if_aq.c revision 1.40 1 /* $NetBSD: if_aq.c,v 1.40 2023/01/14 13:16:27 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.40 2023/01/14 13:16:27 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not supported */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857 bool txr_stopping;
858 bool txr_sending;
859 time_t txr_lastsent;
860
861 pcq_t *txr_pcq;
862 void *txr_softint;
863
864 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
865 bus_dmamap_t txr_txdesc_dmamap;
866 bus_dma_segment_t txr_txdesc_seg[1];
867 bus_size_t txr_txdesc_size;
868
869 struct {
870 struct mbuf *m;
871 bus_dmamap_t dmamap;
872 } txr_mbufs[AQ_TXD_NUM];
873 unsigned int txr_prodidx;
874 unsigned int txr_considx;
875 int txr_nfree;
876 };
877
878 struct aq_rxring {
879 struct aq_softc *rxr_sc;
880 int rxr_index;
881 kmutex_t rxr_mutex;
882 bool rxr_active;
883 bool rxr_discarding;
884 bool rxr_stopping;
885 struct mbuf *rxr_receiving_m; /* receiving jumboframe */
886 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */
887
888 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
889 bus_dmamap_t rxr_rxdesc_dmamap;
890 bus_dma_segment_t rxr_rxdesc_seg[1];
891 bus_size_t rxr_rxdesc_size;
892 struct {
893 struct mbuf *m;
894 bus_dmamap_t dmamap;
895 } rxr_mbufs[AQ_RXD_NUM];
896 unsigned int rxr_readidx;
897 };
898
899 struct aq_queue {
900 struct aq_softc *sc;
901 struct aq_txring txring;
902 struct aq_rxring rxring;
903 };
904
905 struct aq_softc;
906 struct aq_firmware_ops {
907 int (*reset)(struct aq_softc *);
908 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
909 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
910 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
911 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
912 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
913 #if NSYSMON_ENVSYS > 0
914 int (*get_temperature)(struct aq_softc *, uint32_t *);
915 #endif
916 };
917
918 #ifdef AQ_EVENT_COUNTERS
919 #define AQ_EVCNT_DECL(name) \
920 char sc_evcount_##name##_name[32]; \
921 struct evcnt sc_evcount_##name##_ev;
922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
923 do { \
924 snprintf((sc)->sc_evcount_##name##_name, \
925 sizeof((sc)->sc_evcount_##name##_name), \
926 "%s", desc); \
927 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
928 (evtype), NULL, device_xname((sc)->sc_dev), \
929 (sc)->sc_evcount_##name##_name); \
930 } while (/*CONSTCOND*/0)
931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
932 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
933 #define AQ_EVCNT_DETACH(sc, name) \
934 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
935 #define AQ_EVCNT_ADD(sc, name, val) \
936 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
937 #endif /* AQ_EVENT_COUNTERS */
938
939 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
940 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
941 #define AQ_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mutex));
942
943 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
944 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
945 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
946 #define AQ_MPI_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mpi_mutex));
947
948
949 struct aq_softc {
950 device_t sc_dev;
951
952 bus_space_tag_t sc_iot;
953 bus_space_handle_t sc_ioh;
954 bus_size_t sc_iosize;
955 bus_dma_tag_t sc_dmat;
956
957 void *sc_ihs[AQ_NINTR_MAX];
958 pci_intr_handle_t *sc_intrs;
959
960 int sc_tx_irq[AQ_RSSQUEUE_MAX];
961 int sc_rx_irq[AQ_RSSQUEUE_MAX];
962 int sc_linkstat_irq;
963 bool sc_use_txrx_independent_intr;
964 bool sc_poll_linkstat;
965 bool sc_detect_linkstat;
966
967 #if NSYSMON_ENVSYS > 0
968 struct sysmon_envsys *sc_sme;
969 envsys_data_t sc_sensor_temp;
970 #endif
971
972 callout_t sc_tick_ch;
973
974 int sc_nintrs;
975 bool sc_msix;
976
977 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
978 int sc_nqueues;
979
980 pci_chipset_tag_t sc_pc;
981 pcitag_t sc_pcitag;
982 uint16_t sc_product;
983 uint16_t sc_revision;
984
985 kmutex_t sc_mutex;
986 kmutex_t sc_mpi_mutex;
987
988 const struct aq_firmware_ops *sc_fw_ops;
989 uint64_t sc_fw_caps;
990 enum aq_media_type sc_media_type;
991 aq_link_speed_t sc_available_rates;
992
993 aq_link_speed_t sc_link_rate;
994 aq_link_fc_t sc_link_fc;
995 aq_link_eee_t sc_link_eee;
996
997 uint32_t sc_fw_version;
998 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
999 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
1000 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
1001 uint32_t sc_features;
1002 #define FEATURES_MIPS 0x00000001
1003 #define FEATURES_TPO2 0x00000002
1004 #define FEATURES_RPF2 0x00000004
1005 #define FEATURES_MPI_AQ 0x00000008
1006 #define FEATURES_REV_A0 0x10000000
1007 #define FEATURES_REV_A (FEATURES_REV_A0)
1008 #define FEATURES_REV_B0 0x20000000
1009 #define FEATURES_REV_B1 0x40000000
1010 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1011 int sc_max_mtu;
1012 uint32_t sc_mbox_addr;
1013
1014 bool sc_rbl_enabled;
1015 bool sc_fast_start_enabled;
1016 bool sc_flash_present;
1017
1018 bool sc_intr_moderation_enable;
1019 bool sc_rss_enable;
1020
1021 struct ethercom sc_ethercom;
1022 struct ether_addr sc_enaddr;
1023 struct ifmedia sc_media;
1024 int sc_ec_capenable; /* last ec_capenable */
1025 unsigned short sc_if_flags; /* last if_flags */
1026
1027 bool sc_tx_sending;
1028 bool sc_stopping;
1029
1030 struct workqueue *sc_reset_wq;
1031 struct work sc_reset_work;
1032 volatile unsigned sc_reset_pending;
1033
1034 bool sc_trigger_reset;
1035
1036 #ifdef AQ_EVENT_COUNTERS
1037 aq_hw_stats_s_t sc_statistics[2];
1038 int sc_statistics_idx;
1039 bool sc_poll_statistics;
1040
1041 AQ_EVCNT_DECL(uprc);
1042 AQ_EVCNT_DECL(mprc);
1043 AQ_EVCNT_DECL(bprc);
1044 AQ_EVCNT_DECL(erpt);
1045 AQ_EVCNT_DECL(uptc);
1046 AQ_EVCNT_DECL(mptc);
1047 AQ_EVCNT_DECL(bptc);
1048 AQ_EVCNT_DECL(erpr);
1049 AQ_EVCNT_DECL(mbtc);
1050 AQ_EVCNT_DECL(bbtc);
1051 AQ_EVCNT_DECL(mbrc);
1052 AQ_EVCNT_DECL(bbrc);
1053 AQ_EVCNT_DECL(ubrc);
1054 AQ_EVCNT_DECL(ubtc);
1055 AQ_EVCNT_DECL(ptc);
1056 AQ_EVCNT_DECL(prc);
1057 AQ_EVCNT_DECL(dpc);
1058 AQ_EVCNT_DECL(cprc);
1059 #endif
1060 };
1061
1062 static int aq_match(device_t, cfdata_t, void *);
1063 static void aq_attach(device_t, device_t, void *);
1064 static int aq_detach(device_t, int);
1065
1066 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1067 bool, bool);
1068 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1069 pci_intr_type_t);
1070 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1071
1072 static int aq_ifmedia_change(struct ifnet * const);
1073 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1074 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1075 static int aq_ifflags_cb(struct ethercom *);
1076 static int aq_init(struct ifnet *);
1077 static int aq_init_locked(struct ifnet *);
1078 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1079 struct aq_txring *, bool);
1080 static int aq_transmit(struct ifnet *, struct mbuf *);
1081 static void aq_deferred_transmit(void *);
1082 static void aq_start(struct ifnet *);
1083 static void aq_stop(struct ifnet *, int);
1084 static void aq_stop_locked(struct ifnet *, bool);
1085 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1086
1087 static int aq_txrx_rings_alloc(struct aq_softc *);
1088 static void aq_txrx_rings_free(struct aq_softc *);
1089 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1090 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1091
1092 static void aq_initmedia(struct aq_softc *);
1093 static void aq_enable_intr(struct aq_softc *, bool, bool);
1094
1095 static void aq_handle_reset_work(struct work *, void *);
1096 static void aq_unset_stopping_flags(struct aq_softc *);
1097 static void aq_set_stopping_flags(struct aq_softc *);
1098
1099 #if NSYSMON_ENVSYS > 0
1100 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1101 #endif
1102 static void aq_tick(void *);
1103 static int aq_legacy_intr(void *);
1104 static int aq_link_intr(void *);
1105 static int aq_txrx_intr(void *);
1106 static int aq_tx_intr(void *);
1107 static int aq_rx_intr(void *);
1108
1109 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1110 aq_link_eee_t);
1111 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1112 aq_link_eee_t *);
1113
1114 static int aq_fw_reset(struct aq_softc *);
1115 static int aq_fw_version_init(struct aq_softc *);
1116 static int aq_hw_init(struct aq_softc *);
1117 static int aq_hw_init_ucp(struct aq_softc *);
1118 static int aq_hw_reset(struct aq_softc *);
1119 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1120 uint32_t);
1121 static int aq_get_mac_addr(struct aq_softc *);
1122 static int aq_init_rss(struct aq_softc *);
1123 static int aq_set_capability(struct aq_softc *);
1124
1125 static int fw1x_reset(struct aq_softc *);
1126 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1127 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1128 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1129 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1130 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1131
1132 static int fw2x_reset(struct aq_softc *);
1133 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1134 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1135 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1136 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1137 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1138 #if NSYSMON_ENVSYS > 0
1139 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1140 #endif
1141
1142 #ifndef AQ_WATCHDOG_TIMEOUT
1143 #define AQ_WATCHDOG_TIMEOUT 5
1144 #endif
1145 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT;
1146
1147
1148 static const struct aq_firmware_ops aq_fw1x_ops = {
1149 .reset = fw1x_reset,
1150 .set_mode = fw1x_set_mode,
1151 .get_mode = fw1x_get_mode,
1152 .get_stats = fw1x_get_stats,
1153 #if NSYSMON_ENVSYS > 0
1154 .get_temperature = NULL
1155 #endif
1156 };
1157
1158 static const struct aq_firmware_ops aq_fw2x_ops = {
1159 .reset = fw2x_reset,
1160 .set_mode = fw2x_set_mode,
1161 .get_mode = fw2x_get_mode,
1162 .get_stats = fw2x_get_stats,
1163 #if NSYSMON_ENVSYS > 0
1164 .get_temperature = fw2x_get_temperature
1165 #endif
1166 };
1167
1168 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1169 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1170
1171 static const struct aq_product {
1172 pci_vendor_id_t aq_vendor;
1173 pci_product_id_t aq_product;
1174 const char *aq_name;
1175 enum aq_media_type aq_media_type;
1176 aq_link_speed_t aq_available_rates;
1177 } aq_products[] = {
1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1179 "Aquantia AQC100 10 Gigabit Network Adapter",
1180 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1181 },
1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1183 "Aquantia AQC107 10 Gigabit Network Adapter",
1184 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1185 },
1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1187 "Aquantia AQC108 5 Gigabit Network Adapter",
1188 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1189 },
1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1191 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1193 },
1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1195 "Aquantia AQC111 5 Gigabit Network Adapter",
1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1197 },
1198 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1199 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1200 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1201 },
1202 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1203 "Aquantia AQC100S 10 Gigabit Network Adapter",
1204 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1205 },
1206 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1207 "Aquantia AQC107S 10 Gigabit Network Adapter",
1208 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1209 },
1210 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1211 "Aquantia AQC108S 5 Gigabit Network Adapter",
1212 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1213 },
1214 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1215 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1216 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1217 },
1218 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1219 "Aquantia AQC111S 5 Gigabit Network Adapter",
1220 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1221 },
1222 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1223 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1224 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1225 },
1226 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1227 "Aquantia D100 10 Gigabit Network Adapter",
1228 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1229 },
1230 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1231 "Aquantia D107 10 Gigabit Network Adapter",
1232 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1233 },
1234 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1235 "Aquantia D108 5 Gigabit Network Adapter",
1236 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1237 },
1238 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1239 "Aquantia D109 2.5 Gigabit Network Adapter",
1240 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1241 }
1242 };
1243
1244 static const struct aq_product *
1245 aq_lookup(const struct pci_attach_args *pa)
1246 {
1247 unsigned int i;
1248
1249 for (i = 0; i < __arraycount(aq_products); i++) {
1250 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1251 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1252 return &aq_products[i];
1253 }
1254 return NULL;
1255 }
1256
1257 static int
1258 aq_match(device_t parent, cfdata_t cf, void *aux)
1259 {
1260 struct pci_attach_args * const pa = aux;
1261
1262 if (aq_lookup(pa) != NULL)
1263 return 1;
1264
1265 return 0;
1266 }
1267
1268 static void
1269 aq_attach(device_t parent, device_t self, void *aux)
1270 {
1271 struct aq_softc * const sc = device_private(self);
1272 struct pci_attach_args * const pa = aux;
1273 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1274 pci_chipset_tag_t pc;
1275 pcitag_t tag;
1276 pcireg_t command, memtype, bar;
1277 const struct aq_product *aqp;
1278 int error;
1279
1280 sc->sc_dev = self;
1281 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1282 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1283
1284 sc->sc_pc = pc = pa->pa_pc;
1285 sc->sc_pcitag = tag = pa->pa_tag;
1286 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1287
1288 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1289 command |= PCI_COMMAND_MASTER_ENABLE;
1290 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1291
1292 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1293 sc->sc_revision = PCI_REVISION(pa->pa_class);
1294
1295 aqp = aq_lookup(pa);
1296 KASSERT(aqp != NULL);
1297
1298 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1299
1300 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1301 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1302 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1303 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1304 return;
1305 }
1306 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1307 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1308 NULL, &sc->sc_iosize) != 0) {
1309 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1310 return;
1311 }
1312
1313 error = aq_fw_reset(sc);
1314 if (error != 0)
1315 goto attach_failure;
1316
1317 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1318
1319 /* max queue num is 8, and must be 2^n */
1320 if (ncpu >= 8)
1321 sc->sc_nqueues = 8;
1322 else if (ncpu >= 4)
1323 sc->sc_nqueues = 4;
1324 else if (ncpu >= 2)
1325 sc->sc_nqueues = 2;
1326 else
1327 sc->sc_nqueues = 1;
1328
1329 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1330 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1331 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1332 /* TX intrs + RX intrs + LINKSTAT intrs */
1333 sc->sc_use_txrx_independent_intr = true;
1334 sc->sc_poll_linkstat = false;
1335 sc->sc_msix = true;
1336 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1337 /* TX intrs + RX intrs */
1338 sc->sc_use_txrx_independent_intr = true;
1339 sc->sc_poll_linkstat = true;
1340 sc->sc_msix = true;
1341 } else
1342 #endif
1343 if (msixcount >= (sc->sc_nqueues + 1)) {
1344 /* TX/RX intrs LINKSTAT intrs */
1345 sc->sc_use_txrx_independent_intr = false;
1346 sc->sc_poll_linkstat = false;
1347 sc->sc_msix = true;
1348 } else if (msixcount >= sc->sc_nqueues) {
1349 /* TX/RX intrs */
1350 sc->sc_use_txrx_independent_intr = false;
1351 sc->sc_poll_linkstat = true;
1352 sc->sc_msix = true;
1353 } else {
1354 /* giving up using MSI-X */
1355 sc->sc_msix = false;
1356 }
1357
1358 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1359 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1360 FW_VERSION_MAJOR(sc) == 1)
1361 sc->sc_poll_linkstat = true;
1362
1363 #ifdef AQ_FORCE_POLL_LINKSTAT
1364 sc->sc_poll_linkstat = true;
1365 #endif
1366
1367 aprint_debug_dev(sc->sc_dev,
1368 "ncpu=%d, pci_msix_count=%d."
1369 " allocate %d interrupts for %d%s queues%s\n",
1370 ncpu, msixcount,
1371 (sc->sc_use_txrx_independent_intr ?
1372 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1373 (sc->sc_poll_linkstat ? 0 : 1),
1374 sc->sc_nqueues,
1375 sc->sc_use_txrx_independent_intr ? "*2" : "",
1376 sc->sc_poll_linkstat ? "" : ", and link status");
1377
1378 if (sc->sc_msix)
1379 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1380 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1381 else
1382 error = ENODEV;
1383
1384 if (error != 0) {
1385 /* if MSI-X failed, fallback to MSI with single queue */
1386 sc->sc_use_txrx_independent_intr = false;
1387 sc->sc_poll_linkstat = false;
1388 sc->sc_msix = false;
1389 sc->sc_nqueues = 1;
1390 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1391 }
1392 if (error != 0) {
1393 /* if MSI failed, fallback to INTx */
1394 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1395 }
1396 if (error != 0)
1397 goto attach_failure;
1398
1399 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
1400 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1401
1402 char wqname[MAXCOMLEN];
1403 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
1404 error = workqueue_create(&sc->sc_reset_wq, wqname,
1405 aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK,
1406 WQ_MPSAFE);
1407 if (error) {
1408 aprint_error_dev(sc->sc_dev,
1409 "unable to create reset workqueue\n");
1410 goto attach_failure;
1411 }
1412
1413 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1414
1415 if (sc->sc_msix && (sc->sc_nqueues > 1))
1416 sc->sc_rss_enable = true;
1417 else
1418 sc->sc_rss_enable = false;
1419
1420 error = aq_txrx_rings_alloc(sc);
1421 if (error != 0)
1422 goto attach_failure;
1423
1424 error = aq_fw_version_init(sc);
1425 if (error != 0)
1426 goto attach_failure;
1427
1428 error = aq_hw_init_ucp(sc);
1429 if (error < 0)
1430 goto attach_failure;
1431
1432 KASSERT(sc->sc_mbox_addr != 0);
1433 error = aq_hw_reset(sc);
1434 if (error != 0)
1435 goto attach_failure;
1436
1437 aq_get_mac_addr(sc);
1438 aq_init_rss(sc);
1439
1440 error = aq_hw_init(sc); /* initialize and interrupts */
1441 if (error != 0)
1442 goto attach_failure;
1443
1444 sc->sc_media_type = aqp->aq_media_type;
1445 sc->sc_available_rates = aqp->aq_available_rates;
1446
1447 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1448 ifmedia_init(&sc->sc_media, IFM_IMASK,
1449 aq_ifmedia_change, aq_ifmedia_status);
1450 aq_initmedia(sc);
1451
1452 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1453 ifp->if_softc = sc;
1454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1455 ifp->if_extflags = IFEF_MPSAFE;
1456 ifp->if_baudrate = IF_Gbps(10);
1457 ifp->if_init = aq_init;
1458 ifp->if_ioctl = aq_ioctl;
1459 if (sc->sc_msix && (sc->sc_nqueues > 1))
1460 ifp->if_transmit = aq_transmit;
1461 ifp->if_start = aq_start;
1462 ifp->if_stop = aq_stop;
1463 ifp->if_watchdog = NULL;
1464 IFQ_SET_READY(&ifp->if_snd);
1465
1466 /* initialize capabilities */
1467 sc->sc_ethercom.ec_capabilities = 0;
1468 sc->sc_ethercom.ec_capenable = 0;
1469 #if notyet
1470 /* TODO */
1471 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1472 #endif
1473 sc->sc_ethercom.ec_capabilities |=
1474 ETHERCAP_JUMBO_MTU |
1475 ETHERCAP_VLAN_MTU |
1476 ETHERCAP_VLAN_HWTAGGING |
1477 ETHERCAP_VLAN_HWFILTER;
1478 sc->sc_ethercom.ec_capenable |=
1479 ETHERCAP_VLAN_HWTAGGING |
1480 ETHERCAP_VLAN_HWFILTER;
1481
1482 ifp->if_capabilities = 0;
1483 ifp->if_capenable = 0;
1484 #ifdef CONFIG_LRO_SUPPORT
1485 ifp->if_capabilities |= IFCAP_LRO;
1486 ifp->if_capenable |= IFCAP_LRO;
1487 #endif
1488 #if notyet
1489 /* TSO */
1490 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1491 #endif
1492
1493 /* TX hardware checksum offloading */
1494 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1495 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1496 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1497 /* RX hardware checksum offloading */
1498 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1499 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1500 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1501
1502 if_initialize(ifp);
1503 ifp->if_percpuq = if_percpuq_create(ifp);
1504 if_deferred_start_init(ifp, NULL);
1505 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1506 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1507 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1508 if_register(ifp);
1509
1510 /* only intr about link */
1511 aq_enable_intr(sc, /*link*/true, /*txrx*/false);
1512
1513 /* update media */
1514 aq_ifmedia_change(ifp);
1515
1516 #if NSYSMON_ENVSYS > 0
1517 /* temperature monitoring */
1518 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1519 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1520
1521 sc->sc_sme = sysmon_envsys_create();
1522 sc->sc_sme->sme_name = device_xname(self);
1523 sc->sc_sme->sme_cookie = sc;
1524 sc->sc_sme->sme_flags = 0;
1525 sc->sc_sme->sme_refresh = aq_temp_refresh;
1526 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1527 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1528 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1529
1530 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1531 if (sysmon_envsys_register(sc->sc_sme)) {
1532 sysmon_envsys_destroy(sc->sc_sme);
1533 sc->sc_sme = NULL;
1534 goto attach_failure;
1535 }
1536
1537 /*
1538 * for unknown reasons, the first call of fw2x_get_temperature()
1539 * will always fail (firmware matter?), so run once now.
1540 */
1541 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1542 }
1543 #endif
1544
1545 #ifdef AQ_EVENT_COUNTERS
1546 /* get starting statistics values */
1547 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1548 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1549 sc->sc_poll_statistics = true;
1550 }
1551
1552 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1553 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1554 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1555 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1556 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1557 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1558 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1559 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1560 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1561 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1562 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1563 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1564 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1565 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1566 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1567 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1568 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1569 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1570 #endif
1571
1572 if (pmf_device_register(self, NULL, NULL))
1573 pmf_class_network_register(self, ifp);
1574 else
1575 aprint_error_dev(self, "couldn't establish power handler\n");
1576
1577 return;
1578
1579 attach_failure:
1580 aq_detach(self, 0);
1581 }
1582
1583 static int
1584 aq_detach(device_t self, int flags __unused)
1585 {
1586 struct aq_softc * const sc = device_private(self);
1587 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1588 int i;
1589
1590 if (sc->sc_iosize != 0) {
1591 if (ifp->if_softc != NULL) {
1592 IFNET_LOCK(ifp);
1593 aq_stop(ifp, 1);
1594 IFNET_UNLOCK(ifp);
1595 }
1596
1597 for (i = 0; i < AQ_NINTR_MAX; i++) {
1598 if (sc->sc_ihs[i] != NULL) {
1599 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1600 sc->sc_ihs[i] = NULL;
1601 }
1602 }
1603 if (sc->sc_nintrs > 0) {
1604 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1605 sc->sc_nintrs);
1606 sc->sc_intrs = NULL;
1607 sc->sc_nintrs = 0;
1608 }
1609
1610 aq_txrx_rings_free(sc);
1611
1612 if (ifp->if_softc != NULL) {
1613 ether_ifdetach(ifp);
1614 if_detach(ifp);
1615 }
1616
1617 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1618 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1619 sc->sc_iosize = 0;
1620 }
1621
1622 #if NSYSMON_ENVSYS > 0
1623 if (sc->sc_sme != NULL) {
1624 /* all sensors associated with this will also be detached */
1625 sysmon_envsys_unregister(sc->sc_sme);
1626 }
1627 #endif
1628
1629 #ifdef AQ_EVENT_COUNTERS
1630 AQ_EVCNT_DETACH(sc, uprc);
1631 AQ_EVCNT_DETACH(sc, mprc);
1632 AQ_EVCNT_DETACH(sc, bprc);
1633 AQ_EVCNT_DETACH(sc, erpt);
1634 AQ_EVCNT_DETACH(sc, uptc);
1635 AQ_EVCNT_DETACH(sc, mptc);
1636 AQ_EVCNT_DETACH(sc, bptc);
1637 AQ_EVCNT_DETACH(sc, erpr);
1638 AQ_EVCNT_DETACH(sc, mbtc);
1639 AQ_EVCNT_DETACH(sc, bbtc);
1640 AQ_EVCNT_DETACH(sc, mbrc);
1641 AQ_EVCNT_DETACH(sc, bbrc);
1642 AQ_EVCNT_DETACH(sc, ubrc);
1643 AQ_EVCNT_DETACH(sc, ubtc);
1644 AQ_EVCNT_DETACH(sc, ptc);
1645 AQ_EVCNT_DETACH(sc, prc);
1646 AQ_EVCNT_DETACH(sc, dpc);
1647 AQ_EVCNT_DETACH(sc, cprc);
1648 #endif
1649
1650 ifmedia_fini(&sc->sc_media);
1651
1652 mutex_destroy(&sc->sc_mpi_mutex);
1653 mutex_destroy(&sc->sc_mutex);
1654
1655 return 0;
1656 }
1657
1658 static int
1659 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1660 int (*func)(void *), void *arg, const char *xname)
1661 {
1662 char intrbuf[PCI_INTRSTR_LEN];
1663 pci_chipset_tag_t pc = sc->sc_pc;
1664 void *vih;
1665 const char *intrstr = NULL;
1666
1667 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1668 sizeof(intrbuf));
1669
1670 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1671
1672 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1673 IPL_NET, func, arg, xname);
1674 if (vih == NULL) {
1675 aprint_error_dev(sc->sc_dev,
1676 "unable to establish MSI-X%s%s for %s\n",
1677 intrstr ? " at " : "",
1678 intrstr ? intrstr : "", xname);
1679 return EIO;
1680 }
1681 sc->sc_ihs[intno] = vih;
1682
1683 if (affinity != NULL) {
1684 /* Round-robin affinity */
1685 kcpuset_zero(affinity);
1686 kcpuset_set(affinity, intno % ncpu);
1687 interrupt_distribute(vih, affinity, NULL);
1688 }
1689
1690 return 0;
1691 }
1692
1693 static int
1694 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1695 bool linkintr)
1696 {
1697 kcpuset_t *affinity;
1698 int error, intno, i;
1699 char intr_xname[INTRDEVNAMEBUF];
1700
1701 kcpuset_create(&affinity, false);
1702
1703 intno = 0;
1704
1705 if (txrx_independent) {
1706 for (i = 0; i < sc->sc_nqueues; i++) {
1707 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1708 device_xname(sc->sc_dev), i);
1709 sc->sc_rx_irq[i] = intno;
1710 error = aq_establish_intr(sc, intno++, affinity,
1711 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1712 if (error != 0)
1713 goto fail;
1714 }
1715 for (i = 0; i < sc->sc_nqueues; i++) {
1716 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1717 device_xname(sc->sc_dev), i);
1718 sc->sc_tx_irq[i] = intno;
1719 error = aq_establish_intr(sc, intno++, affinity,
1720 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1721 if (error != 0)
1722 goto fail;
1723 }
1724 } else {
1725 for (i = 0; i < sc->sc_nqueues; i++) {
1726 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1727 device_xname(sc->sc_dev), i);
1728 sc->sc_rx_irq[i] = intno;
1729 sc->sc_tx_irq[i] = intno;
1730 error = aq_establish_intr(sc, intno++, affinity,
1731 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1732 if (error != 0)
1733 goto fail;
1734 }
1735 }
1736
1737 if (linkintr) {
1738 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1739 device_xname(sc->sc_dev));
1740 sc->sc_linkstat_irq = intno;
1741 error = aq_establish_intr(sc, intno++, affinity,
1742 aq_link_intr, sc, intr_xname);
1743 if (error != 0)
1744 goto fail;
1745 }
1746
1747 kcpuset_destroy(affinity);
1748 return 0;
1749
1750 fail:
1751 for (i = 0; i < AQ_NINTR_MAX; i++) {
1752 if (sc->sc_ihs[i] != NULL) {
1753 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1754 sc->sc_ihs[i] = NULL;
1755 }
1756 }
1757
1758 kcpuset_destroy(affinity);
1759 return ENOMEM;
1760 }
1761
1762 static int
1763 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1764 bool txrx_independent, bool linkintr)
1765 {
1766 int error, nintr;
1767
1768 if (txrx_independent)
1769 nintr = nqueue * 2;
1770 else
1771 nintr = nqueue;
1772
1773 if (linkintr)
1774 nintr++;
1775
1776 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1777 if (error != 0) {
1778 aprint_error_dev(sc->sc_dev,
1779 "failed to allocate MSI-X interrupts\n");
1780 goto fail;
1781 }
1782
1783 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1784 if (error == 0) {
1785 sc->sc_nintrs = nintr;
1786 } else {
1787 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1788 sc->sc_nintrs = 0;
1789 }
1790 fail:
1791 return error;
1792
1793 }
1794
1795 static int
1796 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1797 pci_intr_type_t inttype)
1798 {
1799 int counts[PCI_INTR_TYPE_SIZE];
1800 int error, nintr;
1801
1802 nintr = 1;
1803
1804 memset(counts, 0, sizeof(counts));
1805 counts[inttype] = nintr;
1806
1807 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1808 if (error != 0) {
1809 aprint_error_dev(sc->sc_dev,
1810 "failed to allocate%s interrupts\n",
1811 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1812 return error;
1813 }
1814 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1815 device_xname(sc->sc_dev));
1816 if (error == 0) {
1817 sc->sc_nintrs = nintr;
1818 } else {
1819 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1820 sc->sc_nintrs = 0;
1821 }
1822 return error;
1823 }
1824
1825 static void
1826 global_software_reset(struct aq_softc *sc)
1827 {
1828 uint32_t v;
1829
1830 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1831 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1832 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1833 FW_MPI_RESETCTRL_RESET_DIS, 0);
1834
1835 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1836 v &= ~AQ_FW_SOFTRESET_DIS;
1837 v |= AQ_FW_SOFTRESET_RESET;
1838 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1839 }
1840
1841 static int
1842 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1843 {
1844 int timo;
1845
1846 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1847
1848 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1849 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1850 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1851
1852 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1853 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1854
1855 global_software_reset(sc);
1856
1857 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1858
1859 /* Wait for RBL to finish boot process. */
1860 #define RBL_TIMEOUT_MS 10000
1861 uint16_t rbl_status;
1862 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1863 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1864 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1865 break;
1866 msec_delay(1);
1867 }
1868 if (timo <= 0) {
1869 aprint_error_dev(sc->sc_dev,
1870 "RBL> RBL restart failed: timeout\n");
1871 return EBUSY;
1872 }
1873 switch (rbl_status) {
1874 case RBL_STATUS_SUCCESS:
1875 if (mode != NULL)
1876 *mode = FW_BOOT_MODE_RBL_FLASH;
1877 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1878 break;
1879 case RBL_STATUS_HOST_BOOT:
1880 if (mode != NULL)
1881 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1882 aprint_debug_dev(sc->sc_dev,
1883 "RBL> reset complete! [Host Bootload]\n");
1884 break;
1885 case RBL_STATUS_FAILURE:
1886 default:
1887 aprint_error_dev(sc->sc_dev,
1888 "unknown RBL status 0x%x\n", rbl_status);
1889 return EBUSY;
1890 }
1891
1892 return 0;
1893 }
1894
1895 static int
1896 mac_soft_reset_flb(struct aq_softc *sc)
1897 {
1898 uint32_t v;
1899 int timo;
1900
1901 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1902 /*
1903 * Let Felicity hardware to complete SMBUS transaction before
1904 * Global software reset.
1905 */
1906 msec_delay(50);
1907
1908 /*
1909 * If SPI burst transaction was interrupted(before running the script),
1910 * global software reset may not clear SPI interface.
1911 * Clean it up manually before global reset.
1912 */
1913 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1914 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1915 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1916 msec_delay(50);
1917
1918 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1919 v &= ~AQ_FW_SOFTRESET_DIS;
1920 v |= AQ_FW_SOFTRESET_RESET;
1921 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1922
1923 /* Kickstart. */
1924 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1925 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1926 if (!sc->sc_fast_start_enabled)
1927 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1928
1929 /*
1930 * For the case SPI burst transaction was interrupted (by MCP reset
1931 * above), wait until it is completed by hardware.
1932 */
1933 msec_delay(50);
1934
1935 /* MAC Kickstart */
1936 if (!sc->sc_fast_start_enabled) {
1937 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1938
1939 uint32_t flb_status;
1940 for (timo = 0; timo < 1000; timo++) {
1941 flb_status = AQ_READ_REG(sc,
1942 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1943 if (flb_status != 0)
1944 break;
1945 msec_delay(1);
1946 }
1947 if (flb_status == 0) {
1948 aprint_error_dev(sc->sc_dev,
1949 "FLB> MAC kickstart failed: timed out\n");
1950 return ETIMEDOUT;
1951 }
1952 aprint_debug_dev(sc->sc_dev,
1953 "FLB> MAC kickstart done, %d ms\n", timo);
1954 /* FW reset */
1955 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1956 /*
1957 * Let Felicity hardware complete SMBUS transaction before
1958 * Global software reset.
1959 */
1960 msec_delay(50);
1961 sc->sc_fast_start_enabled = true;
1962 }
1963 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1964
1965 /* PHY Kickstart: #undone */
1966 global_software_reset(sc);
1967
1968 for (timo = 0; timo < 1000; timo++) {
1969 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1970 break;
1971 msec_delay(10);
1972 }
1973 if (timo >= 1000) {
1974 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1975 return ETIMEDOUT;
1976 }
1977 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1978 return 0;
1979
1980 }
1981
1982 static int
1983 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1984 {
1985 if (sc->sc_rbl_enabled)
1986 return mac_soft_reset_rbl(sc, mode);
1987
1988 if (mode != NULL)
1989 *mode = FW_BOOT_MODE_FLB;
1990 return mac_soft_reset_flb(sc);
1991 }
1992
1993 static int
1994 aq_fw_read_version(struct aq_softc *sc)
1995 {
1996 int i, error = EBUSY;
1997 #define MAC_FW_START_TIMEOUT_MS 10000
1998 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1999 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2000 if (sc->sc_fw_version != 0) {
2001 error = 0;
2002 break;
2003 }
2004 delay(1000);
2005 }
2006 return error;
2007 }
2008
2009 static int
2010 aq_fw_reset(struct aq_softc *sc)
2011 {
2012 uint32_t ver, v, bootExitCode;
2013 int i, error;
2014
2015 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2016
2017 for (i = 1000; i > 0; i--) {
2018 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
2019 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
2020 if (v != 0x06000000 || bootExitCode != 0)
2021 break;
2022 }
2023 if (i <= 0) {
2024 aprint_error_dev(sc->sc_dev,
2025 "F/W reset failed. Neither RBL nor FLB started\n");
2026 return ETIMEDOUT;
2027 }
2028 sc->sc_rbl_enabled = (bootExitCode != 0);
2029
2030 /*
2031 * Having FW version 0 is an indicator that cold start
2032 * is in progress. This means two things:
2033 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
2034 * 2) Driver may skip reset sequence and save time.
2035 */
2036 if (sc->sc_fast_start_enabled && (ver != 0)) {
2037 error = aq_fw_read_version(sc);
2038 /* Skip reset as it just completed */
2039 if (error == 0)
2040 return 0;
2041 }
2042
2043 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2044 error = mac_soft_reset(sc, &mode);
2045 if (error != 0) {
2046 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2047 return error;
2048 }
2049
2050 switch (mode) {
2051 case FW_BOOT_MODE_FLB:
2052 aprint_debug_dev(sc->sc_dev,
2053 "FLB> F/W successfully loaded from flash.\n");
2054 sc->sc_flash_present = true;
2055 return aq_fw_read_version(sc);
2056 case FW_BOOT_MODE_RBL_FLASH:
2057 aprint_debug_dev(sc->sc_dev,
2058 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2059 sc->sc_flash_present = true;
2060 return aq_fw_read_version(sc);
2061 case FW_BOOT_MODE_UNKNOWN:
2062 aprint_error_dev(sc->sc_dev,
2063 "F/W bootload error: unknown bootloader type\n");
2064 return ENOTSUP;
2065 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2066 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2067 break;
2068 }
2069
2070 /*
2071 * XXX: TODO: add support Host Boot
2072 */
2073 aprint_error_dev(sc->sc_dev,
2074 "RBL> F/W Host Bootload not implemented\n");
2075 return ENOTSUP;
2076 }
2077
2078 static int
2079 aq_hw_reset(struct aq_softc *sc)
2080 {
2081 int error;
2082
2083 /* disable irq */
2084 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2085
2086 /* apply */
2087 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2088
2089 /* wait ack 10 times by 1ms */
2090 WAIT_FOR(
2091 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2092 1000, 10, &error);
2093 if (error != 0) {
2094 aprint_error_dev(sc->sc_dev,
2095 "atlantic: IRQ reset failed: %d\n", error);
2096 return error;
2097 }
2098
2099 return sc->sc_fw_ops->reset(sc);
2100 }
2101
2102 static int
2103 aq_hw_init_ucp(struct aq_softc *sc)
2104 {
2105 int timo;
2106
2107 if (FW_VERSION_MAJOR(sc) == 1) {
2108 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2109 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2110 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2111 }
2112
2113 /* Wait a maximum of 10sec. It usually takes about 5sec. */
2114 for (timo = 10000; timo > 0; timo--) {
2115 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2116 if (sc->sc_mbox_addr != 0)
2117 break;
2118 delay(1000);
2119 }
2120 if (sc->sc_mbox_addr == 0) {
2121 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2122 return ETIMEDOUT;
2123 }
2124
2125 #define AQ_FW_MIN_VERSION 0x01050006
2126 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2127 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2128 aprint_error_dev(sc->sc_dev,
2129 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2130 " or later required, this is %d.%d.%d\n",
2131 FW_VERSION_MAJOR(sc),
2132 FW_VERSION_MINOR(sc),
2133 FW_VERSION_BUILD(sc));
2134 return ENOTSUP;
2135 }
2136
2137 return 0;
2138 }
2139
2140 static int
2141 aq_fw_version_init(struct aq_softc *sc)
2142 {
2143 int error = 0;
2144 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2145
2146 if (FW_VERSION_MAJOR(sc) == 1) {
2147 sc->sc_fw_ops = &aq_fw1x_ops;
2148 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2149 sc->sc_fw_ops = &aq_fw2x_ops;
2150 } else {
2151 aprint_error_dev(sc->sc_dev,
2152 "Unsupported F/W version %d.%d.%d\n",
2153 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2154 FW_VERSION_BUILD(sc));
2155 return ENOTSUP;
2156 }
2157 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2158 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2159
2160 /* detect revision */
2161 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2162 switch (hwrev & 0x0000000f) {
2163 case 0x01:
2164 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2165 fw_vers);
2166 sc->sc_features |= FEATURES_REV_A0 |
2167 FEATURES_MPI_AQ | FEATURES_MIPS;
2168 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2169 break;
2170 case 0x02:
2171 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2172 fw_vers);
2173 sc->sc_features |= FEATURES_REV_B0 |
2174 FEATURES_MPI_AQ | FEATURES_MIPS |
2175 FEATURES_TPO2 | FEATURES_RPF2;
2176 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2177 break;
2178 case 0x0A:
2179 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2180 fw_vers);
2181 sc->sc_features |= FEATURES_REV_B1 |
2182 FEATURES_MPI_AQ | FEATURES_MIPS |
2183 FEATURES_TPO2 | FEATURES_RPF2;
2184 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2185 break;
2186 default:
2187 aprint_error_dev(sc->sc_dev,
2188 "Unknown revision (0x%08x)\n", hwrev);
2189 sc->sc_features = 0;
2190 sc->sc_max_mtu = ETHERMTU;
2191 error = ENOTSUP;
2192 break;
2193 }
2194 return error;
2195 }
2196
2197 static int
2198 fw1x_reset(struct aq_softc *sc)
2199 {
2200 struct aq_mailbox_header mbox;
2201 const int retryCount = 1000;
2202 uint32_t tid0;
2203 int i;
2204
2205 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2206
2207 for (i = 0; i < retryCount; ++i) {
2208 /*
2209 * Read the beginning of Statistics structure to capture
2210 * the Transaction ID.
2211 */
2212 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2213 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2214
2215 /* Successfully read the stats. */
2216 if (tid0 == ~0U) {
2217 /* We have read the initial value. */
2218 tid0 = mbox.transaction_id;
2219 continue;
2220 } else if (mbox.transaction_id != tid0) {
2221 /*
2222 * Compare transaction ID to initial value.
2223 * If it's different means f/w is alive.
2224 * We're done.
2225 */
2226 return 0;
2227 }
2228
2229 /*
2230 * Transaction ID value haven't changed since last time.
2231 * Try reading the stats again.
2232 */
2233 delay(10);
2234 }
2235 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2236 return EBUSY;
2237 }
2238
2239 static int
2240 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2241 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2242 {
2243 uint32_t mpictrl = 0;
2244 uint32_t mpispeed = 0;
2245
2246 if (speed & AQ_LINK_10G)
2247 mpispeed |= FW1X_CTRL_10G;
2248 if (speed & AQ_LINK_5G)
2249 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2250 if (speed & AQ_LINK_2G5)
2251 mpispeed |= FW1X_CTRL_2G5;
2252 if (speed & AQ_LINK_1G)
2253 mpispeed |= FW1X_CTRL_1G;
2254 if (speed & AQ_LINK_100M)
2255 mpispeed |= FW1X_CTRL_100M;
2256
2257 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2258 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2259 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2260 return 0;
2261 }
2262
2263 static int
2264 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2265 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2266 {
2267 uint32_t mpistate, mpi_speed;
2268 aq_link_speed_t speed = AQ_LINK_NONE;
2269
2270 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2271
2272 if (modep != NULL)
2273 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2274
2275 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2276 if (mpi_speed & FW1X_CTRL_10G)
2277 speed = AQ_LINK_10G;
2278 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2279 speed = AQ_LINK_5G;
2280 else if (mpi_speed & FW1X_CTRL_2G5)
2281 speed = AQ_LINK_2G5;
2282 else if (mpi_speed & FW1X_CTRL_1G)
2283 speed = AQ_LINK_1G;
2284 else if (mpi_speed & FW1X_CTRL_100M)
2285 speed = AQ_LINK_100M;
2286
2287 if (speedp != NULL)
2288 *speedp = speed;
2289
2290 if (fcp != NULL)
2291 *fcp = AQ_FC_NONE;
2292
2293 if (eeep != NULL)
2294 *eeep = AQ_EEE_DISABLE;
2295
2296 return 0;
2297 }
2298
2299 static int
2300 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2301 {
2302 int error;
2303
2304 error = aq_fw_downld_dwords(sc,
2305 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2306 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2307 if (error < 0) {
2308 device_printf(sc->sc_dev,
2309 "fw1x> download statistics data FAILED, error %d", error);
2310 return error;
2311 }
2312
2313 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2314 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2315 return 0;
2316 }
2317
2318 static int
2319 fw2x_reset(struct aq_softc *sc)
2320 {
2321 fw2x_capabilities_t caps = { 0 };
2322 int error;
2323
2324 error = aq_fw_downld_dwords(sc,
2325 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2326 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2327 if (error != 0) {
2328 aprint_error_dev(sc->sc_dev,
2329 "fw2x> can't get F/W capabilities mask, error %d\n",
2330 error);
2331 return error;
2332 }
2333 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2334
2335 char buf[256];
2336 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2337 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2338
2339 return 0;
2340 }
2341
2342 static int
2343 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2344 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2345 {
2346 uint64_t mpi_ctrl;
2347 int error = 0;
2348
2349 AQ_MPI_LOCK(sc);
2350
2351 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2352
2353 switch (mode) {
2354 case MPI_INIT:
2355 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2356 if (speed & AQ_LINK_10G)
2357 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2358 if (speed & AQ_LINK_5G)
2359 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2360 if (speed & AQ_LINK_2G5)
2361 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2362 if (speed & AQ_LINK_1G)
2363 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2364 if (speed & AQ_LINK_100M)
2365 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2366
2367 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2368
2369 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2370 if (eee == AQ_EEE_ENABLE)
2371 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2372
2373 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2374 if (fc & AQ_FC_RX)
2375 mpi_ctrl |= FW2X_CTRL_PAUSE;
2376 if (fc & AQ_FC_TX)
2377 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2378 break;
2379 case MPI_DEINIT:
2380 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2381 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2382 break;
2383 default:
2384 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2385 error = EINVAL;
2386 goto failure;
2387 }
2388 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2389
2390 failure:
2391 AQ_MPI_UNLOCK(sc);
2392 return error;
2393 }
2394
2395 static int
2396 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2397 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2398 {
2399 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2400
2401 if (modep != NULL) {
2402 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2403 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2404 *modep = MPI_INIT;
2405 else
2406 *modep = MPI_DEINIT;
2407 }
2408
2409 aq_link_speed_t speed = AQ_LINK_NONE;
2410 if (mpi_state & FW2X_CTRL_RATE_10G)
2411 speed = AQ_LINK_10G;
2412 else if (mpi_state & FW2X_CTRL_RATE_5G)
2413 speed = AQ_LINK_5G;
2414 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2415 speed = AQ_LINK_2G5;
2416 else if (mpi_state & FW2X_CTRL_RATE_1G)
2417 speed = AQ_LINK_1G;
2418 else if (mpi_state & FW2X_CTRL_RATE_100M)
2419 speed = AQ_LINK_100M;
2420
2421 if (speedp != NULL)
2422 *speedp = speed;
2423
2424 aq_link_fc_t fc = AQ_FC_NONE;
2425 if (mpi_state & FW2X_CTRL_PAUSE)
2426 fc |= AQ_FC_RX;
2427 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2428 fc |= AQ_FC_TX;
2429 if (fcp != NULL)
2430 *fcp = fc;
2431
2432 /* XXX: TODO: EEE */
2433 if (eeep != NULL)
2434 *eeep = AQ_EEE_DISABLE;
2435
2436 return 0;
2437 }
2438
2439 static int
2440 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2441 uint32_t timeout_ms, uint32_t try_count)
2442 {
2443 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2444 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2445 int error;
2446
2447 /* First, check that control and state values are consistent */
2448 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2449 device_printf(sc->sc_dev,
2450 "fw2x> MPI control (%#llx) and state (%#llx)"
2451 " are not consistent for mask %#llx!\n",
2452 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2453 (unsigned long long)mask);
2454 return EINVAL;
2455 }
2456
2457 /* Invert bits (toggle) in control register */
2458 mpi_ctrl ^= mask;
2459 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2460
2461 /* Clear all bits except masked */
2462 mpi_ctrl &= mask;
2463
2464 /* Wait for FW reflecting change in state register */
2465 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2466 1000 * timeout_ms, try_count, &error);
2467 if (error != 0) {
2468 device_printf(sc->sc_dev,
2469 "f/w2x> timeout while waiting for response"
2470 " in state register for bit %#llx!",
2471 (unsigned long long)mask);
2472 return error;
2473 }
2474 return 0;
2475 }
2476
2477 static int
2478 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2479 {
2480 int error;
2481
2482 AQ_MPI_LOCK(sc);
2483 /* Say to F/W to update the statistics */
2484 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2485 if (error != 0) {
2486 device_printf(sc->sc_dev,
2487 "fw2x> statistics update error %d\n", error);
2488 goto failure;
2489 }
2490
2491 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2492 error = aq_fw_downld_dwords(sc,
2493 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2494 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2495 if (error != 0) {
2496 device_printf(sc->sc_dev,
2497 "fw2x> download statistics data FAILED, error %d", error);
2498 goto failure;
2499 }
2500 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2501 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2502
2503 failure:
2504 AQ_MPI_UNLOCK(sc);
2505 return error;
2506 }
2507
2508 #if NSYSMON_ENVSYS > 0
2509 static int
2510 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2511 {
2512 int error;
2513 uint32_t value, celsius;
2514
2515 AQ_MPI_LOCK(sc);
2516
2517 /* Say to F/W to update the temperature */
2518 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2519 if (error != 0)
2520 goto failure;
2521
2522 error = aq_fw_downld_dwords(sc,
2523 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2524 &value, sizeof(value) / sizeof(uint32_t));
2525 if (error != 0)
2526 goto failure;
2527
2528 /* 1/256 decrees C to microkelvin */
2529 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2530 if (celsius == 0) {
2531 error = EIO;
2532 goto failure;
2533 }
2534 *temp = celsius * (1000000 / 256) + 273150000;
2535
2536 failure:
2537 AQ_MPI_UNLOCK(sc);
2538 return 0;
2539 }
2540 #endif
2541
2542 static int
2543 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2544 uint32_t cnt)
2545 {
2546 uint32_t v;
2547 int error = 0;
2548
2549 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2550 if (error != 0) {
2551 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2552 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2553 if (v == 0) {
2554 device_printf(sc->sc_dev,
2555 "%s:%d: timeout\n", __func__, __LINE__);
2556 return ETIMEDOUT;
2557 }
2558 }
2559
2560 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2561
2562 error = 0;
2563 for (; cnt > 0 && error == 0; cnt--) {
2564 /* execute mailbox interface */
2565 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2566 AQ_FW_MBOX_CMD_EXECUTE, 1);
2567 if (sc->sc_features & FEATURES_REV_B1) {
2568 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2569 1, 1000, &error);
2570 } else {
2571 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2572 AQ_FW_MBOX_CMD_BUSY) == 0,
2573 1, 1000, &error);
2574 }
2575 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2576 addr += sizeof(uint32_t);
2577 }
2578 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2579
2580 if (error != 0)
2581 device_printf(sc->sc_dev,
2582 "%s:%d: timeout\n", __func__, __LINE__);
2583
2584 return error;
2585 }
2586
2587 /* read my mac address */
2588 static int
2589 aq_get_mac_addr(struct aq_softc *sc)
2590 {
2591 uint32_t mac_addr[2];
2592 uint32_t efuse_shadow_addr;
2593 int err;
2594
2595 efuse_shadow_addr = 0;
2596 if (FW_VERSION_MAJOR(sc) >= 2)
2597 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2598 else
2599 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2600
2601 if (efuse_shadow_addr == 0) {
2602 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2603 return ENXIO;
2604 }
2605
2606 memset(mac_addr, 0, sizeof(mac_addr));
2607 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2608 mac_addr, __arraycount(mac_addr));
2609 if (err < 0)
2610 return err;
2611
2612 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2613 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2614 return ENXIO;
2615 }
2616
2617 mac_addr[0] = htobe32(mac_addr[0]);
2618 mac_addr[1] = htobe32(mac_addr[1]);
2619
2620 memcpy(sc->sc_enaddr.ether_addr_octet,
2621 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2622 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2623 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2624
2625 return 0;
2626 }
2627
2628 /* set multicast filter. index 0 for own address */
2629 static int
2630 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2631 {
2632 uint32_t h, l;
2633
2634 if (index >= AQ_HW_MAC_NUM)
2635 return EINVAL;
2636
2637 if (enaddr == NULL) {
2638 /* disable */
2639 AQ_WRITE_REG_BIT(sc,
2640 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2641 return 0;
2642 }
2643
2644 h = (enaddr[0] << 8) | (enaddr[1]);
2645 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2646 (enaddr[4] << 8) | (enaddr[5]);
2647
2648 /* disable, set, and enable */
2649 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2650 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2651 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2652 RPF_L2UC_MSW_MACADDR_HI, h);
2653 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2654 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2655
2656 return 0;
2657 }
2658
2659 static int
2660 aq_set_capability(struct aq_softc *sc)
2661 {
2662 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2663 int ip4csum_tx =
2664 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2665 int ip4csum_rx =
2666 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2667 int l4csum_tx = ((ifp->if_capenable &
2668 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2669 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2670 int l4csum_rx =
2671 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2672 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2673 uint32_t lso =
2674 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2675 0 : 0xffffffff;
2676 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2677 0 : 0xffffffff;
2678 uint32_t i, v;
2679
2680 /* TX checksums offloads*/
2681 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2682 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2683
2684 /* RX checksums offloads*/
2685 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2686 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2687
2688 /* LSO offloads*/
2689 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2690
2691 #define AQ_B0_LRO_RXD_MAX 16
2692 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2693 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2694 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2695 for (i = 0; i < AQ_RINGS_NUM; i++) {
2696 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2697 RPO_LRO_LDES_MAX_MASK(i), v);
2698 }
2699
2700 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2701 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2702 RPO_LRO_INACTIVE_IVAL, 0);
2703 /*
2704 * the LRO timebase divider is 5 uS (0x61a),
2705 * to get a maximum coalescing interval of 250 uS,
2706 * we need to multiply by 50(0x32) to get
2707 * the default value 250 uS
2708 */
2709 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2710 RPO_LRO_MAX_COALESCING_IVAL, 50);
2711 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2712 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2713 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2714 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2715 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2716 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2717 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2718 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2719 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2720 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2721
2722 return 0;
2723 }
2724
2725 static int
2726 aq_set_filter(struct aq_softc *sc)
2727 {
2728 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2729 struct ethercom * const ec = &sc->sc_ethercom;
2730 struct ether_multi *enm;
2731 struct ether_multistep step;
2732 int idx, error = 0;
2733
2734 if (ifp->if_flags & IFF_PROMISC) {
2735 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2736 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2737 ec->ec_flags |= ETHER_F_ALLMULTI;
2738 goto done;
2739 }
2740
2741 /* clear all table */
2742 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2743 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2744 continue;
2745 aq_set_mac_addr(sc, idx, NULL);
2746 }
2747
2748 /* don't accept all multicast */
2749 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2750 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2751 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2752 RPF_MCAST_FILTER_EN, 0);
2753
2754 idx = 0;
2755 ETHER_LOCK(ec);
2756 ETHER_FIRST_MULTI(step, ec, enm);
2757 while (enm != NULL) {
2758 if (idx == AQ_HW_MAC_OWN)
2759 idx++;
2760
2761 if ((idx >= AQ_HW_MAC_NUM) ||
2762 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2763 /*
2764 * too many filters.
2765 * fallback to accept all multicast addresses.
2766 */
2767 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2768 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2769 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2770 RPF_MCAST_FILTER_EN, 1);
2771 ec->ec_flags |= ETHER_F_ALLMULTI;
2772 ETHER_UNLOCK(ec);
2773 goto done;
2774 }
2775
2776 /* add a filter */
2777 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2778
2779 ETHER_NEXT_MULTI(step, enm);
2780 }
2781 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2782 ETHER_UNLOCK(ec);
2783
2784 done:
2785 return error;
2786 }
2787
2788 static int
2789 aq_ifmedia_change(struct ifnet * const ifp)
2790 {
2791 struct aq_softc * const sc = ifp->if_softc;
2792
2793 aq_link_speed_t rate = AQ_LINK_NONE;
2794 aq_link_fc_t fc = AQ_FC_NONE;
2795 aq_link_eee_t eee = AQ_EEE_DISABLE;
2796
2797 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2798 return EINVAL;
2799
2800 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2801 case IFM_AUTO:
2802 rate = AQ_LINK_AUTO;
2803 break;
2804 case IFM_NONE:
2805 rate = AQ_LINK_NONE;
2806 break;
2807 case IFM_100_TX:
2808 rate = AQ_LINK_100M;
2809 break;
2810 case IFM_1000_T:
2811 rate = AQ_LINK_1G;
2812 break;
2813 case IFM_2500_T:
2814 rate = AQ_LINK_2G5;
2815 break;
2816 case IFM_5000_T:
2817 rate = AQ_LINK_5G;
2818 break;
2819 case IFM_10G_T:
2820 rate = AQ_LINK_10G;
2821 break;
2822 default:
2823 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2824 IFM_SUBTYPE(sc->sc_media.ifm_media));
2825 return ENODEV;
2826 }
2827
2828 if (sc->sc_media.ifm_media & IFM_FLOW)
2829 fc = AQ_FC_ALL;
2830
2831 /* XXX: todo EEE */
2832
2833 /* re-initialize hardware with new parameters */
2834 aq_set_linkmode(sc, rate, fc, eee);
2835
2836 return 0;
2837 }
2838
2839 static void
2840 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2841 {
2842 struct aq_softc * const sc = ifp->if_softc;
2843
2844 /* update ifm_active */
2845 ifmr->ifm_active = IFM_ETHER;
2846 if (sc->sc_link_fc & AQ_FC_RX)
2847 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2848 if (sc->sc_link_fc & AQ_FC_TX)
2849 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2850
2851 switch (sc->sc_link_rate) {
2852 case AQ_LINK_100M:
2853 /* XXX: need to detect fulldup or halfdup */
2854 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2855 break;
2856 case AQ_LINK_1G:
2857 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2858 break;
2859 case AQ_LINK_2G5:
2860 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2861 break;
2862 case AQ_LINK_5G:
2863 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2864 break;
2865 case AQ_LINK_10G:
2866 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2867 break;
2868 default:
2869 ifmr->ifm_active |= IFM_NONE;
2870 break;
2871 }
2872
2873 /* update ifm_status */
2874 ifmr->ifm_status = IFM_AVALID;
2875 if (sc->sc_link_rate != AQ_LINK_NONE)
2876 ifmr->ifm_status |= IFM_ACTIVE;
2877 }
2878
2879 static void
2880 aq_initmedia(struct aq_softc *sc)
2881 {
2882 #define IFMEDIA_ETHER_ADD(sc, media) \
2883 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2884
2885 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2886 if (sc->sc_available_rates & AQ_LINK_100M) {
2887 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2888 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2889 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2890 }
2891 if (sc->sc_available_rates & AQ_LINK_1G) {
2892 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2893 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2894 }
2895 if (sc->sc_available_rates & AQ_LINK_2G5) {
2896 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2897 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2898 }
2899 if (sc->sc_available_rates & AQ_LINK_5G) {
2900 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2901 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2902 }
2903 if (sc->sc_available_rates & AQ_LINK_10G) {
2904 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2905 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2906 }
2907 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2908 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2909
2910 /* default: auto without flowcontrol */
2911 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2912 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2913 }
2914
2915 static int
2916 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2917 aq_link_eee_t eee)
2918 {
2919 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2920 }
2921
2922 static int
2923 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2924 aq_link_eee_t *eee)
2925 {
2926 aq_hw_fw_mpi_state_t mode;
2927 int error;
2928
2929 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2930 if (error != 0)
2931 return error;
2932 if (mode != MPI_INIT)
2933 return ENXIO;
2934
2935 return 0;
2936 }
2937
2938 static void
2939 aq_hw_init_tx_path(struct aq_softc *sc)
2940 {
2941 /* Tx TC/RSS number config */
2942 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2943
2944 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2945 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2946 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2947 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2948 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2949 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2950
2951 /* misc */
2952 AQ_WRITE_REG(sc, TX_TPO2_REG,
2953 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2954 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2955 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2956
2957 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2958 }
2959
2960 static void
2961 aq_hw_init_rx_path(struct aq_softc *sc)
2962 {
2963 int i;
2964
2965 /* clear setting */
2966 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2967 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2968 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2969 for (i = 0; i < 32; i++) {
2970 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2971 RPF_ETHERTYPE_FILTER_EN, 0);
2972 }
2973
2974 if (sc->sc_rss_enable) {
2975 /* Rx TC/RSS number config */
2976 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2977
2978 /* Rx flow control */
2979 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2980
2981 /* RSS Ring selection */
2982 switch (sc->sc_nqueues) {
2983 case 2:
2984 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2985 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2986 break;
2987 case 4:
2988 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2989 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2990 break;
2991 case 8:
2992 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2993 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2994 break;
2995 }
2996 }
2997
2998 /* L2 and Multicast filters */
2999 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
3000 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
3001 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
3002 RPF_ACTION_HOST);
3003 }
3004 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
3005 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
3006
3007 /* Vlan filters */
3008 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
3009 ETHERTYPE_QINQ);
3010 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
3011 ETHERTYPE_VLAN);
3012 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3013
3014 if (sc->sc_features & FEATURES_REV_B) {
3015 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3016 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
3017 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3018 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
3019 }
3020
3021 /* misc */
3022 if (sc->sc_features & FEATURES_RPF2)
3023 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
3024 else
3025 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
3026
3027 /*
3028 * XXX: RX_TCP_RSS_HASH_REG:
3029 * linux set 0x000f0000
3030 * freebsd set 0x000f001e
3031 */
3032 /* RSS hash type set for IP/TCP */
3033 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
3034 RX_TCP_RSS_HASH_TYPE, 0x001e);
3035
3036 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3037 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3038 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3039
3040 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3041 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3042 }
3043
3044 static void
3045 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3046 {
3047 int i;
3048
3049 if (sc->sc_intr_moderation_enable) {
3050 unsigned int tx_min, rx_min; /* 0-255 */
3051 unsigned int tx_max, rx_max; /* 0-511? */
3052
3053 switch (sc->sc_link_rate) {
3054 case AQ_LINK_100M:
3055 tx_min = 0x4f;
3056 tx_max = 0xff;
3057 rx_min = 0x04;
3058 rx_max = 0x50;
3059 break;
3060 case AQ_LINK_1G:
3061 default:
3062 tx_min = 0x4f;
3063 tx_max = 0xff;
3064 rx_min = 0x30;
3065 rx_max = 0x80;
3066 break;
3067 case AQ_LINK_2G5:
3068 tx_min = 0x4f;
3069 tx_max = 0xff;
3070 rx_min = 0x18;
3071 rx_max = 0xe0;
3072 break;
3073 case AQ_LINK_5G:
3074 tx_min = 0x4f;
3075 tx_max = 0xff;
3076 rx_min = 0x0c;
3077 rx_max = 0x70;
3078 break;
3079 case AQ_LINK_10G:
3080 tx_min = 0x4f;
3081 tx_max = 0x1ff;
3082 rx_min = 0x06; /* freebsd use 80 */
3083 rx_max = 0x38; /* freebsd use 120 */
3084 break;
3085 }
3086
3087 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3088 TX_DMA_INT_DESC_WRWB_EN, 0);
3089 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3090 TX_DMA_INT_DESC_MODERATE_EN, 1);
3091 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3092 RX_DMA_INT_DESC_WRWB_EN, 0);
3093 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3094 RX_DMA_INT_DESC_MODERATE_EN, 1);
3095
3096 for (i = 0; i < AQ_RINGS_NUM; i++) {
3097 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3098 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3099 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3100 TX_INTR_MODERATION_CTL_EN);
3101 }
3102 for (i = 0; i < AQ_RINGS_NUM; i++) {
3103 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3104 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3105 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3106 RX_INTR_MODERATION_CTL_EN);
3107 }
3108
3109 } else {
3110 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3111 TX_DMA_INT_DESC_WRWB_EN, 1);
3112 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3113 TX_DMA_INT_DESC_MODERATE_EN, 0);
3114 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3115 RX_DMA_INT_DESC_WRWB_EN, 1);
3116 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3117 RX_DMA_INT_DESC_MODERATE_EN, 0);
3118
3119 for (i = 0; i < AQ_RINGS_NUM; i++) {
3120 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3121 }
3122 for (i = 0; i < AQ_RINGS_NUM; i++) {
3123 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3124 }
3125 }
3126 }
3127
3128 static void
3129 aq_hw_qos_set(struct aq_softc *sc)
3130 {
3131 uint32_t tc = 0;
3132 uint32_t buff_size;
3133
3134 /* TPS Descriptor rate init */
3135 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3136 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3137
3138 /* TPS VM init */
3139 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3140
3141 /* TPS TC credits init */
3142 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3143 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3144
3145 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3146 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3147 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3148 TPS_DATA_TCT_WEIGHT, 0x64);
3149 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3150 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3151 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3152 TPS_DESC_TCT_WEIGHT, 0x1e);
3153
3154 /* Tx buf size */
3155 tc = 0;
3156 buff_size = AQ_HW_TXBUF_MAX;
3157 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3158 buff_size);
3159 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3160 (buff_size * (1024 / 32) * 66) / 100);
3161 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3162 (buff_size * (1024 / 32) * 50) / 100);
3163
3164 /* QoS Rx buf size per TC */
3165 tc = 0;
3166 buff_size = AQ_HW_RXBUF_MAX;
3167 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3168 buff_size);
3169 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3170 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3171 (buff_size * (1024 / 32) * 66) / 100);
3172 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3173 (buff_size * (1024 / 32) * 50) / 100);
3174
3175 /* QoS 802.1p priority -> TC mapping */
3176 int i_priority;
3177 for (i_priority = 0; i_priority < 8; i_priority++) {
3178 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3179 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3180 }
3181 }
3182
3183 /* called once from aq_attach */
3184 static int
3185 aq_init_rss(struct aq_softc *sc)
3186 {
3187 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3188 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3189 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3190 unsigned int i;
3191 int error;
3192
3193 /* initialize rss key */
3194 rss_getkey((uint8_t *)rss_key);
3195
3196 /* hash to ring table */
3197 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3198 rss_table[i] = i % sc->sc_nqueues;
3199 }
3200
3201 /*
3202 * set rss key
3203 */
3204 for (i = 0; i < __arraycount(rss_key); i++) {
3205 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3206 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3207 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3208 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3209 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3210 RPF_RSS_KEY_WR_EN, 1);
3211 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3212 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3213 if (error != 0) {
3214 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3215 __func__);
3216 goto rss_set_timeout;
3217 }
3218 }
3219
3220 /*
3221 * set rss indirection table
3222 *
3223 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3224 * we'll make it by __BITMAP(3) macros.
3225 */
3226 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3227 __BITMAP_ZERO(&bit3x64);
3228
3229 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3230 do { \
3231 if (val & 1) { \
3232 __BITMAP_SET((idx) * 3, (bitmap)); \
3233 } else { \
3234 __BITMAP_CLR((idx) * 3, (bitmap)); \
3235 } \
3236 if (val & 2) { \
3237 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3238 } else { \
3239 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3240 } \
3241 if (val & 4) { \
3242 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3243 } else { \
3244 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3245 } \
3246 } while (0 /* CONSTCOND */)
3247
3248 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3249 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3250 }
3251
3252 /* write 192bit data in steps of 16bit */
3253 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3254 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3255 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3256 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3257 RPF_RSS_REDIR_ADDR, i);
3258 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3259 RPF_RSS_REDIR_WR_EN, 1);
3260
3261 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3262 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3263 if (error != 0)
3264 break;
3265 }
3266
3267 rss_set_timeout:
3268 return error;
3269 }
3270
3271 static void
3272 aq_hw_l3_filter_set(struct aq_softc *sc)
3273 {
3274 int i;
3275
3276 /* clear all filter */
3277 for (i = 0; i < 8; i++) {
3278 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3279 RPF_L3_FILTER_L4_EN, 0);
3280 }
3281 }
3282
3283 static void
3284 aq_set_vlan_filters(struct aq_softc *sc)
3285 {
3286 struct ethercom * const ec = &sc->sc_ethercom;
3287 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3288 struct vlanid_list *vlanidp;
3289 int i;
3290
3291 ETHER_LOCK(ec);
3292
3293 /* disable all vlan filters */
3294 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3295 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3296
3297 /* count VID */
3298 i = 0;
3299 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3300 i++;
3301
3302 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3303 (ifp->if_flags & IFF_PROMISC) ||
3304 (i > RPF_VLAN_MAX_FILTERS)) {
3305 /*
3306 * no vlan hwfilter, in promiscuous mode, or too many VID?
3307 * must receive all VID
3308 */
3309 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3310 RPF_VLAN_MODE_PROMISC, 1);
3311 goto done;
3312 }
3313
3314 /* receive only selected VID */
3315 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3316 i = 0;
3317 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3318 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3319 RPF_VLAN_FILTER_EN, 1);
3320 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3321 RPF_VLAN_FILTER_RXQ_EN, 0);
3322 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3323 RPF_VLAN_FILTER_RXQ, 0);
3324 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3325 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3326 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3327 RPF_VLAN_FILTER_ID, vlanidp->vid);
3328 i++;
3329 }
3330
3331 done:
3332 ETHER_UNLOCK(ec);
3333 }
3334
3335 static int
3336 aq_hw_init(struct aq_softc *sc)
3337 {
3338 uint32_t v;
3339
3340 /* Force limit MRRS on RDM/TDM to 2K */
3341 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3342 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3343
3344 /*
3345 * TX DMA total request limit. B0 hardware is not capable to
3346 * handle more than (8K-MRRS) incoming DMA data.
3347 * Value 24 in 256byte units
3348 */
3349 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3350
3351 aq_hw_init_tx_path(sc);
3352 aq_hw_init_rx_path(sc);
3353
3354 aq_hw_interrupt_moderation_set(sc);
3355
3356 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3357 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3358
3359 aq_hw_qos_set(sc);
3360
3361 /* Enable interrupt */
3362 int irqmode;
3363 if (sc->sc_msix)
3364 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3365 else
3366 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3367
3368 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3369 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3370 sc->sc_msix ? 1 : 0);
3371 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3372
3373 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3374
3375 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3376 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3377 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3378 );
3379
3380 /* link interrupt */
3381 if (!sc->sc_msix)
3382 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3383 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3384 __BIT(7) | sc->sc_linkstat_irq);
3385
3386 return 0;
3387 }
3388
3389 static int
3390 aq_update_link_status(struct aq_softc *sc)
3391 {
3392 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3393 aq_link_speed_t rate = AQ_LINK_NONE;
3394 aq_link_fc_t fc = AQ_FC_NONE;
3395 aq_link_eee_t eee = AQ_EEE_DISABLE;
3396 unsigned int speed;
3397 int changed = 0;
3398
3399 aq_get_linkmode(sc, &rate, &fc, &eee);
3400
3401 if (sc->sc_link_rate != rate)
3402 changed = 1;
3403 if (sc->sc_link_fc != fc)
3404 changed = 1;
3405 if (sc->sc_link_eee != eee)
3406 changed = 1;
3407
3408 if (changed) {
3409 switch (rate) {
3410 case AQ_LINK_100M:
3411 speed = 100;
3412 break;
3413 case AQ_LINK_1G:
3414 speed = 1000;
3415 break;
3416 case AQ_LINK_2G5:
3417 speed = 2500;
3418 break;
3419 case AQ_LINK_5G:
3420 speed = 5000;
3421 break;
3422 case AQ_LINK_10G:
3423 speed = 10000;
3424 break;
3425 case AQ_LINK_NONE:
3426 default:
3427 speed = 0;
3428 break;
3429 }
3430
3431 if (sc->sc_link_rate == AQ_LINK_NONE) {
3432 /* link DOWN -> UP */
3433 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3434 speed);
3435 if_link_state_change(ifp, LINK_STATE_UP);
3436 } else if (rate == AQ_LINK_NONE) {
3437 /* link UP -> DOWN */
3438 device_printf(sc->sc_dev, "link is DOWN\n");
3439 if_link_state_change(ifp, LINK_STATE_DOWN);
3440 } else {
3441 device_printf(sc->sc_dev,
3442 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3443 speed, fc, eee);
3444 }
3445
3446 sc->sc_link_rate = rate;
3447 sc->sc_link_fc = fc;
3448 sc->sc_link_eee = eee;
3449
3450 /* update interrupt timing according to new link speed */
3451 aq_hw_interrupt_moderation_set(sc);
3452 }
3453
3454 return changed;
3455 }
3456
3457 #ifdef AQ_EVENT_COUNTERS
3458 static void
3459 aq_update_statistics(struct aq_softc *sc)
3460 {
3461 int prev = sc->sc_statistics_idx;
3462 int cur = prev ^ 1;
3463
3464 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3465
3466 /*
3467 * aq's internal statistics counter is 32bit.
3468 * cauculate delta, and add to evcount
3469 */
3470 #define ADD_DELTA(cur, prev, name) \
3471 do { \
3472 uint32_t n; \
3473 n = (uint32_t)(sc->sc_statistics[cur].name - \
3474 sc->sc_statistics[prev].name); \
3475 if (n != 0) { \
3476 AQ_EVCNT_ADD(sc, name, n); \
3477 } \
3478 } while (/*CONSTCOND*/0);
3479
3480 ADD_DELTA(cur, prev, uprc);
3481 ADD_DELTA(cur, prev, mprc);
3482 ADD_DELTA(cur, prev, bprc);
3483 ADD_DELTA(cur, prev, prc);
3484 ADD_DELTA(cur, prev, erpr);
3485 ADD_DELTA(cur, prev, uptc);
3486 ADD_DELTA(cur, prev, mptc);
3487 ADD_DELTA(cur, prev, bptc);
3488 ADD_DELTA(cur, prev, ptc);
3489 ADD_DELTA(cur, prev, erpt);
3490 ADD_DELTA(cur, prev, mbtc);
3491 ADD_DELTA(cur, prev, bbtc);
3492 ADD_DELTA(cur, prev, mbrc);
3493 ADD_DELTA(cur, prev, bbrc);
3494 ADD_DELTA(cur, prev, ubrc);
3495 ADD_DELTA(cur, prev, ubtc);
3496 ADD_DELTA(cur, prev, dpc);
3497 ADD_DELTA(cur, prev, cprc);
3498
3499 sc->sc_statistics_idx = cur;
3500 }
3501 #endif /* AQ_EVENT_COUNTERS */
3502
3503 /* allocate and map one DMA block */
3504 static int
3505 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3506 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3507 {
3508 int nsegs, error;
3509
3510 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3511 1, &nsegs, 0)) != 0) {
3512 aprint_error_dev(sc->sc_dev,
3513 "unable to allocate DMA buffer, error=%d\n", error);
3514 goto fail_alloc;
3515 }
3516
3517 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3518 BUS_DMA_COHERENT)) != 0) {
3519 aprint_error_dev(sc->sc_dev,
3520 "unable to map DMA buffer, error=%d\n", error);
3521 goto fail_map;
3522 }
3523
3524 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3525 0, mapp)) != 0) {
3526 aprint_error_dev(sc->sc_dev,
3527 "unable to create DMA map, error=%d\n", error);
3528 goto fail_create;
3529 }
3530
3531 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3532 0)) != 0) {
3533 aprint_error_dev(sc->sc_dev,
3534 "unable to load DMA map, error=%d\n", error);
3535 goto fail_load;
3536 }
3537
3538 *sizep = size;
3539 return 0;
3540
3541 fail_load:
3542 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3543 *mapp = NULL;
3544 fail_create:
3545 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3546 *addrp = NULL;
3547 fail_map:
3548 bus_dmamem_free(sc->sc_dmat, seg, 1);
3549 memset(seg, 0, sizeof(*seg));
3550 fail_alloc:
3551 *sizep = 0;
3552 return error;
3553 }
3554
3555 static void
3556 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3557 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3558 {
3559 if (*mapp != NULL) {
3560 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3561 *mapp = NULL;
3562 }
3563 if (*addrp != NULL) {
3564 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3565 *addrp = NULL;
3566 }
3567 if (*sizep != 0) {
3568 bus_dmamem_free(sc->sc_dmat, seg, 1);
3569 memset(seg, 0, sizeof(*seg));
3570 *sizep = 0;
3571 }
3572 }
3573
3574 static int
3575 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3576 {
3577 int i, error;
3578
3579 /* allocate tx descriptors */
3580 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3581 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3582 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3583 if (error != 0)
3584 return error;
3585
3586 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3587
3588 /* fill tx ring with dmamap */
3589 for (i = 0; i < AQ_TXD_NUM; i++) {
3590 #define AQ_MAXDMASIZE (16 * 1024)
3591 #define AQ_NTXSEGS 32
3592 /* XXX: TODO: error check */
3593 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3594 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3595 }
3596 return 0;
3597 }
3598
3599 static void
3600 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3601 {
3602 int i;
3603
3604 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3605 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3606
3607 for (i = 0; i < AQ_TXD_NUM; i++) {
3608 if (txring->txr_mbufs[i].dmamap != NULL) {
3609 if (txring->txr_mbufs[i].m != NULL) {
3610 bus_dmamap_unload(sc->sc_dmat,
3611 txring->txr_mbufs[i].dmamap);
3612 m_freem(txring->txr_mbufs[i].m);
3613 txring->txr_mbufs[i].m = NULL;
3614 }
3615 bus_dmamap_destroy(sc->sc_dmat,
3616 txring->txr_mbufs[i].dmamap);
3617 txring->txr_mbufs[i].dmamap = NULL;
3618 }
3619 }
3620 }
3621
3622 static int
3623 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3624 {
3625 int i, error;
3626
3627 /* allocate rx descriptors */
3628 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3629 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3630 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3631 if (error != 0)
3632 return error;
3633
3634 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3635
3636 /* fill rxring with dmamaps */
3637 for (i = 0; i < AQ_RXD_NUM; i++) {
3638 rxring->rxr_mbufs[i].m = NULL;
3639 /* XXX: TODO: error check */
3640 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3641 &rxring->rxr_mbufs[i].dmamap);
3642 }
3643 return 0;
3644 }
3645
3646 static void
3647 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3648 {
3649 int i;
3650
3651 /* free all mbufs allocated for RX */
3652 for (i = 0; i < AQ_RXD_NUM; i++) {
3653 if (rxring->rxr_mbufs[i].m != NULL) {
3654 bus_dmamap_unload(sc->sc_dmat,
3655 rxring->rxr_mbufs[i].dmamap);
3656 m_freem(rxring->rxr_mbufs[i].m);
3657 rxring->rxr_mbufs[i].m = NULL;
3658 }
3659 }
3660 }
3661
3662 static void
3663 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3664 {
3665 int i;
3666
3667 /* free all mbufs and dmamaps */
3668 aq_rxdrain(sc, rxring);
3669 for (i = 0; i < AQ_RXD_NUM; i++) {
3670 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3671 bus_dmamap_destroy(sc->sc_dmat,
3672 rxring->rxr_mbufs[i].dmamap);
3673 rxring->rxr_mbufs[i].dmamap = NULL;
3674 }
3675 }
3676
3677 /* free RX descriptor */
3678 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3679 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3680 }
3681
3682 static void
3683 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3684 struct mbuf *m)
3685 {
3686 int error;
3687
3688 /* if mbuf already exists, unload and free */
3689 if (rxring->rxr_mbufs[idx].m != NULL) {
3690 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3691 m_freem(rxring->rxr_mbufs[idx].m);
3692 rxring->rxr_mbufs[idx].m = NULL;
3693 }
3694
3695 rxring->rxr_mbufs[idx].m = m;
3696
3697 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3698 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3699 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3700 if (error) {
3701 device_printf(sc->sc_dev,
3702 "unable to load rx DMA map %d, error = %d\n", idx, error);
3703 panic("%s: unable to load rx DMA map. error=%d",
3704 __func__, error);
3705 }
3706 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3707 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3708 }
3709
3710 static inline void
3711 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3712 {
3713 /* refill rxdesc, and sync */
3714 rxring->rxr_rxdesc[idx].read.buf_addr =
3715 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3716 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3717 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3718 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3719 BUS_DMASYNC_PREWRITE);
3720 }
3721
3722 static struct mbuf *
3723 aq_alloc_mbuf(void)
3724 {
3725 struct mbuf *m;
3726
3727 MGETHDR(m, M_DONTWAIT, MT_DATA);
3728 if (m == NULL)
3729 return NULL;
3730
3731 MCLGET(m, M_DONTWAIT);
3732 if ((m->m_flags & M_EXT) == 0) {
3733 m_freem(m);
3734 return NULL;
3735 }
3736
3737 return m;
3738 }
3739
3740 /* allocate mbuf and unload dmamap */
3741 static int
3742 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3743 {
3744 struct mbuf *m;
3745
3746 m = aq_alloc_mbuf();
3747 if (m == NULL)
3748 return ENOBUFS;
3749
3750 aq_rxring_setmbuf(sc, rxring, idx, m);
3751 return 0;
3752 }
3753
3754 static int
3755 aq_txrx_rings_alloc(struct aq_softc *sc)
3756 {
3757 int n, error;
3758
3759 for (n = 0; n < sc->sc_nqueues; n++) {
3760 sc->sc_queue[n].sc = sc;
3761 sc->sc_queue[n].txring.txr_sc = sc;
3762 sc->sc_queue[n].txring.txr_index = n;
3763 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3764 IPL_NET);
3765 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3766 if (error != 0)
3767 goto failure;
3768
3769 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3770 if (error != 0)
3771 goto failure;
3772
3773 sc->sc_queue[n].rxring.rxr_sc = sc;
3774 sc->sc_queue[n].rxring.rxr_index = n;
3775 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3776 IPL_NET);
3777 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3778 if (error != 0)
3779 break;
3780 }
3781
3782 failure:
3783 return error;
3784 }
3785
3786 static void
3787 aq_txrx_rings_free(struct aq_softc *sc)
3788 {
3789 int n;
3790
3791 for (n = 0; n < sc->sc_nqueues; n++) {
3792 aq_txring_free(sc, &sc->sc_queue[n].txring);
3793 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3794
3795 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3796
3797 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3798 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3799 }
3800 }
3801
3802 static int
3803 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3804 {
3805 int error = 0;
3806 txring->txr_softint = NULL;
3807
3808 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3809 if (txring->txr_pcq == NULL) {
3810 aprint_error_dev(sc->sc_dev,
3811 "unable to allocate pcq for TXring[%d]\n",
3812 txring->txr_index);
3813 error = ENOMEM;
3814 goto done;
3815 }
3816
3817 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3818 aq_deferred_transmit, txring);
3819 if (txring->txr_softint == NULL) {
3820 aprint_error_dev(sc->sc_dev,
3821 "unable to establish softint for TXring[%d]\n",
3822 txring->txr_index);
3823 error = ENOENT;
3824 }
3825
3826 done:
3827 return error;
3828 }
3829
3830 static void
3831 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3832 {
3833 struct mbuf *m;
3834
3835 if (txring->txr_softint != NULL) {
3836 softint_disestablish(txring->txr_softint);
3837 txring->txr_softint = NULL;
3838 }
3839
3840 if (txring->txr_pcq != NULL) {
3841 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3842 m_freem(m);
3843 pcq_destroy(txring->txr_pcq);
3844 txring->txr_pcq = NULL;
3845 }
3846 }
3847
3848 #if NSYSMON_ENVSYS > 0
3849 static void
3850 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3851 {
3852 struct aq_softc *sc;
3853 uint32_t temp;
3854 int error;
3855
3856 sc = sme->sme_cookie;
3857
3858 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3859 if (error == 0) {
3860 edata->value_cur = temp;
3861 edata->state = ENVSYS_SVALID;
3862 } else {
3863 edata->state = ENVSYS_SINVALID;
3864 }
3865 }
3866 #endif
3867
3868
3869
3870 static bool
3871 aq_watchdog_check(struct aq_softc * const sc)
3872 {
3873
3874 AQ_LOCKED(sc);
3875
3876 bool ok = true;
3877 for (int n = 0; n < sc->sc_nqueues; n++) {
3878 struct aq_txring *txring = &sc->sc_queue[n].txring;
3879
3880 mutex_enter(&txring->txr_mutex);
3881 if (txring->txr_sending &&
3882 time_uptime - txring->txr_lastsent > aq_watchdog_timeout)
3883 ok = false;
3884
3885 mutex_exit(&txring->txr_mutex);
3886
3887 if (!ok)
3888 return false;
3889 }
3890
3891 if (sc->sc_trigger_reset) {
3892 /* debug operation, no need for atomicity or reliability */
3893 sc->sc_trigger_reset = 0;
3894 return false;
3895 }
3896
3897 return true;
3898 }
3899
3900
3901
3902 static bool
3903 aq_watchdog_tick(struct ifnet *ifp)
3904 {
3905 struct aq_softc * const sc = ifp->if_softc;
3906
3907 AQ_LOCKED(sc);
3908
3909 if (!sc->sc_trigger_reset && aq_watchdog_check(sc))
3910 return true;
3911
3912 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) {
3913 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
3914 }
3915
3916 return false;
3917 }
3918
3919 static void
3920 aq_tick(void *arg)
3921 {
3922 struct aq_softc * const sc = arg;
3923
3924 AQ_LOCK(sc);
3925 if (sc->sc_stopping) {
3926 AQ_UNLOCK(sc);
3927 return;
3928 }
3929
3930 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3931 sc->sc_detect_linkstat = false;
3932 aq_update_link_status(sc);
3933 }
3934
3935 #ifdef AQ_EVENT_COUNTERS
3936 if (sc->sc_poll_statistics)
3937 aq_update_statistics(sc);
3938 #endif
3939
3940 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3941 const bool ok = aq_watchdog_tick(ifp);
3942 if (ok)
3943 callout_schedule(&sc->sc_tick_ch, hz);
3944
3945 AQ_UNLOCK(sc);
3946 }
3947
3948 /* interrupt enable/disable */
3949 static void
3950 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3951 {
3952 uint32_t imask = 0;
3953 int i;
3954
3955 if (txrx) {
3956 for (i = 0; i < sc->sc_nqueues; i++) {
3957 imask |= __BIT(sc->sc_tx_irq[i]);
3958 imask |= __BIT(sc->sc_rx_irq[i]);
3959 }
3960 }
3961
3962 if (link)
3963 imask |= __BIT(sc->sc_linkstat_irq);
3964
3965 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3966 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3967 }
3968
3969 static int
3970 aq_legacy_intr(void *arg)
3971 {
3972 struct aq_softc *sc = arg;
3973 uint32_t status;
3974 int nintr = 0;
3975
3976 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3977 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3978
3979 if (status & __BIT(sc->sc_linkstat_irq)) {
3980 AQ_LOCK(sc);
3981 sc->sc_detect_linkstat = true;
3982 if (!sc->sc_stopping)
3983 callout_schedule(&sc->sc_tick_ch, 0);
3984 AQ_UNLOCK(sc);
3985 nintr++;
3986 }
3987
3988 if (status & __BIT(sc->sc_rx_irq[0])) {
3989 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3990 }
3991
3992 if (status & __BIT(sc->sc_tx_irq[0])) {
3993 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3994 }
3995
3996 return nintr;
3997 }
3998
3999 static int
4000 aq_txrx_intr(void *arg)
4001 {
4002 struct aq_queue *queue = arg;
4003 struct aq_softc *sc = queue->sc;
4004 struct aq_txring *txring = &queue->txring;
4005 struct aq_rxring *rxring = &queue->rxring;
4006 uint32_t status;
4007 int nintr = 0;
4008 int txringidx, rxringidx, txirq, rxirq;
4009
4010 txringidx = txring->txr_index;
4011 rxringidx = rxring->rxr_index;
4012 txirq = sc->sc_tx_irq[txringidx];
4013 rxirq = sc->sc_rx_irq[rxringidx];
4014
4015 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4016 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
4017 /* stray interrupt? */
4018 return 0;
4019 }
4020
4021 nintr += aq_rx_intr(rxring);
4022 nintr += aq_tx_intr(txring);
4023
4024 return nintr;
4025 }
4026
4027 static int
4028 aq_link_intr(void *arg)
4029 {
4030 struct aq_softc * const sc = arg;
4031 uint32_t status;
4032 int nintr = 0;
4033
4034 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4035 if (status & __BIT(sc->sc_linkstat_irq)) {
4036 AQ_LOCK(sc);
4037 sc->sc_detect_linkstat = true;
4038 if (!sc->sc_stopping)
4039 callout_schedule(&sc->sc_tick_ch, 0);
4040 AQ_UNLOCK(sc);
4041 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
4042 __BIT(sc->sc_linkstat_irq));
4043 nintr++;
4044 }
4045
4046 return nintr;
4047 }
4048
4049 static void
4050 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
4051 {
4052 const int ringidx = txring->txr_index;
4053 int i;
4054
4055 mutex_enter(&txring->txr_mutex);
4056
4057 txring->txr_prodidx = 0;
4058 txring->txr_considx = 0;
4059 txring->txr_nfree = AQ_TXD_NUM;
4060 txring->txr_active = false;
4061
4062 /* free mbufs untransmitted */
4063 for (i = 0; i < AQ_TXD_NUM; i++) {
4064 if (txring->txr_mbufs[i].m != NULL) {
4065 m_freem(txring->txr_mbufs[i].m);
4066 txring->txr_mbufs[i].m = NULL;
4067 }
4068 }
4069
4070 /* disable DMA */
4071 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
4072
4073 if (start) {
4074 /* TX descriptor physical address */
4075 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
4076 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4077 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4078 (uint32_t)((uint64_t)paddr >> 32));
4079
4080 /* TX descriptor size */
4081 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
4082 AQ_TXD_NUM / 8);
4083
4084 /* reload TAIL pointer */
4085 txring->txr_prodidx = txring->txr_considx =
4086 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
4087 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
4088
4089 /* Mapping interrupt vector */
4090 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4091 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
4092 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4093 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
4094
4095 /* enable DMA */
4096 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
4097 TX_DMA_DESC_EN, 1);
4098
4099 const int cpuid = 0; /* XXX? */
4100 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4101 TDM_DCAD_CPUID, cpuid);
4102 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4103 TDM_DCAD_CPUID_EN, 0);
4104
4105 txring->txr_active = true;
4106 }
4107
4108 mutex_exit(&txring->txr_mutex);
4109 }
4110
4111 static int
4112 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4113 {
4114 const int ringidx = rxring->rxr_index;
4115 int i;
4116 int error = 0;
4117
4118 mutex_enter(&rxring->rxr_mutex);
4119 rxring->rxr_active = false;
4120 rxring->rxr_discarding = false;
4121 if (rxring->rxr_receiving_m != NULL) {
4122 m_freem(rxring->rxr_receiving_m);
4123 rxring->rxr_receiving_m = NULL;
4124 rxring->rxr_receiving_m_last = NULL;
4125 }
4126
4127 /* disable DMA */
4128 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4129
4130 /* free all RX mbufs */
4131 aq_rxdrain(sc, rxring);
4132
4133 if (start) {
4134 for (i = 0; i < AQ_RXD_NUM; i++) {
4135 error = aq_rxring_add(sc, rxring, i);
4136 if (error != 0) {
4137 aq_rxdrain(sc, rxring);
4138 return error;
4139 }
4140 aq_rxring_reset_desc(sc, rxring, i);
4141 }
4142
4143 /* RX descriptor physical address */
4144 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4145 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4146 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4147 (uint32_t)((uint64_t)paddr >> 32));
4148
4149 /* RX descriptor size */
4150 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4151 AQ_RXD_NUM / 8);
4152
4153 /* maximum receive frame size */
4154 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4155 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4156 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4157 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4158
4159 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4160 RX_DMA_DESC_HEADER_SPLIT, 0);
4161 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4162 RX_DMA_DESC_VLAN_STRIP,
4163 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4164 1 : 0);
4165
4166 /*
4167 * reload TAIL pointer, and update readidx
4168 * (HEAD pointer cannot write)
4169 */
4170 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4171 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4172 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4173 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4174
4175 /* Rx ring set mode */
4176
4177 /* Mapping interrupt vector */
4178 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4179 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4180 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4181 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4182
4183 const int cpuid = 0; /* XXX? */
4184 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4185 RX_DMA_DCAD_CPUID, cpuid);
4186 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4187 RX_DMA_DCAD_DESC_EN, 0);
4188 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4189 RX_DMA_DCAD_HEADER_EN, 0);
4190 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4191 RX_DMA_DCAD_PAYLOAD_EN, 0);
4192
4193 /* enable DMA. start receiving */
4194 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4195 RX_DMA_DESC_EN, 1);
4196
4197 rxring->rxr_active = true;
4198 }
4199
4200 mutex_exit(&rxring->rxr_mutex);
4201 return error;
4202 }
4203
4204 #define TXRING_NEXTIDX(idx) \
4205 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4206 #define RXRING_NEXTIDX(idx) \
4207 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4208
4209 static int
4210 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4211 {
4212 bus_dmamap_t map;
4213 struct mbuf *m = *mp;
4214 uint32_t ctl1, ctl1_ctx, ctl2;
4215 int idx, i, error;
4216
4217 idx = txring->txr_prodidx;
4218 map = txring->txr_mbufs[idx].dmamap;
4219
4220 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4221 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4222 if (error == EFBIG) {
4223 struct mbuf *n;
4224 n = m_defrag(m, M_DONTWAIT);
4225 if (n == NULL)
4226 return EFBIG;
4227 /* m_defrag() preserve m */
4228 KASSERT(n == m);
4229 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4230 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4231 }
4232 if (error != 0)
4233 return error;
4234
4235 /*
4236 * check spaces of free descriptors.
4237 * +1 is additional descriptor for context (vlan, etc,.)
4238 */
4239 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4240 device_printf(sc->sc_dev,
4241 "TX: not enough descriptors left %d for %d segs\n",
4242 txring->txr_nfree, map->dm_nsegs + 1);
4243 bus_dmamap_unload(sc->sc_dmat, map);
4244 return ENOBUFS;
4245 }
4246
4247 /* sync dma for mbuf */
4248 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4249 BUS_DMASYNC_PREWRITE);
4250
4251 ctl1_ctx = 0;
4252 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4253
4254 if (vlan_has_tag(m)) {
4255 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4256 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4257
4258 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4259 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4260
4261 /* fill context descriptor and forward index */
4262 txring->txr_txdesc[idx].buf_addr = 0;
4263 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4264 txring->txr_txdesc[idx].ctl2 = 0;
4265
4266 idx = TXRING_NEXTIDX(idx);
4267 txring->txr_nfree--;
4268 }
4269
4270 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4271 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4272 if (m->m_pkthdr.csum_flags &
4273 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4274 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4275 }
4276
4277 /* fill descriptor(s) */
4278 for (i = 0; i < map->dm_nsegs; i++) {
4279 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4280 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4281 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4282
4283 if (i == 0) {
4284 /* remember mbuf of these descriptors */
4285 txring->txr_mbufs[idx].m = m;
4286 } else {
4287 txring->txr_mbufs[idx].m = NULL;
4288 }
4289
4290 if (i == map->dm_nsegs - 1) {
4291 /* last segment, mark an EndOfPacket, and cause intr */
4292 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4293 }
4294
4295 txring->txr_txdesc[idx].buf_addr =
4296 htole64(map->dm_segs[i].ds_addr);
4297 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4298 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4299
4300 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4301 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4302 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4303
4304 idx = TXRING_NEXTIDX(idx);
4305 txring->txr_nfree--;
4306 }
4307
4308 txring->txr_prodidx = idx;
4309
4310 return 0;
4311 }
4312
4313 static int
4314 aq_tx_intr(void *arg)
4315 {
4316 struct aq_txring * const txring = arg;
4317 struct aq_softc * const sc = txring->txr_sc;
4318 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4319 struct mbuf *m;
4320 const int ringidx = txring->txr_index;
4321 unsigned int idx, hw_head, n = 0;
4322
4323 mutex_enter(&txring->txr_mutex);
4324
4325 if (!txring->txr_active)
4326 goto tx_intr_done;
4327
4328 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4329 TX_DMA_DESC_HEAD_PTR);
4330 if (hw_head == txring->txr_considx) {
4331 txring->txr_sending = false;
4332 goto tx_intr_done;
4333 }
4334
4335 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4336
4337 for (idx = txring->txr_considx; idx != hw_head;
4338 idx = TXRING_NEXTIDX(idx), n++) {
4339
4340 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4341 bus_dmamap_unload(sc->sc_dmat,
4342 txring->txr_mbufs[idx].dmamap);
4343
4344 if_statinc_ref(nsr, if_opackets);
4345 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4346 if (m->m_flags & M_MCAST)
4347 if_statinc_ref(nsr, if_omcasts);
4348
4349 m_freem(m);
4350 txring->txr_mbufs[idx].m = NULL;
4351 }
4352
4353 txring->txr_nfree++;
4354 }
4355 txring->txr_considx = idx;
4356
4357 IF_STAT_PUTREF(ifp);
4358
4359 /* no more pending TX packet, cancel watchdog */
4360 if (txring->txr_nfree >= AQ_TXD_NUM)
4361 txring->txr_sending = false;
4362
4363 tx_intr_done:
4364 mutex_exit(&txring->txr_mutex);
4365
4366 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4367 return n;
4368 }
4369
4370 static int
4371 aq_rx_intr(void *arg)
4372 {
4373 struct aq_rxring * const rxring = arg;
4374 struct aq_softc * const sc = rxring->rxr_sc;
4375 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4376 const int ringidx = rxring->rxr_index;
4377 aq_rx_desc_t *rxd;
4378 struct mbuf *m, *m0, *mprev, *new_m;
4379 uint32_t rxd_type, rxd_hash __unused;
4380 uint16_t rxd_status, rxd_pktlen;
4381 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4382 unsigned int idx, n = 0;
4383 bool discarding;
4384
4385 mutex_enter(&rxring->rxr_mutex);
4386
4387 if (!rxring->rxr_active)
4388 goto rx_intr_done;
4389
4390 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4391 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4392 goto rx_intr_done;
4393 }
4394
4395 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4396
4397 /* restore ring context */
4398 discarding = rxring->rxr_discarding;
4399 m0 = rxring->rxr_receiving_m;
4400 mprev = rxring->rxr_receiving_m_last;
4401
4402 for (idx = rxring->rxr_readidx;
4403 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4404 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4405
4406 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4407 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4408 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4409
4410 rxd = &rxring->rxr_rxdesc[idx];
4411 rxd_status = le16toh(rxd->wb.status);
4412
4413 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4414 break; /* not yet done */
4415
4416 rxd_type = le32toh(rxd->wb.type);
4417 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4418 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4419 rxd_hash = le32toh(rxd->wb.rss_hash);
4420 rxd_vlan = le16toh(rxd->wb.vlan);
4421
4422 /*
4423 * Some segments are being dropped while receiving jumboframe.
4424 * Discard until EOP.
4425 */
4426 if (discarding)
4427 goto rx_next;
4428
4429 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4430 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4431 if_statinc_ref(nsr, if_ierrors);
4432 if (m0 != NULL) {
4433 m_freem(m0);
4434 m0 = mprev = NULL;
4435 }
4436 discarding = true;
4437 goto rx_next;
4438 }
4439
4440 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4441 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4442 BUS_DMASYNC_POSTREAD);
4443 m = rxring->rxr_mbufs[idx].m;
4444
4445 new_m = aq_alloc_mbuf();
4446 if (new_m == NULL) {
4447 /*
4448 * cannot allocate new mbuf.
4449 * discard this packet, and reuse mbuf for next.
4450 */
4451 if_statinc_ref(nsr, if_iqdrops);
4452 if (m0 != NULL) {
4453 m_freem(m0);
4454 m0 = mprev = NULL;
4455 }
4456 discarding = true;
4457 goto rx_next;
4458 }
4459 rxring->rxr_mbufs[idx].m = NULL;
4460 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4461
4462 if (m0 == NULL) {
4463 m0 = m;
4464 } else {
4465 if (m->m_flags & M_PKTHDR)
4466 m_remove_pkthdr(m);
4467 mprev->m_next = m;
4468 }
4469 mprev = m;
4470
4471 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4472 /* to be continued in the next segment */
4473 m->m_len = MCLBYTES;
4474 } else {
4475 /* the last segment */
4476 int mlen = rxd_pktlen % MCLBYTES;
4477 if (mlen == 0)
4478 mlen = MCLBYTES;
4479 m->m_len = mlen;
4480 m0->m_pkthdr.len = rxd_pktlen;
4481 /* VLAN offloading */
4482 if ((sc->sc_ethercom.ec_capenable &
4483 ETHERCAP_VLAN_HWTAGGING) &&
4484 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4485 __SHIFTOUT(rxd_type,
4486 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4487 vlan_set_tag(m0, rxd_vlan);
4488 }
4489
4490 /* Checksum offloading */
4491 unsigned int pkttype_eth =
4492 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4493 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4494 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4495 __SHIFTOUT(rxd_type,
4496 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4497 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4498 if (__SHIFTOUT(rxd_status,
4499 RXDESC_STATUS_IPV4_CSUM_NG))
4500 m0->m_pkthdr.csum_flags |=
4501 M_CSUM_IPv4_BAD;
4502 }
4503
4504 /*
4505 * aq will always mark BAD for fragment packets,
4506 * but this is not a problem because the IP stack
4507 * ignores the CSUM flag in fragment packets.
4508 */
4509 if (__SHIFTOUT(rxd_type,
4510 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4511 bool checked = false;
4512 unsigned int pkttype_proto =
4513 __SHIFTOUT(rxd_type,
4514 RXDESC_TYPE_PKTTYPE_PROTO);
4515
4516 if (pkttype_proto ==
4517 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4518 if ((pkttype_eth ==
4519 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4520 (ifp->if_capabilities &
4521 IFCAP_CSUM_TCPv4_Rx)) {
4522 m0->m_pkthdr.csum_flags |=
4523 M_CSUM_TCPv4;
4524 checked = true;
4525 } else if ((pkttype_eth ==
4526 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4527 (ifp->if_capabilities &
4528 IFCAP_CSUM_TCPv6_Rx)) {
4529 m0->m_pkthdr.csum_flags |=
4530 M_CSUM_TCPv6;
4531 checked = true;
4532 }
4533 } else if (pkttype_proto ==
4534 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4535 if ((pkttype_eth ==
4536 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4537 (ifp->if_capabilities &
4538 IFCAP_CSUM_UDPv4_Rx)) {
4539 m0->m_pkthdr.csum_flags |=
4540 M_CSUM_UDPv4;
4541 checked = true;
4542 } else if ((pkttype_eth ==
4543 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4544 (ifp->if_capabilities &
4545 IFCAP_CSUM_UDPv6_Rx)) {
4546 m0->m_pkthdr.csum_flags |=
4547 M_CSUM_UDPv6;
4548 checked = true;
4549 }
4550 }
4551 if (checked &&
4552 (__SHIFTOUT(rxd_status,
4553 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4554 !__SHIFTOUT(rxd_status,
4555 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4556 m0->m_pkthdr.csum_flags |=
4557 M_CSUM_TCP_UDP_BAD;
4558 }
4559 }
4560
4561 m_set_rcvif(m0, ifp);
4562 if_statinc_ref(nsr, if_ipackets);
4563 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4564 if_percpuq_enqueue(ifp->if_percpuq, m0);
4565 m0 = mprev = NULL;
4566 }
4567
4568 rx_next:
4569 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4570 discarding = false;
4571
4572 aq_rxring_reset_desc(sc, rxring, idx);
4573 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4574 }
4575 /* save ring context */
4576 rxring->rxr_readidx = idx;
4577 rxring->rxr_discarding = discarding;
4578 rxring->rxr_receiving_m = m0;
4579 rxring->rxr_receiving_m_last = mprev;
4580
4581 IF_STAT_PUTREF(ifp);
4582
4583 rx_intr_done:
4584 mutex_exit(&rxring->rxr_mutex);
4585
4586 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4587 return n;
4588 }
4589
4590 static int
4591 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4592 {
4593 struct ifnet *ifp = &ec->ec_if;
4594 struct aq_softc * const sc = ifp->if_softc;
4595
4596 aq_set_vlan_filters(sc);
4597 return 0;
4598 }
4599
4600 static int
4601 aq_ifflags_cb(struct ethercom *ec)
4602 {
4603 struct ifnet * const ifp = &ec->ec_if;
4604 struct aq_softc * const sc = ifp->if_softc;
4605 int i, ecchange, error = 0;
4606 unsigned short iffchange;
4607
4608 AQ_LOCK(sc);
4609
4610 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4611 if ((iffchange & IFF_PROMISC) != 0)
4612 error = aq_set_filter(sc);
4613
4614 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4615 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4616 for (i = 0; i < AQ_RINGS_NUM; i++) {
4617 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4618 RX_DMA_DESC_VLAN_STRIP,
4619 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4620 1 : 0);
4621 }
4622 }
4623
4624 /* vlan configuration depends on also interface promiscuous mode */
4625 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4626 aq_set_vlan_filters(sc);
4627
4628 sc->sc_ec_capenable = ec->ec_capenable;
4629 sc->sc_if_flags = ifp->if_flags;
4630
4631 AQ_UNLOCK(sc);
4632
4633 return error;
4634 }
4635
4636
4637 static int
4638 aq_init(struct ifnet *ifp)
4639 {
4640 struct aq_softc * const sc = ifp->if_softc;
4641
4642 AQ_LOCK(sc);
4643
4644 int ret = aq_init_locked(ifp);
4645
4646 AQ_UNLOCK(sc);
4647
4648 return ret;
4649 }
4650
4651 static int
4652 aq_init_locked(struct ifnet *ifp)
4653 {
4654 struct aq_softc * const sc = ifp->if_softc;
4655 int i, error = 0;
4656
4657 KASSERT(IFNET_LOCKED(ifp));
4658 AQ_LOCKED(sc);
4659
4660 aq_stop_locked(ifp, false);
4661
4662 aq_set_vlan_filters(sc);
4663 aq_set_capability(sc);
4664
4665 for (i = 0; i < sc->sc_nqueues; i++) {
4666 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4667 }
4668
4669 /* invalidate RX descriptor cache */
4670 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4671 AQ_READ_REG_BIT(sc,
4672 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4673
4674 /* start RX */
4675 for (i = 0; i < sc->sc_nqueues; i++) {
4676 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4677 if (error != 0) {
4678 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4679 __func__);
4680 goto aq_init_failure;
4681 }
4682 }
4683 aq_init_rss(sc);
4684 aq_hw_l3_filter_set(sc);
4685
4686 /* ring reset? */
4687 aq_unset_stopping_flags(sc);
4688
4689 callout_schedule(&sc->sc_tick_ch, hz);
4690
4691 /* ready */
4692 ifp->if_flags |= IFF_RUNNING;
4693
4694 /* start TX and RX */
4695 aq_enable_intr(sc, /*link*/true, /*txrx*/true);
4696 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4697 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4698
4699 aq_init_failure:
4700 sc->sc_if_flags = ifp->if_flags;
4701
4702 return error;
4703 }
4704
4705 static void
4706 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4707 struct aq_txring *txring, bool is_transmit)
4708 {
4709 struct mbuf *m;
4710 int npkt, error;
4711
4712 if (txring->txr_nfree < AQ_TXD_MIN)
4713 return;
4714
4715 for (npkt = 0; ; npkt++) {
4716 if (is_transmit)
4717 m = pcq_peek(txring->txr_pcq);
4718 else
4719 IFQ_POLL(&ifp->if_snd, m);
4720
4721 if (m == NULL)
4722 break;
4723
4724 if (is_transmit)
4725 pcq_get(txring->txr_pcq);
4726 else
4727 IFQ_DEQUEUE(&ifp->if_snd, m);
4728
4729 error = aq_encap_txring(sc, txring, &m);
4730 if (error != 0) {
4731 /* too many mbuf chains? or not enough descriptors? */
4732 m_freem(m);
4733 if_statinc(ifp, if_oerrors);
4734 break;
4735 }
4736
4737 /* update tail ptr */
4738 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4739 txring->txr_prodidx);
4740
4741 /* Pass the packet to any BPF listeners */
4742 bpf_mtap(ifp, m, BPF_D_OUT);
4743 }
4744
4745 if (npkt) {
4746 /* Set a watchdog timer in case the chip flakes out. */
4747 txring->txr_lastsent = time_uptime;
4748 txring->txr_sending = true;
4749 }
4750 }
4751
4752 static void
4753 aq_start(struct ifnet *ifp)
4754 {
4755 struct aq_softc * const sc = ifp->if_softc;
4756 /* aq_start() always use TX ring[0] */
4757 struct aq_txring * const txring = &sc->sc_queue[0].txring;
4758
4759 mutex_enter(&txring->txr_mutex);
4760 if (txring->txr_active && !txring->txr_stopping)
4761 aq_send_common_locked(ifp, sc, txring, false);
4762 mutex_exit(&txring->txr_mutex);
4763 }
4764
4765 static inline unsigned int
4766 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4767 {
4768 return (cpu_index(curcpu()) % sc->sc_nqueues);
4769 }
4770
4771 static int
4772 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4773 {
4774 struct aq_softc * const sc = ifp->if_softc;
4775 const int ringidx = aq_select_txqueue(sc, m);
4776 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
4777
4778 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4779 m_freem(m);
4780 return ENOBUFS;
4781 }
4782
4783 if (mutex_tryenter(&txring->txr_mutex)) {
4784 aq_send_common_locked(ifp, sc, txring, true);
4785 mutex_exit(&txring->txr_mutex);
4786 } else {
4787 softint_schedule(txring->txr_softint);
4788 }
4789 return 0;
4790 }
4791
4792 static void
4793 aq_deferred_transmit(void *arg)
4794 {
4795 struct aq_txring * const txring = arg;
4796 struct aq_softc * const sc = txring->txr_sc;
4797 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4798
4799 mutex_enter(&txring->txr_mutex);
4800 if (pcq_peek(txring->txr_pcq) != NULL)
4801 aq_send_common_locked(ifp, sc, txring, true);
4802 mutex_exit(&txring->txr_mutex);
4803 }
4804
4805
4806 static void
4807 aq_unset_stopping_flags(struct aq_softc *sc)
4808 {
4809
4810 AQ_LOCKED(sc);
4811
4812 /* Must unset stopping flags in ascending order. */
4813 for (int i = 0; i < sc->sc_nqueues; i++) {
4814 struct aq_txring *txr = &sc->sc_queue[i].txring;
4815 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4816
4817 mutex_enter(&txr->txr_mutex);
4818 txr->txr_stopping = false;
4819 mutex_exit(&txr->txr_mutex);
4820
4821 mutex_enter(&rxr->rxr_mutex);
4822 rxr->rxr_stopping = false;
4823 mutex_exit(&rxr->rxr_mutex);
4824 }
4825
4826 sc->sc_stopping = false;
4827 }
4828
4829 static void
4830 aq_set_stopping_flags(struct aq_softc *sc)
4831 {
4832
4833 AQ_LOCKED(sc);
4834
4835 /* Must unset stopping flags in ascending order. */
4836 for (int i = 0; i < sc->sc_nqueues; i++) {
4837 struct aq_txring *txr = &sc->sc_queue[i].txring;
4838 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4839
4840 mutex_enter(&txr->txr_mutex);
4841 txr->txr_stopping = true;
4842 mutex_exit(&txr->txr_mutex);
4843
4844 mutex_enter(&rxr->rxr_mutex);
4845 rxr->rxr_stopping = true;
4846 mutex_exit(&rxr->rxr_mutex);
4847 }
4848
4849 sc->sc_stopping = true;
4850 }
4851
4852
4853 static void
4854 aq_stop(struct ifnet *ifp, int disable)
4855 {
4856 struct aq_softc * const sc = ifp->if_softc;
4857
4858 ASSERT_SLEEPABLE();
4859 KASSERT(IFNET_LOCKED(ifp));
4860
4861 AQ_LOCK(sc);
4862 aq_stop_locked(ifp, disable ? true : false);
4863 AQ_UNLOCK(sc);
4864 }
4865
4866
4867
4868 static void
4869 aq_stop_locked(struct ifnet *ifp, bool disable)
4870 {
4871 struct aq_softc * const sc = ifp->if_softc;
4872 int i;
4873
4874 KASSERT(IFNET_LOCKED(ifp));
4875 AQ_LOCKED(sc);
4876
4877 aq_set_stopping_flags(sc);
4878
4879 if ((ifp->if_flags & IFF_RUNNING) == 0)
4880 goto already_stopped;
4881
4882 /* disable tx/rx interrupts */
4883 aq_enable_intr(sc, /*link*/true, /*txrx*/false);
4884
4885 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4886 for (i = 0; i < sc->sc_nqueues; i++) {
4887 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4888 }
4889
4890 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4891 for (i = 0; i < sc->sc_nqueues; i++) {
4892 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4893 }
4894
4895 /* invalidate RX descriptor cache */
4896 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4897 AQ_READ_REG_BIT(sc,
4898 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4899
4900 already_stopped:
4901 aq_enable_intr(sc, /*link*/false, /*txrx*/false);
4902 callout_halt(&sc->sc_tick_ch, &sc->sc_mutex);
4903
4904 ifp->if_flags &= ~IFF_RUNNING;
4905 sc->sc_if_flags = ifp->if_flags;
4906 }
4907
4908
4909 static void
4910 aq_handle_reset_work(struct work *work, void *arg)
4911 {
4912 struct aq_softc * const sc = arg;
4913 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4914
4915 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
4916
4917 AQ_LOCK(sc);
4918
4919 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4920 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4921 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4922
4923 for (int n = 0; n < sc->sc_nqueues; n++) {
4924 struct aq_txring *txring = &sc->sc_queue[n].txring;
4925 u_int head = AQ_READ_REG_BIT(sc,
4926 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4927 TX_DMA_DESC_HEAD_PTR);
4928 u_int tail = AQ_READ_REG(sc,
4929 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4930
4931 device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n",
4932 __func__, txring->txr_index, head, tail);
4933
4934 aq_tx_intr(txring);
4935 }
4936
4937 AQ_UNLOCK(sc);
4938
4939 /* Don't want ioctl operations to happen */
4940 IFNET_LOCK(ifp);
4941
4942 /* reset the interface. */
4943 aq_init(ifp);
4944
4945 IFNET_UNLOCK(ifp);
4946
4947 atomic_store_relaxed(&sc->sc_reset_pending, 0);
4948 }
4949
4950 static int
4951 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4952 {
4953 struct aq_softc * const sc = ifp->if_softc;
4954 struct ifreq * const ifr = data;
4955 int error = 0;
4956
4957 switch (cmd) {
4958 case SIOCADDMULTI:
4959 case SIOCDELMULTI:
4960 break;
4961 default:
4962 KASSERT(IFNET_LOCKED(ifp));
4963 }
4964
4965 const int s = splnet();
4966 switch (cmd) {
4967 case SIOCSIFMTU:
4968 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4969 error = EINVAL;
4970 } else {
4971 ifp->if_mtu = ifr->ifr_mtu;
4972 error = 0; /* no need to reset (no ENETRESET) */
4973 }
4974 break;
4975 default:
4976 error = ether_ioctl(ifp, cmd, data);
4977 break;
4978 }
4979 splx(s);
4980
4981 if (error != ENETRESET)
4982 return error;
4983
4984 switch (cmd) {
4985 case SIOCSIFCAP:
4986 error = aq_set_capability(sc);
4987 break;
4988 case SIOCADDMULTI:
4989 case SIOCDELMULTI:
4990 AQ_LOCK(sc);
4991 if ((sc->sc_if_flags & IFF_RUNNING) != 0) {
4992 /*
4993 * Multicast list has changed; set the hardware filter
4994 * accordingly.
4995 */
4996 error = aq_set_filter(sc);
4997 }
4998 AQ_UNLOCK(sc);
4999 break;
5000 }
5001
5002 return error;
5003 }
5004
5005
5006 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
5007
5008 #ifdef _MODULE
5009 #include "ioconf.c"
5010 #endif
5011
5012 static int
5013 if_aq_modcmd(modcmd_t cmd, void *opaque)
5014 {
5015 int error = 0;
5016
5017 switch (cmd) {
5018 case MODULE_CMD_INIT:
5019 #ifdef _MODULE
5020 error = config_init_component(cfdriver_ioconf_if_aq,
5021 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5022 #endif
5023 return error;
5024 case MODULE_CMD_FINI:
5025 #ifdef _MODULE
5026 error = config_fini_component(cfdriver_ioconf_if_aq,
5027 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5028 #endif
5029 return error;
5030 default:
5031 return ENOTTY;
5032 }
5033 }
5034