Home | History | Annotate | Line # | Download | only in pci
if_aq.c revision 1.7
      1 /*	$NetBSD: if_aq.c,v 1.7 2020/02/04 05:44:14 thorpej Exp $	*/
      2 
      3 /**
      4  * aQuantia Corporation Network Driver
      5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  *   (1) Redistributions of source code must retain the above
     12  *   copyright notice, this list of conditions and the following
     13  *   disclaimer.
     14  *
     15  *   (2) Redistributions in binary form must reproduce the above
     16  *   copyright notice, this list of conditions and the following
     17  *   disclaimer in the documentation and/or other materials provided
     18  *   with the distribution.
     19  *
     20  *   (3) The name of the author may not be used to endorse or promote
     21  *   products derived from this software without specific prior
     22  *   written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  */
     37 
     38 /*-
     39  * Copyright (c) 2020 Ryo Shimizu <ryo (at) nerv.org>
     40  * All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.7 2020/02/04 05:44:14 thorpej Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_if_aq.h"
     69 #include "sysmon_envsys.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/types.h>
     74 #include <sys/bitops.h>
     75 #include <sys/cprng.h>
     76 #include <sys/cpu.h>
     77 #include <sys/interrupt.h>
     78 #include <sys/module.h>
     79 #include <sys/pcq.h>
     80 
     81 #include <net/bpf.h>
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_ether.h>
     86 #include <net/rss_config.h>
     87 
     88 #include <dev/pci/pcivar.h>
     89 #include <dev/pci/pcireg.h>
     90 #include <dev/pci/pcidevs.h>
     91 #include <dev/sysmon/sysmonvar.h>
     92 
     93 /* driver configuration */
     94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
     95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
     96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
     97 
     98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
     99 					/* TX + RX + LINK. must be <= 32 */
    100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
    101 
    102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
    104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
    105 #define AQ_TXD_MIN			(1 + 1)
    106 
    107 
    108 /* hardware specification */
    109 #define AQ_RINGS_NUM			32
    110 #define AQ_RSSQUEUE_MAX			8
    111 #define AQ_RX_DESCRIPTOR_MIN		32
    112 #define AQ_TX_DESCRIPTOR_MIN		32
    113 #define AQ_RX_DESCRIPTOR_MAX		8184
    114 #define AQ_TX_DESCRIPTOR_MAX		8184
    115 #define AQ_TRAFFICCLASS_NUM		8
    116 #define AQ_RSS_HASHKEY_SIZE		40
    117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
    118 
    119 /*
    120  * TERMINOLOGY
    121  *	MPI = MAC PHY INTERFACE?
    122  *	RPO = RX Protocol Offloading
    123  *	TPO = TX Protocol Offloading
    124  *	RPF = RX Packet Filter
    125  *	TPB = TX Packet buffer
    126  *	RPB = RX Packet buffer
    127  */
    128 
    129 /* registers */
    130 #define AQ_FW_SOFTRESET_REG			0x0000
    131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
    132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
    133 
    134 #define AQ_FW_VERSION_REG			0x0018
    135 #define AQ_HW_REVISION_REG			0x001c
    136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
    137 
    138 #define AQ_FW_MBOX_CMD_REG			0x0200
    139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
    140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
    141 #define AQ_FW_MBOX_ADDR_REG			0x0208
    142 #define AQ_FW_MBOX_VAL_REG			0x020c
    143 
    144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
    145 #define FW2X_LED_REG				0x031c
    146 #define  FW2X_LED_DEFAULT			0x00000000
    147 #define  FW2X_LED_NONE				0x0000003f
    148 #define  FW2X_LINKLED				__BITS(0,1)
    149 #define   FW2X_LINKLED_ACTIVE			0
    150 #define   FW2X_LINKLED_ON			1
    151 #define   FW2X_LINKLED_BLINK			2
    152 #define   FW2X_LINKLED_OFF			3
    153 #define  FW2X_STATUSLED				__BITS(2,5)
    154 #define   FW2X_STATUSLED_ORANGE			0
    155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
    156 #define   FW2X_STATUSLED_OFF			3
    157 #define   FW2X_STATUSLED_GREEN			4
    158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
    159 #define   FW2X_STATUSLED_GREEN_BLINK		10
    160 
    161 #define FW_MPI_MBOX_ADDR_REG			0x0360
    162 #define FW1X_MPI_INIT1_REG			0x0364
    163 #define FW1X_MPI_CONTROL_REG			0x0368
    164 #define FW1X_MPI_STATE_REG			0x036c
    165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
    166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
    167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
    168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
    169 #define FW1X_MPI_INIT2_REG			0x0370
    170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
    171 
    172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
    173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
    174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
    175 #define FW_BOOT_EXIT_CODE_REG			0x0388
    176 #define  RBL_STATUS_DEAD			0x0000dead
    177 #define  RBL_STATUS_SUCCESS			0x0000abba
    178 #define  RBL_STATUS_FAILURE			0x00000bad
    179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
    180 
    181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
    182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
    183 
    184 #define AQ_FW_GLB_CTL2_REG			0x0404
    185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
    186 
    187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
    188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
    189 
    190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
    191 
    192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
    193 
    194 // msix bitmap */
    195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
    196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
    197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
    198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
    199 #define AQ_INTR_AUTOMASK_REG			0x2090
    200 
    201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
    202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
    203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
    205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
    206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
    207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
    208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
    209 
    210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
    211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
    212 #define  AQ_B0_ERR_INT				8U
    213 
    214 #define AQ_INTR_CTRL_REG			0x2300
    215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
    216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
    217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
    218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
    219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
    220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
    221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
    222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
    223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
    224 
    225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
    226 
    227 #define FW_MPI_RESETCTRL_REG			0x4000
    228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
    229 
    230 #define RX_SYSCONTROL_REG			0x5000
    231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
    232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
    233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
    234 
    235 #define RX_TCP_RSS_HASH_REG			0x5040
    236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
    237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
    238 
    239 /* for RPF_*_REG.ACTION */
    240 #define RPF_ACTION_DISCARD			0
    241 #define RPF_ACTION_HOST				1
    242 #define RPF_ACTION_MANAGEMENT			2
    243 #define RPF_ACTION_HOST_MANAGEMENT		3
    244 #define RPF_ACTION_WOL				4
    245 
    246 #define RPF_L2BC_REG				0x5100
    247 #define  RPF_L2BC_EN				__BIT(0)
    248 #define  RPF_L2BC_PROMISC			__BIT(3)
    249 #define  RPF_L2BC_ACTION			__BITS(12,14)
    250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
    251 
    252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
    253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
    254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
    255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
    256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
    257 #define  RPF_L2UC_MSW_EN			__BIT(31)
    258 #define AQ_HW_MAC_OWN			0	/* index of own address */
    259 #define AQ_HW_MAC_NUM			34
    260 
    261 /* RPF_MCAST_FILTER_REG[12] 0x5250-0x5280 */
    262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
    263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
    264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
    265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
    266 
    267 #define RPF_VLAN_MODE_REG			0x5280
    268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
    269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
    270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
    271 
    272 #define RPF_VLAN_TPID_REG			0x5284
    273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
    274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
    275 
    276 /* RPF_VLAN_FILTER_REG[16] 0x5290-0x52d0 */
    277 #define RPF_VLAN_MAX_FILTERS			16
    278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
    279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
    280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
    281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
    282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
    283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
    284 
    285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
    286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
    287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
    288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
    289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
    290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
    291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
    292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
    293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
    294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
    295 
    296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
    297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
    298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
    299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
    300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
    301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
    302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
    303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
    304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
    305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
    306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
    307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
    308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
    309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
    310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
    311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
    312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
    313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
    314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
    315 /* parameters of RPF_L3_FILTER_REG[8] */
    316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
    317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
    318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
    319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
    320 
    321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
    322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
    323 
    324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
    325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
    326 
    327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
    328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
    329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
    330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
    331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
    332 
    333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
    334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
    335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
    336 
    337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
    338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
    339 
    340 #define RPO_HWCSUM_REG				0x5580
    341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    343 
    344 #define RPO_LRO_ENABLE_REG			0x5590
    345 
    346 #define RPO_LRO_CONF_REG			0x5594
    347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
    348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
    349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
    350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
    351 #define RPO_LRO_RSC_MAX_REG			0x5598
    352 
    353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
    354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
    355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
    356 #define RPO_LRO_TB_DIV_REG			0x5620
    357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
    358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
    359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
    360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
    361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
    362 
    363 #define RPB_RPF_RX_REG				0x5700
    364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
    365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
    366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
    367 
    368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
    369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
    370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
    371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
    372 #define  RPB_RXB_XOFF_EN			__BIT(31)
    373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
    374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
    375 
    376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
    377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
    378 
    379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
    380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
    381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
    382 
    383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
    384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
    385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
    386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    388 
    389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
    390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
    391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
    392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
    393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
    394 #define  RX_DMA_DESC_RESET			__BIT(25)
    395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
    396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
    397 #define  RX_DMA_DESC_EN				__BIT(31)
    398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
    399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
    401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
    402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
    403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
    404 
    405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
    406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
    407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
    408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
    409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
    410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
    411 
    412 #define RX_DMA_DCA_REG				0x6180
    413 #define  RX_DMA_DCA_EN				__BIT(31)
    414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
    415 
    416 /* counters */
    417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
    418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
    419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
    420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
    421 
    422 #define TX_SYSCONTROL_REG			0x7000
    423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
    424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
    425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
    426 
    427 #define TX_TPO2_REG				0x7040
    428 #define  TX_TPO2_EN				__BIT(16)
    429 
    430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
    431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
    432 #define TPS_DESC_RATE_REG			0x7310
    433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
    434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
    435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
    436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
    437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
    438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
    439 
    440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
    441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
    442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
    443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
    444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
    445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
    446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
    447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
    448 
    449 #define AQ_HW_TXBUF_MAX		160
    450 #define AQ_HW_RXBUF_MAX		320
    451 
    452 #define TPO_HWCSUM_REG				0x7800
    453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
    454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
    455 
    456 #define TDM_LSO_EN_REG				0x7810
    457 
    458 #define THM_LSO_TCP_FLAG1_REG			0x7820
    459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
    460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
    461 #define THM_LSO_TCP_FLAG2_REG			0x7824
    462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
    463 
    464 #define TPB_TX_BUF_REG				0x7900
    465 #define  TPB_TX_BUF_EN				__BIT(0)
    466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
    467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
    468 
    469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
    470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
    471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
    472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
    473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
    474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
    475 
    476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
    477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
    478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
    479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
    480 
    481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
    482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
    483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
    484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
    485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
    486 #define  TX_DMA_DESC_EN				__BIT(31)
    487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
    488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
    489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
    490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
    491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
    492 
    493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
    494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
    495 #define  TDM_DCAD_CPUID				__BITS(7,0)
    496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
    497 
    498 #define TDM_DCA_REG				0x8480
    499 #define  TDM_DCA_EN				__BIT(31)
    500 #define  TDM_DCA_MODE				__BITS(3,0)
    501 
    502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
    503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
    504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
    505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
    506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
    507 
    508 #define FW1X_CTRL_10G				__BIT(0)
    509 #define FW1X_CTRL_5G				__BIT(1)
    510 #define FW1X_CTRL_5GSR				__BIT(2)
    511 #define FW1X_CTRL_2G5				__BIT(3)
    512 #define FW1X_CTRL_1G				__BIT(4)
    513 #define FW1X_CTRL_100M				__BIT(5)
    514 
    515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
    516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
    517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
    518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
    519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
    520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
    521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
    522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
    523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
    524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
    525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
    526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
    527 #define FW2X_CTRL_RESERVED1			__BIT(32)
    528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
    529 #define FW2X_CTRL_RESERVED2			__BIT(34)
    530 #define FW2X_CTRL_PAUSE				__BIT(35)
    531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
    532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
    533 #define FW2X_CTRL_RESERVED3			__BIT(38)
    534 #define FW2X_CTRL_RESERVED4			__BIT(39)
    535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
    536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
    537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
    538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
    539 #define FW2X_CTRL_RESERVED5			__BIT(44)
    540 #define FW2X_CTRL_RESERVED6			__BIT(45)
    541 #define FW2X_CTRL_RESERVED7			__BIT(46)
    542 #define FW2X_CTRL_RESERVED8			__BIT(47)
    543 #define FW2X_CTRL_RESERVED9			__BIT(48)
    544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
    545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
    546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
    547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
    548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
    549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
    550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
    551 #define FW2X_CTRL_WOL				__BIT(56)
    552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
    553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
    554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
    555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
    556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
    557 #define FW2X_CTRL_STATISTICS			__BIT(62)
    558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
    559 
    560 #define FW2X_SNPRINTB			\
    561 	"\177\020"			\
    562 	"b\x23" "PAUSE\0"		\
    563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
    564 	"b\x31" "CABLE-DIAG\0"		\
    565 	"b\x32" "TEMPERATURE\0"		\
    566 	"b\x33" "DOWNSHIFT\0"		\
    567 	"b\x34" "PTP-AVB\0"		\
    568 	"b\x35" "MEDIA-DETECT\0"	\
    569 	"b\x36" "LINK-DROP\0"		\
    570 	"b\x37" "SLEEP-PROXY\0"		\
    571 	"b\x38" "WOL\0"			\
    572 	"b\x39" "MAC-STOP\0"		\
    573 	"b\x3a" "EXT-LOOPBACK\0"	\
    574 	"b\x3b" "INT-LOOPBACK\0"	\
    575 	"b\x3c" "EFUSE-AGENT\0"		\
    576 	"b\x3d" "WOL-TIMER\0"		\
    577 	"b\x3e" "STATISTICS\0"		\
    578 	"b\x3f" "TRANSACTION-ID\0"	\
    579 	"\0"
    580 
    581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
    582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
    583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
    584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
    585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
    586 #define FW2X_CTRL_RATE_MASK		\
    587 	(FW2X_CTRL_RATE_100M |		\
    588 	 FW2X_CTRL_RATE_1G |		\
    589 	 FW2X_CTRL_RATE_2G5 |		\
    590 	 FW2X_CTRL_RATE_5G |		\
    591 	 FW2X_CTRL_RATE_10G)
    592 #define FW2X_CTRL_EEE_MASK		\
    593 	(FW2X_CTRL_10BASET_EEE |	\
    594 	 FW2X_CTRL_100BASETX_EEE |	\
    595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
    596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
    597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
    598 	 FW2X_CTRL_10GBASET_FD_EEE)
    599 
    600 typedef enum aq_fw_bootloader_mode {
    601 	FW_BOOT_MODE_UNKNOWN = 0,
    602 	FW_BOOT_MODE_FLB,
    603 	FW_BOOT_MODE_RBL_FLASH,
    604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
    605 } aq_fw_bootloader_mode_t;
    606 
    607 #define AQ_WRITE_REG(sc, reg, val)				\
    608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
    609 
    610 #define AQ_READ_REG(sc, reg)					\
    611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
    612 
    613 #define AQ_READ64_REG(sc, reg)					\
    614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
    615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
    616 
    617 #define AQ_WRITE64_REG(sc, reg, val)				\
    618 	do {							\
    619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
    620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
    621 	} while (/* CONSTCOND */0)
    622 
    623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
    624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
    625 
    626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
    627 	do {							\
    628 		uint32_t _v;					\
    629 		_v = AQ_READ_REG((sc), (reg));			\
    630 		_v &= ~(mask);					\
    631 		if ((val) != 0)					\
    632 			_v |= __SHIFTIN((val), (mask));		\
    633 		AQ_WRITE_REG((sc), (reg), _v);			\
    634 	} while (/* CONSTCOND */ 0)
    635 
    636 #define WAIT_FOR(expr, us, n, errp)				\
    637 	do {							\
    638 		unsigned int _n;				\
    639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
    640 			delay((us));				\
    641 		}						\
    642 		if ((errp != NULL)) {				\
    643 			if (_n == 0)				\
    644 				*(errp) = ETIMEDOUT;		\
    645 			else					\
    646 				*(errp) = 0;			\
    647 		}						\
    648 	} while (/* CONSTCOND */ 0)
    649 
    650 #define msec_delay(x)	DELAY(1000 * (x))
    651 
    652 typedef struct aq_mailbox_header {
    653 	uint32_t version;
    654 	uint32_t transaction_id;
    655 	int32_t error;
    656 } __packed aq_mailbox_header_t;
    657 
    658 typedef struct aq_hw_stats_s {
    659 	uint32_t uprc;
    660 	uint32_t mprc;
    661 	uint32_t bprc;
    662 	uint32_t erpt;
    663 	uint32_t uptc;
    664 	uint32_t mptc;
    665 	uint32_t bptc;
    666 	uint32_t erpr;
    667 	uint32_t mbtc;
    668 	uint32_t bbtc;
    669 	uint32_t mbrc;
    670 	uint32_t bbrc;
    671 	uint32_t ubrc;
    672 	uint32_t ubtc;
    673 	uint32_t ptc;
    674 	uint32_t prc;
    675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
    676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
    677 } __packed aq_hw_stats_s_t;
    678 
    679 typedef struct fw1x_mailbox {
    680 	aq_mailbox_header_t header;
    681 	aq_hw_stats_s_t msm;
    682 } __packed fw1x_mailbox_t;
    683 
    684 typedef struct fw2x_msm_statistics {
    685 	uint32_t uprc;
    686 	uint32_t mprc;
    687 	uint32_t bprc;
    688 	uint32_t erpt;
    689 	uint32_t uptc;
    690 	uint32_t mptc;
    691 	uint32_t bptc;
    692 	uint32_t erpr;
    693 	uint32_t mbtc;
    694 	uint32_t bbtc;
    695 	uint32_t mbrc;
    696 	uint32_t bbrc;
    697 	uint32_t ubrc;
    698 	uint32_t ubtc;
    699 	uint32_t ptc;
    700 	uint32_t prc;
    701 } __packed fw2x_msm_statistics_t;
    702 
    703 typedef struct fw2x_phy_cable_diag_data {
    704 	uint32_t lane_data[4];
    705 } __packed fw2x_phy_cable_diag_data_t;
    706 
    707 typedef struct fw2x_capabilities {
    708 	uint32_t caps_lo;
    709 	uint32_t caps_hi;
    710 } __packed fw2x_capabilities_t;
    711 
    712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
    713 	aq_mailbox_header_t header;
    714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
    715 
    716 	uint32_t phy_info1;
    717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
    718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
    719 	uint32_t phy_info2;
    720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
    721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
    722 
    723 	fw2x_phy_cable_diag_data_t diag_data;
    724 	uint32_t reserved[8];
    725 
    726 	fw2x_capabilities_t caps;
    727 
    728 	/* ... */
    729 } __packed fw2x_mailbox_t;
    730 
    731 typedef enum aq_link_speed {
    732 	AQ_LINK_NONE	= 0,
    733 	AQ_LINK_100M	= (1 << 0),
    734 	AQ_LINK_1G	= (1 << 1),
    735 	AQ_LINK_2G5	= (1 << 2),
    736 	AQ_LINK_5G	= (1 << 3),
    737 	AQ_LINK_10G	= (1 << 4)
    738 } aq_link_speed_t;
    739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
    740 			 AQ_LINK_5G | AQ_LINK_10G )
    741 #define AQ_LINK_AUTO	AQ_LINK_ALL
    742 
    743 typedef enum aq_link_fc {
    744 	AQ_FC_NONE = 0,
    745 	AQ_FC_RX = __BIT(0),
    746 	AQ_FC_TX = __BIT(1),
    747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
    748 } aq_link_fc_t;
    749 
    750 typedef enum aq_link_eee {
    751 	AQ_EEE_DISABLE = 0,
    752 	AQ_EEE_ENABLE = 1
    753 } aq_link_eee_t;
    754 
    755 typedef enum aq_hw_fw_mpi_state {
    756 	MPI_DEINIT	= 0,
    757 	MPI_RESET	= 1,
    758 	MPI_INIT	= 2,
    759 	MPI_POWER	= 4
    760 } aq_hw_fw_mpi_state_t;
    761 
    762 enum aq_media_type {
    763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
    764 	AQ_MEDIA_TYPE_FIBRE,
    765 	AQ_MEDIA_TYPE_TP
    766 };
    767 
    768 struct aq_rx_desc_read {
    769 	uint64_t buf_addr;
    770 	uint64_t hdr_addr;
    771 } __packed;
    772 
    773 struct aq_rx_desc_wb {
    774 	uint32_t type;
    775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
    776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
    777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
    778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
    779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
    780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
    781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
    782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
    783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
    784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
    785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
    786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
    787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
    788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
    789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
    790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
    791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
    792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
    793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
    794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
    795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
    796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
    797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
    798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
    799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
    800 #define RXDESC_TYPE_SPH			__BIT(21)
    801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
    802 	uint32_t rss_hash;
    803 	uint16_t status;
    804 #define RXDESC_STATUS_DD		__BIT(0)
    805 #define RXDESC_STATUS_EOP		__BIT(1)
    806 #define RXDESC_STATUS_MACERR		__BIT(2)
    807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
    808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
    809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
    810 
    811 #define RXDESC_STATUS_STAT		__BITS(2,5)
    812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
    813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
    814 	uint16_t pkt_len;
    815 	uint16_t next_desc_ptr;
    816 	uint16_t vlan;
    817 } __packed;
    818 
    819 typedef union aq_rx_desc {
    820 	struct aq_rx_desc_read read;
    821 	struct aq_rx_desc_wb wb;
    822 } __packed aq_rx_desc_t;
    823 
    824 typedef struct aq_tx_desc {
    825 	uint64_t buf_addr;
    826 	uint32_t ctl1;
    827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
    828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
    829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
    830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
    831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
    832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
    833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
    834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
    835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
    836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
    837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
    838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
    839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
    840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
    841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
    842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
    843 	uint32_t ctl2;
    844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
    845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
    846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
    847 } __packed aq_tx_desc_t;
    848 
    849 struct aq_txring {
    850 	struct aq_softc *txr_sc;
    851 	int txr_index;
    852 	kmutex_t txr_mutex;
    853 	bool txr_active;
    854 
    855 	pcq_t *txr_pcq;
    856 	void *txr_softint;
    857 
    858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
    859 	bus_dmamap_t txr_txdesc_dmamap;
    860 	bus_dma_segment_t txr_txdesc_seg[1];
    861 	bus_size_t txr_txdesc_size;
    862 
    863 	struct {
    864 		struct mbuf *m;
    865 		bus_dmamap_t dmamap;
    866 	} txr_mbufs[AQ_TXD_NUM];
    867 	unsigned int txr_prodidx;
    868 	unsigned int txr_considx;
    869 	int txr_nfree;
    870 };
    871 
    872 struct aq_rxring {
    873 	struct aq_softc *rxr_sc;
    874 	int rxr_index;
    875 	kmutex_t rxr_mutex;
    876 	bool rxr_active;
    877 
    878 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
    879 	bus_dmamap_t rxr_rxdesc_dmamap;
    880 	bus_dma_segment_t rxr_rxdesc_seg[1];
    881 	bus_size_t rxr_rxdesc_size;
    882 	struct {
    883 		struct mbuf *m;
    884 		bus_dmamap_t dmamap;
    885 	} rxr_mbufs[AQ_RXD_NUM];
    886 	unsigned int rxr_readidx;
    887 };
    888 
    889 struct aq_queue {
    890 	struct aq_softc *sc;
    891 	struct aq_txring txring;
    892 	struct aq_rxring rxring;
    893 };
    894 
    895 struct aq_softc;
    896 struct aq_firmware_ops {
    897 	int (*reset)(struct aq_softc *);
    898 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
    899 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
    900 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
    901 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
    902 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
    903 #if NSYSMON_ENVSYS > 0
    904 	int (*get_temperature)(struct aq_softc *, uint32_t *);
    905 #endif
    906 };
    907 
    908 #ifdef AQ_EVENT_COUNTERS
    909 #define AQ_EVCNT_DECL(name)						\
    910 	char sc_evcount_##name##_name[32];				\
    911 	struct evcnt sc_evcount_##name##_ev;
    912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
    913 	do {								\
    914 		snprintf((sc)->sc_evcount_##name##_name,		\
    915 		    sizeof((sc)->sc_evcount_##name##_name),		\
    916 		    "%s", desc);					\
    917 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
    918 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
    919 		    (sc)->sc_evcount_##name##_name);			\
    920 	} while (/*CONSTCOND*/0)
    921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
    922 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
    923 #define AQ_EVCNT_DETACH(sc, name)					\
    924 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
    925 #define AQ_EVCNT_ADD(sc, name, val)					\
    926 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
    927 #endif /* AQ_EVENT_COUNTERS */
    928 
    929 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
    930 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
    931 
    932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
    933 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
    934 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
    935 
    936 
    937 struct aq_softc {
    938 	device_t sc_dev;
    939 
    940 	bus_space_tag_t sc_iot;
    941 	bus_space_handle_t sc_ioh;
    942 	bus_size_t sc_iosize;
    943 	bus_dma_tag_t sc_dmat;;
    944 
    945 	void *sc_ihs[AQ_NINTR_MAX];
    946 	pci_intr_handle_t *sc_intrs;
    947 
    948 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
    949 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
    950 	int sc_linkstat_irq;
    951 	bool sc_use_txrx_independent_intr;
    952 	bool sc_poll_linkstat;
    953 	bool sc_detect_linkstat;
    954 
    955 #if NSYSMON_ENVSYS > 0
    956 	struct sysmon_envsys *sc_sme;
    957 	envsys_data_t sc_sensor_temp;
    958 #endif
    959 
    960 	callout_t sc_tick_ch;
    961 
    962 	int sc_nintrs;
    963 	bool sc_msix;
    964 
    965 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
    966 	int sc_nqueues;
    967 
    968 	pci_chipset_tag_t sc_pc;
    969 	pcitag_t sc_pcitag;
    970 	uint16_t sc_product;
    971 	uint16_t sc_revision;
    972 
    973 	kmutex_t sc_mutex;
    974 	kmutex_t sc_mpi_mutex;
    975 
    976 	struct aq_firmware_ops *sc_fw_ops;
    977 	uint64_t sc_fw_caps;
    978 	enum aq_media_type sc_media_type;
    979 	aq_link_speed_t sc_available_rates;
    980 
    981 	aq_link_speed_t sc_link_rate;
    982 	aq_link_fc_t sc_link_fc;
    983 	aq_link_eee_t sc_link_eee;
    984 
    985 	uint32_t sc_fw_version;
    986 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
    987 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
    988 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
    989 	uint32_t sc_features;
    990 #define FEATURES_MIPS		0x00000001
    991 #define FEATURES_TPO2		0x00000002
    992 #define FEATURES_RPF2		0x00000004
    993 #define FEATURES_MPI_AQ		0x00000008
    994 #define FEATURES_REV_A0		0x10000000
    995 #define FEATURES_REV_A		(FEATURES_REV_A0)
    996 #define FEATURES_REV_B0		0x20000000
    997 #define FEATURES_REV_B1		0x40000000
    998 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
    999 	uint32_t sc_mbox_addr;
   1000 
   1001 	bool sc_rbl_enabled;
   1002 	bool sc_fast_start_enabled;
   1003 	bool sc_flash_present;
   1004 
   1005 	bool sc_intr_moderation_enable;
   1006 	bool sc_rss_enable;
   1007 
   1008 	int sc_media_active;
   1009 
   1010 	struct ethercom sc_ethercom;
   1011 	struct ether_addr sc_enaddr;
   1012 	struct ifmedia sc_media;
   1013 	int sc_ec_capenable;		/* last ec_capenable */
   1014 	unsigned short sc_if_flags;	/* last if_flags */
   1015 
   1016 #ifdef AQ_EVENT_COUNTERS
   1017 	aq_hw_stats_s_t sc_statistics[2];
   1018 	int sc_statistics_idx;
   1019 	bool sc_poll_statistics;
   1020 
   1021 	AQ_EVCNT_DECL(uprc);
   1022 	AQ_EVCNT_DECL(mprc);
   1023 	AQ_EVCNT_DECL(bprc);
   1024 	AQ_EVCNT_DECL(erpt);
   1025 	AQ_EVCNT_DECL(uptc);
   1026 	AQ_EVCNT_DECL(mptc);
   1027 	AQ_EVCNT_DECL(bptc);
   1028 	AQ_EVCNT_DECL(erpr);
   1029 	AQ_EVCNT_DECL(mbtc);
   1030 	AQ_EVCNT_DECL(bbtc);
   1031 	AQ_EVCNT_DECL(mbrc);
   1032 	AQ_EVCNT_DECL(bbrc);
   1033 	AQ_EVCNT_DECL(ubrc);
   1034 	AQ_EVCNT_DECL(ubtc);
   1035 	AQ_EVCNT_DECL(ptc);
   1036 	AQ_EVCNT_DECL(prc);
   1037 	AQ_EVCNT_DECL(dpc);
   1038 	AQ_EVCNT_DECL(cprc);
   1039 #endif
   1040 };
   1041 
   1042 static int aq_match(device_t, cfdata_t, void *);
   1043 static void aq_attach(device_t, device_t, void *);
   1044 static int aq_detach(device_t, int);
   1045 
   1046 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
   1047     bool, bool);
   1048 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
   1049     pci_intr_type_t);
   1050 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
   1051 
   1052 static int aq_ifmedia_change(struct ifnet * const);
   1053 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
   1054 static int aq_ifflags_cb(struct ethercom *);
   1055 static int aq_init(struct ifnet *);
   1056 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
   1057     struct aq_txring *, bool);
   1058 static int aq_transmit(struct ifnet *, struct mbuf *);
   1059 static void aq_deferred_transmit(void *);
   1060 static void aq_start(struct ifnet *);
   1061 static void aq_stop(struct ifnet *, int);
   1062 static void aq_watchdog(struct ifnet *);
   1063 static int aq_ioctl(struct ifnet *, unsigned long, void *);
   1064 
   1065 static int aq_txrx_rings_alloc(struct aq_softc *);
   1066 static void aq_txrx_rings_free(struct aq_softc *);
   1067 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
   1068 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
   1069 
   1070 static void aq_initmedia(struct aq_softc *);
   1071 static void aq_enable_intr(struct aq_softc *, bool, bool);
   1072 
   1073 #if NSYSMON_ENVSYS > 0
   1074 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
   1075 #endif
   1076 static void aq_tick(void *);
   1077 static int aq_legacy_intr(void *);
   1078 static int aq_link_intr(void *);
   1079 static int aq_txrx_intr(void *);
   1080 static int aq_tx_intr(void *);
   1081 static int aq_rx_intr(void *);
   1082 
   1083 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
   1084     aq_link_eee_t);
   1085 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
   1086     aq_link_eee_t *);
   1087 
   1088 static int aq_fw_reset(struct aq_softc *);
   1089 static int aq_fw_version_init(struct aq_softc *);
   1090 static int aq_hw_init(struct aq_softc *);
   1091 static int aq_hw_init_ucp(struct aq_softc *);
   1092 static int aq_hw_reset(struct aq_softc *);
   1093 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
   1094     uint32_t);
   1095 static int aq_get_mac_addr(struct aq_softc *);
   1096 static int aq_init_rss(struct aq_softc *);
   1097 static int aq_set_capability(struct aq_softc *);
   1098 
   1099 static int fw1x_reset(struct aq_softc *);
   1100 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1101     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1102 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1103     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1104 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1105 
   1106 static int fw2x_reset(struct aq_softc *);
   1107 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
   1108     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
   1109 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
   1110     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
   1111 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
   1112 #if NSYSMON_ENVSYS > 0
   1113 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
   1114 #endif
   1115 
   1116 static struct aq_firmware_ops aq_fw1x_ops = {
   1117 	.reset = fw1x_reset,
   1118 	.set_mode = fw1x_set_mode,
   1119 	.get_mode = fw1x_get_mode,
   1120 	.get_stats = fw1x_get_stats,
   1121 #if NSYSMON_ENVSYS > 0
   1122 	.get_temperature = NULL
   1123 #endif
   1124 };
   1125 
   1126 static struct aq_firmware_ops aq_fw2x_ops = {
   1127 	.reset = fw2x_reset,
   1128 	.set_mode = fw2x_set_mode,
   1129 	.get_mode = fw2x_get_mode,
   1130 	.get_stats = fw2x_get_stats,
   1131 #if NSYSMON_ENVSYS > 0
   1132 	.get_temperature = fw2x_get_temperature
   1133 #endif
   1134 };
   1135 
   1136 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
   1137     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
   1138 
   1139 static const struct aq_product {
   1140 	pci_vendor_id_t aq_vendor;
   1141 	pci_product_id_t aq_product;
   1142 	const char *aq_name;
   1143 	enum aq_media_type aq_media_type;
   1144 	aq_link_speed_t aq_available_rates;
   1145 } aq_products[] = {
   1146 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
   1147 	  "Aquantia AQC107 10 Gigabit Network Adapter",
   1148 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1149 	},
   1150 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
   1151 	  "Aquantia AQC108 5 Gigabit Network Adapter",
   1152 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1153 	},
   1154 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
   1155 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
   1156 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1157 	},
   1158 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
   1159 	  "Aquantia AQC111 5 Gigabit Network Adapter",
   1160 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1161 	},
   1162 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
   1163 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
   1164 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1165 	},
   1166 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
   1167 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
   1168 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1169 	},
   1170 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
   1171 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
   1172 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1173 	},
   1174 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
   1175 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
   1176 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1177 	},
   1178 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
   1179 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
   1180 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1181 	},
   1182 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
   1183 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
   1184 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1185 	},
   1186 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
   1187 	  "Aquantia D107 10 Gigabit Network Adapter",
   1188 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
   1189 	},
   1190 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
   1191 	  "Aquantia D108 5 Gigabit Network Adapter",
   1192 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
   1193 	},
   1194 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
   1195 	  "Aquantia D109 2.5 Gigabit Network Adapter",
   1196 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
   1197 	}
   1198 };
   1199 
   1200 static const struct aq_product *
   1201 aq_lookup(const struct pci_attach_args *pa)
   1202 {
   1203 	unsigned int i;
   1204 
   1205 	for (i = 0; i < __arraycount(aq_products); i++) {
   1206 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
   1207 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
   1208 			return &aq_products[i];
   1209 	}
   1210 	return NULL;
   1211 }
   1212 
   1213 static int
   1214 aq_match(device_t parent, cfdata_t cf, void *aux)
   1215 {
   1216 	struct pci_attach_args *pa = aux;
   1217 
   1218 	if (aq_lookup(pa) != NULL)
   1219 		return 1;
   1220 
   1221 	return 0;
   1222 }
   1223 
   1224 static void
   1225 aq_attach(device_t parent, device_t self, void *aux)
   1226 {
   1227 	struct aq_softc *sc = device_private(self);
   1228 	struct pci_attach_args *pa = aux;
   1229 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1230 	pci_chipset_tag_t pc;
   1231 	pcitag_t tag;
   1232 	pcireg_t command, memtype, bar;
   1233 	const struct aq_product *aqp;
   1234 	int error;
   1235 
   1236 	sc->sc_dev = self;
   1237 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
   1238 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
   1239 
   1240 	sc->sc_pc = pc = pa->pa_pc;
   1241 	sc->sc_pcitag = tag = pa->pa_tag;
   1242 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
   1243 
   1244 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1245 	command |= PCI_COMMAND_MASTER_ENABLE;
   1246 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1247 
   1248 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
   1249 	sc->sc_revision = PCI_REVISION(pa->pa_class);
   1250 
   1251 	aqp = aq_lookup(pa);
   1252 	KASSERT(aqp != NULL);
   1253 
   1254 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
   1255 
   1256 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
   1257 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
   1258 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
   1259 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
   1260 		return;
   1261 	}
   1262 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
   1263 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
   1264 	    NULL, &sc->sc_iosize) != 0) {
   1265 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
   1266 		return;
   1267 	}
   1268 
   1269 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
   1270 
   1271 	/* max queue num is 8, and must be 2^n */
   1272 	if (ncpu >= 8)
   1273 		sc->sc_nqueues = 8;
   1274 	else if (ncpu >= 4)
   1275 		sc->sc_nqueues = 4;
   1276 	else if (ncpu >= 2)
   1277 		sc->sc_nqueues = 2;
   1278 	else
   1279 		sc->sc_nqueues = 1;
   1280 
   1281 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
   1282 #ifndef CONFIG_NO_TXRX_INDEPENDENT
   1283 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
   1284 		/* TX intrs + RX intrs + LINKSTAT intrs */
   1285 		sc->sc_use_txrx_independent_intr = true;
   1286 		sc->sc_poll_linkstat = false;
   1287 		sc->sc_msix = true;
   1288 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
   1289 		/* TX intrs + RX intrs */
   1290 		sc->sc_use_txrx_independent_intr = true;
   1291 		sc->sc_poll_linkstat = true;
   1292 		sc->sc_msix = true;
   1293 	} else
   1294 #endif
   1295 	if (msixcount >= (sc->sc_nqueues + 1)) {
   1296 		/* TX/RX intrs LINKSTAT intrs */
   1297 		sc->sc_use_txrx_independent_intr = false;
   1298 		sc->sc_poll_linkstat = false;
   1299 		sc->sc_msix = true;
   1300 	} else if (msixcount >= sc->sc_nqueues) {
   1301 		/* TX/RX intrs */
   1302 		sc->sc_use_txrx_independent_intr = false;
   1303 		sc->sc_poll_linkstat = true;
   1304 		sc->sc_msix = true;
   1305 	} else {
   1306 		/* giving up using MSI-X */
   1307 		sc->sc_msix = false;
   1308 	}
   1309 
   1310 	aprint_debug_dev(sc->sc_dev,
   1311 	    "ncpu=%d, pci_msix_count=%d."
   1312 	    " allocate %d interrupts for %d%s queues%s\n",
   1313 	    ncpu, msixcount,
   1314 	    (sc->sc_use_txrx_independent_intr ?
   1315 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
   1316 	    (sc->sc_poll_linkstat ? 0 : 1),
   1317 	    sc->sc_nqueues,
   1318 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
   1319 	    sc->sc_poll_linkstat ? "" : ", and link status");
   1320 
   1321 	if (sc->sc_msix)
   1322 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
   1323 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
   1324 	else
   1325 		error = ENODEV;
   1326 
   1327 	if (error != 0) {
   1328 		/* if MSI-X failed, fallback to MSI with single queue */
   1329 		sc->sc_use_txrx_independent_intr = false;
   1330 		sc->sc_poll_linkstat = false;
   1331 		sc->sc_msix = false;
   1332 		sc->sc_nqueues = 1;
   1333 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
   1334 	}
   1335 	if (error != 0) {
   1336 		/* if MSI failed, fallback to INTx */
   1337 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
   1338 	}
   1339 	if (error != 0)
   1340 		return;
   1341 
   1342 	callout_init(&sc->sc_tick_ch, 0);
   1343 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
   1344 
   1345 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
   1346 
   1347 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1348 		sc->sc_rss_enable = true;
   1349 	else
   1350 		sc->sc_rss_enable = false;
   1351 
   1352 	error = aq_txrx_rings_alloc(sc);
   1353 	if (error != 0)
   1354 		goto attach_failure;
   1355 
   1356 	error = aq_fw_reset(sc);
   1357 	if (error != 0)
   1358 		goto attach_failure;
   1359 
   1360 	error = aq_fw_version_init(sc);
   1361 	if (error != 0)
   1362 		goto attach_failure;
   1363 
   1364 	error = aq_hw_init_ucp(sc);
   1365 	if (error < 0)
   1366 		goto attach_failure;
   1367 
   1368 	KASSERT(sc->sc_mbox_addr != 0);
   1369 	error = aq_hw_reset(sc);
   1370 	if (error != 0)
   1371 		goto attach_failure;
   1372 
   1373 	aq_get_mac_addr(sc);
   1374 	aq_init_rss(sc);
   1375 
   1376 	error = aq_hw_init(sc);	/* initialize and interrupts */
   1377 	if (error != 0)
   1378 		goto attach_failure;
   1379 
   1380 	sc->sc_media_type = aqp->aq_media_type;
   1381 	sc->sc_available_rates = aqp->aq_available_rates;
   1382 
   1383 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
   1384 	ifmedia_init(&sc->sc_media, IFM_IMASK,
   1385 	    aq_ifmedia_change, aq_ifmedia_status);
   1386 	aq_initmedia(sc);
   1387 
   1388 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1389 	ifp->if_softc = sc;
   1390 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1391 	ifp->if_baudrate = IF_Gbps(10);
   1392 	ifp->if_init = aq_init;
   1393 	ifp->if_ioctl = aq_ioctl;
   1394 	if (sc->sc_msix && (sc->sc_nqueues > 1))
   1395 		ifp->if_transmit = aq_transmit;
   1396 	ifp->if_start = aq_start;
   1397 	ifp->if_stop = aq_stop;
   1398 	ifp->if_watchdog = aq_watchdog;
   1399 	IFQ_SET_READY(&ifp->if_snd);
   1400 
   1401 	/* initialize capabilities */
   1402 	sc->sc_ethercom.ec_capabilities = 0;
   1403 	sc->sc_ethercom.ec_capenable = 0;
   1404 #if notyet
   1405 	/* TODO */
   1406 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
   1407 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWFILTER;
   1408 #endif
   1409 	sc->sc_ethercom.ec_capabilities |=
   1410 	    ETHERCAP_JUMBO_MTU |
   1411 	    ETHERCAP_VLAN_MTU |
   1412 	    ETHERCAP_VLAN_HWTAGGING;
   1413 	sc->sc_ethercom.ec_capenable |=
   1414 	    ETHERCAP_VLAN_HWTAGGING;
   1415 
   1416 	ifp->if_capabilities = 0;
   1417 	ifp->if_capenable = 0;
   1418 #ifdef CONFIG_LRO_SUPPORT
   1419 	ifp->if_capabilities |= IFCAP_LRO;
   1420 	ifp->if_capenable |= IFCAP_LRO;
   1421 #endif
   1422 #if notyet
   1423 	/* TSO */
   1424 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
   1425 #endif
   1426 
   1427 #if notyet
   1428 	/*
   1429 	 * XXX:
   1430 	 *   Rx L4 CSUM doesn't work well for fragment packet.
   1431 	 *   aq marks 'CHEDKED' and 'BAD' for them.
   1432 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
   1433 	 *
   1434 	 *   TODO: test with LRO enabled
   1435 	 */
   1436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
   1437 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
   1438 #endif
   1439 	/* TX hardware checksum offloadding */
   1440 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
   1441 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
   1442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
   1443 	/* RX hardware checksum offloadding */
   1444 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
   1445 
   1446 	if_attach(ifp);
   1447 	if_deferred_start_init(ifp, NULL);
   1448 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
   1449 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
   1450 
   1451 	aq_enable_intr(sc, true, false);	/* only intr about link */
   1452 
   1453 	/* update media */
   1454 	aq_ifmedia_change(ifp);
   1455 
   1456 #if NSYSMON_ENVSYS > 0
   1457 	/* temperature monitoring */
   1458 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
   1459 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
   1460 
   1461 		sc->sc_sme = sysmon_envsys_create();
   1462 		sc->sc_sme->sme_name = device_xname(self);
   1463 		sc->sc_sme->sme_cookie = sc;
   1464 		sc->sc_sme->sme_flags = 0;
   1465 		sc->sc_sme->sme_refresh = aq_temp_refresh;
   1466 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
   1467 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
   1468 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
   1469 
   1470 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
   1471 		sysmon_envsys_register(sc->sc_sme);
   1472 
   1473 		/*
   1474 		 * for unknown reasons, the first call of fw2x_get_temperature()
   1475 		 * will always fail (firmware matter?), so run once now.
   1476 		 */
   1477 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
   1478 	}
   1479 #endif
   1480 
   1481 #ifdef AQ_EVENT_COUNTERS
   1482 	/* get starting statistics values */
   1483 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
   1484 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
   1485 		sc->sc_poll_statistics = true;
   1486 	}
   1487 
   1488 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
   1489 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
   1490 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
   1491 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
   1492 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
   1493 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
   1494 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
   1495 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
   1496 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
   1497 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
   1498 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
   1499 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
   1500 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
   1501 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
   1502 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
   1503 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
   1504 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
   1505 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
   1506 #endif
   1507 
   1508 	return;
   1509 
   1510  attach_failure:
   1511 	aq_detach(self, 0);
   1512 }
   1513 
   1514 static int
   1515 aq_detach(device_t self, int flags __unused)
   1516 {
   1517 	struct aq_softc *sc = device_private(self);
   1518 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1519 	int i, s;
   1520 
   1521 	if (sc->sc_iosize != 0) {
   1522 		if (ifp->if_softc != NULL) {
   1523 			s = splnet();
   1524 			aq_stop(ifp, 0);
   1525 			splx(s);
   1526 		}
   1527 
   1528 		for (i = 0; i < AQ_NINTR_MAX; i++) {
   1529 			if (sc->sc_ihs[i] != NULL) {
   1530 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1531 				sc->sc_ihs[i] = NULL;
   1532 			}
   1533 		}
   1534 		if (sc->sc_nintrs > 0) {
   1535 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
   1536 			    sc->sc_nintrs);
   1537 			sc->sc_intrs = NULL;
   1538 			sc->sc_nintrs = 0;
   1539 		}
   1540 
   1541 		aq_txrx_rings_free(sc);
   1542 
   1543 		if (ifp->if_softc != NULL) {
   1544 			ether_ifdetach(ifp);
   1545 			if_detach(ifp);
   1546 		}
   1547 
   1548 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
   1549 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
   1550 		sc->sc_iosize = 0;
   1551 	}
   1552 
   1553 	callout_stop(&sc->sc_tick_ch);
   1554 
   1555 #if NSYSMON_ENVSYS > 0
   1556 	if (sc->sc_sme != NULL) {
   1557 		/* all sensors associated with this will also be detached */
   1558 		sysmon_envsys_unregister(sc->sc_sme);
   1559 		sc->sc_sme = NULL;
   1560 	}
   1561 #endif
   1562 
   1563 #ifdef AQ_EVENT_COUNTERS
   1564 	AQ_EVCNT_DETACH(sc, uprc);
   1565 	AQ_EVCNT_DETACH(sc, mprc);
   1566 	AQ_EVCNT_DETACH(sc, bprc);
   1567 	AQ_EVCNT_DETACH(sc, erpt);
   1568 	AQ_EVCNT_DETACH(sc, uptc);
   1569 	AQ_EVCNT_DETACH(sc, mptc);
   1570 	AQ_EVCNT_DETACH(sc, bptc);
   1571 	AQ_EVCNT_DETACH(sc, erpr);
   1572 	AQ_EVCNT_DETACH(sc, mbtc);
   1573 	AQ_EVCNT_DETACH(sc, bbtc);
   1574 	AQ_EVCNT_DETACH(sc, mbrc);
   1575 	AQ_EVCNT_DETACH(sc, bbrc);
   1576 	AQ_EVCNT_DETACH(sc, ubrc);
   1577 	AQ_EVCNT_DETACH(sc, ubtc);
   1578 	AQ_EVCNT_DETACH(sc, ptc);
   1579 	AQ_EVCNT_DETACH(sc, prc);
   1580 	AQ_EVCNT_DETACH(sc, dpc);
   1581 	AQ_EVCNT_DETACH(sc, cprc);
   1582 #endif
   1583 
   1584 	ifmedia_fini(&sc->sc_media);
   1585 
   1586 	mutex_destroy(&sc->sc_mpi_mutex);
   1587 	mutex_destroy(&sc->sc_mutex);
   1588 
   1589 	return 0;
   1590 }
   1591 
   1592 static int
   1593 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
   1594     int (*func)(void *), void *arg, const char *xname)
   1595 {
   1596 	char intrbuf[PCI_INTRSTR_LEN];
   1597 	pci_chipset_tag_t pc = sc->sc_pc;
   1598 	void *vih;
   1599 	const char *intrstr = NULL;
   1600 
   1601 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
   1602 	    sizeof(intrbuf));
   1603 
   1604 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
   1605 
   1606 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
   1607 	    IPL_NET, func, arg, xname);
   1608 	if (vih == NULL) {
   1609 		aprint_error_dev(sc->sc_dev,
   1610 		    "unable to establish MSI-X%s%s for %s\n",
   1611 		    intrstr ? " at " : "",
   1612 		    intrstr ? intrstr : "", xname);
   1613 		return EIO;
   1614 	}
   1615 	sc->sc_ihs[intno] = vih;
   1616 
   1617 	if (affinity != NULL) {
   1618 		/* Round-robin affinity */
   1619 		kcpuset_zero(affinity);
   1620 		kcpuset_set(affinity, intno % ncpu);
   1621 		interrupt_distribute(vih, affinity, NULL);
   1622 	}
   1623 
   1624 	return 0;
   1625 }
   1626 
   1627 static int
   1628 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
   1629     bool linkintr)
   1630 {
   1631 	kcpuset_t *affinity;
   1632 	int error, intno, i;
   1633 	char intr_xname[INTRDEVNAMEBUF];
   1634 
   1635 	kcpuset_create(&affinity, false);
   1636 
   1637 	intno = 0;
   1638 
   1639 	if (txrx_independent) {
   1640 		for (i = 0; i < sc->sc_nqueues; i++) {
   1641 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
   1642 			    device_xname(sc->sc_dev), i);
   1643 			sc->sc_rx_irq[i] = intno;
   1644 			error = aq_establish_intr(sc, intno++, affinity,
   1645 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
   1646 			if (error != 0)
   1647 				goto fail;
   1648 		}
   1649 		for (i = 0; i < sc->sc_nqueues; i++) {
   1650 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
   1651 			    device_xname(sc->sc_dev), i);
   1652 			sc->sc_tx_irq[i] = intno;
   1653 			error = aq_establish_intr(sc, intno++, affinity,
   1654 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
   1655 			if (error != 0)
   1656 				goto fail;
   1657 		}
   1658 	} else {
   1659 		for (i = 0; i < sc->sc_nqueues; i++) {
   1660 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
   1661 			    device_xname(sc->sc_dev), i);
   1662 			sc->sc_rx_irq[i] = intno;
   1663 			sc->sc_tx_irq[i] = intno;
   1664 			error = aq_establish_intr(sc, intno++, affinity,
   1665 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
   1666 			if (error != 0)
   1667 				goto fail;
   1668 		}
   1669 	}
   1670 
   1671 	if (linkintr) {
   1672 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
   1673 		    device_xname(sc->sc_dev));
   1674 		sc->sc_linkstat_irq = intno;
   1675 		error = aq_establish_intr(sc, intno++, affinity,
   1676 		    aq_link_intr, sc, intr_xname);
   1677 		if (error != 0)
   1678 			goto fail;
   1679 	}
   1680 
   1681 	kcpuset_destroy(affinity);
   1682 	return 0;
   1683 
   1684  fail:
   1685 	for (i = 0; i < AQ_NINTR_MAX; i++) {
   1686 		if (sc->sc_ihs[i] != NULL) {
   1687 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
   1688 			sc->sc_ihs[i] = NULL;
   1689 		}
   1690 	}
   1691 
   1692 	kcpuset_destroy(affinity);
   1693 	return ENOMEM;
   1694 }
   1695 
   1696 static int
   1697 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
   1698     bool txrx_independent, bool linkintr)
   1699 {
   1700 	int error, nintr;
   1701 
   1702 	if (txrx_independent)
   1703 		nintr = nqueue * 2;
   1704 	else
   1705 		nintr = nqueue;
   1706 
   1707 	if (linkintr)
   1708 		nintr++;
   1709 
   1710 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
   1711 	if (error != 0) {
   1712 		aprint_error_dev(sc->sc_dev,
   1713 		    "failed to allocate MSI-X interrupts\n");
   1714 		goto fail;
   1715 	}
   1716 
   1717 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
   1718 	if (error == 0) {
   1719 		sc->sc_nintrs = nintr;
   1720 	} else {
   1721 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1722 		sc->sc_nintrs = 0;
   1723 	}
   1724  fail:
   1725 	return error;
   1726 
   1727 }
   1728 
   1729 static int
   1730 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
   1731     pci_intr_type_t inttype)
   1732 {
   1733 	int counts[PCI_INTR_TYPE_SIZE];
   1734 	int error, nintr;
   1735 
   1736 	nintr = 1;
   1737 
   1738 	memset(counts, 0, sizeof(counts));
   1739 	counts[inttype] = nintr;
   1740 
   1741 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
   1742 	if (error != 0) {
   1743 		aprint_error_dev(sc->sc_dev,
   1744 		    "failed to allocate%s interrupts\n",
   1745 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
   1746 		return error;
   1747 	}
   1748 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
   1749 	    device_xname(sc->sc_dev));
   1750 	if (error == 0) {
   1751 		sc->sc_nintrs = nintr;
   1752 	} else {
   1753 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
   1754 		sc->sc_nintrs = 0;
   1755 	}
   1756 	return error;
   1757 }
   1758 
   1759 static void
   1760 global_software_reset(struct aq_softc *sc)
   1761 {
   1762 	uint32_t v;
   1763 
   1764 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
   1765 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
   1766 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
   1767 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
   1768 
   1769 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1770 	v &= ~AQ_FW_SOFTRESET_DIS;
   1771 	v |= AQ_FW_SOFTRESET_RESET;
   1772 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1773 }
   1774 
   1775 static int
   1776 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1777 {
   1778 	int timo;
   1779 
   1780 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
   1781 
   1782 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1783 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1784 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1785 
   1786 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
   1787 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
   1788 
   1789 	global_software_reset(sc);
   1790 
   1791 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
   1792 
   1793 	/* Wait for RBL to finish boot process. */
   1794 #define RBL_TIMEOUT_MS	10000
   1795 	uint16_t rbl_status;
   1796 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
   1797 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
   1798 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
   1799 			break;
   1800 		msec_delay(1);
   1801 	}
   1802 	if (timo <= 0) {
   1803 		aprint_error_dev(sc->sc_dev,
   1804 		    "RBL> RBL restart failed: timeout\n");
   1805 		return EBUSY;
   1806 	}
   1807 	switch (rbl_status) {
   1808 	case RBL_STATUS_SUCCESS:
   1809 		if (mode != NULL)
   1810 			*mode = FW_BOOT_MODE_RBL_FLASH;
   1811 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
   1812 		break;
   1813 	case RBL_STATUS_HOST_BOOT:
   1814 		if (mode != NULL)
   1815 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
   1816 		aprint_debug_dev(sc->sc_dev,
   1817 		    "RBL> reset complete! [Host Bootload]\n");
   1818 		break;
   1819 	case RBL_STATUS_FAILURE:
   1820 	default:
   1821 		aprint_error_dev(sc->sc_dev,
   1822 		    "unknown RBL status 0x%x\n", rbl_status);
   1823 		return EBUSY;
   1824 	}
   1825 
   1826 	return 0;
   1827 }
   1828 
   1829 static int
   1830 mac_soft_reset_flb(struct aq_softc *sc)
   1831 {
   1832 	uint32_t v;
   1833 	int timo;
   1834 
   1835 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
   1836 	/*
   1837 	 * Let Felicity hardware to complete SMBUS transaction before
   1838 	 * Global software reset.
   1839 	 */
   1840 	msec_delay(50);
   1841 
   1842 	/*
   1843 	 * If SPI burst transaction was interrupted(before running the script),
   1844 	 * global software reset may not clear SPI interface.
   1845 	 * Clean it up manually before global reset.
   1846 	 */
   1847 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
   1848 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
   1849 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
   1850 	msec_delay(50);
   1851 
   1852 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
   1853 	v &= ~AQ_FW_SOFTRESET_DIS;
   1854 	v |= AQ_FW_SOFTRESET_RESET;
   1855 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
   1856 
   1857 	/* Kickstart. */
   1858 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1859 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
   1860 	if (!sc->sc_fast_start_enabled)
   1861 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
   1862 
   1863 	/*
   1864 	 * For the case SPI burst transaction was interrupted (by MCP reset
   1865 	 * above), wait until it is completed by hardware.
   1866 	 */
   1867 	msec_delay(50);
   1868 
   1869 	/* MAC Kickstart */
   1870 	if (!sc->sc_fast_start_enabled) {
   1871 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
   1872 
   1873 		uint32_t flb_status;
   1874 		for (timo = 0; timo < 1000; timo++) {
   1875 			flb_status = AQ_READ_REG(sc,
   1876 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
   1877 			if (flb_status != 0)
   1878 				break;
   1879 			msec_delay(1);
   1880 		}
   1881 		if (flb_status == 0) {
   1882 			aprint_error_dev(sc->sc_dev,
   1883 			    "FLB> MAC kickstart failed: timed out\n");
   1884 			return ETIMEDOUT;
   1885 		}
   1886 		aprint_debug_dev(sc->sc_dev,
   1887 		    "FLB> MAC kickstart done, %d ms\n", timo);
   1888 		/* FW reset */
   1889 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
   1890 		/*
   1891 		 * Let Felicity hardware complete SMBUS transaction before
   1892 		 * Global software reset.
   1893 		 */
   1894 		msec_delay(50);
   1895 		sc->sc_fast_start_enabled = true;
   1896 	}
   1897 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
   1898 
   1899 	/* PHY Kickstart: #undone */
   1900 	global_software_reset(sc);
   1901 
   1902 	for (timo = 0; timo < 1000; timo++) {
   1903 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
   1904 			break;
   1905 		msec_delay(10);
   1906 	}
   1907 	if (timo >= 1000) {
   1908 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
   1909 		return ETIMEDOUT;
   1910 	}
   1911 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
   1912 	return 0;
   1913 
   1914 }
   1915 
   1916 static int
   1917 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
   1918 {
   1919 	if (sc->sc_rbl_enabled)
   1920 		return mac_soft_reset_rbl(sc, mode);
   1921 
   1922 	if (mode != NULL)
   1923 		*mode = FW_BOOT_MODE_FLB;
   1924 	return mac_soft_reset_flb(sc);
   1925 }
   1926 
   1927 static int
   1928 aq_fw_read_version(struct aq_softc *sc)
   1929 {
   1930 	int i, error = EBUSY;
   1931 #define MAC_FW_START_TIMEOUT_MS	10000
   1932 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
   1933 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1934 		if (sc->sc_fw_version != 0) {
   1935 			error = 0;
   1936 			break;
   1937 		}
   1938 		delay(1000);
   1939 	}
   1940 	return error;
   1941 }
   1942 
   1943 static int
   1944 aq_fw_reset(struct aq_softc *sc)
   1945 {
   1946 	uint32_t ver, v, bootExitCode;
   1947 	int i, error;
   1948 
   1949 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
   1950 
   1951 	for (i = 1000; i > 0; i--) {
   1952 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
   1953 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
   1954 		if (v != 0x06000000 || bootExitCode != 0)
   1955 			break;
   1956 	}
   1957 	if (i <= 0) {
   1958 		aprint_error_dev(sc->sc_dev,
   1959 		    "F/W reset failed. Neither RBL nor FLB started\n");
   1960 		return ETIMEDOUT;
   1961 	}
   1962 	sc->sc_rbl_enabled = (bootExitCode != 0);
   1963 
   1964 	/*
   1965 	 * Having FW version 0 is an indicator that cold start
   1966 	 * is in progress. This means two things:
   1967 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
   1968 	 * 2) Driver may skip reset sequence and save time.
   1969 	 */
   1970 	if (sc->sc_fast_start_enabled && (ver != 0)) {
   1971 		error = aq_fw_read_version(sc);
   1972 		/* Skip reset as it just completed */
   1973 		if (error == 0)
   1974 			return 0;
   1975 	}
   1976 
   1977 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
   1978 	error = mac_soft_reset(sc, &mode);
   1979 	if (error != 0) {
   1980 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
   1981 		return error;
   1982 	}
   1983 
   1984 	switch (mode) {
   1985 	case FW_BOOT_MODE_FLB:
   1986 		aprint_debug_dev(sc->sc_dev,
   1987 		    "FLB> F/W successfully loaded from flash.\n");
   1988 		sc->sc_flash_present = true;
   1989 		return aq_fw_read_version(sc);
   1990 	case FW_BOOT_MODE_RBL_FLASH:
   1991 		aprint_debug_dev(sc->sc_dev,
   1992 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
   1993 		sc->sc_flash_present = true;
   1994 		return aq_fw_read_version(sc);
   1995 	case FW_BOOT_MODE_UNKNOWN:
   1996 		aprint_error_dev(sc->sc_dev,
   1997 		    "F/W bootload error: unknown bootloader type\n");
   1998 		return ENOTSUP;
   1999 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
   2000 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
   2001 		break;
   2002 	}
   2003 
   2004 	/*
   2005 	 * XXX: TODO: add support Host Boot
   2006 	 */
   2007 	aprint_error_dev(sc->sc_dev,
   2008 	    "RBL> F/W Host Bootload not implemented\n");
   2009 	return ENOTSUP;
   2010 }
   2011 
   2012 static int
   2013 aq_hw_reset(struct aq_softc *sc)
   2014 {
   2015 	int error;
   2016 
   2017 	/* disable irq */
   2018 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
   2019 
   2020 	/* apply */
   2021 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
   2022 
   2023 	/* wait ack 10 times by 1ms */
   2024 	WAIT_FOR(
   2025 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
   2026 	    1000, 10, &error);
   2027 	if (error != 0) {
   2028 		aprint_error_dev(sc->sc_dev,
   2029 		    "atlantic: IRQ reset failed: %d\n", error);
   2030 		return error;
   2031 	}
   2032 
   2033 	return sc->sc_fw_ops->reset(sc);
   2034 }
   2035 
   2036 static int
   2037 aq_hw_init_ucp(struct aq_softc *sc)
   2038 {
   2039 	int timo;
   2040 
   2041 	if (FW_VERSION_MAJOR(sc) == 1) {
   2042 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
   2043 			uint32_t data;
   2044 			cprng_fast(&data, sizeof(data));
   2045 			data &= 0xfefefefe;
   2046 			data |= 0x02020202;
   2047 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
   2048 		}
   2049 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
   2050 	}
   2051 
   2052 	for (timo = 100; timo > 0; timo--) {
   2053 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
   2054 		if (sc->sc_mbox_addr != 0)
   2055 			break;
   2056 		delay(1000);
   2057 	}
   2058 
   2059 #define AQ_FW_MIN_VERSION	0x01050006
   2060 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
   2061 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
   2062 		aprint_error_dev(sc->sc_dev,
   2063 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
   2064 		    " or later required, this is %d.%d.%d\n",
   2065 		    FW_VERSION_MAJOR(sc),
   2066 		    FW_VERSION_MINOR(sc),
   2067 		    FW_VERSION_BUILD(sc));
   2068 		return ENOTSUP;
   2069 	}
   2070 
   2071 	return 0;
   2072 }
   2073 
   2074 static int
   2075 aq_fw_version_init(struct aq_softc *sc)
   2076 {
   2077 	int error = 0;
   2078 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
   2079 
   2080 	if (FW_VERSION_MAJOR(sc) == 1) {
   2081 		sc->sc_fw_ops = &aq_fw1x_ops;
   2082 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
   2083 		sc->sc_fw_ops = &aq_fw2x_ops;
   2084 	} else {
   2085 		aprint_error_dev(sc->sc_dev,
   2086 		    "Unsupported F/W version %d.%d.%d\n",
   2087 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
   2088 		    FW_VERSION_BUILD(sc));
   2089 		return ENOTSUP;
   2090 	}
   2091 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
   2092 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
   2093 
   2094 	/* detect revision */
   2095 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
   2096 	switch (hwrev & 0x0000000f) {
   2097 	case 0x01:
   2098 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
   2099 		    fw_vers);
   2100 		sc->sc_features |= FEATURES_REV_A0 |
   2101 		    FEATURES_MPI_AQ | FEATURES_MIPS;
   2102 		break;
   2103 	case 0x02:
   2104 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
   2105 		    fw_vers);
   2106 		sc->sc_features |= FEATURES_REV_B0 |
   2107 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2108 		    FEATURES_TPO2 | FEATURES_RPF2;
   2109 		break;
   2110 	case 0x0A:
   2111 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
   2112 		    fw_vers);
   2113 		sc->sc_features |= FEATURES_REV_B1 |
   2114 		    FEATURES_MPI_AQ | FEATURES_MIPS |
   2115 		    FEATURES_TPO2 | FEATURES_RPF2;
   2116 		break;
   2117 	default:
   2118 		aprint_error_dev(sc->sc_dev,
   2119 		    "Unknown revision (0x%08x)\n", hwrev);
   2120 		error = ENOTSUP;
   2121 		break;
   2122 	}
   2123 	return error;
   2124 }
   2125 
   2126 static int
   2127 fw1x_reset(struct aq_softc *sc)
   2128 {
   2129 	struct aq_mailbox_header mbox;
   2130 	const int retryCount = 1000;
   2131 	uint32_t tid0;
   2132 	int i;
   2133 
   2134 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
   2135 
   2136 	for (i = 0; i < retryCount; ++i) {
   2137 		/*
   2138 		 * Read the beginning of Statistics structure to capture
   2139 		 * the Transaction ID.
   2140 		 */
   2141 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
   2142 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
   2143 
   2144 		/* Successfully read the stats. */
   2145 		if (tid0 == ~0U) {
   2146 			/* We have read the initial value. */
   2147 			tid0 = mbox.transaction_id;
   2148 			continue;
   2149 		} else if (mbox.transaction_id != tid0) {
   2150 			/*
   2151 			 * Compare transaction ID to initial value.
   2152 			 * If it's different means f/w is alive.
   2153 			 * We're done.
   2154 			 */
   2155 			return 0;
   2156 		}
   2157 
   2158 		/*
   2159 		 * Transaction ID value haven't changed since last time.
   2160 		 * Try reading the stats again.
   2161 		 */
   2162 		delay(10);
   2163 	}
   2164 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
   2165 	return EBUSY;
   2166 }
   2167 
   2168 static int
   2169 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2170     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2171 {
   2172 	uint32_t mpictrl = 0;
   2173 	uint32_t mpispeed = 0;
   2174 
   2175 	if (speed & AQ_LINK_10G)
   2176 		mpispeed |= FW1X_CTRL_10G;
   2177 	if (speed & AQ_LINK_5G)
   2178 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
   2179 	if (speed & AQ_LINK_2G5)
   2180 		mpispeed |= FW1X_CTRL_2G5;
   2181 	if (speed & AQ_LINK_1G)
   2182 		mpispeed |= FW1X_CTRL_1G;
   2183 	if (speed & AQ_LINK_100M)
   2184 		mpispeed |= FW1X_CTRL_100M;
   2185 
   2186 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
   2187 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
   2188 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
   2189 	return 0;
   2190 }
   2191 
   2192 static int
   2193 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2194     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2195 {
   2196 	uint32_t mpistate, mpi_speed;
   2197 	aq_link_speed_t speed = AQ_LINK_NONE;
   2198 
   2199 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
   2200 
   2201 	if (modep != NULL)
   2202 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
   2203 
   2204 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
   2205 	if (mpi_speed & FW1X_CTRL_10G)
   2206 		speed = AQ_LINK_10G;
   2207 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
   2208 		speed = AQ_LINK_5G;
   2209 	else if (mpi_speed & FW1X_CTRL_2G5)
   2210 		speed = AQ_LINK_2G5;
   2211 	else if (mpi_speed & FW1X_CTRL_1G)
   2212 		speed = AQ_LINK_1G;
   2213 	else if (mpi_speed & FW1X_CTRL_100M)
   2214 		speed = AQ_LINK_100M;
   2215 
   2216 	if (speedp != NULL)
   2217 		*speedp = speed;
   2218 
   2219 	if (fcp != NULL)
   2220 		*fcp = AQ_FC_NONE;
   2221 
   2222 	if (eeep != NULL)
   2223 		*eeep = AQ_EEE_DISABLE;
   2224 
   2225 	return 0;
   2226 }
   2227 
   2228 static int
   2229 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2230 {
   2231 	int error;
   2232 
   2233 	error = aq_fw_downld_dwords(sc,
   2234 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
   2235 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
   2236 	if (error < 0) {
   2237 		device_printf(sc->sc_dev,
   2238 		    "fw1x> download statistics data FAILED, error %d", error);
   2239 		return error;
   2240 	}
   2241 
   2242 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2243 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2244 	return 0;
   2245 }
   2246 
   2247 static int
   2248 fw2x_reset(struct aq_softc *sc)
   2249 {
   2250 	fw2x_capabilities_t caps = { 0 };
   2251 	int error;
   2252 
   2253 	error = aq_fw_downld_dwords(sc,
   2254 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
   2255 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
   2256 	if (error != 0) {
   2257 		aprint_error_dev(sc->sc_dev,
   2258 		    "fw2x> can't get F/W capabilities mask, error %d\n",
   2259 		    error);
   2260 		return error;
   2261 	}
   2262 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
   2263 
   2264 	char buf[256];
   2265 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
   2266 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
   2267 
   2268 	return 0;
   2269 }
   2270 
   2271 static int
   2272 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
   2273     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
   2274 {
   2275 	uint64_t mpi_ctrl;
   2276 	int error = 0;
   2277 
   2278 	AQ_MPI_LOCK(sc);
   2279 
   2280 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2281 
   2282 	switch (mode) {
   2283 	case MPI_INIT:
   2284 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
   2285 		if (speed & AQ_LINK_10G)
   2286 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
   2287 		if (speed & AQ_LINK_5G)
   2288 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
   2289 		if (speed & AQ_LINK_2G5)
   2290 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
   2291 		if (speed & AQ_LINK_1G)
   2292 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
   2293 		if (speed & AQ_LINK_100M)
   2294 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
   2295 
   2296 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
   2297 
   2298 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
   2299 		if (eee == AQ_EEE_ENABLE)
   2300 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
   2301 
   2302 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2303 		if (fc & AQ_FC_RX)
   2304 			mpi_ctrl |= FW2X_CTRL_PAUSE;
   2305 		if (fc & AQ_FC_TX)
   2306 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
   2307 		break;
   2308 	case MPI_DEINIT:
   2309 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
   2310 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
   2311 		break;
   2312 	default:
   2313 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
   2314 		error =  EINVAL;
   2315 		goto failure;
   2316 	}
   2317 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2318 
   2319  failure:
   2320 	AQ_MPI_UNLOCK(sc);
   2321 	return error;
   2322 }
   2323 
   2324 static int
   2325 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
   2326     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
   2327 {
   2328 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2329 
   2330 	if (modep != NULL) {
   2331 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2332 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
   2333 			*modep = MPI_INIT;
   2334 		else
   2335 			*modep = MPI_DEINIT;
   2336 	}
   2337 
   2338 	aq_link_speed_t speed = AQ_LINK_NONE;
   2339 	if (mpi_state & FW2X_CTRL_RATE_10G)
   2340 		speed = AQ_LINK_10G;
   2341 	else if (mpi_state & FW2X_CTRL_RATE_5G)
   2342 		speed = AQ_LINK_5G;
   2343 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
   2344 		speed = AQ_LINK_2G5;
   2345 	else if (mpi_state & FW2X_CTRL_RATE_1G)
   2346 		speed = AQ_LINK_1G;
   2347 	else if (mpi_state & FW2X_CTRL_RATE_100M)
   2348 		speed = AQ_LINK_100M;
   2349 
   2350 	if (speedp != NULL)
   2351 		*speedp = speed;
   2352 
   2353 	aq_link_fc_t fc = AQ_FC_NONE;
   2354 	if (mpi_state & FW2X_CTRL_PAUSE)
   2355 		fc |= AQ_FC_RX;
   2356 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
   2357 		fc |= AQ_FC_TX;
   2358 	if (fcp != NULL)
   2359 		*fcp = fc;
   2360 
   2361 	/* XXX: TODO: EEE */
   2362 	if (eeep != NULL)
   2363 		*eeep = AQ_EEE_DISABLE;
   2364 
   2365 	return 0;
   2366 }
   2367 
   2368 static int
   2369 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
   2370     uint32_t timeout_ms, uint32_t try_count)
   2371 {
   2372 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
   2373 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
   2374 	int error;
   2375 
   2376 	/* First, check that control and state values are consistent */
   2377 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
   2378 		device_printf(sc->sc_dev,
   2379 		    "fw2x> MPI control (%#llx) and state (%#llx)"
   2380 		    " are not consistent for mask %#llx!\n",
   2381 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
   2382 		    (unsigned long long)mask);
   2383 		return EINVAL;
   2384 	}
   2385 
   2386 	/* Invert bits (toggle) in control register */
   2387 	mpi_ctrl ^= mask;
   2388 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
   2389 
   2390 	/* Clear all bits except masked */
   2391 	mpi_ctrl &= mask;
   2392 
   2393 	/* Wait for FW reflecting change in state register */
   2394 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
   2395 	    1000 * timeout_ms, try_count, &error);
   2396 	if (error != 0) {
   2397 		device_printf(sc->sc_dev,
   2398 		    "f/w2x> timeout while waiting for response"
   2399 		    " in state register for bit %#llx!",
   2400 		    (unsigned long long)mask);
   2401 		return error;
   2402 	}
   2403 	return 0;
   2404 }
   2405 
   2406 static int
   2407 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
   2408 {
   2409 	int error;
   2410 
   2411 	AQ_MPI_LOCK(sc);
   2412 	/* Say to F/W to update the statistics */
   2413 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
   2414 	if (error != 0) {
   2415 		device_printf(sc->sc_dev,
   2416 		    "fw2x> statistics update error %d\n", error);
   2417 		goto failure;
   2418 	}
   2419 
   2420 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
   2421 	error = aq_fw_downld_dwords(sc,
   2422 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
   2423 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
   2424 	if (error != 0) {
   2425 		device_printf(sc->sc_dev,
   2426 		    "fw2x> download statistics data FAILED, error %d", error);
   2427 		goto failure;
   2428 	}
   2429 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
   2430 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
   2431 
   2432  failure:
   2433 	AQ_MPI_UNLOCK(sc);
   2434 	return error;
   2435 }
   2436 
   2437 #if NSYSMON_ENVSYS > 0
   2438 static int
   2439 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
   2440 {
   2441 	int error;
   2442 	uint32_t value, celsius;
   2443 
   2444 	AQ_MPI_LOCK(sc);
   2445 
   2446 	/* Say to F/W to update the temperature */
   2447 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
   2448 	if (error != 0)
   2449 		goto failure;
   2450 
   2451 	error = aq_fw_downld_dwords(sc,
   2452 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
   2453 	    &value, sizeof(value) / sizeof(uint32_t));
   2454 	if (error != 0)
   2455 		goto failure;
   2456 
   2457 	/* 1/256 decrees C to microkelvin */
   2458 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
   2459 	if (celsius == 0) {
   2460 		error = EIO;
   2461 		goto failure;
   2462 	}
   2463 	*temp = celsius * (1000000 / 256) + 273150000;
   2464 
   2465  failure:
   2466 	AQ_MPI_UNLOCK(sc);
   2467 	return 0;
   2468 }
   2469 #endif
   2470 
   2471 static int
   2472 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
   2473     uint32_t cnt)
   2474 {
   2475 	uint32_t v;
   2476 	int error = 0;
   2477 
   2478 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
   2479 	if (error != 0) {
   2480 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2481 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
   2482 		if (v == 0) {
   2483 			device_printf(sc->sc_dev,
   2484 			    "%s:%d: timeout\n", __func__, __LINE__);
   2485 			return ETIMEDOUT;
   2486 		}
   2487 	}
   2488 
   2489 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
   2490 
   2491 	error = 0;
   2492 	for (; cnt > 0 && error == 0; cnt--) {
   2493 		/* execute mailbox interface */
   2494 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
   2495 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
   2496 		if (sc->sc_features & FEATURES_REV_B1) {
   2497 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
   2498 			    1, 1000, &error);
   2499 		} else {
   2500 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
   2501 			    AQ_FW_MBOX_CMD_BUSY) == 0,
   2502 			    1, 1000, &error);
   2503 		}
   2504 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
   2505 		addr += sizeof(uint32_t);
   2506 	}
   2507 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
   2508 
   2509 	if (error != 0)
   2510 		device_printf(sc->sc_dev,
   2511 		    "%s:%d: timeout\n", __func__, __LINE__);
   2512 
   2513 	return error;
   2514 }
   2515 
   2516 /* read my mac address */
   2517 static int
   2518 aq_get_mac_addr(struct aq_softc *sc)
   2519 {
   2520 	uint32_t mac_addr[2];
   2521 	uint32_t efuse_shadow_addr;
   2522 	int err;
   2523 
   2524 	efuse_shadow_addr = 0;
   2525 	if (FW_VERSION_MAJOR(sc) >= 2)
   2526 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
   2527 	else
   2528 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
   2529 
   2530 	if (efuse_shadow_addr == 0) {
   2531 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
   2532 		return ENXIO;
   2533 	}
   2534 
   2535 	memset(mac_addr, 0, sizeof(mac_addr));
   2536 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
   2537 	    mac_addr, __arraycount(mac_addr));
   2538 	if (err < 0)
   2539 		return err;
   2540 
   2541 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
   2542 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
   2543 		return ENXIO;
   2544 	}
   2545 
   2546 	mac_addr[0] = bswap32(mac_addr[0]);
   2547 	mac_addr[1] = bswap32(mac_addr[1]);
   2548 
   2549 	memcpy(sc->sc_enaddr.ether_addr_octet,
   2550 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
   2551 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
   2552 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
   2553 
   2554 	return 0;
   2555 }
   2556 
   2557 /* set multicast filter. index 0 for own address */
   2558 static int
   2559 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
   2560 {
   2561 	uint32_t h, l;
   2562 
   2563 	if (index >= AQ_HW_MAC_NUM)
   2564 		return EINVAL;
   2565 
   2566 	if (enaddr == NULL) {
   2567 		/* disable */
   2568 		AQ_WRITE_REG_BIT(sc,
   2569 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2570 		return 0;
   2571 	}
   2572 
   2573 	h = (enaddr[0] <<  8) | (enaddr[1]);
   2574 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
   2575 	    (enaddr[4] <<  8) | (enaddr[5]);
   2576 
   2577 	/* disable, set, and enable */
   2578 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
   2579 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
   2580 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
   2581 	    RPF_L2UC_MSW_MACADDR_HI, h);
   2582 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
   2583 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
   2584 
   2585 	return 0;
   2586 }
   2587 
   2588 static int
   2589 aq_set_capability(struct aq_softc *sc)
   2590 {
   2591 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2592 	int ip4csum_tx =
   2593 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
   2594 	int ip4csum_rx =
   2595 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
   2596 	int l4csum_tx = ((ifp->if_capenable &
   2597 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
   2598 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
   2599 	int l4csum_rx =
   2600 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   2601 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
   2602 	uint32_t lso =
   2603 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
   2604 	   0 : 0xffffffff;
   2605 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
   2606 	    0 : 0xffffffff;
   2607 	uint32_t i, v;
   2608 
   2609 	/* TX checksums offloads*/
   2610 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
   2611 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
   2612 
   2613 	/* RX checksums offloads*/
   2614 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
   2615 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
   2616 
   2617 	/* LSO offloads*/
   2618 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
   2619 
   2620 #define AQ_B0_LRO_RXD_MAX	16
   2621 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
   2622 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
   2623 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
   2624 	for (i = 0; i < AQ_RINGS_NUM; i++) {
   2625 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
   2626 		    RPO_LRO_LDES_MAX_MASK(i), v);
   2627 	}
   2628 
   2629 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
   2630 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
   2631 	    RPO_LRO_INACTIVE_IVAL, 0);
   2632 	/*
   2633 	 * the LRO timebase divider is 5 uS (0x61a),
   2634 	 * to get a maximum coalescing interval of 250 uS,
   2635 	 * we need to multiply by 50(0x32) to get
   2636 	 * the default value 250 uS
   2637 	 */
   2638 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
   2639 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
   2640 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2641 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
   2642 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2643 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
   2644 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2645 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
   2646 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
   2647 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
   2648 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
   2649 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
   2650 
   2651 	return 0;
   2652 }
   2653 
   2654 static int
   2655 aq_set_filter(struct aq_softc *sc)
   2656 {
   2657 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2658 	struct ethercom *ec = &sc->sc_ethercom;
   2659 	struct ether_multi *enm;
   2660 	struct ether_multistep step;
   2661 	int idx, error = 0;
   2662 
   2663 	if (ifp->if_flags & IFF_PROMISC) {
   2664 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
   2665 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
   2666 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2667 		goto done;
   2668 	}
   2669 
   2670 	/* clear all table */
   2671 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
   2672 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
   2673 			continue;
   2674 		aq_set_mac_addr(sc, idx, NULL);
   2675 	}
   2676 
   2677 	/* don't accept all multicast */
   2678 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2679 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
   2680 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2681 	    RPF_MCAST_FILTER_EN, 0);
   2682 
   2683 	idx = 0;
   2684 	ETHER_LOCK(ec);
   2685 	ETHER_FIRST_MULTI(step, ec, enm);
   2686 	while (enm != NULL) {
   2687 		if (idx == AQ_HW_MAC_OWN)
   2688 			idx++;
   2689 
   2690 		if ((idx >= AQ_HW_MAC_NUM) ||
   2691 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2692 			/*
   2693 			 * too many filters.
   2694 			 * fallback to accept all multicast addresses.
   2695 			 */
   2696 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
   2697 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
   2698 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
   2699 			    RPF_MCAST_FILTER_EN, 1);
   2700 			ec->ec_flags |= ETHER_F_ALLMULTI;
   2701 			ETHER_UNLOCK(ec);
   2702 			goto done;
   2703 		}
   2704 
   2705 		/* add a filter */
   2706 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
   2707 
   2708 		ETHER_NEXT_MULTI(step, enm);
   2709 	}
   2710 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2711 	ETHER_UNLOCK(ec);
   2712 
   2713  done:
   2714 	return error;
   2715 }
   2716 
   2717 static void
   2718 aq_mediastatus_update(struct aq_softc *sc)
   2719 {
   2720 	sc->sc_media_active = 0;
   2721 
   2722 	if (sc->sc_link_fc & AQ_FC_RX)
   2723 		sc->sc_media_active |= IFM_ETH_RXPAUSE;
   2724 	if (sc->sc_link_fc & AQ_FC_TX)
   2725 		sc->sc_media_active |= IFM_ETH_TXPAUSE;
   2726 
   2727 	switch (sc->sc_link_rate) {
   2728 	case AQ_LINK_100M:
   2729 		/* XXX: need to detect fulldup or halfdup */
   2730 		sc->sc_media_active |= IFM_100_TX | IFM_FDX;
   2731 		break;
   2732 	case AQ_LINK_1G:
   2733 		sc->sc_media_active |= IFM_1000_T | IFM_FDX;
   2734 		break;
   2735 	case AQ_LINK_2G5:
   2736 		sc->sc_media_active |= IFM_2500_T | IFM_FDX;
   2737 		break;
   2738 	case AQ_LINK_5G:
   2739 		sc->sc_media_active |= IFM_5000_T | IFM_FDX;
   2740 		break;
   2741 	case AQ_LINK_10G:
   2742 		sc->sc_media_active |= IFM_10G_T | IFM_FDX;
   2743 		break;
   2744 	default:
   2745 		sc->sc_media_active |= IFM_NONE;
   2746 		break;
   2747 	}
   2748 }
   2749 
   2750 static int
   2751 aq_ifmedia_change(struct ifnet * const ifp)
   2752 {
   2753 	struct aq_softc *sc = ifp->if_softc;
   2754 	aq_link_speed_t rate = AQ_LINK_NONE;
   2755 	aq_link_fc_t fc = AQ_FC_NONE;
   2756 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   2757 
   2758 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   2759 		return EINVAL;
   2760 
   2761 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
   2762 	case IFM_AUTO:
   2763 		rate = AQ_LINK_AUTO;
   2764 		break;
   2765 	case IFM_NONE:
   2766 		rate = AQ_LINK_NONE;
   2767 		break;
   2768 	case IFM_100_TX:
   2769 		rate = AQ_LINK_100M;
   2770 		break;
   2771 	case IFM_1000_T:
   2772 		rate = AQ_LINK_1G;
   2773 		break;
   2774 	case IFM_2500_T:
   2775 		rate = AQ_LINK_2G5;
   2776 		break;
   2777 	case IFM_5000_T:
   2778 		rate = AQ_LINK_5G;
   2779 		break;
   2780 	case IFM_10G_T:
   2781 		rate = AQ_LINK_10G;
   2782 		break;
   2783 	default:
   2784 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
   2785 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
   2786 		return ENODEV;
   2787 	}
   2788 
   2789 	if (sc->sc_media.ifm_media & IFM_FLOW)
   2790 		fc = AQ_FC_ALL;
   2791 
   2792 	/* XXX: todo EEE */
   2793 
   2794 	/* re-initialize hardware with new parameters */
   2795 	aq_set_linkmode(sc, rate, fc, eee);
   2796 
   2797 	return 0;
   2798 }
   2799 
   2800 static void
   2801 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
   2802 {
   2803 	struct aq_softc *sc = ifp->if_softc;
   2804 
   2805 	ifmr->ifm_active = IFM_ETHER;
   2806 	ifmr->ifm_status = IFM_AVALID;
   2807 
   2808 	if (sc->sc_link_rate != AQ_LINK_NONE)
   2809 		ifmr->ifm_status |= IFM_ACTIVE;
   2810 
   2811 	ifmr->ifm_active |= sc->sc_media_active;
   2812 }
   2813 
   2814 static void
   2815 aq_initmedia(struct aq_softc *sc)
   2816 {
   2817 #define IFMEDIA_ETHER_ADD(sc, media)	\
   2818 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
   2819 
   2820 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
   2821 	if (sc->sc_available_rates & AQ_LINK_100M) {
   2822 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
   2823 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
   2824 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
   2825 	}
   2826 	if (sc->sc_available_rates & AQ_LINK_1G) {
   2827 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
   2828 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
   2829 	}
   2830 	if (sc->sc_available_rates & AQ_LINK_2G5) {
   2831 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
   2832 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
   2833 	}
   2834 	if (sc->sc_available_rates & AQ_LINK_5G) {
   2835 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
   2836 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
   2837 	}
   2838 	if (sc->sc_available_rates & AQ_LINK_10G) {
   2839 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
   2840 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
   2841 	}
   2842 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
   2843 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
   2844 
   2845 	/* default: auto without flowcontrol */
   2846 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
   2847 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
   2848 }
   2849 
   2850 static int
   2851 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
   2852     aq_link_eee_t eee)
   2853 {
   2854 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
   2855 }
   2856 
   2857 static int
   2858 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
   2859    aq_link_eee_t *eee)
   2860 {
   2861 	aq_hw_fw_mpi_state_t mode;
   2862 	int error;
   2863 
   2864 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
   2865 	if (error != 0)
   2866 		return error;
   2867 	if (mode != MPI_INIT)
   2868 		return ENXIO;
   2869 
   2870 	return 0;
   2871 }
   2872 
   2873 static void
   2874 aq_hw_init_tx_path(struct aq_softc *sc)
   2875 {
   2876 	/* Tx TC/RSS number config */
   2877 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
   2878 
   2879 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2880 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
   2881 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
   2882 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
   2883 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
   2884 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
   2885 
   2886 	/* misc */
   2887 	AQ_WRITE_REG(sc, TX_TPO2_REG,
   2888 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
   2889 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
   2890 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
   2891 
   2892 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
   2893 }
   2894 
   2895 static void
   2896 aq_hw_init_rx_path(struct aq_softc *sc)
   2897 {
   2898 	int i;
   2899 
   2900 	/* clear setting */
   2901 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
   2902 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
   2903 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
   2904 	for (i = 0; i < 32; i++) {
   2905 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
   2906 		   RPF_ETHERTYPE_FILTER_EN, 0);
   2907 	}
   2908 
   2909 	if (sc->sc_rss_enable) {
   2910 		/* Rx TC/RSS number config */
   2911 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
   2912 
   2913 		/* Rx flow control */
   2914 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
   2915 
   2916 		/* RSS Ring selection */
   2917 		switch (sc->sc_nqueues) {
   2918 		case 2:
   2919 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2920 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
   2921 			break;
   2922 		case 4:
   2923 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2924 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
   2925 			break;
   2926 		case 8:
   2927 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
   2928 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
   2929 			break;
   2930 		}
   2931 	}
   2932 
   2933 	/* L2 and Multicast filters */
   2934 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
   2935 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
   2936 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
   2937 		    RPF_ACTION_HOST);
   2938 	}
   2939 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
   2940 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
   2941 
   2942 	/* Vlan filters */
   2943 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
   2944 	    ETHERTYPE_QINQ);
   2945 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
   2946 	    ETHERTYPE_VLAN);
   2947 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   2948 
   2949 	if (sc->sc_features & FEATURES_REV_B) {
   2950 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2951 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
   2952 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
   2953 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
   2954 	}
   2955 
   2956 	/* misc */
   2957 	if (sc->sc_features & FEATURES_RPF2)
   2958 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
   2959 	else
   2960 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
   2961 
   2962 	/*
   2963 	 * XXX: RX_TCP_RSS_HASH_REG:
   2964 	 *  linux   set 0x000f0000
   2965 	 *  freebsd set 0x000f001e
   2966 	 */
   2967 	/* RSS hash type set for IP/TCP */
   2968 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
   2969 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
   2970 
   2971 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
   2972 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
   2973 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
   2974 
   2975 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
   2976 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
   2977 }
   2978 
   2979 static void
   2980 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
   2981 {
   2982 	int i;
   2983 
   2984 	if (sc->sc_intr_moderation_enable) {
   2985 		unsigned int tx_min, rx_min;	/* 0-255 */
   2986 		unsigned int tx_max, rx_max;	/* 0-511? */
   2987 
   2988 		switch (sc->sc_link_rate) {
   2989 		case AQ_LINK_100M:
   2990 			tx_min = 0x4f;
   2991 			tx_max = 0xff;
   2992 			rx_min = 0x04;
   2993 			rx_max = 0x50;
   2994 			break;
   2995 		case AQ_LINK_1G:
   2996 		default:
   2997 			tx_min = 0x4f;
   2998 			tx_max = 0xff;
   2999 			rx_min = 0x30;
   3000 			rx_max = 0x80;
   3001 			break;
   3002 		case AQ_LINK_2G5:
   3003 			tx_min = 0x4f;
   3004 			tx_max = 0xff;
   3005 			rx_min = 0x18;
   3006 			rx_max = 0xe0;
   3007 			break;
   3008 		case AQ_LINK_5G:
   3009 			tx_min = 0x4f;
   3010 			tx_max = 0xff;
   3011 			rx_min = 0x0c;
   3012 			rx_max = 0x70;
   3013 			break;
   3014 		case AQ_LINK_10G:
   3015 			tx_min = 0x4f;
   3016 			tx_max = 0x1ff;
   3017 			rx_min = 0x06;	/* freebsd use 80 */
   3018 			rx_max = 0x38;	/* freebsd use 120 */
   3019 			break;
   3020 		}
   3021 
   3022 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3023 		    TX_DMA_INT_DESC_WRWB_EN, 0);
   3024 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3025 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
   3026 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3027 		    RX_DMA_INT_DESC_WRWB_EN, 0);
   3028 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3029 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
   3030 
   3031 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3032 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
   3033 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
   3034 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
   3035 			    TX_INTR_MODERATION_CTL_EN);
   3036 		}
   3037 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3038 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
   3039 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
   3040 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
   3041 			    RX_INTR_MODERATION_CTL_EN);
   3042 		}
   3043 
   3044 	} else {
   3045 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3046 		    TX_DMA_INT_DESC_WRWB_EN, 1);
   3047 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
   3048 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
   3049 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3050 		    RX_DMA_INT_DESC_WRWB_EN, 1);
   3051 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
   3052 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
   3053 
   3054 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3055 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
   3056 		}
   3057 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   3058 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
   3059 		}
   3060 	}
   3061 }
   3062 
   3063 static void
   3064 aq_hw_qos_set(struct aq_softc *sc)
   3065 {
   3066 	uint32_t tc = 0;
   3067 	uint32_t buff_size;
   3068 
   3069 	/* TPS Descriptor rate init */
   3070 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
   3071 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
   3072 
   3073 	/* TPS VM init */
   3074 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
   3075 
   3076 	/* TPS TC credits init */
   3077 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
   3078 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
   3079 
   3080 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3081 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
   3082 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
   3083 	    TPS_DATA_TCT_WEIGHT, 0x64);
   3084 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3085 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
   3086 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
   3087 	    TPS_DESC_TCT_WEIGHT, 0x1e);
   3088 
   3089 	/* Tx buf size */
   3090 	tc = 0;
   3091 	buff_size = AQ_HW_TXBUF_MAX;
   3092 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
   3093 	    buff_size);
   3094 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
   3095 	    (buff_size * (1024 / 32) * 66) / 100);
   3096 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
   3097 	    (buff_size * (1024 / 32) * 50) / 100);
   3098 
   3099 	/* QoS Rx buf size per TC */
   3100 	tc = 0;
   3101 	buff_size = AQ_HW_RXBUF_MAX;
   3102 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
   3103 	    buff_size);
   3104 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
   3105 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
   3106 	    (buff_size * (1024 / 32) * 66) / 100);
   3107 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
   3108 	    (buff_size * (1024 / 32) * 50) / 100);
   3109 
   3110 	/* QoS 802.1p priority -> TC mapping */
   3111 	int i_priority;
   3112 	for (i_priority = 0; i_priority < 8; i_priority++) {
   3113 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
   3114 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
   3115 	}
   3116 }
   3117 
   3118 /* called once from aq_attach */
   3119 static int
   3120 aq_init_rss(struct aq_softc *sc)
   3121 {
   3122 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
   3123 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3124 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
   3125 	unsigned int i;
   3126 	int error;
   3127 
   3128 	/* initialize rss key */
   3129 	rss_getkey((uint8_t *)rss_key);
   3130 
   3131 	/* hash to ring table */
   3132 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3133 		rss_table[i] = i % sc->sc_nqueues;
   3134 	}
   3135 
   3136 	/*
   3137 	 * set rss key
   3138 	 */
   3139 	for (i = 0; i < __arraycount(rss_key); i++) {
   3140 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
   3141 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
   3142 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3143 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
   3144 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3145 		    RPF_RSS_KEY_WR_EN, 1);
   3146 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
   3147 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
   3148 		if (error != 0) {
   3149 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
   3150 			    __func__);
   3151 			goto rss_set_timeout;
   3152 		}
   3153 	}
   3154 
   3155 	/*
   3156 	 * set rss indirection table
   3157 	 *
   3158 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
   3159 	 * we'll make it by __BITMAP(3) macros.
   3160 	 */
   3161 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
   3162 	__BITMAP_ZERO(&bit3x64);
   3163 
   3164 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
   3165 	do {							\
   3166 		if (val & 1) {					\
   3167 			__BITMAP_SET((idx) * 3, (bitmap));	\
   3168 		} else {					\
   3169 			__BITMAP_CLR((idx) * 3, (bitmap));	\
   3170 		}						\
   3171 		if (val & 2) {					\
   3172 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
   3173 		} else {					\
   3174 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
   3175 		}						\
   3176 		if (val & 4) {					\
   3177 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
   3178 		} else {					\
   3179 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
   3180 		}						\
   3181 	} while (0 /* CONSTCOND */)
   3182 
   3183 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
   3184 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
   3185 	}
   3186 
   3187 	/* write 192bit data in steps of 16bit */
   3188 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
   3189 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
   3190 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
   3191 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3192 		    RPF_RSS_REDIR_ADDR, i);
   3193 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3194 		    RPF_RSS_REDIR_WR_EN, 1);
   3195 
   3196 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
   3197 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
   3198 		if (error != 0)
   3199 			break;
   3200 	}
   3201 
   3202  rss_set_timeout:
   3203 	return error;
   3204 }
   3205 
   3206 static void
   3207 aq_hw_l3_filter_set(struct aq_softc *sc)
   3208 {
   3209 	int i;
   3210 
   3211 	/* clear all filter */
   3212 	for (i = 0; i < 8; i++) {
   3213 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
   3214 		    RPF_L3_FILTER_L4_EN, 0);
   3215 	}
   3216 }
   3217 
   3218 static void
   3219 aq_update_vlan_filters(struct aq_softc *sc)
   3220 {
   3221 	/* XXX: notyet. vlan always promisc */
   3222 	int i;
   3223 
   3224 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) {
   3225 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3226 		    RPF_VLAN_FILTER_EN, 0);
   3227 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
   3228 		    RPF_VLAN_FILTER_RXQ_EN, 0);
   3229 	}
   3230 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 1);
   3231 }
   3232 
   3233 static int
   3234 aq_hw_init(struct aq_softc *sc)
   3235 {
   3236 	uint32_t v;
   3237 
   3238 	/* Force limit MRRS on RDM/TDM to 2K */
   3239 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
   3240 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
   3241 
   3242 	/*
   3243 	 * TX DMA total request limit. B0 hardware is not capable to
   3244 	 * handle more than (8K-MRRS) incoming DMA data.
   3245 	 * Value 24 in 256byte units
   3246 	 */
   3247 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
   3248 
   3249 	aq_hw_init_tx_path(sc);
   3250 	aq_hw_init_rx_path(sc);
   3251 
   3252 	aq_hw_interrupt_moderation_set(sc);
   3253 
   3254 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
   3255 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
   3256 
   3257 	aq_hw_qos_set(sc);
   3258 
   3259 	/* Enable interrupt */
   3260 	int irqmode;
   3261 	if (sc->sc_msix)
   3262 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
   3263 	else
   3264 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
   3265 
   3266 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
   3267 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
   3268 	    sc->sc_msix ? 1 : 0);
   3269 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
   3270 
   3271 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
   3272 
   3273 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
   3274 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
   3275 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
   3276 	);
   3277 
   3278 	/* link interrupt */
   3279 	if (!sc->sc_msix)
   3280 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
   3281 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
   3282 	    __BIT(7) | sc->sc_linkstat_irq);
   3283 
   3284 	return 0;
   3285 }
   3286 
   3287 static int
   3288 aq_update_link_status(struct aq_softc *sc)
   3289 {
   3290 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3291 	aq_link_speed_t rate = AQ_LINK_NONE;
   3292 	aq_link_fc_t fc = AQ_FC_NONE;
   3293 	aq_link_eee_t eee = AQ_EEE_DISABLE;
   3294 	unsigned int speed;
   3295 	int changed = 0;
   3296 
   3297 	aq_get_linkmode(sc, &rate, &fc, &eee);
   3298 
   3299 	if (sc->sc_link_rate != rate)
   3300 		changed = 1;
   3301 	if (sc->sc_link_fc != fc)
   3302 		changed = 1;
   3303 	if (sc->sc_link_eee != eee)
   3304 		changed = 1;
   3305 
   3306 	if (changed) {
   3307 		switch (rate) {
   3308 		case AQ_LINK_100M:
   3309 			speed = 100;
   3310 			break;
   3311 		case AQ_LINK_1G:
   3312 			speed = 1000;
   3313 			break;
   3314 		case AQ_LINK_2G5:
   3315 			speed = 2500;
   3316 			break;
   3317 		case AQ_LINK_5G:
   3318 			speed = 5000;
   3319 			break;
   3320 		case AQ_LINK_10G:
   3321 			speed = 10000;
   3322 			break;
   3323 		case AQ_LINK_NONE:
   3324 		default:
   3325 			speed = 0;
   3326 			break;
   3327 		}
   3328 
   3329 		if (sc->sc_link_rate == AQ_LINK_NONE) {
   3330 			/* link DOWN -> UP */
   3331 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
   3332 			    speed);
   3333 			if_link_state_change(ifp, LINK_STATE_UP);
   3334 		} else if (rate == AQ_LINK_NONE) {
   3335 			/* link UP -> DOWN */
   3336 			device_printf(sc->sc_dev, "link is DOWN\n");
   3337 			if_link_state_change(ifp, LINK_STATE_DOWN);
   3338 		} else {
   3339 			device_printf(sc->sc_dev,
   3340 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
   3341 			    speed, fc, eee);
   3342 		}
   3343 
   3344 		sc->sc_link_rate = rate;
   3345 		sc->sc_link_fc = fc;
   3346 		sc->sc_link_eee = eee;
   3347 
   3348 		aq_mediastatus_update(sc);
   3349 
   3350 		/* update interrupt timing according to new link speed */
   3351 		aq_hw_interrupt_moderation_set(sc);
   3352 	}
   3353 
   3354 	return changed;
   3355 }
   3356 
   3357 #ifdef AQ_EVENT_COUNTERS
   3358 static void
   3359 aq_update_statistics(struct aq_softc *sc)
   3360 {
   3361 	int prev = sc->sc_statistics_idx;
   3362 	int cur = prev ^ 1;
   3363 
   3364 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
   3365 
   3366 	/*
   3367 	 * aq's internal statistics counter is 32bit.
   3368 	 * cauculate delta, and add to evcount
   3369 	 */
   3370 #define ADD_DELTA(cur, prev, name)				\
   3371 	do {							\
   3372 		uint32_t n;					\
   3373 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
   3374 		    sc->sc_statistics[prev].name);		\
   3375 		if (n != 0) {					\
   3376 			AQ_EVCNT_ADD(sc, name, n);		\
   3377 		}						\
   3378 	} while (/*CONSTCOND*/0);
   3379 
   3380 	ADD_DELTA(cur, prev, uprc);
   3381 	ADD_DELTA(cur, prev, mprc);
   3382 	ADD_DELTA(cur, prev, bprc);
   3383 	ADD_DELTA(cur, prev, prc);
   3384 	ADD_DELTA(cur, prev, erpr);
   3385 	ADD_DELTA(cur, prev, uptc);
   3386 	ADD_DELTA(cur, prev, mptc);
   3387 	ADD_DELTA(cur, prev, bptc);
   3388 	ADD_DELTA(cur, prev, ptc);
   3389 	ADD_DELTA(cur, prev, erpt);
   3390 	ADD_DELTA(cur, prev, mbtc);
   3391 	ADD_DELTA(cur, prev, bbtc);
   3392 	ADD_DELTA(cur, prev, mbrc);
   3393 	ADD_DELTA(cur, prev, bbrc);
   3394 	ADD_DELTA(cur, prev, ubrc);
   3395 	ADD_DELTA(cur, prev, ubtc);
   3396 	ADD_DELTA(cur, prev, dpc);
   3397 	ADD_DELTA(cur, prev, cprc);
   3398 
   3399 	sc->sc_statistics_idx = cur;
   3400 }
   3401 #endif /* AQ_EVENT_COUNTERS */
   3402 
   3403 /* allocate and map one DMA block */
   3404 static int
   3405 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
   3406     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3407 {
   3408 	int nsegs, error;
   3409 
   3410 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
   3411 	    1, &nsegs, 0)) != 0) {
   3412 		aprint_error_dev(sc->sc_dev,
   3413 		    "unable to allocate DMA buffer, error=%d\n", error);
   3414 		goto fail_alloc;
   3415 	}
   3416 
   3417 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
   3418 	    BUS_DMA_COHERENT)) != 0) {
   3419 		aprint_error_dev(sc->sc_dev,
   3420 		    "unable to map DMA buffer, error=%d\n", error);
   3421 		goto fail_map;
   3422 	}
   3423 
   3424 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
   3425 	    0, mapp)) != 0) {
   3426 		aprint_error_dev(sc->sc_dev,
   3427 		    "unable to create DMA map, error=%d\n", error);
   3428 		goto fail_create;
   3429 	}
   3430 
   3431 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
   3432 	    0)) != 0) {
   3433 		aprint_error_dev(sc->sc_dev,
   3434 		    "unable to load DMA map, error=%d\n", error);
   3435 		goto fail_load;
   3436 	}
   3437 
   3438 	*sizep = size;
   3439 	return 0;
   3440 
   3441  fail_load:
   3442 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3443 	*mapp = NULL;
   3444  fail_create:
   3445 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
   3446 	*addrp = NULL;
   3447  fail_map:
   3448 	bus_dmamem_free(sc->sc_dmat, seg, 1);
   3449 	memset(seg, 0, sizeof(*seg));
   3450  fail_alloc:
   3451 	*sizep = 0;
   3452 	return error;
   3453 }
   3454 
   3455 static void
   3456 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
   3457     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
   3458 {
   3459 	if (*mapp != NULL) {
   3460 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
   3461 		*mapp = NULL;
   3462 	}
   3463 	if (*addrp != NULL) {
   3464 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
   3465 		*addrp = NULL;
   3466 	}
   3467 	if (*sizep != 0) {
   3468 		bus_dmamem_free(sc->sc_dmat, seg, 1);
   3469 		memset(seg, 0, sizeof(*seg));
   3470 		*sizep = 0;
   3471 	}
   3472 }
   3473 
   3474 static int
   3475 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3476 {
   3477 	int i, error;
   3478 
   3479 	/* allocate tx descriptors */
   3480 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
   3481 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3482 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3483 	if (error != 0)
   3484 		return error;
   3485 
   3486 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
   3487 
   3488 	/* fill tx ring with dmamap */
   3489 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3490 #define AQ_MAXDMASIZE	(16 * 1024)
   3491 #define AQ_NTXSEGS	32
   3492 		/* XXX: TODO: error check */
   3493 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
   3494 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
   3495 	}
   3496 	return 0;
   3497 }
   3498 
   3499 static void
   3500 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
   3501 {
   3502 	int i;
   3503 
   3504 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
   3505 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
   3506 
   3507 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3508 		if (txring->txr_mbufs[i].dmamap != NULL) {
   3509 			if (txring->txr_mbufs[i].m != NULL) {
   3510 				bus_dmamap_unload(sc->sc_dmat,
   3511 				    txring->txr_mbufs[i].dmamap);
   3512 				m_freem(txring->txr_mbufs[i].m);
   3513 				txring->txr_mbufs[i].m = NULL;
   3514 			}
   3515 			bus_dmamap_destroy(sc->sc_dmat,
   3516 			    txring->txr_mbufs[i].dmamap);
   3517 			txring->txr_mbufs[i].dmamap = NULL;
   3518 		}
   3519 	}
   3520 }
   3521 
   3522 static int
   3523 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
   3524 {
   3525 	int i, error;
   3526 
   3527 	/* allocate rx descriptors */
   3528 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
   3529 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3530 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3531 	if (error != 0)
   3532 		return error;
   3533 
   3534 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
   3535 
   3536 	/* fill rxring with dmamaps */
   3537 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3538 		rxring->rxr_mbufs[i].m = NULL;
   3539 		/* XXX: TODO: error check */
   3540 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   3541 		    &rxring->rxr_mbufs[i].dmamap);
   3542 	}
   3543 	return 0;
   3544 }
   3545 
   3546 static void
   3547 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
   3548 {
   3549 	int i;
   3550 
   3551 	/* free all mbufs allocated for RX */
   3552 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3553 		if (rxring->rxr_mbufs[i].m != NULL) {
   3554 			bus_dmamap_unload(sc->sc_dmat,
   3555 			    rxring->rxr_mbufs[i].dmamap);
   3556 			m_freem(rxring->rxr_mbufs[i].m);
   3557 			rxring->rxr_mbufs[i].m = NULL;
   3558 		}
   3559 	}
   3560 }
   3561 
   3562 static void
   3563 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
   3564 {
   3565 	int i;
   3566 
   3567 	/* free all mbufs and dmamaps */
   3568 	aq_rxdrain(sc, rxring);
   3569 	for (i = 0; i < AQ_RXD_NUM; i++) {
   3570 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
   3571 			bus_dmamap_destroy(sc->sc_dmat,
   3572 			    rxring->rxr_mbufs[i].dmamap);
   3573 			rxring->rxr_mbufs[i].dmamap = NULL;
   3574 		}
   3575 	}
   3576 
   3577 	/* free RX descriptor */
   3578 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
   3579 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
   3580 }
   3581 
   3582 static void
   3583 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
   3584     struct mbuf *m)
   3585 {
   3586 	int error;
   3587 
   3588 	/* if mbuf already exists, unload and free */
   3589 	if (rxring->rxr_mbufs[idx].m != NULL) {
   3590 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
   3591 		m_freem(rxring->rxr_mbufs[idx].m);
   3592 		rxring->rxr_mbufs[idx].m = NULL;
   3593 	}
   3594 
   3595 	rxring->rxr_mbufs[idx].m = m;
   3596 
   3597 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   3598 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
   3599 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
   3600 	if (error) {
   3601 		device_printf(sc->sc_dev,
   3602 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
   3603 		panic("%s: unable to load rx DMA map. error=%d",
   3604 		    __func__, error);
   3605 	}
   3606 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   3607 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3608 }
   3609 
   3610 static inline void
   3611 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3612 {
   3613 	/* refill rxdesc, and sync */
   3614 	rxring->rxr_rxdesc[idx].read.buf_addr =
   3615 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
   3616 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
   3617 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   3618 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   3619 	    BUS_DMASYNC_PREWRITE);
   3620 }
   3621 
   3622 static struct mbuf *
   3623 aq_alloc_mbuf(void)
   3624 {
   3625 	struct mbuf *m;
   3626 
   3627 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3628 	if (m == NULL)
   3629 		return NULL;
   3630 
   3631 	MCLGET(m, M_DONTWAIT);
   3632 	if ((m->m_flags & M_EXT) == 0) {
   3633 		m_freem(m);
   3634 		return NULL;
   3635 	}
   3636 
   3637 	return m;
   3638 }
   3639 
   3640 /* allocate mbuf and unload dmamap */
   3641 static int
   3642 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
   3643 {
   3644 	struct mbuf *m;
   3645 
   3646 	m = aq_alloc_mbuf();
   3647 	if (m == NULL)
   3648 		return ENOBUFS;
   3649 
   3650 	aq_rxring_setmbuf(sc, rxring, idx, m);
   3651 	return 0;
   3652 }
   3653 
   3654 static int
   3655 aq_txrx_rings_alloc(struct aq_softc *sc)
   3656 {
   3657 	int n, error;
   3658 
   3659 	for (n = 0; n < sc->sc_nqueues; n++) {
   3660 		sc->sc_queue[n].sc = sc;
   3661 		sc->sc_queue[n].txring.txr_sc = sc;
   3662 		sc->sc_queue[n].txring.txr_index = n;
   3663 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
   3664 		    IPL_NET);
   3665 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
   3666 		if (error != 0)
   3667 			goto failure;
   3668 
   3669 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
   3670 		if (error != 0)
   3671 			goto failure;
   3672 
   3673 		sc->sc_queue[n].rxring.rxr_sc = sc;
   3674 		sc->sc_queue[n].rxring.rxr_index = n;
   3675 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
   3676 		   IPL_NET);
   3677 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
   3678 		if (error != 0)
   3679 			break;
   3680 	}
   3681 
   3682  failure:
   3683 	return error;
   3684 }
   3685 
   3686 static void
   3687 aq_txrx_rings_free(struct aq_softc *sc)
   3688 {
   3689 	int n;
   3690 
   3691 	for (n = 0; n < sc->sc_nqueues; n++) {
   3692 		aq_txring_free(sc, &sc->sc_queue[n].txring);
   3693 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
   3694 
   3695 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
   3696 
   3697 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
   3698 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
   3699 	}
   3700 }
   3701 
   3702 static int
   3703 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
   3704 {
   3705 	int error = 0;
   3706 	txring->txr_softint = NULL;
   3707 
   3708 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
   3709 	if (txring->txr_pcq == NULL) {
   3710 		aprint_error_dev(sc->sc_dev,
   3711 		    "unable to allocate pcq for TXring[%d]\n",
   3712 		    txring->txr_index);
   3713 		error = ENOMEM;
   3714 		goto done;
   3715 	}
   3716 
   3717 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   3718 	    aq_deferred_transmit, txring);
   3719 	if (txring->txr_softint == NULL) {
   3720 		aprint_error_dev(sc->sc_dev,
   3721 		    "unable to establish softint for TXring[%d]\n",
   3722 		    txring->txr_index);
   3723 		error = ENOENT;
   3724 	}
   3725 
   3726  done:
   3727 	return error;
   3728 }
   3729 
   3730 static void
   3731 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
   3732 {
   3733 	struct mbuf *m;
   3734 
   3735 	if (txring->txr_softint != NULL) {
   3736 		softint_disestablish(txring->txr_softint);
   3737 		txring->txr_softint = NULL;
   3738 	}
   3739 
   3740 	if (txring->txr_pcq != NULL) {
   3741 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
   3742 			m_freem(m);
   3743 		pcq_destroy(txring->txr_pcq);
   3744 		txring->txr_pcq = NULL;
   3745 	}
   3746 }
   3747 
   3748 #if NSYSMON_ENVSYS > 0
   3749 static void
   3750 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   3751 {
   3752 	struct aq_softc *sc;
   3753 	uint32_t temp;
   3754 	int error;
   3755 
   3756 	sc = sme->sme_cookie;
   3757 
   3758 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
   3759 	if (error == 0) {
   3760 		edata->value_cur = temp;
   3761 		edata->state = ENVSYS_SVALID;
   3762 	} else {
   3763 		edata->state = ENVSYS_SINVALID;
   3764 	}
   3765 }
   3766 #endif
   3767 
   3768 static void
   3769 aq_tick(void *arg)
   3770 {
   3771 	struct aq_softc *sc = arg;
   3772 
   3773 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
   3774 		sc->sc_detect_linkstat = false;
   3775 		aq_update_link_status(sc);
   3776 	}
   3777 
   3778 #ifdef AQ_EVENT_COUNTERS
   3779 	if (sc->sc_poll_statistics)
   3780 		aq_update_statistics(sc);
   3781 #endif
   3782 
   3783 	if (sc->sc_poll_linkstat
   3784 #ifdef AQ_EVENT_COUNTERS
   3785 	    || sc->sc_poll_statistics
   3786 #endif
   3787 	    ) {
   3788 		callout_schedule(&sc->sc_tick_ch, hz);
   3789 	}
   3790 }
   3791 
   3792 /* interrupt enable/disable */
   3793 static void
   3794 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
   3795 {
   3796 	uint32_t imask = 0;
   3797 	int i;
   3798 
   3799 	if (txrx) {
   3800 		for (i = 0; i < sc->sc_nqueues; i++) {
   3801 			imask |= __BIT(sc->sc_tx_irq[i]);
   3802 			imask |= __BIT(sc->sc_rx_irq[i]);
   3803 		}
   3804 	}
   3805 
   3806 	if (link)
   3807 		imask |= __BIT(sc->sc_linkstat_irq);
   3808 
   3809 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
   3810 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3811 }
   3812 
   3813 static int
   3814 aq_legacy_intr(void *arg)
   3815 {
   3816 	struct aq_softc *sc = arg;
   3817 	uint32_t status;
   3818 	int nintr = 0;
   3819 
   3820 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3821 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
   3822 
   3823 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3824 		sc->sc_detect_linkstat = true;
   3825 		callout_schedule(&sc->sc_tick_ch, 0);
   3826 		nintr++;
   3827 	}
   3828 
   3829 	if (status & __BIT(sc->sc_rx_irq[0])) {
   3830 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
   3831 	}
   3832 
   3833 	if (status & __BIT(sc->sc_tx_irq[0])) {
   3834 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
   3835 	}
   3836 
   3837 	return nintr;
   3838 }
   3839 
   3840 static int
   3841 aq_txrx_intr(void *arg)
   3842 {
   3843 	struct aq_queue *queue = arg;
   3844 	struct aq_softc *sc = queue->sc;
   3845 	struct aq_txring *txring = &queue->txring;
   3846 	struct aq_rxring *rxring = &queue->rxring;
   3847 	uint32_t status;
   3848 	int nintr = 0;
   3849 	int txringidx, rxringidx, txirq, rxirq;
   3850 
   3851 	txringidx = txring->txr_index;
   3852 	rxringidx = rxring->rxr_index;
   3853 	txirq = sc->sc_tx_irq[txringidx];
   3854 	rxirq = sc->sc_rx_irq[rxringidx];
   3855 
   3856 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3857 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
   3858 		/* stray interrupt? */
   3859 		return 0;
   3860 	}
   3861 
   3862 	nintr += aq_rx_intr(rxring);
   3863 	nintr += aq_tx_intr(txring);
   3864 
   3865 	return nintr;
   3866 }
   3867 
   3868 static int
   3869 aq_link_intr(void *arg)
   3870 {
   3871 	struct aq_softc *sc = arg;
   3872 	uint32_t status;
   3873 	int nintr = 0;
   3874 
   3875 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
   3876 	if (status & __BIT(sc->sc_linkstat_irq)) {
   3877 		sc->sc_detect_linkstat = true;
   3878 		callout_schedule(&sc->sc_tick_ch, 0);
   3879 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
   3880 		    __BIT(sc->sc_linkstat_irq));
   3881 		nintr++;
   3882 	}
   3883 
   3884 	return nintr;
   3885 }
   3886 
   3887 static void
   3888 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
   3889 {
   3890 	const int ringidx = txring->txr_index;
   3891 	int i;
   3892 
   3893 	mutex_enter(&txring->txr_mutex);
   3894 
   3895 	txring->txr_prodidx = 0;
   3896 	txring->txr_considx = 0;
   3897 	txring->txr_nfree = AQ_TXD_NUM;
   3898 	txring->txr_active = false;
   3899 
   3900 	/* free mbufs untransmitted */
   3901 	for (i = 0; i < AQ_TXD_NUM; i++) {
   3902 		if (txring->txr_mbufs[i].m != NULL) {
   3903 			m_freem(txring->txr_mbufs[i].m);
   3904 			txring->txr_mbufs[i].m = NULL;
   3905 		}
   3906 	}
   3907 
   3908 	/* disable DMA */
   3909 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
   3910 
   3911 	if (start) {
   3912 		/* TX descriptor physical address */
   3913 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
   3914 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3915 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3916 		    (uint32_t)((uint64_t)paddr >> 32));
   3917 
   3918 		/* TX descriptor size */
   3919 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
   3920 		    AQ_TXD_NUM / 8);
   3921 
   3922 		/* reload TAIL pointer */
   3923 		txring->txr_prodidx = txring->txr_considx =
   3924 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
   3925 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
   3926 
   3927 		/* Mapping interrupt vector */
   3928 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3929 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
   3930 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
   3931 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
   3932 
   3933 		/* enable DMA */
   3934 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
   3935 		    TX_DMA_DESC_EN, 1);
   3936 
   3937 		const int cpuid = 0;	/* XXX? */
   3938 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3939 		    TDM_DCAD_CPUID, cpuid);
   3940 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
   3941 		    TDM_DCAD_CPUID_EN, 0);
   3942 
   3943 		txring->txr_active = true;
   3944 	}
   3945 
   3946 	mutex_exit(&txring->txr_mutex);
   3947 }
   3948 
   3949 static int
   3950 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
   3951 {
   3952 	const int ringidx = rxring->rxr_index;
   3953 	int i;
   3954 	int error = 0;
   3955 
   3956 	mutex_enter(&rxring->rxr_mutex);
   3957 	rxring->rxr_active = false;
   3958 
   3959 	/* disable DMA */
   3960 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
   3961 
   3962 	/* free all RX mbufs */
   3963 	aq_rxdrain(sc, rxring);
   3964 
   3965 	if (start) {
   3966 		for (i = 0; i < AQ_RXD_NUM; i++) {
   3967 			error = aq_rxring_add(sc, rxring, i);
   3968 			if (error != 0) {
   3969 				aq_rxdrain(sc, rxring);
   3970 				return error;
   3971 			}
   3972 			aq_rxring_reset_desc(sc, rxring, i);
   3973 		}
   3974 
   3975 		/* RX descriptor physical address */
   3976 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
   3977 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
   3978 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
   3979 		    (uint32_t)((uint64_t)paddr >> 32));
   3980 
   3981 		/* RX descriptor size */
   3982 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
   3983 		    AQ_RXD_NUM / 8);
   3984 
   3985 		/* maximum receive frame size */
   3986 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3987 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
   3988 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
   3989 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
   3990 
   3991 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   3992 		    RX_DMA_DESC_HEADER_SPLIT, 0);
   3993 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   3994 		    RX_DMA_DESC_VLAN_STRIP,
   3995 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   3996 		    1 : 0);
   3997 
   3998 		/*
   3999 		 * reload TAIL pointer, and update readidx
   4000 		 * (HEAD pointer cannot write)
   4001 		 */
   4002 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
   4003 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
   4004 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
   4005 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
   4006 
   4007 		/* Rx ring set mode */
   4008 
   4009 		/* Mapping interrupt vector */
   4010 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4011 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
   4012 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
   4013 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
   4014 
   4015 		const int cpuid = 0;	/* XXX? */
   4016 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4017 		    RX_DMA_DCAD_CPUID, cpuid);
   4018 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4019 		    RX_DMA_DCAD_DESC_EN, 0);
   4020 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4021 		    RX_DMA_DCAD_HEADER_EN, 0);
   4022 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
   4023 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
   4024 
   4025 		/* enable DMA. start receiving */
   4026 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
   4027 		    RX_DMA_DESC_EN, 1);
   4028 
   4029 		rxring->rxr_active = true;
   4030 	}
   4031 
   4032 	mutex_exit(&rxring->rxr_mutex);
   4033 	return error;
   4034 }
   4035 
   4036 #define TXRING_NEXTIDX(idx)	\
   4037 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
   4038 #define RXRING_NEXTIDX(idx)	\
   4039 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
   4040 
   4041 static int
   4042 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
   4043 {
   4044 	bus_dmamap_t map;
   4045 	struct mbuf *m = *mp;
   4046 	uint32_t ctl1, ctl1_ctx, ctl2;
   4047 	int idx, i, error;
   4048 
   4049 	idx = txring->txr_prodidx;
   4050 	map = txring->txr_mbufs[idx].dmamap;
   4051 
   4052 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4053 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4054 	if (error == EFBIG) {
   4055 		struct mbuf *n;
   4056 		n = m_defrag(m, M_DONTWAIT);
   4057 		if (n == NULL)
   4058 			return EFBIG;
   4059 		/* m_defrag() preserve m */
   4060 		KASSERT(n == m);
   4061 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   4062 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   4063 	}
   4064 	if (error != 0)
   4065 		return error;
   4066 
   4067 	/*
   4068 	 * check spaces of free descriptors.
   4069 	 * +1 is additional descriptor for context (vlan, etc,.)
   4070 	 */
   4071 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
   4072 		device_printf(sc->sc_dev,
   4073 		    "TX: not enough descriptors left %d for %d segs\n",
   4074 		    txring->txr_nfree, map->dm_nsegs + 1);
   4075 		bus_dmamap_unload(sc->sc_dmat, map);
   4076 		return ENOBUFS;
   4077 	}
   4078 
   4079 	/* sync dma for mbuf */
   4080 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   4081 	    BUS_DMASYNC_PREWRITE);
   4082 
   4083 	ctl1_ctx = 0;
   4084 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
   4085 
   4086 	if (vlan_has_tag(m)) {
   4087 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
   4088 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
   4089 
   4090 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
   4091 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
   4092 
   4093 		/* fill context descriptor and forward index */
   4094 		txring->txr_txdesc[idx].buf_addr = 0;
   4095 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4096 		txring->txr_txdesc[idx].ctl2 = 0;
   4097 
   4098 		idx = TXRING_NEXTIDX(idx);
   4099 		txring->txr_nfree--;
   4100 	}
   4101 
   4102 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4103 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
   4104 	if (m->m_pkthdr.csum_flags &
   4105 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
   4106 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
   4107 	}
   4108 
   4109 	/* fill descriptor(s) */
   4110 	for (i = 0; i < map->dm_nsegs; i++) {
   4111 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
   4112 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
   4113 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
   4114 
   4115 		if (i == 0) {
   4116 			/* remember mbuf of these descriptors */
   4117 			txring->txr_mbufs[idx].m = m;
   4118 		} else {
   4119 			txring->txr_mbufs[idx].m = NULL;
   4120 		}
   4121 
   4122 		if (i == map->dm_nsegs - 1) {
   4123 			/* last segment, mark an EndOfPacket, and cause intr */
   4124 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
   4125 		}
   4126 
   4127 		txring->txr_txdesc[idx].buf_addr =
   4128 		    htole64(map->dm_segs[i].ds_addr);
   4129 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
   4130 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
   4131 
   4132 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
   4133 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
   4134 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4135 
   4136 		idx = TXRING_NEXTIDX(idx);
   4137 		txring->txr_nfree--;
   4138 	}
   4139 
   4140 	txring->txr_prodidx = idx;
   4141 
   4142 	return 0;
   4143 }
   4144 
   4145 static int
   4146 aq_tx_intr(void *arg)
   4147 {
   4148 	struct aq_txring *txring = arg;
   4149 	struct aq_softc *sc = txring->txr_sc;
   4150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4151 	struct mbuf *m;
   4152 	const int ringidx = txring->txr_index;
   4153 	unsigned int idx, hw_head, n = 0;
   4154 
   4155 	mutex_enter(&txring->txr_mutex);
   4156 
   4157 	if (!txring->txr_active)
   4158 		goto tx_intr_done;
   4159 
   4160 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4161 	    TX_DMA_DESC_HEAD_PTR);
   4162 	if (hw_head == txring->txr_considx) {
   4163 		goto tx_intr_done;
   4164 	}
   4165 
   4166 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4167 
   4168 	for (idx = txring->txr_considx; idx != hw_head;
   4169 	    idx = TXRING_NEXTIDX(idx), n++) {
   4170 
   4171 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
   4172 			bus_dmamap_unload(sc->sc_dmat,
   4173 			    txring->txr_mbufs[idx].dmamap);
   4174 
   4175 			if_statinc_ref(nsr, if_opackets);
   4176 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   4177 			if (m->m_flags & M_MCAST)
   4178 				if_statinc_ref(nsr, if_omcasts);
   4179 
   4180 			m_freem(m);
   4181 			txring->txr_mbufs[idx].m = NULL;
   4182 		}
   4183 
   4184 		txring->txr_nfree++;
   4185 	}
   4186 	txring->txr_considx = idx;
   4187 
   4188 	IF_STAT_PUTREF(ifp);
   4189 
   4190 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
   4191 		ifp->if_flags &= ~IFF_OACTIVE;
   4192 
   4193 	/* no more pending TX packet, cancel watchdog */
   4194 	if (txring->txr_nfree >= AQ_TXD_NUM)
   4195 		ifp->if_timer = 0;
   4196 
   4197  tx_intr_done:
   4198 	mutex_exit(&txring->txr_mutex);
   4199 
   4200 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
   4201 	return n;
   4202 }
   4203 
   4204 static int
   4205 aq_rx_intr(void *arg)
   4206 {
   4207 	struct aq_rxring *rxring = arg;
   4208 	struct aq_softc *sc = rxring->rxr_sc;
   4209 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4210 	const int ringidx = rxring->rxr_index;
   4211 	aq_rx_desc_t *rxd;
   4212 	struct mbuf *m, *m0, *mprev, *new_m;
   4213 	uint32_t rxd_type, rxd_hash __unused;
   4214 	uint16_t rxd_status, rxd_pktlen;
   4215 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
   4216 	unsigned int idx, n = 0;
   4217 
   4218 	mutex_enter(&rxring->rxr_mutex);
   4219 
   4220 	if (!rxring->rxr_active)
   4221 		goto rx_intr_done;
   4222 
   4223 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
   4224 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
   4225 		goto rx_intr_done;
   4226 	}
   4227 
   4228 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4229 
   4230 	m0 = mprev = NULL;
   4231 	for (idx = rxring->rxr_readidx;
   4232 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
   4233 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
   4234 
   4235 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
   4236 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
   4237 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4238 
   4239 		rxd = &rxring->rxr_rxdesc[idx];
   4240 		rxd_status = le16toh(rxd->wb.status);
   4241 
   4242 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
   4243 			break;	/* not yet done */
   4244 
   4245 		rxd_type = le32toh(rxd->wb.type);
   4246 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
   4247 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
   4248 		rxd_hash = le32toh(rxd->wb.rss_hash);
   4249 		rxd_vlan = le16toh(rxd->wb.vlan);
   4250 
   4251 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
   4252 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
   4253 			if_statinc_ref(nsr, if_ierrors);
   4254 			goto rx_next;
   4255 		}
   4256 
   4257 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
   4258 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
   4259 		    BUS_DMASYNC_POSTREAD);
   4260 		m = rxring->rxr_mbufs[idx].m;
   4261 
   4262 		new_m = aq_alloc_mbuf();
   4263 		if (new_m == NULL) {
   4264 			/*
   4265 			 * cannot allocate new mbuf.
   4266 			 * discard this packet, and reuse mbuf for next.
   4267 			 */
   4268 			if_statinc_ref(nsr, if_iqdrops);
   4269 			goto rx_next;
   4270 		}
   4271 		rxring->rxr_mbufs[idx].m = NULL;
   4272 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
   4273 
   4274 		if (m0 == NULL) {
   4275 			m0 = m;
   4276 		} else {
   4277 			if (m->m_flags & M_PKTHDR)
   4278 				m_remove_pkthdr(m);
   4279 			mprev->m_next = m;
   4280 		}
   4281 		mprev = m;
   4282 
   4283 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
   4284 			m->m_len = MCLBYTES;
   4285 		} else {
   4286 			/* last buffer */
   4287 			m->m_len = rxd_pktlen % MCLBYTES;
   4288 			m0->m_pkthdr.len = rxd_pktlen;
   4289 			/* VLAN offloading */
   4290 			if ((sc->sc_ethercom.ec_capenable &
   4291 			    ETHERCAP_VLAN_HWTAGGING) &&
   4292 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
   4293 			    __SHIFTOUT(rxd_type,
   4294 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
   4295 				vlan_set_tag(m0, rxd_vlan);
   4296 			}
   4297 
   4298 			/* Checksum offloading */
   4299 			unsigned int pkttype_eth =
   4300 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
   4301 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
   4302 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4303 			    __SHIFTOUT(rxd_type,
   4304 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
   4305 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4306 				if (__SHIFTOUT(rxd_status,
   4307 				    RXDESC_STATUS_IPV4_CSUM_NG))
   4308 					m0->m_pkthdr.csum_flags |=
   4309 					    M_CSUM_IPv4_BAD;
   4310 			}
   4311 #if notyet
   4312 			/*
   4313 			 * XXX: aq always marks BAD for fragmented packet.
   4314 			 * we should peek L3 header, and ignore cksum flags
   4315 			 * if the packet is fragmented.
   4316 			 */
   4317 			if (__SHIFTOUT(rxd_type,
   4318 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
   4319 				bool checked = false;
   4320 				unsigned int pkttype_proto =
   4321 				    __SHIFTOUT(rxd_type,
   4322 				    RXDESC_TYPE_PKTTYPE_PROTO);
   4323 
   4324 				if (pkttype_proto ==
   4325 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
   4326 					if ((pkttype_eth ==
   4327 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4328 					    (ifp->if_capabilities &
   4329 					    IFCAP_CSUM_TCPv4_Rx)) {
   4330 						m0->m_pkthdr.csum_flags |=
   4331 						    M_CSUM_TCPv4;
   4332 						checked = true;
   4333 					} else if ((pkttype_eth ==
   4334 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4335 					    (ifp->if_capabilities &
   4336 					    IFCAP_CSUM_TCPv6_Rx)) {
   4337 						m0->m_pkthdr.csum_flags |=
   4338 						    M_CSUM_TCPv6;
   4339 						checked = true;
   4340 					}
   4341 				} else if (pkttype_proto ==
   4342 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
   4343 					if ((pkttype_eth ==
   4344 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
   4345 					    (ifp->if_capabilities &
   4346 					    IFCAP_CSUM_UDPv4_Rx)) {
   4347 						m0->m_pkthdr.csum_flags |=
   4348 						    M_CSUM_UDPv4;
   4349 						checked = true;
   4350 					} else if ((pkttype_eth ==
   4351 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
   4352 					    (ifp->if_capabilities &
   4353 					    IFCAP_CSUM_UDPv6_Rx)) {
   4354 						m0->m_pkthdr.csum_flags |=
   4355 						    M_CSUM_UDPv6;
   4356 						checked = true;
   4357 					}
   4358 				}
   4359 				if (checked &&
   4360 				    (__SHIFTOUT(rxd_status,
   4361 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
   4362 				    !__SHIFTOUT(rxd_status,
   4363 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
   4364 					m0->m_pkthdr.csum_flags |=
   4365 					    M_CSUM_TCP_UDP_BAD;
   4366 				}
   4367 			}
   4368 #endif
   4369 			m_set_rcvif(m0, ifp);
   4370 			if_statinc_ref(nsr, if_ipackets);
   4371 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
   4372 			if_percpuq_enqueue(ifp->if_percpuq, m0);
   4373 			m0 = mprev = NULL;
   4374 		}
   4375 
   4376  rx_next:
   4377 		aq_rxring_reset_desc(sc, rxring, idx);
   4378 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
   4379 	}
   4380 	rxring->rxr_readidx = idx;
   4381 
   4382 	IF_STAT_PUTREF(ifp);
   4383 
   4384  rx_intr_done:
   4385 	mutex_exit(&rxring->rxr_mutex);
   4386 
   4387 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
   4388 	return n;
   4389 }
   4390 
   4391 static int
   4392 aq_ifflags_cb(struct ethercom *ec)
   4393 {
   4394 	struct ifnet *ifp = &ec->ec_if;
   4395 	struct aq_softc *sc = ifp->if_softc;
   4396 	int i, ecchange, error = 0;
   4397 	unsigned short iffchange;
   4398 
   4399 	AQ_LOCK(sc);
   4400 
   4401 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   4402 	if ((iffchange & IFF_PROMISC) != 0)
   4403 		error = aq_set_filter(sc);
   4404 
   4405 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   4406 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
   4407 		for (i = 0; i < AQ_RINGS_NUM; i++) {
   4408 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
   4409 			    RX_DMA_DESC_VLAN_STRIP,
   4410 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
   4411 			    1 : 0);
   4412 		}
   4413 	}
   4414 
   4415 	sc->sc_ec_capenable = ec->ec_capenable;
   4416 	sc->sc_if_flags = ifp->if_flags;
   4417 
   4418 	AQ_UNLOCK(sc);
   4419 
   4420 	return error;
   4421 }
   4422 
   4423 static int
   4424 aq_init(struct ifnet *ifp)
   4425 {
   4426 	struct aq_softc *sc = ifp->if_softc;
   4427 	int i, error = 0;
   4428 
   4429 	AQ_LOCK(sc);
   4430 
   4431 	aq_update_vlan_filters(sc);
   4432 	aq_set_capability(sc);
   4433 
   4434 	for (i = 0; i < sc->sc_nqueues; i++) {
   4435 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
   4436 	}
   4437 
   4438 	/* invalidate RX descriptor cache */
   4439 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4440 	    AQ_READ_REG_BIT(sc,
   4441 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4442 
   4443 	/* start RX */
   4444 	for (i = 0; i < sc->sc_nqueues; i++) {
   4445 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
   4446 		if (error != 0) {
   4447 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
   4448 			    __func__);
   4449 			goto aq_init_failure;
   4450 		}
   4451 	}
   4452 	aq_init_rss(sc);
   4453 	aq_hw_l3_filter_set(sc);
   4454 
   4455 	/* need to start callout? */
   4456 	if (sc->sc_poll_linkstat
   4457 #ifdef AQ_EVENT_COUNTERS
   4458 	    || sc->sc_poll_statistics
   4459 #endif
   4460 	    ) {
   4461 		callout_schedule(&sc->sc_tick_ch, hz);
   4462 	}
   4463 
   4464 	/* ready */
   4465 	ifp->if_flags |= IFF_RUNNING;
   4466 	ifp->if_flags &= ~IFF_OACTIVE;
   4467 
   4468 	/* start TX and RX */
   4469 	aq_enable_intr(sc, true, true);
   4470 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
   4471 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
   4472 
   4473  aq_init_failure:
   4474 	sc->sc_if_flags = ifp->if_flags;
   4475 
   4476 	AQ_UNLOCK(sc);
   4477 
   4478 	return error;
   4479 }
   4480 
   4481 static void
   4482 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
   4483     struct aq_txring *txring, bool is_transmit)
   4484 {
   4485 	struct mbuf *m;
   4486 	int npkt, error;
   4487 
   4488 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   4489 		return;
   4490 
   4491 	for (npkt = 0; ; npkt++) {
   4492 		if (is_transmit)
   4493 			m = pcq_peek(txring->txr_pcq);
   4494 		else
   4495 			IFQ_POLL(&ifp->if_snd, m);
   4496 
   4497 		if (m == NULL)
   4498 			break;
   4499 
   4500 		if (txring->txr_nfree < AQ_TXD_MIN)
   4501 			break;
   4502 
   4503 		if (is_transmit)
   4504 			pcq_get(txring->txr_pcq);
   4505 		else
   4506 			IFQ_DEQUEUE(&ifp->if_snd, m);
   4507 
   4508 		error = aq_encap_txring(sc, txring, &m);
   4509 		if (error != 0) {
   4510 			/* too many mbuf chains? or not enough descriptors? */
   4511 			m_freem(m);
   4512 			if_statinc(ifp, if_oerrors);
   4513 			if (txring->txr_index == 0 && error == ENOBUFS)
   4514 				ifp->if_flags |= IFF_OACTIVE;
   4515 			break;
   4516 		}
   4517 
   4518 		/* update tail ptr */
   4519 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
   4520 		    txring->txr_prodidx);
   4521 
   4522 		/* Pass the packet to any BPF listeners */
   4523 		bpf_mtap(ifp, m, BPF_D_OUT);
   4524 	}
   4525 
   4526 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
   4527 		ifp->if_flags |= IFF_OACTIVE;
   4528 
   4529 	if (npkt)
   4530 		ifp->if_timer = 5;
   4531 }
   4532 
   4533 static void
   4534 aq_start(struct ifnet *ifp)
   4535 {
   4536 	struct aq_softc *sc;
   4537 	struct aq_txring *txring;
   4538 
   4539 	sc = ifp->if_softc;
   4540 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
   4541 
   4542 	mutex_enter(&txring->txr_mutex);
   4543 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
   4544 		aq_send_common_locked(ifp, sc, txring, false);
   4545 	mutex_exit(&txring->txr_mutex);
   4546 }
   4547 
   4548 static inline unsigned int
   4549 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
   4550 {
   4551 	return (cpu_index(curcpu()) % sc->sc_nqueues);
   4552 }
   4553 
   4554 static int
   4555 aq_transmit(struct ifnet *ifp, struct mbuf *m)
   4556 {
   4557 	struct aq_softc *sc = ifp->if_softc;
   4558 	struct aq_txring *txring;
   4559 	int ringidx;
   4560 
   4561 	ringidx = aq_select_txqueue(sc, m);
   4562 	txring = &sc->sc_queue[ringidx].txring;
   4563 
   4564 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
   4565 		m_freem(m);
   4566 		return ENOBUFS;
   4567 	}
   4568 
   4569 	if (mutex_tryenter(&txring->txr_mutex)) {
   4570 		aq_send_common_locked(ifp, sc, txring, true);
   4571 		mutex_exit(&txring->txr_mutex);
   4572 	} else {
   4573 		softint_schedule(txring->txr_softint);
   4574 	}
   4575 	return 0;
   4576 }
   4577 
   4578 static void
   4579 aq_deferred_transmit(void *arg)
   4580 {
   4581 	struct aq_txring *txring = arg;
   4582 	struct aq_softc *sc = txring->txr_sc;
   4583 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   4584 
   4585 	mutex_enter(&txring->txr_mutex);
   4586 	if (pcq_peek(txring->txr_pcq) != NULL)
   4587 		aq_send_common_locked(ifp, sc, txring, true);
   4588 	mutex_exit(&txring->txr_mutex);
   4589 }
   4590 
   4591 static void
   4592 aq_stop(struct ifnet *ifp, int disable)
   4593 {
   4594 	struct aq_softc *sc = ifp->if_softc;
   4595 	int i;
   4596 
   4597 	AQ_LOCK(sc);
   4598 
   4599 	ifp->if_timer = 0;
   4600 
   4601 	/* disable tx/rx interrupts */
   4602 	aq_enable_intr(sc, true, false);
   4603 
   4604 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
   4605 	for (i = 0; i < sc->sc_nqueues; i++) {
   4606 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
   4607 	}
   4608 
   4609 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
   4610 	for (i = 0; i < sc->sc_nqueues; i++) {
   4611 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
   4612 	}
   4613 
   4614 	/* invalidate RX descriptor cache */
   4615 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
   4616 	    AQ_READ_REG_BIT(sc,
   4617 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
   4618 
   4619 	ifp->if_timer = 0;
   4620 
   4621 	if (!disable) {
   4622 		/* when pmf stop, disable link status intr and callout */
   4623 		aq_enable_intr(sc, false, false);
   4624 		callout_stop(&sc->sc_tick_ch);
   4625 	}
   4626 
   4627 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4628 
   4629 	AQ_UNLOCK(sc);
   4630 }
   4631 
   4632 static void
   4633 aq_watchdog(struct ifnet *ifp)
   4634 {
   4635 	struct aq_softc *sc = ifp->if_softc;
   4636 	struct aq_txring *txring;
   4637 	int n, head, tail;
   4638 
   4639 	AQ_LOCK(sc);
   4640 
   4641 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
   4642 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
   4643 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
   4644 
   4645 	for (n = 0; n < sc->sc_nqueues; n++) {
   4646 		txring = &sc->sc_queue[n].txring;
   4647 		head = AQ_READ_REG_BIT(sc,
   4648 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
   4649 		    TX_DMA_DESC_HEAD_PTR),
   4650 		tail = AQ_READ_REG(sc,
   4651 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
   4652 
   4653 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
   4654 		    __func__, txring->txr_index, head, tail);
   4655 
   4656 		aq_tx_intr(txring);
   4657 	}
   4658 
   4659 	AQ_UNLOCK(sc);
   4660 
   4661 	aq_init(ifp);
   4662 }
   4663 
   4664 static int
   4665 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   4666 {
   4667 	struct aq_softc *sc __unused;
   4668 	struct ifreq *ifr __unused;
   4669 	int error, s;
   4670 
   4671 	sc = (struct aq_softc *)ifp->if_softc;
   4672 	ifr = (struct ifreq *)data;
   4673 	error = 0;
   4674 
   4675 	s = splnet();
   4676 	error = ether_ioctl(ifp, cmd, data);
   4677 	splx(s);
   4678 
   4679 	if (error != ENETRESET)
   4680 		return error;
   4681 
   4682 	switch (cmd) {
   4683 	case SIOCSIFCAP:
   4684 		error = aq_set_capability(sc);
   4685 		break;
   4686 	case SIOCADDMULTI:
   4687 	case SIOCDELMULTI:
   4688 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   4689 			break;
   4690 
   4691 		/*
   4692 		 * Multicast list has changed; set the hardware filter
   4693 		 * accordingly.
   4694 		 */
   4695 		error = aq_set_filter(sc);
   4696 		break;
   4697 	}
   4698 
   4699 	return error;
   4700 }
   4701 
   4702 
   4703 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
   4704 
   4705 #ifdef _MODULE
   4706 #include "ioconf.c"
   4707 #endif
   4708 
   4709 static int
   4710 if_aq_modcmd(modcmd_t cmd, void *opaque)
   4711 {
   4712 	int error = 0;
   4713 
   4714 	switch (cmd) {
   4715 	case MODULE_CMD_INIT:
   4716 #ifdef _MODULE
   4717 		error = config_init_component(cfdriver_ioconf_if_aq,
   4718 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4719 #endif
   4720 		return error;
   4721 	case MODULE_CMD_FINI:
   4722 #ifdef _MODULE
   4723 		error = config_fini_component(cfdriver_ioconf_if_aq,
   4724 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
   4725 #endif
   4726 		return error;
   4727 	default:
   4728 		return ENOTTY;
   4729 	}
   4730 }
   4731