if_bge.c revision 1.148 1 1.146 mlelstv /* $NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.146 mlelstv __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.148 mlelstv #include "rnd.h"
87 1.1 fvdl
88 1.1 fvdl #include <sys/param.h>
89 1.1 fvdl #include <sys/systm.h>
90 1.1 fvdl #include <sys/callout.h>
91 1.1 fvdl #include <sys/sockio.h>
92 1.1 fvdl #include <sys/mbuf.h>
93 1.1 fvdl #include <sys/malloc.h>
94 1.1 fvdl #include <sys/kernel.h>
95 1.1 fvdl #include <sys/device.h>
96 1.1 fvdl #include <sys/socket.h>
97 1.64 jonathan #include <sys/sysctl.h>
98 1.1 fvdl
99 1.1 fvdl #include <net/if.h>
100 1.1 fvdl #include <net/if_dl.h>
101 1.1 fvdl #include <net/if_media.h>
102 1.1 fvdl #include <net/if_ether.h>
103 1.1 fvdl
104 1.148 mlelstv #if NRND > 0
105 1.148 mlelstv #include <sys/rnd.h>
106 1.148 mlelstv #endif
107 1.148 mlelstv
108 1.1 fvdl #ifdef INET
109 1.1 fvdl #include <netinet/in.h>
110 1.1 fvdl #include <netinet/in_systm.h>
111 1.1 fvdl #include <netinet/in_var.h>
112 1.1 fvdl #include <netinet/ip.h>
113 1.1 fvdl #endif
114 1.1 fvdl
115 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
116 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
119 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
120 1.95 jonathan
121 1.95 jonathan
122 1.1 fvdl #if NBPFILTER > 0
123 1.1 fvdl #include <net/bpf.h>
124 1.1 fvdl #endif
125 1.1 fvdl
126 1.1 fvdl #include <dev/pci/pcireg.h>
127 1.1 fvdl #include <dev/pci/pcivar.h>
128 1.1 fvdl #include <dev/pci/pcidevs.h>
129 1.1 fvdl
130 1.1 fvdl #include <dev/mii/mii.h>
131 1.1 fvdl #include <dev/mii/miivar.h>
132 1.1 fvdl #include <dev/mii/miidevs.h>
133 1.1 fvdl #include <dev/mii/brgphyreg.h>
134 1.1 fvdl
135 1.1 fvdl #include <dev/pci/if_bgereg.h>
136 1.1 fvdl
137 1.1 fvdl #include <uvm/uvm_extern.h>
138 1.1 fvdl
139 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140 1.46 jonathan
141 1.63 jonathan
142 1.63 jonathan /*
143 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
144 1.63 jonathan */
145 1.63 jonathan
146 1.63 jonathan /*
147 1.63 jonathan * The pairs of values below were obtained from empirical measurement
148 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
150 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
151 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
152 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
153 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
154 1.63 jonathan * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 1.63 jonathan * results in internal wrapping and higher interrupt rates.
156 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
157 1.87 perry *
158 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
159 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
160 1.63 jonathan * family), the larger values may overflow internal chip limits,
161 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
162 1.63 jonathan * rates.
163 1.63 jonathan *
164 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
165 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
166 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
168 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 1.63 jonathan */
170 1.104 thorpej static const struct bge_load_rx_thresh {
171 1.63 jonathan int rx_ticks;
172 1.63 jonathan int rx_max_bds; }
173 1.63 jonathan bge_rx_threshes[] = {
174 1.63 jonathan { 32, 2 },
175 1.63 jonathan { 50, 4 },
176 1.63 jonathan { 100, 8 },
177 1.63 jonathan { 192, 16 },
178 1.63 jonathan { 416, 32 },
179 1.63 jonathan { 598, 46 }
180 1.63 jonathan };
181 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182 1.63 jonathan
183 1.63 jonathan /* XXX patchable; should be sysctl'able */
184 1.64 jonathan static int bge_auto_thresh = 1;
185 1.64 jonathan static int bge_rx_thresh_lvl;
186 1.64 jonathan
187 1.104 thorpej static int bge_rxthresh_nodenum;
188 1.1 fvdl
189 1.104 thorpej static int bge_probe(device_t, cfdata_t, void *);
190 1.104 thorpej static void bge_attach(device_t, device_t, void *);
191 1.104 thorpej static void bge_release_resources(struct bge_softc *);
192 1.104 thorpej static void bge_txeof(struct bge_softc *);
193 1.104 thorpej static void bge_rxeof(struct bge_softc *);
194 1.104 thorpej
195 1.104 thorpej static void bge_tick(void *);
196 1.104 thorpej static void bge_stats_update(struct bge_softc *);
197 1.104 thorpej static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
198 1.104 thorpej
199 1.104 thorpej static int bge_intr(void *);
200 1.104 thorpej static void bge_start(struct ifnet *);
201 1.126 christos static int bge_ioctl(struct ifnet *, u_long, void *);
202 1.104 thorpej static int bge_init(struct ifnet *);
203 1.141 jmcneill static void bge_stop(struct ifnet *, int);
204 1.104 thorpej static void bge_watchdog(struct ifnet *);
205 1.104 thorpej static int bge_ifmedia_upd(struct ifnet *);
206 1.104 thorpej static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
207 1.104 thorpej
208 1.104 thorpej static void bge_setmulti(struct bge_softc *);
209 1.104 thorpej
210 1.104 thorpej static void bge_handle_events(struct bge_softc *);
211 1.104 thorpej static int bge_alloc_jumbo_mem(struct bge_softc *);
212 1.104 thorpej #if 0 /* XXX */
213 1.104 thorpej static void bge_free_jumbo_mem(struct bge_softc *);
214 1.1 fvdl #endif
215 1.104 thorpej static void *bge_jalloc(struct bge_softc *);
216 1.126 christos static void bge_jfree(struct mbuf *, void *, size_t, void *);
217 1.104 thorpej static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
218 1.104 thorpej bus_dmamap_t);
219 1.104 thorpej static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
220 1.104 thorpej static int bge_init_rx_ring_std(struct bge_softc *);
221 1.104 thorpej static void bge_free_rx_ring_std(struct bge_softc *);
222 1.104 thorpej static int bge_init_rx_ring_jumbo(struct bge_softc *);
223 1.104 thorpej static void bge_free_rx_ring_jumbo(struct bge_softc *);
224 1.104 thorpej static void bge_free_tx_ring(struct bge_softc *);
225 1.104 thorpej static int bge_init_tx_ring(struct bge_softc *);
226 1.104 thorpej
227 1.104 thorpej static int bge_chipinit(struct bge_softc *);
228 1.104 thorpej static int bge_blockinit(struct bge_softc *);
229 1.104 thorpej static int bge_setpowerstate(struct bge_softc *, int);
230 1.1 fvdl
231 1.104 thorpej static void bge_reset(struct bge_softc *);
232 1.95 jonathan
233 1.1 fvdl #define BGE_DEBUG
234 1.1 fvdl #ifdef BGE_DEBUG
235 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
236 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
237 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
238 1.1 fvdl int bgedebug = 0;
239 1.95 jonathan int bge_tso_debug = 0;
240 1.1 fvdl #else
241 1.1 fvdl #define DPRINTF(x)
242 1.1 fvdl #define DPRINTFN(n,x)
243 1.95 jonathan #define BGE_TSO_PRINTF(x)
244 1.1 fvdl #endif
245 1.1 fvdl
246 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
247 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
248 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
249 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
250 1.72 thorpej #else
251 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
252 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
253 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
254 1.72 thorpej #endif
255 1.72 thorpej
256 1.17 thorpej /* Various chip quirks. */
257 1.17 thorpej #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
258 1.18 thorpej #define BGE_QUIRK_CSUM_BROKEN 0x00000002
259 1.24 matt #define BGE_QUIRK_ONLY_PHY_1 0x00000004
260 1.25 jonathan #define BGE_QUIRK_5700_SMALLDMA 0x00000008
261 1.25 jonathan #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
262 1.36 jonathan #define BGE_QUIRK_PRODUCER_BUG 0x00000020
263 1.37 jonathan #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
264 1.44 hannken #define BGE_QUIRK_5705_CORE 0x00000080
265 1.54 fvdl #define BGE_QUIRK_FEWER_MBUFS 0x00000100
266 1.25 jonathan
267 1.95 jonathan /*
268 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
269 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
270 1.95 jonathan * in general behave like a 5705, except with additional quirks.
271 1.95 jonathan * This driver's current handling of the 5721 is wrong;
272 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
273 1.95 jonathan * (defined here until the thought is done).
274 1.95 jonathan */
275 1.99 jonathan #define BGE_IS_5714_FAMILY(sc) \
276 1.120 tsutsui (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
277 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
278 1.120 tsutsui BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
279 1.99 jonathan
280 1.95 jonathan #define BGE_IS_5750_OR_BEYOND(sc) \
281 1.99 jonathan (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
282 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
283 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
284 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
285 1.99 jonathan BGE_IS_5714_FAMILY(sc) )
286 1.95 jonathan
287 1.95 jonathan #define BGE_IS_5705_OR_BEYOND(sc) \
288 1.95 jonathan ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
289 1.95 jonathan BGE_IS_5750_OR_BEYOND(sc) )
290 1.95 jonathan
291 1.95 jonathan
292 1.25 jonathan /* following bugs are common to bcm5700 rev B, all flavours */
293 1.25 jonathan #define BGE_QUIRK_5700_COMMON \
294 1.25 jonathan (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
295 1.17 thorpej
296 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
297 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
298 1.1 fvdl
299 1.104 thorpej static u_int32_t
300 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
301 1.1 fvdl {
302 1.1 fvdl pcireg_t val;
303 1.1 fvdl
304 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
305 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
306 1.1 fvdl return val;
307 1.1 fvdl }
308 1.1 fvdl
309 1.104 thorpej static void
310 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
311 1.1 fvdl {
312 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
313 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
314 1.1 fvdl }
315 1.1 fvdl
316 1.1 fvdl #ifdef notdef
317 1.104 thorpej static u_int32_t
318 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
319 1.1 fvdl {
320 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
321 1.141 jmcneill return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
322 1.1 fvdl }
323 1.1 fvdl #endif
324 1.1 fvdl
325 1.104 thorpej static void
326 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 1.1 fvdl {
328 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
329 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
330 1.1 fvdl }
331 1.1 fvdl
332 1.1 fvdl #ifdef notdef
333 1.104 thorpej static u_int8_t
334 1.104 thorpej bge_vpd_readbyte(struct bge_softc *sc, int addr)
335 1.1 fvdl {
336 1.1 fvdl int i;
337 1.1 fvdl u_int32_t val;
338 1.1 fvdl
339 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
340 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
341 1.1 fvdl DELAY(10);
342 1.141 jmcneill if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
343 1.1 fvdl BGE_VPD_FLAG)
344 1.1 fvdl break;
345 1.1 fvdl }
346 1.1 fvdl
347 1.1 fvdl if (i == BGE_TIMEOUT) {
348 1.138 joerg aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
349 1.1 fvdl return(0);
350 1.1 fvdl }
351 1.1 fvdl
352 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
353 1.1 fvdl
354 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
355 1.1 fvdl }
356 1.1 fvdl
357 1.104 thorpej static void
358 1.104 thorpej bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
359 1.1 fvdl {
360 1.1 fvdl int i;
361 1.1 fvdl u_int8_t *ptr;
362 1.1 fvdl
363 1.1 fvdl ptr = (u_int8_t *)res;
364 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
365 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
366 1.1 fvdl }
367 1.1 fvdl
368 1.104 thorpej static void
369 1.104 thorpej bge_vpd_read(struct bge_softc *sc)
370 1.1 fvdl {
371 1.1 fvdl int pos = 0, i;
372 1.1 fvdl struct vpd_res res;
373 1.1 fvdl
374 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
375 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
376 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
377 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
378 1.1 fvdl sc->bge_vpd_prodname = NULL;
379 1.1 fvdl sc->bge_vpd_readonly = NULL;
380 1.1 fvdl
381 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
382 1.1 fvdl
383 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
384 1.138 joerg aprint_error_dev("bad VPD resource id: expected %x got %x\n",
385 1.138 joerg VPD_RES_ID, res.vr_id);
386 1.1 fvdl return;
387 1.1 fvdl }
388 1.1 fvdl
389 1.1 fvdl pos += sizeof(res);
390 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
392 1.1 fvdl panic("bge_vpd_read");
393 1.1 fvdl for (i = 0; i < res.vr_len; i++)
394 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
395 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
396 1.1 fvdl pos += i;
397 1.1 fvdl
398 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
399 1.1 fvdl
400 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
401 1.138 joerg aprint_error_dev(sc->bge_dev,
402 1.138 joerg "bad VPD resource id: expected %x got %x\n",
403 1.138 joerg VPD_RES_READ, res.vr_id);
404 1.1 fvdl return;
405 1.1 fvdl }
406 1.1 fvdl
407 1.1 fvdl pos += sizeof(res);
408 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
409 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
410 1.1 fvdl panic("bge_vpd_read");
411 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
412 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
413 1.1 fvdl }
414 1.1 fvdl #endif
415 1.1 fvdl
416 1.1 fvdl /*
417 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
418 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
419 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
420 1.1 fvdl * access method.
421 1.1 fvdl */
422 1.104 thorpej static u_int8_t
423 1.104 thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
424 1.1 fvdl {
425 1.1 fvdl int i;
426 1.1 fvdl u_int32_t byte = 0;
427 1.1 fvdl
428 1.1 fvdl /*
429 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
430 1.1 fvdl * having to use the bitbang method.
431 1.1 fvdl */
432 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
433 1.1 fvdl
434 1.1 fvdl /* Reset the EEPROM, load the clock period. */
435 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
436 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
437 1.1 fvdl DELAY(20);
438 1.1 fvdl
439 1.1 fvdl /* Issue the read EEPROM command. */
440 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
441 1.1 fvdl
442 1.1 fvdl /* Wait for completion */
443 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
444 1.1 fvdl DELAY(10);
445 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
446 1.1 fvdl break;
447 1.1 fvdl }
448 1.1 fvdl
449 1.1 fvdl if (i == BGE_TIMEOUT) {
450 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
451 1.1 fvdl return(0);
452 1.1 fvdl }
453 1.1 fvdl
454 1.1 fvdl /* Get result. */
455 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
456 1.1 fvdl
457 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
458 1.1 fvdl
459 1.1 fvdl return(0);
460 1.1 fvdl }
461 1.1 fvdl
462 1.1 fvdl /*
463 1.1 fvdl * Read a sequence of bytes from the EEPROM.
464 1.1 fvdl */
465 1.104 thorpej static int
466 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
467 1.1 fvdl {
468 1.1 fvdl int err = 0, i;
469 1.1 fvdl u_int8_t byte = 0;
470 1.126 christos char *dest = destv;
471 1.1 fvdl
472 1.1 fvdl for (i = 0; i < cnt; i++) {
473 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
474 1.1 fvdl if (err)
475 1.1 fvdl break;
476 1.1 fvdl *(dest + i) = byte;
477 1.1 fvdl }
478 1.1 fvdl
479 1.1 fvdl return(err ? 1 : 0);
480 1.1 fvdl }
481 1.1 fvdl
482 1.104 thorpej static int
483 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
484 1.1 fvdl {
485 1.138 joerg struct bge_softc *sc = device_private(dev);
486 1.1 fvdl u_int32_t val;
487 1.25 jonathan u_int32_t saved_autopoll;
488 1.1 fvdl int i;
489 1.1 fvdl
490 1.25 jonathan /*
491 1.25 jonathan * Several chips with builtin PHYs will incorrectly answer to
492 1.25 jonathan * other PHY instances than the builtin PHY at id 1.
493 1.25 jonathan */
494 1.24 matt if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
495 1.1 fvdl return(0);
496 1.1 fvdl
497 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
498 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
501 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
502 1.25 jonathan DELAY(40);
503 1.25 jonathan }
504 1.25 jonathan
505 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
506 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
507 1.1 fvdl
508 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
509 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
510 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
511 1.1 fvdl break;
512 1.9 thorpej delay(10);
513 1.1 fvdl }
514 1.1 fvdl
515 1.1 fvdl if (i == BGE_TIMEOUT) {
516 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
517 1.29 itojun val = 0;
518 1.25 jonathan goto done;
519 1.1 fvdl }
520 1.1 fvdl
521 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
522 1.1 fvdl
523 1.25 jonathan done:
524 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
525 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
526 1.25 jonathan DELAY(40);
527 1.25 jonathan }
528 1.29 itojun
529 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
530 1.1 fvdl return(0);
531 1.1 fvdl
532 1.1 fvdl return(val & 0xFFFF);
533 1.1 fvdl }
534 1.1 fvdl
535 1.104 thorpej static void
536 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
537 1.1 fvdl {
538 1.138 joerg struct bge_softc *sc = device_private(dev);
539 1.29 itojun u_int32_t saved_autopoll;
540 1.29 itojun int i;
541 1.1 fvdl
542 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
543 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
544 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
545 1.25 jonathan delay(40);
546 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
547 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
548 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
549 1.25 jonathan }
550 1.29 itojun
551 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
552 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
553 1.1 fvdl
554 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
555 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
556 1.1 fvdl break;
557 1.9 thorpej delay(10);
558 1.1 fvdl }
559 1.1 fvdl
560 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
561 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
562 1.25 jonathan delay(40);
563 1.25 jonathan }
564 1.29 itojun
565 1.138 joerg if (i == BGE_TIMEOUT)
566 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
567 1.1 fvdl }
568 1.1 fvdl
569 1.104 thorpej static void
570 1.104 thorpej bge_miibus_statchg(device_t dev)
571 1.1 fvdl {
572 1.138 joerg struct bge_softc *sc = device_private(dev);
573 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
574 1.1 fvdl
575 1.69 thorpej /*
576 1.69 thorpej * Get flow control negotiation result.
577 1.69 thorpej */
578 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
579 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
580 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
581 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
582 1.69 thorpej }
583 1.69 thorpej
584 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
585 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
586 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
587 1.1 fvdl } else {
588 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
589 1.1 fvdl }
590 1.1 fvdl
591 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
593 1.1 fvdl } else {
594 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 1.1 fvdl }
596 1.69 thorpej
597 1.69 thorpej /*
598 1.69 thorpej * 802.3x flow control
599 1.69 thorpej */
600 1.69 thorpej if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
601 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
602 1.69 thorpej } else {
603 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 1.69 thorpej }
605 1.69 thorpej if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
606 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
607 1.69 thorpej } else {
608 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 1.69 thorpej }
610 1.1 fvdl }
611 1.1 fvdl
612 1.1 fvdl /*
613 1.63 jonathan * Update rx threshold levels to values in a particular slot
614 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
615 1.63 jonathan */
616 1.104 thorpej static void
617 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
618 1.63 jonathan {
619 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
620 1.63 jonathan int s;
621 1.63 jonathan
622 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
623 1.63 jonathan * that a threshold update is pending. Updating the hardware
624 1.63 jonathan * registers here (even at splhigh()) is observed to
625 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
626 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
627 1.63 jonathan */
628 1.63 jonathan s = splnet();
629 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
630 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
631 1.63 jonathan sc->bge_pending_rxintr_change = 1;
632 1.63 jonathan splx(s);
633 1.63 jonathan
634 1.63 jonathan return;
635 1.63 jonathan }
636 1.63 jonathan
637 1.63 jonathan
638 1.63 jonathan /*
639 1.63 jonathan * Update Rx thresholds of all bge devices
640 1.63 jonathan */
641 1.104 thorpej static void
642 1.63 jonathan bge_update_all_threshes(int lvl)
643 1.63 jonathan {
644 1.63 jonathan struct ifnet *ifp;
645 1.63 jonathan const char * const namebuf = "bge";
646 1.63 jonathan int namelen;
647 1.63 jonathan
648 1.63 jonathan if (lvl < 0)
649 1.63 jonathan lvl = 0;
650 1.63 jonathan else if( lvl >= NBGE_RX_THRESH)
651 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
652 1.87 perry
653 1.63 jonathan namelen = strlen(namebuf);
654 1.63 jonathan /*
655 1.63 jonathan * Now search all the interfaces for this name/number
656 1.63 jonathan */
657 1.81 matt IFNET_FOREACH(ifp) {
658 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
659 1.63 jonathan continue;
660 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
661 1.63 jonathan if (bge_auto_thresh)
662 1.67 jonathan bge_set_thresh(ifp, lvl);
663 1.63 jonathan }
664 1.63 jonathan }
665 1.63 jonathan
666 1.63 jonathan /*
667 1.1 fvdl * Handle events that have triggered interrupts.
668 1.1 fvdl */
669 1.104 thorpej static void
670 1.116 christos bge_handle_events(struct bge_softc *sc)
671 1.1 fvdl {
672 1.1 fvdl
673 1.1 fvdl return;
674 1.1 fvdl }
675 1.1 fvdl
676 1.1 fvdl /*
677 1.1 fvdl * Memory management for jumbo frames.
678 1.1 fvdl */
679 1.1 fvdl
680 1.104 thorpej static int
681 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
682 1.1 fvdl {
683 1.126 christos char *ptr, *kva;
684 1.1 fvdl bus_dma_segment_t seg;
685 1.1 fvdl int i, rseg, state, error;
686 1.1 fvdl struct bge_jpool_entry *entry;
687 1.1 fvdl
688 1.1 fvdl state = error = 0;
689 1.1 fvdl
690 1.1 fvdl /* Grab a big chunk o' storage. */
691 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
692 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
693 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
694 1.1 fvdl return ENOBUFS;
695 1.1 fvdl }
696 1.1 fvdl
697 1.1 fvdl state = 1;
698 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
699 1.1 fvdl BUS_DMA_NOWAIT)) {
700 1.138 joerg aprint_error_dev(sc->bge_dev,
701 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
702 1.1 fvdl error = ENOBUFS;
703 1.1 fvdl goto out;
704 1.1 fvdl }
705 1.1 fvdl
706 1.1 fvdl state = 2;
707 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
708 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
709 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
710 1.1 fvdl error = ENOBUFS;
711 1.1 fvdl goto out;
712 1.1 fvdl }
713 1.1 fvdl
714 1.1 fvdl state = 3;
715 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
716 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
717 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
718 1.1 fvdl error = ENOBUFS;
719 1.1 fvdl goto out;
720 1.1 fvdl }
721 1.1 fvdl
722 1.1 fvdl state = 4;
723 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
724 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
725 1.1 fvdl
726 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
727 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
728 1.1 fvdl
729 1.1 fvdl /*
730 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
731 1.1 fvdl * in an array.
732 1.1 fvdl */
733 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
734 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
735 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
736 1.1 fvdl ptr += BGE_JLEN;
737 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
738 1.1 fvdl M_DEVBUF, M_NOWAIT);
739 1.1 fvdl if (entry == NULL) {
740 1.138 joerg aprint_error_dev(sc->bge_dev,
741 1.138 joerg "no memory for jumbo buffer queue!\n");
742 1.1 fvdl error = ENOBUFS;
743 1.1 fvdl goto out;
744 1.1 fvdl }
745 1.1 fvdl entry->slot = i;
746 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
747 1.1 fvdl entry, jpool_entries);
748 1.1 fvdl }
749 1.1 fvdl out:
750 1.1 fvdl if (error != 0) {
751 1.1 fvdl switch (state) {
752 1.1 fvdl case 4:
753 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
754 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
755 1.1 fvdl case 3:
756 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
757 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
758 1.1 fvdl case 2:
759 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
760 1.1 fvdl case 1:
761 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
762 1.1 fvdl break;
763 1.1 fvdl default:
764 1.1 fvdl break;
765 1.1 fvdl }
766 1.1 fvdl }
767 1.1 fvdl
768 1.1 fvdl return error;
769 1.1 fvdl }
770 1.1 fvdl
771 1.1 fvdl /*
772 1.1 fvdl * Allocate a jumbo buffer.
773 1.1 fvdl */
774 1.104 thorpej static void *
775 1.104 thorpej bge_jalloc(struct bge_softc *sc)
776 1.1 fvdl {
777 1.1 fvdl struct bge_jpool_entry *entry;
778 1.1 fvdl
779 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
780 1.1 fvdl
781 1.1 fvdl if (entry == NULL) {
782 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
783 1.1 fvdl return(NULL);
784 1.1 fvdl }
785 1.1 fvdl
786 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
787 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
788 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
789 1.1 fvdl }
790 1.1 fvdl
791 1.1 fvdl /*
792 1.1 fvdl * Release a jumbo buffer.
793 1.1 fvdl */
794 1.104 thorpej static void
795 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
796 1.1 fvdl {
797 1.1 fvdl struct bge_jpool_entry *entry;
798 1.1 fvdl struct bge_softc *sc;
799 1.1 fvdl int i, s;
800 1.1 fvdl
801 1.1 fvdl /* Extract the softc struct pointer. */
802 1.1 fvdl sc = (struct bge_softc *)arg;
803 1.1 fvdl
804 1.1 fvdl if (sc == NULL)
805 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
806 1.1 fvdl
807 1.1 fvdl /* calculate the slot this buffer belongs to */
808 1.1 fvdl
809 1.126 christos i = ((char *)buf
810 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
811 1.1 fvdl
812 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
813 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
814 1.1 fvdl
815 1.1 fvdl s = splvm();
816 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
817 1.1 fvdl if (entry == NULL)
818 1.1 fvdl panic("bge_jfree: buffer not in use!");
819 1.1 fvdl entry->slot = i;
820 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
821 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
822 1.1 fvdl
823 1.1 fvdl if (__predict_true(m != NULL))
824 1.140 ad pool_cache_put(mb_cache, m);
825 1.1 fvdl splx(s);
826 1.1 fvdl }
827 1.1 fvdl
828 1.1 fvdl
829 1.1 fvdl /*
830 1.1 fvdl * Intialize a standard receive ring descriptor.
831 1.1 fvdl */
832 1.104 thorpej static int
833 1.104 thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
834 1.1 fvdl {
835 1.1 fvdl struct mbuf *m_new = NULL;
836 1.1 fvdl struct bge_rx_bd *r;
837 1.1 fvdl int error;
838 1.1 fvdl
839 1.1 fvdl if (dmamap == NULL) {
840 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
841 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
842 1.1 fvdl if (error != 0)
843 1.1 fvdl return error;
844 1.1 fvdl }
845 1.1 fvdl
846 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
847 1.1 fvdl
848 1.1 fvdl if (m == NULL) {
849 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
850 1.1 fvdl if (m_new == NULL) {
851 1.1 fvdl return(ENOBUFS);
852 1.1 fvdl }
853 1.1 fvdl
854 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
855 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
856 1.1 fvdl m_freem(m_new);
857 1.1 fvdl return(ENOBUFS);
858 1.1 fvdl }
859 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
860 1.1 fvdl
861 1.1 fvdl } else {
862 1.1 fvdl m_new = m;
863 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
864 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
865 1.1 fvdl }
866 1.125 bouyer if (!sc->bge_rx_alignment_bug)
867 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
868 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
869 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
870 1.124 bouyer return(ENOBUFS);
871 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
872 1.124 bouyer BUS_DMASYNC_PREREAD);
873 1.1 fvdl
874 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
875 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
876 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
877 1.10 fvdl dmamap->dm_segs[0].ds_addr);
878 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
879 1.1 fvdl r->bge_len = m_new->m_len;
880 1.1 fvdl r->bge_idx = i;
881 1.1 fvdl
882 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
883 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
884 1.1 fvdl i * sizeof (struct bge_rx_bd),
885 1.1 fvdl sizeof (struct bge_rx_bd),
886 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
887 1.1 fvdl
888 1.1 fvdl return(0);
889 1.1 fvdl }
890 1.1 fvdl
891 1.1 fvdl /*
892 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
893 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
894 1.1 fvdl */
895 1.104 thorpej static int
896 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
897 1.1 fvdl {
898 1.1 fvdl struct mbuf *m_new = NULL;
899 1.1 fvdl struct bge_rx_bd *r;
900 1.126 christos void *buf = NULL;
901 1.1 fvdl
902 1.1 fvdl if (m == NULL) {
903 1.1 fvdl
904 1.1 fvdl /* Allocate the mbuf. */
905 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
906 1.1 fvdl if (m_new == NULL) {
907 1.1 fvdl return(ENOBUFS);
908 1.1 fvdl }
909 1.1 fvdl
910 1.1 fvdl /* Allocate the jumbo buffer */
911 1.1 fvdl buf = bge_jalloc(sc);
912 1.1 fvdl if (buf == NULL) {
913 1.1 fvdl m_freem(m_new);
914 1.138 joerg aprint_error_dev(sc->bge_dev,
915 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
916 1.1 fvdl return(ENOBUFS);
917 1.1 fvdl }
918 1.1 fvdl
919 1.1 fvdl /* Attach the buffer to the mbuf. */
920 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
921 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
922 1.1 fvdl bge_jfree, sc);
923 1.74 yamt m_new->m_flags |= M_EXT_RW;
924 1.1 fvdl } else {
925 1.1 fvdl m_new = m;
926 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
927 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
928 1.1 fvdl }
929 1.125 bouyer if (!sc->bge_rx_alignment_bug)
930 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
931 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
932 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
933 1.124 bouyer BUS_DMASYNC_PREREAD);
934 1.1 fvdl /* Set up the descriptor. */
935 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 1.1 fvdl r->bge_len = m_new->m_len;
940 1.1 fvdl r->bge_idx = i;
941 1.1 fvdl
942 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 1.1 fvdl i * sizeof (struct bge_rx_bd),
945 1.1 fvdl sizeof (struct bge_rx_bd),
946 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947 1.1 fvdl
948 1.1 fvdl return(0);
949 1.1 fvdl }
950 1.1 fvdl
951 1.1 fvdl /*
952 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
954 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
955 1.1 fvdl * the NIC.
956 1.1 fvdl */
957 1.104 thorpej static int
958 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
959 1.1 fvdl {
960 1.1 fvdl int i;
961 1.1 fvdl
962 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
963 1.1 fvdl return 0;
964 1.1 fvdl
965 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
966 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 1.1 fvdl return(ENOBUFS);
968 1.1 fvdl }
969 1.1 fvdl
970 1.1 fvdl sc->bge_std = i - 1;
971 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972 1.1 fvdl
973 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
974 1.1 fvdl
975 1.1 fvdl return(0);
976 1.1 fvdl }
977 1.1 fvdl
978 1.104 thorpej static void
979 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
980 1.1 fvdl {
981 1.1 fvdl int i;
982 1.1 fvdl
983 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
984 1.1 fvdl return;
985 1.1 fvdl
986 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
991 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
992 1.1 fvdl }
993 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 1.1 fvdl sizeof(struct bge_rx_bd));
995 1.1 fvdl }
996 1.1 fvdl
997 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
998 1.1 fvdl }
999 1.1 fvdl
1000 1.104 thorpej static int
1001 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 1.1 fvdl {
1003 1.1 fvdl int i;
1004 1.34 jonathan volatile struct bge_rcb *rcb;
1005 1.1 fvdl
1006 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 1.59 martin return 0;
1008 1.59 martin
1009 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 1.1 fvdl return(ENOBUFS);
1012 1.1 fvdl };
1013 1.1 fvdl
1014 1.1 fvdl sc->bge_jumbo = i - 1;
1015 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016 1.1 fvdl
1017 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 1.34 jonathan rcb->bge_maxlen_flags = 0;
1019 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020 1.1 fvdl
1021 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022 1.1 fvdl
1023 1.1 fvdl return(0);
1024 1.1 fvdl }
1025 1.1 fvdl
1026 1.104 thorpej static void
1027 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 1.1 fvdl {
1029 1.1 fvdl int i;
1030 1.1 fvdl
1031 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 1.1 fvdl return;
1033 1.1 fvdl
1034 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 1.1 fvdl }
1039 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 1.1 fvdl sizeof(struct bge_rx_bd));
1041 1.1 fvdl }
1042 1.1 fvdl
1043 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 1.1 fvdl }
1045 1.1 fvdl
1046 1.104 thorpej static void
1047 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1048 1.1 fvdl {
1049 1.1 fvdl int i, freed;
1050 1.1 fvdl struct txdmamap_pool_entry *dma;
1051 1.1 fvdl
1052 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 1.1 fvdl return;
1054 1.1 fvdl
1055 1.1 fvdl freed = 0;
1056 1.1 fvdl
1057 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 1.1 fvdl freed++;
1060 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 1.1 fvdl link);
1064 1.1 fvdl sc->txdma[i] = 0;
1065 1.1 fvdl }
1066 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 1.1 fvdl sizeof(struct bge_tx_bd));
1068 1.1 fvdl }
1069 1.1 fvdl
1070 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 1.1 fvdl free(dma, M_DEVBUF);
1074 1.1 fvdl }
1075 1.1 fvdl
1076 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1077 1.1 fvdl }
1078 1.1 fvdl
1079 1.104 thorpej static int
1080 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1081 1.1 fvdl {
1082 1.1 fvdl int i;
1083 1.1 fvdl bus_dmamap_t dmamap;
1084 1.1 fvdl struct txdmamap_pool_entry *dma;
1085 1.1 fvdl
1086 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1087 1.1 fvdl return 0;
1088 1.1 fvdl
1089 1.1 fvdl sc->bge_txcnt = 0;
1090 1.1 fvdl sc->bge_tx_saved_considx = 0;
1091 1.94 jonathan
1092 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1093 1.94 jonathan sc->bge_tx_prodidx = 0;
1094 1.94 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 1.94 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097 1.25 jonathan
1098 1.94 jonathan /* NIC-memory send ring not used; initialize to zero. */
1099 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 1.139 msaitoh CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1102 1.1 fvdl
1103 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1104 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1105 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 1.1 fvdl &dmamap))
1108 1.1 fvdl return(ENOBUFS);
1109 1.1 fvdl if (dmamap == NULL)
1110 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1111 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 1.1 fvdl if (dma == NULL) {
1113 1.138 joerg aprint_error_dev(sc->bge_dev,
1114 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1115 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 1.1 fvdl return (ENOMEM);
1117 1.1 fvdl }
1118 1.1 fvdl dma->dmamap = dmamap;
1119 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 1.1 fvdl }
1121 1.1 fvdl
1122 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1123 1.1 fvdl
1124 1.1 fvdl return(0);
1125 1.1 fvdl }
1126 1.1 fvdl
1127 1.104 thorpej static void
1128 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1129 1.1 fvdl {
1130 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1131 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1132 1.1 fvdl struct ether_multi *enm;
1133 1.1 fvdl struct ether_multistep step;
1134 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 1.1 fvdl u_int32_t h;
1136 1.1 fvdl int i;
1137 1.1 fvdl
1138 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1139 1.13 thorpej goto allmulti;
1140 1.1 fvdl
1141 1.1 fvdl /* Now program new ones. */
1142 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1143 1.1 fvdl while (enm != NULL) {
1144 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 1.13 thorpej /*
1146 1.13 thorpej * We must listen to a range of multicast addresses.
1147 1.13 thorpej * For now, just accept all multicasts, rather than
1148 1.13 thorpej * trying to set only those filter bits needed to match
1149 1.13 thorpej * the range. (At this time, the only use of address
1150 1.13 thorpej * ranges is for IP multicast routing, for which the
1151 1.13 thorpej * range is big enough to require all bits set.)
1152 1.13 thorpej */
1153 1.13 thorpej goto allmulti;
1154 1.13 thorpej }
1155 1.13 thorpej
1156 1.13 thorpej h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157 1.13 thorpej
1158 1.13 thorpej /* Just want the 7 least-significant bits. */
1159 1.13 thorpej h &= 0x7f;
1160 1.13 thorpej
1161 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1163 1.1 fvdl }
1164 1.1 fvdl
1165 1.13 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
1166 1.13 thorpej goto setit;
1167 1.13 thorpej
1168 1.13 thorpej allmulti:
1169 1.13 thorpej ifp->if_flags |= IFF_ALLMULTI;
1170 1.13 thorpej hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171 1.13 thorpej
1172 1.13 thorpej setit:
1173 1.1 fvdl for (i = 0; i < 4; i++)
1174 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 1.1 fvdl }
1176 1.1 fvdl
1177 1.24 matt const int bge_swapbits[] = {
1178 1.1 fvdl 0,
1179 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1180 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1181 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1182 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1183 1.1 fvdl
1184 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187 1.1 fvdl
1188 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190 1.1 fvdl
1191 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192 1.1 fvdl
1193 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1195 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1197 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1199 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1201 1.1 fvdl
1202 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 1.1 fvdl };
1205 1.1 fvdl
1206 1.1 fvdl int bge_swapindex = 0;
1207 1.1 fvdl
1208 1.1 fvdl /*
1209 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 1.1 fvdl * self-test results.
1211 1.1 fvdl */
1212 1.104 thorpej static int
1213 1.104 thorpej bge_chipinit(struct bge_softc *sc)
1214 1.1 fvdl {
1215 1.1 fvdl u_int32_t cachesize;
1216 1.1 fvdl int i;
1217 1.25 jonathan u_int32_t dma_rw_ctl;
1218 1.1 fvdl
1219 1.1 fvdl
1220 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1221 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1222 1.1 fvdl BGE_INIT);
1223 1.1 fvdl
1224 1.25 jonathan /* Set power state to D0. */
1225 1.25 jonathan bge_setpowerstate(sc, 0);
1226 1.87 perry
1227 1.1 fvdl /*
1228 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1229 1.1 fvdl * self-tests passed.
1230 1.1 fvdl */
1231 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1232 1.138 joerg aprint_error_dev(sc->bge_dev,
1233 1.138 joerg "RX CPU self-diagnostics failed!\n");
1234 1.1 fvdl return(ENODEV);
1235 1.1 fvdl }
1236 1.1 fvdl
1237 1.1 fvdl /* Clear the MAC control register */
1238 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1239 1.1 fvdl
1240 1.1 fvdl /*
1241 1.1 fvdl * Clear the MAC statistics block in the NIC's
1242 1.1 fvdl * internal memory.
1243 1.1 fvdl */
1244 1.1 fvdl for (i = BGE_STATS_BLOCK;
1245 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1246 1.141 jmcneill BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1247 1.1 fvdl
1248 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1249 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1250 1.141 jmcneill BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1251 1.1 fvdl
1252 1.1 fvdl /* Set up the PCI DMA control register. */
1253 1.76 cube if (sc->bge_pcie) {
1254 1.95 jonathan u_int32_t device_ctl;
1255 1.95 jonathan
1256 1.76 cube /* From FreeBSD */
1257 1.76 cube DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1258 1.138 joerg device_xname(sc->bge_dev)));
1259 1.76 cube dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1260 1.76 cube (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261 1.76 cube (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1262 1.95 jonathan
1263 1.95 jonathan /* jonathan: alternative from Linux driver */
1264 1.107 blymn #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1265 1.95 jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1266 1.95 jonathan
1267 1.95 jonathan dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1268 1.141 jmcneill device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1269 1.95 jonathan BGE_PCI_CONF_DEV_CTRL);
1270 1.138 joerg aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1271 1.95 jonathan
1272 1.95 jonathan if ((device_ctl & 0x00e0) && 0) {
1273 1.95 jonathan /*
1274 1.95 jonathan * XXX jonathan (at) NetBSD.org:
1275 1.95 jonathan * This clause is exactly what the Broadcom-supplied
1276 1.95 jonathan * Linux does; but given overall register programming
1277 1.95 jonathan * by if_bge(4), this larger DMA-write watermark
1278 1.95 jonathan * value causes bcm5721 chips to totally wedge.
1279 1.95 jonathan */
1280 1.95 jonathan dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1281 1.95 jonathan } else {
1282 1.95 jonathan dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1283 1.95 jonathan }
1284 1.141 jmcneill } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1285 1.25 jonathan BGE_PCISTATE_PCI_BUSMODE) {
1286 1.25 jonathan /* Conventional PCI bus */
1287 1.138 joerg DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1288 1.138 joerg device_xname(sc->bge_dev)));
1289 1.25 jonathan dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1290 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1291 1.44 hannken (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1292 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 1.44 hannken dma_rw_ctl |= 0x0F;
1294 1.44 hannken }
1295 1.25 jonathan } else {
1296 1.138 joerg DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1297 1.138 joerg device_xname(sc->bge_dev)));
1298 1.25 jonathan /* PCI-X bus */
1299 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1300 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1301 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1302 1.25 jonathan (0x0F);
1303 1.25 jonathan /*
1304 1.25 jonathan * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1305 1.25 jonathan * for hardware bugs, which means we should also clear
1306 1.25 jonathan * the low-order MINDMA bits. In addition, the 5704
1307 1.25 jonathan * uses a different encoding of read/write watermarks.
1308 1.25 jonathan */
1309 1.57 jonathan if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1310 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1311 1.25 jonathan /* should be 0x1f0000 */
1312 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1314 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1315 1.25 jonathan }
1316 1.57 jonathan else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1317 1.25 jonathan dma_rw_ctl &= 0xfffffff0;
1318 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1319 1.25 jonathan }
1320 1.99 jonathan else if (BGE_IS_5714_FAMILY(sc)) {
1321 1.99 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1322 1.99 jonathan dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1323 1.99 jonathan /* XXX magic values, Broadcom-supplied Linux driver */
1324 1.99 jonathan if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1325 1.99 jonathan dma_rw_ctl |= (1 << 20) | (1 << 18) |
1326 1.99 jonathan BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 1.99 jonathan else
1328 1.99 jonathan dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1329 1.99 jonathan }
1330 1.25 jonathan }
1331 1.25 jonathan
1332 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1333 1.1 fvdl
1334 1.1 fvdl /*
1335 1.1 fvdl * Set up general mode register.
1336 1.1 fvdl */
1337 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1338 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1339 1.54 fvdl BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1340 1.1 fvdl
1341 1.1 fvdl /* Get cache line size. */
1342 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1343 1.1 fvdl
1344 1.1 fvdl /*
1345 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1346 1.1 fvdl */
1347 1.141 jmcneill if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1348 1.1 fvdl PCIM_CMD_MWIEN) {
1349 1.1 fvdl switch(cachesize) {
1350 1.1 fvdl case 1:
1351 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1352 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1353 1.1 fvdl break;
1354 1.1 fvdl case 2:
1355 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1356 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1357 1.1 fvdl break;
1358 1.1 fvdl case 4:
1359 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1360 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1361 1.1 fvdl break;
1362 1.1 fvdl case 8:
1363 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1364 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1365 1.1 fvdl break;
1366 1.1 fvdl case 16:
1367 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1368 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1369 1.1 fvdl break;
1370 1.1 fvdl case 32:
1371 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1372 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1373 1.1 fvdl break;
1374 1.1 fvdl case 64:
1375 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1376 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1377 1.1 fvdl break;
1378 1.1 fvdl default:
1379 1.1 fvdl /* Disable PCI memory write and invalidate. */
1380 1.1 fvdl #if 0
1381 1.1 fvdl if (bootverbose)
1382 1.138 joerg aprint_error_dev(sc->bge_dev,
1383 1.138 joerg "cache line size %d not supported "
1384 1.138 joerg "disabling PCI MWI\n",
1385 1.1 fvdl #endif
1386 1.141 jmcneill PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1387 1.1 fvdl PCIM_CMD_MWIEN);
1388 1.1 fvdl break;
1389 1.1 fvdl }
1390 1.1 fvdl }
1391 1.1 fvdl
1392 1.25 jonathan /*
1393 1.25 jonathan * Disable memory write invalidate. Apparently it is not supported
1394 1.25 jonathan * properly by these devices.
1395 1.25 jonathan */
1396 1.141 jmcneill PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1397 1.25 jonathan
1398 1.25 jonathan
1399 1.1 fvdl #ifdef __brokenalpha__
1400 1.1 fvdl /*
1401 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1402 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1403 1.1 fvdl * restriction on some ALPHA platforms with early revision
1404 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1405 1.1 fvdl */
1406 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1407 1.1 fvdl #endif
1408 1.1 fvdl
1409 1.33 tsutsui /* Set the timer prescaler (always 66MHz) */
1410 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1411 1.1 fvdl
1412 1.1 fvdl return(0);
1413 1.1 fvdl }
1414 1.1 fvdl
1415 1.104 thorpej static int
1416 1.104 thorpej bge_blockinit(struct bge_softc *sc)
1417 1.1 fvdl {
1418 1.34 jonathan volatile struct bge_rcb *rcb;
1419 1.1 fvdl bus_size_t rcb_addr;
1420 1.1 fvdl int i;
1421 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1422 1.1 fvdl bge_hostaddr taddr;
1423 1.1 fvdl
1424 1.1 fvdl /*
1425 1.1 fvdl * Initialize the memory window pointer register so that
1426 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1427 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1428 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1429 1.1 fvdl */
1430 1.1 fvdl
1431 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1432 1.1 fvdl
1433 1.1 fvdl /* Configure mbuf memory pool */
1434 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1435 1.44 hannken if (sc->bge_extram) {
1436 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1437 1.44 hannken BGE_EXT_SSRAM);
1438 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1439 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1440 1.54 fvdl else
1441 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1442 1.44 hannken } else {
1443 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 1.44 hannken BGE_BUFFPOOL_1);
1445 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 1.54 fvdl else
1448 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 1.44 hannken }
1450 1.44 hannken
1451 1.44 hannken /* Configure DMA resource pool */
1452 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1453 1.44 hannken BGE_DMA_DESCRIPTORS);
1454 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1455 1.1 fvdl }
1456 1.1 fvdl
1457 1.1 fvdl /* Configure mbuf pool watermarks */
1458 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
1459 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1460 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1461 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1462 1.25 jonathan #else
1463 1.25 jonathan /* new broadcom docs strongly recommend these: */
1464 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1465 1.71 thorpej if (ifp->if_mtu > ETHER_MAX_LEN) {
1466 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1467 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1468 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1469 1.71 thorpej } else {
1470 1.71 thorpej /* Values from Linux driver... */
1471 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1472 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1473 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1474 1.71 thorpej }
1475 1.44 hannken } else {
1476 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1477 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1478 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1479 1.44 hannken }
1480 1.25 jonathan #endif
1481 1.1 fvdl
1482 1.1 fvdl /* Configure DMA resource watermarks */
1483 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1484 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1485 1.1 fvdl
1486 1.1 fvdl /* Enable buffer manager */
1487 1.109 jonathan CSR_WRITE_4(sc, BGE_BMAN_MODE,
1488 1.109 jonathan BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1489 1.44 hannken
1490 1.109 jonathan /* Poll for buffer manager start indication */
1491 1.109 jonathan for (i = 0; i < BGE_TIMEOUT; i++) {
1492 1.109 jonathan if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1493 1.109 jonathan break;
1494 1.109 jonathan DELAY(10);
1495 1.109 jonathan }
1496 1.1 fvdl
1497 1.109 jonathan if (i == BGE_TIMEOUT) {
1498 1.138 joerg aprint_error_dev(sc->bge_dev,
1499 1.138 joerg "buffer manager failed to start\n");
1500 1.109 jonathan return(ENXIO);
1501 1.1 fvdl }
1502 1.1 fvdl
1503 1.1 fvdl /* Enable flow-through queues */
1504 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1505 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1506 1.1 fvdl
1507 1.1 fvdl /* Wait until queue initialization is complete */
1508 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1509 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1510 1.1 fvdl break;
1511 1.1 fvdl DELAY(10);
1512 1.1 fvdl }
1513 1.1 fvdl
1514 1.1 fvdl if (i == BGE_TIMEOUT) {
1515 1.138 joerg aprint_error_dev(sc->bge_dev,
1516 1.138 joerg "flow-through queue init failed\n");
1517 1.1 fvdl return(ENXIO);
1518 1.1 fvdl }
1519 1.1 fvdl
1520 1.1 fvdl /* Initialize the standard RX ring control block */
1521 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1522 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1523 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1524 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1525 1.44 hannken rcb->bge_maxlen_flags =
1526 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1527 1.44 hannken } else {
1528 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1529 1.44 hannken }
1530 1.1 fvdl if (sc->bge_extram)
1531 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1532 1.1 fvdl else
1533 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1534 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1535 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1536 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1537 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1538 1.1 fvdl
1539 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1541 1.44 hannken } else {
1542 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1543 1.44 hannken }
1544 1.44 hannken
1545 1.1 fvdl /*
1546 1.1 fvdl * Initialize the jumbo RX ring control block
1547 1.1 fvdl * We set the 'ring disabled' bit in the flags
1548 1.1 fvdl * field until we're actually ready to start
1549 1.1 fvdl * using this ring (i.e. once we set the MTU
1550 1.1 fvdl * high enough to require it).
1551 1.1 fvdl */
1552 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1553 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1554 1.44 hannken bge_set_hostaddr(&rcb->bge_hostaddr,
1555 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1556 1.87 perry rcb->bge_maxlen_flags =
1557 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1558 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1559 1.44 hannken if (sc->bge_extram)
1560 1.44 hannken rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1561 1.44 hannken else
1562 1.44 hannken rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1563 1.87 perry
1564 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1565 1.44 hannken rcb->bge_hostaddr.bge_addr_hi);
1566 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1567 1.44 hannken rcb->bge_hostaddr.bge_addr_lo);
1568 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1569 1.44 hannken rcb->bge_maxlen_flags);
1570 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1571 1.44 hannken
1572 1.44 hannken /* Set up dummy disabled mini ring RCB */
1573 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1574 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1575 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1576 1.44 hannken CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1577 1.44 hannken rcb->bge_maxlen_flags);
1578 1.1 fvdl
1579 1.44 hannken bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1580 1.44 hannken offsetof(struct bge_ring_data, bge_info),
1581 1.44 hannken sizeof (struct bge_gib),
1582 1.44 hannken BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583 1.44 hannken }
1584 1.1 fvdl
1585 1.1 fvdl /*
1586 1.133 markd * Set the BD ring replenish thresholds. The recommended
1587 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1588 1.1 fvdl * each ring.
1589 1.1 fvdl */
1590 1.133 markd i = BGE_STD_RX_RING_CNT / 8;
1591 1.133 markd
1592 1.133 markd /*
1593 1.133 markd * Use a value of 8 for the following chips to workaround HW errata.
1594 1.133 markd * Some of these chips have been added based on empirical
1595 1.133 markd * evidence (they don't work unless this is done).
1596 1.133 markd */
1597 1.133 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1598 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1599 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1600 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1601 1.133 markd i = 8;
1602 1.133 markd
1603 1.133 markd CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1604 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1605 1.1 fvdl
1606 1.1 fvdl /*
1607 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1608 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1609 1.1 fvdl * These are located in NIC memory.
1610 1.1 fvdl */
1611 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1612 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1613 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1614 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1615 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1616 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1617 1.1 fvdl }
1618 1.1 fvdl
1619 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1620 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1621 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1622 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1623 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1624 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1625 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1626 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1627 1.87 perry RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1628 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1629 1.44 hannken }
1630 1.1 fvdl
1631 1.1 fvdl /* Disable all unused RX return rings */
1632 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1633 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1634 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1635 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1636 1.87 perry RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1637 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1638 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED));
1639 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1640 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1641 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1642 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1643 1.1 fvdl }
1644 1.1 fvdl
1645 1.1 fvdl /* Initialize RX ring indexes */
1646 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1647 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1648 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1649 1.1 fvdl
1650 1.1 fvdl /*
1651 1.1 fvdl * Set up RX return ring 0
1652 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1653 1.1 fvdl * The return rings live entirely within the host, so the
1654 1.1 fvdl * nicaddr field in the RCB isn't used.
1655 1.1 fvdl */
1656 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1657 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1658 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1659 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1660 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1661 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1662 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1663 1.1 fvdl
1664 1.1 fvdl /* Set random backoff seed for TX */
1665 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1666 1.136 dyoung CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1667 1.136 dyoung CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1668 1.136 dyoung CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1669 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1670 1.1 fvdl
1671 1.1 fvdl /* Set inter-packet gap */
1672 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1673 1.1 fvdl
1674 1.1 fvdl /*
1675 1.1 fvdl * Specify which ring to use for packets that don't match
1676 1.1 fvdl * any RX rules.
1677 1.1 fvdl */
1678 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1679 1.1 fvdl
1680 1.1 fvdl /*
1681 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1682 1.1 fvdl * list, sixteen active lists, one bad frames class.
1683 1.1 fvdl */
1684 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1685 1.1 fvdl
1686 1.1 fvdl /* Inialize RX list placement stats mask. */
1687 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1688 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1689 1.1 fvdl
1690 1.1 fvdl /* Disable host coalescing until we get it set up */
1691 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1692 1.1 fvdl
1693 1.1 fvdl /* Poll to make sure it's shut down. */
1694 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1695 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1696 1.1 fvdl break;
1697 1.1 fvdl DELAY(10);
1698 1.1 fvdl }
1699 1.1 fvdl
1700 1.1 fvdl if (i == BGE_TIMEOUT) {
1701 1.138 joerg aprint_error_dev(sc->bge_dev,
1702 1.138 joerg "host coalescing engine failed to idle\n");
1703 1.1 fvdl return(ENXIO);
1704 1.1 fvdl }
1705 1.1 fvdl
1706 1.1 fvdl /* Set up host coalescing defaults */
1707 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1708 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1709 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1710 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1711 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1712 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1713 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1714 1.44 hannken }
1715 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1716 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1717 1.1 fvdl
1718 1.1 fvdl /* Set up address of statistics block */
1719 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1720 1.44 hannken bge_set_hostaddr(&taddr,
1721 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1722 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1723 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1724 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1725 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1726 1.44 hannken }
1727 1.1 fvdl
1728 1.1 fvdl /* Set up address of status block */
1729 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1730 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1731 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1732 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1733 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1734 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1735 1.1 fvdl
1736 1.1 fvdl /* Turn on host coalescing state machine */
1737 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1738 1.1 fvdl
1739 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1740 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1741 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1742 1.1 fvdl
1743 1.1 fvdl /* Turn on RX list placement state machine */
1744 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1745 1.1 fvdl
1746 1.1 fvdl /* Turn on RX list selector state machine. */
1747 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1748 1.44 hannken CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1749 1.44 hannken }
1750 1.1 fvdl
1751 1.1 fvdl /* Turn on DMA, clear stats */
1752 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1753 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1754 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1755 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1756 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1757 1.1 fvdl
1758 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1759 1.25 jonathan sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1760 1.1 fvdl
1761 1.1 fvdl #ifdef notdef
1762 1.1 fvdl /* Assert GPIO pins for PHY reset */
1763 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1764 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1765 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1766 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1767 1.1 fvdl #endif
1768 1.1 fvdl
1769 1.25 jonathan #if defined(not_quite_yet)
1770 1.25 jonathan /* Linux driver enables enable gpio pin #1 on 5700s */
1771 1.51 fvdl if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1772 1.87 perry sc->bge_local_ctrl_reg |=
1773 1.25 jonathan (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1774 1.25 jonathan }
1775 1.87 perry #endif
1776 1.25 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1777 1.25 jonathan
1778 1.1 fvdl /* Turn on DMA completion state machine */
1779 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1780 1.44 hannken CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1781 1.44 hannken }
1782 1.1 fvdl
1783 1.1 fvdl /* Turn on write DMA state machine */
1784 1.133 markd {
1785 1.133 markd uint32_t bge_wdma_mode =
1786 1.133 markd BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1787 1.133 markd
1788 1.133 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1789 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1790 1.133 markd /* Enable host coalescing bug fix; see Linux tg3.c */
1791 1.133 markd bge_wdma_mode |= (1 << 29);
1792 1.133 markd
1793 1.133 markd CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1794 1.133 markd }
1795 1.1 fvdl
1796 1.1 fvdl /* Turn on read DMA state machine */
1797 1.95 jonathan {
1798 1.95 jonathan uint32_t dma_read_modebits;
1799 1.95 jonathan
1800 1.95 jonathan dma_read_modebits =
1801 1.95 jonathan BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1802 1.95 jonathan
1803 1.95 jonathan if (sc->bge_pcie && 0) {
1804 1.95 jonathan dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1805 1.95 jonathan } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1806 1.95 jonathan dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1807 1.95 jonathan }
1808 1.95 jonathan
1809 1.95 jonathan /* XXX broadcom-supplied linux driver; undocumented */
1810 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
1811 1.95 jonathan /*
1812 1.95 jonathan * XXX: magic values.
1813 1.95 jonathan * From Broadcom-supplied Linux driver; apparently
1814 1.95 jonathan * required to workaround a DMA bug affecting TSO
1815 1.95 jonathan * on bcm575x/bcm5721?
1816 1.95 jonathan */
1817 1.95 jonathan dma_read_modebits |= (1 << 27);
1818 1.95 jonathan }
1819 1.95 jonathan CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1820 1.95 jonathan }
1821 1.1 fvdl
1822 1.1 fvdl /* Turn on RX data completion state machine */
1823 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1824 1.1 fvdl
1825 1.1 fvdl /* Turn on RX BD initiator state machine */
1826 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1827 1.1 fvdl
1828 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1829 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1830 1.1 fvdl
1831 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1832 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1833 1.44 hannken CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1834 1.44 hannken }
1835 1.1 fvdl
1836 1.1 fvdl /* Turn on send BD completion state machine */
1837 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1838 1.1 fvdl
1839 1.1 fvdl /* Turn on send data completion state machine */
1840 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1841 1.1 fvdl
1842 1.1 fvdl /* Turn on send data initiator state machine */
1843 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
1844 1.95 jonathan /* XXX: magic value from Linux driver */
1845 1.95 jonathan CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1846 1.95 jonathan } else {
1847 1.95 jonathan CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1848 1.95 jonathan }
1849 1.1 fvdl
1850 1.1 fvdl /* Turn on send BD initiator state machine */
1851 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1852 1.1 fvdl
1853 1.1 fvdl /* Turn on send BD selector state machine */
1854 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1855 1.1 fvdl
1856 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1857 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1858 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1859 1.1 fvdl
1860 1.1 fvdl /* ack/clear link change events */
1861 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1862 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1863 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1864 1.1 fvdl
1865 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1866 1.1 fvdl if (sc->bge_tbi) {
1867 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1868 1.1 fvdl } else {
1869 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1870 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1871 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1872 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1873 1.1 fvdl }
1874 1.1 fvdl
1875 1.1 fvdl /* Enable link state change attentions. */
1876 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1877 1.1 fvdl
1878 1.1 fvdl return(0);
1879 1.1 fvdl }
1880 1.1 fvdl
1881 1.16 thorpej static const struct bge_revision {
1882 1.51 fvdl uint32_t br_chipid;
1883 1.16 thorpej uint32_t br_quirks;
1884 1.16 thorpej const char *br_name;
1885 1.16 thorpej } bge_revisions[] = {
1886 1.51 fvdl { BGE_CHIPID_BCM5700_A0,
1887 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1888 1.16 thorpej "BCM5700 A0" },
1889 1.16 thorpej
1890 1.51 fvdl { BGE_CHIPID_BCM5700_A1,
1891 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1892 1.16 thorpej "BCM5700 A1" },
1893 1.16 thorpej
1894 1.51 fvdl { BGE_CHIPID_BCM5700_B0,
1895 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1896 1.16 thorpej "BCM5700 B0" },
1897 1.16 thorpej
1898 1.51 fvdl { BGE_CHIPID_BCM5700_B1,
1899 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1900 1.16 thorpej "BCM5700 B1" },
1901 1.16 thorpej
1902 1.51 fvdl { BGE_CHIPID_BCM5700_B2,
1903 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1904 1.16 thorpej "BCM5700 B2" },
1905 1.16 thorpej
1906 1.120 tsutsui { BGE_CHIPID_BCM5700_B3,
1907 1.120 tsutsui BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1908 1.120 tsutsui "BCM5700 B3" },
1909 1.120 tsutsui
1910 1.17 thorpej /* This is treated like a BCM5700 Bx */
1911 1.51 fvdl { BGE_CHIPID_BCM5700_ALTIMA,
1912 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1913 1.16 thorpej "BCM5700 Altima" },
1914 1.16 thorpej
1915 1.51 fvdl { BGE_CHIPID_BCM5700_C0,
1916 1.16 thorpej 0,
1917 1.16 thorpej "BCM5700 C0" },
1918 1.16 thorpej
1919 1.51 fvdl { BGE_CHIPID_BCM5701_A0,
1920 1.37 jonathan 0, /*XXX really, just not known */
1921 1.16 thorpej "BCM5701 A0" },
1922 1.16 thorpej
1923 1.51 fvdl { BGE_CHIPID_BCM5701_B0,
1924 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1925 1.16 thorpej "BCM5701 B0" },
1926 1.16 thorpej
1927 1.51 fvdl { BGE_CHIPID_BCM5701_B2,
1928 1.117 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1929 1.16 thorpej "BCM5701 B2" },
1930 1.16 thorpej
1931 1.51 fvdl { BGE_CHIPID_BCM5701_B5,
1932 1.37 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1933 1.16 thorpej "BCM5701 B5" },
1934 1.16 thorpej
1935 1.51 fvdl { BGE_CHIPID_BCM5703_A0,
1936 1.16 thorpej 0,
1937 1.16 thorpej "BCM5703 A0" },
1938 1.16 thorpej
1939 1.51 fvdl { BGE_CHIPID_BCM5703_A1,
1940 1.16 thorpej 0,
1941 1.16 thorpej "BCM5703 A1" },
1942 1.16 thorpej
1943 1.51 fvdl { BGE_CHIPID_BCM5703_A2,
1944 1.24 matt BGE_QUIRK_ONLY_PHY_1,
1945 1.16 thorpej "BCM5703 A2" },
1946 1.16 thorpej
1947 1.55 pooka { BGE_CHIPID_BCM5703_A3,
1948 1.55 pooka BGE_QUIRK_ONLY_PHY_1,
1949 1.55 pooka "BCM5703 A3" },
1950 1.55 pooka
1951 1.120 tsutsui { BGE_CHIPID_BCM5703_B0,
1952 1.120 tsutsui BGE_QUIRK_ONLY_PHY_1,
1953 1.120 tsutsui "BCM5703 B0" },
1954 1.120 tsutsui
1955 1.51 fvdl { BGE_CHIPID_BCM5704_A0,
1956 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1957 1.25 jonathan "BCM5704 A0" },
1958 1.40 fvdl
1959 1.51 fvdl { BGE_CHIPID_BCM5704_A1,
1960 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1961 1.40 fvdl "BCM5704 A1" },
1962 1.40 fvdl
1963 1.51 fvdl { BGE_CHIPID_BCM5704_A2,
1964 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1965 1.40 fvdl "BCM5704 A2" },
1966 1.49 fvdl
1967 1.51 fvdl { BGE_CHIPID_BCM5704_A3,
1968 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1969 1.49 fvdl "BCM5704 A3" },
1970 1.25 jonathan
1971 1.51 fvdl { BGE_CHIPID_BCM5705_A0,
1972 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1973 1.51 fvdl "BCM5705 A0" },
1974 1.51 fvdl
1975 1.51 fvdl { BGE_CHIPID_BCM5705_A1,
1976 1.44 hannken BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1977 1.44 hannken "BCM5705 A1" },
1978 1.44 hannken
1979 1.51 fvdl { BGE_CHIPID_BCM5705_A2,
1980 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1981 1.51 fvdl "BCM5705 A2" },
1982 1.51 fvdl
1983 1.51 fvdl { BGE_CHIPID_BCM5705_A3,
1984 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1985 1.51 fvdl "BCM5705 A3" },
1986 1.51 fvdl
1987 1.76 cube { BGE_CHIPID_BCM5750_A0,
1988 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1989 1.121 tsutsui "BCM5750 A0" },
1990 1.76 cube
1991 1.76 cube { BGE_CHIPID_BCM5750_A1,
1992 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1993 1.76 cube "BCM5750 A1" },
1994 1.76 cube
1995 1.92 gavan { BGE_CHIPID_BCM5751_A1,
1996 1.92 gavan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1997 1.92 gavan "BCM5751 A1" },
1998 1.92 gavan
1999 1.119 tsutsui { BGE_CHIPID_BCM5752_A0,
2000 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2001 1.119 tsutsui "BCM5752 A0" },
2002 1.119 tsutsui
2003 1.119 tsutsui { BGE_CHIPID_BCM5752_A1,
2004 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2005 1.119 tsutsui "BCM5752 A1" },
2006 1.119 tsutsui
2007 1.119 tsutsui { BGE_CHIPID_BCM5752_A2,
2008 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2009 1.119 tsutsui "BCM5752 A2" },
2010 1.119 tsutsui
2011 1.133 markd { BGE_CHIPID_BCM5787_A0,
2012 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2013 1.133 markd "BCM5754/5787 A0" },
2014 1.133 markd
2015 1.133 markd { BGE_CHIPID_BCM5787_A1,
2016 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2017 1.133 markd "BCM5754/5787 A1" },
2018 1.133 markd
2019 1.133 markd { BGE_CHIPID_BCM5787_A2,
2020 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2021 1.133 markd "BCM5754/5787 A2" },
2022 1.133 markd
2023 1.16 thorpej { 0, 0, NULL }
2024 1.16 thorpej };
2025 1.16 thorpej
2026 1.51 fvdl /*
2027 1.51 fvdl * Some defaults for major revisions, so that newer steppings
2028 1.51 fvdl * that we don't know about have a shot at working.
2029 1.51 fvdl */
2030 1.51 fvdl static const struct bge_revision bge_majorrevs[] = {
2031 1.51 fvdl { BGE_ASICREV_BCM5700,
2032 1.51 fvdl BGE_QUIRK_LINK_STATE_BROKEN,
2033 1.51 fvdl "unknown BCM5700" },
2034 1.51 fvdl
2035 1.51 fvdl { BGE_ASICREV_BCM5701,
2036 1.51 fvdl BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2037 1.51 fvdl "unknown BCM5701" },
2038 1.51 fvdl
2039 1.51 fvdl { BGE_ASICREV_BCM5703,
2040 1.51 fvdl 0,
2041 1.51 fvdl "unknown BCM5703" },
2042 1.51 fvdl
2043 1.51 fvdl { BGE_ASICREV_BCM5704,
2044 1.51 fvdl BGE_QUIRK_ONLY_PHY_1,
2045 1.51 fvdl "unknown BCM5704" },
2046 1.51 fvdl
2047 1.51 fvdl { BGE_ASICREV_BCM5705,
2048 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2049 1.51 fvdl "unknown BCM5705" },
2050 1.51 fvdl
2051 1.76 cube { BGE_ASICREV_BCM5750,
2052 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2053 1.98 jonathan "unknown BCM575x family" },
2054 1.98 jonathan
2055 1.120 tsutsui { BGE_ASICREV_BCM5714_A0,
2056 1.120 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2057 1.120 tsutsui "unknown BCM5714" },
2058 1.120 tsutsui
2059 1.98 jonathan { BGE_ASICREV_BCM5714,
2060 1.98 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2061 1.98 jonathan "unknown BCM5714" },
2062 1.98 jonathan
2063 1.98 jonathan { BGE_ASICREV_BCM5752,
2064 1.98 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2065 1.98 jonathan "unknown BCM5752 family" },
2066 1.98 jonathan
2067 1.133 markd { BGE_ASICREV_BCM5755,
2068 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2069 1.133 markd "unknown BCM5755" },
2070 1.98 jonathan
2071 1.106 jonathan { BGE_ASICREV_BCM5780,
2072 1.106 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2073 1.106 jonathan "unknown BCM5780" },
2074 1.106 jonathan
2075 1.133 markd { BGE_ASICREV_BCM5787,
2076 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2077 1.133 markd "unknown BCM5787" },
2078 1.133 markd
2079 1.51 fvdl { 0,
2080 1.51 fvdl 0,
2081 1.51 fvdl NULL }
2082 1.51 fvdl };
2083 1.51 fvdl
2084 1.51 fvdl
2085 1.16 thorpej static const struct bge_revision *
2086 1.51 fvdl bge_lookup_rev(uint32_t chipid)
2087 1.16 thorpej {
2088 1.16 thorpej const struct bge_revision *br;
2089 1.16 thorpej
2090 1.16 thorpej for (br = bge_revisions; br->br_name != NULL; br++) {
2091 1.51 fvdl if (br->br_chipid == chipid)
2092 1.51 fvdl return (br);
2093 1.51 fvdl }
2094 1.51 fvdl
2095 1.51 fvdl for (br = bge_majorrevs; br->br_name != NULL; br++) {
2096 1.51 fvdl if (br->br_chipid == BGE_ASICREV(chipid))
2097 1.16 thorpej return (br);
2098 1.16 thorpej }
2099 1.16 thorpej
2100 1.16 thorpej return (NULL);
2101 1.16 thorpej }
2102 1.16 thorpej
2103 1.7 thorpej static const struct bge_product {
2104 1.7 thorpej pci_vendor_id_t bp_vendor;
2105 1.7 thorpej pci_product_id_t bp_product;
2106 1.7 thorpej const char *bp_name;
2107 1.7 thorpej } bge_products[] = {
2108 1.7 thorpej /*
2109 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
2110 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
2111 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
2112 1.7 thorpej * check for it anyway.
2113 1.7 thorpej */
2114 1.7 thorpej { PCI_VENDOR_ALTEON,
2115 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
2116 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
2117 1.51 fvdl },
2118 1.7 thorpej { PCI_VENDOR_ALTEON,
2119 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
2120 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
2121 1.51 fvdl },
2122 1.7 thorpej
2123 1.7 thorpej { PCI_VENDOR_ALTIMA,
2124 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
2125 1.51 fvdl "Altima AC1000 Gigabit Ethernet",
2126 1.51 fvdl },
2127 1.14 enami { PCI_VENDOR_ALTIMA,
2128 1.14 enami PCI_PRODUCT_ALTIMA_AC1001,
2129 1.51 fvdl "Altima AC1001 Gigabit Ethernet",
2130 1.51 fvdl },
2131 1.7 thorpej { PCI_VENDOR_ALTIMA,
2132 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
2133 1.51 fvdl "Altima AC9100 Gigabit Ethernet",
2134 1.51 fvdl },
2135 1.7 thorpej
2136 1.7 thorpej { PCI_VENDOR_BROADCOM,
2137 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
2138 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
2139 1.51 fvdl },
2140 1.7 thorpej { PCI_VENDOR_BROADCOM,
2141 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
2142 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
2143 1.51 fvdl },
2144 1.24 matt { PCI_VENDOR_BROADCOM,
2145 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702,
2146 1.51 fvdl "Broadcom BCM5702 Gigabit Ethernet",
2147 1.51 fvdl },
2148 1.24 matt { PCI_VENDOR_BROADCOM,
2149 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702X,
2150 1.24 matt "Broadcom BCM5702X Gigabit Ethernet" },
2151 1.51 fvdl
2152 1.24 matt { PCI_VENDOR_BROADCOM,
2153 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703,
2154 1.51 fvdl "Broadcom BCM5703 Gigabit Ethernet",
2155 1.51 fvdl },
2156 1.24 matt { PCI_VENDOR_BROADCOM,
2157 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703X,
2158 1.51 fvdl "Broadcom BCM5703X Gigabit Ethernet",
2159 1.51 fvdl },
2160 1.55 pooka { PCI_VENDOR_BROADCOM,
2161 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2162 1.120 tsutsui "Broadcom BCM5703 Gigabit Ethernet",
2163 1.55 pooka },
2164 1.51 fvdl
2165 1.25 jonathan { PCI_VENDOR_BROADCOM,
2166 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704C,
2167 1.51 fvdl "Broadcom BCM5704C Dual Gigabit Ethernet",
2168 1.51 fvdl },
2169 1.25 jonathan { PCI_VENDOR_BROADCOM,
2170 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704S,
2171 1.51 fvdl "Broadcom BCM5704S Dual Gigabit Ethernet",
2172 1.51 fvdl },
2173 1.51 fvdl
2174 1.51 fvdl { PCI_VENDOR_BROADCOM,
2175 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5705,
2176 1.51 fvdl "Broadcom BCM5705 Gigabit Ethernet",
2177 1.51 fvdl },
2178 1.51 fvdl { PCI_VENDOR_BROADCOM,
2179 1.79 jmmv PCI_PRODUCT_BROADCOM_BCM5705K,
2180 1.78 tacha "Broadcom BCM5705K Gigabit Ethernet",
2181 1.78 tacha },
2182 1.78 tacha { PCI_VENDOR_BROADCOM,
2183 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5705M,
2184 1.122 tsutsui "Broadcom BCM5705M Gigabit Ethernet",
2185 1.51 fvdl },
2186 1.44 hannken { PCI_VENDOR_BROADCOM,
2187 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2188 1.51 fvdl "Broadcom BCM5705M Gigabit Ethernet",
2189 1.51 fvdl },
2190 1.51 fvdl
2191 1.76 cube { PCI_VENDOR_BROADCOM,
2192 1.98 jonathan PCI_PRODUCT_BROADCOM_BCM5714,
2193 1.98 jonathan "Broadcom BCM5714/5715 Gigabit Ethernet",
2194 1.98 jonathan },
2195 1.105 christos { PCI_VENDOR_BROADCOM,
2196 1.130 cube PCI_PRODUCT_BROADCOM_BCM5715,
2197 1.130 cube "Broadcom BCM5714/5715 Gigabit Ethernet",
2198 1.130 cube },
2199 1.130 cube { PCI_VENDOR_BROADCOM,
2200 1.105 christos PCI_PRODUCT_BROADCOM_BCM5789,
2201 1.105 christos "Broadcom BCM5789 Gigabit Ethernet",
2202 1.105 christos },
2203 1.98 jonathan
2204 1.98 jonathan { PCI_VENDOR_BROADCOM,
2205 1.80 fredb PCI_PRODUCT_BROADCOM_BCM5721,
2206 1.80 fredb "Broadcom BCM5721 Gigabit Ethernet",
2207 1.80 fredb },
2208 1.80 fredb
2209 1.80 fredb { PCI_VENDOR_BROADCOM,
2210 1.76 cube PCI_PRODUCT_BROADCOM_BCM5750,
2211 1.76 cube "Broadcom BCM5750 Gigabit Ethernet",
2212 1.76 cube },
2213 1.76 cube
2214 1.76 cube { PCI_VENDOR_BROADCOM,
2215 1.76 cube PCI_PRODUCT_BROADCOM_BCM5750M,
2216 1.76 cube "Broadcom BCM5750M Gigabit Ethernet",
2217 1.76 cube },
2218 1.76 cube
2219 1.76 cube { PCI_VENDOR_BROADCOM,
2220 1.76 cube PCI_PRODUCT_BROADCOM_BCM5751,
2221 1.76 cube "Broadcom BCM5751 Gigabit Ethernet",
2222 1.76 cube },
2223 1.76 cube
2224 1.91 gavan { PCI_VENDOR_BROADCOM,
2225 1.91 gavan PCI_PRODUCT_BROADCOM_BCM5751M,
2226 1.91 gavan "Broadcom BCM5751M Gigabit Ethernet",
2227 1.91 gavan },
2228 1.91 gavan
2229 1.98 jonathan { PCI_VENDOR_BROADCOM,
2230 1.98 jonathan PCI_PRODUCT_BROADCOM_BCM5752,
2231 1.98 jonathan "Broadcom BCM5752 Gigabit Ethernet",
2232 1.98 jonathan },
2233 1.98 jonathan
2234 1.119 tsutsui { PCI_VENDOR_BROADCOM,
2235 1.119 tsutsui PCI_PRODUCT_BROADCOM_BCM5752M,
2236 1.119 tsutsui "Broadcom BCM5752M Gigabit Ethernet",
2237 1.119 tsutsui },
2238 1.119 tsutsui
2239 1.128 tron { PCI_VENDOR_BROADCOM,
2240 1.128 tron PCI_PRODUCT_BROADCOM_BCM5753,
2241 1.128 tron "Broadcom BCM5753 Gigabit Ethernet",
2242 1.128 tron },
2243 1.128 tron
2244 1.128 tron { PCI_VENDOR_BROADCOM,
2245 1.128 tron PCI_PRODUCT_BROADCOM_BCM5753M,
2246 1.128 tron "Broadcom BCM5753M Gigabit Ethernet",
2247 1.128 tron },
2248 1.128 tron
2249 1.133 markd { PCI_VENDOR_BROADCOM,
2250 1.133 markd PCI_PRODUCT_BROADCOM_BCM5754,
2251 1.133 markd "Broadcom BCM5754 Gigabit Ethernet",
2252 1.133 markd },
2253 1.133 markd
2254 1.133 markd { PCI_VENDOR_BROADCOM,
2255 1.133 markd PCI_PRODUCT_BROADCOM_BCM5754M,
2256 1.133 markd "Broadcom BCM5754M Gigabit Ethernet",
2257 1.133 markd },
2258 1.133 markd
2259 1.133 markd { PCI_VENDOR_BROADCOM,
2260 1.133 markd PCI_PRODUCT_BROADCOM_BCM5755,
2261 1.133 markd "Broadcom BCM5755 Gigabit Ethernet",
2262 1.133 markd },
2263 1.133 markd
2264 1.133 markd { PCI_VENDOR_BROADCOM,
2265 1.133 markd PCI_PRODUCT_BROADCOM_BCM5755M,
2266 1.133 markd "Broadcom BCM5755M Gigabit Ethernet",
2267 1.133 markd },
2268 1.133 markd
2269 1.51 fvdl { PCI_VENDOR_BROADCOM,
2270 1.106 jonathan PCI_PRODUCT_BROADCOM_BCM5780,
2271 1.106 jonathan "Broadcom BCM5780 Gigabit Ethernet",
2272 1.106 jonathan },
2273 1.106 jonathan
2274 1.106 jonathan { PCI_VENDOR_BROADCOM,
2275 1.106 jonathan PCI_PRODUCT_BROADCOM_BCM5780S,
2276 1.106 jonathan "Broadcom BCM5780S Gigabit Ethernet",
2277 1.106 jonathan },
2278 1.106 jonathan
2279 1.106 jonathan { PCI_VENDOR_BROADCOM,
2280 1.70 tron PCI_PRODUCT_BROADCOM_BCM5782,
2281 1.70 tron "Broadcom BCM5782 Gigabit Ethernet",
2282 1.133 markd },
2283 1.133 markd
2284 1.133 markd { PCI_VENDOR_BROADCOM,
2285 1.135 taca PCI_PRODUCT_BROADCOM_BCM5786,
2286 1.135 taca "Broadcom BCM5786 Gigabit Ethernet",
2287 1.135 taca },
2288 1.135 taca
2289 1.135 taca { PCI_VENDOR_BROADCOM,
2290 1.133 markd PCI_PRODUCT_BROADCOM_BCM5787,
2291 1.133 markd "Broadcom BCM5787 Gigabit Ethernet",
2292 1.133 markd },
2293 1.133 markd
2294 1.133 markd { PCI_VENDOR_BROADCOM,
2295 1.133 markd PCI_PRODUCT_BROADCOM_BCM5787M,
2296 1.133 markd "Broadcom BCM5787M Gigabit Ethernet",
2297 1.133 markd },
2298 1.106 jonathan
2299 1.70 tron { PCI_VENDOR_BROADCOM,
2300 1.70 tron PCI_PRODUCT_BROADCOM_BCM5788,
2301 1.70 tron "Broadcom BCM5788 Gigabit Ethernet",
2302 1.70 tron },
2303 1.97 fvdl { PCI_VENDOR_BROADCOM,
2304 1.97 fvdl PCI_PRODUCT_BROADCOM_BCM5789,
2305 1.97 fvdl "Broadcom BCM5789 Gigabit Ethernet",
2306 1.97 fvdl },
2307 1.70 tron
2308 1.70 tron { PCI_VENDOR_BROADCOM,
2309 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901,
2310 1.51 fvdl "Broadcom BCM5901 Fast Ethernet",
2311 1.51 fvdl },
2312 1.51 fvdl { PCI_VENDOR_BROADCOM,
2313 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901A2,
2314 1.51 fvdl "Broadcom BCM5901A2 Fast Ethernet",
2315 1.51 fvdl },
2316 1.51 fvdl
2317 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
2318 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2319 1.51 fvdl "SysKonnect SK-9Dx1 Gigabit Ethernet",
2320 1.51 fvdl },
2321 1.7 thorpej
2322 1.7 thorpej { PCI_VENDOR_3COM,
2323 1.7 thorpej PCI_PRODUCT_3COM_3C996,
2324 1.51 fvdl "3Com 3c996 Gigabit Ethernet",
2325 1.51 fvdl },
2326 1.7 thorpej
2327 1.7 thorpej { 0,
2328 1.7 thorpej 0,
2329 1.7 thorpej NULL },
2330 1.7 thorpej };
2331 1.7 thorpej
2332 1.7 thorpej static const struct bge_product *
2333 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2334 1.7 thorpej {
2335 1.7 thorpej const struct bge_product *bp;
2336 1.7 thorpej
2337 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2338 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2339 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2340 1.7 thorpej return (bp);
2341 1.7 thorpej }
2342 1.7 thorpej
2343 1.7 thorpej return (NULL);
2344 1.7 thorpej }
2345 1.7 thorpej
2346 1.104 thorpej static int
2347 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2348 1.25 jonathan {
2349 1.25 jonathan #ifdef NOTYET
2350 1.25 jonathan u_int32_t pm_ctl = 0;
2351 1.25 jonathan
2352 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2353 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2354 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2355 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2356 1.25 jonathan
2357 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2358 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2359 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2360 1.25 jonathan pm_ctl |= (1 << 8);
2361 1.25 jonathan
2362 1.25 jonathan if (powerlevel == 0) {
2363 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2364 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2365 1.25 jonathan pm_ctl, 2);
2366 1.25 jonathan DELAY(10000);
2367 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2368 1.25 jonathan DELAY(10000);
2369 1.25 jonathan
2370 1.25 jonathan #ifdef NOTYET
2371 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2372 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2373 1.25 jonathan #endif
2374 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2375 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2376 1.25 jonathan return 0;
2377 1.25 jonathan }
2378 1.25 jonathan
2379 1.25 jonathan
2380 1.25 jonathan /*
2381 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2382 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2383 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
2384 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2385 1.25 jonathan */
2386 1.138 joerg aprint_error_dev(sc->bge_dev,
2387 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2388 1.138 joerg powerlevel);
2389 1.25 jonathan #endif
2390 1.25 jonathan return EOPNOTSUPP;
2391 1.25 jonathan }
2392 1.25 jonathan
2393 1.25 jonathan
2394 1.1 fvdl /*
2395 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2396 1.1 fvdl * against our list and return its name if we find a match. Note
2397 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2398 1.1 fvdl * can get the device name string from the controller itself instead
2399 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2400 1.1 fvdl * we'll always announce the right product name.
2401 1.1 fvdl */
2402 1.104 thorpej static int
2403 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2404 1.1 fvdl {
2405 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2406 1.1 fvdl
2407 1.7 thorpej if (bge_lookup(pa) != NULL)
2408 1.1 fvdl return (1);
2409 1.1 fvdl
2410 1.1 fvdl return (0);
2411 1.1 fvdl }
2412 1.1 fvdl
2413 1.104 thorpej static void
2414 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2415 1.1 fvdl {
2416 1.138 joerg struct bge_softc *sc = device_private(self);
2417 1.1 fvdl struct pci_attach_args *pa = aux;
2418 1.7 thorpej const struct bge_product *bp;
2419 1.16 thorpej const struct bge_revision *br;
2420 1.143 tron pci_chipset_tag_t pc;
2421 1.1 fvdl pci_intr_handle_t ih;
2422 1.1 fvdl const char *intrstr = NULL;
2423 1.1 fvdl bus_dma_segment_t seg;
2424 1.1 fvdl int rseg;
2425 1.1 fvdl u_int32_t hwcfg = 0;
2426 1.24 matt u_int32_t mac_addr = 0;
2427 1.1 fvdl u_int32_t command;
2428 1.1 fvdl struct ifnet *ifp;
2429 1.126 christos void * kva;
2430 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2431 1.1 fvdl pcireg_t memtype;
2432 1.1 fvdl bus_addr_t memaddr;
2433 1.1 fvdl bus_size_t memsize;
2434 1.25 jonathan u_int32_t pm_ctl;
2435 1.87 perry
2436 1.7 thorpej bp = bge_lookup(pa);
2437 1.7 thorpej KASSERT(bp != NULL);
2438 1.7 thorpej
2439 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2440 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2441 1.138 joerg sc->bge_dev = self;
2442 1.1 fvdl
2443 1.30 thorpej aprint_naive(": Ethernet controller\n");
2444 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2445 1.1 fvdl
2446 1.1 fvdl /*
2447 1.1 fvdl * Map control/status registers.
2448 1.1 fvdl */
2449 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2450 1.143 tron pc = sc->sc_pc;
2451 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2452 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2453 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2454 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2455 1.1 fvdl
2456 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2457 1.138 joerg aprint_error_dev(sc->bge_dev,
2458 1.138 joerg "failed to enable memory mapping!\n");
2459 1.1 fvdl return;
2460 1.1 fvdl }
2461 1.1 fvdl
2462 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2463 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2464 1.1 fvdl switch (memtype) {
2465 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2466 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2467 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2468 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2469 1.1 fvdl &memaddr, &memsize) == 0)
2470 1.1 fvdl break;
2471 1.1 fvdl default:
2472 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2473 1.1 fvdl return;
2474 1.1 fvdl }
2475 1.1 fvdl
2476 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2477 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2478 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2479 1.1 fvdl return;
2480 1.1 fvdl }
2481 1.1 fvdl
2482 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2483 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2484 1.1 fvdl
2485 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2486 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2487 1.1 fvdl
2488 1.1 fvdl if (sc->bge_intrhand == NULL) {
2489 1.138 joerg aprint_error_dev(sc->bge_dev,
2490 1.138 joerg "couldn't establish interrupt%s%s\n",
2491 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2492 1.1 fvdl return;
2493 1.1 fvdl }
2494 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2495 1.1 fvdl
2496 1.25 jonathan /*
2497 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2498 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2499 1.25 jonathan * leaving the card in D3 powersave state.
2500 1.25 jonathan * We do not have memory-mapped registers in this state,
2501 1.25 jonathan * so force device into D0 state before starting initialization.
2502 1.25 jonathan */
2503 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2504 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2505 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2506 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2507 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2508 1.25 jonathan
2509 1.76 cube /*
2510 1.76 cube * Save ASIC rev. Look up any quirks associated with this
2511 1.76 cube * ASIC.
2512 1.76 cube */
2513 1.76 cube sc->bge_chipid =
2514 1.141 jmcneill pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2515 1.76 cube BGE_PCIMISCCTL_ASICREV;
2516 1.76 cube
2517 1.76 cube /*
2518 1.76 cube * Detect PCI-Express devices
2519 1.76 cube * XXX: guessed from Linux/FreeBSD; no documentation
2520 1.76 cube */
2521 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2522 1.108 jonathan NULL, NULL) != 0)
2523 1.76 cube sc->bge_pcie = 1;
2524 1.76 cube else
2525 1.76 cube sc->bge_pcie = 0;
2526 1.76 cube
2527 1.1 fvdl /* Try to reset the chip. */
2528 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2529 1.1 fvdl bge_reset(sc);
2530 1.1 fvdl
2531 1.1 fvdl if (bge_chipinit(sc)) {
2532 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2533 1.1 fvdl bge_release_resources(sc);
2534 1.1 fvdl return;
2535 1.1 fvdl }
2536 1.1 fvdl
2537 1.1 fvdl /*
2538 1.1 fvdl * Get station address from the EEPROM.
2539 1.1 fvdl */
2540 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c14);
2541 1.24 matt if ((mac_addr >> 16) == 0x484b) {
2542 1.24 matt eaddr[0] = (u_char)(mac_addr >> 8);
2543 1.24 matt eaddr[1] = (u_char)(mac_addr >> 0);
2544 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c18);
2545 1.24 matt eaddr[2] = (u_char)(mac_addr >> 24);
2546 1.24 matt eaddr[3] = (u_char)(mac_addr >> 16);
2547 1.24 matt eaddr[4] = (u_char)(mac_addr >> 8);
2548 1.24 matt eaddr[5] = (u_char)(mac_addr >> 0);
2549 1.126 christos } else if (bge_read_eeprom(sc, (void *)eaddr,
2550 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2551 1.138 joerg aprint_error_dev(sc->bge_dev,
2552 1.138 joerg "failed to read station address\n");
2553 1.1 fvdl bge_release_resources(sc);
2554 1.1 fvdl return;
2555 1.1 fvdl }
2556 1.1 fvdl
2557 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2558 1.51 fvdl
2559 1.16 thorpej if (br == NULL) {
2560 1.138 joerg aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2561 1.138 joerg sc->bge_chipid >> 16);
2562 1.52 fvdl sc->bge_quirks = 0;
2563 1.16 thorpej } else {
2564 1.138 joerg aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2565 1.56 pooka br->br_name, sc->bge_chipid >> 16);
2566 1.51 fvdl sc->bge_quirks |= br->br_quirks;
2567 1.16 thorpej }
2568 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2569 1.1 fvdl
2570 1.1 fvdl /* Allocate the general information block and ring buffers. */
2571 1.41 fvdl if (pci_dma64_available(pa))
2572 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2573 1.41 fvdl else
2574 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2575 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2576 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2577 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2578 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2579 1.1 fvdl return;
2580 1.1 fvdl }
2581 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2582 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2583 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2584 1.1 fvdl BUS_DMA_NOWAIT)) {
2585 1.138 joerg aprint_error_dev(sc->bge_dev,
2586 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2587 1.138 joerg sizeof(struct bge_ring_data));
2588 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2589 1.1 fvdl return;
2590 1.1 fvdl }
2591 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2592 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2593 1.1 fvdl sizeof(struct bge_ring_data), 0,
2594 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2595 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2596 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2597 1.1 fvdl sizeof(struct bge_ring_data));
2598 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2599 1.1 fvdl return;
2600 1.1 fvdl }
2601 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2602 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2603 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2604 1.1 fvdl BUS_DMA_NOWAIT)) {
2605 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2606 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2607 1.1 fvdl sizeof(struct bge_ring_data));
2608 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2609 1.1 fvdl return;
2610 1.1 fvdl }
2611 1.1 fvdl
2612 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2613 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2614 1.1 fvdl
2615 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2616 1.1 fvdl
2617 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2618 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2619 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2620 1.138 joerg aprint_error_dev(sc->bge_dev,
2621 1.138 joerg "jumbo buffer allocation failed\n");
2622 1.44 hannken } else
2623 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2624 1.44 hannken }
2625 1.1 fvdl
2626 1.1 fvdl /* Set default tuneable values. */
2627 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2628 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2629 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2630 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2631 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2632 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2633 1.25 jonathan #else
2634 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2635 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2636 1.25 jonathan #endif
2637 1.95 jonathan if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2638 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2639 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2640 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2641 1.138 joerg "setting short Tx thresholds\n");
2642 1.95 jonathan }
2643 1.1 fvdl
2644 1.1 fvdl /* Set up ifnet structure */
2645 1.1 fvdl ifp = &sc->ethercom.ec_if;
2646 1.1 fvdl ifp->if_softc = sc;
2647 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2648 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2649 1.141 jmcneill ifp->if_stop = bge_stop;
2650 1.1 fvdl ifp->if_start = bge_start;
2651 1.1 fvdl ifp->if_init = bge_init;
2652 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2653 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2654 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2655 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2656 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2657 1.1 fvdl
2658 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2659 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2660 1.88 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2661 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2662 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2663 1.87 perry sc->ethercom.ec_capabilities |=
2664 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2665 1.1 fvdl
2666 1.95 jonathan if (sc->bge_pcie)
2667 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2668 1.95 jonathan
2669 1.1 fvdl /*
2670 1.1 fvdl * Do MII setup.
2671 1.1 fvdl */
2672 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2673 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2674 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2675 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2676 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2677 1.1 fvdl
2678 1.1 fvdl /*
2679 1.1 fvdl * Figure out what sort of media we have by checking the
2680 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2681 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2682 1.1 fvdl * cards, this value appears to be unset. If that's the
2683 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2684 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2685 1.1 fvdl */
2686 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2687 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2688 1.35 jonathan } else {
2689 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2690 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2691 1.35 jonathan hwcfg = be32toh(hwcfg);
2692 1.35 jonathan }
2693 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2694 1.1 fvdl sc->bge_tbi = 1;
2695 1.1 fvdl
2696 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2697 1.141 jmcneill if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2698 1.1 fvdl SK_SUBSYSID_9D41)
2699 1.1 fvdl sc->bge_tbi = 1;
2700 1.1 fvdl
2701 1.1 fvdl if (sc->bge_tbi) {
2702 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2703 1.1 fvdl bge_ifmedia_sts);
2704 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2705 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2706 1.1 fvdl 0, NULL);
2707 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2708 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2709 1.1 fvdl } else {
2710 1.1 fvdl /*
2711 1.1 fvdl * Do transceiver setup.
2712 1.1 fvdl */
2713 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2714 1.1 fvdl bge_ifmedia_sts);
2715 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2716 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2717 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2718 1.87 perry
2719 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2720 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2721 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2722 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2723 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2724 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2725 1.1 fvdl } else
2726 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2727 1.1 fvdl IFM_ETHER|IFM_AUTO);
2728 1.1 fvdl }
2729 1.1 fvdl
2730 1.1 fvdl /*
2731 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2732 1.37 jonathan * been observed in the first few bytes of some received packets.
2733 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2734 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2735 1.37 jonathan * which do not support unaligned accesses, we will realign the
2736 1.37 jonathan * payloads by copying the received packets.
2737 1.37 jonathan */
2738 1.37 jonathan if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2739 1.37 jonathan /* If in PCI-X mode, work around the alignment bug. */
2740 1.141 jmcneill if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2741 1.37 jonathan (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2742 1.37 jonathan BGE_PCISTATE_PCI_BUSSPEED)
2743 1.37 jonathan sc->bge_rx_alignment_bug = 1;
2744 1.37 jonathan }
2745 1.37 jonathan
2746 1.37 jonathan /*
2747 1.1 fvdl * Call MI attach routine.
2748 1.1 fvdl */
2749 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2750 1.1 fvdl if_attach(ifp);
2751 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2752 1.1 fvdl ether_ifattach(ifp, eaddr);
2753 1.148 mlelstv #if NRND > 0
2754 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2755 1.148 mlelstv RND_TYPE_NET, 0);
2756 1.148 mlelstv #endif
2757 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
2758 1.72 thorpej /*
2759 1.72 thorpej * Attach event counters.
2760 1.72 thorpej */
2761 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2762 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
2763 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2764 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
2765 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2766 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
2767 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2768 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
2769 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2770 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
2771 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2772 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
2773 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2774 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
2775 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
2776 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2777 1.132 ad callout_init(&sc->bge_timeout, 0);
2778 1.82 jmcneill
2779 1.141 jmcneill if (!pmf_device_register(self, NULL, NULL))
2780 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
2781 1.141 jmcneill else
2782 1.141 jmcneill pmf_class_network_register(self, ifp);
2783 1.1 fvdl }
2784 1.1 fvdl
2785 1.104 thorpej static void
2786 1.104 thorpej bge_release_resources(struct bge_softc *sc)
2787 1.1 fvdl {
2788 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2789 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2790 1.1 fvdl
2791 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2792 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2793 1.1 fvdl }
2794 1.1 fvdl
2795 1.104 thorpej static void
2796 1.104 thorpej bge_reset(struct bge_softc *sc)
2797 1.1 fvdl {
2798 1.61 jonathan u_int32_t cachesize, command, pcistate, new_pcistate;
2799 1.76 cube int i, val;
2800 1.1 fvdl
2801 1.1 fvdl /* Save some important PCI state. */
2802 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2803 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2804 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2805 1.1 fvdl
2806 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2807 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2808 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2809 1.1 fvdl
2810 1.119 tsutsui /*
2811 1.119 tsutsui * Disable the firmware fastboot feature on 5752 ASIC
2812 1.119 tsutsui * to avoid firmware timeout.
2813 1.119 tsutsui */
2814 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2815 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2816 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2817 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2818 1.119 tsutsui
2819 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2820 1.76 cube /*
2821 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2822 1.76 cube */
2823 1.76 cube if (sc->bge_pcie) {
2824 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2825 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2826 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2827 1.76 cube /* No idea what that actually means */
2828 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2829 1.76 cube val |= (1<<29);
2830 1.76 cube }
2831 1.76 cube }
2832 1.76 cube
2833 1.1 fvdl /* Issue global reset */
2834 1.76 cube bge_writereg_ind(sc, BGE_MISC_CFG, val);
2835 1.1 fvdl
2836 1.1 fvdl DELAY(1000);
2837 1.1 fvdl
2838 1.76 cube /*
2839 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2840 1.76 cube */
2841 1.76 cube if (sc->bge_pcie) {
2842 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2843 1.76 cube pcireg_t reg;
2844 1.76 cube
2845 1.76 cube DELAY(500000);
2846 1.76 cube /* XXX: Magic Numbers */
2847 1.141 jmcneill reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2848 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2849 1.76 cube reg | (1 << 15));
2850 1.76 cube }
2851 1.95 jonathan /*
2852 1.95 jonathan * XXX: Magic Numbers.
2853 1.95 jonathan * Sets maximal PCI-e payload and clears any PCI-e errors.
2854 1.95 jonathan * Should be replaced with references to PCI config-space
2855 1.95 jonathan * capability block for PCI-Express.
2856 1.95 jonathan */
2857 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2858 1.95 jonathan BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2859 1.95 jonathan
2860 1.76 cube }
2861 1.76 cube
2862 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2863 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2864 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2865 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2866 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2867 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2868 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2869 1.1 fvdl
2870 1.1 fvdl /* Enable memory arbiter. */
2871 1.109 jonathan {
2872 1.99 jonathan uint32_t marbmode = 0;
2873 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2874 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2875 1.99 jonathan }
2876 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2877 1.44 hannken }
2878 1.1 fvdl
2879 1.1 fvdl /*
2880 1.139 msaitoh * Write the magic number to the firmware mailbox at 0xb50
2881 1.139 msaitoh * so that the driver can synchronize with the firmware.
2882 1.139 msaitoh */
2883 1.139 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2884 1.139 msaitoh
2885 1.139 msaitoh /*
2886 1.1 fvdl * Poll the value location we just wrote until
2887 1.1 fvdl * we see the 1's complement of the magic number.
2888 1.1 fvdl * This indicates that the firmware initialization
2889 1.1 fvdl * is complete.
2890 1.1 fvdl */
2891 1.95 jonathan for (i = 0; i < BGE_TIMEOUT; i++) {
2892 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2893 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
2894 1.1 fvdl break;
2895 1.1 fvdl DELAY(1000);
2896 1.1 fvdl }
2897 1.1 fvdl
2898 1.95 jonathan if (i >= BGE_TIMEOUT) {
2899 1.138 joerg aprint_error_dev(sc->bge_dev,
2900 1.138 joerg "firmware handshake timed out, val = %x\n", val);
2901 1.95 jonathan /*
2902 1.95 jonathan * XXX: occasionally fired on bcm5721, but without
2903 1.95 jonathan * apparent harm. For now, keep going if we timeout
2904 1.95 jonathan * against PCI-E devices.
2905 1.95 jonathan */
2906 1.95 jonathan if (!sc->bge_pcie)
2907 1.95 jonathan return;
2908 1.1 fvdl }
2909 1.1 fvdl
2910 1.1 fvdl /*
2911 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2912 1.1 fvdl * return to its original pre-reset state. This is a
2913 1.1 fvdl * fairly good indicator of reset completion. If we don't
2914 1.1 fvdl * wait for the reset to fully complete, trying to read
2915 1.1 fvdl * from the device's non-PCI registers may yield garbage
2916 1.1 fvdl * results.
2917 1.1 fvdl */
2918 1.139 msaitoh for (i = 0; i < 10000; i++) {
2919 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2920 1.61 jonathan BGE_PCI_PCISTATE);
2921 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2922 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
2923 1.1 fvdl break;
2924 1.1 fvdl DELAY(10);
2925 1.1 fvdl }
2926 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2927 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
2928 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2929 1.61 jonathan }
2930 1.1 fvdl
2931 1.76 cube /* XXX: from FreeBSD/Linux; no documentation */
2932 1.76 cube if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2933 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2934 1.76 cube
2935 1.1 fvdl /* Enable memory arbiter. */
2936 1.109 jonathan /* XXX why do this twice? */
2937 1.109 jonathan {
2938 1.99 jonathan uint32_t marbmode = 0;
2939 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2940 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2941 1.99 jonathan }
2942 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2943 1.44 hannken }
2944 1.1 fvdl
2945 1.1 fvdl /* Fix up byte swapping */
2946 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2947 1.1 fvdl
2948 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2949 1.1 fvdl
2950 1.1 fvdl DELAY(10000);
2951 1.1 fvdl }
2952 1.1 fvdl
2953 1.1 fvdl /*
2954 1.1 fvdl * Frame reception handling. This is called if there's a frame
2955 1.1 fvdl * on the receive return list.
2956 1.1 fvdl *
2957 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2958 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2959 1.1 fvdl * 2) the frame is from the standard receive ring
2960 1.1 fvdl */
2961 1.1 fvdl
2962 1.104 thorpej static void
2963 1.104 thorpej bge_rxeof(struct bge_softc *sc)
2964 1.1 fvdl {
2965 1.1 fvdl struct ifnet *ifp;
2966 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2967 1.1 fvdl bus_dmamap_t dmamap;
2968 1.1 fvdl bus_addr_t offset, toff;
2969 1.1 fvdl bus_size_t tlen;
2970 1.1 fvdl int tosync;
2971 1.1 fvdl
2972 1.1 fvdl ifp = &sc->ethercom.ec_if;
2973 1.1 fvdl
2974 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2975 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2976 1.1 fvdl sizeof (struct bge_status_block),
2977 1.1 fvdl BUS_DMASYNC_POSTREAD);
2978 1.1 fvdl
2979 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2980 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2981 1.1 fvdl sc->bge_rx_saved_considx;
2982 1.1 fvdl
2983 1.148 mlelstv #if NRND > 0
2984 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2985 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
2986 1.148 mlelstv #endif
2987 1.148 mlelstv
2988 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2989 1.1 fvdl
2990 1.1 fvdl if (tosync < 0) {
2991 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2992 1.1 fvdl sizeof (struct bge_rx_bd);
2993 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2994 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2995 1.1 fvdl tosync = -tosync;
2996 1.1 fvdl }
2997 1.1 fvdl
2998 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2999 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
3000 1.1 fvdl BUS_DMASYNC_POSTREAD);
3001 1.1 fvdl
3002 1.1 fvdl while(sc->bge_rx_saved_considx !=
3003 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3004 1.1 fvdl struct bge_rx_bd *cur_rx;
3005 1.1 fvdl u_int32_t rxidx;
3006 1.1 fvdl struct mbuf *m = NULL;
3007 1.1 fvdl
3008 1.1 fvdl cur_rx = &sc->bge_rdata->
3009 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
3010 1.1 fvdl
3011 1.1 fvdl rxidx = cur_rx->bge_idx;
3012 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3013 1.1 fvdl
3014 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3015 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3016 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3017 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3018 1.1 fvdl jumbocnt++;
3019 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
3020 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
3021 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3022 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
3023 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3024 1.1 fvdl ifp->if_ierrors++;
3025 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3026 1.1 fvdl continue;
3027 1.1 fvdl }
3028 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3029 1.1 fvdl NULL)== ENOBUFS) {
3030 1.1 fvdl ifp->if_ierrors++;
3031 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3032 1.1 fvdl continue;
3033 1.1 fvdl }
3034 1.1 fvdl } else {
3035 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3036 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3037 1.124 bouyer
3038 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3039 1.1 fvdl stdcnt++;
3040 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3041 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3042 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3043 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3044 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
3045 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3046 1.1 fvdl ifp->if_ierrors++;
3047 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3048 1.1 fvdl continue;
3049 1.1 fvdl }
3050 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
3051 1.1 fvdl NULL, dmamap) == ENOBUFS) {
3052 1.1 fvdl ifp->if_ierrors++;
3053 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3054 1.1 fvdl continue;
3055 1.1 fvdl }
3056 1.1 fvdl }
3057 1.1 fvdl
3058 1.1 fvdl ifp->if_ipackets++;
3059 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
3060 1.37 jonathan /*
3061 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3062 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
3063 1.37 jonathan * If our CPU requires alignment, re-align by copying.
3064 1.37 jonathan */
3065 1.37 jonathan if (sc->bge_rx_alignment_bug) {
3066 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3067 1.37 jonathan cur_rx->bge_len);
3068 1.37 jonathan m->m_data += ETHER_ALIGN;
3069 1.37 jonathan }
3070 1.37 jonathan #endif
3071 1.87 perry
3072 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3073 1.1 fvdl m->m_pkthdr.rcvif = ifp;
3074 1.1 fvdl
3075 1.1 fvdl #if NBPFILTER > 0
3076 1.1 fvdl /*
3077 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
3078 1.1 fvdl */
3079 1.1 fvdl if (ifp->if_bpf)
3080 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
3081 1.1 fvdl #endif
3082 1.1 fvdl
3083 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3084 1.46 jonathan
3085 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3086 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3087 1.46 jonathan /*
3088 1.46 jonathan * Rx transport checksum-offload may also
3089 1.46 jonathan * have bugs with packets which, when transmitted,
3090 1.46 jonathan * were `runts' requiring padding.
3091 1.46 jonathan */
3092 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3093 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3094 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3095 1.46 jonathan m->m_pkthdr.csum_data =
3096 1.46 jonathan cur_rx->bge_tcp_udp_csum;
3097 1.46 jonathan m->m_pkthdr.csum_flags |=
3098 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
3099 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3100 1.1 fvdl }
3101 1.1 fvdl
3102 1.1 fvdl /*
3103 1.1 fvdl * If we received a packet with a vlan tag, pass it
3104 1.1 fvdl * to vlan_input() instead of ether_input().
3105 1.1 fvdl */
3106 1.85 jdolecek if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3107 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3108 1.1 fvdl
3109 1.1 fvdl (*ifp->if_input)(ifp, m);
3110 1.1 fvdl }
3111 1.1 fvdl
3112 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3113 1.1 fvdl if (stdcnt)
3114 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3115 1.1 fvdl if (jumbocnt)
3116 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3117 1.1 fvdl }
3118 1.1 fvdl
3119 1.104 thorpej static void
3120 1.104 thorpej bge_txeof(struct bge_softc *sc)
3121 1.1 fvdl {
3122 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3123 1.1 fvdl struct ifnet *ifp;
3124 1.1 fvdl struct txdmamap_pool_entry *dma;
3125 1.1 fvdl bus_addr_t offset, toff;
3126 1.1 fvdl bus_size_t tlen;
3127 1.1 fvdl int tosync;
3128 1.1 fvdl struct mbuf *m;
3129 1.1 fvdl
3130 1.1 fvdl ifp = &sc->ethercom.ec_if;
3131 1.1 fvdl
3132 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3133 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3134 1.1 fvdl sizeof (struct bge_status_block),
3135 1.1 fvdl BUS_DMASYNC_POSTREAD);
3136 1.1 fvdl
3137 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3138 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3139 1.1 fvdl sc->bge_tx_saved_considx;
3140 1.1 fvdl
3141 1.148 mlelstv #if NRND > 0
3142 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3143 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3144 1.148 mlelstv #endif
3145 1.148 mlelstv
3146 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3147 1.1 fvdl
3148 1.1 fvdl if (tosync < 0) {
3149 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3150 1.1 fvdl sizeof (struct bge_tx_bd);
3151 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3152 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3153 1.1 fvdl tosync = -tosync;
3154 1.1 fvdl }
3155 1.1 fvdl
3156 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3157 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3158 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3159 1.1 fvdl
3160 1.1 fvdl /*
3161 1.1 fvdl * Go through our tx ring and free mbufs for those
3162 1.1 fvdl * frames that have been sent.
3163 1.1 fvdl */
3164 1.1 fvdl while (sc->bge_tx_saved_considx !=
3165 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3166 1.1 fvdl u_int32_t idx = 0;
3167 1.1 fvdl
3168 1.1 fvdl idx = sc->bge_tx_saved_considx;
3169 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3170 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3171 1.1 fvdl ifp->if_opackets++;
3172 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3173 1.1 fvdl if (m != NULL) {
3174 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3175 1.1 fvdl dma = sc->txdma[idx];
3176 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3177 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3178 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3179 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3180 1.1 fvdl sc->txdma[idx] = NULL;
3181 1.1 fvdl
3182 1.1 fvdl m_freem(m);
3183 1.1 fvdl }
3184 1.1 fvdl sc->bge_txcnt--;
3185 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3186 1.1 fvdl ifp->if_timer = 0;
3187 1.1 fvdl }
3188 1.1 fvdl
3189 1.1 fvdl if (cur_tx != NULL)
3190 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3191 1.1 fvdl }
3192 1.1 fvdl
3193 1.104 thorpej static int
3194 1.104 thorpej bge_intr(void *xsc)
3195 1.1 fvdl {
3196 1.1 fvdl struct bge_softc *sc;
3197 1.1 fvdl struct ifnet *ifp;
3198 1.1 fvdl
3199 1.1 fvdl sc = xsc;
3200 1.1 fvdl ifp = &sc->ethercom.ec_if;
3201 1.1 fvdl
3202 1.144 mlelstv /*
3203 1.144 mlelstv * Ascertain whether the interrupt is from this bge device.
3204 1.144 mlelstv * Do the cheap test first.
3205 1.144 mlelstv */
3206 1.144 mlelstv if ((sc->bge_rdata->bge_status_block.bge_status &
3207 1.144 mlelstv BGE_STATFLAG_UPDATED) == 0) {
3208 1.144 mlelstv /*
3209 1.144 mlelstv * Sometimes, the interrupt comes in before the
3210 1.144 mlelstv * DMA update of the status block (performed prior
3211 1.144 mlelstv * to the interrupt itself) has completed.
3212 1.144 mlelstv * In that case, do the (extremely expensive!)
3213 1.144 mlelstv * PCI-config-space register read.
3214 1.144 mlelstv */
3215 1.144 mlelstv uint32_t pcistate =
3216 1.144 mlelstv pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3217 1.144 mlelstv
3218 1.144 mlelstv if (pcistate & BGE_PCISTATE_INTR_STATE)
3219 1.144 mlelstv return (0);
3220 1.144 mlelstv
3221 1.144 mlelstv }
3222 1.144 mlelstv /*
3223 1.144 mlelstv * If we reach here, then the interrupt is for us.
3224 1.144 mlelstv */
3225 1.144 mlelstv
3226 1.1 fvdl /* Ack interrupt and stop others from occuring. */
3227 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3228 1.1 fvdl
3229 1.72 thorpej BGE_EVCNT_INCR(sc->bge_ev_intr);
3230 1.72 thorpej
3231 1.1 fvdl /*
3232 1.1 fvdl * Process link state changes.
3233 1.1 fvdl * Grrr. The link status word in the status block does
3234 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
3235 1.101 skrll * according to all available information. Hence, we have
3236 1.1 fvdl * to enable MII interrupts in order to properly obtain
3237 1.1 fvdl * async link changes. Unfortunately, this also means that
3238 1.1 fvdl * we have to read the MAC status register to detect link
3239 1.1 fvdl * changes, thereby adding an additional register access to
3240 1.1 fvdl * the interrupt handler.
3241 1.1 fvdl */
3242 1.1 fvdl
3243 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3244 1.1 fvdl u_int32_t status;
3245 1.1 fvdl
3246 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
3247 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
3248 1.1 fvdl sc->bge_link = 0;
3249 1.1 fvdl callout_stop(&sc->bge_timeout);
3250 1.1 fvdl bge_tick(sc);
3251 1.1 fvdl /* Clear the interrupt */
3252 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3253 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
3254 1.138 joerg bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3255 1.138 joerg bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3256 1.1 fvdl BRGPHY_INTRS);
3257 1.1 fvdl }
3258 1.1 fvdl } else {
3259 1.144 mlelstv u_int32_t status;
3260 1.144 mlelstv
3261 1.144 mlelstv status = CSR_READ_4(sc, BGE_MAC_STS);
3262 1.144 mlelstv if (status & BGE_MACSTAT_LINK_CHANGED) {
3263 1.1 fvdl sc->bge_link = 0;
3264 1.1 fvdl callout_stop(&sc->bge_timeout);
3265 1.1 fvdl bge_tick(sc);
3266 1.1 fvdl /* Clear the interrupt */
3267 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3268 1.44 hannken BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3269 1.44 hannken BGE_MACSTAT_LINK_CHANGED);
3270 1.1 fvdl }
3271 1.1 fvdl }
3272 1.1 fvdl
3273 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3274 1.1 fvdl /* Check RX return ring producer/consumer */
3275 1.1 fvdl bge_rxeof(sc);
3276 1.1 fvdl
3277 1.1 fvdl /* Check TX ring producer/consumer */
3278 1.1 fvdl bge_txeof(sc);
3279 1.1 fvdl }
3280 1.1 fvdl
3281 1.58 jonathan if (sc->bge_pending_rxintr_change) {
3282 1.58 jonathan uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3283 1.58 jonathan uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3284 1.58 jonathan uint32_t junk;
3285 1.58 jonathan
3286 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3287 1.58 jonathan DELAY(10);
3288 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3289 1.87 perry
3290 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3291 1.58 jonathan DELAY(10);
3292 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3293 1.58 jonathan
3294 1.58 jonathan sc->bge_pending_rxintr_change = 0;
3295 1.58 jonathan }
3296 1.1 fvdl bge_handle_events(sc);
3297 1.1 fvdl
3298 1.1 fvdl /* Re-enable interrupts. */
3299 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3300 1.1 fvdl
3301 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3302 1.1 fvdl bge_start(ifp);
3303 1.1 fvdl
3304 1.1 fvdl return (1);
3305 1.1 fvdl }
3306 1.1 fvdl
3307 1.104 thorpej static void
3308 1.104 thorpej bge_tick(void *xsc)
3309 1.1 fvdl {
3310 1.1 fvdl struct bge_softc *sc = xsc;
3311 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3312 1.1 fvdl int s;
3313 1.1 fvdl
3314 1.1 fvdl s = splnet();
3315 1.1 fvdl
3316 1.1 fvdl bge_stats_update(sc);
3317 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3318 1.1 fvdl
3319 1.1 fvdl if (sc->bge_tbi) {
3320 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3321 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
3322 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3323 1.1 fvdl }
3324 1.147 mlelstv } else
3325 1.147 mlelstv mii_tick(mii);
3326 1.1 fvdl
3327 1.1 fvdl splx(s);
3328 1.1 fvdl }
3329 1.1 fvdl
3330 1.104 thorpej static void
3331 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3332 1.1 fvdl {
3333 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3334 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3335 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
3336 1.44 hannken
3337 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
3338 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3339 1.1 fvdl
3340 1.44 hannken if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3341 1.44 hannken ifp->if_collisions +=
3342 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3343 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3344 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3345 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3346 1.72 thorpej
3347 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3348 1.72 thorpej READ_RSTAT(sc, rstats, outXoffSent));
3349 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3350 1.72 thorpej READ_RSTAT(sc, rstats, outXonSent));
3351 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3352 1.72 thorpej READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3353 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3354 1.72 thorpej READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3355 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3356 1.72 thorpej READ_RSTAT(sc, rstats, macControlFramesReceived));
3357 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3358 1.72 thorpej READ_RSTAT(sc, rstats, xoffStateEntered));
3359 1.44 hannken return;
3360 1.44 hannken }
3361 1.44 hannken
3362 1.44 hannken #undef READ_RSTAT
3363 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3364 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3365 1.1 fvdl
3366 1.1 fvdl ifp->if_collisions +=
3367 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3368 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3369 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3370 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3371 1.1 fvdl ifp->if_collisions;
3372 1.1 fvdl
3373 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3374 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3375 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3376 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3377 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3378 1.72 thorpej READ_STAT(sc, stats,
3379 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3380 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3381 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3382 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3383 1.72 thorpej READ_STAT(sc, stats,
3384 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3385 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3386 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3387 1.72 thorpej
3388 1.1 fvdl #undef READ_STAT
3389 1.1 fvdl
3390 1.1 fvdl #ifdef notdef
3391 1.1 fvdl ifp->if_collisions +=
3392 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3393 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3394 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3395 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3396 1.1 fvdl ifp->if_collisions;
3397 1.1 fvdl #endif
3398 1.1 fvdl }
3399 1.1 fvdl
3400 1.46 jonathan /*
3401 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3402 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3403 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3404 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3405 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3406 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3407 1.46 jonathan */
3408 1.102 perry static inline int
3409 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3410 1.46 jonathan {
3411 1.46 jonathan struct mbuf *last = NULL;
3412 1.46 jonathan int padlen;
3413 1.46 jonathan
3414 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3415 1.46 jonathan
3416 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3417 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3418 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3419 1.46 jonathan last = pkt;
3420 1.46 jonathan } else {
3421 1.46 jonathan /*
3422 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3423 1.87 perry * pad there, or append a new mbuf and pad it
3424 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3425 1.46 jonathan */
3426 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3427 1.114 tsutsui continue; /* do nothing */
3428 1.46 jonathan }
3429 1.46 jonathan
3430 1.46 jonathan /* `last' now points to last in chain. */
3431 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3432 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3433 1.46 jonathan struct mbuf *n;
3434 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3435 1.129 joerg if (n == NULL)
3436 1.129 joerg return ENOBUFS;
3437 1.46 jonathan n->m_len = 0;
3438 1.46 jonathan last->m_next = n;
3439 1.46 jonathan last = n;
3440 1.46 jonathan }
3441 1.46 jonathan }
3442 1.46 jonathan
3443 1.114 tsutsui KDASSERT(!M_READONLY(last));
3444 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3445 1.114 tsutsui
3446 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3447 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3448 1.46 jonathan last->m_len += padlen;
3449 1.46 jonathan pkt->m_pkthdr.len += padlen;
3450 1.46 jonathan return 0;
3451 1.46 jonathan }
3452 1.45 jonathan
3453 1.45 jonathan /*
3454 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3455 1.45 jonathan */
3456 1.102 perry static inline int
3457 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3458 1.45 jonathan {
3459 1.45 jonathan struct mbuf *m, *prev;
3460 1.45 jonathan int totlen, prevlen;
3461 1.45 jonathan
3462 1.45 jonathan prev = NULL;
3463 1.45 jonathan totlen = 0;
3464 1.45 jonathan prevlen = -1;
3465 1.45 jonathan
3466 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3467 1.45 jonathan int mlen = m->m_len;
3468 1.45 jonathan int shortfall = 8 - mlen ;
3469 1.45 jonathan
3470 1.45 jonathan totlen += mlen;
3471 1.45 jonathan if (mlen == 0) {
3472 1.45 jonathan continue;
3473 1.45 jonathan }
3474 1.45 jonathan if (mlen >= 8)
3475 1.45 jonathan continue;
3476 1.45 jonathan
3477 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3478 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3479 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3480 1.45 jonathan */
3481 1.45 jonathan
3482 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3483 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3484 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3485 1.45 jonathan prev->m_len += mlen;
3486 1.45 jonathan m->m_len = 0;
3487 1.45 jonathan /* XXX stitch chain */
3488 1.45 jonathan prev->m_next = m_free(m);
3489 1.45 jonathan m = prev;
3490 1.45 jonathan continue;
3491 1.45 jonathan }
3492 1.113 tsutsui else if (m->m_next != NULL &&
3493 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3494 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3495 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3496 1.45 jonathan
3497 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3498 1.115 tsutsui shortfall);
3499 1.45 jonathan m->m_len += shortfall;
3500 1.45 jonathan m->m_next->m_len -= shortfall;
3501 1.45 jonathan m->m_next->m_data += shortfall;
3502 1.45 jonathan }
3503 1.45 jonathan else if (m->m_next == NULL || 1) {
3504 1.45 jonathan /* Got a runt at the very end of the packet.
3505 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3506 1.45 jonathan * update its length in-place. (The original data is still
3507 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3508 1.45 jonathan */
3509 1.45 jonathan
3510 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3511 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3512 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3513 1.111 christos
3514 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3515 1.45 jonathan shortfall = prev->m_len;
3516 1.87 perry
3517 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3518 1.45 jonathan if (!M_READONLY(m)) {
3519 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3520 1.45 jonathan void *m_dat;
3521 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3522 1.45 jonathan m->m_pktdat : m->dat;
3523 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3524 1.45 jonathan m->m_data = m_dat;
3525 1.45 jonathan }
3526 1.45 jonathan } else
3527 1.45 jonathan #endif /* just do the safe slow thing */
3528 1.45 jonathan {
3529 1.45 jonathan struct mbuf * n = NULL;
3530 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3531 1.45 jonathan
3532 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3533 1.45 jonathan if (n == NULL)
3534 1.45 jonathan return ENOBUFS;
3535 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3536 1.45 jonathan /*,
3537 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3538 1.45 jonathan
3539 1.45 jonathan /* first copy the data we're stealing from prev */
3540 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3541 1.115 tsutsui shortfall);
3542 1.45 jonathan
3543 1.45 jonathan /* update prev->m_len accordingly */
3544 1.45 jonathan prev->m_len -= shortfall;
3545 1.45 jonathan
3546 1.45 jonathan /* copy data from runt m */
3547 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3548 1.115 tsutsui m->m_len);
3549 1.45 jonathan
3550 1.45 jonathan /* n holds what we stole from prev, plus m */
3551 1.45 jonathan n->m_len = shortfall + m->m_len;
3552 1.45 jonathan
3553 1.45 jonathan /* stitch n into chain and free m */
3554 1.45 jonathan n->m_next = m->m_next;
3555 1.45 jonathan prev->m_next = n;
3556 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3557 1.45 jonathan m->m_next = NULL;
3558 1.45 jonathan m_free(m);
3559 1.45 jonathan m = n; /* for continuing loop */
3560 1.45 jonathan }
3561 1.45 jonathan }
3562 1.45 jonathan prevlen = m->m_len;
3563 1.45 jonathan }
3564 1.45 jonathan return 0;
3565 1.45 jonathan }
3566 1.45 jonathan
3567 1.1 fvdl /*
3568 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3569 1.1 fvdl * pointers to descriptors.
3570 1.1 fvdl */
3571 1.104 thorpej static int
3572 1.104 thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3573 1.1 fvdl {
3574 1.1 fvdl struct bge_tx_bd *f = NULL;
3575 1.118 tsutsui u_int32_t frag, cur;
3576 1.1 fvdl u_int16_t csum_flags = 0;
3577 1.95 jonathan u_int16_t txbd_tso_flags = 0;
3578 1.1 fvdl struct txdmamap_pool_entry *dma;
3579 1.1 fvdl bus_dmamap_t dmamap;
3580 1.1 fvdl int i = 0;
3581 1.29 itojun struct m_tag *mtag;
3582 1.95 jonathan int use_tso, maxsegsize, error;
3583 1.107 blymn
3584 1.1 fvdl cur = frag = *txidx;
3585 1.1 fvdl
3586 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3587 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3588 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3589 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3590 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3591 1.1 fvdl }
3592 1.1 fvdl
3593 1.87 perry /*
3594 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3595 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3596 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3597 1.46 jonathan * (For now, do this for all chip versions, until newer
3598 1.46 jonathan * are confirmed to not require the workaround.)
3599 1.46 jonathan */
3600 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3601 1.46 jonathan #ifdef notyet
3602 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3603 1.87 perry #endif
3604 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3605 1.46 jonathan goto check_dma_bug;
3606 1.46 jonathan
3607 1.95 jonathan if (bge_cksum_pad(m_head) != 0) {
3608 1.46 jonathan return ENOBUFS;
3609 1.95 jonathan }
3610 1.46 jonathan
3611 1.46 jonathan check_dma_bug:
3612 1.25 jonathan if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3613 1.29 itojun goto doit;
3614 1.25 jonathan /*
3615 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3616 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3617 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3618 1.25 jonathan */
3619 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3620 1.45 jonathan return ENOBUFS;
3621 1.25 jonathan
3622 1.25 jonathan doit:
3623 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3624 1.1 fvdl if (dma == NULL)
3625 1.1 fvdl return ENOBUFS;
3626 1.1 fvdl dmamap = dma->dmamap;
3627 1.1 fvdl
3628 1.1 fvdl /*
3629 1.95 jonathan * Set up any necessary TSO state before we start packing...
3630 1.95 jonathan */
3631 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3632 1.95 jonathan if (!use_tso) {
3633 1.95 jonathan maxsegsize = 0;
3634 1.95 jonathan } else { /* TSO setup */
3635 1.95 jonathan unsigned mss;
3636 1.95 jonathan struct ether_header *eh;
3637 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3638 1.95 jonathan struct mbuf * m0 = m_head;
3639 1.95 jonathan struct ip *ip;
3640 1.95 jonathan struct tcphdr *th;
3641 1.95 jonathan int iphl, hlen;
3642 1.95 jonathan
3643 1.95 jonathan /*
3644 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3645 1.95 jonathan * fields for the protocol headers.
3646 1.95 jonathan */
3647 1.95 jonathan
3648 1.95 jonathan eh = mtod(m0, struct ether_header *);
3649 1.95 jonathan switch (htons(eh->ether_type)) {
3650 1.95 jonathan case ETHERTYPE_IP:
3651 1.95 jonathan offset = ETHER_HDR_LEN;
3652 1.95 jonathan break;
3653 1.95 jonathan
3654 1.95 jonathan case ETHERTYPE_VLAN:
3655 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3656 1.95 jonathan break;
3657 1.95 jonathan
3658 1.95 jonathan default:
3659 1.95 jonathan /*
3660 1.95 jonathan * Don't support this protocol or encapsulation.
3661 1.95 jonathan */
3662 1.95 jonathan return (ENOBUFS);
3663 1.95 jonathan }
3664 1.95 jonathan
3665 1.95 jonathan /*
3666 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3667 1.95 jonathan * this the easy way.
3668 1.95 jonathan */
3669 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3670 1.95 jonathan hlen = iphl + offset;
3671 1.95 jonathan if (__predict_false(m0->m_len <
3672 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
3673 1.95 jonathan
3674 1.138 joerg aprint_debug_dev(sc->bge_dev,
3675 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3676 1.138 joerg "not handled yet\n",
3677 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
3678 1.95 jonathan #ifdef NOTYET
3679 1.95 jonathan /*
3680 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
3681 1.95 jonathan * how to force this branch to be taken?
3682 1.95 jonathan */
3683 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3684 1.95 jonathan
3685 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
3686 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
3687 1.95 jonathan
3688 1.95 jonathan ip.ip_len = 0;
3689 1.95 jonathan
3690 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3691 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
3692 1.95 jonathan
3693 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3694 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3695 1.95 jonathan
3696 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3697 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
3698 1.95 jonathan
3699 1.95 jonathan hlen += th.th_off << 2;
3700 1.95 jonathan iptcp_opt_words = hlen;
3701 1.95 jonathan #else
3702 1.95 jonathan /*
3703 1.95 jonathan * if_wm "hard" case not yet supported, can we not
3704 1.95 jonathan * mandate it out of existence?
3705 1.95 jonathan */
3706 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
3707 1.95 jonathan
3708 1.95 jonathan return ENOBUFS;
3709 1.95 jonathan #endif
3710 1.95 jonathan } else {
3711 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
3712 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3713 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
3714 1.95 jonathan
3715 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
3716 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
3717 1.95 jonathan - sizeof(struct tcphdr)
3718 1.95 jonathan - sizeof(struct ip)) >> 2;
3719 1.95 jonathan }
3720 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
3721 1.95 jonathan th->th_sum = 0;
3722 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3723 1.95 jonathan } else {
3724 1.95 jonathan /*
3725 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
3726 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
3727 1.95 jonathan */
3728 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3729 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3730 1.95 jonathan }
3731 1.95 jonathan
3732 1.95 jonathan mss = m_head->m_pkthdr.segsz;
3733 1.107 blymn txbd_tso_flags |=
3734 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
3735 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
3736 1.95 jonathan
3737 1.95 jonathan /*
3738 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
3739 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
3740 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
3741 1.95 jonathan * supplied header into the IP/TCP header portion of
3742 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
3743 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
3744 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
3745 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
3746 1.95 jonathan * Unfortunately, the driver encoding of option length
3747 1.95 jonathan * varies across different ASIC families.
3748 1.95 jonathan */
3749 1.95 jonathan tcp_seg_flags = 0;
3750 1.95 jonathan if (iptcp_opt_words) {
3751 1.95 jonathan if ( BGE_IS_5705_OR_BEYOND(sc)) {
3752 1.95 jonathan tcp_seg_flags =
3753 1.95 jonathan iptcp_opt_words << 11;
3754 1.95 jonathan } else {
3755 1.95 jonathan txbd_tso_flags |=
3756 1.95 jonathan iptcp_opt_words << 12;
3757 1.95 jonathan }
3758 1.95 jonathan }
3759 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
3760 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
3761 1.95 jonathan
3762 1.95 jonathan } /* TSO setup */
3763 1.95 jonathan
3764 1.95 jonathan /*
3765 1.1 fvdl * Start packing the mbufs in this chain into
3766 1.1 fvdl * the fragment pointers. Stop when we run out
3767 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3768 1.1 fvdl */
3769 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3770 1.95 jonathan BUS_DMA_NOWAIT);
3771 1.95 jonathan if (error) {
3772 1.1 fvdl return(ENOBUFS);
3773 1.95 jonathan }
3774 1.118 tsutsui /*
3775 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
3776 1.118 tsutsui * of the end of the ring.
3777 1.118 tsutsui */
3778 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3779 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
3780 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
3781 1.138 joerg device_xname(sc->bge_dev)));
3782 1.118 tsutsui goto fail_unload;
3783 1.118 tsutsui }
3784 1.95 jonathan
3785 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
3786 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3787 1.1 fvdl
3788 1.6 thorpej
3789 1.95 jonathan /* Iterate over dmap-map fragments. */
3790 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3791 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3792 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3793 1.1 fvdl break;
3794 1.107 blymn
3795 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3796 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3797 1.95 jonathan
3798 1.95 jonathan /*
3799 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
3800 1.95 jonathan * off checksum-assist flag in the tx-descr, and
3801 1.95 jonathan * supply the ASIC-revision-specific encoding
3802 1.95 jonathan * of TSO flags and segsize.
3803 1.95 jonathan */
3804 1.95 jonathan if (use_tso) {
3805 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3806 1.95 jonathan f->bge_rsvd = maxsegsize;
3807 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
3808 1.95 jonathan } else {
3809 1.95 jonathan f->bge_rsvd = 0;
3810 1.95 jonathan f->bge_flags =
3811 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
3812 1.95 jonathan }
3813 1.95 jonathan } else {
3814 1.95 jonathan f->bge_rsvd = 0;
3815 1.95 jonathan f->bge_flags = csum_flags;
3816 1.95 jonathan }
3817 1.1 fvdl
3818 1.28 itojun if (mtag != NULL) {
3819 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3820 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3821 1.1 fvdl } else {
3822 1.1 fvdl f->bge_vlan_tag = 0;
3823 1.1 fvdl }
3824 1.1 fvdl cur = frag;
3825 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
3826 1.1 fvdl }
3827 1.1 fvdl
3828 1.95 jonathan if (i < dmamap->dm_nsegs) {
3829 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3830 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3831 1.118 tsutsui goto fail_unload;
3832 1.95 jonathan }
3833 1.1 fvdl
3834 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3835 1.1 fvdl BUS_DMASYNC_PREWRITE);
3836 1.1 fvdl
3837 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
3838 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3839 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3840 1.95 jonathan
3841 1.118 tsutsui goto fail_unload;
3842 1.95 jonathan }
3843 1.1 fvdl
3844 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3845 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
3846 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3847 1.1 fvdl sc->txdma[cur] = dma;
3848 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
3849 1.1 fvdl
3850 1.1 fvdl *txidx = frag;
3851 1.1 fvdl
3852 1.1 fvdl return(0);
3853 1.118 tsutsui
3854 1.118 tsutsui fail_unload:
3855 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
3856 1.118 tsutsui
3857 1.118 tsutsui return ENOBUFS;
3858 1.1 fvdl }
3859 1.1 fvdl
3860 1.1 fvdl /*
3861 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3862 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
3863 1.1 fvdl */
3864 1.104 thorpej static void
3865 1.104 thorpej bge_start(struct ifnet *ifp)
3866 1.1 fvdl {
3867 1.1 fvdl struct bge_softc *sc;
3868 1.1 fvdl struct mbuf *m_head = NULL;
3869 1.94 jonathan u_int32_t prodidx;
3870 1.1 fvdl int pkts = 0;
3871 1.1 fvdl
3872 1.1 fvdl sc = ifp->if_softc;
3873 1.1 fvdl
3874 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3875 1.1 fvdl return;
3876 1.1 fvdl
3877 1.94 jonathan prodidx = sc->bge_tx_prodidx;
3878 1.1 fvdl
3879 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3880 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
3881 1.1 fvdl if (m_head == NULL)
3882 1.1 fvdl break;
3883 1.1 fvdl
3884 1.1 fvdl #if 0
3885 1.1 fvdl /*
3886 1.1 fvdl * XXX
3887 1.1 fvdl * safety overkill. If this is a fragmented packet chain
3888 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
3889 1.1 fvdl * it if we have enough descriptors to handle the entire
3890 1.1 fvdl * chain at once.
3891 1.1 fvdl * (paranoia -- may not actually be needed)
3892 1.1 fvdl */
3893 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
3894 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3895 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3896 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3897 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3898 1.1 fvdl break;
3899 1.1 fvdl }
3900 1.1 fvdl }
3901 1.1 fvdl #endif
3902 1.1 fvdl
3903 1.1 fvdl /*
3904 1.1 fvdl * Pack the data into the transmit ring. If we
3905 1.1 fvdl * don't have room, set the OACTIVE flag and wait
3906 1.1 fvdl * for the NIC to drain the ring.
3907 1.1 fvdl */
3908 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
3909 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3910 1.1 fvdl break;
3911 1.1 fvdl }
3912 1.1 fvdl
3913 1.1 fvdl /* now we are committed to transmit the packet */
3914 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
3915 1.1 fvdl pkts++;
3916 1.1 fvdl
3917 1.1 fvdl #if NBPFILTER > 0
3918 1.1 fvdl /*
3919 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
3920 1.1 fvdl * to him.
3921 1.1 fvdl */
3922 1.1 fvdl if (ifp->if_bpf)
3923 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
3924 1.1 fvdl #endif
3925 1.1 fvdl }
3926 1.1 fvdl if (pkts == 0)
3927 1.1 fvdl return;
3928 1.1 fvdl
3929 1.1 fvdl /* Transmit */
3930 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3931 1.29 itojun if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3932 1.29 itojun CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3933 1.1 fvdl
3934 1.94 jonathan sc->bge_tx_prodidx = prodidx;
3935 1.94 jonathan
3936 1.1 fvdl /*
3937 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
3938 1.1 fvdl */
3939 1.1 fvdl ifp->if_timer = 5;
3940 1.1 fvdl }
3941 1.1 fvdl
3942 1.104 thorpej static int
3943 1.104 thorpej bge_init(struct ifnet *ifp)
3944 1.1 fvdl {
3945 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3946 1.137 dyoung const u_int16_t *m;
3947 1.142 dyoung int s, error = 0;
3948 1.1 fvdl
3949 1.1 fvdl s = splnet();
3950 1.1 fvdl
3951 1.1 fvdl ifp = &sc->ethercom.ec_if;
3952 1.1 fvdl
3953 1.1 fvdl /* Cancel pending I/O and flush buffers. */
3954 1.141 jmcneill bge_stop(ifp, 0);
3955 1.1 fvdl bge_reset(sc);
3956 1.1 fvdl bge_chipinit(sc);
3957 1.1 fvdl
3958 1.1 fvdl /*
3959 1.1 fvdl * Init the various state machines, ring
3960 1.1 fvdl * control blocks and firmware.
3961 1.1 fvdl */
3962 1.1 fvdl error = bge_blockinit(sc);
3963 1.1 fvdl if (error != 0) {
3964 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3965 1.1 fvdl error);
3966 1.1 fvdl splx(s);
3967 1.1 fvdl return error;
3968 1.1 fvdl }
3969 1.1 fvdl
3970 1.1 fvdl ifp = &sc->ethercom.ec_if;
3971 1.1 fvdl
3972 1.1 fvdl /* Specify MTU. */
3973 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3974 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3975 1.1 fvdl
3976 1.1 fvdl /* Load our MAC address. */
3977 1.137 dyoung m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3978 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3979 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3980 1.1 fvdl
3981 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
3982 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
3983 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3984 1.1 fvdl } else {
3985 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3986 1.1 fvdl }
3987 1.1 fvdl
3988 1.1 fvdl /* Program multicast filter. */
3989 1.1 fvdl bge_setmulti(sc);
3990 1.1 fvdl
3991 1.1 fvdl /* Init RX ring. */
3992 1.1 fvdl bge_init_rx_ring_std(sc);
3993 1.1 fvdl
3994 1.1 fvdl /* Init jumbo RX ring. */
3995 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3996 1.1 fvdl bge_init_rx_ring_jumbo(sc);
3997 1.1 fvdl
3998 1.1 fvdl /* Init our RX return ring index */
3999 1.1 fvdl sc->bge_rx_saved_considx = 0;
4000 1.1 fvdl
4001 1.1 fvdl /* Init TX ring. */
4002 1.1 fvdl bge_init_tx_ring(sc);
4003 1.1 fvdl
4004 1.1 fvdl /* Turn on transmitter */
4005 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4006 1.1 fvdl
4007 1.1 fvdl /* Turn on receiver */
4008 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4009 1.1 fvdl
4010 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4011 1.71 thorpej
4012 1.1 fvdl /* Tell firmware we're alive. */
4013 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4014 1.1 fvdl
4015 1.1 fvdl /* Enable host interrupts. */
4016 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4017 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4018 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4019 1.1 fvdl
4020 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
4021 1.142 dyoung goto out;
4022 1.1 fvdl
4023 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
4024 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
4025 1.1 fvdl
4026 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4027 1.142 dyoung
4028 1.142 dyoung out:
4029 1.1 fvdl splx(s);
4030 1.1 fvdl
4031 1.142 dyoung return error;
4032 1.1 fvdl }
4033 1.1 fvdl
4034 1.1 fvdl /*
4035 1.1 fvdl * Set media options.
4036 1.1 fvdl */
4037 1.104 thorpej static int
4038 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
4039 1.1 fvdl {
4040 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4041 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4042 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
4043 1.142 dyoung int rc;
4044 1.1 fvdl
4045 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
4046 1.1 fvdl if (sc->bge_tbi) {
4047 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4048 1.1 fvdl return(EINVAL);
4049 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
4050 1.1 fvdl case IFM_AUTO:
4051 1.1 fvdl break;
4052 1.1 fvdl case IFM_1000_SX:
4053 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4054 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
4055 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4056 1.1 fvdl } else {
4057 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
4058 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4059 1.1 fvdl }
4060 1.1 fvdl break;
4061 1.1 fvdl default:
4062 1.1 fvdl return(EINVAL);
4063 1.1 fvdl }
4064 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
4065 1.1 fvdl return(0);
4066 1.1 fvdl }
4067 1.1 fvdl
4068 1.1 fvdl sc->bge_link = 0;
4069 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
4070 1.142 dyoung return 0;
4071 1.142 dyoung return rc;
4072 1.1 fvdl }
4073 1.1 fvdl
4074 1.1 fvdl /*
4075 1.1 fvdl * Report current media status.
4076 1.1 fvdl */
4077 1.104 thorpej static void
4078 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4079 1.1 fvdl {
4080 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4081 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4082 1.1 fvdl
4083 1.1 fvdl if (sc->bge_tbi) {
4084 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
4085 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
4086 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
4087 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
4088 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
4089 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
4090 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4091 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
4092 1.1 fvdl else
4093 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
4094 1.1 fvdl return;
4095 1.1 fvdl }
4096 1.1 fvdl
4097 1.1 fvdl mii_pollstat(mii);
4098 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
4099 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4100 1.69 thorpej sc->bge_flowflags;
4101 1.1 fvdl }
4102 1.1 fvdl
4103 1.104 thorpej static int
4104 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4105 1.1 fvdl {
4106 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4107 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
4108 1.1 fvdl int s, error = 0;
4109 1.1 fvdl struct mii_data *mii;
4110 1.1 fvdl
4111 1.1 fvdl s = splnet();
4112 1.1 fvdl
4113 1.1 fvdl switch(command) {
4114 1.1 fvdl case SIOCSIFFLAGS:
4115 1.1 fvdl if (ifp->if_flags & IFF_UP) {
4116 1.1 fvdl /*
4117 1.1 fvdl * If only the state of the PROMISC flag changed,
4118 1.1 fvdl * then just use the 'set promisc mode' command
4119 1.1 fvdl * instead of reinitializing the entire NIC. Doing
4120 1.1 fvdl * a full re-init means reloading the firmware and
4121 1.1 fvdl * waiting for it to start up, which may take a
4122 1.1 fvdl * second or two.
4123 1.1 fvdl */
4124 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
4125 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
4126 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
4127 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
4128 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4129 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
4130 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
4131 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
4132 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
4133 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4134 1.103 rpaulo } else if (!(sc->bge_if_flags & IFF_UP))
4135 1.1 fvdl bge_init(ifp);
4136 1.1 fvdl } else {
4137 1.141 jmcneill if (ifp->if_flags & IFF_RUNNING)
4138 1.141 jmcneill bge_stop(ifp, 1);
4139 1.1 fvdl }
4140 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
4141 1.1 fvdl error = 0;
4142 1.1 fvdl break;
4143 1.1 fvdl case SIOCSIFMEDIA:
4144 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4145 1.69 thorpej if (sc->bge_tbi) {
4146 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4147 1.69 thorpej sc->bge_flowflags = 0;
4148 1.69 thorpej }
4149 1.69 thorpej
4150 1.69 thorpej /* Flow control requires full-duplex mode. */
4151 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4152 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4153 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4154 1.69 thorpej }
4155 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4156 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4157 1.69 thorpej /* We an do both TXPAUSE and RXPAUSE. */
4158 1.69 thorpej ifr->ifr_media |=
4159 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4160 1.69 thorpej }
4161 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4162 1.69 thorpej }
4163 1.69 thorpej /* FALLTHROUGH */
4164 1.1 fvdl case SIOCGIFMEDIA:
4165 1.1 fvdl if (sc->bge_tbi) {
4166 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4167 1.1 fvdl command);
4168 1.1 fvdl } else {
4169 1.1 fvdl mii = &sc->bge_mii;
4170 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4171 1.1 fvdl command);
4172 1.1 fvdl }
4173 1.1 fvdl break;
4174 1.1 fvdl default:
4175 1.145 dyoung if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4176 1.145 dyoung break;
4177 1.145 dyoung
4178 1.145 dyoung error = 0;
4179 1.145 dyoung
4180 1.145 dyoung if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4181 1.145 dyoung ;
4182 1.145 dyoung else if (ifp->if_flags & IFF_RUNNING)
4183 1.145 dyoung bge_setmulti(sc);
4184 1.1 fvdl break;
4185 1.1 fvdl }
4186 1.1 fvdl
4187 1.1 fvdl splx(s);
4188 1.1 fvdl
4189 1.1 fvdl return(error);
4190 1.1 fvdl }
4191 1.1 fvdl
4192 1.104 thorpej static void
4193 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4194 1.1 fvdl {
4195 1.1 fvdl struct bge_softc *sc;
4196 1.1 fvdl
4197 1.1 fvdl sc = ifp->if_softc;
4198 1.1 fvdl
4199 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4200 1.1 fvdl
4201 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4202 1.1 fvdl bge_init(ifp);
4203 1.1 fvdl
4204 1.1 fvdl ifp->if_oerrors++;
4205 1.1 fvdl }
4206 1.1 fvdl
4207 1.11 thorpej static void
4208 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4209 1.11 thorpej {
4210 1.11 thorpej int i;
4211 1.11 thorpej
4212 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4213 1.11 thorpej
4214 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
4215 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4216 1.11 thorpej return;
4217 1.11 thorpej delay(100);
4218 1.95 jonathan if (sc->bge_pcie)
4219 1.95 jonathan DELAY(1000);
4220 1.11 thorpej }
4221 1.11 thorpej
4222 1.138 joerg aprint_error_dev(sc->bge_dev,
4223 1.138 joerg "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4224 1.11 thorpej }
4225 1.11 thorpej
4226 1.1 fvdl /*
4227 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4228 1.1 fvdl * RX and TX lists.
4229 1.1 fvdl */
4230 1.104 thorpej static void
4231 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4232 1.1 fvdl {
4233 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4234 1.1 fvdl
4235 1.1 fvdl callout_stop(&sc->bge_timeout);
4236 1.1 fvdl
4237 1.1 fvdl /*
4238 1.1 fvdl * Disable all of the receiver blocks
4239 1.1 fvdl */
4240 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4241 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4242 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4243 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4244 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4245 1.44 hannken }
4246 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4247 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4248 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4249 1.1 fvdl
4250 1.1 fvdl /*
4251 1.1 fvdl * Disable all of the transmit blocks
4252 1.1 fvdl */
4253 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4254 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4255 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4256 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4257 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4258 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4259 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4260 1.44 hannken }
4261 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4262 1.1 fvdl
4263 1.1 fvdl /*
4264 1.1 fvdl * Shut down all of the memory managers and related
4265 1.1 fvdl * state machines.
4266 1.1 fvdl */
4267 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4268 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4269 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4270 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4271 1.44 hannken }
4272 1.11 thorpej
4273 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4274 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4275 1.11 thorpej
4276 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4277 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4278 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4279 1.44 hannken }
4280 1.1 fvdl
4281 1.1 fvdl /* Disable host interrupts. */
4282 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4283 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4284 1.1 fvdl
4285 1.1 fvdl /*
4286 1.1 fvdl * Tell firmware we're shutting down.
4287 1.1 fvdl */
4288 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4289 1.1 fvdl
4290 1.1 fvdl /* Free the RX lists. */
4291 1.1 fvdl bge_free_rx_ring_std(sc);
4292 1.1 fvdl
4293 1.1 fvdl /* Free jumbo RX list. */
4294 1.1 fvdl bge_free_rx_ring_jumbo(sc);
4295 1.1 fvdl
4296 1.1 fvdl /* Free TX buffers. */
4297 1.1 fvdl bge_free_tx_ring(sc);
4298 1.1 fvdl
4299 1.1 fvdl /*
4300 1.1 fvdl * Isolate/power down the PHY.
4301 1.1 fvdl */
4302 1.1 fvdl if (!sc->bge_tbi)
4303 1.1 fvdl mii_down(&sc->bge_mii);
4304 1.1 fvdl
4305 1.1 fvdl sc->bge_link = 0;
4306 1.1 fvdl
4307 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4308 1.1 fvdl
4309 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4310 1.1 fvdl }
4311 1.1 fvdl
4312 1.64 jonathan static int
4313 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4314 1.64 jonathan {
4315 1.64 jonathan int error, t;
4316 1.64 jonathan struct sysctlnode node;
4317 1.64 jonathan
4318 1.64 jonathan node = *rnode;
4319 1.64 jonathan t = *(int*)rnode->sysctl_data;
4320 1.64 jonathan node.sysctl_data = &t;
4321 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4322 1.64 jonathan if (error || newp == NULL)
4323 1.64 jonathan return (error);
4324 1.64 jonathan
4325 1.64 jonathan #if 0
4326 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4327 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4328 1.64 jonathan #endif
4329 1.64 jonathan
4330 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4331 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4332 1.64 jonathan return (EINVAL);
4333 1.64 jonathan bge_update_all_threshes(t);
4334 1.64 jonathan } else
4335 1.64 jonathan return (EINVAL);
4336 1.64 jonathan
4337 1.64 jonathan *(int*)rnode->sysctl_data = t;
4338 1.64 jonathan
4339 1.64 jonathan return (0);
4340 1.64 jonathan }
4341 1.64 jonathan
4342 1.64 jonathan /*
4343 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4344 1.64 jonathan *
4345 1.64 jonathan * TBD condition SYSCTL_PERMANENT on being an LKM or not
4346 1.64 jonathan */
4347 1.64 jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4348 1.64 jonathan {
4349 1.66 atatat int rc, bge_root_num;
4350 1.90 atatat const struct sysctlnode *node;
4351 1.64 jonathan
4352 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4353 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4354 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4355 1.64 jonathan goto err;
4356 1.64 jonathan }
4357 1.64 jonathan
4358 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, &node,
4359 1.73 atatat CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4360 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4361 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4362 1.64 jonathan goto err;
4363 1.64 jonathan }
4364 1.64 jonathan
4365 1.66 atatat bge_root_num = node->sysctl_num;
4366 1.66 atatat
4367 1.64 jonathan /* BGE Rx interrupt mitigation level */
4368 1.87 perry if ((rc = sysctl_createv(clog, 0, NULL, &node,
4369 1.64 jonathan CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4370 1.73 atatat CTLTYPE_INT, "rx_lvl",
4371 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4372 1.73 atatat sysctl_bge_verify, 0,
4373 1.64 jonathan &bge_rx_thresh_lvl,
4374 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4375 1.64 jonathan CTL_EOL)) != 0) {
4376 1.64 jonathan goto err;
4377 1.64 jonathan }
4378 1.64 jonathan
4379 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4380 1.64 jonathan
4381 1.64 jonathan return;
4382 1.64 jonathan
4383 1.64 jonathan err:
4384 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4385 1.64 jonathan }
4386