Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.117
      1  1.117   tsutsui /*	$NetBSD: if_bge.c,v 1.117 2006/11/25 13:31:00 tsutsui Exp $	*/
      2    1.8   thorpej 
      3    1.1      fvdl /*
      4    1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5    1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6    1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7    1.1      fvdl  *
      8    1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9    1.1      fvdl  * modification, are permitted provided that the following conditions
     10    1.1      fvdl  * are met:
     11    1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12    1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13    1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14    1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15    1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16    1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17    1.1      fvdl  *    must display the following acknowledgement:
     18    1.1      fvdl  *	This product includes software developed by Bill Paul.
     19    1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20    1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21    1.1      fvdl  *    without specific prior written permission.
     22    1.1      fvdl  *
     23    1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24    1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25    1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26    1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27    1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33    1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34    1.1      fvdl  *
     35    1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36    1.1      fvdl  */
     37    1.1      fvdl 
     38    1.1      fvdl /*
     39   1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40    1.1      fvdl  *
     41   1.12   thorpej  * NetBSD version by:
     42   1.12   thorpej  *
     43   1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44   1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45   1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46   1.12   thorpej  *
     47   1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48    1.1      fvdl  * Senior Engineer, Wind River Systems
     49    1.1      fvdl  */
     50    1.1      fvdl 
     51    1.1      fvdl /*
     52    1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53    1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54    1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55    1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56    1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57    1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58    1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59    1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60    1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61    1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62    1.1      fvdl  * into the driver.
     63    1.1      fvdl  *
     64    1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66    1.1      fvdl  *
     67    1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68   1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69    1.1      fvdl  * does not support external SSRAM.
     70    1.1      fvdl  *
     71    1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72    1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73    1.1      fvdl  *
     74    1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75    1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76    1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77    1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78    1.1      fvdl  * ring.
     79    1.1      fvdl  */
     80   1.43     lukem 
     81   1.43     lukem #include <sys/cdefs.h>
     82  1.117   tsutsui __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.117 2006/11/25 13:31:00 tsutsui Exp $");
     83    1.1      fvdl 
     84    1.1      fvdl #include "bpfilter.h"
     85    1.1      fvdl #include "vlan.h"
     86    1.1      fvdl 
     87    1.1      fvdl #include <sys/param.h>
     88    1.1      fvdl #include <sys/systm.h>
     89    1.1      fvdl #include <sys/callout.h>
     90    1.1      fvdl #include <sys/sockio.h>
     91    1.1      fvdl #include <sys/mbuf.h>
     92    1.1      fvdl #include <sys/malloc.h>
     93    1.1      fvdl #include <sys/kernel.h>
     94    1.1      fvdl #include <sys/device.h>
     95    1.1      fvdl #include <sys/socket.h>
     96   1.64  jonathan #include <sys/sysctl.h>
     97    1.1      fvdl 
     98    1.1      fvdl #include <net/if.h>
     99    1.1      fvdl #include <net/if_dl.h>
    100    1.1      fvdl #include <net/if_media.h>
    101    1.1      fvdl #include <net/if_ether.h>
    102    1.1      fvdl 
    103    1.1      fvdl #ifdef INET
    104    1.1      fvdl #include <netinet/in.h>
    105    1.1      fvdl #include <netinet/in_systm.h>
    106    1.1      fvdl #include <netinet/in_var.h>
    107    1.1      fvdl #include <netinet/ip.h>
    108    1.1      fvdl #endif
    109    1.1      fvdl 
    110   1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    111   1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112   1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113   1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    114   1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    115   1.95  jonathan 
    116   1.95  jonathan 
    117    1.1      fvdl #if NBPFILTER > 0
    118    1.1      fvdl #include <net/bpf.h>
    119    1.1      fvdl #endif
    120    1.1      fvdl 
    121    1.1      fvdl #include <dev/pci/pcireg.h>
    122    1.1      fvdl #include <dev/pci/pcivar.h>
    123    1.1      fvdl #include <dev/pci/pcidevs.h>
    124    1.1      fvdl 
    125    1.1      fvdl #include <dev/mii/mii.h>
    126    1.1      fvdl #include <dev/mii/miivar.h>
    127    1.1      fvdl #include <dev/mii/miidevs.h>
    128    1.1      fvdl #include <dev/mii/brgphyreg.h>
    129    1.1      fvdl 
    130    1.1      fvdl #include <dev/pci/if_bgereg.h>
    131    1.1      fvdl 
    132    1.1      fvdl #include <uvm/uvm_extern.h>
    133    1.1      fvdl 
    134   1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135   1.46  jonathan 
    136   1.63  jonathan 
    137   1.63  jonathan /*
    138   1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    139   1.63  jonathan  */
    140   1.63  jonathan 
    141   1.63  jonathan /*
    142   1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    143   1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144   1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    145   1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    146   1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    147   1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    148   1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    149   1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    150   1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    151   1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    152   1.87     perry  *
    153   1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    154   1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155   1.63  jonathan  * family), the larger values may overflow internal chip limits,
    156   1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    157   1.63  jonathan  * rates.
    158   1.63  jonathan  *
    159   1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    160   1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    161   1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162   1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    163   1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164   1.63  jonathan  */
    165  1.104   thorpej static const struct bge_load_rx_thresh {
    166   1.63  jonathan 	int rx_ticks;
    167   1.63  jonathan 	int rx_max_bds; }
    168   1.63  jonathan bge_rx_threshes[] = {
    169   1.63  jonathan 	{ 32,   2 },
    170   1.63  jonathan 	{ 50,   4 },
    171   1.63  jonathan 	{ 100,  8 },
    172   1.63  jonathan 	{ 192, 16 },
    173   1.63  jonathan 	{ 416, 32 },
    174   1.63  jonathan 	{ 598, 46 }
    175   1.63  jonathan };
    176   1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    177   1.63  jonathan 
    178   1.63  jonathan /* XXX patchable; should be sysctl'able */
    179   1.64  jonathan static int	bge_auto_thresh = 1;
    180   1.64  jonathan static int	bge_rx_thresh_lvl;
    181   1.64  jonathan 
    182  1.104   thorpej static int	bge_rxthresh_nodenum;
    183    1.1      fvdl 
    184  1.104   thorpej static int	bge_probe(device_t, cfdata_t, void *);
    185  1.104   thorpej static void	bge_attach(device_t, device_t, void *);
    186  1.104   thorpej static void	bge_powerhook(int, void *);
    187  1.104   thorpej static void	bge_release_resources(struct bge_softc *);
    188  1.104   thorpej static void	bge_txeof(struct bge_softc *);
    189  1.104   thorpej static void	bge_rxeof(struct bge_softc *);
    190  1.104   thorpej 
    191  1.104   thorpej static void	bge_tick(void *);
    192  1.104   thorpej static void	bge_stats_update(struct bge_softc *);
    193  1.104   thorpej static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    194  1.104   thorpej 
    195  1.104   thorpej static int	bge_intr(void *);
    196  1.104   thorpej static void	bge_start(struct ifnet *);
    197  1.104   thorpej static int	bge_ioctl(struct ifnet *, u_long, caddr_t);
    198  1.104   thorpej static int	bge_init(struct ifnet *);
    199  1.104   thorpej static void	bge_stop(struct bge_softc *);
    200  1.104   thorpej static void	bge_watchdog(struct ifnet *);
    201  1.104   thorpej static void	bge_shutdown(void *);
    202  1.104   thorpej static int	bge_ifmedia_upd(struct ifnet *);
    203  1.104   thorpej static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    204  1.104   thorpej 
    205  1.104   thorpej static void	bge_setmulti(struct bge_softc *);
    206  1.104   thorpej 
    207  1.104   thorpej static void	bge_handle_events(struct bge_softc *);
    208  1.104   thorpej static int	bge_alloc_jumbo_mem(struct bge_softc *);
    209  1.104   thorpej #if 0 /* XXX */
    210  1.104   thorpej static void	bge_free_jumbo_mem(struct bge_softc *);
    211    1.1      fvdl #endif
    212  1.104   thorpej static void	*bge_jalloc(struct bge_softc *);
    213  1.104   thorpej static void	bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    214  1.104   thorpej static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    215  1.104   thorpej 			       bus_dmamap_t);
    216  1.104   thorpej static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    217  1.104   thorpej static int	bge_init_rx_ring_std(struct bge_softc *);
    218  1.104   thorpej static void	bge_free_rx_ring_std(struct bge_softc *);
    219  1.104   thorpej static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    220  1.104   thorpej static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    221  1.104   thorpej static void	bge_free_tx_ring(struct bge_softc *);
    222  1.104   thorpej static int	bge_init_tx_ring(struct bge_softc *);
    223  1.104   thorpej 
    224  1.104   thorpej static int	bge_chipinit(struct bge_softc *);
    225  1.104   thorpej static int	bge_blockinit(struct bge_softc *);
    226  1.104   thorpej static int	bge_setpowerstate(struct bge_softc *, int);
    227    1.1      fvdl 
    228  1.104   thorpej static void	bge_reset(struct bge_softc *);
    229   1.95  jonathan 
    230    1.1      fvdl #define BGE_DEBUG
    231    1.1      fvdl #ifdef BGE_DEBUG
    232    1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    233    1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    234   1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    235    1.1      fvdl int	bgedebug = 0;
    236   1.95  jonathan int	bge_tso_debug = 0;
    237    1.1      fvdl #else
    238    1.1      fvdl #define DPRINTF(x)
    239    1.1      fvdl #define DPRINTFN(n,x)
    240   1.95  jonathan #define BGE_TSO_PRINTF(x)
    241    1.1      fvdl #endif
    242    1.1      fvdl 
    243   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    244   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    245   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    246   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    247   1.72   thorpej #else
    248   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    249   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    250   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    251   1.72   thorpej #endif
    252   1.72   thorpej 
    253   1.17   thorpej /* Various chip quirks. */
    254   1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    255   1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    256   1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    257   1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    258   1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    259   1.36  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    260   1.37  jonathan #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    261   1.44   hannken #define	BGE_QUIRK_5705_CORE		0x00000080
    262   1.54      fvdl #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    263   1.25  jonathan 
    264   1.95  jonathan /*
    265   1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    266  1.107     blymn  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    267   1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    268   1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    269   1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    270   1.95  jonathan  * (defined here until the thought is done).
    271   1.95  jonathan  */
    272   1.99  jonathan #define BGE_IS_5714_FAMILY(sc) \
    273   1.99  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 ||	\
    274   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    275   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5715 )
    276   1.99  jonathan 
    277   1.95  jonathan #define BGE_IS_5750_OR_BEYOND(sc)  \
    278   1.99  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    279   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    280   1.99  jonathan 	 BGE_IS_5714_FAMILY(sc) )
    281   1.95  jonathan 
    282   1.95  jonathan #define BGE_IS_5705_OR_BEYOND(sc)  \
    283   1.95  jonathan 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    284   1.95  jonathan 	  BGE_IS_5750_OR_BEYOND(sc) )
    285   1.95  jonathan 
    286   1.95  jonathan 
    287   1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    288   1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    289   1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    290   1.17   thorpej 
    291   1.21   thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
    292   1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    293    1.1      fvdl 
    294  1.104   thorpej static u_int32_t
    295  1.104   thorpej bge_readmem_ind(struct bge_softc *sc, int off)
    296    1.1      fvdl {
    297    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    298    1.1      fvdl 	pcireg_t val;
    299    1.1      fvdl 
    300    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    301    1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    302    1.1      fvdl 	return val;
    303    1.1      fvdl }
    304    1.1      fvdl 
    305  1.104   thorpej static void
    306  1.104   thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
    307    1.1      fvdl {
    308    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    309    1.1      fvdl 
    310    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    311    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    312    1.1      fvdl }
    313    1.1      fvdl 
    314    1.1      fvdl #ifdef notdef
    315  1.104   thorpej static u_int32_t
    316  1.104   thorpej bge_readreg_ind(struct bge_softc *sc, int off)
    317    1.1      fvdl {
    318    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    319    1.1      fvdl 
    320    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    321    1.1      fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    322    1.1      fvdl }
    323    1.1      fvdl #endif
    324    1.1      fvdl 
    325  1.104   thorpej static void
    326  1.104   thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
    327    1.1      fvdl {
    328    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    329    1.1      fvdl 
    330    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    331    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    332    1.1      fvdl }
    333    1.1      fvdl 
    334    1.1      fvdl #ifdef notdef
    335  1.104   thorpej static u_int8_t
    336  1.104   thorpej bge_vpd_readbyte(struct bge_softc *sc, int addr)
    337    1.1      fvdl {
    338    1.1      fvdl 	int i;
    339    1.1      fvdl 	u_int32_t val;
    340    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    341    1.1      fvdl 
    342    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    343    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    344    1.1      fvdl 		DELAY(10);
    345    1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    346    1.1      fvdl 		    BGE_VPD_FLAG)
    347    1.1      fvdl 			break;
    348    1.1      fvdl 	}
    349    1.1      fvdl 
    350    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    351    1.1      fvdl 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    352    1.1      fvdl 		return(0);
    353    1.1      fvdl 	}
    354    1.1      fvdl 
    355    1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    356    1.1      fvdl 
    357    1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    358    1.1      fvdl }
    359    1.1      fvdl 
    360  1.104   thorpej static void
    361  1.104   thorpej bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    362    1.1      fvdl {
    363    1.1      fvdl 	int i;
    364    1.1      fvdl 	u_int8_t *ptr;
    365    1.1      fvdl 
    366    1.1      fvdl 	ptr = (u_int8_t *)res;
    367    1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    368    1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    369    1.1      fvdl }
    370    1.1      fvdl 
    371  1.104   thorpej static void
    372  1.104   thorpej bge_vpd_read(struct bge_softc *sc)
    373    1.1      fvdl {
    374    1.1      fvdl 	int pos = 0, i;
    375    1.1      fvdl 	struct vpd_res res;
    376    1.1      fvdl 
    377    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    378    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    379    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    380    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    381    1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    382    1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    383    1.1      fvdl 
    384    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    385    1.1      fvdl 
    386    1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    387    1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    388    1.1      fvdl 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    389    1.1      fvdl 		return;
    390    1.1      fvdl 	}
    391    1.1      fvdl 
    392    1.1      fvdl 	pos += sizeof(res);
    393    1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    394    1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    395    1.1      fvdl 		panic("bge_vpd_read");
    396    1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    397    1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    398    1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    399    1.1      fvdl 	pos += i;
    400    1.1      fvdl 
    401    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    402    1.1      fvdl 
    403    1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    404    1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    405    1.1      fvdl 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    406    1.1      fvdl 		return;
    407    1.1      fvdl 	}
    408    1.1      fvdl 
    409    1.1      fvdl 	pos += sizeof(res);
    410    1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    411    1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    412    1.1      fvdl 		panic("bge_vpd_read");
    413    1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    414    1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    415    1.1      fvdl }
    416    1.1      fvdl #endif
    417    1.1      fvdl 
    418    1.1      fvdl /*
    419    1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    420    1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    421    1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    422    1.1      fvdl  * access method.
    423    1.1      fvdl  */
    424  1.104   thorpej static u_int8_t
    425  1.104   thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    426    1.1      fvdl {
    427    1.1      fvdl 	int i;
    428    1.1      fvdl 	u_int32_t byte = 0;
    429    1.1      fvdl 
    430    1.1      fvdl 	/*
    431    1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    432    1.1      fvdl 	 * having to use the bitbang method.
    433    1.1      fvdl 	 */
    434    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    435    1.1      fvdl 
    436    1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    437    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    438    1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    439    1.1      fvdl 	DELAY(20);
    440    1.1      fvdl 
    441    1.1      fvdl 	/* Issue the read EEPROM command. */
    442    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    443    1.1      fvdl 
    444    1.1      fvdl 	/* Wait for completion */
    445    1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    446    1.1      fvdl 		DELAY(10);
    447    1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    448    1.1      fvdl 			break;
    449    1.1      fvdl 	}
    450    1.1      fvdl 
    451    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    452    1.1      fvdl 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    453    1.1      fvdl 		return(0);
    454    1.1      fvdl 	}
    455    1.1      fvdl 
    456    1.1      fvdl 	/* Get result. */
    457    1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    458    1.1      fvdl 
    459    1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    460    1.1      fvdl 
    461    1.1      fvdl 	return(0);
    462    1.1      fvdl }
    463    1.1      fvdl 
    464    1.1      fvdl /*
    465    1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    466    1.1      fvdl  */
    467  1.104   thorpej static int
    468  1.104   thorpej bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
    469    1.1      fvdl {
    470    1.1      fvdl 	int err = 0, i;
    471    1.1      fvdl 	u_int8_t byte = 0;
    472    1.1      fvdl 
    473    1.1      fvdl 	for (i = 0; i < cnt; i++) {
    474    1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    475    1.1      fvdl 		if (err)
    476    1.1      fvdl 			break;
    477    1.1      fvdl 		*(dest + i) = byte;
    478    1.1      fvdl 	}
    479    1.1      fvdl 
    480    1.1      fvdl 	return(err ? 1 : 0);
    481    1.1      fvdl }
    482    1.1      fvdl 
    483  1.104   thorpej static int
    484  1.104   thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
    485    1.1      fvdl {
    486    1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    487    1.1      fvdl 	u_int32_t val;
    488   1.25  jonathan 	u_int32_t saved_autopoll;
    489    1.1      fvdl 	int i;
    490    1.1      fvdl 
    491   1.25  jonathan 	/*
    492   1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    493   1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    494   1.25  jonathan 	 */
    495   1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    496    1.1      fvdl 		return(0);
    497    1.1      fvdl 
    498   1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    499   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    500   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    501   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    502   1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    503   1.25  jonathan 		DELAY(40);
    504   1.25  jonathan 	}
    505   1.25  jonathan 
    506    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    507    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    508    1.1      fvdl 
    509    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    510    1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    511    1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    512    1.1      fvdl 			break;
    513    1.9   thorpej 		delay(10);
    514    1.1      fvdl 	}
    515    1.1      fvdl 
    516    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    517    1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    518   1.29    itojun 		val = 0;
    519   1.25  jonathan 		goto done;
    520    1.1      fvdl 	}
    521    1.1      fvdl 
    522    1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    523    1.1      fvdl 
    524   1.25  jonathan done:
    525   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    526   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    527   1.25  jonathan 		DELAY(40);
    528   1.25  jonathan 	}
    529   1.29    itojun 
    530    1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    531    1.1      fvdl 		return(0);
    532    1.1      fvdl 
    533    1.1      fvdl 	return(val & 0xFFFF);
    534    1.1      fvdl }
    535    1.1      fvdl 
    536  1.104   thorpej static void
    537  1.104   thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    538    1.1      fvdl {
    539    1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    540   1.29    itojun 	u_int32_t saved_autopoll;
    541   1.29    itojun 	int i;
    542    1.1      fvdl 
    543   1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    544   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    545   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    546   1.25  jonathan 		delay(40);
    547   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    548   1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    549   1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    550   1.25  jonathan 	}
    551   1.29    itojun 
    552    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    553    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    554    1.1      fvdl 
    555    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    556    1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    557    1.1      fvdl 			break;
    558    1.9   thorpej 		delay(10);
    559    1.1      fvdl 	}
    560    1.1      fvdl 
    561   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    562   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    563   1.25  jonathan 		delay(40);
    564   1.25  jonathan 	}
    565   1.29    itojun 
    566    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    567    1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    568    1.1      fvdl 	}
    569    1.1      fvdl }
    570    1.1      fvdl 
    571  1.104   thorpej static void
    572  1.104   thorpej bge_miibus_statchg(device_t dev)
    573    1.1      fvdl {
    574    1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    575    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    576    1.1      fvdl 
    577   1.69   thorpej 	/*
    578   1.69   thorpej 	 * Get flow control negotiation result.
    579   1.69   thorpej 	 */
    580   1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    581   1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    582   1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    583   1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    584   1.69   thorpej 	}
    585   1.69   thorpej 
    586    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    587    1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    588    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    589    1.1      fvdl 	} else {
    590    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    591    1.1      fvdl 	}
    592    1.1      fvdl 
    593    1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    594    1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    595    1.1      fvdl 	} else {
    596    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    597    1.1      fvdl 	}
    598   1.69   thorpej 
    599   1.69   thorpej 	/*
    600   1.69   thorpej 	 * 802.3x flow control
    601   1.69   thorpej 	 */
    602   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    603   1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    604   1.69   thorpej 	} else {
    605   1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    606   1.69   thorpej 	}
    607   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    608   1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    609   1.69   thorpej 	} else {
    610   1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    611   1.69   thorpej 	}
    612    1.1      fvdl }
    613    1.1      fvdl 
    614    1.1      fvdl /*
    615   1.63  jonathan  * Update rx threshold levels to values in a particular slot
    616   1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    617   1.63  jonathan  */
    618  1.104   thorpej static void
    619   1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    620   1.63  jonathan {
    621   1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    622   1.63  jonathan 	int s;
    623   1.63  jonathan 
    624   1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    625   1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    626   1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    627   1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    628   1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    629   1.63  jonathan 	 */
    630   1.63  jonathan 	s = splnet();
    631   1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    632   1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    633   1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    634   1.63  jonathan 	splx(s);
    635   1.63  jonathan 
    636   1.63  jonathan 	 return;
    637   1.63  jonathan }
    638   1.63  jonathan 
    639   1.63  jonathan 
    640   1.63  jonathan /*
    641   1.63  jonathan  * Update Rx thresholds of all bge devices
    642   1.63  jonathan  */
    643  1.104   thorpej static void
    644   1.63  jonathan bge_update_all_threshes(int lvl)
    645   1.63  jonathan {
    646   1.63  jonathan 	struct ifnet *ifp;
    647   1.63  jonathan 	const char * const namebuf = "bge";
    648   1.63  jonathan 	int namelen;
    649   1.63  jonathan 
    650   1.63  jonathan 	if (lvl < 0)
    651   1.63  jonathan 		lvl = 0;
    652   1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    653   1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    654   1.87     perry 
    655   1.63  jonathan 	namelen = strlen(namebuf);
    656   1.63  jonathan 	/*
    657   1.63  jonathan 	 * Now search all the interfaces for this name/number
    658   1.63  jonathan 	 */
    659   1.81      matt 	IFNET_FOREACH(ifp) {
    660   1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    661   1.63  jonathan 		      continue;
    662   1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    663   1.63  jonathan 		if (bge_auto_thresh)
    664   1.67  jonathan 			bge_set_thresh(ifp, lvl);
    665   1.63  jonathan 	}
    666   1.63  jonathan }
    667   1.63  jonathan 
    668   1.63  jonathan /*
    669    1.1      fvdl  * Handle events that have triggered interrupts.
    670    1.1      fvdl  */
    671  1.104   thorpej static void
    672  1.116  christos bge_handle_events(struct bge_softc *sc)
    673    1.1      fvdl {
    674    1.1      fvdl 
    675    1.1      fvdl 	return;
    676    1.1      fvdl }
    677    1.1      fvdl 
    678    1.1      fvdl /*
    679    1.1      fvdl  * Memory management for jumbo frames.
    680    1.1      fvdl  */
    681    1.1      fvdl 
    682  1.104   thorpej static int
    683  1.104   thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
    684    1.1      fvdl {
    685    1.1      fvdl 	caddr_t			ptr, kva;
    686    1.1      fvdl 	bus_dma_segment_t	seg;
    687    1.1      fvdl 	int		i, rseg, state, error;
    688    1.1      fvdl 	struct bge_jpool_entry   *entry;
    689    1.1      fvdl 
    690    1.1      fvdl 	state = error = 0;
    691    1.1      fvdl 
    692    1.1      fvdl 	/* Grab a big chunk o' storage. */
    693    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    694    1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    695    1.1      fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    696    1.1      fvdl 		return ENOBUFS;
    697    1.1      fvdl 	}
    698    1.1      fvdl 
    699    1.1      fvdl 	state = 1;
    700    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    701    1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    702   1.39       wiz 		printf("%s: can't map DMA buffers (%d bytes)\n",
    703    1.1      fvdl 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    704    1.1      fvdl 		error = ENOBUFS;
    705    1.1      fvdl 		goto out;
    706    1.1      fvdl 	}
    707    1.1      fvdl 
    708    1.1      fvdl 	state = 2;
    709    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    710    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    711   1.39       wiz 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    712    1.1      fvdl 		error = ENOBUFS;
    713    1.1      fvdl 		goto out;
    714    1.1      fvdl 	}
    715    1.1      fvdl 
    716    1.1      fvdl 	state = 3;
    717    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    718    1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    719   1.39       wiz 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    720    1.1      fvdl 		error = ENOBUFS;
    721    1.1      fvdl 		goto out;
    722    1.1      fvdl 	}
    723    1.1      fvdl 
    724    1.1      fvdl 	state = 4;
    725    1.1      fvdl 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    726   1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    727    1.1      fvdl 
    728    1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    729    1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    730    1.1      fvdl 
    731    1.1      fvdl 	/*
    732    1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    733    1.1      fvdl 	 * in an array.
    734    1.1      fvdl 	 */
    735    1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    736    1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    737    1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    738    1.1      fvdl 		ptr += BGE_JLEN;
    739    1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    740    1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    741    1.1      fvdl 		if (entry == NULL) {
    742    1.1      fvdl 			printf("%s: no memory for jumbo buffer queue!\n",
    743    1.1      fvdl 			    sc->bge_dev.dv_xname);
    744    1.1      fvdl 			error = ENOBUFS;
    745    1.1      fvdl 			goto out;
    746    1.1      fvdl 		}
    747    1.1      fvdl 		entry->slot = i;
    748    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    749    1.1      fvdl 				 entry, jpool_entries);
    750    1.1      fvdl 	}
    751    1.1      fvdl out:
    752    1.1      fvdl 	if (error != 0) {
    753    1.1      fvdl 		switch (state) {
    754    1.1      fvdl 		case 4:
    755    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    756    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    757    1.1      fvdl 		case 3:
    758    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    759    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    760    1.1      fvdl 		case 2:
    761    1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    762    1.1      fvdl 		case 1:
    763    1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    764    1.1      fvdl 			break;
    765    1.1      fvdl 		default:
    766    1.1      fvdl 			break;
    767    1.1      fvdl 		}
    768    1.1      fvdl 	}
    769    1.1      fvdl 
    770    1.1      fvdl 	return error;
    771    1.1      fvdl }
    772    1.1      fvdl 
    773    1.1      fvdl /*
    774    1.1      fvdl  * Allocate a jumbo buffer.
    775    1.1      fvdl  */
    776  1.104   thorpej static void *
    777  1.104   thorpej bge_jalloc(struct bge_softc *sc)
    778    1.1      fvdl {
    779    1.1      fvdl 	struct bge_jpool_entry   *entry;
    780    1.1      fvdl 
    781    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    782    1.1      fvdl 
    783    1.1      fvdl 	if (entry == NULL) {
    784    1.1      fvdl 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    785    1.1      fvdl 		return(NULL);
    786    1.1      fvdl 	}
    787    1.1      fvdl 
    788    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    789    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    790    1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    791    1.1      fvdl }
    792    1.1      fvdl 
    793    1.1      fvdl /*
    794    1.1      fvdl  * Release a jumbo buffer.
    795    1.1      fvdl  */
    796  1.104   thorpej static void
    797  1.116  christos bge_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    798    1.1      fvdl {
    799    1.1      fvdl 	struct bge_jpool_entry *entry;
    800    1.1      fvdl 	struct bge_softc *sc;
    801    1.1      fvdl 	int i, s;
    802    1.1      fvdl 
    803    1.1      fvdl 	/* Extract the softc struct pointer. */
    804    1.1      fvdl 	sc = (struct bge_softc *)arg;
    805    1.1      fvdl 
    806    1.1      fvdl 	if (sc == NULL)
    807    1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    808    1.1      fvdl 
    809    1.1      fvdl 	/* calculate the slot this buffer belongs to */
    810    1.1      fvdl 
    811    1.1      fvdl 	i = ((caddr_t)buf
    812    1.1      fvdl 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    813    1.1      fvdl 
    814    1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    815    1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    816    1.1      fvdl 
    817    1.1      fvdl 	s = splvm();
    818    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    819    1.1      fvdl 	if (entry == NULL)
    820    1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    821    1.1      fvdl 	entry->slot = i;
    822    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    823    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    824    1.1      fvdl 
    825    1.1      fvdl 	if (__predict_true(m != NULL))
    826    1.1      fvdl   		pool_cache_put(&mbpool_cache, m);
    827    1.1      fvdl 	splx(s);
    828    1.1      fvdl }
    829    1.1      fvdl 
    830    1.1      fvdl 
    831    1.1      fvdl /*
    832    1.1      fvdl  * Intialize a standard receive ring descriptor.
    833    1.1      fvdl  */
    834  1.104   thorpej static int
    835  1.104   thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    836    1.1      fvdl {
    837    1.1      fvdl 	struct mbuf		*m_new = NULL;
    838    1.1      fvdl 	struct bge_rx_bd	*r;
    839    1.1      fvdl 	int			error;
    840    1.1      fvdl 
    841    1.1      fvdl 	if (dmamap == NULL) {
    842    1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    843    1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    844    1.1      fvdl 		if (error != 0)
    845    1.1      fvdl 			return error;
    846    1.1      fvdl 	}
    847    1.1      fvdl 
    848    1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    849    1.1      fvdl 
    850    1.1      fvdl 	if (m == NULL) {
    851    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    852    1.1      fvdl 		if (m_new == NULL) {
    853    1.1      fvdl 			return(ENOBUFS);
    854    1.1      fvdl 		}
    855    1.1      fvdl 
    856    1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    857    1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    858    1.1      fvdl 			m_freem(m_new);
    859    1.1      fvdl 			return(ENOBUFS);
    860    1.1      fvdl 		}
    861    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    862   1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    863   1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    864    1.1      fvdl 
    865    1.1      fvdl 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    866    1.1      fvdl 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    867    1.1      fvdl 			return(ENOBUFS);
    868    1.1      fvdl 	} else {
    869    1.1      fvdl 		m_new = m;
    870    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    871    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    872   1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    873   1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    874    1.1      fvdl 	}
    875    1.1      fvdl 
    876    1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    877    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    878    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    879   1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    880    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    881    1.1      fvdl 	r->bge_len = m_new->m_len;
    882    1.1      fvdl 	r->bge_idx = i;
    883    1.1      fvdl 
    884    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    885    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    886    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    887    1.1      fvdl 	    sizeof (struct bge_rx_bd),
    888    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    889    1.1      fvdl 
    890    1.1      fvdl 	return(0);
    891    1.1      fvdl }
    892    1.1      fvdl 
    893    1.1      fvdl /*
    894    1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    895    1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
    896    1.1      fvdl  */
    897  1.104   thorpej static int
    898  1.104   thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
    899    1.1      fvdl {
    900    1.1      fvdl 	struct mbuf *m_new = NULL;
    901    1.1      fvdl 	struct bge_rx_bd *r;
    902    1.1      fvdl 
    903    1.1      fvdl 	if (m == NULL) {
    904   1.75      yamt 		caddr_t			buf = NULL;
    905    1.1      fvdl 
    906    1.1      fvdl 		/* Allocate the mbuf. */
    907    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    908    1.1      fvdl 		if (m_new == NULL) {
    909    1.1      fvdl 			return(ENOBUFS);
    910    1.1      fvdl 		}
    911    1.1      fvdl 
    912    1.1      fvdl 		/* Allocate the jumbo buffer */
    913    1.1      fvdl 		buf = bge_jalloc(sc);
    914    1.1      fvdl 		if (buf == NULL) {
    915    1.1      fvdl 			m_freem(m_new);
    916    1.1      fvdl 			printf("%s: jumbo allocation failed "
    917    1.1      fvdl 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    918    1.1      fvdl 			return(ENOBUFS);
    919    1.1      fvdl 		}
    920    1.1      fvdl 
    921    1.1      fvdl 		/* Attach the buffer to the mbuf. */
    922    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    923    1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    924    1.1      fvdl 		    bge_jfree, sc);
    925   1.74      yamt 		m_new->m_flags |= M_EXT_RW;
    926    1.1      fvdl 	} else {
    927    1.1      fvdl 		m_new = m;
    928    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    929    1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    930    1.1      fvdl 	}
    931    1.1      fvdl 
    932   1.37  jonathan 	if (!sc->bge_rx_alignment_bug)
    933   1.37  jonathan 	    m_adj(m_new, ETHER_ALIGN);
    934    1.1      fvdl 	/* Set up the descriptor. */
    935    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    936    1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    937    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    938    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    939    1.1      fvdl 	r->bge_len = m_new->m_len;
    940    1.1      fvdl 	r->bge_idx = i;
    941    1.1      fvdl 
    942    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    943    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    944    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    945    1.1      fvdl 	    sizeof (struct bge_rx_bd),
    946    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    947    1.1      fvdl 
    948    1.1      fvdl 	return(0);
    949    1.1      fvdl }
    950    1.1      fvdl 
    951    1.1      fvdl /*
    952    1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    953    1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
    954    1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
    955    1.1      fvdl  * the NIC.
    956    1.1      fvdl  */
    957  1.104   thorpej static int
    958  1.104   thorpej bge_init_rx_ring_std(struct bge_softc *sc)
    959    1.1      fvdl {
    960    1.1      fvdl 	int i;
    961    1.1      fvdl 
    962    1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
    963    1.1      fvdl 		return 0;
    964    1.1      fvdl 
    965    1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
    966    1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    967    1.1      fvdl 			return(ENOBUFS);
    968    1.1      fvdl 	}
    969    1.1      fvdl 
    970    1.1      fvdl 	sc->bge_std = i - 1;
    971    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    972    1.1      fvdl 
    973    1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
    974    1.1      fvdl 
    975    1.1      fvdl 	return(0);
    976    1.1      fvdl }
    977    1.1      fvdl 
    978  1.104   thorpej static void
    979  1.104   thorpej bge_free_rx_ring_std(struct bge_softc *sc)
    980    1.1      fvdl {
    981    1.1      fvdl 	int i;
    982    1.1      fvdl 
    983    1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    984    1.1      fvdl 		return;
    985    1.1      fvdl 
    986    1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    987    1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    988    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    989    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    990   1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
    991    1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
    992    1.1      fvdl 		}
    993    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    994    1.1      fvdl 		    sizeof(struct bge_rx_bd));
    995    1.1      fvdl 	}
    996    1.1      fvdl 
    997    1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
    998    1.1      fvdl }
    999    1.1      fvdl 
   1000  1.104   thorpej static int
   1001  1.104   thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1002    1.1      fvdl {
   1003    1.1      fvdl 	int i;
   1004   1.34  jonathan 	volatile struct bge_rcb *rcb;
   1005    1.1      fvdl 
   1006   1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1007   1.59    martin 		return 0;
   1008   1.59    martin 
   1009    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1010    1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1011    1.1      fvdl 			return(ENOBUFS);
   1012    1.1      fvdl 	};
   1013    1.1      fvdl 
   1014    1.1      fvdl 	sc->bge_jumbo = i - 1;
   1015   1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1016    1.1      fvdl 
   1017    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1018   1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1019   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1020    1.1      fvdl 
   1021    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1022    1.1      fvdl 
   1023    1.1      fvdl 	return(0);
   1024    1.1      fvdl }
   1025    1.1      fvdl 
   1026  1.104   thorpej static void
   1027  1.104   thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1028    1.1      fvdl {
   1029    1.1      fvdl 	int i;
   1030    1.1      fvdl 
   1031    1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1032    1.1      fvdl 		return;
   1033    1.1      fvdl 
   1034    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1035    1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1036    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1037    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1038    1.1      fvdl 		}
   1039    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1040    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1041    1.1      fvdl 	}
   1042    1.1      fvdl 
   1043    1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1044    1.1      fvdl }
   1045    1.1      fvdl 
   1046  1.104   thorpej static void
   1047  1.104   thorpej bge_free_tx_ring(struct bge_softc *sc)
   1048    1.1      fvdl {
   1049    1.1      fvdl 	int i, freed;
   1050    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1051    1.1      fvdl 
   1052    1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1053    1.1      fvdl 		return;
   1054    1.1      fvdl 
   1055    1.1      fvdl 	freed = 0;
   1056    1.1      fvdl 
   1057    1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1058    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1059    1.1      fvdl 			freed++;
   1060    1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1061    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1062    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1063    1.1      fvdl 					    link);
   1064    1.1      fvdl 			sc->txdma[i] = 0;
   1065    1.1      fvdl 		}
   1066    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1067    1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1068    1.1      fvdl 	}
   1069    1.1      fvdl 
   1070    1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1071    1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1072    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1073    1.1      fvdl 		free(dma, M_DEVBUF);
   1074    1.1      fvdl 	}
   1075    1.1      fvdl 
   1076    1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1077    1.1      fvdl }
   1078    1.1      fvdl 
   1079  1.104   thorpej static int
   1080  1.104   thorpej bge_init_tx_ring(struct bge_softc *sc)
   1081    1.1      fvdl {
   1082    1.1      fvdl 	int i;
   1083    1.1      fvdl 	bus_dmamap_t dmamap;
   1084    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1085    1.1      fvdl 
   1086    1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1087    1.1      fvdl 		return 0;
   1088    1.1      fvdl 
   1089    1.1      fvdl 	sc->bge_txcnt = 0;
   1090    1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1091   1.94  jonathan 
   1092   1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1093   1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1094   1.94  jonathan 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1095   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1096   1.94  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1097   1.25  jonathan 
   1098   1.94  jonathan 	/* NIC-memory send ring  not used; initialize to zero. */
   1099    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1100   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1101   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1102    1.1      fvdl 
   1103    1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1104    1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1105   1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1106    1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1107    1.1      fvdl 		    &dmamap))
   1108    1.1      fvdl 			return(ENOBUFS);
   1109    1.1      fvdl 		if (dmamap == NULL)
   1110    1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1111    1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1112    1.1      fvdl 		if (dma == NULL) {
   1113    1.1      fvdl 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1114    1.1      fvdl 			    sc->bge_dev.dv_xname);
   1115    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1116    1.1      fvdl 			return (ENOMEM);
   1117    1.1      fvdl 		}
   1118    1.1      fvdl 		dma->dmamap = dmamap;
   1119    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1120    1.1      fvdl 	}
   1121    1.1      fvdl 
   1122    1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1123    1.1      fvdl 
   1124    1.1      fvdl 	return(0);
   1125    1.1      fvdl }
   1126    1.1      fvdl 
   1127  1.104   thorpej static void
   1128  1.104   thorpej bge_setmulti(struct bge_softc *sc)
   1129    1.1      fvdl {
   1130    1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1131    1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1132    1.1      fvdl 	struct ether_multi	*enm;
   1133    1.1      fvdl 	struct ether_multistep  step;
   1134    1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1135    1.1      fvdl 	u_int32_t		h;
   1136    1.1      fvdl 	int			i;
   1137    1.1      fvdl 
   1138   1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1139   1.13   thorpej 		goto allmulti;
   1140    1.1      fvdl 
   1141    1.1      fvdl 	/* Now program new ones. */
   1142    1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1143    1.1      fvdl 	while (enm != NULL) {
   1144   1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1145   1.13   thorpej 			/*
   1146   1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1147   1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1148   1.13   thorpej 			 * trying to set only those filter bits needed to match
   1149   1.13   thorpej 			 * the range.  (At this time, the only use of address
   1150   1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1151   1.13   thorpej 			 * range is big enough to require all bits set.)
   1152   1.13   thorpej 			 */
   1153   1.13   thorpej 			goto allmulti;
   1154   1.13   thorpej 		}
   1155   1.13   thorpej 
   1156   1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1157   1.13   thorpej 
   1158   1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1159   1.13   thorpej 		h &= 0x7f;
   1160   1.13   thorpej 
   1161    1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1162    1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1163    1.1      fvdl 	}
   1164    1.1      fvdl 
   1165   1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1166   1.13   thorpej 	goto setit;
   1167   1.13   thorpej 
   1168   1.13   thorpej  allmulti:
   1169   1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1170   1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1171   1.13   thorpej 
   1172   1.13   thorpej  setit:
   1173    1.1      fvdl 	for (i = 0; i < 4; i++)
   1174    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1175    1.1      fvdl }
   1176    1.1      fvdl 
   1177   1.24      matt const int bge_swapbits[] = {
   1178    1.1      fvdl 	0,
   1179    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1180    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1181    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1182    1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1183    1.1      fvdl 
   1184    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1185    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1186    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1187    1.1      fvdl 
   1188    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1189    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1190    1.1      fvdl 
   1191    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1192    1.1      fvdl 
   1193    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1194    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1195    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1196    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1197    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1198    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1199    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1200    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1201    1.1      fvdl 
   1202    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1203    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1204    1.1      fvdl };
   1205    1.1      fvdl 
   1206    1.1      fvdl int bge_swapindex = 0;
   1207    1.1      fvdl 
   1208    1.1      fvdl /*
   1209    1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1210    1.1      fvdl  * self-test results.
   1211    1.1      fvdl  */
   1212  1.104   thorpej static int
   1213  1.104   thorpej bge_chipinit(struct bge_softc *sc)
   1214    1.1      fvdl {
   1215    1.1      fvdl 	u_int32_t		cachesize;
   1216    1.1      fvdl 	int			i;
   1217   1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1218    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1219    1.1      fvdl 
   1220    1.1      fvdl 
   1221    1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1222    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1223    1.1      fvdl 	    BGE_INIT);
   1224    1.1      fvdl 
   1225   1.25  jonathan 	/* Set power state to D0. */
   1226   1.25  jonathan 	bge_setpowerstate(sc, 0);
   1227   1.87     perry 
   1228    1.1      fvdl 	/*
   1229    1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1230    1.1      fvdl 	 * self-tests passed.
   1231    1.1      fvdl 	 */
   1232    1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1233    1.1      fvdl 		printf("%s: RX CPU self-diagnostics failed!\n",
   1234    1.1      fvdl 		    sc->bge_dev.dv_xname);
   1235    1.1      fvdl 		return(ENODEV);
   1236    1.1      fvdl 	}
   1237    1.1      fvdl 
   1238    1.1      fvdl 	/* Clear the MAC control register */
   1239    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1240    1.1      fvdl 
   1241    1.1      fvdl 	/*
   1242    1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1243    1.1      fvdl 	 * internal memory.
   1244    1.1      fvdl 	 */
   1245    1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1246    1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1247    1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1248    1.1      fvdl 
   1249    1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1250    1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1251    1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1252    1.1      fvdl 
   1253    1.1      fvdl 	/* Set up the PCI DMA control register. */
   1254   1.76      cube 	if (sc->bge_pcie) {
   1255   1.95  jonathan 	  u_int32_t device_ctl;
   1256   1.95  jonathan 
   1257   1.76      cube 		/* From FreeBSD */
   1258   1.76      cube 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1259   1.76      cube 		    sc->bge_dev.dv_xname));
   1260   1.76      cube 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1261   1.76      cube 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1262   1.76      cube 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1263   1.95  jonathan 
   1264   1.95  jonathan 		/* jonathan: alternative from Linux driver */
   1265  1.107     blymn #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1266   1.95  jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1267   1.95  jonathan 
   1268   1.95  jonathan 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1269  1.107     blymn 		device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1270   1.95  jonathan 					   BGE_PCI_CONF_DEV_CTRL);
   1271   1.95  jonathan 		printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
   1272   1.95  jonathan 
   1273   1.95  jonathan 		if ((device_ctl & 0x00e0) && 0) {
   1274   1.95  jonathan 			/*
   1275   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org:
   1276   1.95  jonathan 			 * This clause is exactly what the Broadcom-supplied
   1277   1.95  jonathan 			 * Linux does; but given overall register programming
   1278   1.95  jonathan 			 * by if_bge(4), this larger DMA-write watermark
   1279   1.95  jonathan 			 * value causes bcm5721 chips to totally wedge.
   1280   1.95  jonathan 			 */
   1281   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1282   1.95  jonathan 		} else {
   1283   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1284   1.95  jonathan 		}
   1285   1.76      cube 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1286   1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1287   1.25  jonathan 		/* Conventional PCI bus */
   1288   1.39       wiz 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1289   1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1290   1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1291   1.44   hannken 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1292   1.44   hannken 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1293   1.44   hannken 			dma_rw_ctl |= 0x0F;
   1294   1.44   hannken 		}
   1295   1.25  jonathan 	} else {
   1296   1.39       wiz 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1297   1.25  jonathan 		/* PCI-X bus */
   1298   1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1299   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1300   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1301   1.25  jonathan 		    (0x0F);
   1302   1.25  jonathan 		/*
   1303   1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1304   1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1305   1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1306   1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1307   1.25  jonathan 		 */
   1308   1.57  jonathan 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1309   1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1310   1.25  jonathan 			  /* should be 0x1f0000 */
   1311   1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1312   1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1313   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1314   1.25  jonathan 		}
   1315   1.57  jonathan 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1316   1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1317   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1318   1.25  jonathan 		}
   1319   1.99  jonathan 		else if (BGE_IS_5714_FAMILY(sc)) {
   1320   1.99  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1321   1.99  jonathan 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1322   1.99  jonathan 			/* XXX magic values, Broadcom-supplied Linux driver */
   1323   1.99  jonathan 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1324   1.99  jonathan 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1325   1.99  jonathan 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1326   1.99  jonathan 			else
   1327   1.99  jonathan 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1328   1.99  jonathan 		}
   1329   1.25  jonathan 	}
   1330   1.25  jonathan 
   1331   1.25  jonathan 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1332    1.1      fvdl 
   1333    1.1      fvdl 	/*
   1334    1.1      fvdl 	 * Set up general mode register.
   1335    1.1      fvdl 	 */
   1336    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1337    1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1338   1.54      fvdl 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1339    1.1      fvdl 
   1340    1.1      fvdl 	/* Get cache line size. */
   1341    1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1342    1.1      fvdl 
   1343    1.1      fvdl 	/*
   1344    1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1345    1.1      fvdl 	 */
   1346    1.1      fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1347    1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1348    1.1      fvdl 		switch(cachesize) {
   1349    1.1      fvdl 		case 1:
   1350    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1351    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1352    1.1      fvdl 			break;
   1353    1.1      fvdl 		case 2:
   1354    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1355    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1356    1.1      fvdl 			break;
   1357    1.1      fvdl 		case 4:
   1358    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1359    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1360    1.1      fvdl 			break;
   1361    1.1      fvdl 		case 8:
   1362    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1363    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1364    1.1      fvdl 			break;
   1365    1.1      fvdl 		case 16:
   1366    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1367    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1368    1.1      fvdl 			break;
   1369    1.1      fvdl 		case 32:
   1370    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1371    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1372    1.1      fvdl 			break;
   1373    1.1      fvdl 		case 64:
   1374    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1375    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1376    1.1      fvdl 			break;
   1377    1.1      fvdl 		default:
   1378    1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1379    1.1      fvdl #if 0
   1380    1.1      fvdl 			if (bootverbose)
   1381    1.1      fvdl 				printf("%s: cache line size %d not "
   1382    1.1      fvdl 				    "supported; disabling PCI MWI\n",
   1383    1.1      fvdl 				    sc->bge_dev.dv_xname, cachesize);
   1384    1.1      fvdl #endif
   1385    1.1      fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1386    1.1      fvdl 			    PCIM_CMD_MWIEN);
   1387    1.1      fvdl 			break;
   1388    1.1      fvdl 		}
   1389    1.1      fvdl 	}
   1390    1.1      fvdl 
   1391   1.25  jonathan 	/*
   1392   1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1393   1.25  jonathan 	 * properly by these devices.
   1394   1.25  jonathan 	 */
   1395   1.25  jonathan 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1396   1.25  jonathan 
   1397   1.25  jonathan 
   1398    1.1      fvdl #ifdef __brokenalpha__
   1399    1.1      fvdl 	/*
   1400    1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1401    1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1402    1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1403    1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1404    1.1      fvdl 	 */
   1405    1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1406    1.1      fvdl #endif
   1407    1.1      fvdl 
   1408   1.33   tsutsui 	/* Set the timer prescaler (always 66MHz) */
   1409    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1410    1.1      fvdl 
   1411    1.1      fvdl 	return(0);
   1412    1.1      fvdl }
   1413    1.1      fvdl 
   1414  1.104   thorpej static int
   1415  1.104   thorpej bge_blockinit(struct bge_softc *sc)
   1416    1.1      fvdl {
   1417   1.34  jonathan 	volatile struct bge_rcb		*rcb;
   1418    1.1      fvdl 	bus_size_t		rcb_addr;
   1419    1.1      fvdl 	int			i;
   1420    1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1421    1.1      fvdl 	bge_hostaddr		taddr;
   1422    1.1      fvdl 
   1423    1.1      fvdl 	/*
   1424    1.1      fvdl 	 * Initialize the memory window pointer register so that
   1425    1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1426    1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1427    1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1428    1.1      fvdl 	 */
   1429    1.1      fvdl 
   1430    1.1      fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1431    1.1      fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1432    1.1      fvdl 
   1433    1.1      fvdl 	/* Configure mbuf memory pool */
   1434   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1435   1.44   hannken 		if (sc->bge_extram) {
   1436   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1437   1.44   hannken 			    BGE_EXT_SSRAM);
   1438   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1439   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1440   1.54      fvdl 			else
   1441   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1442   1.44   hannken 		} else {
   1443   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1444   1.44   hannken 			    BGE_BUFFPOOL_1);
   1445   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1446   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1447   1.54      fvdl 			else
   1448   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1449   1.44   hannken 		}
   1450   1.44   hannken 
   1451   1.44   hannken 		/* Configure DMA resource pool */
   1452   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1453   1.44   hannken 		    BGE_DMA_DESCRIPTORS);
   1454   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1455    1.1      fvdl 	}
   1456    1.1      fvdl 
   1457    1.1      fvdl 	/* Configure mbuf pool watermarks */
   1458   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1459    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1460    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1461    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1462   1.25  jonathan #else
   1463   1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1464   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1465   1.71   thorpej 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1466   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1467   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1468   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1469   1.71   thorpej 		} else {
   1470   1.71   thorpej 			/* Values from Linux driver... */
   1471   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1472   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1473   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1474   1.71   thorpej 		}
   1475   1.44   hannken 	} else {
   1476   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1477   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1478   1.71   thorpej 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1479   1.44   hannken 	}
   1480   1.25  jonathan #endif
   1481    1.1      fvdl 
   1482    1.1      fvdl 	/* Configure DMA resource watermarks */
   1483    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1484    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1485    1.1      fvdl 
   1486    1.1      fvdl 	/* Enable buffer manager */
   1487  1.109  jonathan 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1488  1.109  jonathan 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1489   1.44   hannken 
   1490  1.109  jonathan 	/* Poll for buffer manager start indication */
   1491  1.109  jonathan 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1492  1.109  jonathan 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1493  1.109  jonathan 			break;
   1494  1.109  jonathan 		DELAY(10);
   1495  1.109  jonathan 	}
   1496    1.1      fvdl 
   1497  1.109  jonathan 	if (i == BGE_TIMEOUT) {
   1498  1.109  jonathan 		printf("%s: buffer manager failed to start\n",
   1499  1.109  jonathan 		    sc->bge_dev.dv_xname);
   1500  1.109  jonathan 		return(ENXIO);
   1501    1.1      fvdl 	}
   1502    1.1      fvdl 
   1503    1.1      fvdl 	/* Enable flow-through queues */
   1504    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1505    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1506    1.1      fvdl 
   1507    1.1      fvdl 	/* Wait until queue initialization is complete */
   1508    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1509    1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1510    1.1      fvdl 			break;
   1511    1.1      fvdl 		DELAY(10);
   1512    1.1      fvdl 	}
   1513    1.1      fvdl 
   1514    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1515    1.1      fvdl 		printf("%s: flow-through queue init failed\n",
   1516    1.1      fvdl 		    sc->bge_dev.dv_xname);
   1517    1.1      fvdl 		return(ENXIO);
   1518    1.1      fvdl 	}
   1519    1.1      fvdl 
   1520    1.1      fvdl 	/* Initialize the standard RX ring control block */
   1521    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1522    1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1523    1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1524   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1525   1.44   hannken 		rcb->bge_maxlen_flags =
   1526   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1527   1.44   hannken 	} else {
   1528   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1529   1.44   hannken 	}
   1530    1.1      fvdl 	if (sc->bge_extram)
   1531    1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1532    1.1      fvdl 	else
   1533    1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1534   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1535   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1536   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1537   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1538    1.1      fvdl 
   1539   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1540   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1541   1.44   hannken 	} else {
   1542   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1543   1.44   hannken 	}
   1544   1.44   hannken 
   1545    1.1      fvdl 	/*
   1546    1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1547    1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1548    1.1      fvdl 	 * field until we're actually ready to start
   1549    1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1550    1.1      fvdl 	 * high enough to require it).
   1551    1.1      fvdl 	 */
   1552   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1553   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1554   1.44   hannken 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1555   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1556   1.87     perry 		rcb->bge_maxlen_flags =
   1557   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1558   1.44   hannken 			BGE_RCB_FLAG_RING_DISABLED);
   1559   1.44   hannken 		if (sc->bge_extram)
   1560   1.44   hannken 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1561   1.44   hannken 		else
   1562   1.44   hannken 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1563   1.87     perry 
   1564   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1565   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_hi);
   1566   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1567   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_lo);
   1568   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1569   1.44   hannken 		    rcb->bge_maxlen_flags);
   1570   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1571   1.44   hannken 
   1572   1.44   hannken 		/* Set up dummy disabled mini ring RCB */
   1573   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1574   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1575   1.44   hannken 		    BGE_RCB_FLAG_RING_DISABLED);
   1576   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1577   1.44   hannken 		    rcb->bge_maxlen_flags);
   1578    1.1      fvdl 
   1579   1.44   hannken 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1580   1.44   hannken 		    offsetof(struct bge_ring_data, bge_info),
   1581   1.44   hannken 		    sizeof (struct bge_gib),
   1582   1.44   hannken 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1583   1.44   hannken 	}
   1584    1.1      fvdl 
   1585    1.1      fvdl 	/*
   1586    1.1      fvdl 	 * Set the BD ring replentish thresholds. The recommended
   1587    1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1588    1.1      fvdl 	 * each ring.
   1589    1.1      fvdl 	 */
   1590    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1591    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1592    1.1      fvdl 
   1593    1.1      fvdl 	/*
   1594    1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1595    1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1596    1.1      fvdl 	 * These are located in NIC memory.
   1597    1.1      fvdl 	 */
   1598    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1599    1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1600   1.34  jonathan 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1601   1.34  jonathan 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1602    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1603    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1604    1.1      fvdl 	}
   1605    1.1      fvdl 
   1606    1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1607    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1608    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1609    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1610    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1611    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1612    1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1613   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1614   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1615   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1616   1.44   hannken 	}
   1617    1.1      fvdl 
   1618    1.1      fvdl 	/* Disable all unused RX return rings */
   1619    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1620    1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1621    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1622    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1623   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1624   1.44   hannken 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1625   1.34  jonathan                                      BGE_RCB_FLAG_RING_DISABLED));
   1626    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1627    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1628    1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1629    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1630    1.1      fvdl 	}
   1631    1.1      fvdl 
   1632    1.1      fvdl 	/* Initialize RX ring indexes */
   1633    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1634    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1635    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1636    1.1      fvdl 
   1637    1.1      fvdl 	/*
   1638    1.1      fvdl 	 * Set up RX return ring 0
   1639    1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1640    1.1      fvdl 	 * The return rings live entirely within the host, so the
   1641    1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1642    1.1      fvdl 	 */
   1643    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1644    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1645    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1646    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1647    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1648   1.34  jonathan 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1649   1.44   hannken 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1650    1.1      fvdl 
   1651    1.1      fvdl 	/* Set random backoff seed for TX */
   1652    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1653    1.1      fvdl 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1654    1.1      fvdl 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1655    1.1      fvdl 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1656    1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1657    1.1      fvdl 
   1658    1.1      fvdl 	/* Set inter-packet gap */
   1659    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1660    1.1      fvdl 
   1661    1.1      fvdl 	/*
   1662    1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1663    1.1      fvdl 	 * any RX rules.
   1664    1.1      fvdl 	 */
   1665    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1666    1.1      fvdl 
   1667    1.1      fvdl 	/*
   1668    1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1669    1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1670    1.1      fvdl 	 */
   1671    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1672    1.1      fvdl 
   1673    1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1674    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1675    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1676    1.1      fvdl 
   1677    1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1678    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1679    1.1      fvdl 
   1680    1.1      fvdl 	/* Poll to make sure it's shut down. */
   1681    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1682    1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1683    1.1      fvdl 			break;
   1684    1.1      fvdl 		DELAY(10);
   1685    1.1      fvdl 	}
   1686    1.1      fvdl 
   1687    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1688    1.1      fvdl 		printf("%s: host coalescing engine failed to idle\n",
   1689    1.1      fvdl 		    sc->bge_dev.dv_xname);
   1690    1.1      fvdl 		return(ENXIO);
   1691    1.1      fvdl 	}
   1692    1.1      fvdl 
   1693    1.1      fvdl 	/* Set up host coalescing defaults */
   1694    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1695    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1696    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1697    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1698   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1699   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1700   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1701   1.44   hannken 	}
   1702    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1703    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1704    1.1      fvdl 
   1705    1.1      fvdl 	/* Set up address of statistics block */
   1706   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1707   1.44   hannken 		bge_set_hostaddr(&taddr,
   1708   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1709   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1710   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1711   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1712   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1713   1.44   hannken 	}
   1714    1.1      fvdl 
   1715    1.1      fvdl 	/* Set up address of status block */
   1716    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1717    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1718    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1719    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1720    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1721    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1722    1.1      fvdl 
   1723    1.1      fvdl 	/* Turn on host coalescing state machine */
   1724    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1725    1.1      fvdl 
   1726    1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1727    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1728    1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1729    1.1      fvdl 
   1730    1.1      fvdl 	/* Turn on RX list placement state machine */
   1731    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1732    1.1      fvdl 
   1733    1.1      fvdl 	/* Turn on RX list selector state machine. */
   1734   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1735   1.44   hannken 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1736   1.44   hannken 	}
   1737    1.1      fvdl 
   1738    1.1      fvdl 	/* Turn on DMA, clear stats */
   1739    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1740    1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1741    1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1742    1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1743    1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1744    1.1      fvdl 
   1745    1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1746   1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1747    1.1      fvdl 
   1748    1.1      fvdl #ifdef notdef
   1749    1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1750    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1751    1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1752    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1753    1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1754    1.1      fvdl #endif
   1755    1.1      fvdl 
   1756   1.25  jonathan #if defined(not_quite_yet)
   1757   1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1758   1.51      fvdl 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1759   1.87     perry 		sc->bge_local_ctrl_reg |=
   1760   1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1761   1.25  jonathan 	}
   1762   1.87     perry #endif
   1763   1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1764   1.25  jonathan 
   1765    1.1      fvdl 	/* Turn on DMA completion state machine */
   1766   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1767   1.44   hannken 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1768   1.44   hannken 	}
   1769    1.1      fvdl 
   1770    1.1      fvdl 	/* Turn on write DMA state machine */
   1771    1.1      fvdl 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1772    1.1      fvdl 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1773    1.1      fvdl 
   1774    1.1      fvdl 	/* Turn on read DMA state machine */
   1775   1.95  jonathan 	{
   1776   1.95  jonathan 		uint32_t dma_read_modebits;
   1777   1.95  jonathan 
   1778   1.95  jonathan 		dma_read_modebits =
   1779   1.95  jonathan 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1780   1.95  jonathan 
   1781   1.95  jonathan 		if (sc->bge_pcie && 0) {
   1782   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1783   1.95  jonathan 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1784   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1785   1.95  jonathan 		}
   1786   1.95  jonathan 
   1787   1.95  jonathan 		/* XXX broadcom-supplied linux driver; undocumented */
   1788   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1789   1.95  jonathan  			/*
   1790   1.95  jonathan 			 * XXX: magic values.
   1791   1.95  jonathan 			 * From Broadcom-supplied Linux driver;  apparently
   1792   1.95  jonathan 			 * required to workaround a DMA bug affecting TSO
   1793   1.95  jonathan 			 * on bcm575x/bcm5721?
   1794   1.95  jonathan 			 */
   1795   1.95  jonathan 			dma_read_modebits |= (1 << 27);
   1796   1.95  jonathan 		}
   1797   1.95  jonathan 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1798   1.95  jonathan 	}
   1799    1.1      fvdl 
   1800    1.1      fvdl 	/* Turn on RX data completion state machine */
   1801    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1802    1.1      fvdl 
   1803    1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1804    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1805    1.1      fvdl 
   1806    1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1807    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1808    1.1      fvdl 
   1809    1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1810   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1811   1.44   hannken 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1812   1.44   hannken 	}
   1813    1.1      fvdl 
   1814    1.1      fvdl 	/* Turn on send BD completion state machine */
   1815    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1816    1.1      fvdl 
   1817    1.1      fvdl 	/* Turn on send data completion state machine */
   1818    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1819    1.1      fvdl 
   1820    1.1      fvdl 	/* Turn on send data initiator state machine */
   1821   1.95  jonathan 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1822   1.95  jonathan 		/* XXX: magic value from Linux driver */
   1823   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1824   1.95  jonathan 	} else {
   1825   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1826   1.95  jonathan 	}
   1827    1.1      fvdl 
   1828    1.1      fvdl 	/* Turn on send BD initiator state machine */
   1829    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1830    1.1      fvdl 
   1831    1.1      fvdl 	/* Turn on send BD selector state machine */
   1832    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1833    1.1      fvdl 
   1834    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1835    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1836    1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1837    1.1      fvdl 
   1838    1.1      fvdl 	/* ack/clear link change events */
   1839    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1840    1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1841    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1842    1.1      fvdl 
   1843    1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1844    1.1      fvdl 	if (sc->bge_tbi) {
   1845    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1846    1.1      fvdl  	} else {
   1847    1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1848   1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1849    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1850    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1851    1.1      fvdl 	}
   1852    1.1      fvdl 
   1853    1.1      fvdl 	/* Enable link state change attentions. */
   1854    1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1855    1.1      fvdl 
   1856    1.1      fvdl 	return(0);
   1857    1.1      fvdl }
   1858    1.1      fvdl 
   1859   1.16   thorpej static const struct bge_revision {
   1860   1.51      fvdl 	uint32_t		br_chipid;
   1861   1.16   thorpej 	uint32_t		br_quirks;
   1862   1.16   thorpej 	const char		*br_name;
   1863   1.16   thorpej } bge_revisions[] = {
   1864   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A0,
   1865   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1866   1.16   thorpej 	  "BCM5700 A0" },
   1867   1.16   thorpej 
   1868   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A1,
   1869   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1870   1.16   thorpej 	  "BCM5700 A1" },
   1871   1.16   thorpej 
   1872   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B0,
   1873   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1874   1.16   thorpej 	  "BCM5700 B0" },
   1875   1.16   thorpej 
   1876   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B1,
   1877   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1878   1.16   thorpej 	  "BCM5700 B1" },
   1879   1.16   thorpej 
   1880   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B2,
   1881   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1882   1.16   thorpej 	  "BCM5700 B2" },
   1883   1.16   thorpej 
   1884   1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   1885   1.51      fvdl 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1886   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1887   1.16   thorpej 	  "BCM5700 Altima" },
   1888   1.16   thorpej 
   1889   1.51      fvdl 	{ BGE_CHIPID_BCM5700_C0,
   1890   1.16   thorpej 	  0,
   1891   1.16   thorpej 	  "BCM5700 C0" },
   1892   1.16   thorpej 
   1893   1.51      fvdl 	{ BGE_CHIPID_BCM5701_A0,
   1894   1.37  jonathan 	  0, /*XXX really, just not known */
   1895   1.16   thorpej 	  "BCM5701 A0" },
   1896   1.16   thorpej 
   1897   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B0,
   1898   1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1899   1.16   thorpej 	  "BCM5701 B0" },
   1900   1.16   thorpej 
   1901   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B2,
   1902  1.117   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1903   1.16   thorpej 	  "BCM5701 B2" },
   1904   1.16   thorpej 
   1905   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B5,
   1906   1.37  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1907   1.16   thorpej 	  "BCM5701 B5" },
   1908   1.16   thorpej 
   1909   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A0,
   1910   1.16   thorpej 	  0,
   1911   1.16   thorpej 	  "BCM5703 A0" },
   1912   1.16   thorpej 
   1913   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A1,
   1914   1.16   thorpej 	  0,
   1915   1.16   thorpej 	  "BCM5703 A1" },
   1916   1.16   thorpej 
   1917   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A2,
   1918   1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1919   1.16   thorpej 	  "BCM5703 A2" },
   1920   1.16   thorpej 
   1921   1.55     pooka 	{ BGE_CHIPID_BCM5703_A3,
   1922   1.55     pooka 	  BGE_QUIRK_ONLY_PHY_1,
   1923   1.55     pooka 	  "BCM5703 A3" },
   1924   1.55     pooka 
   1925   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A0,
   1926   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1927   1.25  jonathan 	  "BCM5704 A0" },
   1928   1.40      fvdl 
   1929   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A1,
   1930   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1931   1.40      fvdl 	  "BCM5704 A1" },
   1932   1.40      fvdl 
   1933   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A2,
   1934   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1935   1.40      fvdl 	  "BCM5704 A2" },
   1936   1.49      fvdl 
   1937   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A3,
   1938   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1939   1.49      fvdl 	  "BCM5704 A3" },
   1940   1.25  jonathan 
   1941   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A0,
   1942   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1943   1.51      fvdl 	  "BCM5705 A0" },
   1944   1.51      fvdl 
   1945   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A1,
   1946   1.44   hannken 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1947   1.44   hannken 	  "BCM5705 A1" },
   1948   1.44   hannken 
   1949   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A2,
   1950   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1951   1.51      fvdl 	  "BCM5705 A2" },
   1952   1.51      fvdl 
   1953   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A3,
   1954   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1955   1.51      fvdl 	  "BCM5705 A3" },
   1956   1.51      fvdl 
   1957   1.76      cube 	{ BGE_CHIPID_BCM5750_A0,
   1958   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1959   1.76      cube 	  "BCM5750 A1" },
   1960   1.76      cube 
   1961   1.76      cube 	{ BGE_CHIPID_BCM5750_A1,
   1962   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1963   1.76      cube 	  "BCM5750 A1" },
   1964   1.76      cube 
   1965   1.92     gavan 	{ BGE_CHIPID_BCM5751_A1,
   1966   1.92     gavan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1967   1.92     gavan 	  "BCM5751 A1" },
   1968   1.92     gavan 
   1969   1.16   thorpej 	{ 0, 0, NULL }
   1970   1.16   thorpej };
   1971   1.16   thorpej 
   1972   1.51      fvdl /*
   1973   1.51      fvdl  * Some defaults for major revisions, so that newer steppings
   1974   1.51      fvdl  * that we don't know about have a shot at working.
   1975   1.51      fvdl  */
   1976   1.51      fvdl static const struct bge_revision bge_majorrevs[] = {
   1977   1.51      fvdl 	{ BGE_ASICREV_BCM5700,
   1978   1.51      fvdl 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1979   1.51      fvdl 	  "unknown BCM5700" },
   1980   1.51      fvdl 
   1981   1.51      fvdl 	{ BGE_ASICREV_BCM5701,
   1982   1.51      fvdl 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1983   1.51      fvdl 	  "unknown BCM5701" },
   1984   1.51      fvdl 
   1985   1.51      fvdl 	{ BGE_ASICREV_BCM5703,
   1986   1.51      fvdl 	  0,
   1987   1.51      fvdl 	  "unknown BCM5703" },
   1988   1.51      fvdl 
   1989   1.51      fvdl 	{ BGE_ASICREV_BCM5704,
   1990   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1,
   1991   1.51      fvdl 	  "unknown BCM5704" },
   1992   1.51      fvdl 
   1993   1.51      fvdl 	{ BGE_ASICREV_BCM5705,
   1994   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1995   1.51      fvdl 	  "unknown BCM5705" },
   1996   1.51      fvdl 
   1997   1.76      cube 	{ BGE_ASICREV_BCM5750,
   1998   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1999   1.98  jonathan 	  "unknown BCM575x family" },
   2000   1.98  jonathan 
   2001   1.98  jonathan 	{ BGE_ASICREV_BCM5714,
   2002   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2003   1.98  jonathan 	  "unknown BCM5714" },
   2004   1.98  jonathan 
   2005   1.98  jonathan 	{ BGE_ASICREV_BCM5752,
   2006   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2007   1.98  jonathan 	  "unknown BCM5752 family" },
   2008   1.98  jonathan 
   2009   1.98  jonathan 
   2010  1.106  jonathan 	{ BGE_ASICREV_BCM5780,
   2011  1.106  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2012  1.106  jonathan 	  "unknown BCM5780" },
   2013  1.106  jonathan 
   2014   1.98  jonathan 	{ BGE_ASICREV_BCM5715,
   2015   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2016   1.98  jonathan 	  "unknown BCM5715" },
   2017   1.76      cube 
   2018   1.51      fvdl 	{ 0,
   2019   1.51      fvdl 	  0,
   2020   1.51      fvdl 	  NULL }
   2021   1.51      fvdl };
   2022   1.51      fvdl 
   2023   1.51      fvdl 
   2024   1.16   thorpej static const struct bge_revision *
   2025   1.51      fvdl bge_lookup_rev(uint32_t chipid)
   2026   1.16   thorpej {
   2027   1.16   thorpej 	const struct bge_revision *br;
   2028   1.16   thorpej 
   2029   1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2030   1.51      fvdl 		if (br->br_chipid == chipid)
   2031   1.51      fvdl 			return (br);
   2032   1.51      fvdl 	}
   2033   1.51      fvdl 
   2034   1.51      fvdl 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2035   1.51      fvdl 		if (br->br_chipid == BGE_ASICREV(chipid))
   2036   1.16   thorpej 			return (br);
   2037   1.16   thorpej 	}
   2038   1.16   thorpej 
   2039   1.16   thorpej 	return (NULL);
   2040   1.16   thorpej }
   2041   1.16   thorpej 
   2042    1.7   thorpej static const struct bge_product {
   2043    1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   2044    1.7   thorpej 	pci_product_id_t	bp_product;
   2045    1.7   thorpej 	const char		*bp_name;
   2046    1.7   thorpej } bge_products[] = {
   2047    1.7   thorpej 	/*
   2048    1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   2049    1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   2050    1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   2051    1.7   thorpej 	 * check for it anyway.
   2052    1.7   thorpej 	 */
   2053    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2054    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   2055   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2056   1.51      fvdl 	  },
   2057    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2058    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   2059   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2060   1.51      fvdl 	  },
   2061    1.7   thorpej 
   2062    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2063    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   2064   1.51      fvdl 	  "Altima AC1000 Gigabit Ethernet",
   2065   1.51      fvdl 	  },
   2066   1.14     enami 	{ PCI_VENDOR_ALTIMA,
   2067   1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   2068   1.51      fvdl 	  "Altima AC1001 Gigabit Ethernet",
   2069   1.51      fvdl 	   },
   2070    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2071    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   2072   1.51      fvdl 	  "Altima AC9100 Gigabit Ethernet",
   2073   1.51      fvdl 	  },
   2074    1.7   thorpej 
   2075    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2076    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2077   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2078   1.51      fvdl 	  },
   2079    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2080    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2081   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2082   1.51      fvdl 	  },
   2083   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2084   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2085   1.51      fvdl 	  "Broadcom BCM5702 Gigabit Ethernet",
   2086   1.51      fvdl 	  },
   2087   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2088   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2089   1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2090   1.51      fvdl 
   2091   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2092   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2093   1.51      fvdl 	  "Broadcom BCM5703 Gigabit Ethernet",
   2094   1.51      fvdl 	  },
   2095   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2096   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2097   1.51      fvdl 	  "Broadcom BCM5703X Gigabit Ethernet",
   2098   1.51      fvdl 	  },
   2099   1.55     pooka 	{ PCI_VENDOR_BROADCOM,
   2100   1.55     pooka 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   2101   1.55     pooka 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2102   1.55     pooka 	  },
   2103   1.51      fvdl 
   2104   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2105   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2106   1.51      fvdl 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2107   1.51      fvdl 	  },
   2108   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2109   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2110   1.51      fvdl 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2111   1.51      fvdl 	  },
   2112   1.51      fvdl 
   2113   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2114   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2115   1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2116   1.51      fvdl 	  },
   2117   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2118   1.79      jmmv 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2119   1.78     tacha 	  "Broadcom BCM5705K Gigabit Ethernet",
   2120   1.78     tacha 	  },
   2121   1.78     tacha    	{ PCI_VENDOR_BROADCOM,
   2122   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2123   1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2124   1.51      fvdl 	  },
   2125   1.44   hannken    	{ PCI_VENDOR_BROADCOM,
   2126   1.44   hannken 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2127   1.51      fvdl 	  "Broadcom BCM5705M Gigabit Ethernet",
   2128   1.51      fvdl 	  },
   2129   1.51      fvdl 
   2130   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2131   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2132   1.98  jonathan 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2133   1.98  jonathan 	  },
   2134  1.105  christos 	{ PCI_VENDOR_BROADCOM,
   2135  1.105  christos 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2136  1.105  christos 	  "Broadcom BCM5789 Gigabit Ethernet",
   2137  1.105  christos 	  },
   2138   1.98  jonathan 
   2139   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2140   1.80     fredb 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2141   1.80     fredb 	  "Broadcom BCM5721 Gigabit Ethernet",
   2142   1.80     fredb 	  },
   2143   1.80     fredb 
   2144   1.80     fredb 	{ PCI_VENDOR_BROADCOM,
   2145   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2146   1.76      cube 	  "Broadcom BCM5750 Gigabit Ethernet",
   2147   1.76      cube 	  },
   2148   1.76      cube 
   2149   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2150   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2151   1.76      cube 	  "Broadcom BCM5750M Gigabit Ethernet",
   2152   1.76      cube 	  },
   2153   1.76      cube 
   2154   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2155   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2156   1.76      cube 	  "Broadcom BCM5751 Gigabit Ethernet",
   2157   1.76      cube 	  },
   2158   1.76      cube 
   2159   1.91     gavan 	{ PCI_VENDOR_BROADCOM,
   2160   1.91     gavan 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2161   1.91     gavan 	  "Broadcom BCM5751M Gigabit Ethernet",
   2162   1.91     gavan 	  },
   2163   1.91     gavan 
   2164   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2165   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2166   1.98  jonathan 	  "Broadcom BCM5752 Gigabit Ethernet",
   2167   1.98  jonathan 	  },
   2168   1.98  jonathan 
   2169   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2170  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2171  1.106  jonathan 	  "Broadcom BCM5780 Gigabit Ethernet",
   2172  1.106  jonathan 	  },
   2173  1.106  jonathan 
   2174  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2175  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2176  1.106  jonathan 	  "Broadcom BCM5780S Gigabit Ethernet",
   2177  1.106  jonathan 	  },
   2178  1.106  jonathan 
   2179  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2180   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2181   1.70      tron 	  "Broadcom BCM5782 Gigabit Ethernet",
   2182   1.70      tron 	  },
   2183  1.106  jonathan 
   2184   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2185   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2186   1.70      tron 	  "Broadcom BCM5788 Gigabit Ethernet",
   2187   1.70      tron 	  },
   2188   1.97      fvdl    	{ PCI_VENDOR_BROADCOM,
   2189   1.97      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2190   1.97      fvdl 	  "Broadcom BCM5789 Gigabit Ethernet",
   2191   1.97      fvdl 	  },
   2192   1.70      tron 
   2193   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2194   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2195   1.51      fvdl 	  "Broadcom BCM5901 Fast Ethernet",
   2196   1.51      fvdl 	  },
   2197   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2198   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2199   1.51      fvdl 	  "Broadcom BCM5901A2 Fast Ethernet",
   2200   1.51      fvdl 	  },
   2201   1.51      fvdl 
   2202    1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2203    1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2204   1.51      fvdl 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2205   1.51      fvdl 	  },
   2206    1.7   thorpej 
   2207    1.7   thorpej 	{ PCI_VENDOR_3COM,
   2208    1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   2209   1.51      fvdl 	  "3Com 3c996 Gigabit Ethernet",
   2210   1.51      fvdl 	  },
   2211    1.7   thorpej 
   2212    1.7   thorpej 	{ 0,
   2213    1.7   thorpej 	  0,
   2214    1.7   thorpej 	  NULL },
   2215    1.7   thorpej };
   2216    1.7   thorpej 
   2217    1.7   thorpej static const struct bge_product *
   2218    1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2219    1.7   thorpej {
   2220    1.7   thorpej 	const struct bge_product *bp;
   2221    1.7   thorpej 
   2222    1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2223    1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2224    1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2225    1.7   thorpej 			return (bp);
   2226    1.7   thorpej 	}
   2227    1.7   thorpej 
   2228    1.7   thorpej 	return (NULL);
   2229    1.7   thorpej }
   2230    1.7   thorpej 
   2231  1.104   thorpej static int
   2232  1.116  christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2233   1.25  jonathan {
   2234   1.25  jonathan #ifdef NOTYET
   2235   1.25  jonathan 	u_int32_t pm_ctl = 0;
   2236   1.25  jonathan 
   2237   1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2238   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2239   1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2240   1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2241   1.25  jonathan 
   2242   1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2243   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2244   1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2245   1.25  jonathan 	pm_ctl |= (1 << 8);
   2246   1.25  jonathan 
   2247   1.25  jonathan 	if (powerlevel == 0) {
   2248   1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2249   1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2250   1.25  jonathan 		    pm_ctl, 2);
   2251   1.25  jonathan 		DELAY(10000);
   2252   1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2253   1.25  jonathan 		DELAY(10000);
   2254   1.25  jonathan 
   2255   1.25  jonathan #ifdef NOTYET
   2256   1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2257   1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2258   1.25  jonathan #endif
   2259   1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2260   1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2261   1.25  jonathan 		return 0;
   2262   1.25  jonathan 	}
   2263   1.25  jonathan 
   2264   1.25  jonathan 
   2265   1.25  jonathan 	/*
   2266   1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2267   1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2268   1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2269   1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2270   1.25  jonathan 	 */
   2271   1.25  jonathan 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2272   1.25  jonathan 	       sc->bge_dev.dv_xname, powerlevel);
   2273   1.25  jonathan #endif
   2274   1.25  jonathan 	return EOPNOTSUPP;
   2275   1.25  jonathan }
   2276   1.25  jonathan 
   2277   1.25  jonathan 
   2278    1.1      fvdl /*
   2279    1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2280    1.1      fvdl  * against our list and return its name if we find a match. Note
   2281    1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2282    1.1      fvdl  * can get the device name string from the controller itself instead
   2283    1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2284    1.1      fvdl  * we'll always announce the right product name.
   2285    1.1      fvdl  */
   2286  1.104   thorpej static int
   2287  1.116  christos bge_probe(device_t parent, cfdata_t match, void *aux)
   2288    1.1      fvdl {
   2289    1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2290    1.1      fvdl 
   2291    1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2292    1.1      fvdl 		return (1);
   2293    1.1      fvdl 
   2294    1.1      fvdl 	return (0);
   2295    1.1      fvdl }
   2296    1.1      fvdl 
   2297  1.104   thorpej static void
   2298  1.116  christos bge_attach(device_t parent, device_t self, void *aux)
   2299    1.1      fvdl {
   2300    1.1      fvdl 	struct bge_softc	*sc = (struct bge_softc *)self;
   2301    1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2302    1.7   thorpej 	const struct bge_product *bp;
   2303   1.16   thorpej 	const struct bge_revision *br;
   2304    1.1      fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   2305    1.1      fvdl 	pci_intr_handle_t	ih;
   2306    1.1      fvdl 	const char		*intrstr = NULL;
   2307    1.1      fvdl 	bus_dma_segment_t	seg;
   2308    1.1      fvdl 	int			rseg;
   2309    1.1      fvdl 	u_int32_t		hwcfg = 0;
   2310   1.24      matt 	u_int32_t		mac_addr = 0;
   2311    1.1      fvdl 	u_int32_t		command;
   2312    1.1      fvdl 	struct ifnet		*ifp;
   2313    1.1      fvdl 	caddr_t			kva;
   2314    1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2315    1.1      fvdl 	pcireg_t		memtype;
   2316    1.1      fvdl 	bus_addr_t		memaddr;
   2317    1.1      fvdl 	bus_size_t		memsize;
   2318   1.25  jonathan 	u_int32_t		pm_ctl;
   2319   1.87     perry 
   2320    1.7   thorpej 	bp = bge_lookup(pa);
   2321    1.7   thorpej 	KASSERT(bp != NULL);
   2322    1.7   thorpej 
   2323    1.1      fvdl 	sc->bge_pa = *pa;
   2324    1.1      fvdl 
   2325   1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2326   1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2327    1.1      fvdl 
   2328    1.1      fvdl 	/*
   2329    1.1      fvdl 	 * Map control/status registers.
   2330    1.1      fvdl 	 */
   2331    1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2332    1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2333    1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2334    1.1      fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2335    1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2336    1.1      fvdl 
   2337    1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2338   1.30   thorpej 		aprint_error("%s: failed to enable memory mapping!\n",
   2339    1.1      fvdl 		    sc->bge_dev.dv_xname);
   2340    1.1      fvdl 		return;
   2341    1.1      fvdl 	}
   2342    1.1      fvdl 
   2343    1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2344    1.1      fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2345    1.1      fvdl  	switch (memtype) {
   2346   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2347   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2348    1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2349   1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2350    1.1      fvdl 		    &memaddr, &memsize) == 0)
   2351    1.1      fvdl 			break;
   2352    1.1      fvdl 	default:
   2353   1.30   thorpej 		aprint_error("%s: can't find mem space\n",
   2354    1.1      fvdl 		    sc->bge_dev.dv_xname);
   2355    1.1      fvdl 		return;
   2356    1.1      fvdl 	}
   2357    1.1      fvdl 
   2358    1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2359    1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2360   1.30   thorpej 		aprint_error("%s: couldn't map interrupt\n",
   2361    1.1      fvdl 		    sc->bge_dev.dv_xname);
   2362    1.1      fvdl 		return;
   2363    1.1      fvdl 	}
   2364    1.1      fvdl 
   2365    1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2366    1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2367    1.1      fvdl 
   2368    1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2369    1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2370    1.1      fvdl 
   2371    1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2372   1.30   thorpej 		aprint_error("%s: couldn't establish interrupt",
   2373    1.1      fvdl 		    sc->bge_dev.dv_xname);
   2374    1.1      fvdl 		if (intrstr != NULL)
   2375   1.30   thorpej 			aprint_normal(" at %s", intrstr);
   2376   1.30   thorpej 		aprint_normal("\n");
   2377    1.1      fvdl 		return;
   2378    1.1      fvdl 	}
   2379   1.30   thorpej 	aprint_normal("%s: interrupting at %s\n",
   2380   1.30   thorpej 	    sc->bge_dev.dv_xname, intrstr);
   2381    1.1      fvdl 
   2382   1.25  jonathan 	/*
   2383   1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2384   1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2385   1.25  jonathan 	 * leaving the card in D3 powersave state.
   2386   1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2387   1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2388   1.25  jonathan 	 */
   2389   1.25  jonathan 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2390   1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2391   1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2392   1.25  jonathan 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2393   1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2394   1.25  jonathan 
   2395   1.76      cube 	/*
   2396   1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2397   1.76      cube 	 * ASIC.
   2398   1.76      cube 	 */
   2399   1.76      cube 	sc->bge_chipid =
   2400   1.76      cube 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2401   1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2402   1.76      cube 
   2403   1.76      cube 	/*
   2404   1.76      cube 	 * Detect PCI-Express devices
   2405   1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2406   1.76      cube 	 */
   2407  1.108  jonathan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2408  1.108  jonathan 	        NULL, NULL) != 0)
   2409   1.76      cube 		sc->bge_pcie = 1;
   2410   1.76      cube 	else
   2411   1.76      cube 		sc->bge_pcie = 0;
   2412   1.76      cube 
   2413    1.1      fvdl 	/* Try to reset the chip. */
   2414    1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2415    1.1      fvdl 	bge_reset(sc);
   2416    1.1      fvdl 
   2417    1.1      fvdl 	if (bge_chipinit(sc)) {
   2418   1.30   thorpej 		aprint_error("%s: chip initialization failed\n",
   2419    1.1      fvdl 		    sc->bge_dev.dv_xname);
   2420    1.1      fvdl 		bge_release_resources(sc);
   2421    1.1      fvdl 		return;
   2422    1.1      fvdl 	}
   2423    1.1      fvdl 
   2424    1.1      fvdl 	/*
   2425    1.1      fvdl 	 * Get station address from the EEPROM.
   2426    1.1      fvdl 	 */
   2427   1.24      matt 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2428   1.24      matt 	if ((mac_addr >> 16) == 0x484b) {
   2429   1.24      matt 		eaddr[0] = (u_char)(mac_addr >> 8);
   2430   1.24      matt 		eaddr[1] = (u_char)(mac_addr >> 0);
   2431   1.24      matt 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2432   1.24      matt 		eaddr[2] = (u_char)(mac_addr >> 24);
   2433   1.24      matt 		eaddr[3] = (u_char)(mac_addr >> 16);
   2434   1.24      matt 		eaddr[4] = (u_char)(mac_addr >> 8);
   2435   1.24      matt 		eaddr[5] = (u_char)(mac_addr >> 0);
   2436   1.24      matt 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2437    1.1      fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2438   1.30   thorpej 		aprint_error("%s: failed to read station address\n",
   2439   1.23  kristerw 		    sc->bge_dev.dv_xname);
   2440    1.1      fvdl 		bge_release_resources(sc);
   2441    1.1      fvdl 		return;
   2442    1.1      fvdl 	}
   2443    1.1      fvdl 
   2444   1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2445   1.30   thorpej 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2446   1.51      fvdl 
   2447   1.16   thorpej 	if (br == NULL) {
   2448   1.56     pooka 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2449   1.52      fvdl 		sc->bge_quirks = 0;
   2450   1.16   thorpej 	} else {
   2451   1.56     pooka 		aprint_normal("ASIC %s (0x%04x)",
   2452   1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2453   1.51      fvdl 		sc->bge_quirks |= br->br_quirks;
   2454   1.16   thorpej 	}
   2455   1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2456    1.1      fvdl 
   2457    1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2458   1.41      fvdl 	if (pci_dma64_available(pa))
   2459   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2460   1.41      fvdl 	else
   2461   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2462    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2463    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2464    1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2465   1.30   thorpej 		aprint_error("%s: can't alloc rx buffers\n",
   2466   1.30   thorpej 		    sc->bge_dev.dv_xname);
   2467    1.1      fvdl 		return;
   2468    1.1      fvdl 	}
   2469    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2470    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2471    1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2472    1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2473   1.39       wiz 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2474    1.1      fvdl 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2475    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2476    1.1      fvdl 		return;
   2477    1.1      fvdl 	}
   2478    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2479    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2480    1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2481    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2482   1.39       wiz 		aprint_error("%s: can't create DMA map\n",
   2483   1.30   thorpej 		    sc->bge_dev.dv_xname);
   2484    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2485    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2486    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2487    1.1      fvdl 		return;
   2488    1.1      fvdl 	}
   2489    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2490    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2491    1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2492    1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2493    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2494    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2495    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2496    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2497    1.1      fvdl 		return;
   2498    1.1      fvdl 	}
   2499    1.1      fvdl 
   2500    1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2501    1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2502    1.1      fvdl 
   2503   1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2504    1.1      fvdl 
   2505    1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2506   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2507   1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2508   1.44   hannken 			aprint_error("%s: jumbo buffer allocation failed\n",
   2509   1.44   hannken 			    sc->bge_dev.dv_xname);
   2510   1.44   hannken 		} else
   2511   1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2512   1.44   hannken 	}
   2513    1.1      fvdl 
   2514    1.1      fvdl 	/* Set default tuneable values. */
   2515    1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2516    1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2517   1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2518   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2519    1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2520    1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2521   1.25  jonathan #else
   2522   1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2523   1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2524   1.25  jonathan #endif
   2525   1.95  jonathan 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2526   1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2527   1.95  jonathan 		sc->bge_rx_max_coal_bds = (12 * 5);
   2528   1.95  jonathan 			aprint_error("%s: setting short Tx thresholds\n",
   2529   1.95  jonathan 			    sc->bge_dev.dv_xname);
   2530   1.95  jonathan 	}
   2531    1.1      fvdl 
   2532    1.1      fvdl 	/* Set up ifnet structure */
   2533    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2534    1.1      fvdl 	ifp->if_softc = sc;
   2535    1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2536    1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2537    1.1      fvdl 	ifp->if_start = bge_start;
   2538    1.1      fvdl 	ifp->if_init = bge_init;
   2539    1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2540   1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2541    1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2542  1.115   tsutsui 	DPRINTFN(5, ("strcpy if_xname\n"));
   2543    1.1      fvdl 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2544    1.1      fvdl 
   2545   1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2546   1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2547   1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2548   1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2549   1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2550   1.87     perry 	sc->ethercom.ec_capabilities |=
   2551    1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2552    1.1      fvdl 
   2553   1.95  jonathan 	if (sc->bge_pcie)
   2554   1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2555   1.95  jonathan 
   2556    1.1      fvdl 	/*
   2557    1.1      fvdl 	 * Do MII setup.
   2558    1.1      fvdl 	 */
   2559    1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2560    1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2561    1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2562    1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2563    1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2564    1.1      fvdl 
   2565    1.1      fvdl 	/*
   2566    1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2567   1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2568   1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2569    1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2570    1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2571    1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2572    1.1      fvdl 	 */
   2573   1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2574   1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2575   1.35  jonathan 	} else {
   2576   1.35  jonathan 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2577    1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2578   1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2579   1.35  jonathan 	}
   2580   1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2581    1.1      fvdl 		sc->bge_tbi = 1;
   2582    1.1      fvdl 
   2583    1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2584    1.1      fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2585    1.1      fvdl 	    SK_SUBSYSID_9D41)
   2586    1.1      fvdl 		sc->bge_tbi = 1;
   2587    1.1      fvdl 
   2588    1.1      fvdl 	if (sc->bge_tbi) {
   2589    1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2590    1.1      fvdl 		    bge_ifmedia_sts);
   2591    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2592    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2593    1.1      fvdl 			    0, NULL);
   2594    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2595    1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2596    1.1      fvdl 	} else {
   2597    1.1      fvdl 		/*
   2598    1.1      fvdl 		 * Do transceiver setup.
   2599    1.1      fvdl 		 */
   2600    1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2601    1.1      fvdl 			     bge_ifmedia_sts);
   2602    1.1      fvdl 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2603   1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2604   1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2605   1.87     perry 
   2606    1.1      fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2607    1.1      fvdl 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2608    1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2609    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2610    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2611    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2612    1.1      fvdl 		} else
   2613    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2614    1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2615    1.1      fvdl 	}
   2616    1.1      fvdl 
   2617    1.1      fvdl 	/*
   2618   1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2619   1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2620   1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2621   1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2622   1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2623   1.37  jonathan 	 * payloads by copying the received packets.
   2624   1.37  jonathan 	 */
   2625   1.37  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2626   1.37  jonathan 		/* If in PCI-X mode, work around the alignment bug. */
   2627   1.37  jonathan 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2628   1.37  jonathan                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2629   1.37  jonathan                          BGE_PCISTATE_PCI_BUSSPEED)
   2630   1.37  jonathan 		sc->bge_rx_alignment_bug = 1;
   2631   1.37  jonathan         }
   2632   1.37  jonathan 
   2633   1.37  jonathan 	/*
   2634    1.1      fvdl 	 * Call MI attach routine.
   2635    1.1      fvdl 	 */
   2636    1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2637    1.1      fvdl 	if_attach(ifp);
   2638    1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2639    1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2640   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2641   1.72   thorpej 	/*
   2642   1.72   thorpej 	 * Attach event counters.
   2643   1.72   thorpej 	 */
   2644   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2645   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "intr");
   2646   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2647   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
   2648   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2649   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
   2650   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2651   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
   2652   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2653   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
   2654   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2655   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
   2656   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2657   1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
   2658   1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2659    1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2660    1.1      fvdl 	callout_init(&sc->bge_timeout);
   2661   1.82  jmcneill 
   2662  1.110  jmcneill 	sc->bge_powerhook = powerhook_establish(sc->bge_dev.dv_xname,
   2663  1.110  jmcneill 	    bge_powerhook, sc);
   2664   1.82  jmcneill 	if (sc->bge_powerhook == NULL)
   2665   1.82  jmcneill 		printf("%s: WARNING: unable to establish PCI power hook\n",
   2666   1.82  jmcneill 		    sc->bge_dev.dv_xname);
   2667    1.1      fvdl }
   2668    1.1      fvdl 
   2669  1.104   thorpej static void
   2670  1.104   thorpej bge_release_resources(struct bge_softc *sc)
   2671    1.1      fvdl {
   2672    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2673    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2674    1.1      fvdl 
   2675    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2676    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2677    1.1      fvdl }
   2678    1.1      fvdl 
   2679  1.104   thorpej static void
   2680  1.104   thorpej bge_reset(struct bge_softc *sc)
   2681    1.1      fvdl {
   2682    1.1      fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   2683   1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2684   1.76      cube 	int i, val;
   2685    1.1      fvdl 
   2686    1.1      fvdl 	/* Save some important PCI state. */
   2687    1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2688    1.1      fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2689    1.1      fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2690    1.1      fvdl 
   2691    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2692    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2693    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2694    1.1      fvdl 
   2695   1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2696   1.76      cube 	/*
   2697   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2698   1.76      cube 	 */
   2699   1.76      cube 	if (sc->bge_pcie) {
   2700   1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2701   1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2702   1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2703   1.76      cube 			/* No idea what that actually means */
   2704   1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2705   1.76      cube 			val |= (1<<29);
   2706   1.76      cube 		}
   2707   1.76      cube 	}
   2708   1.76      cube 
   2709    1.1      fvdl 	/* Issue global reset */
   2710   1.76      cube 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2711    1.1      fvdl 
   2712    1.1      fvdl 	DELAY(1000);
   2713    1.1      fvdl 
   2714   1.76      cube 	/*
   2715   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2716   1.76      cube 	 */
   2717   1.76      cube 	if (sc->bge_pcie) {
   2718   1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2719   1.76      cube 			pcireg_t reg;
   2720   1.76      cube 
   2721   1.76      cube 			DELAY(500000);
   2722   1.76      cube 			/* XXX: Magic Numbers */
   2723   1.76      cube 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2724   1.76      cube 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2725   1.76      cube 			    reg | (1 << 15));
   2726   1.76      cube 		}
   2727   1.95  jonathan 		/*
   2728   1.95  jonathan 		 * XXX: Magic Numbers.
   2729   1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2730   1.95  jonathan 		 * Should be replaced with references to PCI config-space
   2731   1.95  jonathan 		 * capability block for PCI-Express.
   2732   1.95  jonathan 		 */
   2733   1.95  jonathan 		pci_conf_write(pa->pa_pc, pa->pa_tag,
   2734   1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2735   1.95  jonathan 
   2736   1.76      cube 	}
   2737   1.76      cube 
   2738    1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2739    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2740    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2741    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2742    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2743    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2744    1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2745    1.1      fvdl 
   2746    1.1      fvdl 	/* Enable memory arbiter. */
   2747  1.109  jonathan 	{
   2748   1.99  jonathan 		uint32_t marbmode = 0;
   2749   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2750  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2751   1.99  jonathan 		}
   2752   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2753   1.44   hannken 	}
   2754    1.1      fvdl 
   2755    1.1      fvdl 	/*
   2756    1.1      fvdl 	 * Prevent PXE restart: write a magic number to the
   2757    1.1      fvdl 	 * general communications memory at 0xB50.
   2758    1.1      fvdl 	 */
   2759    1.1      fvdl 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2760    1.1      fvdl 
   2761    1.1      fvdl 	/*
   2762    1.1      fvdl 	 * Poll the value location we just wrote until
   2763    1.1      fvdl 	 * we see the 1's complement of the magic number.
   2764    1.1      fvdl 	 * This indicates that the firmware initialization
   2765    1.1      fvdl 	 * is complete.
   2766    1.1      fvdl 	 */
   2767   1.95  jonathan 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2768    1.1      fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2769    1.1      fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   2770    1.1      fvdl 			break;
   2771    1.1      fvdl 		DELAY(1000);
   2772    1.1      fvdl 	}
   2773    1.1      fvdl 
   2774   1.95  jonathan 	if (i >= BGE_TIMEOUT) {
   2775    1.1      fvdl 		printf("%s: firmware handshake timed out, val = %x\n",
   2776    1.1      fvdl 		    sc->bge_dev.dv_xname, val);
   2777   1.95  jonathan 		/*
   2778   1.95  jonathan 		 * XXX: occasionally fired on bcm5721, but without
   2779   1.95  jonathan 		 * apparent harm.  For now, keep going if we timeout
   2780   1.95  jonathan 		 * against PCI-E devices.
   2781   1.95  jonathan 		 */
   2782   1.95  jonathan 		 if (!sc->bge_pcie)
   2783   1.95  jonathan 		  return;
   2784    1.1      fvdl 	}
   2785    1.1      fvdl 
   2786    1.1      fvdl 	/*
   2787    1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2788    1.1      fvdl 	 * return to its original pre-reset state. This is a
   2789    1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2790    1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2791    1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2792    1.1      fvdl 	 * results.
   2793    1.1      fvdl 	 */
   2794    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2795   1.61  jonathan 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2796   1.61  jonathan 		    BGE_PCI_PCISTATE);
   2797   1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2798   1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2799    1.1      fvdl 			break;
   2800    1.1      fvdl 		DELAY(10);
   2801    1.1      fvdl 	}
   2802   1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2803   1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2804   1.61  jonathan 		printf("%s: pcistate failed to revert\n",
   2805   1.61  jonathan 		    sc->bge_dev.dv_xname);
   2806   1.61  jonathan 	}
   2807    1.1      fvdl 
   2808   1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   2809   1.76      cube 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2810   1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2811   1.76      cube 
   2812    1.1      fvdl 	/* Enable memory arbiter. */
   2813  1.109  jonathan 	/* XXX why do this twice? */
   2814  1.109  jonathan 	{
   2815   1.99  jonathan 		uint32_t marbmode = 0;
   2816   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2817  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2818   1.99  jonathan 		}
   2819   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2820   1.44   hannken 	}
   2821    1.1      fvdl 
   2822    1.1      fvdl 	/* Fix up byte swapping */
   2823    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2824    1.1      fvdl 
   2825    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2826    1.1      fvdl 
   2827    1.1      fvdl 	DELAY(10000);
   2828    1.1      fvdl }
   2829    1.1      fvdl 
   2830    1.1      fvdl /*
   2831    1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2832    1.1      fvdl  * on the receive return list.
   2833    1.1      fvdl  *
   2834    1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2835    1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2836    1.1      fvdl  * 2) the frame is from the standard receive ring
   2837    1.1      fvdl  */
   2838    1.1      fvdl 
   2839  1.104   thorpej static void
   2840  1.104   thorpej bge_rxeof(struct bge_softc *sc)
   2841    1.1      fvdl {
   2842    1.1      fvdl 	struct ifnet *ifp;
   2843    1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2844    1.1      fvdl 	bus_dmamap_t dmamap;
   2845    1.1      fvdl 	bus_addr_t offset, toff;
   2846    1.1      fvdl 	bus_size_t tlen;
   2847    1.1      fvdl 	int tosync;
   2848    1.1      fvdl 
   2849    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2850    1.1      fvdl 
   2851    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2852    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2853    1.1      fvdl 	    sizeof (struct bge_status_block),
   2854    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2855    1.1      fvdl 
   2856    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2857   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2858    1.1      fvdl 	    sc->bge_rx_saved_considx;
   2859    1.1      fvdl 
   2860    1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2861    1.1      fvdl 
   2862    1.1      fvdl 	if (tosync < 0) {
   2863   1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2864    1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2865    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2866    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2867    1.1      fvdl 		tosync = -tosync;
   2868    1.1      fvdl 	}
   2869    1.1      fvdl 
   2870    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2871    1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2872    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2873    1.1      fvdl 
   2874    1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   2875    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2876    1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   2877    1.1      fvdl 		u_int32_t		rxidx;
   2878    1.1      fvdl 		struct mbuf		*m = NULL;
   2879    1.1      fvdl 
   2880    1.1      fvdl 		cur_rx = &sc->bge_rdata->
   2881    1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2882    1.1      fvdl 
   2883    1.1      fvdl 		rxidx = cur_rx->bge_idx;
   2884   1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2885    1.1      fvdl 
   2886    1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2887    1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2888    1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2889    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2890    1.1      fvdl 			jumbocnt++;
   2891    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2892    1.1      fvdl 				ifp->if_ierrors++;
   2893    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2894    1.1      fvdl 				continue;
   2895    1.1      fvdl 			}
   2896    1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2897    1.1      fvdl 					     NULL)== ENOBUFS) {
   2898    1.1      fvdl 				ifp->if_ierrors++;
   2899    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2900    1.1      fvdl 				continue;
   2901    1.1      fvdl 			}
   2902    1.1      fvdl 		} else {
   2903    1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2904    1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2905    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2906    1.1      fvdl 			stdcnt++;
   2907    1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2908    1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2909    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2910    1.1      fvdl 				ifp->if_ierrors++;
   2911    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2912    1.1      fvdl 				continue;
   2913    1.1      fvdl 			}
   2914    1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2915    1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   2916    1.1      fvdl 				ifp->if_ierrors++;
   2917    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2918    1.1      fvdl 				continue;
   2919    1.1      fvdl 			}
   2920    1.1      fvdl 		}
   2921    1.1      fvdl 
   2922    1.1      fvdl 		ifp->if_ipackets++;
   2923   1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   2924   1.37  jonathan                 /*
   2925   1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2926   1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   2927   1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   2928   1.37  jonathan                  */
   2929   1.37  jonathan 		if (sc->bge_rx_alignment_bug) {
   2930   1.37  jonathan 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2931   1.37  jonathan                                 cur_rx->bge_len);
   2932   1.37  jonathan 			m->m_data += ETHER_ALIGN;
   2933   1.37  jonathan 		}
   2934   1.37  jonathan #endif
   2935   1.87     perry 
   2936   1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2937    1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   2938    1.1      fvdl 
   2939    1.1      fvdl #if NBPFILTER > 0
   2940    1.1      fvdl 		/*
   2941    1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2942    1.1      fvdl 		 */
   2943    1.1      fvdl 		if (ifp->if_bpf)
   2944    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   2945    1.1      fvdl #endif
   2946    1.1      fvdl 
   2947   1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2948   1.46  jonathan 
   2949   1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2950   1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2951   1.46  jonathan 		/*
   2952   1.46  jonathan 		 * Rx transport checksum-offload may also
   2953   1.46  jonathan 		 * have bugs with packets which, when transmitted,
   2954   1.46  jonathan 		 * were `runts' requiring padding.
   2955   1.46  jonathan 		 */
   2956   1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2957   1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2958   1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2959   1.46  jonathan 			m->m_pkthdr.csum_data =
   2960   1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   2961   1.46  jonathan 			m->m_pkthdr.csum_flags |=
   2962   1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2963   1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2964    1.1      fvdl 		}
   2965    1.1      fvdl 
   2966    1.1      fvdl 		/*
   2967    1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   2968    1.1      fvdl 		 * to vlan_input() instead of ether_input().
   2969    1.1      fvdl 		 */
   2970   1.85  jdolecek 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   2971   1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   2972    1.1      fvdl 
   2973    1.1      fvdl 		(*ifp->if_input)(ifp, m);
   2974    1.1      fvdl 	}
   2975    1.1      fvdl 
   2976    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2977    1.1      fvdl 	if (stdcnt)
   2978    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2979    1.1      fvdl 	if (jumbocnt)
   2980    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2981    1.1      fvdl }
   2982    1.1      fvdl 
   2983  1.104   thorpej static void
   2984  1.104   thorpej bge_txeof(struct bge_softc *sc)
   2985    1.1      fvdl {
   2986    1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   2987    1.1      fvdl 	struct ifnet *ifp;
   2988    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   2989    1.1      fvdl 	bus_addr_t offset, toff;
   2990    1.1      fvdl 	bus_size_t tlen;
   2991    1.1      fvdl 	int tosync;
   2992    1.1      fvdl 	struct mbuf *m;
   2993    1.1      fvdl 
   2994    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2995    1.1      fvdl 
   2996    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2997    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2998    1.1      fvdl 	    sizeof (struct bge_status_block),
   2999    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3000    1.1      fvdl 
   3001    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3002   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3003    1.1      fvdl 	    sc->bge_tx_saved_considx;
   3004    1.1      fvdl 
   3005    1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3006    1.1      fvdl 
   3007    1.1      fvdl 	if (tosync < 0) {
   3008    1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3009    1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3010    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3011    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3012    1.1      fvdl 		tosync = -tosync;
   3013    1.1      fvdl 	}
   3014    1.1      fvdl 
   3015    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3016    1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3017    1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3018    1.1      fvdl 
   3019    1.1      fvdl 	/*
   3020    1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3021    1.1      fvdl 	 * frames that have been sent.
   3022    1.1      fvdl 	 */
   3023    1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3024    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3025    1.1      fvdl 		u_int32_t		idx = 0;
   3026    1.1      fvdl 
   3027    1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3028    1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3029    1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3030    1.1      fvdl 			ifp->if_opackets++;
   3031    1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3032    1.1      fvdl 		if (m != NULL) {
   3033    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3034    1.1      fvdl 			dma = sc->txdma[idx];
   3035    1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3036    1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3037    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3038    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3039    1.1      fvdl 			sc->txdma[idx] = NULL;
   3040    1.1      fvdl 
   3041    1.1      fvdl 			m_freem(m);
   3042    1.1      fvdl 		}
   3043    1.1      fvdl 		sc->bge_txcnt--;
   3044    1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3045    1.1      fvdl 		ifp->if_timer = 0;
   3046    1.1      fvdl 	}
   3047    1.1      fvdl 
   3048    1.1      fvdl 	if (cur_tx != NULL)
   3049    1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3050    1.1      fvdl }
   3051    1.1      fvdl 
   3052  1.104   thorpej static int
   3053  1.104   thorpej bge_intr(void *xsc)
   3054    1.1      fvdl {
   3055    1.1      fvdl 	struct bge_softc *sc;
   3056    1.1      fvdl 	struct ifnet *ifp;
   3057    1.1      fvdl 
   3058    1.1      fvdl 	sc = xsc;
   3059    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3060    1.1      fvdl 
   3061    1.1      fvdl #ifdef notdef
   3062    1.1      fvdl 	/* Avoid this for now -- checking this register is expensive. */
   3063    1.1      fvdl 	/* Make sure this is really our interrupt. */
   3064    1.1      fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   3065    1.1      fvdl 		return (0);
   3066    1.1      fvdl #endif
   3067    1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   3068    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3069    1.1      fvdl 
   3070   1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3071   1.72   thorpej 
   3072    1.1      fvdl 	/*
   3073    1.1      fvdl 	 * Process link state changes.
   3074    1.1      fvdl 	 * Grrr. The link status word in the status block does
   3075    1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3076  1.101     skrll 	 * according to all available information. Hence, we have
   3077    1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   3078    1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   3079    1.1      fvdl 	 * we have to read the MAC status register to detect link
   3080    1.1      fvdl 	 * changes, thereby adding an additional register access to
   3081    1.1      fvdl 	 * the interrupt handler.
   3082    1.1      fvdl 	 */
   3083    1.1      fvdl 
   3084   1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3085    1.1      fvdl 		u_int32_t		status;
   3086    1.1      fvdl 
   3087    1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3088    1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3089    1.1      fvdl 			sc->bge_link = 0;
   3090    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3091    1.1      fvdl 			bge_tick(sc);
   3092    1.1      fvdl 			/* Clear the interrupt */
   3093    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3094    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3095    1.1      fvdl 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   3096    1.1      fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   3097    1.1      fvdl 			    BRGPHY_INTRS);
   3098    1.1      fvdl 		}
   3099    1.1      fvdl 	} else {
   3100    1.1      fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   3101    1.1      fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3102    1.1      fvdl 			sc->bge_link = 0;
   3103    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3104    1.1      fvdl 			bge_tick(sc);
   3105    1.1      fvdl 			/* Clear the interrupt */
   3106    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3107   1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3108   1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3109    1.1      fvdl 		}
   3110    1.1      fvdl 	}
   3111    1.1      fvdl 
   3112    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3113    1.1      fvdl 		/* Check RX return ring producer/consumer */
   3114    1.1      fvdl 		bge_rxeof(sc);
   3115    1.1      fvdl 
   3116    1.1      fvdl 		/* Check TX ring producer/consumer */
   3117    1.1      fvdl 		bge_txeof(sc);
   3118    1.1      fvdl 	}
   3119    1.1      fvdl 
   3120   1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3121   1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3122   1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3123   1.58  jonathan 		uint32_t junk;
   3124   1.58  jonathan 
   3125   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3126   1.58  jonathan 		DELAY(10);
   3127   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3128   1.87     perry 
   3129   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3130   1.58  jonathan 		DELAY(10);
   3131   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3132   1.58  jonathan 
   3133   1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3134   1.58  jonathan 	}
   3135    1.1      fvdl 	bge_handle_events(sc);
   3136    1.1      fvdl 
   3137    1.1      fvdl 	/* Re-enable interrupts. */
   3138    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3139    1.1      fvdl 
   3140    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3141    1.1      fvdl 		bge_start(ifp);
   3142    1.1      fvdl 
   3143    1.1      fvdl 	return (1);
   3144    1.1      fvdl }
   3145    1.1      fvdl 
   3146  1.104   thorpej static void
   3147  1.104   thorpej bge_tick(void *xsc)
   3148    1.1      fvdl {
   3149    1.1      fvdl 	struct bge_softc *sc = xsc;
   3150    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3151    1.1      fvdl 	struct ifmedia *ifm = NULL;
   3152    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3153    1.1      fvdl 	int s;
   3154    1.1      fvdl 
   3155    1.1      fvdl 	s = splnet();
   3156    1.1      fvdl 
   3157    1.1      fvdl 	bge_stats_update(sc);
   3158    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3159    1.1      fvdl 	if (sc->bge_link) {
   3160    1.1      fvdl 		splx(s);
   3161    1.1      fvdl 		return;
   3162    1.1      fvdl 	}
   3163    1.1      fvdl 
   3164    1.1      fvdl 	if (sc->bge_tbi) {
   3165    1.1      fvdl 		ifm = &sc->bge_ifmedia;
   3166    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3167    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3168    1.1      fvdl 			sc->bge_link++;
   3169    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3170    1.1      fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3171    1.1      fvdl 				bge_start(ifp);
   3172    1.1      fvdl 		}
   3173    1.1      fvdl 		splx(s);
   3174    1.1      fvdl 		return;
   3175    1.1      fvdl 	}
   3176    1.1      fvdl 
   3177    1.1      fvdl 	mii_tick(mii);
   3178    1.1      fvdl 
   3179    1.1      fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3180    1.1      fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3181    1.1      fvdl 		sc->bge_link++;
   3182    1.1      fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3183    1.1      fvdl 			bge_start(ifp);
   3184    1.1      fvdl 	}
   3185    1.1      fvdl 
   3186    1.1      fvdl 	splx(s);
   3187    1.1      fvdl }
   3188    1.1      fvdl 
   3189  1.104   thorpej static void
   3190  1.104   thorpej bge_stats_update(struct bge_softc *sc)
   3191    1.1      fvdl {
   3192    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3193    1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3194   1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3195   1.44   hannken 
   3196   1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3197   1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3198    1.1      fvdl 
   3199   1.44   hannken 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3200   1.44   hannken 		ifp->if_collisions +=
   3201   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3202   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3203   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3204   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3205   1.72   thorpej 
   3206   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3207   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3208   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3209   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3210   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3211   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3212   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3213   1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3214   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3215   1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3216   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3217   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3218   1.44   hannken 		return;
   3219   1.44   hannken 	}
   3220   1.44   hannken 
   3221   1.44   hannken #undef READ_RSTAT
   3222    1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3223    1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3224    1.1      fvdl 
   3225    1.1      fvdl 	ifp->if_collisions +=
   3226    1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3227    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3228    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3229    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3230    1.1      fvdl 	  ifp->if_collisions;
   3231    1.1      fvdl 
   3232   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3233   1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3234   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3235   1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3236   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3237   1.72   thorpej 		      READ_STAT(sc, stats,
   3238   1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3239   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3240   1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3241   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3242   1.72   thorpej 		      READ_STAT(sc, stats,
   3243   1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3244   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3245   1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3246   1.72   thorpej 
   3247    1.1      fvdl #undef READ_STAT
   3248    1.1      fvdl 
   3249    1.1      fvdl #ifdef notdef
   3250    1.1      fvdl 	ifp->if_collisions +=
   3251    1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3252    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3253    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3254    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3255    1.1      fvdl 	   ifp->if_collisions;
   3256    1.1      fvdl #endif
   3257    1.1      fvdl }
   3258    1.1      fvdl 
   3259   1.46  jonathan /*
   3260   1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3261   1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3262   1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3263   1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3264   1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3265   1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3266   1.46  jonathan  */
   3267  1.102     perry static inline int
   3268   1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3269   1.46  jonathan {
   3270   1.46  jonathan 	struct mbuf *last = NULL;
   3271   1.46  jonathan 	int padlen;
   3272   1.46  jonathan 
   3273   1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3274   1.46  jonathan 
   3275   1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3276   1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3277  1.113   tsutsui 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3278   1.46  jonathan 		last = pkt;
   3279   1.46  jonathan 	} else {
   3280   1.46  jonathan 		/*
   3281   1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3282   1.87     perry 		 * pad there, or append a new mbuf and pad it
   3283   1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3284   1.46  jonathan 		 */
   3285   1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3286  1.114   tsutsui 	      	       continue; /* do nothing */
   3287   1.46  jonathan 		}
   3288   1.46  jonathan 
   3289   1.46  jonathan 		/* `last' now points to last in chain. */
   3290  1.114   tsutsui 		if (M_TRAILINGSPACE(last) < padlen) {
   3291   1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3292   1.46  jonathan 			struct mbuf *n;
   3293   1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3294   1.46  jonathan 			n->m_len = 0;
   3295   1.46  jonathan 			last->m_next = n;
   3296   1.46  jonathan 			last = n;
   3297   1.46  jonathan 		}
   3298   1.46  jonathan 	}
   3299   1.46  jonathan 
   3300  1.114   tsutsui 	KDASSERT(!M_READONLY(last));
   3301  1.114   tsutsui 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3302  1.114   tsutsui 
   3303   1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3304   1.46  jonathan 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3305   1.46  jonathan 	last->m_len += padlen;
   3306   1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3307   1.46  jonathan 	return 0;
   3308   1.46  jonathan }
   3309   1.45  jonathan 
   3310   1.45  jonathan /*
   3311   1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3312   1.45  jonathan  */
   3313  1.102     perry static inline int
   3314   1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3315   1.45  jonathan {
   3316   1.45  jonathan 	struct mbuf	*m, *prev;
   3317   1.45  jonathan 	int 		totlen, prevlen;
   3318   1.45  jonathan 
   3319   1.45  jonathan 	prev = NULL;
   3320   1.45  jonathan 	totlen = 0;
   3321   1.45  jonathan 	prevlen = -1;
   3322   1.45  jonathan 
   3323   1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3324   1.45  jonathan 		int mlen = m->m_len;
   3325   1.45  jonathan 		int shortfall = 8 - mlen ;
   3326   1.45  jonathan 
   3327   1.45  jonathan 		totlen += mlen;
   3328   1.45  jonathan 		if (mlen == 0) {
   3329   1.45  jonathan 			continue;
   3330   1.45  jonathan 		}
   3331   1.45  jonathan 		if (mlen >= 8)
   3332   1.45  jonathan 			continue;
   3333   1.45  jonathan 
   3334   1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3335   1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3336   1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3337   1.45  jonathan 		 */
   3338   1.45  jonathan 
   3339   1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3340  1.113   tsutsui 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3341  1.115   tsutsui 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3342   1.45  jonathan 			prev->m_len += mlen;
   3343   1.45  jonathan 			m->m_len = 0;
   3344   1.45  jonathan 			/* XXX stitch chain */
   3345   1.45  jonathan 			prev->m_next = m_free(m);
   3346   1.45  jonathan 			m = prev;
   3347   1.45  jonathan 			continue;
   3348   1.45  jonathan 		}
   3349  1.113   tsutsui 		else if (m->m_next != NULL &&
   3350   1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3351   1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3352   1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3353   1.45  jonathan 
   3354  1.115   tsutsui 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3355  1.115   tsutsui 			    shortfall);
   3356   1.45  jonathan 			m->m_len += shortfall;
   3357   1.45  jonathan 			m->m_next->m_len -= shortfall;
   3358   1.45  jonathan 			m->m_next->m_data += shortfall;
   3359   1.45  jonathan 		}
   3360   1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3361   1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3362   1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3363   1.45  jonathan 			 * update its length in-place. (The original data is still
   3364   1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3365   1.45  jonathan 			 */
   3366   1.45  jonathan 
   3367   1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3368   1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3369   1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3370  1.111  christos 
   3371   1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3372   1.45  jonathan 				shortfall = prev->m_len;
   3373   1.87     perry 
   3374   1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3375   1.45  jonathan 			if (!M_READONLY(m)) {
   3376   1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3377   1.45  jonathan 					void *m_dat;
   3378   1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3379   1.45  jonathan 					  m->m_pktdat : m->dat;
   3380   1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3381   1.45  jonathan 					m->m_data = m_dat;
   3382   1.45  jonathan 				    }
   3383   1.45  jonathan 			} else
   3384   1.45  jonathan #endif	/* just do the safe slow thing */
   3385   1.45  jonathan 			{
   3386   1.45  jonathan 				struct mbuf * n = NULL;
   3387   1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3388   1.45  jonathan 
   3389   1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3390   1.45  jonathan 				if (n == NULL)
   3391   1.45  jonathan 				   return ENOBUFS;
   3392   1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3393   1.45  jonathan 					/*,
   3394   1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3395   1.45  jonathan 
   3396   1.45  jonathan 				/* first copy the data we're stealing from prev */
   3397  1.115   tsutsui 				memcpy(n->m_data, prev->m_data + newprevlen,
   3398  1.115   tsutsui 				    shortfall);
   3399   1.45  jonathan 
   3400   1.45  jonathan 				/* update prev->m_len accordingly */
   3401   1.45  jonathan 				prev->m_len -= shortfall;
   3402   1.45  jonathan 
   3403   1.45  jonathan 				/* copy data from runt m */
   3404  1.115   tsutsui 				memcpy(n->m_data + shortfall, m->m_data,
   3405  1.115   tsutsui 				    m->m_len);
   3406   1.45  jonathan 
   3407   1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3408   1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3409   1.45  jonathan 
   3410   1.45  jonathan 				/* stitch n into chain and free m */
   3411   1.45  jonathan 				n->m_next = m->m_next;
   3412   1.45  jonathan 				prev->m_next = n;
   3413   1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3414   1.45  jonathan 				m->m_next = NULL;
   3415   1.45  jonathan 				m_free(m);
   3416   1.45  jonathan 				m = n;	/* for continuing loop */
   3417   1.45  jonathan 			}
   3418   1.45  jonathan 		}
   3419   1.45  jonathan 		prevlen = m->m_len;
   3420   1.45  jonathan 	}
   3421   1.45  jonathan 	return 0;
   3422   1.45  jonathan }
   3423   1.45  jonathan 
   3424    1.1      fvdl /*
   3425    1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3426    1.1      fvdl  * pointers to descriptors.
   3427    1.1      fvdl  */
   3428  1.104   thorpej static int
   3429  1.104   thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3430    1.1      fvdl {
   3431    1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3432    1.1      fvdl 	u_int32_t		frag, cur, cnt = 0;
   3433    1.1      fvdl 	u_int16_t		csum_flags = 0;
   3434   1.95  jonathan 	u_int16_t		txbd_tso_flags = 0;
   3435    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3436    1.1      fvdl 	bus_dmamap_t dmamap;
   3437    1.1      fvdl 	int			i = 0;
   3438   1.29    itojun 	struct m_tag		*mtag;
   3439   1.95  jonathan 	int			use_tso, maxsegsize, error;
   3440  1.107     blymn 
   3441    1.1      fvdl 	cur = frag = *txidx;
   3442    1.1      fvdl 
   3443    1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3444    1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3445    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3446    1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3447    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3448    1.1      fvdl 	}
   3449    1.1      fvdl 
   3450   1.87     perry 	/*
   3451   1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3452   1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3453   1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3454   1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3455   1.46  jonathan 	 * are confirmed to not require the workaround.)
   3456   1.46  jonathan 	 */
   3457   1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3458   1.46  jonathan #ifdef notyet
   3459   1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3460   1.87     perry #endif
   3461   1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3462   1.46  jonathan 		goto check_dma_bug;
   3463   1.46  jonathan 
   3464   1.95  jonathan 	if (bge_cksum_pad(m_head) != 0) {
   3465   1.46  jonathan 	    return ENOBUFS;
   3466   1.95  jonathan 	}
   3467   1.46  jonathan 
   3468   1.46  jonathan check_dma_bug:
   3469   1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3470   1.29    itojun 		goto doit;
   3471   1.25  jonathan 	/*
   3472   1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3473   1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3474   1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3475   1.25  jonathan 	 */
   3476   1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3477   1.45  jonathan 		return ENOBUFS;
   3478   1.25  jonathan 
   3479   1.25  jonathan doit:
   3480    1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3481    1.1      fvdl 	if (dma == NULL)
   3482    1.1      fvdl 		return ENOBUFS;
   3483    1.1      fvdl 	dmamap = dma->dmamap;
   3484    1.1      fvdl 
   3485    1.1      fvdl 	/*
   3486   1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3487   1.95  jonathan 	 */
   3488   1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3489   1.95  jonathan 	if (!use_tso) {
   3490   1.95  jonathan 		maxsegsize = 0;
   3491   1.95  jonathan 	} else {	/* TSO setup */
   3492   1.95  jonathan 		unsigned  mss;
   3493   1.95  jonathan 		struct ether_header *eh;
   3494   1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3495   1.95  jonathan 		struct mbuf * m0 = m_head;
   3496   1.95  jonathan 		struct ip *ip;
   3497   1.95  jonathan 		struct tcphdr *th;
   3498   1.95  jonathan 		int iphl, hlen;
   3499   1.95  jonathan 
   3500   1.95  jonathan 		/*
   3501   1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3502   1.95  jonathan 		 * fields for the protocol headers.
   3503   1.95  jonathan 		 */
   3504   1.95  jonathan 
   3505   1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3506   1.95  jonathan 		switch (htons(eh->ether_type)) {
   3507   1.95  jonathan 		case ETHERTYPE_IP:
   3508   1.95  jonathan 			offset = ETHER_HDR_LEN;
   3509   1.95  jonathan 			break;
   3510   1.95  jonathan 
   3511   1.95  jonathan 		case ETHERTYPE_VLAN:
   3512   1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3513   1.95  jonathan 			break;
   3514   1.95  jonathan 
   3515   1.95  jonathan 		default:
   3516   1.95  jonathan 			/*
   3517   1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3518   1.95  jonathan 			 */
   3519   1.95  jonathan 			return (ENOBUFS);
   3520   1.95  jonathan 		}
   3521   1.95  jonathan 
   3522   1.95  jonathan 		/*
   3523   1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3524   1.95  jonathan 		 * this the easy way.
   3525   1.95  jonathan 		 */
   3526   1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3527   1.95  jonathan 		hlen = iphl + offset;
   3528   1.95  jonathan 		if (__predict_false(m0->m_len <
   3529   1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3530   1.95  jonathan 
   3531   1.95  jonathan 			  printf("TSO: hard case m0->m_len == %d <"
   3532   1.96    martin 				 " ip/tcp hlen %zd, not handled yet\n",
   3533   1.95  jonathan 				 m0->m_len, hlen+ sizeof(struct tcphdr));
   3534   1.95  jonathan #ifdef NOTYET
   3535   1.95  jonathan 			/*
   3536   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3537   1.95  jonathan 			 * how to force  this branch to be taken?
   3538   1.95  jonathan 			 */
   3539   1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3540   1.95  jonathan 
   3541   1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3542   1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3543   1.95  jonathan 
   3544   1.95  jonathan 			ip.ip_len = 0;
   3545   1.95  jonathan 
   3546   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3547   1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3548   1.95  jonathan 
   3549   1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3550   1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3551   1.95  jonathan 
   3552   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3553   1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3554   1.95  jonathan 
   3555   1.95  jonathan 			hlen += th.th_off << 2;
   3556   1.95  jonathan 			iptcp_opt_words	= hlen;
   3557   1.95  jonathan #else
   3558   1.95  jonathan 			/*
   3559   1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3560   1.95  jonathan 			 * mandate it out of existence?
   3561   1.95  jonathan 			 */
   3562   1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3563   1.95  jonathan 
   3564   1.95  jonathan 			return ENOBUFS;
   3565   1.95  jonathan #endif
   3566   1.95  jonathan 		} else {
   3567   1.95  jonathan 			ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   3568   1.95  jonathan 			th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   3569   1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3570   1.95  jonathan 
   3571   1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3572   1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3573   1.95  jonathan 					   - sizeof(struct tcphdr)
   3574   1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3575   1.95  jonathan 		}
   3576   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3577   1.95  jonathan 			th->th_sum = 0;
   3578   1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3579   1.95  jonathan 		} else {
   3580   1.95  jonathan 			/*
   3581  1.107     blymn 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3582   1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3583   1.95  jonathan 			 */
   3584   1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3585   1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3586   1.95  jonathan 		}
   3587   1.95  jonathan 
   3588   1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3589  1.107     blymn 		txbd_tso_flags |=
   3590   1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3591   1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3592   1.95  jonathan 
   3593   1.95  jonathan 		/*
   3594   1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3595   1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3596   1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3597   1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3598   1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3599   1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3600   1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3601   1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3602   1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3603   1.95  jonathan 		 * varies across different ASIC families.
   3604   1.95  jonathan 		 */
   3605   1.95  jonathan 		tcp_seg_flags = 0;
   3606   1.95  jonathan 		if (iptcp_opt_words) {
   3607   1.95  jonathan 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3608   1.95  jonathan 				tcp_seg_flags =
   3609   1.95  jonathan 					iptcp_opt_words << 11;
   3610   1.95  jonathan 			} else {
   3611   1.95  jonathan 				txbd_tso_flags |=
   3612   1.95  jonathan 					iptcp_opt_words << 12;
   3613   1.95  jonathan 			}
   3614   1.95  jonathan 		}
   3615   1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3616   1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3617   1.95  jonathan 
   3618   1.95  jonathan 	}	/* TSO setup */
   3619   1.95  jonathan 
   3620   1.95  jonathan 	/*
   3621    1.1      fvdl 	 * Start packing the mbufs in this chain into
   3622    1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3623    1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3624    1.1      fvdl 	 */
   3625   1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3626   1.95  jonathan 	    BUS_DMA_NOWAIT);
   3627   1.95  jonathan 	if (error) {
   3628    1.1      fvdl 		return(ENOBUFS);
   3629   1.95  jonathan 	}
   3630   1.95  jonathan 
   3631   1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3632   1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3633    1.1      fvdl 
   3634    1.6   thorpej 
   3635   1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3636    1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3637    1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3638    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3639    1.1      fvdl 			break;
   3640  1.107     blymn 
   3641    1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3642    1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3643   1.95  jonathan 
   3644   1.95  jonathan 		/*
   3645   1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3646   1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3647   1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3648   1.95  jonathan 		 * of TSO flags and segsize.
   3649   1.95  jonathan 		 */
   3650   1.95  jonathan 		if (use_tso) {
   3651   1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3652   1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3653   1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3654   1.95  jonathan 			} else {
   3655   1.95  jonathan 				f->bge_rsvd = 0;
   3656   1.95  jonathan 				f->bge_flags =
   3657   1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3658   1.95  jonathan 			}
   3659   1.95  jonathan 		} else {
   3660   1.95  jonathan 			f->bge_rsvd = 0;
   3661   1.95  jonathan 			f->bge_flags = csum_flags;
   3662   1.95  jonathan 		}
   3663    1.1      fvdl 
   3664   1.28    itojun 		if (mtag != NULL) {
   3665    1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3666   1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3667    1.1      fvdl 		} else {
   3668    1.1      fvdl 			f->bge_vlan_tag = 0;
   3669    1.1      fvdl 		}
   3670    1.1      fvdl 		/*
   3671    1.1      fvdl 		 * Sanity check: avoid coming within 16 descriptors
   3672    1.1      fvdl 		 * of the end of the ring.
   3673    1.1      fvdl 		 */
   3674   1.95  jonathan 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
   3675   1.95  jonathan 			BGE_TSO_PRINTF(("%s: "
   3676   1.95  jonathan 			    " dmamap_load_mbuf too close to ring wrap\n",
   3677   1.95  jonathan 			    sc->bge_dev.dv_xname));
   3678    1.1      fvdl 			return(ENOBUFS);
   3679   1.95  jonathan 		}
   3680    1.1      fvdl 		cur = frag;
   3681    1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3682    1.1      fvdl 		cnt++;
   3683    1.1      fvdl 	}
   3684    1.1      fvdl 
   3685   1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   3686   1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3687   1.95  jonathan 		    sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
   3688    1.1      fvdl 		return ENOBUFS;
   3689   1.95  jonathan 	}
   3690    1.1      fvdl 
   3691    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3692    1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3693    1.1      fvdl 
   3694   1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   3695   1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3696   1.95  jonathan 		    sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
   3697   1.95  jonathan 
   3698    1.1      fvdl 		return(ENOBUFS);
   3699   1.95  jonathan 	}
   3700    1.1      fvdl 
   3701    1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3702    1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3703    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3704    1.1      fvdl 	sc->txdma[cur] = dma;
   3705    1.1      fvdl 	sc->bge_txcnt += cnt;
   3706    1.1      fvdl 
   3707    1.1      fvdl 	*txidx = frag;
   3708    1.1      fvdl 
   3709    1.1      fvdl 	return(0);
   3710    1.1      fvdl }
   3711    1.1      fvdl 
   3712    1.1      fvdl /*
   3713    1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3714    1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3715    1.1      fvdl  */
   3716  1.104   thorpej static void
   3717  1.104   thorpej bge_start(struct ifnet *ifp)
   3718    1.1      fvdl {
   3719    1.1      fvdl 	struct bge_softc *sc;
   3720    1.1      fvdl 	struct mbuf *m_head = NULL;
   3721   1.94  jonathan 	u_int32_t prodidx;
   3722    1.1      fvdl 	int pkts = 0;
   3723    1.1      fvdl 
   3724    1.1      fvdl 	sc = ifp->if_softc;
   3725    1.1      fvdl 
   3726    1.1      fvdl 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3727    1.1      fvdl 		return;
   3728    1.1      fvdl 
   3729   1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   3730    1.1      fvdl 
   3731    1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3732    1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   3733    1.1      fvdl 		if (m_head == NULL)
   3734    1.1      fvdl 			break;
   3735    1.1      fvdl 
   3736    1.1      fvdl #if 0
   3737    1.1      fvdl 		/*
   3738    1.1      fvdl 		 * XXX
   3739    1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   3740    1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   3741    1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   3742    1.1      fvdl 		 * chain at once.
   3743    1.1      fvdl 		 * (paranoia -- may not actually be needed)
   3744    1.1      fvdl 		 */
   3745    1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   3746    1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3747    1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3748   1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3749    1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   3750    1.1      fvdl 				break;
   3751    1.1      fvdl 			}
   3752    1.1      fvdl 		}
   3753    1.1      fvdl #endif
   3754    1.1      fvdl 
   3755    1.1      fvdl 		/*
   3756    1.1      fvdl 		 * Pack the data into the transmit ring. If we
   3757    1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   3758    1.1      fvdl 		 * for the NIC to drain the ring.
   3759    1.1      fvdl 		 */
   3760    1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   3761   1.95  jonathan 			printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
   3762    1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   3763    1.1      fvdl 			break;
   3764    1.1      fvdl 		}
   3765    1.1      fvdl 
   3766    1.1      fvdl 		/* now we are committed to transmit the packet */
   3767    1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3768    1.1      fvdl 		pkts++;
   3769    1.1      fvdl 
   3770    1.1      fvdl #if NBPFILTER > 0
   3771    1.1      fvdl 		/*
   3772    1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   3773    1.1      fvdl 		 * to him.
   3774    1.1      fvdl 		 */
   3775    1.1      fvdl 		if (ifp->if_bpf)
   3776    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   3777    1.1      fvdl #endif
   3778    1.1      fvdl 	}
   3779    1.1      fvdl 	if (pkts == 0)
   3780    1.1      fvdl 		return;
   3781    1.1      fvdl 
   3782    1.1      fvdl 	/* Transmit */
   3783    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3784   1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3785   1.29    itojun 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3786    1.1      fvdl 
   3787   1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   3788   1.94  jonathan 
   3789    1.1      fvdl 	/*
   3790    1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   3791    1.1      fvdl 	 */
   3792    1.1      fvdl 	ifp->if_timer = 5;
   3793    1.1      fvdl }
   3794    1.1      fvdl 
   3795  1.104   thorpej static int
   3796  1.104   thorpej bge_init(struct ifnet *ifp)
   3797    1.1      fvdl {
   3798    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3799    1.1      fvdl 	u_int16_t *m;
   3800    1.1      fvdl 	int s, error;
   3801    1.1      fvdl 
   3802    1.1      fvdl 	s = splnet();
   3803    1.1      fvdl 
   3804    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3805    1.1      fvdl 
   3806    1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   3807    1.1      fvdl 	bge_stop(sc);
   3808    1.1      fvdl 	bge_reset(sc);
   3809    1.1      fvdl 	bge_chipinit(sc);
   3810    1.1      fvdl 
   3811    1.1      fvdl 	/*
   3812    1.1      fvdl 	 * Init the various state machines, ring
   3813    1.1      fvdl 	 * control blocks and firmware.
   3814    1.1      fvdl 	 */
   3815    1.1      fvdl 	error = bge_blockinit(sc);
   3816    1.1      fvdl 	if (error != 0) {
   3817    1.1      fvdl 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3818    1.1      fvdl 		    error);
   3819    1.1      fvdl 		splx(s);
   3820    1.1      fvdl 		return error;
   3821    1.1      fvdl 	}
   3822    1.1      fvdl 
   3823    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3824    1.1      fvdl 
   3825    1.1      fvdl 	/* Specify MTU. */
   3826    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3827  1.107     blymn 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3828    1.1      fvdl 
   3829    1.1      fvdl 	/* Load our MAC address. */
   3830    1.1      fvdl 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3831    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3832    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3833    1.1      fvdl 
   3834    1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   3835    1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   3836    1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3837    1.1      fvdl 	} else {
   3838    1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3839    1.1      fvdl 	}
   3840    1.1      fvdl 
   3841    1.1      fvdl 	/* Program multicast filter. */
   3842    1.1      fvdl 	bge_setmulti(sc);
   3843    1.1      fvdl 
   3844    1.1      fvdl 	/* Init RX ring. */
   3845    1.1      fvdl 	bge_init_rx_ring_std(sc);
   3846    1.1      fvdl 
   3847    1.1      fvdl 	/* Init jumbo RX ring. */
   3848    1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3849    1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   3850    1.1      fvdl 
   3851    1.1      fvdl 	/* Init our RX return ring index */
   3852    1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   3853    1.1      fvdl 
   3854    1.1      fvdl 	/* Init TX ring. */
   3855    1.1      fvdl 	bge_init_tx_ring(sc);
   3856    1.1      fvdl 
   3857    1.1      fvdl 	/* Turn on transmitter */
   3858    1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3859    1.1      fvdl 
   3860    1.1      fvdl 	/* Turn on receiver */
   3861    1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3862    1.1      fvdl 
   3863   1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3864   1.71   thorpej 
   3865    1.1      fvdl 	/* Tell firmware we're alive. */
   3866    1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3867    1.1      fvdl 
   3868    1.1      fvdl 	/* Enable host interrupts. */
   3869    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3870    1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3871    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3872    1.1      fvdl 
   3873    1.1      fvdl 	bge_ifmedia_upd(ifp);
   3874    1.1      fvdl 
   3875    1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   3876    1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   3877    1.1      fvdl 
   3878    1.1      fvdl 	splx(s);
   3879    1.1      fvdl 
   3880    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3881    1.1      fvdl 
   3882    1.1      fvdl 	return 0;
   3883    1.1      fvdl }
   3884    1.1      fvdl 
   3885    1.1      fvdl /*
   3886    1.1      fvdl  * Set media options.
   3887    1.1      fvdl  */
   3888  1.104   thorpej static int
   3889  1.104   thorpej bge_ifmedia_upd(struct ifnet *ifp)
   3890    1.1      fvdl {
   3891    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3892    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3893    1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3894    1.1      fvdl 
   3895    1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3896    1.1      fvdl 	if (sc->bge_tbi) {
   3897    1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3898    1.1      fvdl 			return(EINVAL);
   3899    1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3900    1.1      fvdl 		case IFM_AUTO:
   3901    1.1      fvdl 			break;
   3902    1.1      fvdl 		case IFM_1000_SX:
   3903    1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3904    1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3905    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3906    1.1      fvdl 			} else {
   3907    1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3908    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3909    1.1      fvdl 			}
   3910    1.1      fvdl 			break;
   3911    1.1      fvdl 		default:
   3912    1.1      fvdl 			return(EINVAL);
   3913    1.1      fvdl 		}
   3914   1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   3915    1.1      fvdl 		return(0);
   3916    1.1      fvdl 	}
   3917    1.1      fvdl 
   3918    1.1      fvdl 	sc->bge_link = 0;
   3919    1.1      fvdl 	mii_mediachg(mii);
   3920    1.1      fvdl 
   3921    1.1      fvdl 	return(0);
   3922    1.1      fvdl }
   3923    1.1      fvdl 
   3924    1.1      fvdl /*
   3925    1.1      fvdl  * Report current media status.
   3926    1.1      fvdl  */
   3927  1.104   thorpej static void
   3928  1.104   thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3929    1.1      fvdl {
   3930    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3931    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3932    1.1      fvdl 
   3933    1.1      fvdl 	if (sc->bge_tbi) {
   3934    1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   3935    1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   3936    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3937    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3938    1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   3939    1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   3940    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3941    1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   3942    1.1      fvdl 		else
   3943    1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   3944    1.1      fvdl 		return;
   3945    1.1      fvdl 	}
   3946    1.1      fvdl 
   3947    1.1      fvdl 	mii_pollstat(mii);
   3948    1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   3949   1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   3950   1.69   thorpej 	    sc->bge_flowflags;
   3951    1.1      fvdl }
   3952    1.1      fvdl 
   3953  1.104   thorpej static int
   3954  1.104   thorpej bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   3955    1.1      fvdl {
   3956    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3957    1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   3958    1.1      fvdl 	int s, error = 0;
   3959    1.1      fvdl 	struct mii_data *mii;
   3960    1.1      fvdl 
   3961    1.1      fvdl 	s = splnet();
   3962    1.1      fvdl 
   3963    1.1      fvdl 	switch(command) {
   3964    1.1      fvdl 	case SIOCSIFFLAGS:
   3965    1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   3966    1.1      fvdl 			/*
   3967    1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   3968    1.1      fvdl 			 * then just use the 'set promisc mode' command
   3969    1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   3970    1.1      fvdl 			 * a full re-init means reloading the firmware and
   3971    1.1      fvdl 			 * waiting for it to start up, which may take a
   3972    1.1      fvdl 			 * second or two.
   3973    1.1      fvdl 			 */
   3974    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   3975    1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   3976    1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3977    1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   3978    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3979    1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   3980    1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   3981    1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   3982    1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3983    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3984  1.103    rpaulo 			} else if (!(sc->bge_if_flags & IFF_UP))
   3985    1.1      fvdl 				bge_init(ifp);
   3986    1.1      fvdl 		} else {
   3987    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   3988    1.1      fvdl 				bge_stop(sc);
   3989    1.1      fvdl 			}
   3990    1.1      fvdl 		}
   3991    1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   3992    1.1      fvdl 		error = 0;
   3993    1.1      fvdl 		break;
   3994    1.1      fvdl 	case SIOCSIFMEDIA:
   3995   1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   3996   1.69   thorpej 		if (sc->bge_tbi) {
   3997   1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   3998   1.69   thorpej 			sc->bge_flowflags = 0;
   3999   1.69   thorpej 		}
   4000   1.69   thorpej 
   4001   1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4002   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4003   1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4004   1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4005   1.69   thorpej 		}
   4006   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4007   1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4008   1.69   thorpej 				/* We an do both TXPAUSE and RXPAUSE. */
   4009   1.69   thorpej 				ifr->ifr_media |=
   4010   1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4011   1.69   thorpej 			}
   4012   1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4013   1.69   thorpej 		}
   4014   1.69   thorpej 		/* FALLTHROUGH */
   4015    1.1      fvdl 	case SIOCGIFMEDIA:
   4016    1.1      fvdl 		if (sc->bge_tbi) {
   4017    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4018    1.1      fvdl 			    command);
   4019    1.1      fvdl 		} else {
   4020    1.1      fvdl 			mii = &sc->bge_mii;
   4021    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4022    1.1      fvdl 			    command);
   4023    1.1      fvdl 		}
   4024    1.1      fvdl 		break;
   4025    1.1      fvdl 	default:
   4026    1.1      fvdl 		error = ether_ioctl(ifp, command, data);
   4027    1.1      fvdl 		if (error == ENETRESET) {
   4028   1.77   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   4029   1.77   thorpej 				bge_setmulti(sc);
   4030    1.1      fvdl 			error = 0;
   4031    1.1      fvdl 		}
   4032    1.1      fvdl 		break;
   4033    1.1      fvdl 	}
   4034    1.1      fvdl 
   4035    1.1      fvdl 	splx(s);
   4036    1.1      fvdl 
   4037    1.1      fvdl 	return(error);
   4038    1.1      fvdl }
   4039    1.1      fvdl 
   4040  1.104   thorpej static void
   4041  1.104   thorpej bge_watchdog(struct ifnet *ifp)
   4042    1.1      fvdl {
   4043    1.1      fvdl 	struct bge_softc *sc;
   4044    1.1      fvdl 
   4045    1.1      fvdl 	sc = ifp->if_softc;
   4046    1.1      fvdl 
   4047    1.1      fvdl 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   4048    1.1      fvdl 
   4049    1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4050    1.1      fvdl 	bge_init(ifp);
   4051    1.1      fvdl 
   4052    1.1      fvdl 	ifp->if_oerrors++;
   4053    1.1      fvdl }
   4054    1.1      fvdl 
   4055   1.11   thorpej static void
   4056   1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4057   1.11   thorpej {
   4058   1.11   thorpej 	int i;
   4059   1.11   thorpej 
   4060   1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4061   1.11   thorpej 
   4062   1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4063   1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4064   1.11   thorpej 			return;
   4065   1.11   thorpej 		delay(100);
   4066   1.95  jonathan 		if (sc->bge_pcie)
   4067   1.95  jonathan 		  DELAY(1000);
   4068   1.11   thorpej 	}
   4069   1.11   thorpej 
   4070   1.11   thorpej 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4071   1.11   thorpej 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   4072   1.11   thorpej }
   4073   1.11   thorpej 
   4074    1.1      fvdl /*
   4075    1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4076    1.1      fvdl  * RX and TX lists.
   4077    1.1      fvdl  */
   4078  1.104   thorpej static void
   4079  1.104   thorpej bge_stop(struct bge_softc *sc)
   4080    1.1      fvdl {
   4081    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4082    1.1      fvdl 
   4083    1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4084    1.1      fvdl 
   4085    1.1      fvdl 	/*
   4086    1.1      fvdl 	 * Disable all of the receiver blocks
   4087    1.1      fvdl 	 */
   4088   1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4089   1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4090   1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4091   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4092   1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4093   1.44   hannken 	}
   4094   1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4095   1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4096   1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4097    1.1      fvdl 
   4098    1.1      fvdl 	/*
   4099    1.1      fvdl 	 * Disable all of the transmit blocks
   4100    1.1      fvdl 	 */
   4101   1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4102   1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4103   1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4104   1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4105   1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4106   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4107   1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4108   1.44   hannken 	}
   4109   1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4110    1.1      fvdl 
   4111    1.1      fvdl 	/*
   4112    1.1      fvdl 	 * Shut down all of the memory managers and related
   4113    1.1      fvdl 	 * state machines.
   4114    1.1      fvdl 	 */
   4115   1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4116   1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4117   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4118   1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4119   1.44   hannken 	}
   4120   1.11   thorpej 
   4121    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4122    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4123   1.11   thorpej 
   4124   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4125   1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4126   1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4127   1.44   hannken 	}
   4128    1.1      fvdl 
   4129    1.1      fvdl 	/* Disable host interrupts. */
   4130    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4131    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4132    1.1      fvdl 
   4133    1.1      fvdl 	/*
   4134    1.1      fvdl 	 * Tell firmware we're shutting down.
   4135    1.1      fvdl 	 */
   4136    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4137    1.1      fvdl 
   4138    1.1      fvdl 	/* Free the RX lists. */
   4139    1.1      fvdl 	bge_free_rx_ring_std(sc);
   4140    1.1      fvdl 
   4141    1.1      fvdl 	/* Free jumbo RX list. */
   4142    1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   4143    1.1      fvdl 
   4144    1.1      fvdl 	/* Free TX buffers. */
   4145    1.1      fvdl 	bge_free_tx_ring(sc);
   4146    1.1      fvdl 
   4147    1.1      fvdl 	/*
   4148    1.1      fvdl 	 * Isolate/power down the PHY.
   4149    1.1      fvdl 	 */
   4150    1.1      fvdl 	if (!sc->bge_tbi)
   4151    1.1      fvdl 		mii_down(&sc->bge_mii);
   4152    1.1      fvdl 
   4153    1.1      fvdl 	sc->bge_link = 0;
   4154    1.1      fvdl 
   4155    1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4156    1.1      fvdl 
   4157    1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4158    1.1      fvdl }
   4159    1.1      fvdl 
   4160    1.1      fvdl /*
   4161    1.1      fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   4162    1.1      fvdl  * get confused by errant DMAs when rebooting.
   4163    1.1      fvdl  */
   4164  1.104   thorpej static void
   4165  1.104   thorpej bge_shutdown(void *xsc)
   4166    1.1      fvdl {
   4167    1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   4168    1.1      fvdl 
   4169    1.1      fvdl 	bge_stop(sc);
   4170    1.1      fvdl 	bge_reset(sc);
   4171    1.1      fvdl }
   4172   1.64  jonathan 
   4173   1.64  jonathan 
   4174   1.64  jonathan static int
   4175   1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4176   1.64  jonathan {
   4177   1.64  jonathan 	int error, t;
   4178   1.64  jonathan 	struct sysctlnode node;
   4179   1.64  jonathan 
   4180   1.64  jonathan 	node = *rnode;
   4181   1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4182   1.64  jonathan 	node.sysctl_data = &t;
   4183   1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4184   1.64  jonathan 	if (error || newp == NULL)
   4185   1.64  jonathan 		return (error);
   4186   1.64  jonathan 
   4187   1.64  jonathan #if 0
   4188   1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4189   1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4190   1.64  jonathan #endif
   4191   1.64  jonathan 
   4192   1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4193   1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4194   1.64  jonathan 			return (EINVAL);
   4195   1.64  jonathan 		bge_update_all_threshes(t);
   4196   1.64  jonathan 	} else
   4197   1.64  jonathan 		return (EINVAL);
   4198   1.64  jonathan 
   4199   1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4200   1.64  jonathan 
   4201   1.64  jonathan 	return (0);
   4202   1.64  jonathan }
   4203   1.64  jonathan 
   4204   1.64  jonathan /*
   4205   1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4206   1.64  jonathan  *
   4207   1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4208   1.64  jonathan  */
   4209   1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4210   1.64  jonathan {
   4211   1.66    atatat 	int rc, bge_root_num;
   4212   1.90    atatat 	const struct sysctlnode *node;
   4213   1.64  jonathan 
   4214   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4215   1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4216   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4217   1.64  jonathan 		goto err;
   4218   1.64  jonathan 	}
   4219   1.64  jonathan 
   4220   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4221   1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4222   1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4223   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4224   1.64  jonathan 		goto err;
   4225   1.64  jonathan 	}
   4226   1.64  jonathan 
   4227   1.66    atatat 	bge_root_num = node->sysctl_num;
   4228   1.66    atatat 
   4229   1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4230   1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4231   1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4232   1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4233   1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4234   1.73    atatat 	    sysctl_bge_verify, 0,
   4235   1.64  jonathan 	    &bge_rx_thresh_lvl,
   4236   1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4237   1.64  jonathan 	    CTL_EOL)) != 0) {
   4238   1.64  jonathan 		goto err;
   4239   1.64  jonathan 	}
   4240   1.64  jonathan 
   4241   1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4242   1.64  jonathan 
   4243   1.64  jonathan 	return;
   4244   1.64  jonathan 
   4245   1.64  jonathan err:
   4246   1.64  jonathan 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4247   1.64  jonathan }
   4248   1.82  jmcneill 
   4249  1.104   thorpej static void
   4250   1.82  jmcneill bge_powerhook(int why, void *hdl)
   4251   1.82  jmcneill {
   4252   1.82  jmcneill 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4253   1.82  jmcneill 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4254   1.82  jmcneill 	struct pci_attach_args *pa = &(sc->bge_pa);
   4255   1.82  jmcneill 	pci_chipset_tag_t pc = pa->pa_pc;
   4256   1.82  jmcneill 	pcitag_t tag = pa->pa_tag;
   4257   1.82  jmcneill 
   4258   1.82  jmcneill 	switch (why) {
   4259   1.82  jmcneill 	case PWR_SOFTSUSPEND:
   4260   1.82  jmcneill 	case PWR_SOFTSTANDBY:
   4261   1.82  jmcneill 		bge_shutdown(sc);
   4262   1.82  jmcneill 		break;
   4263   1.82  jmcneill 	case PWR_SOFTRESUME:
   4264   1.82  jmcneill 		if (ifp->if_flags & IFF_UP) {
   4265   1.82  jmcneill 			ifp->if_flags &= ~IFF_RUNNING;
   4266   1.82  jmcneill 			bge_init(ifp);
   4267   1.82  jmcneill 		}
   4268   1.82  jmcneill 		break;
   4269   1.82  jmcneill 	case PWR_SUSPEND:
   4270   1.82  jmcneill 	case PWR_STANDBY:
   4271   1.82  jmcneill 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4272   1.83  jmcneill 		break;
   4273   1.82  jmcneill 	case PWR_RESUME:
   4274   1.82  jmcneill 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4275   1.82  jmcneill 		break;
   4276   1.82  jmcneill 	}
   4277   1.82  jmcneill 
   4278   1.82  jmcneill 	return;
   4279   1.82  jmcneill }
   4280