Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.5
      1 /*	$NetBSD: if_aq.c,v 1.5 2020/01/25 07:57:48 msaitoh Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.5 2020/01/25 07:57:48 msaitoh Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 /*
    120  * TERMINOLOGY
    121  *	MPI = MAC PHY INTERFACE?
    122  *	RPO = RX Protocol Offloading
    123  *	TPO = TX Protocol Offloading
    124  *	RPF = RX Packet Filter
    125  *	TPB = TX Packet buffer
    126  *	RPB = RX Packet buffer
    127  */
    128 
    129 /* registers */
    130 #define AQ_FW_SOFTRESET_REG			0x0000
    131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    133 
    134 #define AQ_FW_VERSION_REG			0x0018
    135 #define AQ_HW_REVISION_REG			0x001c
    136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    137 
    138 #define AQ_FW_MBOX_CMD_REG			0x0200
    139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    141 #define AQ_FW_MBOX_ADDR_REG			0x0208
    142 #define AQ_FW_MBOX_VAL_REG			0x020c
    143 
    144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    145 #define FW2X_LED_REG				0x031c
    146 #define  FW2X_LED_DEFAULT			0x00000000
    147 #define  FW2X_LED_NONE				0x0000003f
    148 #define  FW2X_LINKLED				__BITS(0,1)
    149 #define   FW2X_LINKLED_ACTIVE			0
    150 #define   FW2X_LINKLED_ON			1
    151 #define   FW2X_LINKLED_BLINK			2
    152 #define   FW2X_LINKLED_OFF			3
    153 #define  FW2X_STATUSLED				__BITS(2,5)
    154 #define   FW2X_STATUSLED_ORANGE			0
    155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    156 #define   FW2X_STATUSLED_OFF			3
    157 #define   FW2X_STATUSLED_GREEN			4
    158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    159 #define   FW2X_STATUSLED_GREEN_BLINK		10
    160 
    161 #define FW_MPI_MBOX_ADDR_REG			0x0360
    162 #define FW1X_MPI_INIT1_REG			0x0364
    163 #define FW1X_MPI_CONTROL_REG			0x0368
    164 #define FW1X_MPI_STATE_REG			0x036c
    165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    169 #define FW1X_MPI_INIT2_REG			0x0370
    170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    171 
    172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    175 #define FW_BOOT_EXIT_CODE_REG			0x0388
    176 #define  RBL_STATUS_DEAD			0x0000dead
    177 #define  RBL_STATUS_SUCCESS			0x0000abba
    178 #define  RBL_STATUS_FAILURE			0x00000bad
    179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    180 
    181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    183 
    184 #define AQ_FW_GLB_CTL2_REG			0x0404
    185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    186 
    187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    189 
    190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    191 
    192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    193 
    194 // msix bitmap */
    195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    199 #define AQ_INTR_AUTOMASK_REG			0x2090
    200 
    201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    209 
    210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    212 #define  AQ_B0_ERR_INT				8U
    213 
    214 #define AQ_INTR_CTRL_REG			0x2300
    215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    224 
    225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    226 
    227 #define FW_MPI_RESETCTRL_REG			0x4000
    228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    229 
    230 #define RX_SYSCONTROL_REG			0x5000
    231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    234 
    235 #define RX_TCP_RSS_HASH_REG			0x5040
    236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    238 
    239 /* for RPF_*_REG.ACTION */
    240 #define RPF_ACTION_DISCARD			0
    241 #define RPF_ACTION_HOST				1
    242 #define RPF_ACTION_MANAGEMENT			2
    243 #define RPF_ACTION_HOST_MANAGEMENT		3
    244 #define RPF_ACTION_WOL				4
    245 
    246 #define RPF_L2BC_REG				0x5100
    247 #define  RPF_L2BC_EN				__BIT(0)
    248 #define  RPF_L2BC_PROMISC			__BIT(3)
    249 #define  RPF_L2BC_ACTION			__BITS(12,14)
    250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    251 
    252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    257 #define  RPF_L2UC_MSW_EN			__BIT(31)
    258 #define AQ_HW_MAC_OWN			0	/* index of own address */
    259 #define AQ_HW_MAC_NUM			34
    260 
    261 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
    262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    266 
    267 #define RPF_VLAN_MODE_REG			0x5280
    268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    271 
    272 #define RPF_VLAN_TPID_REG			0x5284
    273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    275 
    276 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
    277 #define RPF_VLAN_MAX_FILTERS			16
    278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    284 
    285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    295 
    296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    315 /* parameters of RPF_L3_FILTER_REG[8] */
    316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    320 
    321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    323 
    324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    326 
    327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    332 
    333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    336 
    337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    339 
    340 #define RPO_HWCSUM_REG				0x5580
    341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    343 
    344 #define RPO_LRO_ENABLE_REG			0x5590
    345 
    346 #define RPO_LRO_CONF_REG			0x5594
    347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    351 #define RPO_LRO_RSC_MAX_REG			0x5598
    352 
    353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    356 #define RPO_LRO_TB_DIV_REG			0x5620
    357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    362 
    363 #define RPB_RPF_RX_REG				0x5700
    364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    367 
    368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    372 #define  RPB_RXB_XOFF_EN			__BIT(31)
    373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    375 
    376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    378 
    379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    382 
    383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    388 
    389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    394 #define  RX_DMA_DESC_RESET			__BIT(25)
    395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    397 #define  RX_DMA_DESC_EN				__BIT(31)
    398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    404 
    405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    411 
    412 #define RX_DMA_DCA_REG				0x6180
    413 #define  RX_DMA_DCA_EN				__BIT(31)
    414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    415 
    416 /* counters */
    417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    421 
    422 #define TX_SYSCONTROL_REG			0x7000
    423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    426 
    427 #define TX_TPO2_REG				0x7040
    428 #define  TX_TPO2_EN				__BIT(16)
    429 
    430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    432 #define TPS_DESC_RATE_REG			0x7310
    433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    439 
    440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    448 
    449 #define AQ_HW_TXBUF_MAX		160
    450 #define AQ_HW_RXBUF_MAX		320
    451 
    452 #define TPO_HWCSUM_REG				0x7800
    453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    455 
    456 #define TDM_LSO_EN_REG				0x7810
    457 
    458 #define THM_LSO_TCP_FLAG1_REG			0x7820
    459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    461 #define THM_LSO_TCP_FLAG2_REG			0x7824
    462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    463 
    464 #define TPB_TX_BUF_REG				0x7900
    465 #define  TPB_TX_BUF_EN				__BIT(0)
    466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    468 
    469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    475 
    476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    480 
    481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    486 #define  TX_DMA_DESC_EN				__BIT(31)
    487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    492 
    493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    495 #define  TDM_DCAD_CPUID				__BITS(7,0)
    496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    497 
    498 #define TDM_DCA_REG				0x8480
    499 #define  TDM_DCA_EN				__BIT(31)
    500 #define  TDM_DCA_MODE				__BITS(3,0)
    501 
    502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    507 
    508 #define FW1X_CTRL_10G				__BIT(0)
    509 #define FW1X_CTRL_5G				__BIT(1)
    510 #define FW1X_CTRL_5GSR				__BIT(2)
    511 #define FW1X_CTRL_2G5				__BIT(3)
    512 #define FW1X_CTRL_1G				__BIT(4)
    513 #define FW1X_CTRL_100M				__BIT(5)
    514 
    515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    527 #define FW2X_CTRL_RESERVED1			__BIT(32)
    528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    529 #define FW2X_CTRL_RESERVED2			__BIT(34)
    530 #define FW2X_CTRL_PAUSE				__BIT(35)
    531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    533 #define FW2X_CTRL_RESERVED3			__BIT(38)
    534 #define FW2X_CTRL_RESERVED4			__BIT(39)
    535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    539 #define FW2X_CTRL_RESERVED5			__BIT(44)
    540 #define FW2X_CTRL_RESERVED6			__BIT(45)
    541 #define FW2X_CTRL_RESERVED7			__BIT(46)
    542 #define FW2X_CTRL_RESERVED8			__BIT(47)
    543 #define FW2X_CTRL_RESERVED9			__BIT(48)
    544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    551 #define FW2X_CTRL_WOL				__BIT(56)
    552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    557 #define FW2X_CTRL_STATISTICS			__BIT(62)
    558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    559 
    560 #define FW2X_SNPRINTB			\
    561 	"\177\020"			\
    562 	"b\x23" "PAUSE\0"		\
    563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    564 	"b\x31" "CABLE-DIAG\0"		\
    565 	"b\x32" "TEMPERATURE\0"		\
    566 	"b\x33" "DOWNSHIFT\0"		\
    567 	"b\x34" "PTP-AVB\0"		\
    568 	"b\x35" "MEDIA-DETECT\0"	\
    569 	"b\x36" "LINK-DROP\0"		\
    570 	"b\x37" "SLEEP-PROXY\0"		\
    571 	"b\x38" "WOL\0"			\
    572 	"b\x39" "MAC-STOP\0"		\
    573 	"b\x3a" "EXT-LOOPBACK\0"	\
    574 	"b\x3b" "INT-LOOPBACK\0"	\
    575 	"b\x3c" "EFUSE-AGENT\0"		\
    576 	"b\x3d" "WOL-TIMER\0"		\
    577 	"b\x3e" "STATISTICS\0"		\
    578 	"b\x3f" "TRANSACTION-ID\0"	\
    579 	"\0"
    580 
    581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    586 #define FW2X_CTRL_RATE_MASK		\
    587 	(FW2X_CTRL_RATE_100M |		\
    588 	 FW2X_CTRL_RATE_1G |		\
    589 	 FW2X_CTRL_RATE_2G5 |		\
    590 	 FW2X_CTRL_RATE_5G |		\
    591 	 FW2X_CTRL_RATE_10G)
    592 #define FW2X_CTRL_EEE_MASK		\
    593 	(FW2X_CTRL_10BASET_EEE |	\
    594 	 FW2X_CTRL_100BASETX_EEE |	\
    595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    598 	 FW2X_CTRL_10GBASET_FD_EEE)
    599 
    600 typedef enum aq_fw_bootloader_mode {
    601 	FW_BOOT_MODE_UNKNOWN = 0,
    602 	FW_BOOT_MODE_FLB,
    603 	FW_BOOT_MODE_RBL_FLASH,
    604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    605 } aq_fw_bootloader_mode_t;
    606 
    607 #define AQ_WRITE_REG(sc, reg, val)				\
    608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    609 
    610 #define AQ_READ_REG(sc, reg)					\
    611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    612 
    613 #define AQ_READ64_REG(sc, reg)					\
    614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    616 
    617 #define AQ_WRITE64_REG(sc, reg, val)				\
    618 	do {							\
    619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    621 	} while (/* CONSTCOND */0)
    622 
    623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    625 
    626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    627 	do {							\
    628 		uint32_t _v;					\
    629 		_v = AQ_READ_REG((sc), (reg));			\
    630 		_v &= ~(mask);					\
    631 		if ((val) != 0)					\
    632 			_v |= __SHIFTIN((val), (mask));		\
    633 		AQ_WRITE_REG((sc), (reg), _v);			\
    634 	} while (/* CONSTCOND */ 0)
    635 
    636 #define WAIT_FOR(expr, us, n, errp)				\
    637 	do {							\
    638 		unsigned int _n;				\
    639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    640 			delay((us));				\
    641 		}						\
    642 		if ((errp != NULL)) {				\
    643 			if (_n == 0)				\
    644 				*(errp) = ETIMEDOUT;		\
    645 			else					\
    646 				*(errp) = 0;			\
    647 		}						\
    648 	} while (/* CONSTCOND */ 0)
    649 
    650 #define msec_delay(x)	DELAY(1000 * (x))
    651 
    652 typedef struct aq_mailbox_header {
    653 	uint32_t version;
    654 	uint32_t transaction_id;
    655 	int32_t error;
    656 } __packed aq_mailbox_header_t;
    657 
    658 typedef struct aq_hw_stats_s {
    659 	uint32_t uprc;
    660 	uint32_t mprc;
    661 	uint32_t bprc;
    662 	uint32_t erpt;
    663 	uint32_t uptc;
    664 	uint32_t mptc;
    665 	uint32_t bptc;
    666 	uint32_t erpr;
    667 	uint32_t mbtc;
    668 	uint32_t bbtc;
    669 	uint32_t mbrc;
    670 	uint32_t bbrc;
    671 	uint32_t ubrc;
    672 	uint32_t ubtc;
    673 	uint32_t ptc;
    674 	uint32_t prc;
    675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    677 } __packed aq_hw_stats_s_t;
    678 
    679 typedef struct fw1x_mailbox {
    680 	aq_mailbox_header_t header;
    681 	aq_hw_stats_s_t msm;
    682 } __packed fw1x_mailbox_t;
    683 
    684 typedef struct fw2x_msm_statistics {
    685 	uint32_t uprc;
    686 	uint32_t mprc;
    687 	uint32_t bprc;
    688 	uint32_t erpt;
    689 	uint32_t uptc;
    690 	uint32_t mptc;
    691 	uint32_t bptc;
    692 	uint32_t erpr;
    693 	uint32_t mbtc;
    694 	uint32_t bbtc;
    695 	uint32_t mbrc;
    696 	uint32_t bbrc;
    697 	uint32_t ubrc;
    698 	uint32_t ubtc;
    699 	uint32_t ptc;
    700 	uint32_t prc;
    701 } __packed fw2x_msm_statistics_t;
    702 
    703 typedef struct fw2x_phy_cable_diag_data {
    704 	uint32_t lane_data[4];
    705 } __packed fw2x_phy_cable_diag_data_t;
    706 
    707 typedef struct fw2x_capabilities {
    708 	uint32_t caps_lo;
    709 	uint32_t caps_hi;
    710 } __packed fw2x_capabilities_t;
    711 
    712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    713 	aq_mailbox_header_t header;
    714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    715 
    716 	uint32_t phy_info1;
    717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    719 	uint32_t phy_info2;
    720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    722 
    723 	fw2x_phy_cable_diag_data_t diag_data;
    724 	uint32_t reserved[8];
    725 
    726 	fw2x_capabilities_t caps;
    727 
    728 	/* ... */
    729 } __packed fw2x_mailbox_t;
    730 
    731 typedef enum aq_link_speed {
    732 	AQ_LINK_NONE	= 0,
    733 	AQ_LINK_100M	= (1 << 0),
    734 	AQ_LINK_1G	= (1 << 1),
    735 	AQ_LINK_2G5	= (1 << 2),
    736 	AQ_LINK_5G	= (1 << 3),
    737 	AQ_LINK_10G	= (1 << 4)
    738 } aq_link_speed_t;
    739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    740 			 AQ_LINK_5G | AQ_LINK_10G )
    741 #define AQ_LINK_AUTO	AQ_LINK_ALL
    742 
    743 typedef enum aq_link_fc {
    744 	AQ_FC_NONE = 0,
    745 	AQ_FC_RX = __BIT(0),
    746 	AQ_FC_TX = __BIT(1),
    747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    748 } aq_link_fc_t;
    749 
    750 typedef enum aq_link_eee {
    751 	AQ_EEE_DISABLE = 0,
    752 	AQ_EEE_ENABLE = 1
    753 } aq_link_eee_t;
    754 
    755 typedef enum aq_hw_fw_mpi_state {
    756 	MPI_DEINIT	= 0,
    757 	MPI_RESET	= 1,
    758 	MPI_INIT	= 2,
    759 	MPI_POWER	= 4
    760 } aq_hw_fw_mpi_state_t;
    761 
    762 enum aq_media_type {
    763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    764 	AQ_MEDIA_TYPE_FIBRE,
    765 	AQ_MEDIA_TYPE_TP
    766 };
    767 
    768 struct aq_rx_desc_read {
    769 	uint64_t buf_addr;
    770 	uint64_t hdr_addr;
    771 } __packed;
    772 
    773 struct aq_rx_desc_wb {
    774 	uint32_t type;
    775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    800 #define RXDESC_TYPE_SPH			__BIT(21)
    801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    802 	uint32_t rss_hash;
    803 	uint16_t status;
    804 #define RXDESC_STATUS_DD		__BIT(0)
    805 #define RXDESC_STATUS_EOP		__BIT(1)
    806 #define RXDESC_STATUS_MACERR		__BIT(2)
    807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    810 
    811 #define RXDESC_STATUS_STAT		__BITS(2,5)
    812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    814 	uint16_t pkt_len;
    815 	uint16_t next_desc_ptr;
    816 	uint16_t vlan;
    817 } __packed;
    818 
    819 typedef union aq_rx_desc {
    820 	struct aq_rx_desc_read read;
    821 	struct aq_rx_desc_wb wb;
    822 } __packed aq_rx_desc_t;
    823 
    824 typedef struct aq_tx_desc {
    825 	uint64_t buf_addr;
    826 	uint32_t ctl1;
    827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    843 	uint32_t ctl2;
    844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    847 } __packed aq_tx_desc_t;
    848 
    849 struct aq_txring {
    850 	struct aq_softc *txr_sc;
    851 	int txr_index;
    852 	kmutex_t txr_mutex;
    853 	bool txr_active;
    854 
    855 	pcq_t *txr_pcq;
    856 	void *txr_softint;
    857 
    858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    859 	bus_dmamap_t txr_txdesc_dmamap;
    860 	bus_dma_segment_t txr_txdesc_seg[1];
    861 	bus_size_t txr_txdesc_size;
    862 
    863 	struct {
    864 		struct mbuf *m;
    865 		bus_dmamap_t dmamap;
    866 	} txr_mbufs[AQ_TXD_NUM];
    867 	unsigned int txr_prodidx;
    868 	unsigned int txr_considx;
    869 	int txr_nfree;
    870 
    871 	/* counters */
    872 	uint64_t txr_opackets;
    873 	uint64_t txr_obytes;
    874 	uint64_t txr_omcasts;
    875 	uint64_t txr_oerrors;
    876 };
    877 
    878 struct aq_rxring {
    879 	struct aq_softc *rxr_sc;
    880 	int rxr_index;
    881 	kmutex_t rxr_mutex;
    882 	bool rxr_active;
    883 
    884 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    885 	bus_dmamap_t rxr_rxdesc_dmamap;
    886 	bus_dma_segment_t rxr_rxdesc_seg[1];
    887 	bus_size_t rxr_rxdesc_size;
    888 	struct {
    889 		struct mbuf *m;
    890 		bus_dmamap_t dmamap;
    891 	} rxr_mbufs[AQ_RXD_NUM];
    892 	unsigned int rxr_readidx;
    893 
    894 	/* counters */
    895 	uint64_t rxr_ipackets;
    896 	uint64_t rxr_ibytes;
    897 	uint64_t rxr_ierrors;
    898 	uint64_t rxr_iqdrops;
    899 };
    900 
    901 struct aq_queue {
    902 	struct aq_softc *sc;
    903 	struct aq_txring txring;
    904 	struct aq_rxring rxring;
    905 };
    906 
    907 struct aq_softc;
    908 struct aq_firmware_ops {
    909 	int (*reset)(struct aq_softc *);
    910 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    911 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    912 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    913 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    914 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    915 #if NSYSMON_ENVSYS > 0
    916 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    917 #endif
    918 };
    919 
    920 #ifdef AQ_EVENT_COUNTERS
    921 #define AQ_EVCNT_DECL(name)						\
    922 	char sc_evcount_##name##_name[32];				\
    923 	struct evcnt sc_evcount_##name##_ev;
    924 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    925 	do {								\
    926 		snprintf((sc)->sc_evcount_##name##_name,		\
    927 		    sizeof((sc)->sc_evcount_##name##_name),		\
    928 		    "%s", desc);					\
    929 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    930 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    931 		    (sc)->sc_evcount_##name##_name);			\
    932 	} while (/*CONSTCOND*/0)
    933 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    934 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    935 #define AQ_EVCNT_DETACH(sc, name)					\
    936 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    937 #define AQ_EVCNT_ADD(sc, name, val)					\
    938 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    939 #endif /* AQ_EVENT_COUNTERS */
    940 
    941 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    942 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    943 
    944 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    945 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    946 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    947 
    948 
    949 struct aq_softc {
    950 	device_t sc_dev;
    951 
    952 	bus_space_tag_t sc_iot;
    953 	bus_space_handle_t sc_ioh;
    954 	bus_size_t sc_iosize;
    955 	bus_dma_tag_t sc_dmat;;
    956 
    957 	void *sc_ihs[AQ_NINTR_MAX];
    958 	pci_intr_handle_t *sc_intrs;
    959 
    960 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    961 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    962 	int sc_linkstat_irq;
    963 	bool sc_use_txrx_independent_intr;
    964 	bool sc_poll_linkstat;
    965 	bool sc_detect_linkstat;
    966 
    967 #if NSYSMON_ENVSYS > 0
    968 	struct sysmon_envsys *sc_sme;
    969 	envsys_data_t sc_sensor_temp;
    970 #endif
    971 
    972 	callout_t sc_tick_ch;
    973 
    974 	int sc_nintrs;
    975 	bool sc_msix;
    976 
    977 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    978 	int sc_nqueues;
    979 
    980 	pci_chipset_tag_t sc_pc;
    981 	pcitag_t sc_pcitag;
    982 	uint16_t sc_product;
    983 	uint16_t sc_revision;
    984 
    985 	kmutex_t sc_mutex;
    986 	kmutex_t sc_mpi_mutex;
    987 
    988 	struct aq_firmware_ops *sc_fw_ops;
    989 	uint64_t sc_fw_caps;
    990 	enum aq_media_type sc_media_type;
    991 	aq_link_speed_t sc_available_rates;
    992 
    993 	aq_link_speed_t sc_link_rate;
    994 	aq_link_fc_t sc_link_fc;
    995 	aq_link_eee_t sc_link_eee;
    996 
    997 	uint32_t sc_fw_version;
    998 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    999 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
   1000 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
   1001 	uint32_t sc_features;
   1002 #define FEATURES_MIPS		0x00000001
   1003 #define FEATURES_TPO2		0x00000002
   1004 #define FEATURES_RPF2		0x00000004
   1005 #define FEATURES_MPI_AQ		0x00000008
   1006 #define FEATURES_REV_A0		0x10000000
   1007 #define FEATURES_REV_A		(FEATURES_REV_A0)
   1008 #define FEATURES_REV_B0		0x20000000
   1009 #define FEATURES_REV_B1		0x40000000
   1010 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
   1011 	uint32_t sc_mbox_addr;
   1012 
   1013 	bool sc_rbl_enabled;
   1014 	bool sc_fast_start_enabled;
   1015 	bool sc_flash_present;
   1016 
   1017 	bool sc_intr_moderation_enable;
   1018 	bool sc_rss_enable;
   1019 
   1020 	int sc_media_active;
   1021 
   1022 	struct ethercom sc_ethercom;
   1023 	struct ether_addr sc_enaddr;
   1024 	struct ifmedia sc_media;
   1025 	int sc_ec_capenable;		/* last ec_capenable */
   1026 	unsigned short sc_if_flags;	/* last if_flags */
   1027 
   1028 #ifdef AQ_EVENT_COUNTERS
   1029 	aq_hw_stats_s_t sc_statistics[2];
   1030 	int sc_statistics_idx;
   1031 	bool sc_poll_statistics;
   1032 
   1033 	AQ_EVCNT_DECL(uprc);
   1034 	AQ_EVCNT_DECL(mprc);
   1035 	AQ_EVCNT_DECL(bprc);
   1036 	AQ_EVCNT_DECL(erpt);
   1037 	AQ_EVCNT_DECL(uptc);
   1038 	AQ_EVCNT_DECL(mptc);
   1039 	AQ_EVCNT_DECL(bptc);
   1040 	AQ_EVCNT_DECL(erpr);
   1041 	AQ_EVCNT_DECL(mbtc);
   1042 	AQ_EVCNT_DECL(bbtc);
   1043 	AQ_EVCNT_DECL(mbrc);
   1044 	AQ_EVCNT_DECL(bbrc);
   1045 	AQ_EVCNT_DECL(ubrc);
   1046 	AQ_EVCNT_DECL(ubtc);
   1047 	AQ_EVCNT_DECL(ptc);
   1048 	AQ_EVCNT_DECL(prc);
   1049 	AQ_EVCNT_DECL(dpc);
   1050 	AQ_EVCNT_DECL(cprc);
   1051 #endif
   1052 };
   1053 
   1054 static int aq_match(device_t, cfdata_t, void *);
   1055 static void aq_attach(device_t, device_t, void *);
   1056 static int aq_detach(device_t, int);
   1057 
   1058 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1059     bool, bool);
   1060 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1061     pci_intr_type_t);
   1062 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1063 
   1064 static int aq_ifmedia_change(struct ifnet * const);
   1065 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1066 static int aq_ifflags_cb(struct ethercom *);
   1067 static int aq_init(struct ifnet *);
   1068 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1069     struct aq_txring *, bool);
   1070 static int aq_transmit(struct ifnet *, struct mbuf *);
   1071 static void aq_deferred_transmit(void *);
   1072 static void aq_start(struct ifnet *);
   1073 static void aq_stop(struct ifnet *, int);
   1074 static void aq_watchdog(struct ifnet *);
   1075 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1076 
   1077 static int aq_txrx_rings_alloc(struct aq_softc *);
   1078 static void aq_txrx_rings_free(struct aq_softc *);
   1079 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1080 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1081 
   1082 static void aq_initmedia(struct aq_softc *);
   1083 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1084 
   1085 #if NSYSMON_ENVSYS > 0
   1086 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1087 #endif
   1088 static void aq_tick(void *);
   1089 static int aq_legacy_intr(void *);
   1090 static int aq_link_intr(void *);
   1091 static int aq_txrx_intr(void *);
   1092 static int aq_tx_intr(void *);
   1093 static int aq_rx_intr(void *);
   1094 
   1095 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1096     aq_link_eee_t);
   1097 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1098     aq_link_eee_t *);
   1099 
   1100 static int aq_fw_reset(struct aq_softc *);
   1101 static int aq_fw_version_init(struct aq_softc *);
   1102 static int aq_hw_init(struct aq_softc *);
   1103 static int aq_hw_init_ucp(struct aq_softc *);
   1104 static int aq_hw_reset(struct aq_softc *);
   1105 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1106     uint32_t);
   1107 static int aq_get_mac_addr(struct aq_softc *);
   1108 static int aq_init_rss(struct aq_softc *);
   1109 static int aq_set_capability(struct aq_softc *);
   1110 
   1111 static int fw1x_reset(struct aq_softc *);
   1112 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1113     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1114 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1115     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1116 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1117 
   1118 static int fw2x_reset(struct aq_softc *);
   1119 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1120     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1121 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1122     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1123 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1124 #if NSYSMON_ENVSYS > 0
   1125 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1126 #endif
   1127 
   1128 static struct aq_firmware_ops aq_fw1x_ops = {
   1129 	.reset = fw1x_reset,
   1130 	.set_mode = fw1x_set_mode,
   1131 	.get_mode = fw1x_get_mode,
   1132 	.get_stats = fw1x_get_stats,
   1133 #if NSYSMON_ENVSYS > 0
   1134 	.get_temperature = NULL
   1135 #endif
   1136 };
   1137 
   1138 static struct aq_firmware_ops aq_fw2x_ops = {
   1139 	.reset = fw2x_reset,
   1140 	.set_mode = fw2x_set_mode,
   1141 	.get_mode = fw2x_get_mode,
   1142 	.get_stats = fw2x_get_stats,
   1143 #if NSYSMON_ENVSYS > 0
   1144 	.get_temperature = fw2x_get_temperature
   1145 #endif
   1146 };
   1147 
   1148 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1149     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1150 
   1151 static const struct aq_product {
   1152 	pci_vendor_id_t aq_vendor;
   1153 	pci_product_id_t aq_product;
   1154 	const char *aq_name;
   1155 	enum aq_media_type aq_media_type;
   1156 	aq_link_speed_t aq_available_rates;
   1157 } aq_products[] = {
   1158 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1159 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1160 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1161 	},
   1162 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1163 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1164 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1165 	},
   1166 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1167 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1168 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1169 	},
   1170 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1171 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1172 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1173 	},
   1174 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1175 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1176 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1177 	},
   1178 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1179 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1180 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1181 	},
   1182 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1183 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1184 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1185 	},
   1186 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1187 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1188 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1189 	},
   1190 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1191 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1192 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1193 	},
   1194 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1195 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1196 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1197 	},
   1198 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1199 	  "Aquantia D107 10 Gigabit Network Adapter",
   1200 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1201 	},
   1202 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1203 	  "Aquantia D108 5 Gigabit Network Adapter",
   1204 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1205 	},
   1206 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1207 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1208 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1209 	}
   1210 };
   1211 
   1212 static const struct aq_product *
   1213 aq_lookup(const struct pci_attach_args *pa)
   1214 {
   1215 	unsigned int i;
   1216 
   1217 	for (i = 0; i < __arraycount(aq_products); i++) {
   1218 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1219 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1220 			return &aq_products[i];
   1221 	}
   1222 	return NULL;
   1223 }
   1224 
   1225 static int
   1226 aq_match(device_t parent, cfdata_t cf, void *aux)
   1227 {
   1228 	struct pci_attach_args *pa = aux;
   1229 
   1230 	if (aq_lookup(pa) != NULL)
   1231 		return 1;
   1232 
   1233 	return 0;
   1234 }
   1235 
   1236 static void
   1237 aq_attach(device_t parent, device_t self, void *aux)
   1238 {
   1239 	struct aq_softc *sc = device_private(self);
   1240 	struct pci_attach_args *pa = aux;
   1241 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1242 	pci_chipset_tag_t pc;
   1243 	pcitag_t tag;
   1244 	pcireg_t command, memtype, bar;
   1245 	const struct aq_product *aqp;
   1246 	int error;
   1247 
   1248 	sc->sc_dev = self;
   1249 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1250 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1251 
   1252 	sc->sc_pc = pc = pa->pa_pc;
   1253 	sc->sc_pcitag = tag = pa->pa_tag;
   1254 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1255 
   1256 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1257 	command |= PCI_COMMAND_MASTER_ENABLE;
   1258 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1259 
   1260 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1261 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1262 
   1263 	aqp = aq_lookup(pa);
   1264 	KASSERT(aqp != NULL);
   1265 
   1266 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1267 
   1268 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1269 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1270 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1271 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1272 		return;
   1273 	}
   1274 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1275 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1276 	    NULL, &sc->sc_iosize) != 0) {
   1277 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1278 		return;
   1279 	}
   1280 
   1281 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1282 
   1283 	/* max queue num is 8, and must be 2^n */
   1284 	if (ncpu >= 8)
   1285 		sc->sc_nqueues = 8;
   1286 	else if (ncpu >= 4)
   1287 		sc->sc_nqueues = 4;
   1288 	else if (ncpu >= 2)
   1289 		sc->sc_nqueues = 2;
   1290 	else
   1291 		sc->sc_nqueues = 1;
   1292 
   1293 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1294 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1295 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1296 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1297 		sc->sc_use_txrx_independent_intr = true;
   1298 		sc->sc_poll_linkstat = false;
   1299 		sc->sc_msix = true;
   1300 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1301 		/* TX intrs + RX intrs */
   1302 		sc->sc_use_txrx_independent_intr = true;
   1303 		sc->sc_poll_linkstat = true;
   1304 		sc->sc_msix = true;
   1305 	} else
   1306 #endif
   1307 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1308 		/* TX/RX intrs LINKSTAT intrs */
   1309 		sc->sc_use_txrx_independent_intr = false;
   1310 		sc->sc_poll_linkstat = false;
   1311 		sc->sc_msix = true;
   1312 	} else if (msixcount >= sc->sc_nqueues) {
   1313 		/* TX/RX intrs */
   1314 		sc->sc_use_txrx_independent_intr = false;
   1315 		sc->sc_poll_linkstat = true;
   1316 		sc->sc_msix = true;
   1317 	} else {
   1318 		/* giving up using MSI-X */
   1319 		sc->sc_msix = false;
   1320 	}
   1321 
   1322 	aprint_debug_dev(sc->sc_dev,
   1323 	    "ncpu=%d, pci_msix_count=%d."
   1324 	    " allocate %d interrupts for %d%s queues%s\n",
   1325 	    ncpu, msixcount,
   1326 	    (sc->sc_use_txrx_independent_intr ?
   1327 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1328 	    (sc->sc_poll_linkstat ? 0 : 1),
   1329 	    sc->sc_nqueues,
   1330 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1331 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1332 
   1333 	if (sc->sc_msix)
   1334 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1335 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1336 	else
   1337 		error = ENODEV;
   1338 
   1339 	if (error != 0) {
   1340 		/* if MSI-X failed, fallback to MSI with single queue */
   1341 		sc->sc_use_txrx_independent_intr = false;
   1342 		sc->sc_poll_linkstat = false;
   1343 		sc->sc_msix = false;
   1344 		sc->sc_nqueues = 1;
   1345 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1346 	}
   1347 	if (error != 0) {
   1348 		/* if MSI failed, fallback to INTx */
   1349 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1350 	}
   1351 	if (error != 0)
   1352 		return;
   1353 
   1354 	callout_init(&sc->sc_tick_ch, 0);
   1355 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1356 
   1357 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1358 
   1359 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1360 		sc->sc_rss_enable = true;
   1361 	else
   1362 		sc->sc_rss_enable = false;
   1363 
   1364 	error = aq_txrx_rings_alloc(sc);
   1365 	if (error != 0)
   1366 		goto attach_failure;
   1367 
   1368 	error = aq_fw_reset(sc);
   1369 	if (error != 0)
   1370 		goto attach_failure;
   1371 
   1372 	error = aq_fw_version_init(sc);
   1373 	if (error != 0)
   1374 		goto attach_failure;
   1375 
   1376 	error = aq_hw_init_ucp(sc);
   1377 	if (error < 0)
   1378 		goto attach_failure;
   1379 
   1380 	KASSERT(sc->sc_mbox_addr != 0);
   1381 	error = aq_hw_reset(sc);
   1382 	if (error != 0)
   1383 		goto attach_failure;
   1384 
   1385 	aq_get_mac_addr(sc);
   1386 	aq_init_rss(sc);
   1387 
   1388 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1389 	if (error != 0)
   1390 		goto attach_failure;
   1391 
   1392 	sc->sc_media_type = aqp->aq_media_type;
   1393 	sc->sc_available_rates = aqp->aq_available_rates;
   1394 
   1395 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1396 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1397 	    aq_ifmedia_change, aq_ifmedia_status);
   1398 	aq_initmedia(sc);
   1399 
   1400 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1401 	ifp->if_softc = sc;
   1402 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1403 	ifp->if_baudrate = IF_Gbps(10);
   1404 	ifp->if_init = aq_init;
   1405 	ifp->if_ioctl = aq_ioctl;
   1406 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1407 		ifp->if_transmit = aq_transmit;
   1408 	ifp->if_start = aq_start;
   1409 	ifp->if_stop = aq_stop;
   1410 	ifp->if_watchdog = aq_watchdog;
   1411 	IFQ_SET_READY(&ifp->if_snd);
   1412 
   1413 	/* initialize capabilities */
   1414 	sc->sc_ethercom.ec_capabilities = 0;
   1415 	sc->sc_ethercom.ec_capenable = 0;
   1416 #if notyet
   1417 	/* TODO */
   1418 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1419 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
   1420 #endif
   1421 	sc->sc_ethercom.ec_capabilities |=
   1422 	    ETHERCAP_JUMBO_MTU |
   1423 	    ETHERCAP_VLAN_MTU |
   1424 	    ETHERCAP_VLAN_HWTAGGING;
   1425 	sc->sc_ethercom.ec_capenable |=
   1426 	    ETHERCAP_VLAN_HWTAGGING;
   1427 
   1428 	ifp->if_capabilities = 0;
   1429 	ifp->if_capenable = 0;
   1430 #ifdef CONFIG_LRO_SUPPORT
   1431 	ifp->if_capabilities |= IFCAP_LRO;
   1432 	ifp->if_capenable |= IFCAP_LRO;
   1433 #endif
   1434 #if notyet
   1435 	/* TSO */
   1436 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1437 #endif
   1438 
   1439 #if notyet
   1440 	/*
   1441 	 * XXX:
   1442 	 *   Rx L4 CSUM doesn't work well for fragment packet.
   1443 	 *   aq marks 'CHEDKED' and 'BAD' for them.
   1444 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
   1445 	 *
   1446 	 *   TODO: test with LRO enabled
   1447 	 */
   1448 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1449 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1450 #endif
   1451 	/* TX hardware checksum offloadding */
   1452 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1453 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1454 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1455 	/* RX hardware checksum offloadding */
   1456 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1457 
   1458 	if_attach(ifp);
   1459 	if_deferred_start_init(ifp, NULL);
   1460 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1461 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1462 
   1463 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1464 
   1465 	/* update media */
   1466 	aq_ifmedia_change(ifp);
   1467 
   1468 #if NSYSMON_ENVSYS > 0
   1469 	/* temperature monitoring */
   1470 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1471 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1472 
   1473 		sc->sc_sme = sysmon_envsys_create();
   1474 		sc->sc_sme->sme_name = device_xname(self);
   1475 		sc->sc_sme->sme_cookie = sc;
   1476 		sc->sc_sme->sme_flags = 0;
   1477 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1478 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1479 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1480 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1481 
   1482 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1483 		sysmon_envsys_register(sc->sc_sme);
   1484 
   1485 		/*
   1486 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1487 		 * will always fail (firmware matter?), so run once now.
   1488 		 */
   1489 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1490 	}
   1491 #endif
   1492 
   1493 #ifdef AQ_EVENT_COUNTERS
   1494 	/* get starting statistics values */
   1495 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1496 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1497 		sc->sc_poll_statistics = true;
   1498 	}
   1499 
   1500 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1501 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1502 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1503 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1504 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1505 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1506 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1507 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1508 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1509 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1510 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1511 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1512 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1513 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1514 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1515 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1516 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1517 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1518 #endif
   1519 
   1520 	return;
   1521 
   1522  attach_failure:
   1523 	aq_detach(self, 0);
   1524 }
   1525 
   1526 static int
   1527 aq_detach(device_t self, int flags __unused)
   1528 {
   1529 	struct aq_softc *sc = device_private(self);
   1530 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1531 	int i, s;
   1532 
   1533 	if (sc->sc_iosize != 0) {
   1534 		if (ifp->if_softc != NULL) {
   1535 			s = splnet();
   1536 			aq_stop(ifp, 0);
   1537 			splx(s);
   1538 		}
   1539 
   1540 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1541 			if (sc->sc_ihs[i] != NULL) {
   1542 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1543 				sc->sc_ihs[i] = NULL;
   1544 			}
   1545 		}
   1546 		if (sc->sc_nintrs > 0) {
   1547 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1548 			    sc->sc_nintrs);
   1549 			sc->sc_intrs = NULL;
   1550 			sc->sc_nintrs = 0;
   1551 		}
   1552 
   1553 		aq_txrx_rings_free(sc);
   1554 
   1555 		if (ifp->if_softc != NULL) {
   1556 			ether_ifdetach(ifp);
   1557 			if_detach(ifp);
   1558 		}
   1559 
   1560 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1561 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1562 		sc->sc_iosize = 0;
   1563 	}
   1564 
   1565 	callout_stop(&sc->sc_tick_ch);
   1566 
   1567 #if NSYSMON_ENVSYS > 0
   1568 	if (sc->sc_sme != NULL) {
   1569 		/* all sensors associated with this will also be detached */
   1570 		sysmon_envsys_unregister(sc->sc_sme);
   1571 		sc->sc_sme = NULL;
   1572 	}
   1573 #endif
   1574 
   1575 #ifdef AQ_EVENT_COUNTERS
   1576 	AQ_EVCNT_DETACH(sc, uprc);
   1577 	AQ_EVCNT_DETACH(sc, mprc);
   1578 	AQ_EVCNT_DETACH(sc, bprc);
   1579 	AQ_EVCNT_DETACH(sc, erpt);
   1580 	AQ_EVCNT_DETACH(sc, uptc);
   1581 	AQ_EVCNT_DETACH(sc, mptc);
   1582 	AQ_EVCNT_DETACH(sc, bptc);
   1583 	AQ_EVCNT_DETACH(sc, erpr);
   1584 	AQ_EVCNT_DETACH(sc, mbtc);
   1585 	AQ_EVCNT_DETACH(sc, bbtc);
   1586 	AQ_EVCNT_DETACH(sc, mbrc);
   1587 	AQ_EVCNT_DETACH(sc, bbrc);
   1588 	AQ_EVCNT_DETACH(sc, ubrc);
   1589 	AQ_EVCNT_DETACH(sc, ubtc);
   1590 	AQ_EVCNT_DETACH(sc, ptc);
   1591 	AQ_EVCNT_DETACH(sc, prc);
   1592 	AQ_EVCNT_DETACH(sc, dpc);
   1593 	AQ_EVCNT_DETACH(sc, cprc);
   1594 #endif
   1595 
   1596 	mutex_destroy(&sc->sc_mpi_mutex);
   1597 	mutex_destroy(&sc->sc_mutex);
   1598 
   1599 	return 0;
   1600 }
   1601 
   1602 static int
   1603 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1604     int (*func)(void *), void *arg, const char *xname)
   1605 {
   1606 	char intrbuf[PCI_INTRSTR_LEN];
   1607 	pci_chipset_tag_t pc = sc->sc_pc;
   1608 	void *vih;
   1609 	const char *intrstr = NULL;
   1610 
   1611 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1612 	    sizeof(intrbuf));
   1613 
   1614 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1615 
   1616 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1617 	    IPL_NET, func, arg, xname);
   1618 	if (vih == NULL) {
   1619 		aprint_error_dev(sc->sc_dev,
   1620 		    "unable to establish MSI-X%s%s for %s\n",
   1621 		    intrstr ? " at " : "",
   1622 		    intrstr ? intrstr : "", xname);
   1623 		return EIO;
   1624 	}
   1625 	sc->sc_ihs[intno] = vih;
   1626 
   1627 	if (affinity != NULL) {
   1628 		/* Round-robin affinity */
   1629 		kcpuset_zero(affinity);
   1630 		kcpuset_set(affinity, intno % ncpu);
   1631 		interrupt_distribute(vih, affinity, NULL);
   1632 	}
   1633 
   1634 	return 0;
   1635 }
   1636 
   1637 static int
   1638 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1639     bool linkintr)
   1640 {
   1641 	kcpuset_t *affinity;
   1642 	int error, intno, i;
   1643 	char intr_xname[INTRDEVNAMEBUF];
   1644 
   1645 	kcpuset_create(&affinity, false);
   1646 
   1647 	intno = 0;
   1648 
   1649 	if (txrx_independent) {
   1650 		for (i = 0; i < sc->sc_nqueues; i++) {
   1651 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1652 			    device_xname(sc->sc_dev), i);
   1653 			sc->sc_rx_irq[i] = intno;
   1654 			error = aq_establish_intr(sc, intno++, affinity,
   1655 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1656 			if (error != 0)
   1657 				goto fail;
   1658 		}
   1659 		for (i = 0; i < sc->sc_nqueues; i++) {
   1660 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1661 			    device_xname(sc->sc_dev), i);
   1662 			sc->sc_tx_irq[i] = intno;
   1663 			error = aq_establish_intr(sc, intno++, affinity,
   1664 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1665 			if (error != 0)
   1666 				goto fail;
   1667 		}
   1668 	} else {
   1669 		for (i = 0; i < sc->sc_nqueues; i++) {
   1670 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1671 			    device_xname(sc->sc_dev), i);
   1672 			sc->sc_rx_irq[i] = intno;
   1673 			sc->sc_tx_irq[i] = intno;
   1674 			error = aq_establish_intr(sc, intno++, affinity,
   1675 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1676 			if (error != 0)
   1677 				goto fail;
   1678 		}
   1679 	}
   1680 
   1681 	if (linkintr) {
   1682 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1683 		    device_xname(sc->sc_dev));
   1684 		sc->sc_linkstat_irq = intno;
   1685 		error = aq_establish_intr(sc, intno++, affinity,
   1686 		    aq_link_intr, sc, intr_xname);
   1687 		if (error != 0)
   1688 			goto fail;
   1689 	}
   1690 
   1691 	kcpuset_destroy(affinity);
   1692 	return 0;
   1693 
   1694  fail:
   1695 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1696 		if (sc->sc_ihs[i] != NULL) {
   1697 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1698 			sc->sc_ihs[i] = NULL;
   1699 		}
   1700 	}
   1701 
   1702 	kcpuset_destroy(affinity);
   1703 	return ENOMEM;
   1704 }
   1705 
   1706 static int
   1707 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1708     bool txrx_independent, bool linkintr)
   1709 {
   1710 	int error, nintr;
   1711 
   1712 	if (txrx_independent)
   1713 		nintr = nqueue * 2;
   1714 	else
   1715 		nintr = nqueue;
   1716 
   1717 	if (linkintr)
   1718 		nintr++;
   1719 
   1720 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1721 	if (error != 0) {
   1722 		aprint_error_dev(sc->sc_dev,
   1723 		    "failed to allocate MSI-X interrupts\n");
   1724 		goto fail;
   1725 	}
   1726 
   1727 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1728 	if (error == 0) {
   1729 		sc->sc_nintrs = nintr;
   1730 	} else {
   1731 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1732 		sc->sc_nintrs = 0;
   1733 	}
   1734  fail:
   1735 	return error;
   1736 
   1737 }
   1738 
   1739 static int
   1740 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1741     pci_intr_type_t inttype)
   1742 {
   1743 	int counts[PCI_INTR_TYPE_SIZE];
   1744 	int error, nintr;
   1745 
   1746 	nintr = 1;
   1747 
   1748 	memset(counts, 0, sizeof(counts));
   1749 	counts[inttype] = nintr;
   1750 
   1751 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1752 	if (error != 0) {
   1753 		aprint_error_dev(sc->sc_dev,
   1754 		    "failed to allocate%s interrupts\n",
   1755 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1756 		return error;
   1757 	}
   1758 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1759 	    device_xname(sc->sc_dev));
   1760 	if (error == 0) {
   1761 		sc->sc_nintrs = nintr;
   1762 	} else {
   1763 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1764 		sc->sc_nintrs = 0;
   1765 	}
   1766 	return error;
   1767 }
   1768 
   1769 static void
   1770 global_software_reset(struct aq_softc *sc)
   1771 {
   1772 	uint32_t v;
   1773 
   1774 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1775 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1776 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1777 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1778 
   1779 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1780 	v &= ~AQ_FW_SOFTRESET_DIS;
   1781 	v |= AQ_FW_SOFTRESET_RESET;
   1782 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1783 }
   1784 
   1785 static int
   1786 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1787 {
   1788 	int timo;
   1789 
   1790 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1791 
   1792 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1793 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1794 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1795 
   1796 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1797 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1798 
   1799 	global_software_reset(sc);
   1800 
   1801 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1802 
   1803 	/* Wait for RBL to finish boot process. */
   1804 #define RBL_TIMEOUT_MS	10000
   1805 	uint16_t rbl_status;
   1806 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1807 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1808 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1809 			break;
   1810 		msec_delay(1);
   1811 	}
   1812 	if (timo <= 0) {
   1813 		aprint_error_dev(sc->sc_dev,
   1814 		    "RBL> RBL restart failed: timeout\n");
   1815 		return EBUSY;
   1816 	}
   1817 	switch (rbl_status) {
   1818 	case RBL_STATUS_SUCCESS:
   1819 		if (mode != NULL)
   1820 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1821 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1822 		break;
   1823 	case RBL_STATUS_HOST_BOOT:
   1824 		if (mode != NULL)
   1825 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1826 		aprint_debug_dev(sc->sc_dev,
   1827 		    "RBL> reset complete! [Host Bootload]\n");
   1828 		break;
   1829 	case RBL_STATUS_FAILURE:
   1830 	default:
   1831 		aprint_error_dev(sc->sc_dev,
   1832 		    "unknown RBL status 0x%x\n", rbl_status);
   1833 		return EBUSY;
   1834 	}
   1835 
   1836 	return 0;
   1837 }
   1838 
   1839 static int
   1840 mac_soft_reset_flb(struct aq_softc *sc)
   1841 {
   1842 	uint32_t v;
   1843 	int timo;
   1844 
   1845 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1846 	/*
   1847 	 * Let Felicity hardware to complete SMBUS transaction before
   1848 	 * Global software reset.
   1849 	 */
   1850 	msec_delay(50);
   1851 
   1852 	/*
   1853 	 * If SPI burst transaction was interrupted(before running the script),
   1854 	 * global software reset may not clear SPI interface.
   1855 	 * Clean it up manually before global reset.
   1856 	 */
   1857 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1858 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1859 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1860 	msec_delay(50);
   1861 
   1862 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1863 	v &= ~AQ_FW_SOFTRESET_DIS;
   1864 	v |= AQ_FW_SOFTRESET_RESET;
   1865 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1866 
   1867 	/* Kickstart. */
   1868 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1869 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1870 	if (!sc->sc_fast_start_enabled)
   1871 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1872 
   1873 	/*
   1874 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1875 	 * above), wait until it is completed by hardware.
   1876 	 */
   1877 	msec_delay(50);
   1878 
   1879 	/* MAC Kickstart */
   1880 	if (!sc->sc_fast_start_enabled) {
   1881 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1882 
   1883 		uint32_t flb_status;
   1884 		for (timo = 0; timo < 1000; timo++) {
   1885 			flb_status = AQ_READ_REG(sc,
   1886 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1887 			if (flb_status != 0)
   1888 				break;
   1889 			msec_delay(1);
   1890 		}
   1891 		if (flb_status == 0) {
   1892 			aprint_error_dev(sc->sc_dev,
   1893 			    "FLB> MAC kickstart failed: timed out\n");
   1894 			return ETIMEDOUT;
   1895 		}
   1896 		aprint_debug_dev(sc->sc_dev,
   1897 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1898 		/* FW reset */
   1899 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1900 		/*
   1901 		 * Let Felicity hardware complete SMBUS transaction before
   1902 		 * Global software reset.
   1903 		 */
   1904 		msec_delay(50);
   1905 		sc->sc_fast_start_enabled = true;
   1906 	}
   1907 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1908 
   1909 	/* PHY Kickstart: #undone */
   1910 	global_software_reset(sc);
   1911 
   1912 	for (timo = 0; timo < 1000; timo++) {
   1913 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1914 			break;
   1915 		msec_delay(10);
   1916 	}
   1917 	if (timo >= 1000) {
   1918 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1919 		return ETIMEDOUT;
   1920 	}
   1921 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1922 	return 0;
   1923 
   1924 }
   1925 
   1926 static int
   1927 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1928 {
   1929 	if (sc->sc_rbl_enabled)
   1930 		return mac_soft_reset_rbl(sc, mode);
   1931 
   1932 	if (mode != NULL)
   1933 		*mode = FW_BOOT_MODE_FLB;
   1934 	return mac_soft_reset_flb(sc);
   1935 }
   1936 
   1937 static int
   1938 aq_fw_read_version(struct aq_softc *sc)
   1939 {
   1940 	int i, error = EBUSY;
   1941 #define MAC_FW_START_TIMEOUT_MS	10000
   1942 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1943 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1944 		if (sc->sc_fw_version != 0) {
   1945 			error = 0;
   1946 			break;
   1947 		}
   1948 		delay(1000);
   1949 	}
   1950 	return error;
   1951 }
   1952 
   1953 static int
   1954 aq_fw_reset(struct aq_softc *sc)
   1955 {
   1956 	uint32_t ver, v, bootExitCode;
   1957 	int i, error;
   1958 
   1959 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1960 
   1961 	for (i = 1000; i > 0; i--) {
   1962 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1963 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1964 		if (v != 0x06000000 || bootExitCode != 0)
   1965 			break;
   1966 	}
   1967 	if (i <= 0) {
   1968 		aprint_error_dev(sc->sc_dev,
   1969 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1970 		return ETIMEDOUT;
   1971 	}
   1972 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1973 
   1974 	/*
   1975 	 * Having FW version 0 is an indicator that cold start
   1976 	 * is in progress. This means two things:
   1977 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1978 	 * 2) Driver may skip reset sequence and save time.
   1979 	 */
   1980 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   1981 		error = aq_fw_read_version(sc);
   1982 		/* Skip reset as it just completed */
   1983 		if (error == 0)
   1984 			return 0;
   1985 	}
   1986 
   1987 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   1988 	error = mac_soft_reset(sc, &mode);
   1989 	if (error != 0) {
   1990 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   1991 		return error;
   1992 	}
   1993 
   1994 	switch (mode) {
   1995 	case FW_BOOT_MODE_FLB:
   1996 		aprint_debug_dev(sc->sc_dev,
   1997 		    "FLB> F/W successfully loaded from flash.\n");
   1998 		sc->sc_flash_present = true;
   1999 		return aq_fw_read_version(sc);
   2000 	case FW_BOOT_MODE_RBL_FLASH:
   2001 		aprint_debug_dev(sc->sc_dev,
   2002 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   2003 		sc->sc_flash_present = true;
   2004 		return aq_fw_read_version(sc);
   2005 	case FW_BOOT_MODE_UNKNOWN:
   2006 		aprint_error_dev(sc->sc_dev,
   2007 		    "F/W bootload error: unknown bootloader type\n");
   2008 		return ENOTSUP;
   2009 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2010 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2011 		break;
   2012 	}
   2013 
   2014 	/*
   2015 	 * XXX: TODO: add support Host Boot
   2016 	 */
   2017 	aprint_error_dev(sc->sc_dev,
   2018 	    "RBL> F/W Host Bootload not implemented\n");
   2019 	return ENOTSUP;
   2020 }
   2021 
   2022 static int
   2023 aq_hw_reset(struct aq_softc *sc)
   2024 {
   2025 	int error;
   2026 
   2027 	/* disable irq */
   2028 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2029 
   2030 	/* apply */
   2031 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2032 
   2033 	/* wait ack 10 times by 1ms */
   2034 	WAIT_FOR(
   2035 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2036 	    1000, 10, &error);
   2037 	if (error != 0) {
   2038 		aprint_error_dev(sc->sc_dev,
   2039 		    "atlantic: IRQ reset failed: %d\n", error);
   2040 		return error;
   2041 	}
   2042 
   2043 	return sc->sc_fw_ops->reset(sc);
   2044 }
   2045 
   2046 static int
   2047 aq_hw_init_ucp(struct aq_softc *sc)
   2048 {
   2049 	int timo;
   2050 
   2051 	if (FW_VERSION_MAJOR(sc) == 1) {
   2052 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
   2053 			uint32_t data;
   2054 			cprng_fast(&data, sizeof(data));
   2055 			data &= 0xfefefefe;
   2056 			data |= 0x02020202;
   2057 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
   2058 		}
   2059 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2060 	}
   2061 
   2062 	for (timo = 100; timo > 0; timo--) {
   2063 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2064 		if (sc->sc_mbox_addr != 0)
   2065 			break;
   2066 		delay(1000);
   2067 	}
   2068 
   2069 #define AQ_FW_MIN_VERSION	0x01050006
   2070 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2071 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2072 		aprint_error_dev(sc->sc_dev,
   2073 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2074 		    " or later required, this is %d.%d.%d\n",
   2075 		    FW_VERSION_MAJOR(sc),
   2076 		    FW_VERSION_MINOR(sc),
   2077 		    FW_VERSION_BUILD(sc));
   2078 		return ENOTSUP;
   2079 	}
   2080 
   2081 	return 0;
   2082 }
   2083 
   2084 static int
   2085 aq_fw_version_init(struct aq_softc *sc)
   2086 {
   2087 	int error = 0;
   2088 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2089 
   2090 	if (FW_VERSION_MAJOR(sc) == 1) {
   2091 		sc->sc_fw_ops = &aq_fw1x_ops;
   2092 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2093 		sc->sc_fw_ops = &aq_fw2x_ops;
   2094 	} else {
   2095 		aprint_error_dev(sc->sc_dev,
   2096 		    "Unsupported F/W version %d.%d.%d\n",
   2097 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2098 		    FW_VERSION_BUILD(sc));
   2099 		return ENOTSUP;
   2100 	}
   2101 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2102 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2103 
   2104 	/* detect revision */
   2105 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2106 	switch (hwrev & 0x0000000f) {
   2107 	case 0x01:
   2108 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2109 		    fw_vers);
   2110 		sc->sc_features |= FEATURES_REV_A0 |
   2111 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2112 		break;
   2113 	case 0x02:
   2114 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2115 		    fw_vers);
   2116 		sc->sc_features |= FEATURES_REV_B0 |
   2117 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2118 		    FEATURES_TPO2 | FEATURES_RPF2;
   2119 		break;
   2120 	case 0x0A:
   2121 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2122 		    fw_vers);
   2123 		sc->sc_features |= FEATURES_REV_B1 |
   2124 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2125 		    FEATURES_TPO2 | FEATURES_RPF2;
   2126 		break;
   2127 	default:
   2128 		aprint_error_dev(sc->sc_dev,
   2129 		    "Unknown revision (0x%08x)\n", hwrev);
   2130 		error = ENOTSUP;
   2131 		break;
   2132 	}
   2133 	return error;
   2134 }
   2135 
   2136 static int
   2137 fw1x_reset(struct aq_softc *sc)
   2138 {
   2139 	struct aq_mailbox_header mbox;
   2140 	const int retryCount = 1000;
   2141 	uint32_t tid0;
   2142 	int i;
   2143 
   2144 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2145 
   2146 	for (i = 0; i < retryCount; ++i) {
   2147 		/*
   2148 		 * Read the beginning of Statistics structure to capture
   2149 		 * the Transaction ID.
   2150 		 */
   2151 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2152 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2153 
   2154 		/* Successfully read the stats. */
   2155 		if (tid0 == ~0U) {
   2156 			/* We have read the initial value. */
   2157 			tid0 = mbox.transaction_id;
   2158 			continue;
   2159 		} else if (mbox.transaction_id != tid0) {
   2160 			/*
   2161 			 * Compare transaction ID to initial value.
   2162 			 * If it's different means f/w is alive.
   2163 			 * We're done.
   2164 			 */
   2165 			return 0;
   2166 		}
   2167 
   2168 		/*
   2169 		 * Transaction ID value haven't changed since last time.
   2170 		 * Try reading the stats again.
   2171 		 */
   2172 		delay(10);
   2173 	}
   2174 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2175 	return EBUSY;
   2176 }
   2177 
   2178 static int
   2179 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2180     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2181 {
   2182 	uint32_t mpictrl = 0;
   2183 	uint32_t mpispeed = 0;
   2184 
   2185 	if (speed & AQ_LINK_10G)
   2186 		mpispeed |= FW1X_CTRL_10G;
   2187 	if (speed & AQ_LINK_5G)
   2188 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2189 	if (speed & AQ_LINK_2G5)
   2190 		mpispeed |= FW1X_CTRL_2G5;
   2191 	if (speed & AQ_LINK_1G)
   2192 		mpispeed |= FW1X_CTRL_1G;
   2193 	if (speed & AQ_LINK_100M)
   2194 		mpispeed |= FW1X_CTRL_100M;
   2195 
   2196 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2197 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2198 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2199 	return 0;
   2200 }
   2201 
   2202 static int
   2203 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2204     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2205 {
   2206 	uint32_t mpistate, mpi_speed;
   2207 	aq_link_speed_t speed = AQ_LINK_NONE;
   2208 
   2209 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2210 
   2211 	if (modep != NULL)
   2212 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2213 
   2214 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2215 	if (mpi_speed & FW1X_CTRL_10G)
   2216 		speed = AQ_LINK_10G;
   2217 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2218 		speed = AQ_LINK_5G;
   2219 	else if (mpi_speed & FW1X_CTRL_2G5)
   2220 		speed = AQ_LINK_2G5;
   2221 	else if (mpi_speed & FW1X_CTRL_1G)
   2222 		speed = AQ_LINK_1G;
   2223 	else if (mpi_speed & FW1X_CTRL_100M)
   2224 		speed = AQ_LINK_100M;
   2225 
   2226 	if (speedp != NULL)
   2227 		*speedp = speed;
   2228 
   2229 	if (fcp != NULL)
   2230 		*fcp = AQ_FC_NONE;
   2231 
   2232 	if (eeep != NULL)
   2233 		*eeep = AQ_EEE_DISABLE;
   2234 
   2235 	return 0;
   2236 }
   2237 
   2238 static int
   2239 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2240 {
   2241 	int error;
   2242 
   2243 	error = aq_fw_downld_dwords(sc,
   2244 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2245 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2246 	if (error < 0) {
   2247 		device_printf(sc->sc_dev,
   2248 		    "fw1x> download statistics data FAILED, error %d", error);
   2249 		return error;
   2250 	}
   2251 
   2252 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2253 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2254 	return 0;
   2255 }
   2256 
   2257 static int
   2258 fw2x_reset(struct aq_softc *sc)
   2259 {
   2260 	fw2x_capabilities_t caps = { 0 };
   2261 	int error;
   2262 
   2263 	error = aq_fw_downld_dwords(sc,
   2264 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2265 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2266 	if (error != 0) {
   2267 		aprint_error_dev(sc->sc_dev,
   2268 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2269 		    error);
   2270 		return error;
   2271 	}
   2272 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2273 
   2274 	char buf[256];
   2275 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2276 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2277 
   2278 	return 0;
   2279 }
   2280 
   2281 static int
   2282 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2283     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2284 {
   2285 	uint64_t mpi_ctrl;
   2286 	int error = 0;
   2287 
   2288 	AQ_MPI_LOCK(sc);
   2289 
   2290 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2291 
   2292 	switch (mode) {
   2293 	case MPI_INIT:
   2294 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2295 		if (speed & AQ_LINK_10G)
   2296 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2297 		if (speed & AQ_LINK_5G)
   2298 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2299 		if (speed & AQ_LINK_2G5)
   2300 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2301 		if (speed & AQ_LINK_1G)
   2302 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2303 		if (speed & AQ_LINK_100M)
   2304 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2305 
   2306 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2307 
   2308 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2309 		if (eee == AQ_EEE_ENABLE)
   2310 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2311 
   2312 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2313 		if (fc & AQ_FC_RX)
   2314 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2315 		if (fc & AQ_FC_TX)
   2316 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2317 		break;
   2318 	case MPI_DEINIT:
   2319 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2320 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2321 		break;
   2322 	default:
   2323 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2324 		error =  EINVAL;
   2325 		goto failure;
   2326 	}
   2327 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2328 
   2329  failure:
   2330 	AQ_MPI_UNLOCK(sc);
   2331 	return error;
   2332 }
   2333 
   2334 static int
   2335 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2336     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2337 {
   2338 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2339 
   2340 	if (modep != NULL) {
   2341 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2342 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2343 			*modep = MPI_INIT;
   2344 		else
   2345 			*modep = MPI_DEINIT;
   2346 	}
   2347 
   2348 	aq_link_speed_t speed = AQ_LINK_NONE;
   2349 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2350 		speed = AQ_LINK_10G;
   2351 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2352 		speed = AQ_LINK_5G;
   2353 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2354 		speed = AQ_LINK_2G5;
   2355 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2356 		speed = AQ_LINK_1G;
   2357 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2358 		speed = AQ_LINK_100M;
   2359 
   2360 	if (speedp != NULL)
   2361 		*speedp = speed;
   2362 
   2363 	aq_link_fc_t fc = AQ_FC_NONE;
   2364 	if (mpi_state & FW2X_CTRL_PAUSE)
   2365 		fc |= AQ_FC_RX;
   2366 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2367 		fc |= AQ_FC_TX;
   2368 	if (fcp != NULL)
   2369 		*fcp = fc;
   2370 
   2371 	/* XXX: TODO: EEE */
   2372 	if (eeep != NULL)
   2373 		*eeep = AQ_EEE_DISABLE;
   2374 
   2375 	return 0;
   2376 }
   2377 
   2378 static int
   2379 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2380     uint32_t timeout_ms, uint32_t try_count)
   2381 {
   2382 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2383 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2384 	int error;
   2385 
   2386 	/* First, check that control and state values are consistent */
   2387 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2388 		device_printf(sc->sc_dev,
   2389 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2390 		    " are not consistent for mask %#llx!\n",
   2391 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2392 		    (unsigned long long)mask);
   2393 		return EINVAL;
   2394 	}
   2395 
   2396 	/* Invert bits (toggle) in control register */
   2397 	mpi_ctrl ^= mask;
   2398 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2399 
   2400 	/* Clear all bits except masked */
   2401 	mpi_ctrl &= mask;
   2402 
   2403 	/* Wait for FW reflecting change in state register */
   2404 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2405 	    1000 * timeout_ms, try_count, &error);
   2406 	if (error != 0) {
   2407 		device_printf(sc->sc_dev,
   2408 		    "f/w2x> timeout while waiting for response"
   2409 		    " in state register for bit %#llx!",
   2410 		    (unsigned long long)mask);
   2411 		return error;
   2412 	}
   2413 	return 0;
   2414 }
   2415 
   2416 static int
   2417 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2418 {
   2419 	int error;
   2420 
   2421 	AQ_MPI_LOCK(sc);
   2422 	/* Say to F/W to update the statistics */
   2423 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2424 	if (error != 0) {
   2425 		device_printf(sc->sc_dev,
   2426 		    "fw2x> statistics update error %d\n", error);
   2427 		goto failure;
   2428 	}
   2429 
   2430 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2431 	error = aq_fw_downld_dwords(sc,
   2432 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2433 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2434 	if (error != 0) {
   2435 		device_printf(sc->sc_dev,
   2436 		    "fw2x> download statistics data FAILED, error %d", error);
   2437 		goto failure;
   2438 	}
   2439 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2440 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2441 
   2442  failure:
   2443 	AQ_MPI_UNLOCK(sc);
   2444 	return error;
   2445 }
   2446 
   2447 #if NSYSMON_ENVSYS > 0
   2448 static int
   2449 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2450 {
   2451 	int error;
   2452 	uint32_t value, celsius;
   2453 
   2454 	AQ_MPI_LOCK(sc);
   2455 
   2456 	/* Say to F/W to update the temperature */
   2457 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2458 	if (error != 0)
   2459 		goto failure;
   2460 
   2461 	error = aq_fw_downld_dwords(sc,
   2462 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2463 	    &value, sizeof(value) / sizeof(uint32_t));
   2464 	if (error != 0)
   2465 		goto failure;
   2466 
   2467 	/* 1/256 decrees C to microkelvin */
   2468 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2469 	if (celsius == 0) {
   2470 		error = EIO;
   2471 		goto failure;
   2472 	}
   2473 	*temp = celsius * (1000000 / 256) + 273150000;
   2474 
   2475  failure:
   2476 	AQ_MPI_UNLOCK(sc);
   2477 	return 0;
   2478 }
   2479 #endif
   2480 
   2481 static int
   2482 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2483     uint32_t cnt)
   2484 {
   2485 	uint32_t v;
   2486 	int error = 0;
   2487 
   2488 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2489 	if (error != 0) {
   2490 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2491 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2492 		if (v == 0) {
   2493 			device_printf(sc->sc_dev,
   2494 			    "%s:%d: timeout\n", __func__, __LINE__);
   2495 			return ETIMEDOUT;
   2496 		}
   2497 	}
   2498 
   2499 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2500 
   2501 	error = 0;
   2502 	for (; cnt > 0 && error == 0; cnt--) {
   2503 		/* execute mailbox interface */
   2504 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2505 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2506 		if (sc->sc_features & FEATURES_REV_B1) {
   2507 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2508 			    1, 1000, &error);
   2509 		} else {
   2510 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2511 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2512 			    1, 1000, &error);
   2513 		}
   2514 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2515 		addr += sizeof(uint32_t);
   2516 	}
   2517 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2518 
   2519 	if (error != 0)
   2520 		device_printf(sc->sc_dev,
   2521 		    "%s:%d: timeout\n", __func__, __LINE__);
   2522 
   2523 	return error;
   2524 }
   2525 
   2526 /* read my mac address */
   2527 static int
   2528 aq_get_mac_addr(struct aq_softc *sc)
   2529 {
   2530 	uint32_t mac_addr[2];
   2531 	uint32_t efuse_shadow_addr;
   2532 	int err;
   2533 
   2534 	efuse_shadow_addr = 0;
   2535 	if (FW_VERSION_MAJOR(sc) >= 2)
   2536 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2537 	else
   2538 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2539 
   2540 	if (efuse_shadow_addr == 0) {
   2541 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2542 		return ENXIO;
   2543 	}
   2544 
   2545 	memset(mac_addr, 0, sizeof(mac_addr));
   2546 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2547 	    mac_addr, __arraycount(mac_addr));
   2548 	if (err < 0)
   2549 		return err;
   2550 
   2551 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2552 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2553 		return ENXIO;
   2554 	}
   2555 
   2556 	mac_addr[0] = bswap32(mac_addr[0]);
   2557 	mac_addr[1] = bswap32(mac_addr[1]);
   2558 
   2559 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2560 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2561 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2562 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2563 
   2564 	return 0;
   2565 }
   2566 
   2567 /* set multicast filter. index 0 for own address */
   2568 static int
   2569 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2570 {
   2571 	uint32_t h, l;
   2572 
   2573 	if (index >= AQ_HW_MAC_NUM)
   2574 		return EINVAL;
   2575 
   2576 	if (enaddr == NULL) {
   2577 		/* disable */
   2578 		AQ_WRITE_REG_BIT(sc,
   2579 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2580 		return 0;
   2581 	}
   2582 
   2583 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2584 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2585 	    (enaddr[4] <<  8) | (enaddr[5]);
   2586 
   2587 	/* disable, set, and enable */
   2588 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2589 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2590 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2591 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2592 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2593 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2594 
   2595 	return 0;
   2596 }
   2597 
   2598 static int
   2599 aq_set_capability(struct aq_softc *sc)
   2600 {
   2601 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2602 	int ip4csum_tx =
   2603 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2604 	int ip4csum_rx =
   2605 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2606 	int l4csum_tx = ((ifp->if_capenable &
   2607 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2608 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2609 	int l4csum_rx =
   2610 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2611 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2612 	uint32_t lso =
   2613 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2614 	   0 : 0xffffffff;
   2615 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2616 	    0 : 0xffffffff;
   2617 	uint32_t i, v;
   2618 
   2619 	/* TX checksums offloads*/
   2620 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2621 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2622 
   2623 	/* RX checksums offloads*/
   2624 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2625 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2626 
   2627 	/* LSO offloads*/
   2628 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2629 
   2630 #define AQ_B0_LRO_RXD_MAX	16
   2631 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2632 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2633 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2634 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2635 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2636 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2637 	}
   2638 
   2639 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2640 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2641 	    RPO_LRO_INACTIVE_IVAL, 0);
   2642 	/*
   2643 	 * the LRO timebase divider is 5 uS (0x61a),
   2644 	 * to get a maximum coalescing interval of 250 uS,
   2645 	 * we need to multiply by 50(0x32) to get
   2646 	 * the default value 250 uS
   2647 	 */
   2648 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2649 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2650 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2651 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2652 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2653 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2654 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2655 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2656 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2657 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2658 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2659 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2660 
   2661 	return 0;
   2662 }
   2663 
   2664 static int
   2665 aq_set_filter(struct aq_softc *sc)
   2666 {
   2667 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2668 	struct ethercom *ec = &sc->sc_ethercom;
   2669 	struct ether_multi *enm;
   2670 	struct ether_multistep step;
   2671 	int idx, error = 0;
   2672 
   2673 	if (ifp->if_flags & IFF_PROMISC) {
   2674 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2675 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2676 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2677 		goto done;
   2678 	}
   2679 
   2680 	/* clear all table */
   2681 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2682 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2683 			continue;
   2684 		aq_set_mac_addr(sc, idx, NULL);
   2685 	}
   2686 
   2687 	/* don't accept all multicast */
   2688 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2689 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2690 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2691 	    RPF_MCAST_FILTER_EN, 0);
   2692 
   2693 	idx = 0;
   2694 	ETHER_LOCK(ec);
   2695 	ETHER_FIRST_MULTI(step, ec, enm);
   2696 	while (enm != NULL) {
   2697 		if (idx == AQ_HW_MAC_OWN)
   2698 			idx++;
   2699 
   2700 		if ((idx >= AQ_HW_MAC_NUM) ||
   2701 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2702 			/*
   2703 			 * too many filters.
   2704 			 * fallback to accept all multicast addresses.
   2705 			 */
   2706 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2707 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2708 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2709 			    RPF_MCAST_FILTER_EN, 1);
   2710 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2711 			ETHER_UNLOCK(ec);
   2712 			goto done;
   2713 		}
   2714 
   2715 		/* add a filter */
   2716 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2717 
   2718 		ETHER_NEXT_MULTI(step, enm);
   2719 	}
   2720 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2721 	ETHER_UNLOCK(ec);
   2722 
   2723  done:
   2724 	return error;
   2725 }
   2726 
   2727 static void
   2728 aq_mediastatus_update(struct aq_softc *sc)
   2729 {
   2730 	sc->sc_media_active = 0;
   2731 
   2732 	if (sc->sc_link_fc & AQ_FC_RX)
   2733 		sc->sc_media_active |= IFM_ETH_RXPAUSE;
   2734 	if (sc->sc_link_fc & AQ_FC_TX)
   2735 		sc->sc_media_active |= IFM_ETH_TXPAUSE;
   2736 
   2737 	switch (sc->sc_link_rate) {
   2738 	case AQ_LINK_100M:
   2739 		/* XXX: need to detect fulldup or halfdup */
   2740 		sc->sc_media_active |= IFM_100_TX | IFM_FDX;
   2741 		break;
   2742 	case AQ_LINK_1G:
   2743 		sc->sc_media_active |= IFM_1000_T | IFM_FDX;
   2744 		break;
   2745 	case AQ_LINK_2G5:
   2746 		sc->sc_media_active |= IFM_2500_T | IFM_FDX;
   2747 		break;
   2748 	case AQ_LINK_5G:
   2749 		sc->sc_media_active |= IFM_5000_T | IFM_FDX;
   2750 		break;
   2751 	case AQ_LINK_10G:
   2752 		sc->sc_media_active |= IFM_10G_T | IFM_FDX;
   2753 		break;
   2754 	default:
   2755 		sc->sc_media_active |= IFM_NONE;
   2756 		break;
   2757 	}
   2758 }
   2759 
   2760 static int
   2761 aq_ifmedia_change(struct ifnet * const ifp)
   2762 {
   2763 	struct aq_softc *sc = ifp->if_softc;
   2764 	aq_link_speed_t rate = AQ_LINK_NONE;
   2765 	aq_link_fc_t fc = AQ_FC_NONE;
   2766 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2767 
   2768 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2769 		return EINVAL;
   2770 
   2771 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2772 	case IFM_AUTO:
   2773 		rate = AQ_LINK_AUTO;
   2774 		break;
   2775 	case IFM_NONE:
   2776 		rate = AQ_LINK_NONE;
   2777 		break;
   2778 	case IFM_100_TX:
   2779 		rate = AQ_LINK_100M;
   2780 		break;
   2781 	case IFM_1000_T:
   2782 		rate = AQ_LINK_1G;
   2783 		break;
   2784 	case IFM_2500_T:
   2785 		rate = AQ_LINK_2G5;
   2786 		break;
   2787 	case IFM_5000_T:
   2788 		rate = AQ_LINK_5G;
   2789 		break;
   2790 	case IFM_10G_T:
   2791 		rate = AQ_LINK_10G;
   2792 		break;
   2793 	default:
   2794 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2795 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2796 		return ENODEV;
   2797 	}
   2798 
   2799 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2800 		fc = AQ_FC_ALL;
   2801 
   2802 	/* XXX: todo EEE */
   2803 
   2804 	/* re-initialize hardware with new parameters */
   2805 	aq_set_linkmode(sc, rate, fc, eee);
   2806 
   2807 	return 0;
   2808 }
   2809 
   2810 static void
   2811 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2812 {
   2813 	struct aq_softc *sc = ifp->if_softc;
   2814 
   2815 	ifmr->ifm_active = IFM_ETHER;
   2816 	ifmr->ifm_status = IFM_AVALID;
   2817 
   2818 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2819 		ifmr->ifm_status |= IFM_ACTIVE;
   2820 
   2821 	ifmr->ifm_active |= sc->sc_media_active;
   2822 }
   2823 
   2824 static void
   2825 aq_initmedia(struct aq_softc *sc)
   2826 {
   2827 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2828 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2829 
   2830 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2831 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2832 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2833 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2834 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2835 	}
   2836 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2837 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2838 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2839 	}
   2840 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2841 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2842 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2843 	}
   2844 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2845 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2846 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2847 	}
   2848 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2849 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2850 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2851 	}
   2852 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2853 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2854 
   2855 	/* default: auto without flowcontrol */
   2856 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2857 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2858 }
   2859 
   2860 static int
   2861 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2862     aq_link_eee_t eee)
   2863 {
   2864 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2865 }
   2866 
   2867 static int
   2868 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2869    aq_link_eee_t *eee)
   2870 {
   2871 	aq_hw_fw_mpi_state_t mode;
   2872 	int error;
   2873 
   2874 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2875 	if (error != 0)
   2876 		return error;
   2877 	if (mode != MPI_INIT)
   2878 		return ENXIO;
   2879 
   2880 	return 0;
   2881 }
   2882 
   2883 static void
   2884 aq_hw_init_tx_path(struct aq_softc *sc)
   2885 {
   2886 	/* Tx TC/RSS number config */
   2887 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2888 
   2889 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2890 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2891 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2892 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2893 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2894 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2895 
   2896 	/* misc */
   2897 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2898 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2899 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2900 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2901 
   2902 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2903 }
   2904 
   2905 static void
   2906 aq_hw_init_rx_path(struct aq_softc *sc)
   2907 {
   2908 	int i;
   2909 
   2910 	/* clear setting */
   2911 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2912 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2913 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2914 	for (i = 0; i < 32; i++) {
   2915 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2916 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2917 	}
   2918 
   2919 	if (sc->sc_rss_enable) {
   2920 		/* Rx TC/RSS number config */
   2921 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2922 
   2923 		/* Rx flow control */
   2924 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2925 
   2926 		/* RSS Ring selection */
   2927 		switch (sc->sc_nqueues) {
   2928 		case 2:
   2929 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2930 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2931 			break;
   2932 		case 4:
   2933 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2934 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2935 			break;
   2936 		case 8:
   2937 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2938 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2939 			break;
   2940 		}
   2941 	}
   2942 
   2943 	/* L2 and Multicast filters */
   2944 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2945 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2946 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2947 		    RPF_ACTION_HOST);
   2948 	}
   2949 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2950 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2951 
   2952 	/* Vlan filters */
   2953 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2954 	    ETHERTYPE_QINQ);
   2955 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2956 	    ETHERTYPE_VLAN);
   2957 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   2958 
   2959 	if (sc->sc_features & FEATURES_REV_B) {
   2960 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2961 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2962 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2963 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2964 	}
   2965 
   2966 	/* misc */
   2967 	if (sc->sc_features & FEATURES_RPF2)
   2968 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2969 	else
   2970 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2971 
   2972 	/*
   2973 	 * XXX: RX_TCP_RSS_HASH_REG:
   2974 	 *  linux   set 0x000f0000
   2975 	 *  freebsd set 0x000f001e
   2976 	 */
   2977 	/* RSS hash type set for IP/TCP */
   2978 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2979 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2980 
   2981 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   2982 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   2983 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   2984 
   2985 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   2986 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   2987 }
   2988 
   2989 static void
   2990 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   2991 {
   2992 	int i;
   2993 
   2994 	if (sc->sc_intr_moderation_enable) {
   2995 		unsigned int tx_min, rx_min;	/* 0-255 */
   2996 		unsigned int tx_max, rx_max;	/* 0-511? */
   2997 
   2998 		switch (sc->sc_link_rate) {
   2999 		case AQ_LINK_100M:
   3000 			tx_min = 0x4f;
   3001 			tx_max = 0xff;
   3002 			rx_min = 0x04;
   3003 			rx_max = 0x50;
   3004 			break;
   3005 		case AQ_LINK_1G:
   3006 		default:
   3007 			tx_min = 0x4f;
   3008 			tx_max = 0xff;
   3009 			rx_min = 0x30;
   3010 			rx_max = 0x80;
   3011 			break;
   3012 		case AQ_LINK_2G5:
   3013 			tx_min = 0x4f;
   3014 			tx_max = 0xff;
   3015 			rx_min = 0x18;
   3016 			rx_max = 0xe0;
   3017 			break;
   3018 		case AQ_LINK_5G:
   3019 			tx_min = 0x4f;
   3020 			tx_max = 0xff;
   3021 			rx_min = 0x0c;
   3022 			rx_max = 0x70;
   3023 			break;
   3024 		case AQ_LINK_10G:
   3025 			tx_min = 0x4f;
   3026 			tx_max = 0x1ff;
   3027 			rx_min = 0x06;	/* freebsd use 80 */
   3028 			rx_max = 0x38;	/* freebsd use 120 */
   3029 			break;
   3030 		}
   3031 
   3032 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3033 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3034 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3035 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3036 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3037 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3038 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3039 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3040 
   3041 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3042 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3043 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3044 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3045 			    TX_INTR_MODERATION_CTL_EN);
   3046 		}
   3047 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3048 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3049 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3050 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3051 			    RX_INTR_MODERATION_CTL_EN);
   3052 		}
   3053 
   3054 	} else {
   3055 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3056 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3057 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3058 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3059 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3060 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3061 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3062 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3063 
   3064 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3065 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3066 		}
   3067 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3068 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3069 		}
   3070 	}
   3071 }
   3072 
   3073 static void
   3074 aq_hw_qos_set(struct aq_softc *sc)
   3075 {
   3076 	uint32_t tc = 0;
   3077 	uint32_t buff_size;
   3078 
   3079 	/* TPS Descriptor rate init */
   3080 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3081 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3082 
   3083 	/* TPS VM init */
   3084 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3085 
   3086 	/* TPS TC credits init */
   3087 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3088 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3089 
   3090 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3091 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3092 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3093 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3094 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3095 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3096 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3097 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3098 
   3099 	/* Tx buf size */
   3100 	tc = 0;
   3101 	buff_size = AQ_HW_TXBUF_MAX;
   3102 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3103 	    buff_size);
   3104 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3105 	    (buff_size * (1024 / 32) * 66) / 100);
   3106 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3107 	    (buff_size * (1024 / 32) * 50) / 100);
   3108 
   3109 	/* QoS Rx buf size per TC */
   3110 	tc = 0;
   3111 	buff_size = AQ_HW_RXBUF_MAX;
   3112 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3113 	    buff_size);
   3114 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3115 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3116 	    (buff_size * (1024 / 32) * 66) / 100);
   3117 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3118 	    (buff_size * (1024 / 32) * 50) / 100);
   3119 
   3120 	/* QoS 802.1p priority -> TC mapping */
   3121 	int i_priority;
   3122 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3123 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3124 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3125 	}
   3126 }
   3127 
   3128 /* called once from aq_attach */
   3129 static int
   3130 aq_init_rss(struct aq_softc *sc)
   3131 {
   3132 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3133 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3134 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3135 	unsigned int i;
   3136 	int error;
   3137 
   3138 	/* initialize rss key */
   3139 	rss_getkey((uint8_t *)rss_key);
   3140 
   3141 	/* hash to ring table */
   3142 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3143 		rss_table[i] = i % sc->sc_nqueues;
   3144 	}
   3145 
   3146 	/*
   3147 	 * set rss key
   3148 	 */
   3149 	for (i = 0; i < __arraycount(rss_key); i++) {
   3150 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3151 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3152 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3153 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3154 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3155 		    RPF_RSS_KEY_WR_EN, 1);
   3156 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3157 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3158 		if (error != 0) {
   3159 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3160 			    __func__);
   3161 			goto rss_set_timeout;
   3162 		}
   3163 	}
   3164 
   3165 	/*
   3166 	 * set rss indirection table
   3167 	 *
   3168 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3169 	 * we'll make it by __BITMAP(3) macros.
   3170 	 */
   3171 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3172 	__BITMAP_ZERO(&bit3x64);
   3173 
   3174 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3175 	do {							\
   3176 		if (val & 1) {					\
   3177 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3178 		} else {					\
   3179 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3180 		}						\
   3181 		if (val & 2) {					\
   3182 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3183 		} else {					\
   3184 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3185 		}						\
   3186 		if (val & 4) {					\
   3187 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3188 		} else {					\
   3189 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3190 		}						\
   3191 	} while (0 /* CONSTCOND */)
   3192 
   3193 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3194 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3195 	}
   3196 
   3197 	/* write 192bit data in steps of 16bit */
   3198 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3199 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3200 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3201 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3202 		    RPF_RSS_REDIR_ADDR, i);
   3203 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3204 		    RPF_RSS_REDIR_WR_EN, 1);
   3205 
   3206 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3207 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3208 		if (error != 0)
   3209 			break;
   3210 	}
   3211 
   3212  rss_set_timeout:
   3213 	return error;
   3214 }
   3215 
   3216 static void
   3217 aq_hw_l3_filter_set(struct aq_softc *sc)
   3218 {
   3219 	int i;
   3220 
   3221 	/* clear all filter */
   3222 	for (i = 0; i < 8; i++) {
   3223 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3224 		    RPF_L3_FILTER_L4_EN, 0);
   3225 	}
   3226 }
   3227 
   3228 static void
   3229 aq_update_vlan_filters(struct aq_softc *sc)
   3230 {
   3231 	/* XXX: notyet. vlan always promisc */
   3232 	int i;
   3233 
   3234 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
   3235 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3236 		    RPF_VLAN_FILTER_EN, 0);
   3237 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3238 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3239 	}
   3240 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   3241 }
   3242 
   3243 static int
   3244 aq_hw_init(struct aq_softc *sc)
   3245 {
   3246 	uint32_t v;
   3247 
   3248 	/* Force limit MRRS on RDM/TDM to 2K */
   3249 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3250 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3251 
   3252 	/*
   3253 	 * TX DMA total request limit. B0 hardware is not capable to
   3254 	 * handle more than (8K-MRRS) incoming DMA data.
   3255 	 * Value 24 in 256byte units
   3256 	 */
   3257 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3258 
   3259 	aq_hw_init_tx_path(sc);
   3260 	aq_hw_init_rx_path(sc);
   3261 
   3262 	aq_hw_interrupt_moderation_set(sc);
   3263 
   3264 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3265 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3266 
   3267 	aq_hw_qos_set(sc);
   3268 
   3269 	/* Enable interrupt */
   3270 	int irqmode;
   3271 	if (sc->sc_msix)
   3272 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3273 	else
   3274 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3275 
   3276 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3277 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3278 	    sc->sc_msix ? 1 : 0);
   3279 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3280 
   3281 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3282 
   3283 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3284 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3285 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3286 	);
   3287 
   3288 	/* link interrupt */
   3289 	if (!sc->sc_msix)
   3290 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3291 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3292 	    __BIT(7) | sc->sc_linkstat_irq);
   3293 
   3294 	return 0;
   3295 }
   3296 
   3297 static int
   3298 aq_update_link_status(struct aq_softc *sc)
   3299 {
   3300 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3301 	aq_link_speed_t rate = AQ_LINK_NONE;
   3302 	aq_link_fc_t fc = AQ_FC_NONE;
   3303 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3304 	unsigned int speed;
   3305 	int changed = 0;
   3306 
   3307 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3308 
   3309 	if (sc->sc_link_rate != rate)
   3310 		changed = 1;
   3311 	if (sc->sc_link_fc != fc)
   3312 		changed = 1;
   3313 	if (sc->sc_link_eee != eee)
   3314 		changed = 1;
   3315 
   3316 	if (changed) {
   3317 		switch (rate) {
   3318 		case AQ_LINK_100M:
   3319 			speed = 100;
   3320 			break;
   3321 		case AQ_LINK_1G:
   3322 			speed = 1000;
   3323 			break;
   3324 		case AQ_LINK_2G5:
   3325 			speed = 2500;
   3326 			break;
   3327 		case AQ_LINK_5G:
   3328 			speed = 5000;
   3329 			break;
   3330 		case AQ_LINK_10G:
   3331 			speed = 10000;
   3332 			break;
   3333 		case AQ_LINK_NONE:
   3334 		default:
   3335 			speed = 0;
   3336 			break;
   3337 		}
   3338 
   3339 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3340 			/* link DOWN -> UP */
   3341 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3342 			    speed);
   3343 			if_link_state_change(ifp, LINK_STATE_UP);
   3344 		} else if (rate == AQ_LINK_NONE) {
   3345 			/* link UP -> DOWN */
   3346 			device_printf(sc->sc_dev, "link is DOWN\n");
   3347 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3348 		} else {
   3349 			device_printf(sc->sc_dev,
   3350 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3351 			    speed, fc, eee);
   3352 		}
   3353 
   3354 		sc->sc_link_rate = rate;
   3355 		sc->sc_link_fc = fc;
   3356 		sc->sc_link_eee = eee;
   3357 
   3358 		aq_mediastatus_update(sc);
   3359 
   3360 		/* update interrupt timing according to new link speed */
   3361 		aq_hw_interrupt_moderation_set(sc);
   3362 	}
   3363 
   3364 	return changed;
   3365 }
   3366 
   3367 #ifdef AQ_EVENT_COUNTERS
   3368 static void
   3369 aq_update_statistics(struct aq_softc *sc)
   3370 {
   3371 	int prev = sc->sc_statistics_idx;
   3372 	int cur = prev ^ 1;
   3373 
   3374 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3375 
   3376 	/*
   3377 	 * aq's internal statistics counter is 32bit.
   3378 	 * cauculate delta, and add to evcount
   3379 	 */
   3380 #define ADD_DELTA(cur, prev, name)				\
   3381 	do {							\
   3382 		uint32_t n;					\
   3383 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3384 		    sc->sc_statistics[prev].name);		\
   3385 		if (n != 0) {					\
   3386 			AQ_EVCNT_ADD(sc, name, n);		\
   3387 		}						\
   3388 	} while (/*CONSTCOND*/0);
   3389 
   3390 	ADD_DELTA(cur, prev, uprc);
   3391 	ADD_DELTA(cur, prev, mprc);
   3392 	ADD_DELTA(cur, prev, bprc);
   3393 	ADD_DELTA(cur, prev, prc);
   3394 	ADD_DELTA(cur, prev, erpr);
   3395 	ADD_DELTA(cur, prev, uptc);
   3396 	ADD_DELTA(cur, prev, mptc);
   3397 	ADD_DELTA(cur, prev, bptc);
   3398 	ADD_DELTA(cur, prev, ptc);
   3399 	ADD_DELTA(cur, prev, erpt);
   3400 	ADD_DELTA(cur, prev, mbtc);
   3401 	ADD_DELTA(cur, prev, bbtc);
   3402 	ADD_DELTA(cur, prev, mbrc);
   3403 	ADD_DELTA(cur, prev, bbrc);
   3404 	ADD_DELTA(cur, prev, ubrc);
   3405 	ADD_DELTA(cur, prev, ubtc);
   3406 	ADD_DELTA(cur, prev, dpc);
   3407 	ADD_DELTA(cur, prev, cprc);
   3408 
   3409 	sc->sc_statistics_idx = cur;
   3410 }
   3411 #endif /* AQ_EVENT_COUNTERS */
   3412 
   3413 /* allocate and map one DMA block */
   3414 static int
   3415 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3416     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3417 {
   3418 	int nsegs, error;
   3419 
   3420 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3421 	    1, &nsegs, 0)) != 0) {
   3422 		aprint_error_dev(sc->sc_dev,
   3423 		    "unable to allocate DMA buffer, error=%d\n", error);
   3424 		goto fail_alloc;
   3425 	}
   3426 
   3427 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3428 	    BUS_DMA_COHERENT)) != 0) {
   3429 		aprint_error_dev(sc->sc_dev,
   3430 		    "unable to map DMA buffer, error=%d\n", error);
   3431 		goto fail_map;
   3432 	}
   3433 
   3434 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3435 	    0, mapp)) != 0) {
   3436 		aprint_error_dev(sc->sc_dev,
   3437 		    "unable to create DMA map, error=%d\n", error);
   3438 		goto fail_create;
   3439 	}
   3440 
   3441 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3442 	    0)) != 0) {
   3443 		aprint_error_dev(sc->sc_dev,
   3444 		    "unable to load DMA map, error=%d\n", error);
   3445 		goto fail_load;
   3446 	}
   3447 
   3448 	*sizep = size;
   3449 	return 0;
   3450 
   3451  fail_load:
   3452 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3453 	*mapp = NULL;
   3454  fail_create:
   3455 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3456 	*addrp = NULL;
   3457  fail_map:
   3458 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3459 	memset(seg, 0, sizeof(*seg));
   3460  fail_alloc:
   3461 	*sizep = 0;
   3462 	return error;
   3463 }
   3464 
   3465 static void
   3466 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3467     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3468 {
   3469 	if (*mapp != NULL) {
   3470 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3471 		*mapp = NULL;
   3472 	}
   3473 	if (*addrp != NULL) {
   3474 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3475 		*addrp = NULL;
   3476 	}
   3477 	if (*sizep != 0) {
   3478 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3479 		memset(seg, 0, sizeof(*seg));
   3480 		*sizep = 0;
   3481 	}
   3482 }
   3483 
   3484 static int
   3485 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3486 {
   3487 	int i, error;
   3488 
   3489 	/* allocate tx descriptors */
   3490 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3491 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3492 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3493 	if (error != 0)
   3494 		return error;
   3495 
   3496 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3497 
   3498 	/* fill tx ring with dmamap */
   3499 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3500 #define AQ_MAXDMASIZE	(16 * 1024)
   3501 #define AQ_NTXSEGS	32
   3502 		/* XXX: TODO: error check */
   3503 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3504 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3505 	}
   3506 	return 0;
   3507 }
   3508 
   3509 static void
   3510 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3511 {
   3512 	int i;
   3513 
   3514 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3515 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3516 
   3517 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3518 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3519 			if (txring->txr_mbufs[i].m != NULL) {
   3520 				bus_dmamap_unload(sc->sc_dmat,
   3521 				    txring->txr_mbufs[i].dmamap);
   3522 				m_freem(txring->txr_mbufs[i].m);
   3523 				txring->txr_mbufs[i].m = NULL;
   3524 			}
   3525 			bus_dmamap_destroy(sc->sc_dmat,
   3526 			    txring->txr_mbufs[i].dmamap);
   3527 			txring->txr_mbufs[i].dmamap = NULL;
   3528 		}
   3529 	}
   3530 }
   3531 
   3532 static int
   3533 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3534 {
   3535 	int i, error;
   3536 
   3537 	/* allocate rx descriptors */
   3538 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3539 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3540 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3541 	if (error != 0)
   3542 		return error;
   3543 
   3544 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3545 
   3546 	/* fill rxring with dmamaps */
   3547 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3548 		rxring->rxr_mbufs[i].m = NULL;
   3549 		/* XXX: TODO: error check */
   3550 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3551 		    &rxring->rxr_mbufs[i].dmamap);
   3552 	}
   3553 	return 0;
   3554 }
   3555 
   3556 static void
   3557 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3558 {
   3559 	int i;
   3560 
   3561 	/* free all mbufs allocated for RX */
   3562 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3563 		if (rxring->rxr_mbufs[i].m != NULL) {
   3564 			bus_dmamap_unload(sc->sc_dmat,
   3565 			    rxring->rxr_mbufs[i].dmamap);
   3566 			m_freem(rxring->rxr_mbufs[i].m);
   3567 			rxring->rxr_mbufs[i].m = NULL;
   3568 		}
   3569 	}
   3570 }
   3571 
   3572 static void
   3573 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3574 {
   3575 	int i;
   3576 
   3577 	/* free all mbufs and dmamaps */
   3578 	aq_rxdrain(sc, rxring);
   3579 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3580 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3581 			bus_dmamap_destroy(sc->sc_dmat,
   3582 			    rxring->rxr_mbufs[i].dmamap);
   3583 			rxring->rxr_mbufs[i].dmamap = NULL;
   3584 		}
   3585 	}
   3586 
   3587 	/* free RX descriptor */
   3588 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3589 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3590 }
   3591 
   3592 static void
   3593 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3594     struct mbuf *m)
   3595 {
   3596 	int error;
   3597 
   3598 	/* if mbuf already exists, unload and free */
   3599 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3600 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3601 		m_freem(rxring->rxr_mbufs[idx].m);
   3602 		rxring->rxr_mbufs[idx].m = NULL;
   3603 	}
   3604 
   3605 	rxring->rxr_mbufs[idx].m = m;
   3606 
   3607 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3608 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3609 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3610 	if (error) {
   3611 		device_printf(sc->sc_dev,
   3612 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3613 		panic("%s: unable to load rx DMA map. error=%d",
   3614 		    __func__, error);
   3615 	}
   3616 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3617 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3618 }
   3619 
   3620 static inline void
   3621 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3622 {
   3623 	/* refill rxdesc, and sync */
   3624 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3625 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3626 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3627 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3628 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3629 	    BUS_DMASYNC_PREWRITE);
   3630 }
   3631 
   3632 static struct mbuf *
   3633 aq_alloc_mbuf(void)
   3634 {
   3635 	struct mbuf *m;
   3636 
   3637 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3638 	if (m == NULL)
   3639 		return NULL;
   3640 
   3641 	MCLGET(m, M_DONTWAIT);
   3642 	if ((m->m_flags & M_EXT) == 0) {
   3643 		m_freem(m);
   3644 		return NULL;
   3645 	}
   3646 
   3647 	return m;
   3648 }
   3649 
   3650 /* allocate mbuf and unload dmamap */
   3651 static int
   3652 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3653 {
   3654 	struct mbuf *m;
   3655 
   3656 	m = aq_alloc_mbuf();
   3657 	if (m == NULL)
   3658 		return ENOBUFS;
   3659 
   3660 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3661 	return 0;
   3662 }
   3663 
   3664 static int
   3665 aq_txrx_rings_alloc(struct aq_softc *sc)
   3666 {
   3667 	int n, error;
   3668 
   3669 	for (n = 0; n < sc->sc_nqueues; n++) {
   3670 		sc->sc_queue[n].sc = sc;
   3671 		sc->sc_queue[n].txring.txr_sc = sc;
   3672 		sc->sc_queue[n].txring.txr_index = n;
   3673 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3674 		    IPL_NET);
   3675 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3676 		if (error != 0)
   3677 			goto failure;
   3678 
   3679 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3680 		if (error != 0)
   3681 			goto failure;
   3682 
   3683 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3684 		sc->sc_queue[n].rxring.rxr_index = n;
   3685 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3686 		   IPL_NET);
   3687 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3688 		if (error != 0)
   3689 			break;
   3690 	}
   3691 
   3692  failure:
   3693 	return error;
   3694 }
   3695 
   3696 static void
   3697 aq_txrx_rings_free(struct aq_softc *sc)
   3698 {
   3699 	int n;
   3700 
   3701 	for (n = 0; n < sc->sc_nqueues; n++) {
   3702 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3703 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3704 
   3705 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3706 
   3707 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3708 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3709 	}
   3710 }
   3711 
   3712 static int
   3713 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3714 {
   3715 	int error = 0;
   3716 	txring->txr_softint = NULL;
   3717 
   3718 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3719 	if (txring->txr_pcq == NULL) {
   3720 		aprint_error_dev(sc->sc_dev,
   3721 		    "unable to allocate pcq for TXring[%d]\n",
   3722 		    txring->txr_index);
   3723 		error = ENOMEM;
   3724 		goto done;
   3725 	}
   3726 
   3727 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3728 	    aq_deferred_transmit, txring);
   3729 	if (txring->txr_softint == NULL) {
   3730 		aprint_error_dev(sc->sc_dev,
   3731 		    "unable to establish softint for TXring[%d]\n",
   3732 		    txring->txr_index);
   3733 		error = ENOENT;
   3734 	}
   3735 
   3736  done:
   3737 	return error;
   3738 }
   3739 
   3740 static void
   3741 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3742 {
   3743 	struct mbuf *m;
   3744 
   3745 	if (txring->txr_softint != NULL) {
   3746 		softint_disestablish(txring->txr_softint);
   3747 		txring->txr_softint = NULL;
   3748 	}
   3749 
   3750 	if (txring->txr_pcq != NULL) {
   3751 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3752 			m_freem(m);
   3753 		pcq_destroy(txring->txr_pcq);
   3754 		txring->txr_pcq = NULL;
   3755 	}
   3756 }
   3757 
   3758 #if NSYSMON_ENVSYS > 0
   3759 static void
   3760 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3761 {
   3762 	struct aq_softc *sc;
   3763 	uint32_t temp;
   3764 	int error;
   3765 
   3766 	sc = sme->sme_cookie;
   3767 
   3768 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3769 	if (error == 0) {
   3770 		edata->value_cur = temp;
   3771 		edata->state = ENVSYS_SVALID;
   3772 	} else {
   3773 		edata->state = ENVSYS_SINVALID;
   3774 	}
   3775 }
   3776 #endif
   3777 
   3778 static void
   3779 aq_tick(void *arg)
   3780 {
   3781 	struct aq_softc *sc = arg;
   3782 
   3783 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3784 		sc->sc_detect_linkstat = false;
   3785 		aq_update_link_status(sc);
   3786 	}
   3787 
   3788 #ifdef AQ_EVENT_COUNTERS
   3789 	if (sc->sc_poll_statistics)
   3790 		aq_update_statistics(sc);
   3791 #endif
   3792 
   3793 	if (sc->sc_poll_linkstat
   3794 #ifdef AQ_EVENT_COUNTERS
   3795 	    || sc->sc_poll_statistics
   3796 #endif
   3797 	    ) {
   3798 		callout_schedule(&sc->sc_tick_ch, hz);
   3799 	}
   3800 }
   3801 
   3802 /* interrupt enable/disable */
   3803 static void
   3804 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3805 {
   3806 	uint32_t imask = 0;
   3807 	int i;
   3808 
   3809 	if (txrx) {
   3810 		for (i = 0; i < sc->sc_nqueues; i++) {
   3811 			imask |= __BIT(sc->sc_tx_irq[i]);
   3812 			imask |= __BIT(sc->sc_rx_irq[i]);
   3813 		}
   3814 	}
   3815 
   3816 	if (link)
   3817 		imask |= __BIT(sc->sc_linkstat_irq);
   3818 
   3819 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3820 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3821 }
   3822 
   3823 static int
   3824 aq_legacy_intr(void *arg)
   3825 {
   3826 	struct aq_softc *sc = arg;
   3827 	uint32_t status;
   3828 	int nintr = 0;
   3829 
   3830 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3831 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3832 
   3833 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3834 		sc->sc_detect_linkstat = true;
   3835 		callout_schedule(&sc->sc_tick_ch, 0);
   3836 		nintr++;
   3837 	}
   3838 
   3839 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3840 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3841 	}
   3842 
   3843 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3844 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3845 	}
   3846 
   3847 	return nintr;
   3848 }
   3849 
   3850 static int
   3851 aq_txrx_intr(void *arg)
   3852 {
   3853 	struct aq_queue *queue = arg;
   3854 	struct aq_softc *sc = queue->sc;
   3855 	struct aq_txring *txring = &queue->txring;
   3856 	struct aq_rxring *rxring = &queue->rxring;
   3857 	uint32_t status;
   3858 	int nintr = 0;
   3859 	int txringidx, rxringidx, txirq, rxirq;
   3860 
   3861 	txringidx = txring->txr_index;
   3862 	rxringidx = rxring->rxr_index;
   3863 	txirq = sc->sc_tx_irq[txringidx];
   3864 	rxirq = sc->sc_rx_irq[rxringidx];
   3865 
   3866 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3867 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3868 		/* stray interrupt? */
   3869 		return 0;
   3870 	}
   3871 
   3872 	nintr += aq_rx_intr(rxring);
   3873 	nintr += aq_tx_intr(txring);
   3874 
   3875 	return nintr;
   3876 }
   3877 
   3878 static int
   3879 aq_link_intr(void *arg)
   3880 {
   3881 	struct aq_softc *sc = arg;
   3882 	uint32_t status;
   3883 	int nintr = 0;
   3884 
   3885 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3886 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3887 		sc->sc_detect_linkstat = true;
   3888 		callout_schedule(&sc->sc_tick_ch, 0);
   3889 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3890 		    __BIT(sc->sc_linkstat_irq));
   3891 		nintr++;
   3892 	}
   3893 
   3894 	return nintr;
   3895 }
   3896 
   3897 static void
   3898 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3899 {
   3900 	const int ringidx = txring->txr_index;
   3901 	int i;
   3902 
   3903 	mutex_enter(&txring->txr_mutex);
   3904 
   3905 	txring->txr_prodidx = 0;
   3906 	txring->txr_considx = 0;
   3907 	txring->txr_nfree = AQ_TXD_NUM;
   3908 	txring->txr_active = false;
   3909 
   3910 	/* free mbufs untransmitted */
   3911 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3912 		if (txring->txr_mbufs[i].m != NULL) {
   3913 			m_freem(txring->txr_mbufs[i].m);
   3914 			txring->txr_mbufs[i].m = NULL;
   3915 		}
   3916 	}
   3917 
   3918 	/* disable DMA */
   3919 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3920 
   3921 	if (start) {
   3922 		/* TX descriptor physical address */
   3923 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3924 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3925 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3926 		    (uint32_t)((uint64_t)paddr >> 32));
   3927 
   3928 		/* TX descriptor size */
   3929 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3930 		    AQ_TXD_NUM / 8);
   3931 
   3932 		/* reload TAIL pointer */
   3933 		txring->txr_prodidx = txring->txr_considx =
   3934 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3935 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3936 
   3937 		/* Mapping interrupt vector */
   3938 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3939 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3940 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3941 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3942 
   3943 		/* enable DMA */
   3944 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3945 		    TX_DMA_DESC_EN, 1);
   3946 
   3947 		const int cpuid = 0;	/* XXX? */
   3948 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3949 		    TDM_DCAD_CPUID, cpuid);
   3950 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3951 		    TDM_DCAD_CPUID_EN, 0);
   3952 
   3953 		txring->txr_active = true;
   3954 	}
   3955 
   3956 	mutex_exit(&txring->txr_mutex);
   3957 }
   3958 
   3959 static int
   3960 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   3961 {
   3962 	const int ringidx = rxring->rxr_index;
   3963 	int i;
   3964 	int error = 0;
   3965 
   3966 	mutex_enter(&rxring->rxr_mutex);
   3967 	rxring->rxr_active = false;
   3968 
   3969 	/* disable DMA */
   3970 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   3971 
   3972 	/* free all RX mbufs */
   3973 	aq_rxdrain(sc, rxring);
   3974 
   3975 	if (start) {
   3976 		for (i = 0; i < AQ_RXD_NUM; i++) {
   3977 			error = aq_rxring_add(sc, rxring, i);
   3978 			if (error != 0) {
   3979 				aq_rxdrain(sc, rxring);
   3980 				return error;
   3981 			}
   3982 			aq_rxring_reset_desc(sc, rxring, i);
   3983 		}
   3984 
   3985 		/* RX descriptor physical address */
   3986 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   3987 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3988 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3989 		    (uint32_t)((uint64_t)paddr >> 32));
   3990 
   3991 		/* RX descriptor size */
   3992 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   3993 		    AQ_RXD_NUM / 8);
   3994 
   3995 		/* maximum receive frame size */
   3996 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3997 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   3998 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3999 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   4000 
   4001 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4002 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   4003 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4004 		    RX_DMA_DESC_VLAN_STRIP,
   4005 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4006 		    1 : 0);
   4007 
   4008 		/*
   4009 		 * reload TAIL pointer, and update readidx
   4010 		 * (HEAD pointer cannot write)
   4011 		 */
   4012 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4013 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4014 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4015 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4016 
   4017 		/* Rx ring set mode */
   4018 
   4019 		/* Mapping interrupt vector */
   4020 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4021 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4022 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4023 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4024 
   4025 		const int cpuid = 0;	/* XXX? */
   4026 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4027 		    RX_DMA_DCAD_CPUID, cpuid);
   4028 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4029 		    RX_DMA_DCAD_DESC_EN, 0);
   4030 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4031 		    RX_DMA_DCAD_HEADER_EN, 0);
   4032 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4033 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4034 
   4035 		/* enable DMA. start receiving */
   4036 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4037 		    RX_DMA_DESC_EN, 1);
   4038 
   4039 		rxring->rxr_active = true;
   4040 	}
   4041 
   4042 	mutex_exit(&rxring->rxr_mutex);
   4043 	return error;
   4044 }
   4045 
   4046 #define TXRING_NEXTIDX(idx)	\
   4047 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4048 #define RXRING_NEXTIDX(idx)	\
   4049 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4050 
   4051 static int
   4052 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4053 {
   4054 	bus_dmamap_t map;
   4055 	struct mbuf *m = *mp;
   4056 	uint32_t ctl1, ctl1_ctx, ctl2;
   4057 	int idx, i, error;
   4058 
   4059 	idx = txring->txr_prodidx;
   4060 	map = txring->txr_mbufs[idx].dmamap;
   4061 
   4062 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4063 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4064 	if (error == EFBIG) {
   4065 		struct mbuf *n;
   4066 		n = m_defrag(m, M_DONTWAIT);
   4067 		if (n == NULL)
   4068 			return EFBIG;
   4069 		/* m_defrag() preserve m */
   4070 		KASSERT(n == m);
   4071 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4072 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4073 	}
   4074 	if (error != 0)
   4075 		return error;
   4076 
   4077 	/*
   4078 	 * check spaces of free descriptors.
   4079 	 * +1 is additional descriptor for context (vlan, etc,.)
   4080 	 */
   4081 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4082 		device_printf(sc->sc_dev,
   4083 		    "TX: not enough descriptors left %d for %d segs\n",
   4084 		    txring->txr_nfree, map->dm_nsegs + 1);
   4085 		bus_dmamap_unload(sc->sc_dmat, map);
   4086 		return ENOBUFS;
   4087 	}
   4088 
   4089 	/* sync dma for mbuf */
   4090 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4091 	    BUS_DMASYNC_PREWRITE);
   4092 
   4093 	ctl1_ctx = 0;
   4094 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4095 
   4096 	if (vlan_has_tag(m)) {
   4097 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4098 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4099 
   4100 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4101 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4102 
   4103 		/* fill context descriptor and forward index */
   4104 		txring->txr_txdesc[idx].buf_addr = 0;
   4105 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4106 		txring->txr_txdesc[idx].ctl2 = 0;
   4107 
   4108 		idx = TXRING_NEXTIDX(idx);
   4109 		txring->txr_nfree--;
   4110 	}
   4111 
   4112 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4113 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4114 	if (m->m_pkthdr.csum_flags &
   4115 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4116 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4117 	}
   4118 
   4119 	/* fill descriptor(s) */
   4120 	for (i = 0; i < map->dm_nsegs; i++) {
   4121 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4122 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4123 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4124 
   4125 		if (i == 0) {
   4126 			/* remember mbuf of these descriptors */
   4127 			txring->txr_mbufs[idx].m = m;
   4128 		} else {
   4129 			txring->txr_mbufs[idx].m = NULL;
   4130 		}
   4131 
   4132 		if (i == map->dm_nsegs - 1) {
   4133 			/* last segment, mark an EndOfPacket, and cause intr */
   4134 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4135 		}
   4136 
   4137 		txring->txr_txdesc[idx].buf_addr =
   4138 		    htole64(map->dm_segs[i].ds_addr);
   4139 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4140 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4141 
   4142 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4143 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4144 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4145 
   4146 		idx = TXRING_NEXTIDX(idx);
   4147 		txring->txr_nfree--;
   4148 	}
   4149 
   4150 	txring->txr_prodidx = idx;
   4151 
   4152 	return 0;
   4153 }
   4154 
   4155 static int
   4156 aq_tx_intr(void *arg)
   4157 {
   4158 	struct aq_txring *txring = arg;
   4159 	struct aq_softc *sc = txring->txr_sc;
   4160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4161 	struct mbuf *m;
   4162 	const int ringidx = txring->txr_index;
   4163 	unsigned int idx, hw_head, n = 0;
   4164 
   4165 	mutex_enter(&txring->txr_mutex);
   4166 
   4167 	if (!txring->txr_active)
   4168 		goto tx_intr_done;
   4169 
   4170 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4171 	    TX_DMA_DESC_HEAD_PTR);
   4172 	if (hw_head == txring->txr_considx) {
   4173 		goto tx_intr_done;
   4174 	}
   4175 
   4176 	for (idx = txring->txr_considx; idx != hw_head;
   4177 	    idx = TXRING_NEXTIDX(idx), n++) {
   4178 
   4179 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4180 			bus_dmamap_unload(sc->sc_dmat,
   4181 			    txring->txr_mbufs[idx].dmamap);
   4182 
   4183 			txring->txr_opackets++;
   4184 			txring->txr_obytes += m->m_pkthdr.len;
   4185 			if (m->m_flags & M_MCAST)
   4186 				txring->txr_omcasts++;
   4187 
   4188 			m_freem(m);
   4189 			txring->txr_mbufs[idx].m = NULL;
   4190 		}
   4191 
   4192 		txring->txr_nfree++;
   4193 	}
   4194 	txring->txr_considx = idx;
   4195 
   4196 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4197 		ifp->if_flags &= ~IFF_OACTIVE;
   4198 
   4199 	/* no more pending TX packet, cancel watchdog */
   4200 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4201 		ifp->if_timer = 0;
   4202 
   4203  tx_intr_done:
   4204 	mutex_exit(&txring->txr_mutex);
   4205 
   4206 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4207 	return n;
   4208 }
   4209 
   4210 static int
   4211 aq_rx_intr(void *arg)
   4212 {
   4213 	struct aq_rxring *rxring = arg;
   4214 	struct aq_softc *sc = rxring->rxr_sc;
   4215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4216 	const int ringidx = rxring->rxr_index;
   4217 	aq_rx_desc_t *rxd;
   4218 	struct mbuf *m, *m0, *mprev, *new_m;
   4219 	uint32_t rxd_type, rxd_hash __unused;
   4220 	uint16_t rxd_status, rxd_pktlen;
   4221 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4222 	unsigned int idx, n = 0;
   4223 
   4224 	mutex_enter(&rxring->rxr_mutex);
   4225 
   4226 	if (!rxring->rxr_active)
   4227 		goto rx_intr_done;
   4228 
   4229 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4230 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4231 		goto rx_intr_done;
   4232 	}
   4233 
   4234 	m0 = mprev = NULL;
   4235 	for (idx = rxring->rxr_readidx;
   4236 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4237 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4238 
   4239 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4240 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4241 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4242 
   4243 		rxd = &rxring->rxr_rxdesc[idx];
   4244 		rxd_status = le16toh(rxd->wb.status);
   4245 
   4246 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4247 			break;	/* not yet done */
   4248 
   4249 		rxd_type = le32toh(rxd->wb.type);
   4250 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4251 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4252 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4253 		rxd_vlan = le16toh(rxd->wb.vlan);
   4254 
   4255 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4256 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4257 			rxring->rxr_ierrors++;
   4258 			goto rx_next;
   4259 		}
   4260 
   4261 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4262 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4263 		    BUS_DMASYNC_POSTREAD);
   4264 		m = rxring->rxr_mbufs[idx].m;
   4265 
   4266 		new_m = aq_alloc_mbuf();
   4267 		if (new_m == NULL) {
   4268 			/*
   4269 			 * cannot allocate new mbuf.
   4270 			 * discard this packet, and reuse mbuf for next.
   4271 			 */
   4272 			rxring->rxr_iqdrops++;
   4273 			goto rx_next;
   4274 		}
   4275 		rxring->rxr_mbufs[idx].m = NULL;
   4276 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4277 
   4278 		if (m0 == NULL) {
   4279 			m0 = m;
   4280 		} else {
   4281 			if (m->m_flags & M_PKTHDR)
   4282 				m_remove_pkthdr(m);
   4283 			mprev->m_next = m;
   4284 		}
   4285 		mprev = m;
   4286 
   4287 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4288 			m->m_len = MCLBYTES;
   4289 		} else {
   4290 			/* last buffer */
   4291 			m->m_len = rxd_pktlen % MCLBYTES;
   4292 			m0->m_pkthdr.len = rxd_pktlen;
   4293 			/* VLAN offloading */
   4294 			if ((sc->sc_ethercom.ec_capenable &
   4295 			    ETHERCAP_VLAN_HWTAGGING) &&
   4296 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4297 			    __SHIFTOUT(rxd_type,
   4298 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4299 				vlan_set_tag(m0, rxd_vlan);
   4300 			}
   4301 
   4302 			/* Checksum offloading */
   4303 			unsigned int pkttype_eth =
   4304 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4305 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4306 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4307 			    __SHIFTOUT(rxd_type,
   4308 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4309 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4310 				if (__SHIFTOUT(rxd_status,
   4311 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4312 					m0->m_pkthdr.csum_flags |=
   4313 					    M_CSUM_IPv4_BAD;
   4314 			}
   4315 #if notyet
   4316 			/*
   4317 			 * XXX: aq always marks BAD for fragmented packet.
   4318 			 * we should peek L3 header, and ignore cksum flags
   4319 			 * if the packet is fragmented.
   4320 			 */
   4321 			if (__SHIFTOUT(rxd_type,
   4322 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4323 				bool checked = false;
   4324 				unsigned int pkttype_proto =
   4325 				    __SHIFTOUT(rxd_type,
   4326 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4327 
   4328 				if (pkttype_proto ==
   4329 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4330 					if ((pkttype_eth ==
   4331 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4332 					    (ifp->if_capabilities &
   4333 					    IFCAP_CSUM_TCPv4_Rx)) {
   4334 						m0->m_pkthdr.csum_flags |=
   4335 						    M_CSUM_TCPv4;
   4336 						checked = true;
   4337 					} else if ((pkttype_eth ==
   4338 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4339 					    (ifp->if_capabilities &
   4340 					    IFCAP_CSUM_TCPv6_Rx)) {
   4341 						m0->m_pkthdr.csum_flags |=
   4342 						    M_CSUM_TCPv6;
   4343 						checked = true;
   4344 					}
   4345 				} else if (pkttype_proto ==
   4346 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4347 					if ((pkttype_eth ==
   4348 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4349 					    (ifp->if_capabilities &
   4350 					    IFCAP_CSUM_UDPv4_Rx)) {
   4351 						m0->m_pkthdr.csum_flags |=
   4352 						    M_CSUM_UDPv4;
   4353 						checked = true;
   4354 					} else if ((pkttype_eth ==
   4355 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4356 					    (ifp->if_capabilities &
   4357 					    IFCAP_CSUM_UDPv6_Rx)) {
   4358 						m0->m_pkthdr.csum_flags |=
   4359 						    M_CSUM_UDPv6;
   4360 						checked = true;
   4361 					}
   4362 				}
   4363 				if (checked &&
   4364 				    (__SHIFTOUT(rxd_status,
   4365 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4366 				    !__SHIFTOUT(rxd_status,
   4367 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4368 					m0->m_pkthdr.csum_flags |=
   4369 					    M_CSUM_TCP_UDP_BAD;
   4370 				}
   4371 			}
   4372 #endif
   4373 			m_set_rcvif(m0, ifp);
   4374 			rxring->rxr_ipackets++;
   4375 			rxring->rxr_ibytes += m0->m_pkthdr.len;
   4376 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4377 			m0 = mprev = NULL;
   4378 		}
   4379 
   4380  rx_next:
   4381 		aq_rxring_reset_desc(sc, rxring, idx);
   4382 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4383 	}
   4384 	rxring->rxr_readidx = idx;
   4385 
   4386  rx_intr_done:
   4387 	mutex_exit(&rxring->rxr_mutex);
   4388 
   4389 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4390 	return n;
   4391 }
   4392 
   4393 static int
   4394 aq_ifflags_cb(struct ethercom *ec)
   4395 {
   4396 	struct ifnet *ifp = &ec->ec_if;
   4397 	struct aq_softc *sc = ifp->if_softc;
   4398 	int i, ecchange, error = 0;
   4399 	unsigned short iffchange;
   4400 
   4401 	AQ_LOCK(sc);
   4402 
   4403 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4404 	if ((iffchange & IFF_PROMISC) != 0)
   4405 		error = aq_set_filter(sc);
   4406 
   4407 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4408 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4409 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4410 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4411 			    RX_DMA_DESC_VLAN_STRIP,
   4412 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4413 			    1 : 0);
   4414 		}
   4415 	}
   4416 
   4417 	sc->sc_ec_capenable = ec->ec_capenable;
   4418 	sc->sc_if_flags = ifp->if_flags;
   4419 
   4420 	AQ_UNLOCK(sc);
   4421 
   4422 	return error;
   4423 }
   4424 
   4425 static int
   4426 aq_init(struct ifnet *ifp)
   4427 {
   4428 	struct aq_softc *sc = ifp->if_softc;
   4429 	int i, error = 0;
   4430 
   4431 	AQ_LOCK(sc);
   4432 
   4433 	aq_update_vlan_filters(sc);
   4434 	aq_set_capability(sc);
   4435 
   4436 	for (i = 0; i < sc->sc_nqueues; i++) {
   4437 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4438 	}
   4439 
   4440 	/* invalidate RX descriptor cache */
   4441 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4442 	    AQ_READ_REG_BIT(sc,
   4443 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4444 
   4445 	/* start RX */
   4446 	for (i = 0; i < sc->sc_nqueues; i++) {
   4447 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4448 		if (error != 0) {
   4449 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4450 			    __func__);
   4451 			goto aq_init_failure;
   4452 		}
   4453 	}
   4454 	aq_init_rss(sc);
   4455 	aq_hw_l3_filter_set(sc);
   4456 
   4457 	/* need to start callout? */
   4458 	if (sc->sc_poll_linkstat
   4459 #ifdef AQ_EVENT_COUNTERS
   4460 	    || sc->sc_poll_statistics
   4461 #endif
   4462 	    ) {
   4463 		callout_schedule(&sc->sc_tick_ch, hz);
   4464 	}
   4465 
   4466 	/* ready */
   4467 	ifp->if_flags |= IFF_RUNNING;
   4468 	ifp->if_flags &= ~IFF_OACTIVE;
   4469 
   4470 	/* start TX and RX */
   4471 	aq_enable_intr(sc, true, true);
   4472 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4473 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4474 
   4475  aq_init_failure:
   4476 	sc->sc_if_flags = ifp->if_flags;
   4477 
   4478 	AQ_UNLOCK(sc);
   4479 
   4480 	return error;
   4481 }
   4482 
   4483 static void
   4484 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4485     struct aq_txring *txring, bool is_transmit)
   4486 {
   4487 	struct mbuf *m;
   4488 	int npkt, error;
   4489 
   4490 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4491 		return;
   4492 
   4493 	for (npkt = 0; ; npkt++) {
   4494 		if (is_transmit)
   4495 			m = pcq_peek(txring->txr_pcq);
   4496 		else
   4497 			IFQ_POLL(&ifp->if_snd, m);
   4498 
   4499 		if (m == NULL)
   4500 			break;
   4501 
   4502 		if (txring->txr_nfree < AQ_TXD_MIN)
   4503 			break;
   4504 
   4505 		if (is_transmit)
   4506 			pcq_get(txring->txr_pcq);
   4507 		else
   4508 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4509 
   4510 		error = aq_encap_txring(sc, txring, &m);
   4511 		if (error != 0) {
   4512 			/* too many mbuf chains? or not enough descriptors? */
   4513 			m_freem(m);
   4514 			txring->txr_oerrors++;
   4515 			if (txring->txr_index == 0 && error == ENOBUFS)
   4516 				ifp->if_flags |= IFF_OACTIVE;
   4517 			break;
   4518 		}
   4519 
   4520 		/* update tail ptr */
   4521 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4522 		    txring->txr_prodidx);
   4523 
   4524 		/* Pass the packet to any BPF listeners */
   4525 		bpf_mtap(ifp, m, BPF_D_OUT);
   4526 	}
   4527 
   4528 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4529 		ifp->if_flags |= IFF_OACTIVE;
   4530 
   4531 	if (npkt)
   4532 		ifp->if_timer = 5;
   4533 }
   4534 
   4535 static void
   4536 aq_start(struct ifnet *ifp)
   4537 {
   4538 	struct aq_softc *sc;
   4539 	struct aq_txring *txring;
   4540 
   4541 	sc = ifp->if_softc;
   4542 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
   4543 
   4544 	mutex_enter(&txring->txr_mutex);
   4545 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4546 		aq_send_common_locked(ifp, sc, txring, false);
   4547 	mutex_exit(&txring->txr_mutex);
   4548 }
   4549 
   4550 static inline unsigned int
   4551 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4552 {
   4553 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4554 }
   4555 
   4556 static int
   4557 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4558 {
   4559 	struct aq_softc *sc = ifp->if_softc;
   4560 	struct aq_txring *txring;
   4561 	int ringidx;
   4562 
   4563 	ringidx = aq_select_txqueue(sc, m);
   4564 	txring = &sc->sc_queue[ringidx].txring;
   4565 
   4566 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4567 		m_freem(m);
   4568 		return ENOBUFS;
   4569 	}
   4570 
   4571 	if (mutex_tryenter(&txring->txr_mutex)) {
   4572 		aq_send_common_locked(ifp, sc, txring, true);
   4573 		mutex_exit(&txring->txr_mutex);
   4574 	} else {
   4575 		softint_schedule(txring->txr_softint);
   4576 	}
   4577 	return 0;
   4578 }
   4579 
   4580 static void
   4581 aq_deferred_transmit(void *arg)
   4582 {
   4583 	struct aq_txring *txring = arg;
   4584 	struct aq_softc *sc = txring->txr_sc;
   4585 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4586 
   4587 	mutex_enter(&txring->txr_mutex);
   4588 	if (pcq_peek(txring->txr_pcq) != NULL)
   4589 		aq_send_common_locked(ifp, sc, txring, true);
   4590 	mutex_exit(&txring->txr_mutex);
   4591 }
   4592 
   4593 static void
   4594 aq_stop(struct ifnet *ifp, int disable)
   4595 {
   4596 	struct aq_softc *sc = ifp->if_softc;
   4597 	int i;
   4598 
   4599 	AQ_LOCK(sc);
   4600 
   4601 	ifp->if_timer = 0;
   4602 
   4603 	/* disable tx/rx interrupts */
   4604 	aq_enable_intr(sc, true, false);
   4605 
   4606 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4607 	for (i = 0; i < sc->sc_nqueues; i++) {
   4608 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4609 	}
   4610 
   4611 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4612 	for (i = 0; i < sc->sc_nqueues; i++) {
   4613 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4614 	}
   4615 
   4616 	/* invalidate RX descriptor cache */
   4617 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4618 	    AQ_READ_REG_BIT(sc,
   4619 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4620 
   4621 	ifp->if_timer = 0;
   4622 
   4623 	if (!disable) {
   4624 		/* when pmf stop, disable link status intr and callout */
   4625 		aq_enable_intr(sc, false, false);
   4626 		callout_stop(&sc->sc_tick_ch);
   4627 	}
   4628 
   4629 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4630 
   4631 	AQ_UNLOCK(sc);
   4632 }
   4633 
   4634 static void
   4635 aq_watchdog(struct ifnet *ifp)
   4636 {
   4637 	struct aq_softc *sc = ifp->if_softc;
   4638 	struct aq_txring *txring;
   4639 	int n, head, tail;
   4640 
   4641 	AQ_LOCK(sc);
   4642 
   4643 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4644 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4645 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4646 
   4647 	for (n = 0; n < sc->sc_nqueues; n++) {
   4648 		txring = &sc->sc_queue[n].txring;
   4649 		head = AQ_READ_REG_BIT(sc,
   4650 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4651 		    TX_DMA_DESC_HEAD_PTR),
   4652 		tail = AQ_READ_REG(sc,
   4653 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4654 
   4655 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4656 		    __func__, txring->txr_index, head, tail);
   4657 
   4658 		aq_tx_intr(txring);
   4659 	}
   4660 
   4661 	AQ_UNLOCK(sc);
   4662 
   4663 	aq_init(ifp);
   4664 }
   4665 
   4666 static int
   4667 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4668 {
   4669 	struct aq_softc *sc __unused;
   4670 	struct ifreq *ifr __unused;
   4671 	uint64_t opackets, oerrors, obytes, omcasts;
   4672 	uint64_t ipackets, ierrors, ibytes, iqdrops;
   4673 	int error, i, s;
   4674 
   4675 	sc = (struct aq_softc *)ifp->if_softc;
   4676 	ifr = (struct ifreq *)data;
   4677 	error = 0;
   4678 
   4679 	switch (cmd) {
   4680 	case SIOCGIFDATA:
   4681 	case SIOCZIFDATA:
   4682 		opackets = oerrors = obytes = omcasts = 0;
   4683 		ipackets = ierrors = ibytes = iqdrops = 0;
   4684 		for (i = 0; i < sc->sc_nqueues; i++) {
   4685 			struct aq_txring *txring = &sc->sc_queue[i].txring;
   4686 			mutex_enter(&txring->txr_mutex);
   4687 			if (cmd == SIOCZIFDATA) {
   4688 				txring->txr_opackets = 0;
   4689 				txring->txr_obytes = 0;
   4690 				txring->txr_omcasts = 0;
   4691 				txring->txr_oerrors = 0;
   4692 			} else {
   4693 				opackets += txring->txr_opackets;
   4694 				oerrors += txring->txr_oerrors;
   4695 				obytes += txring->txr_obytes;
   4696 				omcasts += txring->txr_omcasts;
   4697 			}
   4698 			mutex_exit(&txring->txr_mutex);
   4699 
   4700 			struct aq_rxring *rxring = &sc->sc_queue[i].rxring;
   4701 			mutex_enter(&rxring->rxr_mutex);
   4702 			if (cmd == SIOCZIFDATA) {
   4703 				rxring->rxr_ipackets = 0;
   4704 				rxring->rxr_ibytes = 0;
   4705 				rxring->rxr_ierrors = 0;
   4706 				rxring->rxr_iqdrops = 0;
   4707 			} else {
   4708 				ipackets += rxring->rxr_ipackets;
   4709 				ierrors += rxring->rxr_ierrors;
   4710 				ibytes += rxring->rxr_ibytes;
   4711 				iqdrops += rxring->rxr_iqdrops;
   4712 			}
   4713 			mutex_exit(&rxring->rxr_mutex);
   4714 		}
   4715 		ifp->if_opackets = opackets;
   4716 		ifp->if_oerrors = oerrors;
   4717 		ifp->if_obytes = obytes;
   4718 		ifp->if_omcasts = omcasts;
   4719 		ifp->if_ipackets = ipackets;
   4720 		ifp->if_ierrors = ierrors;
   4721 		ifp->if_ibytes = ibytes;
   4722 		ifp->if_iqdrops = iqdrops;
   4723 		break;
   4724 	}
   4725 
   4726 	s = splnet();
   4727 	error = ether_ioctl(ifp, cmd, data);
   4728 	splx(s);
   4729 
   4730 	if (error != ENETRESET)
   4731 		return error;
   4732 
   4733 	switch (cmd) {
   4734 	case SIOCSIFCAP:
   4735 		error = aq_set_capability(sc);
   4736 		break;
   4737 	case SIOCADDMULTI:
   4738 	case SIOCDELMULTI:
   4739 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4740 			break;
   4741 
   4742 		/*
   4743 		 * Multicast list has changed; set the hardware filter
   4744 		 * accordingly.
   4745 		 */
   4746 		error = aq_set_filter(sc);
   4747 		break;
   4748 	}
   4749 
   4750 	return error;
   4751 }
   4752 
   4753 
   4754 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4755 
   4756 #ifdef _MODULE
   4757 #include "ioconf.c"
   4758 #endif
   4759 
   4760 static int
   4761 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4762 {
   4763 	int error = 0;
   4764 
   4765 	switch (cmd) {
   4766 	case MODULE_CMD_INIT:
   4767 #ifdef _MODULE
   4768 		error = config_init_component(cfdriver_ioconf_if_aq,
   4769 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4770 #endif
   4771 		return error;
   4772 	case MODULE_CMD_FINI:
   4773 #ifdef _MODULE
   4774 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4775 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4776 #endif
   4777 		return error;
   4778 	default:
   4779 		return ENOTTY;
   4780 	}
   4781 }
   4782