if_aq.c revision 1.34 1 /* $NetBSD: if_aq.c,v 1.34 2022/09/22 05:50:52 riastradh Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.34 2022/09/22 05:50:52 riastradh Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857 bool txr_stopping;
858 bool txr_sending;
859 time_t txr_lastsent;
860
861 pcq_t *txr_pcq;
862 void *txr_softint;
863
864 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
865 bus_dmamap_t txr_txdesc_dmamap;
866 bus_dma_segment_t txr_txdesc_seg[1];
867 bus_size_t txr_txdesc_size;
868
869 struct {
870 struct mbuf *m;
871 bus_dmamap_t dmamap;
872 } txr_mbufs[AQ_TXD_NUM];
873 unsigned int txr_prodidx;
874 unsigned int txr_considx;
875 int txr_nfree;
876 };
877
878 struct aq_rxring {
879 struct aq_softc *rxr_sc;
880 int rxr_index;
881 kmutex_t rxr_mutex;
882 bool rxr_active;
883 bool rxr_discarding;
884 bool rxr_stopping;
885 struct mbuf *rxr_receiving_m; /* receiving jumboframe */
886 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */
887
888 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
889 bus_dmamap_t rxr_rxdesc_dmamap;
890 bus_dma_segment_t rxr_rxdesc_seg[1];
891 bus_size_t rxr_rxdesc_size;
892 struct {
893 struct mbuf *m;
894 bus_dmamap_t dmamap;
895 } rxr_mbufs[AQ_RXD_NUM];
896 unsigned int rxr_readidx;
897 };
898
899 struct aq_queue {
900 struct aq_softc *sc;
901 struct aq_txring txring;
902 struct aq_rxring rxring;
903 };
904
905 struct aq_softc;
906 struct aq_firmware_ops {
907 int (*reset)(struct aq_softc *);
908 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
909 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
910 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
911 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
912 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
913 #if NSYSMON_ENVSYS > 0
914 int (*get_temperature)(struct aq_softc *, uint32_t *);
915 #endif
916 };
917
918 #ifdef AQ_EVENT_COUNTERS
919 #define AQ_EVCNT_DECL(name) \
920 char sc_evcount_##name##_name[32]; \
921 struct evcnt sc_evcount_##name##_ev;
922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
923 do { \
924 snprintf((sc)->sc_evcount_##name##_name, \
925 sizeof((sc)->sc_evcount_##name##_name), \
926 "%s", desc); \
927 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
928 (evtype), NULL, device_xname((sc)->sc_dev), \
929 (sc)->sc_evcount_##name##_name); \
930 } while (/*CONSTCOND*/0)
931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
932 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
933 #define AQ_EVCNT_DETACH(sc, name) \
934 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
935 #define AQ_EVCNT_ADD(sc, name, val) \
936 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
937 #endif /* AQ_EVENT_COUNTERS */
938
939 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
940 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
941 #define AQ_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mutex));
942
943 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
944 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
945 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
946 #define AQ_MPI_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mpi_mutex));
947
948
949 struct aq_softc {
950 device_t sc_dev;
951
952 bus_space_tag_t sc_iot;
953 bus_space_handle_t sc_ioh;
954 bus_size_t sc_iosize;
955 bus_dma_tag_t sc_dmat;
956
957 void *sc_ihs[AQ_NINTR_MAX];
958 pci_intr_handle_t *sc_intrs;
959
960 int sc_tx_irq[AQ_RSSQUEUE_MAX];
961 int sc_rx_irq[AQ_RSSQUEUE_MAX];
962 int sc_linkstat_irq;
963 bool sc_use_txrx_independent_intr;
964 bool sc_poll_linkstat;
965 bool sc_detect_linkstat;
966
967 #if NSYSMON_ENVSYS > 0
968 struct sysmon_envsys *sc_sme;
969 envsys_data_t sc_sensor_temp;
970 #endif
971
972 callout_t sc_tick_ch;
973
974 int sc_nintrs;
975 bool sc_msix;
976
977 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
978 int sc_nqueues;
979
980 pci_chipset_tag_t sc_pc;
981 pcitag_t sc_pcitag;
982 uint16_t sc_product;
983 uint16_t sc_revision;
984
985 kmutex_t sc_mutex;
986 kmutex_t sc_mpi_mutex;
987
988 const struct aq_firmware_ops *sc_fw_ops;
989 uint64_t sc_fw_caps;
990 enum aq_media_type sc_media_type;
991 aq_link_speed_t sc_available_rates;
992
993 aq_link_speed_t sc_link_rate;
994 aq_link_fc_t sc_link_fc;
995 aq_link_eee_t sc_link_eee;
996
997 uint32_t sc_fw_version;
998 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
999 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
1000 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
1001 uint32_t sc_features;
1002 #define FEATURES_MIPS 0x00000001
1003 #define FEATURES_TPO2 0x00000002
1004 #define FEATURES_RPF2 0x00000004
1005 #define FEATURES_MPI_AQ 0x00000008
1006 #define FEATURES_REV_A0 0x10000000
1007 #define FEATURES_REV_A (FEATURES_REV_A0)
1008 #define FEATURES_REV_B0 0x20000000
1009 #define FEATURES_REV_B1 0x40000000
1010 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1011 uint32_t sc_max_mtu;
1012 uint32_t sc_mbox_addr;
1013
1014 bool sc_rbl_enabled;
1015 bool sc_fast_start_enabled;
1016 bool sc_flash_present;
1017
1018 bool sc_intr_moderation_enable;
1019 bool sc_rss_enable;
1020
1021 struct ethercom sc_ethercom;
1022 struct ether_addr sc_enaddr;
1023 struct ifmedia sc_media;
1024 int sc_ec_capenable; /* last ec_capenable */
1025 unsigned short sc_if_flags; /* last if_flags */
1026
1027 bool sc_tx_sending;
1028 bool sc_stopping;
1029
1030 struct workqueue *sc_reset_wq;
1031 struct work sc_reset_work;
1032 volatile unsigned sc_reset_pending;
1033
1034 bool sc_trigger_reset;
1035
1036 #ifdef AQ_EVENT_COUNTERS
1037 aq_hw_stats_s_t sc_statistics[2];
1038 int sc_statistics_idx;
1039 bool sc_poll_statistics;
1040
1041 AQ_EVCNT_DECL(uprc);
1042 AQ_EVCNT_DECL(mprc);
1043 AQ_EVCNT_DECL(bprc);
1044 AQ_EVCNT_DECL(erpt);
1045 AQ_EVCNT_DECL(uptc);
1046 AQ_EVCNT_DECL(mptc);
1047 AQ_EVCNT_DECL(bptc);
1048 AQ_EVCNT_DECL(erpr);
1049 AQ_EVCNT_DECL(mbtc);
1050 AQ_EVCNT_DECL(bbtc);
1051 AQ_EVCNT_DECL(mbrc);
1052 AQ_EVCNT_DECL(bbrc);
1053 AQ_EVCNT_DECL(ubrc);
1054 AQ_EVCNT_DECL(ubtc);
1055 AQ_EVCNT_DECL(ptc);
1056 AQ_EVCNT_DECL(prc);
1057 AQ_EVCNT_DECL(dpc);
1058 AQ_EVCNT_DECL(cprc);
1059 #endif
1060 };
1061
1062 static int aq_match(device_t, cfdata_t, void *);
1063 static void aq_attach(device_t, device_t, void *);
1064 static int aq_detach(device_t, int);
1065
1066 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1067 bool, bool);
1068 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1069 pci_intr_type_t);
1070 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1071
1072 static int aq_ifmedia_change(struct ifnet * const);
1073 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1074 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1075 static int aq_ifflags_cb(struct ethercom *);
1076 static int aq_init(struct ifnet *);
1077 static int aq_init_locked(struct ifnet *);
1078 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1079 struct aq_txring *, bool);
1080 static int aq_transmit(struct ifnet *, struct mbuf *);
1081 static void aq_deferred_transmit(void *);
1082 static void aq_start(struct ifnet *);
1083 static void aq_stop(struct ifnet *, int);
1084 static void aq_stop_locked(struct ifnet *, bool);
1085 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1086
1087 static int aq_txrx_rings_alloc(struct aq_softc *);
1088 static void aq_txrx_rings_free(struct aq_softc *);
1089 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1090 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1091
1092 static void aq_initmedia(struct aq_softc *);
1093 static void aq_enable_intr(struct aq_softc *, bool, bool);
1094
1095 static void aq_handle_reset_work(struct work *, void *);
1096 static void aq_unset_stopping_flags(struct aq_softc *);
1097 static void aq_set_stopping_flags(struct aq_softc *);
1098
1099 #if NSYSMON_ENVSYS > 0
1100 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1101 #endif
1102 static void aq_tick(void *);
1103 static int aq_legacy_intr(void *);
1104 static int aq_link_intr(void *);
1105 static int aq_txrx_intr(void *);
1106 static int aq_tx_intr(void *);
1107 static int aq_rx_intr(void *);
1108
1109 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1110 aq_link_eee_t);
1111 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1112 aq_link_eee_t *);
1113
1114 static int aq_fw_reset(struct aq_softc *);
1115 static int aq_fw_version_init(struct aq_softc *);
1116 static int aq_hw_init(struct aq_softc *);
1117 static int aq_hw_init_ucp(struct aq_softc *);
1118 static int aq_hw_reset(struct aq_softc *);
1119 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1120 uint32_t);
1121 static int aq_get_mac_addr(struct aq_softc *);
1122 static int aq_init_rss(struct aq_softc *);
1123 static int aq_set_capability(struct aq_softc *);
1124
1125 static int fw1x_reset(struct aq_softc *);
1126 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1127 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1128 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1129 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1130 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1131
1132 static int fw2x_reset(struct aq_softc *);
1133 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1134 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1135 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1136 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1137 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1138 #if NSYSMON_ENVSYS > 0
1139 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1140 #endif
1141
1142 #ifndef AQ_WATCHDOG_TIMEOUT
1143 #define AQ_WATCHDOG_TIMEOUT 5
1144 #endif
1145 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT;
1146
1147
1148 static const struct aq_firmware_ops aq_fw1x_ops = {
1149 .reset = fw1x_reset,
1150 .set_mode = fw1x_set_mode,
1151 .get_mode = fw1x_get_mode,
1152 .get_stats = fw1x_get_stats,
1153 #if NSYSMON_ENVSYS > 0
1154 .get_temperature = NULL
1155 #endif
1156 };
1157
1158 static const struct aq_firmware_ops aq_fw2x_ops = {
1159 .reset = fw2x_reset,
1160 .set_mode = fw2x_set_mode,
1161 .get_mode = fw2x_get_mode,
1162 .get_stats = fw2x_get_stats,
1163 #if NSYSMON_ENVSYS > 0
1164 .get_temperature = fw2x_get_temperature
1165 #endif
1166 };
1167
1168 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1169 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1170
1171 static const struct aq_product {
1172 pci_vendor_id_t aq_vendor;
1173 pci_product_id_t aq_product;
1174 const char *aq_name;
1175 enum aq_media_type aq_media_type;
1176 aq_link_speed_t aq_available_rates;
1177 } aq_products[] = {
1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1179 "Aquantia AQC100 10 Gigabit Network Adapter",
1180 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1181 },
1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1183 "Aquantia AQC107 10 Gigabit Network Adapter",
1184 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1185 },
1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1187 "Aquantia AQC108 5 Gigabit Network Adapter",
1188 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1189 },
1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1191 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1193 },
1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1195 "Aquantia AQC111 5 Gigabit Network Adapter",
1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1197 },
1198 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1199 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1200 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1201 },
1202 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1203 "Aquantia AQC100S 10 Gigabit Network Adapter",
1204 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1205 },
1206 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1207 "Aquantia AQC107S 10 Gigabit Network Adapter",
1208 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1209 },
1210 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1211 "Aquantia AQC108S 5 Gigabit Network Adapter",
1212 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1213 },
1214 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1215 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1216 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1217 },
1218 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1219 "Aquantia AQC111S 5 Gigabit Network Adapter",
1220 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1221 },
1222 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1223 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1224 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1225 },
1226 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1227 "Aquantia D100 10 Gigabit Network Adapter",
1228 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1229 },
1230 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1231 "Aquantia D107 10 Gigabit Network Adapter",
1232 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1233 },
1234 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1235 "Aquantia D108 5 Gigabit Network Adapter",
1236 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1237 },
1238 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1239 "Aquantia D109 2.5 Gigabit Network Adapter",
1240 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1241 }
1242 };
1243
1244 static const struct aq_product *
1245 aq_lookup(const struct pci_attach_args *pa)
1246 {
1247 unsigned int i;
1248
1249 for (i = 0; i < __arraycount(aq_products); i++) {
1250 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1251 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1252 return &aq_products[i];
1253 }
1254 return NULL;
1255 }
1256
1257 static int
1258 aq_match(device_t parent, cfdata_t cf, void *aux)
1259 {
1260 struct pci_attach_args * const pa = aux;
1261
1262 if (aq_lookup(pa) != NULL)
1263 return 1;
1264
1265 return 0;
1266 }
1267
1268 static void
1269 aq_attach(device_t parent, device_t self, void *aux)
1270 {
1271 struct aq_softc * const sc = device_private(self);
1272 struct pci_attach_args * const pa = aux;
1273 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1274 pci_chipset_tag_t pc;
1275 pcitag_t tag;
1276 pcireg_t command, memtype, bar;
1277 const struct aq_product *aqp;
1278 int error;
1279
1280 sc->sc_dev = self;
1281 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1282 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1283
1284 sc->sc_pc = pc = pa->pa_pc;
1285 sc->sc_pcitag = tag = pa->pa_tag;
1286 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1287
1288 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1289 command |= PCI_COMMAND_MASTER_ENABLE;
1290 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1291
1292 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1293 sc->sc_revision = PCI_REVISION(pa->pa_class);
1294
1295 aqp = aq_lookup(pa);
1296 KASSERT(aqp != NULL);
1297
1298 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1299
1300 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1301 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1302 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1303 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1304 return;
1305 }
1306 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1307 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1308 NULL, &sc->sc_iosize) != 0) {
1309 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1310 return;
1311 }
1312
1313 error = aq_fw_reset(sc);
1314 if (error != 0)
1315 goto attach_failure;
1316
1317 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1318
1319 /* max queue num is 8, and must be 2^n */
1320 if (ncpu >= 8)
1321 sc->sc_nqueues = 8;
1322 else if (ncpu >= 4)
1323 sc->sc_nqueues = 4;
1324 else if (ncpu >= 2)
1325 sc->sc_nqueues = 2;
1326 else
1327 sc->sc_nqueues = 1;
1328
1329 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1330 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1331 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1332 /* TX intrs + RX intrs + LINKSTAT intrs */
1333 sc->sc_use_txrx_independent_intr = true;
1334 sc->sc_poll_linkstat = false;
1335 sc->sc_msix = true;
1336 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1337 /* TX intrs + RX intrs */
1338 sc->sc_use_txrx_independent_intr = true;
1339 sc->sc_poll_linkstat = true;
1340 sc->sc_msix = true;
1341 } else
1342 #endif
1343 if (msixcount >= (sc->sc_nqueues + 1)) {
1344 /* TX/RX intrs LINKSTAT intrs */
1345 sc->sc_use_txrx_independent_intr = false;
1346 sc->sc_poll_linkstat = false;
1347 sc->sc_msix = true;
1348 } else if (msixcount >= sc->sc_nqueues) {
1349 /* TX/RX intrs */
1350 sc->sc_use_txrx_independent_intr = false;
1351 sc->sc_poll_linkstat = true;
1352 sc->sc_msix = true;
1353 } else {
1354 /* giving up using MSI-X */
1355 sc->sc_msix = false;
1356 }
1357
1358 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1359 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1360 FW_VERSION_MAJOR(sc) == 1)
1361 sc->sc_poll_linkstat = true;
1362
1363 #ifdef AQ_FORCE_POLL_LINKSTAT
1364 sc->sc_poll_linkstat = true;
1365 #endif
1366
1367 aprint_debug_dev(sc->sc_dev,
1368 "ncpu=%d, pci_msix_count=%d."
1369 " allocate %d interrupts for %d%s queues%s\n",
1370 ncpu, msixcount,
1371 (sc->sc_use_txrx_independent_intr ?
1372 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1373 (sc->sc_poll_linkstat ? 0 : 1),
1374 sc->sc_nqueues,
1375 sc->sc_use_txrx_independent_intr ? "*2" : "",
1376 sc->sc_poll_linkstat ? "" : ", and link status");
1377
1378 if (sc->sc_msix)
1379 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1380 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1381 else
1382 error = ENODEV;
1383
1384 if (error != 0) {
1385 /* if MSI-X failed, fallback to MSI with single queue */
1386 sc->sc_use_txrx_independent_intr = false;
1387 sc->sc_poll_linkstat = false;
1388 sc->sc_msix = false;
1389 sc->sc_nqueues = 1;
1390 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1391 }
1392 if (error != 0) {
1393 /* if MSI failed, fallback to INTx */
1394 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1395 }
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
1400 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1401
1402 char wqname[MAXCOMLEN];
1403 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
1404 error = workqueue_create(&sc->sc_reset_wq, wqname,
1405 aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK,
1406 WQ_MPSAFE);
1407 if (error) {
1408 aprint_error_dev(sc->sc_dev,
1409 "unable to create reset workqueue\n");
1410 goto attach_failure;
1411 }
1412
1413 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1414
1415 if (sc->sc_msix && (sc->sc_nqueues > 1))
1416 sc->sc_rss_enable = true;
1417 else
1418 sc->sc_rss_enable = false;
1419
1420 error = aq_txrx_rings_alloc(sc);
1421 if (error != 0)
1422 goto attach_failure;
1423
1424 error = aq_fw_version_init(sc);
1425 if (error != 0)
1426 goto attach_failure;
1427
1428 error = aq_hw_init_ucp(sc);
1429 if (error < 0)
1430 goto attach_failure;
1431
1432 KASSERT(sc->sc_mbox_addr != 0);
1433 error = aq_hw_reset(sc);
1434 if (error != 0)
1435 goto attach_failure;
1436
1437 aq_get_mac_addr(sc);
1438 aq_init_rss(sc);
1439
1440 error = aq_hw_init(sc); /* initialize and interrupts */
1441 if (error != 0)
1442 goto attach_failure;
1443
1444 sc->sc_media_type = aqp->aq_media_type;
1445 sc->sc_available_rates = aqp->aq_available_rates;
1446
1447 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1448 ifmedia_init(&sc->sc_media, IFM_IMASK,
1449 aq_ifmedia_change, aq_ifmedia_status);
1450 aq_initmedia(sc);
1451
1452 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1453 ifp->if_softc = sc;
1454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1455 ifp->if_extflags = IFEF_MPSAFE;
1456 ifp->if_baudrate = IF_Gbps(10);
1457 ifp->if_init = aq_init;
1458 ifp->if_ioctl = aq_ioctl;
1459 if (sc->sc_msix && (sc->sc_nqueues > 1))
1460 ifp->if_transmit = aq_transmit;
1461 ifp->if_start = aq_start;
1462 ifp->if_stop = aq_stop;
1463 ifp->if_watchdog = NULL;
1464 IFQ_SET_READY(&ifp->if_snd);
1465
1466 /* initialize capabilities */
1467 sc->sc_ethercom.ec_capabilities = 0;
1468 sc->sc_ethercom.ec_capenable = 0;
1469 #if notyet
1470 /* TODO */
1471 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1472 #endif
1473 sc->sc_ethercom.ec_capabilities |=
1474 ETHERCAP_JUMBO_MTU |
1475 ETHERCAP_VLAN_MTU |
1476 ETHERCAP_VLAN_HWTAGGING |
1477 ETHERCAP_VLAN_HWFILTER;
1478 sc->sc_ethercom.ec_capenable |=
1479 ETHERCAP_VLAN_HWTAGGING |
1480 ETHERCAP_VLAN_HWFILTER;
1481
1482 ifp->if_capabilities = 0;
1483 ifp->if_capenable = 0;
1484 #ifdef CONFIG_LRO_SUPPORT
1485 ifp->if_capabilities |= IFCAP_LRO;
1486 ifp->if_capenable |= IFCAP_LRO;
1487 #endif
1488 #if notyet
1489 /* TSO */
1490 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1491 #endif
1492
1493 /* TX hardware checksum offloading */
1494 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1495 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1496 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1497 /* RX hardware checksum offloading */
1498 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1499 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1500 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1501
1502 if_initialize(ifp);
1503 ifp->if_percpuq = if_percpuq_create(ifp);
1504 if_deferred_start_init(ifp, NULL);
1505 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1506 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1507 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1508 if_register(ifp);
1509
1510 aq_enable_intr(sc, true, false); /* only intr about link */
1511
1512 /* update media */
1513 aq_ifmedia_change(ifp);
1514
1515 #if NSYSMON_ENVSYS > 0
1516 /* temperature monitoring */
1517 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1518 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1519
1520 sc->sc_sme = sysmon_envsys_create();
1521 sc->sc_sme->sme_name = device_xname(self);
1522 sc->sc_sme->sme_cookie = sc;
1523 sc->sc_sme->sme_flags = 0;
1524 sc->sc_sme->sme_refresh = aq_temp_refresh;
1525 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1526 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1527 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1528
1529 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1530 if (sysmon_envsys_register(sc->sc_sme)) {
1531 sysmon_envsys_destroy(sc->sc_sme);
1532 sc->sc_sme = NULL;
1533 goto attach_failure;
1534 }
1535
1536 /*
1537 * for unknown reasons, the first call of fw2x_get_temperature()
1538 * will always fail (firmware matter?), so run once now.
1539 */
1540 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1541 }
1542 #endif
1543
1544 #ifdef AQ_EVENT_COUNTERS
1545 /* get starting statistics values */
1546 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1547 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1548 sc->sc_poll_statistics = true;
1549 }
1550
1551 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1552 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1553 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1554 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1555 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1556 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1557 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1558 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1559 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1560 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1561 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1562 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1563 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1564 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1565 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1566 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1567 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1568 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1569 #endif
1570
1571 if (pmf_device_register(self, NULL, NULL))
1572 pmf_class_network_register(self, ifp);
1573 else
1574 aprint_error_dev(self, "couldn't establish power handler\n");
1575
1576 return;
1577
1578 attach_failure:
1579 aq_detach(self, 0);
1580 }
1581
1582 static int
1583 aq_detach(device_t self, int flags __unused)
1584 {
1585 struct aq_softc * const sc = device_private(self);
1586 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1587 int i;
1588
1589 if (sc->sc_iosize != 0) {
1590 if (ifp->if_softc != NULL) {
1591 aq_stop(ifp, 0);
1592 }
1593
1594 for (i = 0; i < AQ_NINTR_MAX; i++) {
1595 if (sc->sc_ihs[i] != NULL) {
1596 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1597 sc->sc_ihs[i] = NULL;
1598 }
1599 }
1600 if (sc->sc_nintrs > 0) {
1601 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1602 sc->sc_nintrs);
1603 sc->sc_intrs = NULL;
1604 sc->sc_nintrs = 0;
1605 }
1606
1607 aq_txrx_rings_free(sc);
1608
1609 if (ifp->if_softc != NULL) {
1610 ether_ifdetach(ifp);
1611 if_detach(ifp);
1612 }
1613
1614 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1615 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1616 sc->sc_iosize = 0;
1617 }
1618
1619 callout_stop(&sc->sc_tick_ch);
1620
1621 #if NSYSMON_ENVSYS > 0
1622 if (sc->sc_sme != NULL) {
1623 /* all sensors associated with this will also be detached */
1624 sysmon_envsys_unregister(sc->sc_sme);
1625 }
1626 #endif
1627
1628 #ifdef AQ_EVENT_COUNTERS
1629 AQ_EVCNT_DETACH(sc, uprc);
1630 AQ_EVCNT_DETACH(sc, mprc);
1631 AQ_EVCNT_DETACH(sc, bprc);
1632 AQ_EVCNT_DETACH(sc, erpt);
1633 AQ_EVCNT_DETACH(sc, uptc);
1634 AQ_EVCNT_DETACH(sc, mptc);
1635 AQ_EVCNT_DETACH(sc, bptc);
1636 AQ_EVCNT_DETACH(sc, erpr);
1637 AQ_EVCNT_DETACH(sc, mbtc);
1638 AQ_EVCNT_DETACH(sc, bbtc);
1639 AQ_EVCNT_DETACH(sc, mbrc);
1640 AQ_EVCNT_DETACH(sc, bbrc);
1641 AQ_EVCNT_DETACH(sc, ubrc);
1642 AQ_EVCNT_DETACH(sc, ubtc);
1643 AQ_EVCNT_DETACH(sc, ptc);
1644 AQ_EVCNT_DETACH(sc, prc);
1645 AQ_EVCNT_DETACH(sc, dpc);
1646 AQ_EVCNT_DETACH(sc, cprc);
1647 #endif
1648
1649 ifmedia_fini(&sc->sc_media);
1650
1651 mutex_destroy(&sc->sc_mpi_mutex);
1652 mutex_destroy(&sc->sc_mutex);
1653
1654 return 0;
1655 }
1656
1657 static int
1658 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1659 int (*func)(void *), void *arg, const char *xname)
1660 {
1661 char intrbuf[PCI_INTRSTR_LEN];
1662 pci_chipset_tag_t pc = sc->sc_pc;
1663 void *vih;
1664 const char *intrstr = NULL;
1665
1666 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1667 sizeof(intrbuf));
1668
1669 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1670
1671 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1672 IPL_NET, func, arg, xname);
1673 if (vih == NULL) {
1674 aprint_error_dev(sc->sc_dev,
1675 "unable to establish MSI-X%s%s for %s\n",
1676 intrstr ? " at " : "",
1677 intrstr ? intrstr : "", xname);
1678 return EIO;
1679 }
1680 sc->sc_ihs[intno] = vih;
1681
1682 if (affinity != NULL) {
1683 /* Round-robin affinity */
1684 kcpuset_zero(affinity);
1685 kcpuset_set(affinity, intno % ncpu);
1686 interrupt_distribute(vih, affinity, NULL);
1687 }
1688
1689 return 0;
1690 }
1691
1692 static int
1693 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1694 bool linkintr)
1695 {
1696 kcpuset_t *affinity;
1697 int error, intno, i;
1698 char intr_xname[INTRDEVNAMEBUF];
1699
1700 kcpuset_create(&affinity, false);
1701
1702 intno = 0;
1703
1704 if (txrx_independent) {
1705 for (i = 0; i < sc->sc_nqueues; i++) {
1706 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1707 device_xname(sc->sc_dev), i);
1708 sc->sc_rx_irq[i] = intno;
1709 error = aq_establish_intr(sc, intno++, affinity,
1710 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1711 if (error != 0)
1712 goto fail;
1713 }
1714 for (i = 0; i < sc->sc_nqueues; i++) {
1715 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1716 device_xname(sc->sc_dev), i);
1717 sc->sc_tx_irq[i] = intno;
1718 error = aq_establish_intr(sc, intno++, affinity,
1719 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1720 if (error != 0)
1721 goto fail;
1722 }
1723 } else {
1724 for (i = 0; i < sc->sc_nqueues; i++) {
1725 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1726 device_xname(sc->sc_dev), i);
1727 sc->sc_rx_irq[i] = intno;
1728 sc->sc_tx_irq[i] = intno;
1729 error = aq_establish_intr(sc, intno++, affinity,
1730 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1731 if (error != 0)
1732 goto fail;
1733 }
1734 }
1735
1736 if (linkintr) {
1737 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1738 device_xname(sc->sc_dev));
1739 sc->sc_linkstat_irq = intno;
1740 error = aq_establish_intr(sc, intno++, affinity,
1741 aq_link_intr, sc, intr_xname);
1742 if (error != 0)
1743 goto fail;
1744 }
1745
1746 kcpuset_destroy(affinity);
1747 return 0;
1748
1749 fail:
1750 for (i = 0; i < AQ_NINTR_MAX; i++) {
1751 if (sc->sc_ihs[i] != NULL) {
1752 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1753 sc->sc_ihs[i] = NULL;
1754 }
1755 }
1756
1757 kcpuset_destroy(affinity);
1758 return ENOMEM;
1759 }
1760
1761 static int
1762 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1763 bool txrx_independent, bool linkintr)
1764 {
1765 int error, nintr;
1766
1767 if (txrx_independent)
1768 nintr = nqueue * 2;
1769 else
1770 nintr = nqueue;
1771
1772 if (linkintr)
1773 nintr++;
1774
1775 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1776 if (error != 0) {
1777 aprint_error_dev(sc->sc_dev,
1778 "failed to allocate MSI-X interrupts\n");
1779 goto fail;
1780 }
1781
1782 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1783 if (error == 0) {
1784 sc->sc_nintrs = nintr;
1785 } else {
1786 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1787 sc->sc_nintrs = 0;
1788 }
1789 fail:
1790 return error;
1791
1792 }
1793
1794 static int
1795 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1796 pci_intr_type_t inttype)
1797 {
1798 int counts[PCI_INTR_TYPE_SIZE];
1799 int error, nintr;
1800
1801 nintr = 1;
1802
1803 memset(counts, 0, sizeof(counts));
1804 counts[inttype] = nintr;
1805
1806 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1807 if (error != 0) {
1808 aprint_error_dev(sc->sc_dev,
1809 "failed to allocate%s interrupts\n",
1810 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1811 return error;
1812 }
1813 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1814 device_xname(sc->sc_dev));
1815 if (error == 0) {
1816 sc->sc_nintrs = nintr;
1817 } else {
1818 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1819 sc->sc_nintrs = 0;
1820 }
1821 return error;
1822 }
1823
1824 static void
1825 global_software_reset(struct aq_softc *sc)
1826 {
1827 uint32_t v;
1828
1829 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1830 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1831 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1832 FW_MPI_RESETCTRL_RESET_DIS, 0);
1833
1834 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1835 v &= ~AQ_FW_SOFTRESET_DIS;
1836 v |= AQ_FW_SOFTRESET_RESET;
1837 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1838 }
1839
1840 static int
1841 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1842 {
1843 int timo;
1844
1845 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1846
1847 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1848 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1849 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1850
1851 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1852 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1853
1854 global_software_reset(sc);
1855
1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1857
1858 /* Wait for RBL to finish boot process. */
1859 #define RBL_TIMEOUT_MS 10000
1860 uint16_t rbl_status;
1861 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1862 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1863 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1864 break;
1865 msec_delay(1);
1866 }
1867 if (timo <= 0) {
1868 aprint_error_dev(sc->sc_dev,
1869 "RBL> RBL restart failed: timeout\n");
1870 return EBUSY;
1871 }
1872 switch (rbl_status) {
1873 case RBL_STATUS_SUCCESS:
1874 if (mode != NULL)
1875 *mode = FW_BOOT_MODE_RBL_FLASH;
1876 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1877 break;
1878 case RBL_STATUS_HOST_BOOT:
1879 if (mode != NULL)
1880 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1881 aprint_debug_dev(sc->sc_dev,
1882 "RBL> reset complete! [Host Bootload]\n");
1883 break;
1884 case RBL_STATUS_FAILURE:
1885 default:
1886 aprint_error_dev(sc->sc_dev,
1887 "unknown RBL status 0x%x\n", rbl_status);
1888 return EBUSY;
1889 }
1890
1891 return 0;
1892 }
1893
1894 static int
1895 mac_soft_reset_flb(struct aq_softc *sc)
1896 {
1897 uint32_t v;
1898 int timo;
1899
1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1901 /*
1902 * Let Felicity hardware to complete SMBUS transaction before
1903 * Global software reset.
1904 */
1905 msec_delay(50);
1906
1907 /*
1908 * If SPI burst transaction was interrupted(before running the script),
1909 * global software reset may not clear SPI interface.
1910 * Clean it up manually before global reset.
1911 */
1912 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1913 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1914 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1915 msec_delay(50);
1916
1917 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1918 v &= ~AQ_FW_SOFTRESET_DIS;
1919 v |= AQ_FW_SOFTRESET_RESET;
1920 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1921
1922 /* Kickstart. */
1923 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1924 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1925 if (!sc->sc_fast_start_enabled)
1926 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1927
1928 /*
1929 * For the case SPI burst transaction was interrupted (by MCP reset
1930 * above), wait until it is completed by hardware.
1931 */
1932 msec_delay(50);
1933
1934 /* MAC Kickstart */
1935 if (!sc->sc_fast_start_enabled) {
1936 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1937
1938 uint32_t flb_status;
1939 for (timo = 0; timo < 1000; timo++) {
1940 flb_status = AQ_READ_REG(sc,
1941 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1942 if (flb_status != 0)
1943 break;
1944 msec_delay(1);
1945 }
1946 if (flb_status == 0) {
1947 aprint_error_dev(sc->sc_dev,
1948 "FLB> MAC kickstart failed: timed out\n");
1949 return ETIMEDOUT;
1950 }
1951 aprint_debug_dev(sc->sc_dev,
1952 "FLB> MAC kickstart done, %d ms\n", timo);
1953 /* FW reset */
1954 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1955 /*
1956 * Let Felicity hardware complete SMBUS transaction before
1957 * Global software reset.
1958 */
1959 msec_delay(50);
1960 sc->sc_fast_start_enabled = true;
1961 }
1962 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1963
1964 /* PHY Kickstart: #undone */
1965 global_software_reset(sc);
1966
1967 for (timo = 0; timo < 1000; timo++) {
1968 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1969 break;
1970 msec_delay(10);
1971 }
1972 if (timo >= 1000) {
1973 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1974 return ETIMEDOUT;
1975 }
1976 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1977 return 0;
1978
1979 }
1980
1981 static int
1982 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1983 {
1984 if (sc->sc_rbl_enabled)
1985 return mac_soft_reset_rbl(sc, mode);
1986
1987 if (mode != NULL)
1988 *mode = FW_BOOT_MODE_FLB;
1989 return mac_soft_reset_flb(sc);
1990 }
1991
1992 static int
1993 aq_fw_read_version(struct aq_softc *sc)
1994 {
1995 int i, error = EBUSY;
1996 #define MAC_FW_START_TIMEOUT_MS 10000
1997 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1998 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1999 if (sc->sc_fw_version != 0) {
2000 error = 0;
2001 break;
2002 }
2003 delay(1000);
2004 }
2005 return error;
2006 }
2007
2008 static int
2009 aq_fw_reset(struct aq_softc *sc)
2010 {
2011 uint32_t ver, v, bootExitCode;
2012 int i, error;
2013
2014 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2015
2016 for (i = 1000; i > 0; i--) {
2017 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
2018 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
2019 if (v != 0x06000000 || bootExitCode != 0)
2020 break;
2021 }
2022 if (i <= 0) {
2023 aprint_error_dev(sc->sc_dev,
2024 "F/W reset failed. Neither RBL nor FLB started\n");
2025 return ETIMEDOUT;
2026 }
2027 sc->sc_rbl_enabled = (bootExitCode != 0);
2028
2029 /*
2030 * Having FW version 0 is an indicator that cold start
2031 * is in progress. This means two things:
2032 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
2033 * 2) Driver may skip reset sequence and save time.
2034 */
2035 if (sc->sc_fast_start_enabled && (ver != 0)) {
2036 error = aq_fw_read_version(sc);
2037 /* Skip reset as it just completed */
2038 if (error == 0)
2039 return 0;
2040 }
2041
2042 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2043 error = mac_soft_reset(sc, &mode);
2044 if (error != 0) {
2045 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2046 return error;
2047 }
2048
2049 switch (mode) {
2050 case FW_BOOT_MODE_FLB:
2051 aprint_debug_dev(sc->sc_dev,
2052 "FLB> F/W successfully loaded from flash.\n");
2053 sc->sc_flash_present = true;
2054 return aq_fw_read_version(sc);
2055 case FW_BOOT_MODE_RBL_FLASH:
2056 aprint_debug_dev(sc->sc_dev,
2057 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2058 sc->sc_flash_present = true;
2059 return aq_fw_read_version(sc);
2060 case FW_BOOT_MODE_UNKNOWN:
2061 aprint_error_dev(sc->sc_dev,
2062 "F/W bootload error: unknown bootloader type\n");
2063 return ENOTSUP;
2064 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2065 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2066 break;
2067 }
2068
2069 /*
2070 * XXX: TODO: add support Host Boot
2071 */
2072 aprint_error_dev(sc->sc_dev,
2073 "RBL> F/W Host Bootload not implemented\n");
2074 return ENOTSUP;
2075 }
2076
2077 static int
2078 aq_hw_reset(struct aq_softc *sc)
2079 {
2080 int error;
2081
2082 /* disable irq */
2083 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2084
2085 /* apply */
2086 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2087
2088 /* wait ack 10 times by 1ms */
2089 WAIT_FOR(
2090 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2091 1000, 10, &error);
2092 if (error != 0) {
2093 aprint_error_dev(sc->sc_dev,
2094 "atlantic: IRQ reset failed: %d\n", error);
2095 return error;
2096 }
2097
2098 return sc->sc_fw_ops->reset(sc);
2099 }
2100
2101 static int
2102 aq_hw_init_ucp(struct aq_softc *sc)
2103 {
2104 int timo;
2105
2106 if (FW_VERSION_MAJOR(sc) == 1) {
2107 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2108 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2109 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2110 }
2111
2112 /* Wait a maximum of 10sec. It usually takes about 5sec. */
2113 for (timo = 10000; timo > 0; timo--) {
2114 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2115 if (sc->sc_mbox_addr != 0)
2116 break;
2117 delay(1000);
2118 }
2119 if (sc->sc_mbox_addr == 0) {
2120 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2121 return ETIMEDOUT;
2122 }
2123
2124 #define AQ_FW_MIN_VERSION 0x01050006
2125 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2126 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2127 aprint_error_dev(sc->sc_dev,
2128 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2129 " or later required, this is %d.%d.%d\n",
2130 FW_VERSION_MAJOR(sc),
2131 FW_VERSION_MINOR(sc),
2132 FW_VERSION_BUILD(sc));
2133 return ENOTSUP;
2134 }
2135
2136 return 0;
2137 }
2138
2139 static int
2140 aq_fw_version_init(struct aq_softc *sc)
2141 {
2142 int error = 0;
2143 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2144
2145 if (FW_VERSION_MAJOR(sc) == 1) {
2146 sc->sc_fw_ops = &aq_fw1x_ops;
2147 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2148 sc->sc_fw_ops = &aq_fw2x_ops;
2149 } else {
2150 aprint_error_dev(sc->sc_dev,
2151 "Unsupported F/W version %d.%d.%d\n",
2152 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2153 FW_VERSION_BUILD(sc));
2154 return ENOTSUP;
2155 }
2156 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2157 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2158
2159 /* detect revision */
2160 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2161 switch (hwrev & 0x0000000f) {
2162 case 0x01:
2163 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2164 fw_vers);
2165 sc->sc_features |= FEATURES_REV_A0 |
2166 FEATURES_MPI_AQ | FEATURES_MIPS;
2167 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2168 break;
2169 case 0x02:
2170 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2171 fw_vers);
2172 sc->sc_features |= FEATURES_REV_B0 |
2173 FEATURES_MPI_AQ | FEATURES_MIPS |
2174 FEATURES_TPO2 | FEATURES_RPF2;
2175 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2176 break;
2177 case 0x0A:
2178 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2179 fw_vers);
2180 sc->sc_features |= FEATURES_REV_B1 |
2181 FEATURES_MPI_AQ | FEATURES_MIPS |
2182 FEATURES_TPO2 | FEATURES_RPF2;
2183 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2184 break;
2185 default:
2186 aprint_error_dev(sc->sc_dev,
2187 "Unknown revision (0x%08x)\n", hwrev);
2188 sc->sc_features = 0;
2189 sc->sc_max_mtu = ETHERMTU;
2190 error = ENOTSUP;
2191 break;
2192 }
2193 return error;
2194 }
2195
2196 static int
2197 fw1x_reset(struct aq_softc *sc)
2198 {
2199 struct aq_mailbox_header mbox;
2200 const int retryCount = 1000;
2201 uint32_t tid0;
2202 int i;
2203
2204 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2205
2206 for (i = 0; i < retryCount; ++i) {
2207 /*
2208 * Read the beginning of Statistics structure to capture
2209 * the Transaction ID.
2210 */
2211 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2212 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2213
2214 /* Successfully read the stats. */
2215 if (tid0 == ~0U) {
2216 /* We have read the initial value. */
2217 tid0 = mbox.transaction_id;
2218 continue;
2219 } else if (mbox.transaction_id != tid0) {
2220 /*
2221 * Compare transaction ID to initial value.
2222 * If it's different means f/w is alive.
2223 * We're done.
2224 */
2225 return 0;
2226 }
2227
2228 /*
2229 * Transaction ID value haven't changed since last time.
2230 * Try reading the stats again.
2231 */
2232 delay(10);
2233 }
2234 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2235 return EBUSY;
2236 }
2237
2238 static int
2239 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2240 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2241 {
2242 uint32_t mpictrl = 0;
2243 uint32_t mpispeed = 0;
2244
2245 if (speed & AQ_LINK_10G)
2246 mpispeed |= FW1X_CTRL_10G;
2247 if (speed & AQ_LINK_5G)
2248 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2249 if (speed & AQ_LINK_2G5)
2250 mpispeed |= FW1X_CTRL_2G5;
2251 if (speed & AQ_LINK_1G)
2252 mpispeed |= FW1X_CTRL_1G;
2253 if (speed & AQ_LINK_100M)
2254 mpispeed |= FW1X_CTRL_100M;
2255
2256 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2257 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2258 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2259 return 0;
2260 }
2261
2262 static int
2263 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2264 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2265 {
2266 uint32_t mpistate, mpi_speed;
2267 aq_link_speed_t speed = AQ_LINK_NONE;
2268
2269 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2270
2271 if (modep != NULL)
2272 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2273
2274 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2275 if (mpi_speed & FW1X_CTRL_10G)
2276 speed = AQ_LINK_10G;
2277 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2278 speed = AQ_LINK_5G;
2279 else if (mpi_speed & FW1X_CTRL_2G5)
2280 speed = AQ_LINK_2G5;
2281 else if (mpi_speed & FW1X_CTRL_1G)
2282 speed = AQ_LINK_1G;
2283 else if (mpi_speed & FW1X_CTRL_100M)
2284 speed = AQ_LINK_100M;
2285
2286 if (speedp != NULL)
2287 *speedp = speed;
2288
2289 if (fcp != NULL)
2290 *fcp = AQ_FC_NONE;
2291
2292 if (eeep != NULL)
2293 *eeep = AQ_EEE_DISABLE;
2294
2295 return 0;
2296 }
2297
2298 static int
2299 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2300 {
2301 int error;
2302
2303 error = aq_fw_downld_dwords(sc,
2304 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2305 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2306 if (error < 0) {
2307 device_printf(sc->sc_dev,
2308 "fw1x> download statistics data FAILED, error %d", error);
2309 return error;
2310 }
2311
2312 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2313 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2314 return 0;
2315 }
2316
2317 static int
2318 fw2x_reset(struct aq_softc *sc)
2319 {
2320 fw2x_capabilities_t caps = { 0 };
2321 int error;
2322
2323 error = aq_fw_downld_dwords(sc,
2324 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2325 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2326 if (error != 0) {
2327 aprint_error_dev(sc->sc_dev,
2328 "fw2x> can't get F/W capabilities mask, error %d\n",
2329 error);
2330 return error;
2331 }
2332 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2333
2334 char buf[256];
2335 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2336 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2337
2338 return 0;
2339 }
2340
2341 static int
2342 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2343 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2344 {
2345 uint64_t mpi_ctrl;
2346 int error = 0;
2347
2348 AQ_MPI_LOCK(sc);
2349
2350 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2351
2352 switch (mode) {
2353 case MPI_INIT:
2354 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2355 if (speed & AQ_LINK_10G)
2356 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2357 if (speed & AQ_LINK_5G)
2358 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2359 if (speed & AQ_LINK_2G5)
2360 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2361 if (speed & AQ_LINK_1G)
2362 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2363 if (speed & AQ_LINK_100M)
2364 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2365
2366 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2367
2368 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2369 if (eee == AQ_EEE_ENABLE)
2370 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2371
2372 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2373 if (fc & AQ_FC_RX)
2374 mpi_ctrl |= FW2X_CTRL_PAUSE;
2375 if (fc & AQ_FC_TX)
2376 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2377 break;
2378 case MPI_DEINIT:
2379 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2380 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2381 break;
2382 default:
2383 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2384 error = EINVAL;
2385 goto failure;
2386 }
2387 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2388
2389 failure:
2390 AQ_MPI_UNLOCK(sc);
2391 return error;
2392 }
2393
2394 static int
2395 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2396 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2397 {
2398 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2399
2400 if (modep != NULL) {
2401 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2402 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2403 *modep = MPI_INIT;
2404 else
2405 *modep = MPI_DEINIT;
2406 }
2407
2408 aq_link_speed_t speed = AQ_LINK_NONE;
2409 if (mpi_state & FW2X_CTRL_RATE_10G)
2410 speed = AQ_LINK_10G;
2411 else if (mpi_state & FW2X_CTRL_RATE_5G)
2412 speed = AQ_LINK_5G;
2413 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2414 speed = AQ_LINK_2G5;
2415 else if (mpi_state & FW2X_CTRL_RATE_1G)
2416 speed = AQ_LINK_1G;
2417 else if (mpi_state & FW2X_CTRL_RATE_100M)
2418 speed = AQ_LINK_100M;
2419
2420 if (speedp != NULL)
2421 *speedp = speed;
2422
2423 aq_link_fc_t fc = AQ_FC_NONE;
2424 if (mpi_state & FW2X_CTRL_PAUSE)
2425 fc |= AQ_FC_RX;
2426 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2427 fc |= AQ_FC_TX;
2428 if (fcp != NULL)
2429 *fcp = fc;
2430
2431 /* XXX: TODO: EEE */
2432 if (eeep != NULL)
2433 *eeep = AQ_EEE_DISABLE;
2434
2435 return 0;
2436 }
2437
2438 static int
2439 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2440 uint32_t timeout_ms, uint32_t try_count)
2441 {
2442 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2443 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2444 int error;
2445
2446 /* First, check that control and state values are consistent */
2447 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2448 device_printf(sc->sc_dev,
2449 "fw2x> MPI control (%#llx) and state (%#llx)"
2450 " are not consistent for mask %#llx!\n",
2451 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2452 (unsigned long long)mask);
2453 return EINVAL;
2454 }
2455
2456 /* Invert bits (toggle) in control register */
2457 mpi_ctrl ^= mask;
2458 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2459
2460 /* Clear all bits except masked */
2461 mpi_ctrl &= mask;
2462
2463 /* Wait for FW reflecting change in state register */
2464 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2465 1000 * timeout_ms, try_count, &error);
2466 if (error != 0) {
2467 device_printf(sc->sc_dev,
2468 "f/w2x> timeout while waiting for response"
2469 " in state register for bit %#llx!",
2470 (unsigned long long)mask);
2471 return error;
2472 }
2473 return 0;
2474 }
2475
2476 static int
2477 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2478 {
2479 int error;
2480
2481 AQ_MPI_LOCK(sc);
2482 /* Say to F/W to update the statistics */
2483 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2484 if (error != 0) {
2485 device_printf(sc->sc_dev,
2486 "fw2x> statistics update error %d\n", error);
2487 goto failure;
2488 }
2489
2490 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2491 error = aq_fw_downld_dwords(sc,
2492 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2493 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2494 if (error != 0) {
2495 device_printf(sc->sc_dev,
2496 "fw2x> download statistics data FAILED, error %d", error);
2497 goto failure;
2498 }
2499 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2500 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2501
2502 failure:
2503 AQ_MPI_UNLOCK(sc);
2504 return error;
2505 }
2506
2507 #if NSYSMON_ENVSYS > 0
2508 static int
2509 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2510 {
2511 int error;
2512 uint32_t value, celsius;
2513
2514 AQ_MPI_LOCK(sc);
2515
2516 /* Say to F/W to update the temperature */
2517 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2518 if (error != 0)
2519 goto failure;
2520
2521 error = aq_fw_downld_dwords(sc,
2522 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2523 &value, sizeof(value) / sizeof(uint32_t));
2524 if (error != 0)
2525 goto failure;
2526
2527 /* 1/256 decrees C to microkelvin */
2528 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2529 if (celsius == 0) {
2530 error = EIO;
2531 goto failure;
2532 }
2533 *temp = celsius * (1000000 / 256) + 273150000;
2534
2535 failure:
2536 AQ_MPI_UNLOCK(sc);
2537 return 0;
2538 }
2539 #endif
2540
2541 static int
2542 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2543 uint32_t cnt)
2544 {
2545 uint32_t v;
2546 int error = 0;
2547
2548 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2549 if (error != 0) {
2550 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2551 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2552 if (v == 0) {
2553 device_printf(sc->sc_dev,
2554 "%s:%d: timeout\n", __func__, __LINE__);
2555 return ETIMEDOUT;
2556 }
2557 }
2558
2559 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2560
2561 error = 0;
2562 for (; cnt > 0 && error == 0; cnt--) {
2563 /* execute mailbox interface */
2564 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2565 AQ_FW_MBOX_CMD_EXECUTE, 1);
2566 if (sc->sc_features & FEATURES_REV_B1) {
2567 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2568 1, 1000, &error);
2569 } else {
2570 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2571 AQ_FW_MBOX_CMD_BUSY) == 0,
2572 1, 1000, &error);
2573 }
2574 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2575 addr += sizeof(uint32_t);
2576 }
2577 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2578
2579 if (error != 0)
2580 device_printf(sc->sc_dev,
2581 "%s:%d: timeout\n", __func__, __LINE__);
2582
2583 return error;
2584 }
2585
2586 /* read my mac address */
2587 static int
2588 aq_get_mac_addr(struct aq_softc *sc)
2589 {
2590 uint32_t mac_addr[2];
2591 uint32_t efuse_shadow_addr;
2592 int err;
2593
2594 efuse_shadow_addr = 0;
2595 if (FW_VERSION_MAJOR(sc) >= 2)
2596 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2597 else
2598 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2599
2600 if (efuse_shadow_addr == 0) {
2601 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2602 return ENXIO;
2603 }
2604
2605 memset(mac_addr, 0, sizeof(mac_addr));
2606 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2607 mac_addr, __arraycount(mac_addr));
2608 if (err < 0)
2609 return err;
2610
2611 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2612 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2613 return ENXIO;
2614 }
2615
2616 mac_addr[0] = htobe32(mac_addr[0]);
2617 mac_addr[1] = htobe32(mac_addr[1]);
2618
2619 memcpy(sc->sc_enaddr.ether_addr_octet,
2620 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2621 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2622 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2623
2624 return 0;
2625 }
2626
2627 /* set multicast filter. index 0 for own address */
2628 static int
2629 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2630 {
2631 uint32_t h, l;
2632
2633 if (index >= AQ_HW_MAC_NUM)
2634 return EINVAL;
2635
2636 if (enaddr == NULL) {
2637 /* disable */
2638 AQ_WRITE_REG_BIT(sc,
2639 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2640 return 0;
2641 }
2642
2643 h = (enaddr[0] << 8) | (enaddr[1]);
2644 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2645 (enaddr[4] << 8) | (enaddr[5]);
2646
2647 /* disable, set, and enable */
2648 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2649 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2650 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2651 RPF_L2UC_MSW_MACADDR_HI, h);
2652 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2653 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2654
2655 return 0;
2656 }
2657
2658 static int
2659 aq_set_capability(struct aq_softc *sc)
2660 {
2661 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2662 int ip4csum_tx =
2663 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2664 int ip4csum_rx =
2665 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2666 int l4csum_tx = ((ifp->if_capenable &
2667 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2668 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2669 int l4csum_rx =
2670 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2671 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2672 uint32_t lso =
2673 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2674 0 : 0xffffffff;
2675 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2676 0 : 0xffffffff;
2677 uint32_t i, v;
2678
2679 /* TX checksums offloads*/
2680 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2681 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2682
2683 /* RX checksums offloads*/
2684 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2685 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2686
2687 /* LSO offloads*/
2688 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2689
2690 #define AQ_B0_LRO_RXD_MAX 16
2691 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2692 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2693 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2694 for (i = 0; i < AQ_RINGS_NUM; i++) {
2695 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2696 RPO_LRO_LDES_MAX_MASK(i), v);
2697 }
2698
2699 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2700 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2701 RPO_LRO_INACTIVE_IVAL, 0);
2702 /*
2703 * the LRO timebase divider is 5 uS (0x61a),
2704 * to get a maximum coalescing interval of 250 uS,
2705 * we need to multiply by 50(0x32) to get
2706 * the default value 250 uS
2707 */
2708 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2709 RPO_LRO_MAX_COALESCING_IVAL, 50);
2710 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2711 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2712 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2713 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2714 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2715 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2716 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2717 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2718 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2719 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2720
2721 return 0;
2722 }
2723
2724 static int
2725 aq_set_filter(struct aq_softc *sc)
2726 {
2727 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2728 struct ethercom * const ec = &sc->sc_ethercom;
2729 struct ether_multi *enm;
2730 struct ether_multistep step;
2731 int idx, error = 0;
2732
2733 if (ifp->if_flags & IFF_PROMISC) {
2734 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2735 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2736 ec->ec_flags |= ETHER_F_ALLMULTI;
2737 goto done;
2738 }
2739
2740 /* clear all table */
2741 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2742 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2743 continue;
2744 aq_set_mac_addr(sc, idx, NULL);
2745 }
2746
2747 /* don't accept all multicast */
2748 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2749 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2750 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2751 RPF_MCAST_FILTER_EN, 0);
2752
2753 idx = 0;
2754 ETHER_LOCK(ec);
2755 ETHER_FIRST_MULTI(step, ec, enm);
2756 while (enm != NULL) {
2757 if (idx == AQ_HW_MAC_OWN)
2758 idx++;
2759
2760 if ((idx >= AQ_HW_MAC_NUM) ||
2761 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2762 /*
2763 * too many filters.
2764 * fallback to accept all multicast addresses.
2765 */
2766 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2767 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2768 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2769 RPF_MCAST_FILTER_EN, 1);
2770 ec->ec_flags |= ETHER_F_ALLMULTI;
2771 ETHER_UNLOCK(ec);
2772 goto done;
2773 }
2774
2775 /* add a filter */
2776 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2777
2778 ETHER_NEXT_MULTI(step, enm);
2779 }
2780 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2781 ETHER_UNLOCK(ec);
2782
2783 done:
2784 return error;
2785 }
2786
2787 static int
2788 aq_ifmedia_change(struct ifnet * const ifp)
2789 {
2790 struct aq_softc * const sc = ifp->if_softc;
2791
2792 aq_link_speed_t rate = AQ_LINK_NONE;
2793 aq_link_fc_t fc = AQ_FC_NONE;
2794 aq_link_eee_t eee = AQ_EEE_DISABLE;
2795
2796 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2797 return EINVAL;
2798
2799 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2800 case IFM_AUTO:
2801 rate = AQ_LINK_AUTO;
2802 break;
2803 case IFM_NONE:
2804 rate = AQ_LINK_NONE;
2805 break;
2806 case IFM_100_TX:
2807 rate = AQ_LINK_100M;
2808 break;
2809 case IFM_1000_T:
2810 rate = AQ_LINK_1G;
2811 break;
2812 case IFM_2500_T:
2813 rate = AQ_LINK_2G5;
2814 break;
2815 case IFM_5000_T:
2816 rate = AQ_LINK_5G;
2817 break;
2818 case IFM_10G_T:
2819 rate = AQ_LINK_10G;
2820 break;
2821 default:
2822 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2823 IFM_SUBTYPE(sc->sc_media.ifm_media));
2824 return ENODEV;
2825 }
2826
2827 if (sc->sc_media.ifm_media & IFM_FLOW)
2828 fc = AQ_FC_ALL;
2829
2830 /* XXX: todo EEE */
2831
2832 /* re-initialize hardware with new parameters */
2833 aq_set_linkmode(sc, rate, fc, eee);
2834
2835 return 0;
2836 }
2837
2838 static void
2839 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2840 {
2841 struct aq_softc * const sc = ifp->if_softc;
2842
2843 /* update ifm_active */
2844 ifmr->ifm_active = IFM_ETHER;
2845 if (sc->sc_link_fc & AQ_FC_RX)
2846 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2847 if (sc->sc_link_fc & AQ_FC_TX)
2848 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2849
2850 switch (sc->sc_link_rate) {
2851 case AQ_LINK_100M:
2852 /* XXX: need to detect fulldup or halfdup */
2853 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2854 break;
2855 case AQ_LINK_1G:
2856 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2857 break;
2858 case AQ_LINK_2G5:
2859 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2860 break;
2861 case AQ_LINK_5G:
2862 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2863 break;
2864 case AQ_LINK_10G:
2865 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2866 break;
2867 default:
2868 ifmr->ifm_active |= IFM_NONE;
2869 break;
2870 }
2871
2872 /* update ifm_status */
2873 ifmr->ifm_status = IFM_AVALID;
2874 if (sc->sc_link_rate != AQ_LINK_NONE)
2875 ifmr->ifm_status |= IFM_ACTIVE;
2876 }
2877
2878 static void
2879 aq_initmedia(struct aq_softc *sc)
2880 {
2881 #define IFMEDIA_ETHER_ADD(sc, media) \
2882 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2883
2884 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2885 if (sc->sc_available_rates & AQ_LINK_100M) {
2886 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2887 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2888 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2889 }
2890 if (sc->sc_available_rates & AQ_LINK_1G) {
2891 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2892 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2893 }
2894 if (sc->sc_available_rates & AQ_LINK_2G5) {
2895 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2896 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2897 }
2898 if (sc->sc_available_rates & AQ_LINK_5G) {
2899 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2900 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2901 }
2902 if (sc->sc_available_rates & AQ_LINK_10G) {
2903 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2904 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2905 }
2906 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2907 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2908
2909 /* default: auto without flowcontrol */
2910 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2911 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2912 }
2913
2914 static int
2915 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2916 aq_link_eee_t eee)
2917 {
2918 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2919 }
2920
2921 static int
2922 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2923 aq_link_eee_t *eee)
2924 {
2925 aq_hw_fw_mpi_state_t mode;
2926 int error;
2927
2928 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2929 if (error != 0)
2930 return error;
2931 if (mode != MPI_INIT)
2932 return ENXIO;
2933
2934 return 0;
2935 }
2936
2937 static void
2938 aq_hw_init_tx_path(struct aq_softc *sc)
2939 {
2940 /* Tx TC/RSS number config */
2941 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2942
2943 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2944 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2945 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2946 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2947 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2948 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2949
2950 /* misc */
2951 AQ_WRITE_REG(sc, TX_TPO2_REG,
2952 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2953 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2954 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2955
2956 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2957 }
2958
2959 static void
2960 aq_hw_init_rx_path(struct aq_softc *sc)
2961 {
2962 int i;
2963
2964 /* clear setting */
2965 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2966 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2967 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2968 for (i = 0; i < 32; i++) {
2969 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2970 RPF_ETHERTYPE_FILTER_EN, 0);
2971 }
2972
2973 if (sc->sc_rss_enable) {
2974 /* Rx TC/RSS number config */
2975 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2976
2977 /* Rx flow control */
2978 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2979
2980 /* RSS Ring selection */
2981 switch (sc->sc_nqueues) {
2982 case 2:
2983 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2984 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2985 break;
2986 case 4:
2987 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2988 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2989 break;
2990 case 8:
2991 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2992 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2993 break;
2994 }
2995 }
2996
2997 /* L2 and Multicast filters */
2998 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2999 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
3000 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
3001 RPF_ACTION_HOST);
3002 }
3003 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
3004 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
3005
3006 /* Vlan filters */
3007 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
3008 ETHERTYPE_QINQ);
3009 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
3010 ETHERTYPE_VLAN);
3011 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3012
3013 if (sc->sc_features & FEATURES_REV_B) {
3014 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3015 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
3016 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3017 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
3018 }
3019
3020 /* misc */
3021 if (sc->sc_features & FEATURES_RPF2)
3022 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
3023 else
3024 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
3025
3026 /*
3027 * XXX: RX_TCP_RSS_HASH_REG:
3028 * linux set 0x000f0000
3029 * freebsd set 0x000f001e
3030 */
3031 /* RSS hash type set for IP/TCP */
3032 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
3033 RX_TCP_RSS_HASH_TYPE, 0x001e);
3034
3035 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3036 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3037 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3038
3039 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3040 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3041 }
3042
3043 static void
3044 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3045 {
3046 int i;
3047
3048 if (sc->sc_intr_moderation_enable) {
3049 unsigned int tx_min, rx_min; /* 0-255 */
3050 unsigned int tx_max, rx_max; /* 0-511? */
3051
3052 switch (sc->sc_link_rate) {
3053 case AQ_LINK_100M:
3054 tx_min = 0x4f;
3055 tx_max = 0xff;
3056 rx_min = 0x04;
3057 rx_max = 0x50;
3058 break;
3059 case AQ_LINK_1G:
3060 default:
3061 tx_min = 0x4f;
3062 tx_max = 0xff;
3063 rx_min = 0x30;
3064 rx_max = 0x80;
3065 break;
3066 case AQ_LINK_2G5:
3067 tx_min = 0x4f;
3068 tx_max = 0xff;
3069 rx_min = 0x18;
3070 rx_max = 0xe0;
3071 break;
3072 case AQ_LINK_5G:
3073 tx_min = 0x4f;
3074 tx_max = 0xff;
3075 rx_min = 0x0c;
3076 rx_max = 0x70;
3077 break;
3078 case AQ_LINK_10G:
3079 tx_min = 0x4f;
3080 tx_max = 0x1ff;
3081 rx_min = 0x06; /* freebsd use 80 */
3082 rx_max = 0x38; /* freebsd use 120 */
3083 break;
3084 }
3085
3086 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3087 TX_DMA_INT_DESC_WRWB_EN, 0);
3088 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3089 TX_DMA_INT_DESC_MODERATE_EN, 1);
3090 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3091 RX_DMA_INT_DESC_WRWB_EN, 0);
3092 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3093 RX_DMA_INT_DESC_MODERATE_EN, 1);
3094
3095 for (i = 0; i < AQ_RINGS_NUM; i++) {
3096 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3097 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3098 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3099 TX_INTR_MODERATION_CTL_EN);
3100 }
3101 for (i = 0; i < AQ_RINGS_NUM; i++) {
3102 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3103 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3104 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3105 RX_INTR_MODERATION_CTL_EN);
3106 }
3107
3108 } else {
3109 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3110 TX_DMA_INT_DESC_WRWB_EN, 1);
3111 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3112 TX_DMA_INT_DESC_MODERATE_EN, 0);
3113 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3114 RX_DMA_INT_DESC_WRWB_EN, 1);
3115 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3116 RX_DMA_INT_DESC_MODERATE_EN, 0);
3117
3118 for (i = 0; i < AQ_RINGS_NUM; i++) {
3119 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3120 }
3121 for (i = 0; i < AQ_RINGS_NUM; i++) {
3122 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3123 }
3124 }
3125 }
3126
3127 static void
3128 aq_hw_qos_set(struct aq_softc *sc)
3129 {
3130 uint32_t tc = 0;
3131 uint32_t buff_size;
3132
3133 /* TPS Descriptor rate init */
3134 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3135 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3136
3137 /* TPS VM init */
3138 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3139
3140 /* TPS TC credits init */
3141 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3142 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3143
3144 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3145 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3146 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3147 TPS_DATA_TCT_WEIGHT, 0x64);
3148 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3149 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3150 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3151 TPS_DESC_TCT_WEIGHT, 0x1e);
3152
3153 /* Tx buf size */
3154 tc = 0;
3155 buff_size = AQ_HW_TXBUF_MAX;
3156 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3157 buff_size);
3158 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3159 (buff_size * (1024 / 32) * 66) / 100);
3160 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3161 (buff_size * (1024 / 32) * 50) / 100);
3162
3163 /* QoS Rx buf size per TC */
3164 tc = 0;
3165 buff_size = AQ_HW_RXBUF_MAX;
3166 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3167 buff_size);
3168 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3169 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3170 (buff_size * (1024 / 32) * 66) / 100);
3171 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3172 (buff_size * (1024 / 32) * 50) / 100);
3173
3174 /* QoS 802.1p priority -> TC mapping */
3175 int i_priority;
3176 for (i_priority = 0; i_priority < 8; i_priority++) {
3177 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3178 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3179 }
3180 }
3181
3182 /* called once from aq_attach */
3183 static int
3184 aq_init_rss(struct aq_softc *sc)
3185 {
3186 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3187 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3188 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3189 unsigned int i;
3190 int error;
3191
3192 /* initialize rss key */
3193 rss_getkey((uint8_t *)rss_key);
3194
3195 /* hash to ring table */
3196 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3197 rss_table[i] = i % sc->sc_nqueues;
3198 }
3199
3200 /*
3201 * set rss key
3202 */
3203 for (i = 0; i < __arraycount(rss_key); i++) {
3204 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3205 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3206 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3207 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3208 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3209 RPF_RSS_KEY_WR_EN, 1);
3210 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3211 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3212 if (error != 0) {
3213 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3214 __func__);
3215 goto rss_set_timeout;
3216 }
3217 }
3218
3219 /*
3220 * set rss indirection table
3221 *
3222 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3223 * we'll make it by __BITMAP(3) macros.
3224 */
3225 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3226 __BITMAP_ZERO(&bit3x64);
3227
3228 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3229 do { \
3230 if (val & 1) { \
3231 __BITMAP_SET((idx) * 3, (bitmap)); \
3232 } else { \
3233 __BITMAP_CLR((idx) * 3, (bitmap)); \
3234 } \
3235 if (val & 2) { \
3236 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3237 } else { \
3238 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3239 } \
3240 if (val & 4) { \
3241 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3242 } else { \
3243 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3244 } \
3245 } while (0 /* CONSTCOND */)
3246
3247 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3248 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3249 }
3250
3251 /* write 192bit data in steps of 16bit */
3252 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3253 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3254 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3255 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3256 RPF_RSS_REDIR_ADDR, i);
3257 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3258 RPF_RSS_REDIR_WR_EN, 1);
3259
3260 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3261 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3262 if (error != 0)
3263 break;
3264 }
3265
3266 rss_set_timeout:
3267 return error;
3268 }
3269
3270 static void
3271 aq_hw_l3_filter_set(struct aq_softc *sc)
3272 {
3273 int i;
3274
3275 /* clear all filter */
3276 for (i = 0; i < 8; i++) {
3277 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3278 RPF_L3_FILTER_L4_EN, 0);
3279 }
3280 }
3281
3282 static void
3283 aq_set_vlan_filters(struct aq_softc *sc)
3284 {
3285 struct ethercom * const ec = &sc->sc_ethercom;
3286 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3287 struct vlanid_list *vlanidp;
3288 int i;
3289
3290 ETHER_LOCK(ec);
3291
3292 /* disable all vlan filters */
3293 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3294 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3295
3296 /* count VID */
3297 i = 0;
3298 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3299 i++;
3300
3301 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3302 (ifp->if_flags & IFF_PROMISC) ||
3303 (i > RPF_VLAN_MAX_FILTERS)) {
3304 /*
3305 * no vlan hwfilter, in promiscuous mode, or too many VID?
3306 * must receive all VID
3307 */
3308 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3309 RPF_VLAN_MODE_PROMISC, 1);
3310 goto done;
3311 }
3312
3313 /* receive only selected VID */
3314 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3315 i = 0;
3316 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3317 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3318 RPF_VLAN_FILTER_EN, 1);
3319 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3320 RPF_VLAN_FILTER_RXQ_EN, 0);
3321 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3322 RPF_VLAN_FILTER_RXQ, 0);
3323 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3324 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3325 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3326 RPF_VLAN_FILTER_ID, vlanidp->vid);
3327 i++;
3328 }
3329
3330 done:
3331 ETHER_UNLOCK(ec);
3332 }
3333
3334 static int
3335 aq_hw_init(struct aq_softc *sc)
3336 {
3337 uint32_t v;
3338
3339 /* Force limit MRRS on RDM/TDM to 2K */
3340 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3341 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3342
3343 /*
3344 * TX DMA total request limit. B0 hardware is not capable to
3345 * handle more than (8K-MRRS) incoming DMA data.
3346 * Value 24 in 256byte units
3347 */
3348 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3349
3350 aq_hw_init_tx_path(sc);
3351 aq_hw_init_rx_path(sc);
3352
3353 aq_hw_interrupt_moderation_set(sc);
3354
3355 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3356 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3357
3358 aq_hw_qos_set(sc);
3359
3360 /* Enable interrupt */
3361 int irqmode;
3362 if (sc->sc_msix)
3363 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3364 else
3365 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3366
3367 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3368 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3369 sc->sc_msix ? 1 : 0);
3370 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3371
3372 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3373
3374 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3375 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3376 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3377 );
3378
3379 /* link interrupt */
3380 if (!sc->sc_msix)
3381 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3382 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3383 __BIT(7) | sc->sc_linkstat_irq);
3384
3385 return 0;
3386 }
3387
3388 static int
3389 aq_update_link_status(struct aq_softc *sc)
3390 {
3391 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3392 aq_link_speed_t rate = AQ_LINK_NONE;
3393 aq_link_fc_t fc = AQ_FC_NONE;
3394 aq_link_eee_t eee = AQ_EEE_DISABLE;
3395 unsigned int speed;
3396 int changed = 0;
3397
3398 aq_get_linkmode(sc, &rate, &fc, &eee);
3399
3400 if (sc->sc_link_rate != rate)
3401 changed = 1;
3402 if (sc->sc_link_fc != fc)
3403 changed = 1;
3404 if (sc->sc_link_eee != eee)
3405 changed = 1;
3406
3407 if (changed) {
3408 switch (rate) {
3409 case AQ_LINK_100M:
3410 speed = 100;
3411 break;
3412 case AQ_LINK_1G:
3413 speed = 1000;
3414 break;
3415 case AQ_LINK_2G5:
3416 speed = 2500;
3417 break;
3418 case AQ_LINK_5G:
3419 speed = 5000;
3420 break;
3421 case AQ_LINK_10G:
3422 speed = 10000;
3423 break;
3424 case AQ_LINK_NONE:
3425 default:
3426 speed = 0;
3427 break;
3428 }
3429
3430 if (sc->sc_link_rate == AQ_LINK_NONE) {
3431 /* link DOWN -> UP */
3432 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3433 speed);
3434 if_link_state_change(ifp, LINK_STATE_UP);
3435 } else if (rate == AQ_LINK_NONE) {
3436 /* link UP -> DOWN */
3437 device_printf(sc->sc_dev, "link is DOWN\n");
3438 if_link_state_change(ifp, LINK_STATE_DOWN);
3439 } else {
3440 device_printf(sc->sc_dev,
3441 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3442 speed, fc, eee);
3443 }
3444
3445 sc->sc_link_rate = rate;
3446 sc->sc_link_fc = fc;
3447 sc->sc_link_eee = eee;
3448
3449 /* update interrupt timing according to new link speed */
3450 aq_hw_interrupt_moderation_set(sc);
3451 }
3452
3453 return changed;
3454 }
3455
3456 #ifdef AQ_EVENT_COUNTERS
3457 static void
3458 aq_update_statistics(struct aq_softc *sc)
3459 {
3460 int prev = sc->sc_statistics_idx;
3461 int cur = prev ^ 1;
3462
3463 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3464
3465 /*
3466 * aq's internal statistics counter is 32bit.
3467 * cauculate delta, and add to evcount
3468 */
3469 #define ADD_DELTA(cur, prev, name) \
3470 do { \
3471 uint32_t n; \
3472 n = (uint32_t)(sc->sc_statistics[cur].name - \
3473 sc->sc_statistics[prev].name); \
3474 if (n != 0) { \
3475 AQ_EVCNT_ADD(sc, name, n); \
3476 } \
3477 } while (/*CONSTCOND*/0);
3478
3479 ADD_DELTA(cur, prev, uprc);
3480 ADD_DELTA(cur, prev, mprc);
3481 ADD_DELTA(cur, prev, bprc);
3482 ADD_DELTA(cur, prev, prc);
3483 ADD_DELTA(cur, prev, erpr);
3484 ADD_DELTA(cur, prev, uptc);
3485 ADD_DELTA(cur, prev, mptc);
3486 ADD_DELTA(cur, prev, bptc);
3487 ADD_DELTA(cur, prev, ptc);
3488 ADD_DELTA(cur, prev, erpt);
3489 ADD_DELTA(cur, prev, mbtc);
3490 ADD_DELTA(cur, prev, bbtc);
3491 ADD_DELTA(cur, prev, mbrc);
3492 ADD_DELTA(cur, prev, bbrc);
3493 ADD_DELTA(cur, prev, ubrc);
3494 ADD_DELTA(cur, prev, ubtc);
3495 ADD_DELTA(cur, prev, dpc);
3496 ADD_DELTA(cur, prev, cprc);
3497
3498 sc->sc_statistics_idx = cur;
3499 }
3500 #endif /* AQ_EVENT_COUNTERS */
3501
3502 /* allocate and map one DMA block */
3503 static int
3504 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3505 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3506 {
3507 int nsegs, error;
3508
3509 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3510 1, &nsegs, 0)) != 0) {
3511 aprint_error_dev(sc->sc_dev,
3512 "unable to allocate DMA buffer, error=%d\n", error);
3513 goto fail_alloc;
3514 }
3515
3516 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3517 BUS_DMA_COHERENT)) != 0) {
3518 aprint_error_dev(sc->sc_dev,
3519 "unable to map DMA buffer, error=%d\n", error);
3520 goto fail_map;
3521 }
3522
3523 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3524 0, mapp)) != 0) {
3525 aprint_error_dev(sc->sc_dev,
3526 "unable to create DMA map, error=%d\n", error);
3527 goto fail_create;
3528 }
3529
3530 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3531 0)) != 0) {
3532 aprint_error_dev(sc->sc_dev,
3533 "unable to load DMA map, error=%d\n", error);
3534 goto fail_load;
3535 }
3536
3537 *sizep = size;
3538 return 0;
3539
3540 fail_load:
3541 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3542 *mapp = NULL;
3543 fail_create:
3544 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3545 *addrp = NULL;
3546 fail_map:
3547 bus_dmamem_free(sc->sc_dmat, seg, 1);
3548 memset(seg, 0, sizeof(*seg));
3549 fail_alloc:
3550 *sizep = 0;
3551 return error;
3552 }
3553
3554 static void
3555 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3556 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3557 {
3558 if (*mapp != NULL) {
3559 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3560 *mapp = NULL;
3561 }
3562 if (*addrp != NULL) {
3563 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3564 *addrp = NULL;
3565 }
3566 if (*sizep != 0) {
3567 bus_dmamem_free(sc->sc_dmat, seg, 1);
3568 memset(seg, 0, sizeof(*seg));
3569 *sizep = 0;
3570 }
3571 }
3572
3573 static int
3574 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3575 {
3576 int i, error;
3577
3578 /* allocate tx descriptors */
3579 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3580 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3581 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3582 if (error != 0)
3583 return error;
3584
3585 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3586
3587 /* fill tx ring with dmamap */
3588 for (i = 0; i < AQ_TXD_NUM; i++) {
3589 #define AQ_MAXDMASIZE (16 * 1024)
3590 #define AQ_NTXSEGS 32
3591 /* XXX: TODO: error check */
3592 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3593 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3594 }
3595 return 0;
3596 }
3597
3598 static void
3599 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3600 {
3601 int i;
3602
3603 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3604 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3605
3606 for (i = 0; i < AQ_TXD_NUM; i++) {
3607 if (txring->txr_mbufs[i].dmamap != NULL) {
3608 if (txring->txr_mbufs[i].m != NULL) {
3609 bus_dmamap_unload(sc->sc_dmat,
3610 txring->txr_mbufs[i].dmamap);
3611 m_freem(txring->txr_mbufs[i].m);
3612 txring->txr_mbufs[i].m = NULL;
3613 }
3614 bus_dmamap_destroy(sc->sc_dmat,
3615 txring->txr_mbufs[i].dmamap);
3616 txring->txr_mbufs[i].dmamap = NULL;
3617 }
3618 }
3619 }
3620
3621 static int
3622 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3623 {
3624 int i, error;
3625
3626 /* allocate rx descriptors */
3627 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3628 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3629 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3630 if (error != 0)
3631 return error;
3632
3633 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3634
3635 /* fill rxring with dmamaps */
3636 for (i = 0; i < AQ_RXD_NUM; i++) {
3637 rxring->rxr_mbufs[i].m = NULL;
3638 /* XXX: TODO: error check */
3639 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3640 &rxring->rxr_mbufs[i].dmamap);
3641 }
3642 return 0;
3643 }
3644
3645 static void
3646 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3647 {
3648 int i;
3649
3650 /* free all mbufs allocated for RX */
3651 for (i = 0; i < AQ_RXD_NUM; i++) {
3652 if (rxring->rxr_mbufs[i].m != NULL) {
3653 bus_dmamap_unload(sc->sc_dmat,
3654 rxring->rxr_mbufs[i].dmamap);
3655 m_freem(rxring->rxr_mbufs[i].m);
3656 rxring->rxr_mbufs[i].m = NULL;
3657 }
3658 }
3659 }
3660
3661 static void
3662 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3663 {
3664 int i;
3665
3666 /* free all mbufs and dmamaps */
3667 aq_rxdrain(sc, rxring);
3668 for (i = 0; i < AQ_RXD_NUM; i++) {
3669 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3670 bus_dmamap_destroy(sc->sc_dmat,
3671 rxring->rxr_mbufs[i].dmamap);
3672 rxring->rxr_mbufs[i].dmamap = NULL;
3673 }
3674 }
3675
3676 /* free RX descriptor */
3677 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3678 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3679 }
3680
3681 static void
3682 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3683 struct mbuf *m)
3684 {
3685 int error;
3686
3687 /* if mbuf already exists, unload and free */
3688 if (rxring->rxr_mbufs[idx].m != NULL) {
3689 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3690 m_freem(rxring->rxr_mbufs[idx].m);
3691 rxring->rxr_mbufs[idx].m = NULL;
3692 }
3693
3694 rxring->rxr_mbufs[idx].m = m;
3695
3696 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3697 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3698 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3699 if (error) {
3700 device_printf(sc->sc_dev,
3701 "unable to load rx DMA map %d, error = %d\n", idx, error);
3702 panic("%s: unable to load rx DMA map. error=%d",
3703 __func__, error);
3704 }
3705 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3706 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3707 }
3708
3709 static inline void
3710 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3711 {
3712 /* refill rxdesc, and sync */
3713 rxring->rxr_rxdesc[idx].read.buf_addr =
3714 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3715 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3716 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3717 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3718 BUS_DMASYNC_PREWRITE);
3719 }
3720
3721 static struct mbuf *
3722 aq_alloc_mbuf(void)
3723 {
3724 struct mbuf *m;
3725
3726 MGETHDR(m, M_DONTWAIT, MT_DATA);
3727 if (m == NULL)
3728 return NULL;
3729
3730 MCLGET(m, M_DONTWAIT);
3731 if ((m->m_flags & M_EXT) == 0) {
3732 m_freem(m);
3733 return NULL;
3734 }
3735
3736 return m;
3737 }
3738
3739 /* allocate mbuf and unload dmamap */
3740 static int
3741 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3742 {
3743 struct mbuf *m;
3744
3745 m = aq_alloc_mbuf();
3746 if (m == NULL)
3747 return ENOBUFS;
3748
3749 aq_rxring_setmbuf(sc, rxring, idx, m);
3750 return 0;
3751 }
3752
3753 static int
3754 aq_txrx_rings_alloc(struct aq_softc *sc)
3755 {
3756 int n, error;
3757
3758 for (n = 0; n < sc->sc_nqueues; n++) {
3759 sc->sc_queue[n].sc = sc;
3760 sc->sc_queue[n].txring.txr_sc = sc;
3761 sc->sc_queue[n].txring.txr_index = n;
3762 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3763 IPL_NET);
3764 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3765 if (error != 0)
3766 goto failure;
3767
3768 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3769 if (error != 0)
3770 goto failure;
3771
3772 sc->sc_queue[n].rxring.rxr_sc = sc;
3773 sc->sc_queue[n].rxring.rxr_index = n;
3774 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3775 IPL_NET);
3776 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3777 if (error != 0)
3778 break;
3779 }
3780
3781 failure:
3782 return error;
3783 }
3784
3785 static void
3786 aq_txrx_rings_free(struct aq_softc *sc)
3787 {
3788 int n;
3789
3790 for (n = 0; n < sc->sc_nqueues; n++) {
3791 aq_txring_free(sc, &sc->sc_queue[n].txring);
3792 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3793
3794 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3795
3796 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3797 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3798 }
3799 }
3800
3801 static int
3802 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3803 {
3804 int error = 0;
3805 txring->txr_softint = NULL;
3806
3807 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3808 if (txring->txr_pcq == NULL) {
3809 aprint_error_dev(sc->sc_dev,
3810 "unable to allocate pcq for TXring[%d]\n",
3811 txring->txr_index);
3812 error = ENOMEM;
3813 goto done;
3814 }
3815
3816 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3817 aq_deferred_transmit, txring);
3818 if (txring->txr_softint == NULL) {
3819 aprint_error_dev(sc->sc_dev,
3820 "unable to establish softint for TXring[%d]\n",
3821 txring->txr_index);
3822 error = ENOENT;
3823 }
3824
3825 done:
3826 return error;
3827 }
3828
3829 static void
3830 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3831 {
3832 struct mbuf *m;
3833
3834 if (txring->txr_softint != NULL) {
3835 softint_disestablish(txring->txr_softint);
3836 txring->txr_softint = NULL;
3837 }
3838
3839 if (txring->txr_pcq != NULL) {
3840 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3841 m_freem(m);
3842 pcq_destroy(txring->txr_pcq);
3843 txring->txr_pcq = NULL;
3844 }
3845 }
3846
3847 #if NSYSMON_ENVSYS > 0
3848 static void
3849 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3850 {
3851 struct aq_softc *sc;
3852 uint32_t temp;
3853 int error;
3854
3855 sc = sme->sme_cookie;
3856
3857 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3858 if (error == 0) {
3859 edata->value_cur = temp;
3860 edata->state = ENVSYS_SVALID;
3861 } else {
3862 edata->state = ENVSYS_SINVALID;
3863 }
3864 }
3865 #endif
3866
3867
3868
3869 static bool
3870 aq_watchdog_check(struct aq_softc * const sc)
3871 {
3872
3873 AQ_LOCKED(sc);
3874
3875 bool ok = true;
3876 for (u_int n = 0; n < sc->sc_nqueues; n++) {
3877 struct aq_txring *txring = &sc->sc_queue[n].txring;
3878
3879 mutex_enter(&txring->txr_mutex);
3880 if (txring->txr_sending &&
3881 time_uptime - txring->txr_lastsent > aq_watchdog_timeout)
3882 ok = false;
3883
3884 mutex_exit(&txring->txr_mutex);
3885
3886 if (!ok)
3887 return false;
3888 }
3889
3890 if (sc->sc_trigger_reset) {
3891 /* debug operation, no need for atomicity or reliability */
3892 sc->sc_trigger_reset = 0;
3893 return false;
3894 }
3895
3896 return true;
3897 }
3898
3899
3900
3901 static bool
3902 aq_watchdog_tick(struct ifnet *ifp)
3903 {
3904 struct aq_softc * const sc = ifp->if_softc;
3905
3906 AQ_LOCKED(sc);
3907
3908 if (!sc->sc_trigger_reset && aq_watchdog_check(sc))
3909 return true;
3910
3911 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) {
3912 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
3913 }
3914
3915 return false;
3916 }
3917
3918 static void
3919 aq_tick(void *arg)
3920 {
3921 struct aq_softc * const sc = arg;
3922
3923 AQ_LOCK(sc);
3924 if (sc->sc_stopping) {
3925 AQ_UNLOCK(sc);
3926 return;
3927 }
3928
3929 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3930 sc->sc_detect_linkstat = false;
3931 aq_update_link_status(sc);
3932 }
3933
3934 #ifdef AQ_EVENT_COUNTERS
3935 if (sc->sc_poll_statistics)
3936 aq_update_statistics(sc);
3937 #endif
3938
3939 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3940 const bool ok = aq_watchdog_tick(ifp);
3941 if (ok)
3942 callout_schedule(&sc->sc_tick_ch, hz);
3943
3944 AQ_UNLOCK(sc);
3945 }
3946
3947 /* interrupt enable/disable */
3948 static void
3949 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3950 {
3951 uint32_t imask = 0;
3952 int i;
3953
3954 if (txrx) {
3955 for (i = 0; i < sc->sc_nqueues; i++) {
3956 imask |= __BIT(sc->sc_tx_irq[i]);
3957 imask |= __BIT(sc->sc_rx_irq[i]);
3958 }
3959 }
3960
3961 if (link)
3962 imask |= __BIT(sc->sc_linkstat_irq);
3963
3964 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3965 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3966 }
3967
3968 static int
3969 aq_legacy_intr(void *arg)
3970 {
3971 struct aq_softc *sc = arg;
3972 uint32_t status;
3973 int nintr = 0;
3974
3975 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3976 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3977
3978 if (status & __BIT(sc->sc_linkstat_irq)) {
3979 AQ_LOCK(sc);
3980 sc->sc_detect_linkstat = true;
3981 if (!sc->sc_stopping)
3982 callout_schedule(&sc->sc_tick_ch, 0);
3983 AQ_UNLOCK(sc);
3984 nintr++;
3985 }
3986
3987 if (status & __BIT(sc->sc_rx_irq[0])) {
3988 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3989 }
3990
3991 if (status & __BIT(sc->sc_tx_irq[0])) {
3992 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3993 }
3994
3995 return nintr;
3996 }
3997
3998 static int
3999 aq_txrx_intr(void *arg)
4000 {
4001 struct aq_queue *queue = arg;
4002 struct aq_softc *sc = queue->sc;
4003 struct aq_txring *txring = &queue->txring;
4004 struct aq_rxring *rxring = &queue->rxring;
4005 uint32_t status;
4006 int nintr = 0;
4007 int txringidx, rxringidx, txirq, rxirq;
4008
4009 txringidx = txring->txr_index;
4010 rxringidx = rxring->rxr_index;
4011 txirq = sc->sc_tx_irq[txringidx];
4012 rxirq = sc->sc_rx_irq[rxringidx];
4013
4014 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4015 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
4016 /* stray interrupt? */
4017 return 0;
4018 }
4019
4020 nintr += aq_rx_intr(rxring);
4021 nintr += aq_tx_intr(txring);
4022
4023 return nintr;
4024 }
4025
4026 static int
4027 aq_link_intr(void *arg)
4028 {
4029 struct aq_softc * const sc = arg;
4030 uint32_t status;
4031 int nintr = 0;
4032
4033 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4034 if (status & __BIT(sc->sc_linkstat_irq)) {
4035 AQ_LOCK(sc);
4036 sc->sc_detect_linkstat = true;
4037 if (!sc->sc_stopping)
4038 callout_schedule(&sc->sc_tick_ch, 0);
4039 AQ_UNLOCK(sc);
4040 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
4041 __BIT(sc->sc_linkstat_irq));
4042 nintr++;
4043 }
4044
4045 return nintr;
4046 }
4047
4048 static void
4049 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
4050 {
4051 const int ringidx = txring->txr_index;
4052 int i;
4053
4054 mutex_enter(&txring->txr_mutex);
4055
4056 txring->txr_prodidx = 0;
4057 txring->txr_considx = 0;
4058 txring->txr_nfree = AQ_TXD_NUM;
4059 txring->txr_active = false;
4060
4061 /* free mbufs untransmitted */
4062 for (i = 0; i < AQ_TXD_NUM; i++) {
4063 if (txring->txr_mbufs[i].m != NULL) {
4064 m_freem(txring->txr_mbufs[i].m);
4065 txring->txr_mbufs[i].m = NULL;
4066 }
4067 }
4068
4069 /* disable DMA */
4070 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
4071
4072 if (start) {
4073 /* TX descriptor physical address */
4074 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
4075 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4076 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4077 (uint32_t)((uint64_t)paddr >> 32));
4078
4079 /* TX descriptor size */
4080 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
4081 AQ_TXD_NUM / 8);
4082
4083 /* reload TAIL pointer */
4084 txring->txr_prodidx = txring->txr_considx =
4085 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
4086 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
4087
4088 /* Mapping interrupt vector */
4089 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4090 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
4091 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4092 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
4093
4094 /* enable DMA */
4095 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
4096 TX_DMA_DESC_EN, 1);
4097
4098 const int cpuid = 0; /* XXX? */
4099 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4100 TDM_DCAD_CPUID, cpuid);
4101 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4102 TDM_DCAD_CPUID_EN, 0);
4103
4104 txring->txr_active = true;
4105 }
4106
4107 mutex_exit(&txring->txr_mutex);
4108 }
4109
4110 static int
4111 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4112 {
4113 const int ringidx = rxring->rxr_index;
4114 int i;
4115 int error = 0;
4116
4117 mutex_enter(&rxring->rxr_mutex);
4118 rxring->rxr_active = false;
4119 rxring->rxr_discarding = false;
4120 if (rxring->rxr_receiving_m != NULL) {
4121 m_freem(rxring->rxr_receiving_m);
4122 rxring->rxr_receiving_m = NULL;
4123 rxring->rxr_receiving_m_last = NULL;
4124 }
4125
4126 /* disable DMA */
4127 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4128
4129 /* free all RX mbufs */
4130 aq_rxdrain(sc, rxring);
4131
4132 if (start) {
4133 for (i = 0; i < AQ_RXD_NUM; i++) {
4134 error = aq_rxring_add(sc, rxring, i);
4135 if (error != 0) {
4136 aq_rxdrain(sc, rxring);
4137 return error;
4138 }
4139 aq_rxring_reset_desc(sc, rxring, i);
4140 }
4141
4142 /* RX descriptor physical address */
4143 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4144 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4145 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4146 (uint32_t)((uint64_t)paddr >> 32));
4147
4148 /* RX descriptor size */
4149 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4150 AQ_RXD_NUM / 8);
4151
4152 /* maximum receive frame size */
4153 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4154 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4155 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4156 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4157
4158 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4159 RX_DMA_DESC_HEADER_SPLIT, 0);
4160 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4161 RX_DMA_DESC_VLAN_STRIP,
4162 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4163 1 : 0);
4164
4165 /*
4166 * reload TAIL pointer, and update readidx
4167 * (HEAD pointer cannot write)
4168 */
4169 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4170 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4171 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4172 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4173
4174 /* Rx ring set mode */
4175
4176 /* Mapping interrupt vector */
4177 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4178 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4179 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4180 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4181
4182 const int cpuid = 0; /* XXX? */
4183 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4184 RX_DMA_DCAD_CPUID, cpuid);
4185 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4186 RX_DMA_DCAD_DESC_EN, 0);
4187 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4188 RX_DMA_DCAD_HEADER_EN, 0);
4189 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4190 RX_DMA_DCAD_PAYLOAD_EN, 0);
4191
4192 /* enable DMA. start receiving */
4193 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4194 RX_DMA_DESC_EN, 1);
4195
4196 rxring->rxr_active = true;
4197 }
4198
4199 mutex_exit(&rxring->rxr_mutex);
4200 return error;
4201 }
4202
4203 #define TXRING_NEXTIDX(idx) \
4204 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4205 #define RXRING_NEXTIDX(idx) \
4206 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4207
4208 static int
4209 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4210 {
4211 bus_dmamap_t map;
4212 struct mbuf *m = *mp;
4213 uint32_t ctl1, ctl1_ctx, ctl2;
4214 int idx, i, error;
4215
4216 idx = txring->txr_prodidx;
4217 map = txring->txr_mbufs[idx].dmamap;
4218
4219 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4220 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4221 if (error == EFBIG) {
4222 struct mbuf *n;
4223 n = m_defrag(m, M_DONTWAIT);
4224 if (n == NULL)
4225 return EFBIG;
4226 /* m_defrag() preserve m */
4227 KASSERT(n == m);
4228 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4229 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4230 }
4231 if (error != 0)
4232 return error;
4233
4234 /*
4235 * check spaces of free descriptors.
4236 * +1 is additional descriptor for context (vlan, etc,.)
4237 */
4238 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4239 device_printf(sc->sc_dev,
4240 "TX: not enough descriptors left %d for %d segs\n",
4241 txring->txr_nfree, map->dm_nsegs + 1);
4242 bus_dmamap_unload(sc->sc_dmat, map);
4243 return ENOBUFS;
4244 }
4245
4246 /* sync dma for mbuf */
4247 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4248 BUS_DMASYNC_PREWRITE);
4249
4250 ctl1_ctx = 0;
4251 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4252
4253 if (vlan_has_tag(m)) {
4254 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4255 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4256
4257 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4258 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4259
4260 /* fill context descriptor and forward index */
4261 txring->txr_txdesc[idx].buf_addr = 0;
4262 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4263 txring->txr_txdesc[idx].ctl2 = 0;
4264
4265 idx = TXRING_NEXTIDX(idx);
4266 txring->txr_nfree--;
4267 }
4268
4269 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4270 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4271 if (m->m_pkthdr.csum_flags &
4272 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4273 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4274 }
4275
4276 /* fill descriptor(s) */
4277 for (i = 0; i < map->dm_nsegs; i++) {
4278 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4279 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4280 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4281
4282 if (i == 0) {
4283 /* remember mbuf of these descriptors */
4284 txring->txr_mbufs[idx].m = m;
4285 } else {
4286 txring->txr_mbufs[idx].m = NULL;
4287 }
4288
4289 if (i == map->dm_nsegs - 1) {
4290 /* last segment, mark an EndOfPacket, and cause intr */
4291 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4292 }
4293
4294 txring->txr_txdesc[idx].buf_addr =
4295 htole64(map->dm_segs[i].ds_addr);
4296 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4297 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4298
4299 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4300 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4301 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4302
4303 idx = TXRING_NEXTIDX(idx);
4304 txring->txr_nfree--;
4305 }
4306
4307 txring->txr_prodidx = idx;
4308
4309 return 0;
4310 }
4311
4312 static int
4313 aq_tx_intr(void *arg)
4314 {
4315 struct aq_txring * const txring = arg;
4316 struct aq_softc * const sc = txring->txr_sc;
4317 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4318 struct mbuf *m;
4319 const int ringidx = txring->txr_index;
4320 unsigned int idx, hw_head, n = 0;
4321
4322 mutex_enter(&txring->txr_mutex);
4323
4324 if (!txring->txr_active)
4325 goto tx_intr_done;
4326
4327 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4328 TX_DMA_DESC_HEAD_PTR);
4329 if (hw_head == txring->txr_considx) {
4330 txring->txr_sending = false;
4331 goto tx_intr_done;
4332 }
4333
4334 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4335
4336 for (idx = txring->txr_considx; idx != hw_head;
4337 idx = TXRING_NEXTIDX(idx), n++) {
4338
4339 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4340 bus_dmamap_unload(sc->sc_dmat,
4341 txring->txr_mbufs[idx].dmamap);
4342
4343 if_statinc_ref(nsr, if_opackets);
4344 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4345 if (m->m_flags & M_MCAST)
4346 if_statinc_ref(nsr, if_omcasts);
4347
4348 m_freem(m);
4349 txring->txr_mbufs[idx].m = NULL;
4350 }
4351
4352 txring->txr_nfree++;
4353 }
4354 txring->txr_considx = idx;
4355
4356 IF_STAT_PUTREF(ifp);
4357
4358 /* no more pending TX packet, cancel watchdog */
4359 if (txring->txr_nfree >= AQ_TXD_NUM)
4360 txring->txr_sending = false;
4361
4362 tx_intr_done:
4363 mutex_exit(&txring->txr_mutex);
4364
4365 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4366 return n;
4367 }
4368
4369 static int
4370 aq_rx_intr(void *arg)
4371 {
4372 struct aq_rxring * const rxring = arg;
4373 struct aq_softc * const sc = rxring->rxr_sc;
4374 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4375 const int ringidx = rxring->rxr_index;
4376 aq_rx_desc_t *rxd;
4377 struct mbuf *m, *m0, *mprev, *new_m;
4378 uint32_t rxd_type, rxd_hash __unused;
4379 uint16_t rxd_status, rxd_pktlen;
4380 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4381 unsigned int idx, n = 0;
4382 bool discarding;
4383
4384 mutex_enter(&rxring->rxr_mutex);
4385
4386 if (!rxring->rxr_active)
4387 goto rx_intr_done;
4388
4389 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4390 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4391 goto rx_intr_done;
4392 }
4393
4394 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4395
4396 /* restore ring context */
4397 discarding = rxring->rxr_discarding;
4398 m0 = rxring->rxr_receiving_m;
4399 mprev = rxring->rxr_receiving_m_last;
4400
4401 for (idx = rxring->rxr_readidx;
4402 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4403 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4404
4405 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4406 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4407 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4408
4409 rxd = &rxring->rxr_rxdesc[idx];
4410 rxd_status = le16toh(rxd->wb.status);
4411
4412 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4413 break; /* not yet done */
4414
4415 rxd_type = le32toh(rxd->wb.type);
4416 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4417 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4418 rxd_hash = le32toh(rxd->wb.rss_hash);
4419 rxd_vlan = le16toh(rxd->wb.vlan);
4420
4421 /*
4422 * Some segments are being dropped while receiving jumboframe.
4423 * Discard until EOP.
4424 */
4425 if (discarding)
4426 goto rx_next;
4427
4428 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4429 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4430 if_statinc_ref(nsr, if_ierrors);
4431 if (m0 != NULL) {
4432 m_freem(m0);
4433 m0 = mprev = NULL;
4434 }
4435 discarding = true;
4436 goto rx_next;
4437 }
4438
4439 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4440 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4441 BUS_DMASYNC_POSTREAD);
4442 m = rxring->rxr_mbufs[idx].m;
4443
4444 new_m = aq_alloc_mbuf();
4445 if (new_m == NULL) {
4446 /*
4447 * cannot allocate new mbuf.
4448 * discard this packet, and reuse mbuf for next.
4449 */
4450 if_statinc_ref(nsr, if_iqdrops);
4451 if (m0 != NULL) {
4452 m_freem(m0);
4453 m0 = mprev = NULL;
4454 }
4455 discarding = true;
4456 goto rx_next;
4457 }
4458 rxring->rxr_mbufs[idx].m = NULL;
4459 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4460
4461 if (m0 == NULL) {
4462 m0 = m;
4463 } else {
4464 if (m->m_flags & M_PKTHDR)
4465 m_remove_pkthdr(m);
4466 mprev->m_next = m;
4467 }
4468 mprev = m;
4469
4470 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4471 /* to be continued in the next segment */
4472 m->m_len = MCLBYTES;
4473 } else {
4474 /* the last segment */
4475 int mlen = rxd_pktlen % MCLBYTES;
4476 if (mlen == 0)
4477 mlen = MCLBYTES;
4478 m->m_len = mlen;
4479 m0->m_pkthdr.len = rxd_pktlen;
4480 /* VLAN offloading */
4481 if ((sc->sc_ethercom.ec_capenable &
4482 ETHERCAP_VLAN_HWTAGGING) &&
4483 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4484 __SHIFTOUT(rxd_type,
4485 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4486 vlan_set_tag(m0, rxd_vlan);
4487 }
4488
4489 /* Checksum offloading */
4490 unsigned int pkttype_eth =
4491 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4492 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4493 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4494 __SHIFTOUT(rxd_type,
4495 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4496 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4497 if (__SHIFTOUT(rxd_status,
4498 RXDESC_STATUS_IPV4_CSUM_NG))
4499 m0->m_pkthdr.csum_flags |=
4500 M_CSUM_IPv4_BAD;
4501 }
4502
4503 /*
4504 * aq will always mark BAD for fragment packets,
4505 * but this is not a problem because the IP stack
4506 * ignores the CSUM flag in fragment packets.
4507 */
4508 if (__SHIFTOUT(rxd_type,
4509 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4510 bool checked = false;
4511 unsigned int pkttype_proto =
4512 __SHIFTOUT(rxd_type,
4513 RXDESC_TYPE_PKTTYPE_PROTO);
4514
4515 if (pkttype_proto ==
4516 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4517 if ((pkttype_eth ==
4518 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4519 (ifp->if_capabilities &
4520 IFCAP_CSUM_TCPv4_Rx)) {
4521 m0->m_pkthdr.csum_flags |=
4522 M_CSUM_TCPv4;
4523 checked = true;
4524 } else if ((pkttype_eth ==
4525 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4526 (ifp->if_capabilities &
4527 IFCAP_CSUM_TCPv6_Rx)) {
4528 m0->m_pkthdr.csum_flags |=
4529 M_CSUM_TCPv6;
4530 checked = true;
4531 }
4532 } else if (pkttype_proto ==
4533 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4534 if ((pkttype_eth ==
4535 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4536 (ifp->if_capabilities &
4537 IFCAP_CSUM_UDPv4_Rx)) {
4538 m0->m_pkthdr.csum_flags |=
4539 M_CSUM_UDPv4;
4540 checked = true;
4541 } else if ((pkttype_eth ==
4542 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4543 (ifp->if_capabilities &
4544 IFCAP_CSUM_UDPv6_Rx)) {
4545 m0->m_pkthdr.csum_flags |=
4546 M_CSUM_UDPv6;
4547 checked = true;
4548 }
4549 }
4550 if (checked &&
4551 (__SHIFTOUT(rxd_status,
4552 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4553 !__SHIFTOUT(rxd_status,
4554 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4555 m0->m_pkthdr.csum_flags |=
4556 M_CSUM_TCP_UDP_BAD;
4557 }
4558 }
4559
4560 m_set_rcvif(m0, ifp);
4561 if_statinc_ref(nsr, if_ipackets);
4562 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4563 if_percpuq_enqueue(ifp->if_percpuq, m0);
4564 m0 = mprev = NULL;
4565 }
4566
4567 rx_next:
4568 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4569 discarding = false;
4570
4571 aq_rxring_reset_desc(sc, rxring, idx);
4572 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4573 }
4574 /* save ring context */
4575 rxring->rxr_readidx = idx;
4576 rxring->rxr_discarding = discarding;
4577 rxring->rxr_receiving_m = m0;
4578 rxring->rxr_receiving_m_last = mprev;
4579
4580 IF_STAT_PUTREF(ifp);
4581
4582 rx_intr_done:
4583 mutex_exit(&rxring->rxr_mutex);
4584
4585 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4586 return n;
4587 }
4588
4589 static int
4590 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4591 {
4592 struct ifnet *ifp = &ec->ec_if;
4593 struct aq_softc * const sc = ifp->if_softc;
4594
4595 aq_set_vlan_filters(sc);
4596 return 0;
4597 }
4598
4599 static int
4600 aq_ifflags_cb(struct ethercom *ec)
4601 {
4602 struct ifnet * const ifp = &ec->ec_if;
4603 struct aq_softc * const sc = ifp->if_softc;
4604 int i, ecchange, error = 0;
4605 unsigned short iffchange;
4606
4607 AQ_LOCK(sc);
4608
4609 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4610 if ((iffchange & IFF_PROMISC) != 0)
4611 error = aq_set_filter(sc);
4612
4613 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4614 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4615 for (i = 0; i < AQ_RINGS_NUM; i++) {
4616 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4617 RX_DMA_DESC_VLAN_STRIP,
4618 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4619 1 : 0);
4620 }
4621 }
4622
4623 /* vlan configuration depends on also interface promiscuous mode */
4624 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4625 aq_set_vlan_filters(sc);
4626
4627 sc->sc_ec_capenable = ec->ec_capenable;
4628 sc->sc_if_flags = ifp->if_flags;
4629
4630 AQ_UNLOCK(sc);
4631
4632 return error;
4633 }
4634
4635
4636 static int
4637 aq_init(struct ifnet *ifp)
4638 {
4639 struct aq_softc * const sc = ifp->if_softc;
4640
4641 AQ_LOCK(sc);
4642
4643 int ret = aq_init_locked(ifp);
4644
4645 AQ_UNLOCK(sc);
4646
4647 return ret;
4648 }
4649
4650 static int
4651 aq_init_locked(struct ifnet *ifp)
4652 {
4653 struct aq_softc * const sc = ifp->if_softc;
4654 int i, error = 0;
4655
4656 KASSERT(IFNET_LOCKED(ifp));
4657 AQ_LOCKED(sc);
4658
4659 aq_stop_locked(ifp, false);
4660
4661 aq_set_vlan_filters(sc);
4662 aq_set_capability(sc);
4663
4664 for (i = 0; i < sc->sc_nqueues; i++) {
4665 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4666 }
4667
4668 /* invalidate RX descriptor cache */
4669 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4670 AQ_READ_REG_BIT(sc,
4671 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4672
4673 /* start RX */
4674 for (i = 0; i < sc->sc_nqueues; i++) {
4675 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4676 if (error != 0) {
4677 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4678 __func__);
4679 goto aq_init_failure;
4680 }
4681 }
4682 aq_init_rss(sc);
4683 aq_hw_l3_filter_set(sc);
4684
4685 /* ring reset? */
4686 aq_unset_stopping_flags(sc);
4687
4688 callout_schedule(&sc->sc_tick_ch, hz);
4689
4690 /* ready */
4691 ifp->if_flags |= IFF_RUNNING;
4692
4693 /* start TX and RX */
4694 aq_enable_intr(sc, true, true);
4695 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4696 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4697
4698 aq_init_failure:
4699 sc->sc_if_flags = ifp->if_flags;
4700
4701 return error;
4702 }
4703
4704 static void
4705 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4706 struct aq_txring *txring, bool is_transmit)
4707 {
4708 struct mbuf *m;
4709 int npkt, error;
4710
4711 if (txring->txr_nfree < AQ_TXD_MIN)
4712 return;
4713
4714 for (npkt = 0; ; npkt++) {
4715 if (is_transmit)
4716 m = pcq_peek(txring->txr_pcq);
4717 else
4718 IFQ_POLL(&ifp->if_snd, m);
4719
4720 if (m == NULL)
4721 break;
4722
4723 if (is_transmit)
4724 pcq_get(txring->txr_pcq);
4725 else
4726 IFQ_DEQUEUE(&ifp->if_snd, m);
4727
4728 error = aq_encap_txring(sc, txring, &m);
4729 if (error != 0) {
4730 /* too many mbuf chains? or not enough descriptors? */
4731 m_freem(m);
4732 if_statinc(ifp, if_oerrors);
4733 break;
4734 }
4735
4736 /* update tail ptr */
4737 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4738 txring->txr_prodidx);
4739
4740 /* Pass the packet to any BPF listeners */
4741 bpf_mtap(ifp, m, BPF_D_OUT);
4742 }
4743
4744 if (npkt) {
4745 /* Set a watchdog timer in case the chip flakes out. */
4746 txring->txr_lastsent = time_uptime;
4747 txring->txr_sending = true;
4748 }
4749 }
4750
4751 static void
4752 aq_start(struct ifnet *ifp)
4753 {
4754 struct aq_softc * const sc = ifp->if_softc;
4755 /* aq_start() always use TX ring[0] */
4756 struct aq_txring * const txring = &sc->sc_queue[0].txring;
4757
4758 mutex_enter(&txring->txr_mutex);
4759 if (txring->txr_active && !txring->txr_stopping)
4760 aq_send_common_locked(ifp, sc, txring, false);
4761 mutex_exit(&txring->txr_mutex);
4762 }
4763
4764 static inline unsigned int
4765 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4766 {
4767 return (cpu_index(curcpu()) % sc->sc_nqueues);
4768 }
4769
4770 static int
4771 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4772 {
4773 struct aq_softc * const sc = ifp->if_softc;
4774 const int ringidx = aq_select_txqueue(sc, m);
4775 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
4776
4777 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4778 m_freem(m);
4779 return ENOBUFS;
4780 }
4781
4782 if (mutex_tryenter(&txring->txr_mutex)) {
4783 aq_send_common_locked(ifp, sc, txring, true);
4784 mutex_exit(&txring->txr_mutex);
4785 } else {
4786 softint_schedule(txring->txr_softint);
4787 }
4788 return 0;
4789 }
4790
4791 static void
4792 aq_deferred_transmit(void *arg)
4793 {
4794 struct aq_txring * const txring = arg;
4795 struct aq_softc * const sc = txring->txr_sc;
4796 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4797
4798 mutex_enter(&txring->txr_mutex);
4799 if (pcq_peek(txring->txr_pcq) != NULL)
4800 aq_send_common_locked(ifp, sc, txring, true);
4801 mutex_exit(&txring->txr_mutex);
4802 }
4803
4804
4805 static void
4806 aq_unset_stopping_flags(struct aq_softc *sc)
4807 {
4808
4809 AQ_LOCKED(sc);
4810
4811 /* Must unset stopping flags in ascending order. */
4812 for (unsigned i = 0; i < sc->sc_nqueues; i++) {
4813 struct aq_txring *txr = &sc->sc_queue[i].txring;
4814 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4815
4816 mutex_enter(&txr->txr_mutex);
4817 txr->txr_stopping = false;
4818 mutex_exit(&txr->txr_mutex);
4819
4820 mutex_enter(&rxr->rxr_mutex);
4821 rxr->rxr_stopping = false;
4822 mutex_exit(&rxr->rxr_mutex);
4823 }
4824
4825 sc->sc_stopping = false;
4826 }
4827
4828 static void
4829 aq_set_stopping_flags(struct aq_softc *sc)
4830 {
4831
4832 AQ_LOCKED(sc);
4833
4834 /* Must unset stopping flags in ascending order. */
4835 for (unsigned i = 0; i < sc->sc_nqueues; i++) {
4836 struct aq_txring *txr = &sc->sc_queue[i].txring;
4837 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4838
4839 mutex_enter(&txr->txr_mutex);
4840 txr->txr_stopping = true;
4841 mutex_exit(&txr->txr_mutex);
4842
4843 mutex_enter(&rxr->rxr_mutex);
4844 rxr->rxr_stopping = true;
4845 mutex_exit(&rxr->rxr_mutex);
4846 }
4847
4848 sc->sc_stopping = true;
4849 }
4850
4851
4852 static void
4853 aq_stop(struct ifnet *ifp, int disable)
4854 {
4855 struct aq_softc * const sc = ifp->if_softc;
4856
4857 ASSERT_SLEEPABLE();
4858 KASSERT(IFNET_LOCKED(ifp));
4859
4860 AQ_LOCK(sc);
4861 aq_stop_locked(ifp, disable ? true : false);
4862 AQ_UNLOCK(sc);
4863 }
4864
4865
4866
4867 static void
4868 aq_stop_locked(struct ifnet *ifp, bool disable)
4869 {
4870 struct aq_softc * const sc = ifp->if_softc;
4871 int i;
4872
4873 ASSERT_SLEEPABLE();
4874 KASSERT(IFNET_LOCKED(ifp));
4875 AQ_LOCKED(sc);
4876
4877 aq_set_stopping_flags(sc);
4878
4879 if ((ifp->if_flags & IFF_RUNNING) == 0)
4880 goto already_stopped;
4881
4882 /* disable tx/rx interrupts */
4883 aq_enable_intr(sc, true, false);
4884
4885 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4886 for (i = 0; i < sc->sc_nqueues; i++) {
4887 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4888 }
4889
4890 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4891 for (i = 0; i < sc->sc_nqueues; i++) {
4892 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4893 }
4894
4895 /* invalidate RX descriptor cache */
4896 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4897 AQ_READ_REG_BIT(sc,
4898 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4899
4900 already_stopped:
4901 if (!disable) {
4902 /* when pmf stop, disable link status intr and callout */
4903 aq_enable_intr(sc, false, false);
4904 callout_halt(&sc->sc_tick_ch, &sc->sc_mutex);
4905 }
4906
4907 ifp->if_flags &= ~IFF_RUNNING;
4908 sc->sc_if_flags = ifp->if_flags;
4909 }
4910
4911
4912 static void
4913 aq_handle_reset_work(struct work *work, void *arg)
4914 {
4915 struct aq_softc * const sc = arg;
4916 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4917
4918 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
4919
4920 AQ_LOCK(sc);
4921
4922 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4923 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4924 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4925
4926 for (u_int n = 0; n < sc->sc_nqueues; n++) {
4927 struct aq_txring *txring = &sc->sc_queue[n].txring;
4928 u_int head = AQ_READ_REG_BIT(sc,
4929 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4930 TX_DMA_DESC_HEAD_PTR);
4931 u_int tail = AQ_READ_REG(sc,
4932 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4933
4934 device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n",
4935 __func__, txring->txr_index, head, tail);
4936
4937 aq_tx_intr(txring);
4938 }
4939
4940 AQ_UNLOCK(sc);
4941
4942 /* Don't want ioctl operations to happen */
4943 IFNET_LOCK(ifp);
4944
4945 /* reset the interface. */
4946 aq_init(ifp);
4947
4948 IFNET_UNLOCK(ifp);
4949
4950 atomic_store_relaxed(&sc->sc_reset_pending, 0);
4951 }
4952
4953 static int
4954 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4955 {
4956 struct aq_softc * const sc = ifp->if_softc;
4957 struct ifreq * const ifr = data;
4958 int error = 0;
4959
4960 switch (cmd) {
4961 case SIOCADDMULTI:
4962 case SIOCDELMULTI:
4963 break;
4964 default:
4965 KASSERT(IFNET_LOCKED(ifp));
4966 }
4967
4968 const int s = splnet();
4969 switch (cmd) {
4970 case SIOCSIFMTU:
4971 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4972 error = EINVAL;
4973 } else {
4974 ifp->if_mtu = ifr->ifr_mtu;
4975 error = 0; /* no need to reset (no ENETRESET) */
4976 }
4977 break;
4978 default:
4979 error = ether_ioctl(ifp, cmd, data);
4980 break;
4981 }
4982 splx(s);
4983
4984 if (error != ENETRESET)
4985 return error;
4986
4987 switch (cmd) {
4988 case SIOCSIFCAP:
4989 error = aq_set_capability(sc);
4990 break;
4991 case SIOCADDMULTI:
4992 case SIOCDELMULTI:
4993 AQ_LOCK(sc);
4994 if ((sc->sc_if_flags & IFF_RUNNING) != 0) {
4995 /*
4996 * Multicast list has changed; set the hardware filter
4997 * accordingly.
4998 */
4999 error = aq_set_filter(sc);
5000 }
5001 AQ_UNLOCK(sc);
5002 break;
5003 }
5004
5005 return error;
5006 }
5007
5008
5009 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
5010
5011 #ifdef _MODULE
5012 #include "ioconf.c"
5013 #endif
5014
5015 static int
5016 if_aq_modcmd(modcmd_t cmd, void *opaque)
5017 {
5018 int error = 0;
5019
5020 switch (cmd) {
5021 case MODULE_CMD_INIT:
5022 #ifdef _MODULE
5023 error = config_init_component(cfdriver_ioconf_if_aq,
5024 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5025 #endif
5026 return error;
5027 case MODULE_CMD_FINI:
5028 #ifdef _MODULE
5029 error = config_fini_component(cfdriver_ioconf_if_aq,
5030 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5031 #endif
5032 return error;
5033 default:
5034 return ENOTTY;
5035 }
5036 }
5037