if_aq.c revision 1.4 1 /* $NetBSD: if_aq.c,v 1.4 2020/01/17 05:22:42 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.4 2020/01/17 05:22:42 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed;
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed;
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870
871 /* counters */
872 uint64_t txr_opackets;
873 uint64_t txr_obytes;
874 uint64_t txr_omcasts;
875 uint64_t txr_oerrors;
876 };
877
878 struct aq_rxring {
879 struct aq_softc *rxr_sc;
880 int rxr_index;
881 kmutex_t rxr_mutex;
882 bool rxr_active;
883
884 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
885 bus_dmamap_t rxr_rxdesc_dmamap;
886 bus_dma_segment_t rxr_rxdesc_seg[1];
887 bus_size_t rxr_rxdesc_size;
888 struct {
889 struct mbuf *m;
890 bus_dmamap_t dmamap;
891 } rxr_mbufs[AQ_RXD_NUM];
892 unsigned int rxr_readidx;
893
894 /* counters */
895 uint64_t rxr_ipackets;
896 uint64_t rxr_ibytes;
897 uint64_t rxr_ierrors;
898 uint64_t rxr_iqdrops;
899 };
900
901 struct aq_queue {
902 struct aq_softc *sc;
903 struct aq_txring txring;
904 struct aq_rxring rxring;
905 };
906
907 struct aq_softc;
908 struct aq_firmware_ops {
909 int (*reset)(struct aq_softc *);
910 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
911 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
912 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
913 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
914 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
915 #if NSYSMON_ENVSYS > 0
916 int (*get_temperature)(struct aq_softc *, uint32_t *);
917 #endif
918 };
919
920 #ifdef AQ_EVENT_COUNTERS
921 #define AQ_EVCNT_DECL(name) \
922 char sc_evcount_##name##_name[32]; \
923 struct evcnt sc_evcount_##name##_ev;
924 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
925 do { \
926 snprintf((sc)->sc_evcount_##name##_name, \
927 sizeof((sc)->sc_evcount_##name##_name), \
928 "%s", desc); \
929 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
930 (evtype), NULL, device_xname((sc)->sc_dev), \
931 (sc)->sc_evcount_##name##_name); \
932 } while (/*CONSTCOND*/0)
933 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
934 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
935 #define AQ_EVCNT_DETACH(sc, name) \
936 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
937 #define AQ_EVCNT_ADD(sc, name, val) \
938 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
939 #endif /* AQ_EVENT_COUNTERS */
940
941 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
942 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
943
944 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
945 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
946 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
947
948
949 struct aq_softc {
950 device_t sc_dev;
951
952 bus_space_tag_t sc_iot;
953 bus_space_handle_t sc_ioh;
954 bus_size_t sc_iosize;
955 bus_dma_tag_t sc_dmat;;
956
957 void *sc_ihs[AQ_NINTR_MAX];
958 pci_intr_handle_t *sc_intrs;
959
960 int sc_tx_irq[AQ_RSSQUEUE_MAX];
961 int sc_rx_irq[AQ_RSSQUEUE_MAX];
962 int sc_linkstat_irq;
963 bool sc_use_txrx_independent_intr;
964 bool sc_poll_linkstat;
965 bool sc_detect_linkstat;
966
967 #if NSYSMON_ENVSYS > 0
968 struct sysmon_envsys *sc_sme;
969 envsys_data_t sc_sensor_temp;
970 #endif
971
972 callout_t sc_tick_ch;
973
974 int sc_nintrs;
975 bool sc_msix;
976
977 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
978 int sc_nqueues;
979
980 pci_chipset_tag_t sc_pc;
981 pcitag_t sc_pcitag;
982 uint16_t sc_product;
983 uint16_t sc_revision;
984
985 kmutex_t sc_mutex;
986 kmutex_t sc_mpi_mutex;
987
988 struct aq_firmware_ops *sc_fw_ops;
989 uint64_t sc_fw_caps;
990 enum aq_media_type sc_media_type;
991 aq_link_speed_t sc_available_rates;
992
993 aq_link_speed_t sc_link_rate;
994 aq_link_fc_t sc_link_fc;
995 aq_link_eee_t sc_link_eee;
996
997 uint32_t sc_fw_version;
998 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
999 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
1000 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
1001 uint32_t sc_features;
1002 #define FEATURES_MIPS 0x00000001
1003 #define FEATURES_TPO2 0x00000002
1004 #define FEATURES_RPF2 0x00000004
1005 #define FEATURES_MPI_AQ 0x00000008
1006 #define FEATURES_REV_A0 0x10000000
1007 #define FEATURES_REV_A (FEATURES_REV_A0)
1008 #define FEATURES_REV_B0 0x20000000
1009 #define FEATURES_REV_B1 0x40000000
1010 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1011 uint32_t sc_mbox_addr;
1012
1013 bool sc_rbl_enabled;
1014 bool sc_fast_start_enabled;
1015 bool sc_flash_present;
1016
1017 bool sc_intr_moderation_enable;
1018 bool sc_rss_enable;
1019
1020 int sc_media_active;
1021
1022 struct ethercom sc_ethercom;
1023 struct ether_addr sc_enaddr;
1024 struct ifmedia sc_media;
1025 int sc_ec_capenable; /* last ec_capenable */
1026 unsigned short sc_if_flags; /* last if_flags */
1027
1028 #ifdef AQ_EVENT_COUNTERS
1029 aq_hw_stats_s_t sc_statistics[2];
1030 int sc_statistics_idx;
1031 bool sc_poll_statistics;
1032
1033 AQ_EVCNT_DECL(uprc);
1034 AQ_EVCNT_DECL(mprc);
1035 AQ_EVCNT_DECL(bprc);
1036 AQ_EVCNT_DECL(erpt);
1037 AQ_EVCNT_DECL(uptc);
1038 AQ_EVCNT_DECL(mptc);
1039 AQ_EVCNT_DECL(bptc);
1040 AQ_EVCNT_DECL(erpr);
1041 AQ_EVCNT_DECL(mbtc);
1042 AQ_EVCNT_DECL(bbtc);
1043 AQ_EVCNT_DECL(mbrc);
1044 AQ_EVCNT_DECL(bbrc);
1045 AQ_EVCNT_DECL(ubrc);
1046 AQ_EVCNT_DECL(ubtc);
1047 AQ_EVCNT_DECL(ptc);
1048 AQ_EVCNT_DECL(prc);
1049 AQ_EVCNT_DECL(dpc);
1050 AQ_EVCNT_DECL(cprc);
1051 #endif
1052 };
1053
1054 static int aq_match(device_t, cfdata_t, void *);
1055 static void aq_attach(device_t, device_t, void *);
1056 static int aq_detach(device_t, int);
1057
1058 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1059 bool, bool);
1060 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1061 pci_intr_type_t);
1062 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1063
1064 static int aq_ifmedia_change(struct ifnet * const);
1065 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1066 static int aq_ifflags_cb(struct ethercom *);
1067 static int aq_init(struct ifnet *);
1068 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1069 struct aq_txring *, bool);
1070 static int aq_transmit(struct ifnet *, struct mbuf *);
1071 static void aq_deferred_transmit(void *);
1072 static void aq_start(struct ifnet *);
1073 static void aq_stop(struct ifnet *, int);
1074 static void aq_watchdog(struct ifnet *);
1075 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1076
1077 static int aq_txrx_rings_alloc(struct aq_softc *);
1078 static void aq_txrx_rings_free(struct aq_softc *);
1079 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1080 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1081
1082 static void aq_initmedia(struct aq_softc *);
1083 static void aq_enable_intr(struct aq_softc *, bool, bool);
1084
1085 #if NSYSMON_ENVSYS > 0
1086 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1087 #endif
1088 static void aq_tick(void *);
1089 static int aq_legacy_intr(void *);
1090 static int aq_link_intr(void *);
1091 static int aq_txrx_intr(void *);
1092 static int aq_tx_intr(void *);
1093 static int aq_rx_intr(void *);
1094
1095 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1096 aq_link_eee_t);
1097 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1098 aq_link_eee_t *);
1099
1100 static int aq_fw_reset(struct aq_softc *);
1101 static int aq_fw_version_init(struct aq_softc *);
1102 static int aq_hw_init(struct aq_softc *);
1103 static int aq_hw_init_ucp(struct aq_softc *);
1104 static int aq_hw_reset(struct aq_softc *);
1105 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1106 uint32_t);
1107 static int aq_get_mac_addr(struct aq_softc *);
1108 static int aq_init_rss(struct aq_softc *);
1109 static int aq_set_capability(struct aq_softc *);
1110
1111 static int fw1x_reset(struct aq_softc *);
1112 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1113 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1114 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1115 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1116 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1117
1118 static int fw2x_reset(struct aq_softc *);
1119 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1120 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1121 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1122 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1123 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1124 #if NSYSMON_ENVSYS > 0
1125 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1126 #endif
1127
1128 static struct aq_firmware_ops aq_fw1x_ops = {
1129 .reset = fw1x_reset,
1130 .set_mode = fw1x_set_mode,
1131 .get_mode = fw1x_get_mode,
1132 .get_stats = fw1x_get_stats,
1133 #if NSYSMON_ENVSYS > 0
1134 .get_temperature = NULL
1135 #endif
1136 };
1137
1138 static struct aq_firmware_ops aq_fw2x_ops = {
1139 .reset = fw2x_reset,
1140 .set_mode = fw2x_set_mode,
1141 .get_mode = fw2x_get_mode,
1142 .get_stats = fw2x_get_stats,
1143 #if NSYSMON_ENVSYS > 0
1144 .get_temperature = fw2x_get_temperature
1145 #endif
1146 };
1147
1148 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1149 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1150
1151 static const struct aq_product {
1152 pci_vendor_id_t aq_vendor;
1153 pci_product_id_t aq_product;
1154 const char *aq_name;
1155 enum aq_media_type aq_media_type;
1156 aq_link_speed_t aq_available_rates;
1157 } aq_products[] = {
1158 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1159 "Aquantia AQC107 10 Gigabit Network Adapter",
1160 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1161 },
1162 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1163 "Aquantia AQC108 5 Gigabit Network Adapter",
1164 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1165 },
1166 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1167 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1168 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1169 },
1170 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1171 "Aquantia AQC111 5 Gigabit Network Adapter",
1172 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1173 },
1174 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1175 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1176 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1177 },
1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1179 "Aquantia AQC107S 10 Gigabit Network Adapter",
1180 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1181 },
1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1183 "Aquantia AQC108S 5 Gigabit Network Adapter",
1184 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1185 },
1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1187 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1188 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1189 },
1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1191 "Aquantia AQC111S 5 Gigabit Network Adapter",
1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1193 },
1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1195 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1197 },
1198 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1199 "Aquantia D107 10 Gigabit Network Adapter",
1200 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1201 },
1202 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1203 "Aquantia D108 5 Gigabit Network Adapter",
1204 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1205 },
1206 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1207 "Aquantia D109 2.5 Gigabit Network Adapter",
1208 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1209 }
1210 };
1211
1212 static const struct aq_product *
1213 aq_lookup(const struct pci_attach_args *pa)
1214 {
1215 unsigned int i;
1216
1217 for (i = 0; i < __arraycount(aq_products); i++) {
1218 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1219 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1220 return &aq_products[i];
1221 }
1222 return NULL;
1223 }
1224
1225 static int
1226 aq_match(device_t parent, cfdata_t cf, void *aux)
1227 {
1228 struct pci_attach_args *pa = aux;
1229
1230 if (aq_lookup(pa) != NULL)
1231 return 1;
1232
1233 return 0;
1234 }
1235
1236 static void
1237 aq_attach(device_t parent, device_t self, void *aux)
1238 {
1239 struct aq_softc *sc = device_private(self);
1240 struct pci_attach_args *pa = aux;
1241 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1242 pci_chipset_tag_t pc;
1243 pcitag_t tag;
1244 pcireg_t command, memtype, bar;
1245 const struct aq_product *aqp;
1246 int error;
1247
1248 sc->sc_dev = self;
1249 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1250 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1251
1252 sc->sc_pc = pc = pa->pa_pc;
1253 sc->sc_pcitag = tag = pa->pa_tag;
1254 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1255
1256 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1257 command |= PCI_COMMAND_MASTER_ENABLE;
1258 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1259
1260 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1261 sc->sc_revision = PCI_REVISION(pa->pa_class);
1262
1263 aqp = aq_lookup(pa);
1264 KASSERT(aqp != NULL);
1265
1266 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1267
1268 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1269 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1270 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1271 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1272 return;
1273 }
1274 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1275 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1276 NULL, &sc->sc_iosize) != 0) {
1277 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1278 return;
1279 }
1280
1281 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1282
1283 /* max queue num is 8, and must be 2^n */
1284 if (ncpu >= 8)
1285 sc->sc_nqueues = 8;
1286 else if (ncpu >= 4)
1287 sc->sc_nqueues = 4;
1288 else if (ncpu >= 2)
1289 sc->sc_nqueues = 2;
1290 else
1291 sc->sc_nqueues = 1;
1292
1293 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1294 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1295 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1296 /* TX intrs + RX intrs + LINKSTAT intrs */
1297 sc->sc_use_txrx_independent_intr = true;
1298 sc->sc_poll_linkstat = false;
1299 sc->sc_msix = true;
1300 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1301 /* TX intrs + RX intrs */
1302 sc->sc_use_txrx_independent_intr = true;
1303 sc->sc_poll_linkstat = true;
1304 sc->sc_msix = true;
1305 } else
1306 #endif
1307 if (msixcount >= (sc->sc_nqueues + 1)) {
1308 /* TX/RX intrs LINKSTAT intrs */
1309 sc->sc_use_txrx_independent_intr = false;
1310 sc->sc_poll_linkstat = false;
1311 sc->sc_msix = true;
1312 } else if (msixcount >= sc->sc_nqueues) {
1313 /* TX/RX intrs */
1314 sc->sc_use_txrx_independent_intr = false;
1315 sc->sc_poll_linkstat = true;
1316 sc->sc_msix = true;
1317 } else {
1318 /* giving up using MSI-X */
1319 sc->sc_msix = false;
1320 }
1321
1322 aprint_debug_dev(sc->sc_dev,
1323 "ncpu=%d, pci_msix_count=%d."
1324 " allocate %d interrupts for %d%s queues%s\n",
1325 ncpu, msixcount,
1326 (sc->sc_use_txrx_independent_intr ?
1327 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1328 (sc->sc_poll_linkstat ? 0 : 1),
1329 sc->sc_nqueues,
1330 sc->sc_use_txrx_independent_intr ? "*2" : "",
1331 sc->sc_poll_linkstat ? "" : ", and link status");
1332
1333 if (sc->sc_msix)
1334 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1335 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1336 else
1337 error = ENODEV;
1338
1339 if (error != 0) {
1340 /* if MSI-X failed, fallback to MSI with single queue */
1341 sc->sc_use_txrx_independent_intr = false;
1342 sc->sc_poll_linkstat = false;
1343 sc->sc_msix = false;
1344 sc->sc_nqueues = 1;
1345 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1346 }
1347 if (error != 0) {
1348 /* if MSI failed, fallback to INTx */
1349 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1350 }
1351 if (error != 0)
1352 return;
1353
1354 callout_init(&sc->sc_tick_ch, 0);
1355 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1356
1357 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1358
1359 if (sc->sc_msix && (sc->sc_nqueues > 1))
1360 sc->sc_rss_enable = true;
1361 else
1362 sc->sc_rss_enable = false;
1363
1364 error = aq_txrx_rings_alloc(sc);
1365 if (error != 0)
1366 goto attach_failure;
1367
1368 error = aq_fw_reset(sc);
1369 if (error != 0)
1370 goto attach_failure;
1371
1372 error = aq_fw_version_init(sc);
1373 if (error != 0)
1374 goto attach_failure;
1375
1376 error = aq_hw_init_ucp(sc);
1377 if (error < 0)
1378 goto attach_failure;
1379
1380 KASSERT(sc->sc_mbox_addr != 0);
1381 error = aq_hw_reset(sc);
1382 if (error != 0)
1383 goto attach_failure;
1384
1385 aq_get_mac_addr(sc);
1386 aq_init_rss(sc);
1387
1388 error = aq_hw_init(sc); /* initialize and interrupts */
1389 if (error != 0)
1390 goto attach_failure;
1391
1392 sc->sc_media_type = aqp->aq_media_type;
1393 sc->sc_available_rates = aqp->aq_available_rates;
1394
1395 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1396 ifmedia_init(&sc->sc_media, IFM_IMASK,
1397 aq_ifmedia_change, aq_ifmedia_status);
1398 aq_initmedia(sc);
1399
1400 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1401 ifp->if_softc = sc;
1402 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1403 ifp->if_baudrate = IF_Gbps(10);
1404 ifp->if_init = aq_init;
1405 ifp->if_ioctl = aq_ioctl;
1406 if (sc->sc_msix && (sc->sc_nqueues > 1))
1407 ifp->if_transmit = aq_transmit;
1408 ifp->if_start = aq_start;
1409 ifp->if_stop = aq_stop;
1410 ifp->if_watchdog = aq_watchdog;
1411 IFQ_SET_READY(&ifp->if_snd);
1412
1413 /* initialize capabilities */
1414 sc->sc_ethercom.ec_capabilities = 0;
1415 sc->sc_ethercom.ec_capenable = 0;
1416 #if notyet
1417 /* TODO */
1418 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1419 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
1420 #endif
1421 sc->sc_ethercom.ec_capabilities |=
1422 ETHERCAP_JUMBO_MTU |
1423 ETHERCAP_VLAN_MTU |
1424 ETHERCAP_VLAN_HWTAGGING;
1425 sc->sc_ethercom.ec_capenable |=
1426 ETHERCAP_VLAN_HWTAGGING;
1427
1428 ifp->if_capabilities = 0;
1429 ifp->if_capenable = 0;
1430 #ifdef CONFIG_LRO_SUPPORT
1431 ifp->if_capabilities |= IFCAP_LRO;
1432 ifp->if_capenable |= IFCAP_LRO;
1433 #endif
1434 #if notyet
1435 /* TSO */
1436 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1437 #endif
1438
1439 #if notyet
1440 /*
1441 * XXX:
1442 * Rx L4 CSUM doesn't work well for fragment packet.
1443 * aq marks 'CHEDKED' and 'BAD' for them.
1444 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1445 *
1446 * TODO: test with LRO enabled
1447 */
1448 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1449 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1450 #endif
1451 /* TX hardware checksum offloadding */
1452 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1453 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1454 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1455 /* RX hardware checksum offloadding */
1456 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1457
1458 if_attach(ifp);
1459 if_deferred_start_init(ifp, NULL);
1460 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1461 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1462
1463 aq_enable_intr(sc, true, false); /* only intr about link */
1464
1465 /* update media */
1466 aq_ifmedia_change(ifp);
1467
1468 #if NSYSMON_ENVSYS > 0
1469 /* temperature monitoring */
1470 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1471 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1472
1473 sc->sc_sme = sysmon_envsys_create();
1474 sc->sc_sme->sme_name = device_xname(self);
1475 sc->sc_sme->sme_cookie = sc;
1476 sc->sc_sme->sme_flags = 0;
1477 sc->sc_sme->sme_refresh = aq_temp_refresh;
1478 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1479 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1480 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1481
1482 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1483 sysmon_envsys_register(sc->sc_sme);
1484
1485 /*
1486 * for unknown reasons, the first call of fw2x_get_temperature()
1487 * will always fail (firmware matter?), so run once now.
1488 */
1489 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1490 }
1491 #endif
1492
1493 #ifdef AQ_EVENT_COUNTERS
1494 /* get starting statistics values */
1495 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1496 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1497 sc->sc_poll_statistics = true;
1498 }
1499
1500 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1501 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1502 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1503 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1504 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1505 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1506 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1507 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1508 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1509 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1510 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1511 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1512 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1513 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1514 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1515 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1516 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1517 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1518 #endif
1519
1520 return;
1521
1522 attach_failure:
1523 aq_detach(self, 0);
1524 }
1525
1526 static int
1527 aq_detach(device_t self, int flags __unused)
1528 {
1529 struct aq_softc *sc = device_private(self);
1530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1531 int i, s;
1532
1533 if (sc->sc_iosize != 0) {
1534 if (ifp->if_softc != NULL) {
1535 s = splnet();
1536 aq_stop(ifp, 0);
1537 splx(s);
1538 }
1539
1540 for (i = 0; i < AQ_NINTR_MAX; i++) {
1541 if (sc->sc_ihs[i] != NULL) {
1542 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1543 sc->sc_ihs[i] = NULL;
1544 }
1545 }
1546 if (sc->sc_nintrs > 0) {
1547 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1548 sc->sc_nintrs);
1549 sc->sc_intrs = NULL;
1550 sc->sc_nintrs = 0;
1551 }
1552
1553 aq_txrx_rings_free(sc);
1554
1555 if (ifp->if_softc != NULL) {
1556 ether_ifdetach(ifp);
1557 if_detach(ifp);
1558 }
1559
1560 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1561 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1562 sc->sc_iosize = 0;
1563 }
1564
1565 callout_stop(&sc->sc_tick_ch);
1566
1567 #if NSYSMON_ENVSYS > 0
1568 if (sc->sc_sme != NULL) {
1569 /* all sensors associated with this will also be detached */
1570 sysmon_envsys_unregister(sc->sc_sme);
1571 sc->sc_sme = NULL;
1572 }
1573 #endif
1574
1575 #ifdef AQ_EVENT_COUNTERS
1576 AQ_EVCNT_DETACH(sc, uprc);
1577 AQ_EVCNT_DETACH(sc, mprc);
1578 AQ_EVCNT_DETACH(sc, bprc);
1579 AQ_EVCNT_DETACH(sc, erpt);
1580 AQ_EVCNT_DETACH(sc, uptc);
1581 AQ_EVCNT_DETACH(sc, mptc);
1582 AQ_EVCNT_DETACH(sc, bptc);
1583 AQ_EVCNT_DETACH(sc, erpr);
1584 AQ_EVCNT_DETACH(sc, mbtc);
1585 AQ_EVCNT_DETACH(sc, bbtc);
1586 AQ_EVCNT_DETACH(sc, mbrc);
1587 AQ_EVCNT_DETACH(sc, bbrc);
1588 AQ_EVCNT_DETACH(sc, ubrc);
1589 AQ_EVCNT_DETACH(sc, ubtc);
1590 AQ_EVCNT_DETACH(sc, ptc);
1591 AQ_EVCNT_DETACH(sc, prc);
1592 AQ_EVCNT_DETACH(sc, dpc);
1593 AQ_EVCNT_DETACH(sc, cprc);
1594 #endif
1595
1596 mutex_destroy(&sc->sc_mpi_mutex);
1597 mutex_destroy(&sc->sc_mutex);
1598
1599 return 0;
1600 }
1601
1602 static int
1603 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1604 int (*func)(void *), void *arg, const char *xname)
1605 {
1606 char intrbuf[PCI_INTRSTR_LEN];
1607 pci_chipset_tag_t pc = sc->sc_pc;
1608 void *vih;
1609 const char *intrstr = NULL;
1610
1611 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1612 sizeof(intrbuf));
1613
1614 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1615
1616 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1617 IPL_NET, func, arg, xname);
1618 if (vih == NULL) {
1619 aprint_error_dev(sc->sc_dev,
1620 "unable to establish MSI-X%s%s for %s\n",
1621 intrstr ? " at " : "",
1622 intrstr ? intrstr : "", xname);
1623 return EIO;
1624 }
1625 sc->sc_ihs[intno] = vih;
1626
1627 if (affinity != NULL) {
1628 /* Round-robin affinity */
1629 kcpuset_zero(affinity);
1630 kcpuset_set(affinity, intno % ncpu);
1631 interrupt_distribute(vih, affinity, NULL);
1632 }
1633
1634 return 0;
1635 }
1636
1637 static int
1638 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1639 bool linkintr)
1640 {
1641 kcpuset_t *affinity;
1642 int error, intno, i;
1643 char intr_xname[INTRDEVNAMEBUF];
1644
1645 kcpuset_create(&affinity, false);
1646
1647 intno = 0;
1648
1649 if (txrx_independent) {
1650 for (i = 0; i < sc->sc_nqueues; i++) {
1651 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1652 device_xname(sc->sc_dev), i);
1653 sc->sc_rx_irq[i] = intno;
1654 error = aq_establish_intr(sc, intno++, affinity,
1655 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1656 if (error != 0)
1657 goto fail;
1658 }
1659 for (i = 0; i < sc->sc_nqueues; i++) {
1660 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1661 device_xname(sc->sc_dev), i);
1662 sc->sc_tx_irq[i] = intno;
1663 error = aq_establish_intr(sc, intno++, affinity,
1664 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1665 if (error != 0)
1666 goto fail;
1667 }
1668 } else {
1669 for (i = 0; i < sc->sc_nqueues; i++) {
1670 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1671 device_xname(sc->sc_dev), i);
1672 sc->sc_rx_irq[i] = intno;
1673 sc->sc_tx_irq[i] = intno;
1674 error = aq_establish_intr(sc, intno++, affinity,
1675 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1676 if (error != 0)
1677 goto fail;
1678 }
1679 }
1680
1681 if (linkintr) {
1682 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1683 device_xname(sc->sc_dev));
1684 sc->sc_linkstat_irq = intno;
1685 error = aq_establish_intr(sc, intno++, affinity,
1686 aq_link_intr, sc, intr_xname);
1687 if (error != 0)
1688 goto fail;
1689 }
1690
1691 kcpuset_destroy(affinity);
1692 return 0;
1693
1694 fail:
1695 for (i = 0; i < AQ_NINTR_MAX; i++) {
1696 if (sc->sc_ihs[i] != NULL) {
1697 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1698 sc->sc_ihs[i] = NULL;
1699 }
1700 }
1701
1702 kcpuset_destroy(affinity);
1703 return ENOMEM;
1704 }
1705
1706 static int
1707 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1708 bool txrx_independent, bool linkintr)
1709 {
1710 int error, nintr;
1711
1712 if (txrx_independent)
1713 nintr = nqueue * 2;
1714 else
1715 nintr = nqueue;
1716
1717 if (linkintr)
1718 nintr++;
1719
1720 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1721 if (error != 0) {
1722 aprint_error_dev(sc->sc_dev,
1723 "failed to allocate MSI-X interrupts\n");
1724 goto fail;
1725 }
1726
1727 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1728 if (error == 0) {
1729 sc->sc_nintrs = nintr;
1730 } else {
1731 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1732 sc->sc_nintrs = 0;
1733 }
1734 fail:
1735 return error;
1736
1737 }
1738
1739 static int
1740 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1741 pci_intr_type_t inttype)
1742 {
1743 int counts[PCI_INTR_TYPE_SIZE];
1744 int error, nintr;
1745
1746 nintr = 1;
1747
1748 memset(counts, 0, sizeof(counts));
1749 counts[inttype] = nintr;
1750
1751 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1752 if (error != 0) {
1753 aprint_error_dev(sc->sc_dev,
1754 "failed to allocate%s interrupts\n",
1755 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1756 return error;
1757 }
1758 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1759 device_xname(sc->sc_dev));
1760 if (error == 0) {
1761 sc->sc_nintrs = nintr;
1762 } else {
1763 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1764 sc->sc_nintrs = 0;
1765 }
1766 return error;
1767 }
1768
1769 static void
1770 global_software_reset(struct aq_softc *sc)
1771 {
1772 uint32_t v;
1773
1774 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1775 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1776 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1777 FW_MPI_RESETCTRL_RESET_DIS, 0);
1778
1779 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1780 v &= ~AQ_FW_SOFTRESET_DIS;
1781 v |= AQ_FW_SOFTRESET_RESET;
1782 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1783 }
1784
1785 static int
1786 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1787 {
1788 int timo;
1789
1790 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1791
1792 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1793 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1794 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1795
1796 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1797 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1798
1799 global_software_reset(sc);
1800
1801 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1802
1803 /* Wait for RBL to finish boot process. */
1804 #define RBL_TIMEOUT_MS 10000
1805 uint16_t rbl_status;
1806 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1807 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1808 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1809 break;
1810 msec_delay(1);
1811 }
1812 if (timo <= 0) {
1813 aprint_error_dev(sc->sc_dev,
1814 "RBL> RBL restart failed: timeout\n");
1815 return EBUSY;
1816 }
1817 switch (rbl_status) {
1818 case RBL_STATUS_SUCCESS:
1819 if (mode != NULL)
1820 *mode = FW_BOOT_MODE_RBL_FLASH;
1821 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1822 break;
1823 case RBL_STATUS_HOST_BOOT:
1824 if (mode != NULL)
1825 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1826 aprint_debug_dev(sc->sc_dev,
1827 "RBL> reset complete! [Host Bootload]\n");
1828 break;
1829 case RBL_STATUS_FAILURE:
1830 default:
1831 aprint_error_dev(sc->sc_dev,
1832 "unknown RBL status 0x%x\n", rbl_status);
1833 return EBUSY;
1834 }
1835
1836 return 0;
1837 }
1838
1839 static int
1840 mac_soft_reset_flb(struct aq_softc *sc)
1841 {
1842 uint32_t v;
1843 int timo;
1844
1845 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1846 /*
1847 * Let Felicity hardware to complete SMBUS transaction before
1848 * Global software reset.
1849 */
1850 msec_delay(50);
1851
1852 /*
1853 * If SPI burst transaction was interrupted(before running the script),
1854 * global software reset may not clear SPI interface.
1855 * Clean it up manually before global reset.
1856 */
1857 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1858 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1859 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1860 msec_delay(50);
1861
1862 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1863 v &= ~AQ_FW_SOFTRESET_DIS;
1864 v |= AQ_FW_SOFTRESET_RESET;
1865 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1866
1867 /* Kickstart. */
1868 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1869 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1870 if (!sc->sc_fast_start_enabled)
1871 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1872
1873 /*
1874 * For the case SPI burst transaction was interrupted (by MCP reset
1875 * above), wait until it is completed by hardware.
1876 */
1877 msec_delay(50);
1878
1879 /* MAC Kickstart */
1880 if (!sc->sc_fast_start_enabled) {
1881 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1882
1883 uint32_t flb_status;
1884 for (timo = 0; timo < 1000; timo++) {
1885 flb_status = AQ_READ_REG(sc,
1886 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1887 if (flb_status != 0)
1888 break;
1889 msec_delay(1);
1890 }
1891 if (flb_status == 0) {
1892 aprint_error_dev(sc->sc_dev,
1893 "FLB> MAC kickstart failed: timed out\n");
1894 return ETIMEDOUT;
1895 }
1896 aprint_debug_dev(sc->sc_dev,
1897 "FLB> MAC kickstart done, %d ms\n", timo);
1898 /* FW reset */
1899 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1900 /*
1901 * Let Felicity hardware complete SMBUS transaction before
1902 * Global software reset.
1903 */
1904 msec_delay(50);
1905 sc->sc_fast_start_enabled = true;
1906 }
1907 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1908
1909 /* PHY Kickstart: #undone */
1910 global_software_reset(sc);
1911
1912 for (timo = 0; timo < 1000; timo++) {
1913 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1914 break;
1915 msec_delay(10);
1916 }
1917 if (timo >= 1000) {
1918 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1919 return ETIMEDOUT;
1920 }
1921 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1922 return 0;
1923
1924 }
1925
1926 static int
1927 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1928 {
1929 if (sc->sc_rbl_enabled)
1930 return mac_soft_reset_rbl(sc, mode);
1931
1932 if (mode != NULL)
1933 *mode = FW_BOOT_MODE_FLB;
1934 return mac_soft_reset_flb(sc);
1935 }
1936
1937 static int
1938 aq_fw_read_version(struct aq_softc *sc)
1939 {
1940 int i, error = EBUSY;
1941 #define MAC_FW_START_TIMEOUT_MS 10000
1942 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1943 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1944 if (sc->sc_fw_version != 0) {
1945 error = 0;
1946 break;
1947 }
1948 delay(1000);
1949 }
1950 return error;
1951 }
1952
1953 static int
1954 aq_fw_reset(struct aq_softc *sc)
1955 {
1956 uint32_t ver, v, bootExitCode;
1957 int i, error;
1958
1959 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1960
1961 for (i = 1000; i > 0; i--) {
1962 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1963 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1964 if (v != 0x06000000 || bootExitCode != 0)
1965 break;
1966 }
1967 if (i <= 0) {
1968 aprint_error_dev(sc->sc_dev,
1969 "F/W reset failed. Neither RBL nor FLB started\n");
1970 return ETIMEDOUT;
1971 }
1972 sc->sc_rbl_enabled = (bootExitCode != 0);
1973
1974 /*
1975 * Having FW version 0 is an indicator that cold start
1976 * is in progress. This means two things:
1977 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1978 * 2) Driver may skip reset sequence and save time.
1979 */
1980 if (sc->sc_fast_start_enabled && (ver != 0)) {
1981 error = aq_fw_read_version(sc);
1982 /* Skip reset as it just completed */
1983 if (error == 0)
1984 return 0;
1985 }
1986
1987 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1988 error = mac_soft_reset(sc, &mode);
1989 if (error != 0) {
1990 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1991 return error;
1992 }
1993
1994 switch (mode) {
1995 case FW_BOOT_MODE_FLB:
1996 aprint_debug_dev(sc->sc_dev,
1997 "FLB> F/W successfully loaded from flash.\n");
1998 sc->sc_flash_present = true;
1999 return aq_fw_read_version(sc);
2000 case FW_BOOT_MODE_RBL_FLASH:
2001 aprint_debug_dev(sc->sc_dev,
2002 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2003 sc->sc_flash_present = true;
2004 return aq_fw_read_version(sc);
2005 case FW_BOOT_MODE_UNKNOWN:
2006 aprint_error_dev(sc->sc_dev,
2007 "F/W bootload error: unknown bootloader type\n");
2008 return ENOTSUP;
2009 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2010 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2011 break;
2012 }
2013
2014 /*
2015 * XXX: TODO: add support Host Boot
2016 */
2017 aprint_error_dev(sc->sc_dev,
2018 "RBL> F/W Host Bootload not implemented\n");
2019 return ENOTSUP;
2020 }
2021
2022 static int
2023 aq_hw_reset(struct aq_softc *sc)
2024 {
2025 int error;
2026
2027 /* disable irq */
2028 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2029
2030 /* apply */
2031 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2032
2033 /* wait ack 10 times by 1ms */
2034 WAIT_FOR(
2035 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2036 1000, 10, &error);
2037 if (error != 0) {
2038 aprint_error_dev(sc->sc_dev,
2039 "atlantic: IRQ reset failed: %d\n", error);
2040 return error;
2041 }
2042
2043 return sc->sc_fw_ops->reset(sc);
2044 }
2045
2046 static int
2047 aq_hw_init_ucp(struct aq_softc *sc)
2048 {
2049 int timo;
2050
2051 if (FW_VERSION_MAJOR(sc) == 1) {
2052 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2053 uint32_t data;
2054 cprng_fast(&data, sizeof(data));
2055 data &= 0xfefefefe;
2056 data |= 0x02020202;
2057 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2058 }
2059 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2060 }
2061
2062 for (timo = 100; timo > 0; timo--) {
2063 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2064 if (sc->sc_mbox_addr != 0)
2065 break;
2066 delay(1000);
2067 }
2068
2069 #define AQ_FW_MIN_VERSION 0x01050006
2070 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2071 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2072 aprint_error_dev(sc->sc_dev,
2073 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2074 " or later required, this is %d.%d.%d\n",
2075 FW_VERSION_MAJOR(sc),
2076 FW_VERSION_MINOR(sc),
2077 FW_VERSION_BUILD(sc));
2078 return ENOTSUP;
2079 }
2080
2081 return 0;
2082 }
2083
2084 static int
2085 aq_fw_version_init(struct aq_softc *sc)
2086 {
2087 int error = 0;
2088 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2089
2090 if (FW_VERSION_MAJOR(sc) == 1) {
2091 sc->sc_fw_ops = &aq_fw1x_ops;
2092 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2093 sc->sc_fw_ops = &aq_fw2x_ops;
2094 } else {
2095 aprint_error_dev(sc->sc_dev,
2096 "Unsupported F/W version %d.%d.%d\n",
2097 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2098 FW_VERSION_BUILD(sc));
2099 return ENOTSUP;
2100 }
2101 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2102 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2103
2104 /* detect revision */
2105 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2106 switch (hwrev & 0x0000000f) {
2107 case 0x01:
2108 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2109 fw_vers);
2110 sc->sc_features |= FEATURES_REV_A0 |
2111 FEATURES_MPI_AQ | FEATURES_MIPS;
2112 break;
2113 case 0x02:
2114 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2115 fw_vers);
2116 sc->sc_features |= FEATURES_REV_B0 |
2117 FEATURES_MPI_AQ | FEATURES_MIPS |
2118 FEATURES_TPO2 | FEATURES_RPF2;
2119 break;
2120 case 0x0A:
2121 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2122 fw_vers);
2123 sc->sc_features |= FEATURES_REV_B1 |
2124 FEATURES_MPI_AQ | FEATURES_MIPS |
2125 FEATURES_TPO2 | FEATURES_RPF2;
2126 break;
2127 default:
2128 aprint_error_dev(sc->sc_dev,
2129 "Unknown revision (0x%08x)\n", hwrev);
2130 error = ENOTSUP;
2131 break;
2132 }
2133 return error;
2134 }
2135
2136 static int
2137 fw1x_reset(struct aq_softc *sc)
2138 {
2139 struct aq_mailbox_header mbox;
2140 const int retryCount = 1000;
2141 uint32_t tid0;
2142 int i;
2143
2144 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2145
2146 for (i = 0; i < retryCount; ++i) {
2147 /*
2148 * Read the beginning of Statistics structure to capture
2149 * the Transaction ID.
2150 */
2151 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2152 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2153
2154 /* Successfully read the stats. */
2155 if (tid0 == ~0U) {
2156 /* We have read the initial value. */
2157 tid0 = mbox.transaction_id;
2158 continue;
2159 } else if (mbox.transaction_id != tid0) {
2160 /*
2161 * Compare transaction ID to initial value.
2162 * If it's different means f/w is alive.
2163 * We're done.
2164 */
2165 return 0;
2166 }
2167
2168 /*
2169 * Transaction ID value haven't changed since last time.
2170 * Try reading the stats again.
2171 */
2172 delay(10);
2173 }
2174 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2175 return EBUSY;
2176 }
2177
2178 static int
2179 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2180 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2181 {
2182 uint32_t mpictrl = 0;
2183 uint32_t mpispeed = 0;
2184
2185 if (speed & AQ_LINK_10G)
2186 mpispeed |= FW1X_CTRL_10G;
2187 if (speed & AQ_LINK_5G)
2188 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2189 if (speed & AQ_LINK_2G5)
2190 mpispeed |= FW1X_CTRL_2G5;
2191 if (speed & AQ_LINK_1G)
2192 mpispeed |= FW1X_CTRL_1G;
2193 if (speed & AQ_LINK_100M)
2194 mpispeed |= FW1X_CTRL_100M;
2195
2196 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2197 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2198 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2199 return 0;
2200 }
2201
2202 static int
2203 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2204 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2205 {
2206 uint32_t mpistate, mpi_speed;
2207 aq_link_speed_t speed = AQ_LINK_NONE;
2208
2209 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2210
2211 if (modep != NULL)
2212 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2213
2214 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2215 if (mpi_speed & FW1X_CTRL_10G)
2216 speed = AQ_LINK_10G;
2217 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2218 speed = AQ_LINK_5G;
2219 else if (mpi_speed & FW1X_CTRL_2G5)
2220 speed = AQ_LINK_2G5;
2221 else if (mpi_speed & FW1X_CTRL_1G)
2222 speed = AQ_LINK_1G;
2223 else if (mpi_speed & FW1X_CTRL_100M)
2224 speed = AQ_LINK_100M;
2225
2226 if (speedp != NULL)
2227 *speedp = speed;
2228
2229 if (fcp != NULL)
2230 *fcp = AQ_FC_NONE;
2231
2232 if (eeep != NULL)
2233 *eeep = AQ_EEE_DISABLE;
2234
2235 return 0;
2236 }
2237
2238 static int
2239 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2240 {
2241 int error;
2242
2243 error = aq_fw_downld_dwords(sc,
2244 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2245 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2246 if (error < 0) {
2247 device_printf(sc->sc_dev,
2248 "fw1x> download statistics data FAILED, error %d", error);
2249 return error;
2250 }
2251
2252 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2253 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2254 return 0;
2255 }
2256
2257 static int
2258 fw2x_reset(struct aq_softc *sc)
2259 {
2260 fw2x_capabilities_t caps = { 0 };
2261 int error;
2262
2263 error = aq_fw_downld_dwords(sc,
2264 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2265 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2266 if (error != 0) {
2267 aprint_error_dev(sc->sc_dev,
2268 "fw2x> can't get F/W capabilities mask, error %d\n",
2269 error);
2270 return error;
2271 }
2272 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2273
2274 char buf[256];
2275 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2276 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2277
2278 return 0;
2279 }
2280
2281 static int
2282 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2283 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2284 {
2285 uint64_t mpi_ctrl;
2286 int error = 0;
2287
2288 AQ_MPI_LOCK(sc);
2289
2290 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2291
2292 switch (mode) {
2293 case MPI_INIT:
2294 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2295 if (speed & AQ_LINK_10G)
2296 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2297 if (speed & AQ_LINK_5G)
2298 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2299 if (speed & AQ_LINK_2G5)
2300 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2301 if (speed & AQ_LINK_1G)
2302 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2303 if (speed & AQ_LINK_100M)
2304 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2305
2306 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2307
2308 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2309 if (eee == AQ_EEE_ENABLE)
2310 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2311
2312 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2313 if (fc & AQ_FC_RX)
2314 mpi_ctrl |= FW2X_CTRL_PAUSE;
2315 if (fc & AQ_FC_TX)
2316 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2317 break;
2318 case MPI_DEINIT:
2319 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2320 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2321 break;
2322 default:
2323 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2324 error = EINVAL;
2325 goto failure;
2326 }
2327 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2328
2329 failure:
2330 AQ_MPI_UNLOCK(sc);
2331 return error;
2332 }
2333
2334 static int
2335 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2336 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2337 {
2338 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2339
2340 if (modep != NULL) {
2341 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2342 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2343 *modep = MPI_INIT;
2344 else
2345 *modep = MPI_DEINIT;
2346 }
2347
2348 aq_link_speed_t speed = AQ_LINK_NONE;
2349 if (mpi_state & FW2X_CTRL_RATE_10G)
2350 speed = AQ_LINK_10G;
2351 else if (mpi_state & FW2X_CTRL_RATE_5G)
2352 speed = AQ_LINK_5G;
2353 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2354 speed = AQ_LINK_2G5;
2355 else if (mpi_state & FW2X_CTRL_RATE_1G)
2356 speed = AQ_LINK_1G;
2357 else if (mpi_state & FW2X_CTRL_RATE_100M)
2358 speed = AQ_LINK_100M;
2359
2360 if (speedp != NULL)
2361 *speedp = speed;
2362
2363 aq_link_fc_t fc = AQ_FC_NONE;
2364 if (mpi_state & FW2X_CTRL_PAUSE)
2365 fc |= AQ_FC_RX;
2366 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2367 fc |= AQ_FC_TX;
2368 if (fcp != NULL)
2369 *fcp = fc;
2370
2371 /* XXX: TODO: EEE */
2372 if (eeep != NULL)
2373 *eeep = AQ_EEE_DISABLE;
2374
2375 return 0;
2376 }
2377
2378 static int
2379 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2380 uint32_t timeout_ms, uint32_t try_count)
2381 {
2382 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2383 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2384 int error;
2385
2386 /* First, check that control and state values are consistent */
2387 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2388 device_printf(sc->sc_dev,
2389 "fw2x> MPI control (%#llx) and state (%#llx)"
2390 " are not consistent for mask %#llx!\n",
2391 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2392 (unsigned long long)mask);
2393 return EINVAL;
2394 }
2395
2396 /* Invert bits (toggle) in control register */
2397 mpi_ctrl ^= mask;
2398 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2399
2400 /* Clear all bits except masked */
2401 mpi_ctrl &= mask;
2402
2403 /* Wait for FW reflecting change in state register */
2404 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2405 1000 * timeout_ms, try_count, &error);
2406 if (error != 0) {
2407 device_printf(sc->sc_dev,
2408 "f/w2x> timeout while waiting for response"
2409 " in state register for bit %#llx!",
2410 (unsigned long long)mask);
2411 return error;
2412 }
2413 return 0;
2414 }
2415
2416 static int
2417 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2418 {
2419 int error;
2420
2421 AQ_MPI_LOCK(sc);
2422 /* Say to F/W to update the statistics */
2423 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2424 if (error != 0) {
2425 device_printf(sc->sc_dev,
2426 "fw2x> statistics update error %d\n", error);
2427 goto failure;
2428 }
2429
2430 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2431 error = aq_fw_downld_dwords(sc,
2432 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2433 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2434 if (error != 0) {
2435 device_printf(sc->sc_dev,
2436 "fw2x> download statistics data FAILED, error %d", error);
2437 goto failure;
2438 }
2439 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2440 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2441
2442 failure:
2443 AQ_MPI_UNLOCK(sc);
2444 return error;
2445 }
2446
2447 #if NSYSMON_ENVSYS > 0
2448 static int
2449 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2450 {
2451 int error;
2452 uint32_t value, celsius;
2453
2454 AQ_MPI_LOCK(sc);
2455
2456 /* Say to F/W to update the temperature */
2457 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2458 if (error != 0)
2459 goto failure;
2460
2461 error = aq_fw_downld_dwords(sc,
2462 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2463 &value, sizeof(value) / sizeof(uint32_t));
2464 if (error != 0)
2465 goto failure;
2466
2467 /* 1/256 decrees C to microkelvin */
2468 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2469 if (celsius == 0) {
2470 error = EIO;
2471 goto failure;
2472 }
2473 *temp = celsius * (1000000 / 256) + 273150000;
2474
2475 failure:
2476 AQ_MPI_UNLOCK(sc);
2477 return 0;
2478 }
2479 #endif
2480
2481 static int
2482 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2483 uint32_t cnt)
2484 {
2485 uint32_t v;
2486 int error = 0;
2487
2488 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2489 if (error != 0) {
2490 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2491 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2492 if (v == 0) {
2493 device_printf(sc->sc_dev,
2494 "%s:%d: timeout\n", __func__, __LINE__);
2495 return ETIMEDOUT;
2496 }
2497 }
2498
2499 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2500
2501 error = 0;
2502 for (; cnt > 0 && error == 0; cnt--) {
2503 /* execute mailbox interface */
2504 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2505 AQ_FW_MBOX_CMD_EXECUTE, 1);
2506 if (sc->sc_features & FEATURES_REV_B1) {
2507 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2508 1, 1000, &error);
2509 } else {
2510 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2511 AQ_FW_MBOX_CMD_BUSY) == 0,
2512 1, 1000, &error);
2513 }
2514 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2515 addr += sizeof(uint32_t);
2516 }
2517 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2518
2519 if (error != 0)
2520 device_printf(sc->sc_dev,
2521 "%s:%d: timeout\n", __func__, __LINE__);
2522
2523 return error;
2524 }
2525
2526 /* read my mac address */
2527 static int
2528 aq_get_mac_addr(struct aq_softc *sc)
2529 {
2530 uint32_t mac_addr[2];
2531 uint32_t efuse_shadow_addr;
2532 int err;
2533
2534 efuse_shadow_addr = 0;
2535 if (FW_VERSION_MAJOR(sc) >= 2)
2536 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2537 else
2538 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2539
2540 if (efuse_shadow_addr == 0) {
2541 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2542 return ENXIO;
2543 }
2544
2545 memset(mac_addr, 0, sizeof(mac_addr));
2546 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2547 mac_addr, __arraycount(mac_addr));
2548 if (err < 0)
2549 return err;
2550
2551 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2552 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2553 return ENXIO;
2554 }
2555
2556 mac_addr[0] = bswap32(mac_addr[0]);
2557 mac_addr[1] = bswap32(mac_addr[1]);
2558
2559 memcpy(sc->sc_enaddr.ether_addr_octet,
2560 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2561 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2562 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2563
2564 return 0;
2565 }
2566
2567 /* set multicast filter. index 0 for own address */
2568 static int
2569 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2570 {
2571 uint32_t h, l;
2572
2573 if (index >= AQ_HW_MAC_NUM)
2574 return EINVAL;
2575
2576 if (enaddr == NULL) {
2577 /* disable */
2578 AQ_WRITE_REG_BIT(sc,
2579 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2580 return 0;
2581 }
2582
2583 h = (enaddr[0] << 8) | (enaddr[1]);
2584 l = (enaddr[2] << 24) | (enaddr[3] << 16) |
2585 (enaddr[4] << 8) | (enaddr[5]);
2586
2587 /* disable, set, and enable */
2588 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2589 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2590 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2591 RPF_L2UC_MSW_MACADDR_HI, h);
2592 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2593 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2594
2595 return 0;
2596 }
2597
2598 static int
2599 aq_set_capability(struct aq_softc *sc)
2600 {
2601 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2602 int ip4csum_tx =
2603 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2604 int ip4csum_rx =
2605 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2606 int l4csum_tx = ((ifp->if_capenable &
2607 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2608 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2609 int l4csum_rx =
2610 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2611 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2612 uint32_t lso =
2613 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2614 0 : 0xffffffff;
2615 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2616 0 : 0xffffffff;
2617 uint32_t i, v;
2618
2619 /* TX checksums offloads*/
2620 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2621 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2622
2623 /* RX checksums offloads*/
2624 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2625 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2626
2627 /* LSO offloads*/
2628 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2629
2630 #define AQ_B0_LRO_RXD_MAX 16
2631 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2632 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2633 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2634 for (i = 0; i < AQ_RINGS_NUM; i++) {
2635 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2636 RPO_LRO_LDES_MAX_MASK(i), v);
2637 }
2638
2639 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2640 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2641 RPO_LRO_INACTIVE_IVAL, 0);
2642 /*
2643 * the LRO timebase divider is 5 uS (0x61a),
2644 * to get a maximum coalescing interval of 250 uS,
2645 * we need to multiply by 50(0x32) to get
2646 * the default value 250 uS
2647 */
2648 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2649 RPO_LRO_MAX_COALESCING_IVAL, 50);
2650 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2651 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2652 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2653 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2654 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2655 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2656 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2657 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2658 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2659 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2660
2661 return 0;
2662 }
2663
2664 static int
2665 aq_set_filter(struct aq_softc *sc)
2666 {
2667 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2668 struct ethercom *ec = &sc->sc_ethercom;
2669 struct ether_multi *enm;
2670 struct ether_multistep step;
2671 int idx, error = 0;
2672
2673 if (ifp->if_flags & IFF_PROMISC) {
2674 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2675 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2676 ec->ec_flags |= ETHER_F_ALLMULTI;
2677 goto done;
2678 }
2679
2680 /* clear all table */
2681 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2682 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2683 continue;
2684 aq_set_mac_addr(sc, idx, NULL);
2685 }
2686
2687 /* don't accept all multicast */
2688 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2689 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2690 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2691 RPF_MCAST_FILTER_EN, 0);
2692
2693 idx = 0;
2694 ETHER_LOCK(ec);
2695 ETHER_FIRST_MULTI(step, ec, enm);
2696 while (enm != NULL) {
2697 if (idx == AQ_HW_MAC_OWN)
2698 idx++;
2699
2700 if ((idx >= AQ_HW_MAC_NUM) ||
2701 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2702 /*
2703 * too many filters.
2704 * fallback to accept all multicast addresses.
2705 */
2706 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2707 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2708 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2709 RPF_MCAST_FILTER_EN, 1);
2710 ec->ec_flags |= ETHER_F_ALLMULTI;
2711 ETHER_UNLOCK(ec);
2712 goto done;
2713 }
2714
2715 /* add a filter */
2716 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2717
2718 ETHER_NEXT_MULTI(step, enm);
2719 }
2720 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2721 ETHER_UNLOCK(ec);
2722
2723 done:
2724 return error;
2725 }
2726
2727 static void
2728 aq_mediastatus_update(struct aq_softc *sc)
2729 {
2730 sc->sc_media_active = 0;
2731
2732 if (sc->sc_link_fc & AQ_FC_RX)
2733 sc->sc_media_active |= IFM_ETH_RXPAUSE;
2734 if (sc->sc_link_fc & AQ_FC_TX)
2735 sc->sc_media_active |= IFM_ETH_TXPAUSE;
2736
2737 switch (sc->sc_link_rate) {
2738 case AQ_LINK_100M:
2739 /* XXX: need to detect fulldup or halfdup */
2740 sc->sc_media_active |= IFM_100_TX | IFM_FDX;
2741 break;
2742 case AQ_LINK_1G:
2743 sc->sc_media_active |= IFM_1000_T | IFM_FDX;
2744 break;
2745 case AQ_LINK_2G5:
2746 sc->sc_media_active |= IFM_2500_T | IFM_FDX;
2747 break;
2748 case AQ_LINK_5G:
2749 sc->sc_media_active |= IFM_5000_T | IFM_FDX;
2750 break;
2751 case AQ_LINK_10G:
2752 sc->sc_media_active |= IFM_10G_T | IFM_FDX;
2753 break;
2754 default:
2755 sc->sc_media_active |= IFM_NONE;
2756 break;
2757 }
2758 }
2759
2760 static int
2761 aq_ifmedia_change(struct ifnet * const ifp)
2762 {
2763 struct aq_softc *sc = ifp->if_softc;
2764 aq_link_speed_t rate = AQ_LINK_NONE;
2765 aq_link_fc_t fc = AQ_FC_NONE;
2766 aq_link_eee_t eee = AQ_EEE_DISABLE;
2767
2768 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2769 return EINVAL;
2770
2771 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2772 case IFM_AUTO:
2773 rate = AQ_LINK_AUTO;
2774 break;
2775 case IFM_NONE:
2776 rate = AQ_LINK_NONE;
2777 break;
2778 case IFM_100_TX:
2779 rate = AQ_LINK_100M;
2780 break;
2781 case IFM_1000_T:
2782 rate = AQ_LINK_1G;
2783 break;
2784 case IFM_2500_T:
2785 rate = AQ_LINK_2G5;
2786 break;
2787 case IFM_5000_T:
2788 rate = AQ_LINK_5G;
2789 break;
2790 case IFM_10G_T:
2791 rate = AQ_LINK_10G;
2792 break;
2793 default:
2794 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2795 IFM_SUBTYPE(sc->sc_media.ifm_media));
2796 return ENODEV;
2797 }
2798
2799 if (sc->sc_media.ifm_media & IFM_FLOW)
2800 fc = AQ_FC_ALL;
2801
2802 /* XXX: todo EEE */
2803
2804 /* re-initialize hardware with new parameters */
2805 aq_set_linkmode(sc, rate, fc, eee);
2806
2807 return 0;
2808 }
2809
2810 static void
2811 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2812 {
2813 struct aq_softc *sc = ifp->if_softc;
2814
2815 ifmr->ifm_active = IFM_ETHER;
2816 ifmr->ifm_status = IFM_AVALID;
2817
2818 if (sc->sc_link_rate != AQ_LINK_NONE)
2819 ifmr->ifm_status |= IFM_ACTIVE;
2820
2821 ifmr->ifm_active |= sc->sc_media_active;
2822 }
2823
2824 static void
2825 aq_initmedia(struct aq_softc *sc)
2826 {
2827 #define IFMEDIA_ETHER_ADD(sc, media) \
2828 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2829
2830 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2831 if (sc->sc_available_rates & AQ_LINK_100M) {
2832 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2833 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2834 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2835 }
2836 if (sc->sc_available_rates & AQ_LINK_1G) {
2837 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2838 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2839 }
2840 if (sc->sc_available_rates & AQ_LINK_2G5) {
2841 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2842 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2843 }
2844 if (sc->sc_available_rates & AQ_LINK_5G) {
2845 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2846 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2847 }
2848 if (sc->sc_available_rates & AQ_LINK_10G) {
2849 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2850 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2851 }
2852 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2853 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2854
2855 /* default: auto without flowcontrol */
2856 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2857 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2858 }
2859
2860 static int
2861 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2862 aq_link_eee_t eee)
2863 {
2864 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2865 }
2866
2867 static int
2868 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2869 aq_link_eee_t *eee)
2870 {
2871 aq_hw_fw_mpi_state_t mode;
2872 int error;
2873
2874 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2875 if (error != 0)
2876 return error;
2877 if (mode != MPI_INIT)
2878 return ENXIO;
2879
2880 return 0;
2881 }
2882
2883 static void
2884 aq_hw_init_tx_path(struct aq_softc *sc)
2885 {
2886 /* Tx TC/RSS number config */
2887 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2888
2889 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2890 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2891 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2892 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2893 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2894 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2895
2896 /* misc */
2897 AQ_WRITE_REG(sc, TX_TPO2_REG,
2898 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2899 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2900 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2901
2902 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2903 }
2904
2905 static void
2906 aq_hw_init_rx_path(struct aq_softc *sc)
2907 {
2908 int i;
2909
2910 /* clear setting */
2911 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2912 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2913 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2914 for (i = 0; i < 32; i++) {
2915 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2916 RPF_ETHERTYPE_FILTER_EN, 0);
2917 }
2918
2919 if (sc->sc_rss_enable) {
2920 /* Rx TC/RSS number config */
2921 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2922
2923 /* Rx flow control */
2924 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2925
2926 /* RSS Ring selection */
2927 switch (sc->sc_nqueues) {
2928 case 2:
2929 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2930 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2931 break;
2932 case 4:
2933 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2934 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2935 break;
2936 case 8:
2937 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2938 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2939 break;
2940 }
2941 }
2942
2943 /* L2 and Multicast filters */
2944 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2945 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2946 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2947 RPF_ACTION_HOST);
2948 }
2949 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2950 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2951
2952 /* Vlan filters */
2953 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2954 ETHERTYPE_QINQ);
2955 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2956 ETHERTYPE_VLAN);
2957 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
2958
2959 if (sc->sc_features & FEATURES_REV_B) {
2960 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2961 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2962 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2963 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2964 }
2965
2966 /* misc */
2967 if (sc->sc_features & FEATURES_RPF2)
2968 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2969 else
2970 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2971
2972 /*
2973 * XXX: RX_TCP_RSS_HASH_REG:
2974 * linux set 0x000f0000
2975 * freebsd set 0x000f001e
2976 */
2977 /* RSS hash type set for IP/TCP */
2978 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2979 RX_TCP_RSS_HASH_TYPE, 0x001e);
2980
2981 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2982 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2983 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2984
2985 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2986 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2987 }
2988
2989 static void
2990 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2991 {
2992 int i;
2993
2994 if (sc->sc_intr_moderation_enable) {
2995 unsigned int tx_min, rx_min; /* 0-255 */
2996 unsigned int tx_max, rx_max; /* 0-511? */
2997
2998 switch (sc->sc_link_rate) {
2999 case AQ_LINK_100M:
3000 tx_min = 0x4f;
3001 tx_max = 0xff;
3002 rx_min = 0x04;
3003 rx_max = 0x50;
3004 break;
3005 case AQ_LINK_1G:
3006 default:
3007 tx_min = 0x4f;
3008 tx_max = 0xff;
3009 rx_min = 0x30;
3010 rx_max = 0x80;
3011 break;
3012 case AQ_LINK_2G5:
3013 tx_min = 0x4f;
3014 tx_max = 0xff;
3015 rx_min = 0x18;
3016 rx_max = 0xe0;
3017 break;
3018 case AQ_LINK_5G:
3019 tx_min = 0x4f;
3020 tx_max = 0xff;
3021 rx_min = 0x0c;
3022 rx_max = 0x70;
3023 break;
3024 case AQ_LINK_10G:
3025 tx_min = 0x4f;
3026 tx_max = 0x1ff;
3027 rx_min = 0x06; /* freebsd use 80 */
3028 rx_max = 0x38; /* freebsd use 120 */
3029 break;
3030 }
3031
3032 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3033 TX_DMA_INT_DESC_WRWB_EN, 0);
3034 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3035 TX_DMA_INT_DESC_MODERATE_EN, 1);
3036 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3037 RX_DMA_INT_DESC_WRWB_EN, 0);
3038 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3039 RX_DMA_INT_DESC_MODERATE_EN, 1);
3040
3041 for (i = 0; i < AQ_RINGS_NUM; i++) {
3042 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3043 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3044 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3045 TX_INTR_MODERATION_CTL_EN);
3046 }
3047 for (i = 0; i < AQ_RINGS_NUM; i++) {
3048 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3049 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3050 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3051 RX_INTR_MODERATION_CTL_EN);
3052 }
3053
3054 } else {
3055 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3056 TX_DMA_INT_DESC_WRWB_EN, 1);
3057 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3058 TX_DMA_INT_DESC_MODERATE_EN, 0);
3059 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3060 RX_DMA_INT_DESC_WRWB_EN, 1);
3061 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3062 RX_DMA_INT_DESC_MODERATE_EN, 0);
3063
3064 for (i = 0; i < AQ_RINGS_NUM; i++) {
3065 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3066 }
3067 for (i = 0; i < AQ_RINGS_NUM; i++) {
3068 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3069 }
3070 }
3071 }
3072
3073 static void
3074 aq_hw_qos_set(struct aq_softc *sc)
3075 {
3076 uint32_t tc = 0;
3077 uint32_t buff_size;
3078
3079 /* TPS Descriptor rate init */
3080 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3081 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3082
3083 /* TPS VM init */
3084 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3085
3086 /* TPS TC credits init */
3087 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3088 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3089
3090 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3091 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3092 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3093 TPS_DATA_TCT_WEIGHT, 0x64);
3094 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3095 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3096 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3097 TPS_DESC_TCT_WEIGHT, 0x1e);
3098
3099 /* Tx buf size */
3100 tc = 0;
3101 buff_size = AQ_HW_TXBUF_MAX;
3102 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3103 buff_size);
3104 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3105 (buff_size * (1024 / 32) * 66) / 100);
3106 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3107 (buff_size * (1024 / 32) * 50) / 100);
3108
3109 /* QoS Rx buf size per TC */
3110 tc = 0;
3111 buff_size = AQ_HW_RXBUF_MAX;
3112 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3113 buff_size);
3114 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3115 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3116 (buff_size * (1024 / 32) * 66) / 100);
3117 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3118 (buff_size * (1024 / 32) * 50) / 100);
3119
3120 /* QoS 802.1p priority -> TC mapping */
3121 int i_priority;
3122 for (i_priority = 0; i_priority < 8; i_priority++) {
3123 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3124 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3125 }
3126 }
3127
3128 /* called once from aq_attach */
3129 static int
3130 aq_init_rss(struct aq_softc *sc)
3131 {
3132 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3133 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3134 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3135 unsigned int i;
3136 int error;
3137
3138 /* initialize rss key */
3139 rss_getkey((uint8_t *)rss_key);
3140
3141 /* hash to ring table */
3142 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3143 rss_table[i] = i % sc->sc_nqueues;
3144 }
3145
3146 /*
3147 * set rss key
3148 */
3149 for (i = 0; i < __arraycount(rss_key); i++) {
3150 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3151 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3152 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3153 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3154 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3155 RPF_RSS_KEY_WR_EN, 1);
3156 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3157 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3158 if (error != 0) {
3159 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3160 __func__);
3161 goto rss_set_timeout;
3162 }
3163 }
3164
3165 /*
3166 * set rss indirection table
3167 *
3168 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3169 * we'll make it by __BITMAP(3) macros.
3170 */
3171 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3172 __BITMAP_ZERO(&bit3x64);
3173
3174 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3175 do { \
3176 if (val & 1) { \
3177 __BITMAP_SET((idx) * 3, (bitmap)); \
3178 } else { \
3179 __BITMAP_CLR((idx) * 3, (bitmap)); \
3180 } \
3181 if (val & 2) { \
3182 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3183 } else { \
3184 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3185 } \
3186 if (val & 4) { \
3187 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3188 } else { \
3189 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3190 } \
3191 } while (0 /* CONSTCOND */)
3192
3193 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3194 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3195 }
3196
3197 /* write 192bit data in steps of 16bit */
3198 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3199 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3200 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3201 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3202 RPF_RSS_REDIR_ADDR, i);
3203 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3204 RPF_RSS_REDIR_WR_EN, 1);
3205
3206 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3207 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3208 if (error != 0)
3209 break;
3210 }
3211
3212 rss_set_timeout:
3213 return error;
3214 }
3215
3216 static void
3217 aq_hw_l3_filter_set(struct aq_softc *sc)
3218 {
3219 int i;
3220
3221 /* clear all filter */
3222 for (i = 0; i < 8; i++) {
3223 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3224 RPF_L3_FILTER_L4_EN, 0);
3225 }
3226 }
3227
3228 static void
3229 aq_update_vlan_filters(struct aq_softc *sc)
3230 {
3231 /* XXX: notyet. vlan always promisc */
3232 int i;
3233
3234 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
3235 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3236 RPF_VLAN_FILTER_EN, 0);
3237 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3238 RPF_VLAN_FILTER_RXQ_EN, 0);
3239 }
3240 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
3241 }
3242
3243 static int
3244 aq_hw_init(struct aq_softc *sc)
3245 {
3246 uint32_t v;
3247
3248 /* Force limit MRRS on RDM/TDM to 2K */
3249 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3250 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3251
3252 /*
3253 * TX DMA total request limit. B0 hardware is not capable to
3254 * handle more than (8K-MRRS) incoming DMA data.
3255 * Value 24 in 256byte units
3256 */
3257 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3258
3259 aq_hw_init_tx_path(sc);
3260 aq_hw_init_rx_path(sc);
3261
3262 aq_hw_interrupt_moderation_set(sc);
3263
3264 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3265 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3266
3267 aq_hw_qos_set(sc);
3268
3269 /* Enable interrupt */
3270 int irqmode;
3271 if (sc->sc_msix)
3272 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3273 else
3274 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3275
3276 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3277 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3278 sc->sc_msix ? 1 : 0);
3279 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3280
3281 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3282
3283 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3284 ((AQ_B0_ERR_INT << 24) | (1 << 31)) |
3285 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3286 );
3287
3288 /* link interrupt */
3289 if (!sc->sc_msix)
3290 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3291 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3292 __BIT(7) | sc->sc_linkstat_irq);
3293
3294 return 0;
3295 }
3296
3297 static int
3298 aq_update_link_status(struct aq_softc *sc)
3299 {
3300 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3301 aq_link_speed_t rate = AQ_LINK_NONE;
3302 aq_link_fc_t fc = AQ_FC_NONE;
3303 aq_link_eee_t eee = AQ_EEE_DISABLE;
3304 unsigned int speed;
3305 int changed = 0;
3306
3307 aq_get_linkmode(sc, &rate, &fc, &eee);
3308
3309 if (sc->sc_link_rate != rate)
3310 changed = 1;
3311 if (sc->sc_link_fc != fc)
3312 changed = 1;
3313 if (sc->sc_link_eee != eee)
3314 changed = 1;
3315
3316 if (changed) {
3317 switch (rate) {
3318 case AQ_LINK_100M:
3319 speed = 100;
3320 break;
3321 case AQ_LINK_1G:
3322 speed = 1000;
3323 break;
3324 case AQ_LINK_2G5:
3325 speed = 2500;
3326 break;
3327 case AQ_LINK_5G:
3328 speed = 5000;
3329 break;
3330 case AQ_LINK_10G:
3331 speed = 10000;
3332 break;
3333 case AQ_LINK_NONE:
3334 default:
3335 speed = 0;
3336 break;
3337 }
3338
3339 if (sc->sc_link_rate == AQ_LINK_NONE) {
3340 /* link DOWN -> UP */
3341 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3342 speed);
3343 if_link_state_change(ifp, LINK_STATE_UP);
3344 } else if (rate == AQ_LINK_NONE) {
3345 /* link UP -> DOWN */
3346 device_printf(sc->sc_dev, "link is DOWN\n");
3347 if_link_state_change(ifp, LINK_STATE_DOWN);
3348 } else {
3349 device_printf(sc->sc_dev,
3350 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3351 speed, fc, eee);
3352 }
3353
3354 sc->sc_link_rate = rate;
3355 sc->sc_link_fc = fc;
3356 sc->sc_link_eee = eee;
3357
3358 aq_mediastatus_update(sc);
3359
3360 /* update interrupt timing according to new link speed */
3361 aq_hw_interrupt_moderation_set(sc);
3362 }
3363
3364 return changed;
3365 }
3366
3367 #ifdef AQ_EVENT_COUNTERS
3368 static void
3369 aq_update_statistics(struct aq_softc *sc)
3370 {
3371 int prev = sc->sc_statistics_idx;
3372 int cur = prev ^ 1;
3373
3374 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3375
3376 /*
3377 * aq's internal statistics counter is 32bit.
3378 * cauculate delta, and add to evcount
3379 */
3380 #define ADD_DELTA(cur, prev, name) \
3381 do { \
3382 uint32_t n; \
3383 n = (uint32_t)(sc->sc_statistics[cur].name - \
3384 sc->sc_statistics[prev].name); \
3385 if (n != 0) { \
3386 AQ_EVCNT_ADD(sc, name, n); \
3387 } \
3388 } while (/*CONSTCOND*/0);
3389
3390 ADD_DELTA(cur, prev, uprc);
3391 ADD_DELTA(cur, prev, mprc);
3392 ADD_DELTA(cur, prev, bprc);
3393 ADD_DELTA(cur, prev, prc);
3394 ADD_DELTA(cur, prev, erpr);
3395 ADD_DELTA(cur, prev, uptc);
3396 ADD_DELTA(cur, prev, mptc);
3397 ADD_DELTA(cur, prev, bptc);
3398 ADD_DELTA(cur, prev, ptc);
3399 ADD_DELTA(cur, prev, erpt);
3400 ADD_DELTA(cur, prev, mbtc);
3401 ADD_DELTA(cur, prev, bbtc);
3402 ADD_DELTA(cur, prev, mbrc);
3403 ADD_DELTA(cur, prev, bbrc);
3404 ADD_DELTA(cur, prev, ubrc);
3405 ADD_DELTA(cur, prev, ubtc);
3406 ADD_DELTA(cur, prev, dpc);
3407 ADD_DELTA(cur, prev, cprc);
3408
3409 sc->sc_statistics_idx = cur;
3410 }
3411 #endif /* AQ_EVENT_COUNTERS */
3412
3413 /* allocate and map one DMA block */
3414 static int
3415 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3416 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3417 {
3418 int nsegs, error;
3419
3420 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3421 1, &nsegs, 0)) != 0) {
3422 aprint_error_dev(sc->sc_dev,
3423 "unable to allocate DMA buffer, error=%d\n", error);
3424 goto fail_alloc;
3425 }
3426
3427 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3428 BUS_DMA_COHERENT)) != 0) {
3429 aprint_error_dev(sc->sc_dev,
3430 "unable to map DMA buffer, error=%d\n", error);
3431 goto fail_map;
3432 }
3433
3434 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3435 0, mapp)) != 0) {
3436 aprint_error_dev(sc->sc_dev,
3437 "unable to create DMA map, error=%d\n", error);
3438 goto fail_create;
3439 }
3440
3441 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3442 0)) != 0) {
3443 aprint_error_dev(sc->sc_dev,
3444 "unable to load DMA map, error=%d\n", error);
3445 goto fail_load;
3446 }
3447
3448 *sizep = size;
3449 return 0;
3450
3451 fail_load:
3452 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3453 *mapp = NULL;
3454 fail_create:
3455 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3456 *addrp = NULL;
3457 fail_map:
3458 bus_dmamem_free(sc->sc_dmat, seg, 1);
3459 memset(seg, 0, sizeof(*seg));
3460 fail_alloc:
3461 *sizep = 0;
3462 return error;
3463 }
3464
3465 static void
3466 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3467 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3468 {
3469 if (*mapp != NULL) {
3470 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3471 *mapp = NULL;
3472 }
3473 if (*addrp != NULL) {
3474 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3475 *addrp = NULL;
3476 }
3477 if (*sizep != 0) {
3478 bus_dmamem_free(sc->sc_dmat, seg, 1);
3479 memset(seg, 0, sizeof(*seg));
3480 *sizep = 0;
3481 }
3482 }
3483
3484 static int
3485 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3486 {
3487 int i, error;
3488
3489 /* allocate tx descriptors */
3490 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3491 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3492 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3493 if (error != 0)
3494 return error;
3495
3496 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3497
3498 /* fill tx ring with dmamap */
3499 for (i = 0; i < AQ_TXD_NUM; i++) {
3500 #define AQ_MAXDMASIZE (16 * 1024)
3501 #define AQ_NTXSEGS 32
3502 /* XXX: TODO: error check */
3503 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3504 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3505 }
3506 return 0;
3507 }
3508
3509 static void
3510 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3511 {
3512 int i;
3513
3514 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3515 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3516
3517 for (i = 0; i < AQ_TXD_NUM; i++) {
3518 if (txring->txr_mbufs[i].dmamap != NULL) {
3519 if (txring->txr_mbufs[i].m != NULL) {
3520 bus_dmamap_unload(sc->sc_dmat,
3521 txring->txr_mbufs[i].dmamap);
3522 m_freem(txring->txr_mbufs[i].m);
3523 txring->txr_mbufs[i].m = NULL;
3524 }
3525 bus_dmamap_destroy(sc->sc_dmat,
3526 txring->txr_mbufs[i].dmamap);
3527 txring->txr_mbufs[i].dmamap = NULL;
3528 }
3529 }
3530 }
3531
3532 static int
3533 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3534 {
3535 int i, error;
3536
3537 /* allocate rx descriptors */
3538 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3539 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3540 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3541 if (error != 0)
3542 return error;
3543
3544 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3545
3546 /* fill rxring with dmamaps */
3547 for (i = 0; i < AQ_RXD_NUM; i++) {
3548 rxring->rxr_mbufs[i].m = NULL;
3549 /* XXX: TODO: error check */
3550 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3551 &rxring->rxr_mbufs[i].dmamap);
3552 }
3553 return 0;
3554 }
3555
3556 static void
3557 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3558 {
3559 int i;
3560
3561 /* free all mbufs allocated for RX */
3562 for (i = 0; i < AQ_RXD_NUM; i++) {
3563 if (rxring->rxr_mbufs[i].m != NULL) {
3564 bus_dmamap_unload(sc->sc_dmat,
3565 rxring->rxr_mbufs[i].dmamap);
3566 m_freem(rxring->rxr_mbufs[i].m);
3567 rxring->rxr_mbufs[i].m = NULL;
3568 }
3569 }
3570 }
3571
3572 static void
3573 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3574 {
3575 int i;
3576
3577 /* free all mbufs and dmamaps */
3578 aq_rxdrain(sc, rxring);
3579 for (i = 0; i < AQ_RXD_NUM; i++) {
3580 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3581 bus_dmamap_destroy(sc->sc_dmat,
3582 rxring->rxr_mbufs[i].dmamap);
3583 rxring->rxr_mbufs[i].dmamap = NULL;
3584 }
3585 }
3586
3587 /* free RX descriptor */
3588 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3589 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3590 }
3591
3592 static void
3593 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3594 struct mbuf *m)
3595 {
3596 int error;
3597
3598 /* if mbuf already exists, unload and free */
3599 if (rxring->rxr_mbufs[idx].m != NULL) {
3600 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3601 m_freem(rxring->rxr_mbufs[idx].m);
3602 rxring->rxr_mbufs[idx].m = NULL;
3603 }
3604
3605 rxring->rxr_mbufs[idx].m = m;
3606
3607 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3608 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3609 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3610 if (error) {
3611 device_printf(sc->sc_dev,
3612 "unable to load rx DMA map %d, error = %d\n", idx, error);
3613 panic("%s: unable to load rx DMA map. error=%d",
3614 __func__, error);
3615 }
3616 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3617 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3618 }
3619
3620 static inline void
3621 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3622 {
3623 /* refill rxdesc, and sync */
3624 rxring->rxr_rxdesc[idx].read.buf_addr =
3625 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3626 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3627 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3628 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3629 BUS_DMASYNC_PREWRITE);
3630 }
3631
3632 static struct mbuf *
3633 aq_alloc_mbuf(void)
3634 {
3635 struct mbuf *m;
3636
3637 MGETHDR(m, M_DONTWAIT, MT_DATA);
3638 if (m == NULL)
3639 return NULL;
3640
3641 MCLGET(m, M_DONTWAIT);
3642 if ((m->m_flags & M_EXT) == 0) {
3643 m_freem(m);
3644 return NULL;
3645 }
3646
3647 return m;
3648 }
3649
3650 /* allocate mbuf and unload dmamap */
3651 static int
3652 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3653 {
3654 struct mbuf *m;
3655
3656 m = aq_alloc_mbuf();
3657 if (m == NULL)
3658 return ENOBUFS;
3659
3660 aq_rxring_setmbuf(sc, rxring, idx, m);
3661 return 0;
3662 }
3663
3664 static int
3665 aq_txrx_rings_alloc(struct aq_softc *sc)
3666 {
3667 int n, error;
3668
3669 for (n = 0; n < sc->sc_nqueues; n++) {
3670 sc->sc_queue[n].sc = sc;
3671 sc->sc_queue[n].txring.txr_sc = sc;
3672 sc->sc_queue[n].txring.txr_index = n;
3673 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3674 IPL_NET);
3675 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3676 if (error != 0)
3677 goto failure;
3678
3679 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3680 if (error != 0)
3681 goto failure;
3682
3683 sc->sc_queue[n].rxring.rxr_sc = sc;
3684 sc->sc_queue[n].rxring.rxr_index = n;
3685 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3686 IPL_NET);
3687 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3688 if (error != 0)
3689 break;
3690 }
3691
3692 failure:
3693 return error;
3694 }
3695
3696 static void
3697 aq_txrx_rings_free(struct aq_softc *sc)
3698 {
3699 int n;
3700
3701 for (n = 0; n < sc->sc_nqueues; n++) {
3702 aq_txring_free(sc, &sc->sc_queue[n].txring);
3703 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3704
3705 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3706
3707 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3708 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3709 }
3710 }
3711
3712 static int
3713 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3714 {
3715 int error = 0;
3716 txring->txr_softint = NULL;
3717
3718 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3719 if (txring->txr_pcq == NULL) {
3720 aprint_error_dev(sc->sc_dev,
3721 "unable to allocate pcq for TXring[%d]\n",
3722 txring->txr_index);
3723 error = ENOMEM;
3724 goto done;
3725 }
3726
3727 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3728 aq_deferred_transmit, txring);
3729 if (txring->txr_softint == NULL) {
3730 aprint_error_dev(sc->sc_dev,
3731 "unable to establish softint for TXring[%d]\n",
3732 txring->txr_index);
3733 error = ENOENT;
3734 }
3735
3736 done:
3737 return error;
3738 }
3739
3740 static void
3741 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3742 {
3743 struct mbuf *m;
3744
3745 if (txring->txr_softint != NULL) {
3746 softint_disestablish(txring->txr_softint);
3747 txring->txr_softint = NULL;
3748 }
3749
3750 if (txring->txr_pcq != NULL) {
3751 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3752 m_freem(m);
3753 pcq_destroy(txring->txr_pcq);
3754 txring->txr_pcq = NULL;
3755 }
3756 }
3757
3758 #if NSYSMON_ENVSYS > 0
3759 static void
3760 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3761 {
3762 struct aq_softc *sc;
3763 uint32_t temp;
3764 int error;
3765
3766 sc = sme->sme_cookie;
3767
3768 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3769 if (error == 0) {
3770 edata->value_cur = temp;
3771 edata->state = ENVSYS_SVALID;
3772 } else {
3773 edata->state = ENVSYS_SINVALID;
3774 }
3775 }
3776 #endif
3777
3778 static void
3779 aq_tick(void *arg)
3780 {
3781 struct aq_softc *sc = arg;
3782
3783 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3784 sc->sc_detect_linkstat = false;
3785 aq_update_link_status(sc);
3786 }
3787
3788 #ifdef AQ_EVENT_COUNTERS
3789 if (sc->sc_poll_statistics)
3790 aq_update_statistics(sc);
3791 #endif
3792
3793 if (sc->sc_poll_linkstat
3794 #ifdef AQ_EVENT_COUNTERS
3795 || sc->sc_poll_statistics
3796 #endif
3797 ) {
3798 callout_schedule(&sc->sc_tick_ch, hz);
3799 }
3800 }
3801
3802 /* interrupt enable/disable */
3803 static void
3804 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3805 {
3806 uint32_t imask = 0;
3807 int i;
3808
3809 if (txrx) {
3810 for (i = 0; i < sc->sc_nqueues; i++) {
3811 imask |= __BIT(sc->sc_tx_irq[i]);
3812 imask |= __BIT(sc->sc_rx_irq[i]);
3813 }
3814 }
3815
3816 if (link)
3817 imask |= __BIT(sc->sc_linkstat_irq);
3818
3819 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3820 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3821 }
3822
3823 static int
3824 aq_legacy_intr(void *arg)
3825 {
3826 struct aq_softc *sc = arg;
3827 uint32_t status;
3828 int nintr = 0;
3829
3830 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3831 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3832
3833 if (status & __BIT(sc->sc_linkstat_irq)) {
3834 sc->sc_detect_linkstat = true;
3835 callout_schedule(&sc->sc_tick_ch, 0);
3836 nintr++;
3837 }
3838
3839 if (status & __BIT(sc->sc_rx_irq[0])) {
3840 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3841 }
3842
3843 if (status & __BIT(sc->sc_tx_irq[0])) {
3844 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3845 }
3846
3847 return nintr;
3848 }
3849
3850 static int
3851 aq_txrx_intr(void *arg)
3852 {
3853 struct aq_queue *queue = arg;
3854 struct aq_softc *sc = queue->sc;
3855 struct aq_txring *txring = &queue->txring;
3856 struct aq_rxring *rxring = &queue->rxring;
3857 uint32_t status;
3858 int nintr = 0;
3859 int txringidx, rxringidx, txirq, rxirq;
3860
3861 txringidx = txring->txr_index;
3862 rxringidx = rxring->rxr_index;
3863 txirq = sc->sc_tx_irq[txringidx];
3864 rxirq = sc->sc_rx_irq[rxringidx];
3865
3866 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3867 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3868 /* stray interrupt? */
3869 return 0;
3870 }
3871
3872 nintr += aq_rx_intr(rxring);
3873 nintr += aq_tx_intr(txring);
3874
3875 return nintr;
3876 }
3877
3878 static int
3879 aq_link_intr(void *arg)
3880 {
3881 struct aq_softc *sc = arg;
3882 uint32_t status;
3883 int nintr = 0;
3884
3885 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3886 if (status & __BIT(sc->sc_linkstat_irq)) {
3887 sc->sc_detect_linkstat = true;
3888 callout_schedule(&sc->sc_tick_ch, 0);
3889 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3890 __BIT(sc->sc_linkstat_irq));
3891 nintr++;
3892 }
3893
3894 return nintr;
3895 }
3896
3897 static void
3898 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3899 {
3900 const int ringidx = txring->txr_index;
3901 int i;
3902
3903 mutex_enter(&txring->txr_mutex);
3904
3905 txring->txr_prodidx = 0;
3906 txring->txr_considx = 0;
3907 txring->txr_nfree = AQ_TXD_NUM;
3908 txring->txr_active = false;
3909
3910 /* free mbufs untransmitted */
3911 for (i = 0; i < AQ_TXD_NUM; i++) {
3912 if (txring->txr_mbufs[i].m != NULL) {
3913 m_freem(txring->txr_mbufs[i].m);
3914 txring->txr_mbufs[i].m = NULL;
3915 }
3916 }
3917
3918 /* disable DMA */
3919 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3920
3921 if (start) {
3922 /* TX descriptor physical address */
3923 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3924 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3925 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3926 (uint32_t)((uint64_t)paddr >> 32));
3927
3928 /* TX descriptor size */
3929 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3930 AQ_TXD_NUM / 8);
3931
3932 /* reload TAIL pointer */
3933 txring->txr_prodidx = txring->txr_considx =
3934 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3935 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3936
3937 /* Mapping interrupt vector */
3938 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3939 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3940 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3941 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3942
3943 /* enable DMA */
3944 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3945 TX_DMA_DESC_EN, 1);
3946
3947 const int cpuid = 0; /* XXX? */
3948 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3949 TDM_DCAD_CPUID, cpuid);
3950 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3951 TDM_DCAD_CPUID_EN, 0);
3952
3953 txring->txr_active = true;
3954 }
3955
3956 mutex_exit(&txring->txr_mutex);
3957 }
3958
3959 static int
3960 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3961 {
3962 const int ringidx = rxring->rxr_index;
3963 int i;
3964 int error = 0;
3965
3966 mutex_enter(&rxring->rxr_mutex);
3967 rxring->rxr_active = false;
3968
3969 /* disable DMA */
3970 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3971
3972 /* free all RX mbufs */
3973 aq_rxdrain(sc, rxring);
3974
3975 if (start) {
3976 for (i = 0; i < AQ_RXD_NUM; i++) {
3977 error = aq_rxring_add(sc, rxring, i);
3978 if (error != 0) {
3979 aq_rxdrain(sc, rxring);
3980 return error;
3981 }
3982 aq_rxring_reset_desc(sc, rxring, i);
3983 }
3984
3985 /* RX descriptor physical address */
3986 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
3987 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3988 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3989 (uint32_t)((uint64_t)paddr >> 32));
3990
3991 /* RX descriptor size */
3992 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
3993 AQ_RXD_NUM / 8);
3994
3995 /* maximum receive frame size */
3996 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3997 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
3998 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3999 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4000
4001 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4002 RX_DMA_DESC_HEADER_SPLIT, 0);
4003 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4004 RX_DMA_DESC_VLAN_STRIP,
4005 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4006 1 : 0);
4007
4008 /*
4009 * reload TAIL pointer, and update readidx
4010 * (HEAD pointer cannot write)
4011 */
4012 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4013 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4014 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4015 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4016
4017 /* Rx ring set mode */
4018
4019 /* Mapping interrupt vector */
4020 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4021 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4022 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4023 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4024
4025 const int cpuid = 0; /* XXX? */
4026 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4027 RX_DMA_DCAD_CPUID, cpuid);
4028 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4029 RX_DMA_DCAD_DESC_EN, 0);
4030 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4031 RX_DMA_DCAD_HEADER_EN, 0);
4032 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4033 RX_DMA_DCAD_PAYLOAD_EN, 0);
4034
4035 /* enable DMA. start receiving */
4036 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4037 RX_DMA_DESC_EN, 1);
4038
4039 rxring->rxr_active = true;
4040 }
4041
4042 mutex_exit(&rxring->rxr_mutex);
4043 return error;
4044 }
4045
4046 #define TXRING_NEXTIDX(idx) \
4047 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4048 #define RXRING_NEXTIDX(idx) \
4049 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4050
4051 static int
4052 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4053 {
4054 bus_dmamap_t map;
4055 struct mbuf *m = *mp;
4056 uint32_t ctl1, ctl1_ctx, ctl2;
4057 int idx, i, error;
4058
4059 idx = txring->txr_prodidx;
4060 map = txring->txr_mbufs[idx].dmamap;
4061
4062 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4063 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4064 if (error == EFBIG) {
4065 struct mbuf *n;
4066 n = m_defrag(m, M_DONTWAIT);
4067 if (n == NULL)
4068 return EFBIG;
4069 /* m_defrag() preserve m */
4070 KASSERT(n == m);
4071 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4072 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4073 }
4074 if (error != 0)
4075 return error;
4076
4077 /*
4078 * check spaces of free descriptors.
4079 * +1 is additional descriptor for context (vlan, etc,.)
4080 */
4081 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4082 device_printf(sc->sc_dev,
4083 "TX: not enough descriptors left %d for %d segs\n",
4084 txring->txr_nfree, map->dm_nsegs + 1);
4085 bus_dmamap_unload(sc->sc_dmat, map);
4086 return ENOBUFS;
4087 }
4088
4089 /* sync dma for mbuf */
4090 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4091 BUS_DMASYNC_PREWRITE);
4092
4093 ctl1_ctx = 0;
4094 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4095
4096 if (vlan_has_tag(m)) {
4097 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4098 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4099
4100 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4101 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4102
4103 /* fill context descriptor and forward index */
4104 txring->txr_txdesc[idx].buf_addr = 0;
4105 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4106 txring->txr_txdesc[idx].ctl2 = 0;
4107
4108 idx = TXRING_NEXTIDX(idx);
4109 txring->txr_nfree--;
4110 }
4111
4112 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4113 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4114 if (m->m_pkthdr.csum_flags &
4115 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4116 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4117 }
4118
4119 /* fill descriptor(s) */
4120 for (i = 0; i < map->dm_nsegs; i++) {
4121 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4122 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4123 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4124
4125 if (i == 0) {
4126 /* remember mbuf of these descriptors */
4127 txring->txr_mbufs[idx].m = m;
4128 } else {
4129 txring->txr_mbufs[idx].m = NULL;
4130 }
4131
4132 if (i == map->dm_nsegs - 1) {
4133 /* last segment, mark an EndOfPacket, and cause intr */
4134 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4135 }
4136
4137 txring->txr_txdesc[idx].buf_addr =
4138 htole64(map->dm_segs[i].ds_addr);
4139 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4140 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4141
4142 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4143 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4144 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4145
4146 idx = TXRING_NEXTIDX(idx);
4147 txring->txr_nfree--;
4148 }
4149
4150 txring->txr_prodidx = idx;
4151
4152 return 0;
4153 }
4154
4155 static int
4156 aq_tx_intr(void *arg)
4157 {
4158 struct aq_txring *txring = arg;
4159 struct aq_softc *sc = txring->txr_sc;
4160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4161 struct mbuf *m;
4162 const int ringidx = txring->txr_index;
4163 unsigned int idx, hw_head, n = 0;
4164
4165 mutex_enter(&txring->txr_mutex);
4166
4167 if (!txring->txr_active)
4168 goto tx_intr_done;
4169
4170 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4171 TX_DMA_DESC_HEAD_PTR);
4172 if (hw_head == txring->txr_considx) {
4173 goto tx_intr_done;
4174 }
4175
4176 for (idx = txring->txr_considx; idx != hw_head;
4177 idx = TXRING_NEXTIDX(idx), n++) {
4178
4179 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4180 bus_dmamap_unload(sc->sc_dmat,
4181 txring->txr_mbufs[idx].dmamap);
4182
4183 txring->txr_opackets++;
4184 txring->txr_obytes += m->m_pkthdr.len;
4185 if (m->m_flags & M_MCAST)
4186 txring->txr_omcasts++;
4187
4188 m_freem(m);
4189 txring->txr_mbufs[idx].m = NULL;
4190 }
4191
4192 txring->txr_nfree++;
4193 }
4194 txring->txr_considx = idx;
4195
4196 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4197 ifp->if_flags &= ~IFF_OACTIVE;
4198
4199 /* no more pending TX packet, cancel watchdog */
4200 if (txring->txr_nfree >= AQ_TXD_NUM)
4201 ifp->if_timer = 0;
4202
4203 tx_intr_done:
4204 mutex_exit(&txring->txr_mutex);
4205
4206 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4207 return n;
4208 }
4209
4210 static int
4211 aq_rx_intr(void *arg)
4212 {
4213 struct aq_rxring *rxring = arg;
4214 struct aq_softc *sc = rxring->rxr_sc;
4215 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4216 const int ringidx = rxring->rxr_index;
4217 aq_rx_desc_t *rxd;
4218 struct mbuf *m, *m0, *mprev, *new_m;
4219 uint32_t rxd_type, rxd_hash __unused;
4220 uint16_t rxd_status, rxd_pktlen;
4221 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4222 unsigned int idx, n = 0;
4223
4224 mutex_enter(&rxring->rxr_mutex);
4225
4226 if (!rxring->rxr_active)
4227 goto rx_intr_done;
4228
4229 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4230 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4231 goto rx_intr_done;
4232 }
4233
4234 m0 = mprev = NULL;
4235 for (idx = rxring->rxr_readidx;
4236 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4237 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4238
4239 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4240 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4241 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4242
4243 rxd = &rxring->rxr_rxdesc[idx];
4244 rxd_status = le16toh(rxd->wb.status);
4245
4246 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4247 break; /* not yet done */
4248
4249 rxd_type = le32toh(rxd->wb.type);
4250 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4251 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4252 rxd_hash = le32toh(rxd->wb.rss_hash);
4253 rxd_vlan = le16toh(rxd->wb.vlan);
4254
4255 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4256 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4257 rxring->rxr_ierrors++;
4258 goto rx_next;
4259 }
4260
4261 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4262 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4263 BUS_DMASYNC_POSTREAD);
4264 m = rxring->rxr_mbufs[idx].m;
4265
4266 new_m = aq_alloc_mbuf();
4267 if (new_m == NULL) {
4268 /*
4269 * cannot allocate new mbuf.
4270 * discard this packet, and reuse mbuf for next.
4271 */
4272 rxring->rxr_iqdrops++;
4273 goto rx_next;
4274 }
4275 rxring->rxr_mbufs[idx].m = NULL;
4276 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4277
4278 if (m0 == NULL) {
4279 m0 = m;
4280 } else {
4281 if (m->m_flags & M_PKTHDR)
4282 m_remove_pkthdr(m);
4283 mprev->m_next = m;
4284 }
4285 mprev = m;
4286
4287 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4288 m->m_len = MCLBYTES;
4289 } else {
4290 /* last buffer */
4291 m->m_len = rxd_pktlen % MCLBYTES;
4292 m0->m_pkthdr.len = rxd_pktlen;
4293 /* VLAN offloading */
4294 if ((sc->sc_ethercom.ec_capenable &
4295 ETHERCAP_VLAN_HWTAGGING) &&
4296 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4297 __SHIFTOUT(rxd_type,
4298 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4299 vlan_set_tag(m0, rxd_vlan);
4300 }
4301
4302 /* Checksum offloading */
4303 unsigned int pkttype_eth =
4304 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4305 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4306 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4307 __SHIFTOUT(rxd_type,
4308 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4309 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4310 if (__SHIFTOUT(rxd_status,
4311 RXDESC_STATUS_IPV4_CSUM_NG))
4312 m0->m_pkthdr.csum_flags |=
4313 M_CSUM_IPv4_BAD;
4314 }
4315 #if notyet
4316 /*
4317 * XXX: aq always marks BAD for fragmented packet.
4318 * we should peek L3 header, and ignore cksum flags
4319 * if the packet is fragmented.
4320 */
4321 if (__SHIFTOUT(rxd_type,
4322 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4323 bool checked = false;
4324 unsigned int pkttype_proto =
4325 __SHIFTOUT(rxd_type,
4326 RXDESC_TYPE_PKTTYPE_PROTO);
4327
4328 if (pkttype_proto ==
4329 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4330 if ((pkttype_eth ==
4331 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4332 (ifp->if_capabilities &
4333 IFCAP_CSUM_TCPv4_Rx)) {
4334 m0->m_pkthdr.csum_flags |=
4335 M_CSUM_TCPv4;
4336 checked = true;
4337 } else if ((pkttype_eth ==
4338 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4339 (ifp->if_capabilities &
4340 IFCAP_CSUM_TCPv6_Rx)) {
4341 m0->m_pkthdr.csum_flags |=
4342 M_CSUM_TCPv6;
4343 checked = true;
4344 }
4345 } else if (pkttype_proto ==
4346 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4347 if ((pkttype_eth ==
4348 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4349 (ifp->if_capabilities &
4350 IFCAP_CSUM_UDPv4_Rx)) {
4351 m0->m_pkthdr.csum_flags |=
4352 M_CSUM_UDPv4;
4353 checked = true;
4354 } else if ((pkttype_eth ==
4355 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4356 (ifp->if_capabilities &
4357 IFCAP_CSUM_UDPv6_Rx)) {
4358 m0->m_pkthdr.csum_flags |=
4359 M_CSUM_UDPv6;
4360 checked = true;
4361 }
4362 }
4363 if (checked &&
4364 (__SHIFTOUT(rxd_status,
4365 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4366 !__SHIFTOUT(rxd_status,
4367 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4368 m0->m_pkthdr.csum_flags |=
4369 M_CSUM_TCP_UDP_BAD;
4370 }
4371 }
4372 #endif
4373 m_set_rcvif(m0, ifp);
4374 rxring->rxr_ipackets++;
4375 rxring->rxr_ibytes += m0->m_pkthdr.len;
4376 if_percpuq_enqueue(ifp->if_percpuq, m0);
4377 m0 = mprev = NULL;
4378 }
4379
4380 rx_next:
4381 aq_rxring_reset_desc(sc, rxring, idx);
4382 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4383 }
4384 rxring->rxr_readidx = idx;
4385
4386 rx_intr_done:
4387 mutex_exit(&rxring->rxr_mutex);
4388
4389 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4390 return n;
4391 }
4392
4393 static int
4394 aq_ifflags_cb(struct ethercom *ec)
4395 {
4396 struct ifnet *ifp = &ec->ec_if;
4397 struct aq_softc *sc = ifp->if_softc;
4398 int i, ecchange, error = 0;
4399 unsigned short iffchange;
4400
4401 AQ_LOCK(sc);
4402
4403 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4404 if ((iffchange & IFF_PROMISC) != 0)
4405 error = aq_set_filter(sc);
4406
4407 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4408 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4409 for (i = 0; i < AQ_RINGS_NUM; i++) {
4410 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4411 RX_DMA_DESC_VLAN_STRIP,
4412 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4413 1 : 0);
4414 }
4415 }
4416
4417 sc->sc_ec_capenable = ec->ec_capenable;
4418 sc->sc_if_flags = ifp->if_flags;
4419
4420 AQ_UNLOCK(sc);
4421
4422 return error;
4423 }
4424
4425 static int
4426 aq_init(struct ifnet *ifp)
4427 {
4428 struct aq_softc *sc = ifp->if_softc;
4429 int i, error = 0;
4430
4431 AQ_LOCK(sc);
4432
4433 aq_update_vlan_filters(sc);
4434 aq_set_capability(sc);
4435
4436 for (i = 0; i < sc->sc_nqueues; i++) {
4437 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4438 }
4439
4440 /* invalidate RX descriptor cache */
4441 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4442 AQ_READ_REG_BIT(sc,
4443 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4444
4445 /* start RX */
4446 for (i = 0; i < sc->sc_nqueues; i++) {
4447 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4448 if (error != 0) {
4449 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4450 __func__);
4451 goto aq_init_failure;
4452 }
4453 }
4454 aq_init_rss(sc);
4455 aq_hw_l3_filter_set(sc);
4456
4457 /* need to start callout? */
4458 if (sc->sc_poll_linkstat
4459 #ifdef AQ_EVENT_COUNTERS
4460 || sc->sc_poll_statistics
4461 #endif
4462 ) {
4463 callout_schedule(&sc->sc_tick_ch, hz);
4464 }
4465
4466 /* ready */
4467 ifp->if_flags |= IFF_RUNNING;
4468 ifp->if_flags &= ~IFF_OACTIVE;
4469
4470 /* start TX and RX */
4471 aq_enable_intr(sc, true, true);
4472 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4473 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4474
4475 aq_init_failure:
4476 sc->sc_if_flags = ifp->if_flags;
4477
4478 AQ_UNLOCK(sc);
4479
4480 return error;
4481 }
4482
4483 static void
4484 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4485 struct aq_txring *txring, bool is_transmit)
4486 {
4487 struct mbuf *m;
4488 int npkt, error;
4489
4490 if ((ifp->if_flags & IFF_RUNNING) == 0)
4491 return;
4492
4493 for (npkt = 0; ; npkt++) {
4494 if (is_transmit)
4495 m = pcq_peek(txring->txr_pcq);
4496 else
4497 IFQ_POLL(&ifp->if_snd, m);
4498
4499 if (m == NULL)
4500 break;
4501
4502 if (txring->txr_nfree < AQ_TXD_MIN)
4503 break;
4504
4505 if (is_transmit)
4506 pcq_get(txring->txr_pcq);
4507 else
4508 IFQ_DEQUEUE(&ifp->if_snd, m);
4509
4510 error = aq_encap_txring(sc, txring, &m);
4511 if (error != 0) {
4512 /* too many mbuf chains? or not enough descriptors? */
4513 m_freem(m);
4514 txring->txr_oerrors++;
4515 if (txring->txr_index == 0 && error == ENOBUFS)
4516 ifp->if_flags |= IFF_OACTIVE;
4517 break;
4518 }
4519
4520 /* update tail ptr */
4521 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4522 txring->txr_prodidx);
4523
4524 /* Pass the packet to any BPF listeners */
4525 bpf_mtap(ifp, m, BPF_D_OUT);
4526 }
4527
4528 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4529 ifp->if_flags |= IFF_OACTIVE;
4530
4531 if (npkt)
4532 ifp->if_timer = 5;
4533 }
4534
4535 static void
4536 aq_start(struct ifnet *ifp)
4537 {
4538 struct aq_softc *sc;
4539 struct aq_txring *txring;
4540
4541 sc = ifp->if_softc;
4542 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4543
4544 mutex_enter(&txring->txr_mutex);
4545 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4546 aq_send_common_locked(ifp, sc, txring, false);
4547 mutex_exit(&txring->txr_mutex);
4548 }
4549
4550 static inline unsigned int
4551 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4552 {
4553 return (cpu_index(curcpu()) % sc->sc_nqueues);
4554 }
4555
4556 static int
4557 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4558 {
4559 struct aq_softc *sc = ifp->if_softc;
4560 struct aq_txring *txring;
4561 int ringidx;
4562
4563 ringidx = aq_select_txqueue(sc, m);
4564 txring = &sc->sc_queue[ringidx].txring;
4565
4566 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4567 m_freem(m);
4568 return ENOBUFS;
4569 }
4570
4571 if (mutex_tryenter(&txring->txr_mutex)) {
4572 aq_send_common_locked(ifp, sc, txring, true);
4573 mutex_exit(&txring->txr_mutex);
4574 } else {
4575 softint_schedule(txring->txr_softint);
4576 }
4577 return 0;
4578 }
4579
4580 static void
4581 aq_deferred_transmit(void *arg)
4582 {
4583 struct aq_txring *txring = arg;
4584 struct aq_softc *sc = txring->txr_sc;
4585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4586
4587 mutex_enter(&txring->txr_mutex);
4588 if (pcq_peek(txring->txr_pcq) != NULL)
4589 aq_send_common_locked(ifp, sc, txring, true);
4590 mutex_exit(&txring->txr_mutex);
4591 }
4592
4593 static void
4594 aq_stop(struct ifnet *ifp, int disable)
4595 {
4596 struct aq_softc *sc = ifp->if_softc;
4597 int i;
4598
4599 AQ_LOCK(sc);
4600
4601 ifp->if_timer = 0;
4602
4603 /* disable tx/rx interrupts */
4604 aq_enable_intr(sc, true, false);
4605
4606 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4607 for (i = 0; i < sc->sc_nqueues; i++) {
4608 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4609 }
4610
4611 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4612 for (i = 0; i < sc->sc_nqueues; i++) {
4613 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4614 }
4615
4616 /* invalidate RX descriptor cache */
4617 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4618 AQ_READ_REG_BIT(sc,
4619 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4620
4621 ifp->if_timer = 0;
4622
4623 if (!disable) {
4624 /* when pmf stop, disable link status intr and callout */
4625 aq_enable_intr(sc, false, false);
4626 callout_stop(&sc->sc_tick_ch);
4627 }
4628
4629 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4630
4631 AQ_UNLOCK(sc);
4632 }
4633
4634 static void
4635 aq_watchdog(struct ifnet *ifp)
4636 {
4637 struct aq_softc *sc = ifp->if_softc;
4638 struct aq_txring *txring;
4639 int n, head, tail;
4640
4641 AQ_LOCK(sc);
4642
4643 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4644 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4645 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4646
4647 for (n = 0; n < sc->sc_nqueues; n++) {
4648 txring = &sc->sc_queue[n].txring;
4649 head = AQ_READ_REG_BIT(sc,
4650 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4651 TX_DMA_DESC_HEAD_PTR),
4652 tail = AQ_READ_REG(sc,
4653 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4654
4655 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4656 __func__, txring->txr_index, head, tail);
4657
4658 aq_tx_intr(txring);
4659 }
4660
4661 AQ_UNLOCK(sc);
4662
4663 aq_init(ifp);
4664 }
4665
4666 static int
4667 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4668 {
4669 struct aq_softc *sc __unused;
4670 struct ifreq *ifr __unused;
4671 uint64_t opackets, oerrors, obytes, omcasts;
4672 uint64_t ipackets, ierrors, ibytes, iqdrops;
4673 int error, i, s;
4674
4675 sc = (struct aq_softc *)ifp->if_softc;
4676 ifr = (struct ifreq *)data;
4677 error = 0;
4678
4679 switch (cmd) {
4680 case SIOCGIFDATA:
4681 case SIOCZIFDATA:
4682 opackets = oerrors = obytes = omcasts = 0;
4683 ipackets = ierrors = ibytes = iqdrops = 0;
4684 for (i = 0; i < sc->sc_nqueues; i++) {
4685 struct aq_txring *txring = &sc->sc_queue[i].txring;
4686 mutex_enter(&txring->txr_mutex);
4687 if (cmd == SIOCZIFDATA) {
4688 txring->txr_opackets = 0;
4689 txring->txr_obytes = 0;
4690 txring->txr_omcasts = 0;
4691 txring->txr_oerrors = 0;
4692 } else {
4693 opackets += txring->txr_opackets;
4694 oerrors += txring->txr_oerrors;
4695 obytes += txring->txr_obytes;
4696 omcasts += txring->txr_omcasts;
4697 }
4698 mutex_exit(&txring->txr_mutex);
4699
4700 struct aq_rxring *rxring = &sc->sc_queue[i].rxring;
4701 mutex_enter(&rxring->rxr_mutex);
4702 if (cmd == SIOCZIFDATA) {
4703 rxring->rxr_ipackets = 0;
4704 rxring->rxr_ibytes = 0;
4705 rxring->rxr_ierrors = 0;
4706 rxring->rxr_iqdrops = 0;
4707 } else {
4708 ipackets += rxring->rxr_ipackets;
4709 ierrors += rxring->rxr_ierrors;
4710 ibytes += rxring->rxr_ibytes;
4711 iqdrops += rxring->rxr_iqdrops;
4712 }
4713 mutex_exit(&rxring->rxr_mutex);
4714 }
4715 ifp->if_opackets = opackets;
4716 ifp->if_oerrors = oerrors;
4717 ifp->if_obytes = obytes;
4718 ifp->if_omcasts = omcasts;
4719 ifp->if_ipackets = ipackets;
4720 ifp->if_ierrors = ierrors;
4721 ifp->if_ibytes = ibytes;
4722 ifp->if_iqdrops = iqdrops;
4723 break;
4724 }
4725
4726 s = splnet();
4727 error = ether_ioctl(ifp, cmd, data);
4728 splx(s);
4729
4730 if (error != ENETRESET)
4731 return error;
4732
4733 switch (cmd) {
4734 case SIOCSIFCAP:
4735 error = aq_set_capability(sc);
4736 break;
4737 case SIOCADDMULTI:
4738 case SIOCDELMULTI:
4739 if ((ifp->if_flags & IFF_RUNNING) == 0)
4740 break;
4741
4742 /*
4743 * Multicast list has changed; set the hardware filter
4744 * accordingly.
4745 */
4746 error = aq_set_filter(sc);
4747 break;
4748 }
4749
4750 return error;
4751 }
4752
4753
4754 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4755
4756 #ifdef _MODULE
4757 #include "ioconf.c"
4758 #endif
4759
4760 static int
4761 if_aq_modcmd(modcmd_t cmd, void *opaque)
4762 {
4763 int error = 0;
4764
4765 switch (cmd) {
4766 case MODULE_CMD_INIT:
4767 #ifdef _MODULE
4768 error = config_init_component(cfdriver_ioconf_if_aq,
4769 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4770 #endif
4771 return error;
4772 case MODULE_CMD_FINI:
4773 #ifdef _MODULE
4774 error = config_fini_component(cfdriver_ioconf_if_aq,
4775 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4776 #endif
4777 return error;
4778 default:
4779 return ENOTTY;
4780 }
4781 }
4782