree >= AQ_TXD_NUM)
4264 ifp->if_timer = 0;
4265
4266 tx_intr_done:
4267 mutex_exit(&txring->txr_mutex);
4268
4269 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4270 return n;
4271 }
4272
4273 static int
4274 aq_rx_intr(void *arg)
4275 {
4276 struct aq_rxring * const rxring = arg;
4277 struct aq_softc * const sc = rxring->rxr_sc;
4278 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4279 const int ringidx = rxring->rxr_index;
4280 aq_rx_desc_t *rxd;
4281 struct mbuf *m, *m0, *mprev, *new_m;
4282 uint32_t rxd_type, rxd_hash __unused;
4283 uint16_t rxd_status, rxd_pktlen;
4284 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4285 unsigned int idx, n = 0;
4286 bool discarding;
4287
4288 mutex_enter(&rxring->rxr_mutex);
4289
4290 if (!rxring->rxr_active)
4291 goto rx_intr_done;
4292
4293 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4294 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4295 goto rx_intr_done;
4296 }
4297
4298 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4299
4300 /* restore ring context */
4301 discarding = rxring->rxr_discarding;
4302 m0 = rxring->rxr_receiving_m;
4303 mprev = rxring->rxr_receiving_m_last;
4304
4305 for (idx = rxring->rxr_readidx;
4306 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4307 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4308
4309 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4310 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4311 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4312
4313 rxd = &rxring->rxr_rxdesc[idx];
4314 rxd_status = le16toh(rxd->wb.status);
4315
4316 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4317 break; /* not yet done */
4318
4319 rxd_type = le32toh(rxd->wb.type);
4320 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4321 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4322 rxd_hash = le32toh(rxd->wb.rss_hash);
4323 rxd_vlan = le16toh(rxd->wb.vlan);
4324
4325 /*
4326 * Some segments are being dropped while receiving jumboframe.
4327 * Discard until EOP.
4328 */
4329 if (discarding)
4330 goto rx_next;
4331
4332 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4333 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4334 if_statinc_ref(nsr, if_ierrors);
4335 if (m0 != NULL) {
4336 m_freem(m0);
4337 m0 = mprev = NULL;
4338 }
4339 discarding = true;
4340 goto rx_next;
4341 }
4342
4343 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4344 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4345 BUS_DMASYNC_POSTREAD);
4346 m = rxring->rxr_mbufs[idx].m;
4347
4348 new_m = aq_alloc_mbuf();
4349 if (new_m == NULL) {
4350 /*
4351 * cannot allocate new mbuf.
4352 * discard this packet, and reuse mbuf for next.
4353 */
4354 if_statinc_ref(nsr, if_iqdrops);
4355 if (m0 != NULL) {
4356 m_freem(m0);
4357 m0 = mprev = NULL;
4358 }
4359 discarding = true;
4360 goto rx_next;
4361 }
4362 rxring->rxr_mbufs[idx].m = NULL;
4363 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4364
4365 if (m0 == NULL) {
4366 m0 = m;
4367 } else {
4368 if (m->m_flags & M_PKTHDR)
4369 m_remove_pkthdr(m);
4370 mprev->m_next = m;
4371 }
4372 mprev = m;
4373
4374 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4375 /* to be continued in the next segment */
4376 m->m_len = MCLBYTES;
4377 } else {
4378 /* the last segment */
4379 int mlen = rxd_pktlen % MCLBYTES;
4380 if (mlen == 0)
4381 mlen = MCLBYTES;
4382 m->m_len = mlen;
4383 m0->m_pkthdr.len = rxd_pktlen;
4384 /* VLAN offloading */
4385 if ((sc->sc_ethercom.ec_capenable &
4386 ETHERCAP_VLAN_HWTAGGING) &&
4387 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4388 __SHIFTOUT(rxd_type,
4389 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4390 vlan_set_tag(m0, rxd_vlan);
4391 }
4392
4393 /* Checksum offloading */
4394 unsigned int pkttype_eth =
4395 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4396 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4397 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4398 __SHIFTOUT(rxd_type,
4399 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4400 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4401 if (__SHIFTOUT(rxd_status,
4402 RXDESC_STATUS_IPV4_CSUM_NG))
4403 m0->m_pkthdr.csum_flags |=
4404 M_CSUM_IPv4_BAD;
4405 }
4406
4407 /*
4408 * aq will always mark BAD for fragment packets,
4409 * but this is not a problem because the IP stack
4410 * ignores the CSUM flag in fragment packets.
4411 */
4412 if (__SHIFTOUT(rxd_type,
4413 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4414 bool checked = false;
4415 unsigned int pkttype_proto =
4416 __SHIFTOUT(rxd_type,
4417 RXDESC_TYPE_PKTTYPE_PROTO);
4418
4419 if (pkttype_proto ==
4420 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4421 if ((pkttype_eth ==
4422 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4423 (ifp->if_capabilities &
4424 IFCAP_CSUM_TCPv4_Rx)) {
4425 m0->m_pkthdr.csum_flags |=
4426 M_CSUM_TCPv4;
4427 checked = true;
4428 } else if ((pkttype_eth ==
4429 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4430 (ifp->if_capabilities &
4431 IFCAP_CSUM_TCPv6_Rx)) {
4432 m0->m_pkthdr.csum_flags |=
4433 M_CSUM_TCPv6;
4434 checked = true;
4435 }
4436 } else if (pkttype_proto ==
4437 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4438 if ((pkttype_eth ==
4439 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4440 (ifp->if_capabilities &
4441 IFCAP_CSUM_UDPv4_Rx)) {
4442 m0->m_pkthdr.csum_flags |=
4443 M_CSUM_UDPv4;
4444 checked = true;
4445 } else if ((pkttype_eth ==
4446 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4447 (ifp->if_capabilities &
4448 IFCAP_CSUM_UDPv6_Rx)) {
4449 m0->m_pkthdr.csum_flags |=
4450 M_CSUM_UDPv6;
4451 checked = true;
4452 }
4453 }
4454 if (checked &&
4455 (__SHIFTOUT(rxd_status,
4456 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4457 !__SHIFTOUT(rxd_status,
4458 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4459 m0->m_pkthdr.csum_flags |=
4460 M_CSUM_TCP_UDP_BAD;
4461 }
4462 }
4463
4464 m_set_rcvif(m0, ifp);
4465 if_statinc_ref(nsr, if_ipackets);
4466 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4467 if_percpuq_enqueue(ifp->if_percpuq, m0);
4468 m0 = mprev = NULL;
4469 }
4470
4471 rx_next:
4472 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4473 discarding = false;
4474
4475 aq_rxring_reset_desc(sc, rxring, idx);
4476 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4477 }
4478 /* save ring context */
4479 rxring->rxr_readidx = idx;
4480 rxring->rxr_discarding = discarding;
4481 rxring->rxr_receiving_m = m0;
4482 rxring->rxr_receiving_m_last = mprev;
4483
4484 IF_STAT_PUTREF(ifp);
4485
4486 rx_intr_done:
4487 mutex_exit(&rxring->rxr_mutex);
4488
4489 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4490 return n;
4491 }
4492
4493 static int
4494 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4495 {
4496 struct ifnet *ifp = &ec->ec_if;
4497 struct aq_softc * const sc = ifp->if_softc;
4498
4499 aq_set_vlan_filters(sc);
4500 return 0;
4501 }
4502
4503 static int
4504 aq_ifflags_cb(struct ethercom *ec)
4505 {
4506 struct ifnet * const ifp = &ec->ec_if;
4507 struct aq_softc * const sc = ifp->if_softc;
4508 int i, ecchange, error = 0;
4509 unsigned short iffchange;
4510
4511 AQ_LOCK(sc);
4512
4513 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4514 if ((iffchange & IFF_PROMISC) != 0)
4515 error = aq_set_filter(sc);
4516
4517 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4518 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4519 for (i = 0; i < AQ_RINGS_NUM; i++) {
4520 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4521 RX_DMA_DESC_VLAN_STRIP,
4522 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4523 1 : 0);
4524 }
4525 }
4526
4527 /* vlan configuration depends on also interface promiscuous mode */
4528 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4529 aq_set_vlan_filters(sc);
4530
4531 sc->sc_ec_capenable = ec->ec_capenable;
4532 sc->sc_if_flags = ifp->if_flags;
4533
4534 AQ_UNLOCK(sc);
4535
4536 return error;
4537 }
4538
4539 static int
4540 aq_init(struct ifnet *ifp)
4541 {
4542 struct aq_softc * const sc = ifp->if_softc;
4543 int i, error = 0;
4544
4545 aq_stop(ifp, false);
4546
4547 AQ_LOCK(sc);
4548
4549 aq_set_vlan_filters(sc);
4550 aq_set_capability(sc);
4551
4552 for (i = 0; i < sc->sc_nqueues; i++) {
4553 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4554 }
4555
4556 /* invalidate RX descriptor cache */
4557 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4558 AQ_READ_REG_BIT(sc,
4559 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4560
4561 /* start RX */
4562 for (i = 0; i < sc->sc_nqueues; i++) {
4563 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4564 if (error != 0) {
4565 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4566 __func__);
4567 goto aq_init_failure;
4568 }
4569 }
4570 aq_init_rss(sc);
4571 aq_hw_l3_filter_set(sc);
4572
4573 /* need to start callout? */
4574 if (sc->sc_poll_linkstat
4575 #ifdef AQ_EVENT_COUNTERS
4576 || sc->sc_poll_statistics
4577 #endif
4578 ) {
4579 callout_schedule(&sc->sc_tick_ch, hz);
4580 }
4581
4582 /* ready */
4583 ifp->if_flags |= IFF_RUNNING;
4584 ifp->if_flags &= ~IFF_OACTIVE;
4585
4586 /* start TX and RX */
4587 aq_enable_intr(sc, true, true);
4588 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4589 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4590
4591 aq_init_failure:
4592 sc->sc_if_flags = ifp->if_flags;
4593
4594 AQ_UNLOCK(sc);
4595
4596 return error;
4597 }
4598
4599 static void
4600 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4601 struct aq_txring *txring, bool is_transmit)
4602 {
4603 struct mbuf *m;
4604 int npkt, error;
4605
4606 if ((ifp->if_flags & IFF_RUNNING) == 0)
4607 return;
4608
4609 for (npkt = 0; ; npkt++) {
4610 if (is_transmit)
4611 m = pcq_peek(txring->txr_pcq);
4612 else
4613 IFQ_POLL(&ifp->if_snd, m);
4614
4615 if (m == NULL)
4616 break;
4617
4618 if (txring->txr_nfree < AQ_TXD_MIN)
4619 break;
4620
4621 if (is_transmit)
4622 pcq_get(txring->txr_pcq);
4623 else
4624 IFQ_DEQUEUE(&ifp->if_snd, m);
4625
4626 error = aq_encap_txring(sc, txring, &m);
4627 if (error != 0) {
4628 /* too many mbuf chains? or not enough descriptors? */
4629 m_freem(m);
4630 if_statinc(ifp, if_oerrors);
4631 if (txring->txr_index == 0 && error == ENOBUFS)
4632 ifp->if_flags |= IFF_OACTIVE;
4633 break;
4634 }
4635
4636 /* update tail ptr */
4637 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4638 txring->txr_prodidx);
4639
4640 /* Pass the packet to any BPF listeners */
4641 bpf_mtap(ifp, m, BPF_D_OUT);
4642 }
4643
4644 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4645 ifp->if_flags |= IFF_OACTIVE;
4646
4647 if (npkt)
4648 ifp->if_timer = 5;
4649 }
4650
4651 static void
4652 aq_start(struct ifnet *ifp)
4653 {
4654 struct aq_softc * const sc = ifp->if_softc;
4655 /* aq_start() always use TX ring[0] */
4656 struct aq_txring * const txring = &sc->sc_queue[0].txring;
4657
4658 mutex_enter(&txring->txr_mutex);
4659 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4660 aq_send_common_locked(ifp, sc, txring, false);
4661 mutex_exit(&txring->txr_mutex);
4662 }
4663
4664 static inline unsigned int
4665 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4666 {
4667 return (cpu_index(curcpu()) % sc->sc_nqueues);
4668 }
4669
4670 static int
4671 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4672 {
4673 struct aq_softc * const sc = ifp->if_softc;
4674 const int ringidx = aq_select_txqueue(sc, m);
4675 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
4676
4677 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4678 m_freem(m);
4679 return ENOBUFS;
4680 }
4681
4682 if (mutex_tryenter(&txring->txr_mutex)) {
4683 aq_send_common_locked(ifp, sc, txring, true);
4684 mutex_exit(&txring->txr_mutex);
4685 } else {
4686 softint_schedule(txring->txr_softint);
4687 }
4688 return 0;
4689 }
4690
4691 static void
4692 aq_deferred_transmit(void *arg)
4693 {
4694 struct aq_txring * const txring = arg;
4695 struct aq_softc * const sc = txring->txr_sc;
4696 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4697
4698 mutex_enter(&txring->txr_mutex);
4699 if (pcq_peek(txring->txr_pcq) != NULL)
4700 aq_send_common_locked(ifp, sc, txring, true);
4701 mutex_exit(&txring->txr_mutex);
4702 }
4703
4704 static void
4705 aq_stop(struct ifnet *ifp, int disable)
4706 {
4707 struct aq_softc * const sc = ifp->if_softc;
4708 int i;
4709
4710 AQ_LOCK(sc);
4711
4712 ifp->if_timer = 0;
4713
4714 if ((ifp->if_flags & IFF_RUNNING) == 0)
4715 goto already_stopped;
4716
4717 /* disable tx/rx interrupts */
4718 aq_enable_intr(sc, true, false);
4719
4720 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4721 for (i = 0; i < sc->sc_nqueues; i++) {
4722 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4723 }
4724
4725 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4726 for (i = 0; i < sc->sc_nqueues; i++) {
4727 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4728 }
4729
4730 /* invalidate RX descriptor cache */
4731 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4732 AQ_READ_REG_BIT(sc,
4733 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4734
4735 ifp->if_timer = 0;
4736
4737 already_stopped:
4738 if (!disable) {
4739 /* when pmf stop, disable link status intr and callout */
4740 aq_enable_intr(sc, false, false);
4741 callout_stop(&sc->sc_tick_ch);
4742 }
4743
4744 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4745
4746 AQ_UNLOCK(sc);
4747 }
4748
4749 static void
4750 aq_watchdog(struct ifnet *ifp)
4751 {
4752 struct aq_softc * const sc = ifp->if_softc;
4753 int n, head, tail;
4754
4755 AQ_LOCK(sc);
4756
4757 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4758 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4759 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4760
4761 for (n = 0; n < sc->sc_nqueues; n++) {
4762 struct aq_txring * const txring = &sc->sc_queue[n].txring;
4763 head = AQ_READ_REG_BIT(sc,
4764 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4765 TX_DMA_DESC_HEAD_PTR),
4766 tail = AQ_READ_REG(sc,
4767 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4768
4769 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4770 __func__, txring->txr_index, head, tail);
4771
4772 aq_tx_intr(txring);
4773 }
4774
4775 AQ_UNLOCK(sc);
4776
4777 aq_init(ifp);
4778 }
4779
4780 static int
4781 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4782 {
4783 struct aq_softc * const sc = ifp->if_softc;
4784 struct ifreq * const ifr = data;
4785 int error = 0;
4786
4787 const int s = splnet();
4788 switch (cmd) {
4789 case SIOCSIFMTU:
4790 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4791 error = EINVAL;
4792 } else {
4793 ifp->if_mtu = ifr->ifr_mtu;
4794 error = 0; /* no need to reset (no ENETRESET) */
4795 }
4796 break;
4797 default:
4798 error = ether_ioctl(ifp, cmd, data);
4799 break;
4800 }
4801 splx(s);
4802
4803 if (error != ENETRESET)
4804 return error;
4805
4806 switch (cmd) {
4807 case SIOCSIFCAP:
4808 error = aq_set_capability(sc);
4809 break;
4810 case SIOCADDMULTI:
4811 case SIOCDELMULTI:
4812 if ((ifp->if_flags & IFF_RUNNING) == 0)
4813 break;
4814
4815 /*
4816 * Multicast list has changed; set the hardware filter
4817 * accordingly.
4818 */
4819 error = aq_set_filter(sc);
4820 break;
4821 }
4822
4823 return error;
4824 }
4825
4826
4827 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4828
4829 #ifdef _MODULE
4830 #include "ioconf.c"
4831 #endif
4832
4833 static int
4834 if_aq_modcmd(modcmd_t cmd, void *opaque)
4835 {
4836 int error = 0;
4837
4838 switch (cmd) {
4839 case MODULE_CMD_INIT:
4840 #ifdef _MODULE
4841 error = config_init_component(cfdriver_ioconf_if_aq,
4842 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4843 #endif
4844 return error;
4845 case MODULE_CMD_FINI:
4846 #ifdef _MODULE
4847 error = config_fini_component(cfdriver_ioconf_if_aq,
4848 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4849 #endif
4850 return error;
4851 default:
4852 return ENOTTY;
4853 }
4854 }
4855