if_aq.c revision 1.7 1 /* $NetBSD: if_aq.c,v 1.7 2020/02/04 05:44:14 thorpej Exp $ */
2
3 /**
4 * aQuantia Corporation Network Driver
5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * (1) Redistributions of source code must retain the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer.
14 *
15 * (2) Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * (3) The name of the author may not be used to endorse or promote
21 * products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38 /*-
39 * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.7 2020/02/04 05:44:14 thorpej Exp $");
66
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */
97
98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 /* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */
101
102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN (1 + 1)
106
107
108 /* hardware specification */
109 #define AQ_RINGS_NUM 32
110 #define AQ_RSSQUEUE_MAX 8
111 #define AQ_RX_DESCRIPTOR_MIN 32
112 #define AQ_TX_DESCRIPTOR_MIN 32
113 #define AQ_RX_DESCRIPTOR_MAX 8184
114 #define AQ_TX_DESCRIPTOR_MAX 8184
115 #define AQ_TRAFFICCLASS_NUM 8
116 #define AQ_RSS_HASHKEY_SIZE 40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64
118
119 /*
120 * TERMINOLOGY
121 * MPI = MAC PHY INTERFACE?
122 * RPO = RX Protocol Offloading
123 * TPO = TX Protocol Offloading
124 * RPF = RX Packet Filter
125 * TPB = TX Packet buffer
126 * RPB = RX Packet buffer
127 */
128
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG 0x0000
131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */
132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */
133
134 #define AQ_FW_VERSION_REG 0x0018
135 #define AQ_HW_REVISION_REG 0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100
137
138 #define AQ_FW_MBOX_CMD_REG 0x0200
139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000
140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100
141 #define AQ_FW_MBOX_ADDR_REG 0x0208
142 #define AQ_FW_MBOX_VAL_REG 0x020c
143
144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */
145 #define FW2X_LED_REG 0x031c
146 #define FW2X_LED_DEFAULT 0x00000000
147 #define FW2X_LED_NONE 0x0000003f
148 #define FW2X_LINKLED __BITS(0,1)
149 #define FW2X_LINKLED_ACTIVE 0
150 #define FW2X_LINKLED_ON 1
151 #define FW2X_LINKLED_BLINK 2
152 #define FW2X_LINKLED_OFF 3
153 #define FW2X_STATUSLED __BITS(2,5)
154 #define FW2X_STATUSLED_ORANGE 0
155 #define FW2X_STATUSLED_ORANGE_BLINK 2
156 #define FW2X_STATUSLED_OFF 3
157 #define FW2X_STATUSLED_GREEN 4
158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8
159 #define FW2X_STATUSLED_GREEN_BLINK 10
160
161 #define FW_MPI_MBOX_ADDR_REG 0x0360
162 #define FW1X_MPI_INIT1_REG 0x0364
163 #define FW1X_MPI_CONTROL_REG 0x0368
164 #define FW1X_MPI_STATE_REG 0x036c
165 #define FW1X_MPI_STATE_MODE __BITS(7,0)
166 #define FW1X_MPI_STATE_SPEED __BITS(32,16)
167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25)
168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28)
169 #define FW1X_MPI_INIT2_REG 0x0370
170 #define FW1X_MPI_EFUSEADDR_REG 0x0374
171
172 #define FW2X_MPI_EFUSEADDR_REG 0x0364
173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */
174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG 0x0388
176 #define RBL_STATUS_DEAD 0x0000dead
177 #define RBL_STATUS_SUCCESS 0x0000abba
178 #define RBL_STATUS_FAILURE 0x00000bad
179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7
180
181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2)
183
184 #define AQ_FW_GLB_CTL2_REG 0x0404
185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1)
186
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534
189
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704
191
192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014
193
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */
196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */
197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG 0x2090
200
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8))
205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8))
208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8))
209
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4)
212 #define AQ_B0_ERR_INT 8U
213
214 #define AQ_INTR_CTRL_REG 0x2300
215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0)
216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0
217 #define AQ_INTR_CTRL_IRQMODE_MSI 1
218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2
219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2)
220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5)
221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7)
222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29)
223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31)
224
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8
226
227 #define FW_MPI_RESETCTRL_REG 0x4000
228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29)
229
230 #define RX_SYSCONTROL_REG 0x5000
231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6)
232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8)
233 #define RX_SYSCONTROL_RESET_DIS __BIT(29)
234
235 #define RX_TCP_RSS_HASH_REG 0x5040
236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16)
237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0)
238
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD 0
241 #define RPF_ACTION_HOST 1
242 #define RPF_ACTION_MANAGEMENT 2
243 #define RPF_ACTION_HOST_MANAGEMENT 3
244 #define RPF_ACTION_WOL 4
245
246 #define RPF_L2BC_REG 0x5100
247 #define RPF_L2BC_EN __BIT(0)
248 #define RPF_L2BC_PROMISC __BIT(3)
249 #define RPF_L2BC_ACTION __BITS(12,14)
250 #define RPF_L2BC_THRESHOLD __BITS(31,16)
251
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8)
255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0)
256 #define RPF_L2UC_MSW_ACTION __BITS(18,16)
257 #define RPF_L2UC_MSW_EN __BIT(31)
258 #define AQ_HW_MAC_OWN 0 /* index of own address */
259 #define AQ_HW_MAC_NUM 34
260
261 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4)
263 #define RPF_MCAST_FILTER_EN __BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG 0x5270
265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14)
266
267 #define RPF_VLAN_MODE_REG 0x5280
268 #define RPF_VLAN_MODE_PROMISC __BIT(1)
269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2)
270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3)
271
272 #define RPF_VLAN_TPID_REG 0x5284
273 #define RPF_VLAN_TPID_OUTER __BITS(31,16)
274 #define RPF_VLAN_TPID_INNER __BITS(15,0)
275
276 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS 16
278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4)
279 #define RPF_VLAN_FILTER_EN __BIT(31)
280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28)
281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20)
282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16)
283 #define RPF_VLAN_FILTER_ID __BITS(11,0)
284
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4)
287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31)
288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30)
289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29)
290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26)
291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20)
292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19)
293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16)
294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0)
295
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4)
298 #define RPF_L3_FILTER_L4_EN __BIT(31)
299 #define RPF_L3_FILTER_IPV6_EN __BIT(30)
300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29)
301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28)
302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27)
303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26)
304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25)
305 #define RPF_L3_FILTER_ARP_EN __BIT(24)
306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23)
307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22)
308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18)
309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8)
310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0)
311 #define RPF_L3_FILTER_L4_PROTO_TCP 0
312 #define RPF_L3_FILTER_L4_PROTO_UDP 1
313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2
314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4)
320
321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0
322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31)
323
324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4
325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4))
326
327 #define RPF_RSS_KEY_ADDR_REG 0x54d0
328 #define RPF_RSS_KEY_ADDR __BITS(4,0)
329 #define RPF_RSS_KEY_WR_EN __BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8
332
333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0
334 #define RPF_RSS_REDIR_ADDR __BITS(3,0)
335 #define RPF_RSS_REDIR_WR_EN __BIT(4)
336
337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4
338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0)
339
340 #define RPO_HWCSUM_REG 0x5580
341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1)
342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
343
344 #define RPO_LRO_ENABLE_REG 0x5590
345
346 #define RPO_LRO_CONF_REG 0x5594
347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12)
348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5)
349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15)
350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG 0x5598
352
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4)
355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG 0x5620
357 #define RPO_LRO_TB_DIV __BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620
359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620
361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0)
362
363 #define RPB_RPF_RX_REG 0x5700
364 #define RPB_RPF_RX_TC_MODE __BIT(8)
365 #define RPB_RPF_RX_FC_MODE __BITS(5,4)
366 #define RPB_RPF_RX_BUF_EN __BIT(0)
367
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10)
370 #define RPB_RXB_BUFSIZE __BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10)
372 #define RPB_RXB_XOFF_EN __BIT(31)
373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16)
374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0)
375
376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00
377 #define RX_DMA_DESC_CACHE_INIT __BIT(0)
378
379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30
380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2)
381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3)
382
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4)
385 #define RX_INTR_MODERATION_CTL_EN __BIT(1)
386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8)
387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16)
388
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20)
393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */
394 #define RX_DMA_DESC_RESET __BIT(25)
395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28)
396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29)
397 #define RX_DMA_DESC_EN __BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20)
399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20)
402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0)
403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8)
404
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4)
407 #define RX_DMA_DCAD_CPUID __BITS(7,0)
408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29)
409 #define RX_DMA_DCAD_HEADER_EN __BIT(30)
410 #define RX_DMA_DCAD_DESC_EN __BIT(31)
411
412 #define RX_DMA_DCA_REG 0x6180
413 #define RX_DMA_DCA_EN __BIT(31)
414 #define RX_DMA_DCA_MODE __BITS(3,0)
415
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820
421
422 #define TX_SYSCONTROL_REG 0x7000
423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6)
424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7)
425 #define TX_SYSCONTROL_RESET_DIS __BIT(29)
426
427 #define TX_TPO2_REG 0x7040
428 #define TX_TPO2_EN __BIT(16)
429
430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300
431 #define TPS_DESC_VM_ARB_MODE __BIT(0)
432 #define TPS_DESC_RATE_REG 0x7310
433 #define TPS_DESC_RATE_TA_RST __BIT(31)
434 #define TPS_DESC_RATE_LIM __BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200
436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100
438 #define TPS_DATA_TC_ARB_MODE __BIT(0)
439
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4)
442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27)
443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4)
446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27)
447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0)
448
449 #define AQ_HW_TXBUF_MAX 160
450 #define AQ_HW_RXBUF_MAX 320
451
452 #define TPO_HWCSUM_REG 0x7800
453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1)
454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */
455
456 #define TDM_LSO_EN_REG 0x7810
457
458 #define THM_LSO_TCP_FLAG1_REG 0x7820
459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0)
460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG 0x7824
462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0)
463
464 #define TPB_TX_BUF_REG 0x7900
465 #define TPB_TX_BUF_EN __BIT(0)
466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2)
467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8)
468
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10)
471 #define TPB_TXB_BUFSIZE __BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10)
473 #define TPB_TXB_THRESH_HI __BITS(16,28)
474 #define TPB_TXB_THRESH_LO __BITS(12,0)
475
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40
478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1)
479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4)
480
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40)
485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */
486 #define TX_DMA_DESC_EN __BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40)
488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40)
491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8)
492
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4)
495 #define TDM_DCAD_CPUID __BITS(7,0)
496 #define TDM_DCAD_CPUID_EN __BIT(31)
497
498 #define TDM_DCA_REG 0x8480
499 #define TDM_DCA_EN __BIT(31)
500 #define TDM_DCA_MODE __BITS(3,0)
501
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4)
504 #define TX_INTR_MODERATION_CTL_EN __BIT(1)
505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8)
506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16)
507
508 #define FW1X_CTRL_10G __BIT(0)
509 #define FW1X_CTRL_5G __BIT(1)
510 #define FW1X_CTRL_5GSR __BIT(2)
511 #define FW1X_CTRL_2G5 __BIT(3)
512 #define FW1X_CTRL_1G __BIT(4)
513 #define FW1X_CTRL_100M __BIT(5)
514
515 #define FW2X_CTRL_10BASET_HD __BIT(0)
516 #define FW2X_CTRL_10BASET_FD __BIT(1)
517 #define FW2X_CTRL_100BASETX_HD __BIT(2)
518 #define FW2X_CTRL_100BASET4_HD __BIT(3)
519 #define FW2X_CTRL_100BASET2_HD __BIT(4)
520 #define FW2X_CTRL_100BASETX_FD __BIT(5)
521 #define FW2X_CTRL_100BASET2_FD __BIT(6)
522 #define FW2X_CTRL_1000BASET_HD __BIT(7)
523 #define FW2X_CTRL_1000BASET_FD __BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9)
525 #define FW2X_CTRL_5GBASET_FD __BIT(10)
526 #define FW2X_CTRL_10GBASET_FD __BIT(11)
527 #define FW2X_CTRL_RESERVED1 __BIT(32)
528 #define FW2X_CTRL_10BASET_EEE __BIT(33)
529 #define FW2X_CTRL_RESERVED2 __BIT(34)
530 #define FW2X_CTRL_PAUSE __BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE __BIT(37)
533 #define FW2X_CTRL_RESERVED3 __BIT(38)
534 #define FW2X_CTRL_RESERVED4 __BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43)
539 #define FW2X_CTRL_RESERVED5 __BIT(44)
540 #define FW2X_CTRL_RESERVED6 __BIT(45)
541 #define FW2X_CTRL_RESERVED7 __BIT(46)
542 #define FW2X_CTRL_RESERVED8 __BIT(47)
543 #define FW2X_CTRL_RESERVED9 __BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG __BIT(49)
545 #define FW2X_CTRL_TEMPERATURE __BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT __BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53)
549 #define FW2X_CTRL_LINK_DROP __BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55)
551 #define FW2X_CTRL_WOL __BIT(56)
552 #define FW2X_CTRL_MAC_STOP __BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60)
556 #define FW2X_CTRL_WOL_TIMER __BIT(61)
557 #define FW2X_CTRL_STATISTICS __BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63)
559
560 #define FW2X_SNPRINTB \
561 "\177\020" \
562 "b\x23" "PAUSE\0" \
563 "b\x24" "ASYMMETRIC-PAUSE\0" \
564 "b\x31" "CABLE-DIAG\0" \
565 "b\x32" "TEMPERATURE\0" \
566 "b\x33" "DOWNSHIFT\0" \
567 "b\x34" "PTP-AVB\0" \
568 "b\x35" "MEDIA-DETECT\0" \
569 "b\x36" "LINK-DROP\0" \
570 "b\x37" "SLEEP-PROXY\0" \
571 "b\x38" "WOL\0" \
572 "b\x39" "MAC-STOP\0" \
573 "b\x3a" "EXT-LOOPBACK\0" \
574 "b\x3b" "INT-LOOPBACK\0" \
575 "b\x3c" "EFUSE-AGENT\0" \
576 "b\x3d" "WOL-TIMER\0" \
577 "b\x3e" "STATISTICS\0" \
578 "b\x3f" "TRANSACTION-ID\0" \
579 "\0"
580
581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK \
587 (FW2X_CTRL_RATE_100M | \
588 FW2X_CTRL_RATE_1G | \
589 FW2X_CTRL_RATE_2G5 | \
590 FW2X_CTRL_RATE_5G | \
591 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK \
593 (FW2X_CTRL_10BASET_EEE | \
594 FW2X_CTRL_100BASETX_EEE | \
595 FW2X_CTRL_1000BASET_FD_EEE | \
596 FW2X_CTRL_2P5GBASET_FD_EEE | \
597 FW2X_CTRL_5GBASET_FD_EEE | \
598 FW2X_CTRL_10GBASET_FD_EEE)
599
600 typedef enum aq_fw_bootloader_mode {
601 FW_BOOT_MODE_UNKNOWN = 0,
602 FW_BOOT_MODE_FLB,
603 FW_BOOT_MODE_RBL_FLASH,
604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606
607 #define AQ_WRITE_REG(sc, reg, val) \
608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609
610 #define AQ_READ_REG(sc, reg) \
611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612
613 #define AQ_READ64_REG(sc, reg) \
614 ((uint64_t)AQ_READ_REG(sc, reg) | \
615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616
617 #define AQ_WRITE64_REG(sc, reg, val) \
618 do { \
619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \
620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 } while (/* CONSTCOND */0)
622
623 #define AQ_READ_REG_BIT(sc, reg, mask) \
624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \
627 do { \
628 uint32_t _v; \
629 _v = AQ_READ_REG((sc), (reg)); \
630 _v &= ~(mask); \
631 if ((val) != 0) \
632 _v |= __SHIFTIN((val), (mask)); \
633 AQ_WRITE_REG((sc), (reg), _v); \
634 } while (/* CONSTCOND */ 0)
635
636 #define WAIT_FOR(expr, us, n, errp) \
637 do { \
638 unsigned int _n; \
639 for (_n = n; (!(expr)) && _n != 0; --_n) { \
640 delay((us)); \
641 } \
642 if ((errp != NULL)) { \
643 if (_n == 0) \
644 *(errp) = ETIMEDOUT; \
645 else \
646 *(errp) = 0; \
647 } \
648 } while (/* CONSTCOND */ 0)
649
650 #define msec_delay(x) DELAY(1000 * (x))
651
652 typedef struct aq_mailbox_header {
653 uint32_t version;
654 uint32_t transaction_id;
655 int32_t error;
656 } __packed aq_mailbox_header_t;
657
658 typedef struct aq_hw_stats_s {
659 uint32_t uprc;
660 uint32_t mprc;
661 uint32_t bprc;
662 uint32_t erpt;
663 uint32_t uptc;
664 uint32_t mptc;
665 uint32_t bptc;
666 uint32_t erpr;
667 uint32_t mbtc;
668 uint32_t bbtc;
669 uint32_t mbrc;
670 uint32_t bbrc;
671 uint32_t ubrc;
672 uint32_t ubtc;
673 uint32_t ptc;
674 uint32_t prc;
675 uint32_t dpc; /* not exists in fw2x_msm_statistics */
676 uint32_t cprc; /* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678
679 typedef struct fw1x_mailbox {
680 aq_mailbox_header_t header;
681 aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683
684 typedef struct fw2x_msm_statistics {
685 uint32_t uprc;
686 uint32_t mprc;
687 uint32_t bprc;
688 uint32_t erpt;
689 uint32_t uptc;
690 uint32_t mptc;
691 uint32_t bptc;
692 uint32_t erpr;
693 uint32_t mbtc;
694 uint32_t bbtc;
695 uint32_t mbrc;
696 uint32_t bbrc;
697 uint32_t ubrc;
698 uint32_t ubtc;
699 uint32_t ptc;
700 uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702
703 typedef struct fw2x_phy_cable_diag_data {
704 uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706
707 typedef struct fw2x_capabilities {
708 uint32_t caps_lo;
709 uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711
712 typedef struct fw2x_mailbox { /* struct fwHostInterface */
713 aq_mailbox_header_t header;
714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */
715
716 uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE __BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT __BITS(0,15)
719 uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE __BITS(15,0)
721 #define PHYINFO2_CABLE_LEN __BITS(23,16)
722
723 fw2x_phy_cable_diag_data_t diag_data;
724 uint32_t reserved[8];
725
726 fw2x_capabilities_t caps;
727
728 /* ... */
729 } __packed fw2x_mailbox_t;
730
731 typedef enum aq_link_speed {
732 AQ_LINK_NONE = 0,
733 AQ_LINK_100M = (1 << 0),
734 AQ_LINK_1G = (1 << 1),
735 AQ_LINK_2G5 = (1 << 2),
736 AQ_LINK_5G = (1 << 3),
737 AQ_LINK_10G = (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO AQ_LINK_ALL
742
743 typedef enum aq_link_fc {
744 AQ_FC_NONE = 0,
745 AQ_FC_RX = __BIT(0),
746 AQ_FC_TX = __BIT(1),
747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749
750 typedef enum aq_link_eee {
751 AQ_EEE_DISABLE = 0,
752 AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754
755 typedef enum aq_hw_fw_mpi_state {
756 MPI_DEINIT = 0,
757 MPI_RESET = 1,
758 MPI_INIT = 2,
759 MPI_POWER = 4
760 } aq_hw_fw_mpi_state_t;
761
762 enum aq_media_type {
763 AQ_MEDIA_TYPE_UNKNOWN = 0,
764 AQ_MEDIA_TYPE_FIBRE,
765 AQ_MEDIA_TYPE_TP
766 };
767
768 struct aq_rx_desc_read {
769 uint64_t buf_addr;
770 uint64_t hdr_addr;
771 } __packed;
772
773 struct aq_rx_desc_wb {
774 uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0)
776 #define RXDESC_TYPE_RSSTYPE_NONE 0
777 #define RXDESC_TYPE_RSSTYPE_IPV4 2
778 #define RXDESC_TYPE_RSSTYPE_IPV6 3
779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4
780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5
781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6
782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7
783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4)
784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0
785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1
786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2
787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3
788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6)
789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0
790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1
791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2
792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3
793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4
794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12)
797 #define RXDESC_TYPE_RESERVED __BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20)
800 #define RXDESC_TYPE_SPH __BIT(21)
801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22)
802 uint32_t rss_hash;
803 uint16_t status;
804 #define RXDESC_STATUS_DD __BIT(0)
805 #define RXDESC_STATUS_EOP __BIT(1)
806 #define RXDESC_STATUS_MACERR __BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5)
810
811 #define RXDESC_STATUS_STAT __BITS(2,5)
812 #define RXDESC_STATUS_ESTAT __BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15)
814 uint16_t pkt_len;
815 uint16_t next_desc_ptr;
816 uint16_t vlan;
817 } __packed;
818
819 typedef union aq_rx_desc {
820 struct aq_rx_desc_read read;
821 struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823
824 typedef struct aq_tx_desc {
825 uint64_t buf_addr;
826 uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002
830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */
831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */
832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */
840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */
843 uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12)
847 } __packed aq_tx_desc_t;
848
849 struct aq_txring {
850 struct aq_softc *txr_sc;
851 int txr_index;
852 kmutex_t txr_mutex;
853 bool txr_active;
854
855 pcq_t *txr_pcq;
856 void *txr_softint;
857
858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */
859 bus_dmamap_t txr_txdesc_dmamap;
860 bus_dma_segment_t txr_txdesc_seg[1];
861 bus_size_t txr_txdesc_size;
862
863 struct {
864 struct mbuf *m;
865 bus_dmamap_t dmamap;
866 } txr_mbufs[AQ_TXD_NUM];
867 unsigned int txr_prodidx;
868 unsigned int txr_considx;
869 int txr_nfree;
870 };
871
872 struct aq_rxring {
873 struct aq_softc *rxr_sc;
874 int rxr_index;
875 kmutex_t rxr_mutex;
876 bool rxr_active;
877
878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */
879 bus_dmamap_t rxr_rxdesc_dmamap;
880 bus_dma_segment_t rxr_rxdesc_seg[1];
881 bus_size_t rxr_rxdesc_size;
882 struct {
883 struct mbuf *m;
884 bus_dmamap_t dmamap;
885 } rxr_mbufs[AQ_RXD_NUM];
886 unsigned int rxr_readidx;
887 };
888
889 struct aq_queue {
890 struct aq_softc *sc;
891 struct aq_txring txring;
892 struct aq_rxring rxring;
893 };
894
895 struct aq_softc;
896 struct aq_firmware_ops {
897 int (*reset)(struct aq_softc *);
898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name) \
910 char sc_evcount_##name##_name[32]; \
911 struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \
913 do { \
914 snprintf((sc)->sc_evcount_##name##_name, \
915 sizeof((sc)->sc_evcount_##name##_name), \
916 "%s", desc); \
917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \
918 (evtype), NULL, device_xname((sc)->sc_dev), \
919 (sc)->sc_evcount_##name##_name); \
920 } while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \
922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name) \
924 evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val) \
926 ((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928
929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex);
931
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex);
935
936
937 struct aq_softc {
938 device_t sc_dev;
939
940 bus_space_tag_t sc_iot;
941 bus_space_handle_t sc_ioh;
942 bus_size_t sc_iosize;
943 bus_dma_tag_t sc_dmat;;
944
945 void *sc_ihs[AQ_NINTR_MAX];
946 pci_intr_handle_t *sc_intrs;
947
948 int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 int sc_linkstat_irq;
951 bool sc_use_txrx_independent_intr;
952 bool sc_poll_linkstat;
953 bool sc_detect_linkstat;
954
955 #if NSYSMON_ENVSYS > 0
956 struct sysmon_envsys *sc_sme;
957 envsys_data_t sc_sensor_temp;
958 #endif
959
960 callout_t sc_tick_ch;
961
962 int sc_nintrs;
963 bool sc_msix;
964
965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 int sc_nqueues;
967
968 pci_chipset_tag_t sc_pc;
969 pcitag_t sc_pcitag;
970 uint16_t sc_product;
971 uint16_t sc_revision;
972
973 kmutex_t sc_mutex;
974 kmutex_t sc_mpi_mutex;
975
976 struct aq_firmware_ops *sc_fw_ops;
977 uint64_t sc_fw_caps;
978 enum aq_media_type sc_media_type;
979 aq_link_speed_t sc_available_rates;
980
981 aq_link_speed_t sc_link_rate;
982 aq_link_fc_t sc_link_fc;
983 aq_link_eee_t sc_link_eee;
984
985 uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff)
989 uint32_t sc_features;
990 #define FEATURES_MIPS 0x00000001
991 #define FEATURES_TPO2 0x00000002
992 #define FEATURES_RPF2 0x00000004
993 #define FEATURES_MPI_AQ 0x00000008
994 #define FEATURES_REV_A0 0x10000000
995 #define FEATURES_REV_A (FEATURES_REV_A0)
996 #define FEATURES_REV_B0 0x20000000
997 #define FEATURES_REV_B1 0x40000000
998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1)
999 uint32_t sc_mbox_addr;
1000
1001 bool sc_rbl_enabled;
1002 bool sc_fast_start_enabled;
1003 bool sc_flash_present;
1004
1005 bool sc_intr_moderation_enable;
1006 bool sc_rss_enable;
1007
1008 int sc_media_active;
1009
1010 struct ethercom sc_ethercom;
1011 struct ether_addr sc_enaddr;
1012 struct ifmedia sc_media;
1013 int sc_ec_capenable; /* last ec_capenable */
1014 unsigned short sc_if_flags; /* last if_flags */
1015
1016 #ifdef AQ_EVENT_COUNTERS
1017 aq_hw_stats_s_t sc_statistics[2];
1018 int sc_statistics_idx;
1019 bool sc_poll_statistics;
1020
1021 AQ_EVCNT_DECL(uprc);
1022 AQ_EVCNT_DECL(mprc);
1023 AQ_EVCNT_DECL(bprc);
1024 AQ_EVCNT_DECL(erpt);
1025 AQ_EVCNT_DECL(uptc);
1026 AQ_EVCNT_DECL(mptc);
1027 AQ_EVCNT_DECL(bptc);
1028 AQ_EVCNT_DECL(erpr);
1029 AQ_EVCNT_DECL(mbtc);
1030 AQ_EVCNT_DECL(bbtc);
1031 AQ_EVCNT_DECL(mbrc);
1032 AQ_EVCNT_DECL(bbrc);
1033 AQ_EVCNT_DECL(ubrc);
1034 AQ_EVCNT_DECL(ubtc);
1035 AQ_EVCNT_DECL(ptc);
1036 AQ_EVCNT_DECL(prc);
1037 AQ_EVCNT_DECL(dpc);
1038 AQ_EVCNT_DECL(cprc);
1039 #endif
1040 };
1041
1042 static int aq_match(device_t, cfdata_t, void *);
1043 static void aq_attach(device_t, device_t, void *);
1044 static int aq_detach(device_t, int);
1045
1046 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1047 bool, bool);
1048 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1049 pci_intr_type_t);
1050 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1051
1052 static int aq_ifmedia_change(struct ifnet * const);
1053 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1054 static int aq_ifflags_cb(struct ethercom *);
1055 static int aq_init(struct ifnet *);
1056 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1057 struct aq_txring *, bool);
1058 static int aq_transmit(struct ifnet *, struct mbuf *);
1059 static void aq_deferred_transmit(void *);
1060 static void aq_start(struct ifnet *);
1061 static void aq_stop(struct ifnet *, int);
1062 static void aq_watchdog(struct ifnet *);
1063 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1064
1065 static int aq_txrx_rings_alloc(struct aq_softc *);
1066 static void aq_txrx_rings_free(struct aq_softc *);
1067 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1068 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1069
1070 static void aq_initmedia(struct aq_softc *);
1071 static void aq_enable_intr(struct aq_softc *, bool, bool);
1072
1073 #if NSYSMON_ENVSYS > 0
1074 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1075 #endif
1076 static void aq_tick(void *);
1077 static int aq_legacy_intr(void *);
1078 static int aq_link_intr(void *);
1079 static int aq_txrx_intr(void *);
1080 static int aq_tx_intr(void *);
1081 static int aq_rx_intr(void *);
1082
1083 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1084 aq_link_eee_t);
1085 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1086 aq_link_eee_t *);
1087
1088 static int aq_fw_reset(struct aq_softc *);
1089 static int aq_fw_version_init(struct aq_softc *);
1090 static int aq_hw_init(struct aq_softc *);
1091 static int aq_hw_init_ucp(struct aq_softc *);
1092 static int aq_hw_reset(struct aq_softc *);
1093 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1094 uint32_t);
1095 static int aq_get_mac_addr(struct aq_softc *);
1096 static int aq_init_rss(struct aq_softc *);
1097 static int aq_set_capability(struct aq_softc *);
1098
1099 static int fw1x_reset(struct aq_softc *);
1100 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1101 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1102 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1103 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1104 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1105
1106 static int fw2x_reset(struct aq_softc *);
1107 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1108 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1109 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1110 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1111 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1112 #if NSYSMON_ENVSYS > 0
1113 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1114 #endif
1115
1116 static struct aq_firmware_ops aq_fw1x_ops = {
1117 .reset = fw1x_reset,
1118 .set_mode = fw1x_set_mode,
1119 .get_mode = fw1x_get_mode,
1120 .get_stats = fw1x_get_stats,
1121 #if NSYSMON_ENVSYS > 0
1122 .get_temperature = NULL
1123 #endif
1124 };
1125
1126 static struct aq_firmware_ops aq_fw2x_ops = {
1127 .reset = fw2x_reset,
1128 .set_mode = fw2x_set_mode,
1129 .get_mode = fw2x_get_mode,
1130 .get_stats = fw2x_get_stats,
1131 #if NSYSMON_ENVSYS > 0
1132 .get_temperature = fw2x_get_temperature
1133 #endif
1134 };
1135
1136 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1137 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1138
1139 static const struct aq_product {
1140 pci_vendor_id_t aq_vendor;
1141 pci_product_id_t aq_product;
1142 const char *aq_name;
1143 enum aq_media_type aq_media_type;
1144 aq_link_speed_t aq_available_rates;
1145 } aq_products[] = {
1146 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1147 "Aquantia AQC107 10 Gigabit Network Adapter",
1148 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1149 },
1150 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1151 "Aquantia AQC108 5 Gigabit Network Adapter",
1152 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1153 },
1154 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1155 "Aquantia AQC109 2.5 Gigabit Network Adapter",
1156 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1157 },
1158 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1159 "Aquantia AQC111 5 Gigabit Network Adapter",
1160 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1161 },
1162 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1163 "Aquantia AQC112 2.5 Gigabit Network Adapter",
1164 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1165 },
1166 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1167 "Aquantia AQC107S 10 Gigabit Network Adapter",
1168 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1169 },
1170 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1171 "Aquantia AQC108S 5 Gigabit Network Adapter",
1172 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1173 },
1174 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1175 "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1176 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1177 },
1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1179 "Aquantia AQC111S 5 Gigabit Network Adapter",
1180 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1181 },
1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1183 "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1184 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1185 },
1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1187 "Aquantia D107 10 Gigabit Network Adapter",
1188 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1189 },
1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1191 "Aquantia D108 5 Gigabit Network Adapter",
1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1193 },
1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1195 "Aquantia D109 2.5 Gigabit Network Adapter",
1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1197 }
1198 };
1199
1200 static const struct aq_product *
1201 aq_lookup(const struct pci_attach_args *pa)
1202 {
1203 unsigned int i;
1204
1205 for (i = 0; i < __arraycount(aq_products); i++) {
1206 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor &&
1207 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1208 return &aq_products[i];
1209 }
1210 return NULL;
1211 }
1212
1213 static int
1214 aq_match(device_t parent, cfdata_t cf, void *aux)
1215 {
1216 struct pci_attach_args *pa = aux;
1217
1218 if (aq_lookup(pa) != NULL)
1219 return 1;
1220
1221 return 0;
1222 }
1223
1224 static void
1225 aq_attach(device_t parent, device_t self, void *aux)
1226 {
1227 struct aq_softc *sc = device_private(self);
1228 struct pci_attach_args *pa = aux;
1229 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1230 pci_chipset_tag_t pc;
1231 pcitag_t tag;
1232 pcireg_t command, memtype, bar;
1233 const struct aq_product *aqp;
1234 int error;
1235
1236 sc->sc_dev = self;
1237 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1238 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1239
1240 sc->sc_pc = pc = pa->pa_pc;
1241 sc->sc_pcitag = tag = pa->pa_tag;
1242 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1243
1244 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1245 command |= PCI_COMMAND_MASTER_ENABLE;
1246 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1247
1248 sc->sc_product = PCI_PRODUCT(pa->pa_id);
1249 sc->sc_revision = PCI_REVISION(pa->pa_class);
1250
1251 aqp = aq_lookup(pa);
1252 KASSERT(aqp != NULL);
1253
1254 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1255
1256 bar = pci_conf_read(pc, tag, PCI_BAR(0));
1257 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1258 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1259 aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1260 return;
1261 }
1262 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1263 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1264 NULL, &sc->sc_iosize) != 0) {
1265 aprint_error_dev(sc->sc_dev, "unable to map register\n");
1266 return;
1267 }
1268
1269 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1270
1271 /* max queue num is 8, and must be 2^n */
1272 if (ncpu >= 8)
1273 sc->sc_nqueues = 8;
1274 else if (ncpu >= 4)
1275 sc->sc_nqueues = 4;
1276 else if (ncpu >= 2)
1277 sc->sc_nqueues = 2;
1278 else
1279 sc->sc_nqueues = 1;
1280
1281 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1282 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1283 if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1284 /* TX intrs + RX intrs + LINKSTAT intrs */
1285 sc->sc_use_txrx_independent_intr = true;
1286 sc->sc_poll_linkstat = false;
1287 sc->sc_msix = true;
1288 } else if (msixcount >= (sc->sc_nqueues * 2)) {
1289 /* TX intrs + RX intrs */
1290 sc->sc_use_txrx_independent_intr = true;
1291 sc->sc_poll_linkstat = true;
1292 sc->sc_msix = true;
1293 } else
1294 #endif
1295 if (msixcount >= (sc->sc_nqueues + 1)) {
1296 /* TX/RX intrs LINKSTAT intrs */
1297 sc->sc_use_txrx_independent_intr = false;
1298 sc->sc_poll_linkstat = false;
1299 sc->sc_msix = true;
1300 } else if (msixcount >= sc->sc_nqueues) {
1301 /* TX/RX intrs */
1302 sc->sc_use_txrx_independent_intr = false;
1303 sc->sc_poll_linkstat = true;
1304 sc->sc_msix = true;
1305 } else {
1306 /* giving up using MSI-X */
1307 sc->sc_msix = false;
1308 }
1309
1310 aprint_debug_dev(sc->sc_dev,
1311 "ncpu=%d, pci_msix_count=%d."
1312 " allocate %d interrupts for %d%s queues%s\n",
1313 ncpu, msixcount,
1314 (sc->sc_use_txrx_independent_intr ?
1315 (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1316 (sc->sc_poll_linkstat ? 0 : 1),
1317 sc->sc_nqueues,
1318 sc->sc_use_txrx_independent_intr ? "*2" : "",
1319 sc->sc_poll_linkstat ? "" : ", and link status");
1320
1321 if (sc->sc_msix)
1322 error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1323 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1324 else
1325 error = ENODEV;
1326
1327 if (error != 0) {
1328 /* if MSI-X failed, fallback to MSI with single queue */
1329 sc->sc_use_txrx_independent_intr = false;
1330 sc->sc_poll_linkstat = false;
1331 sc->sc_msix = false;
1332 sc->sc_nqueues = 1;
1333 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1334 }
1335 if (error != 0) {
1336 /* if MSI failed, fallback to INTx */
1337 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1338 }
1339 if (error != 0)
1340 return;
1341
1342 callout_init(&sc->sc_tick_ch, 0);
1343 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1344
1345 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1346
1347 if (sc->sc_msix && (sc->sc_nqueues > 1))
1348 sc->sc_rss_enable = true;
1349 else
1350 sc->sc_rss_enable = false;
1351
1352 error = aq_txrx_rings_alloc(sc);
1353 if (error != 0)
1354 goto attach_failure;
1355
1356 error = aq_fw_reset(sc);
1357 if (error != 0)
1358 goto attach_failure;
1359
1360 error = aq_fw_version_init(sc);
1361 if (error != 0)
1362 goto attach_failure;
1363
1364 error = aq_hw_init_ucp(sc);
1365 if (error < 0)
1366 goto attach_failure;
1367
1368 KASSERT(sc->sc_mbox_addr != 0);
1369 error = aq_hw_reset(sc);
1370 if (error != 0)
1371 goto attach_failure;
1372
1373 aq_get_mac_addr(sc);
1374 aq_init_rss(sc);
1375
1376 error = aq_hw_init(sc); /* initialize and interrupts */
1377 if (error != 0)
1378 goto attach_failure;
1379
1380 sc->sc_media_type = aqp->aq_media_type;
1381 sc->sc_available_rates = aqp->aq_available_rates;
1382
1383 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1384 ifmedia_init(&sc->sc_media, IFM_IMASK,
1385 aq_ifmedia_change, aq_ifmedia_status);
1386 aq_initmedia(sc);
1387
1388 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1389 ifp->if_softc = sc;
1390 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391 ifp->if_baudrate = IF_Gbps(10);
1392 ifp->if_init = aq_init;
1393 ifp->if_ioctl = aq_ioctl;
1394 if (sc->sc_msix && (sc->sc_nqueues > 1))
1395 ifp->if_transmit = aq_transmit;
1396 ifp->if_start = aq_start;
1397 ifp->if_stop = aq_stop;
1398 ifp->if_watchdog = aq_watchdog;
1399 IFQ_SET_READY(&ifp->if_snd);
1400
1401 /* initialize capabilities */
1402 sc->sc_ethercom.ec_capabilities = 0;
1403 sc->sc_ethercom.ec_capenable = 0;
1404 #if notyet
1405 /* TODO */
1406 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1407 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
1408 #endif
1409 sc->sc_ethercom.ec_capabilities |=
1410 ETHERCAP_JUMBO_MTU |
1411 ETHERCAP_VLAN_MTU |
1412 ETHERCAP_VLAN_HWTAGGING;
1413 sc->sc_ethercom.ec_capenable |=
1414 ETHERCAP_VLAN_HWTAGGING;
1415
1416 ifp->if_capabilities = 0;
1417 ifp->if_capenable = 0;
1418 #ifdef CONFIG_LRO_SUPPORT
1419 ifp->if_capabilities |= IFCAP_LRO;
1420 ifp->if_capenable |= IFCAP_LRO;
1421 #endif
1422 #if notyet
1423 /* TSO */
1424 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1425 #endif
1426
1427 #if notyet
1428 /*
1429 * XXX:
1430 * Rx L4 CSUM doesn't work well for fragment packet.
1431 * aq marks 'CHEDKED' and 'BAD' for them.
1432 * we need to ignore (clear) hw-csum flags if the packet is fragmented
1433 *
1434 * TODO: test with LRO enabled
1435 */
1436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1437 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1438 #endif
1439 /* TX hardware checksum offloadding */
1440 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1441 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1442 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1443 /* RX hardware checksum offloadding */
1444 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1445
1446 if_attach(ifp);
1447 if_deferred_start_init(ifp, NULL);
1448 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1449 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1450
1451 aq_enable_intr(sc, true, false); /* only intr about link */
1452
1453 /* update media */
1454 aq_ifmedia_change(ifp);
1455
1456 #if NSYSMON_ENVSYS > 0
1457 /* temperature monitoring */
1458 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1459 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1460
1461 sc->sc_sme = sysmon_envsys_create();
1462 sc->sc_sme->sme_name = device_xname(self);
1463 sc->sc_sme->sme_cookie = sc;
1464 sc->sc_sme->sme_flags = 0;
1465 sc->sc_sme->sme_refresh = aq_temp_refresh;
1466 sc->sc_sensor_temp.units = ENVSYS_STEMP;
1467 sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1468 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1469
1470 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1471 sysmon_envsys_register(sc->sc_sme);
1472
1473 /*
1474 * for unknown reasons, the first call of fw2x_get_temperature()
1475 * will always fail (firmware matter?), so run once now.
1476 */
1477 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1478 }
1479 #endif
1480
1481 #ifdef AQ_EVENT_COUNTERS
1482 /* get starting statistics values */
1483 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1484 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1485 sc->sc_poll_statistics = true;
1486 }
1487
1488 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1489 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1490 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1491 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1492 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1493 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1494 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1495 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1496 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1497 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1498 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1499 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1500 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1501 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1502 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1503 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1504 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1505 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1506 #endif
1507
1508 return;
1509
1510 attach_failure:
1511 aq_detach(self, 0);
1512 }
1513
1514 static int
1515 aq_detach(device_t self, int flags __unused)
1516 {
1517 struct aq_softc *sc = device_private(self);
1518 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1519 int i, s;
1520
1521 if (sc->sc_iosize != 0) {
1522 if (ifp->if_softc != NULL) {
1523 s = splnet();
1524 aq_stop(ifp, 0);
1525 splx(s);
1526 }
1527
1528 for (i = 0; i < AQ_NINTR_MAX; i++) {
1529 if (sc->sc_ihs[i] != NULL) {
1530 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1531 sc->sc_ihs[i] = NULL;
1532 }
1533 }
1534 if (sc->sc_nintrs > 0) {
1535 pci_intr_release(sc->sc_pc, sc->sc_intrs,
1536 sc->sc_nintrs);
1537 sc->sc_intrs = NULL;
1538 sc->sc_nintrs = 0;
1539 }
1540
1541 aq_txrx_rings_free(sc);
1542
1543 if (ifp->if_softc != NULL) {
1544 ether_ifdetach(ifp);
1545 if_detach(ifp);
1546 }
1547
1548 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1549 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1550 sc->sc_iosize = 0;
1551 }
1552
1553 callout_stop(&sc->sc_tick_ch);
1554
1555 #if NSYSMON_ENVSYS > 0
1556 if (sc->sc_sme != NULL) {
1557 /* all sensors associated with this will also be detached */
1558 sysmon_envsys_unregister(sc->sc_sme);
1559 sc->sc_sme = NULL;
1560 }
1561 #endif
1562
1563 #ifdef AQ_EVENT_COUNTERS
1564 AQ_EVCNT_DETACH(sc, uprc);
1565 AQ_EVCNT_DETACH(sc, mprc);
1566 AQ_EVCNT_DETACH(sc, bprc);
1567 AQ_EVCNT_DETACH(sc, erpt);
1568 AQ_EVCNT_DETACH(sc, uptc);
1569 AQ_EVCNT_DETACH(sc, mptc);
1570 AQ_EVCNT_DETACH(sc, bptc);
1571 AQ_EVCNT_DETACH(sc, erpr);
1572 AQ_EVCNT_DETACH(sc, mbtc);
1573 AQ_EVCNT_DETACH(sc, bbtc);
1574 AQ_EVCNT_DETACH(sc, mbrc);
1575 AQ_EVCNT_DETACH(sc, bbrc);
1576 AQ_EVCNT_DETACH(sc, ubrc);
1577 AQ_EVCNT_DETACH(sc, ubtc);
1578 AQ_EVCNT_DETACH(sc, ptc);
1579 AQ_EVCNT_DETACH(sc, prc);
1580 AQ_EVCNT_DETACH(sc, dpc);
1581 AQ_EVCNT_DETACH(sc, cprc);
1582 #endif
1583
1584 ifmedia_fini(&sc->sc_media);
1585
1586 mutex_destroy(&sc->sc_mpi_mutex);
1587 mutex_destroy(&sc->sc_mutex);
1588
1589 return 0;
1590 }
1591
1592 static int
1593 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1594 int (*func)(void *), void *arg, const char *xname)
1595 {
1596 char intrbuf[PCI_INTRSTR_LEN];
1597 pci_chipset_tag_t pc = sc->sc_pc;
1598 void *vih;
1599 const char *intrstr = NULL;
1600
1601 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1602 sizeof(intrbuf));
1603
1604 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1605
1606 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1607 IPL_NET, func, arg, xname);
1608 if (vih == NULL) {
1609 aprint_error_dev(sc->sc_dev,
1610 "unable to establish MSI-X%s%s for %s\n",
1611 intrstr ? " at " : "",
1612 intrstr ? intrstr : "", xname);
1613 return EIO;
1614 }
1615 sc->sc_ihs[intno] = vih;
1616
1617 if (affinity != NULL) {
1618 /* Round-robin affinity */
1619 kcpuset_zero(affinity);
1620 kcpuset_set(affinity, intno % ncpu);
1621 interrupt_distribute(vih, affinity, NULL);
1622 }
1623
1624 return 0;
1625 }
1626
1627 static int
1628 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1629 bool linkintr)
1630 {
1631 kcpuset_t *affinity;
1632 int error, intno, i;
1633 char intr_xname[INTRDEVNAMEBUF];
1634
1635 kcpuset_create(&affinity, false);
1636
1637 intno = 0;
1638
1639 if (txrx_independent) {
1640 for (i = 0; i < sc->sc_nqueues; i++) {
1641 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1642 device_xname(sc->sc_dev), i);
1643 sc->sc_rx_irq[i] = intno;
1644 error = aq_establish_intr(sc, intno++, affinity,
1645 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1646 if (error != 0)
1647 goto fail;
1648 }
1649 for (i = 0; i < sc->sc_nqueues; i++) {
1650 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1651 device_xname(sc->sc_dev), i);
1652 sc->sc_tx_irq[i] = intno;
1653 error = aq_establish_intr(sc, intno++, affinity,
1654 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1655 if (error != 0)
1656 goto fail;
1657 }
1658 } else {
1659 for (i = 0; i < sc->sc_nqueues; i++) {
1660 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1661 device_xname(sc->sc_dev), i);
1662 sc->sc_rx_irq[i] = intno;
1663 sc->sc_tx_irq[i] = intno;
1664 error = aq_establish_intr(sc, intno++, affinity,
1665 aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1666 if (error != 0)
1667 goto fail;
1668 }
1669 }
1670
1671 if (linkintr) {
1672 snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1673 device_xname(sc->sc_dev));
1674 sc->sc_linkstat_irq = intno;
1675 error = aq_establish_intr(sc, intno++, affinity,
1676 aq_link_intr, sc, intr_xname);
1677 if (error != 0)
1678 goto fail;
1679 }
1680
1681 kcpuset_destroy(affinity);
1682 return 0;
1683
1684 fail:
1685 for (i = 0; i < AQ_NINTR_MAX; i++) {
1686 if (sc->sc_ihs[i] != NULL) {
1687 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1688 sc->sc_ihs[i] = NULL;
1689 }
1690 }
1691
1692 kcpuset_destroy(affinity);
1693 return ENOMEM;
1694 }
1695
1696 static int
1697 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1698 bool txrx_independent, bool linkintr)
1699 {
1700 int error, nintr;
1701
1702 if (txrx_independent)
1703 nintr = nqueue * 2;
1704 else
1705 nintr = nqueue;
1706
1707 if (linkintr)
1708 nintr++;
1709
1710 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1711 if (error != 0) {
1712 aprint_error_dev(sc->sc_dev,
1713 "failed to allocate MSI-X interrupts\n");
1714 goto fail;
1715 }
1716
1717 error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1718 if (error == 0) {
1719 sc->sc_nintrs = nintr;
1720 } else {
1721 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1722 sc->sc_nintrs = 0;
1723 }
1724 fail:
1725 return error;
1726
1727 }
1728
1729 static int
1730 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1731 pci_intr_type_t inttype)
1732 {
1733 int counts[PCI_INTR_TYPE_SIZE];
1734 int error, nintr;
1735
1736 nintr = 1;
1737
1738 memset(counts, 0, sizeof(counts));
1739 counts[inttype] = nintr;
1740
1741 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1742 if (error != 0) {
1743 aprint_error_dev(sc->sc_dev,
1744 "failed to allocate%s interrupts\n",
1745 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1746 return error;
1747 }
1748 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1749 device_xname(sc->sc_dev));
1750 if (error == 0) {
1751 sc->sc_nintrs = nintr;
1752 } else {
1753 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1754 sc->sc_nintrs = 0;
1755 }
1756 return error;
1757 }
1758
1759 static void
1760 global_software_reset(struct aq_softc *sc)
1761 {
1762 uint32_t v;
1763
1764 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1765 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1766 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1767 FW_MPI_RESETCTRL_RESET_DIS, 0);
1768
1769 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1770 v &= ~AQ_FW_SOFTRESET_DIS;
1771 v |= AQ_FW_SOFTRESET_RESET;
1772 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1773 }
1774
1775 static int
1776 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1777 {
1778 int timo;
1779
1780 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1781
1782 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1783 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1784 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1785
1786 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1787 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1788
1789 global_software_reset(sc);
1790
1791 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1792
1793 /* Wait for RBL to finish boot process. */
1794 #define RBL_TIMEOUT_MS 10000
1795 uint16_t rbl_status;
1796 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1797 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1798 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1799 break;
1800 msec_delay(1);
1801 }
1802 if (timo <= 0) {
1803 aprint_error_dev(sc->sc_dev,
1804 "RBL> RBL restart failed: timeout\n");
1805 return EBUSY;
1806 }
1807 switch (rbl_status) {
1808 case RBL_STATUS_SUCCESS:
1809 if (mode != NULL)
1810 *mode = FW_BOOT_MODE_RBL_FLASH;
1811 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1812 break;
1813 case RBL_STATUS_HOST_BOOT:
1814 if (mode != NULL)
1815 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1816 aprint_debug_dev(sc->sc_dev,
1817 "RBL> reset complete! [Host Bootload]\n");
1818 break;
1819 case RBL_STATUS_FAILURE:
1820 default:
1821 aprint_error_dev(sc->sc_dev,
1822 "unknown RBL status 0x%x\n", rbl_status);
1823 return EBUSY;
1824 }
1825
1826 return 0;
1827 }
1828
1829 static int
1830 mac_soft_reset_flb(struct aq_softc *sc)
1831 {
1832 uint32_t v;
1833 int timo;
1834
1835 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1836 /*
1837 * Let Felicity hardware to complete SMBUS transaction before
1838 * Global software reset.
1839 */
1840 msec_delay(50);
1841
1842 /*
1843 * If SPI burst transaction was interrupted(before running the script),
1844 * global software reset may not clear SPI interface.
1845 * Clean it up manually before global reset.
1846 */
1847 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1848 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1849 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1850 msec_delay(50);
1851
1852 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1853 v &= ~AQ_FW_SOFTRESET_DIS;
1854 v |= AQ_FW_SOFTRESET_RESET;
1855 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1856
1857 /* Kickstart. */
1858 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1859 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1860 if (!sc->sc_fast_start_enabled)
1861 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1862
1863 /*
1864 * For the case SPI burst transaction was interrupted (by MCP reset
1865 * above), wait until it is completed by hardware.
1866 */
1867 msec_delay(50);
1868
1869 /* MAC Kickstart */
1870 if (!sc->sc_fast_start_enabled) {
1871 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1872
1873 uint32_t flb_status;
1874 for (timo = 0; timo < 1000; timo++) {
1875 flb_status = AQ_READ_REG(sc,
1876 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1877 if (flb_status != 0)
1878 break;
1879 msec_delay(1);
1880 }
1881 if (flb_status == 0) {
1882 aprint_error_dev(sc->sc_dev,
1883 "FLB> MAC kickstart failed: timed out\n");
1884 return ETIMEDOUT;
1885 }
1886 aprint_debug_dev(sc->sc_dev,
1887 "FLB> MAC kickstart done, %d ms\n", timo);
1888 /* FW reset */
1889 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1890 /*
1891 * Let Felicity hardware complete SMBUS transaction before
1892 * Global software reset.
1893 */
1894 msec_delay(50);
1895 sc->sc_fast_start_enabled = true;
1896 }
1897 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1898
1899 /* PHY Kickstart: #undone */
1900 global_software_reset(sc);
1901
1902 for (timo = 0; timo < 1000; timo++) {
1903 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1904 break;
1905 msec_delay(10);
1906 }
1907 if (timo >= 1000) {
1908 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1909 return ETIMEDOUT;
1910 }
1911 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1912 return 0;
1913
1914 }
1915
1916 static int
1917 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1918 {
1919 if (sc->sc_rbl_enabled)
1920 return mac_soft_reset_rbl(sc, mode);
1921
1922 if (mode != NULL)
1923 *mode = FW_BOOT_MODE_FLB;
1924 return mac_soft_reset_flb(sc);
1925 }
1926
1927 static int
1928 aq_fw_read_version(struct aq_softc *sc)
1929 {
1930 int i, error = EBUSY;
1931 #define MAC_FW_START_TIMEOUT_MS 10000
1932 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1933 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1934 if (sc->sc_fw_version != 0) {
1935 error = 0;
1936 break;
1937 }
1938 delay(1000);
1939 }
1940 return error;
1941 }
1942
1943 static int
1944 aq_fw_reset(struct aq_softc *sc)
1945 {
1946 uint32_t ver, v, bootExitCode;
1947 int i, error;
1948
1949 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1950
1951 for (i = 1000; i > 0; i--) {
1952 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1953 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1954 if (v != 0x06000000 || bootExitCode != 0)
1955 break;
1956 }
1957 if (i <= 0) {
1958 aprint_error_dev(sc->sc_dev,
1959 "F/W reset failed. Neither RBL nor FLB started\n");
1960 return ETIMEDOUT;
1961 }
1962 sc->sc_rbl_enabled = (bootExitCode != 0);
1963
1964 /*
1965 * Having FW version 0 is an indicator that cold start
1966 * is in progress. This means two things:
1967 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1968 * 2) Driver may skip reset sequence and save time.
1969 */
1970 if (sc->sc_fast_start_enabled && (ver != 0)) {
1971 error = aq_fw_read_version(sc);
1972 /* Skip reset as it just completed */
1973 if (error == 0)
1974 return 0;
1975 }
1976
1977 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1978 error = mac_soft_reset(sc, &mode);
1979 if (error != 0) {
1980 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1981 return error;
1982 }
1983
1984 switch (mode) {
1985 case FW_BOOT_MODE_FLB:
1986 aprint_debug_dev(sc->sc_dev,
1987 "FLB> F/W successfully loaded from flash.\n");
1988 sc->sc_flash_present = true;
1989 return aq_fw_read_version(sc);
1990 case FW_BOOT_MODE_RBL_FLASH:
1991 aprint_debug_dev(sc->sc_dev,
1992 "RBL> F/W loaded from flash. Host Bootload disabled.\n");
1993 sc->sc_flash_present = true;
1994 return aq_fw_read_version(sc);
1995 case FW_BOOT_MODE_UNKNOWN:
1996 aprint_error_dev(sc->sc_dev,
1997 "F/W bootload error: unknown bootloader type\n");
1998 return ENOTSUP;
1999 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2000 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2001 break;
2002 }
2003
2004 /*
2005 * XXX: TODO: add support Host Boot
2006 */
2007 aprint_error_dev(sc->sc_dev,
2008 "RBL> F/W Host Bootload not implemented\n");
2009 return ENOTSUP;
2010 }
2011
2012 static int
2013 aq_hw_reset(struct aq_softc *sc)
2014 {
2015 int error;
2016
2017 /* disable irq */
2018 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2019
2020 /* apply */
2021 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2022
2023 /* wait ack 10 times by 1ms */
2024 WAIT_FOR(
2025 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2026 1000, 10, &error);
2027 if (error != 0) {
2028 aprint_error_dev(sc->sc_dev,
2029 "atlantic: IRQ reset failed: %d\n", error);
2030 return error;
2031 }
2032
2033 return sc->sc_fw_ops->reset(sc);
2034 }
2035
2036 static int
2037 aq_hw_init_ucp(struct aq_softc *sc)
2038 {
2039 int timo;
2040
2041 if (FW_VERSION_MAJOR(sc) == 1) {
2042 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2043 uint32_t data;
2044 cprng_fast(&data, sizeof(data));
2045 data &= 0xfefefefe;
2046 data |= 0x02020202;
2047 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2048 }
2049 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2050 }
2051
2052 for (timo = 100; timo > 0; timo--) {
2053 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2054 if (sc->sc_mbox_addr != 0)
2055 break;
2056 delay(1000);
2057 }
2058
2059 #define AQ_FW_MIN_VERSION 0x01050006
2060 #define AQ_FW_MIN_VERSION_STR "1.5.6"
2061 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2062 aprint_error_dev(sc->sc_dev,
2063 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2064 " or later required, this is %d.%d.%d\n",
2065 FW_VERSION_MAJOR(sc),
2066 FW_VERSION_MINOR(sc),
2067 FW_VERSION_BUILD(sc));
2068 return ENOTSUP;
2069 }
2070
2071 return 0;
2072 }
2073
2074 static int
2075 aq_fw_version_init(struct aq_softc *sc)
2076 {
2077 int error = 0;
2078 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2079
2080 if (FW_VERSION_MAJOR(sc) == 1) {
2081 sc->sc_fw_ops = &aq_fw1x_ops;
2082 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2083 sc->sc_fw_ops = &aq_fw2x_ops;
2084 } else {
2085 aprint_error_dev(sc->sc_dev,
2086 "Unsupported F/W version %d.%d.%d\n",
2087 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2088 FW_VERSION_BUILD(sc));
2089 return ENOTSUP;
2090 }
2091 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2092 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2093
2094 /* detect revision */
2095 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2096 switch (hwrev & 0x0000000f) {
2097 case 0x01:
2098 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2099 fw_vers);
2100 sc->sc_features |= FEATURES_REV_A0 |
2101 FEATURES_MPI_AQ | FEATURES_MIPS;
2102 break;
2103 case 0x02:
2104 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2105 fw_vers);
2106 sc->sc_features |= FEATURES_REV_B0 |
2107 FEATURES_MPI_AQ | FEATURES_MIPS |
2108 FEATURES_TPO2 | FEATURES_RPF2;
2109 break;
2110 case 0x0A:
2111 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2112 fw_vers);
2113 sc->sc_features |= FEATURES_REV_B1 |
2114 FEATURES_MPI_AQ | FEATURES_MIPS |
2115 FEATURES_TPO2 | FEATURES_RPF2;
2116 break;
2117 default:
2118 aprint_error_dev(sc->sc_dev,
2119 "Unknown revision (0x%08x)\n", hwrev);
2120 error = ENOTSUP;
2121 break;
2122 }
2123 return error;
2124 }
2125
2126 static int
2127 fw1x_reset(struct aq_softc *sc)
2128 {
2129 struct aq_mailbox_header mbox;
2130 const int retryCount = 1000;
2131 uint32_t tid0;
2132 int i;
2133
2134 tid0 = ~0; /*< Initial value of MBOX transactionId. */
2135
2136 for (i = 0; i < retryCount; ++i) {
2137 /*
2138 * Read the beginning of Statistics structure to capture
2139 * the Transaction ID.
2140 */
2141 aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2142 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2143
2144 /* Successfully read the stats. */
2145 if (tid0 == ~0U) {
2146 /* We have read the initial value. */
2147 tid0 = mbox.transaction_id;
2148 continue;
2149 } else if (mbox.transaction_id != tid0) {
2150 /*
2151 * Compare transaction ID to initial value.
2152 * If it's different means f/w is alive.
2153 * We're done.
2154 */
2155 return 0;
2156 }
2157
2158 /*
2159 * Transaction ID value haven't changed since last time.
2160 * Try reading the stats again.
2161 */
2162 delay(10);
2163 }
2164 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2165 return EBUSY;
2166 }
2167
2168 static int
2169 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2170 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2171 {
2172 uint32_t mpictrl = 0;
2173 uint32_t mpispeed = 0;
2174
2175 if (speed & AQ_LINK_10G)
2176 mpispeed |= FW1X_CTRL_10G;
2177 if (speed & AQ_LINK_5G)
2178 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2179 if (speed & AQ_LINK_2G5)
2180 mpispeed |= FW1X_CTRL_2G5;
2181 if (speed & AQ_LINK_1G)
2182 mpispeed |= FW1X_CTRL_1G;
2183 if (speed & AQ_LINK_100M)
2184 mpispeed |= FW1X_CTRL_100M;
2185
2186 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2187 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2188 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2189 return 0;
2190 }
2191
2192 static int
2193 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2194 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2195 {
2196 uint32_t mpistate, mpi_speed;
2197 aq_link_speed_t speed = AQ_LINK_NONE;
2198
2199 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2200
2201 if (modep != NULL)
2202 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2203
2204 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2205 if (mpi_speed & FW1X_CTRL_10G)
2206 speed = AQ_LINK_10G;
2207 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2208 speed = AQ_LINK_5G;
2209 else if (mpi_speed & FW1X_CTRL_2G5)
2210 speed = AQ_LINK_2G5;
2211 else if (mpi_speed & FW1X_CTRL_1G)
2212 speed = AQ_LINK_1G;
2213 else if (mpi_speed & FW1X_CTRL_100M)
2214 speed = AQ_LINK_100M;
2215
2216 if (speedp != NULL)
2217 *speedp = speed;
2218
2219 if (fcp != NULL)
2220 *fcp = AQ_FC_NONE;
2221
2222 if (eeep != NULL)
2223 *eeep = AQ_EEE_DISABLE;
2224
2225 return 0;
2226 }
2227
2228 static int
2229 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2230 {
2231 int error;
2232
2233 error = aq_fw_downld_dwords(sc,
2234 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2235 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2236 if (error < 0) {
2237 device_printf(sc->sc_dev,
2238 "fw1x> download statistics data FAILED, error %d", error);
2239 return error;
2240 }
2241
2242 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2243 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2244 return 0;
2245 }
2246
2247 static int
2248 fw2x_reset(struct aq_softc *sc)
2249 {
2250 fw2x_capabilities_t caps = { 0 };
2251 int error;
2252
2253 error = aq_fw_downld_dwords(sc,
2254 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2255 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2256 if (error != 0) {
2257 aprint_error_dev(sc->sc_dev,
2258 "fw2x> can't get F/W capabilities mask, error %d\n",
2259 error);
2260 return error;
2261 }
2262 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2263
2264 char buf[256];
2265 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2266 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2267
2268 return 0;
2269 }
2270
2271 static int
2272 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2273 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2274 {
2275 uint64_t mpi_ctrl;
2276 int error = 0;
2277
2278 AQ_MPI_LOCK(sc);
2279
2280 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2281
2282 switch (mode) {
2283 case MPI_INIT:
2284 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2285 if (speed & AQ_LINK_10G)
2286 mpi_ctrl |= FW2X_CTRL_RATE_10G;
2287 if (speed & AQ_LINK_5G)
2288 mpi_ctrl |= FW2X_CTRL_RATE_5G;
2289 if (speed & AQ_LINK_2G5)
2290 mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2291 if (speed & AQ_LINK_1G)
2292 mpi_ctrl |= FW2X_CTRL_RATE_1G;
2293 if (speed & AQ_LINK_100M)
2294 mpi_ctrl |= FW2X_CTRL_RATE_100M;
2295
2296 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2297
2298 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2299 if (eee == AQ_EEE_ENABLE)
2300 mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2301
2302 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2303 if (fc & AQ_FC_RX)
2304 mpi_ctrl |= FW2X_CTRL_PAUSE;
2305 if (fc & AQ_FC_TX)
2306 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2307 break;
2308 case MPI_DEINIT:
2309 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2310 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2311 break;
2312 default:
2313 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2314 error = EINVAL;
2315 goto failure;
2316 }
2317 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2318
2319 failure:
2320 AQ_MPI_UNLOCK(sc);
2321 return error;
2322 }
2323
2324 static int
2325 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2326 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2327 {
2328 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2329
2330 if (modep != NULL) {
2331 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2332 if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2333 *modep = MPI_INIT;
2334 else
2335 *modep = MPI_DEINIT;
2336 }
2337
2338 aq_link_speed_t speed = AQ_LINK_NONE;
2339 if (mpi_state & FW2X_CTRL_RATE_10G)
2340 speed = AQ_LINK_10G;
2341 else if (mpi_state & FW2X_CTRL_RATE_5G)
2342 speed = AQ_LINK_5G;
2343 else if (mpi_state & FW2X_CTRL_RATE_2G5)
2344 speed = AQ_LINK_2G5;
2345 else if (mpi_state & FW2X_CTRL_RATE_1G)
2346 speed = AQ_LINK_1G;
2347 else if (mpi_state & FW2X_CTRL_RATE_100M)
2348 speed = AQ_LINK_100M;
2349
2350 if (speedp != NULL)
2351 *speedp = speed;
2352
2353 aq_link_fc_t fc = AQ_FC_NONE;
2354 if (mpi_state & FW2X_CTRL_PAUSE)
2355 fc |= AQ_FC_RX;
2356 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2357 fc |= AQ_FC_TX;
2358 if (fcp != NULL)
2359 *fcp = fc;
2360
2361 /* XXX: TODO: EEE */
2362 if (eeep != NULL)
2363 *eeep = AQ_EEE_DISABLE;
2364
2365 return 0;
2366 }
2367
2368 static int
2369 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2370 uint32_t timeout_ms, uint32_t try_count)
2371 {
2372 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2373 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2374 int error;
2375
2376 /* First, check that control and state values are consistent */
2377 if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2378 device_printf(sc->sc_dev,
2379 "fw2x> MPI control (%#llx) and state (%#llx)"
2380 " are not consistent for mask %#llx!\n",
2381 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2382 (unsigned long long)mask);
2383 return EINVAL;
2384 }
2385
2386 /* Invert bits (toggle) in control register */
2387 mpi_ctrl ^= mask;
2388 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2389
2390 /* Clear all bits except masked */
2391 mpi_ctrl &= mask;
2392
2393 /* Wait for FW reflecting change in state register */
2394 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2395 1000 * timeout_ms, try_count, &error);
2396 if (error != 0) {
2397 device_printf(sc->sc_dev,
2398 "f/w2x> timeout while waiting for response"
2399 " in state register for bit %#llx!",
2400 (unsigned long long)mask);
2401 return error;
2402 }
2403 return 0;
2404 }
2405
2406 static int
2407 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2408 {
2409 int error;
2410
2411 AQ_MPI_LOCK(sc);
2412 /* Say to F/W to update the statistics */
2413 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2414 if (error != 0) {
2415 device_printf(sc->sc_dev,
2416 "fw2x> statistics update error %d\n", error);
2417 goto failure;
2418 }
2419
2420 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2421 error = aq_fw_downld_dwords(sc,
2422 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2423 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2424 if (error != 0) {
2425 device_printf(sc->sc_dev,
2426 "fw2x> download statistics data FAILED, error %d", error);
2427 goto failure;
2428 }
2429 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2430 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2431
2432 failure:
2433 AQ_MPI_UNLOCK(sc);
2434 return error;
2435 }
2436
2437 #if NSYSMON_ENVSYS > 0
2438 static int
2439 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2440 {
2441 int error;
2442 uint32_t value, celsius;
2443
2444 AQ_MPI_LOCK(sc);
2445
2446 /* Say to F/W to update the temperature */
2447 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2448 if (error != 0)
2449 goto failure;
2450
2451 error = aq_fw_downld_dwords(sc,
2452 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2453 &value, sizeof(value) / sizeof(uint32_t));
2454 if (error != 0)
2455 goto failure;
2456
2457 /* 1/256 decrees C to microkelvin */
2458 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2459 if (celsius == 0) {
2460 error = EIO;
2461 goto failure;
2462 }
2463 *temp = celsius * (1000000 / 256) + 273150000;
2464
2465 failure:
2466 AQ_MPI_UNLOCK(sc);
2467 return 0;
2468 }
2469 #endif
2470
2471 static int
2472 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2473 uint32_t cnt)
2474 {
2475 uint32_t v;
2476 int error = 0;
2477
2478 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2479 if (error != 0) {
2480 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2481 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2482 if (v == 0) {
2483 device_printf(sc->sc_dev,
2484 "%s:%d: timeout\n", __func__, __LINE__);
2485 return ETIMEDOUT;
2486 }
2487 }
2488
2489 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2490
2491 error = 0;
2492 for (; cnt > 0 && error == 0; cnt--) {
2493 /* execute mailbox interface */
2494 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2495 AQ_FW_MBOX_CMD_EXECUTE, 1);
2496 if (sc->sc_features & FEATURES_REV_B1) {
2497 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2498 1, 1000, &error);
2499 } else {
2500 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2501 AQ_FW_MBOX_CMD_BUSY) == 0,
2502 1, 1000, &error);
2503 }
2504 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2505 addr += sizeof(uint32_t);
2506 }
2507 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2508
2509 if (error != 0)
2510 device_printf(sc->sc_dev,
2511 "%s:%d: timeout\n", __func__, __LINE__);
2512
2513 return error;
2514 }
2515
2516 /* read my mac address */
2517 static int
2518 aq_get_mac_addr(struct aq_softc *sc)
2519 {
2520 uint32_t mac_addr[2];
2521 uint32_t efuse_shadow_addr;
2522 int err;
2523
2524 efuse_shadow_addr = 0;
2525 if (FW_VERSION_MAJOR(sc) >= 2)
2526 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2527 else
2528 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2529
2530 if (efuse_shadow_addr == 0) {
2531 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2532 return ENXIO;
2533 }
2534
2535 memset(mac_addr, 0, sizeof(mac_addr));
2536 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2537 mac_addr, __arraycount(mac_addr));
2538 if (err < 0)
2539 return err;
2540
2541 if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2542 aprint_error_dev(sc->sc_dev, "mac address not found\n");
2543 return ENXIO;
2544 }
2545
2546 mac_addr[0] = bswap32(mac_addr[0]);
2547 mac_addr[1] = bswap32(mac_addr[1]);
2548
2549 memcpy(sc->sc_enaddr.ether_addr_octet,
2550 (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2551 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2552 ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2553
2554 return 0;
2555 }
2556
2557 /* set multicast filter. index 0 for own address */
2558 static int
2559 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2560 {
2561 uint32_t h, l;
2562
2563 if (index >= AQ_HW_MAC_NUM)
2564 return EINVAL;
2565
2566 if (enaddr == NULL) {
2567 /* disable */
2568 AQ_WRITE_REG_BIT(sc,
2569 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2570 return 0;
2571 }
2572
2573 h = (enaddr[0] << 8) | (enaddr[1]);
2574 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2575 (enaddr[4] << 8) | (enaddr[5]);
2576
2577 /* disable, set, and enable */
2578 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2579 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2580 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2581 RPF_L2UC_MSW_MACADDR_HI, h);
2582 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2583 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2584
2585 return 0;
2586 }
2587
2588 static int
2589 aq_set_capability(struct aq_softc *sc)
2590 {
2591 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2592 int ip4csum_tx =
2593 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2594 int ip4csum_rx =
2595 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2596 int l4csum_tx = ((ifp->if_capenable &
2597 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2598 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2599 int l4csum_rx =
2600 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2601 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2602 uint32_t lso =
2603 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2604 0 : 0xffffffff;
2605 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2606 0 : 0xffffffff;
2607 uint32_t i, v;
2608
2609 /* TX checksums offloads*/
2610 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2611 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2612
2613 /* RX checksums offloads*/
2614 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2615 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2616
2617 /* LSO offloads*/
2618 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2619
2620 #define AQ_B0_LRO_RXD_MAX 16
2621 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2622 (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2623 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2624 for (i = 0; i < AQ_RINGS_NUM; i++) {
2625 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2626 RPO_LRO_LDES_MAX_MASK(i), v);
2627 }
2628
2629 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2630 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2631 RPO_LRO_INACTIVE_IVAL, 0);
2632 /*
2633 * the LRO timebase divider is 5 uS (0x61a),
2634 * to get a maximum coalescing interval of 250 uS,
2635 * we need to multiply by 50(0x32) to get
2636 * the default value 250 uS
2637 */
2638 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2639 RPO_LRO_MAX_COALESCING_IVAL, 50);
2640 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2641 RPO_LRO_CONF_QSESSION_LIMIT, 1);
2642 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2643 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2644 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2645 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2646 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2647 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2648 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2649 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2650
2651 return 0;
2652 }
2653
2654 static int
2655 aq_set_filter(struct aq_softc *sc)
2656 {
2657 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2658 struct ethercom *ec = &sc->sc_ethercom;
2659 struct ether_multi *enm;
2660 struct ether_multistep step;
2661 int idx, error = 0;
2662
2663 if (ifp->if_flags & IFF_PROMISC) {
2664 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2665 (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2666 ec->ec_flags |= ETHER_F_ALLMULTI;
2667 goto done;
2668 }
2669
2670 /* clear all table */
2671 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2672 if (idx == AQ_HW_MAC_OWN) /* already used for own */
2673 continue;
2674 aq_set_mac_addr(sc, idx, NULL);
2675 }
2676
2677 /* don't accept all multicast */
2678 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2679 RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2680 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2681 RPF_MCAST_FILTER_EN, 0);
2682
2683 idx = 0;
2684 ETHER_LOCK(ec);
2685 ETHER_FIRST_MULTI(step, ec, enm);
2686 while (enm != NULL) {
2687 if (idx == AQ_HW_MAC_OWN)
2688 idx++;
2689
2690 if ((idx >= AQ_HW_MAC_NUM) ||
2691 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2692 /*
2693 * too many filters.
2694 * fallback to accept all multicast addresses.
2695 */
2696 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2697 RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2698 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2699 RPF_MCAST_FILTER_EN, 1);
2700 ec->ec_flags |= ETHER_F_ALLMULTI;
2701 ETHER_UNLOCK(ec);
2702 goto done;
2703 }
2704
2705 /* add a filter */
2706 aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2707
2708 ETHER_NEXT_MULTI(step, enm);
2709 }
2710 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2711 ETHER_UNLOCK(ec);
2712
2713 done:
2714 return error;
2715 }
2716
2717 static void
2718 aq_mediastatus_update(struct aq_softc *sc)
2719 {
2720 sc->sc_media_active = 0;
2721
2722 if (sc->sc_link_fc & AQ_FC_RX)
2723 sc->sc_media_active |= IFM_ETH_RXPAUSE;
2724 if (sc->sc_link_fc & AQ_FC_TX)
2725 sc->sc_media_active |= IFM_ETH_TXPAUSE;
2726
2727 switch (sc->sc_link_rate) {
2728 case AQ_LINK_100M:
2729 /* XXX: need to detect fulldup or halfdup */
2730 sc->sc_media_active |= IFM_100_TX | IFM_FDX;
2731 break;
2732 case AQ_LINK_1G:
2733 sc->sc_media_active |= IFM_1000_T | IFM_FDX;
2734 break;
2735 case AQ_LINK_2G5:
2736 sc->sc_media_active |= IFM_2500_T | IFM_FDX;
2737 break;
2738 case AQ_LINK_5G:
2739 sc->sc_media_active |= IFM_5000_T | IFM_FDX;
2740 break;
2741 case AQ_LINK_10G:
2742 sc->sc_media_active |= IFM_10G_T | IFM_FDX;
2743 break;
2744 default:
2745 sc->sc_media_active |= IFM_NONE;
2746 break;
2747 }
2748 }
2749
2750 static int
2751 aq_ifmedia_change(struct ifnet * const ifp)
2752 {
2753 struct aq_softc *sc = ifp->if_softc;
2754 aq_link_speed_t rate = AQ_LINK_NONE;
2755 aq_link_fc_t fc = AQ_FC_NONE;
2756 aq_link_eee_t eee = AQ_EEE_DISABLE;
2757
2758 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2759 return EINVAL;
2760
2761 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2762 case IFM_AUTO:
2763 rate = AQ_LINK_AUTO;
2764 break;
2765 case IFM_NONE:
2766 rate = AQ_LINK_NONE;
2767 break;
2768 case IFM_100_TX:
2769 rate = AQ_LINK_100M;
2770 break;
2771 case IFM_1000_T:
2772 rate = AQ_LINK_1G;
2773 break;
2774 case IFM_2500_T:
2775 rate = AQ_LINK_2G5;
2776 break;
2777 case IFM_5000_T:
2778 rate = AQ_LINK_5G;
2779 break;
2780 case IFM_10G_T:
2781 rate = AQ_LINK_10G;
2782 break;
2783 default:
2784 device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2785 IFM_SUBTYPE(sc->sc_media.ifm_media));
2786 return ENODEV;
2787 }
2788
2789 if (sc->sc_media.ifm_media & IFM_FLOW)
2790 fc = AQ_FC_ALL;
2791
2792 /* XXX: todo EEE */
2793
2794 /* re-initialize hardware with new parameters */
2795 aq_set_linkmode(sc, rate, fc, eee);
2796
2797 return 0;
2798 }
2799
2800 static void
2801 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2802 {
2803 struct aq_softc *sc = ifp->if_softc;
2804
2805 ifmr->ifm_active = IFM_ETHER;
2806 ifmr->ifm_status = IFM_AVALID;
2807
2808 if (sc->sc_link_rate != AQ_LINK_NONE)
2809 ifmr->ifm_status |= IFM_ACTIVE;
2810
2811 ifmr->ifm_active |= sc->sc_media_active;
2812 }
2813
2814 static void
2815 aq_initmedia(struct aq_softc *sc)
2816 {
2817 #define IFMEDIA_ETHER_ADD(sc, media) \
2818 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2819
2820 IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2821 if (sc->sc_available_rates & AQ_LINK_100M) {
2822 IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2823 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2824 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2825 }
2826 if (sc->sc_available_rates & AQ_LINK_1G) {
2827 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2828 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2829 }
2830 if (sc->sc_available_rates & AQ_LINK_2G5) {
2831 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2832 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2833 }
2834 if (sc->sc_available_rates & AQ_LINK_5G) {
2835 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2836 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2837 }
2838 if (sc->sc_available_rates & AQ_LINK_10G) {
2839 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2840 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2841 }
2842 IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2843 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2844
2845 /* default: auto without flowcontrol */
2846 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2847 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2848 }
2849
2850 static int
2851 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2852 aq_link_eee_t eee)
2853 {
2854 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2855 }
2856
2857 static int
2858 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2859 aq_link_eee_t *eee)
2860 {
2861 aq_hw_fw_mpi_state_t mode;
2862 int error;
2863
2864 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2865 if (error != 0)
2866 return error;
2867 if (mode != MPI_INIT)
2868 return ENXIO;
2869
2870 return 0;
2871 }
2872
2873 static void
2874 aq_hw_init_tx_path(struct aq_softc *sc)
2875 {
2876 /* Tx TC/RSS number config */
2877 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2878
2879 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2880 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2881 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2882 THM_LSO_TCP_FLAG1_MID, 0x0ff6);
2883 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2884 THM_LSO_TCP_FLAG2_LAST, 0x0f7f);
2885
2886 /* misc */
2887 AQ_WRITE_REG(sc, TX_TPO2_REG,
2888 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2889 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2890 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2891
2892 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2893 }
2894
2895 static void
2896 aq_hw_init_rx_path(struct aq_softc *sc)
2897 {
2898 int i;
2899
2900 /* clear setting */
2901 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2902 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2903 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2904 for (i = 0; i < 32; i++) {
2905 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2906 RPF_ETHERTYPE_FILTER_EN, 0);
2907 }
2908
2909 if (sc->sc_rss_enable) {
2910 /* Rx TC/RSS number config */
2911 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2912
2913 /* Rx flow control */
2914 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2915
2916 /* RSS Ring selection */
2917 switch (sc->sc_nqueues) {
2918 case 2:
2919 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2920 RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2921 break;
2922 case 4:
2923 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2924 RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2925 break;
2926 case 8:
2927 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2928 RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2929 break;
2930 }
2931 }
2932
2933 /* L2 and Multicast filters */
2934 for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2935 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2936 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2937 RPF_ACTION_HOST);
2938 }
2939 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2940 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2941
2942 /* Vlan filters */
2943 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2944 ETHERTYPE_QINQ);
2945 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2946 ETHERTYPE_VLAN);
2947 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
2948
2949 if (sc->sc_features & FEATURES_REV_B) {
2950 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2951 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2952 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2953 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2954 }
2955
2956 /* misc */
2957 if (sc->sc_features & FEATURES_RPF2)
2958 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2959 else
2960 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2961
2962 /*
2963 * XXX: RX_TCP_RSS_HASH_REG:
2964 * linux set 0x000f0000
2965 * freebsd set 0x000f001e
2966 */
2967 /* RSS hash type set for IP/TCP */
2968 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2969 RX_TCP_RSS_HASH_TYPE, 0x001e);
2970
2971 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2972 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2973 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2974
2975 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2976 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2977 }
2978
2979 static void
2980 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2981 {
2982 int i;
2983
2984 if (sc->sc_intr_moderation_enable) {
2985 unsigned int tx_min, rx_min; /* 0-255 */
2986 unsigned int tx_max, rx_max; /* 0-511? */
2987
2988 switch (sc->sc_link_rate) {
2989 case AQ_LINK_100M:
2990 tx_min = 0x4f;
2991 tx_max = 0xff;
2992 rx_min = 0x04;
2993 rx_max = 0x50;
2994 break;
2995 case AQ_LINK_1G:
2996 default:
2997 tx_min = 0x4f;
2998 tx_max = 0xff;
2999 rx_min = 0x30;
3000 rx_max = 0x80;
3001 break;
3002 case AQ_LINK_2G5:
3003 tx_min = 0x4f;
3004 tx_max = 0xff;
3005 rx_min = 0x18;
3006 rx_max = 0xe0;
3007 break;
3008 case AQ_LINK_5G:
3009 tx_min = 0x4f;
3010 tx_max = 0xff;
3011 rx_min = 0x0c;
3012 rx_max = 0x70;
3013 break;
3014 case AQ_LINK_10G:
3015 tx_min = 0x4f;
3016 tx_max = 0x1ff;
3017 rx_min = 0x06; /* freebsd use 80 */
3018 rx_max = 0x38; /* freebsd use 120 */
3019 break;
3020 }
3021
3022 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3023 TX_DMA_INT_DESC_WRWB_EN, 0);
3024 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3025 TX_DMA_INT_DESC_MODERATE_EN, 1);
3026 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3027 RX_DMA_INT_DESC_WRWB_EN, 0);
3028 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3029 RX_DMA_INT_DESC_MODERATE_EN, 1);
3030
3031 for (i = 0; i < AQ_RINGS_NUM; i++) {
3032 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3033 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3034 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3035 TX_INTR_MODERATION_CTL_EN);
3036 }
3037 for (i = 0; i < AQ_RINGS_NUM; i++) {
3038 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3039 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3040 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3041 RX_INTR_MODERATION_CTL_EN);
3042 }
3043
3044 } else {
3045 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3046 TX_DMA_INT_DESC_WRWB_EN, 1);
3047 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3048 TX_DMA_INT_DESC_MODERATE_EN, 0);
3049 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3050 RX_DMA_INT_DESC_WRWB_EN, 1);
3051 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3052 RX_DMA_INT_DESC_MODERATE_EN, 0);
3053
3054 for (i = 0; i < AQ_RINGS_NUM; i++) {
3055 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3056 }
3057 for (i = 0; i < AQ_RINGS_NUM; i++) {
3058 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3059 }
3060 }
3061 }
3062
3063 static void
3064 aq_hw_qos_set(struct aq_softc *sc)
3065 {
3066 uint32_t tc = 0;
3067 uint32_t buff_size;
3068
3069 /* TPS Descriptor rate init */
3070 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3071 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3072
3073 /* TPS VM init */
3074 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3075
3076 /* TPS TC credits init */
3077 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3078 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3079
3080 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3081 TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3082 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3083 TPS_DATA_TCT_WEIGHT, 0x64);
3084 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3085 TPS_DESC_TCT_CREDIT_MAX, 0x50);
3086 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3087 TPS_DESC_TCT_WEIGHT, 0x1e);
3088
3089 /* Tx buf size */
3090 tc = 0;
3091 buff_size = AQ_HW_TXBUF_MAX;
3092 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3093 buff_size);
3094 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3095 (buff_size * (1024 / 32) * 66) / 100);
3096 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3097 (buff_size * (1024 / 32) * 50) / 100);
3098
3099 /* QoS Rx buf size per TC */
3100 tc = 0;
3101 buff_size = AQ_HW_RXBUF_MAX;
3102 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3103 buff_size);
3104 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3105 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3106 (buff_size * (1024 / 32) * 66) / 100);
3107 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3108 (buff_size * (1024 / 32) * 50) / 100);
3109
3110 /* QoS 802.1p priority -> TC mapping */
3111 int i_priority;
3112 for (i_priority = 0; i_priority < 8; i_priority++) {
3113 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3114 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3115 }
3116 }
3117
3118 /* called once from aq_attach */
3119 static int
3120 aq_init_rss(struct aq_softc *sc)
3121 {
3122 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3123 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3124 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3125 unsigned int i;
3126 int error;
3127
3128 /* initialize rss key */
3129 rss_getkey((uint8_t *)rss_key);
3130
3131 /* hash to ring table */
3132 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3133 rss_table[i] = i % sc->sc_nqueues;
3134 }
3135
3136 /*
3137 * set rss key
3138 */
3139 for (i = 0; i < __arraycount(rss_key); i++) {
3140 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3141 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3142 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3143 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3144 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3145 RPF_RSS_KEY_WR_EN, 1);
3146 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3147 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3148 if (error != 0) {
3149 device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3150 __func__);
3151 goto rss_set_timeout;
3152 }
3153 }
3154
3155 /*
3156 * set rss indirection table
3157 *
3158 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3159 * we'll make it by __BITMAP(3) macros.
3160 */
3161 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3162 __BITMAP_ZERO(&bit3x64);
3163
3164 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \
3165 do { \
3166 if (val & 1) { \
3167 __BITMAP_SET((idx) * 3, (bitmap)); \
3168 } else { \
3169 __BITMAP_CLR((idx) * 3, (bitmap)); \
3170 } \
3171 if (val & 2) { \
3172 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \
3173 } else { \
3174 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \
3175 } \
3176 if (val & 4) { \
3177 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \
3178 } else { \
3179 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \
3180 } \
3181 } while (0 /* CONSTCOND */)
3182
3183 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3184 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3185 }
3186
3187 /* write 192bit data in steps of 16bit */
3188 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3189 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3190 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3191 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3192 RPF_RSS_REDIR_ADDR, i);
3193 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3194 RPF_RSS_REDIR_WR_EN, 1);
3195
3196 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3197 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3198 if (error != 0)
3199 break;
3200 }
3201
3202 rss_set_timeout:
3203 return error;
3204 }
3205
3206 static void
3207 aq_hw_l3_filter_set(struct aq_softc *sc)
3208 {
3209 int i;
3210
3211 /* clear all filter */
3212 for (i = 0; i < 8; i++) {
3213 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3214 RPF_L3_FILTER_L4_EN, 0);
3215 }
3216 }
3217
3218 static void
3219 aq_update_vlan_filters(struct aq_softc *sc)
3220 {
3221 /* XXX: notyet. vlan always promisc */
3222 int i;
3223
3224 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
3225 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3226 RPF_VLAN_FILTER_EN, 0);
3227 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3228 RPF_VLAN_FILTER_RXQ_EN, 0);
3229 }
3230 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
3231 }
3232
3233 static int
3234 aq_hw_init(struct aq_softc *sc)
3235 {
3236 uint32_t v;
3237
3238 /* Force limit MRRS on RDM/TDM to 2K */
3239 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3240 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3241
3242 /*
3243 * TX DMA total request limit. B0 hardware is not capable to
3244 * handle more than (8K-MRRS) incoming DMA data.
3245 * Value 24 in 256byte units
3246 */
3247 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3248
3249 aq_hw_init_tx_path(sc);
3250 aq_hw_init_rx_path(sc);
3251
3252 aq_hw_interrupt_moderation_set(sc);
3253
3254 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3255 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3256
3257 aq_hw_qos_set(sc);
3258
3259 /* Enable interrupt */
3260 int irqmode;
3261 if (sc->sc_msix)
3262 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX;
3263 else
3264 irqmode = AQ_INTR_CTRL_IRQMODE_MSI;
3265
3266 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3267 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3268 sc->sc_msix ? 1 : 0);
3269 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3270
3271 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3272
3273 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3274 ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3275 ((AQ_B0_ERR_INT << 16) | (1 << 23))
3276 );
3277
3278 /* link interrupt */
3279 if (!sc->sc_msix)
3280 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3281 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3282 __BIT(7) | sc->sc_linkstat_irq);
3283
3284 return 0;
3285 }
3286
3287 static int
3288 aq_update_link_status(struct aq_softc *sc)
3289 {
3290 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3291 aq_link_speed_t rate = AQ_LINK_NONE;
3292 aq_link_fc_t fc = AQ_FC_NONE;
3293 aq_link_eee_t eee = AQ_EEE_DISABLE;
3294 unsigned int speed;
3295 int changed = 0;
3296
3297 aq_get_linkmode(sc, &rate, &fc, &eee);
3298
3299 if (sc->sc_link_rate != rate)
3300 changed = 1;
3301 if (sc->sc_link_fc != fc)
3302 changed = 1;
3303 if (sc->sc_link_eee != eee)
3304 changed = 1;
3305
3306 if (changed) {
3307 switch (rate) {
3308 case AQ_LINK_100M:
3309 speed = 100;
3310 break;
3311 case AQ_LINK_1G:
3312 speed = 1000;
3313 break;
3314 case AQ_LINK_2G5:
3315 speed = 2500;
3316 break;
3317 case AQ_LINK_5G:
3318 speed = 5000;
3319 break;
3320 case AQ_LINK_10G:
3321 speed = 10000;
3322 break;
3323 case AQ_LINK_NONE:
3324 default:
3325 speed = 0;
3326 break;
3327 }
3328
3329 if (sc->sc_link_rate == AQ_LINK_NONE) {
3330 /* link DOWN -> UP */
3331 device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3332 speed);
3333 if_link_state_change(ifp, LINK_STATE_UP);
3334 } else if (rate == AQ_LINK_NONE) {
3335 /* link UP -> DOWN */
3336 device_printf(sc->sc_dev, "link is DOWN\n");
3337 if_link_state_change(ifp, LINK_STATE_DOWN);
3338 } else {
3339 device_printf(sc->sc_dev,
3340 "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3341 speed, fc, eee);
3342 }
3343
3344 sc->sc_link_rate = rate;
3345 sc->sc_link_fc = fc;
3346 sc->sc_link_eee = eee;
3347
3348 aq_mediastatus_update(sc);
3349
3350 /* update interrupt timing according to new link speed */
3351 aq_hw_interrupt_moderation_set(sc);
3352 }
3353
3354 return changed;
3355 }
3356
3357 #ifdef AQ_EVENT_COUNTERS
3358 static void
3359 aq_update_statistics(struct aq_softc *sc)
3360 {
3361 int prev = sc->sc_statistics_idx;
3362 int cur = prev ^ 1;
3363
3364 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3365
3366 /*
3367 * aq's internal statistics counter is 32bit.
3368 * cauculate delta, and add to evcount
3369 */
3370 #define ADD_DELTA(cur, prev, name) \
3371 do { \
3372 uint32_t n; \
3373 n = (uint32_t)(sc->sc_statistics[cur].name - \
3374 sc->sc_statistics[prev].name); \
3375 if (n != 0) { \
3376 AQ_EVCNT_ADD(sc, name, n); \
3377 } \
3378 } while (/*CONSTCOND*/0);
3379
3380 ADD_DELTA(cur, prev, uprc);
3381 ADD_DELTA(cur, prev, mprc);
3382 ADD_DELTA(cur, prev, bprc);
3383 ADD_DELTA(cur, prev, prc);
3384 ADD_DELTA(cur, prev, erpr);
3385 ADD_DELTA(cur, prev, uptc);
3386 ADD_DELTA(cur, prev, mptc);
3387 ADD_DELTA(cur, prev, bptc);
3388 ADD_DELTA(cur, prev, ptc);
3389 ADD_DELTA(cur, prev, erpt);
3390 ADD_DELTA(cur, prev, mbtc);
3391 ADD_DELTA(cur, prev, bbtc);
3392 ADD_DELTA(cur, prev, mbrc);
3393 ADD_DELTA(cur, prev, bbrc);
3394 ADD_DELTA(cur, prev, ubrc);
3395 ADD_DELTA(cur, prev, ubtc);
3396 ADD_DELTA(cur, prev, dpc);
3397 ADD_DELTA(cur, prev, cprc);
3398
3399 sc->sc_statistics_idx = cur;
3400 }
3401 #endif /* AQ_EVENT_COUNTERS */
3402
3403 /* allocate and map one DMA block */
3404 static int
3405 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3406 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3407 {
3408 int nsegs, error;
3409
3410 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3411 1, &nsegs, 0)) != 0) {
3412 aprint_error_dev(sc->sc_dev,
3413 "unable to allocate DMA buffer, error=%d\n", error);
3414 goto fail_alloc;
3415 }
3416
3417 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3418 BUS_DMA_COHERENT)) != 0) {
3419 aprint_error_dev(sc->sc_dev,
3420 "unable to map DMA buffer, error=%d\n", error);
3421 goto fail_map;
3422 }
3423
3424 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3425 0, mapp)) != 0) {
3426 aprint_error_dev(sc->sc_dev,
3427 "unable to create DMA map, error=%d\n", error);
3428 goto fail_create;
3429 }
3430
3431 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3432 0)) != 0) {
3433 aprint_error_dev(sc->sc_dev,
3434 "unable to load DMA map, error=%d\n", error);
3435 goto fail_load;
3436 }
3437
3438 *sizep = size;
3439 return 0;
3440
3441 fail_load:
3442 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3443 *mapp = NULL;
3444 fail_create:
3445 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3446 *addrp = NULL;
3447 fail_map:
3448 bus_dmamem_free(sc->sc_dmat, seg, 1);
3449 memset(seg, 0, sizeof(*seg));
3450 fail_alloc:
3451 *sizep = 0;
3452 return error;
3453 }
3454
3455 static void
3456 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3457 bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3458 {
3459 if (*mapp != NULL) {
3460 bus_dmamap_destroy(sc->sc_dmat, *mapp);
3461 *mapp = NULL;
3462 }
3463 if (*addrp != NULL) {
3464 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3465 *addrp = NULL;
3466 }
3467 if (*sizep != 0) {
3468 bus_dmamem_free(sc->sc_dmat, seg, 1);
3469 memset(seg, 0, sizeof(*seg));
3470 *sizep = 0;
3471 }
3472 }
3473
3474 static int
3475 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3476 {
3477 int i, error;
3478
3479 /* allocate tx descriptors */
3480 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3481 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3482 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3483 if (error != 0)
3484 return error;
3485
3486 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3487
3488 /* fill tx ring with dmamap */
3489 for (i = 0; i < AQ_TXD_NUM; i++) {
3490 #define AQ_MAXDMASIZE (16 * 1024)
3491 #define AQ_NTXSEGS 32
3492 /* XXX: TODO: error check */
3493 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3494 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3495 }
3496 return 0;
3497 }
3498
3499 static void
3500 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3501 {
3502 int i;
3503
3504 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3505 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3506
3507 for (i = 0; i < AQ_TXD_NUM; i++) {
3508 if (txring->txr_mbufs[i].dmamap != NULL) {
3509 if (txring->txr_mbufs[i].m != NULL) {
3510 bus_dmamap_unload(sc->sc_dmat,
3511 txring->txr_mbufs[i].dmamap);
3512 m_freem(txring->txr_mbufs[i].m);
3513 txring->txr_mbufs[i].m = NULL;
3514 }
3515 bus_dmamap_destroy(sc->sc_dmat,
3516 txring->txr_mbufs[i].dmamap);
3517 txring->txr_mbufs[i].dmamap = NULL;
3518 }
3519 }
3520 }
3521
3522 static int
3523 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3524 {
3525 int i, error;
3526
3527 /* allocate rx descriptors */
3528 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3529 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3530 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3531 if (error != 0)
3532 return error;
3533
3534 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3535
3536 /* fill rxring with dmamaps */
3537 for (i = 0; i < AQ_RXD_NUM; i++) {
3538 rxring->rxr_mbufs[i].m = NULL;
3539 /* XXX: TODO: error check */
3540 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3541 &rxring->rxr_mbufs[i].dmamap);
3542 }
3543 return 0;
3544 }
3545
3546 static void
3547 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3548 {
3549 int i;
3550
3551 /* free all mbufs allocated for RX */
3552 for (i = 0; i < AQ_RXD_NUM; i++) {
3553 if (rxring->rxr_mbufs[i].m != NULL) {
3554 bus_dmamap_unload(sc->sc_dmat,
3555 rxring->rxr_mbufs[i].dmamap);
3556 m_freem(rxring->rxr_mbufs[i].m);
3557 rxring->rxr_mbufs[i].m = NULL;
3558 }
3559 }
3560 }
3561
3562 static void
3563 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3564 {
3565 int i;
3566
3567 /* free all mbufs and dmamaps */
3568 aq_rxdrain(sc, rxring);
3569 for (i = 0; i < AQ_RXD_NUM; i++) {
3570 if (rxring->rxr_mbufs[i].dmamap != NULL) {
3571 bus_dmamap_destroy(sc->sc_dmat,
3572 rxring->rxr_mbufs[i].dmamap);
3573 rxring->rxr_mbufs[i].dmamap = NULL;
3574 }
3575 }
3576
3577 /* free RX descriptor */
3578 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3579 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3580 }
3581
3582 static void
3583 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3584 struct mbuf *m)
3585 {
3586 int error;
3587
3588 /* if mbuf already exists, unload and free */
3589 if (rxring->rxr_mbufs[idx].m != NULL) {
3590 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3591 m_freem(rxring->rxr_mbufs[idx].m);
3592 rxring->rxr_mbufs[idx].m = NULL;
3593 }
3594
3595 rxring->rxr_mbufs[idx].m = m;
3596
3597 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3598 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3599 m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3600 if (error) {
3601 device_printf(sc->sc_dev,
3602 "unable to load rx DMA map %d, error = %d\n", idx, error);
3603 panic("%s: unable to load rx DMA map. error=%d",
3604 __func__, error);
3605 }
3606 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3607 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3608 }
3609
3610 static inline void
3611 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3612 {
3613 /* refill rxdesc, and sync */
3614 rxring->rxr_rxdesc[idx].read.buf_addr =
3615 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3616 rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3617 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3618 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3619 BUS_DMASYNC_PREWRITE);
3620 }
3621
3622 static struct mbuf *
3623 aq_alloc_mbuf(void)
3624 {
3625 struct mbuf *m;
3626
3627 MGETHDR(m, M_DONTWAIT, MT_DATA);
3628 if (m == NULL)
3629 return NULL;
3630
3631 MCLGET(m, M_DONTWAIT);
3632 if ((m->m_flags & M_EXT) == 0) {
3633 m_freem(m);
3634 return NULL;
3635 }
3636
3637 return m;
3638 }
3639
3640 /* allocate mbuf and unload dmamap */
3641 static int
3642 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3643 {
3644 struct mbuf *m;
3645
3646 m = aq_alloc_mbuf();
3647 if (m == NULL)
3648 return ENOBUFS;
3649
3650 aq_rxring_setmbuf(sc, rxring, idx, m);
3651 return 0;
3652 }
3653
3654 static int
3655 aq_txrx_rings_alloc(struct aq_softc *sc)
3656 {
3657 int n, error;
3658
3659 for (n = 0; n < sc->sc_nqueues; n++) {
3660 sc->sc_queue[n].sc = sc;
3661 sc->sc_queue[n].txring.txr_sc = sc;
3662 sc->sc_queue[n].txring.txr_index = n;
3663 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3664 IPL_NET);
3665 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3666 if (error != 0)
3667 goto failure;
3668
3669 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3670 if (error != 0)
3671 goto failure;
3672
3673 sc->sc_queue[n].rxring.rxr_sc = sc;
3674 sc->sc_queue[n].rxring.rxr_index = n;
3675 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3676 IPL_NET);
3677 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3678 if (error != 0)
3679 break;
3680 }
3681
3682 failure:
3683 return error;
3684 }
3685
3686 static void
3687 aq_txrx_rings_free(struct aq_softc *sc)
3688 {
3689 int n;
3690
3691 for (n = 0; n < sc->sc_nqueues; n++) {
3692 aq_txring_free(sc, &sc->sc_queue[n].txring);
3693 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3694
3695 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3696
3697 aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3698 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3699 }
3700 }
3701
3702 static int
3703 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3704 {
3705 int error = 0;
3706 txring->txr_softint = NULL;
3707
3708 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3709 if (txring->txr_pcq == NULL) {
3710 aprint_error_dev(sc->sc_dev,
3711 "unable to allocate pcq for TXring[%d]\n",
3712 txring->txr_index);
3713 error = ENOMEM;
3714 goto done;
3715 }
3716
3717 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3718 aq_deferred_transmit, txring);
3719 if (txring->txr_softint == NULL) {
3720 aprint_error_dev(sc->sc_dev,
3721 "unable to establish softint for TXring[%d]\n",
3722 txring->txr_index);
3723 error = ENOENT;
3724 }
3725
3726 done:
3727 return error;
3728 }
3729
3730 static void
3731 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3732 {
3733 struct mbuf *m;
3734
3735 if (txring->txr_softint != NULL) {
3736 softint_disestablish(txring->txr_softint);
3737 txring->txr_softint = NULL;
3738 }
3739
3740 if (txring->txr_pcq != NULL) {
3741 while ((m = pcq_get(txring->txr_pcq)) != NULL)
3742 m_freem(m);
3743 pcq_destroy(txring->txr_pcq);
3744 txring->txr_pcq = NULL;
3745 }
3746 }
3747
3748 #if NSYSMON_ENVSYS > 0
3749 static void
3750 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3751 {
3752 struct aq_softc *sc;
3753 uint32_t temp;
3754 int error;
3755
3756 sc = sme->sme_cookie;
3757
3758 error = sc->sc_fw_ops->get_temperature(sc, &temp);
3759 if (error == 0) {
3760 edata->value_cur = temp;
3761 edata->state = ENVSYS_SVALID;
3762 } else {
3763 edata->state = ENVSYS_SINVALID;
3764 }
3765 }
3766 #endif
3767
3768 static void
3769 aq_tick(void *arg)
3770 {
3771 struct aq_softc *sc = arg;
3772
3773 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3774 sc->sc_detect_linkstat = false;
3775 aq_update_link_status(sc);
3776 }
3777
3778 #ifdef AQ_EVENT_COUNTERS
3779 if (sc->sc_poll_statistics)
3780 aq_update_statistics(sc);
3781 #endif
3782
3783 if (sc->sc_poll_linkstat
3784 #ifdef AQ_EVENT_COUNTERS
3785 || sc->sc_poll_statistics
3786 #endif
3787 ) {
3788 callout_schedule(&sc->sc_tick_ch, hz);
3789 }
3790 }
3791
3792 /* interrupt enable/disable */
3793 static void
3794 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3795 {
3796 uint32_t imask = 0;
3797 int i;
3798
3799 if (txrx) {
3800 for (i = 0; i < sc->sc_nqueues; i++) {
3801 imask |= __BIT(sc->sc_tx_irq[i]);
3802 imask |= __BIT(sc->sc_rx_irq[i]);
3803 }
3804 }
3805
3806 if (link)
3807 imask |= __BIT(sc->sc_linkstat_irq);
3808
3809 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3810 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3811 }
3812
3813 static int
3814 aq_legacy_intr(void *arg)
3815 {
3816 struct aq_softc *sc = arg;
3817 uint32_t status;
3818 int nintr = 0;
3819
3820 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3821 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3822
3823 if (status & __BIT(sc->sc_linkstat_irq)) {
3824 sc->sc_detect_linkstat = true;
3825 callout_schedule(&sc->sc_tick_ch, 0);
3826 nintr++;
3827 }
3828
3829 if (status & __BIT(sc->sc_rx_irq[0])) {
3830 nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3831 }
3832
3833 if (status & __BIT(sc->sc_tx_irq[0])) {
3834 nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3835 }
3836
3837 return nintr;
3838 }
3839
3840 static int
3841 aq_txrx_intr(void *arg)
3842 {
3843 struct aq_queue *queue = arg;
3844 struct aq_softc *sc = queue->sc;
3845 struct aq_txring *txring = &queue->txring;
3846 struct aq_rxring *rxring = &queue->rxring;
3847 uint32_t status;
3848 int nintr = 0;
3849 int txringidx, rxringidx, txirq, rxirq;
3850
3851 txringidx = txring->txr_index;
3852 rxringidx = rxring->rxr_index;
3853 txirq = sc->sc_tx_irq[txringidx];
3854 rxirq = sc->sc_rx_irq[rxringidx];
3855
3856 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3857 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3858 /* stray interrupt? */
3859 return 0;
3860 }
3861
3862 nintr += aq_rx_intr(rxring);
3863 nintr += aq_tx_intr(txring);
3864
3865 return nintr;
3866 }
3867
3868 static int
3869 aq_link_intr(void *arg)
3870 {
3871 struct aq_softc *sc = arg;
3872 uint32_t status;
3873 int nintr = 0;
3874
3875 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3876 if (status & __BIT(sc->sc_linkstat_irq)) {
3877 sc->sc_detect_linkstat = true;
3878 callout_schedule(&sc->sc_tick_ch, 0);
3879 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3880 __BIT(sc->sc_linkstat_irq));
3881 nintr++;
3882 }
3883
3884 return nintr;
3885 }
3886
3887 static void
3888 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3889 {
3890 const int ringidx = txring->txr_index;
3891 int i;
3892
3893 mutex_enter(&txring->txr_mutex);
3894
3895 txring->txr_prodidx = 0;
3896 txring->txr_considx = 0;
3897 txring->txr_nfree = AQ_TXD_NUM;
3898 txring->txr_active = false;
3899
3900 /* free mbufs untransmitted */
3901 for (i = 0; i < AQ_TXD_NUM; i++) {
3902 if (txring->txr_mbufs[i].m != NULL) {
3903 m_freem(txring->txr_mbufs[i].m);
3904 txring->txr_mbufs[i].m = NULL;
3905 }
3906 }
3907
3908 /* disable DMA */
3909 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3910
3911 if (start) {
3912 /* TX descriptor physical address */
3913 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3914 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3915 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3916 (uint32_t)((uint64_t)paddr >> 32));
3917
3918 /* TX descriptor size */
3919 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3920 AQ_TXD_NUM / 8);
3921
3922 /* reload TAIL pointer */
3923 txring->txr_prodidx = txring->txr_considx =
3924 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3925 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3926
3927 /* Mapping interrupt vector */
3928 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3929 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3930 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3931 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3932
3933 /* enable DMA */
3934 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3935 TX_DMA_DESC_EN, 1);
3936
3937 const int cpuid = 0; /* XXX? */
3938 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3939 TDM_DCAD_CPUID, cpuid);
3940 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3941 TDM_DCAD_CPUID_EN, 0);
3942
3943 txring->txr_active = true;
3944 }
3945
3946 mutex_exit(&txring->txr_mutex);
3947 }
3948
3949 static int
3950 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3951 {
3952 const int ringidx = rxring->rxr_index;
3953 int i;
3954 int error = 0;
3955
3956 mutex_enter(&rxring->rxr_mutex);
3957 rxring->rxr_active = false;
3958
3959 /* disable DMA */
3960 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3961
3962 /* free all RX mbufs */
3963 aq_rxdrain(sc, rxring);
3964
3965 if (start) {
3966 for (i = 0; i < AQ_RXD_NUM; i++) {
3967 error = aq_rxring_add(sc, rxring, i);
3968 if (error != 0) {
3969 aq_rxdrain(sc, rxring);
3970 return error;
3971 }
3972 aq_rxring_reset_desc(sc, rxring, i);
3973 }
3974
3975 /* RX descriptor physical address */
3976 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
3977 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3978 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3979 (uint32_t)((uint64_t)paddr >> 32));
3980
3981 /* RX descriptor size */
3982 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
3983 AQ_RXD_NUM / 8);
3984
3985 /* maximum receive frame size */
3986 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3987 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
3988 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
3989 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
3990
3991 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3992 RX_DMA_DESC_HEADER_SPLIT, 0);
3993 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
3994 RX_DMA_DESC_VLAN_STRIP,
3995 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
3996 1 : 0);
3997
3998 /*
3999 * reload TAIL pointer, and update readidx
4000 * (HEAD pointer cannot write)
4001 */
4002 rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4003 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4004 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4005 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4006
4007 /* Rx ring set mode */
4008
4009 /* Mapping interrupt vector */
4010 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4011 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4012 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4013 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4014
4015 const int cpuid = 0; /* XXX? */
4016 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4017 RX_DMA_DCAD_CPUID, cpuid);
4018 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4019 RX_DMA_DCAD_DESC_EN, 0);
4020 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4021 RX_DMA_DCAD_HEADER_EN, 0);
4022 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4023 RX_DMA_DCAD_PAYLOAD_EN, 0);
4024
4025 /* enable DMA. start receiving */
4026 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4027 RX_DMA_DESC_EN, 1);
4028
4029 rxring->rxr_active = true;
4030 }
4031
4032 mutex_exit(&rxring->rxr_mutex);
4033 return error;
4034 }
4035
4036 #define TXRING_NEXTIDX(idx) \
4037 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4038 #define RXRING_NEXTIDX(idx) \
4039 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4040
4041 static int
4042 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4043 {
4044 bus_dmamap_t map;
4045 struct mbuf *m = *mp;
4046 uint32_t ctl1, ctl1_ctx, ctl2;
4047 int idx, i, error;
4048
4049 idx = txring->txr_prodidx;
4050 map = txring->txr_mbufs[idx].dmamap;
4051
4052 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4053 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4054 if (error == EFBIG) {
4055 struct mbuf *n;
4056 n = m_defrag(m, M_DONTWAIT);
4057 if (n == NULL)
4058 return EFBIG;
4059 /* m_defrag() preserve m */
4060 KASSERT(n == m);
4061 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4062 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4063 }
4064 if (error != 0)
4065 return error;
4066
4067 /*
4068 * check spaces of free descriptors.
4069 * +1 is additional descriptor for context (vlan, etc,.)
4070 */
4071 if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4072 device_printf(sc->sc_dev,
4073 "TX: not enough descriptors left %d for %d segs\n",
4074 txring->txr_nfree, map->dm_nsegs + 1);
4075 bus_dmamap_unload(sc->sc_dmat, map);
4076 return ENOBUFS;
4077 }
4078
4079 /* sync dma for mbuf */
4080 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4081 BUS_DMASYNC_PREWRITE);
4082
4083 ctl1_ctx = 0;
4084 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4085
4086 if (vlan_has_tag(m)) {
4087 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4088 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4089
4090 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4091 ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4092
4093 /* fill context descriptor and forward index */
4094 txring->txr_txdesc[idx].buf_addr = 0;
4095 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4096 txring->txr_txdesc[idx].ctl2 = 0;
4097
4098 idx = TXRING_NEXTIDX(idx);
4099 txring->txr_nfree--;
4100 }
4101
4102 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4103 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4104 if (m->m_pkthdr.csum_flags &
4105 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4106 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4107 }
4108
4109 /* fill descriptor(s) */
4110 for (i = 0; i < map->dm_nsegs; i++) {
4111 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4112 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4113 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4114
4115 if (i == 0) {
4116 /* remember mbuf of these descriptors */
4117 txring->txr_mbufs[idx].m = m;
4118 } else {
4119 txring->txr_mbufs[idx].m = NULL;
4120 }
4121
4122 if (i == map->dm_nsegs - 1) {
4123 /* last segment, mark an EndOfPacket, and cause intr */
4124 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4125 }
4126
4127 txring->txr_txdesc[idx].buf_addr =
4128 htole64(map->dm_segs[i].ds_addr);
4129 txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4130 txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4131
4132 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4133 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4134 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4135
4136 idx = TXRING_NEXTIDX(idx);
4137 txring->txr_nfree--;
4138 }
4139
4140 txring->txr_prodidx = idx;
4141
4142 return 0;
4143 }
4144
4145 static int
4146 aq_tx_intr(void *arg)
4147 {
4148 struct aq_txring *txring = arg;
4149 struct aq_softc *sc = txring->txr_sc;
4150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4151 struct mbuf *m;
4152 const int ringidx = txring->txr_index;
4153 unsigned int idx, hw_head, n = 0;
4154
4155 mutex_enter(&txring->txr_mutex);
4156
4157 if (!txring->txr_active)
4158 goto tx_intr_done;
4159
4160 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4161 TX_DMA_DESC_HEAD_PTR);
4162 if (hw_head == txring->txr_considx) {
4163 goto tx_intr_done;
4164 }
4165
4166 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4167
4168 for (idx = txring->txr_considx; idx != hw_head;
4169 idx = TXRING_NEXTIDX(idx), n++) {
4170
4171 if ((m = txring->txr_mbufs[idx].m) != NULL) {
4172 bus_dmamap_unload(sc->sc_dmat,
4173 txring->txr_mbufs[idx].dmamap);
4174
4175 if_statinc_ref(nsr, if_opackets);
4176 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4177 if (m->m_flags & M_MCAST)
4178 if_statinc_ref(nsr, if_omcasts);
4179
4180 m_freem(m);
4181 txring->txr_mbufs[idx].m = NULL;
4182 }
4183
4184 txring->txr_nfree++;
4185 }
4186 txring->txr_considx = idx;
4187
4188 IF_STAT_PUTREF(ifp);
4189
4190 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4191 ifp->if_flags &= ~IFF_OACTIVE;
4192
4193 /* no more pending TX packet, cancel watchdog */
4194 if (txring->txr_nfree >= AQ_TXD_NUM)
4195 ifp->if_timer = 0;
4196
4197 tx_intr_done:
4198 mutex_exit(&txring->txr_mutex);
4199
4200 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4201 return n;
4202 }
4203
4204 static int
4205 aq_rx_intr(void *arg)
4206 {
4207 struct aq_rxring *rxring = arg;
4208 struct aq_softc *sc = rxring->rxr_sc;
4209 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4210 const int ringidx = rxring->rxr_index;
4211 aq_rx_desc_t *rxd;
4212 struct mbuf *m, *m0, *mprev, *new_m;
4213 uint32_t rxd_type, rxd_hash __unused;
4214 uint16_t rxd_status, rxd_pktlen;
4215 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4216 unsigned int idx, n = 0;
4217
4218 mutex_enter(&rxring->rxr_mutex);
4219
4220 if (!rxring->rxr_active)
4221 goto rx_intr_done;
4222
4223 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4224 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4225 goto rx_intr_done;
4226 }
4227
4228 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4229
4230 m0 = mprev = NULL;
4231 for (idx = rxring->rxr_readidx;
4232 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4233 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4234
4235 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4236 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4237 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4238
4239 rxd = &rxring->rxr_rxdesc[idx];
4240 rxd_status = le16toh(rxd->wb.status);
4241
4242 if ((rxd_status & RXDESC_STATUS_DD) == 0)
4243 break; /* not yet done */
4244
4245 rxd_type = le32toh(rxd->wb.type);
4246 rxd_pktlen = le16toh(rxd->wb.pkt_len);
4247 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4248 rxd_hash = le32toh(rxd->wb.rss_hash);
4249 rxd_vlan = le16toh(rxd->wb.vlan);
4250
4251 if ((rxd_status & RXDESC_STATUS_MACERR) ||
4252 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4253 if_statinc_ref(nsr, if_ierrors);
4254 goto rx_next;
4255 }
4256
4257 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4258 rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4259 BUS_DMASYNC_POSTREAD);
4260 m = rxring->rxr_mbufs[idx].m;
4261
4262 new_m = aq_alloc_mbuf();
4263 if (new_m == NULL) {
4264 /*
4265 * cannot allocate new mbuf.
4266 * discard this packet, and reuse mbuf for next.
4267 */
4268 if_statinc_ref(nsr, if_iqdrops);
4269 goto rx_next;
4270 }
4271 rxring->rxr_mbufs[idx].m = NULL;
4272 aq_rxring_setmbuf(sc, rxring, idx, new_m);
4273
4274 if (m0 == NULL) {
4275 m0 = m;
4276 } else {
4277 if (m->m_flags & M_PKTHDR)
4278 m_remove_pkthdr(m);
4279 mprev->m_next = m;
4280 }
4281 mprev = m;
4282
4283 if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4284 m->m_len = MCLBYTES;
4285 } else {
4286 /* last buffer */
4287 m->m_len = rxd_pktlen % MCLBYTES;
4288 m0->m_pkthdr.len = rxd_pktlen;
4289 /* VLAN offloading */
4290 if ((sc->sc_ethercom.ec_capenable &
4291 ETHERCAP_VLAN_HWTAGGING) &&
4292 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4293 __SHIFTOUT(rxd_type,
4294 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4295 vlan_set_tag(m0, rxd_vlan);
4296 }
4297
4298 /* Checksum offloading */
4299 unsigned int pkttype_eth =
4300 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4301 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4302 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4303 __SHIFTOUT(rxd_type,
4304 RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4305 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4306 if (__SHIFTOUT(rxd_status,
4307 RXDESC_STATUS_IPV4_CSUM_NG))
4308 m0->m_pkthdr.csum_flags |=
4309 M_CSUM_IPv4_BAD;
4310 }
4311 #if notyet
4312 /*
4313 * XXX: aq always marks BAD for fragmented packet.
4314 * we should peek L3 header, and ignore cksum flags
4315 * if the packet is fragmented.
4316 */
4317 if (__SHIFTOUT(rxd_type,
4318 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4319 bool checked = false;
4320 unsigned int pkttype_proto =
4321 __SHIFTOUT(rxd_type,
4322 RXDESC_TYPE_PKTTYPE_PROTO);
4323
4324 if (pkttype_proto ==
4325 RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4326 if ((pkttype_eth ==
4327 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4328 (ifp->if_capabilities &
4329 IFCAP_CSUM_TCPv4_Rx)) {
4330 m0->m_pkthdr.csum_flags |=
4331 M_CSUM_TCPv4;
4332 checked = true;
4333 } else if ((pkttype_eth ==
4334 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4335 (ifp->if_capabilities &
4336 IFCAP_CSUM_TCPv6_Rx)) {
4337 m0->m_pkthdr.csum_flags |=
4338 M_CSUM_TCPv6;
4339 checked = true;
4340 }
4341 } else if (pkttype_proto ==
4342 RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4343 if ((pkttype_eth ==
4344 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4345 (ifp->if_capabilities &
4346 IFCAP_CSUM_UDPv4_Rx)) {
4347 m0->m_pkthdr.csum_flags |=
4348 M_CSUM_UDPv4;
4349 checked = true;
4350 } else if ((pkttype_eth ==
4351 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4352 (ifp->if_capabilities &
4353 IFCAP_CSUM_UDPv6_Rx)) {
4354 m0->m_pkthdr.csum_flags |=
4355 M_CSUM_UDPv6;
4356 checked = true;
4357 }
4358 }
4359 if (checked &&
4360 (__SHIFTOUT(rxd_status,
4361 RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4362 !__SHIFTOUT(rxd_status,
4363 RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4364 m0->m_pkthdr.csum_flags |=
4365 M_CSUM_TCP_UDP_BAD;
4366 }
4367 }
4368 #endif
4369 m_set_rcvif(m0, ifp);
4370 if_statinc_ref(nsr, if_ipackets);
4371 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4372 if_percpuq_enqueue(ifp->if_percpuq, m0);
4373 m0 = mprev = NULL;
4374 }
4375
4376 rx_next:
4377 aq_rxring_reset_desc(sc, rxring, idx);
4378 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4379 }
4380 rxring->rxr_readidx = idx;
4381
4382 IF_STAT_PUTREF(ifp);
4383
4384 rx_intr_done:
4385 mutex_exit(&rxring->rxr_mutex);
4386
4387 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4388 return n;
4389 }
4390
4391 static int
4392 aq_ifflags_cb(struct ethercom *ec)
4393 {
4394 struct ifnet *ifp = &ec->ec_if;
4395 struct aq_softc *sc = ifp->if_softc;
4396 int i, ecchange, error = 0;
4397 unsigned short iffchange;
4398
4399 AQ_LOCK(sc);
4400
4401 iffchange = ifp->if_flags ^ sc->sc_if_flags;
4402 if ((iffchange & IFF_PROMISC) != 0)
4403 error = aq_set_filter(sc);
4404
4405 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4406 if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4407 for (i = 0; i < AQ_RINGS_NUM; i++) {
4408 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4409 RX_DMA_DESC_VLAN_STRIP,
4410 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4411 1 : 0);
4412 }
4413 }
4414
4415 sc->sc_ec_capenable = ec->ec_capenable;
4416 sc->sc_if_flags = ifp->if_flags;
4417
4418 AQ_UNLOCK(sc);
4419
4420 return error;
4421 }
4422
4423 static int
4424 aq_init(struct ifnet *ifp)
4425 {
4426 struct aq_softc *sc = ifp->if_softc;
4427 int i, error = 0;
4428
4429 AQ_LOCK(sc);
4430
4431 aq_update_vlan_filters(sc);
4432 aq_set_capability(sc);
4433
4434 for (i = 0; i < sc->sc_nqueues; i++) {
4435 aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4436 }
4437
4438 /* invalidate RX descriptor cache */
4439 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4440 AQ_READ_REG_BIT(sc,
4441 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4442
4443 /* start RX */
4444 for (i = 0; i < sc->sc_nqueues; i++) {
4445 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4446 if (error != 0) {
4447 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4448 __func__);
4449 goto aq_init_failure;
4450 }
4451 }
4452 aq_init_rss(sc);
4453 aq_hw_l3_filter_set(sc);
4454
4455 /* need to start callout? */
4456 if (sc->sc_poll_linkstat
4457 #ifdef AQ_EVENT_COUNTERS
4458 || sc->sc_poll_statistics
4459 #endif
4460 ) {
4461 callout_schedule(&sc->sc_tick_ch, hz);
4462 }
4463
4464 /* ready */
4465 ifp->if_flags |= IFF_RUNNING;
4466 ifp->if_flags &= ~IFF_OACTIVE;
4467
4468 /* start TX and RX */
4469 aq_enable_intr(sc, true, true);
4470 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4471 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4472
4473 aq_init_failure:
4474 sc->sc_if_flags = ifp->if_flags;
4475
4476 AQ_UNLOCK(sc);
4477
4478 return error;
4479 }
4480
4481 static void
4482 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4483 struct aq_txring *txring, bool is_transmit)
4484 {
4485 struct mbuf *m;
4486 int npkt, error;
4487
4488 if ((ifp->if_flags & IFF_RUNNING) == 0)
4489 return;
4490
4491 for (npkt = 0; ; npkt++) {
4492 if (is_transmit)
4493 m = pcq_peek(txring->txr_pcq);
4494 else
4495 IFQ_POLL(&ifp->if_snd, m);
4496
4497 if (m == NULL)
4498 break;
4499
4500 if (txring->txr_nfree < AQ_TXD_MIN)
4501 break;
4502
4503 if (is_transmit)
4504 pcq_get(txring->txr_pcq);
4505 else
4506 IFQ_DEQUEUE(&ifp->if_snd, m);
4507
4508 error = aq_encap_txring(sc, txring, &m);
4509 if (error != 0) {
4510 /* too many mbuf chains? or not enough descriptors? */
4511 m_freem(m);
4512 if_statinc(ifp, if_oerrors);
4513 if (txring->txr_index == 0 && error == ENOBUFS)
4514 ifp->if_flags |= IFF_OACTIVE;
4515 break;
4516 }
4517
4518 /* update tail ptr */
4519 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4520 txring->txr_prodidx);
4521
4522 /* Pass the packet to any BPF listeners */
4523 bpf_mtap(ifp, m, BPF_D_OUT);
4524 }
4525
4526 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4527 ifp->if_flags |= IFF_OACTIVE;
4528
4529 if (npkt)
4530 ifp->if_timer = 5;
4531 }
4532
4533 static void
4534 aq_start(struct ifnet *ifp)
4535 {
4536 struct aq_softc *sc;
4537 struct aq_txring *txring;
4538
4539 sc = ifp->if_softc;
4540 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4541
4542 mutex_enter(&txring->txr_mutex);
4543 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4544 aq_send_common_locked(ifp, sc, txring, false);
4545 mutex_exit(&txring->txr_mutex);
4546 }
4547
4548 static inline unsigned int
4549 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4550 {
4551 return (cpu_index(curcpu()) % sc->sc_nqueues);
4552 }
4553
4554 static int
4555 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4556 {
4557 struct aq_softc *sc = ifp->if_softc;
4558 struct aq_txring *txring;
4559 int ringidx;
4560
4561 ringidx = aq_select_txqueue(sc, m);
4562 txring = &sc->sc_queue[ringidx].txring;
4563
4564 if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4565 m_freem(m);
4566 return ENOBUFS;
4567 }
4568
4569 if (mutex_tryenter(&txring->txr_mutex)) {
4570 aq_send_common_locked(ifp, sc, txring, true);
4571 mutex_exit(&txring->txr_mutex);
4572 } else {
4573 softint_schedule(txring->txr_softint);
4574 }
4575 return 0;
4576 }
4577
4578 static void
4579 aq_deferred_transmit(void *arg)
4580 {
4581 struct aq_txring *txring = arg;
4582 struct aq_softc *sc = txring->txr_sc;
4583 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4584
4585 mutex_enter(&txring->txr_mutex);
4586 if (pcq_peek(txring->txr_pcq) != NULL)
4587 aq_send_common_locked(ifp, sc, txring, true);
4588 mutex_exit(&txring->txr_mutex);
4589 }
4590
4591 static void
4592 aq_stop(struct ifnet *ifp, int disable)
4593 {
4594 struct aq_softc *sc = ifp->if_softc;
4595 int i;
4596
4597 AQ_LOCK(sc);
4598
4599 ifp->if_timer = 0;
4600
4601 /* disable tx/rx interrupts */
4602 aq_enable_intr(sc, true, false);
4603
4604 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4605 for (i = 0; i < sc->sc_nqueues; i++) {
4606 aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4607 }
4608
4609 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4610 for (i = 0; i < sc->sc_nqueues; i++) {
4611 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4612 }
4613
4614 /* invalidate RX descriptor cache */
4615 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4616 AQ_READ_REG_BIT(sc,
4617 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4618
4619 ifp->if_timer = 0;
4620
4621 if (!disable) {
4622 /* when pmf stop, disable link status intr and callout */
4623 aq_enable_intr(sc, false, false);
4624 callout_stop(&sc->sc_tick_ch);
4625 }
4626
4627 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4628
4629 AQ_UNLOCK(sc);
4630 }
4631
4632 static void
4633 aq_watchdog(struct ifnet *ifp)
4634 {
4635 struct aq_softc *sc = ifp->if_softc;
4636 struct aq_txring *txring;
4637 int n, head, tail;
4638
4639 AQ_LOCK(sc);
4640
4641 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4642 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4643 AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4644
4645 for (n = 0; n < sc->sc_nqueues; n++) {
4646 txring = &sc->sc_queue[n].txring;
4647 head = AQ_READ_REG_BIT(sc,
4648 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4649 TX_DMA_DESC_HEAD_PTR),
4650 tail = AQ_READ_REG(sc,
4651 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4652
4653 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4654 __func__, txring->txr_index, head, tail);
4655
4656 aq_tx_intr(txring);
4657 }
4658
4659 AQ_UNLOCK(sc);
4660
4661 aq_init(ifp);
4662 }
4663
4664 static int
4665 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4666 {
4667 struct aq_softc *sc __unused;
4668 struct ifreq *ifr __unused;
4669 int error, s;
4670
4671 sc = (struct aq_softc *)ifp->if_softc;
4672 ifr = (struct ifreq *)data;
4673 error = 0;
4674
4675 s = splnet();
4676 error = ether_ioctl(ifp, cmd, data);
4677 splx(s);
4678
4679 if (error != ENETRESET)
4680 return error;
4681
4682 switch (cmd) {
4683 case SIOCSIFCAP:
4684 error = aq_set_capability(sc);
4685 break;
4686 case SIOCADDMULTI:
4687 case SIOCDELMULTI:
4688 if ((ifp->if_flags & IFF_RUNNING) == 0)
4689 break;
4690
4691 /*
4692 * Multicast list has changed; set the hardware filter
4693 * accordingly.
4694 */
4695 error = aq_set_filter(sc);
4696 break;
4697 }
4698
4699 return error;
4700 }
4701
4702
4703 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4704
4705 #ifdef _MODULE
4706 #include "ioconf.c"
4707 #endif
4708
4709 static int
4710 if_aq_modcmd(modcmd_t cmd, void *opaque)
4711 {
4712 int error = 0;
4713
4714 switch (cmd) {
4715 case MODULE_CMD_INIT:
4716 #ifdef _MODULE
4717 error = config_init_component(cfdriver_ioconf_if_aq,
4718 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4719 #endif
4720 return error;
4721 case MODULE_CMD_FINI:
4722 #ifdef _MODULE
4723 error = config_fini_component(cfdriver_ioconf_if_aq,
4724 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4725 #endif
4726 return error;
4727 default:
4728 return ENOTTY;
4729 }
4730 }
4731