if_aq.c revision 1.6 1 /* $NetBSD: if_aq.c,v 1.6 2020/01/31 22:41:07 thorpej Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.6 2020/01/31 22:41:07 thorpej Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed;
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed;
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 int sc_media_active;
1009
1010 struct ethercom sc_ethercom;
1011 struct ether_addr sc_enaddr;
1012 struct ifmedia sc_media;
1013 int sc_ec_capenable; /* last ec_capenable */
1014 unsigned short sc_if_flags; /* last if_flags */
1015
1016 #ifdef AQ_EVENT_COUNTERS
1017 aq_hw_stats_s_t sc_statistics[2];
1018 int sc_statistics_idx;
1019 bool sc_poll_statistics;
1020
1021 AQ_EVCNT_DECL(uprc);
1022 AQ_EVCNT_DECL(mprc);
1023 AQ_EVCNT_DECL(bprc);
1024 AQ_EVCNT_DECL(erpt);
1025 AQ_EVCNT_DECL(uptc);
1026 AQ_EVCNT_DECL(mptc);
1027 AQ_EVCNT_DECL(bptc);
1028 AQ_EVCNT_DECL(erpr);
1029 AQ_EVCNT_DECL(mbtc);
1030 AQ_EVCNT_DECL(bbtc);
1031 AQ_EVCNT_DECL(mbrc);
1032 AQ_EVCNT_DECL(bbrc);
1033 AQ_EVCNT_DECL(ubrc);
1034 AQ_EVCNT_DECL(ubtc);
1035 AQ_EVCNT_DECL(ptc);
1036 AQ_EVCNT_DECL(prc);
1037 AQ_EVCNT_DECL(dpc);
1038 AQ_EVCNT_DECL(cprc);
1039 #endif
1040 };
1041
1042 static int aq_match(device_t, cfdata_t, void *);
1043 static void aq_attach(device_t, device_t, void *);
1044 static int aq_detach(device_t, int);
1045
1046 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1047 bool, bool);
1048 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1049 pci_intr_type_t);
1050 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1051
1052 static int aq_ifmedia_change(struct ifnet * const);
1053 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1054 static int aq_ifflags_cb(struct ethercom *);
1055 static int aq_init(struct ifnet *);
1056 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1057 struct aq_txring *, bool);
1058 static int aq_transmit(struct ifnet *, struct mbuf *);
1059 static void aq_deferred_transmit(void *);
1060 static void aq_start(struct ifnet *);
1061 static void aq_stop(struct ifnet *, int);
1062 static void aq_watchdog(struct ifnet *);
1063 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1064
1065 static int aq_txrx_rings_alloc(struct aq_softc *);
1066 static void aq_txrx_rings_free(struct aq_softc *);
1067 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1068 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1069
1070 static void aq_initmedia(struct aq_softc *);
1071 static void aq_enable_intr(struct aq_softc *, bool, bool);
1072
1073 #if NSYSMON_ENVSYS > 0
1074 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1075 #endif
1076 static void aq_tick(void *);
1077 static int aq_legacy_intr(void *);
1078 static int aq_link_intr(void *);
1079 static int aq_txrx_intr(void *);
1080 static int aq_tx_intr(void *);
1081 static int aq_rx_intr(void *);
1082
1083 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1084 aq_link_eee_t);
1085 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1086 aq_link_eee_t *);
1087
1088 static int aq_fw_reset(struct aq_softc *);
1089 static int aq_fw_version_init(struct aq_softc *);
1090 static int aq_hw_init(struct aq_softc *);
1091 static int aq_hw_init_ucp(struct aq_softc *);
1092 static int aq_hw_reset(struct aq_softc *);
1093 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1094 uint32_t);
1095 static int aq_get_mac_addr(struct aq_softc *);
1096 static int aq_init_rss(struct aq_softc *);
1097 static int aq_set_capability(struct aq_softc *);
1098
1099 static int fw1x_reset(struct aq_softc *);
1100 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1101 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1102 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1103 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1104 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1105
1106 static int fw2x_reset(struct aq_softc *);
1107 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1108 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1109 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1110 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1111 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1112 #if NSYSMON_ENVSYS > 0
1113 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1114 #endif
1115
1116 static struct aq_firmware_ops aq_fw1x_ops = {
1117 .reset = fw1x_reset,
1118 .set_mode = fw1x_set_mode,
1119 .get_mode = fw1x_get_mode,
1120 .get_stats = fw1x_get_stats,
1121 #if NSYSMON_ENVSYS > 0
1122 .get_temperature = NULL
1123 #endif
1124 };
1125
1126 static struct aq_firmware_ops aq_fw2x_ops = {
1127 .reset = fw2x_reset,
1128 .set_mode = fw2x_set_mode,
1129 .get_mode = fw2x_get_mode,
1130 .get_stats = fw2x_get_stats,
1131 #if NSYSMON_ENVSYS > 0
1132 .get_temperature = fw2x_get_temperature
1133 #endif
1134 };
1135
1136 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1137 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1138
1139 static const struct aq_product {
1140 pci_vendor_id_t aq_vendor;
1141 pci_product_id_t aq_product;
1142 const char *aq_name;
1143 enum aq_media_type aq_media_type;
1144 aq_link_speed_t aq_available_rates;
1145 } aq_products[] = {
1146 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1147 "Aquantia AQC107 10 Gigabit Network Adapter",
1148 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1149 },
1150 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1151 "Aquantia AQC108 5 Gigabit Network Adapter",
1152 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1153 },
1154 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1155 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1156 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1157 },
1158 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1159 "Aquantia AQC111 5 Gigabit Network Adapter",
1160 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1161 },
1162 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1163 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1164 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1165 },
1166 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1167 "Aquantia AQC107S 10 Gigabit Network Adapter",
1168 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1169 },
1170 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1171 "Aquantia AQC108S 5 Gigabit Network Adapter",
1172 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1173 },
1174 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1175 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1176 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1177 },
1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1179 "Aquantia AQC111S 5 Gigabit Network Adapter",
1180 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1181 },
1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1183 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1184 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1185 },
1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1187 "Aquantia D107 10 Gigabit Network Adapter",
1188 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1189 },
1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1191 "Aquantia D108 5 Gigabit Network Adapter",
1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1193 },
1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1195 "Aquantia D109 2.5 Gigabit Network Adapter",
1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1197 }
1198 };
1199
1200 static const struct aq_product *
1201 aq_lookup(const struct pci_attach_args *pa)
1202 {
1203 unsigned int i;
1204
1205 for (i = 0; i < __arraycount(aq_products); i++) {
1206 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1207 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1208 return &aq_products[i];
1209 }
1210 return NULL;
1211 }
1212
1213 static int
1214 aq_match(device_t parent, cfdata_t cf, void *aux)
1215 {
1216 struct pci_attach_args *pa = aux;
1217
1218 if (aq_lookup(pa) != NULL)
1219 return 1;
1220
1221 return 0;
1222 }
1223
1224 static void
1225 aq_attach(device_t parent, device_t self, void *aux)
1226 {
1227 struct aq_softc *sc = device_private(self);
1228 struct pci_attach_args *pa = aux;
1229 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1230 pci_chipset_tag_t pc;
1231 pcitag_t tag;
1232 pcireg_t command, memtype, bar;
1233 const struct aq_product *aqp;
1234 int error;
1235
1236 sc->sc_dev = self;
1237 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1238 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1239
1240 sc->sc_pc = pc = pa->pa_pc;
1241 sc->sc_pcitag = tag = pa->pa_tag;
1242 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1243
1244 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1245 command |= PCI_COMMAND_MASTER_ENABLE;
1246 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1247
1248 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1249 sc->sc_revision = PCI_REVISION(pa->pa_class);
1250
1251 aqp = aq_lookup(pa);
1252 KASSERT(aqp != NULL);
1253
1254 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1255
1256 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1257 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1258 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1259 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1260 return;
1261 }
1262 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1263 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1264 NULL, &sc->sc_iosize) != 0) {
1265 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1266 return;
1267 }
1268
1269 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1270
1271 /* max queue num is 8, and must be 2^n */
1272 if (ncpu >= 8)
1273 sc->sc_nqueues = 8;
1274 else if (ncpu >= 4)
1275 sc->sc_nqueues = 4;
1276 else if (ncpu >= 2)
1277 sc->sc_nqueues = 2;
1278 else
1279 sc->sc_nqueues = 1;
1280
1281 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1282 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1283 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1284 /* TX intrs + RX intrs + LINKSTAT intrs */
1285 sc->sc_use_txrx_independent_intr = true;
1286 sc->sc_poll_linkstat = false;
1287 sc->sc_msix = true;
1288 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1289 /* TX intrs + RX intrs */
1290 sc->sc_use_txrx_independent_intr = true;
1291 sc->sc_poll_linkstat = true;
1292 sc->sc_msix = true;
1293 } else
1294 #endif
1295 if (msixcount >= (sc->sc_nqueues + 1)) {
1296 /* TX/RX intrs LINKSTAT intrs */
1297 sc->sc_use_txrx_independent_intr = false;
1298 sc->sc_poll_linkstat = false;
1299 sc->sc_msix = true;
1300 } else if (msixcount >= sc->sc_nqueues) {
1301 /* TX/RX intrs */
1302 sc->sc_use_txrx_independent_intr = false;
1303 sc->sc_poll_linkstat = true;
1304 sc->sc_msix = true;
1305 } else {
1306 /* giving up using MSI-X */
1307 sc->sc_msix = false;
1308 }
1309
1310 aprint_debug_dev(sc->sc_dev,
1311 "ncpu=%d, pci_msix_count=%d."
1312 " allocate %d interrupts for %d%s queues%s\n",
1313 ncpu, msixcount,
1314 (sc->sc_use_txrx_independent_intr ?
1315 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1316 (sc->sc_poll_linkstat ? 0 : 1),
1317 sc->sc_nqueues,
1318 sc->sc_use_txrx_independent_intr ? "*2" : "",
1319 sc->sc_poll_linkstat ? "" : ", and link status");
1320
1321 if (sc->sc_msix)
1322 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1323 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1324 else
1325 error = ENODEV;
1326
1327 if (error != 0) {
1328 /* if MSI-X failed, fallback to MSI with single queue */
1329 sc->sc_use_txrx_independent_intr = false;
1330 sc->sc_poll_linkstat = false;
1331 sc->sc_msix = false;
1332 sc->sc_nqueues = 1;
1333 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1334 }
1335 if (error != 0) {
1336 /* if MSI failed, fallback to INTx */
1337 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1338 }
1339 if (error != 0)
1340 return;
1341
1342 callout_init(&sc->sc_tick_ch, 0);
1343 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1344
1345 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1346
1347 if (sc->sc_msix && (sc->sc_nqueues > 1))
1348 sc->sc_rss_enable = true;
1349 else
1350 sc->sc_rss_enable = false;
1351
1352 error = aq_txrx_rings_alloc(sc);
1353 if (error != 0)
1354 goto attach_failure;
1355
1356 error = aq_fw_reset(sc);
1357 if (error != 0)
1358 goto attach_failure;
1359
1360 error = aq_fw_version_init(sc);
1361 if (error != 0)
1362 goto attach_failure;
1363
1364 error = aq_hw_init_ucp(sc);
1365 if (error < 0)
1366 goto attach_failure;
1367
1368 KASSERT(sc->sc_mbox_addr != 0);
1369 error = aq_hw_reset(sc);
1370 if (error != 0)
1371 goto attach_failure;
1372
1373 aq_get_mac_addr(sc);
1374 aq_init_rss(sc);
1375
1376 error = aq_hw_init(sc); /* initialize and interrupts */
1377 if (error != 0)
1378 goto attach_failure;
1379
1380 sc->sc_media_type = aqp->aq_media_type;
1381 sc->sc_available_rates = aqp->aq_available_rates;
1382
1383 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1384 ifmedia_init(&sc->sc_media, IFM_IMASK,
1385 aq_ifmedia_change, aq_ifmedia_status);
1386 aq_initmedia(sc);
1387
1388 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1389 ifp->if_softc = sc;
1390 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391 ifp->if_baudrate = IF_Gbps(10);
1392 ifp->if_init = aq_init;
1393 ifp->if_ioctl = aq_ioctl;
1394 if (sc->sc_msix && (sc->sc_nqueues > 1))
1395 ifp->if_transmit = aq_transmit;
1396 ifp->if_start = aq_start;
1397 ifp->if_stop = aq_stop;
1398 ifp->if_watchdog = aq_watchdog;
1399 IFQ_SET_READY(&ifp->if_snd);
1400
1401 /* initialize capabilities */
1402 sc->sc_ethercom.ec_capabilities = 0;
1403 sc->sc_ethercom.ec_capenable = 0;
1404 #if notyet
1405 /* TODO */
1406 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1407 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
1408 #endif
1409 sc->sc_ethercom.ec_capabilities |=
1410 ETHERCAP_JUMBO_MTU |
1411 ETHERCAP_VLAN_MTU |
1412 ETHERCAP_VLAN_HWTAGGING;
1413 sc->sc_ethercom.ec_capenable |=
1414 ETHERCAP_VLAN_HWTAGGING;
1415
1416 ifp->if_capabilities = 0;
1417 ifp->if_capenable = 0;
1418 #ifdef CONFIG_LRO_SUPPORT
1419 ifp->if_capabilities |= IFCAP_LRO;
1420 ifp->if_capenable |= IFCAP_LRO;
1421 #endif
1422 #if notyet
1423 /* TSO */
1424 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1425 #endif
1426
1427 #if notyet
1428 /*
1429 * XXX:
1430 * Rx L4 CSUM doesn't work well for fragment packet.
1431 * aq marks 'CHEDKED' and 'BAD' for them.
1432 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1433 *
1434 * TODO: test with LRO enabled
1435 */
1436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1437 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1438 #endif
1439 /* TX hardware checksum offloadding */
1440 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1441 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1442 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1443 /* RX hardware checksum offloadding */
1444 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1445
1446 if_attach(ifp);
1447 if_deferred_start_init(ifp, NULL);
1448 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1449 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1450
1451 aq_enable_intr(sc, true, false); /* only intr about link */
1452
1453 /* update media */
1454 aq_ifmedia_change(ifp);
1455
1456 #if NSYSMON_ENVSYS > 0
1457 /* temperature monitoring */
1458 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1459 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1460
1461 sc->sc_sme = sysmon_envsys_create();
1462 sc->sc_sme->sme_name = device_xname(self);
1463 sc->sc_sme->sme_cookie = sc;
1464 sc->sc_sme->sme_flags = 0;
1465 sc->sc_sme->sme_refresh = aq_temp_refresh;
1466 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1467 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1468 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1469
1470 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1471 sysmon_envsys_register(sc->sc_sme);
1472
1473 /*
1474 * for unknown reasons, the first call of fw2x_get_temperature()
1475 * will always fail (firmware matter?), so run once now.
1476 */
1477 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1478 }
1479 #endif
1480
1481 #ifdef AQ_EVENT_COUNTERS
1482 /* get starting statistics values */
1483 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1484 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1485 sc->sc_poll_statistics = true;
1486 }
1487
1488 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1489 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1490 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1491 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1492 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1493 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1494 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1495 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1496 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1497 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1498 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1499 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1500 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1501 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1502 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1503 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1504 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1505 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1506 #endif
1507
1508 return;
1509
1510 attach_failure:
1511 aq_detach(self, 0);
1512 }
1513
1514 static int
1515 aq_detach(device_t self, int flags __unused)
1516 {
1517 struct aq_softc *sc = device_private(self);
1518 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1519 int i, s;
1520
1521 if (sc->sc_iosize != 0) {
1522 if (ifp->if_softc != NULL) {
1523 s = splnet();
1524 aq_stop(ifp, 0);
1525 splx(s);
1526 }
1527
1528 for (i = 0; i < AQ_NINTR_MAX; i++) {
1529 if (sc->sc_ihs[i] != NULL) {
1530 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1531 sc->sc_ihs[i] = NULL;
1532 }
1533 }
1534 if (sc->sc_nintrs > 0) {
1535 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1536 sc->sc_nintrs);
1537 sc->sc_intrs = NULL;
1538 sc->sc_nintrs = 0;
1539 }
1540
1541 aq_txrx_rings_free(sc);
1542
1543 if (ifp->if_softc != NULL) {
1544 ether_ifdetach(ifp);
1545 if_detach(ifp);
1546 }
1547
1548 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1549 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1550 sc->sc_iosize = 0;
1551 }
1552
1553 callout_stop(&sc->sc_tick_ch);
1554
1555 #if NSYSMON_ENVSYS > 0
1556 if (sc->sc_sme != NULL) {
1557 /* all sensors associated with this will also be detached */
1558 sysmon_envsys_unregister(sc->sc_sme);
1559 sc->sc_sme = NULL;
1560 }
1561 #endif
1562
1563 #ifdef AQ_EVENT_COUNTERS
1564 AQ_EVCNT_DETACH(sc, uprc);
1565 AQ_EVCNT_DETACH(sc, mprc);
1566 AQ_EVCNT_DETACH(sc, bprc);
1567 AQ_EVCNT_DETACH(sc, erpt);
1568 AQ_EVCNT_DETACH(sc, uptc);
1569 AQ_EVCNT_DETACH(sc, mptc);
1570 AQ_EVCNT_DETACH(sc, bptc);
1571 AQ_EVCNT_DETACH(sc, erpr);
1572 AQ_EVCNT_DETACH(sc, mbtc);
1573 AQ_EVCNT_DETACH(sc, bbtc);
1574 AQ_EVCNT_DETACH(sc, mbrc);
1575 AQ_EVCNT_DETACH(sc, bbrc);
1576 AQ_EVCNT_DETACH(sc, ubrc);
1577 AQ_EVCNT_DETACH(sc, ubtc);
1578 AQ_EVCNT_DETACH(sc, ptc);
1579 AQ_EVCNT_DETACH(sc, prc);
1580 AQ_EVCNT_DETACH(sc, dpc);
1581 AQ_EVCNT_DETACH(sc, cprc);
1582 #endif
1583
1584 mutex_destroy(&sc->sc_mpi_mutex);
1585 mutex_destroy(&sc->sc_mutex);
1586
1587 return 0;
1588 }
1589
1590 static int
1591 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1592 int (*func)(void *), void *arg, const char *xname)
1593 {
1594 char intrbuf[PCI_INTRSTR_LEN];
1595 pci_chipset_tag_t pc = sc->sc_pc;
1596 void *vih;
1597 const char *intrstr = NULL;
1598
1599 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1600 sizeof(intrbuf));
1601
1602 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1603
1604 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1605 IPL_NET, func, arg, xname);
1606 if (vih == NULL) {
1607 aprint_error_dev(sc->sc_dev,
1608 "unable to establish MSI-X%s%s for %s\n",
1609 intrstr ? " at " : "",
1610 intrstr ? intrstr : "", xname);
1611 return EIO;
1612 }
1613 sc->sc_ihs[intno] = vih;
1614
1615 if (affinity != NULL) {
1616 /* Round-robin affinity */
1617 kcpuset_zero(affinity);
1618 kcpuset_set(affinity, intno % ncpu);
1619 interrupt_distribute(vih, affinity, NULL);
1620 }
1621
1622 return 0;
1623 }
1624
1625 static int
1626 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1627 bool linkintr)
1628 {
1629 kcpuset_t *affinity;
1630 int error, intno, i;
1631 char intr_xname[INTRDEVNAMEBUF];
1632
1633 kcpuset_create(&affinity, false);
1634
1635 intno = 0;
1636
1637 if (txrx_independent) {
1638 for (i = 0; i < sc->sc_nqueues; i++) {
1639 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1640 device_xname(sc->sc_dev), i);
1641 sc->sc_rx_irq[i] = intno;
1642 error = aq_establish_intr(sc, intno++, affinity,
1643 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1644 if (error != 0)
1645 goto fail;
1646 }
1647 for (i = 0; i < sc->sc_nqueues; i++) {
1648 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1649 device_xname(sc->sc_dev), i);
1650 sc->sc_tx_irq[i] = intno;
1651 error = aq_establish_intr(sc, intno++, affinity,
1652 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1653 if (error != 0)
1654 goto fail;
1655 }
1656 } else {
1657 for (i = 0; i < sc->sc_nqueues; i++) {
1658 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1659 device_xname(sc->sc_dev), i);
1660 sc->sc_rx_irq[i] = intno;
1661 sc->sc_tx_irq[i] = intno;
1662 error = aq_establish_intr(sc, intno++, affinity,
1663 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1664 if (error != 0)
1665 goto fail;
1666 }
1667 }
1668
1669 if (linkintr) {
1670 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1671 device_xname(sc->sc_dev));
1672 sc->sc_linkstat_irq = intno;
1673 error = aq_establish_intr(sc, intno++, affinity,
1674 aq_link_intr, sc, intr_xname);
1675 if (error != 0)
1676 goto fail;
1677 }
1678
1679 kcpuset_destroy(affinity);
1680 return 0;
1681
1682 fail:
1683 for (i = 0; i < AQ_NINTR_MAX; i++) {
1684 if (sc->sc_ihs[i] != NULL) {
1685 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1686 sc->sc_ihs[i] = NULL;
1687 }
1688 }
1689
1690 kcpuset_destroy(affinity);
1691 return ENOMEM;
1692 }
1693
1694 static int
1695 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1696 bool txrx_independent, bool linkintr)
1697 {
1698 int error, nintr;
1699
1700 if (txrx_independent)
1701 nintr = nqueue * 2;
1702 else
1703 nintr = nqueue;
1704
1705 if (linkintr)
1706 nintr++;
1707
1708 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1709 if (error != 0) {
1710 aprint_error_dev(sc->sc_dev,
1711 "failed to allocate MSI-X interrupts\n");
1712 goto fail;
1713 }
1714
1715 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1716 if (error == 0) {
1717 sc->sc_nintrs = nintr;
1718 } else {
1719 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1720 sc->sc_nintrs = 0;
1721 }
1722 fail:
1723 return error;
1724
1725 }
1726
1727 static int
1728 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1729 pci_intr_type_t inttype)
1730 {
1731 int counts[PCI_INTR_TYPE_SIZE];
1732 int error, nintr;
1733
1734 nintr = 1;
1735
1736 memset(counts, 0, sizeof(counts));
1737 counts[inttype] = nintr;
1738
1739 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1740 if (error != 0) {
1741 aprint_error_dev(sc->sc_dev,
1742 "failed to allocate%s interrupts\n",
1743 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1744 return error;
1745 }
1746 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1747 device_xname(sc->sc_dev));
1748 if (error == 0) {
1749 sc->sc_nintrs = nintr;
1750 } else {
1751 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1752 sc->sc_nintrs = 0;
1753 }
1754 return error;
1755 }
1756
1757 static void
1758 global_software_reset(struct aq_softc *sc)
1759 {
1760 uint32_t v;
1761
1762 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1763 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1764 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1765 FW_MPI_RESETCTRL_RESET_DIS, 0);
1766
1767 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1768 v &= ~AQ_FW_SOFTRESET_DIS;
1769 v |= AQ_FW_SOFTRESET_RESET;
1770 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1771 }
1772
1773 static int
1774 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1775 {
1776 int timo;
1777
1778 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1779
1780 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1781 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1782 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1783
1784 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1785 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1786
1787 global_software_reset(sc);
1788
1789 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1790
1791 /* Wait for RBL to finish boot process. */
1792 #define RBL_TIMEOUT_MS 10000
1793 uint16_t rbl_status;
1794 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1795 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1796 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1797 break;
1798 msec_delay(1);
1799 }
1800 if (timo <= 0) {
1801 aprint_error_dev(sc->sc_dev,
1802 "RBL> RBL restart failed: timeout\n");
1803 return EBUSY;
1804 }
1805 switch (rbl_status) {
1806 case RBL_STATUS_SUCCESS:
1807 if (mode != NULL)
1808 *mode = FW_BOOT_MODE_RBL_FLASH;
1809 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1810 break;
1811 case RBL_STATUS_HOST_BOOT:
1812 if (mode != NULL)
1813 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1814 aprint_debug_dev(sc->sc_dev,
1815 "RBL> reset complete! [Host Bootload]\n");
1816 break;
1817 case RBL_STATUS_FAILURE:
1818 default:
1819 aprint_error_dev(sc->sc_dev,
1820 "unknown RBL status 0x%x\n", rbl_status);
1821 return EBUSY;
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int
1828 mac_soft_reset_flb(struct aq_softc *sc)
1829 {
1830 uint32_t v;
1831 int timo;
1832
1833 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1834 /*
1835 * Let Felicity hardware to complete SMBUS transaction before
1836 * Global software reset.
1837 */
1838 msec_delay(50);
1839
1840 /*
1841 * If SPI burst transaction was interrupted(before running the script),
1842 * global software reset may not clear SPI interface.
1843 * Clean it up manually before global reset.
1844 */
1845 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1846 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1847 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1848 msec_delay(50);
1849
1850 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1851 v &= ~AQ_FW_SOFTRESET_DIS;
1852 v |= AQ_FW_SOFTRESET_RESET;
1853 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1854
1855 /* Kickstart. */
1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1857 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1858 if (!sc->sc_fast_start_enabled)
1859 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1860
1861 /*
1862 * For the case SPI burst transaction was interrupted (by MCP reset
1863 * above), wait until it is completed by hardware.
1864 */
1865 msec_delay(50);
1866
1867 /* MAC Kickstart */
1868 if (!sc->sc_fast_start_enabled) {
1869 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1870
1871 uint32_t flb_status;
1872 for (timo = 0; timo < 1000; timo++) {
1873 flb_status = AQ_READ_REG(sc,
1874 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1875 if (flb_status != 0)
1876 break;
1877 msec_delay(1);
1878 }
1879 if (flb_status == 0) {
1880 aprint_error_dev(sc->sc_dev,
1881 "FLB> MAC kickstart failed: timed out\n");
1882 return ETIMEDOUT;
1883 }
1884 aprint_debug_dev(sc->sc_dev,
1885 "FLB> MAC kickstart done, %d ms\n", timo);
1886 /* FW reset */
1887 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1888 /*
1889 * Let Felicity hardware complete SMBUS transaction before
1890 * Global software reset.
1891 */
1892 msec_delay(50);
1893 sc->sc_fast_start_enabled = true;
1894 }
1895 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1896
1897 /* PHY Kickstart: #undone */
1898 global_software_reset(sc);
1899
1900 for (timo = 0; timo < 1000; timo++) {
1901 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1902 break;
1903 msec_delay(10);
1904 }
1905 if (timo >= 1000) {
1906 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1907 return ETIMEDOUT;
1908 }
1909 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1910 return 0;
1911
1912 }
1913
1914 static int
1915 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1916 {
1917 if (sc->sc_rbl_enabled)
1918 return mac_soft_reset_rbl(sc, mode);
1919
1920 if (mode != NULL)
1921 *mode = FW_BOOT_MODE_FLB;
1922 return mac_soft_reset_flb(sc);
1923 }
1924
1925 static int
1926 aq_fw_read_version(struct aq_softc *sc)
1927 {
1928 int i, error = EBUSY;
1929 #define MAC_FW_START_TIMEOUT_MS 10000
1930 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1931 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1932 if (sc->sc_fw_version != 0) {
1933 error = 0;
1934 break;
1935 }
1936 delay(1000);
1937 }
1938 return error;
1939 }
1940
1941 static int
1942 aq_fw_reset(struct aq_softc *sc)
1943 {
1944 uint32_t ver, v, bootExitCode;
1945 int i, error;
1946
1947 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1948
1949 for (i = 1000; i > 0; i--) {
1950 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1951 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1952 if (v != 0x06000000 || bootExitCode != 0)
1953 break;
1954 }
1955 if (i <= 0) {
1956 aprint_error_dev(sc->sc_dev,
1957 "F/W reset failed. Neither RBL nor FLB started\n");
1958 return ETIMEDOUT;
1959 }
1960 sc->sc_rbl_enabled = (bootExitCode != 0);
1961
1962 /*
1963 * Having FW version 0 is an indicator that cold start
1964 * is in progress. This means two things:
1965 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1966 * 2) Driver may skip reset sequence and save time.
1967 */
1968 if (sc->sc_fast_start_enabled && (ver != 0)) {
1969 error = aq_fw_read_version(sc);
1970 /* Skip reset as it just completed */
1971 if (error == 0)
1972 return 0;
1973 }
1974
1975 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1976 error = mac_soft_reset(sc, &mode);
1977 if (error != 0) {
1978 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1979 return error;
1980 }
1981
1982 switch (mode) {
1983 case FW_BOOT_MODE_FLB:
1984 aprint_debug_dev(sc->sc_dev,
1985 "FLB> F/W successfully loaded from flash.\n");
1986 sc->sc_flash_present = true;
1987 return aq_fw_read_version(sc);
1988 case FW_BOOT_MODE_RBL_FLASH:
1989 aprint_debug_dev(sc->sc_dev,
1990 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
1991 sc->sc_flash_present = true;
1992 return aq_fw_read_version(sc);
1993 case FW_BOOT_MODE_UNKNOWN:
1994 aprint_error_dev(sc->sc_dev,
1995 "F/W bootload error: unknown bootloader type\n");
1996 return ENOTSUP;
1997 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
1998 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
1999 break;
2000 }
2001
2002 /*
2003 * XXX: TODO: add support Host Boot
2004 */
2005 aprint_error_dev(sc->sc_dev,
2006 "RBL> F/W Host Bootload not implemented\n");
2007 return ENOTSUP;
2008 }
2009
2010 static int
2011 aq_hw_reset(struct aq_softc *sc)
2012 {
2013 int error;
2014
2015 /* disable irq */
2016 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2017
2018 /* apply */
2019 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2020
2021 /* wait ack 10 times by 1ms */
2022 WAIT_FOR(
2023 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2024 1000, 10, &error);
2025 if (error != 0) {
2026 aprint_error_dev(sc->sc_dev,
2027 "atlantic: IRQ reset failed: %d\n", error);
2028 return error;
2029 }
2030
2031 return sc->sc_fw_ops->reset(sc);
2032 }
2033
2034 static int
2035 aq_hw_init_ucp(struct aq_softc *sc)
2036 {
2037 int timo;
2038
2039 if (FW_VERSION_MAJOR(sc) == 1) {
2040 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2041 uint32_t data;
2042 cprng_fast(&data, sizeof(data));
2043 data &= 0xfefefefe;
2044 data |= 0x02020202;
2045 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2046 }
2047 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2048 }
2049
2050 for (timo = 100; timo > 0; timo--) {
2051 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2052 if (sc->sc_mbox_addr != 0)
2053 break;
2054 delay(1000);
2055 }
2056
2057 #define AQ_FW_MIN_VERSION 0x01050006
2058 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2059 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2060 aprint_error_dev(sc->sc_dev,
2061 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2062 " or later required, this is %d.%d.%d\n",
2063 FW_VERSION_MAJOR(sc),
2064 FW_VERSION_MINOR(sc),
2065 FW_VERSION_BUILD(sc));
2066 return ENOTSUP;
2067 }
2068
2069 return 0;
2070 }
2071
2072 static int
2073 aq_fw_version_init(struct aq_softc *sc)
2074 {
2075 int error = 0;
2076 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2077
2078 if (FW_VERSION_MAJOR(sc) == 1) {
2079 sc->sc_fw_ops = &aq_fw1x_ops;
2080 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2081 sc->sc_fw_ops = &aq_fw2x_ops;
2082 } else {
2083 aprint_error_dev(sc->sc_dev,
2084 "Unsupported F/W version %d.%d.%d\n",
2085 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2086 FW_VERSION_BUILD(sc));
2087 return ENOTSUP;
2088 }
2089 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2090 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2091
2092 /* detect revision */
2093 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2094 switch (hwrev & 0x0000000f) {
2095 case 0x01:
2096 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2097 fw_vers);
2098 sc->sc_features |= FEATURES_REV_A0 |
2099 FEATURES_MPI_AQ | FEATURES_MIPS;
2100 break;
2101 case 0x02:
2102 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2103 fw_vers);
2104 sc->sc_features |= FEATURES_REV_B0 |
2105 FEATURES_MPI_AQ | FEATURES_MIPS |
2106 FEATURES_TPO2 | FEATURES_RPF2;
2107 break;
2108 case 0x0A:
2109 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2110 fw_vers);
2111 sc->sc_features |= FEATURES_REV_B1 |
2112 FEATURES_MPI_AQ | FEATURES_MIPS |
2113 FEATURES_TPO2 | FEATURES_RPF2;
2114 break;
2115 default:
2116 aprint_error_dev(sc->sc_dev,
2117 "Unknown revision (0x%08x)\n", hwrev);
2118 error = ENOTSUP;
2119 break;
2120 }
2121 return error;
2122 }
2123
2124 static int
2125 fw1x_reset(struct aq_softc *sc)
2126 {
2127 struct aq_mailbox_header mbox;
2128 const int retryCount = 1000;
2129 uint32_t tid0;
2130 int i;
2131
2132 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2133
2134 for (i = 0; i < retryCount; ++i) {
2135 /*
2136 * Read the beginning of Statistics structure to capture
2137 * the Transaction ID.
2138 */
2139 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2140 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2141
2142 /* Successfully read the stats. */
2143 if (tid0 == ~0U) {
2144 /* We have read the initial value. */
2145 tid0 = mbox.transaction_id;
2146 continue;
2147 } else if (mbox.transaction_id != tid0) {
2148 /*
2149 * Compare transaction ID to initial value.
2150 * If it's different means f/w is alive.
2151 * We're done.
2152 */
2153 return 0;
2154 }
2155
2156 /*
2157 * Transaction ID value haven't changed since last time.
2158 * Try reading the stats again.
2159 */
2160 delay(10);
2161 }
2162 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2163 return EBUSY;
2164 }
2165
2166 static int
2167 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2168 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2169 {
2170 uint32_t mpictrl = 0;
2171 uint32_t mpispeed = 0;
2172
2173 if (speed & AQ_LINK_10G)
2174 mpispeed |= FW1X_CTRL_10G;
2175 if (speed & AQ_LINK_5G)
2176 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2177 if (speed & AQ_LINK_2G5)
2178 mpispeed |= FW1X_CTRL_2G5;
2179 if (speed & AQ_LINK_1G)
2180 mpispeed |= FW1X_CTRL_1G;
2181 if (speed & AQ_LINK_100M)
2182 mpispeed |= FW1X_CTRL_100M;
2183
2184 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2185 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2186 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2187 return 0;
2188 }
2189
2190 static int
2191 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2192 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2193 {
2194 uint32_t mpistate, mpi_speed;
2195 aq_link_speed_t speed = AQ_LINK_NONE;
2196
2197 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2198
2199 if (modep != NULL)
2200 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2201
2202 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2203 if (mpi_speed & FW1X_CTRL_10G)
2204 speed = AQ_LINK_10G;
2205 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2206 speed = AQ_LINK_5G;
2207 else if (mpi_speed & FW1X_CTRL_2G5)
2208 speed = AQ_LINK_2G5;
2209 else if (mpi_speed & FW1X_CTRL_1G)
2210 speed = AQ_LINK_1G;
2211 else if (mpi_speed & FW1X_CTRL_100M)
2212 speed = AQ_LINK_100M;
2213
2214 if (speedp != NULL)
2215 *speedp = speed;
2216
2217 if (fcp != NULL)
2218 *fcp = AQ_FC_NONE;
2219
2220 if (eeep != NULL)
2221 *eeep = AQ_EEE_DISABLE;
2222
2223 return 0;
2224 }
2225
2226 static int
2227 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2228 {
2229 int error;
2230
2231 error = aq_fw_downld_dwords(sc,
2232 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2233 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2234 if (error < 0) {
2235 device_printf(sc->sc_dev,
2236 "fw1x> download statistics data FAILED, error %d", error);
2237 return error;
2238 }
2239
2240 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2241 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2242 return 0;
2243 }
2244
2245 static int
2246 fw2x_reset(struct aq_softc *sc)
2247 {
2248 fw2x_capabilities_t caps = { 0 };
2249 int error;
2250
2251 error = aq_fw_downld_dwords(sc,
2252 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2253 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2254 if (error != 0) {
2255 aprint_error_dev(sc->sc_dev,
2256 "fw2x> can't get F/W capabilities mask, error %d\n",
2257 error);
2258 return error;
2259 }
2260 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2261
2262 char buf[256];
2263 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2264 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2265
2266 return 0;
2267 }
2268
2269 static int
2270 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2271 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2272 {
2273 uint64_t mpi_ctrl;
2274 int error = 0;
2275
2276 AQ_MPI_LOCK(sc);
2277
2278 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2279
2280 switch (mode) {
2281 case MPI_INIT:
2282 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2283 if (speed & AQ_LINK_10G)
2284 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2285 if (speed & AQ_LINK_5G)
2286 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2287 if (speed & AQ_LINK_2G5)
2288 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2289 if (speed & AQ_LINK_1G)
2290 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2291 if (speed & AQ_LINK_100M)
2292 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2293
2294 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2295
2296 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2297 if (eee == AQ_EEE_ENABLE)
2298 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2299
2300 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2301 if (fc & AQ_FC_RX)
2302 mpi_ctrl |= FW2X_CTRL_PAUSE;
2303 if (fc & AQ_FC_TX)
2304 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2305 break;
2306 case MPI_DEINIT:
2307 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2308 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2309 break;
2310 default:
2311 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2312 error = EINVAL;
2313 goto failure;
2314 }
2315 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2316
2317 failure:
2318 AQ_MPI_UNLOCK(sc);
2319 return error;
2320 }
2321
2322 static int
2323 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2324 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2325 {
2326 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2327
2328 if (modep != NULL) {
2329 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2330 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2331 *modep = MPI_INIT;
2332 else
2333 *modep = MPI_DEINIT;
2334 }
2335
2336 aq_link_speed_t speed = AQ_LINK_NONE;
2337 if (mpi_state & FW2X_CTRL_RATE_10G)
2338 speed = AQ_LINK_10G;
2339 else if (mpi_state & FW2X_CTRL_RATE_5G)
2340 speed = AQ_LINK_5G;
2341 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2342 speed = AQ_LINK_2G5;
2343 else if (mpi_state & FW2X_CTRL_RATE_1G)
2344 speed = AQ_LINK_1G;
2345 else if (mpi_state & FW2X_CTRL_RATE_100M)
2346 speed = AQ_LINK_100M;
2347
2348 if (speedp != NULL)
2349 *speedp = speed;
2350
2351 aq_link_fc_t fc = AQ_FC_NONE;
2352 if (mpi_state & FW2X_CTRL_PAUSE)
2353 fc |= AQ_FC_RX;
2354 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2355 fc |= AQ_FC_TX;
2356 if (fcp != NULL)
2357 *fcp = fc;
2358
2359 /* XXX: TODO: EEE */
2360 if (eeep != NULL)
2361 *eeep = AQ_EEE_DISABLE;
2362
2363 return 0;
2364 }
2365
2366 static int
2367 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2368 uint32_t timeout_ms, uint32_t try_count)
2369 {
2370 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2371 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2372 int error;
2373
2374 /* First, check that control and state values are consistent */
2375 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2376 device_printf(sc->sc_dev,
2377 "fw2x> MPI control (%#llx) and state (%#llx)"
2378 " are not consistent for mask %#llx!\n",
2379 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2380 (unsigned long long)mask);
2381 return EINVAL;
2382 }
2383
2384 /* Invert bits (toggle) in control register */
2385 mpi_ctrl ^= mask;
2386 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2387
2388 /* Clear all bits except masked */
2389 mpi_ctrl &= mask;
2390
2391 /* Wait for FW reflecting change in state register */
2392 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2393 1000 * timeout_ms, try_count, &error);
2394 if (error != 0) {
2395 device_printf(sc->sc_dev,
2396 "f/w2x> timeout while waiting for response"
2397 " in state register for bit %#llx!",
2398 (unsigned long long)mask);
2399 return error;
2400 }
2401 return 0;
2402 }
2403
2404 static int
2405 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2406 {
2407 int error;
2408
2409 AQ_MPI_LOCK(sc);
2410 /* Say to F/W to update the statistics */
2411 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2412 if (error != 0) {
2413 device_printf(sc->sc_dev,
2414 "fw2x> statistics update error %d\n", error);
2415 goto failure;
2416 }
2417
2418 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2419 error = aq_fw_downld_dwords(sc,
2420 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2421 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2422 if (error != 0) {
2423 device_printf(sc->sc_dev,
2424 "fw2x> download statistics data FAILED, error %d", error);
2425 goto failure;
2426 }
2427 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2428 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2429
2430 failure:
2431 AQ_MPI_UNLOCK(sc);
2432 return error;
2433 }
2434
2435 #if NSYSMON_ENVSYS > 0
2436 static int
2437 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2438 {
2439 int error;
2440 uint32_t value, celsius;
2441
2442 AQ_MPI_LOCK(sc);
2443
2444 /* Say to F/W to update the temperature */
2445 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2446 if (error != 0)
2447 goto failure;
2448
2449 error = aq_fw_downld_dwords(sc,
2450 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2451 &value, sizeof(value) / sizeof(uint32_t));
2452 if (error != 0)
2453 goto failure;
2454
2455 /* 1/256 decrees C to microkelvin */
2456 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2457 if (celsius == 0) {
2458 error = EIO;
2459 goto failure;
2460 }
2461 *temp = celsius * (1000000 / 256) + 273150000;
2462
2463 failure:
2464 AQ_MPI_UNLOCK(sc);
2465 return 0;
2466 }
2467 #endif
2468
2469 static int
2470 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2471 uint32_t cnt)
2472 {
2473 uint32_t v;
2474 int error = 0;
2475
2476 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2477 if (error != 0) {
2478 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2479 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2480 if (v == 0) {
2481 device_printf(sc->sc_dev,
2482 "%s:%d: timeout\n", __func__, __LINE__);
2483 return ETIMEDOUT;
2484 }
2485 }
2486
2487 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2488
2489 error = 0;
2490 for (; cnt > 0 && error == 0; cnt--) {
2491 /* execute mailbox interface */
2492 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2493 AQ_FW_MBOX_CMD_EXECUTE, 1);
2494 if (sc->sc_features & FEATURES_REV_B1) {
2495 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2496 1, 1000, &error);
2497 } else {
2498 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2499 AQ_FW_MBOX_CMD_BUSY) == 0,
2500 1, 1000, &error);
2501 }
2502 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2503 addr += sizeof(uint32_t);
2504 }
2505 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2506
2507 if (error != 0)
2508 device_printf(sc->sc_dev,
2509 "%s:%d: timeout\n", __func__, __LINE__);
2510
2511 return error;
2512 }
2513
2514 /* read my mac address */
2515 static int
2516 aq_get_mac_addr(struct aq_softc *sc)
2517 {
2518 uint32_t mac_addr[2];
2519 uint32_t efuse_shadow_addr;
2520 int err;
2521
2522 efuse_shadow_addr = 0;
2523 if (FW_VERSION_MAJOR(sc) >= 2)
2524 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2525 else
2526 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2527
2528 if (efuse_shadow_addr == 0) {
2529 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2530 return ENXIO;
2531 }
2532
2533 memset(mac_addr, 0, sizeof(mac_addr));
2534 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2535 mac_addr, __arraycount(mac_addr));
2536 if (err < 0)
2537 return err;
2538
2539 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2540 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2541 return ENXIO;
2542 }
2543
2544 mac_addr[0] = bswap32(mac_addr[0]);
2545 mac_addr[1] = bswap32(mac_addr[1]);
2546
2547 memcpy(sc->sc_enaddr.ether_addr_octet,
2548 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2549 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2550 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2551
2552 return 0;
2553 }
2554
2555 /* set multicast filter. index 0 for own address */
2556 static int
2557 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2558 {
2559 uint32_t h, l;
2560
2561 if (index >= AQ_HW_MAC_NUM)
2562 return EINVAL;
2563
2564 if (enaddr == NULL) {
2565 /* disable */
2566 AQ_WRITE_REG_BIT(sc,
2567 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2568 return 0;
2569 }
2570
2571 h = (enaddr[0] << 8) | (enaddr[1]);
2572 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2573 (enaddr[4] << 8) | (enaddr[5]);
2574
2575 /* disable, set, and enable */
2576 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2577 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2578 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2579 RPF_L2UC_MSW_MACADDR_HI, h);
2580 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2581 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2582
2583 return 0;
2584 }
2585
2586 static int
2587 aq_set_capability(struct aq_softc *sc)
2588 {
2589 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2590 int ip4csum_tx =
2591 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2592 int ip4csum_rx =
2593 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2594 int l4csum_tx = ((ifp->if_capenable &
2595 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2596 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2597 int l4csum_rx =
2598 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2599 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2600 uint32_t lso =
2601 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2602 0 : 0xffffffff;
2603 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2604 0 : 0xffffffff;
2605 uint32_t i, v;
2606
2607 /* TX checksums offloads*/
2608 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2609 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2610
2611 /* RX checksums offloads*/
2612 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2613 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2614
2615 /* LSO offloads*/
2616 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2617
2618 #define AQ_B0_LRO_RXD_MAX 16
2619 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2620 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2621 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2622 for (i = 0; i < AQ_RINGS_NUM; i++) {
2623 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2624 RPO_LRO_LDES_MAX_MASK(i), v);
2625 }
2626
2627 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2628 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2629 RPO_LRO_INACTIVE_IVAL, 0);
2630 /*
2631 * the LRO timebase divider is 5 uS (0x61a),
2632 * to get a maximum coalescing interval of 250 uS,
2633 * we need to multiply by 50(0x32) to get
2634 * the default value 250 uS
2635 */
2636 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2637 RPO_LRO_MAX_COALESCING_IVAL, 50);
2638 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2639 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2640 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2641 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2642 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2643 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2644 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2645 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2646 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2647 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2648
2649 return 0;
2650 }
2651
2652 static int
2653 aq_set_filter(struct aq_softc *sc)
2654 {
2655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2656 struct ethercom *ec = &sc->sc_ethercom;
2657 struct ether_multi *enm;
2658 struct ether_multistep step;
2659 int idx, error = 0;
2660
2661 if (ifp->if_flags & IFF_PROMISC) {
2662 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2663 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2664 ec->ec_flags |= ETHER_F_ALLMULTI;
2665 goto done;
2666 }
2667
2668 /* clear all table */
2669 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2670 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2671 continue;
2672 aq_set_mac_addr(sc, idx, NULL);
2673 }
2674
2675 /* don't accept all multicast */
2676 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2677 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2678 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2679 RPF_MCAST_FILTER_EN, 0);
2680
2681 idx = 0;
2682 ETHER_LOCK(ec);
2683 ETHER_FIRST_MULTI(step, ec, enm);
2684 while (enm != NULL) {
2685 if (idx == AQ_HW_MAC_OWN)
2686 idx++;
2687
2688 if ((idx >= AQ_HW_MAC_NUM) ||
2689 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2690 /*
2691 * too many filters.
2692 * fallback to accept all multicast addresses.
2693 */
2694 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2695 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2696 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2697 RPF_MCAST_FILTER_EN, 1);
2698 ec->ec_flags |= ETHER_F_ALLMULTI;
2699 ETHER_UNLOCK(ec);
2700 goto done;
2701 }
2702
2703 /* add a filter */
2704 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2705
2706 ETHER_NEXT_MULTI(step, enm);
2707 }
2708 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2709 ETHER_UNLOCK(ec);
2710
2711 done:
2712 return error;
2713 }
2714
2715 static void
2716 aq_mediastatus_update(struct aq_softc *sc)
2717 {
2718 sc->sc_media_active = 0;
2719
2720 if (sc->sc_link_fc & AQ_FC_RX)
2721 sc->sc_media_active |= IFM_ETH_RXPAUSE;
2722 if (sc->sc_link_fc & AQ_FC_TX)
2723 sc->sc_media_active |= IFM_ETH_TXPAUSE;
2724
2725 switch (sc->sc_link_rate) {
2726 case AQ_LINK_100M:
2727 /* XXX: need to detect fulldup or halfdup */
2728 sc->sc_media_active |= IFM_100_TX | IFM_FDX;
2729 break;
2730 case AQ_LINK_1G:
2731 sc->sc_media_active |= IFM_1000_T | IFM_FDX;
2732 break;
2733 case AQ_LINK_2G5:
2734 sc->sc_media_active |= IFM_2500_T | IFM_FDX;
2735 break;
2736 case AQ_LINK_5G:
2737 sc->sc_media_active |= IFM_5000_T | IFM_FDX;
2738 break;
2739 case AQ_LINK_10G:
2740 sc->sc_media_active |= IFM_10G_T | IFM_FDX;
2741 break;
2742 default:
2743 sc->sc_media_active |= IFM_NONE;
2744 break;
2745 }
2746 }
2747
2748 static int
2749 aq_ifmedia_change(struct ifnet * const ifp)
2750 {
2751 struct aq_softc *sc = ifp->if_softc;
2752 aq_link_speed_t rate = AQ_LINK_NONE;
2753 aq_link_fc_t fc = AQ_FC_NONE;
2754 aq_link_eee_t eee = AQ_EEE_DISABLE;
2755
2756 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2757 return EINVAL;
2758
2759 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2760 case IFM_AUTO:
2761 rate = AQ_LINK_AUTO;
2762 break;
2763 case IFM_NONE:
2764 rate = AQ_LINK_NONE;
2765 break;
2766 case IFM_100_TX:
2767 rate = AQ_LINK_100M;
2768 break;
2769 case IFM_1000_T:
2770 rate = AQ_LINK_1G;
2771 break;
2772 case IFM_2500_T:
2773 rate = AQ_LINK_2G5;
2774 break;
2775 case IFM_5000_T:
2776 rate = AQ_LINK_5G;
2777 break;
2778 case IFM_10G_T:
2779 rate = AQ_LINK_10G;
2780 break;
2781 default:
2782 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2783 IFM_SUBTYPE(sc->sc_media.ifm_media));
2784 return ENODEV;
2785 }
2786
2787 if (sc->sc_media.ifm_media & IFM_FLOW)
2788 fc = AQ_FC_ALL;
2789
2790 /* XXX: todo EEE */
2791
2792 /* re-initialize hardware with new parameters */
2793 aq_set_linkmode(sc, rate, fc, eee);
2794
2795 return 0;
2796 }
2797
2798 static void
2799 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2800 {
2801 struct aq_softc *sc = ifp->if_softc;
2802
2803 ifmr->ifm_active = IFM_ETHER;
2804 ifmr->ifm_status = IFM_AVALID;
2805
2806 if (sc->sc_link_rate != AQ_LINK_NONE)
2807 ifmr->ifm_status |= IFM_ACTIVE;
2808
2809 ifmr->ifm_active |= sc->sc_media_active;
2810 }
2811
2812 static void
2813 aq_initmedia(struct aq_softc *sc)
2814 {
2815 #define IFMEDIA_ETHER_ADD(sc, media) \
2816 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2817
2818 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2819 if (sc->sc_available_rates & AQ_LINK_100M) {
2820 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2821 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2822 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2823 }
2824 if (sc->sc_available_rates & AQ_LINK_1G) {
2825 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2826 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2827 }
2828 if (sc->sc_available_rates & AQ_LINK_2G5) {
2829 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2830 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2831 }
2832 if (sc->sc_available_rates & AQ_LINK_5G) {
2833 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2834 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2835 }
2836 if (sc->sc_available_rates & AQ_LINK_10G) {
2837 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2838 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2839 }
2840 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2841 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2842
2843 /* default: auto without flowcontrol */
2844 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2845 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2846 }
2847
2848 static int
2849 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2850 aq_link_eee_t eee)
2851 {
2852 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2853 }
2854
2855 static int
2856 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2857 aq_link_eee_t *eee)
2858 {
2859 aq_hw_fw_mpi_state_t mode;
2860 int error;
2861
2862 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2863 if (error != 0)
2864 return error;
2865 if (mode != MPI_INIT)
2866 return ENXIO;
2867
2868 return 0;
2869 }
2870
2871 static void
2872 aq_hw_init_tx_path(struct aq_softc *sc)
2873 {
2874 /* Tx TC/RSS number config */
2875 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2876
2877 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2878 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2879 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2880 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2881 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2882 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2883
2884 /* misc */
2885 AQ_WRITE_REG(sc, TX_TPO2_REG,
2886 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2887 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2888 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2889
2890 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2891 }
2892
2893 static void
2894 aq_hw_init_rx_path(struct aq_softc *sc)
2895 {
2896 int i;
2897
2898 /* clear setting */
2899 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2900 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2901 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2902 for (i = 0; i < 32; i++) {
2903 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2904 RPF_ETHERTYPE_FILTER_EN, 0);
2905 }
2906
2907 if (sc->sc_rss_enable) {
2908 /* Rx TC/RSS number config */
2909 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2910
2911 /* Rx flow control */
2912 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2913
2914 /* RSS Ring selection */
2915 switch (sc->sc_nqueues) {
2916 case 2:
2917 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2918 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2919 break;
2920 case 4:
2921 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2922 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2923 break;
2924 case 8:
2925 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2926 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2927 break;
2928 }
2929 }
2930
2931 /* L2 and Multicast filters */
2932 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2933 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2934 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2935 RPF_ACTION_HOST);
2936 }
2937 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2938 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2939
2940 /* Vlan filters */
2941 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2942 ETHERTYPE_QINQ);
2943 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2944 ETHERTYPE_VLAN);
2945 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
2946
2947 if (sc->sc_features & FEATURES_REV_B) {
2948 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2949 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2950 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2951 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2952 }
2953
2954 /* misc */
2955 if (sc->sc_features & FEATURES_RPF2)
2956 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2957 else
2958 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2959
2960 /*
2961 * XXX: RX_TCP_RSS_HASH_REG:
2962 * linux set 0x000f0000
2963 * freebsd set 0x000f001e
2964 */
2965 /* RSS hash type set for IP/TCP */
2966 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2967 RX_TCP_RSS_HASH_TYPE, 0x001e);
2968
2969 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2970 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2971 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2972
2973 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2974 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2975 }
2976
2977 static void
2978 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2979 {
2980 int i;
2981
2982 if (sc->sc_intr_moderation_enable) {
2983 unsigned int tx_min, rx_min; /* 0-255 */
2984 unsigned int tx_max, rx_max; /* 0-511? */
2985
2986 switch (sc->sc_link_rate) {
2987 case AQ_LINK_100M:
2988 tx_min = 0x4f;
2989 tx_max = 0xff;
2990 rx_min = 0x04;
2991 rx_max = 0x50;
2992 break;
2993 case AQ_LINK_1G:
2994 default:
2995 tx_min = 0x4f;
2996 tx_max = 0xff;
2997 rx_min = 0x30;
2998 rx_max = 0x80;
2999 break;
3000 case AQ_LINK_2G5:
3001 tx_min = 0x4f;
3002 tx_max = 0xff;
3003 rx_min = 0x18;
3004 rx_max = 0xe0;
3005 break;
3006 case AQ_LINK_5G:
3007 tx_min = 0x4f;
3008 tx_max = 0xff;
3009 rx_min = 0x0c;
3010 rx_max = 0x70;
3011 break;
3012 case AQ_LINK_10G:
3013 tx_min = 0x4f;
3014 tx_max = 0x1ff;
3015 rx_min = 0x06; /* freebsd use 80 */
3016 rx_max = 0x38; /* freebsd use 120 */
3017 break;
3018 }
3019
3020 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3021 TX_DMA_INT_DESC_WRWB_EN, 0);
3022 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3023 TX_DMA_INT_DESC_MODERATE_EN, 1);
3024 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3025 RX_DMA_INT_DESC_WRWB_EN, 0);
3026 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3027 RX_DMA_INT_DESC_MODERATE_EN, 1);
3028
3029 for (i = 0; i < AQ_RINGS_NUM; i++) {
3030 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3031 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3032 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3033 TX_INTR_MODERATION_CTL_EN);
3034 }
3035 for (i = 0; i < AQ_RINGS_NUM; i++) {
3036 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3037 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3038 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3039 RX_INTR_MODERATION_CTL_EN);
3040 }
3041
3042 } else {
3043 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3044 TX_DMA_INT_DESC_WRWB_EN, 1);
3045 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3046 TX_DMA_INT_DESC_MODERATE_EN, 0);
3047 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3048 RX_DMA_INT_DESC_WRWB_EN, 1);
3049 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3050 RX_DMA_INT_DESC_MODERATE_EN, 0);
3051
3052 for (i = 0; i < AQ_RINGS_NUM; i++) {
3053 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3054 }
3055 for (i = 0; i < AQ_RINGS_NUM; i++) {
3056 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3057 }
3058 }
3059 }
3060
3061 static void
3062 aq_hw_qos_set(struct aq_softc *sc)
3063 {
3064 uint32_t tc = 0;
3065 uint32_t buff_size;
3066
3067 /* TPS Descriptor rate init */
3068 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3069 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3070
3071 /* TPS VM init */
3072 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3073
3074 /* TPS TC credits init */
3075 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3076 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3077
3078 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3079 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3080 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3081 TPS_DATA_TCT_WEIGHT, 0x64);
3082 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3083 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3084 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3085 TPS_DESC_TCT_WEIGHT, 0x1e);
3086
3087 /* Tx buf size */
3088 tc = 0;
3089 buff_size = AQ_HW_TXBUF_MAX;
3090 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3091 buff_size);
3092 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3093 (buff_size * (1024 / 32) * 66) / 100);
3094 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3095 (buff_size * (1024 / 32) * 50) / 100);
3096
3097 /* QoS Rx buf size per TC */
3098 tc = 0;
3099 buff_size = AQ_HW_RXBUF_MAX;
3100 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3101 buff_size);
3102 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3103 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3104 (buff_size * (1024 / 32) * 66) / 100);
3105 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3106 (buff_size * (1024 / 32) * 50) / 100);
3107
3108 /* QoS 802.1p priority -> TC mapping */
3109 int i_priority;
3110 for (i_priority = 0; i_priority < 8; i_priority++) {
3111 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3112 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3113 }
3114 }
3115
3116 /* called once from aq_attach */
3117 static int
3118 aq_init_rss(struct aq_softc *sc)
3119 {
3120 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3121 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3122 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3123 unsigned int i;
3124 int error;
3125
3126 /* initialize rss key */
3127 rss_getkey((uint8_t *)rss_key);
3128
3129 /* hash to ring table */
3130 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3131 rss_table[i] = i % sc->sc_nqueues;
3132 }
3133
3134 /*
3135 * set rss key
3136 */
3137 for (i = 0; i < __arraycount(rss_key); i++) {
3138 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3139 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3140 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3141 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3142 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3143 RPF_RSS_KEY_WR_EN, 1);
3144 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3145 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3146 if (error != 0) {
3147 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3148 __func__);
3149 goto rss_set_timeout;
3150 }
3151 }
3152
3153 /*
3154 * set rss indirection table
3155 *
3156 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3157 * we'll make it by __BITMAP(3) macros.
3158 */
3159 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3160 __BITMAP_ZERO(&bit3x64);
3161
3162 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3163 do { \
3164 if (val & 1) { \
3165 __BITMAP_SET((idx) * 3, (bitmap)); \
3166 } else { \
3167 __BITMAP_CLR((idx) * 3, (bitmap)); \
3168 } \
3169 if (val & 2) { \
3170 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3171 } else { \
3172 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3173 } \
3174 if (val & 4) { \
3175 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3176 } else { \
3177 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3178 } \
3179 } while (0 /* CONSTCOND */)
3180
3181 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3182 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3183 }
3184
3185 /* write 192bit data in steps of 16bit */
3186 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3187 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3188 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3189 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3190 RPF_RSS_REDIR_ADDR, i);
3191 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3192 RPF_RSS_REDIR_WR_EN, 1);
3193
3194 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3195 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3196 if (error != 0)
3197 break;
3198 }
3199
3200 rss_set_timeout:
3201 return error;
3202 }
3203
3204 static void
3205 aq_hw_l3_filter_set(struct aq_softc *sc)
3206 {
3207 int i;
3208
3209 /* clear all filter */
3210 for (i = 0; i < 8; i++) {
3211 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3212 RPF_L3_FILTER_L4_EN, 0);
3213 }
3214 }
3215
3216 static void
3217 aq_update_vlan_filters(struct aq_softc *sc)
3218 {
3219 /* XXX: notyet. vlan always promisc */
3220 int i;
3221
3222 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
3223 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3224 RPF_VLAN_FILTER_EN, 0);
3225 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3226 RPF_VLAN_FILTER_RXQ_EN, 0);
3227 }
3228 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
3229 }
3230
3231 static int
3232 aq_hw_init(struct aq_softc *sc)
3233 {
3234 uint32_t v;
3235
3236 /* Force limit MRRS on RDM/TDM to 2K */
3237 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3238 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3239
3240 /*
3241 * TX DMA total request limit. B0 hardware is not capable to
3242 * handle more than (8K-MRRS) incoming DMA data.
3243 * Value 24 in 256byte units
3244 */
3245 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3246
3247 aq_hw_init_tx_path(sc);
3248 aq_hw_init_rx_path(sc);
3249
3250 aq_hw_interrupt_moderation_set(sc);
3251
3252 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3253 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3254
3255 aq_hw_qos_set(sc);
3256
3257 /* Enable interrupt */
3258 int irqmode;
3259 if (sc->sc_msix)
3260 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3261 else
3262 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3263
3264 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3265 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3266 sc->sc_msix ? 1 : 0);
3267 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3268
3269 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3270
3271 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3272 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3273 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3274 );
3275
3276 /* link interrupt */
3277 if (!sc->sc_msix)
3278 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3279 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3280 __BIT(7) | sc->sc_linkstat_irq);
3281
3282 return 0;
3283 }
3284
3285 static int
3286 aq_update_link_status(struct aq_softc *sc)
3287 {
3288 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3289 aq_link_speed_t rate = AQ_LINK_NONE;
3290 aq_link_fc_t fc = AQ_FC_NONE;
3291 aq_link_eee_t eee = AQ_EEE_DISABLE;
3292 unsigned int speed;
3293 int changed = 0;
3294
3295 aq_get_linkmode(sc, &rate, &fc, &eee);
3296
3297 if (sc->sc_link_rate != rate)
3298 changed = 1;
3299 if (sc->sc_link_fc != fc)
3300 changed = 1;
3301 if (sc->sc_link_eee != eee)
3302 changed = 1;
3303
3304 if (changed) {
3305 switch (rate) {
3306 case AQ_LINK_100M:
3307 speed = 100;
3308 break;
3309 case AQ_LINK_1G:
3310 speed = 1000;
3311 break;
3312 case AQ_LINK_2G5:
3313 speed = 2500;
3314 break;
3315 case AQ_LINK_5G:
3316 speed = 5000;
3317 break;
3318 case AQ_LINK_10G:
3319 speed = 10000;
3320 break;
3321 case AQ_LINK_NONE:
3322 default:
3323 speed = 0;
3324 break;
3325 }
3326
3327 if (sc->sc_link_rate == AQ_LINK_NONE) {
3328 /* link DOWN -> UP */
3329 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3330 speed);
3331 if_link_state_change(ifp, LINK_STATE_UP);
3332 } else if (rate == AQ_LINK_NONE) {
3333 /* link UP -> DOWN */
3334 device_printf(sc->sc_dev, "link is DOWN\n");
3335 if_link_state_change(ifp, LINK_STATE_DOWN);
3336 } else {
3337 device_printf(sc->sc_dev,
3338 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3339 speed, fc, eee);
3340 }
3341
3342 sc->sc_link_rate = rate;
3343 sc->sc_link_fc = fc;
3344 sc->sc_link_eee = eee;
3345
3346 aq_mediastatus_update(sc);
3347
3348 /* update interrupt timing according to new link speed */
3349 aq_hw_interrupt_moderation_set(sc);
3350 }
3351
3352 return changed;
3353 }
3354
3355 #ifdef AQ_EVENT_COUNTERS
3356 static void
3357 aq_update_statistics(struct aq_softc *sc)
3358 {
3359 int prev = sc->sc_statistics_idx;
3360 int cur = prev ^ 1;
3361
3362 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3363
3364 /*
3365 * aq's internal statistics counter is 32bit.
3366 * cauculate delta, and add to evcount
3367 */
3368 #define ADD_DELTA(cur, prev, name) \
3369 do { \
3370 uint32_t n; \
3371 n = (uint32_t)(sc->sc_statistics[cur].name - \
3372 sc->sc_statistics[prev].name); \
3373 if (n != 0) { \
3374 AQ_EVCNT_ADD(sc, name, n); \
3375 } \
3376 } while (/*CONSTCOND*/0);
3377
3378 ADD_DELTA(cur, prev, uprc);
3379 ADD_DELTA(cur, prev, mprc);
3380 ADD_DELTA(cur, prev, bprc);
3381 ADD_DELTA(cur, prev, prc);
3382 ADD_DELTA(cur, prev, erpr);
3383 ADD_DELTA(cur, prev, uptc);
3384 ADD_DELTA(cur, prev, mptc);
3385 ADD_DELTA(cur, prev, bptc);
3386 ADD_DELTA(cur, prev, ptc);
3387 ADD_DELTA(cur, prev, erpt);
3388 ADD_DELTA(cur, prev, mbtc);
3389 ADD_DELTA(cur, prev, bbtc);
3390 ADD_DELTA(cur, prev, mbrc);
3391 ADD_DELTA(cur, prev, bbrc);
3392 ADD_DELTA(cur, prev, ubrc);
3393 ADD_DELTA(cur, prev, ubtc);
3394 ADD_DELTA(cur, prev, dpc);
3395 ADD_DELTA(cur, prev, cprc);
3396
3397 sc->sc_statistics_idx = cur;
3398 }
3399 #endif /* AQ_EVENT_COUNTERS */
3400
3401 /* allocate and map one DMA block */
3402 static int
3403 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3404 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3405 {
3406 int nsegs, error;
3407
3408 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3409 1, &nsegs, 0)) != 0) {
3410 aprint_error_dev(sc->sc_dev,
3411 "unable to allocate DMA buffer, error=%d\n", error);
3412 goto fail_alloc;
3413 }
3414
3415 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3416 BUS_DMA_COHERENT)) != 0) {
3417 aprint_error_dev(sc->sc_dev,
3418 "unable to map DMA buffer, error=%d\n", error);
3419 goto fail_map;
3420 }
3421
3422 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3423 0, mapp)) != 0) {
3424 aprint_error_dev(sc->sc_dev,
3425 "unable to create DMA map, error=%d\n", error);
3426 goto fail_create;
3427 }
3428
3429 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3430 0)) != 0) {
3431 aprint_error_dev(sc->sc_dev,
3432 "unable to load DMA map, error=%d\n", error);
3433 goto fail_load;
3434 }
3435
3436 *sizep = size;
3437 return 0;
3438
3439 fail_load:
3440 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3441 *mapp = NULL;
3442 fail_create:
3443 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3444 *addrp = NULL;
3445 fail_map:
3446 bus_dmamem_free(sc->sc_dmat, seg, 1);
3447 memset(seg, 0, sizeof(*seg));
3448 fail_alloc:
3449 *sizep = 0;
3450 return error;
3451 }
3452
3453 static void
3454 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3455 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3456 {
3457 if (*mapp != NULL) {
3458 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3459 *mapp = NULL;
3460 }
3461 if (*addrp != NULL) {
3462 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3463 *addrp = NULL;
3464 }
3465 if (*sizep != 0) {
3466 bus_dmamem_free(sc->sc_dmat, seg, 1);
3467 memset(seg, 0, sizeof(*seg));
3468 *sizep = 0;
3469 }
3470 }
3471
3472 static int
3473 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3474 {
3475 int i, error;
3476
3477 /* allocate tx descriptors */
3478 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3479 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3480 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3481 if (error != 0)
3482 return error;
3483
3484 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3485
3486 /* fill tx ring with dmamap */
3487 for (i = 0; i < AQ_TXD_NUM; i++) {
3488 #define AQ_MAXDMASIZE (16 * 1024)
3489 #define AQ_NTXSEGS 32
3490 /* XXX: TODO: error check */
3491 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3492 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3493 }
3494 return 0;
3495 }
3496
3497 static void
3498 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3499 {
3500 int i;
3501
3502 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3503 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3504
3505 for (i = 0; i < AQ_TXD_NUM; i++) {
3506 if (txring->txr_mbufs[i].dmamap != NULL) {
3507 if (txring->txr_mbufs[i].m != NULL) {
3508 bus_dmamap_unload(sc->sc_dmat,
3509 txring->txr_mbufs[i].dmamap);
3510 m_freem(txring->txr_mbufs[i].m);
3511 txring->txr_mbufs[i].m = NULL;
3512 }
3513 bus_dmamap_destroy(sc->sc_dmat,
3514 txring->txr_mbufs[i].dmamap);
3515 txring->txr_mbufs[i].dmamap = NULL;
3516 }
3517 }
3518 }
3519
3520 static int
3521 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3522 {
3523 int i, error;
3524
3525 /* allocate rx descriptors */
3526 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3527 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3528 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3529 if (error != 0)
3530 return error;
3531
3532 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3533
3534 /* fill rxring with dmamaps */
3535 for (i = 0; i < AQ_RXD_NUM; i++) {
3536 rxring->rxr_mbufs[i].m = NULL;
3537 /* XXX: TODO: error check */
3538 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3539 &rxring->rxr_mbufs[i].dmamap);
3540 }
3541 return 0;
3542 }
3543
3544 static void
3545 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3546 {
3547 int i;
3548
3549 /* free all mbufs allocated for RX */
3550 for (i = 0; i < AQ_RXD_NUM; i++) {
3551 if (rxring->rxr_mbufs[i].m != NULL) {
3552 bus_dmamap_unload(sc->sc_dmat,
3553 rxring->rxr_mbufs[i].dmamap);
3554 m_freem(rxring->rxr_mbufs[i].m);
3555 rxring->rxr_mbufs[i].m = NULL;
3556 }
3557 }
3558 }
3559
3560 static void
3561 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3562 {
3563 int i;
3564
3565 /* free all mbufs and dmamaps */
3566 aq_rxdrain(sc, rxring);
3567 for (i = 0; i < AQ_RXD_NUM; i++) {
3568 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3569 bus_dmamap_destroy(sc->sc_dmat,
3570 rxring->rxr_mbufs[i].dmamap);
3571 rxring->rxr_mbufs[i].dmamap = NULL;
3572 }
3573 }
3574
3575 /* free RX descriptor */
3576 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3577 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3578 }
3579
3580 static void
3581 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3582 struct mbuf *m)
3583 {
3584 int error;
3585
3586 /* if mbuf already exists, unload and free */
3587 if (rxring->rxr_mbufs[idx].m != NULL) {
3588 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3589 m_freem(rxring->rxr_mbufs[idx].m);
3590 rxring->rxr_mbufs[idx].m = NULL;
3591 }
3592
3593 rxring->rxr_mbufs[idx].m = m;
3594
3595 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3596 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3597 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3598 if (error) {
3599 device_printf(sc->sc_dev,
3600 "unable to load rx DMA map %d, error = %d\n", idx, error);
3601 panic("%s: unable to load rx DMA map. error=%d",
3602 __func__, error);
3603 }
3604 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3605 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3606 }
3607
3608 static inline void
3609 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3610 {
3611 /* refill rxdesc, and sync */
3612 rxring->rxr_rxdesc[idx].read.buf_addr =
3613 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3614 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3615 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3616 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3617 BUS_DMASYNC_PREWRITE);
3618 }
3619
3620 static struct mbuf *
3621 aq_alloc_mbuf(void)
3622 {
3623 struct mbuf *m;
3624
3625 MGETHDR(m, M_DONTWAIT, MT_DATA);
3626 if (m == NULL)
3627 return NULL;
3628
3629 MCLGET(m, M_DONTWAIT);
3630 if ((m->m_flags & M_EXT) == 0) {
3631 m_freem(m);
3632 return NULL;
3633 }
3634
3635 return m;
3636 }
3637
3638 /* allocate mbuf and unload dmamap */
3639 static int
3640 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3641 {
3642 struct mbuf *m;
3643
3644 m = aq_alloc_mbuf();
3645 if (m == NULL)
3646 return ENOBUFS;
3647
3648 aq_rxring_setmbuf(sc, rxring, idx, m);
3649 return 0;
3650 }
3651
3652 static int
3653 aq_txrx_rings_alloc(struct aq_softc *sc)
3654 {
3655 int n, error;
3656
3657 for (n = 0; n < sc->sc_nqueues; n++) {
3658 sc->sc_queue[n].sc = sc;
3659 sc->sc_queue[n].txring.txr_sc = sc;
3660 sc->sc_queue[n].txring.txr_index = n;
3661 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3662 IPL_NET);
3663 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3664 if (error != 0)
3665 goto failure;
3666
3667 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3668 if (error != 0)
3669 goto failure;
3670
3671 sc->sc_queue[n].rxring.rxr_sc = sc;
3672 sc->sc_queue[n].rxring.rxr_index = n;
3673 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3674 IPL_NET);
3675 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3676 if (error != 0)
3677 break;
3678 }
3679
3680 failure:
3681 return error;
3682 }
3683
3684 static void
3685 aq_txrx_rings_free(struct aq_softc *sc)
3686 {
3687 int n;
3688
3689 for (n = 0; n < sc->sc_nqueues; n++) {
3690 aq_txring_free(sc, &sc->sc_queue[n].txring);
3691 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3692
3693 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3694
3695 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3696 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3697 }
3698 }
3699
3700 static int
3701 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3702 {
3703 int error = 0;
3704 txring->txr_softint = NULL;
3705
3706 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3707 if (txring->txr_pcq == NULL) {
3708 aprint_error_dev(sc->sc_dev,
3709 "unable to allocate pcq for TXring[%d]\n",
3710 txring->txr_index);
3711 error = ENOMEM;
3712 goto done;
3713 }
3714
3715 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3716 aq_deferred_transmit, txring);
3717 if (txring->txr_softint == NULL) {
3718 aprint_error_dev(sc->sc_dev,
3719 "unable to establish softint for TXring[%d]\n",
3720 txring->txr_index);
3721 error = ENOENT;
3722 }
3723
3724 done:
3725 return error;
3726 }
3727
3728 static void
3729 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3730 {
3731 struct mbuf *m;
3732
3733 if (txring->txr_softint != NULL) {
3734 softint_disestablish(txring->txr_softint);
3735 txring->txr_softint = NULL;
3736 }
3737
3738 if (txring->txr_pcq != NULL) {
3739 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3740 m_freem(m);
3741 pcq_destroy(txring->txr_pcq);
3742 txring->txr_pcq = NULL;
3743 }
3744 }
3745
3746 #if NSYSMON_ENVSYS > 0
3747 static void
3748 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3749 {
3750 struct aq_softc *sc;
3751 uint32_t temp;
3752 int error;
3753
3754 sc = sme->sme_cookie;
3755
3756 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3757 if (error == 0) {
3758 edata->value_cur = temp;
3759 edata->state = ENVSYS_SVALID;
3760 } else {
3761 edata->state = ENVSYS_SINVALID;
3762 }
3763 }
3764 #endif
3765
3766 static void
3767 aq_tick(void *arg)
3768 {
3769 struct aq_softc *sc = arg;
3770
3771 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3772 sc->sc_detect_linkstat = false;
3773 aq_update_link_status(sc);
3774 }
3775
3776 #ifdef AQ_EVENT_COUNTERS
3777 if (sc->sc_poll_statistics)
3778 aq_update_statistics(sc);
3779 #endif
3780
3781 if (sc->sc_poll_linkstat
3782 #ifdef AQ_EVENT_COUNTERS
3783 || sc->sc_poll_statistics
3784 #endif
3785 ) {
3786 callout_schedule(&sc->sc_tick_ch, hz);
3787 }
3788 }
3789
3790 /* interrupt enable/disable */
3791 static void
3792 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3793 {
3794 uint32_t imask = 0;
3795 int i;
3796
3797 if (txrx) {
3798 for (i = 0; i < sc->sc_nqueues; i++) {
3799 imask |= __BIT(sc->sc_tx_irq[i]);
3800 imask |= __BIT(sc->sc_rx_irq[i]);
3801 }
3802 }
3803
3804 if (link)
3805 imask |= __BIT(sc->sc_linkstat_irq);
3806
3807 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3808 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3809 }
3810
3811 static int
3812 aq_legacy_intr(void *arg)
3813 {
3814 struct aq_softc *sc = arg;
3815 uint32_t status;
3816 int nintr = 0;
3817
3818 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3819 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3820
3821 if (status & __BIT(sc->sc_linkstat_irq)) {
3822 sc->sc_detect_linkstat = true;
3823 callout_schedule(&sc->sc_tick_ch, 0);
3824 nintr++;
3825 }
3826
3827 if (status & __BIT(sc->sc_rx_irq[0])) {
3828 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3829 }
3830
3831 if (status & __BIT(sc->sc_tx_irq[0])) {
3832 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3833 }
3834
3835 return nintr;
3836 }
3837
3838 static int
3839 aq_txrx_intr(void *arg)
3840 {
3841 struct aq_queue *queue = arg;
3842 struct aq_softc *sc = queue->sc;
3843 struct aq_txring *txring = &queue->txring;
3844 struct aq_rxring *rxring = &queue->rxring;
3845 uint32_t status;
3846 int nintr = 0;
3847 int txringidx, rxringidx, txirq, rxirq;
3848
3849 txringidx = txring->txr_index;
3850 rxringidx = rxring->rxr_index;
3851 txirq = sc->sc_tx_irq[txringidx];
3852 rxirq = sc->sc_rx_irq[rxringidx];
3853
3854 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3855 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3856 /* stray interrupt? */
3857 return 0;
3858 }
3859
3860 nintr += aq_rx_intr(rxring);
3861 nintr += aq_tx_intr(txring);
3862
3863 return nintr;
3864 }
3865
3866 static int
3867 aq_link_intr(void *arg)
3868 {
3869 struct aq_softc *sc = arg;
3870 uint32_t status;
3871 int nintr = 0;
3872
3873 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3874 if (status & __BIT(sc->sc_linkstat_irq)) {
3875 sc->sc_detect_linkstat = true;
3876 callout_schedule(&sc->sc_tick_ch, 0);
3877 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3878 __BIT(sc->sc_linkstat_irq));
3879 nintr++;
3880 }
3881
3882 return nintr;
3883 }
3884
3885 static void
3886 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3887 {
3888 const int ringidx = txring->txr_index;
3889 int i;
3890
3891 mutex_enter(&txring->txr_mutex);
3892
3893 txring->txr_prodidx = 0;
3894 txring->txr_considx = 0;
3895 txring->txr_nfree = AQ_TXD_NUM;
3896 txring->txr_active = false;
3897
3898 /* free mbufs untransmitted */
3899 for (i = 0; i < AQ_TXD_NUM; i++) {
3900 if (txring->txr_mbufs[i].m != NULL) {
3901 m_freem(txring->txr_mbufs[i].m);
3902 txring->txr_mbufs[i].m = NULL;
3903 }
3904 }
3905
3906 /* disable DMA */
3907 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3908
3909 if (start) {
3910 /* TX descriptor physical address */
3911 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3912 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3913 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3914 (uint32_t)((uint64_t)paddr >> 32));
3915
3916 /* TX descriptor size */
3917 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3918 AQ_TXD_NUM / 8);
3919
3920 /* reload TAIL pointer */
3921 txring->txr_prodidx = txring->txr_considx =
3922 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3923 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3924
3925 /* Mapping interrupt vector */
3926 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3927 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3928 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3929 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3930
3931 /* enable DMA */
3932 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3933 TX_DMA_DESC_EN, 1);
3934
3935 const int cpuid = 0; /* XXX? */
3936 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3937 TDM_DCAD_CPUID, cpuid);
3938 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3939 TDM_DCAD_CPUID_EN, 0);
3940
3941 txring->txr_active = true;
3942 }
3943
3944 mutex_exit(&txring->txr_mutex);
3945 }
3946
3947 static int
3948 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3949 {
3950 const int ringidx = rxring->rxr_index;
3951 int i;
3952 int error = 0;
3953
3954 mutex_enter(&rxring->rxr_mutex);
3955 rxring->rxr_active = false;
3956
3957 /* disable DMA */
3958 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3959
3960 /* free all RX mbufs */
3961 aq_rxdrain(sc, rxring);
3962
3963 if (start) {
3964 for (i = 0; i < AQ_RXD_NUM; i++) {
3965 error = aq_rxring_add(sc, rxring, i);
3966 if (error != 0) {
3967 aq_rxdrain(sc, rxring);
3968 return error;
3969 }
3970 aq_rxring_reset_desc(sc, rxring, i);
3971 }
3972
3973 /* RX descriptor physical address */
3974 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
3975 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3976 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3977 (uint32_t)((uint64_t)paddr >> 32));
3978
3979 /* RX descriptor size */
3980 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
3981 AQ_RXD_NUM / 8);
3982
3983 /* maximum receive frame size */
3984 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3985 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
3986 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3987 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
3988
3989 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3990 RX_DMA_DESC_HEADER_SPLIT, 0);
3991 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3992 RX_DMA_DESC_VLAN_STRIP,
3993 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
3994 1 : 0);
3995
3996 /*
3997 * reload TAIL pointer, and update readidx
3998 * (HEAD pointer cannot write)
3999 */
4000 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4001 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4002 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4003 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4004
4005 /* Rx ring set mode */
4006
4007 /* Mapping interrupt vector */
4008 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4009 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4010 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4011 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4012
4013 const int cpuid = 0; /* XXX? */
4014 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4015 RX_DMA_DCAD_CPUID, cpuid);
4016 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4017 RX_DMA_DCAD_DESC_EN, 0);
4018 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4019 RX_DMA_DCAD_HEADER_EN, 0);
4020 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4021 RX_DMA_DCAD_PAYLOAD_EN, 0);
4022
4023 /* enable DMA. start receiving */
4024 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4025 RX_DMA_DESC_EN, 1);
4026
4027 rxring->rxr_active = true;
4028 }
4029
4030 mutex_exit(&rxring->rxr_mutex);
4031 return error;
4032 }
4033
4034 #define TXRING_NEXTIDX(idx) \
4035 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4036 #define RXRING_NEXTIDX(idx) \
4037 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4038
4039 static int
4040 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4041 {
4042 bus_dmamap_t map;
4043 struct mbuf *m = *mp;
4044 uint32_t ctl1, ctl1_ctx, ctl2;
4045 int idx, i, error;
4046
4047 idx = txring->txr_prodidx;
4048 map = txring->txr_mbufs[idx].dmamap;
4049
4050 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4051 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4052 if (error == EFBIG) {
4053 struct mbuf *n;
4054 n = m_defrag(m, M_DONTWAIT);
4055 if (n == NULL)
4056 return EFBIG;
4057 /* m_defrag() preserve m */
4058 KASSERT(n == m);
4059 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4060 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4061 }
4062 if (error != 0)
4063 return error;
4064
4065 /*
4066 * check spaces of free descriptors.
4067 * +1 is additional descriptor for context (vlan, etc,.)
4068 */
4069 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4070 device_printf(sc->sc_dev,
4071 "TX: not enough descriptors left %d for %d segs\n",
4072 txring->txr_nfree, map->dm_nsegs + 1);
4073 bus_dmamap_unload(sc->sc_dmat, map);
4074 return ENOBUFS;
4075 }
4076
4077 /* sync dma for mbuf */
4078 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4079 BUS_DMASYNC_PREWRITE);
4080
4081 ctl1_ctx = 0;
4082 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4083
4084 if (vlan_has_tag(m)) {
4085 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4086 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4087
4088 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4089 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4090
4091 /* fill context descriptor and forward index */
4092 txring->txr_txdesc[idx].buf_addr = 0;
4093 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4094 txring->txr_txdesc[idx].ctl2 = 0;
4095
4096 idx = TXRING_NEXTIDX(idx);
4097 txring->txr_nfree--;
4098 }
4099
4100 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4101 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4102 if (m->m_pkthdr.csum_flags &
4103 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4104 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4105 }
4106
4107 /* fill descriptor(s) */
4108 for (i = 0; i < map->dm_nsegs; i++) {
4109 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4110 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4111 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4112
4113 if (i == 0) {
4114 /* remember mbuf of these descriptors */
4115 txring->txr_mbufs[idx].m = m;
4116 } else {
4117 txring->txr_mbufs[idx].m = NULL;
4118 }
4119
4120 if (i == map->dm_nsegs - 1) {
4121 /* last segment, mark an EndOfPacket, and cause intr */
4122 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4123 }
4124
4125 txring->txr_txdesc[idx].buf_addr =
4126 htole64(map->dm_segs[i].ds_addr);
4127 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4128 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4129
4130 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4131 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4132 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4133
4134 idx = TXRING_NEXTIDX(idx);
4135 txring->txr_nfree--;
4136 }
4137
4138 txring->txr_prodidx = idx;
4139
4140 return 0;
4141 }
4142
4143 static int
4144 aq_tx_intr(void *arg)
4145 {
4146 struct aq_txring *txring = arg;
4147 struct aq_softc *sc = txring->txr_sc;
4148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4149 struct mbuf *m;
4150 const int ringidx = txring->txr_index;
4151 unsigned int idx, hw_head, n = 0;
4152
4153 mutex_enter(&txring->txr_mutex);
4154
4155 if (!txring->txr_active)
4156 goto tx_intr_done;
4157
4158 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4159 TX_DMA_DESC_HEAD_PTR);
4160 if (hw_head == txring->txr_considx) {
4161 goto tx_intr_done;
4162 }
4163
4164 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4165
4166 for (idx = txring->txr_considx; idx != hw_head;
4167 idx = TXRING_NEXTIDX(idx), n++) {
4168
4169 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4170 bus_dmamap_unload(sc->sc_dmat,
4171 txring->txr_mbufs[idx].dmamap);
4172
4173 if_statinc_ref(nsr, if_opackets);
4174 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4175 if (m->m_flags & M_MCAST)
4176 if_statinc_ref(nsr, if_omcasts);
4177
4178 m_freem(m);
4179 txring->txr_mbufs[idx].m = NULL;
4180 }
4181
4182 txring->txr_nfree++;
4183 }
4184 txring->txr_considx = idx;
4185
4186 IF_STAT_PUTREF(ifp);
4187
4188 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4189 ifp->if_flags &= ~IFF_OACTIVE;
4190
4191 /* no more pending TX packet, cancel watchdog */
4192 if (txring->txr_nfree >= AQ_TXD_NUM)
4193 ifp->if_timer = 0;
4194
4195 tx_intr_done:
4196 mutex_exit(&txring->txr_mutex);
4197
4198 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4199 return n;
4200 }
4201
4202 static int
4203 aq_rx_intr(void *arg)
4204 {
4205 struct aq_rxring *rxring = arg;
4206 struct aq_softc *sc = rxring->rxr_sc;
4207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4208 const int ringidx = rxring->rxr_index;
4209 aq_rx_desc_t *rxd;
4210 struct mbuf *m, *m0, *mprev, *new_m;
4211 uint32_t rxd_type, rxd_hash __unused;
4212 uint16_t rxd_status, rxd_pktlen;
4213 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4214 unsigned int idx, n = 0;
4215
4216 mutex_enter(&rxring->rxr_mutex);
4217
4218 if (!rxring->rxr_active)
4219 goto rx_intr_done;
4220
4221 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4222 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4223 goto rx_intr_done;
4224 }
4225
4226 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4227
4228 m0 = mprev = NULL;
4229 for (idx = rxring->rxr_readidx;
4230 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4231 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4232
4233 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4234 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4235 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4236
4237 rxd = &rxring->rxr_rxdesc[idx];
4238 rxd_status = le16toh(rxd->wb.status);
4239
4240 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4241 break; /* not yet done */
4242
4243 rxd_type = le32toh(rxd->wb.type);
4244 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4245 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4246 rxd_hash = le32toh(rxd->wb.rss_hash);
4247 rxd_vlan = le16toh(rxd->wb.vlan);
4248
4249 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4250 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4251 if_statinc_ref(nsr, if_ierrors);
4252 goto rx_next;
4253 }
4254
4255 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4256 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4257 BUS_DMASYNC_POSTREAD);
4258 m = rxring->rxr_mbufs[idx].m;
4259
4260 new_m = aq_alloc_mbuf();
4261 if (new_m == NULL) {
4262 /*
4263 * cannot allocate new mbuf.
4264 * discard this packet, and reuse mbuf for next.
4265 */
4266 if_statinc_ref(nsr, if_iqdrops);
4267 goto rx_next;
4268 }
4269 rxring->rxr_mbufs[idx].m = NULL;
4270 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4271
4272 if (m0 == NULL) {
4273 m0 = m;
4274 } else {
4275 if (m->m_flags & M_PKTHDR)
4276 m_remove_pkthdr(m);
4277 mprev->m_next = m;
4278 }
4279 mprev = m;
4280
4281 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4282 m->m_len = MCLBYTES;
4283 } else {
4284 /* last buffer */
4285 m->m_len = rxd_pktlen % MCLBYTES;
4286 m0->m_pkthdr.len = rxd_pktlen;
4287 /* VLAN offloading */
4288 if ((sc->sc_ethercom.ec_capenable &
4289 ETHERCAP_VLAN_HWTAGGING) &&
4290 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4291 __SHIFTOUT(rxd_type,
4292 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4293 vlan_set_tag(m0, rxd_vlan);
4294 }
4295
4296 /* Checksum offloading */
4297 unsigned int pkttype_eth =
4298 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4299 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4300 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4301 __SHIFTOUT(rxd_type,
4302 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4303 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4304 if (__SHIFTOUT(rxd_status,
4305 RXDESC_STATUS_IPV4_CSUM_NG))
4306 m0->m_pkthdr.csum_flags |=
4307 M_CSUM_IPv4_BAD;
4308 }
4309 #if notyet
4310 /*
4311 * XXX: aq always marks BAD for fragmented packet.
4312 * we should peek L3 header, and ignore cksum flags
4313 * if the packet is fragmented.
4314 */
4315 if (__SHIFTOUT(rxd_type,
4316 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4317 bool checked = false;
4318 unsigned int pkttype_proto =
4319 __SHIFTOUT(rxd_type,
4320 RXDESC_TYPE_PKTTYPE_PROTO);
4321
4322 if (pkttype_proto ==
4323 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4324 if ((pkttype_eth ==
4325 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4326 (ifp->if_capabilities &
4327 IFCAP_CSUM_TCPv4_Rx)) {
4328 m0->m_pkthdr.csum_flags |=
4329 M_CSUM_TCPv4;
4330 checked = true;
4331 } else if ((pkttype_eth ==
4332 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4333 (ifp->if_capabilities &
4334 IFCAP_CSUM_TCPv6_Rx)) {
4335 m0->m_pkthdr.csum_flags |=
4336 M_CSUM_TCPv6;
4337 checked = true;
4338 }
4339 } else if (pkttype_proto ==
4340 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4341 if ((pkttype_eth ==
4342 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4343 (ifp->if_capabilities &
4344 IFCAP_CSUM_UDPv4_Rx)) {
4345 m0->m_pkthdr.csum_flags |=
4346 M_CSUM_UDPv4;
4347 checked = true;
4348 } else if ((pkttype_eth ==
4349 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4350 (ifp->if_capabilities &
4351 IFCAP_CSUM_UDPv6_Rx)) {
4352 m0->m_pkthdr.csum_flags |=
4353 M_CSUM_UDPv6;
4354 checked = true;
4355 }
4356 }
4357 if (checked &&
4358 (__SHIFTOUT(rxd_status,
4359 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4360 !__SHIFTOUT(rxd_status,
4361 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4362 m0->m_pkthdr.csum_flags |=
4363 M_CSUM_TCP_UDP_BAD;
4364 }
4365 }
4366 #endif
4367 m_set_rcvif(m0, ifp);
4368 if_statinc_ref(nsr, if_ipackets);
4369 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4370 if_percpuq_enqueue(ifp->if_percpuq, m0);
4371 m0 = mprev = NULL;
4372 }
4373
4374 rx_next:
4375 aq_rxring_reset_desc(sc, rxring, idx);
4376 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4377 }
4378 rxring->rxr_readidx = idx;
4379
4380 IF_STAT_PUTREF(ifp);
4381
4382 rx_intr_done:
4383 mutex_exit(&rxring->rxr_mutex);
4384
4385 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4386 return n;
4387 }
4388
4389 static int
4390 aq_ifflags_cb(struct ethercom *ec)
4391 {
4392 struct ifnet *ifp = &ec->ec_if;
4393 struct aq_softc *sc = ifp->if_softc;
4394 int i, ecchange, error = 0;
4395 unsigned short iffchange;
4396
4397 AQ_LOCK(sc);
4398
4399 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4400 if ((iffchange & IFF_PROMISC) != 0)
4401 error = aq_set_filter(sc);
4402
4403 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4404 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4405 for (i = 0; i < AQ_RINGS_NUM; i++) {
4406 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4407 RX_DMA_DESC_VLAN_STRIP,
4408 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4409 1 : 0);
4410 }
4411 }
4412
4413 sc->sc_ec_capenable = ec->ec_capenable;
4414 sc->sc_if_flags = ifp->if_flags;
4415
4416 AQ_UNLOCK(sc);
4417
4418 return error;
4419 }
4420
4421 static int
4422 aq_init(struct ifnet *ifp)
4423 {
4424 struct aq_softc *sc = ifp->if_softc;
4425 int i, error = 0;
4426
4427 AQ_LOCK(sc);
4428
4429 aq_update_vlan_filters(sc);
4430 aq_set_capability(sc);
4431
4432 for (i = 0; i < sc->sc_nqueues; i++) {
4433 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4434 }
4435
4436 /* invalidate RX descriptor cache */
4437 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4438 AQ_READ_REG_BIT(sc,
4439 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4440
4441 /* start RX */
4442 for (i = 0; i < sc->sc_nqueues; i++) {
4443 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4444 if (error != 0) {
4445 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4446 __func__);
4447 goto aq_init_failure;
4448 }
4449 }
4450 aq_init_rss(sc);
4451 aq_hw_l3_filter_set(sc);
4452
4453 /* need to start callout? */
4454 if (sc->sc_poll_linkstat
4455 #ifdef AQ_EVENT_COUNTERS
4456 || sc->sc_poll_statistics
4457 #endif
4458 ) {
4459 callout_schedule(&sc->sc_tick_ch, hz);
4460 }
4461
4462 /* ready */
4463 ifp->if_flags |= IFF_RUNNING;
4464 ifp->if_flags &= ~IFF_OACTIVE;
4465
4466 /* start TX and RX */
4467 aq_enable_intr(sc, true, true);
4468 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4469 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4470
4471 aq_init_failure:
4472 sc->sc_if_flags = ifp->if_flags;
4473
4474 AQ_UNLOCK(sc);
4475
4476 return error;
4477 }
4478
4479 static void
4480 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4481 struct aq_txring *txring, bool is_transmit)
4482 {
4483 struct mbuf *m;
4484 int npkt, error;
4485
4486 if ((ifp->if_flags & IFF_RUNNING) == 0)
4487 return;
4488
4489 for (npkt = 0; ; npkt++) {
4490 if (is_transmit)
4491 m = pcq_peek(txring->txr_pcq);
4492 else
4493 IFQ_POLL(&ifp->if_snd, m);
4494
4495 if (m == NULL)
4496 break;
4497
4498 if (txring->txr_nfree < AQ_TXD_MIN)
4499 break;
4500
4501 if (is_transmit)
4502 pcq_get(txring->txr_pcq);
4503 else
4504 IFQ_DEQUEUE(&ifp->if_snd, m);
4505
4506 error = aq_encap_txring(sc, txring, &m);
4507 if (error != 0) {
4508 /* too many mbuf chains? or not enough descriptors? */
4509 m_freem(m);
4510 if_statinc(ifp, if_oerrors);
4511 if (txring->txr_index == 0 && error == ENOBUFS)
4512 ifp->if_flags |= IFF_OACTIVE;
4513 break;
4514 }
4515
4516 /* update tail ptr */
4517 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4518 txring->txr_prodidx);
4519
4520 /* Pass the packet to any BPF listeners */
4521 bpf_mtap(ifp, m, BPF_D_OUT);
4522 }
4523
4524 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4525 ifp->if_flags |= IFF_OACTIVE;
4526
4527 if (npkt)
4528 ifp->if_timer = 5;
4529 }
4530
4531 static void
4532 aq_start(struct ifnet *ifp)
4533 {
4534 struct aq_softc *sc;
4535 struct aq_txring *txring;
4536
4537 sc = ifp->if_softc;
4538 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4539
4540 mutex_enter(&txring->txr_mutex);
4541 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4542 aq_send_common_locked(ifp, sc, txring, false);
4543 mutex_exit(&txring->txr_mutex);
4544 }
4545
4546 static inline unsigned int
4547 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4548 {
4549 return (cpu_index(curcpu()) % sc->sc_nqueues);
4550 }
4551
4552 static int
4553 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4554 {
4555 struct aq_softc *sc = ifp->if_softc;
4556 struct aq_txring *txring;
4557 int ringidx;
4558
4559 ringidx = aq_select_txqueue(sc, m);
4560 txring = &sc->sc_queue[ringidx].txring;
4561
4562 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4563 m_freem(m);
4564 return ENOBUFS;
4565 }
4566
4567 if (mutex_tryenter(&txring->txr_mutex)) {
4568 aq_send_common_locked(ifp, sc, txring, true);
4569 mutex_exit(&txring->txr_mutex);
4570 } else {
4571 softint_schedule(txring->txr_softint);
4572 }
4573 return 0;
4574 }
4575
4576 static void
4577 aq_deferred_transmit(void *arg)
4578 {
4579 struct aq_txring *txring = arg;
4580 struct aq_softc *sc = txring->txr_sc;
4581 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4582
4583 mutex_enter(&txring->txr_mutex);
4584 if (pcq_peek(txring->txr_pcq) != NULL)
4585 aq_send_common_locked(ifp, sc, txring, true);
4586 mutex_exit(&txring->txr_mutex);
4587 }
4588
4589 static void
4590 aq_stop(struct ifnet *ifp, int disable)
4591 {
4592 struct aq_softc *sc = ifp->if_softc;
4593 int i;
4594
4595 AQ_LOCK(sc);
4596
4597 ifp->if_timer = 0;
4598
4599 /* disable tx/rx interrupts */
4600 aq_enable_intr(sc, true, false);
4601
4602 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4603 for (i = 0; i < sc->sc_nqueues; i++) {
4604 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4605 }
4606
4607 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4608 for (i = 0; i < sc->sc_nqueues; i++) {
4609 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4610 }
4611
4612 /* invalidate RX descriptor cache */
4613 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4614 AQ_READ_REG_BIT(sc,
4615 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4616
4617 ifp->if_timer = 0;
4618
4619 if (!disable) {
4620 /* when pmf stop, disable link status intr and callout */
4621 aq_enable_intr(sc, false, false);
4622 callout_stop(&sc->sc_tick_ch);
4623 }
4624
4625 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4626
4627 AQ_UNLOCK(sc);
4628 }
4629
4630 static void
4631 aq_watchdog(struct ifnet *ifp)
4632 {
4633 struct aq_softc *sc = ifp->if_softc;
4634 struct aq_txring *txring;
4635 int n, head, tail;
4636
4637 AQ_LOCK(sc);
4638
4639 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4640 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4641 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4642
4643 for (n = 0; n < sc->sc_nqueues; n++) {
4644 txring = &sc->sc_queue[n].txring;
4645 head = AQ_READ_REG_BIT(sc,
4646 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4647 TX_DMA_DESC_HEAD_PTR),
4648 tail = AQ_READ_REG(sc,
4649 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4650
4651 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4652 __func__, txring->txr_index, head, tail);
4653
4654 aq_tx_intr(txring);
4655 }
4656
4657 AQ_UNLOCK(sc);
4658
4659 aq_init(ifp);
4660 }
4661
4662 static int
4663 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4664 {
4665 struct aq_softc *sc __unused;
4666 struct ifreq *ifr __unused;
4667 int error, s;
4668
4669 sc = (struct aq_softc *)ifp->if_softc;
4670 ifr = (struct ifreq *)data;
4671 error = 0;
4672
4673 s = splnet();
4674 error = ether_ioctl(ifp, cmd, data);
4675 splx(s);
4676
4677 if (error != ENETRESET)
4678 return error;
4679
4680 switch (cmd) {
4681 case SIOCSIFCAP:
4682 error = aq_set_capability(sc);
4683 break;
4684 case SIOCADDMULTI:
4685 case SIOCDELMULTI:
4686 if ((ifp->if_flags & IFF_RUNNING) == 0)
4687 break;
4688
4689 /*
4690 * Multicast list has changed; set the hardware filter
4691 * accordingly.
4692 */
4693 error = aq_set_filter(sc);
4694 break;
4695 }
4696
4697 return error;
4698 }
4699
4700
4701 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4702
4703 #ifdef _MODULE
4704 #include "ioconf.c"
4705 #endif
4706
4707 static int
4708 if_aq_modcmd(modcmd_t cmd, void *opaque)
4709 {
4710 int error = 0;
4711
4712 switch (cmd) {
4713 case MODULE_CMD_INIT:
4714 #ifdef _MODULE
4715 error = config_init_component(cfdriver_ioconf_if_aq,
4716 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4717 #endif
4718 return error;
4719 case MODULE_CMD_FINI:
4720 #ifdef _MODULE
4721 error = config_fini_component(cfdriver_ioconf_if_aq,
4722 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4723 #endif
4724 return error;
4725 default:
4726 return ENOTTY;
4727 }
4728 }
4729