if_aq.c revision 1.42 1 /* $NetBSD: if_aq.c,v 1.42 2023/01/14 13:17:50 ryo Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.42 2023/01/14 13:17:50 ryo Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not supported */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 #define AQ_JUMBO_MTU_REV_A 9000
120 #define AQ_JUMBO_MTU_REV_B 16338
121
122 /*
123 * TERMINOLOGY
124 * MPI = MAC PHY INTERFACE?
125 * RPO = RX Protocol Offloading
126 * TPO = TX Protocol Offloading
127 * RPF = RX Packet Filter
128 * TPB = TX Packet buffer
129 * RPB = RX Packet buffer
130 */
131
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG 0x0000
134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
136
137 #define AQ_FW_VERSION_REG 0x0018
138 #define AQ_HW_REVISION_REG 0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
140
141 #define AQ_FW_MBOX_CMD_REG 0x0200
142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
144 #define AQ_FW_MBOX_ADDR_REG 0x0208
145 #define AQ_FW_MBOX_VAL_REG 0x020c
146
147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
148 #define FW2X_LED_REG 0x031c
149 #define FW2X_LED_DEFAULT 0x00000000
150 #define FW2X_LED_NONE 0x0000003f
151 #define FW2X_LINKLED __BITS(0,1)
152 #define FW2X_LINKLED_ACTIVE 0
153 #define FW2X_LINKLED_ON 1
154 #define FW2X_LINKLED_BLINK 2
155 #define FW2X_LINKLED_OFF 3
156 #define FW2X_STATUSLED __BITS(2,5)
157 #define FW2X_STATUSLED_ORANGE 0
158 #define FW2X_STATUSLED_ORANGE_BLINK 2
159 #define FW2X_STATUSLED_OFF 3
160 #define FW2X_STATUSLED_GREEN 4
161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
162 #define FW2X_STATUSLED_GREEN_BLINK 10
163
164 #define FW_MPI_MBOX_ADDR_REG 0x0360
165 #define FW1X_MPI_INIT1_REG 0x0364
166 #define FW1X_MPI_CONTROL_REG 0x0368
167 #define FW1X_MPI_STATE_REG 0x036c
168 #define FW1X_MPI_STATE_MODE __BITS(7,0)
169 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
172 #define FW1X_MPI_INIT2_REG 0x0370
173 #define FW1X_MPI_EFUSEADDR_REG 0x0374
174
175 #define FW2X_MPI_EFUSEADDR_REG 0x0364
176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG 0x0388
179 #define RBL_STATUS_DEAD 0x0000dead
180 #define RBL_STATUS_SUCCESS 0x0000abba
181 #define RBL_STATUS_FAILURE 0x00000bad
182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
183
184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
186
187 #define AQ_FW_GLB_CTL2_REG 0x0404
188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
189
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
192
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
194
195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
196
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG 0x2090
203
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
212
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
215 #define AQ_B0_ERR_INT 8U
216
217 #define AQ_INTR_CTRL_REG 0x2300
218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
220 #define AQ_INTR_CTRL_IRQMODE_MSI 1
221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
227
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
229
230 #define FW_MPI_RESETCTRL_REG 0x4000
231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
232
233 #define RX_SYSCONTROL_REG 0x5000
234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
236 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
237
238 #define RX_TCP_RSS_HASH_REG 0x5040
239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
241
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD 0
244 #define RPF_ACTION_HOST 1
245 #define RPF_ACTION_MANAGEMENT 2
246 #define RPF_ACTION_HOST_MANAGEMENT 3
247 #define RPF_ACTION_WOL 4
248
249 #define RPF_L2BC_REG 0x5100
250 #define RPF_L2BC_EN __BIT(0)
251 #define RPF_L2BC_PROMISC __BIT(3)
252 #define RPF_L2BC_ACTION __BITS(12,14)
253 #define RPF_L2BC_THRESHOLD __BITS(31,16)
254
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
259 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
260 #define RPF_L2UC_MSW_EN __BIT(31)
261 #define AQ_HW_MAC_OWN 0 /* index of own address */
262 #define AQ_HW_MAC_NUM 34
263
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
266 #define RPF_MCAST_FILTER_EN __BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG 0x5270
268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
269
270 #define RPF_VLAN_MODE_REG 0x5280
271 #define RPF_VLAN_MODE_PROMISC __BIT(1)
272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
274
275 #define RPF_VLAN_TPID_REG 0x5284
276 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
277 #define RPF_VLAN_TPID_INNER __BITS(15,0)
278
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS 16
281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
282 #define RPF_VLAN_FILTER_EN __BIT(31)
283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
286 #define RPF_VLAN_FILTER_ID __BITS(11,0)
287
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
298
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
301 #define RPF_L3_FILTER_L4_EN __BIT(31)
302 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
308 #define RPF_L3_FILTER_ARP_EN __BIT(24)
309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
314 #define RPF_L3_FILTER_L4_PROTO_TCP 0
315 #define RPF_L3_FILTER_L4_PROTO_UDP 1
316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
323
324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
326
327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
329
330 #define RPF_RSS_KEY_ADDR_REG 0x54d0
331 #define RPF_RSS_KEY_ADDR __BITS(4,0)
332 #define RPF_RSS_KEY_WR_EN __BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
335
336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
337 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
338 #define RPF_RSS_REDIR_WR_EN __BIT(4)
339
340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
342
343 #define RPO_HWCSUM_REG 0x5580
344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
346
347 #define RPO_LRO_ENABLE_REG 0x5590
348
349 #define RPO_LRO_CONF_REG 0x5594
350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG 0x5598
355
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG 0x5620
360 #define RPO_LRO_TB_DIV __BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
365
366 #define RPB_RPF_RX_REG 0x5700
367 #define RPB_RPF_RX_TC_MODE __BIT(8)
368 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
369 #define RPB_RPF_RX_BUF_EN __BIT(0)
370
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
373 #define RPB_RXB_BUFSIZE __BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
375 #define RPB_RXB_XOFF_EN __BIT(31)
376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
378
379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
380 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
381
382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
385
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
388 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
391
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
397 #define RX_DMA_DESC_RESET __BIT(25)
398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
400 #define RX_DMA_DESC_EN __BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
407
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
410 #define RX_DMA_DCAD_CPUID __BITS(7,0)
411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
412 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
413 #define RX_DMA_DCAD_DESC_EN __BIT(31)
414
415 #define RX_DMA_DCA_REG 0x6180
416 #define RX_DMA_DCA_EN __BIT(31)
417 #define RX_DMA_DCA_MODE __BITS(3,0)
418
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
424
425 #define TX_SYSCONTROL_REG 0x7000
426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
428 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
429
430 #define TX_TPO2_REG 0x7040
431 #define TX_TPO2_EN __BIT(16)
432
433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
434 #define TPS_DESC_VM_ARB_MODE __BIT(0)
435 #define TPS_DESC_RATE_REG 0x7310
436 #define TPS_DESC_RATE_TA_RST __BIT(31)
437 #define TPS_DESC_RATE_LIM __BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
441 #define TPS_DATA_TC_ARB_MODE __BIT(0)
442
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
451
452 #define AQ_HW_TXBUF_MAX 160
453 #define AQ_HW_RXBUF_MAX 320
454
455 #define TPO_HWCSUM_REG 0x7800
456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
458
459 #define TDM_LSO_EN_REG 0x7810
460
461 #define THM_LSO_TCP_FLAG1_REG 0x7820
462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG 0x7824
465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
466
467 #define TPB_TX_BUF_REG 0x7900
468 #define TPB_TX_BUF_EN __BIT(0)
469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
471
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
474 #define TPB_TXB_BUFSIZE __BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
476 #define TPB_TXB_THRESH_HI __BITS(16,28)
477 #define TPB_TXB_THRESH_LO __BITS(12,0)
478
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
483
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
489 #define TX_DMA_DESC_EN __BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
495
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
498 #define TDM_DCAD_CPUID __BITS(7,0)
499 #define TDM_DCAD_CPUID_EN __BIT(31)
500
501 #define TDM_DCA_REG 0x8480
502 #define TDM_DCA_EN __BIT(31)
503 #define TDM_DCA_MODE __BITS(3,0)
504
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
507 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
510
511 #define FW1X_CTRL_10G __BIT(0)
512 #define FW1X_CTRL_5G __BIT(1)
513 #define FW1X_CTRL_5GSR __BIT(2)
514 #define FW1X_CTRL_2G5 __BIT(3)
515 #define FW1X_CTRL_1G __BIT(4)
516 #define FW1X_CTRL_100M __BIT(5)
517
518 #define FW2X_CTRL_10BASET_HD __BIT(0)
519 #define FW2X_CTRL_10BASET_FD __BIT(1)
520 #define FW2X_CTRL_100BASETX_HD __BIT(2)
521 #define FW2X_CTRL_100BASET4_HD __BIT(3)
522 #define FW2X_CTRL_100BASET2_HD __BIT(4)
523 #define FW2X_CTRL_100BASETX_FD __BIT(5)
524 #define FW2X_CTRL_100BASET2_FD __BIT(6)
525 #define FW2X_CTRL_1000BASET_HD __BIT(7)
526 #define FW2X_CTRL_1000BASET_FD __BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
528 #define FW2X_CTRL_5GBASET_FD __BIT(10)
529 #define FW2X_CTRL_10GBASET_FD __BIT(11)
530 #define FW2X_CTRL_RESERVED1 __BIT(32)
531 #define FW2X_CTRL_10BASET_EEE __BIT(33)
532 #define FW2X_CTRL_RESERVED2 __BIT(34)
533 #define FW2X_CTRL_PAUSE __BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
536 #define FW2X_CTRL_RESERVED3 __BIT(38)
537 #define FW2X_CTRL_RESERVED4 __BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
542 #define FW2X_CTRL_RESERVED5 __BIT(44)
543 #define FW2X_CTRL_RESERVED6 __BIT(45)
544 #define FW2X_CTRL_RESERVED7 __BIT(46)
545 #define FW2X_CTRL_RESERVED8 __BIT(47)
546 #define FW2X_CTRL_RESERVED9 __BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
548 #define FW2X_CTRL_TEMPERATURE __BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
552 #define FW2X_CTRL_LINK_DROP __BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
554 #define FW2X_CTRL_WOL __BIT(56)
555 #define FW2X_CTRL_MAC_STOP __BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
559 #define FW2X_CTRL_WOL_TIMER __BIT(61)
560 #define FW2X_CTRL_STATISTICS __BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
562
563 #define FW2X_SNPRINTB \
564 "\177\020" \
565 "b\x23" "PAUSE\0" \
566 "b\x24" "ASYMMETRIC-PAUSE\0" \
567 "b\x31" "CABLE-DIAG\0" \
568 "b\x32" "TEMPERATURE\0" \
569 "b\x33" "DOWNSHIFT\0" \
570 "b\x34" "PTP-AVB\0" \
571 "b\x35" "MEDIA-DETECT\0" \
572 "b\x36" "LINK-DROP\0" \
573 "b\x37" "SLEEP-PROXY\0" \
574 "b\x38" "WOL\0" \
575 "b\x39" "MAC-STOP\0" \
576 "b\x3a" "EXT-LOOPBACK\0" \
577 "b\x3b" "INT-LOOPBACK\0" \
578 "b\x3c" "EFUSE-AGENT\0" \
579 "b\x3d" "WOL-TIMER\0" \
580 "b\x3e" "STATISTICS\0" \
581 "b\x3f" "TRANSACTION-ID\0" \
582 "\0"
583
584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK \
590 (FW2X_CTRL_RATE_100M | \
591 FW2X_CTRL_RATE_1G | \
592 FW2X_CTRL_RATE_2G5 | \
593 FW2X_CTRL_RATE_5G | \
594 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK \
596 (FW2X_CTRL_10BASET_EEE | \
597 FW2X_CTRL_100BASETX_EEE | \
598 FW2X_CTRL_1000BASET_FD_EEE | \
599 FW2X_CTRL_2P5GBASET_FD_EEE | \
600 FW2X_CTRL_5GBASET_FD_EEE | \
601 FW2X_CTRL_10GBASET_FD_EEE)
602
603 typedef enum aq_fw_bootloader_mode {
604 FW_BOOT_MODE_UNKNOWN = 0,
605 FW_BOOT_MODE_FLB,
606 FW_BOOT_MODE_RBL_FLASH,
607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609
610 #define AQ_WRITE_REG(sc, reg, val) \
611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612
613 #define AQ_READ_REG(sc, reg) \
614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615
616 #define AQ_READ64_REG(sc, reg) \
617 ((uint64_t)AQ_READ_REG(sc, reg) | \
618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619
620 #define AQ_WRITE64_REG(sc, reg, val) \
621 do { \
622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 } while (/* CONSTCOND */0)
625
626 #define AQ_READ_REG_BIT(sc, reg, mask) \
627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
630 do { \
631 uint32_t _v; \
632 _v = AQ_READ_REG((sc), (reg)); \
633 _v &= ~(mask); \
634 if ((val) != 0) \
635 _v |= __SHIFTIN((val), (mask)); \
636 AQ_WRITE_REG((sc), (reg), _v); \
637 } while (/* CONSTCOND */ 0)
638
639 #define WAIT_FOR(expr, us, n, errp) \
640 do { \
641 unsigned int _n; \
642 for (_n = n; (!(expr)) && _n != 0; --_n) { \
643 delay((us)); \
644 } \
645 if ((errp != NULL)) { \
646 if (_n == 0) \
647 *(errp) = ETIMEDOUT; \
648 else \
649 *(errp) = 0; \
650 } \
651 } while (/* CONSTCOND */ 0)
652
653 #define msec_delay(x) DELAY(1000 * (x))
654
655 typedef struct aq_mailbox_header {
656 uint32_t version;
657 uint32_t transaction_id;
658 int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660
661 typedef struct aq_hw_stats_s {
662 uint32_t uprc;
663 uint32_t mprc;
664 uint32_t bprc;
665 uint32_t erpt;
666 uint32_t uptc;
667 uint32_t mptc;
668 uint32_t bptc;
669 uint32_t erpr;
670 uint32_t mbtc;
671 uint32_t bbtc;
672 uint32_t mbrc;
673 uint32_t bbrc;
674 uint32_t ubrc;
675 uint32_t ubtc;
676 uint32_t ptc;
677 uint32_t prc;
678 uint32_t dpc; /* not exists in fw2x_msm_statistics */
679 uint32_t cprc; /* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681
682 typedef struct fw1x_mailbox {
683 aq_mailbox_header_t header;
684 aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686
687 typedef struct fw2x_msm_statistics {
688 uint32_t uprc;
689 uint32_t mprc;
690 uint32_t bprc;
691 uint32_t erpt;
692 uint32_t uptc;
693 uint32_t mptc;
694 uint32_t bptc;
695 uint32_t erpr;
696 uint32_t mbtc;
697 uint32_t bbtc;
698 uint32_t mbrc;
699 uint32_t bbrc;
700 uint32_t ubrc;
701 uint32_t ubtc;
702 uint32_t ptc;
703 uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705
706 typedef struct fw2x_phy_cable_diag_data {
707 uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709
710 typedef struct fw2x_capabilities {
711 uint32_t caps_lo;
712 uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714
715 typedef struct fw2x_mailbox { /* struct fwHostInterface */
716 aq_mailbox_header_t header;
717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
718
719 uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE __BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
722 uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE __BITS(15,0)
724 #define PHYINFO2_CABLE_LEN __BITS(23,16)
725
726 fw2x_phy_cable_diag_data_t diag_data;
727 uint32_t reserved[8];
728
729 fw2x_capabilities_t caps;
730
731 /* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733
734 typedef enum aq_link_speed {
735 AQ_LINK_NONE = 0,
736 AQ_LINK_100M = (1 << 0),
737 AQ_LINK_1G = (1 << 1),
738 AQ_LINK_2G5 = (1 << 2),
739 AQ_LINK_5G = (1 << 3),
740 AQ_LINK_10G = (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO AQ_LINK_ALL
745
746 typedef enum aq_link_fc {
747 AQ_FC_NONE = 0,
748 AQ_FC_RX = __BIT(0),
749 AQ_FC_TX = __BIT(1),
750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752
753 typedef enum aq_link_eee {
754 AQ_EEE_DISABLE = 0,
755 AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757
758 typedef enum aq_hw_fw_mpi_state {
759 MPI_DEINIT = 0,
760 MPI_RESET = 1,
761 MPI_INIT = 2,
762 MPI_POWER = 4
763 } aq_hw_fw_mpi_state_t;
764
765 enum aq_media_type {
766 AQ_MEDIA_TYPE_UNKNOWN = 0,
767 AQ_MEDIA_TYPE_FIBRE,
768 AQ_MEDIA_TYPE_TP
769 };
770
771 struct aq_rx_desc_read {
772 uint64_t buf_addr;
773 uint64_t hdr_addr;
774 } __packed __aligned(8);
775
776 struct aq_rx_desc_wb {
777 uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
779 #define RXDESC_TYPE_RSSTYPE_NONE 0
780 #define RXDESC_TYPE_RSSTYPE_IPV4 2
781 #define RXDESC_TYPE_RSSTYPE_IPV6 3
782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
800 #define RXDESC_TYPE_RESERVED __BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
803 #define RXDESC_TYPE_SPH __BIT(21)
804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
805 uint32_t rss_hash;
806 uint16_t status;
807 #define RXDESC_STATUS_DD __BIT(0)
808 #define RXDESC_STATUS_EOP __BIT(1)
809 #define RXDESC_STATUS_MACERR __BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
813
814 #define RXDESC_STATUS_STAT __BITS(2,5)
815 #define RXDESC_STATUS_ESTAT __BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
817 uint16_t pkt_len;
818 uint16_t next_desc_ptr;
819 uint16_t vlan;
820 } __packed __aligned(4);
821
822 typedef union aq_rx_desc {
823 struct aq_rx_desc_read read;
824 struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826
827 typedef struct aq_tx_desc {
828 uint64_t buf_addr;
829 uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
846 uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851
852 struct aq_txring {
853 struct aq_softc *txr_sc;
854 int txr_index;
855 kmutex_t txr_mutex;
856 bool txr_active;
857 bool txr_stopping;
858 bool txr_sending;
859 time_t txr_lastsent;
860
861 pcq_t *txr_pcq;
862 void *txr_softint;
863
864 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
865 bus_dmamap_t txr_txdesc_dmamap;
866 bus_dma_segment_t txr_txdesc_seg[1];
867 bus_size_t txr_txdesc_size;
868
869 struct {
870 struct mbuf *m;
871 bus_dmamap_t dmamap;
872 } txr_mbufs[AQ_TXD_NUM];
873 unsigned int txr_prodidx;
874 unsigned int txr_considx;
875 int txr_nfree;
876 };
877
878 struct aq_rxring {
879 struct aq_softc *rxr_sc;
880 int rxr_index;
881 kmutex_t rxr_mutex;
882 bool rxr_active;
883 bool rxr_discarding;
884 bool rxr_stopping;
885 struct mbuf *rxr_receiving_m; /* receiving jumboframe */
886 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */
887
888 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
889 bus_dmamap_t rxr_rxdesc_dmamap;
890 bus_dma_segment_t rxr_rxdesc_seg[1];
891 bus_size_t rxr_rxdesc_size;
892 struct {
893 struct mbuf *m;
894 bus_dmamap_t dmamap;
895 } rxr_mbufs[AQ_RXD_NUM];
896 unsigned int rxr_readidx;
897 };
898
899 struct aq_queue {
900 struct aq_softc *sc;
901 struct aq_txring txring;
902 struct aq_rxring rxring;
903 };
904
905 struct aq_softc;
906 struct aq_firmware_ops {
907 int (*reset)(struct aq_softc *);
908 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
909 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
910 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
911 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
912 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
913 #if NSYSMON_ENVSYS > 0
914 int (*get_temperature)(struct aq_softc *, uint32_t *);
915 #endif
916 };
917
918 #ifdef AQ_EVENT_COUNTERS
919 #define AQ_EVCNT_DECL(name) \
920 char sc_evcount_##name##_name[32]; \
921 struct evcnt sc_evcount_##name##_ev;
922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
923 do { \
924 snprintf((sc)->sc_evcount_##name##_name, \
925 sizeof((sc)->sc_evcount_##name##_name), \
926 "%s", desc); \
927 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
928 (evtype), NULL, device_xname((sc)->sc_dev), \
929 (sc)->sc_evcount_##name##_name); \
930 } while (/*CONSTCOND*/0)
931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
932 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
933 #define AQ_EVCNT_DETACH(sc, name) \
934 if ((sc)->sc_evcount_##name##_name[0] != '\0') \
935 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
936 #define AQ_EVCNT_ADD(sc, name, val) \
937 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
938 #endif /* AQ_EVENT_COUNTERS */
939
940 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
941 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
942 #define AQ_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mutex));
943
944 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
945 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
946 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
947 #define AQ_MPI_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mpi_mutex));
948
949
950 struct aq_softc {
951 device_t sc_dev;
952
953 bus_space_tag_t sc_iot;
954 bus_space_handle_t sc_ioh;
955 bus_size_t sc_iosize;
956 bus_dma_tag_t sc_dmat;
957
958 void *sc_ihs[AQ_NINTR_MAX];
959 pci_intr_handle_t *sc_intrs;
960
961 int sc_tx_irq[AQ_RSSQUEUE_MAX];
962 int sc_rx_irq[AQ_RSSQUEUE_MAX];
963 int sc_linkstat_irq;
964 bool sc_use_txrx_independent_intr;
965 bool sc_poll_linkstat;
966 bool sc_detect_linkstat;
967
968 #if NSYSMON_ENVSYS > 0
969 struct sysmon_envsys *sc_sme;
970 envsys_data_t sc_sensor_temp;
971 #endif
972
973 callout_t sc_tick_ch;
974
975 int sc_nintrs;
976 bool sc_msix;
977
978 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
979 int sc_nqueues;
980
981 pci_chipset_tag_t sc_pc;
982 pcitag_t sc_pcitag;
983 uint16_t sc_product;
984 uint16_t sc_revision;
985
986 kmutex_t sc_mutex;
987 kmutex_t sc_mpi_mutex;
988
989 const struct aq_firmware_ops *sc_fw_ops;
990 uint64_t sc_fw_caps;
991 enum aq_media_type sc_media_type;
992 aq_link_speed_t sc_available_rates;
993
994 aq_link_speed_t sc_link_rate;
995 aq_link_fc_t sc_link_fc;
996 aq_link_eee_t sc_link_eee;
997
998 uint32_t sc_fw_version;
999 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
1000 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
1001 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
1002 uint32_t sc_features;
1003 #define FEATURES_MIPS 0x00000001
1004 #define FEATURES_TPO2 0x00000002
1005 #define FEATURES_RPF2 0x00000004
1006 #define FEATURES_MPI_AQ 0x00000008
1007 #define FEATURES_REV_A0 0x10000000
1008 #define FEATURES_REV_A (FEATURES_REV_A0)
1009 #define FEATURES_REV_B0 0x20000000
1010 #define FEATURES_REV_B1 0x40000000
1011 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
1012 int sc_max_mtu;
1013 uint32_t sc_mbox_addr;
1014
1015 bool sc_rbl_enabled;
1016 bool sc_fast_start_enabled;
1017 bool sc_flash_present;
1018
1019 bool sc_intr_moderation_enable;
1020 bool sc_rss_enable;
1021
1022 struct ethercom sc_ethercom;
1023 struct ether_addr sc_enaddr;
1024 struct ifmedia sc_media;
1025 int sc_ec_capenable; /* last ec_capenable */
1026 unsigned short sc_if_flags; /* last if_flags */
1027
1028 bool sc_tx_sending;
1029 bool sc_stopping;
1030
1031 struct workqueue *sc_reset_wq;
1032 struct work sc_reset_work;
1033 volatile unsigned sc_reset_pending;
1034
1035 bool sc_trigger_reset;
1036
1037 #ifdef AQ_EVENT_COUNTERS
1038 aq_hw_stats_s_t sc_statistics[2];
1039 int sc_statistics_idx;
1040 bool sc_poll_statistics;
1041
1042 AQ_EVCNT_DECL(uprc);
1043 AQ_EVCNT_DECL(mprc);
1044 AQ_EVCNT_DECL(bprc);
1045 AQ_EVCNT_DECL(erpt);
1046 AQ_EVCNT_DECL(uptc);
1047 AQ_EVCNT_DECL(mptc);
1048 AQ_EVCNT_DECL(bptc);
1049 AQ_EVCNT_DECL(erpr);
1050 AQ_EVCNT_DECL(mbtc);
1051 AQ_EVCNT_DECL(bbtc);
1052 AQ_EVCNT_DECL(mbrc);
1053 AQ_EVCNT_DECL(bbrc);
1054 AQ_EVCNT_DECL(ubrc);
1055 AQ_EVCNT_DECL(ubtc);
1056 AQ_EVCNT_DECL(ptc);
1057 AQ_EVCNT_DECL(prc);
1058 AQ_EVCNT_DECL(dpc);
1059 AQ_EVCNT_DECL(cprc);
1060 #endif
1061 };
1062
1063 static int aq_match(device_t, cfdata_t, void *);
1064 static void aq_attach(device_t, device_t, void *);
1065 static int aq_detach(device_t, int);
1066
1067 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1068 bool, bool);
1069 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1070 pci_intr_type_t);
1071 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1072
1073 static int aq_ifmedia_change(struct ifnet * const);
1074 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1075 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1076 static int aq_ifflags_cb(struct ethercom *);
1077 static int aq_init(struct ifnet *);
1078 static int aq_init_locked(struct ifnet *);
1079 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1080 struct aq_txring *, bool);
1081 static int aq_transmit(struct ifnet *, struct mbuf *);
1082 static void aq_deferred_transmit(void *);
1083 static void aq_start(struct ifnet *);
1084 static void aq_stop(struct ifnet *, int);
1085 static void aq_stop_locked(struct ifnet *, bool);
1086 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1087
1088 static int aq_txrx_rings_alloc(struct aq_softc *);
1089 static void aq_txrx_rings_free(struct aq_softc *);
1090 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1091 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1092
1093 static void aq_initmedia(struct aq_softc *);
1094 static void aq_enable_intr(struct aq_softc *, bool, bool);
1095
1096 static void aq_handle_reset_work(struct work *, void *);
1097 static void aq_unset_stopping_flags(struct aq_softc *);
1098 static void aq_set_stopping_flags(struct aq_softc *);
1099
1100 #if NSYSMON_ENVSYS > 0
1101 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1102 #endif
1103 static void aq_tick(void *);
1104 static int aq_legacy_intr(void *);
1105 static int aq_link_intr(void *);
1106 static int aq_txrx_intr(void *);
1107 static int aq_tx_intr(void *);
1108 static int aq_rx_intr(void *);
1109
1110 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1111 aq_link_eee_t);
1112 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1113 aq_link_eee_t *);
1114
1115 static int aq_fw_reset(struct aq_softc *);
1116 static int aq_fw_version_init(struct aq_softc *);
1117 static int aq_hw_init(struct aq_softc *);
1118 static int aq_hw_init_ucp(struct aq_softc *);
1119 static int aq_hw_reset(struct aq_softc *);
1120 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1121 uint32_t);
1122 static int aq_get_mac_addr(struct aq_softc *);
1123 static int aq_init_rss(struct aq_softc *);
1124 static int aq_set_capability(struct aq_softc *);
1125
1126 static int fw1x_reset(struct aq_softc *);
1127 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1128 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1129 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1130 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1131 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1132
1133 static int fw2x_reset(struct aq_softc *);
1134 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1135 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1136 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1137 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1138 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1139 #if NSYSMON_ENVSYS > 0
1140 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1141 #endif
1142
1143 #ifndef AQ_WATCHDOG_TIMEOUT
1144 #define AQ_WATCHDOG_TIMEOUT 5
1145 #endif
1146 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT;
1147
1148
1149 static const struct aq_firmware_ops aq_fw1x_ops = {
1150 .reset = fw1x_reset,
1151 .set_mode = fw1x_set_mode,
1152 .get_mode = fw1x_get_mode,
1153 .get_stats = fw1x_get_stats,
1154 #if NSYSMON_ENVSYS > 0
1155 .get_temperature = NULL
1156 #endif
1157 };
1158
1159 static const struct aq_firmware_ops aq_fw2x_ops = {
1160 .reset = fw2x_reset,
1161 .set_mode = fw2x_set_mode,
1162 .get_mode = fw2x_get_mode,
1163 .get_stats = fw2x_get_stats,
1164 #if NSYSMON_ENVSYS > 0
1165 .get_temperature = fw2x_get_temperature
1166 #endif
1167 };
1168
1169 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1170 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1171
1172 static const struct aq_product {
1173 pci_vendor_id_t aq_vendor;
1174 pci_product_id_t aq_product;
1175 const char *aq_name;
1176 enum aq_media_type aq_media_type;
1177 aq_link_speed_t aq_available_rates;
1178 } aq_products[] = {
1179 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1180 "Aquantia AQC100 10 Gigabit Network Adapter",
1181 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1182 },
1183 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1184 "Aquantia AQC107 10 Gigabit Network Adapter",
1185 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1186 },
1187 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1188 "Aquantia AQC108 5 Gigabit Network Adapter",
1189 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1190 },
1191 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1192 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1193 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1194 },
1195 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1196 "Aquantia AQC111 5 Gigabit Network Adapter",
1197 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1198 },
1199 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1200 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1201 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1202 },
1203 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1204 "Aquantia AQC100S 10 Gigabit Network Adapter",
1205 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1206 },
1207 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1208 "Aquantia AQC107S 10 Gigabit Network Adapter",
1209 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1210 },
1211 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1212 "Aquantia AQC108S 5 Gigabit Network Adapter",
1213 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1214 },
1215 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1216 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1217 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1218 },
1219 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1220 "Aquantia AQC111S 5 Gigabit Network Adapter",
1221 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1222 },
1223 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1224 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1225 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1226 },
1227 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1228 "Aquantia D100 10 Gigabit Network Adapter",
1229 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1230 },
1231 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1232 "Aquantia D107 10 Gigabit Network Adapter",
1233 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1234 },
1235 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1236 "Aquantia D108 5 Gigabit Network Adapter",
1237 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1238 },
1239 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1240 "Aquantia D109 2.5 Gigabit Network Adapter",
1241 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1242 }
1243 };
1244
1245 static const struct aq_product *
1246 aq_lookup(const struct pci_attach_args *pa)
1247 {
1248 unsigned int i;
1249
1250 for (i = 0; i < __arraycount(aq_products); i++) {
1251 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1252 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1253 return &aq_products[i];
1254 }
1255 return NULL;
1256 }
1257
1258 static int
1259 aq_match(device_t parent, cfdata_t cf, void *aux)
1260 {
1261 struct pci_attach_args * const pa = aux;
1262
1263 if (aq_lookup(pa) != NULL)
1264 return 1;
1265
1266 return 0;
1267 }
1268
1269 static void
1270 aq_attach(device_t parent, device_t self, void *aux)
1271 {
1272 struct aq_softc * const sc = device_private(self);
1273 struct pci_attach_args * const pa = aux;
1274 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1275 pci_chipset_tag_t pc;
1276 pcitag_t tag;
1277 pcireg_t command, memtype, bar;
1278 const struct aq_product *aqp;
1279 int error;
1280
1281 sc->sc_dev = self;
1282 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1283 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1284
1285 sc->sc_pc = pc = pa->pa_pc;
1286 sc->sc_pcitag = tag = pa->pa_tag;
1287 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1288
1289 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1290 command |= PCI_COMMAND_MASTER_ENABLE;
1291 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1292
1293 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1294 sc->sc_revision = PCI_REVISION(pa->pa_class);
1295
1296 aqp = aq_lookup(pa);
1297 KASSERT(aqp != NULL);
1298
1299 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1300
1301 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1302 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1303 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1304 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1305 return;
1306 }
1307 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1308 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1309 NULL, &sc->sc_iosize) != 0) {
1310 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1311 return;
1312 }
1313
1314 error = aq_fw_reset(sc);
1315 if (error != 0)
1316 goto attach_failure;
1317
1318 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1319
1320 /* max queue num is 8, and must be 2^n */
1321 if (ncpu >= 8)
1322 sc->sc_nqueues = 8;
1323 else if (ncpu >= 4)
1324 sc->sc_nqueues = 4;
1325 else if (ncpu >= 2)
1326 sc->sc_nqueues = 2;
1327 else
1328 sc->sc_nqueues = 1;
1329
1330 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1331 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1332 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1333 /* TX intrs + RX intrs + LINKSTAT intrs */
1334 sc->sc_use_txrx_independent_intr = true;
1335 sc->sc_poll_linkstat = false;
1336 sc->sc_msix = true;
1337 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1338 /* TX intrs + RX intrs */
1339 sc->sc_use_txrx_independent_intr = true;
1340 sc->sc_poll_linkstat = true;
1341 sc->sc_msix = true;
1342 } else
1343 #endif
1344 if (msixcount >= (sc->sc_nqueues + 1)) {
1345 /* TX/RX intrs LINKSTAT intrs */
1346 sc->sc_use_txrx_independent_intr = false;
1347 sc->sc_poll_linkstat = false;
1348 sc->sc_msix = true;
1349 } else if (msixcount >= sc->sc_nqueues) {
1350 /* TX/RX intrs */
1351 sc->sc_use_txrx_independent_intr = false;
1352 sc->sc_poll_linkstat = true;
1353 sc->sc_msix = true;
1354 } else {
1355 /* giving up using MSI-X */
1356 sc->sc_msix = false;
1357 }
1358
1359 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1360 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1361 FW_VERSION_MAJOR(sc) == 1)
1362 sc->sc_poll_linkstat = true;
1363
1364 #ifdef AQ_FORCE_POLL_LINKSTAT
1365 sc->sc_poll_linkstat = true;
1366 #endif
1367
1368 aprint_debug_dev(sc->sc_dev,
1369 "ncpu=%d, pci_msix_count=%d."
1370 " allocate %d interrupts for %d%s queues%s\n",
1371 ncpu, msixcount,
1372 (sc->sc_use_txrx_independent_intr ?
1373 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1374 (sc->sc_poll_linkstat ? 0 : 1),
1375 sc->sc_nqueues,
1376 sc->sc_use_txrx_independent_intr ? "*2" : "",
1377 sc->sc_poll_linkstat ? "" : ", and link status");
1378
1379 if (sc->sc_msix)
1380 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1381 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1382 else
1383 error = ENODEV;
1384
1385 if (error != 0) {
1386 /* if MSI-X failed, fallback to MSI with single queue */
1387 sc->sc_use_txrx_independent_intr = false;
1388 sc->sc_poll_linkstat = false;
1389 sc->sc_msix = false;
1390 sc->sc_nqueues = 1;
1391 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1392 }
1393 if (error != 0) {
1394 /* if MSI failed, fallback to INTx */
1395 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1396 }
1397 if (error != 0)
1398 goto attach_failure;
1399
1400 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
1401 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1402
1403 char wqname[MAXCOMLEN];
1404 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
1405 error = workqueue_create(&sc->sc_reset_wq, wqname,
1406 aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK,
1407 WQ_MPSAFE);
1408 if (error) {
1409 aprint_error_dev(sc->sc_dev,
1410 "unable to create reset workqueue\n");
1411 goto attach_failure;
1412 }
1413
1414 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1415
1416 if (sc->sc_msix && (sc->sc_nqueues > 1))
1417 sc->sc_rss_enable = true;
1418 else
1419 sc->sc_rss_enable = false;
1420
1421 error = aq_txrx_rings_alloc(sc);
1422 if (error != 0)
1423 goto attach_failure;
1424
1425 error = aq_fw_version_init(sc);
1426 if (error != 0)
1427 goto attach_failure;
1428
1429 error = aq_hw_init_ucp(sc);
1430 if (error < 0)
1431 goto attach_failure;
1432
1433 KASSERT(sc->sc_mbox_addr != 0);
1434 error = aq_hw_reset(sc);
1435 if (error != 0)
1436 goto attach_failure;
1437
1438 aq_get_mac_addr(sc);
1439 aq_init_rss(sc);
1440
1441 error = aq_hw_init(sc); /* initialize and interrupts */
1442 if (error != 0)
1443 goto attach_failure;
1444
1445 sc->sc_media_type = aqp->aq_media_type;
1446 sc->sc_available_rates = aqp->aq_available_rates;
1447
1448 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1449 ifmedia_init(&sc->sc_media, IFM_IMASK,
1450 aq_ifmedia_change, aq_ifmedia_status);
1451 aq_initmedia(sc);
1452
1453 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1454 ifp->if_softc = sc;
1455 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1456 ifp->if_extflags = IFEF_MPSAFE;
1457 ifp->if_baudrate = IF_Gbps(10);
1458 ifp->if_init = aq_init;
1459 ifp->if_ioctl = aq_ioctl;
1460 if (sc->sc_msix && (sc->sc_nqueues > 1))
1461 ifp->if_transmit = aq_transmit;
1462 ifp->if_start = aq_start;
1463 ifp->if_stop = aq_stop;
1464 ifp->if_watchdog = NULL;
1465 IFQ_SET_READY(&ifp->if_snd);
1466
1467 /* initialize capabilities */
1468 sc->sc_ethercom.ec_capabilities = 0;
1469 sc->sc_ethercom.ec_capenable = 0;
1470 #if notyet
1471 /* TODO */
1472 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1473 #endif
1474 sc->sc_ethercom.ec_capabilities |=
1475 ETHERCAP_JUMBO_MTU |
1476 ETHERCAP_VLAN_MTU |
1477 ETHERCAP_VLAN_HWTAGGING |
1478 ETHERCAP_VLAN_HWFILTER;
1479 sc->sc_ethercom.ec_capenable |=
1480 ETHERCAP_VLAN_HWTAGGING |
1481 ETHERCAP_VLAN_HWFILTER;
1482
1483 ifp->if_capabilities = 0;
1484 ifp->if_capenable = 0;
1485 #ifdef CONFIG_LRO_SUPPORT
1486 ifp->if_capabilities |= IFCAP_LRO;
1487 ifp->if_capenable |= IFCAP_LRO;
1488 #endif
1489 #if notyet
1490 /* TSO */
1491 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1492 #endif
1493
1494 /* TX hardware checksum offloading */
1495 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1496 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1497 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1498 /* RX hardware checksum offloading */
1499 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1500 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1501 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1502
1503 if_initialize(ifp);
1504 ifp->if_percpuq = if_percpuq_create(ifp);
1505 if_deferred_start_init(ifp, NULL);
1506 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1507 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1508 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1509 if_register(ifp);
1510
1511 /* only intr about link */
1512 aq_enable_intr(sc, /*link*/true, /*txrx*/false);
1513
1514 /* update media */
1515 aq_ifmedia_change(ifp);
1516
1517 #if NSYSMON_ENVSYS > 0
1518 /* temperature monitoring */
1519 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1520 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1521
1522 sc->sc_sme = sysmon_envsys_create();
1523 sc->sc_sme->sme_name = device_xname(self);
1524 sc->sc_sme->sme_cookie = sc;
1525 sc->sc_sme->sme_flags = 0;
1526 sc->sc_sme->sme_refresh = aq_temp_refresh;
1527 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1528 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1529 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1530
1531 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1532 if (sysmon_envsys_register(sc->sc_sme)) {
1533 sysmon_envsys_destroy(sc->sc_sme);
1534 sc->sc_sme = NULL;
1535 goto attach_failure;
1536 }
1537
1538 /*
1539 * for unknown reasons, the first call of fw2x_get_temperature()
1540 * will always fail (firmware matter?), so run once now.
1541 */
1542 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1543 }
1544 #endif
1545
1546 #ifdef AQ_EVENT_COUNTERS
1547 /* get starting statistics values */
1548 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1549 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1550 sc->sc_poll_statistics = true;
1551 }
1552
1553 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1554 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1555 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1556 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1557 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1558 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1559 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1560 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1561 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1562 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1563 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1564 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1565 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1566 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1567 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1568 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1569 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1570 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1571 #endif
1572
1573 if (pmf_device_register(self, NULL, NULL))
1574 pmf_class_network_register(self, ifp);
1575 else
1576 aprint_error_dev(self, "couldn't establish power handler\n");
1577
1578 return;
1579
1580 attach_failure:
1581 aq_detach(self, 0);
1582 }
1583
1584 static int
1585 aq_detach(device_t self, int flags __unused)
1586 {
1587 struct aq_softc * const sc = device_private(self);
1588 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1589 int i;
1590
1591 if (sc->sc_dev == NULL)
1592 return 0;
1593
1594 if (sc->sc_iosize != 0) {
1595 if (ifp->if_softc != NULL) {
1596 IFNET_LOCK(ifp);
1597 aq_stop(ifp, 1);
1598 IFNET_UNLOCK(ifp);
1599 }
1600
1601 for (i = 0; i < AQ_NINTR_MAX; i++) {
1602 if (sc->sc_ihs[i] != NULL) {
1603 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1604 sc->sc_ihs[i] = NULL;
1605 }
1606 }
1607 if (sc->sc_nintrs > 0) {
1608 callout_stop(&sc->sc_tick_ch);
1609
1610 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1611 sc->sc_nintrs);
1612 sc->sc_intrs = NULL;
1613 sc->sc_nintrs = 0;
1614 }
1615
1616 if (sc->sc_reset_wq != NULL) {
1617 workqueue_destroy(sc->sc_reset_wq);
1618 sc->sc_reset_wq = NULL;
1619 }
1620
1621 aq_txrx_rings_free(sc);
1622
1623 if (ifp->if_softc != NULL) {
1624 ether_ifdetach(ifp);
1625 if_detach(ifp);
1626 }
1627
1628 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1629 sc->sc_iosize = 0;
1630 }
1631
1632 #if NSYSMON_ENVSYS > 0
1633 if (sc->sc_sme != NULL) {
1634 /* all sensors associated with this will also be detached */
1635 sysmon_envsys_unregister(sc->sc_sme);
1636 }
1637 #endif
1638
1639 #ifdef AQ_EVENT_COUNTERS
1640 AQ_EVCNT_DETACH(sc, uprc);
1641 AQ_EVCNT_DETACH(sc, mprc);
1642 AQ_EVCNT_DETACH(sc, bprc);
1643 AQ_EVCNT_DETACH(sc, erpt);
1644 AQ_EVCNT_DETACH(sc, uptc);
1645 AQ_EVCNT_DETACH(sc, mptc);
1646 AQ_EVCNT_DETACH(sc, bptc);
1647 AQ_EVCNT_DETACH(sc, erpr);
1648 AQ_EVCNT_DETACH(sc, mbtc);
1649 AQ_EVCNT_DETACH(sc, bbtc);
1650 AQ_EVCNT_DETACH(sc, mbrc);
1651 AQ_EVCNT_DETACH(sc, bbrc);
1652 AQ_EVCNT_DETACH(sc, ubrc);
1653 AQ_EVCNT_DETACH(sc, ubtc);
1654 AQ_EVCNT_DETACH(sc, ptc);
1655 AQ_EVCNT_DETACH(sc, prc);
1656 AQ_EVCNT_DETACH(sc, dpc);
1657 AQ_EVCNT_DETACH(sc, cprc);
1658 #endif
1659
1660 if (sc->sc_ethercom.ec_ifmedia != NULL) {
1661 ifmedia_fini(&sc->sc_media);
1662 sc->sc_ethercom.ec_ifmedia = NULL;
1663 }
1664
1665 mutex_destroy(&sc->sc_mpi_mutex);
1666 mutex_destroy(&sc->sc_mutex);
1667 sc->sc_dev = NULL;
1668
1669 return 0;
1670 }
1671
1672 static int
1673 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1674 int (*func)(void *), void *arg, const char *xname)
1675 {
1676 char intrbuf[PCI_INTRSTR_LEN];
1677 pci_chipset_tag_t pc = sc->sc_pc;
1678 void *vih;
1679 const char *intrstr = NULL;
1680
1681 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1682 sizeof(intrbuf));
1683
1684 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1685
1686 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1687 IPL_NET, func, arg, xname);
1688 if (vih == NULL) {
1689 aprint_error_dev(sc->sc_dev,
1690 "unable to establish MSI-X%s%s for %s\n",
1691 intrstr ? " at " : "",
1692 intrstr ? intrstr : "", xname);
1693 return EIO;
1694 }
1695 sc->sc_ihs[intno] = vih;
1696
1697 if (affinity != NULL) {
1698 /* Round-robin affinity */
1699 kcpuset_zero(affinity);
1700 kcpuset_set(affinity, intno % ncpu);
1701 interrupt_distribute(vih, affinity, NULL);
1702 }
1703
1704 return 0;
1705 }
1706
1707 static int
1708 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1709 bool linkintr)
1710 {
1711 kcpuset_t *affinity;
1712 int error, intno, i;
1713 char intr_xname[INTRDEVNAMEBUF];
1714
1715 kcpuset_create(&affinity, false);
1716
1717 intno = 0;
1718
1719 if (txrx_independent) {
1720 for (i = 0; i < sc->sc_nqueues; i++) {
1721 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1722 device_xname(sc->sc_dev), i);
1723 sc->sc_rx_irq[i] = intno;
1724 error = aq_establish_intr(sc, intno++, affinity,
1725 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1726 if (error != 0)
1727 goto fail;
1728 }
1729 for (i = 0; i < sc->sc_nqueues; i++) {
1730 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1731 device_xname(sc->sc_dev), i);
1732 sc->sc_tx_irq[i] = intno;
1733 error = aq_establish_intr(sc, intno++, affinity,
1734 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1735 if (error != 0)
1736 goto fail;
1737 }
1738 } else {
1739 for (i = 0; i < sc->sc_nqueues; i++) {
1740 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1741 device_xname(sc->sc_dev), i);
1742 sc->sc_rx_irq[i] = intno;
1743 sc->sc_tx_irq[i] = intno;
1744 error = aq_establish_intr(sc, intno++, affinity,
1745 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1746 if (error != 0)
1747 goto fail;
1748 }
1749 }
1750
1751 if (linkintr) {
1752 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1753 device_xname(sc->sc_dev));
1754 sc->sc_linkstat_irq = intno;
1755 error = aq_establish_intr(sc, intno++, affinity,
1756 aq_link_intr, sc, intr_xname);
1757 if (error != 0)
1758 goto fail;
1759 }
1760
1761 kcpuset_destroy(affinity);
1762 return 0;
1763
1764 fail:
1765 for (i = 0; i < AQ_NINTR_MAX; i++) {
1766 if (sc->sc_ihs[i] != NULL) {
1767 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1768 sc->sc_ihs[i] = NULL;
1769 }
1770 }
1771
1772 kcpuset_destroy(affinity);
1773 return ENOMEM;
1774 }
1775
1776 static int
1777 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1778 bool txrx_independent, bool linkintr)
1779 {
1780 int error, nintr;
1781
1782 if (txrx_independent)
1783 nintr = nqueue * 2;
1784 else
1785 nintr = nqueue;
1786
1787 if (linkintr)
1788 nintr++;
1789
1790 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1791 if (error != 0) {
1792 aprint_error_dev(sc->sc_dev,
1793 "failed to allocate MSI-X interrupts\n");
1794 goto fail;
1795 }
1796
1797 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1798 if (error == 0) {
1799 sc->sc_nintrs = nintr;
1800 } else {
1801 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1802 sc->sc_nintrs = 0;
1803 }
1804 fail:
1805 return error;
1806
1807 }
1808
1809 static int
1810 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1811 pci_intr_type_t inttype)
1812 {
1813 int counts[PCI_INTR_TYPE_SIZE];
1814 int error, nintr;
1815
1816 nintr = 1;
1817
1818 memset(counts, 0, sizeof(counts));
1819 counts[inttype] = nintr;
1820
1821 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1822 if (error != 0) {
1823 aprint_error_dev(sc->sc_dev,
1824 "failed to allocate%s interrupts\n",
1825 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1826 return error;
1827 }
1828 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1829 device_xname(sc->sc_dev));
1830 if (error == 0) {
1831 sc->sc_nintrs = nintr;
1832 } else {
1833 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1834 sc->sc_nintrs = 0;
1835 }
1836 return error;
1837 }
1838
1839 static void
1840 global_software_reset(struct aq_softc *sc)
1841 {
1842 uint32_t v;
1843
1844 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1845 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1846 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1847 FW_MPI_RESETCTRL_RESET_DIS, 0);
1848
1849 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1850 v &= ~AQ_FW_SOFTRESET_DIS;
1851 v |= AQ_FW_SOFTRESET_RESET;
1852 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1853 }
1854
1855 static int
1856 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1857 {
1858 int timo;
1859
1860 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1861
1862 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1863 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1864 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1865
1866 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1867 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1868
1869 global_software_reset(sc);
1870
1871 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1872
1873 /* Wait for RBL to finish boot process. */
1874 #define RBL_TIMEOUT_MS 10000
1875 uint16_t rbl_status;
1876 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1877 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1878 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1879 break;
1880 msec_delay(1);
1881 }
1882 if (timo <= 0) {
1883 aprint_error_dev(sc->sc_dev,
1884 "RBL> RBL restart failed: timeout\n");
1885 return EBUSY;
1886 }
1887 switch (rbl_status) {
1888 case RBL_STATUS_SUCCESS:
1889 if (mode != NULL)
1890 *mode = FW_BOOT_MODE_RBL_FLASH;
1891 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1892 break;
1893 case RBL_STATUS_HOST_BOOT:
1894 if (mode != NULL)
1895 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1896 aprint_debug_dev(sc->sc_dev,
1897 "RBL> reset complete! [Host Bootload]\n");
1898 break;
1899 case RBL_STATUS_FAILURE:
1900 default:
1901 aprint_error_dev(sc->sc_dev,
1902 "unknown RBL status 0x%x\n", rbl_status);
1903 return EBUSY;
1904 }
1905
1906 return 0;
1907 }
1908
1909 static int
1910 mac_soft_reset_flb(struct aq_softc *sc)
1911 {
1912 uint32_t v;
1913 int timo;
1914
1915 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1916 /*
1917 * Let Felicity hardware to complete SMBUS transaction before
1918 * Global software reset.
1919 */
1920 msec_delay(50);
1921
1922 /*
1923 * If SPI burst transaction was interrupted(before running the script),
1924 * global software reset may not clear SPI interface.
1925 * Clean it up manually before global reset.
1926 */
1927 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1928 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1929 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1930 msec_delay(50);
1931
1932 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1933 v &= ~AQ_FW_SOFTRESET_DIS;
1934 v |= AQ_FW_SOFTRESET_RESET;
1935 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1936
1937 /* Kickstart. */
1938 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1939 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1940 if (!sc->sc_fast_start_enabled)
1941 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1942
1943 /*
1944 * For the case SPI burst transaction was interrupted (by MCP reset
1945 * above), wait until it is completed by hardware.
1946 */
1947 msec_delay(50);
1948
1949 /* MAC Kickstart */
1950 if (!sc->sc_fast_start_enabled) {
1951 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1952
1953 uint32_t flb_status;
1954 for (timo = 0; timo < 1000; timo++) {
1955 flb_status = AQ_READ_REG(sc,
1956 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1957 if (flb_status != 0)
1958 break;
1959 msec_delay(1);
1960 }
1961 if (flb_status == 0) {
1962 aprint_error_dev(sc->sc_dev,
1963 "FLB> MAC kickstart failed: timed out\n");
1964 return ETIMEDOUT;
1965 }
1966 aprint_debug_dev(sc->sc_dev,
1967 "FLB> MAC kickstart done, %d ms\n", timo);
1968 /* FW reset */
1969 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1970 /*
1971 * Let Felicity hardware complete SMBUS transaction before
1972 * Global software reset.
1973 */
1974 msec_delay(50);
1975 sc->sc_fast_start_enabled = true;
1976 }
1977 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1978
1979 /* PHY Kickstart: #undone */
1980 global_software_reset(sc);
1981
1982 for (timo = 0; timo < 1000; timo++) {
1983 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1984 break;
1985 msec_delay(10);
1986 }
1987 if (timo >= 1000) {
1988 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1989 return ETIMEDOUT;
1990 }
1991 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1992 return 0;
1993
1994 }
1995
1996 static int
1997 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1998 {
1999 if (sc->sc_rbl_enabled)
2000 return mac_soft_reset_rbl(sc, mode);
2001
2002 if (mode != NULL)
2003 *mode = FW_BOOT_MODE_FLB;
2004 return mac_soft_reset_flb(sc);
2005 }
2006
2007 static int
2008 aq_fw_read_version(struct aq_softc *sc)
2009 {
2010 int i, error = EBUSY;
2011 #define MAC_FW_START_TIMEOUT_MS 10000
2012 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
2013 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2014 if (sc->sc_fw_version != 0) {
2015 error = 0;
2016 break;
2017 }
2018 delay(1000);
2019 }
2020 return error;
2021 }
2022
2023 static int
2024 aq_fw_reset(struct aq_softc *sc)
2025 {
2026 uint32_t ver, v, bootExitCode;
2027 int i, error;
2028
2029 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2030
2031 for (i = 1000; i > 0; i--) {
2032 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
2033 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
2034 if (v != 0x06000000 || bootExitCode != 0)
2035 break;
2036 }
2037 if (i <= 0) {
2038 aprint_error_dev(sc->sc_dev,
2039 "F/W reset failed. Neither RBL nor FLB started\n");
2040 return ETIMEDOUT;
2041 }
2042 sc->sc_rbl_enabled = (bootExitCode != 0);
2043
2044 /*
2045 * Having FW version 0 is an indicator that cold start
2046 * is in progress. This means two things:
2047 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
2048 * 2) Driver may skip reset sequence and save time.
2049 */
2050 if (sc->sc_fast_start_enabled && (ver != 0)) {
2051 error = aq_fw_read_version(sc);
2052 /* Skip reset as it just completed */
2053 if (error == 0)
2054 return 0;
2055 }
2056
2057 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2058 error = mac_soft_reset(sc, &mode);
2059 if (error != 0) {
2060 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2061 return error;
2062 }
2063
2064 switch (mode) {
2065 case FW_BOOT_MODE_FLB:
2066 aprint_debug_dev(sc->sc_dev,
2067 "FLB> F/W successfully loaded from flash.\n");
2068 sc->sc_flash_present = true;
2069 return aq_fw_read_version(sc);
2070 case FW_BOOT_MODE_RBL_FLASH:
2071 aprint_debug_dev(sc->sc_dev,
2072 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2073 sc->sc_flash_present = true;
2074 return aq_fw_read_version(sc);
2075 case FW_BOOT_MODE_UNKNOWN:
2076 aprint_error_dev(sc->sc_dev,
2077 "F/W bootload error: unknown bootloader type\n");
2078 return ENOTSUP;
2079 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2080 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2081 break;
2082 }
2083
2084 /*
2085 * XXX: TODO: add support Host Boot
2086 */
2087 aprint_error_dev(sc->sc_dev,
2088 "RBL> F/W Host Bootload not implemented\n");
2089 return ENOTSUP;
2090 }
2091
2092 static int
2093 aq_hw_reset(struct aq_softc *sc)
2094 {
2095 int error;
2096
2097 /* disable irq */
2098 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2099
2100 /* apply */
2101 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2102
2103 /* wait ack 10 times by 1ms */
2104 WAIT_FOR(
2105 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2106 1000, 10, &error);
2107 if (error != 0) {
2108 aprint_error_dev(sc->sc_dev,
2109 "atlantic: IRQ reset failed: %d\n", error);
2110 return error;
2111 }
2112
2113 return sc->sc_fw_ops->reset(sc);
2114 }
2115
2116 static int
2117 aq_hw_init_ucp(struct aq_softc *sc)
2118 {
2119 int timo;
2120
2121 if (FW_VERSION_MAJOR(sc) == 1) {
2122 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2123 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2124 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2125 }
2126
2127 /* Wait a maximum of 10sec. It usually takes about 5sec. */
2128 for (timo = 10000; timo > 0; timo--) {
2129 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2130 if (sc->sc_mbox_addr != 0)
2131 break;
2132 delay(1000);
2133 }
2134 if (sc->sc_mbox_addr == 0) {
2135 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2136 return ETIMEDOUT;
2137 }
2138
2139 #define AQ_FW_MIN_VERSION 0x01050006
2140 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2141 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2142 aprint_error_dev(sc->sc_dev,
2143 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2144 " or later required, this is %d.%d.%d\n",
2145 FW_VERSION_MAJOR(sc),
2146 FW_VERSION_MINOR(sc),
2147 FW_VERSION_BUILD(sc));
2148 return ENOTSUP;
2149 }
2150
2151 return 0;
2152 }
2153
2154 static int
2155 aq_fw_version_init(struct aq_softc *sc)
2156 {
2157 int error = 0;
2158 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2159
2160 if (FW_VERSION_MAJOR(sc) == 1) {
2161 sc->sc_fw_ops = &aq_fw1x_ops;
2162 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2163 sc->sc_fw_ops = &aq_fw2x_ops;
2164 } else {
2165 aprint_error_dev(sc->sc_dev,
2166 "Unsupported F/W version %d.%d.%d\n",
2167 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2168 FW_VERSION_BUILD(sc));
2169 return ENOTSUP;
2170 }
2171 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2172 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2173
2174 /* detect revision */
2175 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2176 switch (hwrev & 0x0000000f) {
2177 case 0x01:
2178 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2179 fw_vers);
2180 sc->sc_features |= FEATURES_REV_A0 |
2181 FEATURES_MPI_AQ | FEATURES_MIPS;
2182 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2183 break;
2184 case 0x02:
2185 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2186 fw_vers);
2187 sc->sc_features |= FEATURES_REV_B0 |
2188 FEATURES_MPI_AQ | FEATURES_MIPS |
2189 FEATURES_TPO2 | FEATURES_RPF2;
2190 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2191 break;
2192 case 0x0A:
2193 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2194 fw_vers);
2195 sc->sc_features |= FEATURES_REV_B1 |
2196 FEATURES_MPI_AQ | FEATURES_MIPS |
2197 FEATURES_TPO2 | FEATURES_RPF2;
2198 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2199 break;
2200 default:
2201 aprint_error_dev(sc->sc_dev,
2202 "Unknown revision (0x%08x)\n", hwrev);
2203 sc->sc_features = 0;
2204 sc->sc_max_mtu = ETHERMTU;
2205 error = ENOTSUP;
2206 break;
2207 }
2208 return error;
2209 }
2210
2211 static int
2212 fw1x_reset(struct aq_softc *sc)
2213 {
2214 struct aq_mailbox_header mbox;
2215 const int retryCount = 1000;
2216 uint32_t tid0;
2217 int i;
2218
2219 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2220
2221 for (i = 0; i < retryCount; ++i) {
2222 /*
2223 * Read the beginning of Statistics structure to capture
2224 * the Transaction ID.
2225 */
2226 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2227 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2228
2229 /* Successfully read the stats. */
2230 if (tid0 == ~0U) {
2231 /* We have read the initial value. */
2232 tid0 = mbox.transaction_id;
2233 continue;
2234 } else if (mbox.transaction_id != tid0) {
2235 /*
2236 * Compare transaction ID to initial value.
2237 * If it's different means f/w is alive.
2238 * We're done.
2239 */
2240 return 0;
2241 }
2242
2243 /*
2244 * Transaction ID value haven't changed since last time.
2245 * Try reading the stats again.
2246 */
2247 delay(10);
2248 }
2249 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2250 return EBUSY;
2251 }
2252
2253 static int
2254 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2255 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2256 {
2257 uint32_t mpictrl = 0;
2258 uint32_t mpispeed = 0;
2259
2260 if (speed & AQ_LINK_10G)
2261 mpispeed |= FW1X_CTRL_10G;
2262 if (speed & AQ_LINK_5G)
2263 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2264 if (speed & AQ_LINK_2G5)
2265 mpispeed |= FW1X_CTRL_2G5;
2266 if (speed & AQ_LINK_1G)
2267 mpispeed |= FW1X_CTRL_1G;
2268 if (speed & AQ_LINK_100M)
2269 mpispeed |= FW1X_CTRL_100M;
2270
2271 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2272 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2273 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2274 return 0;
2275 }
2276
2277 static int
2278 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2279 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2280 {
2281 uint32_t mpistate, mpi_speed;
2282 aq_link_speed_t speed = AQ_LINK_NONE;
2283
2284 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2285
2286 if (modep != NULL)
2287 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2288
2289 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2290 if (mpi_speed & FW1X_CTRL_10G)
2291 speed = AQ_LINK_10G;
2292 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2293 speed = AQ_LINK_5G;
2294 else if (mpi_speed & FW1X_CTRL_2G5)
2295 speed = AQ_LINK_2G5;
2296 else if (mpi_speed & FW1X_CTRL_1G)
2297 speed = AQ_LINK_1G;
2298 else if (mpi_speed & FW1X_CTRL_100M)
2299 speed = AQ_LINK_100M;
2300
2301 if (speedp != NULL)
2302 *speedp = speed;
2303
2304 if (fcp != NULL)
2305 *fcp = AQ_FC_NONE;
2306
2307 if (eeep != NULL)
2308 *eeep = AQ_EEE_DISABLE;
2309
2310 return 0;
2311 }
2312
2313 static int
2314 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2315 {
2316 int error;
2317
2318 error = aq_fw_downld_dwords(sc,
2319 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2320 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2321 if (error < 0) {
2322 device_printf(sc->sc_dev,
2323 "fw1x> download statistics data FAILED, error %d", error);
2324 return error;
2325 }
2326
2327 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2328 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2329 return 0;
2330 }
2331
2332 static int
2333 fw2x_reset(struct aq_softc *sc)
2334 {
2335 fw2x_capabilities_t caps = { 0 };
2336 int error;
2337
2338 error = aq_fw_downld_dwords(sc,
2339 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2340 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2341 if (error != 0) {
2342 aprint_error_dev(sc->sc_dev,
2343 "fw2x> can't get F/W capabilities mask, error %d\n",
2344 error);
2345 return error;
2346 }
2347 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2348
2349 char buf[256];
2350 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2351 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2352
2353 return 0;
2354 }
2355
2356 static int
2357 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2358 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2359 {
2360 uint64_t mpi_ctrl;
2361 int error = 0;
2362
2363 AQ_MPI_LOCK(sc);
2364
2365 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2366
2367 switch (mode) {
2368 case MPI_INIT:
2369 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2370 if (speed & AQ_LINK_10G)
2371 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2372 if (speed & AQ_LINK_5G)
2373 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2374 if (speed & AQ_LINK_2G5)
2375 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2376 if (speed & AQ_LINK_1G)
2377 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2378 if (speed & AQ_LINK_100M)
2379 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2380
2381 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2382
2383 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2384 if (eee == AQ_EEE_ENABLE)
2385 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2386
2387 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2388 if (fc & AQ_FC_RX)
2389 mpi_ctrl |= FW2X_CTRL_PAUSE;
2390 if (fc & AQ_FC_TX)
2391 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2392 break;
2393 case MPI_DEINIT:
2394 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2395 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2396 break;
2397 default:
2398 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2399 error = EINVAL;
2400 goto failure;
2401 }
2402 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2403
2404 failure:
2405 AQ_MPI_UNLOCK(sc);
2406 return error;
2407 }
2408
2409 static int
2410 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2411 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2412 {
2413 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2414
2415 if (modep != NULL) {
2416 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2417 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2418 *modep = MPI_INIT;
2419 else
2420 *modep = MPI_DEINIT;
2421 }
2422
2423 aq_link_speed_t speed = AQ_LINK_NONE;
2424 if (mpi_state & FW2X_CTRL_RATE_10G)
2425 speed = AQ_LINK_10G;
2426 else if (mpi_state & FW2X_CTRL_RATE_5G)
2427 speed = AQ_LINK_5G;
2428 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2429 speed = AQ_LINK_2G5;
2430 else if (mpi_state & FW2X_CTRL_RATE_1G)
2431 speed = AQ_LINK_1G;
2432 else if (mpi_state & FW2X_CTRL_RATE_100M)
2433 speed = AQ_LINK_100M;
2434
2435 if (speedp != NULL)
2436 *speedp = speed;
2437
2438 aq_link_fc_t fc = AQ_FC_NONE;
2439 if (mpi_state & FW2X_CTRL_PAUSE)
2440 fc |= AQ_FC_RX;
2441 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2442 fc |= AQ_FC_TX;
2443 if (fcp != NULL)
2444 *fcp = fc;
2445
2446 /* XXX: TODO: EEE */
2447 if (eeep != NULL)
2448 *eeep = AQ_EEE_DISABLE;
2449
2450 return 0;
2451 }
2452
2453 static int
2454 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2455 uint32_t timeout_ms, uint32_t try_count)
2456 {
2457 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2458 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2459 int error;
2460
2461 /* First, check that control and state values are consistent */
2462 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2463 device_printf(sc->sc_dev,
2464 "fw2x> MPI control (%#llx) and state (%#llx)"
2465 " are not consistent for mask %#llx!\n",
2466 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2467 (unsigned long long)mask);
2468 return EINVAL;
2469 }
2470
2471 /* Invert bits (toggle) in control register */
2472 mpi_ctrl ^= mask;
2473 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2474
2475 /* Clear all bits except masked */
2476 mpi_ctrl &= mask;
2477
2478 /* Wait for FW reflecting change in state register */
2479 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2480 1000 * timeout_ms, try_count, &error);
2481 if (error != 0) {
2482 device_printf(sc->sc_dev,
2483 "f/w2x> timeout while waiting for response"
2484 " in state register for bit %#llx!",
2485 (unsigned long long)mask);
2486 return error;
2487 }
2488 return 0;
2489 }
2490
2491 static int
2492 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2493 {
2494 int error;
2495
2496 AQ_MPI_LOCK(sc);
2497 /* Say to F/W to update the statistics */
2498 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2499 if (error != 0) {
2500 device_printf(sc->sc_dev,
2501 "fw2x> statistics update error %d\n", error);
2502 goto failure;
2503 }
2504
2505 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2506 error = aq_fw_downld_dwords(sc,
2507 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2508 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2509 if (error != 0) {
2510 device_printf(sc->sc_dev,
2511 "fw2x> download statistics data FAILED, error %d", error);
2512 goto failure;
2513 }
2514 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2515 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2516
2517 failure:
2518 AQ_MPI_UNLOCK(sc);
2519 return error;
2520 }
2521
2522 #if NSYSMON_ENVSYS > 0
2523 static int
2524 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2525 {
2526 int error;
2527 uint32_t value, celsius;
2528
2529 AQ_MPI_LOCK(sc);
2530
2531 /* Say to F/W to update the temperature */
2532 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2533 if (error != 0)
2534 goto failure;
2535
2536 error = aq_fw_downld_dwords(sc,
2537 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2538 &value, sizeof(value) / sizeof(uint32_t));
2539 if (error != 0)
2540 goto failure;
2541
2542 /* 1/256 decrees C to microkelvin */
2543 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2544 if (celsius == 0) {
2545 error = EIO;
2546 goto failure;
2547 }
2548 *temp = celsius * (1000000 / 256) + 273150000;
2549
2550 failure:
2551 AQ_MPI_UNLOCK(sc);
2552 return 0;
2553 }
2554 #endif
2555
2556 static int
2557 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2558 uint32_t cnt)
2559 {
2560 uint32_t v;
2561 int error = 0;
2562
2563 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2564 if (error != 0) {
2565 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2566 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2567 if (v == 0) {
2568 device_printf(sc->sc_dev,
2569 "%s:%d: timeout\n", __func__, __LINE__);
2570 return ETIMEDOUT;
2571 }
2572 }
2573
2574 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2575
2576 error = 0;
2577 for (; cnt > 0 && error == 0; cnt--) {
2578 /* execute mailbox interface */
2579 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2580 AQ_FW_MBOX_CMD_EXECUTE, 1);
2581 if (sc->sc_features & FEATURES_REV_B1) {
2582 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2583 1, 1000, &error);
2584 } else {
2585 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2586 AQ_FW_MBOX_CMD_BUSY) == 0,
2587 1, 1000, &error);
2588 }
2589 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2590 addr += sizeof(uint32_t);
2591 }
2592 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2593
2594 if (error != 0)
2595 device_printf(sc->sc_dev,
2596 "%s:%d: timeout\n", __func__, __LINE__);
2597
2598 return error;
2599 }
2600
2601 /* read my mac address */
2602 static int
2603 aq_get_mac_addr(struct aq_softc *sc)
2604 {
2605 uint32_t mac_addr[2];
2606 uint32_t efuse_shadow_addr;
2607 int err;
2608
2609 efuse_shadow_addr = 0;
2610 if (FW_VERSION_MAJOR(sc) >= 2)
2611 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2612 else
2613 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2614
2615 if (efuse_shadow_addr == 0) {
2616 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2617 return ENXIO;
2618 }
2619
2620 memset(mac_addr, 0, sizeof(mac_addr));
2621 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2622 mac_addr, __arraycount(mac_addr));
2623 if (err < 0)
2624 return err;
2625
2626 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2627 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2628 return ENXIO;
2629 }
2630
2631 mac_addr[0] = htobe32(mac_addr[0]);
2632 mac_addr[1] = htobe32(mac_addr[1]);
2633
2634 memcpy(sc->sc_enaddr.ether_addr_octet,
2635 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2636 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2637 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2638
2639 return 0;
2640 }
2641
2642 /* set multicast filter. index 0 for own address */
2643 static int
2644 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2645 {
2646 uint32_t h, l;
2647
2648 if (index >= AQ_HW_MAC_NUM)
2649 return EINVAL;
2650
2651 if (enaddr == NULL) {
2652 /* disable */
2653 AQ_WRITE_REG_BIT(sc,
2654 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2655 return 0;
2656 }
2657
2658 h = (enaddr[0] << 8) | (enaddr[1]);
2659 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2660 (enaddr[4] << 8) | (enaddr[5]);
2661
2662 /* disable, set, and enable */
2663 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2664 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2665 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2666 RPF_L2UC_MSW_MACADDR_HI, h);
2667 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2668 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2669
2670 return 0;
2671 }
2672
2673 static int
2674 aq_set_capability(struct aq_softc *sc)
2675 {
2676 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2677 int ip4csum_tx =
2678 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2679 int ip4csum_rx =
2680 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2681 int l4csum_tx = ((ifp->if_capenable &
2682 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2683 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2684 int l4csum_rx =
2685 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2686 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2687 uint32_t lso =
2688 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2689 0 : 0xffffffff;
2690 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2691 0 : 0xffffffff;
2692 uint32_t i, v;
2693
2694 /* TX checksums offloads*/
2695 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2696 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2697
2698 /* RX checksums offloads*/
2699 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2700 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2701
2702 /* LSO offloads*/
2703 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2704
2705 #define AQ_B0_LRO_RXD_MAX 16
2706 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2707 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2708 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2709 for (i = 0; i < AQ_RINGS_NUM; i++) {
2710 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2711 RPO_LRO_LDES_MAX_MASK(i), v);
2712 }
2713
2714 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2715 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2716 RPO_LRO_INACTIVE_IVAL, 0);
2717 /*
2718 * the LRO timebase divider is 5 uS (0x61a),
2719 * to get a maximum coalescing interval of 250 uS,
2720 * we need to multiply by 50(0x32) to get
2721 * the default value 250 uS
2722 */
2723 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2724 RPO_LRO_MAX_COALESCING_IVAL, 50);
2725 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2726 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2727 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2728 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2729 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2730 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2731 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2732 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2733 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2734 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2735
2736 return 0;
2737 }
2738
2739 static int
2740 aq_set_filter(struct aq_softc *sc)
2741 {
2742 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2743 struct ethercom * const ec = &sc->sc_ethercom;
2744 struct ether_multi *enm;
2745 struct ether_multistep step;
2746 int idx, error = 0;
2747
2748 if (ifp->if_flags & IFF_PROMISC) {
2749 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2750 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2751 ec->ec_flags |= ETHER_F_ALLMULTI;
2752 goto done;
2753 }
2754
2755 /* clear all table */
2756 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2757 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2758 continue;
2759 aq_set_mac_addr(sc, idx, NULL);
2760 }
2761
2762 /* don't accept all multicast */
2763 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2764 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2765 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2766 RPF_MCAST_FILTER_EN, 0);
2767
2768 idx = 0;
2769 ETHER_LOCK(ec);
2770 ETHER_FIRST_MULTI(step, ec, enm);
2771 while (enm != NULL) {
2772 if (idx == AQ_HW_MAC_OWN)
2773 idx++;
2774
2775 if ((idx >= AQ_HW_MAC_NUM) ||
2776 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2777 /*
2778 * too many filters.
2779 * fallback to accept all multicast addresses.
2780 */
2781 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2782 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2783 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2784 RPF_MCAST_FILTER_EN, 1);
2785 ec->ec_flags |= ETHER_F_ALLMULTI;
2786 ETHER_UNLOCK(ec);
2787 goto done;
2788 }
2789
2790 /* add a filter */
2791 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2792
2793 ETHER_NEXT_MULTI(step, enm);
2794 }
2795 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2796 ETHER_UNLOCK(ec);
2797
2798 done:
2799 return error;
2800 }
2801
2802 static int
2803 aq_ifmedia_change(struct ifnet * const ifp)
2804 {
2805 struct aq_softc * const sc = ifp->if_softc;
2806
2807 aq_link_speed_t rate = AQ_LINK_NONE;
2808 aq_link_fc_t fc = AQ_FC_NONE;
2809 aq_link_eee_t eee = AQ_EEE_DISABLE;
2810
2811 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2812 return EINVAL;
2813
2814 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2815 case IFM_AUTO:
2816 rate = AQ_LINK_AUTO;
2817 break;
2818 case IFM_NONE:
2819 rate = AQ_LINK_NONE;
2820 break;
2821 case IFM_100_TX:
2822 rate = AQ_LINK_100M;
2823 break;
2824 case IFM_1000_T:
2825 rate = AQ_LINK_1G;
2826 break;
2827 case IFM_2500_T:
2828 rate = AQ_LINK_2G5;
2829 break;
2830 case IFM_5000_T:
2831 rate = AQ_LINK_5G;
2832 break;
2833 case IFM_10G_T:
2834 rate = AQ_LINK_10G;
2835 break;
2836 default:
2837 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2838 IFM_SUBTYPE(sc->sc_media.ifm_media));
2839 return ENODEV;
2840 }
2841
2842 if (sc->sc_media.ifm_media & IFM_FLOW)
2843 fc = AQ_FC_ALL;
2844
2845 /* XXX: todo EEE */
2846
2847 /* re-initialize hardware with new parameters */
2848 aq_set_linkmode(sc, rate, fc, eee);
2849
2850 return 0;
2851 }
2852
2853 static void
2854 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2855 {
2856 struct aq_softc * const sc = ifp->if_softc;
2857
2858 /* update ifm_active */
2859 ifmr->ifm_active = IFM_ETHER;
2860 if (sc->sc_link_fc & AQ_FC_RX)
2861 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2862 if (sc->sc_link_fc & AQ_FC_TX)
2863 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2864
2865 switch (sc->sc_link_rate) {
2866 case AQ_LINK_100M:
2867 /* XXX: need to detect fulldup or halfdup */
2868 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2869 break;
2870 case AQ_LINK_1G:
2871 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2872 break;
2873 case AQ_LINK_2G5:
2874 ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2875 break;
2876 case AQ_LINK_5G:
2877 ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2878 break;
2879 case AQ_LINK_10G:
2880 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2881 break;
2882 default:
2883 ifmr->ifm_active |= IFM_NONE;
2884 break;
2885 }
2886
2887 /* update ifm_status */
2888 ifmr->ifm_status = IFM_AVALID;
2889 if (sc->sc_link_rate != AQ_LINK_NONE)
2890 ifmr->ifm_status |= IFM_ACTIVE;
2891 }
2892
2893 static void
2894 aq_initmedia(struct aq_softc *sc)
2895 {
2896 #define IFMEDIA_ETHER_ADD(sc, media) \
2897 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2898
2899 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2900 if (sc->sc_available_rates & AQ_LINK_100M) {
2901 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2902 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2903 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2904 }
2905 if (sc->sc_available_rates & AQ_LINK_1G) {
2906 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2907 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2908 }
2909 if (sc->sc_available_rates & AQ_LINK_2G5) {
2910 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2911 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2912 }
2913 if (sc->sc_available_rates & AQ_LINK_5G) {
2914 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2915 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2916 }
2917 if (sc->sc_available_rates & AQ_LINK_10G) {
2918 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2919 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2920 }
2921 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2922 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2923
2924 /* default: auto without flowcontrol */
2925 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2926 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2927 }
2928
2929 static int
2930 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2931 aq_link_eee_t eee)
2932 {
2933 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2934 }
2935
2936 static int
2937 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2938 aq_link_eee_t *eee)
2939 {
2940 aq_hw_fw_mpi_state_t mode;
2941 int error;
2942
2943 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2944 if (error != 0)
2945 return error;
2946 if (mode != MPI_INIT)
2947 return ENXIO;
2948
2949 return 0;
2950 }
2951
2952 static void
2953 aq_hw_init_tx_path(struct aq_softc *sc)
2954 {
2955 /* Tx TC/RSS number config */
2956 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2957
2958 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2959 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2960 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2961 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2962 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2963 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2964
2965 /* misc */
2966 AQ_WRITE_REG(sc, TX_TPO2_REG,
2967 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2968 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2969 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2970
2971 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2972 }
2973
2974 static void
2975 aq_hw_init_rx_path(struct aq_softc *sc)
2976 {
2977 int i;
2978
2979 /* clear setting */
2980 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2981 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2982 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2983 for (i = 0; i < 32; i++) {
2984 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2985 RPF_ETHERTYPE_FILTER_EN, 0);
2986 }
2987
2988 if (sc->sc_rss_enable) {
2989 /* Rx TC/RSS number config */
2990 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2991
2992 /* Rx flow control */
2993 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2994
2995 /* RSS Ring selection */
2996 switch (sc->sc_nqueues) {
2997 case 2:
2998 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2999 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
3000 break;
3001 case 4:
3002 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
3003 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
3004 break;
3005 case 8:
3006 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
3007 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
3008 break;
3009 }
3010 }
3011
3012 /* L2 and Multicast filters */
3013 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
3014 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
3015 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
3016 RPF_ACTION_HOST);
3017 }
3018 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
3019 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
3020
3021 /* Vlan filters */
3022 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
3023 ETHERTYPE_QINQ);
3024 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
3025 ETHERTYPE_VLAN);
3026 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3027
3028 if (sc->sc_features & FEATURES_REV_B) {
3029 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3030 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
3031 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3032 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
3033 }
3034
3035 /* misc */
3036 if (sc->sc_features & FEATURES_RPF2)
3037 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
3038 else
3039 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
3040
3041 /*
3042 * XXX: RX_TCP_RSS_HASH_REG:
3043 * linux set 0x000f0000
3044 * freebsd set 0x000f001e
3045 */
3046 /* RSS hash type set for IP/TCP */
3047 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
3048 RX_TCP_RSS_HASH_TYPE, 0x001e);
3049
3050 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3051 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3052 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3053
3054 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3055 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3056 }
3057
3058 static void
3059 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3060 {
3061 int i;
3062
3063 if (sc->sc_intr_moderation_enable) {
3064 unsigned int tx_min, rx_min; /* 0-255 */
3065 unsigned int tx_max, rx_max; /* 0-511? */
3066
3067 switch (sc->sc_link_rate) {
3068 case AQ_LINK_100M:
3069 tx_min = 0x4f;
3070 tx_max = 0xff;
3071 rx_min = 0x04;
3072 rx_max = 0x50;
3073 break;
3074 case AQ_LINK_1G:
3075 default:
3076 tx_min = 0x4f;
3077 tx_max = 0xff;
3078 rx_min = 0x30;
3079 rx_max = 0x80;
3080 break;
3081 case AQ_LINK_2G5:
3082 tx_min = 0x4f;
3083 tx_max = 0xff;
3084 rx_min = 0x18;
3085 rx_max = 0xe0;
3086 break;
3087 case AQ_LINK_5G:
3088 tx_min = 0x4f;
3089 tx_max = 0xff;
3090 rx_min = 0x0c;
3091 rx_max = 0x70;
3092 break;
3093 case AQ_LINK_10G:
3094 tx_min = 0x4f;
3095 tx_max = 0x1ff;
3096 rx_min = 0x06; /* freebsd use 80 */
3097 rx_max = 0x38; /* freebsd use 120 */
3098 break;
3099 }
3100
3101 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3102 TX_DMA_INT_DESC_WRWB_EN, 0);
3103 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3104 TX_DMA_INT_DESC_MODERATE_EN, 1);
3105 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3106 RX_DMA_INT_DESC_WRWB_EN, 0);
3107 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3108 RX_DMA_INT_DESC_MODERATE_EN, 1);
3109
3110 for (i = 0; i < AQ_RINGS_NUM; i++) {
3111 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3112 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3113 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3114 TX_INTR_MODERATION_CTL_EN);
3115 }
3116 for (i = 0; i < AQ_RINGS_NUM; i++) {
3117 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3118 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3119 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3120 RX_INTR_MODERATION_CTL_EN);
3121 }
3122
3123 } else {
3124 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3125 TX_DMA_INT_DESC_WRWB_EN, 1);
3126 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3127 TX_DMA_INT_DESC_MODERATE_EN, 0);
3128 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3129 RX_DMA_INT_DESC_WRWB_EN, 1);
3130 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3131 RX_DMA_INT_DESC_MODERATE_EN, 0);
3132
3133 for (i = 0; i < AQ_RINGS_NUM; i++) {
3134 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3135 }
3136 for (i = 0; i < AQ_RINGS_NUM; i++) {
3137 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3138 }
3139 }
3140 }
3141
3142 static void
3143 aq_hw_qos_set(struct aq_softc *sc)
3144 {
3145 uint32_t tc = 0;
3146 uint32_t buff_size;
3147
3148 /* TPS Descriptor rate init */
3149 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3150 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3151
3152 /* TPS VM init */
3153 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3154
3155 /* TPS TC credits init */
3156 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3157 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3158
3159 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3160 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3161 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3162 TPS_DATA_TCT_WEIGHT, 0x64);
3163 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3164 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3165 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3166 TPS_DESC_TCT_WEIGHT, 0x1e);
3167
3168 /* Tx buf size */
3169 tc = 0;
3170 buff_size = AQ_HW_TXBUF_MAX;
3171 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3172 buff_size);
3173 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3174 (buff_size * (1024 / 32) * 66) / 100);
3175 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3176 (buff_size * (1024 / 32) * 50) / 100);
3177
3178 /* QoS Rx buf size per TC */
3179 tc = 0;
3180 buff_size = AQ_HW_RXBUF_MAX;
3181 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3182 buff_size);
3183 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3184 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3185 (buff_size * (1024 / 32) * 66) / 100);
3186 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3187 (buff_size * (1024 / 32) * 50) / 100);
3188
3189 /* QoS 802.1p priority -> TC mapping */
3190 int i_priority;
3191 for (i_priority = 0; i_priority < 8; i_priority++) {
3192 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3193 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3194 }
3195 }
3196
3197 /* called once from aq_attach */
3198 static int
3199 aq_init_rss(struct aq_softc *sc)
3200 {
3201 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3202 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3203 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3204 unsigned int i;
3205 int error;
3206
3207 /* initialize rss key */
3208 rss_getkey((uint8_t *)rss_key);
3209
3210 /* hash to ring table */
3211 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3212 rss_table[i] = i % sc->sc_nqueues;
3213 }
3214
3215 /*
3216 * set rss key
3217 */
3218 for (i = 0; i < __arraycount(rss_key); i++) {
3219 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3220 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3221 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3222 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3223 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3224 RPF_RSS_KEY_WR_EN, 1);
3225 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3226 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3227 if (error != 0) {
3228 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3229 __func__);
3230 goto rss_set_timeout;
3231 }
3232 }
3233
3234 /*
3235 * set rss indirection table
3236 *
3237 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3238 * we'll make it by __BITMAP(3) macros.
3239 */
3240 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3241 __BITMAP_ZERO(&bit3x64);
3242
3243 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3244 do { \
3245 if (val & 1) { \
3246 __BITMAP_SET((idx) * 3, (bitmap)); \
3247 } else { \
3248 __BITMAP_CLR((idx) * 3, (bitmap)); \
3249 } \
3250 if (val & 2) { \
3251 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3252 } else { \
3253 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3254 } \
3255 if (val & 4) { \
3256 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3257 } else { \
3258 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3259 } \
3260 } while (0 /* CONSTCOND */)
3261
3262 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3263 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3264 }
3265
3266 /* write 192bit data in steps of 16bit */
3267 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3268 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3269 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3270 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3271 RPF_RSS_REDIR_ADDR, i);
3272 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3273 RPF_RSS_REDIR_WR_EN, 1);
3274
3275 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3276 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3277 if (error != 0)
3278 break;
3279 }
3280
3281 rss_set_timeout:
3282 return error;
3283 }
3284
3285 static void
3286 aq_hw_l3_filter_set(struct aq_softc *sc)
3287 {
3288 int i;
3289
3290 /* clear all filter */
3291 for (i = 0; i < 8; i++) {
3292 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3293 RPF_L3_FILTER_L4_EN, 0);
3294 }
3295 }
3296
3297 static void
3298 aq_set_vlan_filters(struct aq_softc *sc)
3299 {
3300 struct ethercom * const ec = &sc->sc_ethercom;
3301 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3302 struct vlanid_list *vlanidp;
3303 int i;
3304
3305 ETHER_LOCK(ec);
3306
3307 /* disable all vlan filters */
3308 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3309 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3310
3311 /* count VID */
3312 i = 0;
3313 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3314 i++;
3315
3316 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3317 (ifp->if_flags & IFF_PROMISC) ||
3318 (i > RPF_VLAN_MAX_FILTERS)) {
3319 /*
3320 * no vlan hwfilter, in promiscuous mode, or too many VID?
3321 * must receive all VID
3322 */
3323 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3324 RPF_VLAN_MODE_PROMISC, 1);
3325 goto done;
3326 }
3327
3328 /* receive only selected VID */
3329 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3330 i = 0;
3331 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3332 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3333 RPF_VLAN_FILTER_EN, 1);
3334 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3335 RPF_VLAN_FILTER_RXQ_EN, 0);
3336 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3337 RPF_VLAN_FILTER_RXQ, 0);
3338 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3339 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3340 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3341 RPF_VLAN_FILTER_ID, vlanidp->vid);
3342 i++;
3343 }
3344
3345 done:
3346 ETHER_UNLOCK(ec);
3347 }
3348
3349 static int
3350 aq_hw_init(struct aq_softc *sc)
3351 {
3352 uint32_t v;
3353
3354 /* Force limit MRRS on RDM/TDM to 2K */
3355 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3356 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3357
3358 /*
3359 * TX DMA total request limit. B0 hardware is not capable to
3360 * handle more than (8K-MRRS) incoming DMA data.
3361 * Value 24 in 256byte units
3362 */
3363 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3364
3365 aq_hw_init_tx_path(sc);
3366 aq_hw_init_rx_path(sc);
3367
3368 aq_hw_interrupt_moderation_set(sc);
3369
3370 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3371 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3372
3373 aq_hw_qos_set(sc);
3374
3375 /* Enable interrupt */
3376 int irqmode;
3377 if (sc->sc_msix)
3378 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3379 else
3380 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3381
3382 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3383 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3384 sc->sc_msix ? 1 : 0);
3385 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3386
3387 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3388
3389 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3390 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3391 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3392 );
3393
3394 /* link interrupt */
3395 if (!sc->sc_msix)
3396 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3397 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3398 __BIT(7) | sc->sc_linkstat_irq);
3399
3400 return 0;
3401 }
3402
3403 static int
3404 aq_update_link_status(struct aq_softc *sc)
3405 {
3406 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3407 aq_link_speed_t rate = AQ_LINK_NONE;
3408 aq_link_fc_t fc = AQ_FC_NONE;
3409 aq_link_eee_t eee = AQ_EEE_DISABLE;
3410 unsigned int speed;
3411 int changed = 0;
3412
3413 aq_get_linkmode(sc, &rate, &fc, &eee);
3414
3415 if (sc->sc_link_rate != rate)
3416 changed = 1;
3417 if (sc->sc_link_fc != fc)
3418 changed = 1;
3419 if (sc->sc_link_eee != eee)
3420 changed = 1;
3421
3422 if (changed) {
3423 switch (rate) {
3424 case AQ_LINK_100M:
3425 speed = 100;
3426 break;
3427 case AQ_LINK_1G:
3428 speed = 1000;
3429 break;
3430 case AQ_LINK_2G5:
3431 speed = 2500;
3432 break;
3433 case AQ_LINK_5G:
3434 speed = 5000;
3435 break;
3436 case AQ_LINK_10G:
3437 speed = 10000;
3438 break;
3439 case AQ_LINK_NONE:
3440 default:
3441 speed = 0;
3442 break;
3443 }
3444
3445 if (sc->sc_link_rate == AQ_LINK_NONE) {
3446 /* link DOWN -> UP */
3447 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3448 speed);
3449 if_link_state_change(ifp, LINK_STATE_UP);
3450 } else if (rate == AQ_LINK_NONE) {
3451 /* link UP -> DOWN */
3452 device_printf(sc->sc_dev, "link is DOWN\n");
3453 if_link_state_change(ifp, LINK_STATE_DOWN);
3454 } else {
3455 device_printf(sc->sc_dev,
3456 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3457 speed, fc, eee);
3458 }
3459
3460 sc->sc_link_rate = rate;
3461 sc->sc_link_fc = fc;
3462 sc->sc_link_eee = eee;
3463
3464 /* update interrupt timing according to new link speed */
3465 aq_hw_interrupt_moderation_set(sc);
3466 }
3467
3468 return changed;
3469 }
3470
3471 #ifdef AQ_EVENT_COUNTERS
3472 static void
3473 aq_update_statistics(struct aq_softc *sc)
3474 {
3475 int prev = sc->sc_statistics_idx;
3476 int cur = prev ^ 1;
3477
3478 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3479
3480 /*
3481 * aq's internal statistics counter is 32bit.
3482 * cauculate delta, and add to evcount
3483 */
3484 #define ADD_DELTA(cur, prev, name) \
3485 do { \
3486 uint32_t n; \
3487 n = (uint32_t)(sc->sc_statistics[cur].name - \
3488 sc->sc_statistics[prev].name); \
3489 if (n != 0) { \
3490 AQ_EVCNT_ADD(sc, name, n); \
3491 } \
3492 } while (/*CONSTCOND*/0);
3493
3494 ADD_DELTA(cur, prev, uprc);
3495 ADD_DELTA(cur, prev, mprc);
3496 ADD_DELTA(cur, prev, bprc);
3497 ADD_DELTA(cur, prev, prc);
3498 ADD_DELTA(cur, prev, erpr);
3499 ADD_DELTA(cur, prev, uptc);
3500 ADD_DELTA(cur, prev, mptc);
3501 ADD_DELTA(cur, prev, bptc);
3502 ADD_DELTA(cur, prev, ptc);
3503 ADD_DELTA(cur, prev, erpt);
3504 ADD_DELTA(cur, prev, mbtc);
3505 ADD_DELTA(cur, prev, bbtc);
3506 ADD_DELTA(cur, prev, mbrc);
3507 ADD_DELTA(cur, prev, bbrc);
3508 ADD_DELTA(cur, prev, ubrc);
3509 ADD_DELTA(cur, prev, ubtc);
3510 ADD_DELTA(cur, prev, dpc);
3511 ADD_DELTA(cur, prev, cprc);
3512
3513 sc->sc_statistics_idx = cur;
3514 }
3515 #endif /* AQ_EVENT_COUNTERS */
3516
3517 /* allocate and map one DMA block */
3518 static int
3519 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3520 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3521 {
3522 int nsegs, error;
3523
3524 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3525 1, &nsegs, 0)) != 0) {
3526 aprint_error_dev(sc->sc_dev,
3527 "unable to allocate DMA buffer, error=%d\n", error);
3528 goto fail_alloc;
3529 }
3530
3531 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3532 BUS_DMA_COHERENT)) != 0) {
3533 aprint_error_dev(sc->sc_dev,
3534 "unable to map DMA buffer, error=%d\n", error);
3535 goto fail_map;
3536 }
3537
3538 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3539 0, mapp)) != 0) {
3540 aprint_error_dev(sc->sc_dev,
3541 "unable to create DMA map, error=%d\n", error);
3542 goto fail_create;
3543 }
3544
3545 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3546 0)) != 0) {
3547 aprint_error_dev(sc->sc_dev,
3548 "unable to load DMA map, error=%d\n", error);
3549 goto fail_load;
3550 }
3551
3552 *sizep = size;
3553 return 0;
3554
3555 fail_load:
3556 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3557 *mapp = NULL;
3558 fail_create:
3559 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3560 *addrp = NULL;
3561 fail_map:
3562 bus_dmamem_free(sc->sc_dmat, seg, 1);
3563 memset(seg, 0, sizeof(*seg));
3564 fail_alloc:
3565 *sizep = 0;
3566 return error;
3567 }
3568
3569 static void
3570 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3571 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3572 {
3573 if (*mapp != NULL) {
3574 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3575 *mapp = NULL;
3576 }
3577 if (*addrp != NULL) {
3578 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3579 *addrp = NULL;
3580 }
3581 if (*sizep != 0) {
3582 bus_dmamem_free(sc->sc_dmat, seg, 1);
3583 memset(seg, 0, sizeof(*seg));
3584 *sizep = 0;
3585 }
3586 }
3587
3588 static int
3589 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3590 {
3591 int i, error;
3592
3593 /* allocate tx descriptors */
3594 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3595 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3596 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3597 if (error != 0)
3598 return error;
3599
3600 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3601
3602 /* fill tx ring with dmamap */
3603 for (i = 0; i < AQ_TXD_NUM; i++) {
3604 #define AQ_MAXDMASIZE (16 * 1024)
3605 #define AQ_NTXSEGS 32
3606 /* XXX: TODO: error check */
3607 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3608 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3609 }
3610 return 0;
3611 }
3612
3613 static void
3614 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3615 {
3616 int i;
3617
3618 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3619 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3620
3621 for (i = 0; i < AQ_TXD_NUM; i++) {
3622 if (txring->txr_mbufs[i].dmamap != NULL) {
3623 if (txring->txr_mbufs[i].m != NULL) {
3624 bus_dmamap_unload(sc->sc_dmat,
3625 txring->txr_mbufs[i].dmamap);
3626 m_freem(txring->txr_mbufs[i].m);
3627 txring->txr_mbufs[i].m = NULL;
3628 }
3629 bus_dmamap_destroy(sc->sc_dmat,
3630 txring->txr_mbufs[i].dmamap);
3631 txring->txr_mbufs[i].dmamap = NULL;
3632 }
3633 }
3634 }
3635
3636 static int
3637 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3638 {
3639 int i, error;
3640
3641 /* allocate rx descriptors */
3642 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3643 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3644 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3645 if (error != 0)
3646 return error;
3647
3648 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3649
3650 /* fill rxring with dmamaps */
3651 for (i = 0; i < AQ_RXD_NUM; i++) {
3652 rxring->rxr_mbufs[i].m = NULL;
3653 /* XXX: TODO: error check */
3654 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3655 &rxring->rxr_mbufs[i].dmamap);
3656 }
3657 return 0;
3658 }
3659
3660 static void
3661 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3662 {
3663 int i;
3664
3665 /* free all mbufs allocated for RX */
3666 for (i = 0; i < AQ_RXD_NUM; i++) {
3667 if (rxring->rxr_mbufs[i].m != NULL) {
3668 bus_dmamap_unload(sc->sc_dmat,
3669 rxring->rxr_mbufs[i].dmamap);
3670 m_freem(rxring->rxr_mbufs[i].m);
3671 rxring->rxr_mbufs[i].m = NULL;
3672 }
3673 }
3674 }
3675
3676 static void
3677 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3678 {
3679 int i;
3680
3681 /* free all mbufs and dmamaps */
3682 aq_rxdrain(sc, rxring);
3683 for (i = 0; i < AQ_RXD_NUM; i++) {
3684 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3685 bus_dmamap_destroy(sc->sc_dmat,
3686 rxring->rxr_mbufs[i].dmamap);
3687 rxring->rxr_mbufs[i].dmamap = NULL;
3688 }
3689 }
3690
3691 /* free RX descriptor */
3692 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3693 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3694 }
3695
3696 static void
3697 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3698 struct mbuf *m)
3699 {
3700 int error;
3701
3702 /* if mbuf already exists, unload and free */
3703 if (rxring->rxr_mbufs[idx].m != NULL) {
3704 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3705 m_freem(rxring->rxr_mbufs[idx].m);
3706 rxring->rxr_mbufs[idx].m = NULL;
3707 }
3708
3709 rxring->rxr_mbufs[idx].m = m;
3710
3711 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3712 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3713 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3714 if (error) {
3715 device_printf(sc->sc_dev,
3716 "unable to load rx DMA map %d, error = %d\n", idx, error);
3717 panic("%s: unable to load rx DMA map. error=%d",
3718 __func__, error);
3719 }
3720 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3721 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3722 }
3723
3724 static inline void
3725 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3726 {
3727 /* refill rxdesc, and sync */
3728 rxring->rxr_rxdesc[idx].read.buf_addr =
3729 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3730 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3731 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3732 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3733 BUS_DMASYNC_PREWRITE);
3734 }
3735
3736 static struct mbuf *
3737 aq_alloc_mbuf(void)
3738 {
3739 struct mbuf *m;
3740
3741 MGETHDR(m, M_DONTWAIT, MT_DATA);
3742 if (m == NULL)
3743 return NULL;
3744
3745 MCLGET(m, M_DONTWAIT);
3746 if ((m->m_flags & M_EXT) == 0) {
3747 m_freem(m);
3748 return NULL;
3749 }
3750
3751 return m;
3752 }
3753
3754 /* allocate mbuf and unload dmamap */
3755 static int
3756 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3757 {
3758 struct mbuf *m;
3759
3760 m = aq_alloc_mbuf();
3761 if (m == NULL)
3762 return ENOBUFS;
3763
3764 aq_rxring_setmbuf(sc, rxring, idx, m);
3765 return 0;
3766 }
3767
3768 static int
3769 aq_txrx_rings_alloc(struct aq_softc *sc)
3770 {
3771 int n, error;
3772
3773 for (n = 0; n < sc->sc_nqueues; n++) {
3774 sc->sc_queue[n].sc = sc;
3775 sc->sc_queue[n].txring.txr_sc = sc;
3776 sc->sc_queue[n].txring.txr_index = n;
3777 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3778 IPL_NET);
3779 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3780 if (error != 0)
3781 goto failure;
3782
3783 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3784 if (error != 0)
3785 goto failure;
3786
3787 sc->sc_queue[n].rxring.rxr_sc = sc;
3788 sc->sc_queue[n].rxring.rxr_index = n;
3789 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3790 IPL_NET);
3791 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3792 if (error != 0)
3793 break;
3794 }
3795
3796 failure:
3797 return error;
3798 }
3799
3800 static void
3801 aq_txrx_rings_free(struct aq_softc *sc)
3802 {
3803 int n;
3804
3805 for (n = 0; n < sc->sc_nqueues; n++) {
3806 aq_txring_free(sc, &sc->sc_queue[n].txring);
3807 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3808
3809 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3810
3811 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3812 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3813 }
3814 }
3815
3816 static int
3817 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3818 {
3819 int error = 0;
3820 txring->txr_softint = NULL;
3821
3822 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3823 if (txring->txr_pcq == NULL) {
3824 aprint_error_dev(sc->sc_dev,
3825 "unable to allocate pcq for TXring[%d]\n",
3826 txring->txr_index);
3827 error = ENOMEM;
3828 goto done;
3829 }
3830
3831 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3832 aq_deferred_transmit, txring);
3833 if (txring->txr_softint == NULL) {
3834 aprint_error_dev(sc->sc_dev,
3835 "unable to establish softint for TXring[%d]\n",
3836 txring->txr_index);
3837 error = ENOENT;
3838 }
3839
3840 done:
3841 return error;
3842 }
3843
3844 static void
3845 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3846 {
3847 struct mbuf *m;
3848
3849 if (txring->txr_softint != NULL) {
3850 softint_disestablish(txring->txr_softint);
3851 txring->txr_softint = NULL;
3852 }
3853
3854 if (txring->txr_pcq != NULL) {
3855 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3856 m_freem(m);
3857 pcq_destroy(txring->txr_pcq);
3858 txring->txr_pcq = NULL;
3859 }
3860 }
3861
3862 #if NSYSMON_ENVSYS > 0
3863 static void
3864 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3865 {
3866 struct aq_softc *sc;
3867 uint32_t temp;
3868 int error;
3869
3870 sc = sme->sme_cookie;
3871
3872 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3873 if (error == 0) {
3874 edata->value_cur = temp;
3875 edata->state = ENVSYS_SVALID;
3876 } else {
3877 edata->state = ENVSYS_SINVALID;
3878 }
3879 }
3880 #endif
3881
3882
3883
3884 static bool
3885 aq_watchdog_check(struct aq_softc * const sc)
3886 {
3887
3888 AQ_LOCKED(sc);
3889
3890 bool ok = true;
3891 for (int n = 0; n < sc->sc_nqueues; n++) {
3892 struct aq_txring *txring = &sc->sc_queue[n].txring;
3893
3894 mutex_enter(&txring->txr_mutex);
3895 if (txring->txr_sending &&
3896 time_uptime - txring->txr_lastsent > aq_watchdog_timeout)
3897 ok = false;
3898
3899 mutex_exit(&txring->txr_mutex);
3900
3901 if (!ok)
3902 return false;
3903 }
3904
3905 if (sc->sc_trigger_reset) {
3906 /* debug operation, no need for atomicity or reliability */
3907 sc->sc_trigger_reset = 0;
3908 return false;
3909 }
3910
3911 return true;
3912 }
3913
3914
3915
3916 static bool
3917 aq_watchdog_tick(struct ifnet *ifp)
3918 {
3919 struct aq_softc * const sc = ifp->if_softc;
3920
3921 AQ_LOCKED(sc);
3922
3923 if (!sc->sc_trigger_reset && aq_watchdog_check(sc))
3924 return true;
3925
3926 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) {
3927 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
3928 }
3929
3930 return false;
3931 }
3932
3933 static void
3934 aq_tick(void *arg)
3935 {
3936 struct aq_softc * const sc = arg;
3937
3938 AQ_LOCK(sc);
3939 if (sc->sc_stopping) {
3940 AQ_UNLOCK(sc);
3941 return;
3942 }
3943
3944 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3945 sc->sc_detect_linkstat = false;
3946 aq_update_link_status(sc);
3947 }
3948
3949 #ifdef AQ_EVENT_COUNTERS
3950 if (sc->sc_poll_statistics)
3951 aq_update_statistics(sc);
3952 #endif
3953
3954 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3955 const bool ok = aq_watchdog_tick(ifp);
3956 if (ok)
3957 callout_schedule(&sc->sc_tick_ch, hz);
3958
3959 AQ_UNLOCK(sc);
3960 }
3961
3962 /* interrupt enable/disable */
3963 static void
3964 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3965 {
3966 uint32_t imask = 0;
3967 int i;
3968
3969 if (txrx) {
3970 for (i = 0; i < sc->sc_nqueues; i++) {
3971 imask |= __BIT(sc->sc_tx_irq[i]);
3972 imask |= __BIT(sc->sc_rx_irq[i]);
3973 }
3974 }
3975
3976 if (link)
3977 imask |= __BIT(sc->sc_linkstat_irq);
3978
3979 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3980 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3981 }
3982
3983 static int
3984 aq_legacy_intr(void *arg)
3985 {
3986 struct aq_softc *sc = arg;
3987 uint32_t status;
3988 int nintr = 0;
3989
3990 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3991 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3992
3993 if (status & __BIT(sc->sc_linkstat_irq)) {
3994 AQ_LOCK(sc);
3995 sc->sc_detect_linkstat = true;
3996 if (!sc->sc_stopping)
3997 callout_schedule(&sc->sc_tick_ch, 0);
3998 AQ_UNLOCK(sc);
3999 nintr++;
4000 }
4001
4002 if (status & __BIT(sc->sc_rx_irq[0])) {
4003 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
4004 }
4005
4006 if (status & __BIT(sc->sc_tx_irq[0])) {
4007 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
4008 }
4009
4010 return nintr;
4011 }
4012
4013 static int
4014 aq_txrx_intr(void *arg)
4015 {
4016 struct aq_queue *queue = arg;
4017 struct aq_softc *sc = queue->sc;
4018 struct aq_txring *txring = &queue->txring;
4019 struct aq_rxring *rxring = &queue->rxring;
4020 uint32_t status;
4021 int nintr = 0;
4022 int txringidx, rxringidx, txirq, rxirq;
4023
4024 txringidx = txring->txr_index;
4025 rxringidx = rxring->rxr_index;
4026 txirq = sc->sc_tx_irq[txringidx];
4027 rxirq = sc->sc_rx_irq[rxringidx];
4028
4029 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4030 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
4031 /* stray interrupt? */
4032 return 0;
4033 }
4034
4035 nintr += aq_rx_intr(rxring);
4036 nintr += aq_tx_intr(txring);
4037
4038 return nintr;
4039 }
4040
4041 static int
4042 aq_link_intr(void *arg)
4043 {
4044 struct aq_softc * const sc = arg;
4045 uint32_t status;
4046 int nintr = 0;
4047
4048 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4049 if (status & __BIT(sc->sc_linkstat_irq)) {
4050 AQ_LOCK(sc);
4051 sc->sc_detect_linkstat = true;
4052 if (!sc->sc_stopping)
4053 callout_schedule(&sc->sc_tick_ch, 0);
4054 AQ_UNLOCK(sc);
4055 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
4056 __BIT(sc->sc_linkstat_irq));
4057 nintr++;
4058 }
4059
4060 return nintr;
4061 }
4062
4063 static void
4064 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
4065 {
4066 const int ringidx = txring->txr_index;
4067 int i;
4068
4069 mutex_enter(&txring->txr_mutex);
4070
4071 txring->txr_prodidx = 0;
4072 txring->txr_considx = 0;
4073 txring->txr_nfree = AQ_TXD_NUM;
4074 txring->txr_active = false;
4075
4076 /* free mbufs untransmitted */
4077 for (i = 0; i < AQ_TXD_NUM; i++) {
4078 if (txring->txr_mbufs[i].m != NULL) {
4079 m_freem(txring->txr_mbufs[i].m);
4080 txring->txr_mbufs[i].m = NULL;
4081 }
4082 }
4083
4084 /* disable DMA */
4085 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
4086
4087 if (start) {
4088 /* TX descriptor physical address */
4089 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
4090 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4091 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4092 (uint32_t)((uint64_t)paddr >> 32));
4093
4094 /* TX descriptor size */
4095 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
4096 AQ_TXD_NUM / 8);
4097
4098 /* reload TAIL pointer */
4099 txring->txr_prodidx = txring->txr_considx =
4100 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
4101 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
4102
4103 /* Mapping interrupt vector */
4104 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4105 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
4106 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4107 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
4108
4109 /* enable DMA */
4110 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
4111 TX_DMA_DESC_EN, 1);
4112
4113 const int cpuid = 0; /* XXX? */
4114 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4115 TDM_DCAD_CPUID, cpuid);
4116 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4117 TDM_DCAD_CPUID_EN, 0);
4118
4119 txring->txr_active = true;
4120 }
4121
4122 mutex_exit(&txring->txr_mutex);
4123 }
4124
4125 static int
4126 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4127 {
4128 const int ringidx = rxring->rxr_index;
4129 int i;
4130 int error = 0;
4131
4132 mutex_enter(&rxring->rxr_mutex);
4133 rxring->rxr_active = false;
4134 rxring->rxr_discarding = false;
4135 if (rxring->rxr_receiving_m != NULL) {
4136 m_freem(rxring->rxr_receiving_m);
4137 rxring->rxr_receiving_m = NULL;
4138 rxring->rxr_receiving_m_last = NULL;
4139 }
4140
4141 /* disable DMA */
4142 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4143
4144 /* free all RX mbufs */
4145 aq_rxdrain(sc, rxring);
4146
4147 if (start) {
4148 for (i = 0; i < AQ_RXD_NUM; i++) {
4149 error = aq_rxring_add(sc, rxring, i);
4150 if (error != 0) {
4151 aq_rxdrain(sc, rxring);
4152 return error;
4153 }
4154 aq_rxring_reset_desc(sc, rxring, i);
4155 }
4156
4157 /* RX descriptor physical address */
4158 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4159 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4160 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4161 (uint32_t)((uint64_t)paddr >> 32));
4162
4163 /* RX descriptor size */
4164 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4165 AQ_RXD_NUM / 8);
4166
4167 /* maximum receive frame size */
4168 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4169 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4170 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4171 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4172
4173 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4174 RX_DMA_DESC_HEADER_SPLIT, 0);
4175 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4176 RX_DMA_DESC_VLAN_STRIP,
4177 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4178 1 : 0);
4179
4180 /*
4181 * reload TAIL pointer, and update readidx
4182 * (HEAD pointer cannot write)
4183 */
4184 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4185 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4186 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4187 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4188
4189 /* Rx ring set mode */
4190
4191 /* Mapping interrupt vector */
4192 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4193 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4194 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4195 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4196
4197 const int cpuid = 0; /* XXX? */
4198 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4199 RX_DMA_DCAD_CPUID, cpuid);
4200 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4201 RX_DMA_DCAD_DESC_EN, 0);
4202 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4203 RX_DMA_DCAD_HEADER_EN, 0);
4204 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4205 RX_DMA_DCAD_PAYLOAD_EN, 0);
4206
4207 /* enable DMA. start receiving */
4208 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4209 RX_DMA_DESC_EN, 1);
4210
4211 rxring->rxr_active = true;
4212 }
4213
4214 mutex_exit(&rxring->rxr_mutex);
4215 return error;
4216 }
4217
4218 #define TXRING_NEXTIDX(idx) \
4219 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4220 #define RXRING_NEXTIDX(idx) \
4221 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4222
4223 static int
4224 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4225 {
4226 bus_dmamap_t map;
4227 struct mbuf *m = *mp;
4228 uint32_t ctl1, ctl1_ctx, ctl2;
4229 int idx, i, error;
4230
4231 idx = txring->txr_prodidx;
4232 map = txring->txr_mbufs[idx].dmamap;
4233
4234 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4235 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4236 if (error == EFBIG) {
4237 struct mbuf *n;
4238 n = m_defrag(m, M_DONTWAIT);
4239 if (n == NULL)
4240 return EFBIG;
4241 /* m_defrag() preserve m */
4242 KASSERT(n == m);
4243 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4244 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4245 }
4246 if (error != 0)
4247 return error;
4248
4249 /*
4250 * check spaces of free descriptors.
4251 * +1 is additional descriptor for context (vlan, etc,.)
4252 */
4253 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4254 device_printf(sc->sc_dev,
4255 "TX: not enough descriptors left %d for %d segs\n",
4256 txring->txr_nfree, map->dm_nsegs + 1);
4257 bus_dmamap_unload(sc->sc_dmat, map);
4258 return ENOBUFS;
4259 }
4260
4261 /* sync dma for mbuf */
4262 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4263 BUS_DMASYNC_PREWRITE);
4264
4265 ctl1_ctx = 0;
4266 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4267
4268 if (vlan_has_tag(m)) {
4269 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4270 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4271
4272 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4273 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4274
4275 /* fill context descriptor and forward index */
4276 txring->txr_txdesc[idx].buf_addr = 0;
4277 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4278 txring->txr_txdesc[idx].ctl2 = 0;
4279
4280 idx = TXRING_NEXTIDX(idx);
4281 txring->txr_nfree--;
4282 }
4283
4284 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4285 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4286 if (m->m_pkthdr.csum_flags &
4287 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4288 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4289 }
4290
4291 /* fill descriptor(s) */
4292 for (i = 0; i < map->dm_nsegs; i++) {
4293 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4294 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4295 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4296
4297 if (i == 0) {
4298 /* remember mbuf of these descriptors */
4299 txring->txr_mbufs[idx].m = m;
4300 } else {
4301 txring->txr_mbufs[idx].m = NULL;
4302 }
4303
4304 if (i == map->dm_nsegs - 1) {
4305 /* last segment, mark an EndOfPacket, and cause intr */
4306 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4307 }
4308
4309 txring->txr_txdesc[idx].buf_addr =
4310 htole64(map->dm_segs[i].ds_addr);
4311 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4312 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4313
4314 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4315 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4316 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4317
4318 idx = TXRING_NEXTIDX(idx);
4319 txring->txr_nfree--;
4320 }
4321
4322 txring->txr_prodidx = idx;
4323
4324 return 0;
4325 }
4326
4327 static int
4328 aq_tx_intr(void *arg)
4329 {
4330 struct aq_txring * const txring = arg;
4331 struct aq_softc * const sc = txring->txr_sc;
4332 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4333 struct mbuf *m;
4334 const int ringidx = txring->txr_index;
4335 unsigned int idx, hw_head, n = 0;
4336
4337 mutex_enter(&txring->txr_mutex);
4338
4339 if (!txring->txr_active)
4340 goto tx_intr_done;
4341
4342 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4343 TX_DMA_DESC_HEAD_PTR);
4344 if (hw_head == txring->txr_considx) {
4345 txring->txr_sending = false;
4346 goto tx_intr_done;
4347 }
4348
4349 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4350
4351 for (idx = txring->txr_considx; idx != hw_head;
4352 idx = TXRING_NEXTIDX(idx), n++) {
4353
4354 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4355 bus_dmamap_unload(sc->sc_dmat,
4356 txring->txr_mbufs[idx].dmamap);
4357
4358 if_statinc_ref(nsr, if_opackets);
4359 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4360 if (m->m_flags & M_MCAST)
4361 if_statinc_ref(nsr, if_omcasts);
4362
4363 m_freem(m);
4364 txring->txr_mbufs[idx].m = NULL;
4365 }
4366
4367 txring->txr_nfree++;
4368 }
4369 txring->txr_considx = idx;
4370
4371 IF_STAT_PUTREF(ifp);
4372
4373 /* no more pending TX packet, cancel watchdog */
4374 if (txring->txr_nfree >= AQ_TXD_NUM)
4375 txring->txr_sending = false;
4376
4377 tx_intr_done:
4378 mutex_exit(&txring->txr_mutex);
4379
4380 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4381 return n;
4382 }
4383
4384 static int
4385 aq_rx_intr(void *arg)
4386 {
4387 struct aq_rxring * const rxring = arg;
4388 struct aq_softc * const sc = rxring->rxr_sc;
4389 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4390 const int ringidx = rxring->rxr_index;
4391 aq_rx_desc_t *rxd;
4392 struct mbuf *m, *m0, *mprev, *new_m;
4393 uint32_t rxd_type, rxd_hash __unused;
4394 uint16_t rxd_status, rxd_pktlen;
4395 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4396 unsigned int idx, n = 0;
4397 bool discarding;
4398
4399 mutex_enter(&rxring->rxr_mutex);
4400
4401 if (!rxring->rxr_active)
4402 goto rx_intr_done;
4403
4404 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4405 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4406 goto rx_intr_done;
4407 }
4408
4409 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4410
4411 /* restore ring context */
4412 discarding = rxring->rxr_discarding;
4413 m0 = rxring->rxr_receiving_m;
4414 mprev = rxring->rxr_receiving_m_last;
4415
4416 for (idx = rxring->rxr_readidx;
4417 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4418 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4419
4420 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4421 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4422 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4423
4424 rxd = &rxring->rxr_rxdesc[idx];
4425 rxd_status = le16toh(rxd->wb.status);
4426
4427 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4428 break; /* not yet done */
4429
4430 rxd_type = le32toh(rxd->wb.type);
4431 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4432 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4433 rxd_hash = le32toh(rxd->wb.rss_hash);
4434 rxd_vlan = le16toh(rxd->wb.vlan);
4435
4436 /*
4437 * Some segments are being dropped while receiving jumboframe.
4438 * Discard until EOP.
4439 */
4440 if (discarding)
4441 goto rx_next;
4442
4443 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4444 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4445 if_statinc_ref(nsr, if_ierrors);
4446 if (m0 != NULL) {
4447 m_freem(m0);
4448 m0 = mprev = NULL;
4449 }
4450 discarding = true;
4451 goto rx_next;
4452 }
4453
4454 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4455 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4456 BUS_DMASYNC_POSTREAD);
4457 m = rxring->rxr_mbufs[idx].m;
4458
4459 new_m = aq_alloc_mbuf();
4460 if (new_m == NULL) {
4461 /*
4462 * cannot allocate new mbuf.
4463 * discard this packet, and reuse mbuf for next.
4464 */
4465 if_statinc_ref(nsr, if_iqdrops);
4466 if (m0 != NULL) {
4467 m_freem(m0);
4468 m0 = mprev = NULL;
4469 }
4470 discarding = true;
4471 goto rx_next;
4472 }
4473 rxring->rxr_mbufs[idx].m = NULL;
4474 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4475
4476 if (m0 == NULL) {
4477 m0 = m;
4478 } else {
4479 if (m->m_flags & M_PKTHDR)
4480 m_remove_pkthdr(m);
4481 mprev->m_next = m;
4482 }
4483 mprev = m;
4484
4485 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4486 /* to be continued in the next segment */
4487 m->m_len = MCLBYTES;
4488 } else {
4489 /* the last segment */
4490 int mlen = rxd_pktlen % MCLBYTES;
4491 if (mlen == 0)
4492 mlen = MCLBYTES;
4493 m->m_len = mlen;
4494 m0->m_pkthdr.len = rxd_pktlen;
4495 /* VLAN offloading */
4496 if ((sc->sc_ethercom.ec_capenable &
4497 ETHERCAP_VLAN_HWTAGGING) &&
4498 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4499 __SHIFTOUT(rxd_type,
4500 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4501 vlan_set_tag(m0, rxd_vlan);
4502 }
4503
4504 /* Checksum offloading */
4505 unsigned int pkttype_eth =
4506 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4507 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4508 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4509 __SHIFTOUT(rxd_type,
4510 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4511 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4512 if (__SHIFTOUT(rxd_status,
4513 RXDESC_STATUS_IPV4_CSUM_NG))
4514 m0->m_pkthdr.csum_flags |=
4515 M_CSUM_IPv4_BAD;
4516 }
4517
4518 /*
4519 * aq will always mark BAD for fragment packets,
4520 * but this is not a problem because the IP stack
4521 * ignores the CSUM flag in fragment packets.
4522 */
4523 if (__SHIFTOUT(rxd_type,
4524 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4525 bool checked = false;
4526 unsigned int pkttype_proto =
4527 __SHIFTOUT(rxd_type,
4528 RXDESC_TYPE_PKTTYPE_PROTO);
4529
4530 if (pkttype_proto ==
4531 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4532 if ((pkttype_eth ==
4533 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4534 (ifp->if_capabilities &
4535 IFCAP_CSUM_TCPv4_Rx)) {
4536 m0->m_pkthdr.csum_flags |=
4537 M_CSUM_TCPv4;
4538 checked = true;
4539 } else if ((pkttype_eth ==
4540 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4541 (ifp->if_capabilities &
4542 IFCAP_CSUM_TCPv6_Rx)) {
4543 m0->m_pkthdr.csum_flags |=
4544 M_CSUM_TCPv6;
4545 checked = true;
4546 }
4547 } else if (pkttype_proto ==
4548 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4549 if ((pkttype_eth ==
4550 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4551 (ifp->if_capabilities &
4552 IFCAP_CSUM_UDPv4_Rx)) {
4553 m0->m_pkthdr.csum_flags |=
4554 M_CSUM_UDPv4;
4555 checked = true;
4556 } else if ((pkttype_eth ==
4557 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4558 (ifp->if_capabilities &
4559 IFCAP_CSUM_UDPv6_Rx)) {
4560 m0->m_pkthdr.csum_flags |=
4561 M_CSUM_UDPv6;
4562 checked = true;
4563 }
4564 }
4565 if (checked &&
4566 (__SHIFTOUT(rxd_status,
4567 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4568 !__SHIFTOUT(rxd_status,
4569 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4570 m0->m_pkthdr.csum_flags |=
4571 M_CSUM_TCP_UDP_BAD;
4572 }
4573 }
4574
4575 m_set_rcvif(m0, ifp);
4576 if_statinc_ref(nsr, if_ipackets);
4577 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4578 if_percpuq_enqueue(ifp->if_percpuq, m0);
4579 m0 = mprev = NULL;
4580 }
4581
4582 rx_next:
4583 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4584 discarding = false;
4585
4586 aq_rxring_reset_desc(sc, rxring, idx);
4587 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4588 }
4589 /* save ring context */
4590 rxring->rxr_readidx = idx;
4591 rxring->rxr_discarding = discarding;
4592 rxring->rxr_receiving_m = m0;
4593 rxring->rxr_receiving_m_last = mprev;
4594
4595 IF_STAT_PUTREF(ifp);
4596
4597 rx_intr_done:
4598 mutex_exit(&rxring->rxr_mutex);
4599
4600 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4601 return n;
4602 }
4603
4604 static int
4605 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4606 {
4607 struct ifnet *ifp = &ec->ec_if;
4608 struct aq_softc * const sc = ifp->if_softc;
4609
4610 aq_set_vlan_filters(sc);
4611 return 0;
4612 }
4613
4614 static int
4615 aq_ifflags_cb(struct ethercom *ec)
4616 {
4617 struct ifnet * const ifp = &ec->ec_if;
4618 struct aq_softc * const sc = ifp->if_softc;
4619 int i, ecchange, error = 0;
4620 unsigned short iffchange;
4621
4622 AQ_LOCK(sc);
4623
4624 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4625 if ((iffchange & IFF_PROMISC) != 0)
4626 error = aq_set_filter(sc);
4627
4628 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4629 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4630 for (i = 0; i < AQ_RINGS_NUM; i++) {
4631 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4632 RX_DMA_DESC_VLAN_STRIP,
4633 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4634 1 : 0);
4635 }
4636 }
4637
4638 /* vlan configuration depends on also interface promiscuous mode */
4639 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4640 aq_set_vlan_filters(sc);
4641
4642 sc->sc_ec_capenable = ec->ec_capenable;
4643 sc->sc_if_flags = ifp->if_flags;
4644
4645 AQ_UNLOCK(sc);
4646
4647 return error;
4648 }
4649
4650
4651 static int
4652 aq_init(struct ifnet *ifp)
4653 {
4654 struct aq_softc * const sc = ifp->if_softc;
4655
4656 AQ_LOCK(sc);
4657
4658 int ret = aq_init_locked(ifp);
4659
4660 AQ_UNLOCK(sc);
4661
4662 return ret;
4663 }
4664
4665 static int
4666 aq_init_locked(struct ifnet *ifp)
4667 {
4668 struct aq_softc * const sc = ifp->if_softc;
4669 int i, error = 0;
4670
4671 KASSERT(IFNET_LOCKED(ifp));
4672 AQ_LOCKED(sc);
4673
4674 aq_stop_locked(ifp, false);
4675
4676 aq_set_vlan_filters(sc);
4677 aq_set_capability(sc);
4678
4679 for (i = 0; i < sc->sc_nqueues; i++) {
4680 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4681 }
4682
4683 /* invalidate RX descriptor cache */
4684 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4685 AQ_READ_REG_BIT(sc,
4686 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4687
4688 /* start RX */
4689 for (i = 0; i < sc->sc_nqueues; i++) {
4690 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4691 if (error != 0) {
4692 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4693 __func__);
4694 goto aq_init_failure;
4695 }
4696 }
4697 aq_init_rss(sc);
4698 aq_hw_l3_filter_set(sc);
4699
4700 /* ring reset? */
4701 aq_unset_stopping_flags(sc);
4702
4703 callout_schedule(&sc->sc_tick_ch, hz);
4704
4705 /* ready */
4706 ifp->if_flags |= IFF_RUNNING;
4707
4708 /* start TX and RX */
4709 aq_enable_intr(sc, /*link*/true, /*txrx*/true);
4710 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4711 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4712
4713 aq_init_failure:
4714 sc->sc_if_flags = ifp->if_flags;
4715
4716 return error;
4717 }
4718
4719 static void
4720 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4721 struct aq_txring *txring, bool is_transmit)
4722 {
4723 struct mbuf *m;
4724 int npkt, error;
4725
4726 if (txring->txr_nfree < AQ_TXD_MIN)
4727 return;
4728
4729 for (npkt = 0; ; npkt++) {
4730 if (is_transmit)
4731 m = pcq_peek(txring->txr_pcq);
4732 else
4733 IFQ_POLL(&ifp->if_snd, m);
4734
4735 if (m == NULL)
4736 break;
4737
4738 if (is_transmit)
4739 pcq_get(txring->txr_pcq);
4740 else
4741 IFQ_DEQUEUE(&ifp->if_snd, m);
4742
4743 error = aq_encap_txring(sc, txring, &m);
4744 if (error != 0) {
4745 /* too many mbuf chains? or not enough descriptors? */
4746 m_freem(m);
4747 if_statinc(ifp, if_oerrors);
4748 break;
4749 }
4750
4751 /* update tail ptr */
4752 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4753 txring->txr_prodidx);
4754
4755 /* Pass the packet to any BPF listeners */
4756 bpf_mtap(ifp, m, BPF_D_OUT);
4757 }
4758
4759 if (npkt) {
4760 /* Set a watchdog timer in case the chip flakes out. */
4761 txring->txr_lastsent = time_uptime;
4762 txring->txr_sending = true;
4763 }
4764 }
4765
4766 static void
4767 aq_start(struct ifnet *ifp)
4768 {
4769 struct aq_softc * const sc = ifp->if_softc;
4770 /* aq_start() always use TX ring[0] */
4771 struct aq_txring * const txring = &sc->sc_queue[0].txring;
4772
4773 mutex_enter(&txring->txr_mutex);
4774 if (txring->txr_active && !txring->txr_stopping)
4775 aq_send_common_locked(ifp, sc, txring, false);
4776 mutex_exit(&txring->txr_mutex);
4777 }
4778
4779 static inline unsigned int
4780 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4781 {
4782 return (cpu_index(curcpu()) % sc->sc_nqueues);
4783 }
4784
4785 static int
4786 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4787 {
4788 struct aq_softc * const sc = ifp->if_softc;
4789 const int ringidx = aq_select_txqueue(sc, m);
4790 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
4791
4792 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4793 m_freem(m);
4794 return ENOBUFS;
4795 }
4796
4797 if (mutex_tryenter(&txring->txr_mutex)) {
4798 aq_send_common_locked(ifp, sc, txring, true);
4799 mutex_exit(&txring->txr_mutex);
4800 } else {
4801 softint_schedule(txring->txr_softint);
4802 }
4803 return 0;
4804 }
4805
4806 static void
4807 aq_deferred_transmit(void *arg)
4808 {
4809 struct aq_txring * const txring = arg;
4810 struct aq_softc * const sc = txring->txr_sc;
4811 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4812
4813 mutex_enter(&txring->txr_mutex);
4814 if (pcq_peek(txring->txr_pcq) != NULL)
4815 aq_send_common_locked(ifp, sc, txring, true);
4816 mutex_exit(&txring->txr_mutex);
4817 }
4818
4819
4820 static void
4821 aq_unset_stopping_flags(struct aq_softc *sc)
4822 {
4823
4824 AQ_LOCKED(sc);
4825
4826 /* Must unset stopping flags in ascending order. */
4827 for (int i = 0; i < sc->sc_nqueues; i++) {
4828 struct aq_txring *txr = &sc->sc_queue[i].txring;
4829 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4830
4831 mutex_enter(&txr->txr_mutex);
4832 txr->txr_stopping = false;
4833 mutex_exit(&txr->txr_mutex);
4834
4835 mutex_enter(&rxr->rxr_mutex);
4836 rxr->rxr_stopping = false;
4837 mutex_exit(&rxr->rxr_mutex);
4838 }
4839
4840 sc->sc_stopping = false;
4841 }
4842
4843 static void
4844 aq_set_stopping_flags(struct aq_softc *sc)
4845 {
4846
4847 AQ_LOCKED(sc);
4848
4849 /* Must unset stopping flags in ascending order. */
4850 for (int i = 0; i < sc->sc_nqueues; i++) {
4851 struct aq_txring *txr = &sc->sc_queue[i].txring;
4852 struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4853
4854 mutex_enter(&txr->txr_mutex);
4855 txr->txr_stopping = true;
4856 mutex_exit(&txr->txr_mutex);
4857
4858 mutex_enter(&rxr->rxr_mutex);
4859 rxr->rxr_stopping = true;
4860 mutex_exit(&rxr->rxr_mutex);
4861 }
4862
4863 sc->sc_stopping = true;
4864 }
4865
4866
4867 static void
4868 aq_stop(struct ifnet *ifp, int disable)
4869 {
4870 struct aq_softc * const sc = ifp->if_softc;
4871
4872 ASSERT_SLEEPABLE();
4873 KASSERT(IFNET_LOCKED(ifp));
4874
4875 AQ_LOCK(sc);
4876 aq_stop_locked(ifp, disable ? true : false);
4877 AQ_UNLOCK(sc);
4878 }
4879
4880
4881
4882 static void
4883 aq_stop_locked(struct ifnet *ifp, bool disable)
4884 {
4885 struct aq_softc * const sc = ifp->if_softc;
4886 int i;
4887
4888 KASSERT(IFNET_LOCKED(ifp));
4889 AQ_LOCKED(sc);
4890
4891 aq_set_stopping_flags(sc);
4892
4893 if ((ifp->if_flags & IFF_RUNNING) == 0)
4894 goto already_stopped;
4895
4896 /* disable tx/rx interrupts */
4897 aq_enable_intr(sc, /*link*/true, /*txrx*/false);
4898
4899 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4900 for (i = 0; i < sc->sc_nqueues; i++) {
4901 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4902 }
4903
4904 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4905 for (i = 0; i < sc->sc_nqueues; i++) {
4906 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4907 }
4908
4909 /* invalidate RX descriptor cache */
4910 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4911 AQ_READ_REG_BIT(sc,
4912 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4913
4914 already_stopped:
4915 aq_enable_intr(sc, /*link*/false, /*txrx*/false);
4916 callout_halt(&sc->sc_tick_ch, &sc->sc_mutex);
4917
4918 ifp->if_flags &= ~IFF_RUNNING;
4919 sc->sc_if_flags = ifp->if_flags;
4920 }
4921
4922
4923 static void
4924 aq_handle_reset_work(struct work *work, void *arg)
4925 {
4926 struct aq_softc * const sc = arg;
4927 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4928
4929 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
4930
4931 AQ_LOCK(sc);
4932
4933 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4934 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4935 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4936
4937 for (int n = 0; n < sc->sc_nqueues; n++) {
4938 struct aq_txring *txring = &sc->sc_queue[n].txring;
4939 u_int head = AQ_READ_REG_BIT(sc,
4940 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4941 TX_DMA_DESC_HEAD_PTR);
4942 u_int tail = AQ_READ_REG(sc,
4943 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4944
4945 device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n",
4946 __func__, txring->txr_index, head, tail);
4947
4948 aq_tx_intr(txring);
4949 }
4950
4951 AQ_UNLOCK(sc);
4952
4953 /* Don't want ioctl operations to happen */
4954 IFNET_LOCK(ifp);
4955
4956 /* reset the interface. */
4957 aq_init(ifp);
4958
4959 IFNET_UNLOCK(ifp);
4960
4961 atomic_store_relaxed(&sc->sc_reset_pending, 0);
4962 }
4963
4964 static int
4965 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4966 {
4967 struct aq_softc * const sc = ifp->if_softc;
4968 struct ifreq * const ifr = data;
4969 int error = 0;
4970
4971 switch (cmd) {
4972 case SIOCADDMULTI:
4973 case SIOCDELMULTI:
4974 break;
4975 default:
4976 KASSERT(IFNET_LOCKED(ifp));
4977 }
4978
4979 const int s = splnet();
4980 switch (cmd) {
4981 case SIOCSIFMTU:
4982 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4983 error = EINVAL;
4984 } else {
4985 ifp->if_mtu = ifr->ifr_mtu;
4986 error = 0; /* no need to reset (no ENETRESET) */
4987 }
4988 break;
4989 default:
4990 error = ether_ioctl(ifp, cmd, data);
4991 break;
4992 }
4993 splx(s);
4994
4995 if (error != ENETRESET)
4996 return error;
4997
4998 switch (cmd) {
4999 case SIOCSIFCAP:
5000 error = aq_set_capability(sc);
5001 break;
5002 case SIOCADDMULTI:
5003 case SIOCDELMULTI:
5004 AQ_LOCK(sc);
5005 if ((sc->sc_if_flags & IFF_RUNNING) != 0) {
5006 /*
5007 * Multicast list has changed; set the hardware filter
5008 * accordingly.
5009 */
5010 error = aq_set_filter(sc);
5011 }
5012 AQ_UNLOCK(sc);
5013 break;
5014 }
5015
5016 return error;
5017 }
5018
5019
5020 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
5021
5022 #ifdef _MODULE
5023 #include "ioconf.c"
5024 #endif
5025
5026 static int
5027 if_aq_modcmd(modcmd_t cmd, void *opaque)
5028 {
5029 int error = 0;
5030
5031 switch (cmd) {
5032 case MODULE_CMD_INIT:
5033 #ifdef _MODULE
5034 error = config_init_component(cfdriver_ioconf_if_aq,
5035 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5036 #endif
5037 return error;
5038 case MODULE_CMD_FINI:
5039 #ifdef _MODULE
5040 error = config_fini_component(cfdriver_ioconf_if_aq,
5041 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5042 #endif
5043 return error;
5044 default:
5045 return ENOTTY;
5046 }
5047 }
5048