Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.140
      1  1.140        ad /*	$NetBSD: if_bge.c,v 1.140 2007/11/07 00:23:18 ad Exp $	*/
      2    1.8   thorpej 
      3    1.1      fvdl /*
      4    1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5    1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6    1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7    1.1      fvdl  *
      8    1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9    1.1      fvdl  * modification, are permitted provided that the following conditions
     10    1.1      fvdl  * are met:
     11    1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12    1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13    1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14    1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15    1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16    1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17    1.1      fvdl  *    must display the following acknowledgement:
     18    1.1      fvdl  *	This product includes software developed by Bill Paul.
     19    1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20    1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21    1.1      fvdl  *    without specific prior written permission.
     22    1.1      fvdl  *
     23    1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24    1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25    1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26    1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27    1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33    1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34    1.1      fvdl  *
     35    1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36    1.1      fvdl  */
     37    1.1      fvdl 
     38    1.1      fvdl /*
     39   1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40    1.1      fvdl  *
     41   1.12   thorpej  * NetBSD version by:
     42   1.12   thorpej  *
     43   1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44   1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45   1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46   1.12   thorpej  *
     47   1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48    1.1      fvdl  * Senior Engineer, Wind River Systems
     49    1.1      fvdl  */
     50    1.1      fvdl 
     51    1.1      fvdl /*
     52    1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53    1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54    1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55    1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56    1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57    1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58    1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59    1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60    1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61    1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62    1.1      fvdl  * into the driver.
     63    1.1      fvdl  *
     64    1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66    1.1      fvdl  *
     67    1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68   1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69    1.1      fvdl  * does not support external SSRAM.
     70    1.1      fvdl  *
     71    1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72    1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73    1.1      fvdl  *
     74    1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75    1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76    1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77    1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78    1.1      fvdl  * ring.
     79    1.1      fvdl  */
     80   1.43     lukem 
     81   1.43     lukem #include <sys/cdefs.h>
     82  1.140        ad __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.140 2007/11/07 00:23:18 ad Exp $");
     83    1.1      fvdl 
     84    1.1      fvdl #include "bpfilter.h"
     85    1.1      fvdl #include "vlan.h"
     86    1.1      fvdl 
     87    1.1      fvdl #include <sys/param.h>
     88    1.1      fvdl #include <sys/systm.h>
     89    1.1      fvdl #include <sys/callout.h>
     90    1.1      fvdl #include <sys/sockio.h>
     91    1.1      fvdl #include <sys/mbuf.h>
     92    1.1      fvdl #include <sys/malloc.h>
     93    1.1      fvdl #include <sys/kernel.h>
     94    1.1      fvdl #include <sys/device.h>
     95    1.1      fvdl #include <sys/socket.h>
     96   1.64  jonathan #include <sys/sysctl.h>
     97    1.1      fvdl 
     98    1.1      fvdl #include <net/if.h>
     99    1.1      fvdl #include <net/if_dl.h>
    100    1.1      fvdl #include <net/if_media.h>
    101    1.1      fvdl #include <net/if_ether.h>
    102    1.1      fvdl 
    103    1.1      fvdl #ifdef INET
    104    1.1      fvdl #include <netinet/in.h>
    105    1.1      fvdl #include <netinet/in_systm.h>
    106    1.1      fvdl #include <netinet/in_var.h>
    107    1.1      fvdl #include <netinet/ip.h>
    108    1.1      fvdl #endif
    109    1.1      fvdl 
    110   1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    111   1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112   1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113   1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    114   1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    115   1.95  jonathan 
    116   1.95  jonathan 
    117    1.1      fvdl #if NBPFILTER > 0
    118    1.1      fvdl #include <net/bpf.h>
    119    1.1      fvdl #endif
    120    1.1      fvdl 
    121    1.1      fvdl #include <dev/pci/pcireg.h>
    122    1.1      fvdl #include <dev/pci/pcivar.h>
    123    1.1      fvdl #include <dev/pci/pcidevs.h>
    124    1.1      fvdl 
    125    1.1      fvdl #include <dev/mii/mii.h>
    126    1.1      fvdl #include <dev/mii/miivar.h>
    127    1.1      fvdl #include <dev/mii/miidevs.h>
    128    1.1      fvdl #include <dev/mii/brgphyreg.h>
    129    1.1      fvdl 
    130    1.1      fvdl #include <dev/pci/if_bgereg.h>
    131    1.1      fvdl 
    132    1.1      fvdl #include <uvm/uvm_extern.h>
    133    1.1      fvdl 
    134   1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135   1.46  jonathan 
    136   1.63  jonathan 
    137   1.63  jonathan /*
    138   1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    139   1.63  jonathan  */
    140   1.63  jonathan 
    141   1.63  jonathan /*
    142   1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    143   1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144   1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    145   1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    146   1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    147   1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    148   1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    149   1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    150   1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    151   1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    152   1.87     perry  *
    153   1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    154   1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155   1.63  jonathan  * family), the larger values may overflow internal chip limits,
    156   1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    157   1.63  jonathan  * rates.
    158   1.63  jonathan  *
    159   1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    160   1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    161   1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162   1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    163   1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164   1.63  jonathan  */
    165  1.104   thorpej static const struct bge_load_rx_thresh {
    166   1.63  jonathan 	int rx_ticks;
    167   1.63  jonathan 	int rx_max_bds; }
    168   1.63  jonathan bge_rx_threshes[] = {
    169   1.63  jonathan 	{ 32,   2 },
    170   1.63  jonathan 	{ 50,   4 },
    171   1.63  jonathan 	{ 100,  8 },
    172   1.63  jonathan 	{ 192, 16 },
    173   1.63  jonathan 	{ 416, 32 },
    174   1.63  jonathan 	{ 598, 46 }
    175   1.63  jonathan };
    176   1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    177   1.63  jonathan 
    178   1.63  jonathan /* XXX patchable; should be sysctl'able */
    179   1.64  jonathan static int	bge_auto_thresh = 1;
    180   1.64  jonathan static int	bge_rx_thresh_lvl;
    181   1.64  jonathan 
    182  1.104   thorpej static int	bge_rxthresh_nodenum;
    183    1.1      fvdl 
    184  1.104   thorpej static int	bge_probe(device_t, cfdata_t, void *);
    185  1.104   thorpej static void	bge_attach(device_t, device_t, void *);
    186  1.104   thorpej static void	bge_powerhook(int, void *);
    187  1.104   thorpej static void	bge_release_resources(struct bge_softc *);
    188  1.104   thorpej static void	bge_txeof(struct bge_softc *);
    189  1.104   thorpej static void	bge_rxeof(struct bge_softc *);
    190  1.104   thorpej 
    191  1.104   thorpej static void	bge_tick(void *);
    192  1.104   thorpej static void	bge_stats_update(struct bge_softc *);
    193  1.104   thorpej static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    194  1.104   thorpej 
    195  1.104   thorpej static int	bge_intr(void *);
    196  1.104   thorpej static void	bge_start(struct ifnet *);
    197  1.126  christos static int	bge_ioctl(struct ifnet *, u_long, void *);
    198  1.104   thorpej static int	bge_init(struct ifnet *);
    199  1.104   thorpej static void	bge_stop(struct bge_softc *);
    200  1.104   thorpej static void	bge_watchdog(struct ifnet *);
    201  1.104   thorpej static void	bge_shutdown(void *);
    202  1.104   thorpej static int	bge_ifmedia_upd(struct ifnet *);
    203  1.104   thorpej static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    204  1.104   thorpej 
    205  1.104   thorpej static void	bge_setmulti(struct bge_softc *);
    206  1.104   thorpej 
    207  1.104   thorpej static void	bge_handle_events(struct bge_softc *);
    208  1.104   thorpej static int	bge_alloc_jumbo_mem(struct bge_softc *);
    209  1.104   thorpej #if 0 /* XXX */
    210  1.104   thorpej static void	bge_free_jumbo_mem(struct bge_softc *);
    211    1.1      fvdl #endif
    212  1.104   thorpej static void	*bge_jalloc(struct bge_softc *);
    213  1.126  christos static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    214  1.104   thorpej static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    215  1.104   thorpej 			       bus_dmamap_t);
    216  1.104   thorpej static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    217  1.104   thorpej static int	bge_init_rx_ring_std(struct bge_softc *);
    218  1.104   thorpej static void	bge_free_rx_ring_std(struct bge_softc *);
    219  1.104   thorpej static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    220  1.104   thorpej static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    221  1.104   thorpej static void	bge_free_tx_ring(struct bge_softc *);
    222  1.104   thorpej static int	bge_init_tx_ring(struct bge_softc *);
    223  1.104   thorpej 
    224  1.104   thorpej static int	bge_chipinit(struct bge_softc *);
    225  1.104   thorpej static int	bge_blockinit(struct bge_softc *);
    226  1.104   thorpej static int	bge_setpowerstate(struct bge_softc *, int);
    227    1.1      fvdl 
    228  1.104   thorpej static void	bge_reset(struct bge_softc *);
    229   1.95  jonathan 
    230    1.1      fvdl #define BGE_DEBUG
    231    1.1      fvdl #ifdef BGE_DEBUG
    232    1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    233    1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    234   1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    235    1.1      fvdl int	bgedebug = 0;
    236   1.95  jonathan int	bge_tso_debug = 0;
    237    1.1      fvdl #else
    238    1.1      fvdl #define DPRINTF(x)
    239    1.1      fvdl #define DPRINTFN(n,x)
    240   1.95  jonathan #define BGE_TSO_PRINTF(x)
    241    1.1      fvdl #endif
    242    1.1      fvdl 
    243   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    244   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    245   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    246   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    247   1.72   thorpej #else
    248   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    249   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    250   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    251   1.72   thorpej #endif
    252   1.72   thorpej 
    253   1.17   thorpej /* Various chip quirks. */
    254   1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    255   1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    256   1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    257   1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    258   1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    259   1.36  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    260   1.37  jonathan #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    261   1.44   hannken #define	BGE_QUIRK_5705_CORE		0x00000080
    262   1.54      fvdl #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    263   1.25  jonathan 
    264   1.95  jonathan /*
    265   1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    266  1.107     blymn  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    267   1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    268   1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    269   1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    270   1.95  jonathan  * (defined here until the thought is done).
    271   1.95  jonathan  */
    272   1.99  jonathan #define BGE_IS_5714_FAMILY(sc) \
    273  1.120   tsutsui 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    274   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    275  1.120   tsutsui 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    276   1.99  jonathan 
    277   1.95  jonathan #define BGE_IS_5750_OR_BEYOND(sc)  \
    278   1.99  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    279   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    280  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    281  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    282   1.99  jonathan 	 BGE_IS_5714_FAMILY(sc) )
    283   1.95  jonathan 
    284   1.95  jonathan #define BGE_IS_5705_OR_BEYOND(sc)  \
    285   1.95  jonathan 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    286   1.95  jonathan 	  BGE_IS_5750_OR_BEYOND(sc) )
    287   1.95  jonathan 
    288   1.95  jonathan 
    289   1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    290   1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    291   1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    292   1.17   thorpej 
    293  1.138     joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    294   1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    295    1.1      fvdl 
    296  1.104   thorpej static u_int32_t
    297  1.104   thorpej bge_readmem_ind(struct bge_softc *sc, int off)
    298    1.1      fvdl {
    299    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    300    1.1      fvdl 	pcireg_t val;
    301    1.1      fvdl 
    302    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    303    1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    304    1.1      fvdl 	return val;
    305    1.1      fvdl }
    306    1.1      fvdl 
    307  1.104   thorpej static void
    308  1.104   thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
    309    1.1      fvdl {
    310    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    311    1.1      fvdl 
    312    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    313    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    314    1.1      fvdl }
    315    1.1      fvdl 
    316    1.1      fvdl #ifdef notdef
    317  1.104   thorpej static u_int32_t
    318  1.104   thorpej bge_readreg_ind(struct bge_softc *sc, int off)
    319    1.1      fvdl {
    320    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    321    1.1      fvdl 
    322    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    323    1.1      fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    324    1.1      fvdl }
    325    1.1      fvdl #endif
    326    1.1      fvdl 
    327  1.104   thorpej static void
    328  1.104   thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
    329    1.1      fvdl {
    330    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    331    1.1      fvdl 
    332    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    333    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    334    1.1      fvdl }
    335    1.1      fvdl 
    336    1.1      fvdl #ifdef notdef
    337  1.104   thorpej static u_int8_t
    338  1.104   thorpej bge_vpd_readbyte(struct bge_softc *sc, int addr)
    339    1.1      fvdl {
    340    1.1      fvdl 	int i;
    341    1.1      fvdl 	u_int32_t val;
    342    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    343    1.1      fvdl 
    344    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    345    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    346    1.1      fvdl 		DELAY(10);
    347    1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    348    1.1      fvdl 		    BGE_VPD_FLAG)
    349    1.1      fvdl 			break;
    350    1.1      fvdl 	}
    351    1.1      fvdl 
    352    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    353  1.138     joerg 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    354    1.1      fvdl 		return(0);
    355    1.1      fvdl 	}
    356    1.1      fvdl 
    357    1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    358    1.1      fvdl 
    359    1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    360    1.1      fvdl }
    361    1.1      fvdl 
    362  1.104   thorpej static void
    363  1.104   thorpej bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    364    1.1      fvdl {
    365    1.1      fvdl 	int i;
    366    1.1      fvdl 	u_int8_t *ptr;
    367    1.1      fvdl 
    368    1.1      fvdl 	ptr = (u_int8_t *)res;
    369    1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    370    1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    371    1.1      fvdl }
    372    1.1      fvdl 
    373  1.104   thorpej static void
    374  1.104   thorpej bge_vpd_read(struct bge_softc *sc)
    375    1.1      fvdl {
    376    1.1      fvdl 	int pos = 0, i;
    377    1.1      fvdl 	struct vpd_res res;
    378    1.1      fvdl 
    379    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    380    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    381    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    382    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    383    1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    384    1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    385    1.1      fvdl 
    386    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    387    1.1      fvdl 
    388    1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    389  1.138     joerg 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    390  1.138     joerg 		    VPD_RES_ID, res.vr_id);
    391    1.1      fvdl 		return;
    392    1.1      fvdl 	}
    393    1.1      fvdl 
    394    1.1      fvdl 	pos += sizeof(res);
    395    1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    396    1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    397    1.1      fvdl 		panic("bge_vpd_read");
    398    1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    399    1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    400    1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    401    1.1      fvdl 	pos += i;
    402    1.1      fvdl 
    403    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    404    1.1      fvdl 
    405    1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    406  1.138     joerg 		aprint_error_dev(sc->bge_dev,
    407  1.138     joerg 		    "bad VPD resource id: expected %x got %x\n",
    408  1.138     joerg 		    VPD_RES_READ, res.vr_id);
    409    1.1      fvdl 		return;
    410    1.1      fvdl 	}
    411    1.1      fvdl 
    412    1.1      fvdl 	pos += sizeof(res);
    413    1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    414    1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    415    1.1      fvdl 		panic("bge_vpd_read");
    416    1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    417    1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    418    1.1      fvdl }
    419    1.1      fvdl #endif
    420    1.1      fvdl 
    421    1.1      fvdl /*
    422    1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    423    1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    424    1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    425    1.1      fvdl  * access method.
    426    1.1      fvdl  */
    427  1.104   thorpej static u_int8_t
    428  1.104   thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    429    1.1      fvdl {
    430    1.1      fvdl 	int i;
    431    1.1      fvdl 	u_int32_t byte = 0;
    432    1.1      fvdl 
    433    1.1      fvdl 	/*
    434    1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    435    1.1      fvdl 	 * having to use the bitbang method.
    436    1.1      fvdl 	 */
    437    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    438    1.1      fvdl 
    439    1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    440    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    441    1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    442    1.1      fvdl 	DELAY(20);
    443    1.1      fvdl 
    444    1.1      fvdl 	/* Issue the read EEPROM command. */
    445    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    446    1.1      fvdl 
    447    1.1      fvdl 	/* Wait for completion */
    448    1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    449    1.1      fvdl 		DELAY(10);
    450    1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    451    1.1      fvdl 			break;
    452    1.1      fvdl 	}
    453    1.1      fvdl 
    454    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    455  1.138     joerg 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    456    1.1      fvdl 		return(0);
    457    1.1      fvdl 	}
    458    1.1      fvdl 
    459    1.1      fvdl 	/* Get result. */
    460    1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    461    1.1      fvdl 
    462    1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    463    1.1      fvdl 
    464    1.1      fvdl 	return(0);
    465    1.1      fvdl }
    466    1.1      fvdl 
    467    1.1      fvdl /*
    468    1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    469    1.1      fvdl  */
    470  1.104   thorpej static int
    471  1.126  christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    472    1.1      fvdl {
    473    1.1      fvdl 	int err = 0, i;
    474    1.1      fvdl 	u_int8_t byte = 0;
    475  1.126  christos 	char *dest = destv;
    476    1.1      fvdl 
    477    1.1      fvdl 	for (i = 0; i < cnt; i++) {
    478    1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    479    1.1      fvdl 		if (err)
    480    1.1      fvdl 			break;
    481    1.1      fvdl 		*(dest + i) = byte;
    482    1.1      fvdl 	}
    483    1.1      fvdl 
    484    1.1      fvdl 	return(err ? 1 : 0);
    485    1.1      fvdl }
    486    1.1      fvdl 
    487  1.104   thorpej static int
    488  1.104   thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
    489    1.1      fvdl {
    490  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    491    1.1      fvdl 	u_int32_t val;
    492   1.25  jonathan 	u_int32_t saved_autopoll;
    493    1.1      fvdl 	int i;
    494    1.1      fvdl 
    495   1.25  jonathan 	/*
    496   1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    497   1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    498   1.25  jonathan 	 */
    499   1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    500    1.1      fvdl 		return(0);
    501    1.1      fvdl 
    502   1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    503   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    504   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    505   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    506   1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    507   1.25  jonathan 		DELAY(40);
    508   1.25  jonathan 	}
    509   1.25  jonathan 
    510    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    511    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    512    1.1      fvdl 
    513    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    514    1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    515    1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    516    1.1      fvdl 			break;
    517    1.9   thorpej 		delay(10);
    518    1.1      fvdl 	}
    519    1.1      fvdl 
    520    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    521  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    522   1.29    itojun 		val = 0;
    523   1.25  jonathan 		goto done;
    524    1.1      fvdl 	}
    525    1.1      fvdl 
    526    1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    527    1.1      fvdl 
    528   1.25  jonathan done:
    529   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    530   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    531   1.25  jonathan 		DELAY(40);
    532   1.25  jonathan 	}
    533   1.29    itojun 
    534    1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    535    1.1      fvdl 		return(0);
    536    1.1      fvdl 
    537    1.1      fvdl 	return(val & 0xFFFF);
    538    1.1      fvdl }
    539    1.1      fvdl 
    540  1.104   thorpej static void
    541  1.104   thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    542    1.1      fvdl {
    543  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    544   1.29    itojun 	u_int32_t saved_autopoll;
    545   1.29    itojun 	int i;
    546    1.1      fvdl 
    547   1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    548   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    549   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    550   1.25  jonathan 		delay(40);
    551   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    552   1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    553   1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    554   1.25  jonathan 	}
    555   1.29    itojun 
    556    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    557    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    558    1.1      fvdl 
    559    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    560    1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    561    1.1      fvdl 			break;
    562    1.9   thorpej 		delay(10);
    563    1.1      fvdl 	}
    564    1.1      fvdl 
    565   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    566   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    567   1.25  jonathan 		delay(40);
    568   1.25  jonathan 	}
    569   1.29    itojun 
    570  1.138     joerg 	if (i == BGE_TIMEOUT)
    571  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    572    1.1      fvdl }
    573    1.1      fvdl 
    574  1.104   thorpej static void
    575  1.104   thorpej bge_miibus_statchg(device_t dev)
    576    1.1      fvdl {
    577  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    578    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    579    1.1      fvdl 
    580   1.69   thorpej 	/*
    581   1.69   thorpej 	 * Get flow control negotiation result.
    582   1.69   thorpej 	 */
    583   1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    584   1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    585   1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    586   1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    587   1.69   thorpej 	}
    588   1.69   thorpej 
    589    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    590    1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    591    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    592    1.1      fvdl 	} else {
    593    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    594    1.1      fvdl 	}
    595    1.1      fvdl 
    596    1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    597    1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    598    1.1      fvdl 	} else {
    599    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    600    1.1      fvdl 	}
    601   1.69   thorpej 
    602   1.69   thorpej 	/*
    603   1.69   thorpej 	 * 802.3x flow control
    604   1.69   thorpej 	 */
    605   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    606   1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    607   1.69   thorpej 	} else {
    608   1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    609   1.69   thorpej 	}
    610   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    611   1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    612   1.69   thorpej 	} else {
    613   1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    614   1.69   thorpej 	}
    615    1.1      fvdl }
    616    1.1      fvdl 
    617    1.1      fvdl /*
    618   1.63  jonathan  * Update rx threshold levels to values in a particular slot
    619   1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    620   1.63  jonathan  */
    621  1.104   thorpej static void
    622   1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    623   1.63  jonathan {
    624   1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    625   1.63  jonathan 	int s;
    626   1.63  jonathan 
    627   1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    628   1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    629   1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    630   1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    631   1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    632   1.63  jonathan 	 */
    633   1.63  jonathan 	s = splnet();
    634   1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    635   1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    636   1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    637   1.63  jonathan 	splx(s);
    638   1.63  jonathan 
    639   1.63  jonathan 	 return;
    640   1.63  jonathan }
    641   1.63  jonathan 
    642   1.63  jonathan 
    643   1.63  jonathan /*
    644   1.63  jonathan  * Update Rx thresholds of all bge devices
    645   1.63  jonathan  */
    646  1.104   thorpej static void
    647   1.63  jonathan bge_update_all_threshes(int lvl)
    648   1.63  jonathan {
    649   1.63  jonathan 	struct ifnet *ifp;
    650   1.63  jonathan 	const char * const namebuf = "bge";
    651   1.63  jonathan 	int namelen;
    652   1.63  jonathan 
    653   1.63  jonathan 	if (lvl < 0)
    654   1.63  jonathan 		lvl = 0;
    655   1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    656   1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    657   1.87     perry 
    658   1.63  jonathan 	namelen = strlen(namebuf);
    659   1.63  jonathan 	/*
    660   1.63  jonathan 	 * Now search all the interfaces for this name/number
    661   1.63  jonathan 	 */
    662   1.81      matt 	IFNET_FOREACH(ifp) {
    663   1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    664   1.63  jonathan 		      continue;
    665   1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    666   1.63  jonathan 		if (bge_auto_thresh)
    667   1.67  jonathan 			bge_set_thresh(ifp, lvl);
    668   1.63  jonathan 	}
    669   1.63  jonathan }
    670   1.63  jonathan 
    671   1.63  jonathan /*
    672    1.1      fvdl  * Handle events that have triggered interrupts.
    673    1.1      fvdl  */
    674  1.104   thorpej static void
    675  1.116  christos bge_handle_events(struct bge_softc *sc)
    676    1.1      fvdl {
    677    1.1      fvdl 
    678    1.1      fvdl 	return;
    679    1.1      fvdl }
    680    1.1      fvdl 
    681    1.1      fvdl /*
    682    1.1      fvdl  * Memory management for jumbo frames.
    683    1.1      fvdl  */
    684    1.1      fvdl 
    685  1.104   thorpej static int
    686  1.104   thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
    687    1.1      fvdl {
    688  1.126  christos 	char *ptr, *kva;
    689    1.1      fvdl 	bus_dma_segment_t	seg;
    690    1.1      fvdl 	int		i, rseg, state, error;
    691    1.1      fvdl 	struct bge_jpool_entry   *entry;
    692    1.1      fvdl 
    693    1.1      fvdl 	state = error = 0;
    694    1.1      fvdl 
    695    1.1      fvdl 	/* Grab a big chunk o' storage. */
    696    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    697    1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    698  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    699    1.1      fvdl 		return ENOBUFS;
    700    1.1      fvdl 	}
    701    1.1      fvdl 
    702    1.1      fvdl 	state = 1;
    703  1.126  christos 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    704    1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    705  1.138     joerg 		aprint_error_dev(sc->bge_dev,
    706  1.138     joerg 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    707    1.1      fvdl 		error = ENOBUFS;
    708    1.1      fvdl 		goto out;
    709    1.1      fvdl 	}
    710    1.1      fvdl 
    711    1.1      fvdl 	state = 2;
    712    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    713    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    714  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    715    1.1      fvdl 		error = ENOBUFS;
    716    1.1      fvdl 		goto out;
    717    1.1      fvdl 	}
    718    1.1      fvdl 
    719    1.1      fvdl 	state = 3;
    720    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    721    1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    722  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    723    1.1      fvdl 		error = ENOBUFS;
    724    1.1      fvdl 		goto out;
    725    1.1      fvdl 	}
    726    1.1      fvdl 
    727    1.1      fvdl 	state = 4;
    728  1.126  christos 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    729   1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    730    1.1      fvdl 
    731    1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    732    1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    733    1.1      fvdl 
    734    1.1      fvdl 	/*
    735    1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    736    1.1      fvdl 	 * in an array.
    737    1.1      fvdl 	 */
    738    1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    739    1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    740    1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    741    1.1      fvdl 		ptr += BGE_JLEN;
    742    1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    743    1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    744    1.1      fvdl 		if (entry == NULL) {
    745  1.138     joerg 			aprint_error_dev(sc->bge_dev,
    746  1.138     joerg 			    "no memory for jumbo buffer queue!\n");
    747    1.1      fvdl 			error = ENOBUFS;
    748    1.1      fvdl 			goto out;
    749    1.1      fvdl 		}
    750    1.1      fvdl 		entry->slot = i;
    751    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    752    1.1      fvdl 				 entry, jpool_entries);
    753    1.1      fvdl 	}
    754    1.1      fvdl out:
    755    1.1      fvdl 	if (error != 0) {
    756    1.1      fvdl 		switch (state) {
    757    1.1      fvdl 		case 4:
    758    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    759    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    760    1.1      fvdl 		case 3:
    761    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    762    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    763    1.1      fvdl 		case 2:
    764    1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    765    1.1      fvdl 		case 1:
    766    1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    767    1.1      fvdl 			break;
    768    1.1      fvdl 		default:
    769    1.1      fvdl 			break;
    770    1.1      fvdl 		}
    771    1.1      fvdl 	}
    772    1.1      fvdl 
    773    1.1      fvdl 	return error;
    774    1.1      fvdl }
    775    1.1      fvdl 
    776    1.1      fvdl /*
    777    1.1      fvdl  * Allocate a jumbo buffer.
    778    1.1      fvdl  */
    779  1.104   thorpej static void *
    780  1.104   thorpej bge_jalloc(struct bge_softc *sc)
    781    1.1      fvdl {
    782    1.1      fvdl 	struct bge_jpool_entry   *entry;
    783    1.1      fvdl 
    784    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    785    1.1      fvdl 
    786    1.1      fvdl 	if (entry == NULL) {
    787  1.138     joerg 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    788    1.1      fvdl 		return(NULL);
    789    1.1      fvdl 	}
    790    1.1      fvdl 
    791    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    792    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    793    1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    794    1.1      fvdl }
    795    1.1      fvdl 
    796    1.1      fvdl /*
    797    1.1      fvdl  * Release a jumbo buffer.
    798    1.1      fvdl  */
    799  1.104   thorpej static void
    800  1.126  christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    801    1.1      fvdl {
    802    1.1      fvdl 	struct bge_jpool_entry *entry;
    803    1.1      fvdl 	struct bge_softc *sc;
    804    1.1      fvdl 	int i, s;
    805    1.1      fvdl 
    806    1.1      fvdl 	/* Extract the softc struct pointer. */
    807    1.1      fvdl 	sc = (struct bge_softc *)arg;
    808    1.1      fvdl 
    809    1.1      fvdl 	if (sc == NULL)
    810    1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    811    1.1      fvdl 
    812    1.1      fvdl 	/* calculate the slot this buffer belongs to */
    813    1.1      fvdl 
    814  1.126  christos 	i = ((char *)buf
    815  1.126  christos 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    816    1.1      fvdl 
    817    1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    818    1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    819    1.1      fvdl 
    820    1.1      fvdl 	s = splvm();
    821    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    822    1.1      fvdl 	if (entry == NULL)
    823    1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    824    1.1      fvdl 	entry->slot = i;
    825    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    826    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    827    1.1      fvdl 
    828    1.1      fvdl 	if (__predict_true(m != NULL))
    829  1.140        ad   		pool_cache_put(mb_cache, m);
    830    1.1      fvdl 	splx(s);
    831    1.1      fvdl }
    832    1.1      fvdl 
    833    1.1      fvdl 
    834    1.1      fvdl /*
    835    1.1      fvdl  * Intialize a standard receive ring descriptor.
    836    1.1      fvdl  */
    837  1.104   thorpej static int
    838  1.104   thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    839    1.1      fvdl {
    840    1.1      fvdl 	struct mbuf		*m_new = NULL;
    841    1.1      fvdl 	struct bge_rx_bd	*r;
    842    1.1      fvdl 	int			error;
    843    1.1      fvdl 
    844    1.1      fvdl 	if (dmamap == NULL) {
    845    1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    846    1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    847    1.1      fvdl 		if (error != 0)
    848    1.1      fvdl 			return error;
    849    1.1      fvdl 	}
    850    1.1      fvdl 
    851    1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    852    1.1      fvdl 
    853    1.1      fvdl 	if (m == NULL) {
    854    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    855    1.1      fvdl 		if (m_new == NULL) {
    856    1.1      fvdl 			return(ENOBUFS);
    857    1.1      fvdl 		}
    858    1.1      fvdl 
    859    1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    860    1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    861    1.1      fvdl 			m_freem(m_new);
    862    1.1      fvdl 			return(ENOBUFS);
    863    1.1      fvdl 		}
    864    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    865    1.1      fvdl 
    866    1.1      fvdl 	} else {
    867    1.1      fvdl 		m_new = m;
    868    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    869    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    870    1.1      fvdl 	}
    871  1.125    bouyer 	if (!sc->bge_rx_alignment_bug)
    872  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
    873  1.124    bouyer 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    874  1.124    bouyer 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    875  1.124    bouyer 		return(ENOBUFS);
    876  1.125    bouyer 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    877  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
    878    1.1      fvdl 
    879    1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    880    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    881    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    882   1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    883    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    884    1.1      fvdl 	r->bge_len = m_new->m_len;
    885    1.1      fvdl 	r->bge_idx = i;
    886    1.1      fvdl 
    887    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    888    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    889    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    890    1.1      fvdl 	    sizeof (struct bge_rx_bd),
    891    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    892    1.1      fvdl 
    893    1.1      fvdl 	return(0);
    894    1.1      fvdl }
    895    1.1      fvdl 
    896    1.1      fvdl /*
    897    1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    898    1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
    899    1.1      fvdl  */
    900  1.104   thorpej static int
    901  1.104   thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
    902    1.1      fvdl {
    903    1.1      fvdl 	struct mbuf *m_new = NULL;
    904    1.1      fvdl 	struct bge_rx_bd *r;
    905  1.126  christos 	void *buf = NULL;
    906    1.1      fvdl 
    907    1.1      fvdl 	if (m == NULL) {
    908    1.1      fvdl 
    909    1.1      fvdl 		/* Allocate the mbuf. */
    910    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    911    1.1      fvdl 		if (m_new == NULL) {
    912    1.1      fvdl 			return(ENOBUFS);
    913    1.1      fvdl 		}
    914    1.1      fvdl 
    915    1.1      fvdl 		/* Allocate the jumbo buffer */
    916    1.1      fvdl 		buf = bge_jalloc(sc);
    917    1.1      fvdl 		if (buf == NULL) {
    918    1.1      fvdl 			m_freem(m_new);
    919  1.138     joerg 			aprint_error_dev(sc->bge_dev,
    920  1.138     joerg 			    "jumbo allocation failed -- packet dropped!\n");
    921    1.1      fvdl 			return(ENOBUFS);
    922    1.1      fvdl 		}
    923    1.1      fvdl 
    924    1.1      fvdl 		/* Attach the buffer to the mbuf. */
    925    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    926    1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    927    1.1      fvdl 		    bge_jfree, sc);
    928   1.74      yamt 		m_new->m_flags |= M_EXT_RW;
    929    1.1      fvdl 	} else {
    930    1.1      fvdl 		m_new = m;
    931  1.124    bouyer 		buf = m_new->m_data = m_new->m_ext.ext_buf;
    932    1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    933    1.1      fvdl 	}
    934  1.125    bouyer 	if (!sc->bge_rx_alignment_bug)
    935  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
    936  1.124    bouyer 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    937  1.126  christos 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
    938  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
    939    1.1      fvdl 	/* Set up the descriptor. */
    940    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    941    1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    942    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    943    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    944    1.1      fvdl 	r->bge_len = m_new->m_len;
    945    1.1      fvdl 	r->bge_idx = i;
    946    1.1      fvdl 
    947    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    948    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    949    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    950    1.1      fvdl 	    sizeof (struct bge_rx_bd),
    951    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    952    1.1      fvdl 
    953    1.1      fvdl 	return(0);
    954    1.1      fvdl }
    955    1.1      fvdl 
    956    1.1      fvdl /*
    957    1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    958    1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
    959    1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
    960    1.1      fvdl  * the NIC.
    961    1.1      fvdl  */
    962  1.104   thorpej static int
    963  1.104   thorpej bge_init_rx_ring_std(struct bge_softc *sc)
    964    1.1      fvdl {
    965    1.1      fvdl 	int i;
    966    1.1      fvdl 
    967    1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
    968    1.1      fvdl 		return 0;
    969    1.1      fvdl 
    970    1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
    971    1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    972    1.1      fvdl 			return(ENOBUFS);
    973    1.1      fvdl 	}
    974    1.1      fvdl 
    975    1.1      fvdl 	sc->bge_std = i - 1;
    976    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    977    1.1      fvdl 
    978    1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
    979    1.1      fvdl 
    980    1.1      fvdl 	return(0);
    981    1.1      fvdl }
    982    1.1      fvdl 
    983  1.104   thorpej static void
    984  1.104   thorpej bge_free_rx_ring_std(struct bge_softc *sc)
    985    1.1      fvdl {
    986    1.1      fvdl 	int i;
    987    1.1      fvdl 
    988    1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    989    1.1      fvdl 		return;
    990    1.1      fvdl 
    991    1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    992    1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    993    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    994    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    995   1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
    996    1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
    997    1.1      fvdl 		}
    998    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    999    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1000    1.1      fvdl 	}
   1001    1.1      fvdl 
   1002    1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1003    1.1      fvdl }
   1004    1.1      fvdl 
   1005  1.104   thorpej static int
   1006  1.104   thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1007    1.1      fvdl {
   1008    1.1      fvdl 	int i;
   1009   1.34  jonathan 	volatile struct bge_rcb *rcb;
   1010    1.1      fvdl 
   1011   1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1012   1.59    martin 		return 0;
   1013   1.59    martin 
   1014    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1015    1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1016    1.1      fvdl 			return(ENOBUFS);
   1017    1.1      fvdl 	};
   1018    1.1      fvdl 
   1019    1.1      fvdl 	sc->bge_jumbo = i - 1;
   1020   1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1021    1.1      fvdl 
   1022    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1023   1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1024   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1025    1.1      fvdl 
   1026    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1027    1.1      fvdl 
   1028    1.1      fvdl 	return(0);
   1029    1.1      fvdl }
   1030    1.1      fvdl 
   1031  1.104   thorpej static void
   1032  1.104   thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1033    1.1      fvdl {
   1034    1.1      fvdl 	int i;
   1035    1.1      fvdl 
   1036    1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1037    1.1      fvdl 		return;
   1038    1.1      fvdl 
   1039    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1040    1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1041    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1042    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1043    1.1      fvdl 		}
   1044    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1045    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1046    1.1      fvdl 	}
   1047    1.1      fvdl 
   1048    1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1049    1.1      fvdl }
   1050    1.1      fvdl 
   1051  1.104   thorpej static void
   1052  1.104   thorpej bge_free_tx_ring(struct bge_softc *sc)
   1053    1.1      fvdl {
   1054    1.1      fvdl 	int i, freed;
   1055    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1056    1.1      fvdl 
   1057    1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1058    1.1      fvdl 		return;
   1059    1.1      fvdl 
   1060    1.1      fvdl 	freed = 0;
   1061    1.1      fvdl 
   1062    1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1063    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1064    1.1      fvdl 			freed++;
   1065    1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1066    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1067    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1068    1.1      fvdl 					    link);
   1069    1.1      fvdl 			sc->txdma[i] = 0;
   1070    1.1      fvdl 		}
   1071    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1072    1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1073    1.1      fvdl 	}
   1074    1.1      fvdl 
   1075    1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1076    1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1077    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1078    1.1      fvdl 		free(dma, M_DEVBUF);
   1079    1.1      fvdl 	}
   1080    1.1      fvdl 
   1081    1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1082    1.1      fvdl }
   1083    1.1      fvdl 
   1084  1.104   thorpej static int
   1085  1.104   thorpej bge_init_tx_ring(struct bge_softc *sc)
   1086    1.1      fvdl {
   1087    1.1      fvdl 	int i;
   1088    1.1      fvdl 	bus_dmamap_t dmamap;
   1089    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1090    1.1      fvdl 
   1091    1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1092    1.1      fvdl 		return 0;
   1093    1.1      fvdl 
   1094    1.1      fvdl 	sc->bge_txcnt = 0;
   1095    1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1096   1.94  jonathan 
   1097   1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1098   1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1099   1.94  jonathan 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1100   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1101   1.94  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1102   1.25  jonathan 
   1103   1.94  jonathan 	/* NIC-memory send ring  not used; initialize to zero. */
   1104    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1105   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1106  1.139   msaitoh 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1107    1.1      fvdl 
   1108    1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1109    1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1110   1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1111    1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1112    1.1      fvdl 		    &dmamap))
   1113    1.1      fvdl 			return(ENOBUFS);
   1114    1.1      fvdl 		if (dmamap == NULL)
   1115    1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1116    1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1117    1.1      fvdl 		if (dma == NULL) {
   1118  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1119  1.138     joerg 			    "can't alloc txdmamap_pool_entry\n");
   1120    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1121    1.1      fvdl 			return (ENOMEM);
   1122    1.1      fvdl 		}
   1123    1.1      fvdl 		dma->dmamap = dmamap;
   1124    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1125    1.1      fvdl 	}
   1126    1.1      fvdl 
   1127    1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1128    1.1      fvdl 
   1129    1.1      fvdl 	return(0);
   1130    1.1      fvdl }
   1131    1.1      fvdl 
   1132  1.104   thorpej static void
   1133  1.104   thorpej bge_setmulti(struct bge_softc *sc)
   1134    1.1      fvdl {
   1135    1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1136    1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1137    1.1      fvdl 	struct ether_multi	*enm;
   1138    1.1      fvdl 	struct ether_multistep  step;
   1139    1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1140    1.1      fvdl 	u_int32_t		h;
   1141    1.1      fvdl 	int			i;
   1142    1.1      fvdl 
   1143   1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1144   1.13   thorpej 		goto allmulti;
   1145    1.1      fvdl 
   1146    1.1      fvdl 	/* Now program new ones. */
   1147    1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1148    1.1      fvdl 	while (enm != NULL) {
   1149   1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1150   1.13   thorpej 			/*
   1151   1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1152   1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1153   1.13   thorpej 			 * trying to set only those filter bits needed to match
   1154   1.13   thorpej 			 * the range.  (At this time, the only use of address
   1155   1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1156   1.13   thorpej 			 * range is big enough to require all bits set.)
   1157   1.13   thorpej 			 */
   1158   1.13   thorpej 			goto allmulti;
   1159   1.13   thorpej 		}
   1160   1.13   thorpej 
   1161   1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1162   1.13   thorpej 
   1163   1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1164   1.13   thorpej 		h &= 0x7f;
   1165   1.13   thorpej 
   1166    1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1167    1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1168    1.1      fvdl 	}
   1169    1.1      fvdl 
   1170   1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1171   1.13   thorpej 	goto setit;
   1172   1.13   thorpej 
   1173   1.13   thorpej  allmulti:
   1174   1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1175   1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1176   1.13   thorpej 
   1177   1.13   thorpej  setit:
   1178    1.1      fvdl 	for (i = 0; i < 4; i++)
   1179    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1180    1.1      fvdl }
   1181    1.1      fvdl 
   1182   1.24      matt const int bge_swapbits[] = {
   1183    1.1      fvdl 	0,
   1184    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1185    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1186    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1187    1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1188    1.1      fvdl 
   1189    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1190    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1191    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1192    1.1      fvdl 
   1193    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1194    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1195    1.1      fvdl 
   1196    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1197    1.1      fvdl 
   1198    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1199    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1200    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1201    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1202    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1203    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1204    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1205    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1206    1.1      fvdl 
   1207    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1208    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1209    1.1      fvdl };
   1210    1.1      fvdl 
   1211    1.1      fvdl int bge_swapindex = 0;
   1212    1.1      fvdl 
   1213    1.1      fvdl /*
   1214    1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1215    1.1      fvdl  * self-test results.
   1216    1.1      fvdl  */
   1217  1.104   thorpej static int
   1218  1.104   thorpej bge_chipinit(struct bge_softc *sc)
   1219    1.1      fvdl {
   1220    1.1      fvdl 	u_int32_t		cachesize;
   1221    1.1      fvdl 	int			i;
   1222   1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1223    1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1224    1.1      fvdl 
   1225    1.1      fvdl 
   1226    1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1227    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1228    1.1      fvdl 	    BGE_INIT);
   1229    1.1      fvdl 
   1230   1.25  jonathan 	/* Set power state to D0. */
   1231   1.25  jonathan 	bge_setpowerstate(sc, 0);
   1232   1.87     perry 
   1233    1.1      fvdl 	/*
   1234    1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1235    1.1      fvdl 	 * self-tests passed.
   1236    1.1      fvdl 	 */
   1237    1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1238  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1239  1.138     joerg 		    "RX CPU self-diagnostics failed!\n");
   1240    1.1      fvdl 		return(ENODEV);
   1241    1.1      fvdl 	}
   1242    1.1      fvdl 
   1243    1.1      fvdl 	/* Clear the MAC control register */
   1244    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1245    1.1      fvdl 
   1246    1.1      fvdl 	/*
   1247    1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1248    1.1      fvdl 	 * internal memory.
   1249    1.1      fvdl 	 */
   1250    1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1251    1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1252    1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1253    1.1      fvdl 
   1254    1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1255    1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1256    1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1257    1.1      fvdl 
   1258    1.1      fvdl 	/* Set up the PCI DMA control register. */
   1259   1.76      cube 	if (sc->bge_pcie) {
   1260   1.95  jonathan 	  u_int32_t device_ctl;
   1261   1.95  jonathan 
   1262   1.76      cube 		/* From FreeBSD */
   1263   1.76      cube 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1264  1.138     joerg 		    device_xname(sc->bge_dev)));
   1265   1.76      cube 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1266   1.76      cube 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1267   1.76      cube 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1268   1.95  jonathan 
   1269   1.95  jonathan 		/* jonathan: alternative from Linux driver */
   1270  1.107     blymn #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1271   1.95  jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1272   1.95  jonathan 
   1273   1.95  jonathan 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1274  1.107     blymn 		device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1275   1.95  jonathan 					   BGE_PCI_CONF_DEV_CTRL);
   1276  1.138     joerg 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1277   1.95  jonathan 
   1278   1.95  jonathan 		if ((device_ctl & 0x00e0) && 0) {
   1279   1.95  jonathan 			/*
   1280   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org:
   1281   1.95  jonathan 			 * This clause is exactly what the Broadcom-supplied
   1282   1.95  jonathan 			 * Linux does; but given overall register programming
   1283   1.95  jonathan 			 * by if_bge(4), this larger DMA-write watermark
   1284   1.95  jonathan 			 * value causes bcm5721 chips to totally wedge.
   1285   1.95  jonathan 			 */
   1286   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1287   1.95  jonathan 		} else {
   1288   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1289   1.95  jonathan 		}
   1290   1.76      cube 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1291   1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1292   1.25  jonathan 		/* Conventional PCI bus */
   1293  1.138     joerg 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1294  1.138     joerg 		    device_xname(sc->bge_dev)));
   1295   1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1296   1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1297   1.44   hannken 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1298   1.44   hannken 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1299   1.44   hannken 			dma_rw_ctl |= 0x0F;
   1300   1.44   hannken 		}
   1301   1.25  jonathan 	} else {
   1302  1.138     joerg 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1303  1.138     joerg 		    device_xname(sc->bge_dev)));
   1304   1.25  jonathan 		/* PCI-X bus */
   1305   1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1306   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1307   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1308   1.25  jonathan 		    (0x0F);
   1309   1.25  jonathan 		/*
   1310   1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1311   1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1312   1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1313   1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1314   1.25  jonathan 		 */
   1315   1.57  jonathan 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1316   1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1317   1.25  jonathan 			  /* should be 0x1f0000 */
   1318   1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1319   1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1320   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1321   1.25  jonathan 		}
   1322   1.57  jonathan 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1323   1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1324   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1325   1.25  jonathan 		}
   1326   1.99  jonathan 		else if (BGE_IS_5714_FAMILY(sc)) {
   1327   1.99  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1328   1.99  jonathan 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1329   1.99  jonathan 			/* XXX magic values, Broadcom-supplied Linux driver */
   1330   1.99  jonathan 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1331   1.99  jonathan 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1332   1.99  jonathan 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1333   1.99  jonathan 			else
   1334   1.99  jonathan 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1335   1.99  jonathan 		}
   1336   1.25  jonathan 	}
   1337   1.25  jonathan 
   1338   1.25  jonathan 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1339    1.1      fvdl 
   1340    1.1      fvdl 	/*
   1341    1.1      fvdl 	 * Set up general mode register.
   1342    1.1      fvdl 	 */
   1343    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1344    1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1345   1.54      fvdl 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1346    1.1      fvdl 
   1347    1.1      fvdl 	/* Get cache line size. */
   1348    1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1349    1.1      fvdl 
   1350    1.1      fvdl 	/*
   1351    1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1352    1.1      fvdl 	 */
   1353    1.1      fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1354    1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1355    1.1      fvdl 		switch(cachesize) {
   1356    1.1      fvdl 		case 1:
   1357    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1358    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1359    1.1      fvdl 			break;
   1360    1.1      fvdl 		case 2:
   1361    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1362    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1363    1.1      fvdl 			break;
   1364    1.1      fvdl 		case 4:
   1365    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1366    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1367    1.1      fvdl 			break;
   1368    1.1      fvdl 		case 8:
   1369    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1370    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1371    1.1      fvdl 			break;
   1372    1.1      fvdl 		case 16:
   1373    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1374    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1375    1.1      fvdl 			break;
   1376    1.1      fvdl 		case 32:
   1377    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1378    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1379    1.1      fvdl 			break;
   1380    1.1      fvdl 		case 64:
   1381    1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1382    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1383    1.1      fvdl 			break;
   1384    1.1      fvdl 		default:
   1385    1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1386    1.1      fvdl #if 0
   1387    1.1      fvdl 			if (bootverbose)
   1388  1.138     joerg 				aprint_error_dev(sc->bge_dev,
   1389  1.138     joerg 				    "cache line size %d not supported "
   1390  1.138     joerg 				    "disabling PCI MWI\n",
   1391    1.1      fvdl #endif
   1392    1.1      fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1393    1.1      fvdl 			    PCIM_CMD_MWIEN);
   1394    1.1      fvdl 			break;
   1395    1.1      fvdl 		}
   1396    1.1      fvdl 	}
   1397    1.1      fvdl 
   1398   1.25  jonathan 	/*
   1399   1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1400   1.25  jonathan 	 * properly by these devices.
   1401   1.25  jonathan 	 */
   1402   1.25  jonathan 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1403   1.25  jonathan 
   1404   1.25  jonathan 
   1405    1.1      fvdl #ifdef __brokenalpha__
   1406    1.1      fvdl 	/*
   1407    1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1408    1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1409    1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1410    1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1411    1.1      fvdl 	 */
   1412    1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1413    1.1      fvdl #endif
   1414    1.1      fvdl 
   1415   1.33   tsutsui 	/* Set the timer prescaler (always 66MHz) */
   1416    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1417    1.1      fvdl 
   1418    1.1      fvdl 	return(0);
   1419    1.1      fvdl }
   1420    1.1      fvdl 
   1421  1.104   thorpej static int
   1422  1.104   thorpej bge_blockinit(struct bge_softc *sc)
   1423    1.1      fvdl {
   1424   1.34  jonathan 	volatile struct bge_rcb		*rcb;
   1425    1.1      fvdl 	bus_size_t		rcb_addr;
   1426    1.1      fvdl 	int			i;
   1427    1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1428    1.1      fvdl 	bge_hostaddr		taddr;
   1429    1.1      fvdl 
   1430    1.1      fvdl 	/*
   1431    1.1      fvdl 	 * Initialize the memory window pointer register so that
   1432    1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1433    1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1434    1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1435    1.1      fvdl 	 */
   1436    1.1      fvdl 
   1437    1.1      fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1438    1.1      fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1439    1.1      fvdl 
   1440    1.1      fvdl 	/* Configure mbuf memory pool */
   1441   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1442   1.44   hannken 		if (sc->bge_extram) {
   1443   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1444   1.44   hannken 			    BGE_EXT_SSRAM);
   1445   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1446   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1447   1.54      fvdl 			else
   1448   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1449   1.44   hannken 		} else {
   1450   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1451   1.44   hannken 			    BGE_BUFFPOOL_1);
   1452   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1453   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1454   1.54      fvdl 			else
   1455   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1456   1.44   hannken 		}
   1457   1.44   hannken 
   1458   1.44   hannken 		/* Configure DMA resource pool */
   1459   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1460   1.44   hannken 		    BGE_DMA_DESCRIPTORS);
   1461   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1462    1.1      fvdl 	}
   1463    1.1      fvdl 
   1464    1.1      fvdl 	/* Configure mbuf pool watermarks */
   1465   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1466    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1467    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1468    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1469   1.25  jonathan #else
   1470   1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1471   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1472   1.71   thorpej 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1473   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1474   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1475   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1476   1.71   thorpej 		} else {
   1477   1.71   thorpej 			/* Values from Linux driver... */
   1478   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1479   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1480   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1481   1.71   thorpej 		}
   1482   1.44   hannken 	} else {
   1483   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1484   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1485   1.71   thorpej 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1486   1.44   hannken 	}
   1487   1.25  jonathan #endif
   1488    1.1      fvdl 
   1489    1.1      fvdl 	/* Configure DMA resource watermarks */
   1490    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1491    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1492    1.1      fvdl 
   1493    1.1      fvdl 	/* Enable buffer manager */
   1494  1.109  jonathan 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1495  1.109  jonathan 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1496   1.44   hannken 
   1497  1.109  jonathan 	/* Poll for buffer manager start indication */
   1498  1.109  jonathan 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1499  1.109  jonathan 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1500  1.109  jonathan 			break;
   1501  1.109  jonathan 		DELAY(10);
   1502  1.109  jonathan 	}
   1503    1.1      fvdl 
   1504  1.109  jonathan 	if (i == BGE_TIMEOUT) {
   1505  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1506  1.138     joerg 		    "buffer manager failed to start\n");
   1507  1.109  jonathan 		return(ENXIO);
   1508    1.1      fvdl 	}
   1509    1.1      fvdl 
   1510    1.1      fvdl 	/* Enable flow-through queues */
   1511    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1512    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1513    1.1      fvdl 
   1514    1.1      fvdl 	/* Wait until queue initialization is complete */
   1515    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1516    1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1517    1.1      fvdl 			break;
   1518    1.1      fvdl 		DELAY(10);
   1519    1.1      fvdl 	}
   1520    1.1      fvdl 
   1521    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1522  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1523  1.138     joerg 		    "flow-through queue init failed\n");
   1524    1.1      fvdl 		return(ENXIO);
   1525    1.1      fvdl 	}
   1526    1.1      fvdl 
   1527    1.1      fvdl 	/* Initialize the standard RX ring control block */
   1528    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1529    1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1530    1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1531   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1532   1.44   hannken 		rcb->bge_maxlen_flags =
   1533   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1534   1.44   hannken 	} else {
   1535   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1536   1.44   hannken 	}
   1537    1.1      fvdl 	if (sc->bge_extram)
   1538    1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1539    1.1      fvdl 	else
   1540    1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1541   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1542   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1543   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1544   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1545    1.1      fvdl 
   1546   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1547   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1548   1.44   hannken 	} else {
   1549   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1550   1.44   hannken 	}
   1551   1.44   hannken 
   1552    1.1      fvdl 	/*
   1553    1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1554    1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1555    1.1      fvdl 	 * field until we're actually ready to start
   1556    1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1557    1.1      fvdl 	 * high enough to require it).
   1558    1.1      fvdl 	 */
   1559   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1560   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1561   1.44   hannken 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1562   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1563   1.87     perry 		rcb->bge_maxlen_flags =
   1564   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1565   1.44   hannken 			BGE_RCB_FLAG_RING_DISABLED);
   1566   1.44   hannken 		if (sc->bge_extram)
   1567   1.44   hannken 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1568   1.44   hannken 		else
   1569   1.44   hannken 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1570   1.87     perry 
   1571   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1572   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_hi);
   1573   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1574   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_lo);
   1575   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1576   1.44   hannken 		    rcb->bge_maxlen_flags);
   1577   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1578   1.44   hannken 
   1579   1.44   hannken 		/* Set up dummy disabled mini ring RCB */
   1580   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1581   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1582   1.44   hannken 		    BGE_RCB_FLAG_RING_DISABLED);
   1583   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1584   1.44   hannken 		    rcb->bge_maxlen_flags);
   1585    1.1      fvdl 
   1586   1.44   hannken 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1587   1.44   hannken 		    offsetof(struct bge_ring_data, bge_info),
   1588   1.44   hannken 		    sizeof (struct bge_gib),
   1589   1.44   hannken 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1590   1.44   hannken 	}
   1591    1.1      fvdl 
   1592    1.1      fvdl 	/*
   1593  1.133     markd 	 * Set the BD ring replenish thresholds. The recommended
   1594    1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1595    1.1      fvdl 	 * each ring.
   1596    1.1      fvdl 	 */
   1597  1.133     markd 	i = BGE_STD_RX_RING_CNT / 8;
   1598  1.133     markd 
   1599  1.133     markd 	/*
   1600  1.133     markd  	 * Use a value of 8 for the following chips to workaround HW errata.
   1601  1.133     markd 	 * Some of these chips have been added based on empirical
   1602  1.133     markd 	 * evidence (they don't work unless this is done).
   1603  1.133     markd 	 */
   1604  1.133     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1605  1.133     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1606  1.133     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1607  1.133     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1608  1.133     markd 		i = 8;
   1609  1.133     markd 
   1610  1.133     markd 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1611    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1612    1.1      fvdl 
   1613    1.1      fvdl 	/*
   1614    1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1615    1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1616    1.1      fvdl 	 * These are located in NIC memory.
   1617    1.1      fvdl 	 */
   1618    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1619    1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1620   1.34  jonathan 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1621   1.34  jonathan 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1622    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1623    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1624    1.1      fvdl 	}
   1625    1.1      fvdl 
   1626    1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1627    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1628    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1629    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1630    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1631    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1632    1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1633   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1634   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1635   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1636   1.44   hannken 	}
   1637    1.1      fvdl 
   1638    1.1      fvdl 	/* Disable all unused RX return rings */
   1639    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1640    1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1641    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1642    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1643   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1644   1.44   hannken 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1645   1.34  jonathan                                      BGE_RCB_FLAG_RING_DISABLED));
   1646    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1647    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1648    1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1649    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1650    1.1      fvdl 	}
   1651    1.1      fvdl 
   1652    1.1      fvdl 	/* Initialize RX ring indexes */
   1653    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1654    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1655    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1656    1.1      fvdl 
   1657    1.1      fvdl 	/*
   1658    1.1      fvdl 	 * Set up RX return ring 0
   1659    1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1660    1.1      fvdl 	 * The return rings live entirely within the host, so the
   1661    1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1662    1.1      fvdl 	 */
   1663    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1664    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1665    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1666    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1667    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1668   1.34  jonathan 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1669   1.44   hannken 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1670    1.1      fvdl 
   1671    1.1      fvdl 	/* Set random backoff seed for TX */
   1672    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1673  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1674  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1675  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1676    1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1677    1.1      fvdl 
   1678    1.1      fvdl 	/* Set inter-packet gap */
   1679    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1680    1.1      fvdl 
   1681    1.1      fvdl 	/*
   1682    1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1683    1.1      fvdl 	 * any RX rules.
   1684    1.1      fvdl 	 */
   1685    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1686    1.1      fvdl 
   1687    1.1      fvdl 	/*
   1688    1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1689    1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1690    1.1      fvdl 	 */
   1691    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1692    1.1      fvdl 
   1693    1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1694    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1695    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1696    1.1      fvdl 
   1697    1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1698    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1699    1.1      fvdl 
   1700    1.1      fvdl 	/* Poll to make sure it's shut down. */
   1701    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1702    1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1703    1.1      fvdl 			break;
   1704    1.1      fvdl 		DELAY(10);
   1705    1.1      fvdl 	}
   1706    1.1      fvdl 
   1707    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1708  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1709  1.138     joerg 		    "host coalescing engine failed to idle\n");
   1710    1.1      fvdl 		return(ENXIO);
   1711    1.1      fvdl 	}
   1712    1.1      fvdl 
   1713    1.1      fvdl 	/* Set up host coalescing defaults */
   1714    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1715    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1716    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1717    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1718   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1719   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1720   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1721   1.44   hannken 	}
   1722    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1723    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1724    1.1      fvdl 
   1725    1.1      fvdl 	/* Set up address of statistics block */
   1726   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1727   1.44   hannken 		bge_set_hostaddr(&taddr,
   1728   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1729   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1730   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1731   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1732   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1733   1.44   hannken 	}
   1734    1.1      fvdl 
   1735    1.1      fvdl 	/* Set up address of status block */
   1736    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1737    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1738    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1739    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1740    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1741    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1742    1.1      fvdl 
   1743    1.1      fvdl 	/* Turn on host coalescing state machine */
   1744    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1745    1.1      fvdl 
   1746    1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1747    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1748    1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1749    1.1      fvdl 
   1750    1.1      fvdl 	/* Turn on RX list placement state machine */
   1751    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1752    1.1      fvdl 
   1753    1.1      fvdl 	/* Turn on RX list selector state machine. */
   1754   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1755   1.44   hannken 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1756   1.44   hannken 	}
   1757    1.1      fvdl 
   1758    1.1      fvdl 	/* Turn on DMA, clear stats */
   1759    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1760    1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1761    1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1762    1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1763    1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1764    1.1      fvdl 
   1765    1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1766   1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1767    1.1      fvdl 
   1768    1.1      fvdl #ifdef notdef
   1769    1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1770    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1771    1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1772    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1773    1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1774    1.1      fvdl #endif
   1775    1.1      fvdl 
   1776   1.25  jonathan #if defined(not_quite_yet)
   1777   1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1778   1.51      fvdl 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1779   1.87     perry 		sc->bge_local_ctrl_reg |=
   1780   1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1781   1.25  jonathan 	}
   1782   1.87     perry #endif
   1783   1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1784   1.25  jonathan 
   1785    1.1      fvdl 	/* Turn on DMA completion state machine */
   1786   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1787   1.44   hannken 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1788   1.44   hannken 	}
   1789    1.1      fvdl 
   1790    1.1      fvdl 	/* Turn on write DMA state machine */
   1791  1.133     markd 	{
   1792  1.133     markd 		uint32_t bge_wdma_mode =
   1793  1.133     markd 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1794  1.133     markd 
   1795  1.133     markd 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1796  1.133     markd 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1797  1.133     markd 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1798  1.133     markd 		  bge_wdma_mode |= (1 << 29);
   1799  1.133     markd 
   1800  1.133     markd 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1801  1.133     markd         }
   1802    1.1      fvdl 
   1803    1.1      fvdl 	/* Turn on read DMA state machine */
   1804   1.95  jonathan 	{
   1805   1.95  jonathan 		uint32_t dma_read_modebits;
   1806   1.95  jonathan 
   1807   1.95  jonathan 		dma_read_modebits =
   1808   1.95  jonathan 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1809   1.95  jonathan 
   1810   1.95  jonathan 		if (sc->bge_pcie && 0) {
   1811   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1812   1.95  jonathan 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1813   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1814   1.95  jonathan 		}
   1815   1.95  jonathan 
   1816   1.95  jonathan 		/* XXX broadcom-supplied linux driver; undocumented */
   1817   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1818   1.95  jonathan  			/*
   1819   1.95  jonathan 			 * XXX: magic values.
   1820   1.95  jonathan 			 * From Broadcom-supplied Linux driver;  apparently
   1821   1.95  jonathan 			 * required to workaround a DMA bug affecting TSO
   1822   1.95  jonathan 			 * on bcm575x/bcm5721?
   1823   1.95  jonathan 			 */
   1824   1.95  jonathan 			dma_read_modebits |= (1 << 27);
   1825   1.95  jonathan 		}
   1826   1.95  jonathan 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1827   1.95  jonathan 	}
   1828    1.1      fvdl 
   1829    1.1      fvdl 	/* Turn on RX data completion state machine */
   1830    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1831    1.1      fvdl 
   1832    1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1833    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1834    1.1      fvdl 
   1835    1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1836    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1837    1.1      fvdl 
   1838    1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1839   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1840   1.44   hannken 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1841   1.44   hannken 	}
   1842    1.1      fvdl 
   1843    1.1      fvdl 	/* Turn on send BD completion state machine */
   1844    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1845    1.1      fvdl 
   1846    1.1      fvdl 	/* Turn on send data completion state machine */
   1847    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1848    1.1      fvdl 
   1849    1.1      fvdl 	/* Turn on send data initiator state machine */
   1850   1.95  jonathan 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1851   1.95  jonathan 		/* XXX: magic value from Linux driver */
   1852   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1853   1.95  jonathan 	} else {
   1854   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1855   1.95  jonathan 	}
   1856    1.1      fvdl 
   1857    1.1      fvdl 	/* Turn on send BD initiator state machine */
   1858    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1859    1.1      fvdl 
   1860    1.1      fvdl 	/* Turn on send BD selector state machine */
   1861    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1862    1.1      fvdl 
   1863    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1864    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1865    1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1866    1.1      fvdl 
   1867    1.1      fvdl 	/* ack/clear link change events */
   1868    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1869    1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1870    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1871    1.1      fvdl 
   1872    1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1873    1.1      fvdl 	if (sc->bge_tbi) {
   1874    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1875    1.1      fvdl  	} else {
   1876    1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1877   1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1878    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1879    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1880    1.1      fvdl 	}
   1881    1.1      fvdl 
   1882    1.1      fvdl 	/* Enable link state change attentions. */
   1883    1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1884    1.1      fvdl 
   1885    1.1      fvdl 	return(0);
   1886    1.1      fvdl }
   1887    1.1      fvdl 
   1888   1.16   thorpej static const struct bge_revision {
   1889   1.51      fvdl 	uint32_t		br_chipid;
   1890   1.16   thorpej 	uint32_t		br_quirks;
   1891   1.16   thorpej 	const char		*br_name;
   1892   1.16   thorpej } bge_revisions[] = {
   1893   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A0,
   1894   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1895   1.16   thorpej 	  "BCM5700 A0" },
   1896   1.16   thorpej 
   1897   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A1,
   1898   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1899   1.16   thorpej 	  "BCM5700 A1" },
   1900   1.16   thorpej 
   1901   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B0,
   1902   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1903   1.16   thorpej 	  "BCM5700 B0" },
   1904   1.16   thorpej 
   1905   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B1,
   1906   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1907   1.16   thorpej 	  "BCM5700 B1" },
   1908   1.16   thorpej 
   1909   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B2,
   1910   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1911   1.16   thorpej 	  "BCM5700 B2" },
   1912   1.16   thorpej 
   1913  1.120   tsutsui 	{ BGE_CHIPID_BCM5700_B3,
   1914  1.120   tsutsui 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1915  1.120   tsutsui 	  "BCM5700 B3" },
   1916  1.120   tsutsui 
   1917   1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   1918   1.51      fvdl 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1919   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1920   1.16   thorpej 	  "BCM5700 Altima" },
   1921   1.16   thorpej 
   1922   1.51      fvdl 	{ BGE_CHIPID_BCM5700_C0,
   1923   1.16   thorpej 	  0,
   1924   1.16   thorpej 	  "BCM5700 C0" },
   1925   1.16   thorpej 
   1926   1.51      fvdl 	{ BGE_CHIPID_BCM5701_A0,
   1927   1.37  jonathan 	  0, /*XXX really, just not known */
   1928   1.16   thorpej 	  "BCM5701 A0" },
   1929   1.16   thorpej 
   1930   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B0,
   1931   1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1932   1.16   thorpej 	  "BCM5701 B0" },
   1933   1.16   thorpej 
   1934   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B2,
   1935  1.117   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1936   1.16   thorpej 	  "BCM5701 B2" },
   1937   1.16   thorpej 
   1938   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B5,
   1939   1.37  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1940   1.16   thorpej 	  "BCM5701 B5" },
   1941   1.16   thorpej 
   1942   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A0,
   1943   1.16   thorpej 	  0,
   1944   1.16   thorpej 	  "BCM5703 A0" },
   1945   1.16   thorpej 
   1946   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A1,
   1947   1.16   thorpej 	  0,
   1948   1.16   thorpej 	  "BCM5703 A1" },
   1949   1.16   thorpej 
   1950   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A2,
   1951   1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1952   1.16   thorpej 	  "BCM5703 A2" },
   1953   1.16   thorpej 
   1954   1.55     pooka 	{ BGE_CHIPID_BCM5703_A3,
   1955   1.55     pooka 	  BGE_QUIRK_ONLY_PHY_1,
   1956   1.55     pooka 	  "BCM5703 A3" },
   1957   1.55     pooka 
   1958  1.120   tsutsui 	{ BGE_CHIPID_BCM5703_B0,
   1959  1.120   tsutsui 	  BGE_QUIRK_ONLY_PHY_1,
   1960  1.120   tsutsui 	  "BCM5703 B0" },
   1961  1.120   tsutsui 
   1962   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A0,
   1963   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1964   1.25  jonathan 	  "BCM5704 A0" },
   1965   1.40      fvdl 
   1966   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A1,
   1967   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1968   1.40      fvdl 	  "BCM5704 A1" },
   1969   1.40      fvdl 
   1970   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A2,
   1971   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1972   1.40      fvdl 	  "BCM5704 A2" },
   1973   1.49      fvdl 
   1974   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A3,
   1975   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1976   1.49      fvdl 	  "BCM5704 A3" },
   1977   1.25  jonathan 
   1978   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A0,
   1979   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1980   1.51      fvdl 	  "BCM5705 A0" },
   1981   1.51      fvdl 
   1982   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A1,
   1983   1.44   hannken 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1984   1.44   hannken 	  "BCM5705 A1" },
   1985   1.44   hannken 
   1986   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A2,
   1987   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1988   1.51      fvdl 	  "BCM5705 A2" },
   1989   1.51      fvdl 
   1990   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A3,
   1991   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1992   1.51      fvdl 	  "BCM5705 A3" },
   1993   1.51      fvdl 
   1994   1.76      cube 	{ BGE_CHIPID_BCM5750_A0,
   1995   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1996  1.121   tsutsui 	  "BCM5750 A0" },
   1997   1.76      cube 
   1998   1.76      cube 	{ BGE_CHIPID_BCM5750_A1,
   1999   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2000   1.76      cube 	  "BCM5750 A1" },
   2001   1.76      cube 
   2002   1.92     gavan 	{ BGE_CHIPID_BCM5751_A1,
   2003   1.92     gavan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2004   1.92     gavan 	  "BCM5751 A1" },
   2005   1.92     gavan 
   2006  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A0,
   2007  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2008  1.119   tsutsui 	  "BCM5752 A0" },
   2009  1.119   tsutsui 
   2010  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A1,
   2011  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2012  1.119   tsutsui 	  "BCM5752 A1" },
   2013  1.119   tsutsui 
   2014  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A2,
   2015  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2016  1.119   tsutsui 	  "BCM5752 A2" },
   2017  1.119   tsutsui 
   2018  1.133     markd 	{ BGE_CHIPID_BCM5787_A0,
   2019  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2020  1.133     markd 	  "BCM5754/5787 A0" },
   2021  1.133     markd 
   2022  1.133     markd 	{ BGE_CHIPID_BCM5787_A1,
   2023  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2024  1.133     markd 	  "BCM5754/5787 A1" },
   2025  1.133     markd 
   2026  1.133     markd 	{ BGE_CHIPID_BCM5787_A2,
   2027  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2028  1.133     markd 	  "BCM5754/5787 A2" },
   2029  1.133     markd 
   2030   1.16   thorpej 	{ 0, 0, NULL }
   2031   1.16   thorpej };
   2032   1.16   thorpej 
   2033   1.51      fvdl /*
   2034   1.51      fvdl  * Some defaults for major revisions, so that newer steppings
   2035   1.51      fvdl  * that we don't know about have a shot at working.
   2036   1.51      fvdl  */
   2037   1.51      fvdl static const struct bge_revision bge_majorrevs[] = {
   2038   1.51      fvdl 	{ BGE_ASICREV_BCM5700,
   2039   1.51      fvdl 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2040   1.51      fvdl 	  "unknown BCM5700" },
   2041   1.51      fvdl 
   2042   1.51      fvdl 	{ BGE_ASICREV_BCM5701,
   2043   1.51      fvdl 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2044   1.51      fvdl 	  "unknown BCM5701" },
   2045   1.51      fvdl 
   2046   1.51      fvdl 	{ BGE_ASICREV_BCM5703,
   2047   1.51      fvdl 	  0,
   2048   1.51      fvdl 	  "unknown BCM5703" },
   2049   1.51      fvdl 
   2050   1.51      fvdl 	{ BGE_ASICREV_BCM5704,
   2051   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1,
   2052   1.51      fvdl 	  "unknown BCM5704" },
   2053   1.51      fvdl 
   2054   1.51      fvdl 	{ BGE_ASICREV_BCM5705,
   2055   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2056   1.51      fvdl 	  "unknown BCM5705" },
   2057   1.51      fvdl 
   2058   1.76      cube 	{ BGE_ASICREV_BCM5750,
   2059   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2060   1.98  jonathan 	  "unknown BCM575x family" },
   2061   1.98  jonathan 
   2062  1.120   tsutsui 	{ BGE_ASICREV_BCM5714_A0,
   2063  1.120   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2064  1.120   tsutsui 	  "unknown BCM5714" },
   2065  1.120   tsutsui 
   2066   1.98  jonathan 	{ BGE_ASICREV_BCM5714,
   2067   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2068   1.98  jonathan 	  "unknown BCM5714" },
   2069   1.98  jonathan 
   2070   1.98  jonathan 	{ BGE_ASICREV_BCM5752,
   2071   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2072   1.98  jonathan 	  "unknown BCM5752 family" },
   2073   1.98  jonathan 
   2074  1.133     markd 	{ BGE_ASICREV_BCM5755,
   2075  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2076  1.133     markd 	  "unknown BCM5755" },
   2077   1.98  jonathan 
   2078  1.106  jonathan 	{ BGE_ASICREV_BCM5780,
   2079  1.106  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2080  1.106  jonathan 	  "unknown BCM5780" },
   2081  1.106  jonathan 
   2082  1.133     markd 	{ BGE_ASICREV_BCM5787,
   2083  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2084  1.133     markd 	  "unknown BCM5787" },
   2085  1.133     markd 
   2086   1.51      fvdl 	{ 0,
   2087   1.51      fvdl 	  0,
   2088   1.51      fvdl 	  NULL }
   2089   1.51      fvdl };
   2090   1.51      fvdl 
   2091   1.51      fvdl 
   2092   1.16   thorpej static const struct bge_revision *
   2093   1.51      fvdl bge_lookup_rev(uint32_t chipid)
   2094   1.16   thorpej {
   2095   1.16   thorpej 	const struct bge_revision *br;
   2096   1.16   thorpej 
   2097   1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2098   1.51      fvdl 		if (br->br_chipid == chipid)
   2099   1.51      fvdl 			return (br);
   2100   1.51      fvdl 	}
   2101   1.51      fvdl 
   2102   1.51      fvdl 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2103   1.51      fvdl 		if (br->br_chipid == BGE_ASICREV(chipid))
   2104   1.16   thorpej 			return (br);
   2105   1.16   thorpej 	}
   2106   1.16   thorpej 
   2107   1.16   thorpej 	return (NULL);
   2108   1.16   thorpej }
   2109   1.16   thorpej 
   2110    1.7   thorpej static const struct bge_product {
   2111    1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   2112    1.7   thorpej 	pci_product_id_t	bp_product;
   2113    1.7   thorpej 	const char		*bp_name;
   2114    1.7   thorpej } bge_products[] = {
   2115    1.7   thorpej 	/*
   2116    1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   2117    1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   2118    1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   2119    1.7   thorpej 	 * check for it anyway.
   2120    1.7   thorpej 	 */
   2121    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2122    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   2123   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2124   1.51      fvdl 	  },
   2125    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2126    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   2127   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2128   1.51      fvdl 	  },
   2129    1.7   thorpej 
   2130    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2131    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   2132   1.51      fvdl 	  "Altima AC1000 Gigabit Ethernet",
   2133   1.51      fvdl 	  },
   2134   1.14     enami 	{ PCI_VENDOR_ALTIMA,
   2135   1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   2136   1.51      fvdl 	  "Altima AC1001 Gigabit Ethernet",
   2137   1.51      fvdl 	   },
   2138    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2139    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   2140   1.51      fvdl 	  "Altima AC9100 Gigabit Ethernet",
   2141   1.51      fvdl 	  },
   2142    1.7   thorpej 
   2143    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2144    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2145   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2146   1.51      fvdl 	  },
   2147    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2148    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2149   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2150   1.51      fvdl 	  },
   2151   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2152   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2153   1.51      fvdl 	  "Broadcom BCM5702 Gigabit Ethernet",
   2154   1.51      fvdl 	  },
   2155   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2156   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2157   1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2158   1.51      fvdl 
   2159   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2160   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2161   1.51      fvdl 	  "Broadcom BCM5703 Gigabit Ethernet",
   2162   1.51      fvdl 	  },
   2163   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2164   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2165   1.51      fvdl 	  "Broadcom BCM5703X Gigabit Ethernet",
   2166   1.51      fvdl 	  },
   2167   1.55     pooka 	{ PCI_VENDOR_BROADCOM,
   2168  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2169  1.120   tsutsui 	  "Broadcom BCM5703 Gigabit Ethernet",
   2170   1.55     pooka 	  },
   2171   1.51      fvdl 
   2172   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2173   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2174   1.51      fvdl 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2175   1.51      fvdl 	  },
   2176   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2177   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2178   1.51      fvdl 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2179   1.51      fvdl 	  },
   2180   1.51      fvdl 
   2181   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2182   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2183   1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2184   1.51      fvdl 	  },
   2185   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2186   1.79      jmmv 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2187   1.78     tacha 	  "Broadcom BCM5705K Gigabit Ethernet",
   2188   1.78     tacha 	  },
   2189   1.78     tacha    	{ PCI_VENDOR_BROADCOM,
   2190  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2191  1.122   tsutsui 	  "Broadcom BCM5705M Gigabit Ethernet",
   2192   1.51      fvdl 	  },
   2193   1.44   hannken    	{ PCI_VENDOR_BROADCOM,
   2194  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2195   1.51      fvdl 	  "Broadcom BCM5705M Gigabit Ethernet",
   2196   1.51      fvdl 	  },
   2197   1.51      fvdl 
   2198   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2199   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2200   1.98  jonathan 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2201   1.98  jonathan 	  },
   2202  1.105  christos 	{ PCI_VENDOR_BROADCOM,
   2203  1.130      cube 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2204  1.130      cube 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2205  1.130      cube 	  },
   2206  1.130      cube 	{ PCI_VENDOR_BROADCOM,
   2207  1.105  christos 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2208  1.105  christos 	  "Broadcom BCM5789 Gigabit Ethernet",
   2209  1.105  christos 	  },
   2210   1.98  jonathan 
   2211   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2212   1.80     fredb 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2213   1.80     fredb 	  "Broadcom BCM5721 Gigabit Ethernet",
   2214   1.80     fredb 	  },
   2215   1.80     fredb 
   2216   1.80     fredb 	{ PCI_VENDOR_BROADCOM,
   2217   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2218   1.76      cube 	  "Broadcom BCM5750 Gigabit Ethernet",
   2219   1.76      cube 	  },
   2220   1.76      cube 
   2221   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2222   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2223   1.76      cube 	  "Broadcom BCM5750M Gigabit Ethernet",
   2224   1.76      cube 	  },
   2225   1.76      cube 
   2226   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2227   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2228   1.76      cube 	  "Broadcom BCM5751 Gigabit Ethernet",
   2229   1.76      cube 	  },
   2230   1.76      cube 
   2231   1.91     gavan 	{ PCI_VENDOR_BROADCOM,
   2232   1.91     gavan 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2233   1.91     gavan 	  "Broadcom BCM5751M Gigabit Ethernet",
   2234   1.91     gavan 	  },
   2235   1.91     gavan 
   2236   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2237   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2238   1.98  jonathan 	  "Broadcom BCM5752 Gigabit Ethernet",
   2239   1.98  jonathan 	  },
   2240   1.98  jonathan 
   2241  1.119   tsutsui 	{ PCI_VENDOR_BROADCOM,
   2242  1.119   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2243  1.119   tsutsui 	  "Broadcom BCM5752M Gigabit Ethernet",
   2244  1.119   tsutsui 	  },
   2245  1.119   tsutsui 
   2246  1.128      tron 	{ PCI_VENDOR_BROADCOM,
   2247  1.128      tron 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2248  1.128      tron 	  "Broadcom BCM5753 Gigabit Ethernet",
   2249  1.128      tron 	  },
   2250  1.128      tron 
   2251  1.128      tron 	{ PCI_VENDOR_BROADCOM,
   2252  1.128      tron 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2253  1.128      tron 	  "Broadcom BCM5753M Gigabit Ethernet",
   2254  1.128      tron 	  },
   2255  1.128      tron 
   2256  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2257  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2258  1.133     markd 	  "Broadcom BCM5754 Gigabit Ethernet",
   2259  1.133     markd 	},
   2260  1.133     markd 
   2261  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2262  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2263  1.133     markd 	  "Broadcom BCM5754M Gigabit Ethernet",
   2264  1.133     markd 	},
   2265  1.133     markd 
   2266  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2267  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2268  1.133     markd 	  "Broadcom BCM5755 Gigabit Ethernet",
   2269  1.133     markd 	},
   2270  1.133     markd 
   2271  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2272  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2273  1.133     markd 	  "Broadcom BCM5755M Gigabit Ethernet",
   2274  1.133     markd 	},
   2275  1.133     markd 
   2276   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2277  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2278  1.106  jonathan 	  "Broadcom BCM5780 Gigabit Ethernet",
   2279  1.106  jonathan 	  },
   2280  1.106  jonathan 
   2281  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2282  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2283  1.106  jonathan 	  "Broadcom BCM5780S Gigabit Ethernet",
   2284  1.106  jonathan 	  },
   2285  1.106  jonathan 
   2286  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2287   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2288   1.70      tron 	  "Broadcom BCM5782 Gigabit Ethernet",
   2289  1.133     markd 	},
   2290  1.133     markd 
   2291  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2292  1.135      taca 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2293  1.135      taca 	  "Broadcom BCM5786 Gigabit Ethernet",
   2294  1.135      taca 	},
   2295  1.135      taca 
   2296  1.135      taca 	{ PCI_VENDOR_BROADCOM,
   2297  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2298  1.133     markd 	  "Broadcom BCM5787 Gigabit Ethernet",
   2299  1.133     markd 	},
   2300  1.133     markd 
   2301  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2302  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2303  1.133     markd 	  "Broadcom BCM5787M Gigabit Ethernet",
   2304  1.133     markd 	},
   2305  1.106  jonathan 
   2306   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2307   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2308   1.70      tron 	  "Broadcom BCM5788 Gigabit Ethernet",
   2309   1.70      tron 	  },
   2310   1.97      fvdl    	{ PCI_VENDOR_BROADCOM,
   2311   1.97      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2312   1.97      fvdl 	  "Broadcom BCM5789 Gigabit Ethernet",
   2313   1.97      fvdl 	  },
   2314   1.70      tron 
   2315   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2316   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2317   1.51      fvdl 	  "Broadcom BCM5901 Fast Ethernet",
   2318   1.51      fvdl 	  },
   2319   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2320   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2321   1.51      fvdl 	  "Broadcom BCM5901A2 Fast Ethernet",
   2322   1.51      fvdl 	  },
   2323   1.51      fvdl 
   2324    1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2325    1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2326   1.51      fvdl 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2327   1.51      fvdl 	  },
   2328    1.7   thorpej 
   2329    1.7   thorpej 	{ PCI_VENDOR_3COM,
   2330    1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   2331   1.51      fvdl 	  "3Com 3c996 Gigabit Ethernet",
   2332   1.51      fvdl 	  },
   2333    1.7   thorpej 
   2334    1.7   thorpej 	{ 0,
   2335    1.7   thorpej 	  0,
   2336    1.7   thorpej 	  NULL },
   2337    1.7   thorpej };
   2338    1.7   thorpej 
   2339    1.7   thorpej static const struct bge_product *
   2340    1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2341    1.7   thorpej {
   2342    1.7   thorpej 	const struct bge_product *bp;
   2343    1.7   thorpej 
   2344    1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2345    1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2346    1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2347    1.7   thorpej 			return (bp);
   2348    1.7   thorpej 	}
   2349    1.7   thorpej 
   2350    1.7   thorpej 	return (NULL);
   2351    1.7   thorpej }
   2352    1.7   thorpej 
   2353  1.104   thorpej static int
   2354  1.116  christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2355   1.25  jonathan {
   2356   1.25  jonathan #ifdef NOTYET
   2357   1.25  jonathan 	u_int32_t pm_ctl = 0;
   2358   1.25  jonathan 
   2359   1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2360   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2361   1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2362   1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2363   1.25  jonathan 
   2364   1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2365   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2366   1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2367   1.25  jonathan 	pm_ctl |= (1 << 8);
   2368   1.25  jonathan 
   2369   1.25  jonathan 	if (powerlevel == 0) {
   2370   1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2371   1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2372   1.25  jonathan 		    pm_ctl, 2);
   2373   1.25  jonathan 		DELAY(10000);
   2374   1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2375   1.25  jonathan 		DELAY(10000);
   2376   1.25  jonathan 
   2377   1.25  jonathan #ifdef NOTYET
   2378   1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2379   1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2380   1.25  jonathan #endif
   2381   1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2382   1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2383   1.25  jonathan 		return 0;
   2384   1.25  jonathan 	}
   2385   1.25  jonathan 
   2386   1.25  jonathan 
   2387   1.25  jonathan 	/*
   2388   1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2389   1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2390   1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2391   1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2392   1.25  jonathan 	 */
   2393  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   2394  1.138     joerg 	    "power state %d unimplemented; check GPIO pins\n",
   2395  1.138     joerg 	    powerlevel);
   2396   1.25  jonathan #endif
   2397   1.25  jonathan 	return EOPNOTSUPP;
   2398   1.25  jonathan }
   2399   1.25  jonathan 
   2400   1.25  jonathan 
   2401    1.1      fvdl /*
   2402    1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2403    1.1      fvdl  * against our list and return its name if we find a match. Note
   2404    1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2405    1.1      fvdl  * can get the device name string from the controller itself instead
   2406    1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2407    1.1      fvdl  * we'll always announce the right product name.
   2408    1.1      fvdl  */
   2409  1.104   thorpej static int
   2410  1.116  christos bge_probe(device_t parent, cfdata_t match, void *aux)
   2411    1.1      fvdl {
   2412    1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2413    1.1      fvdl 
   2414    1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2415    1.1      fvdl 		return (1);
   2416    1.1      fvdl 
   2417    1.1      fvdl 	return (0);
   2418    1.1      fvdl }
   2419    1.1      fvdl 
   2420  1.104   thorpej static void
   2421  1.116  christos bge_attach(device_t parent, device_t self, void *aux)
   2422    1.1      fvdl {
   2423  1.138     joerg 	struct bge_softc	*sc = device_private(self);
   2424    1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2425    1.7   thorpej 	const struct bge_product *bp;
   2426   1.16   thorpej 	const struct bge_revision *br;
   2427    1.1      fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   2428    1.1      fvdl 	pci_intr_handle_t	ih;
   2429    1.1      fvdl 	const char		*intrstr = NULL;
   2430    1.1      fvdl 	bus_dma_segment_t	seg;
   2431    1.1      fvdl 	int			rseg;
   2432    1.1      fvdl 	u_int32_t		hwcfg = 0;
   2433   1.24      matt 	u_int32_t		mac_addr = 0;
   2434    1.1      fvdl 	u_int32_t		command;
   2435    1.1      fvdl 	struct ifnet		*ifp;
   2436  1.126  christos 	void *			kva;
   2437    1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2438    1.1      fvdl 	pcireg_t		memtype;
   2439    1.1      fvdl 	bus_addr_t		memaddr;
   2440    1.1      fvdl 	bus_size_t		memsize;
   2441   1.25  jonathan 	u_int32_t		pm_ctl;
   2442   1.87     perry 
   2443    1.7   thorpej 	bp = bge_lookup(pa);
   2444    1.7   thorpej 	KASSERT(bp != NULL);
   2445    1.7   thorpej 
   2446  1.138     joerg 	sc->bge_dev = self;
   2447    1.1      fvdl 	sc->bge_pa = *pa;
   2448    1.1      fvdl 
   2449   1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2450   1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2451    1.1      fvdl 
   2452    1.1      fvdl 	/*
   2453    1.1      fvdl 	 * Map control/status registers.
   2454    1.1      fvdl 	 */
   2455    1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2456    1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2457    1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2458    1.1      fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2459    1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2460    1.1      fvdl 
   2461    1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2462  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2463  1.138     joerg 		    "failed to enable memory mapping!\n");
   2464    1.1      fvdl 		return;
   2465    1.1      fvdl 	}
   2466    1.1      fvdl 
   2467    1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2468    1.1      fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2469    1.1      fvdl  	switch (memtype) {
   2470   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2471   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2472    1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2473   1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2474    1.1      fvdl 		    &memaddr, &memsize) == 0)
   2475    1.1      fvdl 			break;
   2476    1.1      fvdl 	default:
   2477  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2478    1.1      fvdl 		return;
   2479    1.1      fvdl 	}
   2480    1.1      fvdl 
   2481    1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2482    1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2483  1.138     joerg 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2484    1.1      fvdl 		return;
   2485    1.1      fvdl 	}
   2486    1.1      fvdl 
   2487    1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2488    1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2489    1.1      fvdl 
   2490    1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2491    1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2492    1.1      fvdl 
   2493    1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2494  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2495  1.138     joerg 		    "couldn't establish interrupt%s%s\n",
   2496  1.138     joerg 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2497    1.1      fvdl 		return;
   2498    1.1      fvdl 	}
   2499  1.138     joerg 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2500    1.1      fvdl 
   2501   1.25  jonathan 	/*
   2502   1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2503   1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2504   1.25  jonathan 	 * leaving the card in D3 powersave state.
   2505   1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2506   1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2507   1.25  jonathan 	 */
   2508   1.25  jonathan 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2509   1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2510   1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2511   1.25  jonathan 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2512   1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2513   1.25  jonathan 
   2514   1.76      cube 	/*
   2515   1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2516   1.76      cube 	 * ASIC.
   2517   1.76      cube 	 */
   2518   1.76      cube 	sc->bge_chipid =
   2519   1.76      cube 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2520   1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2521   1.76      cube 
   2522   1.76      cube 	/*
   2523   1.76      cube 	 * Detect PCI-Express devices
   2524   1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2525   1.76      cube 	 */
   2526  1.108  jonathan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2527  1.108  jonathan 	        NULL, NULL) != 0)
   2528   1.76      cube 		sc->bge_pcie = 1;
   2529   1.76      cube 	else
   2530   1.76      cube 		sc->bge_pcie = 0;
   2531   1.76      cube 
   2532    1.1      fvdl 	/* Try to reset the chip. */
   2533    1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2534    1.1      fvdl 	bge_reset(sc);
   2535    1.1      fvdl 
   2536    1.1      fvdl 	if (bge_chipinit(sc)) {
   2537  1.138     joerg 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2538    1.1      fvdl 		bge_release_resources(sc);
   2539    1.1      fvdl 		return;
   2540    1.1      fvdl 	}
   2541    1.1      fvdl 
   2542    1.1      fvdl 	/*
   2543    1.1      fvdl 	 * Get station address from the EEPROM.
   2544    1.1      fvdl 	 */
   2545   1.24      matt 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2546   1.24      matt 	if ((mac_addr >> 16) == 0x484b) {
   2547   1.24      matt 		eaddr[0] = (u_char)(mac_addr >> 8);
   2548   1.24      matt 		eaddr[1] = (u_char)(mac_addr >> 0);
   2549   1.24      matt 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2550   1.24      matt 		eaddr[2] = (u_char)(mac_addr >> 24);
   2551   1.24      matt 		eaddr[3] = (u_char)(mac_addr >> 16);
   2552   1.24      matt 		eaddr[4] = (u_char)(mac_addr >> 8);
   2553   1.24      matt 		eaddr[5] = (u_char)(mac_addr >> 0);
   2554  1.126  christos 	} else if (bge_read_eeprom(sc, (void *)eaddr,
   2555    1.1      fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2556  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2557  1.138     joerg 		    "failed to read station address\n");
   2558    1.1      fvdl 		bge_release_resources(sc);
   2559    1.1      fvdl 		return;
   2560    1.1      fvdl 	}
   2561    1.1      fvdl 
   2562   1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2563   1.51      fvdl 
   2564   1.16   thorpej 	if (br == NULL) {
   2565  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2566  1.138     joerg 		    sc->bge_chipid >> 16);
   2567   1.52      fvdl 		sc->bge_quirks = 0;
   2568   1.16   thorpej 	} else {
   2569  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2570   1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2571   1.51      fvdl 		sc->bge_quirks |= br->br_quirks;
   2572   1.16   thorpej 	}
   2573   1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2574    1.1      fvdl 
   2575    1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2576   1.41      fvdl 	if (pci_dma64_available(pa))
   2577   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2578   1.41      fvdl 	else
   2579   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2580    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2581    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2582    1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2583  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2584    1.1      fvdl 		return;
   2585    1.1      fvdl 	}
   2586    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2587    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2588    1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2589    1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2590  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2591  1.138     joerg 		    "can't map DMA buffers (%zu bytes)\n",
   2592  1.138     joerg 		    sizeof(struct bge_ring_data));
   2593    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2594    1.1      fvdl 		return;
   2595    1.1      fvdl 	}
   2596    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2597    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2598    1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2599    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2600  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2601    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2602    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2603    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2604    1.1      fvdl 		return;
   2605    1.1      fvdl 	}
   2606    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2607    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2608    1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2609    1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2610    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2611    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2612    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2613    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2614    1.1      fvdl 		return;
   2615    1.1      fvdl 	}
   2616    1.1      fvdl 
   2617    1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2618    1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2619    1.1      fvdl 
   2620   1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2621    1.1      fvdl 
   2622    1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2623   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2624   1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2625  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   2626  1.138     joerg 			    "jumbo buffer allocation failed\n");
   2627   1.44   hannken 		} else
   2628   1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2629   1.44   hannken 	}
   2630    1.1      fvdl 
   2631    1.1      fvdl 	/* Set default tuneable values. */
   2632    1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2633    1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2634   1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2635   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2636    1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2637    1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2638   1.25  jonathan #else
   2639   1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2640   1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2641   1.25  jonathan #endif
   2642   1.95  jonathan 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2643   1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2644   1.95  jonathan 		sc->bge_rx_max_coal_bds = (12 * 5);
   2645  1.138     joerg 			aprint_verbose_dev(sc->bge_dev,
   2646  1.138     joerg 			    "setting short Tx thresholds\n");
   2647   1.95  jonathan 	}
   2648    1.1      fvdl 
   2649    1.1      fvdl 	/* Set up ifnet structure */
   2650    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2651    1.1      fvdl 	ifp->if_softc = sc;
   2652    1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2653    1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2654    1.1      fvdl 	ifp->if_start = bge_start;
   2655    1.1      fvdl 	ifp->if_init = bge_init;
   2656    1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2657   1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2658    1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2659  1.115   tsutsui 	DPRINTFN(5, ("strcpy if_xname\n"));
   2660  1.138     joerg 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2661    1.1      fvdl 
   2662   1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2663   1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2664   1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2665   1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2666   1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2667   1.87     perry 	sc->ethercom.ec_capabilities |=
   2668    1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2669    1.1      fvdl 
   2670   1.95  jonathan 	if (sc->bge_pcie)
   2671   1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2672   1.95  jonathan 
   2673    1.1      fvdl 	/*
   2674    1.1      fvdl 	 * Do MII setup.
   2675    1.1      fvdl 	 */
   2676    1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2677    1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2678    1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2679    1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2680    1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2681    1.1      fvdl 
   2682    1.1      fvdl 	/*
   2683    1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2684   1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2685   1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2686    1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2687    1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2688    1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2689    1.1      fvdl 	 */
   2690   1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2691   1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2692   1.35  jonathan 	} else {
   2693  1.126  christos 		bge_read_eeprom(sc, (void *)&hwcfg,
   2694    1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2695   1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2696   1.35  jonathan 	}
   2697   1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2698    1.1      fvdl 		sc->bge_tbi = 1;
   2699    1.1      fvdl 
   2700    1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2701    1.1      fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2702    1.1      fvdl 	    SK_SUBSYSID_9D41)
   2703    1.1      fvdl 		sc->bge_tbi = 1;
   2704    1.1      fvdl 
   2705    1.1      fvdl 	if (sc->bge_tbi) {
   2706    1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2707    1.1      fvdl 		    bge_ifmedia_sts);
   2708    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2709    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2710    1.1      fvdl 			    0, NULL);
   2711    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2712    1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2713    1.1      fvdl 	} else {
   2714    1.1      fvdl 		/*
   2715    1.1      fvdl 		 * Do transceiver setup.
   2716    1.1      fvdl 		 */
   2717    1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2718    1.1      fvdl 			     bge_ifmedia_sts);
   2719  1.138     joerg 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2720   1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2721   1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2722   1.87     perry 
   2723    1.1      fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2724  1.138     joerg 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2725    1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2726    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2727    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2728    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2729    1.1      fvdl 		} else
   2730    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2731    1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2732    1.1      fvdl 	}
   2733    1.1      fvdl 
   2734    1.1      fvdl 	/*
   2735   1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2736   1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2737   1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2738   1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2739   1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2740   1.37  jonathan 	 * payloads by copying the received packets.
   2741   1.37  jonathan 	 */
   2742   1.37  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2743   1.37  jonathan 		/* If in PCI-X mode, work around the alignment bug. */
   2744   1.37  jonathan 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2745   1.37  jonathan                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2746   1.37  jonathan                          BGE_PCISTATE_PCI_BUSSPEED)
   2747   1.37  jonathan 		sc->bge_rx_alignment_bug = 1;
   2748   1.37  jonathan         }
   2749   1.37  jonathan 
   2750   1.37  jonathan 	/*
   2751    1.1      fvdl 	 * Call MI attach routine.
   2752    1.1      fvdl 	 */
   2753    1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2754    1.1      fvdl 	if_attach(ifp);
   2755    1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2756    1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2757   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2758   1.72   thorpej 	/*
   2759   1.72   thorpej 	 * Attach event counters.
   2760   1.72   thorpej 	 */
   2761   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2762  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "intr");
   2763   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2764  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2765   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2766  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2767   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2768  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2769   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2770  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2771   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2772  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2773   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2774  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2775   1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2776    1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2777  1.132        ad 	callout_init(&sc->bge_timeout, 0);
   2778   1.82  jmcneill 
   2779  1.138     joerg 	sc->bge_powerhook = powerhook_establish(device_xname(sc->bge_dev),
   2780  1.110  jmcneill 	    bge_powerhook, sc);
   2781   1.82  jmcneill 	if (sc->bge_powerhook == NULL)
   2782  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2783  1.138     joerg 		    "unable to establish PCI power hook\n");
   2784    1.1      fvdl }
   2785    1.1      fvdl 
   2786  1.104   thorpej static void
   2787  1.104   thorpej bge_release_resources(struct bge_softc *sc)
   2788    1.1      fvdl {
   2789    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2790    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2791    1.1      fvdl 
   2792    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2793    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2794    1.1      fvdl }
   2795    1.1      fvdl 
   2796  1.104   thorpej static void
   2797  1.104   thorpej bge_reset(struct bge_softc *sc)
   2798    1.1      fvdl {
   2799    1.1      fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   2800   1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2801   1.76      cube 	int i, val;
   2802    1.1      fvdl 
   2803    1.1      fvdl 	/* Save some important PCI state. */
   2804    1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2805    1.1      fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2806    1.1      fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2807    1.1      fvdl 
   2808    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2809    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2810    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2811    1.1      fvdl 
   2812  1.119   tsutsui 	/*
   2813  1.119   tsutsui 	 * Disable the firmware fastboot feature on 5752 ASIC
   2814  1.119   tsutsui 	 * to avoid firmware timeout.
   2815  1.119   tsutsui 	 */
   2816  1.134     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2817  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2818  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2819  1.119   tsutsui 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2820  1.119   tsutsui 
   2821   1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2822   1.76      cube 	/*
   2823   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2824   1.76      cube 	 */
   2825   1.76      cube 	if (sc->bge_pcie) {
   2826   1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2827   1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2828   1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2829   1.76      cube 			/* No idea what that actually means */
   2830   1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2831   1.76      cube 			val |= (1<<29);
   2832   1.76      cube 		}
   2833   1.76      cube 	}
   2834   1.76      cube 
   2835    1.1      fvdl 	/* Issue global reset */
   2836   1.76      cube 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2837    1.1      fvdl 
   2838    1.1      fvdl 	DELAY(1000);
   2839    1.1      fvdl 
   2840   1.76      cube 	/*
   2841   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2842   1.76      cube 	 */
   2843   1.76      cube 	if (sc->bge_pcie) {
   2844   1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2845   1.76      cube 			pcireg_t reg;
   2846   1.76      cube 
   2847   1.76      cube 			DELAY(500000);
   2848   1.76      cube 			/* XXX: Magic Numbers */
   2849   1.76      cube 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2850   1.76      cube 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2851   1.76      cube 			    reg | (1 << 15));
   2852   1.76      cube 		}
   2853   1.95  jonathan 		/*
   2854   1.95  jonathan 		 * XXX: Magic Numbers.
   2855   1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2856   1.95  jonathan 		 * Should be replaced with references to PCI config-space
   2857   1.95  jonathan 		 * capability block for PCI-Express.
   2858   1.95  jonathan 		 */
   2859   1.95  jonathan 		pci_conf_write(pa->pa_pc, pa->pa_tag,
   2860   1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2861   1.95  jonathan 
   2862   1.76      cube 	}
   2863   1.76      cube 
   2864    1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2865    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2866    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2867    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2868    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2869    1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2870    1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2871    1.1      fvdl 
   2872    1.1      fvdl 	/* Enable memory arbiter. */
   2873  1.109  jonathan 	{
   2874   1.99  jonathan 		uint32_t marbmode = 0;
   2875   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2876  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2877   1.99  jonathan 		}
   2878   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2879   1.44   hannken 	}
   2880    1.1      fvdl 
   2881    1.1      fvdl 	/*
   2882  1.139   msaitoh 	 * Write the magic number to the firmware mailbox at 0xb50
   2883  1.139   msaitoh 	 * so that the driver can synchronize with the firmware.
   2884  1.139   msaitoh 	 */
   2885  1.139   msaitoh 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2886  1.139   msaitoh 
   2887  1.139   msaitoh 	/*
   2888    1.1      fvdl 	 * Poll the value location we just wrote until
   2889    1.1      fvdl 	 * we see the 1's complement of the magic number.
   2890    1.1      fvdl 	 * This indicates that the firmware initialization
   2891    1.1      fvdl 	 * is complete.
   2892    1.1      fvdl 	 */
   2893   1.95  jonathan 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2894    1.1      fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2895    1.1      fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   2896    1.1      fvdl 			break;
   2897    1.1      fvdl 		DELAY(1000);
   2898    1.1      fvdl 	}
   2899    1.1      fvdl 
   2900   1.95  jonathan 	if (i >= BGE_TIMEOUT) {
   2901  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2902  1.138     joerg 		    "firmware handshake timed out, val = %x\n", val);
   2903   1.95  jonathan 		/*
   2904   1.95  jonathan 		 * XXX: occasionally fired on bcm5721, but without
   2905   1.95  jonathan 		 * apparent harm.  For now, keep going if we timeout
   2906   1.95  jonathan 		 * against PCI-E devices.
   2907   1.95  jonathan 		 */
   2908   1.95  jonathan 		 if (!sc->bge_pcie)
   2909   1.95  jonathan 		  return;
   2910    1.1      fvdl 	}
   2911    1.1      fvdl 
   2912    1.1      fvdl 	/*
   2913    1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2914    1.1      fvdl 	 * return to its original pre-reset state. This is a
   2915    1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2916    1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2917    1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2918    1.1      fvdl 	 * results.
   2919    1.1      fvdl 	 */
   2920  1.139   msaitoh 	for (i = 0; i < 10000; i++) {
   2921   1.61  jonathan 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2922   1.61  jonathan 		    BGE_PCI_PCISTATE);
   2923   1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2924   1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2925    1.1      fvdl 			break;
   2926    1.1      fvdl 		DELAY(10);
   2927    1.1      fvdl 	}
   2928   1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2929   1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2930  1.138     joerg 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2931   1.61  jonathan 	}
   2932    1.1      fvdl 
   2933   1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   2934   1.76      cube 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2935   1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2936   1.76      cube 
   2937    1.1      fvdl 	/* Enable memory arbiter. */
   2938  1.109  jonathan 	/* XXX why do this twice? */
   2939  1.109  jonathan 	{
   2940   1.99  jonathan 		uint32_t marbmode = 0;
   2941   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2942  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2943   1.99  jonathan 		}
   2944   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2945   1.44   hannken 	}
   2946    1.1      fvdl 
   2947    1.1      fvdl 	/* Fix up byte swapping */
   2948    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2949    1.1      fvdl 
   2950    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2951    1.1      fvdl 
   2952    1.1      fvdl 	DELAY(10000);
   2953    1.1      fvdl }
   2954    1.1      fvdl 
   2955    1.1      fvdl /*
   2956    1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2957    1.1      fvdl  * on the receive return list.
   2958    1.1      fvdl  *
   2959    1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2960    1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2961    1.1      fvdl  * 2) the frame is from the standard receive ring
   2962    1.1      fvdl  */
   2963    1.1      fvdl 
   2964  1.104   thorpej static void
   2965  1.104   thorpej bge_rxeof(struct bge_softc *sc)
   2966    1.1      fvdl {
   2967    1.1      fvdl 	struct ifnet *ifp;
   2968    1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2969    1.1      fvdl 	bus_dmamap_t dmamap;
   2970    1.1      fvdl 	bus_addr_t offset, toff;
   2971    1.1      fvdl 	bus_size_t tlen;
   2972    1.1      fvdl 	int tosync;
   2973    1.1      fvdl 
   2974    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2975    1.1      fvdl 
   2976    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2977    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2978    1.1      fvdl 	    sizeof (struct bge_status_block),
   2979    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2980    1.1      fvdl 
   2981    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2982   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2983    1.1      fvdl 	    sc->bge_rx_saved_considx;
   2984    1.1      fvdl 
   2985    1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2986    1.1      fvdl 
   2987    1.1      fvdl 	if (tosync < 0) {
   2988   1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2989    1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2990    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2991    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2992    1.1      fvdl 		tosync = -tosync;
   2993    1.1      fvdl 	}
   2994    1.1      fvdl 
   2995    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2996    1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2997    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2998    1.1      fvdl 
   2999    1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   3000    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   3001    1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   3002    1.1      fvdl 		u_int32_t		rxidx;
   3003    1.1      fvdl 		struct mbuf		*m = NULL;
   3004    1.1      fvdl 
   3005    1.1      fvdl 		cur_rx = &sc->bge_rdata->
   3006    1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   3007    1.1      fvdl 
   3008    1.1      fvdl 		rxidx = cur_rx->bge_idx;
   3009   1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   3010    1.1      fvdl 
   3011    1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3012    1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3013    1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3014    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3015    1.1      fvdl 			jumbocnt++;
   3016  1.124    bouyer 			bus_dmamap_sync(sc->bge_dmatag,
   3017  1.124    bouyer 			    sc->bge_cdata.bge_rx_jumbo_map,
   3018  1.126  christos 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3019  1.125    bouyer 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3020    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3021    1.1      fvdl 				ifp->if_ierrors++;
   3022    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3023    1.1      fvdl 				continue;
   3024    1.1      fvdl 			}
   3025    1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3026    1.1      fvdl 					     NULL)== ENOBUFS) {
   3027    1.1      fvdl 				ifp->if_ierrors++;
   3028    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3029    1.1      fvdl 				continue;
   3030    1.1      fvdl 			}
   3031    1.1      fvdl 		} else {
   3032    1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3033    1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3034  1.124    bouyer 
   3035    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3036    1.1      fvdl 			stdcnt++;
   3037    1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3038    1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3039  1.125    bouyer 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3040  1.125    bouyer 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3041  1.125    bouyer 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3042    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3043    1.1      fvdl 				ifp->if_ierrors++;
   3044    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3045    1.1      fvdl 				continue;
   3046    1.1      fvdl 			}
   3047    1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   3048    1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   3049    1.1      fvdl 				ifp->if_ierrors++;
   3050    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3051    1.1      fvdl 				continue;
   3052    1.1      fvdl 			}
   3053    1.1      fvdl 		}
   3054    1.1      fvdl 
   3055    1.1      fvdl 		ifp->if_ipackets++;
   3056   1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   3057   1.37  jonathan                 /*
   3058   1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3059   1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   3060   1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   3061   1.37  jonathan                  */
   3062   1.37  jonathan 		if (sc->bge_rx_alignment_bug) {
   3063  1.127   tsutsui 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3064   1.37  jonathan                                 cur_rx->bge_len);
   3065   1.37  jonathan 			m->m_data += ETHER_ALIGN;
   3066   1.37  jonathan 		}
   3067   1.37  jonathan #endif
   3068   1.87     perry 
   3069   1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3070    1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   3071    1.1      fvdl 
   3072    1.1      fvdl #if NBPFILTER > 0
   3073    1.1      fvdl 		/*
   3074    1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   3075    1.1      fvdl 		 */
   3076    1.1      fvdl 		if (ifp->if_bpf)
   3077    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   3078    1.1      fvdl #endif
   3079    1.1      fvdl 
   3080   1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3081   1.46  jonathan 
   3082   1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3083   1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3084   1.46  jonathan 		/*
   3085   1.46  jonathan 		 * Rx transport checksum-offload may also
   3086   1.46  jonathan 		 * have bugs with packets which, when transmitted,
   3087   1.46  jonathan 		 * were `runts' requiring padding.
   3088   1.46  jonathan 		 */
   3089   1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3090   1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3091   1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3092   1.46  jonathan 			m->m_pkthdr.csum_data =
   3093   1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   3094   1.46  jonathan 			m->m_pkthdr.csum_flags |=
   3095   1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3096   1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3097    1.1      fvdl 		}
   3098    1.1      fvdl 
   3099    1.1      fvdl 		/*
   3100    1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   3101    1.1      fvdl 		 * to vlan_input() instead of ether_input().
   3102    1.1      fvdl 		 */
   3103   1.85  jdolecek 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   3104   1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3105    1.1      fvdl 
   3106    1.1      fvdl 		(*ifp->if_input)(ifp, m);
   3107    1.1      fvdl 	}
   3108    1.1      fvdl 
   3109    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3110    1.1      fvdl 	if (stdcnt)
   3111    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3112    1.1      fvdl 	if (jumbocnt)
   3113    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3114    1.1      fvdl }
   3115    1.1      fvdl 
   3116  1.104   thorpej static void
   3117  1.104   thorpej bge_txeof(struct bge_softc *sc)
   3118    1.1      fvdl {
   3119    1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   3120    1.1      fvdl 	struct ifnet *ifp;
   3121    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3122    1.1      fvdl 	bus_addr_t offset, toff;
   3123    1.1      fvdl 	bus_size_t tlen;
   3124    1.1      fvdl 	int tosync;
   3125    1.1      fvdl 	struct mbuf *m;
   3126    1.1      fvdl 
   3127    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3128    1.1      fvdl 
   3129    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3130    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3131    1.1      fvdl 	    sizeof (struct bge_status_block),
   3132    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3133    1.1      fvdl 
   3134    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3135   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3136    1.1      fvdl 	    sc->bge_tx_saved_considx;
   3137    1.1      fvdl 
   3138    1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3139    1.1      fvdl 
   3140    1.1      fvdl 	if (tosync < 0) {
   3141    1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3142    1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3143    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3144    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3145    1.1      fvdl 		tosync = -tosync;
   3146    1.1      fvdl 	}
   3147    1.1      fvdl 
   3148    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3149    1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3150    1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3151    1.1      fvdl 
   3152    1.1      fvdl 	/*
   3153    1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3154    1.1      fvdl 	 * frames that have been sent.
   3155    1.1      fvdl 	 */
   3156    1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3157    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3158    1.1      fvdl 		u_int32_t		idx = 0;
   3159    1.1      fvdl 
   3160    1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3161    1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3162    1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3163    1.1      fvdl 			ifp->if_opackets++;
   3164    1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3165    1.1      fvdl 		if (m != NULL) {
   3166    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3167    1.1      fvdl 			dma = sc->txdma[idx];
   3168    1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3169    1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3170    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3171    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3172    1.1      fvdl 			sc->txdma[idx] = NULL;
   3173    1.1      fvdl 
   3174    1.1      fvdl 			m_freem(m);
   3175    1.1      fvdl 		}
   3176    1.1      fvdl 		sc->bge_txcnt--;
   3177    1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3178    1.1      fvdl 		ifp->if_timer = 0;
   3179    1.1      fvdl 	}
   3180    1.1      fvdl 
   3181    1.1      fvdl 	if (cur_tx != NULL)
   3182    1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3183    1.1      fvdl }
   3184    1.1      fvdl 
   3185  1.104   thorpej static int
   3186  1.104   thorpej bge_intr(void *xsc)
   3187    1.1      fvdl {
   3188    1.1      fvdl 	struct bge_softc *sc;
   3189    1.1      fvdl 	struct ifnet *ifp;
   3190    1.1      fvdl 
   3191    1.1      fvdl 	sc = xsc;
   3192    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3193    1.1      fvdl 
   3194    1.1      fvdl #ifdef notdef
   3195    1.1      fvdl 	/* Avoid this for now -- checking this register is expensive. */
   3196    1.1      fvdl 	/* Make sure this is really our interrupt. */
   3197    1.1      fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   3198    1.1      fvdl 		return (0);
   3199    1.1      fvdl #endif
   3200    1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   3201    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3202    1.1      fvdl 
   3203   1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3204   1.72   thorpej 
   3205    1.1      fvdl 	/*
   3206    1.1      fvdl 	 * Process link state changes.
   3207    1.1      fvdl 	 * Grrr. The link status word in the status block does
   3208    1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3209  1.101     skrll 	 * according to all available information. Hence, we have
   3210    1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   3211    1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   3212    1.1      fvdl 	 * we have to read the MAC status register to detect link
   3213    1.1      fvdl 	 * changes, thereby adding an additional register access to
   3214    1.1      fvdl 	 * the interrupt handler.
   3215    1.1      fvdl 	 */
   3216    1.1      fvdl 
   3217   1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3218    1.1      fvdl 		u_int32_t		status;
   3219    1.1      fvdl 
   3220    1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3221    1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3222    1.1      fvdl 			sc->bge_link = 0;
   3223    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3224    1.1      fvdl 			bge_tick(sc);
   3225    1.1      fvdl 			/* Clear the interrupt */
   3226    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3227    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3228  1.138     joerg 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3229  1.138     joerg 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3230    1.1      fvdl 			    BRGPHY_INTRS);
   3231    1.1      fvdl 		}
   3232    1.1      fvdl 	} else {
   3233    1.1      fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   3234    1.1      fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3235    1.1      fvdl 			sc->bge_link = 0;
   3236    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3237    1.1      fvdl 			bge_tick(sc);
   3238    1.1      fvdl 			/* Clear the interrupt */
   3239    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3240   1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3241   1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3242    1.1      fvdl 		}
   3243    1.1      fvdl 	}
   3244    1.1      fvdl 
   3245    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3246    1.1      fvdl 		/* Check RX return ring producer/consumer */
   3247    1.1      fvdl 		bge_rxeof(sc);
   3248    1.1      fvdl 
   3249    1.1      fvdl 		/* Check TX ring producer/consumer */
   3250    1.1      fvdl 		bge_txeof(sc);
   3251    1.1      fvdl 	}
   3252    1.1      fvdl 
   3253   1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3254   1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3255   1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3256   1.58  jonathan 		uint32_t junk;
   3257   1.58  jonathan 
   3258   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3259   1.58  jonathan 		DELAY(10);
   3260   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3261   1.87     perry 
   3262   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3263   1.58  jonathan 		DELAY(10);
   3264   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3265   1.58  jonathan 
   3266   1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3267   1.58  jonathan 	}
   3268    1.1      fvdl 	bge_handle_events(sc);
   3269    1.1      fvdl 
   3270    1.1      fvdl 	/* Re-enable interrupts. */
   3271    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3272    1.1      fvdl 
   3273    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3274    1.1      fvdl 		bge_start(ifp);
   3275    1.1      fvdl 
   3276    1.1      fvdl 	return (1);
   3277    1.1      fvdl }
   3278    1.1      fvdl 
   3279  1.104   thorpej static void
   3280  1.104   thorpej bge_tick(void *xsc)
   3281    1.1      fvdl {
   3282    1.1      fvdl 	struct bge_softc *sc = xsc;
   3283    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3284    1.1      fvdl 	struct ifmedia *ifm = NULL;
   3285    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3286    1.1      fvdl 	int s;
   3287    1.1      fvdl 
   3288    1.1      fvdl 	s = splnet();
   3289    1.1      fvdl 
   3290    1.1      fvdl 	bge_stats_update(sc);
   3291    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3292    1.1      fvdl 	if (sc->bge_link) {
   3293    1.1      fvdl 		splx(s);
   3294    1.1      fvdl 		return;
   3295    1.1      fvdl 	}
   3296    1.1      fvdl 
   3297    1.1      fvdl 	if (sc->bge_tbi) {
   3298    1.1      fvdl 		ifm = &sc->bge_ifmedia;
   3299    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3300    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3301    1.1      fvdl 			sc->bge_link++;
   3302    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3303    1.1      fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3304    1.1      fvdl 				bge_start(ifp);
   3305    1.1      fvdl 		}
   3306    1.1      fvdl 		splx(s);
   3307    1.1      fvdl 		return;
   3308    1.1      fvdl 	}
   3309    1.1      fvdl 
   3310    1.1      fvdl 	mii_tick(mii);
   3311    1.1      fvdl 
   3312    1.1      fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3313    1.1      fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3314    1.1      fvdl 		sc->bge_link++;
   3315    1.1      fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3316    1.1      fvdl 			bge_start(ifp);
   3317    1.1      fvdl 	}
   3318    1.1      fvdl 
   3319    1.1      fvdl 	splx(s);
   3320    1.1      fvdl }
   3321    1.1      fvdl 
   3322  1.104   thorpej static void
   3323  1.104   thorpej bge_stats_update(struct bge_softc *sc)
   3324    1.1      fvdl {
   3325    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3326    1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3327   1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3328   1.44   hannken 
   3329   1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3330   1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3331    1.1      fvdl 
   3332   1.44   hannken 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3333   1.44   hannken 		ifp->if_collisions +=
   3334   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3335   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3336   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3337   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3338   1.72   thorpej 
   3339   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3340   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3341   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3342   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3343   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3344   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3345   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3346   1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3347   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3348   1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3349   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3350   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3351   1.44   hannken 		return;
   3352   1.44   hannken 	}
   3353   1.44   hannken 
   3354   1.44   hannken #undef READ_RSTAT
   3355    1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3356    1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3357    1.1      fvdl 
   3358    1.1      fvdl 	ifp->if_collisions +=
   3359    1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3360    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3361    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3362    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3363    1.1      fvdl 	  ifp->if_collisions;
   3364    1.1      fvdl 
   3365   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3366   1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3367   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3368   1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3369   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3370   1.72   thorpej 		      READ_STAT(sc, stats,
   3371   1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3372   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3373   1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3374   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3375   1.72   thorpej 		      READ_STAT(sc, stats,
   3376   1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3377   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3378   1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3379   1.72   thorpej 
   3380    1.1      fvdl #undef READ_STAT
   3381    1.1      fvdl 
   3382    1.1      fvdl #ifdef notdef
   3383    1.1      fvdl 	ifp->if_collisions +=
   3384    1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3385    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3386    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3387    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3388    1.1      fvdl 	   ifp->if_collisions;
   3389    1.1      fvdl #endif
   3390    1.1      fvdl }
   3391    1.1      fvdl 
   3392   1.46  jonathan /*
   3393   1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3394   1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3395   1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3396   1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3397   1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3398   1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3399   1.46  jonathan  */
   3400  1.102     perry static inline int
   3401   1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3402   1.46  jonathan {
   3403   1.46  jonathan 	struct mbuf *last = NULL;
   3404   1.46  jonathan 	int padlen;
   3405   1.46  jonathan 
   3406   1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3407   1.46  jonathan 
   3408   1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3409   1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3410  1.113   tsutsui 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3411   1.46  jonathan 		last = pkt;
   3412   1.46  jonathan 	} else {
   3413   1.46  jonathan 		/*
   3414   1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3415   1.87     perry 		 * pad there, or append a new mbuf and pad it
   3416   1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3417   1.46  jonathan 		 */
   3418   1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3419  1.114   tsutsui 	      	       continue; /* do nothing */
   3420   1.46  jonathan 		}
   3421   1.46  jonathan 
   3422   1.46  jonathan 		/* `last' now points to last in chain. */
   3423  1.114   tsutsui 		if (M_TRAILINGSPACE(last) < padlen) {
   3424   1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3425   1.46  jonathan 			struct mbuf *n;
   3426   1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3427  1.129     joerg 			if (n == NULL)
   3428  1.129     joerg 				return ENOBUFS;
   3429   1.46  jonathan 			n->m_len = 0;
   3430   1.46  jonathan 			last->m_next = n;
   3431   1.46  jonathan 			last = n;
   3432   1.46  jonathan 		}
   3433   1.46  jonathan 	}
   3434   1.46  jonathan 
   3435  1.114   tsutsui 	KDASSERT(!M_READONLY(last));
   3436  1.114   tsutsui 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3437  1.114   tsutsui 
   3438   1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3439  1.126  christos 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3440   1.46  jonathan 	last->m_len += padlen;
   3441   1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3442   1.46  jonathan 	return 0;
   3443   1.46  jonathan }
   3444   1.45  jonathan 
   3445   1.45  jonathan /*
   3446   1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3447   1.45  jonathan  */
   3448  1.102     perry static inline int
   3449   1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3450   1.45  jonathan {
   3451   1.45  jonathan 	struct mbuf	*m, *prev;
   3452   1.45  jonathan 	int 		totlen, prevlen;
   3453   1.45  jonathan 
   3454   1.45  jonathan 	prev = NULL;
   3455   1.45  jonathan 	totlen = 0;
   3456   1.45  jonathan 	prevlen = -1;
   3457   1.45  jonathan 
   3458   1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3459   1.45  jonathan 		int mlen = m->m_len;
   3460   1.45  jonathan 		int shortfall = 8 - mlen ;
   3461   1.45  jonathan 
   3462   1.45  jonathan 		totlen += mlen;
   3463   1.45  jonathan 		if (mlen == 0) {
   3464   1.45  jonathan 			continue;
   3465   1.45  jonathan 		}
   3466   1.45  jonathan 		if (mlen >= 8)
   3467   1.45  jonathan 			continue;
   3468   1.45  jonathan 
   3469   1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3470   1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3471   1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3472   1.45  jonathan 		 */
   3473   1.45  jonathan 
   3474   1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3475  1.113   tsutsui 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3476  1.115   tsutsui 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3477   1.45  jonathan 			prev->m_len += mlen;
   3478   1.45  jonathan 			m->m_len = 0;
   3479   1.45  jonathan 			/* XXX stitch chain */
   3480   1.45  jonathan 			prev->m_next = m_free(m);
   3481   1.45  jonathan 			m = prev;
   3482   1.45  jonathan 			continue;
   3483   1.45  jonathan 		}
   3484  1.113   tsutsui 		else if (m->m_next != NULL &&
   3485   1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3486   1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3487   1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3488   1.45  jonathan 
   3489  1.115   tsutsui 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3490  1.115   tsutsui 			    shortfall);
   3491   1.45  jonathan 			m->m_len += shortfall;
   3492   1.45  jonathan 			m->m_next->m_len -= shortfall;
   3493   1.45  jonathan 			m->m_next->m_data += shortfall;
   3494   1.45  jonathan 		}
   3495   1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3496   1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3497   1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3498   1.45  jonathan 			 * update its length in-place. (The original data is still
   3499   1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3500   1.45  jonathan 			 */
   3501   1.45  jonathan 
   3502   1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3503   1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3504   1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3505  1.111  christos 
   3506   1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3507   1.45  jonathan 				shortfall = prev->m_len;
   3508   1.87     perry 
   3509   1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3510   1.45  jonathan 			if (!M_READONLY(m)) {
   3511   1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3512   1.45  jonathan 					void *m_dat;
   3513   1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3514   1.45  jonathan 					  m->m_pktdat : m->dat;
   3515   1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3516   1.45  jonathan 					m->m_data = m_dat;
   3517   1.45  jonathan 				    }
   3518   1.45  jonathan 			} else
   3519   1.45  jonathan #endif	/* just do the safe slow thing */
   3520   1.45  jonathan 			{
   3521   1.45  jonathan 				struct mbuf * n = NULL;
   3522   1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3523   1.45  jonathan 
   3524   1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3525   1.45  jonathan 				if (n == NULL)
   3526   1.45  jonathan 				   return ENOBUFS;
   3527   1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3528   1.45  jonathan 					/*,
   3529   1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3530   1.45  jonathan 
   3531   1.45  jonathan 				/* first copy the data we're stealing from prev */
   3532  1.115   tsutsui 				memcpy(n->m_data, prev->m_data + newprevlen,
   3533  1.115   tsutsui 				    shortfall);
   3534   1.45  jonathan 
   3535   1.45  jonathan 				/* update prev->m_len accordingly */
   3536   1.45  jonathan 				prev->m_len -= shortfall;
   3537   1.45  jonathan 
   3538   1.45  jonathan 				/* copy data from runt m */
   3539  1.115   tsutsui 				memcpy(n->m_data + shortfall, m->m_data,
   3540  1.115   tsutsui 				    m->m_len);
   3541   1.45  jonathan 
   3542   1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3543   1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3544   1.45  jonathan 
   3545   1.45  jonathan 				/* stitch n into chain and free m */
   3546   1.45  jonathan 				n->m_next = m->m_next;
   3547   1.45  jonathan 				prev->m_next = n;
   3548   1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3549   1.45  jonathan 				m->m_next = NULL;
   3550   1.45  jonathan 				m_free(m);
   3551   1.45  jonathan 				m = n;	/* for continuing loop */
   3552   1.45  jonathan 			}
   3553   1.45  jonathan 		}
   3554   1.45  jonathan 		prevlen = m->m_len;
   3555   1.45  jonathan 	}
   3556   1.45  jonathan 	return 0;
   3557   1.45  jonathan }
   3558   1.45  jonathan 
   3559    1.1      fvdl /*
   3560    1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3561    1.1      fvdl  * pointers to descriptors.
   3562    1.1      fvdl  */
   3563  1.104   thorpej static int
   3564  1.104   thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3565    1.1      fvdl {
   3566    1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3567  1.118   tsutsui 	u_int32_t		frag, cur;
   3568    1.1      fvdl 	u_int16_t		csum_flags = 0;
   3569   1.95  jonathan 	u_int16_t		txbd_tso_flags = 0;
   3570    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3571    1.1      fvdl 	bus_dmamap_t dmamap;
   3572    1.1      fvdl 	int			i = 0;
   3573   1.29    itojun 	struct m_tag		*mtag;
   3574   1.95  jonathan 	int			use_tso, maxsegsize, error;
   3575  1.107     blymn 
   3576    1.1      fvdl 	cur = frag = *txidx;
   3577    1.1      fvdl 
   3578    1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3579    1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3580    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3581    1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3582    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3583    1.1      fvdl 	}
   3584    1.1      fvdl 
   3585   1.87     perry 	/*
   3586   1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3587   1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3588   1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3589   1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3590   1.46  jonathan 	 * are confirmed to not require the workaround.)
   3591   1.46  jonathan 	 */
   3592   1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3593   1.46  jonathan #ifdef notyet
   3594   1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3595   1.87     perry #endif
   3596   1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3597   1.46  jonathan 		goto check_dma_bug;
   3598   1.46  jonathan 
   3599   1.95  jonathan 	if (bge_cksum_pad(m_head) != 0) {
   3600   1.46  jonathan 	    return ENOBUFS;
   3601   1.95  jonathan 	}
   3602   1.46  jonathan 
   3603   1.46  jonathan check_dma_bug:
   3604   1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3605   1.29    itojun 		goto doit;
   3606   1.25  jonathan 	/*
   3607   1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3608   1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3609   1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3610   1.25  jonathan 	 */
   3611   1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3612   1.45  jonathan 		return ENOBUFS;
   3613   1.25  jonathan 
   3614   1.25  jonathan doit:
   3615    1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3616    1.1      fvdl 	if (dma == NULL)
   3617    1.1      fvdl 		return ENOBUFS;
   3618    1.1      fvdl 	dmamap = dma->dmamap;
   3619    1.1      fvdl 
   3620    1.1      fvdl 	/*
   3621   1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3622   1.95  jonathan 	 */
   3623   1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3624   1.95  jonathan 	if (!use_tso) {
   3625   1.95  jonathan 		maxsegsize = 0;
   3626   1.95  jonathan 	} else {	/* TSO setup */
   3627   1.95  jonathan 		unsigned  mss;
   3628   1.95  jonathan 		struct ether_header *eh;
   3629   1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3630   1.95  jonathan 		struct mbuf * m0 = m_head;
   3631   1.95  jonathan 		struct ip *ip;
   3632   1.95  jonathan 		struct tcphdr *th;
   3633   1.95  jonathan 		int iphl, hlen;
   3634   1.95  jonathan 
   3635   1.95  jonathan 		/*
   3636   1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3637   1.95  jonathan 		 * fields for the protocol headers.
   3638   1.95  jonathan 		 */
   3639   1.95  jonathan 
   3640   1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3641   1.95  jonathan 		switch (htons(eh->ether_type)) {
   3642   1.95  jonathan 		case ETHERTYPE_IP:
   3643   1.95  jonathan 			offset = ETHER_HDR_LEN;
   3644   1.95  jonathan 			break;
   3645   1.95  jonathan 
   3646   1.95  jonathan 		case ETHERTYPE_VLAN:
   3647   1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3648   1.95  jonathan 			break;
   3649   1.95  jonathan 
   3650   1.95  jonathan 		default:
   3651   1.95  jonathan 			/*
   3652   1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3653   1.95  jonathan 			 */
   3654   1.95  jonathan 			return (ENOBUFS);
   3655   1.95  jonathan 		}
   3656   1.95  jonathan 
   3657   1.95  jonathan 		/*
   3658   1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3659   1.95  jonathan 		 * this the easy way.
   3660   1.95  jonathan 		 */
   3661   1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3662   1.95  jonathan 		hlen = iphl + offset;
   3663   1.95  jonathan 		if (__predict_false(m0->m_len <
   3664   1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3665   1.95  jonathan 
   3666  1.138     joerg 			aprint_debug_dev(sc->bge_dev,
   3667  1.138     joerg 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3668  1.138     joerg 			    "not handled yet\n",
   3669  1.138     joerg 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3670   1.95  jonathan #ifdef NOTYET
   3671   1.95  jonathan 			/*
   3672   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3673   1.95  jonathan 			 * how to force  this branch to be taken?
   3674   1.95  jonathan 			 */
   3675   1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3676   1.95  jonathan 
   3677   1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3678   1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3679   1.95  jonathan 
   3680   1.95  jonathan 			ip.ip_len = 0;
   3681   1.95  jonathan 
   3682   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3683   1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3684   1.95  jonathan 
   3685   1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3686   1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3687   1.95  jonathan 
   3688   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3689   1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3690   1.95  jonathan 
   3691   1.95  jonathan 			hlen += th.th_off << 2;
   3692   1.95  jonathan 			iptcp_opt_words	= hlen;
   3693   1.95  jonathan #else
   3694   1.95  jonathan 			/*
   3695   1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3696   1.95  jonathan 			 * mandate it out of existence?
   3697   1.95  jonathan 			 */
   3698   1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3699   1.95  jonathan 
   3700   1.95  jonathan 			return ENOBUFS;
   3701   1.95  jonathan #endif
   3702   1.95  jonathan 		} else {
   3703  1.126  christos 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3704  1.126  christos 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3705   1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3706   1.95  jonathan 
   3707   1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3708   1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3709   1.95  jonathan 					   - sizeof(struct tcphdr)
   3710   1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3711   1.95  jonathan 		}
   3712   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3713   1.95  jonathan 			th->th_sum = 0;
   3714   1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3715   1.95  jonathan 		} else {
   3716   1.95  jonathan 			/*
   3717  1.107     blymn 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3718   1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3719   1.95  jonathan 			 */
   3720   1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3721   1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3722   1.95  jonathan 		}
   3723   1.95  jonathan 
   3724   1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3725  1.107     blymn 		txbd_tso_flags |=
   3726   1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3727   1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3728   1.95  jonathan 
   3729   1.95  jonathan 		/*
   3730   1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3731   1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3732   1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3733   1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3734   1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3735   1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3736   1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3737   1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3738   1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3739   1.95  jonathan 		 * varies across different ASIC families.
   3740   1.95  jonathan 		 */
   3741   1.95  jonathan 		tcp_seg_flags = 0;
   3742   1.95  jonathan 		if (iptcp_opt_words) {
   3743   1.95  jonathan 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3744   1.95  jonathan 				tcp_seg_flags =
   3745   1.95  jonathan 					iptcp_opt_words << 11;
   3746   1.95  jonathan 			} else {
   3747   1.95  jonathan 				txbd_tso_flags |=
   3748   1.95  jonathan 					iptcp_opt_words << 12;
   3749   1.95  jonathan 			}
   3750   1.95  jonathan 		}
   3751   1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3752   1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3753   1.95  jonathan 
   3754   1.95  jonathan 	}	/* TSO setup */
   3755   1.95  jonathan 
   3756   1.95  jonathan 	/*
   3757    1.1      fvdl 	 * Start packing the mbufs in this chain into
   3758    1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3759    1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3760    1.1      fvdl 	 */
   3761   1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3762   1.95  jonathan 	    BUS_DMA_NOWAIT);
   3763   1.95  jonathan 	if (error) {
   3764    1.1      fvdl 		return(ENOBUFS);
   3765   1.95  jonathan 	}
   3766  1.118   tsutsui 	/*
   3767  1.118   tsutsui 	 * Sanity check: avoid coming within 16 descriptors
   3768  1.118   tsutsui 	 * of the end of the ring.
   3769  1.118   tsutsui 	 */
   3770  1.118   tsutsui 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3771  1.118   tsutsui 		BGE_TSO_PRINTF(("%s: "
   3772  1.118   tsutsui 		    " dmamap_load_mbuf too close to ring wrap\n",
   3773  1.138     joerg 		    device_xname(sc->bge_dev)));
   3774  1.118   tsutsui 		goto fail_unload;
   3775  1.118   tsutsui 	}
   3776   1.95  jonathan 
   3777   1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3778   1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3779    1.1      fvdl 
   3780    1.6   thorpej 
   3781   1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3782    1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3783    1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3784    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3785    1.1      fvdl 			break;
   3786  1.107     blymn 
   3787    1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3788    1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3789   1.95  jonathan 
   3790   1.95  jonathan 		/*
   3791   1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3792   1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3793   1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3794   1.95  jonathan 		 * of TSO flags and segsize.
   3795   1.95  jonathan 		 */
   3796   1.95  jonathan 		if (use_tso) {
   3797   1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3798   1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3799   1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3800   1.95  jonathan 			} else {
   3801   1.95  jonathan 				f->bge_rsvd = 0;
   3802   1.95  jonathan 				f->bge_flags =
   3803   1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3804   1.95  jonathan 			}
   3805   1.95  jonathan 		} else {
   3806   1.95  jonathan 			f->bge_rsvd = 0;
   3807   1.95  jonathan 			f->bge_flags = csum_flags;
   3808   1.95  jonathan 		}
   3809    1.1      fvdl 
   3810   1.28    itojun 		if (mtag != NULL) {
   3811    1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3812   1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3813    1.1      fvdl 		} else {
   3814    1.1      fvdl 			f->bge_vlan_tag = 0;
   3815    1.1      fvdl 		}
   3816    1.1      fvdl 		cur = frag;
   3817    1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3818    1.1      fvdl 	}
   3819    1.1      fvdl 
   3820   1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   3821   1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3822  1.138     joerg 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3823  1.118   tsutsui 		goto fail_unload;
   3824   1.95  jonathan 	}
   3825    1.1      fvdl 
   3826    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3827    1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3828    1.1      fvdl 
   3829   1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   3830   1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3831  1.138     joerg 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3832   1.95  jonathan 
   3833  1.118   tsutsui 		goto fail_unload;
   3834   1.95  jonathan 	}
   3835    1.1      fvdl 
   3836    1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3837    1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3838    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3839    1.1      fvdl 	sc->txdma[cur] = dma;
   3840  1.118   tsutsui 	sc->bge_txcnt += dmamap->dm_nsegs;
   3841    1.1      fvdl 
   3842    1.1      fvdl 	*txidx = frag;
   3843    1.1      fvdl 
   3844    1.1      fvdl 	return(0);
   3845  1.118   tsutsui 
   3846  1.118   tsutsui  fail_unload:
   3847  1.118   tsutsui 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3848  1.118   tsutsui 
   3849  1.118   tsutsui 	return ENOBUFS;
   3850    1.1      fvdl }
   3851    1.1      fvdl 
   3852    1.1      fvdl /*
   3853    1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3854    1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3855    1.1      fvdl  */
   3856  1.104   thorpej static void
   3857  1.104   thorpej bge_start(struct ifnet *ifp)
   3858    1.1      fvdl {
   3859    1.1      fvdl 	struct bge_softc *sc;
   3860    1.1      fvdl 	struct mbuf *m_head = NULL;
   3861   1.94  jonathan 	u_int32_t prodidx;
   3862    1.1      fvdl 	int pkts = 0;
   3863    1.1      fvdl 
   3864    1.1      fvdl 	sc = ifp->if_softc;
   3865    1.1      fvdl 
   3866  1.131   mlelstv 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3867    1.1      fvdl 		return;
   3868    1.1      fvdl 
   3869   1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   3870    1.1      fvdl 
   3871    1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3872    1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   3873    1.1      fvdl 		if (m_head == NULL)
   3874    1.1      fvdl 			break;
   3875    1.1      fvdl 
   3876    1.1      fvdl #if 0
   3877    1.1      fvdl 		/*
   3878    1.1      fvdl 		 * XXX
   3879    1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   3880    1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   3881    1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   3882    1.1      fvdl 		 * chain at once.
   3883    1.1      fvdl 		 * (paranoia -- may not actually be needed)
   3884    1.1      fvdl 		 */
   3885    1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   3886    1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3887    1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3888   1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3889    1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   3890    1.1      fvdl 				break;
   3891    1.1      fvdl 			}
   3892    1.1      fvdl 		}
   3893    1.1      fvdl #endif
   3894    1.1      fvdl 
   3895    1.1      fvdl 		/*
   3896    1.1      fvdl 		 * Pack the data into the transmit ring. If we
   3897    1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   3898    1.1      fvdl 		 * for the NIC to drain the ring.
   3899    1.1      fvdl 		 */
   3900    1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   3901    1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   3902    1.1      fvdl 			break;
   3903    1.1      fvdl 		}
   3904    1.1      fvdl 
   3905    1.1      fvdl 		/* now we are committed to transmit the packet */
   3906    1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3907    1.1      fvdl 		pkts++;
   3908    1.1      fvdl 
   3909    1.1      fvdl #if NBPFILTER > 0
   3910    1.1      fvdl 		/*
   3911    1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   3912    1.1      fvdl 		 * to him.
   3913    1.1      fvdl 		 */
   3914    1.1      fvdl 		if (ifp->if_bpf)
   3915    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   3916    1.1      fvdl #endif
   3917    1.1      fvdl 	}
   3918    1.1      fvdl 	if (pkts == 0)
   3919    1.1      fvdl 		return;
   3920    1.1      fvdl 
   3921    1.1      fvdl 	/* Transmit */
   3922    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3923   1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3924   1.29    itojun 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3925    1.1      fvdl 
   3926   1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   3927   1.94  jonathan 
   3928    1.1      fvdl 	/*
   3929    1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   3930    1.1      fvdl 	 */
   3931    1.1      fvdl 	ifp->if_timer = 5;
   3932    1.1      fvdl }
   3933    1.1      fvdl 
   3934  1.104   thorpej static int
   3935  1.104   thorpej bge_init(struct ifnet *ifp)
   3936    1.1      fvdl {
   3937    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3938  1.137    dyoung 	const u_int16_t *m;
   3939    1.1      fvdl 	int s, error;
   3940    1.1      fvdl 
   3941    1.1      fvdl 	s = splnet();
   3942    1.1      fvdl 
   3943    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3944    1.1      fvdl 
   3945    1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   3946    1.1      fvdl 	bge_stop(sc);
   3947    1.1      fvdl 	bge_reset(sc);
   3948    1.1      fvdl 	bge_chipinit(sc);
   3949    1.1      fvdl 
   3950    1.1      fvdl 	/*
   3951    1.1      fvdl 	 * Init the various state machines, ring
   3952    1.1      fvdl 	 * control blocks and firmware.
   3953    1.1      fvdl 	 */
   3954    1.1      fvdl 	error = bge_blockinit(sc);
   3955    1.1      fvdl 	if (error != 0) {
   3956  1.138     joerg 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3957    1.1      fvdl 		    error);
   3958    1.1      fvdl 		splx(s);
   3959    1.1      fvdl 		return error;
   3960    1.1      fvdl 	}
   3961    1.1      fvdl 
   3962    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3963    1.1      fvdl 
   3964    1.1      fvdl 	/* Specify MTU. */
   3965    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3966  1.107     blymn 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3967    1.1      fvdl 
   3968    1.1      fvdl 	/* Load our MAC address. */
   3969  1.137    dyoung 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3970    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3971    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3972    1.1      fvdl 
   3973    1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   3974    1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   3975    1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3976    1.1      fvdl 	} else {
   3977    1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3978    1.1      fvdl 	}
   3979    1.1      fvdl 
   3980    1.1      fvdl 	/* Program multicast filter. */
   3981    1.1      fvdl 	bge_setmulti(sc);
   3982    1.1      fvdl 
   3983    1.1      fvdl 	/* Init RX ring. */
   3984    1.1      fvdl 	bge_init_rx_ring_std(sc);
   3985    1.1      fvdl 
   3986    1.1      fvdl 	/* Init jumbo RX ring. */
   3987    1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3988    1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   3989    1.1      fvdl 
   3990    1.1      fvdl 	/* Init our RX return ring index */
   3991    1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   3992    1.1      fvdl 
   3993    1.1      fvdl 	/* Init TX ring. */
   3994    1.1      fvdl 	bge_init_tx_ring(sc);
   3995    1.1      fvdl 
   3996    1.1      fvdl 	/* Turn on transmitter */
   3997    1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3998    1.1      fvdl 
   3999    1.1      fvdl 	/* Turn on receiver */
   4000    1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4001    1.1      fvdl 
   4002   1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4003   1.71   thorpej 
   4004    1.1      fvdl 	/* Tell firmware we're alive. */
   4005    1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4006    1.1      fvdl 
   4007    1.1      fvdl 	/* Enable host interrupts. */
   4008    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4009    1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4010    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   4011    1.1      fvdl 
   4012    1.1      fvdl 	bge_ifmedia_upd(ifp);
   4013    1.1      fvdl 
   4014    1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   4015    1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   4016    1.1      fvdl 
   4017    1.1      fvdl 	splx(s);
   4018    1.1      fvdl 
   4019    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4020    1.1      fvdl 
   4021    1.1      fvdl 	return 0;
   4022    1.1      fvdl }
   4023    1.1      fvdl 
   4024    1.1      fvdl /*
   4025    1.1      fvdl  * Set media options.
   4026    1.1      fvdl  */
   4027  1.104   thorpej static int
   4028  1.104   thorpej bge_ifmedia_upd(struct ifnet *ifp)
   4029    1.1      fvdl {
   4030    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4031    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4032    1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4033    1.1      fvdl 
   4034    1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4035    1.1      fvdl 	if (sc->bge_tbi) {
   4036    1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4037    1.1      fvdl 			return(EINVAL);
   4038    1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4039    1.1      fvdl 		case IFM_AUTO:
   4040    1.1      fvdl 			break;
   4041    1.1      fvdl 		case IFM_1000_SX:
   4042    1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4043    1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4044    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4045    1.1      fvdl 			} else {
   4046    1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4047    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4048    1.1      fvdl 			}
   4049    1.1      fvdl 			break;
   4050    1.1      fvdl 		default:
   4051    1.1      fvdl 			return(EINVAL);
   4052    1.1      fvdl 		}
   4053   1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   4054    1.1      fvdl 		return(0);
   4055    1.1      fvdl 	}
   4056    1.1      fvdl 
   4057    1.1      fvdl 	sc->bge_link = 0;
   4058    1.1      fvdl 	mii_mediachg(mii);
   4059    1.1      fvdl 
   4060    1.1      fvdl 	return(0);
   4061    1.1      fvdl }
   4062    1.1      fvdl 
   4063    1.1      fvdl /*
   4064    1.1      fvdl  * Report current media status.
   4065    1.1      fvdl  */
   4066  1.104   thorpej static void
   4067  1.104   thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4068    1.1      fvdl {
   4069    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4070    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4071    1.1      fvdl 
   4072    1.1      fvdl 	if (sc->bge_tbi) {
   4073    1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   4074    1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   4075    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4076    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4077    1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   4078    1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   4079    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4080    1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   4081    1.1      fvdl 		else
   4082    1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   4083    1.1      fvdl 		return;
   4084    1.1      fvdl 	}
   4085    1.1      fvdl 
   4086    1.1      fvdl 	mii_pollstat(mii);
   4087    1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   4088   1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4089   1.69   thorpej 	    sc->bge_flowflags;
   4090    1.1      fvdl }
   4091    1.1      fvdl 
   4092  1.104   thorpej static int
   4093  1.126  christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4094    1.1      fvdl {
   4095    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4096    1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   4097    1.1      fvdl 	int s, error = 0;
   4098    1.1      fvdl 	struct mii_data *mii;
   4099    1.1      fvdl 
   4100    1.1      fvdl 	s = splnet();
   4101    1.1      fvdl 
   4102    1.1      fvdl 	switch(command) {
   4103    1.1      fvdl 	case SIOCSIFFLAGS:
   4104    1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   4105    1.1      fvdl 			/*
   4106    1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   4107    1.1      fvdl 			 * then just use the 'set promisc mode' command
   4108    1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   4109    1.1      fvdl 			 * a full re-init means reloading the firmware and
   4110    1.1      fvdl 			 * waiting for it to start up, which may take a
   4111    1.1      fvdl 			 * second or two.
   4112    1.1      fvdl 			 */
   4113    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   4114    1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   4115    1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4116    1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   4117    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4118    1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   4119    1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   4120    1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   4121    1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4122    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4123  1.103    rpaulo 			} else if (!(sc->bge_if_flags & IFF_UP))
   4124    1.1      fvdl 				bge_init(ifp);
   4125    1.1      fvdl 		} else {
   4126    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   4127    1.1      fvdl 				bge_stop(sc);
   4128    1.1      fvdl 			}
   4129    1.1      fvdl 		}
   4130    1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   4131    1.1      fvdl 		error = 0;
   4132    1.1      fvdl 		break;
   4133    1.1      fvdl 	case SIOCSIFMEDIA:
   4134   1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   4135   1.69   thorpej 		if (sc->bge_tbi) {
   4136   1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4137   1.69   thorpej 			sc->bge_flowflags = 0;
   4138   1.69   thorpej 		}
   4139   1.69   thorpej 
   4140   1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4141   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4142   1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4143   1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4144   1.69   thorpej 		}
   4145   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4146   1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4147   1.69   thorpej 				/* We an do both TXPAUSE and RXPAUSE. */
   4148   1.69   thorpej 				ifr->ifr_media |=
   4149   1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4150   1.69   thorpej 			}
   4151   1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4152   1.69   thorpej 		}
   4153   1.69   thorpej 		/* FALLTHROUGH */
   4154    1.1      fvdl 	case SIOCGIFMEDIA:
   4155    1.1      fvdl 		if (sc->bge_tbi) {
   4156    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4157    1.1      fvdl 			    command);
   4158    1.1      fvdl 		} else {
   4159    1.1      fvdl 			mii = &sc->bge_mii;
   4160    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4161    1.1      fvdl 			    command);
   4162    1.1      fvdl 		}
   4163    1.1      fvdl 		break;
   4164    1.1      fvdl 	default:
   4165    1.1      fvdl 		error = ether_ioctl(ifp, command, data);
   4166    1.1      fvdl 		if (error == ENETRESET) {
   4167   1.77   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   4168   1.77   thorpej 				bge_setmulti(sc);
   4169    1.1      fvdl 			error = 0;
   4170    1.1      fvdl 		}
   4171    1.1      fvdl 		break;
   4172    1.1      fvdl 	}
   4173    1.1      fvdl 
   4174    1.1      fvdl 	splx(s);
   4175    1.1      fvdl 
   4176    1.1      fvdl 	return(error);
   4177    1.1      fvdl }
   4178    1.1      fvdl 
   4179  1.104   thorpej static void
   4180  1.104   thorpej bge_watchdog(struct ifnet *ifp)
   4181    1.1      fvdl {
   4182    1.1      fvdl 	struct bge_softc *sc;
   4183    1.1      fvdl 
   4184    1.1      fvdl 	sc = ifp->if_softc;
   4185    1.1      fvdl 
   4186  1.138     joerg 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4187    1.1      fvdl 
   4188    1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4189    1.1      fvdl 	bge_init(ifp);
   4190    1.1      fvdl 
   4191    1.1      fvdl 	ifp->if_oerrors++;
   4192    1.1      fvdl }
   4193    1.1      fvdl 
   4194   1.11   thorpej static void
   4195   1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4196   1.11   thorpej {
   4197   1.11   thorpej 	int i;
   4198   1.11   thorpej 
   4199   1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4200   1.11   thorpej 
   4201   1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4202   1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4203   1.11   thorpej 			return;
   4204   1.11   thorpej 		delay(100);
   4205   1.95  jonathan 		if (sc->bge_pcie)
   4206   1.95  jonathan 		  DELAY(1000);
   4207   1.11   thorpej 	}
   4208   1.11   thorpej 
   4209  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   4210  1.138     joerg 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4211   1.11   thorpej }
   4212   1.11   thorpej 
   4213    1.1      fvdl /*
   4214    1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4215    1.1      fvdl  * RX and TX lists.
   4216    1.1      fvdl  */
   4217  1.104   thorpej static void
   4218  1.104   thorpej bge_stop(struct bge_softc *sc)
   4219    1.1      fvdl {
   4220    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4221    1.1      fvdl 
   4222    1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4223    1.1      fvdl 
   4224    1.1      fvdl 	/*
   4225    1.1      fvdl 	 * Disable all of the receiver blocks
   4226    1.1      fvdl 	 */
   4227   1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4228   1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4229   1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4230   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4231   1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4232   1.44   hannken 	}
   4233   1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4234   1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4235   1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4236    1.1      fvdl 
   4237    1.1      fvdl 	/*
   4238    1.1      fvdl 	 * Disable all of the transmit blocks
   4239    1.1      fvdl 	 */
   4240   1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4241   1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4242   1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4243   1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4244   1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4245   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4246   1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4247   1.44   hannken 	}
   4248   1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4249    1.1      fvdl 
   4250    1.1      fvdl 	/*
   4251    1.1      fvdl 	 * Shut down all of the memory managers and related
   4252    1.1      fvdl 	 * state machines.
   4253    1.1      fvdl 	 */
   4254   1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4255   1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4256   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4257   1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4258   1.44   hannken 	}
   4259   1.11   thorpej 
   4260    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4261    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4262   1.11   thorpej 
   4263   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4264   1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4265   1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4266   1.44   hannken 	}
   4267    1.1      fvdl 
   4268    1.1      fvdl 	/* Disable host interrupts. */
   4269    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4270    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4271    1.1      fvdl 
   4272    1.1      fvdl 	/*
   4273    1.1      fvdl 	 * Tell firmware we're shutting down.
   4274    1.1      fvdl 	 */
   4275    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4276    1.1      fvdl 
   4277    1.1      fvdl 	/* Free the RX lists. */
   4278    1.1      fvdl 	bge_free_rx_ring_std(sc);
   4279    1.1      fvdl 
   4280    1.1      fvdl 	/* Free jumbo RX list. */
   4281    1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   4282    1.1      fvdl 
   4283    1.1      fvdl 	/* Free TX buffers. */
   4284    1.1      fvdl 	bge_free_tx_ring(sc);
   4285    1.1      fvdl 
   4286    1.1      fvdl 	/*
   4287    1.1      fvdl 	 * Isolate/power down the PHY.
   4288    1.1      fvdl 	 */
   4289    1.1      fvdl 	if (!sc->bge_tbi)
   4290    1.1      fvdl 		mii_down(&sc->bge_mii);
   4291    1.1      fvdl 
   4292    1.1      fvdl 	sc->bge_link = 0;
   4293    1.1      fvdl 
   4294    1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4295    1.1      fvdl 
   4296    1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4297    1.1      fvdl }
   4298    1.1      fvdl 
   4299    1.1      fvdl /*
   4300    1.1      fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   4301    1.1      fvdl  * get confused by errant DMAs when rebooting.
   4302    1.1      fvdl  */
   4303  1.104   thorpej static void
   4304  1.104   thorpej bge_shutdown(void *xsc)
   4305    1.1      fvdl {
   4306    1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   4307    1.1      fvdl 
   4308    1.1      fvdl 	bge_stop(sc);
   4309    1.1      fvdl 	bge_reset(sc);
   4310    1.1      fvdl }
   4311   1.64  jonathan 
   4312   1.64  jonathan 
   4313   1.64  jonathan static int
   4314   1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4315   1.64  jonathan {
   4316   1.64  jonathan 	int error, t;
   4317   1.64  jonathan 	struct sysctlnode node;
   4318   1.64  jonathan 
   4319   1.64  jonathan 	node = *rnode;
   4320   1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4321   1.64  jonathan 	node.sysctl_data = &t;
   4322   1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4323   1.64  jonathan 	if (error || newp == NULL)
   4324   1.64  jonathan 		return (error);
   4325   1.64  jonathan 
   4326   1.64  jonathan #if 0
   4327   1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4328   1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4329   1.64  jonathan #endif
   4330   1.64  jonathan 
   4331   1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4332   1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4333   1.64  jonathan 			return (EINVAL);
   4334   1.64  jonathan 		bge_update_all_threshes(t);
   4335   1.64  jonathan 	} else
   4336   1.64  jonathan 		return (EINVAL);
   4337   1.64  jonathan 
   4338   1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4339   1.64  jonathan 
   4340   1.64  jonathan 	return (0);
   4341   1.64  jonathan }
   4342   1.64  jonathan 
   4343   1.64  jonathan /*
   4344   1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4345   1.64  jonathan  *
   4346   1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4347   1.64  jonathan  */
   4348   1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4349   1.64  jonathan {
   4350   1.66    atatat 	int rc, bge_root_num;
   4351   1.90    atatat 	const struct sysctlnode *node;
   4352   1.64  jonathan 
   4353   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4354   1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4355   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4356   1.64  jonathan 		goto err;
   4357   1.64  jonathan 	}
   4358   1.64  jonathan 
   4359   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4360   1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4361   1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4362   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4363   1.64  jonathan 		goto err;
   4364   1.64  jonathan 	}
   4365   1.64  jonathan 
   4366   1.66    atatat 	bge_root_num = node->sysctl_num;
   4367   1.66    atatat 
   4368   1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4369   1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4370   1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4371   1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4372   1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4373   1.73    atatat 	    sysctl_bge_verify, 0,
   4374   1.64  jonathan 	    &bge_rx_thresh_lvl,
   4375   1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4376   1.64  jonathan 	    CTL_EOL)) != 0) {
   4377   1.64  jonathan 		goto err;
   4378   1.64  jonathan 	}
   4379   1.64  jonathan 
   4380   1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4381   1.64  jonathan 
   4382   1.64  jonathan 	return;
   4383   1.64  jonathan 
   4384   1.64  jonathan err:
   4385  1.138     joerg 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4386   1.64  jonathan }
   4387   1.82  jmcneill 
   4388  1.104   thorpej static void
   4389   1.82  jmcneill bge_powerhook(int why, void *hdl)
   4390   1.82  jmcneill {
   4391   1.82  jmcneill 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4392   1.82  jmcneill 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4393   1.82  jmcneill 	struct pci_attach_args *pa = &(sc->bge_pa);
   4394   1.82  jmcneill 	pci_chipset_tag_t pc = pa->pa_pc;
   4395   1.82  jmcneill 	pcitag_t tag = pa->pa_tag;
   4396   1.82  jmcneill 
   4397   1.82  jmcneill 	switch (why) {
   4398   1.82  jmcneill 	case PWR_SOFTSUSPEND:
   4399   1.82  jmcneill 	case PWR_SOFTSTANDBY:
   4400   1.82  jmcneill 		bge_shutdown(sc);
   4401   1.82  jmcneill 		break;
   4402   1.82  jmcneill 	case PWR_SOFTRESUME:
   4403   1.82  jmcneill 		if (ifp->if_flags & IFF_UP) {
   4404   1.82  jmcneill 			ifp->if_flags &= ~IFF_RUNNING;
   4405   1.82  jmcneill 			bge_init(ifp);
   4406   1.82  jmcneill 		}
   4407   1.82  jmcneill 		break;
   4408   1.82  jmcneill 	case PWR_SUSPEND:
   4409   1.82  jmcneill 	case PWR_STANDBY:
   4410   1.82  jmcneill 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4411   1.83  jmcneill 		break;
   4412   1.82  jmcneill 	case PWR_RESUME:
   4413   1.82  jmcneill 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4414   1.82  jmcneill 		break;
   4415   1.82  jmcneill 	}
   4416   1.82  jmcneill 
   4417   1.82  jmcneill 	return;
   4418   1.82  jmcneill }
   4419