Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.42
      1 /*	$NetBSD: if_aq.c,v 1.42 2023/01/14 13:17:50 ryo Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.42 2023/01/14 13:17:50 ryo Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not supported */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 #define AQ_JUMBO_MTU_REV_A		9000
    120 #define AQ_JUMBO_MTU_REV_B		16338
    121 
    122 /*
    123  * TERMINOLOGY
    124  *	MPI = MAC PHY INTERFACE?
    125  *	RPO = RX Protocol Offloading
    126  *	TPO = TX Protocol Offloading
    127  *	RPF = RX Packet Filter
    128  *	TPB = TX Packet buffer
    129  *	RPB = RX Packet buffer
    130  */
    131 
    132 /* registers */
    133 #define AQ_FW_SOFTRESET_REG			0x0000
    134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    136 
    137 #define AQ_FW_VERSION_REG			0x0018
    138 #define AQ_HW_REVISION_REG			0x001c
    139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    140 
    141 #define AQ_FW_MBOX_CMD_REG			0x0200
    142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    144 #define AQ_FW_MBOX_ADDR_REG			0x0208
    145 #define AQ_FW_MBOX_VAL_REG			0x020c
    146 
    147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    148 #define FW2X_LED_REG				0x031c
    149 #define  FW2X_LED_DEFAULT			0x00000000
    150 #define  FW2X_LED_NONE				0x0000003f
    151 #define  FW2X_LINKLED				__BITS(0,1)
    152 #define   FW2X_LINKLED_ACTIVE			0
    153 #define   FW2X_LINKLED_ON			1
    154 #define   FW2X_LINKLED_BLINK			2
    155 #define   FW2X_LINKLED_OFF			3
    156 #define  FW2X_STATUSLED				__BITS(2,5)
    157 #define   FW2X_STATUSLED_ORANGE			0
    158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    159 #define   FW2X_STATUSLED_OFF			3
    160 #define   FW2X_STATUSLED_GREEN			4
    161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    162 #define   FW2X_STATUSLED_GREEN_BLINK		10
    163 
    164 #define FW_MPI_MBOX_ADDR_REG			0x0360
    165 #define FW1X_MPI_INIT1_REG			0x0364
    166 #define FW1X_MPI_CONTROL_REG			0x0368
    167 #define FW1X_MPI_STATE_REG			0x036c
    168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    172 #define FW1X_MPI_INIT2_REG			0x0370
    173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    174 
    175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    178 #define FW_BOOT_EXIT_CODE_REG			0x0388
    179 #define  RBL_STATUS_DEAD			0x0000dead
    180 #define  RBL_STATUS_SUCCESS			0x0000abba
    181 #define  RBL_STATUS_FAILURE			0x00000bad
    182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    183 
    184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    186 
    187 #define AQ_FW_GLB_CTL2_REG			0x0404
    188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    189 
    190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    192 
    193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    194 
    195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    196 
    197 // msix bitmap */
    198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    202 #define AQ_INTR_AUTOMASK_REG			0x2090
    203 
    204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    212 
    213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    215 #define  AQ_B0_ERR_INT				8U
    216 
    217 #define AQ_INTR_CTRL_REG			0x2300
    218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    227 
    228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    229 
    230 #define FW_MPI_RESETCTRL_REG			0x4000
    231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    232 
    233 #define RX_SYSCONTROL_REG			0x5000
    234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    237 
    238 #define RX_TCP_RSS_HASH_REG			0x5040
    239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    241 
    242 /* for RPF_*_REG.ACTION */
    243 #define RPF_ACTION_DISCARD			0
    244 #define RPF_ACTION_HOST				1
    245 #define RPF_ACTION_MANAGEMENT			2
    246 #define RPF_ACTION_HOST_MANAGEMENT		3
    247 #define RPF_ACTION_WOL				4
    248 
    249 #define RPF_L2BC_REG				0x5100
    250 #define  RPF_L2BC_EN				__BIT(0)
    251 #define  RPF_L2BC_PROMISC			__BIT(3)
    252 #define  RPF_L2BC_ACTION			__BITS(12,14)
    253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    254 
    255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    260 #define  RPF_L2UC_MSW_EN			__BIT(31)
    261 #define AQ_HW_MAC_OWN			0	/* index of own address */
    262 #define AQ_HW_MAC_NUM			34
    263 
    264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
    265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    269 
    270 #define RPF_VLAN_MODE_REG			0x5280
    271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    274 
    275 #define RPF_VLAN_TPID_REG			0x5284
    276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    278 
    279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
    280 #define RPF_VLAN_MAX_FILTERS			16
    281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    287 
    288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    298 
    299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    318 /* parameters of RPF_L3_FILTER_REG[8] */
    319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    323 
    324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    326 
    327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    329 
    330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    335 
    336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    339 
    340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    342 
    343 #define RPO_HWCSUM_REG				0x5580
    344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    346 
    347 #define RPO_LRO_ENABLE_REG			0x5590
    348 
    349 #define RPO_LRO_CONF_REG			0x5594
    350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    354 #define RPO_LRO_RSC_MAX_REG			0x5598
    355 
    356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    359 #define RPO_LRO_TB_DIV_REG			0x5620
    360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    365 
    366 #define RPB_RPF_RX_REG				0x5700
    367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    370 
    371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    375 #define  RPB_RXB_XOFF_EN			__BIT(31)
    376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    378 
    379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    381 
    382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    385 
    386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    391 
    392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    397 #define  RX_DMA_DESC_RESET			__BIT(25)
    398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    400 #define  RX_DMA_DESC_EN				__BIT(31)
    401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    407 
    408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    414 
    415 #define RX_DMA_DCA_REG				0x6180
    416 #define  RX_DMA_DCA_EN				__BIT(31)
    417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    418 
    419 /* counters */
    420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    424 
    425 #define TX_SYSCONTROL_REG			0x7000
    426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    429 
    430 #define TX_TPO2_REG				0x7040
    431 #define  TX_TPO2_EN				__BIT(16)
    432 
    433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    435 #define TPS_DESC_RATE_REG			0x7310
    436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    442 
    443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    451 
    452 #define AQ_HW_TXBUF_MAX		160
    453 #define AQ_HW_RXBUF_MAX		320
    454 
    455 #define TPO_HWCSUM_REG				0x7800
    456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    458 
    459 #define TDM_LSO_EN_REG				0x7810
    460 
    461 #define THM_LSO_TCP_FLAG1_REG			0x7820
    462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    464 #define THM_LSO_TCP_FLAG2_REG			0x7824
    465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    466 
    467 #define TPB_TX_BUF_REG				0x7900
    468 #define  TPB_TX_BUF_EN				__BIT(0)
    469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    471 
    472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    478 
    479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    483 
    484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    489 #define  TX_DMA_DESC_EN				__BIT(31)
    490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    495 
    496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    498 #define  TDM_DCAD_CPUID				__BITS(7,0)
    499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    500 
    501 #define TDM_DCA_REG				0x8480
    502 #define  TDM_DCA_EN				__BIT(31)
    503 #define  TDM_DCA_MODE				__BITS(3,0)
    504 
    505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    510 
    511 #define FW1X_CTRL_10G				__BIT(0)
    512 #define FW1X_CTRL_5G				__BIT(1)
    513 #define FW1X_CTRL_5GSR				__BIT(2)
    514 #define FW1X_CTRL_2G5				__BIT(3)
    515 #define FW1X_CTRL_1G				__BIT(4)
    516 #define FW1X_CTRL_100M				__BIT(5)
    517 
    518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    530 #define FW2X_CTRL_RESERVED1			__BIT(32)
    531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    532 #define FW2X_CTRL_RESERVED2			__BIT(34)
    533 #define FW2X_CTRL_PAUSE				__BIT(35)
    534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    536 #define FW2X_CTRL_RESERVED3			__BIT(38)
    537 #define FW2X_CTRL_RESERVED4			__BIT(39)
    538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    542 #define FW2X_CTRL_RESERVED5			__BIT(44)
    543 #define FW2X_CTRL_RESERVED6			__BIT(45)
    544 #define FW2X_CTRL_RESERVED7			__BIT(46)
    545 #define FW2X_CTRL_RESERVED8			__BIT(47)
    546 #define FW2X_CTRL_RESERVED9			__BIT(48)
    547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    554 #define FW2X_CTRL_WOL				__BIT(56)
    555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    560 #define FW2X_CTRL_STATISTICS			__BIT(62)
    561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    562 
    563 #define FW2X_SNPRINTB			\
    564 	"\177\020"			\
    565 	"b\x23" "PAUSE\0"		\
    566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    567 	"b\x31" "CABLE-DIAG\0"		\
    568 	"b\x32" "TEMPERATURE\0"		\
    569 	"b\x33" "DOWNSHIFT\0"		\
    570 	"b\x34" "PTP-AVB\0"		\
    571 	"b\x35" "MEDIA-DETECT\0"	\
    572 	"b\x36" "LINK-DROP\0"		\
    573 	"b\x37" "SLEEP-PROXY\0"		\
    574 	"b\x38" "WOL\0"			\
    575 	"b\x39" "MAC-STOP\0"		\
    576 	"b\x3a" "EXT-LOOPBACK\0"	\
    577 	"b\x3b" "INT-LOOPBACK\0"	\
    578 	"b\x3c" "EFUSE-AGENT\0"		\
    579 	"b\x3d" "WOL-TIMER\0"		\
    580 	"b\x3e" "STATISTICS\0"		\
    581 	"b\x3f" "TRANSACTION-ID\0"	\
    582 	"\0"
    583 
    584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    589 #define FW2X_CTRL_RATE_MASK		\
    590 	(FW2X_CTRL_RATE_100M |		\
    591 	 FW2X_CTRL_RATE_1G |		\
    592 	 FW2X_CTRL_RATE_2G5 |		\
    593 	 FW2X_CTRL_RATE_5G |		\
    594 	 FW2X_CTRL_RATE_10G)
    595 #define FW2X_CTRL_EEE_MASK		\
    596 	(FW2X_CTRL_10BASET_EEE |	\
    597 	 FW2X_CTRL_100BASETX_EEE |	\
    598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    601 	 FW2X_CTRL_10GBASET_FD_EEE)
    602 
    603 typedef enum aq_fw_bootloader_mode {
    604 	FW_BOOT_MODE_UNKNOWN = 0,
    605 	FW_BOOT_MODE_FLB,
    606 	FW_BOOT_MODE_RBL_FLASH,
    607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    608 } aq_fw_bootloader_mode_t;
    609 
    610 #define AQ_WRITE_REG(sc, reg, val)				\
    611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    612 
    613 #define AQ_READ_REG(sc, reg)					\
    614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    615 
    616 #define AQ_READ64_REG(sc, reg)					\
    617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    619 
    620 #define AQ_WRITE64_REG(sc, reg, val)				\
    621 	do {							\
    622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    624 	} while (/* CONSTCOND */0)
    625 
    626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    628 
    629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    630 	do {							\
    631 		uint32_t _v;					\
    632 		_v = AQ_READ_REG((sc), (reg));			\
    633 		_v &= ~(mask);					\
    634 		if ((val) != 0)					\
    635 			_v |= __SHIFTIN((val), (mask));		\
    636 		AQ_WRITE_REG((sc), (reg), _v);			\
    637 	} while (/* CONSTCOND */ 0)
    638 
    639 #define WAIT_FOR(expr, us, n, errp)				\
    640 	do {							\
    641 		unsigned int _n;				\
    642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    643 			delay((us));				\
    644 		}						\
    645 		if ((errp != NULL)) {				\
    646 			if (_n == 0)				\
    647 				*(errp) = ETIMEDOUT;		\
    648 			else					\
    649 				*(errp) = 0;			\
    650 		}						\
    651 	} while (/* CONSTCOND */ 0)
    652 
    653 #define msec_delay(x)	DELAY(1000 * (x))
    654 
    655 typedef struct aq_mailbox_header {
    656 	uint32_t version;
    657 	uint32_t transaction_id;
    658 	int32_t error;
    659 } __packed __aligned(4) aq_mailbox_header_t;
    660 
    661 typedef struct aq_hw_stats_s {
    662 	uint32_t uprc;
    663 	uint32_t mprc;
    664 	uint32_t bprc;
    665 	uint32_t erpt;
    666 	uint32_t uptc;
    667 	uint32_t mptc;
    668 	uint32_t bptc;
    669 	uint32_t erpr;
    670 	uint32_t mbtc;
    671 	uint32_t bbtc;
    672 	uint32_t mbrc;
    673 	uint32_t bbrc;
    674 	uint32_t ubrc;
    675 	uint32_t ubtc;
    676 	uint32_t ptc;
    677 	uint32_t prc;
    678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    680 } __packed __aligned(4) aq_hw_stats_s_t;
    681 
    682 typedef struct fw1x_mailbox {
    683 	aq_mailbox_header_t header;
    684 	aq_hw_stats_s_t msm;
    685 } __packed __aligned(4) fw1x_mailbox_t;
    686 
    687 typedef struct fw2x_msm_statistics {
    688 	uint32_t uprc;
    689 	uint32_t mprc;
    690 	uint32_t bprc;
    691 	uint32_t erpt;
    692 	uint32_t uptc;
    693 	uint32_t mptc;
    694 	uint32_t bptc;
    695 	uint32_t erpr;
    696 	uint32_t mbtc;
    697 	uint32_t bbtc;
    698 	uint32_t mbrc;
    699 	uint32_t bbrc;
    700 	uint32_t ubrc;
    701 	uint32_t ubtc;
    702 	uint32_t ptc;
    703 	uint32_t prc;
    704 } __packed __aligned(4) fw2x_msm_statistics_t;
    705 
    706 typedef struct fw2x_phy_cable_diag_data {
    707 	uint32_t lane_data[4];
    708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
    709 
    710 typedef struct fw2x_capabilities {
    711 	uint32_t caps_lo;
    712 	uint32_t caps_hi;
    713 } __packed __aligned(4) fw2x_capabilities_t;
    714 
    715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    716 	aq_mailbox_header_t header;
    717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    718 
    719 	uint32_t phy_info1;
    720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    722 	uint32_t phy_info2;
    723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    725 
    726 	fw2x_phy_cable_diag_data_t diag_data;
    727 	uint32_t reserved[8];
    728 
    729 	fw2x_capabilities_t caps;
    730 
    731 	/* ... */
    732 } __packed __aligned(4) fw2x_mailbox_t;
    733 
    734 typedef enum aq_link_speed {
    735 	AQ_LINK_NONE	= 0,
    736 	AQ_LINK_100M	= (1 << 0),
    737 	AQ_LINK_1G	= (1 << 1),
    738 	AQ_LINK_2G5	= (1 << 2),
    739 	AQ_LINK_5G	= (1 << 3),
    740 	AQ_LINK_10G	= (1 << 4)
    741 } aq_link_speed_t;
    742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    743 			 AQ_LINK_5G | AQ_LINK_10G )
    744 #define AQ_LINK_AUTO	AQ_LINK_ALL
    745 
    746 typedef enum aq_link_fc {
    747 	AQ_FC_NONE = 0,
    748 	AQ_FC_RX = __BIT(0),
    749 	AQ_FC_TX = __BIT(1),
    750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    751 } aq_link_fc_t;
    752 
    753 typedef enum aq_link_eee {
    754 	AQ_EEE_DISABLE = 0,
    755 	AQ_EEE_ENABLE = 1
    756 } aq_link_eee_t;
    757 
    758 typedef enum aq_hw_fw_mpi_state {
    759 	MPI_DEINIT	= 0,
    760 	MPI_RESET	= 1,
    761 	MPI_INIT	= 2,
    762 	MPI_POWER	= 4
    763 } aq_hw_fw_mpi_state_t;
    764 
    765 enum aq_media_type {
    766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    767 	AQ_MEDIA_TYPE_FIBRE,
    768 	AQ_MEDIA_TYPE_TP
    769 };
    770 
    771 struct aq_rx_desc_read {
    772 	uint64_t buf_addr;
    773 	uint64_t hdr_addr;
    774 } __packed __aligned(8);
    775 
    776 struct aq_rx_desc_wb {
    777 	uint32_t type;
    778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    803 #define RXDESC_TYPE_SPH			__BIT(21)
    804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    805 	uint32_t rss_hash;
    806 	uint16_t status;
    807 #define RXDESC_STATUS_DD		__BIT(0)
    808 #define RXDESC_STATUS_EOP		__BIT(1)
    809 #define RXDESC_STATUS_MACERR		__BIT(2)
    810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    813 
    814 #define RXDESC_STATUS_STAT		__BITS(2,5)
    815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    817 	uint16_t pkt_len;
    818 	uint16_t next_desc_ptr;
    819 	uint16_t vlan;
    820 } __packed __aligned(4);
    821 
    822 typedef union aq_rx_desc {
    823 	struct aq_rx_desc_read read;
    824 	struct aq_rx_desc_wb wb;
    825 } __packed __aligned(8) aq_rx_desc_t;
    826 
    827 typedef struct aq_tx_desc {
    828 	uint64_t buf_addr;
    829 	uint32_t ctl1;
    830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    846 	uint32_t ctl2;
    847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    850 } __packed __aligned(8) aq_tx_desc_t;
    851 
    852 struct aq_txring {
    853 	struct aq_softc *txr_sc;
    854 	int txr_index;
    855 	kmutex_t txr_mutex;
    856 	bool txr_active;
    857 	bool txr_stopping;
    858 	bool txr_sending;
    859 	time_t txr_lastsent;
    860 
    861 	pcq_t *txr_pcq;
    862 	void *txr_softint;
    863 
    864 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    865 	bus_dmamap_t txr_txdesc_dmamap;
    866 	bus_dma_segment_t txr_txdesc_seg[1];
    867 	bus_size_t txr_txdesc_size;
    868 
    869 	struct {
    870 		struct mbuf *m;
    871 		bus_dmamap_t dmamap;
    872 	} txr_mbufs[AQ_TXD_NUM];
    873 	unsigned int txr_prodidx;
    874 	unsigned int txr_considx;
    875 	int txr_nfree;
    876 };
    877 
    878 struct aq_rxring {
    879 	struct aq_softc *rxr_sc;
    880 	int rxr_index;
    881 	kmutex_t rxr_mutex;
    882 	bool rxr_active;
    883 	bool rxr_discarding;
    884 	bool rxr_stopping;
    885 	struct mbuf *rxr_receiving_m;		/* receiving jumboframe */
    886 	struct mbuf *rxr_receiving_m_last;	/* last mbuf of jumboframe */
    887 
    888 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    889 	bus_dmamap_t rxr_rxdesc_dmamap;
    890 	bus_dma_segment_t rxr_rxdesc_seg[1];
    891 	bus_size_t rxr_rxdesc_size;
    892 	struct {
    893 		struct mbuf *m;
    894 		bus_dmamap_t dmamap;
    895 	} rxr_mbufs[AQ_RXD_NUM];
    896 	unsigned int rxr_readidx;
    897 };
    898 
    899 struct aq_queue {
    900 	struct aq_softc *sc;
    901 	struct aq_txring txring;
    902 	struct aq_rxring rxring;
    903 };
    904 
    905 struct aq_softc;
    906 struct aq_firmware_ops {
    907 	int (*reset)(struct aq_softc *);
    908 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    909 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    910 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    911 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    912 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    913 #if NSYSMON_ENVSYS > 0
    914 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    915 #endif
    916 };
    917 
    918 #ifdef AQ_EVENT_COUNTERS
    919 #define AQ_EVCNT_DECL(name)						\
    920 	char sc_evcount_##name##_name[32];				\
    921 	struct evcnt sc_evcount_##name##_ev;
    922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    923 	do {								\
    924 		snprintf((sc)->sc_evcount_##name##_name,		\
    925 		    sizeof((sc)->sc_evcount_##name##_name),		\
    926 		    "%s", desc);					\
    927 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    928 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    929 		    (sc)->sc_evcount_##name##_name);			\
    930 	} while (/*CONSTCOND*/0)
    931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    932 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    933 #define AQ_EVCNT_DETACH(sc, name)					\
    934 	if ((sc)->sc_evcount_##name##_name[0] != '\0')			\
    935 		evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    936 #define AQ_EVCNT_ADD(sc, name, val)					\
    937 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    938 #endif /* AQ_EVENT_COUNTERS */
    939 
    940 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    941 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    942 #define AQ_LOCKED(sc)		KASSERT(mutex_owned(&(sc)->sc_mutex));
    943 
    944 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    945 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    946 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    947 #define AQ_MPI_LOCKED(sc)	KASSERT(mutex_owned(&(sc)->sc_mpi_mutex));
    948 
    949 
    950 struct aq_softc {
    951 	device_t sc_dev;
    952 
    953 	bus_space_tag_t sc_iot;
    954 	bus_space_handle_t sc_ioh;
    955 	bus_size_t sc_iosize;
    956 	bus_dma_tag_t sc_dmat;
    957 
    958 	void *sc_ihs[AQ_NINTR_MAX];
    959 	pci_intr_handle_t *sc_intrs;
    960 
    961 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    962 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    963 	int sc_linkstat_irq;
    964 	bool sc_use_txrx_independent_intr;
    965 	bool sc_poll_linkstat;
    966 	bool sc_detect_linkstat;
    967 
    968 #if NSYSMON_ENVSYS > 0
    969 	struct sysmon_envsys *sc_sme;
    970 	envsys_data_t sc_sensor_temp;
    971 #endif
    972 
    973 	callout_t sc_tick_ch;
    974 
    975 	int sc_nintrs;
    976 	bool sc_msix;
    977 
    978 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    979 	int sc_nqueues;
    980 
    981 	pci_chipset_tag_t sc_pc;
    982 	pcitag_t sc_pcitag;
    983 	uint16_t sc_product;
    984 	uint16_t sc_revision;
    985 
    986 	kmutex_t sc_mutex;
    987 	kmutex_t sc_mpi_mutex;
    988 
    989 	const struct aq_firmware_ops *sc_fw_ops;
    990 	uint64_t sc_fw_caps;
    991 	enum aq_media_type sc_media_type;
    992 	aq_link_speed_t sc_available_rates;
    993 
    994 	aq_link_speed_t sc_link_rate;
    995 	aq_link_fc_t sc_link_fc;
    996 	aq_link_eee_t sc_link_eee;
    997 
    998 	uint32_t sc_fw_version;
    999 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
   1000 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
   1001 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
   1002 	uint32_t sc_features;
   1003 #define FEATURES_MIPS		0x00000001
   1004 #define FEATURES_TPO2		0x00000002
   1005 #define FEATURES_RPF2		0x00000004
   1006 #define FEATURES_MPI_AQ		0x00000008
   1007 #define FEATURES_REV_A0		0x10000000
   1008 #define FEATURES_REV_A		(FEATURES_REV_A0)
   1009 #define FEATURES_REV_B0		0x20000000
   1010 #define FEATURES_REV_B1		0x40000000
   1011 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
   1012 	int sc_max_mtu;
   1013 	uint32_t sc_mbox_addr;
   1014 
   1015 	bool sc_rbl_enabled;
   1016 	bool sc_fast_start_enabled;
   1017 	bool sc_flash_present;
   1018 
   1019 	bool sc_intr_moderation_enable;
   1020 	bool sc_rss_enable;
   1021 
   1022 	struct ethercom sc_ethercom;
   1023 	struct ether_addr sc_enaddr;
   1024 	struct ifmedia sc_media;
   1025 	int sc_ec_capenable;		/* last ec_capenable */
   1026 	unsigned short sc_if_flags;	/* last if_flags */
   1027 
   1028 	bool sc_tx_sending;
   1029 	bool sc_stopping;
   1030 
   1031 	struct workqueue *sc_reset_wq;
   1032 	struct work sc_reset_work;
   1033 	volatile unsigned sc_reset_pending;
   1034 
   1035 	bool sc_trigger_reset;
   1036 
   1037 #ifdef AQ_EVENT_COUNTERS
   1038 	aq_hw_stats_s_t sc_statistics[2];
   1039 	int sc_statistics_idx;
   1040 	bool sc_poll_statistics;
   1041 
   1042 	AQ_EVCNT_DECL(uprc);
   1043 	AQ_EVCNT_DECL(mprc);
   1044 	AQ_EVCNT_DECL(bprc);
   1045 	AQ_EVCNT_DECL(erpt);
   1046 	AQ_EVCNT_DECL(uptc);
   1047 	AQ_EVCNT_DECL(mptc);
   1048 	AQ_EVCNT_DECL(bptc);
   1049 	AQ_EVCNT_DECL(erpr);
   1050 	AQ_EVCNT_DECL(mbtc);
   1051 	AQ_EVCNT_DECL(bbtc);
   1052 	AQ_EVCNT_DECL(mbrc);
   1053 	AQ_EVCNT_DECL(bbrc);
   1054 	AQ_EVCNT_DECL(ubrc);
   1055 	AQ_EVCNT_DECL(ubtc);
   1056 	AQ_EVCNT_DECL(ptc);
   1057 	AQ_EVCNT_DECL(prc);
   1058 	AQ_EVCNT_DECL(dpc);
   1059 	AQ_EVCNT_DECL(cprc);
   1060 #endif
   1061 };
   1062 
   1063 static int aq_match(device_t, cfdata_t, void *);
   1064 static void aq_attach(device_t, device_t, void *);
   1065 static int aq_detach(device_t, int);
   1066 
   1067 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1068     bool, bool);
   1069 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1070     pci_intr_type_t);
   1071 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1072 
   1073 static int aq_ifmedia_change(struct ifnet * const);
   1074 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1075 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
   1076 static int aq_ifflags_cb(struct ethercom *);
   1077 static int aq_init(struct ifnet *);
   1078 static int aq_init_locked(struct ifnet *);
   1079 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1080     struct aq_txring *, bool);
   1081 static int aq_transmit(struct ifnet *, struct mbuf *);
   1082 static void aq_deferred_transmit(void *);
   1083 static void aq_start(struct ifnet *);
   1084 static void aq_stop(struct ifnet *, int);
   1085 static void aq_stop_locked(struct ifnet *, bool);
   1086 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1087 
   1088 static int aq_txrx_rings_alloc(struct aq_softc *);
   1089 static void aq_txrx_rings_free(struct aq_softc *);
   1090 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1091 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1092 
   1093 static void aq_initmedia(struct aq_softc *);
   1094 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1095 
   1096 static void aq_handle_reset_work(struct work *, void *);
   1097 static void aq_unset_stopping_flags(struct aq_softc *);
   1098 static void aq_set_stopping_flags(struct aq_softc *);
   1099 
   1100 #if NSYSMON_ENVSYS > 0
   1101 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1102 #endif
   1103 static void aq_tick(void *);
   1104 static int aq_legacy_intr(void *);
   1105 static int aq_link_intr(void *);
   1106 static int aq_txrx_intr(void *);
   1107 static int aq_tx_intr(void *);
   1108 static int aq_rx_intr(void *);
   1109 
   1110 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1111     aq_link_eee_t);
   1112 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1113     aq_link_eee_t *);
   1114 
   1115 static int aq_fw_reset(struct aq_softc *);
   1116 static int aq_fw_version_init(struct aq_softc *);
   1117 static int aq_hw_init(struct aq_softc *);
   1118 static int aq_hw_init_ucp(struct aq_softc *);
   1119 static int aq_hw_reset(struct aq_softc *);
   1120 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1121     uint32_t);
   1122 static int aq_get_mac_addr(struct aq_softc *);
   1123 static int aq_init_rss(struct aq_softc *);
   1124 static int aq_set_capability(struct aq_softc *);
   1125 
   1126 static int fw1x_reset(struct aq_softc *);
   1127 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1128     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1129 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1130     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1131 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1132 
   1133 static int fw2x_reset(struct aq_softc *);
   1134 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1135     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1136 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1137     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1138 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1139 #if NSYSMON_ENVSYS > 0
   1140 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1141 #endif
   1142 
   1143 #ifndef AQ_WATCHDOG_TIMEOUT
   1144 #define AQ_WATCHDOG_TIMEOUT 5
   1145 #endif
   1146 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT;
   1147 
   1148 
   1149 static const struct aq_firmware_ops aq_fw1x_ops = {
   1150 	.reset = fw1x_reset,
   1151 	.set_mode = fw1x_set_mode,
   1152 	.get_mode = fw1x_get_mode,
   1153 	.get_stats = fw1x_get_stats,
   1154 #if NSYSMON_ENVSYS > 0
   1155 	.get_temperature = NULL
   1156 #endif
   1157 };
   1158 
   1159 static const struct aq_firmware_ops aq_fw2x_ops = {
   1160 	.reset = fw2x_reset,
   1161 	.set_mode = fw2x_set_mode,
   1162 	.get_mode = fw2x_get_mode,
   1163 	.get_stats = fw2x_get_stats,
   1164 #if NSYSMON_ENVSYS > 0
   1165 	.get_temperature = fw2x_get_temperature
   1166 #endif
   1167 };
   1168 
   1169 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1170     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1171 
   1172 static const struct aq_product {
   1173 	pci_vendor_id_t aq_vendor;
   1174 	pci_product_id_t aq_product;
   1175 	const char *aq_name;
   1176 	enum aq_media_type aq_media_type;
   1177 	aq_link_speed_t aq_available_rates;
   1178 } aq_products[] = {
   1179 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
   1180 	  "Aquantia AQC100 10 Gigabit Network Adapter",
   1181 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1182 	},
   1183 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1184 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1185 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1186 	},
   1187 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1188 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1189 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1190 	},
   1191 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1192 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1193 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1194 	},
   1195 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1196 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1197 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1198 	},
   1199 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1200 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1201 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1202 	},
   1203 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
   1204 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
   1205 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1206 	},
   1207 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1208 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1209 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1210 	},
   1211 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1212 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1213 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1214 	},
   1215 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1216 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1217 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1218 	},
   1219 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1220 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1221 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1222 	},
   1223 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1224 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1225 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1226 	},
   1227 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
   1228 	  "Aquantia D100 10 Gigabit Network Adapter",
   1229 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
   1230 	},
   1231 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1232 	  "Aquantia D107 10 Gigabit Network Adapter",
   1233 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1234 	},
   1235 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1236 	  "Aquantia D108 5 Gigabit Network Adapter",
   1237 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1238 	},
   1239 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1240 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1241 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1242 	}
   1243 };
   1244 
   1245 static const struct aq_product *
   1246 aq_lookup(const struct pci_attach_args *pa)
   1247 {
   1248 	unsigned int i;
   1249 
   1250 	for (i = 0; i < __arraycount(aq_products); i++) {
   1251 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1252 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1253 			return &aq_products[i];
   1254 	}
   1255 	return NULL;
   1256 }
   1257 
   1258 static int
   1259 aq_match(device_t parent, cfdata_t cf, void *aux)
   1260 {
   1261 	struct pci_attach_args * const pa = aux;
   1262 
   1263 	if (aq_lookup(pa) != NULL)
   1264 		return 1;
   1265 
   1266 	return 0;
   1267 }
   1268 
   1269 static void
   1270 aq_attach(device_t parent, device_t self, void *aux)
   1271 {
   1272 	struct aq_softc * const sc = device_private(self);
   1273 	struct pci_attach_args * const pa = aux;
   1274 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   1275 	pci_chipset_tag_t pc;
   1276 	pcitag_t tag;
   1277 	pcireg_t command, memtype, bar;
   1278 	const struct aq_product *aqp;
   1279 	int error;
   1280 
   1281 	sc->sc_dev = self;
   1282 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1283 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1284 
   1285 	sc->sc_pc = pc = pa->pa_pc;
   1286 	sc->sc_pcitag = tag = pa->pa_tag;
   1287 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1288 
   1289 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1290 	command |= PCI_COMMAND_MASTER_ENABLE;
   1291 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1292 
   1293 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1294 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1295 
   1296 	aqp = aq_lookup(pa);
   1297 	KASSERT(aqp != NULL);
   1298 
   1299 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1300 
   1301 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1302 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1303 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1304 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1305 		return;
   1306 	}
   1307 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1308 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1309 	    NULL, &sc->sc_iosize) != 0) {
   1310 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1311 		return;
   1312 	}
   1313 
   1314 	error = aq_fw_reset(sc);
   1315 	if (error != 0)
   1316 		goto attach_failure;
   1317 
   1318 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1319 
   1320 	/* max queue num is 8, and must be 2^n */
   1321 	if (ncpu >= 8)
   1322 		sc->sc_nqueues = 8;
   1323 	else if (ncpu >= 4)
   1324 		sc->sc_nqueues = 4;
   1325 	else if (ncpu >= 2)
   1326 		sc->sc_nqueues = 2;
   1327 	else
   1328 		sc->sc_nqueues = 1;
   1329 
   1330 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1331 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1332 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1333 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1334 		sc->sc_use_txrx_independent_intr = true;
   1335 		sc->sc_poll_linkstat = false;
   1336 		sc->sc_msix = true;
   1337 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1338 		/* TX intrs + RX intrs */
   1339 		sc->sc_use_txrx_independent_intr = true;
   1340 		sc->sc_poll_linkstat = true;
   1341 		sc->sc_msix = true;
   1342 	} else
   1343 #endif
   1344 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1345 		/* TX/RX intrs LINKSTAT intrs */
   1346 		sc->sc_use_txrx_independent_intr = false;
   1347 		sc->sc_poll_linkstat = false;
   1348 		sc->sc_msix = true;
   1349 	} else if (msixcount >= sc->sc_nqueues) {
   1350 		/* TX/RX intrs */
   1351 		sc->sc_use_txrx_independent_intr = false;
   1352 		sc->sc_poll_linkstat = true;
   1353 		sc->sc_msix = true;
   1354 	} else {
   1355 		/* giving up using MSI-X */
   1356 		sc->sc_msix = false;
   1357 	}
   1358 
   1359 	/* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
   1360 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
   1361 	    FW_VERSION_MAJOR(sc) == 1)
   1362 		sc->sc_poll_linkstat = true;
   1363 
   1364 #ifdef AQ_FORCE_POLL_LINKSTAT
   1365 	sc->sc_poll_linkstat = true;
   1366 #endif
   1367 
   1368 	aprint_debug_dev(sc->sc_dev,
   1369 	    "ncpu=%d, pci_msix_count=%d."
   1370 	    " allocate %d interrupts for %d%s queues%s\n",
   1371 	    ncpu, msixcount,
   1372 	    (sc->sc_use_txrx_independent_intr ?
   1373 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1374 	    (sc->sc_poll_linkstat ? 0 : 1),
   1375 	    sc->sc_nqueues,
   1376 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1377 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1378 
   1379 	if (sc->sc_msix)
   1380 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1381 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1382 	else
   1383 		error = ENODEV;
   1384 
   1385 	if (error != 0) {
   1386 		/* if MSI-X failed, fallback to MSI with single queue */
   1387 		sc->sc_use_txrx_independent_intr = false;
   1388 		sc->sc_poll_linkstat = false;
   1389 		sc->sc_msix = false;
   1390 		sc->sc_nqueues = 1;
   1391 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1392 	}
   1393 	if (error != 0) {
   1394 		/* if MSI failed, fallback to INTx */
   1395 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1396 	}
   1397 	if (error != 0)
   1398 		goto attach_failure;
   1399 
   1400 	callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
   1401 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1402 
   1403 	char wqname[MAXCOMLEN];
   1404 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
   1405 	error = workqueue_create(&sc->sc_reset_wq, wqname,
   1406 	    aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK,
   1407 	    WQ_MPSAFE);
   1408 	if (error) {
   1409 		aprint_error_dev(sc->sc_dev,
   1410 		    "unable to create reset workqueue\n");
   1411 		goto attach_failure;
   1412 	}
   1413 
   1414 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1415 
   1416 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1417 		sc->sc_rss_enable = true;
   1418 	else
   1419 		sc->sc_rss_enable = false;
   1420 
   1421 	error = aq_txrx_rings_alloc(sc);
   1422 	if (error != 0)
   1423 		goto attach_failure;
   1424 
   1425 	error = aq_fw_version_init(sc);
   1426 	if (error != 0)
   1427 		goto attach_failure;
   1428 
   1429 	error = aq_hw_init_ucp(sc);
   1430 	if (error < 0)
   1431 		goto attach_failure;
   1432 
   1433 	KASSERT(sc->sc_mbox_addr != 0);
   1434 	error = aq_hw_reset(sc);
   1435 	if (error != 0)
   1436 		goto attach_failure;
   1437 
   1438 	aq_get_mac_addr(sc);
   1439 	aq_init_rss(sc);
   1440 
   1441 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1442 	if (error != 0)
   1443 		goto attach_failure;
   1444 
   1445 	sc->sc_media_type = aqp->aq_media_type;
   1446 	sc->sc_available_rates = aqp->aq_available_rates;
   1447 
   1448 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1449 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1450 	    aq_ifmedia_change, aq_ifmedia_status);
   1451 	aq_initmedia(sc);
   1452 
   1453 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1454 	ifp->if_softc = sc;
   1455 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1456 	ifp->if_extflags = IFEF_MPSAFE;
   1457 	ifp->if_baudrate = IF_Gbps(10);
   1458 	ifp->if_init = aq_init;
   1459 	ifp->if_ioctl = aq_ioctl;
   1460 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1461 		ifp->if_transmit = aq_transmit;
   1462 	ifp->if_start = aq_start;
   1463 	ifp->if_stop = aq_stop;
   1464 	ifp->if_watchdog = NULL;
   1465 	IFQ_SET_READY(&ifp->if_snd);
   1466 
   1467 	/* initialize capabilities */
   1468 	sc->sc_ethercom.ec_capabilities = 0;
   1469 	sc->sc_ethercom.ec_capenable = 0;
   1470 #if notyet
   1471 	/* TODO */
   1472 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1473 #endif
   1474 	sc->sc_ethercom.ec_capabilities |=
   1475 	    ETHERCAP_JUMBO_MTU |
   1476 	    ETHERCAP_VLAN_MTU |
   1477 	    ETHERCAP_VLAN_HWTAGGING |
   1478 	    ETHERCAP_VLAN_HWFILTER;
   1479 	sc->sc_ethercom.ec_capenable |=
   1480 	    ETHERCAP_VLAN_HWTAGGING |
   1481 	    ETHERCAP_VLAN_HWFILTER;
   1482 
   1483 	ifp->if_capabilities = 0;
   1484 	ifp->if_capenable = 0;
   1485 #ifdef CONFIG_LRO_SUPPORT
   1486 	ifp->if_capabilities |= IFCAP_LRO;
   1487 	ifp->if_capenable |= IFCAP_LRO;
   1488 #endif
   1489 #if notyet
   1490 	/* TSO */
   1491 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1492 #endif
   1493 
   1494 	/* TX hardware checksum offloading */
   1495 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1496 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1497 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1498 	/* RX hardware checksum offloading */
   1499 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1500 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1501 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1502 
   1503 	if_initialize(ifp);
   1504 	ifp->if_percpuq = if_percpuq_create(ifp);
   1505 	if_deferred_start_init(ifp, NULL);
   1506 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1507 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
   1508 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1509 	if_register(ifp);
   1510 
   1511 	/* only intr about link */
   1512 	aq_enable_intr(sc, /*link*/true, /*txrx*/false);
   1513 
   1514 	/* update media */
   1515 	aq_ifmedia_change(ifp);
   1516 
   1517 #if NSYSMON_ENVSYS > 0
   1518 	/* temperature monitoring */
   1519 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1520 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1521 
   1522 		sc->sc_sme = sysmon_envsys_create();
   1523 		sc->sc_sme->sme_name = device_xname(self);
   1524 		sc->sc_sme->sme_cookie = sc;
   1525 		sc->sc_sme->sme_flags = 0;
   1526 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1527 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1528 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1529 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1530 
   1531 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1532 		if (sysmon_envsys_register(sc->sc_sme)) {
   1533 			sysmon_envsys_destroy(sc->sc_sme);
   1534 			sc->sc_sme = NULL;
   1535 			goto attach_failure;
   1536 		}
   1537 
   1538 		/*
   1539 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1540 		 * will always fail (firmware matter?), so run once now.
   1541 		 */
   1542 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1543 	}
   1544 #endif
   1545 
   1546 #ifdef AQ_EVENT_COUNTERS
   1547 	/* get starting statistics values */
   1548 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1549 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1550 		sc->sc_poll_statistics = true;
   1551 	}
   1552 
   1553 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1554 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1555 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1556 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1557 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1558 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1559 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1560 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1561 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1562 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1563 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1564 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1565 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1566 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1567 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1568 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1569 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1570 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1571 #endif
   1572 
   1573 	if (pmf_device_register(self, NULL, NULL))
   1574 		pmf_class_network_register(self, ifp);
   1575 	else
   1576 		aprint_error_dev(self, "couldn't establish power handler\n");
   1577 
   1578 	return;
   1579 
   1580  attach_failure:
   1581 	aq_detach(self, 0);
   1582 }
   1583 
   1584 static int
   1585 aq_detach(device_t self, int flags __unused)
   1586 {
   1587 	struct aq_softc * const sc = device_private(self);
   1588 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   1589 	int i;
   1590 
   1591 	if (sc->sc_dev == NULL)
   1592 		return 0;
   1593 
   1594 	if (sc->sc_iosize != 0) {
   1595 		if (ifp->if_softc != NULL) {
   1596 			IFNET_LOCK(ifp);
   1597 			aq_stop(ifp, 1);
   1598 			IFNET_UNLOCK(ifp);
   1599 		}
   1600 
   1601 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1602 			if (sc->sc_ihs[i] != NULL) {
   1603 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1604 				sc->sc_ihs[i] = NULL;
   1605 			}
   1606 		}
   1607 		if (sc->sc_nintrs > 0) {
   1608 			callout_stop(&sc->sc_tick_ch);
   1609 
   1610 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1611 			    sc->sc_nintrs);
   1612 			sc->sc_intrs = NULL;
   1613 			sc->sc_nintrs = 0;
   1614 		}
   1615 
   1616 		if (sc->sc_reset_wq != NULL) {
   1617 			workqueue_destroy(sc->sc_reset_wq);
   1618 			sc->sc_reset_wq = NULL;
   1619 		}
   1620 
   1621 		aq_txrx_rings_free(sc);
   1622 
   1623 		if (ifp->if_softc != NULL) {
   1624 			ether_ifdetach(ifp);
   1625 			if_detach(ifp);
   1626 		}
   1627 
   1628 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1629 		sc->sc_iosize = 0;
   1630 	}
   1631 
   1632 #if NSYSMON_ENVSYS > 0
   1633 	if (sc->sc_sme != NULL) {
   1634 		/* all sensors associated with this will also be detached */
   1635 		sysmon_envsys_unregister(sc->sc_sme);
   1636 	}
   1637 #endif
   1638 
   1639 #ifdef AQ_EVENT_COUNTERS
   1640 	AQ_EVCNT_DETACH(sc, uprc);
   1641 	AQ_EVCNT_DETACH(sc, mprc);
   1642 	AQ_EVCNT_DETACH(sc, bprc);
   1643 	AQ_EVCNT_DETACH(sc, erpt);
   1644 	AQ_EVCNT_DETACH(sc, uptc);
   1645 	AQ_EVCNT_DETACH(sc, mptc);
   1646 	AQ_EVCNT_DETACH(sc, bptc);
   1647 	AQ_EVCNT_DETACH(sc, erpr);
   1648 	AQ_EVCNT_DETACH(sc, mbtc);
   1649 	AQ_EVCNT_DETACH(sc, bbtc);
   1650 	AQ_EVCNT_DETACH(sc, mbrc);
   1651 	AQ_EVCNT_DETACH(sc, bbrc);
   1652 	AQ_EVCNT_DETACH(sc, ubrc);
   1653 	AQ_EVCNT_DETACH(sc, ubtc);
   1654 	AQ_EVCNT_DETACH(sc, ptc);
   1655 	AQ_EVCNT_DETACH(sc, prc);
   1656 	AQ_EVCNT_DETACH(sc, dpc);
   1657 	AQ_EVCNT_DETACH(sc, cprc);
   1658 #endif
   1659 
   1660 	if (sc->sc_ethercom.ec_ifmedia != NULL) {
   1661 		ifmedia_fini(&sc->sc_media);
   1662 		sc->sc_ethercom.ec_ifmedia = NULL;
   1663 	}
   1664 
   1665 	mutex_destroy(&sc->sc_mpi_mutex);
   1666 	mutex_destroy(&sc->sc_mutex);
   1667 	sc->sc_dev = NULL;
   1668 
   1669 	return 0;
   1670 }
   1671 
   1672 static int
   1673 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1674     int (*func)(void *), void *arg, const char *xname)
   1675 {
   1676 	char intrbuf[PCI_INTRSTR_LEN];
   1677 	pci_chipset_tag_t pc = sc->sc_pc;
   1678 	void *vih;
   1679 	const char *intrstr = NULL;
   1680 
   1681 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1682 	    sizeof(intrbuf));
   1683 
   1684 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1685 
   1686 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1687 	    IPL_NET, func, arg, xname);
   1688 	if (vih == NULL) {
   1689 		aprint_error_dev(sc->sc_dev,
   1690 		    "unable to establish MSI-X%s%s for %s\n",
   1691 		    intrstr ? " at " : "",
   1692 		    intrstr ? intrstr : "", xname);
   1693 		return EIO;
   1694 	}
   1695 	sc->sc_ihs[intno] = vih;
   1696 
   1697 	if (affinity != NULL) {
   1698 		/* Round-robin affinity */
   1699 		kcpuset_zero(affinity);
   1700 		kcpuset_set(affinity, intno % ncpu);
   1701 		interrupt_distribute(vih, affinity, NULL);
   1702 	}
   1703 
   1704 	return 0;
   1705 }
   1706 
   1707 static int
   1708 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1709     bool linkintr)
   1710 {
   1711 	kcpuset_t *affinity;
   1712 	int error, intno, i;
   1713 	char intr_xname[INTRDEVNAMEBUF];
   1714 
   1715 	kcpuset_create(&affinity, false);
   1716 
   1717 	intno = 0;
   1718 
   1719 	if (txrx_independent) {
   1720 		for (i = 0; i < sc->sc_nqueues; i++) {
   1721 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1722 			    device_xname(sc->sc_dev), i);
   1723 			sc->sc_rx_irq[i] = intno;
   1724 			error = aq_establish_intr(sc, intno++, affinity,
   1725 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1726 			if (error != 0)
   1727 				goto fail;
   1728 		}
   1729 		for (i = 0; i < sc->sc_nqueues; i++) {
   1730 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1731 			    device_xname(sc->sc_dev), i);
   1732 			sc->sc_tx_irq[i] = intno;
   1733 			error = aq_establish_intr(sc, intno++, affinity,
   1734 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1735 			if (error != 0)
   1736 				goto fail;
   1737 		}
   1738 	} else {
   1739 		for (i = 0; i < sc->sc_nqueues; i++) {
   1740 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1741 			    device_xname(sc->sc_dev), i);
   1742 			sc->sc_rx_irq[i] = intno;
   1743 			sc->sc_tx_irq[i] = intno;
   1744 			error = aq_establish_intr(sc, intno++, affinity,
   1745 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1746 			if (error != 0)
   1747 				goto fail;
   1748 		}
   1749 	}
   1750 
   1751 	if (linkintr) {
   1752 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1753 		    device_xname(sc->sc_dev));
   1754 		sc->sc_linkstat_irq = intno;
   1755 		error = aq_establish_intr(sc, intno++, affinity,
   1756 		    aq_link_intr, sc, intr_xname);
   1757 		if (error != 0)
   1758 			goto fail;
   1759 	}
   1760 
   1761 	kcpuset_destroy(affinity);
   1762 	return 0;
   1763 
   1764  fail:
   1765 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1766 		if (sc->sc_ihs[i] != NULL) {
   1767 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1768 			sc->sc_ihs[i] = NULL;
   1769 		}
   1770 	}
   1771 
   1772 	kcpuset_destroy(affinity);
   1773 	return ENOMEM;
   1774 }
   1775 
   1776 static int
   1777 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1778     bool txrx_independent, bool linkintr)
   1779 {
   1780 	int error, nintr;
   1781 
   1782 	if (txrx_independent)
   1783 		nintr = nqueue * 2;
   1784 	else
   1785 		nintr = nqueue;
   1786 
   1787 	if (linkintr)
   1788 		nintr++;
   1789 
   1790 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1791 	if (error != 0) {
   1792 		aprint_error_dev(sc->sc_dev,
   1793 		    "failed to allocate MSI-X interrupts\n");
   1794 		goto fail;
   1795 	}
   1796 
   1797 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1798 	if (error == 0) {
   1799 		sc->sc_nintrs = nintr;
   1800 	} else {
   1801 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1802 		sc->sc_nintrs = 0;
   1803 	}
   1804  fail:
   1805 	return error;
   1806 
   1807 }
   1808 
   1809 static int
   1810 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1811     pci_intr_type_t inttype)
   1812 {
   1813 	int counts[PCI_INTR_TYPE_SIZE];
   1814 	int error, nintr;
   1815 
   1816 	nintr = 1;
   1817 
   1818 	memset(counts, 0, sizeof(counts));
   1819 	counts[inttype] = nintr;
   1820 
   1821 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1822 	if (error != 0) {
   1823 		aprint_error_dev(sc->sc_dev,
   1824 		    "failed to allocate%s interrupts\n",
   1825 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1826 		return error;
   1827 	}
   1828 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1829 	    device_xname(sc->sc_dev));
   1830 	if (error == 0) {
   1831 		sc->sc_nintrs = nintr;
   1832 	} else {
   1833 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1834 		sc->sc_nintrs = 0;
   1835 	}
   1836 	return error;
   1837 }
   1838 
   1839 static void
   1840 global_software_reset(struct aq_softc *sc)
   1841 {
   1842 	uint32_t v;
   1843 
   1844 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1845 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1846 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1847 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1848 
   1849 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1850 	v &= ~AQ_FW_SOFTRESET_DIS;
   1851 	v |= AQ_FW_SOFTRESET_RESET;
   1852 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1853 }
   1854 
   1855 static int
   1856 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1857 {
   1858 	int timo;
   1859 
   1860 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1861 
   1862 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1863 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1864 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1865 
   1866 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1867 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1868 
   1869 	global_software_reset(sc);
   1870 
   1871 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1872 
   1873 	/* Wait for RBL to finish boot process. */
   1874 #define RBL_TIMEOUT_MS	10000
   1875 	uint16_t rbl_status;
   1876 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1877 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1878 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1879 			break;
   1880 		msec_delay(1);
   1881 	}
   1882 	if (timo <= 0) {
   1883 		aprint_error_dev(sc->sc_dev,
   1884 		    "RBL> RBL restart failed: timeout\n");
   1885 		return EBUSY;
   1886 	}
   1887 	switch (rbl_status) {
   1888 	case RBL_STATUS_SUCCESS:
   1889 		if (mode != NULL)
   1890 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1891 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1892 		break;
   1893 	case RBL_STATUS_HOST_BOOT:
   1894 		if (mode != NULL)
   1895 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1896 		aprint_debug_dev(sc->sc_dev,
   1897 		    "RBL> reset complete! [Host Bootload]\n");
   1898 		break;
   1899 	case RBL_STATUS_FAILURE:
   1900 	default:
   1901 		aprint_error_dev(sc->sc_dev,
   1902 		    "unknown RBL status 0x%x\n", rbl_status);
   1903 		return EBUSY;
   1904 	}
   1905 
   1906 	return 0;
   1907 }
   1908 
   1909 static int
   1910 mac_soft_reset_flb(struct aq_softc *sc)
   1911 {
   1912 	uint32_t v;
   1913 	int timo;
   1914 
   1915 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1916 	/*
   1917 	 * Let Felicity hardware to complete SMBUS transaction before
   1918 	 * Global software reset.
   1919 	 */
   1920 	msec_delay(50);
   1921 
   1922 	/*
   1923 	 * If SPI burst transaction was interrupted(before running the script),
   1924 	 * global software reset may not clear SPI interface.
   1925 	 * Clean it up manually before global reset.
   1926 	 */
   1927 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1928 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1929 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1930 	msec_delay(50);
   1931 
   1932 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1933 	v &= ~AQ_FW_SOFTRESET_DIS;
   1934 	v |= AQ_FW_SOFTRESET_RESET;
   1935 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1936 
   1937 	/* Kickstart. */
   1938 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1939 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1940 	if (!sc->sc_fast_start_enabled)
   1941 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1942 
   1943 	/*
   1944 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1945 	 * above), wait until it is completed by hardware.
   1946 	 */
   1947 	msec_delay(50);
   1948 
   1949 	/* MAC Kickstart */
   1950 	if (!sc->sc_fast_start_enabled) {
   1951 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1952 
   1953 		uint32_t flb_status;
   1954 		for (timo = 0; timo < 1000; timo++) {
   1955 			flb_status = AQ_READ_REG(sc,
   1956 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1957 			if (flb_status != 0)
   1958 				break;
   1959 			msec_delay(1);
   1960 		}
   1961 		if (flb_status == 0) {
   1962 			aprint_error_dev(sc->sc_dev,
   1963 			    "FLB> MAC kickstart failed: timed out\n");
   1964 			return ETIMEDOUT;
   1965 		}
   1966 		aprint_debug_dev(sc->sc_dev,
   1967 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1968 		/* FW reset */
   1969 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1970 		/*
   1971 		 * Let Felicity hardware complete SMBUS transaction before
   1972 		 * Global software reset.
   1973 		 */
   1974 		msec_delay(50);
   1975 		sc->sc_fast_start_enabled = true;
   1976 	}
   1977 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1978 
   1979 	/* PHY Kickstart: #undone */
   1980 	global_software_reset(sc);
   1981 
   1982 	for (timo = 0; timo < 1000; timo++) {
   1983 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1984 			break;
   1985 		msec_delay(10);
   1986 	}
   1987 	if (timo >= 1000) {
   1988 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1989 		return ETIMEDOUT;
   1990 	}
   1991 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1992 	return 0;
   1993 
   1994 }
   1995 
   1996 static int
   1997 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1998 {
   1999 	if (sc->sc_rbl_enabled)
   2000 		return mac_soft_reset_rbl(sc, mode);
   2001 
   2002 	if (mode != NULL)
   2003 		*mode = FW_BOOT_MODE_FLB;
   2004 	return mac_soft_reset_flb(sc);
   2005 }
   2006 
   2007 static int
   2008 aq_fw_read_version(struct aq_softc *sc)
   2009 {
   2010 	int i, error = EBUSY;
   2011 #define MAC_FW_START_TIMEOUT_MS	10000
   2012 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   2013 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   2014 		if (sc->sc_fw_version != 0) {
   2015 			error = 0;
   2016 			break;
   2017 		}
   2018 		delay(1000);
   2019 	}
   2020 	return error;
   2021 }
   2022 
   2023 static int
   2024 aq_fw_reset(struct aq_softc *sc)
   2025 {
   2026 	uint32_t ver, v, bootExitCode;
   2027 	int i, error;
   2028 
   2029 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   2030 
   2031 	for (i = 1000; i > 0; i--) {
   2032 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   2033 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   2034 		if (v != 0x06000000 || bootExitCode != 0)
   2035 			break;
   2036 	}
   2037 	if (i <= 0) {
   2038 		aprint_error_dev(sc->sc_dev,
   2039 		    "F/W reset failed. Neither RBL nor FLB started\n");
   2040 		return ETIMEDOUT;
   2041 	}
   2042 	sc->sc_rbl_enabled = (bootExitCode != 0);
   2043 
   2044 	/*
   2045 	 * Having FW version 0 is an indicator that cold start
   2046 	 * is in progress. This means two things:
   2047 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   2048 	 * 2) Driver may skip reset sequence and save time.
   2049 	 */
   2050 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   2051 		error = aq_fw_read_version(sc);
   2052 		/* Skip reset as it just completed */
   2053 		if (error == 0)
   2054 			return 0;
   2055 	}
   2056 
   2057 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   2058 	error = mac_soft_reset(sc, &mode);
   2059 	if (error != 0) {
   2060 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   2061 		return error;
   2062 	}
   2063 
   2064 	switch (mode) {
   2065 	case FW_BOOT_MODE_FLB:
   2066 		aprint_debug_dev(sc->sc_dev,
   2067 		    "FLB> F/W successfully loaded from flash.\n");
   2068 		sc->sc_flash_present = true;
   2069 		return aq_fw_read_version(sc);
   2070 	case FW_BOOT_MODE_RBL_FLASH:
   2071 		aprint_debug_dev(sc->sc_dev,
   2072 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   2073 		sc->sc_flash_present = true;
   2074 		return aq_fw_read_version(sc);
   2075 	case FW_BOOT_MODE_UNKNOWN:
   2076 		aprint_error_dev(sc->sc_dev,
   2077 		    "F/W bootload error: unknown bootloader type\n");
   2078 		return ENOTSUP;
   2079 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2080 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2081 		break;
   2082 	}
   2083 
   2084 	/*
   2085 	 * XXX: TODO: add support Host Boot
   2086 	 */
   2087 	aprint_error_dev(sc->sc_dev,
   2088 	    "RBL> F/W Host Bootload not implemented\n");
   2089 	return ENOTSUP;
   2090 }
   2091 
   2092 static int
   2093 aq_hw_reset(struct aq_softc *sc)
   2094 {
   2095 	int error;
   2096 
   2097 	/* disable irq */
   2098 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2099 
   2100 	/* apply */
   2101 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2102 
   2103 	/* wait ack 10 times by 1ms */
   2104 	WAIT_FOR(
   2105 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2106 	    1000, 10, &error);
   2107 	if (error != 0) {
   2108 		aprint_error_dev(sc->sc_dev,
   2109 		    "atlantic: IRQ reset failed: %d\n", error);
   2110 		return error;
   2111 	}
   2112 
   2113 	return sc->sc_fw_ops->reset(sc);
   2114 }
   2115 
   2116 static int
   2117 aq_hw_init_ucp(struct aq_softc *sc)
   2118 {
   2119 	int timo;
   2120 
   2121 	if (FW_VERSION_MAJOR(sc) == 1) {
   2122 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
   2123 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
   2124 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2125 	}
   2126 
   2127 	/* Wait a maximum of 10sec. It usually takes about 5sec. */
   2128 	for (timo = 10000; timo > 0; timo--) {
   2129 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2130 		if (sc->sc_mbox_addr != 0)
   2131 			break;
   2132 		delay(1000);
   2133 	}
   2134 	if (sc->sc_mbox_addr == 0) {
   2135 		aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
   2136 		return ETIMEDOUT;
   2137 	}
   2138 
   2139 #define AQ_FW_MIN_VERSION	0x01050006
   2140 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2141 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2142 		aprint_error_dev(sc->sc_dev,
   2143 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2144 		    " or later required, this is %d.%d.%d\n",
   2145 		    FW_VERSION_MAJOR(sc),
   2146 		    FW_VERSION_MINOR(sc),
   2147 		    FW_VERSION_BUILD(sc));
   2148 		return ENOTSUP;
   2149 	}
   2150 
   2151 	return 0;
   2152 }
   2153 
   2154 static int
   2155 aq_fw_version_init(struct aq_softc *sc)
   2156 {
   2157 	int error = 0;
   2158 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2159 
   2160 	if (FW_VERSION_MAJOR(sc) == 1) {
   2161 		sc->sc_fw_ops = &aq_fw1x_ops;
   2162 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2163 		sc->sc_fw_ops = &aq_fw2x_ops;
   2164 	} else {
   2165 		aprint_error_dev(sc->sc_dev,
   2166 		    "Unsupported F/W version %d.%d.%d\n",
   2167 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2168 		    FW_VERSION_BUILD(sc));
   2169 		return ENOTSUP;
   2170 	}
   2171 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2172 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2173 
   2174 	/* detect revision */
   2175 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2176 	switch (hwrev & 0x0000000f) {
   2177 	case 0x01:
   2178 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2179 		    fw_vers);
   2180 		sc->sc_features |= FEATURES_REV_A0 |
   2181 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2182 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
   2183 		break;
   2184 	case 0x02:
   2185 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2186 		    fw_vers);
   2187 		sc->sc_features |= FEATURES_REV_B0 |
   2188 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2189 		    FEATURES_TPO2 | FEATURES_RPF2;
   2190 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2191 		break;
   2192 	case 0x0A:
   2193 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2194 		    fw_vers);
   2195 		sc->sc_features |= FEATURES_REV_B1 |
   2196 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2197 		    FEATURES_TPO2 | FEATURES_RPF2;
   2198 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
   2199 		break;
   2200 	default:
   2201 		aprint_error_dev(sc->sc_dev,
   2202 		    "Unknown revision (0x%08x)\n", hwrev);
   2203 		sc->sc_features = 0;
   2204 		sc->sc_max_mtu = ETHERMTU;
   2205 		error = ENOTSUP;
   2206 		break;
   2207 	}
   2208 	return error;
   2209 }
   2210 
   2211 static int
   2212 fw1x_reset(struct aq_softc *sc)
   2213 {
   2214 	struct aq_mailbox_header mbox;
   2215 	const int retryCount = 1000;
   2216 	uint32_t tid0;
   2217 	int i;
   2218 
   2219 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2220 
   2221 	for (i = 0; i < retryCount; ++i) {
   2222 		/*
   2223 		 * Read the beginning of Statistics structure to capture
   2224 		 * the Transaction ID.
   2225 		 */
   2226 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2227 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2228 
   2229 		/* Successfully read the stats. */
   2230 		if (tid0 == ~0U) {
   2231 			/* We have read the initial value. */
   2232 			tid0 = mbox.transaction_id;
   2233 			continue;
   2234 		} else if (mbox.transaction_id != tid0) {
   2235 			/*
   2236 			 * Compare transaction ID to initial value.
   2237 			 * If it's different means f/w is alive.
   2238 			 * We're done.
   2239 			 */
   2240 			return 0;
   2241 		}
   2242 
   2243 		/*
   2244 		 * Transaction ID value haven't changed since last time.
   2245 		 * Try reading the stats again.
   2246 		 */
   2247 		delay(10);
   2248 	}
   2249 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2250 	return EBUSY;
   2251 }
   2252 
   2253 static int
   2254 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2255     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2256 {
   2257 	uint32_t mpictrl = 0;
   2258 	uint32_t mpispeed = 0;
   2259 
   2260 	if (speed & AQ_LINK_10G)
   2261 		mpispeed |= FW1X_CTRL_10G;
   2262 	if (speed & AQ_LINK_5G)
   2263 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2264 	if (speed & AQ_LINK_2G5)
   2265 		mpispeed |= FW1X_CTRL_2G5;
   2266 	if (speed & AQ_LINK_1G)
   2267 		mpispeed |= FW1X_CTRL_1G;
   2268 	if (speed & AQ_LINK_100M)
   2269 		mpispeed |= FW1X_CTRL_100M;
   2270 
   2271 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2272 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2273 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2274 	return 0;
   2275 }
   2276 
   2277 static int
   2278 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2279     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2280 {
   2281 	uint32_t mpistate, mpi_speed;
   2282 	aq_link_speed_t speed = AQ_LINK_NONE;
   2283 
   2284 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2285 
   2286 	if (modep != NULL)
   2287 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2288 
   2289 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2290 	if (mpi_speed & FW1X_CTRL_10G)
   2291 		speed = AQ_LINK_10G;
   2292 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2293 		speed = AQ_LINK_5G;
   2294 	else if (mpi_speed & FW1X_CTRL_2G5)
   2295 		speed = AQ_LINK_2G5;
   2296 	else if (mpi_speed & FW1X_CTRL_1G)
   2297 		speed = AQ_LINK_1G;
   2298 	else if (mpi_speed & FW1X_CTRL_100M)
   2299 		speed = AQ_LINK_100M;
   2300 
   2301 	if (speedp != NULL)
   2302 		*speedp = speed;
   2303 
   2304 	if (fcp != NULL)
   2305 		*fcp = AQ_FC_NONE;
   2306 
   2307 	if (eeep != NULL)
   2308 		*eeep = AQ_EEE_DISABLE;
   2309 
   2310 	return 0;
   2311 }
   2312 
   2313 static int
   2314 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2315 {
   2316 	int error;
   2317 
   2318 	error = aq_fw_downld_dwords(sc,
   2319 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2320 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2321 	if (error < 0) {
   2322 		device_printf(sc->sc_dev,
   2323 		    "fw1x> download statistics data FAILED, error %d", error);
   2324 		return error;
   2325 	}
   2326 
   2327 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2328 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2329 	return 0;
   2330 }
   2331 
   2332 static int
   2333 fw2x_reset(struct aq_softc *sc)
   2334 {
   2335 	fw2x_capabilities_t caps = { 0 };
   2336 	int error;
   2337 
   2338 	error = aq_fw_downld_dwords(sc,
   2339 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2340 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2341 	if (error != 0) {
   2342 		aprint_error_dev(sc->sc_dev,
   2343 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2344 		    error);
   2345 		return error;
   2346 	}
   2347 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2348 
   2349 	char buf[256];
   2350 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2351 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2352 
   2353 	return 0;
   2354 }
   2355 
   2356 static int
   2357 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2358     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2359 {
   2360 	uint64_t mpi_ctrl;
   2361 	int error = 0;
   2362 
   2363 	AQ_MPI_LOCK(sc);
   2364 
   2365 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2366 
   2367 	switch (mode) {
   2368 	case MPI_INIT:
   2369 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2370 		if (speed & AQ_LINK_10G)
   2371 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2372 		if (speed & AQ_LINK_5G)
   2373 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2374 		if (speed & AQ_LINK_2G5)
   2375 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2376 		if (speed & AQ_LINK_1G)
   2377 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2378 		if (speed & AQ_LINK_100M)
   2379 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2380 
   2381 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2382 
   2383 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2384 		if (eee == AQ_EEE_ENABLE)
   2385 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2386 
   2387 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2388 		if (fc & AQ_FC_RX)
   2389 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2390 		if (fc & AQ_FC_TX)
   2391 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2392 		break;
   2393 	case MPI_DEINIT:
   2394 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2395 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2396 		break;
   2397 	default:
   2398 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2399 		error =  EINVAL;
   2400 		goto failure;
   2401 	}
   2402 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2403 
   2404  failure:
   2405 	AQ_MPI_UNLOCK(sc);
   2406 	return error;
   2407 }
   2408 
   2409 static int
   2410 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2411     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2412 {
   2413 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2414 
   2415 	if (modep != NULL) {
   2416 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2417 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2418 			*modep = MPI_INIT;
   2419 		else
   2420 			*modep = MPI_DEINIT;
   2421 	}
   2422 
   2423 	aq_link_speed_t speed = AQ_LINK_NONE;
   2424 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2425 		speed = AQ_LINK_10G;
   2426 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2427 		speed = AQ_LINK_5G;
   2428 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2429 		speed = AQ_LINK_2G5;
   2430 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2431 		speed = AQ_LINK_1G;
   2432 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2433 		speed = AQ_LINK_100M;
   2434 
   2435 	if (speedp != NULL)
   2436 		*speedp = speed;
   2437 
   2438 	aq_link_fc_t fc = AQ_FC_NONE;
   2439 	if (mpi_state & FW2X_CTRL_PAUSE)
   2440 		fc |= AQ_FC_RX;
   2441 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2442 		fc |= AQ_FC_TX;
   2443 	if (fcp != NULL)
   2444 		*fcp = fc;
   2445 
   2446 	/* XXX: TODO: EEE */
   2447 	if (eeep != NULL)
   2448 		*eeep = AQ_EEE_DISABLE;
   2449 
   2450 	return 0;
   2451 }
   2452 
   2453 static int
   2454 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2455     uint32_t timeout_ms, uint32_t try_count)
   2456 {
   2457 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2458 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2459 	int error;
   2460 
   2461 	/* First, check that control and state values are consistent */
   2462 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2463 		device_printf(sc->sc_dev,
   2464 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2465 		    " are not consistent for mask %#llx!\n",
   2466 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2467 		    (unsigned long long)mask);
   2468 		return EINVAL;
   2469 	}
   2470 
   2471 	/* Invert bits (toggle) in control register */
   2472 	mpi_ctrl ^= mask;
   2473 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2474 
   2475 	/* Clear all bits except masked */
   2476 	mpi_ctrl &= mask;
   2477 
   2478 	/* Wait for FW reflecting change in state register */
   2479 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2480 	    1000 * timeout_ms, try_count, &error);
   2481 	if (error != 0) {
   2482 		device_printf(sc->sc_dev,
   2483 		    "f/w2x> timeout while waiting for response"
   2484 		    " in state register for bit %#llx!",
   2485 		    (unsigned long long)mask);
   2486 		return error;
   2487 	}
   2488 	return 0;
   2489 }
   2490 
   2491 static int
   2492 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2493 {
   2494 	int error;
   2495 
   2496 	AQ_MPI_LOCK(sc);
   2497 	/* Say to F/W to update the statistics */
   2498 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2499 	if (error != 0) {
   2500 		device_printf(sc->sc_dev,
   2501 		    "fw2x> statistics update error %d\n", error);
   2502 		goto failure;
   2503 	}
   2504 
   2505 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2506 	error = aq_fw_downld_dwords(sc,
   2507 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2508 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2509 	if (error != 0) {
   2510 		device_printf(sc->sc_dev,
   2511 		    "fw2x> download statistics data FAILED, error %d", error);
   2512 		goto failure;
   2513 	}
   2514 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2515 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2516 
   2517  failure:
   2518 	AQ_MPI_UNLOCK(sc);
   2519 	return error;
   2520 }
   2521 
   2522 #if NSYSMON_ENVSYS > 0
   2523 static int
   2524 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2525 {
   2526 	int error;
   2527 	uint32_t value, celsius;
   2528 
   2529 	AQ_MPI_LOCK(sc);
   2530 
   2531 	/* Say to F/W to update the temperature */
   2532 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2533 	if (error != 0)
   2534 		goto failure;
   2535 
   2536 	error = aq_fw_downld_dwords(sc,
   2537 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2538 	    &value, sizeof(value) / sizeof(uint32_t));
   2539 	if (error != 0)
   2540 		goto failure;
   2541 
   2542 	/* 1/256 decrees C to microkelvin */
   2543 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2544 	if (celsius == 0) {
   2545 		error = EIO;
   2546 		goto failure;
   2547 	}
   2548 	*temp = celsius * (1000000 / 256) + 273150000;
   2549 
   2550  failure:
   2551 	AQ_MPI_UNLOCK(sc);
   2552 	return 0;
   2553 }
   2554 #endif
   2555 
   2556 static int
   2557 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2558     uint32_t cnt)
   2559 {
   2560 	uint32_t v;
   2561 	int error = 0;
   2562 
   2563 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2564 	if (error != 0) {
   2565 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2566 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2567 		if (v == 0) {
   2568 			device_printf(sc->sc_dev,
   2569 			    "%s:%d: timeout\n", __func__, __LINE__);
   2570 			return ETIMEDOUT;
   2571 		}
   2572 	}
   2573 
   2574 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2575 
   2576 	error = 0;
   2577 	for (; cnt > 0 && error == 0; cnt--) {
   2578 		/* execute mailbox interface */
   2579 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2580 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2581 		if (sc->sc_features & FEATURES_REV_B1) {
   2582 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2583 			    1, 1000, &error);
   2584 		} else {
   2585 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2586 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2587 			    1, 1000, &error);
   2588 		}
   2589 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2590 		addr += sizeof(uint32_t);
   2591 	}
   2592 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2593 
   2594 	if (error != 0)
   2595 		device_printf(sc->sc_dev,
   2596 		    "%s:%d: timeout\n", __func__, __LINE__);
   2597 
   2598 	return error;
   2599 }
   2600 
   2601 /* read my mac address */
   2602 static int
   2603 aq_get_mac_addr(struct aq_softc *sc)
   2604 {
   2605 	uint32_t mac_addr[2];
   2606 	uint32_t efuse_shadow_addr;
   2607 	int err;
   2608 
   2609 	efuse_shadow_addr = 0;
   2610 	if (FW_VERSION_MAJOR(sc) >= 2)
   2611 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2612 	else
   2613 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2614 
   2615 	if (efuse_shadow_addr == 0) {
   2616 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2617 		return ENXIO;
   2618 	}
   2619 
   2620 	memset(mac_addr, 0, sizeof(mac_addr));
   2621 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2622 	    mac_addr, __arraycount(mac_addr));
   2623 	if (err < 0)
   2624 		return err;
   2625 
   2626 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2627 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2628 		return ENXIO;
   2629 	}
   2630 
   2631 	mac_addr[0] = htobe32(mac_addr[0]);
   2632 	mac_addr[1] = htobe32(mac_addr[1]);
   2633 
   2634 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2635 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2636 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2637 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2638 
   2639 	return 0;
   2640 }
   2641 
   2642 /* set multicast filter. index 0 for own address */
   2643 static int
   2644 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2645 {
   2646 	uint32_t h, l;
   2647 
   2648 	if (index >= AQ_HW_MAC_NUM)
   2649 		return EINVAL;
   2650 
   2651 	if (enaddr == NULL) {
   2652 		/* disable */
   2653 		AQ_WRITE_REG_BIT(sc,
   2654 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2655 		return 0;
   2656 	}
   2657 
   2658 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2659 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2660 	    (enaddr[4] <<  8) | (enaddr[5]);
   2661 
   2662 	/* disable, set, and enable */
   2663 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2664 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2665 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2666 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2667 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2668 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2669 
   2670 	return 0;
   2671 }
   2672 
   2673 static int
   2674 aq_set_capability(struct aq_softc *sc)
   2675 {
   2676 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2677 	int ip4csum_tx =
   2678 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2679 	int ip4csum_rx =
   2680 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2681 	int l4csum_tx = ((ifp->if_capenable &
   2682 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2683 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2684 	int l4csum_rx =
   2685 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2686 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2687 	uint32_t lso =
   2688 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2689 	   0 : 0xffffffff;
   2690 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2691 	    0 : 0xffffffff;
   2692 	uint32_t i, v;
   2693 
   2694 	/* TX checksums offloads*/
   2695 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2696 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2697 
   2698 	/* RX checksums offloads*/
   2699 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2700 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2701 
   2702 	/* LSO offloads*/
   2703 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2704 
   2705 #define AQ_B0_LRO_RXD_MAX	16
   2706 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2707 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2708 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2709 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2710 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2711 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2712 	}
   2713 
   2714 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2715 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2716 	    RPO_LRO_INACTIVE_IVAL, 0);
   2717 	/*
   2718 	 * the LRO timebase divider is 5 uS (0x61a),
   2719 	 * to get a maximum coalescing interval of 250 uS,
   2720 	 * we need to multiply by 50(0x32) to get
   2721 	 * the default value 250 uS
   2722 	 */
   2723 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2724 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2725 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2726 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2727 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2728 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2729 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2730 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2731 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2732 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2733 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2734 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2735 
   2736 	return 0;
   2737 }
   2738 
   2739 static int
   2740 aq_set_filter(struct aq_softc *sc)
   2741 {
   2742 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2743 	struct ethercom * const ec = &sc->sc_ethercom;
   2744 	struct ether_multi *enm;
   2745 	struct ether_multistep step;
   2746 	int idx, error = 0;
   2747 
   2748 	if (ifp->if_flags & IFF_PROMISC) {
   2749 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2750 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2751 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2752 		goto done;
   2753 	}
   2754 
   2755 	/* clear all table */
   2756 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2757 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2758 			continue;
   2759 		aq_set_mac_addr(sc, idx, NULL);
   2760 	}
   2761 
   2762 	/* don't accept all multicast */
   2763 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2764 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2765 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2766 	    RPF_MCAST_FILTER_EN, 0);
   2767 
   2768 	idx = 0;
   2769 	ETHER_LOCK(ec);
   2770 	ETHER_FIRST_MULTI(step, ec, enm);
   2771 	while (enm != NULL) {
   2772 		if (idx == AQ_HW_MAC_OWN)
   2773 			idx++;
   2774 
   2775 		if ((idx >= AQ_HW_MAC_NUM) ||
   2776 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2777 			/*
   2778 			 * too many filters.
   2779 			 * fallback to accept all multicast addresses.
   2780 			 */
   2781 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2782 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2783 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2784 			    RPF_MCAST_FILTER_EN, 1);
   2785 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2786 			ETHER_UNLOCK(ec);
   2787 			goto done;
   2788 		}
   2789 
   2790 		/* add a filter */
   2791 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2792 
   2793 		ETHER_NEXT_MULTI(step, enm);
   2794 	}
   2795 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2796 	ETHER_UNLOCK(ec);
   2797 
   2798  done:
   2799 	return error;
   2800 }
   2801 
   2802 static int
   2803 aq_ifmedia_change(struct ifnet * const ifp)
   2804 {
   2805 	struct aq_softc * const sc = ifp->if_softc;
   2806 
   2807 	aq_link_speed_t rate = AQ_LINK_NONE;
   2808 	aq_link_fc_t fc = AQ_FC_NONE;
   2809 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2810 
   2811 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2812 		return EINVAL;
   2813 
   2814 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2815 	case IFM_AUTO:
   2816 		rate = AQ_LINK_AUTO;
   2817 		break;
   2818 	case IFM_NONE:
   2819 		rate = AQ_LINK_NONE;
   2820 		break;
   2821 	case IFM_100_TX:
   2822 		rate = AQ_LINK_100M;
   2823 		break;
   2824 	case IFM_1000_T:
   2825 		rate = AQ_LINK_1G;
   2826 		break;
   2827 	case IFM_2500_T:
   2828 		rate = AQ_LINK_2G5;
   2829 		break;
   2830 	case IFM_5000_T:
   2831 		rate = AQ_LINK_5G;
   2832 		break;
   2833 	case IFM_10G_T:
   2834 		rate = AQ_LINK_10G;
   2835 		break;
   2836 	default:
   2837 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2838 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2839 		return ENODEV;
   2840 	}
   2841 
   2842 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2843 		fc = AQ_FC_ALL;
   2844 
   2845 	/* XXX: todo EEE */
   2846 
   2847 	/* re-initialize hardware with new parameters */
   2848 	aq_set_linkmode(sc, rate, fc, eee);
   2849 
   2850 	return 0;
   2851 }
   2852 
   2853 static void
   2854 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2855 {
   2856 	struct aq_softc * const sc = ifp->if_softc;
   2857 
   2858 	/* update ifm_active */
   2859 	ifmr->ifm_active = IFM_ETHER;
   2860 	if (sc->sc_link_fc & AQ_FC_RX)
   2861 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
   2862 	if (sc->sc_link_fc & AQ_FC_TX)
   2863 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
   2864 
   2865 	switch (sc->sc_link_rate) {
   2866 	case AQ_LINK_100M:
   2867 		/* XXX: need to detect fulldup or halfdup */
   2868 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   2869 		break;
   2870 	case AQ_LINK_1G:
   2871 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
   2872 		break;
   2873 	case AQ_LINK_2G5:
   2874 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
   2875 		break;
   2876 	case AQ_LINK_5G:
   2877 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
   2878 		break;
   2879 	case AQ_LINK_10G:
   2880 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2881 		break;
   2882 	default:
   2883 		ifmr->ifm_active |= IFM_NONE;
   2884 		break;
   2885 	}
   2886 
   2887 	/* update ifm_status */
   2888 	ifmr->ifm_status = IFM_AVALID;
   2889 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2890 		ifmr->ifm_status |= IFM_ACTIVE;
   2891 }
   2892 
   2893 static void
   2894 aq_initmedia(struct aq_softc *sc)
   2895 {
   2896 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2897 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2898 
   2899 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2900 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2901 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2902 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2903 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2904 	}
   2905 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2906 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2907 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2908 	}
   2909 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2910 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2911 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2912 	}
   2913 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2914 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2915 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2916 	}
   2917 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2918 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2919 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2920 	}
   2921 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2922 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2923 
   2924 	/* default: auto without flowcontrol */
   2925 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2926 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2927 }
   2928 
   2929 static int
   2930 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2931     aq_link_eee_t eee)
   2932 {
   2933 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2934 }
   2935 
   2936 static int
   2937 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2938    aq_link_eee_t *eee)
   2939 {
   2940 	aq_hw_fw_mpi_state_t mode;
   2941 	int error;
   2942 
   2943 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2944 	if (error != 0)
   2945 		return error;
   2946 	if (mode != MPI_INIT)
   2947 		return ENXIO;
   2948 
   2949 	return 0;
   2950 }
   2951 
   2952 static void
   2953 aq_hw_init_tx_path(struct aq_softc *sc)
   2954 {
   2955 	/* Tx TC/RSS number config */
   2956 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2957 
   2958 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2959 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2960 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2961 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2962 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2963 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2964 
   2965 	/* misc */
   2966 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2967 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2968 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2969 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2970 
   2971 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2972 }
   2973 
   2974 static void
   2975 aq_hw_init_rx_path(struct aq_softc *sc)
   2976 {
   2977 	int i;
   2978 
   2979 	/* clear setting */
   2980 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2981 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2982 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2983 	for (i = 0; i < 32; i++) {
   2984 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2985 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2986 	}
   2987 
   2988 	if (sc->sc_rss_enable) {
   2989 		/* Rx TC/RSS number config */
   2990 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2991 
   2992 		/* Rx flow control */
   2993 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2994 
   2995 		/* RSS Ring selection */
   2996 		switch (sc->sc_nqueues) {
   2997 		case 2:
   2998 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2999 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   3000 			break;
   3001 		case 4:
   3002 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   3003 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   3004 			break;
   3005 		case 8:
   3006 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   3007 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   3008 			break;
   3009 		}
   3010 	}
   3011 
   3012 	/* L2 and Multicast filters */
   3013 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   3014 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   3015 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   3016 		    RPF_ACTION_HOST);
   3017 	}
   3018 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   3019 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   3020 
   3021 	/* Vlan filters */
   3022 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   3023 	    ETHERTYPE_QINQ);
   3024 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   3025 	    ETHERTYPE_VLAN);
   3026 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   3027 
   3028 	if (sc->sc_features & FEATURES_REV_B) {
   3029 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3030 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   3031 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3032 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   3033 	}
   3034 
   3035 	/* misc */
   3036 	if (sc->sc_features & FEATURES_RPF2)
   3037 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   3038 	else
   3039 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   3040 
   3041 	/*
   3042 	 * XXX: RX_TCP_RSS_HASH_REG:
   3043 	 *  linux   set 0x000f0000
   3044 	 *  freebsd set 0x000f001e
   3045 	 */
   3046 	/* RSS hash type set for IP/TCP */
   3047 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   3048 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   3049 
   3050 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   3051 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   3052 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   3053 
   3054 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   3055 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   3056 }
   3057 
   3058 static void
   3059 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   3060 {
   3061 	int i;
   3062 
   3063 	if (sc->sc_intr_moderation_enable) {
   3064 		unsigned int tx_min, rx_min;	/* 0-255 */
   3065 		unsigned int tx_max, rx_max;	/* 0-511? */
   3066 
   3067 		switch (sc->sc_link_rate) {
   3068 		case AQ_LINK_100M:
   3069 			tx_min = 0x4f;
   3070 			tx_max = 0xff;
   3071 			rx_min = 0x04;
   3072 			rx_max = 0x50;
   3073 			break;
   3074 		case AQ_LINK_1G:
   3075 		default:
   3076 			tx_min = 0x4f;
   3077 			tx_max = 0xff;
   3078 			rx_min = 0x30;
   3079 			rx_max = 0x80;
   3080 			break;
   3081 		case AQ_LINK_2G5:
   3082 			tx_min = 0x4f;
   3083 			tx_max = 0xff;
   3084 			rx_min = 0x18;
   3085 			rx_max = 0xe0;
   3086 			break;
   3087 		case AQ_LINK_5G:
   3088 			tx_min = 0x4f;
   3089 			tx_max = 0xff;
   3090 			rx_min = 0x0c;
   3091 			rx_max = 0x70;
   3092 			break;
   3093 		case AQ_LINK_10G:
   3094 			tx_min = 0x4f;
   3095 			tx_max = 0x1ff;
   3096 			rx_min = 0x06;	/* freebsd use 80 */
   3097 			rx_max = 0x38;	/* freebsd use 120 */
   3098 			break;
   3099 		}
   3100 
   3101 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3102 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3103 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3104 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3105 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3106 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3107 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3108 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3109 
   3110 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3111 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3112 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3113 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3114 			    TX_INTR_MODERATION_CTL_EN);
   3115 		}
   3116 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3117 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3118 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3119 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3120 			    RX_INTR_MODERATION_CTL_EN);
   3121 		}
   3122 
   3123 	} else {
   3124 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3125 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3126 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3127 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3128 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3129 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3130 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3131 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3132 
   3133 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3134 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3135 		}
   3136 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3137 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3138 		}
   3139 	}
   3140 }
   3141 
   3142 static void
   3143 aq_hw_qos_set(struct aq_softc *sc)
   3144 {
   3145 	uint32_t tc = 0;
   3146 	uint32_t buff_size;
   3147 
   3148 	/* TPS Descriptor rate init */
   3149 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3150 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3151 
   3152 	/* TPS VM init */
   3153 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3154 
   3155 	/* TPS TC credits init */
   3156 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3157 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3158 
   3159 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3160 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3161 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3162 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3163 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3164 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3165 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3166 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3167 
   3168 	/* Tx buf size */
   3169 	tc = 0;
   3170 	buff_size = AQ_HW_TXBUF_MAX;
   3171 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3172 	    buff_size);
   3173 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3174 	    (buff_size * (1024 / 32) * 66) / 100);
   3175 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3176 	    (buff_size * (1024 / 32) * 50) / 100);
   3177 
   3178 	/* QoS Rx buf size per TC */
   3179 	tc = 0;
   3180 	buff_size = AQ_HW_RXBUF_MAX;
   3181 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3182 	    buff_size);
   3183 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3184 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3185 	    (buff_size * (1024 / 32) * 66) / 100);
   3186 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3187 	    (buff_size * (1024 / 32) * 50) / 100);
   3188 
   3189 	/* QoS 802.1p priority -> TC mapping */
   3190 	int i_priority;
   3191 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3192 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3193 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3194 	}
   3195 }
   3196 
   3197 /* called once from aq_attach */
   3198 static int
   3199 aq_init_rss(struct aq_softc *sc)
   3200 {
   3201 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3202 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3203 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3204 	unsigned int i;
   3205 	int error;
   3206 
   3207 	/* initialize rss key */
   3208 	rss_getkey((uint8_t *)rss_key);
   3209 
   3210 	/* hash to ring table */
   3211 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3212 		rss_table[i] = i % sc->sc_nqueues;
   3213 	}
   3214 
   3215 	/*
   3216 	 * set rss key
   3217 	 */
   3218 	for (i = 0; i < __arraycount(rss_key); i++) {
   3219 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3220 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3221 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3222 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3223 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3224 		    RPF_RSS_KEY_WR_EN, 1);
   3225 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3226 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3227 		if (error != 0) {
   3228 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3229 			    __func__);
   3230 			goto rss_set_timeout;
   3231 		}
   3232 	}
   3233 
   3234 	/*
   3235 	 * set rss indirection table
   3236 	 *
   3237 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3238 	 * we'll make it by __BITMAP(3) macros.
   3239 	 */
   3240 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3241 	__BITMAP_ZERO(&bit3x64);
   3242 
   3243 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3244 	do {							\
   3245 		if (val & 1) {					\
   3246 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3247 		} else {					\
   3248 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3249 		}						\
   3250 		if (val & 2) {					\
   3251 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3252 		} else {					\
   3253 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3254 		}						\
   3255 		if (val & 4) {					\
   3256 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3257 		} else {					\
   3258 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3259 		}						\
   3260 	} while (0 /* CONSTCOND */)
   3261 
   3262 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3263 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3264 	}
   3265 
   3266 	/* write 192bit data in steps of 16bit */
   3267 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3268 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3269 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3270 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3271 		    RPF_RSS_REDIR_ADDR, i);
   3272 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3273 		    RPF_RSS_REDIR_WR_EN, 1);
   3274 
   3275 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3276 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3277 		if (error != 0)
   3278 			break;
   3279 	}
   3280 
   3281  rss_set_timeout:
   3282 	return error;
   3283 }
   3284 
   3285 static void
   3286 aq_hw_l3_filter_set(struct aq_softc *sc)
   3287 {
   3288 	int i;
   3289 
   3290 	/* clear all filter */
   3291 	for (i = 0; i < 8; i++) {
   3292 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3293 		    RPF_L3_FILTER_L4_EN, 0);
   3294 	}
   3295 }
   3296 
   3297 static void
   3298 aq_set_vlan_filters(struct aq_softc *sc)
   3299 {
   3300 	struct ethercom * const ec = &sc->sc_ethercom;
   3301 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   3302 	struct vlanid_list *vlanidp;
   3303 	int i;
   3304 
   3305 	ETHER_LOCK(ec);
   3306 
   3307 	/* disable all vlan filters */
   3308 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
   3309 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
   3310 
   3311 	/* count VID */
   3312 	i = 0;
   3313 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
   3314 		i++;
   3315 
   3316 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
   3317 	    (ifp->if_flags & IFF_PROMISC) ||
   3318 	    (i > RPF_VLAN_MAX_FILTERS)) {
   3319 		/*
   3320 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
   3321 		 * must receive all VID
   3322 		 */
   3323 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   3324 		    RPF_VLAN_MODE_PROMISC, 1);
   3325 		goto done;
   3326 	}
   3327 
   3328 	/* receive only selected VID */
   3329 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
   3330 	i = 0;
   3331 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
   3332 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3333 		    RPF_VLAN_FILTER_EN, 1);
   3334 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3335 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3336 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3337 		    RPF_VLAN_FILTER_RXQ, 0);
   3338 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3339 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
   3340 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3341 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
   3342 		i++;
   3343 	}
   3344 
   3345  done:
   3346 	ETHER_UNLOCK(ec);
   3347 }
   3348 
   3349 static int
   3350 aq_hw_init(struct aq_softc *sc)
   3351 {
   3352 	uint32_t v;
   3353 
   3354 	/* Force limit MRRS on RDM/TDM to 2K */
   3355 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3356 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3357 
   3358 	/*
   3359 	 * TX DMA total request limit. B0 hardware is not capable to
   3360 	 * handle more than (8K-MRRS) incoming DMA data.
   3361 	 * Value 24 in 256byte units
   3362 	 */
   3363 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3364 
   3365 	aq_hw_init_tx_path(sc);
   3366 	aq_hw_init_rx_path(sc);
   3367 
   3368 	aq_hw_interrupt_moderation_set(sc);
   3369 
   3370 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3371 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3372 
   3373 	aq_hw_qos_set(sc);
   3374 
   3375 	/* Enable interrupt */
   3376 	int irqmode;
   3377 	if (sc->sc_msix)
   3378 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3379 	else
   3380 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3381 
   3382 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3383 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3384 	    sc->sc_msix ? 1 : 0);
   3385 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3386 
   3387 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3388 
   3389 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3390 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3391 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3392 	);
   3393 
   3394 	/* link interrupt */
   3395 	if (!sc->sc_msix)
   3396 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3397 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3398 	    __BIT(7) | sc->sc_linkstat_irq);
   3399 
   3400 	return 0;
   3401 }
   3402 
   3403 static int
   3404 aq_update_link_status(struct aq_softc *sc)
   3405 {
   3406 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   3407 	aq_link_speed_t rate = AQ_LINK_NONE;
   3408 	aq_link_fc_t fc = AQ_FC_NONE;
   3409 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3410 	unsigned int speed;
   3411 	int changed = 0;
   3412 
   3413 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3414 
   3415 	if (sc->sc_link_rate != rate)
   3416 		changed = 1;
   3417 	if (sc->sc_link_fc != fc)
   3418 		changed = 1;
   3419 	if (sc->sc_link_eee != eee)
   3420 		changed = 1;
   3421 
   3422 	if (changed) {
   3423 		switch (rate) {
   3424 		case AQ_LINK_100M:
   3425 			speed = 100;
   3426 			break;
   3427 		case AQ_LINK_1G:
   3428 			speed = 1000;
   3429 			break;
   3430 		case AQ_LINK_2G5:
   3431 			speed = 2500;
   3432 			break;
   3433 		case AQ_LINK_5G:
   3434 			speed = 5000;
   3435 			break;
   3436 		case AQ_LINK_10G:
   3437 			speed = 10000;
   3438 			break;
   3439 		case AQ_LINK_NONE:
   3440 		default:
   3441 			speed = 0;
   3442 			break;
   3443 		}
   3444 
   3445 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3446 			/* link DOWN -> UP */
   3447 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3448 			    speed);
   3449 			if_link_state_change(ifp, LINK_STATE_UP);
   3450 		} else if (rate == AQ_LINK_NONE) {
   3451 			/* link UP -> DOWN */
   3452 			device_printf(sc->sc_dev, "link is DOWN\n");
   3453 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3454 		} else {
   3455 			device_printf(sc->sc_dev,
   3456 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3457 			    speed, fc, eee);
   3458 		}
   3459 
   3460 		sc->sc_link_rate = rate;
   3461 		sc->sc_link_fc = fc;
   3462 		sc->sc_link_eee = eee;
   3463 
   3464 		/* update interrupt timing according to new link speed */
   3465 		aq_hw_interrupt_moderation_set(sc);
   3466 	}
   3467 
   3468 	return changed;
   3469 }
   3470 
   3471 #ifdef AQ_EVENT_COUNTERS
   3472 static void
   3473 aq_update_statistics(struct aq_softc *sc)
   3474 {
   3475 	int prev = sc->sc_statistics_idx;
   3476 	int cur = prev ^ 1;
   3477 
   3478 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3479 
   3480 	/*
   3481 	 * aq's internal statistics counter is 32bit.
   3482 	 * cauculate delta, and add to evcount
   3483 	 */
   3484 #define ADD_DELTA(cur, prev, name)				\
   3485 	do {							\
   3486 		uint32_t n;					\
   3487 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3488 		    sc->sc_statistics[prev].name);		\
   3489 		if (n != 0) {					\
   3490 			AQ_EVCNT_ADD(sc, name, n);		\
   3491 		}						\
   3492 	} while (/*CONSTCOND*/0);
   3493 
   3494 	ADD_DELTA(cur, prev, uprc);
   3495 	ADD_DELTA(cur, prev, mprc);
   3496 	ADD_DELTA(cur, prev, bprc);
   3497 	ADD_DELTA(cur, prev, prc);
   3498 	ADD_DELTA(cur, prev, erpr);
   3499 	ADD_DELTA(cur, prev, uptc);
   3500 	ADD_DELTA(cur, prev, mptc);
   3501 	ADD_DELTA(cur, prev, bptc);
   3502 	ADD_DELTA(cur, prev, ptc);
   3503 	ADD_DELTA(cur, prev, erpt);
   3504 	ADD_DELTA(cur, prev, mbtc);
   3505 	ADD_DELTA(cur, prev, bbtc);
   3506 	ADD_DELTA(cur, prev, mbrc);
   3507 	ADD_DELTA(cur, prev, bbrc);
   3508 	ADD_DELTA(cur, prev, ubrc);
   3509 	ADD_DELTA(cur, prev, ubtc);
   3510 	ADD_DELTA(cur, prev, dpc);
   3511 	ADD_DELTA(cur, prev, cprc);
   3512 
   3513 	sc->sc_statistics_idx = cur;
   3514 }
   3515 #endif /* AQ_EVENT_COUNTERS */
   3516 
   3517 /* allocate and map one DMA block */
   3518 static int
   3519 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3520     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3521 {
   3522 	int nsegs, error;
   3523 
   3524 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3525 	    1, &nsegs, 0)) != 0) {
   3526 		aprint_error_dev(sc->sc_dev,
   3527 		    "unable to allocate DMA buffer, error=%d\n", error);
   3528 		goto fail_alloc;
   3529 	}
   3530 
   3531 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3532 	    BUS_DMA_COHERENT)) != 0) {
   3533 		aprint_error_dev(sc->sc_dev,
   3534 		    "unable to map DMA buffer, error=%d\n", error);
   3535 		goto fail_map;
   3536 	}
   3537 
   3538 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3539 	    0, mapp)) != 0) {
   3540 		aprint_error_dev(sc->sc_dev,
   3541 		    "unable to create DMA map, error=%d\n", error);
   3542 		goto fail_create;
   3543 	}
   3544 
   3545 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3546 	    0)) != 0) {
   3547 		aprint_error_dev(sc->sc_dev,
   3548 		    "unable to load DMA map, error=%d\n", error);
   3549 		goto fail_load;
   3550 	}
   3551 
   3552 	*sizep = size;
   3553 	return 0;
   3554 
   3555  fail_load:
   3556 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3557 	*mapp = NULL;
   3558  fail_create:
   3559 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3560 	*addrp = NULL;
   3561  fail_map:
   3562 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3563 	memset(seg, 0, sizeof(*seg));
   3564  fail_alloc:
   3565 	*sizep = 0;
   3566 	return error;
   3567 }
   3568 
   3569 static void
   3570 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3571     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3572 {
   3573 	if (*mapp != NULL) {
   3574 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3575 		*mapp = NULL;
   3576 	}
   3577 	if (*addrp != NULL) {
   3578 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3579 		*addrp = NULL;
   3580 	}
   3581 	if (*sizep != 0) {
   3582 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3583 		memset(seg, 0, sizeof(*seg));
   3584 		*sizep = 0;
   3585 	}
   3586 }
   3587 
   3588 static int
   3589 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3590 {
   3591 	int i, error;
   3592 
   3593 	/* allocate tx descriptors */
   3594 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3595 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3596 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3597 	if (error != 0)
   3598 		return error;
   3599 
   3600 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3601 
   3602 	/* fill tx ring with dmamap */
   3603 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3604 #define AQ_MAXDMASIZE	(16 * 1024)
   3605 #define AQ_NTXSEGS	32
   3606 		/* XXX: TODO: error check */
   3607 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3608 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3609 	}
   3610 	return 0;
   3611 }
   3612 
   3613 static void
   3614 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3615 {
   3616 	int i;
   3617 
   3618 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3619 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3620 
   3621 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3622 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3623 			if (txring->txr_mbufs[i].m != NULL) {
   3624 				bus_dmamap_unload(sc->sc_dmat,
   3625 				    txring->txr_mbufs[i].dmamap);
   3626 				m_freem(txring->txr_mbufs[i].m);
   3627 				txring->txr_mbufs[i].m = NULL;
   3628 			}
   3629 			bus_dmamap_destroy(sc->sc_dmat,
   3630 			    txring->txr_mbufs[i].dmamap);
   3631 			txring->txr_mbufs[i].dmamap = NULL;
   3632 		}
   3633 	}
   3634 }
   3635 
   3636 static int
   3637 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3638 {
   3639 	int i, error;
   3640 
   3641 	/* allocate rx descriptors */
   3642 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3643 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3644 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3645 	if (error != 0)
   3646 		return error;
   3647 
   3648 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3649 
   3650 	/* fill rxring with dmamaps */
   3651 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3652 		rxring->rxr_mbufs[i].m = NULL;
   3653 		/* XXX: TODO: error check */
   3654 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3655 		    &rxring->rxr_mbufs[i].dmamap);
   3656 	}
   3657 	return 0;
   3658 }
   3659 
   3660 static void
   3661 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3662 {
   3663 	int i;
   3664 
   3665 	/* free all mbufs allocated for RX */
   3666 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3667 		if (rxring->rxr_mbufs[i].m != NULL) {
   3668 			bus_dmamap_unload(sc->sc_dmat,
   3669 			    rxring->rxr_mbufs[i].dmamap);
   3670 			m_freem(rxring->rxr_mbufs[i].m);
   3671 			rxring->rxr_mbufs[i].m = NULL;
   3672 		}
   3673 	}
   3674 }
   3675 
   3676 static void
   3677 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3678 {
   3679 	int i;
   3680 
   3681 	/* free all mbufs and dmamaps */
   3682 	aq_rxdrain(sc, rxring);
   3683 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3684 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3685 			bus_dmamap_destroy(sc->sc_dmat,
   3686 			    rxring->rxr_mbufs[i].dmamap);
   3687 			rxring->rxr_mbufs[i].dmamap = NULL;
   3688 		}
   3689 	}
   3690 
   3691 	/* free RX descriptor */
   3692 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3693 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3694 }
   3695 
   3696 static void
   3697 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3698     struct mbuf *m)
   3699 {
   3700 	int error;
   3701 
   3702 	/* if mbuf already exists, unload and free */
   3703 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3704 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3705 		m_freem(rxring->rxr_mbufs[idx].m);
   3706 		rxring->rxr_mbufs[idx].m = NULL;
   3707 	}
   3708 
   3709 	rxring->rxr_mbufs[idx].m = m;
   3710 
   3711 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3712 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3713 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3714 	if (error) {
   3715 		device_printf(sc->sc_dev,
   3716 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3717 		panic("%s: unable to load rx DMA map. error=%d",
   3718 		    __func__, error);
   3719 	}
   3720 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3721 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3722 }
   3723 
   3724 static inline void
   3725 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3726 {
   3727 	/* refill rxdesc, and sync */
   3728 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3729 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3730 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3731 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3732 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3733 	    BUS_DMASYNC_PREWRITE);
   3734 }
   3735 
   3736 static struct mbuf *
   3737 aq_alloc_mbuf(void)
   3738 {
   3739 	struct mbuf *m;
   3740 
   3741 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3742 	if (m == NULL)
   3743 		return NULL;
   3744 
   3745 	MCLGET(m, M_DONTWAIT);
   3746 	if ((m->m_flags & M_EXT) == 0) {
   3747 		m_freem(m);
   3748 		return NULL;
   3749 	}
   3750 
   3751 	return m;
   3752 }
   3753 
   3754 /* allocate mbuf and unload dmamap */
   3755 static int
   3756 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3757 {
   3758 	struct mbuf *m;
   3759 
   3760 	m = aq_alloc_mbuf();
   3761 	if (m == NULL)
   3762 		return ENOBUFS;
   3763 
   3764 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3765 	return 0;
   3766 }
   3767 
   3768 static int
   3769 aq_txrx_rings_alloc(struct aq_softc *sc)
   3770 {
   3771 	int n, error;
   3772 
   3773 	for (n = 0; n < sc->sc_nqueues; n++) {
   3774 		sc->sc_queue[n].sc = sc;
   3775 		sc->sc_queue[n].txring.txr_sc = sc;
   3776 		sc->sc_queue[n].txring.txr_index = n;
   3777 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3778 		    IPL_NET);
   3779 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3780 		if (error != 0)
   3781 			goto failure;
   3782 
   3783 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3784 		if (error != 0)
   3785 			goto failure;
   3786 
   3787 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3788 		sc->sc_queue[n].rxring.rxr_index = n;
   3789 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3790 		   IPL_NET);
   3791 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3792 		if (error != 0)
   3793 			break;
   3794 	}
   3795 
   3796  failure:
   3797 	return error;
   3798 }
   3799 
   3800 static void
   3801 aq_txrx_rings_free(struct aq_softc *sc)
   3802 {
   3803 	int n;
   3804 
   3805 	for (n = 0; n < sc->sc_nqueues; n++) {
   3806 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3807 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3808 
   3809 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3810 
   3811 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3812 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3813 	}
   3814 }
   3815 
   3816 static int
   3817 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3818 {
   3819 	int error = 0;
   3820 	txring->txr_softint = NULL;
   3821 
   3822 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3823 	if (txring->txr_pcq == NULL) {
   3824 		aprint_error_dev(sc->sc_dev,
   3825 		    "unable to allocate pcq for TXring[%d]\n",
   3826 		    txring->txr_index);
   3827 		error = ENOMEM;
   3828 		goto done;
   3829 	}
   3830 
   3831 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3832 	    aq_deferred_transmit, txring);
   3833 	if (txring->txr_softint == NULL) {
   3834 		aprint_error_dev(sc->sc_dev,
   3835 		    "unable to establish softint for TXring[%d]\n",
   3836 		    txring->txr_index);
   3837 		error = ENOENT;
   3838 	}
   3839 
   3840  done:
   3841 	return error;
   3842 }
   3843 
   3844 static void
   3845 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3846 {
   3847 	struct mbuf *m;
   3848 
   3849 	if (txring->txr_softint != NULL) {
   3850 		softint_disestablish(txring->txr_softint);
   3851 		txring->txr_softint = NULL;
   3852 	}
   3853 
   3854 	if (txring->txr_pcq != NULL) {
   3855 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3856 			m_freem(m);
   3857 		pcq_destroy(txring->txr_pcq);
   3858 		txring->txr_pcq = NULL;
   3859 	}
   3860 }
   3861 
   3862 #if NSYSMON_ENVSYS > 0
   3863 static void
   3864 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3865 {
   3866 	struct aq_softc *sc;
   3867 	uint32_t temp;
   3868 	int error;
   3869 
   3870 	sc = sme->sme_cookie;
   3871 
   3872 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3873 	if (error == 0) {
   3874 		edata->value_cur = temp;
   3875 		edata->state = ENVSYS_SVALID;
   3876 	} else {
   3877 		edata->state = ENVSYS_SINVALID;
   3878 	}
   3879 }
   3880 #endif
   3881 
   3882 
   3883 
   3884 static bool
   3885 aq_watchdog_check(struct aq_softc * const sc)
   3886 {
   3887 
   3888 	AQ_LOCKED(sc);
   3889 
   3890 	bool ok = true;
   3891 	for (int n = 0; n < sc->sc_nqueues; n++) {
   3892 		struct aq_txring *txring = &sc->sc_queue[n].txring;
   3893 
   3894 		mutex_enter(&txring->txr_mutex);
   3895 		if (txring->txr_sending &&
   3896 		    time_uptime - txring->txr_lastsent > aq_watchdog_timeout)
   3897 			ok = false;
   3898 
   3899 		mutex_exit(&txring->txr_mutex);
   3900 
   3901 		if (!ok)
   3902 			return false;
   3903 	}
   3904 
   3905 	if (sc->sc_trigger_reset) {
   3906 		/* debug operation, no need for atomicity or reliability */
   3907 		sc->sc_trigger_reset = 0;
   3908 		return false;
   3909 	}
   3910 
   3911 	return true;
   3912 }
   3913 
   3914 
   3915 
   3916 static bool
   3917 aq_watchdog_tick(struct ifnet *ifp)
   3918 {
   3919 	struct aq_softc * const sc = ifp->if_softc;
   3920 
   3921 	AQ_LOCKED(sc);
   3922 
   3923 	if (!sc->sc_trigger_reset && aq_watchdog_check(sc))
   3924 		return true;
   3925 
   3926 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) {
   3927 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   3928 	}
   3929 
   3930 	return false;
   3931 }
   3932 
   3933 static void
   3934 aq_tick(void *arg)
   3935 {
   3936 	struct aq_softc * const sc = arg;
   3937 
   3938 	AQ_LOCK(sc);
   3939 	if (sc->sc_stopping) {
   3940 		AQ_UNLOCK(sc);
   3941 		return;
   3942 	}
   3943 
   3944 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3945 		sc->sc_detect_linkstat = false;
   3946 		aq_update_link_status(sc);
   3947 	}
   3948 
   3949 #ifdef AQ_EVENT_COUNTERS
   3950 	if (sc->sc_poll_statistics)
   3951 		aq_update_statistics(sc);
   3952 #endif
   3953 
   3954 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   3955 	const bool ok = aq_watchdog_tick(ifp);
   3956 	if (ok)
   3957 		callout_schedule(&sc->sc_tick_ch, hz);
   3958 
   3959 	AQ_UNLOCK(sc);
   3960 }
   3961 
   3962 /* interrupt enable/disable */
   3963 static void
   3964 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3965 {
   3966 	uint32_t imask = 0;
   3967 	int i;
   3968 
   3969 	if (txrx) {
   3970 		for (i = 0; i < sc->sc_nqueues; i++) {
   3971 			imask |= __BIT(sc->sc_tx_irq[i]);
   3972 			imask |= __BIT(sc->sc_rx_irq[i]);
   3973 		}
   3974 	}
   3975 
   3976 	if (link)
   3977 		imask |= __BIT(sc->sc_linkstat_irq);
   3978 
   3979 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3980 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3981 }
   3982 
   3983 static int
   3984 aq_legacy_intr(void *arg)
   3985 {
   3986 	struct aq_softc *sc = arg;
   3987 	uint32_t status;
   3988 	int nintr = 0;
   3989 
   3990 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3991 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3992 
   3993 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3994 		AQ_LOCK(sc);
   3995 		sc->sc_detect_linkstat = true;
   3996 		if (!sc->sc_stopping)
   3997 			callout_schedule(&sc->sc_tick_ch, 0);
   3998 		AQ_UNLOCK(sc);
   3999 		nintr++;
   4000 	}
   4001 
   4002 	if (status & __BIT(sc->sc_rx_irq[0])) {
   4003 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   4004 	}
   4005 
   4006 	if (status & __BIT(sc->sc_tx_irq[0])) {
   4007 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   4008 	}
   4009 
   4010 	return nintr;
   4011 }
   4012 
   4013 static int
   4014 aq_txrx_intr(void *arg)
   4015 {
   4016 	struct aq_queue *queue = arg;
   4017 	struct aq_softc *sc = queue->sc;
   4018 	struct aq_txring *txring = &queue->txring;
   4019 	struct aq_rxring *rxring = &queue->rxring;
   4020 	uint32_t status;
   4021 	int nintr = 0;
   4022 	int txringidx, rxringidx, txirq, rxirq;
   4023 
   4024 	txringidx = txring->txr_index;
   4025 	rxringidx = rxring->rxr_index;
   4026 	txirq = sc->sc_tx_irq[txringidx];
   4027 	rxirq = sc->sc_rx_irq[rxringidx];
   4028 
   4029 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   4030 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   4031 		/* stray interrupt? */
   4032 		return 0;
   4033 	}
   4034 
   4035 	nintr += aq_rx_intr(rxring);
   4036 	nintr += aq_tx_intr(txring);
   4037 
   4038 	return nintr;
   4039 }
   4040 
   4041 static int
   4042 aq_link_intr(void *arg)
   4043 {
   4044 	struct aq_softc * const sc = arg;
   4045 	uint32_t status;
   4046 	int nintr = 0;
   4047 
   4048 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   4049 	if (status & __BIT(sc->sc_linkstat_irq)) {
   4050 		AQ_LOCK(sc);
   4051 		sc->sc_detect_linkstat = true;
   4052 		if (!sc->sc_stopping)
   4053 			callout_schedule(&sc->sc_tick_ch, 0);
   4054 		AQ_UNLOCK(sc);
   4055 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   4056 		    __BIT(sc->sc_linkstat_irq));
   4057 		nintr++;
   4058 	}
   4059 
   4060 	return nintr;
   4061 }
   4062 
   4063 static void
   4064 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   4065 {
   4066 	const int ringidx = txring->txr_index;
   4067 	int i;
   4068 
   4069 	mutex_enter(&txring->txr_mutex);
   4070 
   4071 	txring->txr_prodidx = 0;
   4072 	txring->txr_considx = 0;
   4073 	txring->txr_nfree = AQ_TXD_NUM;
   4074 	txring->txr_active = false;
   4075 
   4076 	/* free mbufs untransmitted */
   4077 	for (i = 0; i < AQ_TXD_NUM; i++) {
   4078 		if (txring->txr_mbufs[i].m != NULL) {
   4079 			m_freem(txring->txr_mbufs[i].m);
   4080 			txring->txr_mbufs[i].m = NULL;
   4081 		}
   4082 	}
   4083 
   4084 	/* disable DMA */
   4085 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   4086 
   4087 	if (start) {
   4088 		/* TX descriptor physical address */
   4089 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   4090 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   4091 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   4092 		    (uint32_t)((uint64_t)paddr >> 32));
   4093 
   4094 		/* TX descriptor size */
   4095 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   4096 		    AQ_TXD_NUM / 8);
   4097 
   4098 		/* reload TAIL pointer */
   4099 		txring->txr_prodidx = txring->txr_considx =
   4100 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   4101 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   4102 
   4103 		/* Mapping interrupt vector */
   4104 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   4105 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   4106 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   4107 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   4108 
   4109 		/* enable DMA */
   4110 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   4111 		    TX_DMA_DESC_EN, 1);
   4112 
   4113 		const int cpuid = 0;	/* XXX? */
   4114 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   4115 		    TDM_DCAD_CPUID, cpuid);
   4116 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   4117 		    TDM_DCAD_CPUID_EN, 0);
   4118 
   4119 		txring->txr_active = true;
   4120 	}
   4121 
   4122 	mutex_exit(&txring->txr_mutex);
   4123 }
   4124 
   4125 static int
   4126 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   4127 {
   4128 	const int ringidx = rxring->rxr_index;
   4129 	int i;
   4130 	int error = 0;
   4131 
   4132 	mutex_enter(&rxring->rxr_mutex);
   4133 	rxring->rxr_active = false;
   4134 	rxring->rxr_discarding = false;
   4135 	if (rxring->rxr_receiving_m != NULL) {
   4136 		m_freem(rxring->rxr_receiving_m);
   4137 		rxring->rxr_receiving_m = NULL;
   4138 		rxring->rxr_receiving_m_last = NULL;
   4139 	}
   4140 
   4141 	/* disable DMA */
   4142 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   4143 
   4144 	/* free all RX mbufs */
   4145 	aq_rxdrain(sc, rxring);
   4146 
   4147 	if (start) {
   4148 		for (i = 0; i < AQ_RXD_NUM; i++) {
   4149 			error = aq_rxring_add(sc, rxring, i);
   4150 			if (error != 0) {
   4151 				aq_rxdrain(sc, rxring);
   4152 				return error;
   4153 			}
   4154 			aq_rxring_reset_desc(sc, rxring, i);
   4155 		}
   4156 
   4157 		/* RX descriptor physical address */
   4158 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   4159 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   4160 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   4161 		    (uint32_t)((uint64_t)paddr >> 32));
   4162 
   4163 		/* RX descriptor size */
   4164 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   4165 		    AQ_RXD_NUM / 8);
   4166 
   4167 		/* maximum receive frame size */
   4168 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4169 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   4170 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   4171 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   4172 
   4173 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4174 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   4175 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4176 		    RX_DMA_DESC_VLAN_STRIP,
   4177 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4178 		    1 : 0);
   4179 
   4180 		/*
   4181 		 * reload TAIL pointer, and update readidx
   4182 		 * (HEAD pointer cannot write)
   4183 		 */
   4184 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4185 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4186 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4187 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4188 
   4189 		/* Rx ring set mode */
   4190 
   4191 		/* Mapping interrupt vector */
   4192 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4193 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4194 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4195 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4196 
   4197 		const int cpuid = 0;	/* XXX? */
   4198 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4199 		    RX_DMA_DCAD_CPUID, cpuid);
   4200 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4201 		    RX_DMA_DCAD_DESC_EN, 0);
   4202 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4203 		    RX_DMA_DCAD_HEADER_EN, 0);
   4204 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4205 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4206 
   4207 		/* enable DMA. start receiving */
   4208 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4209 		    RX_DMA_DESC_EN, 1);
   4210 
   4211 		rxring->rxr_active = true;
   4212 	}
   4213 
   4214 	mutex_exit(&rxring->rxr_mutex);
   4215 	return error;
   4216 }
   4217 
   4218 #define TXRING_NEXTIDX(idx)	\
   4219 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4220 #define RXRING_NEXTIDX(idx)	\
   4221 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4222 
   4223 static int
   4224 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4225 {
   4226 	bus_dmamap_t map;
   4227 	struct mbuf *m = *mp;
   4228 	uint32_t ctl1, ctl1_ctx, ctl2;
   4229 	int idx, i, error;
   4230 
   4231 	idx = txring->txr_prodidx;
   4232 	map = txring->txr_mbufs[idx].dmamap;
   4233 
   4234 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4235 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4236 	if (error == EFBIG) {
   4237 		struct mbuf *n;
   4238 		n = m_defrag(m, M_DONTWAIT);
   4239 		if (n == NULL)
   4240 			return EFBIG;
   4241 		/* m_defrag() preserve m */
   4242 		KASSERT(n == m);
   4243 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4244 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4245 	}
   4246 	if (error != 0)
   4247 		return error;
   4248 
   4249 	/*
   4250 	 * check spaces of free descriptors.
   4251 	 * +1 is additional descriptor for context (vlan, etc,.)
   4252 	 */
   4253 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4254 		device_printf(sc->sc_dev,
   4255 		    "TX: not enough descriptors left %d for %d segs\n",
   4256 		    txring->txr_nfree, map->dm_nsegs + 1);
   4257 		bus_dmamap_unload(sc->sc_dmat, map);
   4258 		return ENOBUFS;
   4259 	}
   4260 
   4261 	/* sync dma for mbuf */
   4262 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4263 	    BUS_DMASYNC_PREWRITE);
   4264 
   4265 	ctl1_ctx = 0;
   4266 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4267 
   4268 	if (vlan_has_tag(m)) {
   4269 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4270 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4271 
   4272 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4273 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4274 
   4275 		/* fill context descriptor and forward index */
   4276 		txring->txr_txdesc[idx].buf_addr = 0;
   4277 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4278 		txring->txr_txdesc[idx].ctl2 = 0;
   4279 
   4280 		idx = TXRING_NEXTIDX(idx);
   4281 		txring->txr_nfree--;
   4282 	}
   4283 
   4284 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4285 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4286 	if (m->m_pkthdr.csum_flags &
   4287 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4288 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4289 	}
   4290 
   4291 	/* fill descriptor(s) */
   4292 	for (i = 0; i < map->dm_nsegs; i++) {
   4293 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4294 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4295 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4296 
   4297 		if (i == 0) {
   4298 			/* remember mbuf of these descriptors */
   4299 			txring->txr_mbufs[idx].m = m;
   4300 		} else {
   4301 			txring->txr_mbufs[idx].m = NULL;
   4302 		}
   4303 
   4304 		if (i == map->dm_nsegs - 1) {
   4305 			/* last segment, mark an EndOfPacket, and cause intr */
   4306 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4307 		}
   4308 
   4309 		txring->txr_txdesc[idx].buf_addr =
   4310 		    htole64(map->dm_segs[i].ds_addr);
   4311 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4312 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4313 
   4314 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4315 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4316 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4317 
   4318 		idx = TXRING_NEXTIDX(idx);
   4319 		txring->txr_nfree--;
   4320 	}
   4321 
   4322 	txring->txr_prodidx = idx;
   4323 
   4324 	return 0;
   4325 }
   4326 
   4327 static int
   4328 aq_tx_intr(void *arg)
   4329 {
   4330 	struct aq_txring * const txring = arg;
   4331 	struct aq_softc * const sc = txring->txr_sc;
   4332 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4333 	struct mbuf *m;
   4334 	const int ringidx = txring->txr_index;
   4335 	unsigned int idx, hw_head, n = 0;
   4336 
   4337 	mutex_enter(&txring->txr_mutex);
   4338 
   4339 	if (!txring->txr_active)
   4340 		goto tx_intr_done;
   4341 
   4342 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4343 	    TX_DMA_DESC_HEAD_PTR);
   4344 	if (hw_head == txring->txr_considx) {
   4345 		txring->txr_sending = false;
   4346 		goto tx_intr_done;
   4347 	}
   4348 
   4349 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4350 
   4351 	for (idx = txring->txr_considx; idx != hw_head;
   4352 	    idx = TXRING_NEXTIDX(idx), n++) {
   4353 
   4354 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4355 			bus_dmamap_unload(sc->sc_dmat,
   4356 			    txring->txr_mbufs[idx].dmamap);
   4357 
   4358 			if_statinc_ref(nsr, if_opackets);
   4359 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   4360 			if (m->m_flags & M_MCAST)
   4361 				if_statinc_ref(nsr, if_omcasts);
   4362 
   4363 			m_freem(m);
   4364 			txring->txr_mbufs[idx].m = NULL;
   4365 		}
   4366 
   4367 		txring->txr_nfree++;
   4368 	}
   4369 	txring->txr_considx = idx;
   4370 
   4371 	IF_STAT_PUTREF(ifp);
   4372 
   4373 	/* no more pending TX packet, cancel watchdog */
   4374 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4375 		txring->txr_sending = false;
   4376 
   4377  tx_intr_done:
   4378 	mutex_exit(&txring->txr_mutex);
   4379 
   4380 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4381 	return n;
   4382 }
   4383 
   4384 static int
   4385 aq_rx_intr(void *arg)
   4386 {
   4387 	struct aq_rxring * const rxring = arg;
   4388 	struct aq_softc * const sc = rxring->rxr_sc;
   4389 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4390 	const int ringidx = rxring->rxr_index;
   4391 	aq_rx_desc_t *rxd;
   4392 	struct mbuf *m, *m0, *mprev, *new_m;
   4393 	uint32_t rxd_type, rxd_hash __unused;
   4394 	uint16_t rxd_status, rxd_pktlen;
   4395 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4396 	unsigned int idx, n = 0;
   4397 	bool discarding;
   4398 
   4399 	mutex_enter(&rxring->rxr_mutex);
   4400 
   4401 	if (!rxring->rxr_active)
   4402 		goto rx_intr_done;
   4403 
   4404 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4405 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4406 		goto rx_intr_done;
   4407 	}
   4408 
   4409 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4410 
   4411 	/* restore ring context */
   4412 	discarding = rxring->rxr_discarding;
   4413 	m0 = rxring->rxr_receiving_m;
   4414 	mprev = rxring->rxr_receiving_m_last;
   4415 
   4416 	for (idx = rxring->rxr_readidx;
   4417 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4418 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4419 
   4420 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4421 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4422 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4423 
   4424 		rxd = &rxring->rxr_rxdesc[idx];
   4425 		rxd_status = le16toh(rxd->wb.status);
   4426 
   4427 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4428 			break;	/* not yet done */
   4429 
   4430 		rxd_type = le32toh(rxd->wb.type);
   4431 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4432 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4433 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4434 		rxd_vlan = le16toh(rxd->wb.vlan);
   4435 
   4436 		/*
   4437 		 * Some segments are being dropped while receiving jumboframe.
   4438 		 * Discard until EOP.
   4439 		 */
   4440 		if (discarding)
   4441 			goto rx_next;
   4442 
   4443 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4444 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4445 			if_statinc_ref(nsr, if_ierrors);
   4446 			if (m0 != NULL) {
   4447 				m_freem(m0);
   4448 				m0 = mprev = NULL;
   4449 			}
   4450 			discarding = true;
   4451 			goto rx_next;
   4452 		}
   4453 
   4454 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4455 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4456 		    BUS_DMASYNC_POSTREAD);
   4457 		m = rxring->rxr_mbufs[idx].m;
   4458 
   4459 		new_m = aq_alloc_mbuf();
   4460 		if (new_m == NULL) {
   4461 			/*
   4462 			 * cannot allocate new mbuf.
   4463 			 * discard this packet, and reuse mbuf for next.
   4464 			 */
   4465 			if_statinc_ref(nsr, if_iqdrops);
   4466 			if (m0 != NULL) {
   4467 				m_freem(m0);
   4468 				m0 = mprev = NULL;
   4469 			}
   4470 			discarding = true;
   4471 			goto rx_next;
   4472 		}
   4473 		rxring->rxr_mbufs[idx].m = NULL;
   4474 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4475 
   4476 		if (m0 == NULL) {
   4477 			m0 = m;
   4478 		} else {
   4479 			if (m->m_flags & M_PKTHDR)
   4480 				m_remove_pkthdr(m);
   4481 			mprev->m_next = m;
   4482 		}
   4483 		mprev = m;
   4484 
   4485 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4486 			/* to be continued in the next segment */
   4487 			m->m_len = MCLBYTES;
   4488 		} else {
   4489 			/* the last segment */
   4490 			int mlen = rxd_pktlen % MCLBYTES;
   4491 			if (mlen == 0)
   4492 				mlen = MCLBYTES;
   4493 			m->m_len = mlen;
   4494 			m0->m_pkthdr.len = rxd_pktlen;
   4495 			/* VLAN offloading */
   4496 			if ((sc->sc_ethercom.ec_capenable &
   4497 			    ETHERCAP_VLAN_HWTAGGING) &&
   4498 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4499 			    __SHIFTOUT(rxd_type,
   4500 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4501 				vlan_set_tag(m0, rxd_vlan);
   4502 			}
   4503 
   4504 			/* Checksum offloading */
   4505 			unsigned int pkttype_eth =
   4506 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4507 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4508 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4509 			    __SHIFTOUT(rxd_type,
   4510 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4511 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4512 				if (__SHIFTOUT(rxd_status,
   4513 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4514 					m0->m_pkthdr.csum_flags |=
   4515 					    M_CSUM_IPv4_BAD;
   4516 			}
   4517 
   4518 			/*
   4519 			 * aq will always mark BAD for fragment packets,
   4520 			 * but this is not a problem because the IP stack
   4521 			 * ignores the CSUM flag in fragment packets.
   4522 			 */
   4523 			if (__SHIFTOUT(rxd_type,
   4524 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4525 				bool checked = false;
   4526 				unsigned int pkttype_proto =
   4527 				    __SHIFTOUT(rxd_type,
   4528 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4529 
   4530 				if (pkttype_proto ==
   4531 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4532 					if ((pkttype_eth ==
   4533 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4534 					    (ifp->if_capabilities &
   4535 					    IFCAP_CSUM_TCPv4_Rx)) {
   4536 						m0->m_pkthdr.csum_flags |=
   4537 						    M_CSUM_TCPv4;
   4538 						checked = true;
   4539 					} else if ((pkttype_eth ==
   4540 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4541 					    (ifp->if_capabilities &
   4542 					    IFCAP_CSUM_TCPv6_Rx)) {
   4543 						m0->m_pkthdr.csum_flags |=
   4544 						    M_CSUM_TCPv6;
   4545 						checked = true;
   4546 					}
   4547 				} else if (pkttype_proto ==
   4548 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4549 					if ((pkttype_eth ==
   4550 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4551 					    (ifp->if_capabilities &
   4552 					    IFCAP_CSUM_UDPv4_Rx)) {
   4553 						m0->m_pkthdr.csum_flags |=
   4554 						    M_CSUM_UDPv4;
   4555 						checked = true;
   4556 					} else if ((pkttype_eth ==
   4557 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4558 					    (ifp->if_capabilities &
   4559 					    IFCAP_CSUM_UDPv6_Rx)) {
   4560 						m0->m_pkthdr.csum_flags |=
   4561 						    M_CSUM_UDPv6;
   4562 						checked = true;
   4563 					}
   4564 				}
   4565 				if (checked &&
   4566 				    (__SHIFTOUT(rxd_status,
   4567 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4568 				    !__SHIFTOUT(rxd_status,
   4569 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4570 					m0->m_pkthdr.csum_flags |=
   4571 					    M_CSUM_TCP_UDP_BAD;
   4572 				}
   4573 			}
   4574 
   4575 			m_set_rcvif(m0, ifp);
   4576 			if_statinc_ref(nsr, if_ipackets);
   4577 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
   4578 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4579 			m0 = mprev = NULL;
   4580 		}
   4581 
   4582  rx_next:
   4583 		if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
   4584 			discarding = false;
   4585 
   4586 		aq_rxring_reset_desc(sc, rxring, idx);
   4587 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4588 	}
   4589 	/* save ring context */
   4590 	rxring->rxr_readidx = idx;
   4591 	rxring->rxr_discarding = discarding;
   4592 	rxring->rxr_receiving_m = m0;
   4593 	rxring->rxr_receiving_m_last = mprev;
   4594 
   4595 	IF_STAT_PUTREF(ifp);
   4596 
   4597  rx_intr_done:
   4598 	mutex_exit(&rxring->rxr_mutex);
   4599 
   4600 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4601 	return n;
   4602 }
   4603 
   4604 static int
   4605 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
   4606 {
   4607 	struct ifnet *ifp = &ec->ec_if;
   4608 	struct aq_softc * const sc = ifp->if_softc;
   4609 
   4610 	aq_set_vlan_filters(sc);
   4611 	return 0;
   4612 }
   4613 
   4614 static int
   4615 aq_ifflags_cb(struct ethercom *ec)
   4616 {
   4617 	struct ifnet * const ifp = &ec->ec_if;
   4618 	struct aq_softc * const sc = ifp->if_softc;
   4619 	int i, ecchange, error = 0;
   4620 	unsigned short iffchange;
   4621 
   4622 	AQ_LOCK(sc);
   4623 
   4624 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4625 	if ((iffchange & IFF_PROMISC) != 0)
   4626 		error = aq_set_filter(sc);
   4627 
   4628 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4629 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4630 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4631 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4632 			    RX_DMA_DESC_VLAN_STRIP,
   4633 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4634 			    1 : 0);
   4635 		}
   4636 	}
   4637 
   4638 	/* vlan configuration depends on also interface promiscuous mode */
   4639 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
   4640 		aq_set_vlan_filters(sc);
   4641 
   4642 	sc->sc_ec_capenable = ec->ec_capenable;
   4643 	sc->sc_if_flags = ifp->if_flags;
   4644 
   4645 	AQ_UNLOCK(sc);
   4646 
   4647 	return error;
   4648 }
   4649 
   4650 
   4651 static int
   4652 aq_init(struct ifnet *ifp)
   4653 {
   4654 	struct aq_softc * const sc = ifp->if_softc;
   4655 
   4656 	AQ_LOCK(sc);
   4657 
   4658 	int ret = aq_init_locked(ifp);
   4659 
   4660 	AQ_UNLOCK(sc);
   4661 
   4662 	return ret;
   4663 }
   4664 
   4665 static int
   4666 aq_init_locked(struct ifnet *ifp)
   4667 {
   4668 	struct aq_softc * const sc = ifp->if_softc;
   4669 	int i, error = 0;
   4670 
   4671 	KASSERT(IFNET_LOCKED(ifp));
   4672 	AQ_LOCKED(sc);
   4673 
   4674 	aq_stop_locked(ifp, false);
   4675 
   4676 	aq_set_vlan_filters(sc);
   4677 	aq_set_capability(sc);
   4678 
   4679 	for (i = 0; i < sc->sc_nqueues; i++) {
   4680 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4681 	}
   4682 
   4683 	/* invalidate RX descriptor cache */
   4684 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4685 	    AQ_READ_REG_BIT(sc,
   4686 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4687 
   4688 	/* start RX */
   4689 	for (i = 0; i < sc->sc_nqueues; i++) {
   4690 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4691 		if (error != 0) {
   4692 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4693 			    __func__);
   4694 			goto aq_init_failure;
   4695 		}
   4696 	}
   4697 	aq_init_rss(sc);
   4698 	aq_hw_l3_filter_set(sc);
   4699 
   4700 	/* ring reset? */
   4701 	aq_unset_stopping_flags(sc);
   4702 
   4703 	callout_schedule(&sc->sc_tick_ch, hz);
   4704 
   4705 	/* ready */
   4706 	ifp->if_flags |= IFF_RUNNING;
   4707 
   4708 	/* start TX and RX */
   4709 	aq_enable_intr(sc, /*link*/true, /*txrx*/true);
   4710 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4711 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4712 
   4713  aq_init_failure:
   4714 	sc->sc_if_flags = ifp->if_flags;
   4715 
   4716 	return error;
   4717 }
   4718 
   4719 static void
   4720 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4721     struct aq_txring *txring, bool is_transmit)
   4722 {
   4723 	struct mbuf *m;
   4724 	int npkt, error;
   4725 
   4726 	if (txring->txr_nfree < AQ_TXD_MIN)
   4727 		return;
   4728 
   4729 	for (npkt = 0; ; npkt++) {
   4730 		if (is_transmit)
   4731 			m = pcq_peek(txring->txr_pcq);
   4732 		else
   4733 			IFQ_POLL(&ifp->if_snd, m);
   4734 
   4735 		if (m == NULL)
   4736 			break;
   4737 
   4738 		if (is_transmit)
   4739 			pcq_get(txring->txr_pcq);
   4740 		else
   4741 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4742 
   4743 		error = aq_encap_txring(sc, txring, &m);
   4744 		if (error != 0) {
   4745 			/* too many mbuf chains? or not enough descriptors? */
   4746 			m_freem(m);
   4747 			if_statinc(ifp, if_oerrors);
   4748 			break;
   4749 		}
   4750 
   4751 		/* update tail ptr */
   4752 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4753 		    txring->txr_prodidx);
   4754 
   4755 		/* Pass the packet to any BPF listeners */
   4756 		bpf_mtap(ifp, m, BPF_D_OUT);
   4757 	}
   4758 
   4759 	if (npkt) {
   4760 		/* Set a watchdog timer in case the chip flakes out. */
   4761 		txring->txr_lastsent = time_uptime;
   4762 		txring->txr_sending = true;
   4763 	}
   4764 }
   4765 
   4766 static void
   4767 aq_start(struct ifnet *ifp)
   4768 {
   4769 	struct aq_softc * const sc = ifp->if_softc;
   4770 	/* aq_start() always use TX ring[0] */
   4771 	struct aq_txring * const txring = &sc->sc_queue[0].txring;
   4772 
   4773 	mutex_enter(&txring->txr_mutex);
   4774 	if (txring->txr_active && !txring->txr_stopping)
   4775 		aq_send_common_locked(ifp, sc, txring, false);
   4776 	mutex_exit(&txring->txr_mutex);
   4777 }
   4778 
   4779 static inline unsigned int
   4780 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4781 {
   4782 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4783 }
   4784 
   4785 static int
   4786 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4787 {
   4788 	struct aq_softc * const sc = ifp->if_softc;
   4789 	const int ringidx = aq_select_txqueue(sc, m);
   4790 	struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
   4791 
   4792 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4793 		m_freem(m);
   4794 		return ENOBUFS;
   4795 	}
   4796 
   4797 	if (mutex_tryenter(&txring->txr_mutex)) {
   4798 		aq_send_common_locked(ifp, sc, txring, true);
   4799 		mutex_exit(&txring->txr_mutex);
   4800 	} else {
   4801 		softint_schedule(txring->txr_softint);
   4802 	}
   4803 	return 0;
   4804 }
   4805 
   4806 static void
   4807 aq_deferred_transmit(void *arg)
   4808 {
   4809 	struct aq_txring * const txring = arg;
   4810 	struct aq_softc * const sc = txring->txr_sc;
   4811 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4812 
   4813 	mutex_enter(&txring->txr_mutex);
   4814 	if (pcq_peek(txring->txr_pcq) != NULL)
   4815 		aq_send_common_locked(ifp, sc, txring, true);
   4816 	mutex_exit(&txring->txr_mutex);
   4817 }
   4818 
   4819 
   4820 static void
   4821 aq_unset_stopping_flags(struct aq_softc *sc)
   4822 {
   4823 
   4824 	AQ_LOCKED(sc);
   4825 
   4826 	/* Must unset stopping flags in ascending order. */
   4827 	for (int i = 0; i < sc->sc_nqueues; i++) {
   4828 		struct aq_txring *txr = &sc->sc_queue[i].txring;
   4829 		struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
   4830 
   4831 		mutex_enter(&txr->txr_mutex);
   4832 		txr->txr_stopping = false;
   4833 		mutex_exit(&txr->txr_mutex);
   4834 
   4835 		mutex_enter(&rxr->rxr_mutex);
   4836 		rxr->rxr_stopping = false;
   4837 		mutex_exit(&rxr->rxr_mutex);
   4838 	}
   4839 
   4840 	sc->sc_stopping = false;
   4841 }
   4842 
   4843 static void
   4844 aq_set_stopping_flags(struct aq_softc *sc)
   4845 {
   4846 
   4847 	AQ_LOCKED(sc);
   4848 
   4849 	/* Must unset stopping flags in ascending order. */
   4850 	for (int i = 0; i < sc->sc_nqueues; i++) {
   4851 		struct aq_txring *txr = &sc->sc_queue[i].txring;
   4852 		struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
   4853 
   4854 		mutex_enter(&txr->txr_mutex);
   4855 		txr->txr_stopping = true;
   4856 		mutex_exit(&txr->txr_mutex);
   4857 
   4858 		mutex_enter(&rxr->rxr_mutex);
   4859 		rxr->rxr_stopping = true;
   4860 		mutex_exit(&rxr->rxr_mutex);
   4861 	}
   4862 
   4863 	sc->sc_stopping = true;
   4864 }
   4865 
   4866 
   4867 static void
   4868 aq_stop(struct ifnet *ifp, int disable)
   4869 {
   4870 	struct aq_softc * const sc = ifp->if_softc;
   4871 
   4872 	ASSERT_SLEEPABLE();
   4873 	KASSERT(IFNET_LOCKED(ifp));
   4874 
   4875 	AQ_LOCK(sc);
   4876 	aq_stop_locked(ifp, disable ? true : false);
   4877 	AQ_UNLOCK(sc);
   4878 }
   4879 
   4880 
   4881 
   4882 static void
   4883 aq_stop_locked(struct ifnet *ifp, bool disable)
   4884 {
   4885 	struct aq_softc * const sc = ifp->if_softc;
   4886 	int i;
   4887 
   4888 	KASSERT(IFNET_LOCKED(ifp));
   4889 	AQ_LOCKED(sc);
   4890 
   4891 	aq_set_stopping_flags(sc);
   4892 
   4893 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4894 		goto already_stopped;
   4895 
   4896 	/* disable tx/rx interrupts */
   4897 	aq_enable_intr(sc, /*link*/true, /*txrx*/false);
   4898 
   4899 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4900 	for (i = 0; i < sc->sc_nqueues; i++) {
   4901 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4902 	}
   4903 
   4904 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4905 	for (i = 0; i < sc->sc_nqueues; i++) {
   4906 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4907 	}
   4908 
   4909 	/* invalidate RX descriptor cache */
   4910 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4911 	    AQ_READ_REG_BIT(sc,
   4912 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4913 
   4914  already_stopped:
   4915 	aq_enable_intr(sc, /*link*/false, /*txrx*/false);
   4916 	callout_halt(&sc->sc_tick_ch, &sc->sc_mutex);
   4917 
   4918 	ifp->if_flags &= ~IFF_RUNNING;
   4919 	sc->sc_if_flags = ifp->if_flags;
   4920 }
   4921 
   4922 
   4923 static void
   4924 aq_handle_reset_work(struct work *work, void *arg)
   4925 {
   4926 	struct aq_softc * const sc = arg;
   4927 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   4928 
   4929 	printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
   4930 
   4931 	AQ_LOCK(sc);
   4932 
   4933 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4934 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4935 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4936 
   4937 	for (int n = 0; n < sc->sc_nqueues; n++) {
   4938 		struct aq_txring *txring = &sc->sc_queue[n].txring;
   4939 		u_int head = AQ_READ_REG_BIT(sc,
   4940 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4941 		    TX_DMA_DESC_HEAD_PTR);
   4942 		u_int tail = AQ_READ_REG(sc,
   4943 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4944 
   4945 		device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n",
   4946 		    __func__, txring->txr_index, head, tail);
   4947 
   4948 		aq_tx_intr(txring);
   4949 	}
   4950 
   4951 	AQ_UNLOCK(sc);
   4952 
   4953 	/* Don't want ioctl operations to happen */
   4954 	IFNET_LOCK(ifp);
   4955 
   4956 	/* reset the interface. */
   4957 	aq_init(ifp);
   4958 
   4959 	IFNET_UNLOCK(ifp);
   4960 
   4961 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
   4962 }
   4963 
   4964 static int
   4965 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4966 {
   4967 	struct aq_softc * const sc = ifp->if_softc;
   4968 	struct ifreq * const ifr = data;
   4969 	int error = 0;
   4970 
   4971 	switch (cmd) {
   4972 	case SIOCADDMULTI:
   4973 	case SIOCDELMULTI:
   4974 		break;
   4975 	default:
   4976 		KASSERT(IFNET_LOCKED(ifp));
   4977 	}
   4978 
   4979 	const int s = splnet();
   4980 	switch (cmd) {
   4981 	case SIOCSIFMTU:
   4982 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
   4983 			error = EINVAL;
   4984 		} else {
   4985 			ifp->if_mtu = ifr->ifr_mtu;
   4986 			error = 0;	/* no need to reset (no ENETRESET) */
   4987 		}
   4988 		break;
   4989 	default:
   4990 		error = ether_ioctl(ifp, cmd, data);
   4991 		break;
   4992 	}
   4993 	splx(s);
   4994 
   4995 	if (error != ENETRESET)
   4996 		return error;
   4997 
   4998 	switch (cmd) {
   4999 	case SIOCSIFCAP:
   5000 		error = aq_set_capability(sc);
   5001 		break;
   5002 	case SIOCADDMULTI:
   5003 	case SIOCDELMULTI:
   5004 		AQ_LOCK(sc);
   5005 		if ((sc->sc_if_flags & IFF_RUNNING) != 0) {
   5006 			/*
   5007 			 * Multicast list has changed; set the hardware filter
   5008 			 * accordingly.
   5009 			 */
   5010 			error = aq_set_filter(sc);
   5011 		}
   5012 		AQ_UNLOCK(sc);
   5013 		break;
   5014 	}
   5015 
   5016 	return error;
   5017 }
   5018 
   5019 
   5020 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   5021 
   5022 #ifdef _MODULE
   5023 #include "ioconf.c"
   5024 #endif
   5025 
   5026 static int
   5027 if_aq_modcmd(modcmd_t cmd, void *opaque)
   5028 {
   5029 	int error = 0;
   5030 
   5031 	switch (cmd) {
   5032 	case MODULE_CMD_INIT:
   5033 #ifdef _MODULE
   5034 		error = config_init_component(cfdriver_ioconf_if_aq,
   5035 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   5036 #endif
   5037 		return error;
   5038 	case MODULE_CMD_FINI:
   5039 #ifdef _MODULE
   5040 		error = config_fini_component(cfdriver_ioconf_if_aq,
   5041 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   5042 #endif
   5043 		return error;
   5044 	default:
   5045 		return ENOTTY;
   5046 	}
   5047 }
   5048