Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.153
      1  1.153    dyoung /*	$NetBSD: if_bge.c,v 1.153 2008/11/07 00:20:07 dyoung Exp $	*/
      2    1.8   thorpej 
      3    1.1      fvdl /*
      4    1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5    1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6    1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7    1.1      fvdl  *
      8    1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9    1.1      fvdl  * modification, are permitted provided that the following conditions
     10    1.1      fvdl  * are met:
     11    1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12    1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13    1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14    1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15    1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16    1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17    1.1      fvdl  *    must display the following acknowledgement:
     18    1.1      fvdl  *	This product includes software developed by Bill Paul.
     19    1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20    1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21    1.1      fvdl  *    without specific prior written permission.
     22    1.1      fvdl  *
     23    1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24    1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25    1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26    1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27    1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33    1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34    1.1      fvdl  *
     35    1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36    1.1      fvdl  */
     37    1.1      fvdl 
     38    1.1      fvdl /*
     39   1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40    1.1      fvdl  *
     41   1.12   thorpej  * NetBSD version by:
     42   1.12   thorpej  *
     43   1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44   1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45   1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46   1.12   thorpej  *
     47   1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48    1.1      fvdl  * Senior Engineer, Wind River Systems
     49    1.1      fvdl  */
     50    1.1      fvdl 
     51    1.1      fvdl /*
     52    1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53    1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54    1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55    1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56    1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57    1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58    1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59    1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60    1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61    1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62    1.1      fvdl  * into the driver.
     63    1.1      fvdl  *
     64    1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66    1.1      fvdl  *
     67    1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68   1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69    1.1      fvdl  * does not support external SSRAM.
     70    1.1      fvdl  *
     71    1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72    1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73    1.1      fvdl  *
     74    1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75    1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76    1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77    1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78    1.1      fvdl  * ring.
     79    1.1      fvdl  */
     80   1.43     lukem 
     81   1.43     lukem #include <sys/cdefs.h>
     82  1.153    dyoung __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.153 2008/11/07 00:20:07 dyoung Exp $");
     83    1.1      fvdl 
     84    1.1      fvdl #include "bpfilter.h"
     85    1.1      fvdl #include "vlan.h"
     86  1.148   mlelstv #include "rnd.h"
     87    1.1      fvdl 
     88    1.1      fvdl #include <sys/param.h>
     89    1.1      fvdl #include <sys/systm.h>
     90    1.1      fvdl #include <sys/callout.h>
     91    1.1      fvdl #include <sys/sockio.h>
     92    1.1      fvdl #include <sys/mbuf.h>
     93    1.1      fvdl #include <sys/malloc.h>
     94    1.1      fvdl #include <sys/kernel.h>
     95    1.1      fvdl #include <sys/device.h>
     96    1.1      fvdl #include <sys/socket.h>
     97   1.64  jonathan #include <sys/sysctl.h>
     98    1.1      fvdl 
     99    1.1      fvdl #include <net/if.h>
    100    1.1      fvdl #include <net/if_dl.h>
    101    1.1      fvdl #include <net/if_media.h>
    102    1.1      fvdl #include <net/if_ether.h>
    103    1.1      fvdl 
    104  1.148   mlelstv #if NRND > 0
    105  1.148   mlelstv #include <sys/rnd.h>
    106  1.148   mlelstv #endif
    107  1.148   mlelstv 
    108    1.1      fvdl #ifdef INET
    109    1.1      fvdl #include <netinet/in.h>
    110    1.1      fvdl #include <netinet/in_systm.h>
    111    1.1      fvdl #include <netinet/in_var.h>
    112    1.1      fvdl #include <netinet/ip.h>
    113    1.1      fvdl #endif
    114    1.1      fvdl 
    115   1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    116   1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117   1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118   1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    119   1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    120   1.95  jonathan 
    121   1.95  jonathan 
    122    1.1      fvdl #if NBPFILTER > 0
    123    1.1      fvdl #include <net/bpf.h>
    124    1.1      fvdl #endif
    125    1.1      fvdl 
    126    1.1      fvdl #include <dev/pci/pcireg.h>
    127    1.1      fvdl #include <dev/pci/pcivar.h>
    128    1.1      fvdl #include <dev/pci/pcidevs.h>
    129    1.1      fvdl 
    130    1.1      fvdl #include <dev/mii/mii.h>
    131    1.1      fvdl #include <dev/mii/miivar.h>
    132    1.1      fvdl #include <dev/mii/miidevs.h>
    133    1.1      fvdl #include <dev/mii/brgphyreg.h>
    134    1.1      fvdl 
    135    1.1      fvdl #include <dev/pci/if_bgereg.h>
    136    1.1      fvdl 
    137    1.1      fvdl #include <uvm/uvm_extern.h>
    138    1.1      fvdl 
    139   1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    140   1.46  jonathan 
    141   1.63  jonathan 
    142   1.63  jonathan /*
    143   1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    144   1.63  jonathan  */
    145   1.63  jonathan 
    146   1.63  jonathan /*
    147   1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    148   1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    149   1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    150   1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    151   1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    152   1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    153   1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    154   1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    155   1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    156   1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    157   1.87     perry  *
    158   1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    159   1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    160   1.63  jonathan  * family), the larger values may overflow internal chip limits,
    161   1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    162   1.63  jonathan  * rates.
    163   1.63  jonathan  *
    164   1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    165   1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    166   1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    167   1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    168   1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    169   1.63  jonathan  */
    170  1.104   thorpej static const struct bge_load_rx_thresh {
    171   1.63  jonathan 	int rx_ticks;
    172   1.63  jonathan 	int rx_max_bds; }
    173   1.63  jonathan bge_rx_threshes[] = {
    174   1.63  jonathan 	{ 32,   2 },
    175   1.63  jonathan 	{ 50,   4 },
    176   1.63  jonathan 	{ 100,  8 },
    177   1.63  jonathan 	{ 192, 16 },
    178   1.63  jonathan 	{ 416, 32 },
    179   1.63  jonathan 	{ 598, 46 }
    180   1.63  jonathan };
    181   1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    182   1.63  jonathan 
    183   1.63  jonathan /* XXX patchable; should be sysctl'able */
    184   1.64  jonathan static int	bge_auto_thresh = 1;
    185   1.64  jonathan static int	bge_rx_thresh_lvl;
    186   1.64  jonathan 
    187  1.104   thorpej static int	bge_rxthresh_nodenum;
    188    1.1      fvdl 
    189  1.151    cegger typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
    190  1.151    cegger 
    191  1.104   thorpej static int	bge_probe(device_t, cfdata_t, void *);
    192  1.104   thorpej static void	bge_attach(device_t, device_t, void *);
    193  1.104   thorpej static void	bge_release_resources(struct bge_softc *);
    194  1.104   thorpej static void	bge_txeof(struct bge_softc *);
    195  1.104   thorpej static void	bge_rxeof(struct bge_softc *);
    196  1.104   thorpej 
    197  1.151    cegger static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
    198  1.151    cegger static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
    199  1.151    cegger static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
    200  1.151    cegger static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
    201  1.151    cegger 
    202  1.104   thorpej static void	bge_tick(void *);
    203  1.104   thorpej static void	bge_stats_update(struct bge_softc *);
    204  1.104   thorpej static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    205  1.104   thorpej 
    206  1.104   thorpej static int	bge_intr(void *);
    207  1.104   thorpej static void	bge_start(struct ifnet *);
    208  1.126  christos static int	bge_ioctl(struct ifnet *, u_long, void *);
    209  1.104   thorpej static int	bge_init(struct ifnet *);
    210  1.141  jmcneill static void	bge_stop(struct ifnet *, int);
    211  1.104   thorpej static void	bge_watchdog(struct ifnet *);
    212  1.104   thorpej static int	bge_ifmedia_upd(struct ifnet *);
    213  1.104   thorpej static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    214  1.104   thorpej 
    215  1.104   thorpej static void	bge_setmulti(struct bge_softc *);
    216  1.104   thorpej 
    217  1.104   thorpej static void	bge_handle_events(struct bge_softc *);
    218  1.104   thorpej static int	bge_alloc_jumbo_mem(struct bge_softc *);
    219  1.104   thorpej #if 0 /* XXX */
    220  1.104   thorpej static void	bge_free_jumbo_mem(struct bge_softc *);
    221    1.1      fvdl #endif
    222  1.104   thorpej static void	*bge_jalloc(struct bge_softc *);
    223  1.126  christos static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    224  1.104   thorpej static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    225  1.104   thorpej 			       bus_dmamap_t);
    226  1.104   thorpej static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    227  1.104   thorpej static int	bge_init_rx_ring_std(struct bge_softc *);
    228  1.104   thorpej static void	bge_free_rx_ring_std(struct bge_softc *);
    229  1.104   thorpej static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    230  1.104   thorpej static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    231  1.104   thorpej static void	bge_free_tx_ring(struct bge_softc *);
    232  1.104   thorpej static int	bge_init_tx_ring(struct bge_softc *);
    233  1.104   thorpej 
    234  1.104   thorpej static int	bge_chipinit(struct bge_softc *);
    235  1.104   thorpej static int	bge_blockinit(struct bge_softc *);
    236  1.104   thorpej static int	bge_setpowerstate(struct bge_softc *, int);
    237    1.1      fvdl 
    238  1.104   thorpej static void	bge_reset(struct bge_softc *);
    239   1.95  jonathan 
    240    1.1      fvdl #define BGE_DEBUG
    241    1.1      fvdl #ifdef BGE_DEBUG
    242    1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    243    1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    244   1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    245    1.1      fvdl int	bgedebug = 0;
    246   1.95  jonathan int	bge_tso_debug = 0;
    247    1.1      fvdl #else
    248    1.1      fvdl #define DPRINTF(x)
    249    1.1      fvdl #define DPRINTFN(n,x)
    250   1.95  jonathan #define BGE_TSO_PRINTF(x)
    251    1.1      fvdl #endif
    252    1.1      fvdl 
    253   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    254   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    255   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    256   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    257   1.72   thorpej #else
    258   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    259   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    260   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    261   1.72   thorpej #endif
    262   1.72   thorpej 
    263   1.17   thorpej /* Various chip quirks. */
    264   1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    265   1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    266   1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    267   1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    268   1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    269   1.36  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    270   1.37  jonathan #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    271   1.44   hannken #define	BGE_QUIRK_5705_CORE		0x00000080
    272   1.54      fvdl #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    273   1.25  jonathan 
    274   1.95  jonathan /*
    275   1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    276  1.107     blymn  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    277   1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    278   1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    279   1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    280   1.95  jonathan  * (defined here until the thought is done).
    281   1.95  jonathan  */
    282   1.99  jonathan #define BGE_IS_5714_FAMILY(sc) \
    283  1.120   tsutsui 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    284   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    285  1.120   tsutsui 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    286   1.99  jonathan 
    287   1.95  jonathan #define BGE_IS_5750_OR_BEYOND(sc)  \
    288   1.99  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    289   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    290  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    291  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    292  1.151    cegger 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    293   1.99  jonathan 	 BGE_IS_5714_FAMILY(sc) )
    294   1.95  jonathan 
    295   1.95  jonathan #define BGE_IS_5705_OR_BEYOND(sc)  \
    296   1.95  jonathan 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    297   1.95  jonathan 	  BGE_IS_5750_OR_BEYOND(sc) )
    298   1.95  jonathan 
    299   1.95  jonathan 
    300   1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    301   1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    302   1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    303   1.17   thorpej 
    304  1.138     joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    305   1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    306    1.1      fvdl 
    307  1.104   thorpej static u_int32_t
    308  1.104   thorpej bge_readmem_ind(struct bge_softc *sc, int off)
    309    1.1      fvdl {
    310    1.1      fvdl 	pcireg_t val;
    311    1.1      fvdl 
    312  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    313  1.141  jmcneill 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    314    1.1      fvdl 	return val;
    315    1.1      fvdl }
    316    1.1      fvdl 
    317  1.104   thorpej static void
    318  1.104   thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
    319    1.1      fvdl {
    320  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    321  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    322    1.1      fvdl }
    323    1.1      fvdl 
    324    1.1      fvdl #ifdef notdef
    325  1.104   thorpej static u_int32_t
    326  1.104   thorpej bge_readreg_ind(struct bge_softc *sc, int off)
    327    1.1      fvdl {
    328  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    329  1.141  jmcneill 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    330    1.1      fvdl }
    331    1.1      fvdl #endif
    332    1.1      fvdl 
    333  1.104   thorpej static void
    334  1.104   thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
    335    1.1      fvdl {
    336  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    337  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    338    1.1      fvdl }
    339    1.1      fvdl 
    340  1.151    cegger static void
    341  1.151    cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
    342  1.151    cegger {
    343  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    344  1.151    cegger }
    345  1.151    cegger 
    346  1.151    cegger static void
    347  1.151    cegger bge_writembx(struct bge_softc *sc, int off, int val)
    348  1.151    cegger {
    349  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    350  1.151    cegger 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    351  1.151    cegger 
    352  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    353  1.151    cegger }
    354  1.151    cegger 
    355    1.1      fvdl #ifdef notdef
    356  1.104   thorpej static u_int8_t
    357  1.104   thorpej bge_vpd_readbyte(struct bge_softc *sc, int addr)
    358    1.1      fvdl {
    359    1.1      fvdl 	int i;
    360    1.1      fvdl 	u_int32_t val;
    361    1.1      fvdl 
    362  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
    363    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    364    1.1      fvdl 		DELAY(10);
    365  1.141  jmcneill 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
    366    1.1      fvdl 		    BGE_VPD_FLAG)
    367    1.1      fvdl 			break;
    368    1.1      fvdl 	}
    369    1.1      fvdl 
    370    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    371  1.138     joerg 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    372    1.1      fvdl 		return(0);
    373    1.1      fvdl 	}
    374    1.1      fvdl 
    375  1.141  jmcneill 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
    376    1.1      fvdl 
    377    1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    378    1.1      fvdl }
    379    1.1      fvdl 
    380  1.104   thorpej static void
    381  1.104   thorpej bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    382    1.1      fvdl {
    383    1.1      fvdl 	int i;
    384    1.1      fvdl 	u_int8_t *ptr;
    385    1.1      fvdl 
    386    1.1      fvdl 	ptr = (u_int8_t *)res;
    387    1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    388    1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    389    1.1      fvdl }
    390    1.1      fvdl 
    391  1.104   thorpej static void
    392  1.104   thorpej bge_vpd_read(struct bge_softc *sc)
    393    1.1      fvdl {
    394    1.1      fvdl 	int pos = 0, i;
    395    1.1      fvdl 	struct vpd_res res;
    396    1.1      fvdl 
    397    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    398    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    399    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    400    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    401    1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    402    1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    403    1.1      fvdl 
    404    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    405    1.1      fvdl 
    406    1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    407  1.138     joerg 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    408  1.138     joerg 		    VPD_RES_ID, res.vr_id);
    409    1.1      fvdl 		return;
    410    1.1      fvdl 	}
    411    1.1      fvdl 
    412    1.1      fvdl 	pos += sizeof(res);
    413    1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    414    1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    415    1.1      fvdl 		panic("bge_vpd_read");
    416    1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    417    1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    418    1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    419    1.1      fvdl 	pos += i;
    420    1.1      fvdl 
    421    1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    422    1.1      fvdl 
    423    1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    424  1.138     joerg 		aprint_error_dev(sc->bge_dev,
    425  1.138     joerg 		    "bad VPD resource id: expected %x got %x\n",
    426  1.138     joerg 		    VPD_RES_READ, res.vr_id);
    427    1.1      fvdl 		return;
    428    1.1      fvdl 	}
    429    1.1      fvdl 
    430    1.1      fvdl 	pos += sizeof(res);
    431    1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    432    1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    433    1.1      fvdl 		panic("bge_vpd_read");
    434    1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    435    1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    436    1.1      fvdl }
    437    1.1      fvdl #endif
    438    1.1      fvdl 
    439  1.151    cegger static u_int8_t
    440  1.151    cegger bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    441  1.151    cegger {
    442  1.151    cegger 	u_int32_t access, byte = 0;
    443  1.151    cegger 	int i;
    444  1.151    cegger 
    445  1.151    cegger 	/* Lock. */
    446  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    447  1.151    cegger 	for (i = 0; i < 8000; i++) {
    448  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    449  1.151    cegger 			break;
    450  1.151    cegger 		DELAY(20);
    451  1.151    cegger 	}
    452  1.151    cegger 	if (i == 8000)
    453  1.151    cegger 		return (1);
    454  1.151    cegger 
    455  1.151    cegger 	/* Enable access. */
    456  1.151    cegger 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    457  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    458  1.151    cegger 
    459  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    460  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    461  1.151    cegger 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    462  1.151    cegger 		DELAY(10);
    463  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    464  1.151    cegger 			DELAY(10);
    465  1.151    cegger 			break;
    466  1.151    cegger 		}
    467  1.151    cegger 	}
    468  1.151    cegger 
    469  1.151    cegger 	if (i == BGE_TIMEOUT * 10) {
    470  1.151    cegger 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    471  1.151    cegger 		return (1);
    472  1.151    cegger 	}
    473  1.151    cegger 
    474  1.151    cegger 	/* Get result. */
    475  1.151    cegger 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    476  1.151    cegger 
    477  1.151    cegger 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    478  1.151    cegger 
    479  1.151    cegger 	/* Disable access. */
    480  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    481  1.151    cegger 
    482  1.151    cegger 	/* Unlock. */
    483  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    484  1.151    cegger 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    485  1.151    cegger 
    486  1.151    cegger 	return (0);
    487  1.151    cegger }
    488  1.151    cegger 
    489  1.151    cegger /*
    490  1.151    cegger  * Read a sequence of bytes from NVRAM.
    491  1.151    cegger  */
    492  1.151    cegger static int
    493  1.151    cegger bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
    494  1.151    cegger {
    495  1.151    cegger 	int err = 0, i;
    496  1.151    cegger 	u_int8_t byte = 0;
    497  1.151    cegger 
    498  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    499  1.151    cegger 		return (1);
    500  1.151    cegger 
    501  1.151    cegger 	for (i = 0; i < cnt; i++) {
    502  1.151    cegger 		err = bge_nvram_getbyte(sc, off + i, &byte);
    503  1.151    cegger 		if (err)
    504  1.151    cegger 			break;
    505  1.151    cegger 		*(dest + i) = byte;
    506  1.151    cegger 	}
    507  1.151    cegger 
    508  1.151    cegger 	return (err ? 1 : 0);
    509  1.151    cegger }
    510  1.151    cegger 
    511  1.151    cegger 
    512    1.1      fvdl /*
    513    1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    514    1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    515    1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    516    1.1      fvdl  * access method.
    517    1.1      fvdl  */
    518  1.104   thorpej static u_int8_t
    519  1.104   thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    520    1.1      fvdl {
    521    1.1      fvdl 	int i;
    522    1.1      fvdl 	u_int32_t byte = 0;
    523    1.1      fvdl 
    524    1.1      fvdl 	/*
    525    1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    526    1.1      fvdl 	 * having to use the bitbang method.
    527    1.1      fvdl 	 */
    528    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    529    1.1      fvdl 
    530    1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    531    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    532    1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    533    1.1      fvdl 	DELAY(20);
    534    1.1      fvdl 
    535    1.1      fvdl 	/* Issue the read EEPROM command. */
    536    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    537    1.1      fvdl 
    538    1.1      fvdl 	/* Wait for completion */
    539    1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    540    1.1      fvdl 		DELAY(10);
    541    1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    542    1.1      fvdl 			break;
    543    1.1      fvdl 	}
    544    1.1      fvdl 
    545    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    546  1.138     joerg 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    547    1.1      fvdl 		return(0);
    548    1.1      fvdl 	}
    549    1.1      fvdl 
    550    1.1      fvdl 	/* Get result. */
    551    1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    552    1.1      fvdl 
    553    1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    554    1.1      fvdl 
    555    1.1      fvdl 	return(0);
    556    1.1      fvdl }
    557    1.1      fvdl 
    558    1.1      fvdl /*
    559    1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    560    1.1      fvdl  */
    561  1.104   thorpej static int
    562  1.126  christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    563    1.1      fvdl {
    564    1.1      fvdl 	int err = 0, i;
    565    1.1      fvdl 	u_int8_t byte = 0;
    566  1.126  christos 	char *dest = destv;
    567    1.1      fvdl 
    568    1.1      fvdl 	for (i = 0; i < cnt; i++) {
    569    1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    570    1.1      fvdl 		if (err)
    571    1.1      fvdl 			break;
    572    1.1      fvdl 		*(dest + i) = byte;
    573    1.1      fvdl 	}
    574    1.1      fvdl 
    575    1.1      fvdl 	return(err ? 1 : 0);
    576    1.1      fvdl }
    577    1.1      fvdl 
    578  1.104   thorpej static int
    579  1.104   thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
    580    1.1      fvdl {
    581  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    582    1.1      fvdl 	u_int32_t val;
    583   1.25  jonathan 	u_int32_t saved_autopoll;
    584    1.1      fvdl 	int i;
    585    1.1      fvdl 
    586   1.25  jonathan 	/*
    587   1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    588   1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    589   1.25  jonathan 	 */
    590   1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    591    1.1      fvdl 		return(0);
    592    1.1      fvdl 
    593   1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    594   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    595   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    596   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    597   1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    598   1.25  jonathan 		DELAY(40);
    599   1.25  jonathan 	}
    600   1.25  jonathan 
    601    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    602    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    603    1.1      fvdl 
    604    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    605    1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    606    1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    607    1.1      fvdl 			break;
    608    1.9   thorpej 		delay(10);
    609    1.1      fvdl 	}
    610    1.1      fvdl 
    611    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    612  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    613   1.29    itojun 		val = 0;
    614   1.25  jonathan 		goto done;
    615    1.1      fvdl 	}
    616    1.1      fvdl 
    617    1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    618    1.1      fvdl 
    619   1.25  jonathan done:
    620   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    621   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    622   1.25  jonathan 		DELAY(40);
    623   1.25  jonathan 	}
    624   1.29    itojun 
    625    1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    626    1.1      fvdl 		return(0);
    627    1.1      fvdl 
    628    1.1      fvdl 	return(val & 0xFFFF);
    629    1.1      fvdl }
    630    1.1      fvdl 
    631  1.104   thorpej static void
    632  1.104   thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    633    1.1      fvdl {
    634  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    635   1.29    itojun 	u_int32_t saved_autopoll;
    636   1.29    itojun 	int i;
    637    1.1      fvdl 
    638  1.151    cegger 	if (phy!=1) {
    639  1.151    cegger 		return;
    640  1.151    cegger 	}
    641  1.151    cegger 
    642  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    643  1.151    cegger 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    644  1.151    cegger 		return;
    645  1.151    cegger 	}
    646  1.151    cegger 
    647   1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    648   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    649   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    650   1.25  jonathan 		delay(40);
    651   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    652   1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    653   1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    654   1.25  jonathan 	}
    655   1.29    itojun 
    656    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    657    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    658    1.1      fvdl 
    659    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    660  1.151    cegger 		delay(10);
    661  1.151    cegger 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    662  1.151    cegger 			delay(5);
    663  1.151    cegger 			CSR_READ_4(sc, BGE_MI_COMM);
    664    1.1      fvdl 			break;
    665  1.151    cegger 		}
    666    1.1      fvdl 	}
    667    1.1      fvdl 
    668   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    669   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    670   1.25  jonathan 		delay(40);
    671   1.25  jonathan 	}
    672   1.29    itojun 
    673  1.138     joerg 	if (i == BGE_TIMEOUT)
    674  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    675    1.1      fvdl }
    676    1.1      fvdl 
    677  1.104   thorpej static void
    678  1.104   thorpej bge_miibus_statchg(device_t dev)
    679    1.1      fvdl {
    680  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    681    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    682    1.1      fvdl 
    683   1.69   thorpej 	/*
    684   1.69   thorpej 	 * Get flow control negotiation result.
    685   1.69   thorpej 	 */
    686   1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    687   1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    688   1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    689   1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    690   1.69   thorpej 	}
    691   1.69   thorpej 
    692    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    693    1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    694    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    695    1.1      fvdl 	} else {
    696    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    697    1.1      fvdl 	}
    698    1.1      fvdl 
    699    1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    700    1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    701    1.1      fvdl 	} else {
    702    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    703    1.1      fvdl 	}
    704   1.69   thorpej 
    705   1.69   thorpej 	/*
    706   1.69   thorpej 	 * 802.3x flow control
    707   1.69   thorpej 	 */
    708   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    709   1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    710   1.69   thorpej 	} else {
    711   1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    712   1.69   thorpej 	}
    713   1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    714   1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    715   1.69   thorpej 	} else {
    716   1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    717   1.69   thorpej 	}
    718    1.1      fvdl }
    719    1.1      fvdl 
    720    1.1      fvdl /*
    721   1.63  jonathan  * Update rx threshold levels to values in a particular slot
    722   1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    723   1.63  jonathan  */
    724  1.104   thorpej static void
    725   1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    726   1.63  jonathan {
    727   1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    728   1.63  jonathan 	int s;
    729   1.63  jonathan 
    730   1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    731   1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    732   1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    733   1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    734   1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    735   1.63  jonathan 	 */
    736   1.63  jonathan 	s = splnet();
    737   1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    738   1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    739   1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    740   1.63  jonathan 	splx(s);
    741   1.63  jonathan 
    742   1.63  jonathan 	 return;
    743   1.63  jonathan }
    744   1.63  jonathan 
    745   1.63  jonathan 
    746   1.63  jonathan /*
    747   1.63  jonathan  * Update Rx thresholds of all bge devices
    748   1.63  jonathan  */
    749  1.104   thorpej static void
    750   1.63  jonathan bge_update_all_threshes(int lvl)
    751   1.63  jonathan {
    752   1.63  jonathan 	struct ifnet *ifp;
    753   1.63  jonathan 	const char * const namebuf = "bge";
    754   1.63  jonathan 	int namelen;
    755   1.63  jonathan 
    756   1.63  jonathan 	if (lvl < 0)
    757   1.63  jonathan 		lvl = 0;
    758   1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    759   1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    760   1.87     perry 
    761   1.63  jonathan 	namelen = strlen(namebuf);
    762   1.63  jonathan 	/*
    763   1.63  jonathan 	 * Now search all the interfaces for this name/number
    764   1.63  jonathan 	 */
    765   1.81      matt 	IFNET_FOREACH(ifp) {
    766   1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    767   1.63  jonathan 		      continue;
    768   1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    769   1.63  jonathan 		if (bge_auto_thresh)
    770   1.67  jonathan 			bge_set_thresh(ifp, lvl);
    771   1.63  jonathan 	}
    772   1.63  jonathan }
    773   1.63  jonathan 
    774   1.63  jonathan /*
    775    1.1      fvdl  * Handle events that have triggered interrupts.
    776    1.1      fvdl  */
    777  1.104   thorpej static void
    778  1.116  christos bge_handle_events(struct bge_softc *sc)
    779    1.1      fvdl {
    780    1.1      fvdl 
    781    1.1      fvdl 	return;
    782    1.1      fvdl }
    783    1.1      fvdl 
    784    1.1      fvdl /*
    785    1.1      fvdl  * Memory management for jumbo frames.
    786    1.1      fvdl  */
    787    1.1      fvdl 
    788  1.104   thorpej static int
    789  1.104   thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
    790    1.1      fvdl {
    791  1.126  christos 	char *ptr, *kva;
    792    1.1      fvdl 	bus_dma_segment_t	seg;
    793    1.1      fvdl 	int		i, rseg, state, error;
    794    1.1      fvdl 	struct bge_jpool_entry   *entry;
    795    1.1      fvdl 
    796    1.1      fvdl 	state = error = 0;
    797    1.1      fvdl 
    798    1.1      fvdl 	/* Grab a big chunk o' storage. */
    799    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    800    1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    801  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    802    1.1      fvdl 		return ENOBUFS;
    803    1.1      fvdl 	}
    804    1.1      fvdl 
    805    1.1      fvdl 	state = 1;
    806  1.126  christos 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    807    1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    808  1.138     joerg 		aprint_error_dev(sc->bge_dev,
    809  1.138     joerg 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    810    1.1      fvdl 		error = ENOBUFS;
    811    1.1      fvdl 		goto out;
    812    1.1      fvdl 	}
    813    1.1      fvdl 
    814    1.1      fvdl 	state = 2;
    815    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    816    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    817  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    818    1.1      fvdl 		error = ENOBUFS;
    819    1.1      fvdl 		goto out;
    820    1.1      fvdl 	}
    821    1.1      fvdl 
    822    1.1      fvdl 	state = 3;
    823    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    824    1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    825  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    826    1.1      fvdl 		error = ENOBUFS;
    827    1.1      fvdl 		goto out;
    828    1.1      fvdl 	}
    829    1.1      fvdl 
    830    1.1      fvdl 	state = 4;
    831  1.126  christos 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    832   1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    833    1.1      fvdl 
    834    1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    835    1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    836    1.1      fvdl 
    837    1.1      fvdl 	/*
    838    1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    839    1.1      fvdl 	 * in an array.
    840    1.1      fvdl 	 */
    841    1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    842    1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    843    1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    844    1.1      fvdl 		ptr += BGE_JLEN;
    845    1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    846    1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    847    1.1      fvdl 		if (entry == NULL) {
    848  1.138     joerg 			aprint_error_dev(sc->bge_dev,
    849  1.138     joerg 			    "no memory for jumbo buffer queue!\n");
    850    1.1      fvdl 			error = ENOBUFS;
    851    1.1      fvdl 			goto out;
    852    1.1      fvdl 		}
    853    1.1      fvdl 		entry->slot = i;
    854    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    855    1.1      fvdl 				 entry, jpool_entries);
    856    1.1      fvdl 	}
    857    1.1      fvdl out:
    858    1.1      fvdl 	if (error != 0) {
    859    1.1      fvdl 		switch (state) {
    860    1.1      fvdl 		case 4:
    861    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    862    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    863    1.1      fvdl 		case 3:
    864    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    865    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    866    1.1      fvdl 		case 2:
    867    1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    868    1.1      fvdl 		case 1:
    869    1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    870    1.1      fvdl 			break;
    871    1.1      fvdl 		default:
    872    1.1      fvdl 			break;
    873    1.1      fvdl 		}
    874    1.1      fvdl 	}
    875    1.1      fvdl 
    876    1.1      fvdl 	return error;
    877    1.1      fvdl }
    878    1.1      fvdl 
    879    1.1      fvdl /*
    880    1.1      fvdl  * Allocate a jumbo buffer.
    881    1.1      fvdl  */
    882  1.104   thorpej static void *
    883  1.104   thorpej bge_jalloc(struct bge_softc *sc)
    884    1.1      fvdl {
    885    1.1      fvdl 	struct bge_jpool_entry   *entry;
    886    1.1      fvdl 
    887    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    888    1.1      fvdl 
    889    1.1      fvdl 	if (entry == NULL) {
    890  1.138     joerg 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    891    1.1      fvdl 		return(NULL);
    892    1.1      fvdl 	}
    893    1.1      fvdl 
    894    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    895    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    896    1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    897    1.1      fvdl }
    898    1.1      fvdl 
    899    1.1      fvdl /*
    900    1.1      fvdl  * Release a jumbo buffer.
    901    1.1      fvdl  */
    902  1.104   thorpej static void
    903  1.126  christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    904    1.1      fvdl {
    905    1.1      fvdl 	struct bge_jpool_entry *entry;
    906    1.1      fvdl 	struct bge_softc *sc;
    907    1.1      fvdl 	int i, s;
    908    1.1      fvdl 
    909    1.1      fvdl 	/* Extract the softc struct pointer. */
    910    1.1      fvdl 	sc = (struct bge_softc *)arg;
    911    1.1      fvdl 
    912    1.1      fvdl 	if (sc == NULL)
    913    1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    914    1.1      fvdl 
    915    1.1      fvdl 	/* calculate the slot this buffer belongs to */
    916    1.1      fvdl 
    917  1.126  christos 	i = ((char *)buf
    918  1.126  christos 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    919    1.1      fvdl 
    920    1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    921    1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    922    1.1      fvdl 
    923    1.1      fvdl 	s = splvm();
    924    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    925    1.1      fvdl 	if (entry == NULL)
    926    1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    927    1.1      fvdl 	entry->slot = i;
    928    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    929    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    930    1.1      fvdl 
    931    1.1      fvdl 	if (__predict_true(m != NULL))
    932  1.140        ad   		pool_cache_put(mb_cache, m);
    933    1.1      fvdl 	splx(s);
    934    1.1      fvdl }
    935    1.1      fvdl 
    936    1.1      fvdl 
    937    1.1      fvdl /*
    938    1.1      fvdl  * Intialize a standard receive ring descriptor.
    939    1.1      fvdl  */
    940  1.104   thorpej static int
    941  1.104   thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    942    1.1      fvdl {
    943    1.1      fvdl 	struct mbuf		*m_new = NULL;
    944    1.1      fvdl 	struct bge_rx_bd	*r;
    945    1.1      fvdl 	int			error;
    946    1.1      fvdl 
    947    1.1      fvdl 	if (dmamap == NULL) {
    948    1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    949    1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    950    1.1      fvdl 		if (error != 0)
    951    1.1      fvdl 			return error;
    952    1.1      fvdl 	}
    953    1.1      fvdl 
    954    1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    955    1.1      fvdl 
    956    1.1      fvdl 	if (m == NULL) {
    957    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    958    1.1      fvdl 		if (m_new == NULL) {
    959    1.1      fvdl 			return(ENOBUFS);
    960    1.1      fvdl 		}
    961    1.1      fvdl 
    962    1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    963    1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    964    1.1      fvdl 			m_freem(m_new);
    965    1.1      fvdl 			return(ENOBUFS);
    966    1.1      fvdl 		}
    967    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    968    1.1      fvdl 
    969    1.1      fvdl 	} else {
    970    1.1      fvdl 		m_new = m;
    971    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    972    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    973    1.1      fvdl 	}
    974  1.125    bouyer 	if (!sc->bge_rx_alignment_bug)
    975  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
    976  1.124    bouyer 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    977  1.124    bouyer 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    978  1.124    bouyer 		return(ENOBUFS);
    979  1.125    bouyer 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    980  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
    981    1.1      fvdl 
    982    1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    983    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    984    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    985   1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    986    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    987    1.1      fvdl 	r->bge_len = m_new->m_len;
    988    1.1      fvdl 	r->bge_idx = i;
    989    1.1      fvdl 
    990    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    991    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    992    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    993    1.1      fvdl 	    sizeof (struct bge_rx_bd),
    994    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    995    1.1      fvdl 
    996    1.1      fvdl 	return(0);
    997    1.1      fvdl }
    998    1.1      fvdl 
    999    1.1      fvdl /*
   1000    1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
   1001    1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
   1002    1.1      fvdl  */
   1003  1.104   thorpej static int
   1004  1.104   thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1005    1.1      fvdl {
   1006    1.1      fvdl 	struct mbuf *m_new = NULL;
   1007    1.1      fvdl 	struct bge_rx_bd *r;
   1008  1.126  christos 	void *buf = NULL;
   1009    1.1      fvdl 
   1010    1.1      fvdl 	if (m == NULL) {
   1011    1.1      fvdl 
   1012    1.1      fvdl 		/* Allocate the mbuf. */
   1013    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1014    1.1      fvdl 		if (m_new == NULL) {
   1015    1.1      fvdl 			return(ENOBUFS);
   1016    1.1      fvdl 		}
   1017    1.1      fvdl 
   1018    1.1      fvdl 		/* Allocate the jumbo buffer */
   1019    1.1      fvdl 		buf = bge_jalloc(sc);
   1020    1.1      fvdl 		if (buf == NULL) {
   1021    1.1      fvdl 			m_freem(m_new);
   1022  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1023  1.138     joerg 			    "jumbo allocation failed -- packet dropped!\n");
   1024    1.1      fvdl 			return(ENOBUFS);
   1025    1.1      fvdl 		}
   1026    1.1      fvdl 
   1027    1.1      fvdl 		/* Attach the buffer to the mbuf. */
   1028    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1029    1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1030    1.1      fvdl 		    bge_jfree, sc);
   1031   1.74      yamt 		m_new->m_flags |= M_EXT_RW;
   1032    1.1      fvdl 	} else {
   1033    1.1      fvdl 		m_new = m;
   1034  1.124    bouyer 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1035    1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1036    1.1      fvdl 	}
   1037  1.125    bouyer 	if (!sc->bge_rx_alignment_bug)
   1038  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
   1039  1.124    bouyer 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1040  1.126  christos 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1041  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
   1042    1.1      fvdl 	/* Set up the descriptor. */
   1043    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1044    1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1045    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1046    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1047    1.1      fvdl 	r->bge_len = m_new->m_len;
   1048    1.1      fvdl 	r->bge_idx = i;
   1049    1.1      fvdl 
   1050    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1051    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1052    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1053    1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1054    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1055    1.1      fvdl 
   1056    1.1      fvdl 	return(0);
   1057    1.1      fvdl }
   1058    1.1      fvdl 
   1059    1.1      fvdl /*
   1060    1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1061    1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1062    1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1063    1.1      fvdl  * the NIC.
   1064    1.1      fvdl  */
   1065  1.104   thorpej static int
   1066  1.104   thorpej bge_init_rx_ring_std(struct bge_softc *sc)
   1067    1.1      fvdl {
   1068    1.1      fvdl 	int i;
   1069    1.1      fvdl 
   1070    1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
   1071    1.1      fvdl 		return 0;
   1072    1.1      fvdl 
   1073    1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
   1074    1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1075    1.1      fvdl 			return(ENOBUFS);
   1076    1.1      fvdl 	}
   1077    1.1      fvdl 
   1078    1.1      fvdl 	sc->bge_std = i - 1;
   1079  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1080    1.1      fvdl 
   1081    1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
   1082    1.1      fvdl 
   1083    1.1      fvdl 	return(0);
   1084    1.1      fvdl }
   1085    1.1      fvdl 
   1086  1.104   thorpej static void
   1087  1.104   thorpej bge_free_rx_ring_std(struct bge_softc *sc)
   1088    1.1      fvdl {
   1089    1.1      fvdl 	int i;
   1090    1.1      fvdl 
   1091    1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1092    1.1      fvdl 		return;
   1093    1.1      fvdl 
   1094    1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1095    1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1096    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1097    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1098   1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
   1099    1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
   1100    1.1      fvdl 		}
   1101    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1102    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1103    1.1      fvdl 	}
   1104    1.1      fvdl 
   1105    1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1106    1.1      fvdl }
   1107    1.1      fvdl 
   1108  1.104   thorpej static int
   1109  1.104   thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1110    1.1      fvdl {
   1111    1.1      fvdl 	int i;
   1112   1.34  jonathan 	volatile struct bge_rcb *rcb;
   1113    1.1      fvdl 
   1114   1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1115   1.59    martin 		return 0;
   1116   1.59    martin 
   1117    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1118    1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1119    1.1      fvdl 			return(ENOBUFS);
   1120    1.1      fvdl 	};
   1121    1.1      fvdl 
   1122    1.1      fvdl 	sc->bge_jumbo = i - 1;
   1123   1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1124    1.1      fvdl 
   1125    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1126   1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1127   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1128    1.1      fvdl 
   1129  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1130    1.1      fvdl 
   1131    1.1      fvdl 	return(0);
   1132    1.1      fvdl }
   1133    1.1      fvdl 
   1134  1.104   thorpej static void
   1135  1.104   thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1136    1.1      fvdl {
   1137    1.1      fvdl 	int i;
   1138    1.1      fvdl 
   1139    1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1140    1.1      fvdl 		return;
   1141    1.1      fvdl 
   1142    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1143    1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1144    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1145    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1146    1.1      fvdl 		}
   1147    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1148    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1149    1.1      fvdl 	}
   1150    1.1      fvdl 
   1151    1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1152    1.1      fvdl }
   1153    1.1      fvdl 
   1154  1.104   thorpej static void
   1155  1.104   thorpej bge_free_tx_ring(struct bge_softc *sc)
   1156    1.1      fvdl {
   1157    1.1      fvdl 	int i, freed;
   1158    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1159    1.1      fvdl 
   1160    1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1161    1.1      fvdl 		return;
   1162    1.1      fvdl 
   1163    1.1      fvdl 	freed = 0;
   1164    1.1      fvdl 
   1165    1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1166    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1167    1.1      fvdl 			freed++;
   1168    1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1169    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1170    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1171    1.1      fvdl 					    link);
   1172    1.1      fvdl 			sc->txdma[i] = 0;
   1173    1.1      fvdl 		}
   1174    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1175    1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1176    1.1      fvdl 	}
   1177    1.1      fvdl 
   1178    1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1179    1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1180    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1181    1.1      fvdl 		free(dma, M_DEVBUF);
   1182    1.1      fvdl 	}
   1183    1.1      fvdl 
   1184    1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1185    1.1      fvdl }
   1186    1.1      fvdl 
   1187  1.104   thorpej static int
   1188  1.104   thorpej bge_init_tx_ring(struct bge_softc *sc)
   1189    1.1      fvdl {
   1190    1.1      fvdl 	int i;
   1191    1.1      fvdl 	bus_dmamap_t dmamap;
   1192    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1193    1.1      fvdl 
   1194    1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1195    1.1      fvdl 		return 0;
   1196    1.1      fvdl 
   1197    1.1      fvdl 	sc->bge_txcnt = 0;
   1198    1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1199   1.94  jonathan 
   1200   1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1201   1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1202  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1203   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1204  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1205   1.25  jonathan 
   1206   1.94  jonathan 	/* NIC-memory send ring  not used; initialize to zero. */
   1207  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1208   1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1209  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1210    1.1      fvdl 
   1211    1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1212    1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1213   1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1214    1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1215    1.1      fvdl 		    &dmamap))
   1216    1.1      fvdl 			return(ENOBUFS);
   1217    1.1      fvdl 		if (dmamap == NULL)
   1218    1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1219    1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1220    1.1      fvdl 		if (dma == NULL) {
   1221  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1222  1.138     joerg 			    "can't alloc txdmamap_pool_entry\n");
   1223    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1224    1.1      fvdl 			return (ENOMEM);
   1225    1.1      fvdl 		}
   1226    1.1      fvdl 		dma->dmamap = dmamap;
   1227    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1228    1.1      fvdl 	}
   1229    1.1      fvdl 
   1230    1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1231    1.1      fvdl 
   1232    1.1      fvdl 	return(0);
   1233    1.1      fvdl }
   1234    1.1      fvdl 
   1235  1.104   thorpej static void
   1236  1.104   thorpej bge_setmulti(struct bge_softc *sc)
   1237    1.1      fvdl {
   1238    1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1239    1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1240    1.1      fvdl 	struct ether_multi	*enm;
   1241    1.1      fvdl 	struct ether_multistep  step;
   1242    1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1243    1.1      fvdl 	u_int32_t		h;
   1244    1.1      fvdl 	int			i;
   1245    1.1      fvdl 
   1246   1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1247   1.13   thorpej 		goto allmulti;
   1248    1.1      fvdl 
   1249    1.1      fvdl 	/* Now program new ones. */
   1250    1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1251    1.1      fvdl 	while (enm != NULL) {
   1252   1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1253   1.13   thorpej 			/*
   1254   1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1255   1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1256   1.13   thorpej 			 * trying to set only those filter bits needed to match
   1257   1.13   thorpej 			 * the range.  (At this time, the only use of address
   1258   1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1259   1.13   thorpej 			 * range is big enough to require all bits set.)
   1260   1.13   thorpej 			 */
   1261   1.13   thorpej 			goto allmulti;
   1262   1.13   thorpej 		}
   1263   1.13   thorpej 
   1264   1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1265   1.13   thorpej 
   1266   1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1267   1.13   thorpej 		h &= 0x7f;
   1268   1.13   thorpej 
   1269    1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1270    1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1271    1.1      fvdl 	}
   1272    1.1      fvdl 
   1273   1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1274   1.13   thorpej 	goto setit;
   1275   1.13   thorpej 
   1276   1.13   thorpej  allmulti:
   1277   1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1278   1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1279   1.13   thorpej 
   1280   1.13   thorpej  setit:
   1281    1.1      fvdl 	for (i = 0; i < 4; i++)
   1282    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1283    1.1      fvdl }
   1284    1.1      fvdl 
   1285   1.24      matt const int bge_swapbits[] = {
   1286    1.1      fvdl 	0,
   1287    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1288    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1289    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1290    1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1291    1.1      fvdl 
   1292    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1293    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1294    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1295    1.1      fvdl 
   1296    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1297    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1298    1.1      fvdl 
   1299    1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1300    1.1      fvdl 
   1301    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1302    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1303    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1304    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1305    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1306    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1307    1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1308    1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1309    1.1      fvdl 
   1310    1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1311    1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1312    1.1      fvdl };
   1313    1.1      fvdl 
   1314    1.1      fvdl int bge_swapindex = 0;
   1315    1.1      fvdl 
   1316    1.1      fvdl /*
   1317    1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1318    1.1      fvdl  * self-test results.
   1319    1.1      fvdl  */
   1320  1.104   thorpej static int
   1321  1.104   thorpej bge_chipinit(struct bge_softc *sc)
   1322    1.1      fvdl {
   1323    1.1      fvdl 	u_int32_t		cachesize;
   1324    1.1      fvdl 	int			i;
   1325   1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1326    1.1      fvdl 
   1327    1.1      fvdl 
   1328    1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1329  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1330    1.1      fvdl 	    BGE_INIT);
   1331    1.1      fvdl 
   1332   1.25  jonathan 	/* Set power state to D0. */
   1333   1.25  jonathan 	bge_setpowerstate(sc, 0);
   1334   1.87     perry 
   1335    1.1      fvdl 	/*
   1336    1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1337    1.1      fvdl 	 * self-tests passed.
   1338    1.1      fvdl 	 */
   1339    1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1340  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1341  1.138     joerg 		    "RX CPU self-diagnostics failed!\n");
   1342    1.1      fvdl 		return(ENODEV);
   1343    1.1      fvdl 	}
   1344    1.1      fvdl 
   1345    1.1      fvdl 	/* Clear the MAC control register */
   1346    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1347    1.1      fvdl 
   1348    1.1      fvdl 	/*
   1349    1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1350    1.1      fvdl 	 * internal memory.
   1351    1.1      fvdl 	 */
   1352    1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1353    1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1354  1.141  jmcneill 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1355    1.1      fvdl 
   1356    1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1357    1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1358  1.141  jmcneill 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1359    1.1      fvdl 
   1360    1.1      fvdl 	/* Set up the PCI DMA control register. */
   1361   1.76      cube 	if (sc->bge_pcie) {
   1362   1.95  jonathan 	  u_int32_t device_ctl;
   1363   1.95  jonathan 
   1364   1.76      cube 		/* From FreeBSD */
   1365   1.76      cube 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1366  1.138     joerg 		    device_xname(sc->bge_dev)));
   1367   1.76      cube 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1368   1.76      cube 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1369   1.76      cube 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1370   1.95  jonathan 
   1371   1.95  jonathan 		/* jonathan: alternative from Linux driver */
   1372  1.107     blymn #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1373   1.95  jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1374   1.95  jonathan 
   1375   1.95  jonathan 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1376  1.141  jmcneill 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1377   1.95  jonathan 					   BGE_PCI_CONF_DEV_CTRL);
   1378  1.138     joerg 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1379   1.95  jonathan 
   1380   1.95  jonathan 		if ((device_ctl & 0x00e0) && 0) {
   1381   1.95  jonathan 			/*
   1382   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org:
   1383   1.95  jonathan 			 * This clause is exactly what the Broadcom-supplied
   1384   1.95  jonathan 			 * Linux does; but given overall register programming
   1385   1.95  jonathan 			 * by if_bge(4), this larger DMA-write watermark
   1386   1.95  jonathan 			 * value causes bcm5721 chips to totally wedge.
   1387   1.95  jonathan 			 */
   1388   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1389   1.95  jonathan 		} else {
   1390   1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1391   1.95  jonathan 		}
   1392  1.141  jmcneill 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
   1393   1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1394   1.25  jonathan 		/* Conventional PCI bus */
   1395  1.138     joerg 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1396  1.138     joerg 		    device_xname(sc->bge_dev)));
   1397   1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1398   1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1399   1.44   hannken 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1400   1.44   hannken 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1401   1.44   hannken 			dma_rw_ctl |= 0x0F;
   1402   1.44   hannken 		}
   1403   1.25  jonathan 	} else {
   1404  1.138     joerg 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1405  1.138     joerg 		    device_xname(sc->bge_dev)));
   1406   1.25  jonathan 		/* PCI-X bus */
   1407   1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1408   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1409   1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1410   1.25  jonathan 		    (0x0F);
   1411   1.25  jonathan 		/*
   1412   1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1413   1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1414   1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1415   1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1416   1.25  jonathan 		 */
   1417   1.57  jonathan 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1418   1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1419   1.25  jonathan 			  /* should be 0x1f0000 */
   1420   1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1421   1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1422   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1423   1.25  jonathan 		}
   1424   1.57  jonathan 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1425   1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1426   1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1427   1.25  jonathan 		}
   1428   1.99  jonathan 		else if (BGE_IS_5714_FAMILY(sc)) {
   1429   1.99  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1430   1.99  jonathan 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1431   1.99  jonathan 			/* XXX magic values, Broadcom-supplied Linux driver */
   1432   1.99  jonathan 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1433   1.99  jonathan 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1434   1.99  jonathan 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1435   1.99  jonathan 			else
   1436   1.99  jonathan 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1437   1.99  jonathan 		}
   1438   1.25  jonathan 	}
   1439   1.25  jonathan 
   1440  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1441    1.1      fvdl 
   1442    1.1      fvdl 	/*
   1443    1.1      fvdl 	 * Set up general mode register.
   1444    1.1      fvdl 	 */
   1445    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1446    1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1447   1.54      fvdl 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1448    1.1      fvdl 
   1449    1.1      fvdl 	/* Get cache line size. */
   1450  1.141  jmcneill 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1451    1.1      fvdl 
   1452    1.1      fvdl 	/*
   1453    1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1454    1.1      fvdl 	 */
   1455  1.141  jmcneill 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1456    1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1457    1.1      fvdl 		switch(cachesize) {
   1458    1.1      fvdl 		case 1:
   1459  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1460    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1461    1.1      fvdl 			break;
   1462    1.1      fvdl 		case 2:
   1463  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1464    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1465    1.1      fvdl 			break;
   1466    1.1      fvdl 		case 4:
   1467  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1468    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1469    1.1      fvdl 			break;
   1470    1.1      fvdl 		case 8:
   1471  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1472    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1473    1.1      fvdl 			break;
   1474    1.1      fvdl 		case 16:
   1475  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1476    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1477    1.1      fvdl 			break;
   1478    1.1      fvdl 		case 32:
   1479  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1480    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1481    1.1      fvdl 			break;
   1482    1.1      fvdl 		case 64:
   1483  1.141  jmcneill 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1484    1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1485    1.1      fvdl 			break;
   1486    1.1      fvdl 		default:
   1487    1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1488    1.1      fvdl #if 0
   1489    1.1      fvdl 			if (bootverbose)
   1490  1.138     joerg 				aprint_error_dev(sc->bge_dev,
   1491  1.138     joerg 				    "cache line size %d not supported "
   1492  1.138     joerg 				    "disabling PCI MWI\n",
   1493    1.1      fvdl #endif
   1494  1.141  jmcneill 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1495    1.1      fvdl 			    PCIM_CMD_MWIEN);
   1496    1.1      fvdl 			break;
   1497    1.1      fvdl 		}
   1498    1.1      fvdl 	}
   1499    1.1      fvdl 
   1500   1.25  jonathan 	/*
   1501   1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1502   1.25  jonathan 	 * properly by these devices.
   1503   1.25  jonathan 	 */
   1504  1.141  jmcneill 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1505   1.25  jonathan 
   1506   1.25  jonathan 
   1507    1.1      fvdl #ifdef __brokenalpha__
   1508    1.1      fvdl 	/*
   1509    1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1510    1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1511    1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1512    1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1513    1.1      fvdl 	 */
   1514    1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1515    1.1      fvdl #endif
   1516    1.1      fvdl 
   1517   1.33   tsutsui 	/* Set the timer prescaler (always 66MHz) */
   1518    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1519    1.1      fvdl 
   1520    1.1      fvdl 	return(0);
   1521    1.1      fvdl }
   1522    1.1      fvdl 
   1523  1.104   thorpej static int
   1524  1.104   thorpej bge_blockinit(struct bge_softc *sc)
   1525    1.1      fvdl {
   1526   1.34  jonathan 	volatile struct bge_rcb		*rcb;
   1527    1.1      fvdl 	bus_size_t		rcb_addr;
   1528    1.1      fvdl 	int			i;
   1529    1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1530    1.1      fvdl 	bge_hostaddr		taddr;
   1531    1.1      fvdl 
   1532    1.1      fvdl 	/*
   1533    1.1      fvdl 	 * Initialize the memory window pointer register so that
   1534    1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1535    1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1536    1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1537    1.1      fvdl 	 */
   1538    1.1      fvdl 
   1539  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1540    1.1      fvdl 
   1541    1.1      fvdl 	/* Configure mbuf memory pool */
   1542   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1543   1.44   hannken 		if (sc->bge_extram) {
   1544   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1545   1.44   hannken 			    BGE_EXT_SSRAM);
   1546   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1547   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1548   1.54      fvdl 			else
   1549   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1550   1.44   hannken 		} else {
   1551   1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1552   1.44   hannken 			    BGE_BUFFPOOL_1);
   1553   1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1554   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1555   1.54      fvdl 			else
   1556   1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1557   1.44   hannken 		}
   1558   1.44   hannken 
   1559   1.44   hannken 		/* Configure DMA resource pool */
   1560   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1561   1.44   hannken 		    BGE_DMA_DESCRIPTORS);
   1562   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1563    1.1      fvdl 	}
   1564    1.1      fvdl 
   1565    1.1      fvdl 	/* Configure mbuf pool watermarks */
   1566   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1567    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1568    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1569    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1570   1.25  jonathan #else
   1571   1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1572   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1573   1.71   thorpej 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1574   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1575   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1576   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1577  1.151    cegger 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1578  1.151    cegger 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1579  1.151    cegger 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1580  1.151    cegger 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1581   1.71   thorpej 		} else {
   1582   1.71   thorpej 			/* Values from Linux driver... */
   1583   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1584   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1585   1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1586   1.71   thorpej 		}
   1587   1.44   hannken 	} else {
   1588   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1589   1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1590   1.71   thorpej 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1591   1.44   hannken 	}
   1592   1.25  jonathan #endif
   1593    1.1      fvdl 
   1594    1.1      fvdl 	/* Configure DMA resource watermarks */
   1595    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1596    1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1597    1.1      fvdl 
   1598    1.1      fvdl 	/* Enable buffer manager */
   1599  1.151    cegger 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1600  1.151    cegger 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1601  1.151    cegger 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1602   1.44   hannken 
   1603  1.151    cegger 		/* Poll for buffer manager start indication */
   1604  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1605  1.151    cegger 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1606  1.151    cegger 				break;
   1607  1.151    cegger 			DELAY(10);
   1608  1.151    cegger 		}
   1609    1.1      fvdl 
   1610  1.151    cegger 		if (i == BGE_TIMEOUT) {
   1611  1.151    cegger 			aprint_error_dev(sc->bge_dev,
   1612  1.151    cegger 			    "buffer manager failed to start\n");
   1613  1.151    cegger 			return(ENXIO);
   1614  1.151    cegger 		}
   1615    1.1      fvdl 	}
   1616    1.1      fvdl 
   1617    1.1      fvdl 	/* Enable flow-through queues */
   1618    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1619    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1620    1.1      fvdl 
   1621    1.1      fvdl 	/* Wait until queue initialization is complete */
   1622    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1623    1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1624    1.1      fvdl 			break;
   1625    1.1      fvdl 		DELAY(10);
   1626    1.1      fvdl 	}
   1627    1.1      fvdl 
   1628    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1629  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1630  1.138     joerg 		    "flow-through queue init failed\n");
   1631    1.1      fvdl 		return(ENXIO);
   1632    1.1      fvdl 	}
   1633    1.1      fvdl 
   1634    1.1      fvdl 	/* Initialize the standard RX ring control block */
   1635    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1636    1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1637    1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1638   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1639   1.44   hannken 		rcb->bge_maxlen_flags =
   1640   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1641   1.44   hannken 	} else {
   1642   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1643   1.44   hannken 	}
   1644    1.1      fvdl 	if (sc->bge_extram)
   1645    1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1646    1.1      fvdl 	else
   1647    1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1648   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1649   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1650   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1651   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1652    1.1      fvdl 
   1653   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1654   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1655   1.44   hannken 	} else {
   1656   1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1657   1.44   hannken 	}
   1658   1.44   hannken 
   1659    1.1      fvdl 	/*
   1660    1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1661    1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1662    1.1      fvdl 	 * field until we're actually ready to start
   1663    1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1664    1.1      fvdl 	 * high enough to require it).
   1665    1.1      fvdl 	 */
   1666   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1667   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1668   1.44   hannken 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1669   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1670   1.87     perry 		rcb->bge_maxlen_flags =
   1671   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1672   1.44   hannken 			BGE_RCB_FLAG_RING_DISABLED);
   1673   1.44   hannken 		if (sc->bge_extram)
   1674   1.44   hannken 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1675   1.44   hannken 		else
   1676   1.44   hannken 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1677   1.87     perry 
   1678   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1679   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_hi);
   1680   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1681   1.44   hannken 		    rcb->bge_hostaddr.bge_addr_lo);
   1682   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1683   1.44   hannken 		    rcb->bge_maxlen_flags);
   1684   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1685   1.44   hannken 
   1686   1.44   hannken 		/* Set up dummy disabled mini ring RCB */
   1687   1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1688   1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1689   1.44   hannken 		    BGE_RCB_FLAG_RING_DISABLED);
   1690   1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1691   1.44   hannken 		    rcb->bge_maxlen_flags);
   1692    1.1      fvdl 
   1693   1.44   hannken 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1694   1.44   hannken 		    offsetof(struct bge_ring_data, bge_info),
   1695   1.44   hannken 		    sizeof (struct bge_gib),
   1696   1.44   hannken 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1697   1.44   hannken 	}
   1698    1.1      fvdl 
   1699    1.1      fvdl 	/*
   1700  1.133     markd 	 * Set the BD ring replenish thresholds. The recommended
   1701    1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1702    1.1      fvdl 	 * each ring.
   1703    1.1      fvdl 	 */
   1704  1.133     markd 	i = BGE_STD_RX_RING_CNT / 8;
   1705  1.133     markd 
   1706  1.133     markd 	/*
   1707  1.133     markd  	 * Use a value of 8 for the following chips to workaround HW errata.
   1708  1.133     markd 	 * Some of these chips have been added based on empirical
   1709  1.133     markd 	 * evidence (they don't work unless this is done).
   1710  1.133     markd 	 */
   1711  1.133     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1712  1.133     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1713  1.133     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1714  1.151    cegger 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1715  1.151    cegger 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1716  1.133     markd 		i = 8;
   1717  1.133     markd 
   1718  1.133     markd 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1719    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1720    1.1      fvdl 
   1721    1.1      fvdl 	/*
   1722    1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1723    1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1724    1.1      fvdl 	 * These are located in NIC memory.
   1725    1.1      fvdl 	 */
   1726    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1727    1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1728   1.34  jonathan 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1729   1.34  jonathan 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1730    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1731    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1732    1.1      fvdl 	}
   1733    1.1      fvdl 
   1734    1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1735    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1736    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1737    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1738    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1739    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1740    1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1741   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1742   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1743   1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1744   1.44   hannken 	}
   1745    1.1      fvdl 
   1746    1.1      fvdl 	/* Disable all unused RX return rings */
   1747    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1748    1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1749    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1750    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1751   1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1752   1.44   hannken 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1753   1.34  jonathan                                      BGE_RCB_FLAG_RING_DISABLED));
   1754    1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1755  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1756    1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1757    1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1758    1.1      fvdl 	}
   1759    1.1      fvdl 
   1760    1.1      fvdl 	/* Initialize RX ring indexes */
   1761  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1762  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1763  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1764    1.1      fvdl 
   1765    1.1      fvdl 	/*
   1766    1.1      fvdl 	 * Set up RX return ring 0
   1767    1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1768    1.1      fvdl 	 * The return rings live entirely within the host, so the
   1769    1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1770    1.1      fvdl 	 */
   1771    1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1772    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1773    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1774    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1775    1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1776   1.34  jonathan 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1777   1.44   hannken 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1778    1.1      fvdl 
   1779    1.1      fvdl 	/* Set random backoff seed for TX */
   1780    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1781  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1782  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1783  1.136    dyoung 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1784    1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1785    1.1      fvdl 
   1786    1.1      fvdl 	/* Set inter-packet gap */
   1787    1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1788    1.1      fvdl 
   1789    1.1      fvdl 	/*
   1790    1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1791    1.1      fvdl 	 * any RX rules.
   1792    1.1      fvdl 	 */
   1793    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1794    1.1      fvdl 
   1795    1.1      fvdl 	/*
   1796    1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1797    1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1798    1.1      fvdl 	 */
   1799    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1800    1.1      fvdl 
   1801    1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1802    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1803    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1804    1.1      fvdl 
   1805    1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1806    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1807    1.1      fvdl 
   1808    1.1      fvdl 	/* Poll to make sure it's shut down. */
   1809    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1810    1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1811    1.1      fvdl 			break;
   1812    1.1      fvdl 		DELAY(10);
   1813    1.1      fvdl 	}
   1814    1.1      fvdl 
   1815    1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1816  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1817  1.138     joerg 		    "host coalescing engine failed to idle\n");
   1818    1.1      fvdl 		return(ENXIO);
   1819    1.1      fvdl 	}
   1820    1.1      fvdl 
   1821    1.1      fvdl 	/* Set up host coalescing defaults */
   1822    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1823    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1824    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1825    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1826   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1827   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1828   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1829   1.44   hannken 	}
   1830    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1831    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1832    1.1      fvdl 
   1833    1.1      fvdl 	/* Set up address of statistics block */
   1834   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1835   1.44   hannken 		bge_set_hostaddr(&taddr,
   1836   1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1837   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1838   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1839   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1840   1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1841   1.44   hannken 	}
   1842    1.1      fvdl 
   1843    1.1      fvdl 	/* Set up address of status block */
   1844    1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1845    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1846    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1847    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1848    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1849    1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1850    1.1      fvdl 
   1851    1.1      fvdl 	/* Turn on host coalescing state machine */
   1852    1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1853    1.1      fvdl 
   1854    1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1855    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1856    1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1857    1.1      fvdl 
   1858    1.1      fvdl 	/* Turn on RX list placement state machine */
   1859    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1860    1.1      fvdl 
   1861    1.1      fvdl 	/* Turn on RX list selector state machine. */
   1862   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1863   1.44   hannken 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1864   1.44   hannken 	}
   1865    1.1      fvdl 
   1866    1.1      fvdl 	/* Turn on DMA, clear stats */
   1867    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1868    1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1869    1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1870    1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1871    1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1872    1.1      fvdl 
   1873    1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1874   1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1875    1.1      fvdl 
   1876    1.1      fvdl #ifdef notdef
   1877    1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1878    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1879    1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1880    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1881    1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1882    1.1      fvdl #endif
   1883    1.1      fvdl 
   1884   1.25  jonathan #if defined(not_quite_yet)
   1885   1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1886   1.51      fvdl 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1887   1.87     perry 		sc->bge_local_ctrl_reg |=
   1888   1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1889   1.25  jonathan 	}
   1890   1.87     perry #endif
   1891   1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1892   1.25  jonathan 
   1893    1.1      fvdl 	/* Turn on DMA completion state machine */
   1894   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1895   1.44   hannken 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1896   1.44   hannken 	}
   1897    1.1      fvdl 
   1898    1.1      fvdl 	/* Turn on write DMA state machine */
   1899  1.133     markd 	{
   1900  1.133     markd 		uint32_t bge_wdma_mode =
   1901  1.133     markd 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1902  1.133     markd 
   1903  1.133     markd 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1904  1.133     markd 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1905  1.133     markd 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1906  1.133     markd 		  bge_wdma_mode |= (1 << 29);
   1907  1.133     markd 
   1908  1.133     markd 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1909  1.133     markd         }
   1910    1.1      fvdl 
   1911    1.1      fvdl 	/* Turn on read DMA state machine */
   1912   1.95  jonathan 	{
   1913   1.95  jonathan 		uint32_t dma_read_modebits;
   1914   1.95  jonathan 
   1915   1.95  jonathan 		dma_read_modebits =
   1916   1.95  jonathan 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1917   1.95  jonathan 
   1918   1.95  jonathan 		if (sc->bge_pcie && 0) {
   1919   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1920   1.95  jonathan 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1921   1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1922   1.95  jonathan 		}
   1923   1.95  jonathan 
   1924   1.95  jonathan 		/* XXX broadcom-supplied linux driver; undocumented */
   1925   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1926   1.95  jonathan  			/*
   1927   1.95  jonathan 			 * XXX: magic values.
   1928   1.95  jonathan 			 * From Broadcom-supplied Linux driver;  apparently
   1929   1.95  jonathan 			 * required to workaround a DMA bug affecting TSO
   1930   1.95  jonathan 			 * on bcm575x/bcm5721?
   1931   1.95  jonathan 			 */
   1932   1.95  jonathan 			dma_read_modebits |= (1 << 27);
   1933   1.95  jonathan 		}
   1934   1.95  jonathan 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1935   1.95  jonathan 	}
   1936    1.1      fvdl 
   1937    1.1      fvdl 	/* Turn on RX data completion state machine */
   1938    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1939    1.1      fvdl 
   1940    1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1941    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1942    1.1      fvdl 
   1943    1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1944    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1945    1.1      fvdl 
   1946    1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1947   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1948   1.44   hannken 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1949   1.44   hannken 	}
   1950    1.1      fvdl 
   1951    1.1      fvdl 	/* Turn on send BD completion state machine */
   1952    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1953    1.1      fvdl 
   1954    1.1      fvdl 	/* Turn on send data completion state machine */
   1955    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1956    1.1      fvdl 
   1957    1.1      fvdl 	/* Turn on send data initiator state machine */
   1958   1.95  jonathan 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1959   1.95  jonathan 		/* XXX: magic value from Linux driver */
   1960   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1961   1.95  jonathan 	} else {
   1962   1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1963   1.95  jonathan 	}
   1964    1.1      fvdl 
   1965    1.1      fvdl 	/* Turn on send BD initiator state machine */
   1966    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1967    1.1      fvdl 
   1968    1.1      fvdl 	/* Turn on send BD selector state machine */
   1969    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1970    1.1      fvdl 
   1971    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1972    1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1973    1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1974    1.1      fvdl 
   1975    1.1      fvdl 	/* ack/clear link change events */
   1976    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1977    1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1978    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1979    1.1      fvdl 
   1980    1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1981    1.1      fvdl 	if (sc->bge_tbi) {
   1982    1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1983    1.1      fvdl  	} else {
   1984    1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1985   1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1986    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1987    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1988    1.1      fvdl 	}
   1989    1.1      fvdl 
   1990    1.1      fvdl 	/* Enable link state change attentions. */
   1991    1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1992    1.1      fvdl 
   1993    1.1      fvdl 	return(0);
   1994    1.1      fvdl }
   1995    1.1      fvdl 
   1996   1.16   thorpej static const struct bge_revision {
   1997   1.51      fvdl 	uint32_t		br_chipid;
   1998   1.16   thorpej 	uint32_t		br_quirks;
   1999   1.16   thorpej 	const char		*br_name;
   2000   1.16   thorpej } bge_revisions[] = {
   2001   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A0,
   2002   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2003   1.16   thorpej 	  "BCM5700 A0" },
   2004   1.16   thorpej 
   2005   1.51      fvdl 	{ BGE_CHIPID_BCM5700_A1,
   2006   1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2007   1.16   thorpej 	  "BCM5700 A1" },
   2008   1.16   thorpej 
   2009   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B0,
   2010   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   2011   1.16   thorpej 	  "BCM5700 B0" },
   2012   1.16   thorpej 
   2013   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B1,
   2014   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2015   1.16   thorpej 	  "BCM5700 B1" },
   2016   1.16   thorpej 
   2017   1.51      fvdl 	{ BGE_CHIPID_BCM5700_B2,
   2018   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2019   1.16   thorpej 	  "BCM5700 B2" },
   2020   1.16   thorpej 
   2021  1.120   tsutsui 	{ BGE_CHIPID_BCM5700_B3,
   2022  1.120   tsutsui 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2023  1.120   tsutsui 	  "BCM5700 B3" },
   2024  1.120   tsutsui 
   2025   1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   2026   1.51      fvdl 	{ BGE_CHIPID_BCM5700_ALTIMA,
   2027   1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2028   1.16   thorpej 	  "BCM5700 Altima" },
   2029   1.16   thorpej 
   2030   1.51      fvdl 	{ BGE_CHIPID_BCM5700_C0,
   2031   1.16   thorpej 	  0,
   2032   1.16   thorpej 	  "BCM5700 C0" },
   2033   1.16   thorpej 
   2034   1.51      fvdl 	{ BGE_CHIPID_BCM5701_A0,
   2035   1.37  jonathan 	  0, /*XXX really, just not known */
   2036   1.16   thorpej 	  "BCM5701 A0" },
   2037   1.16   thorpej 
   2038   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B0,
   2039   1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2040   1.16   thorpej 	  "BCM5701 B0" },
   2041   1.16   thorpej 
   2042   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B2,
   2043  1.117   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2044   1.16   thorpej 	  "BCM5701 B2" },
   2045   1.16   thorpej 
   2046   1.51      fvdl 	{ BGE_CHIPID_BCM5701_B5,
   2047   1.37  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2048   1.16   thorpej 	  "BCM5701 B5" },
   2049   1.16   thorpej 
   2050   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A0,
   2051   1.16   thorpej 	  0,
   2052   1.16   thorpej 	  "BCM5703 A0" },
   2053   1.16   thorpej 
   2054   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A1,
   2055   1.16   thorpej 	  0,
   2056   1.16   thorpej 	  "BCM5703 A1" },
   2057   1.16   thorpej 
   2058   1.51      fvdl 	{ BGE_CHIPID_BCM5703_A2,
   2059   1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   2060   1.16   thorpej 	  "BCM5703 A2" },
   2061   1.16   thorpej 
   2062   1.55     pooka 	{ BGE_CHIPID_BCM5703_A3,
   2063   1.55     pooka 	  BGE_QUIRK_ONLY_PHY_1,
   2064   1.55     pooka 	  "BCM5703 A3" },
   2065   1.55     pooka 
   2066  1.120   tsutsui 	{ BGE_CHIPID_BCM5703_B0,
   2067  1.120   tsutsui 	  BGE_QUIRK_ONLY_PHY_1,
   2068  1.120   tsutsui 	  "BCM5703 B0" },
   2069  1.120   tsutsui 
   2070   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A0,
   2071   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2072   1.25  jonathan 	  "BCM5704 A0" },
   2073   1.40      fvdl 
   2074   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A1,
   2075   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2076   1.40      fvdl 	  "BCM5704 A1" },
   2077   1.40      fvdl 
   2078   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A2,
   2079   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2080   1.40      fvdl 	  "BCM5704 A2" },
   2081   1.49      fvdl 
   2082   1.51      fvdl 	{ BGE_CHIPID_BCM5704_A3,
   2083   1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2084   1.49      fvdl 	  "BCM5704 A3" },
   2085   1.25  jonathan 
   2086   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A0,
   2087   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2088   1.51      fvdl 	  "BCM5705 A0" },
   2089   1.51      fvdl 
   2090   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A1,
   2091   1.44   hannken 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2092   1.44   hannken 	  "BCM5705 A1" },
   2093   1.44   hannken 
   2094   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A2,
   2095   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2096   1.51      fvdl 	  "BCM5705 A2" },
   2097   1.51      fvdl 
   2098   1.51      fvdl 	{ BGE_CHIPID_BCM5705_A3,
   2099   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2100   1.51      fvdl 	  "BCM5705 A3" },
   2101   1.51      fvdl 
   2102   1.76      cube 	{ BGE_CHIPID_BCM5750_A0,
   2103   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2104  1.121   tsutsui 	  "BCM5750 A0" },
   2105   1.76      cube 
   2106   1.76      cube 	{ BGE_CHIPID_BCM5750_A1,
   2107   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2108   1.76      cube 	  "BCM5750 A1" },
   2109   1.76      cube 
   2110   1.92     gavan 	{ BGE_CHIPID_BCM5751_A1,
   2111   1.92     gavan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2112   1.92     gavan 	  "BCM5751 A1" },
   2113   1.92     gavan 
   2114  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A0,
   2115  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2116  1.119   tsutsui 	  "BCM5752 A0" },
   2117  1.119   tsutsui 
   2118  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A1,
   2119  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2120  1.119   tsutsui 	  "BCM5752 A1" },
   2121  1.119   tsutsui 
   2122  1.119   tsutsui 	{ BGE_CHIPID_BCM5752_A2,
   2123  1.119   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2124  1.119   tsutsui 	  "BCM5752 A2" },
   2125  1.119   tsutsui 
   2126  1.149  sborrill 	{ BGE_CHIPID_BCM5755_A0,
   2127  1.149  sborrill 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2128  1.149  sborrill 	  "BCM5755 A0" },
   2129  1.149  sborrill 
   2130  1.149  sborrill 	{ BGE_CHIPID_BCM5755_A1,
   2131  1.149  sborrill 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2132  1.149  sborrill 	  "BCM5755 A1" },
   2133  1.149  sborrill 
   2134  1.149  sborrill 	{ BGE_CHIPID_BCM5755_A2,
   2135  1.149  sborrill 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2136  1.149  sborrill 	  "BCM5755 A2" },
   2137  1.149  sborrill 
   2138  1.149  sborrill 	{ BGE_CHIPID_BCM5755_C0,
   2139  1.149  sborrill 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2140  1.149  sborrill 	  "BCM5755 C0" },
   2141  1.149  sborrill 
   2142  1.133     markd 	{ BGE_CHIPID_BCM5787_A0,
   2143  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2144  1.133     markd 	  "BCM5754/5787 A0" },
   2145  1.133     markd 
   2146  1.133     markd 	{ BGE_CHIPID_BCM5787_A1,
   2147  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2148  1.133     markd 	  "BCM5754/5787 A1" },
   2149  1.133     markd 
   2150  1.133     markd 	{ BGE_CHIPID_BCM5787_A2,
   2151  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2152  1.133     markd 	  "BCM5754/5787 A2" },
   2153  1.133     markd 
   2154   1.16   thorpej 	{ 0, 0, NULL }
   2155   1.16   thorpej };
   2156   1.16   thorpej 
   2157   1.51      fvdl /*
   2158   1.51      fvdl  * Some defaults for major revisions, so that newer steppings
   2159   1.51      fvdl  * that we don't know about have a shot at working.
   2160   1.51      fvdl  */
   2161   1.51      fvdl static const struct bge_revision bge_majorrevs[] = {
   2162   1.51      fvdl 	{ BGE_ASICREV_BCM5700,
   2163   1.51      fvdl 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2164   1.51      fvdl 	  "unknown BCM5700" },
   2165   1.51      fvdl 
   2166   1.51      fvdl 	{ BGE_ASICREV_BCM5701,
   2167   1.51      fvdl 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2168   1.51      fvdl 	  "unknown BCM5701" },
   2169   1.51      fvdl 
   2170   1.51      fvdl 	{ BGE_ASICREV_BCM5703,
   2171   1.51      fvdl 	  0,
   2172   1.51      fvdl 	  "unknown BCM5703" },
   2173   1.51      fvdl 
   2174   1.51      fvdl 	{ BGE_ASICREV_BCM5704,
   2175   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1,
   2176   1.51      fvdl 	  "unknown BCM5704" },
   2177   1.51      fvdl 
   2178   1.51      fvdl 	{ BGE_ASICREV_BCM5705,
   2179   1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2180   1.51      fvdl 	  "unknown BCM5705" },
   2181   1.51      fvdl 
   2182   1.76      cube 	{ BGE_ASICREV_BCM5750,
   2183   1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2184   1.98  jonathan 	  "unknown BCM575x family" },
   2185   1.98  jonathan 
   2186  1.120   tsutsui 	{ BGE_ASICREV_BCM5714_A0,
   2187  1.120   tsutsui 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2188  1.120   tsutsui 	  "unknown BCM5714" },
   2189  1.120   tsutsui 
   2190   1.98  jonathan 	{ BGE_ASICREV_BCM5714,
   2191   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2192   1.98  jonathan 	  "unknown BCM5714" },
   2193   1.98  jonathan 
   2194   1.98  jonathan 	{ BGE_ASICREV_BCM5752,
   2195   1.98  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2196   1.98  jonathan 	  "unknown BCM5752 family" },
   2197   1.98  jonathan 
   2198  1.133     markd 	{ BGE_ASICREV_BCM5755,
   2199  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2200  1.133     markd 	  "unknown BCM5755" },
   2201   1.98  jonathan 
   2202  1.106  jonathan 	{ BGE_ASICREV_BCM5780,
   2203  1.106  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2204  1.106  jonathan 	  "unknown BCM5780" },
   2205  1.106  jonathan 
   2206  1.133     markd 	{ BGE_ASICREV_BCM5787,
   2207  1.133     markd 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2208  1.133     markd 	  "unknown BCM5787" },
   2209  1.133     markd 
   2210  1.151    cegger 	{ BGE_ASICREV_BCM5906,
   2211  1.151    cegger 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2212  1.151    cegger 	  "unknown BCM5906" },
   2213  1.151    cegger 
   2214   1.51      fvdl 	{ 0,
   2215   1.51      fvdl 	  0,
   2216   1.51      fvdl 	  NULL }
   2217   1.51      fvdl };
   2218   1.51      fvdl 
   2219   1.51      fvdl 
   2220   1.16   thorpej static const struct bge_revision *
   2221   1.51      fvdl bge_lookup_rev(uint32_t chipid)
   2222   1.16   thorpej {
   2223   1.16   thorpej 	const struct bge_revision *br;
   2224   1.16   thorpej 
   2225   1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2226   1.51      fvdl 		if (br->br_chipid == chipid)
   2227   1.51      fvdl 			return (br);
   2228   1.51      fvdl 	}
   2229   1.51      fvdl 
   2230   1.51      fvdl 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2231   1.51      fvdl 		if (br->br_chipid == BGE_ASICREV(chipid))
   2232   1.16   thorpej 			return (br);
   2233   1.16   thorpej 	}
   2234   1.16   thorpej 
   2235   1.16   thorpej 	return (NULL);
   2236   1.16   thorpej }
   2237   1.16   thorpej 
   2238    1.7   thorpej static const struct bge_product {
   2239    1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   2240    1.7   thorpej 	pci_product_id_t	bp_product;
   2241    1.7   thorpej 	const char		*bp_name;
   2242    1.7   thorpej } bge_products[] = {
   2243    1.7   thorpej 	/*
   2244    1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   2245    1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   2246    1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   2247    1.7   thorpej 	 * check for it anyway.
   2248    1.7   thorpej 	 */
   2249    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2250    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   2251   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2252   1.51      fvdl 	  },
   2253    1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2254    1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   2255   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2256   1.51      fvdl 	  },
   2257    1.7   thorpej 
   2258    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2259    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   2260   1.51      fvdl 	  "Altima AC1000 Gigabit Ethernet",
   2261   1.51      fvdl 	  },
   2262   1.14     enami 	{ PCI_VENDOR_ALTIMA,
   2263   1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   2264   1.51      fvdl 	  "Altima AC1001 Gigabit Ethernet",
   2265   1.51      fvdl 	   },
   2266    1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2267    1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   2268   1.51      fvdl 	  "Altima AC9100 Gigabit Ethernet",
   2269   1.51      fvdl 	  },
   2270    1.7   thorpej 
   2271    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2272    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2273   1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2274   1.51      fvdl 	  },
   2275    1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2276    1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2277   1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2278   1.51      fvdl 	  },
   2279   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2280   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2281   1.51      fvdl 	  "Broadcom BCM5702 Gigabit Ethernet",
   2282   1.51      fvdl 	  },
   2283   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2284   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2285   1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2286   1.51      fvdl 
   2287   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2288   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2289   1.51      fvdl 	  "Broadcom BCM5703 Gigabit Ethernet",
   2290   1.51      fvdl 	  },
   2291   1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2292   1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2293   1.51      fvdl 	  "Broadcom BCM5703X Gigabit Ethernet",
   2294   1.51      fvdl 	  },
   2295   1.55     pooka 	{ PCI_VENDOR_BROADCOM,
   2296  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2297  1.120   tsutsui 	  "Broadcom BCM5703 Gigabit Ethernet",
   2298   1.55     pooka 	  },
   2299   1.51      fvdl 
   2300   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2301   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2302   1.51      fvdl 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2303   1.51      fvdl 	  },
   2304   1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2305   1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2306   1.51      fvdl 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2307   1.51      fvdl 	  },
   2308   1.51      fvdl 
   2309   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2310   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2311   1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2312   1.51      fvdl 	  },
   2313   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2314   1.79      jmmv 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2315   1.78     tacha 	  "Broadcom BCM5705K Gigabit Ethernet",
   2316   1.78     tacha 	  },
   2317   1.78     tacha    	{ PCI_VENDOR_BROADCOM,
   2318  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2319  1.122   tsutsui 	  "Broadcom BCM5705M Gigabit Ethernet",
   2320   1.51      fvdl 	  },
   2321   1.44   hannken    	{ PCI_VENDOR_BROADCOM,
   2322  1.122   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2323   1.51      fvdl 	  "Broadcom BCM5705M Gigabit Ethernet",
   2324   1.51      fvdl 	  },
   2325   1.51      fvdl 
   2326   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2327   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2328   1.98  jonathan 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2329   1.98  jonathan 	  },
   2330  1.105  christos 	{ PCI_VENDOR_BROADCOM,
   2331  1.130      cube 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2332  1.130      cube 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2333  1.130      cube 	  },
   2334  1.130      cube 	{ PCI_VENDOR_BROADCOM,
   2335  1.105  christos 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2336  1.105  christos 	  "Broadcom BCM5789 Gigabit Ethernet",
   2337  1.105  christos 	  },
   2338   1.98  jonathan 
   2339   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2340   1.80     fredb 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2341   1.80     fredb 	  "Broadcom BCM5721 Gigabit Ethernet",
   2342   1.80     fredb 	  },
   2343   1.80     fredb 
   2344   1.80     fredb 	{ PCI_VENDOR_BROADCOM,
   2345  1.149  sborrill 	  PCI_PRODUCT_BROADCOM_BCM5722,
   2346  1.149  sborrill 	  "Broadcom BCM5722 Gigabit Ethernet",
   2347  1.149  sborrill 	  },
   2348  1.149  sborrill 
   2349  1.149  sborrill 	{ PCI_VENDOR_BROADCOM,
   2350   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2351   1.76      cube 	  "Broadcom BCM5750 Gigabit Ethernet",
   2352   1.76      cube 	  },
   2353   1.76      cube 
   2354   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2355   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2356   1.76      cube 	  "Broadcom BCM5750M Gigabit Ethernet",
   2357   1.76      cube 	  },
   2358   1.76      cube 
   2359   1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2360   1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2361   1.76      cube 	  "Broadcom BCM5751 Gigabit Ethernet",
   2362   1.76      cube 	  },
   2363   1.76      cube 
   2364   1.91     gavan 	{ PCI_VENDOR_BROADCOM,
   2365   1.91     gavan 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2366   1.91     gavan 	  "Broadcom BCM5751M Gigabit Ethernet",
   2367   1.91     gavan 	  },
   2368   1.91     gavan 
   2369   1.98  jonathan 	{ PCI_VENDOR_BROADCOM,
   2370   1.98  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2371   1.98  jonathan 	  "Broadcom BCM5752 Gigabit Ethernet",
   2372   1.98  jonathan 	  },
   2373   1.98  jonathan 
   2374  1.119   tsutsui 	{ PCI_VENDOR_BROADCOM,
   2375  1.119   tsutsui 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2376  1.119   tsutsui 	  "Broadcom BCM5752M Gigabit Ethernet",
   2377  1.119   tsutsui 	  },
   2378  1.119   tsutsui 
   2379  1.128      tron 	{ PCI_VENDOR_BROADCOM,
   2380  1.128      tron 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2381  1.128      tron 	  "Broadcom BCM5753 Gigabit Ethernet",
   2382  1.128      tron 	  },
   2383  1.128      tron 
   2384  1.128      tron 	{ PCI_VENDOR_BROADCOM,
   2385  1.128      tron 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2386  1.128      tron 	  "Broadcom BCM5753M Gigabit Ethernet",
   2387  1.128      tron 	  },
   2388  1.128      tron 
   2389  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2390  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2391  1.133     markd 	  "Broadcom BCM5754 Gigabit Ethernet",
   2392  1.133     markd 	},
   2393  1.133     markd 
   2394  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2395  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2396  1.133     markd 	  "Broadcom BCM5754M Gigabit Ethernet",
   2397  1.133     markd 	},
   2398  1.133     markd 
   2399  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2400  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2401  1.133     markd 	  "Broadcom BCM5755 Gigabit Ethernet",
   2402  1.133     markd 	},
   2403  1.133     markd 
   2404  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2405  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2406  1.133     markd 	  "Broadcom BCM5755M Gigabit Ethernet",
   2407  1.133     markd 	},
   2408  1.133     markd 
   2409   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2410  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2411  1.106  jonathan 	  "Broadcom BCM5780 Gigabit Ethernet",
   2412  1.106  jonathan 	  },
   2413  1.106  jonathan 
   2414  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2415  1.106  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2416  1.106  jonathan 	  "Broadcom BCM5780S Gigabit Ethernet",
   2417  1.106  jonathan 	  },
   2418  1.106  jonathan 
   2419  1.106  jonathan    	{ PCI_VENDOR_BROADCOM,
   2420   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2421   1.70      tron 	  "Broadcom BCM5782 Gigabit Ethernet",
   2422  1.133     markd 	},
   2423  1.133     markd 
   2424  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2425  1.135      taca 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2426  1.135      taca 	  "Broadcom BCM5786 Gigabit Ethernet",
   2427  1.135      taca 	},
   2428  1.135      taca 
   2429  1.135      taca 	{ PCI_VENDOR_BROADCOM,
   2430  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2431  1.133     markd 	  "Broadcom BCM5787 Gigabit Ethernet",
   2432  1.133     markd 	},
   2433  1.133     markd 
   2434  1.133     markd 	{ PCI_VENDOR_BROADCOM,
   2435  1.133     markd 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2436  1.133     markd 	  "Broadcom BCM5787M Gigabit Ethernet",
   2437  1.133     markd 	},
   2438  1.106  jonathan 
   2439   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2440   1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2441   1.70      tron 	  "Broadcom BCM5788 Gigabit Ethernet",
   2442   1.70      tron 	  },
   2443   1.97      fvdl    	{ PCI_VENDOR_BROADCOM,
   2444   1.97      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2445   1.97      fvdl 	  "Broadcom BCM5789 Gigabit Ethernet",
   2446   1.97      fvdl 	  },
   2447   1.70      tron 
   2448   1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2449   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2450   1.51      fvdl 	  "Broadcom BCM5901 Fast Ethernet",
   2451   1.51      fvdl 	  },
   2452   1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2453   1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2454   1.51      fvdl 	  "Broadcom BCM5901A2 Fast Ethernet",
   2455   1.51      fvdl 	  },
   2456   1.51      fvdl 
   2457    1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2458    1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2459   1.51      fvdl 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2460   1.51      fvdl 	  },
   2461    1.7   thorpej 
   2462    1.7   thorpej 	{ PCI_VENDOR_3COM,
   2463    1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   2464   1.51      fvdl 	  "3Com 3c996 Gigabit Ethernet",
   2465   1.51      fvdl 	  },
   2466    1.7   thorpej 
   2467  1.151    cegger 	{ PCI_VENDOR_BROADCOM,
   2468  1.151    cegger 	  PCI_PRODUCT_BROADCOM_BCM5906,
   2469  1.151    cegger 	  "Broadcom BCM5906 Fast Ethernet",
   2470  1.151    cegger 	  },
   2471  1.151    cegger 
   2472  1.151    cegger 	{ PCI_VENDOR_BROADCOM,
   2473  1.151    cegger 	  PCI_PRODUCT_BROADCOM_BCM5906M,
   2474  1.151    cegger 	  "Broadcom BCM5906M Fast Ethernet",
   2475  1.151    cegger 	  },
   2476  1.151    cegger 
   2477    1.7   thorpej 	{ 0,
   2478    1.7   thorpej 	  0,
   2479    1.7   thorpej 	  NULL },
   2480    1.7   thorpej };
   2481    1.7   thorpej 
   2482    1.7   thorpej static const struct bge_product *
   2483    1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2484    1.7   thorpej {
   2485    1.7   thorpej 	const struct bge_product *bp;
   2486    1.7   thorpej 
   2487    1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2488    1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2489    1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2490    1.7   thorpej 			return (bp);
   2491    1.7   thorpej 	}
   2492    1.7   thorpej 
   2493    1.7   thorpej 	return (NULL);
   2494    1.7   thorpej }
   2495    1.7   thorpej 
   2496  1.104   thorpej static int
   2497  1.116  christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2498   1.25  jonathan {
   2499   1.25  jonathan #ifdef NOTYET
   2500   1.25  jonathan 	u_int32_t pm_ctl = 0;
   2501   1.25  jonathan 
   2502   1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2503   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2504   1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2505   1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2506   1.25  jonathan 
   2507   1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2508   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2509   1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2510   1.25  jonathan 	pm_ctl |= (1 << 8);
   2511   1.25  jonathan 
   2512   1.25  jonathan 	if (powerlevel == 0) {
   2513   1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2514   1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2515   1.25  jonathan 		    pm_ctl, 2);
   2516   1.25  jonathan 		DELAY(10000);
   2517   1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2518   1.25  jonathan 		DELAY(10000);
   2519   1.25  jonathan 
   2520   1.25  jonathan #ifdef NOTYET
   2521   1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2522   1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2523   1.25  jonathan #endif
   2524   1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2525   1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2526   1.25  jonathan 		return 0;
   2527   1.25  jonathan 	}
   2528   1.25  jonathan 
   2529   1.25  jonathan 
   2530   1.25  jonathan 	/*
   2531   1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2532   1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2533   1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2534   1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2535   1.25  jonathan 	 */
   2536  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   2537  1.138     joerg 	    "power state %d unimplemented; check GPIO pins\n",
   2538  1.138     joerg 	    powerlevel);
   2539   1.25  jonathan #endif
   2540   1.25  jonathan 	return EOPNOTSUPP;
   2541   1.25  jonathan }
   2542   1.25  jonathan 
   2543   1.25  jonathan 
   2544    1.1      fvdl /*
   2545    1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2546    1.1      fvdl  * against our list and return its name if we find a match. Note
   2547    1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2548    1.1      fvdl  * can get the device name string from the controller itself instead
   2549    1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2550    1.1      fvdl  * we'll always announce the right product name.
   2551    1.1      fvdl  */
   2552  1.104   thorpej static int
   2553  1.116  christos bge_probe(device_t parent, cfdata_t match, void *aux)
   2554    1.1      fvdl {
   2555    1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2556    1.1      fvdl 
   2557    1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2558    1.1      fvdl 		return (1);
   2559    1.1      fvdl 
   2560    1.1      fvdl 	return (0);
   2561    1.1      fvdl }
   2562    1.1      fvdl 
   2563  1.104   thorpej static void
   2564  1.116  christos bge_attach(device_t parent, device_t self, void *aux)
   2565    1.1      fvdl {
   2566  1.138     joerg 	struct bge_softc	*sc = device_private(self);
   2567    1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2568    1.7   thorpej 	const struct bge_product *bp;
   2569   1.16   thorpej 	const struct bge_revision *br;
   2570  1.143      tron 	pci_chipset_tag_t	pc;
   2571    1.1      fvdl 	pci_intr_handle_t	ih;
   2572    1.1      fvdl 	const char		*intrstr = NULL;
   2573    1.1      fvdl 	bus_dma_segment_t	seg;
   2574    1.1      fvdl 	int			rseg;
   2575    1.1      fvdl 	u_int32_t		hwcfg = 0;
   2576    1.1      fvdl 	u_int32_t		command;
   2577    1.1      fvdl 	struct ifnet		*ifp;
   2578  1.126  christos 	void *			kva;
   2579    1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2580    1.1      fvdl 	pcireg_t		memtype;
   2581    1.1      fvdl 	bus_addr_t		memaddr;
   2582    1.1      fvdl 	bus_size_t		memsize;
   2583   1.25  jonathan 	u_int32_t		pm_ctl;
   2584   1.87     perry 
   2585    1.7   thorpej 	bp = bge_lookup(pa);
   2586    1.7   thorpej 	KASSERT(bp != NULL);
   2587    1.7   thorpej 
   2588  1.141  jmcneill 	sc->sc_pc = pa->pa_pc;
   2589  1.141  jmcneill 	sc->sc_pcitag = pa->pa_tag;
   2590  1.138     joerg 	sc->bge_dev = self;
   2591    1.1      fvdl 
   2592   1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2593   1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2594    1.1      fvdl 
   2595    1.1      fvdl 	/*
   2596    1.1      fvdl 	 * Map control/status registers.
   2597    1.1      fvdl 	 */
   2598    1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2599  1.143      tron 	pc = sc->sc_pc;
   2600  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2601    1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2602  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2603  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2604    1.1      fvdl 
   2605    1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2606  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2607  1.138     joerg 		    "failed to enable memory mapping!\n");
   2608    1.1      fvdl 		return;
   2609    1.1      fvdl 	}
   2610    1.1      fvdl 
   2611    1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2612  1.141  jmcneill 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2613    1.1      fvdl  	switch (memtype) {
   2614   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2615   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2616    1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2617   1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2618    1.1      fvdl 		    &memaddr, &memsize) == 0)
   2619    1.1      fvdl 			break;
   2620    1.1      fvdl 	default:
   2621  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2622    1.1      fvdl 		return;
   2623    1.1      fvdl 	}
   2624    1.1      fvdl 
   2625    1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2626    1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2627  1.138     joerg 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2628    1.1      fvdl 		return;
   2629    1.1      fvdl 	}
   2630    1.1      fvdl 
   2631    1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2632    1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2633    1.1      fvdl 
   2634    1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2635    1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2636    1.1      fvdl 
   2637    1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2638  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2639  1.138     joerg 		    "couldn't establish interrupt%s%s\n",
   2640  1.138     joerg 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2641    1.1      fvdl 		return;
   2642    1.1      fvdl 	}
   2643  1.138     joerg 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2644    1.1      fvdl 
   2645   1.25  jonathan 	/*
   2646   1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2647   1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2648   1.25  jonathan 	 * leaving the card in D3 powersave state.
   2649   1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2650   1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2651   1.25  jonathan 	 */
   2652  1.141  jmcneill 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2653   1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2654   1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2655  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2656   1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2657   1.25  jonathan 
   2658   1.76      cube 	/*
   2659   1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2660   1.76      cube 	 * ASIC.
   2661   1.76      cube 	 */
   2662   1.76      cube 	sc->bge_chipid =
   2663  1.141  jmcneill 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2664   1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2665   1.76      cube 
   2666   1.76      cube 	/*
   2667   1.76      cube 	 * Detect PCI-Express devices
   2668   1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2669   1.76      cube 	 */
   2670  1.141  jmcneill 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2671  1.108  jonathan 	        NULL, NULL) != 0)
   2672   1.76      cube 		sc->bge_pcie = 1;
   2673   1.76      cube 	else
   2674   1.76      cube 		sc->bge_pcie = 0;
   2675   1.76      cube 
   2676    1.1      fvdl 	/* Try to reset the chip. */
   2677    1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2678    1.1      fvdl 	bge_reset(sc);
   2679    1.1      fvdl 
   2680    1.1      fvdl 	if (bge_chipinit(sc)) {
   2681  1.138     joerg 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2682    1.1      fvdl 		bge_release_resources(sc);
   2683    1.1      fvdl 		return;
   2684    1.1      fvdl 	}
   2685    1.1      fvdl 
   2686    1.1      fvdl 	/*
   2687    1.1      fvdl 	 * Get station address from the EEPROM.
   2688    1.1      fvdl 	 */
   2689  1.151    cegger 	if (bge_get_eaddr(sc, eaddr)) {
   2690  1.151    cegger 		aprint_error_dev(sc->bge_dev,
   2691  1.151    cegger 		"failed to reade station address\n");
   2692    1.1      fvdl 		bge_release_resources(sc);
   2693    1.1      fvdl 		return;
   2694    1.1      fvdl 	}
   2695    1.1      fvdl 
   2696   1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2697   1.51      fvdl 
   2698   1.16   thorpej 	if (br == NULL) {
   2699  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2700  1.138     joerg 		    sc->bge_chipid >> 16);
   2701   1.52      fvdl 		sc->bge_quirks = 0;
   2702   1.16   thorpej 	} else {
   2703  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2704   1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2705   1.51      fvdl 		sc->bge_quirks |= br->br_quirks;
   2706   1.16   thorpej 	}
   2707   1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2708    1.1      fvdl 
   2709    1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2710   1.41      fvdl 	if (pci_dma64_available(pa))
   2711   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2712   1.41      fvdl 	else
   2713   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2714    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2715    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2716    1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2717  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2718    1.1      fvdl 		return;
   2719    1.1      fvdl 	}
   2720    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2721    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2722    1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2723    1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2724  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2725  1.138     joerg 		    "can't map DMA buffers (%zu bytes)\n",
   2726  1.138     joerg 		    sizeof(struct bge_ring_data));
   2727    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2728    1.1      fvdl 		return;
   2729    1.1      fvdl 	}
   2730    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2731    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2732    1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2733    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2734  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2735    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2736    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2737    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2738    1.1      fvdl 		return;
   2739    1.1      fvdl 	}
   2740    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2741    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2742    1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2743    1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2744    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2745    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2746    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2747    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2748    1.1      fvdl 		return;
   2749    1.1      fvdl 	}
   2750    1.1      fvdl 
   2751    1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2752    1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2753    1.1      fvdl 
   2754   1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2755    1.1      fvdl 
   2756    1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2757   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2758   1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2759  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   2760  1.138     joerg 			    "jumbo buffer allocation failed\n");
   2761   1.44   hannken 		} else
   2762   1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2763   1.44   hannken 	}
   2764    1.1      fvdl 
   2765    1.1      fvdl 	/* Set default tuneable values. */
   2766    1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2767    1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2768   1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2769   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2770    1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2771    1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2772   1.25  jonathan #else
   2773   1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2774   1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2775   1.25  jonathan #endif
   2776   1.95  jonathan 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2777   1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2778  1.146   mlelstv 		sc->bge_tx_max_coal_bds = (12 * 5);
   2779  1.138     joerg 			aprint_verbose_dev(sc->bge_dev,
   2780  1.138     joerg 			    "setting short Tx thresholds\n");
   2781   1.95  jonathan 	}
   2782    1.1      fvdl 
   2783    1.1      fvdl 	/* Set up ifnet structure */
   2784    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2785    1.1      fvdl 	ifp->if_softc = sc;
   2786    1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2787    1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2788  1.141  jmcneill 	ifp->if_stop = bge_stop;
   2789    1.1      fvdl 	ifp->if_start = bge_start;
   2790    1.1      fvdl 	ifp->if_init = bge_init;
   2791    1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2792   1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2793    1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2794  1.115   tsutsui 	DPRINTFN(5, ("strcpy if_xname\n"));
   2795  1.138     joerg 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2796    1.1      fvdl 
   2797   1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2798   1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2799   1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2800   1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2801   1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2802   1.87     perry 	sc->ethercom.ec_capabilities |=
   2803    1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2804    1.1      fvdl 
   2805   1.95  jonathan 	if (sc->bge_pcie)
   2806   1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2807   1.95  jonathan 
   2808    1.1      fvdl 	/*
   2809    1.1      fvdl 	 * Do MII setup.
   2810    1.1      fvdl 	 */
   2811    1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2812    1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2813    1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2814    1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2815    1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2816    1.1      fvdl 
   2817    1.1      fvdl 	/*
   2818    1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2819   1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2820   1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2821    1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2822    1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2823    1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2824    1.1      fvdl 	 */
   2825   1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2826   1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2827   1.35  jonathan 	} else {
   2828  1.126  christos 		bge_read_eeprom(sc, (void *)&hwcfg,
   2829    1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2830   1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2831   1.35  jonathan 	}
   2832   1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2833    1.1      fvdl 		sc->bge_tbi = 1;
   2834    1.1      fvdl 
   2835    1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2836  1.141  jmcneill 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2837    1.1      fvdl 	    SK_SUBSYSID_9D41)
   2838    1.1      fvdl 		sc->bge_tbi = 1;
   2839    1.1      fvdl 
   2840    1.1      fvdl 	if (sc->bge_tbi) {
   2841    1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2842    1.1      fvdl 		    bge_ifmedia_sts);
   2843    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2844    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2845    1.1      fvdl 			    0, NULL);
   2846    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2847    1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2848    1.1      fvdl 	} else {
   2849    1.1      fvdl 		/*
   2850    1.1      fvdl 		 * Do transceiver setup.
   2851    1.1      fvdl 		 */
   2852    1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2853    1.1      fvdl 			     bge_ifmedia_sts);
   2854  1.138     joerg 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2855   1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2856   1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2857   1.87     perry 
   2858  1.142    dyoung 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2859  1.138     joerg 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2860    1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2861    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2862    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2863    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2864    1.1      fvdl 		} else
   2865    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2866    1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2867    1.1      fvdl 	}
   2868    1.1      fvdl 
   2869    1.1      fvdl 	/*
   2870   1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2871   1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2872   1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2873   1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2874   1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2875   1.37  jonathan 	 * payloads by copying the received packets.
   2876   1.37  jonathan 	 */
   2877   1.37  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2878   1.37  jonathan 		/* If in PCI-X mode, work around the alignment bug. */
   2879  1.141  jmcneill 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2880   1.37  jonathan                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2881   1.37  jonathan                          BGE_PCISTATE_PCI_BUSSPEED)
   2882   1.37  jonathan 		sc->bge_rx_alignment_bug = 1;
   2883   1.37  jonathan         }
   2884   1.37  jonathan 
   2885   1.37  jonathan 	/*
   2886    1.1      fvdl 	 * Call MI attach routine.
   2887    1.1      fvdl 	 */
   2888    1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2889    1.1      fvdl 	if_attach(ifp);
   2890    1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2891    1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2892  1.148   mlelstv #if NRND > 0
   2893  1.148   mlelstv 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2894  1.148   mlelstv 		RND_TYPE_NET, 0);
   2895  1.148   mlelstv #endif
   2896   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2897   1.72   thorpej 	/*
   2898   1.72   thorpej 	 * Attach event counters.
   2899   1.72   thorpej 	 */
   2900   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2901  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "intr");
   2902   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2903  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2904   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2905  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2906   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2907  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2908   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2909  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2910   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2911  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2912   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2913  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2914   1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2915    1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2916  1.132        ad 	callout_init(&sc->bge_timeout, 0);
   2917   1.82  jmcneill 
   2918  1.141  jmcneill 	if (!pmf_device_register(self, NULL, NULL))
   2919  1.141  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
   2920  1.141  jmcneill 	else
   2921  1.141  jmcneill 		pmf_class_network_register(self, ifp);
   2922    1.1      fvdl }
   2923    1.1      fvdl 
   2924  1.104   thorpej static void
   2925  1.104   thorpej bge_release_resources(struct bge_softc *sc)
   2926    1.1      fvdl {
   2927    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2928    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2929    1.1      fvdl 
   2930    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2931    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2932    1.1      fvdl }
   2933    1.1      fvdl 
   2934  1.104   thorpej static void
   2935  1.104   thorpej bge_reset(struct bge_softc *sc)
   2936    1.1      fvdl {
   2937   1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2938   1.76      cube 	int i, val;
   2939  1.151    cegger 	void (*write_op)(struct bge_softc *, int, int);
   2940  1.151    cegger 
   2941  1.151    cegger 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2942  1.151    cegger 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2943  1.151    cegger 	    	if (sc->bge_pcie) {
   2944  1.151    cegger 			write_op = bge_writemem_direct;
   2945  1.151    cegger 		} else {
   2946  1.151    cegger 			write_op = bge_writemem_ind;
   2947  1.151    cegger 		}
   2948  1.151    cegger 	} else {
   2949  1.151    cegger 		write_op = bge_writereg_ind;
   2950  1.151    cegger 	}
   2951  1.151    cegger 
   2952    1.1      fvdl 
   2953    1.1      fvdl 	/* Save some important PCI state. */
   2954  1.141  jmcneill 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2955  1.141  jmcneill 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2956  1.141  jmcneill 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2957    1.1      fvdl 
   2958  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2959    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2960    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2961    1.1      fvdl 
   2962  1.119   tsutsui 	/*
   2963  1.119   tsutsui 	 * Disable the firmware fastboot feature on 5752 ASIC
   2964  1.119   tsutsui 	 * to avoid firmware timeout.
   2965  1.119   tsutsui 	 */
   2966  1.134     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2967  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2968  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2969  1.119   tsutsui 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2970  1.119   tsutsui 
   2971   1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2972   1.76      cube 	/*
   2973   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2974   1.76      cube 	 */
   2975   1.76      cube 	if (sc->bge_pcie) {
   2976   1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2977   1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2978   1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2979   1.76      cube 			/* No idea what that actually means */
   2980   1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2981   1.76      cube 			val |= (1<<29);
   2982   1.76      cube 		}
   2983   1.76      cube 	}
   2984   1.76      cube 
   2985    1.1      fvdl 	/* Issue global reset */
   2986  1.151    cegger 	write_op(sc, BGE_MISC_CFG, val);
   2987  1.151    cegger 
   2988  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2989  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2990  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2991  1.151    cegger 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2992  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2993  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2994  1.151    cegger 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2995  1.151    cegger 	}
   2996  1.151    cegger 
   2997  1.151    cegger 
   2998    1.1      fvdl 
   2999    1.1      fvdl 	DELAY(1000);
   3000    1.1      fvdl 
   3001   1.76      cube 	/*
   3002   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   3003   1.76      cube 	 */
   3004   1.76      cube 	if (sc->bge_pcie) {
   3005   1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3006   1.76      cube 			pcireg_t reg;
   3007   1.76      cube 
   3008   1.76      cube 			DELAY(500000);
   3009   1.76      cube 			/* XXX: Magic Numbers */
   3010  1.141  jmcneill 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   3011  1.141  jmcneill 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   3012   1.76      cube 			    reg | (1 << 15));
   3013   1.76      cube 		}
   3014   1.95  jonathan 		/*
   3015   1.95  jonathan 		 * XXX: Magic Numbers.
   3016   1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   3017   1.95  jonathan 		 * Should be replaced with references to PCI config-space
   3018   1.95  jonathan 		 * capability block for PCI-Express.
   3019   1.95  jonathan 		 */
   3020  1.141  jmcneill 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3021   1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   3022   1.95  jonathan 
   3023   1.76      cube 	}
   3024   1.76      cube 
   3025    1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   3026  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3027    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   3028    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   3029  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3030  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3031  1.151    cegger 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3032    1.1      fvdl 
   3033    1.1      fvdl 	/* Enable memory arbiter. */
   3034  1.109  jonathan 	{
   3035   1.99  jonathan 		uint32_t marbmode = 0;
   3036   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   3037  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3038   1.99  jonathan 		}
   3039   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3040   1.44   hannken 	}
   3041    1.1      fvdl 
   3042  1.139   msaitoh 
   3043  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3044  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3045  1.151    cegger 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3046  1.151    cegger 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3047  1.151    cegger 				break;
   3048  1.151    cegger 			DELAY(100);
   3049  1.151    cegger 		}
   3050  1.151    cegger 		if (i == BGE_TIMEOUT) {
   3051  1.151    cegger 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3052  1.151    cegger 			return;
   3053  1.151    cegger 		}
   3054  1.151    cegger 	} else {
   3055  1.151    cegger 		/*
   3056  1.151    cegger 		 * Write the magic number to the firmware mailbox at 0xb50
   3057  1.151    cegger 		 * so that the driver can synchronize with the firmware.
   3058  1.151    cegger 		 */
   3059  1.151    cegger 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3060    1.1      fvdl 
   3061   1.95  jonathan 		/*
   3062  1.151    cegger 		 * Poll the value location we just wrote until
   3063  1.151    cegger 		 * we see the 1's complement of the magic number.
   3064  1.151    cegger 		 * This indicates that the firmware initialization
   3065  1.151    cegger 		 * is complete.
   3066   1.95  jonathan 		 */
   3067  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3068  1.151    cegger 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3069  1.151    cegger 			if (val == ~BGE_MAGIC_NUMBER)
   3070  1.151    cegger 				break;
   3071  1.151    cegger 			DELAY(1000);
   3072  1.151    cegger 		}
   3073  1.151    cegger 
   3074  1.151    cegger 		if (i >= BGE_TIMEOUT) {
   3075  1.151    cegger 			aprint_error_dev(sc->bge_dev,
   3076  1.151    cegger 			    "firmware handshake timed out, val = %x\n", val);
   3077  1.151    cegger 			/*
   3078  1.151    cegger 			 * XXX: occasionally fired on bcm5721, but without
   3079  1.151    cegger 			 * apparent harm.  For now, keep going if we timeout
   3080  1.151    cegger 			 * against PCI-E devices.
   3081  1.151    cegger 			 */
   3082  1.151    cegger 			 if (!sc->bge_pcie)
   3083  1.151    cegger 				  return;
   3084  1.151    cegger 		}
   3085    1.1      fvdl 	}
   3086    1.1      fvdl 
   3087    1.1      fvdl 	/*
   3088    1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   3089    1.1      fvdl 	 * return to its original pre-reset state. This is a
   3090    1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   3091    1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   3092    1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   3093    1.1      fvdl 	 * results.
   3094    1.1      fvdl 	 */
   3095  1.139   msaitoh 	for (i = 0; i < 10000; i++) {
   3096  1.141  jmcneill 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3097   1.61  jonathan 		    BGE_PCI_PCISTATE);
   3098   1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3099   1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3100    1.1      fvdl 			break;
   3101    1.1      fvdl 		DELAY(10);
   3102    1.1      fvdl 	}
   3103   1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3104   1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3105  1.138     joerg 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3106   1.61  jonathan 	}
   3107    1.1      fvdl 
   3108   1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   3109   1.76      cube 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   3110   1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   3111   1.76      cube 
   3112    1.1      fvdl 	/* Enable memory arbiter. */
   3113  1.109  jonathan 	/* XXX why do this twice? */
   3114  1.109  jonathan 	{
   3115   1.99  jonathan 		uint32_t marbmode = 0;
   3116   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   3117  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3118   1.99  jonathan 		}
   3119   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3120   1.44   hannken 	}
   3121    1.1      fvdl 
   3122    1.1      fvdl 	/* Fix up byte swapping */
   3123    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3124    1.1      fvdl 
   3125    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3126    1.1      fvdl 
   3127    1.1      fvdl 	DELAY(10000);
   3128    1.1      fvdl }
   3129    1.1      fvdl 
   3130    1.1      fvdl /*
   3131    1.1      fvdl  * Frame reception handling. This is called if there's a frame
   3132    1.1      fvdl  * on the receive return list.
   3133    1.1      fvdl  *
   3134    1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   3135    1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   3136    1.1      fvdl  * 2) the frame is from the standard receive ring
   3137    1.1      fvdl  */
   3138    1.1      fvdl 
   3139  1.104   thorpej static void
   3140  1.104   thorpej bge_rxeof(struct bge_softc *sc)
   3141    1.1      fvdl {
   3142    1.1      fvdl 	struct ifnet *ifp;
   3143    1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   3144    1.1      fvdl 	bus_dmamap_t dmamap;
   3145    1.1      fvdl 	bus_addr_t offset, toff;
   3146    1.1      fvdl 	bus_size_t tlen;
   3147    1.1      fvdl 	int tosync;
   3148    1.1      fvdl 
   3149    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3150    1.1      fvdl 
   3151    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3152    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3153    1.1      fvdl 	    sizeof (struct bge_status_block),
   3154    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3155    1.1      fvdl 
   3156    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3157   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   3158    1.1      fvdl 	    sc->bge_rx_saved_considx;
   3159    1.1      fvdl 
   3160  1.148   mlelstv #if NRND > 0
   3161  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3162  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   3163  1.148   mlelstv #endif
   3164  1.148   mlelstv 
   3165    1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   3166    1.1      fvdl 
   3167    1.1      fvdl 	if (tosync < 0) {
   3168   1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   3169    1.1      fvdl 		    sizeof (struct bge_rx_bd);
   3170    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3171    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3172    1.1      fvdl 		tosync = -tosync;
   3173    1.1      fvdl 	}
   3174    1.1      fvdl 
   3175    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3176    1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   3177    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3178    1.1      fvdl 
   3179    1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   3180    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   3181    1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   3182    1.1      fvdl 		u_int32_t		rxidx;
   3183    1.1      fvdl 		struct mbuf		*m = NULL;
   3184    1.1      fvdl 
   3185    1.1      fvdl 		cur_rx = &sc->bge_rdata->
   3186    1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   3187    1.1      fvdl 
   3188    1.1      fvdl 		rxidx = cur_rx->bge_idx;
   3189   1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   3190    1.1      fvdl 
   3191    1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3192    1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3193    1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3194    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3195    1.1      fvdl 			jumbocnt++;
   3196  1.124    bouyer 			bus_dmamap_sync(sc->bge_dmatag,
   3197  1.124    bouyer 			    sc->bge_cdata.bge_rx_jumbo_map,
   3198  1.126  christos 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3199  1.125    bouyer 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3200    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3201    1.1      fvdl 				ifp->if_ierrors++;
   3202    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3203    1.1      fvdl 				continue;
   3204    1.1      fvdl 			}
   3205    1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3206    1.1      fvdl 					     NULL)== ENOBUFS) {
   3207    1.1      fvdl 				ifp->if_ierrors++;
   3208    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3209    1.1      fvdl 				continue;
   3210    1.1      fvdl 			}
   3211    1.1      fvdl 		} else {
   3212    1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3213    1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3214  1.124    bouyer 
   3215    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3216    1.1      fvdl 			stdcnt++;
   3217    1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3218    1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3219  1.125    bouyer 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3220  1.125    bouyer 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3221  1.125    bouyer 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3222    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3223    1.1      fvdl 				ifp->if_ierrors++;
   3224    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3225    1.1      fvdl 				continue;
   3226    1.1      fvdl 			}
   3227    1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   3228    1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   3229    1.1      fvdl 				ifp->if_ierrors++;
   3230    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3231    1.1      fvdl 				continue;
   3232    1.1      fvdl 			}
   3233    1.1      fvdl 		}
   3234    1.1      fvdl 
   3235    1.1      fvdl 		ifp->if_ipackets++;
   3236   1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   3237   1.37  jonathan                 /*
   3238   1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3239   1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   3240   1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   3241   1.37  jonathan                  */
   3242   1.37  jonathan 		if (sc->bge_rx_alignment_bug) {
   3243  1.127   tsutsui 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3244   1.37  jonathan                                 cur_rx->bge_len);
   3245   1.37  jonathan 			m->m_data += ETHER_ALIGN;
   3246   1.37  jonathan 		}
   3247   1.37  jonathan #endif
   3248   1.87     perry 
   3249   1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3250    1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   3251    1.1      fvdl 
   3252    1.1      fvdl #if NBPFILTER > 0
   3253    1.1      fvdl 		/*
   3254    1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   3255    1.1      fvdl 		 */
   3256    1.1      fvdl 		if (ifp->if_bpf)
   3257    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   3258    1.1      fvdl #endif
   3259    1.1      fvdl 
   3260   1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3261   1.46  jonathan 
   3262   1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3263   1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3264   1.46  jonathan 		/*
   3265   1.46  jonathan 		 * Rx transport checksum-offload may also
   3266   1.46  jonathan 		 * have bugs with packets which, when transmitted,
   3267   1.46  jonathan 		 * were `runts' requiring padding.
   3268   1.46  jonathan 		 */
   3269   1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3270   1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3271   1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3272   1.46  jonathan 			m->m_pkthdr.csum_data =
   3273   1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   3274   1.46  jonathan 			m->m_pkthdr.csum_flags |=
   3275   1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3276   1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3277    1.1      fvdl 		}
   3278    1.1      fvdl 
   3279    1.1      fvdl 		/*
   3280    1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   3281    1.1      fvdl 		 * to vlan_input() instead of ether_input().
   3282    1.1      fvdl 		 */
   3283  1.150       dsl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3284   1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3285  1.150       dsl 		}
   3286    1.1      fvdl 
   3287    1.1      fvdl 		(*ifp->if_input)(ifp, m);
   3288    1.1      fvdl 	}
   3289    1.1      fvdl 
   3290  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3291    1.1      fvdl 	if (stdcnt)
   3292  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3293    1.1      fvdl 	if (jumbocnt)
   3294  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3295    1.1      fvdl }
   3296    1.1      fvdl 
   3297  1.104   thorpej static void
   3298  1.104   thorpej bge_txeof(struct bge_softc *sc)
   3299    1.1      fvdl {
   3300    1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   3301    1.1      fvdl 	struct ifnet *ifp;
   3302    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3303    1.1      fvdl 	bus_addr_t offset, toff;
   3304    1.1      fvdl 	bus_size_t tlen;
   3305    1.1      fvdl 	int tosync;
   3306    1.1      fvdl 	struct mbuf *m;
   3307    1.1      fvdl 
   3308    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3309    1.1      fvdl 
   3310    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3311    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3312    1.1      fvdl 	    sizeof (struct bge_status_block),
   3313    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3314    1.1      fvdl 
   3315    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3316   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3317    1.1      fvdl 	    sc->bge_tx_saved_considx;
   3318    1.1      fvdl 
   3319  1.148   mlelstv #if NRND > 0
   3320  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3321  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   3322  1.148   mlelstv #endif
   3323  1.148   mlelstv 
   3324    1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3325    1.1      fvdl 
   3326    1.1      fvdl 	if (tosync < 0) {
   3327    1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3328    1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3329    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3330    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3331    1.1      fvdl 		tosync = -tosync;
   3332    1.1      fvdl 	}
   3333    1.1      fvdl 
   3334    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3335    1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3336    1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3337    1.1      fvdl 
   3338    1.1      fvdl 	/*
   3339    1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3340    1.1      fvdl 	 * frames that have been sent.
   3341    1.1      fvdl 	 */
   3342    1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3343    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3344    1.1      fvdl 		u_int32_t		idx = 0;
   3345    1.1      fvdl 
   3346    1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3347    1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3348    1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3349    1.1      fvdl 			ifp->if_opackets++;
   3350    1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3351    1.1      fvdl 		if (m != NULL) {
   3352    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3353    1.1      fvdl 			dma = sc->txdma[idx];
   3354    1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3355    1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3356    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3357    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3358    1.1      fvdl 			sc->txdma[idx] = NULL;
   3359    1.1      fvdl 
   3360    1.1      fvdl 			m_freem(m);
   3361    1.1      fvdl 		}
   3362    1.1      fvdl 		sc->bge_txcnt--;
   3363    1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3364    1.1      fvdl 		ifp->if_timer = 0;
   3365    1.1      fvdl 	}
   3366    1.1      fvdl 
   3367    1.1      fvdl 	if (cur_tx != NULL)
   3368    1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3369    1.1      fvdl }
   3370    1.1      fvdl 
   3371  1.104   thorpej static int
   3372  1.104   thorpej bge_intr(void *xsc)
   3373    1.1      fvdl {
   3374    1.1      fvdl 	struct bge_softc *sc;
   3375    1.1      fvdl 	struct ifnet *ifp;
   3376    1.1      fvdl 
   3377    1.1      fvdl 	sc = xsc;
   3378    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3379    1.1      fvdl 
   3380  1.144   mlelstv 	/*
   3381  1.144   mlelstv 	 * Ascertain whether the interrupt is from this bge device.
   3382  1.144   mlelstv 	 * Do the cheap test first.
   3383  1.144   mlelstv 	 */
   3384  1.144   mlelstv 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3385  1.144   mlelstv 	    BGE_STATFLAG_UPDATED) == 0) {
   3386  1.144   mlelstv 		/*
   3387  1.144   mlelstv 		 * Sometimes, the interrupt comes in before the
   3388  1.144   mlelstv 		 * DMA update of the status block (performed prior
   3389  1.144   mlelstv 		 * to the  interrupt itself) has completed.
   3390  1.144   mlelstv 		 * In that case, do the (extremely expensive!)
   3391  1.144   mlelstv 		 * PCI-config-space register read.
   3392  1.144   mlelstv 		 */
   3393  1.144   mlelstv 		uint32_t pcistate =
   3394  1.144   mlelstv 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3395  1.144   mlelstv 
   3396  1.144   mlelstv 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3397  1.144   mlelstv 			return (0);
   3398  1.144   mlelstv 
   3399  1.144   mlelstv 	}
   3400  1.144   mlelstv 	/*
   3401  1.144   mlelstv 	 *  If we reach here, then the interrupt is for us.
   3402  1.144   mlelstv 	 */
   3403  1.144   mlelstv 
   3404    1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   3405  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3406    1.1      fvdl 
   3407   1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3408   1.72   thorpej 
   3409    1.1      fvdl 	/*
   3410    1.1      fvdl 	 * Process link state changes.
   3411    1.1      fvdl 	 * Grrr. The link status word in the status block does
   3412    1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3413  1.101     skrll 	 * according to all available information. Hence, we have
   3414    1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   3415    1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   3416    1.1      fvdl 	 * we have to read the MAC status register to detect link
   3417    1.1      fvdl 	 * changes, thereby adding an additional register access to
   3418    1.1      fvdl 	 * the interrupt handler.
   3419    1.1      fvdl 	 */
   3420    1.1      fvdl 
   3421   1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3422    1.1      fvdl 		u_int32_t		status;
   3423    1.1      fvdl 
   3424    1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3425    1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3426    1.1      fvdl 			sc->bge_link = 0;
   3427    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3428    1.1      fvdl 			bge_tick(sc);
   3429    1.1      fvdl 			/* Clear the interrupt */
   3430    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3431    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3432  1.138     joerg 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3433  1.138     joerg 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3434    1.1      fvdl 			    BRGPHY_INTRS);
   3435    1.1      fvdl 		}
   3436    1.1      fvdl 	} else {
   3437  1.144   mlelstv 		u_int32_t		status;
   3438  1.144   mlelstv 
   3439  1.144   mlelstv 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3440  1.144   mlelstv 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3441    1.1      fvdl 			sc->bge_link = 0;
   3442    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3443    1.1      fvdl 			bge_tick(sc);
   3444    1.1      fvdl 			/* Clear the interrupt */
   3445    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3446   1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3447   1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3448    1.1      fvdl 		}
   3449    1.1      fvdl 	}
   3450    1.1      fvdl 
   3451    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3452    1.1      fvdl 		/* Check RX return ring producer/consumer */
   3453    1.1      fvdl 		bge_rxeof(sc);
   3454    1.1      fvdl 
   3455    1.1      fvdl 		/* Check TX ring producer/consumer */
   3456    1.1      fvdl 		bge_txeof(sc);
   3457    1.1      fvdl 	}
   3458    1.1      fvdl 
   3459   1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3460   1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3461   1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3462   1.58  jonathan 		uint32_t junk;
   3463   1.58  jonathan 
   3464   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3465   1.58  jonathan 		DELAY(10);
   3466   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3467   1.87     perry 
   3468   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3469   1.58  jonathan 		DELAY(10);
   3470   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3471   1.58  jonathan 
   3472   1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3473   1.58  jonathan 	}
   3474    1.1      fvdl 	bge_handle_events(sc);
   3475    1.1      fvdl 
   3476    1.1      fvdl 	/* Re-enable interrupts. */
   3477  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3478    1.1      fvdl 
   3479    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3480    1.1      fvdl 		bge_start(ifp);
   3481    1.1      fvdl 
   3482    1.1      fvdl 	return (1);
   3483    1.1      fvdl }
   3484    1.1      fvdl 
   3485  1.104   thorpej static void
   3486  1.104   thorpej bge_tick(void *xsc)
   3487    1.1      fvdl {
   3488    1.1      fvdl 	struct bge_softc *sc = xsc;
   3489    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3490    1.1      fvdl 	int s;
   3491    1.1      fvdl 
   3492    1.1      fvdl 	s = splnet();
   3493    1.1      fvdl 
   3494    1.1      fvdl 	bge_stats_update(sc);
   3495    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3496    1.1      fvdl 
   3497    1.1      fvdl 	if (sc->bge_tbi) {
   3498    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3499    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3500    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3501    1.1      fvdl 		}
   3502  1.147   mlelstv 	} else
   3503  1.147   mlelstv 		mii_tick(mii);
   3504    1.1      fvdl 
   3505    1.1      fvdl 	splx(s);
   3506    1.1      fvdl }
   3507    1.1      fvdl 
   3508  1.104   thorpej static void
   3509  1.104   thorpej bge_stats_update(struct bge_softc *sc)
   3510    1.1      fvdl {
   3511    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3512    1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3513   1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3514   1.44   hannken 
   3515   1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3516   1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3517    1.1      fvdl 
   3518   1.44   hannken 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3519   1.44   hannken 		ifp->if_collisions +=
   3520   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3521   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3522   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3523   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3524   1.72   thorpej 
   3525   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3526   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3527   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3528   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3529   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3530   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3531   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3532   1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3533   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3534   1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3535   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3536   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3537   1.44   hannken 		return;
   3538   1.44   hannken 	}
   3539   1.44   hannken 
   3540   1.44   hannken #undef READ_RSTAT
   3541    1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3542    1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3543    1.1      fvdl 
   3544    1.1      fvdl 	ifp->if_collisions +=
   3545    1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3546    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3547    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3548    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3549    1.1      fvdl 	  ifp->if_collisions;
   3550    1.1      fvdl 
   3551   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3552   1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3553   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3554   1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3555   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3556   1.72   thorpej 		      READ_STAT(sc, stats,
   3557   1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3558   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3559   1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3560   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3561   1.72   thorpej 		      READ_STAT(sc, stats,
   3562   1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3563   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3564   1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3565   1.72   thorpej 
   3566    1.1      fvdl #undef READ_STAT
   3567    1.1      fvdl 
   3568    1.1      fvdl #ifdef notdef
   3569    1.1      fvdl 	ifp->if_collisions +=
   3570    1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3571    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3572    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3573    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3574    1.1      fvdl 	   ifp->if_collisions;
   3575    1.1      fvdl #endif
   3576    1.1      fvdl }
   3577    1.1      fvdl 
   3578   1.46  jonathan /*
   3579   1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3580   1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3581   1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3582   1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3583   1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3584   1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3585   1.46  jonathan  */
   3586  1.102     perry static inline int
   3587   1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3588   1.46  jonathan {
   3589   1.46  jonathan 	struct mbuf *last = NULL;
   3590   1.46  jonathan 	int padlen;
   3591   1.46  jonathan 
   3592   1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3593   1.46  jonathan 
   3594   1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3595   1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3596  1.113   tsutsui 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3597   1.46  jonathan 		last = pkt;
   3598   1.46  jonathan 	} else {
   3599   1.46  jonathan 		/*
   3600   1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3601   1.87     perry 		 * pad there, or append a new mbuf and pad it
   3602   1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3603   1.46  jonathan 		 */
   3604   1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3605  1.114   tsutsui 	      	       continue; /* do nothing */
   3606   1.46  jonathan 		}
   3607   1.46  jonathan 
   3608   1.46  jonathan 		/* `last' now points to last in chain. */
   3609  1.114   tsutsui 		if (M_TRAILINGSPACE(last) < padlen) {
   3610   1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3611   1.46  jonathan 			struct mbuf *n;
   3612   1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3613  1.129     joerg 			if (n == NULL)
   3614  1.129     joerg 				return ENOBUFS;
   3615   1.46  jonathan 			n->m_len = 0;
   3616   1.46  jonathan 			last->m_next = n;
   3617   1.46  jonathan 			last = n;
   3618   1.46  jonathan 		}
   3619   1.46  jonathan 	}
   3620   1.46  jonathan 
   3621  1.114   tsutsui 	KDASSERT(!M_READONLY(last));
   3622  1.114   tsutsui 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3623  1.114   tsutsui 
   3624   1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3625  1.126  christos 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3626   1.46  jonathan 	last->m_len += padlen;
   3627   1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3628   1.46  jonathan 	return 0;
   3629   1.46  jonathan }
   3630   1.45  jonathan 
   3631   1.45  jonathan /*
   3632   1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3633   1.45  jonathan  */
   3634  1.102     perry static inline int
   3635   1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3636   1.45  jonathan {
   3637   1.45  jonathan 	struct mbuf	*m, *prev;
   3638   1.45  jonathan 	int 		totlen, prevlen;
   3639   1.45  jonathan 
   3640   1.45  jonathan 	prev = NULL;
   3641   1.45  jonathan 	totlen = 0;
   3642   1.45  jonathan 	prevlen = -1;
   3643   1.45  jonathan 
   3644   1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3645   1.45  jonathan 		int mlen = m->m_len;
   3646   1.45  jonathan 		int shortfall = 8 - mlen ;
   3647   1.45  jonathan 
   3648   1.45  jonathan 		totlen += mlen;
   3649   1.45  jonathan 		if (mlen == 0) {
   3650   1.45  jonathan 			continue;
   3651   1.45  jonathan 		}
   3652   1.45  jonathan 		if (mlen >= 8)
   3653   1.45  jonathan 			continue;
   3654   1.45  jonathan 
   3655   1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3656   1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3657   1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3658   1.45  jonathan 		 */
   3659   1.45  jonathan 
   3660   1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3661  1.113   tsutsui 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3662  1.115   tsutsui 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3663   1.45  jonathan 			prev->m_len += mlen;
   3664   1.45  jonathan 			m->m_len = 0;
   3665   1.45  jonathan 			/* XXX stitch chain */
   3666   1.45  jonathan 			prev->m_next = m_free(m);
   3667   1.45  jonathan 			m = prev;
   3668   1.45  jonathan 			continue;
   3669   1.45  jonathan 		}
   3670  1.113   tsutsui 		else if (m->m_next != NULL &&
   3671   1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3672   1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3673   1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3674   1.45  jonathan 
   3675  1.115   tsutsui 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3676  1.115   tsutsui 			    shortfall);
   3677   1.45  jonathan 			m->m_len += shortfall;
   3678   1.45  jonathan 			m->m_next->m_len -= shortfall;
   3679   1.45  jonathan 			m->m_next->m_data += shortfall;
   3680   1.45  jonathan 		}
   3681   1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3682   1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3683   1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3684   1.45  jonathan 			 * update its length in-place. (The original data is still
   3685   1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3686   1.45  jonathan 			 */
   3687   1.45  jonathan 
   3688   1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3689   1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3690   1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3691  1.111  christos 
   3692   1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3693   1.45  jonathan 				shortfall = prev->m_len;
   3694   1.87     perry 
   3695   1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3696   1.45  jonathan 			if (!M_READONLY(m)) {
   3697   1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3698   1.45  jonathan 					void *m_dat;
   3699   1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3700   1.45  jonathan 					  m->m_pktdat : m->dat;
   3701   1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3702   1.45  jonathan 					m->m_data = m_dat;
   3703   1.45  jonathan 				    }
   3704   1.45  jonathan 			} else
   3705   1.45  jonathan #endif	/* just do the safe slow thing */
   3706   1.45  jonathan 			{
   3707   1.45  jonathan 				struct mbuf * n = NULL;
   3708   1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3709   1.45  jonathan 
   3710   1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3711   1.45  jonathan 				if (n == NULL)
   3712   1.45  jonathan 				   return ENOBUFS;
   3713   1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3714   1.45  jonathan 					/*,
   3715   1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3716   1.45  jonathan 
   3717   1.45  jonathan 				/* first copy the data we're stealing from prev */
   3718  1.115   tsutsui 				memcpy(n->m_data, prev->m_data + newprevlen,
   3719  1.115   tsutsui 				    shortfall);
   3720   1.45  jonathan 
   3721   1.45  jonathan 				/* update prev->m_len accordingly */
   3722   1.45  jonathan 				prev->m_len -= shortfall;
   3723   1.45  jonathan 
   3724   1.45  jonathan 				/* copy data from runt m */
   3725  1.115   tsutsui 				memcpy(n->m_data + shortfall, m->m_data,
   3726  1.115   tsutsui 				    m->m_len);
   3727   1.45  jonathan 
   3728   1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3729   1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3730   1.45  jonathan 
   3731   1.45  jonathan 				/* stitch n into chain and free m */
   3732   1.45  jonathan 				n->m_next = m->m_next;
   3733   1.45  jonathan 				prev->m_next = n;
   3734   1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3735   1.45  jonathan 				m->m_next = NULL;
   3736   1.45  jonathan 				m_free(m);
   3737   1.45  jonathan 				m = n;	/* for continuing loop */
   3738   1.45  jonathan 			}
   3739   1.45  jonathan 		}
   3740   1.45  jonathan 		prevlen = m->m_len;
   3741   1.45  jonathan 	}
   3742   1.45  jonathan 	return 0;
   3743   1.45  jonathan }
   3744   1.45  jonathan 
   3745    1.1      fvdl /*
   3746    1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3747    1.1      fvdl  * pointers to descriptors.
   3748    1.1      fvdl  */
   3749  1.104   thorpej static int
   3750  1.104   thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3751    1.1      fvdl {
   3752    1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3753  1.118   tsutsui 	u_int32_t		frag, cur;
   3754    1.1      fvdl 	u_int16_t		csum_flags = 0;
   3755   1.95  jonathan 	u_int16_t		txbd_tso_flags = 0;
   3756    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3757    1.1      fvdl 	bus_dmamap_t dmamap;
   3758    1.1      fvdl 	int			i = 0;
   3759   1.29    itojun 	struct m_tag		*mtag;
   3760   1.95  jonathan 	int			use_tso, maxsegsize, error;
   3761  1.107     blymn 
   3762    1.1      fvdl 	cur = frag = *txidx;
   3763    1.1      fvdl 
   3764    1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3765    1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3766    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3767    1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3768    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3769    1.1      fvdl 	}
   3770    1.1      fvdl 
   3771   1.87     perry 	/*
   3772   1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3773   1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3774   1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3775   1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3776   1.46  jonathan 	 * are confirmed to not require the workaround.)
   3777   1.46  jonathan 	 */
   3778   1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3779   1.46  jonathan #ifdef notyet
   3780   1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3781   1.87     perry #endif
   3782   1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3783   1.46  jonathan 		goto check_dma_bug;
   3784   1.46  jonathan 
   3785   1.95  jonathan 	if (bge_cksum_pad(m_head) != 0) {
   3786   1.46  jonathan 	    return ENOBUFS;
   3787   1.95  jonathan 	}
   3788   1.46  jonathan 
   3789   1.46  jonathan check_dma_bug:
   3790   1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3791   1.29    itojun 		goto doit;
   3792   1.25  jonathan 	/*
   3793   1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3794   1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3795   1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3796   1.25  jonathan 	 */
   3797   1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3798   1.45  jonathan 		return ENOBUFS;
   3799   1.25  jonathan 
   3800   1.25  jonathan doit:
   3801    1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3802    1.1      fvdl 	if (dma == NULL)
   3803    1.1      fvdl 		return ENOBUFS;
   3804    1.1      fvdl 	dmamap = dma->dmamap;
   3805    1.1      fvdl 
   3806    1.1      fvdl 	/*
   3807   1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3808   1.95  jonathan 	 */
   3809   1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3810   1.95  jonathan 	if (!use_tso) {
   3811   1.95  jonathan 		maxsegsize = 0;
   3812   1.95  jonathan 	} else {	/* TSO setup */
   3813   1.95  jonathan 		unsigned  mss;
   3814   1.95  jonathan 		struct ether_header *eh;
   3815   1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3816   1.95  jonathan 		struct mbuf * m0 = m_head;
   3817   1.95  jonathan 		struct ip *ip;
   3818   1.95  jonathan 		struct tcphdr *th;
   3819   1.95  jonathan 		int iphl, hlen;
   3820   1.95  jonathan 
   3821   1.95  jonathan 		/*
   3822   1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3823   1.95  jonathan 		 * fields for the protocol headers.
   3824   1.95  jonathan 		 */
   3825   1.95  jonathan 
   3826   1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3827   1.95  jonathan 		switch (htons(eh->ether_type)) {
   3828   1.95  jonathan 		case ETHERTYPE_IP:
   3829   1.95  jonathan 			offset = ETHER_HDR_LEN;
   3830   1.95  jonathan 			break;
   3831   1.95  jonathan 
   3832   1.95  jonathan 		case ETHERTYPE_VLAN:
   3833   1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3834   1.95  jonathan 			break;
   3835   1.95  jonathan 
   3836   1.95  jonathan 		default:
   3837   1.95  jonathan 			/*
   3838   1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3839   1.95  jonathan 			 */
   3840   1.95  jonathan 			return (ENOBUFS);
   3841   1.95  jonathan 		}
   3842   1.95  jonathan 
   3843   1.95  jonathan 		/*
   3844   1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3845   1.95  jonathan 		 * this the easy way.
   3846   1.95  jonathan 		 */
   3847   1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3848   1.95  jonathan 		hlen = iphl + offset;
   3849   1.95  jonathan 		if (__predict_false(m0->m_len <
   3850   1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3851   1.95  jonathan 
   3852  1.138     joerg 			aprint_debug_dev(sc->bge_dev,
   3853  1.138     joerg 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3854  1.138     joerg 			    "not handled yet\n",
   3855  1.138     joerg 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3856   1.95  jonathan #ifdef NOTYET
   3857   1.95  jonathan 			/*
   3858   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3859   1.95  jonathan 			 * how to force  this branch to be taken?
   3860   1.95  jonathan 			 */
   3861   1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3862   1.95  jonathan 
   3863   1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3864   1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3865   1.95  jonathan 
   3866   1.95  jonathan 			ip.ip_len = 0;
   3867   1.95  jonathan 
   3868   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3869   1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3870   1.95  jonathan 
   3871   1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3872   1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3873   1.95  jonathan 
   3874   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3875   1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3876   1.95  jonathan 
   3877   1.95  jonathan 			hlen += th.th_off << 2;
   3878   1.95  jonathan 			iptcp_opt_words	= hlen;
   3879   1.95  jonathan #else
   3880   1.95  jonathan 			/*
   3881   1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3882   1.95  jonathan 			 * mandate it out of existence?
   3883   1.95  jonathan 			 */
   3884   1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3885   1.95  jonathan 
   3886   1.95  jonathan 			return ENOBUFS;
   3887   1.95  jonathan #endif
   3888   1.95  jonathan 		} else {
   3889  1.126  christos 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3890  1.126  christos 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3891   1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3892   1.95  jonathan 
   3893   1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3894   1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3895   1.95  jonathan 					   - sizeof(struct tcphdr)
   3896   1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3897   1.95  jonathan 		}
   3898   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3899   1.95  jonathan 			th->th_sum = 0;
   3900   1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3901   1.95  jonathan 		} else {
   3902   1.95  jonathan 			/*
   3903  1.107     blymn 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3904   1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3905   1.95  jonathan 			 */
   3906   1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3907   1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3908   1.95  jonathan 		}
   3909   1.95  jonathan 
   3910   1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3911  1.107     blymn 		txbd_tso_flags |=
   3912   1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3913   1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3914   1.95  jonathan 
   3915   1.95  jonathan 		/*
   3916   1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3917   1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3918   1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3919   1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3920   1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3921   1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3922   1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3923   1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3924   1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3925   1.95  jonathan 		 * varies across different ASIC families.
   3926   1.95  jonathan 		 */
   3927   1.95  jonathan 		tcp_seg_flags = 0;
   3928   1.95  jonathan 		if (iptcp_opt_words) {
   3929   1.95  jonathan 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3930   1.95  jonathan 				tcp_seg_flags =
   3931   1.95  jonathan 					iptcp_opt_words << 11;
   3932   1.95  jonathan 			} else {
   3933   1.95  jonathan 				txbd_tso_flags |=
   3934   1.95  jonathan 					iptcp_opt_words << 12;
   3935   1.95  jonathan 			}
   3936   1.95  jonathan 		}
   3937   1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3938   1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3939   1.95  jonathan 
   3940   1.95  jonathan 	}	/* TSO setup */
   3941   1.95  jonathan 
   3942   1.95  jonathan 	/*
   3943    1.1      fvdl 	 * Start packing the mbufs in this chain into
   3944    1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3945    1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3946    1.1      fvdl 	 */
   3947   1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3948   1.95  jonathan 	    BUS_DMA_NOWAIT);
   3949   1.95  jonathan 	if (error) {
   3950    1.1      fvdl 		return(ENOBUFS);
   3951   1.95  jonathan 	}
   3952  1.118   tsutsui 	/*
   3953  1.118   tsutsui 	 * Sanity check: avoid coming within 16 descriptors
   3954  1.118   tsutsui 	 * of the end of the ring.
   3955  1.118   tsutsui 	 */
   3956  1.118   tsutsui 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3957  1.118   tsutsui 		BGE_TSO_PRINTF(("%s: "
   3958  1.118   tsutsui 		    " dmamap_load_mbuf too close to ring wrap\n",
   3959  1.138     joerg 		    device_xname(sc->bge_dev)));
   3960  1.118   tsutsui 		goto fail_unload;
   3961  1.118   tsutsui 	}
   3962   1.95  jonathan 
   3963   1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3964   1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3965    1.1      fvdl 
   3966    1.6   thorpej 
   3967   1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3968    1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3969    1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3970    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3971    1.1      fvdl 			break;
   3972  1.107     blymn 
   3973    1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3974    1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3975   1.95  jonathan 
   3976   1.95  jonathan 		/*
   3977   1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3978   1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3979   1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3980   1.95  jonathan 		 * of TSO flags and segsize.
   3981   1.95  jonathan 		 */
   3982   1.95  jonathan 		if (use_tso) {
   3983   1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3984   1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3985   1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3986   1.95  jonathan 			} else {
   3987   1.95  jonathan 				f->bge_rsvd = 0;
   3988   1.95  jonathan 				f->bge_flags =
   3989   1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3990   1.95  jonathan 			}
   3991   1.95  jonathan 		} else {
   3992   1.95  jonathan 			f->bge_rsvd = 0;
   3993   1.95  jonathan 			f->bge_flags = csum_flags;
   3994   1.95  jonathan 		}
   3995    1.1      fvdl 
   3996   1.28    itojun 		if (mtag != NULL) {
   3997    1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3998   1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3999    1.1      fvdl 		} else {
   4000    1.1      fvdl 			f->bge_vlan_tag = 0;
   4001    1.1      fvdl 		}
   4002    1.1      fvdl 		cur = frag;
   4003    1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   4004    1.1      fvdl 	}
   4005    1.1      fvdl 
   4006   1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   4007   1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4008  1.138     joerg 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4009  1.118   tsutsui 		goto fail_unload;
   4010   1.95  jonathan 	}
   4011    1.1      fvdl 
   4012    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4013    1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   4014    1.1      fvdl 
   4015   1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   4016   1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4017  1.138     joerg 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4018   1.95  jonathan 
   4019  1.118   tsutsui 		goto fail_unload;
   4020   1.95  jonathan 	}
   4021    1.1      fvdl 
   4022    1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4023    1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4024    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4025    1.1      fvdl 	sc->txdma[cur] = dma;
   4026  1.118   tsutsui 	sc->bge_txcnt += dmamap->dm_nsegs;
   4027    1.1      fvdl 
   4028    1.1      fvdl 	*txidx = frag;
   4029    1.1      fvdl 
   4030    1.1      fvdl 	return(0);
   4031  1.118   tsutsui 
   4032  1.118   tsutsui  fail_unload:
   4033  1.118   tsutsui 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4034  1.118   tsutsui 
   4035  1.118   tsutsui 	return ENOBUFS;
   4036    1.1      fvdl }
   4037    1.1      fvdl 
   4038    1.1      fvdl /*
   4039    1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4040    1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   4041    1.1      fvdl  */
   4042  1.104   thorpej static void
   4043  1.104   thorpej bge_start(struct ifnet *ifp)
   4044    1.1      fvdl {
   4045    1.1      fvdl 	struct bge_softc *sc;
   4046    1.1      fvdl 	struct mbuf *m_head = NULL;
   4047   1.94  jonathan 	u_int32_t prodidx;
   4048    1.1      fvdl 	int pkts = 0;
   4049    1.1      fvdl 
   4050    1.1      fvdl 	sc = ifp->if_softc;
   4051    1.1      fvdl 
   4052  1.131   mlelstv 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4053    1.1      fvdl 		return;
   4054    1.1      fvdl 
   4055   1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   4056    1.1      fvdl 
   4057    1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4058    1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   4059    1.1      fvdl 		if (m_head == NULL)
   4060    1.1      fvdl 			break;
   4061    1.1      fvdl 
   4062    1.1      fvdl #if 0
   4063    1.1      fvdl 		/*
   4064    1.1      fvdl 		 * XXX
   4065    1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   4066    1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   4067    1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   4068    1.1      fvdl 		 * chain at once.
   4069    1.1      fvdl 		 * (paranoia -- may not actually be needed)
   4070    1.1      fvdl 		 */
   4071    1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   4072    1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4073    1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4074   1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4075    1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   4076    1.1      fvdl 				break;
   4077    1.1      fvdl 			}
   4078    1.1      fvdl 		}
   4079    1.1      fvdl #endif
   4080    1.1      fvdl 
   4081    1.1      fvdl 		/*
   4082    1.1      fvdl 		 * Pack the data into the transmit ring. If we
   4083    1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   4084    1.1      fvdl 		 * for the NIC to drain the ring.
   4085    1.1      fvdl 		 */
   4086    1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   4087    1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   4088    1.1      fvdl 			break;
   4089    1.1      fvdl 		}
   4090    1.1      fvdl 
   4091    1.1      fvdl 		/* now we are committed to transmit the packet */
   4092    1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4093    1.1      fvdl 		pkts++;
   4094    1.1      fvdl 
   4095    1.1      fvdl #if NBPFILTER > 0
   4096    1.1      fvdl 		/*
   4097    1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   4098    1.1      fvdl 		 * to him.
   4099    1.1      fvdl 		 */
   4100    1.1      fvdl 		if (ifp->if_bpf)
   4101    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   4102    1.1      fvdl #endif
   4103    1.1      fvdl 	}
   4104    1.1      fvdl 	if (pkts == 0)
   4105    1.1      fvdl 		return;
   4106    1.1      fvdl 
   4107    1.1      fvdl 	/* Transmit */
   4108  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4109   1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   4110  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4111    1.1      fvdl 
   4112   1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   4113   1.94  jonathan 
   4114    1.1      fvdl 	/*
   4115    1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   4116    1.1      fvdl 	 */
   4117    1.1      fvdl 	ifp->if_timer = 5;
   4118    1.1      fvdl }
   4119    1.1      fvdl 
   4120  1.104   thorpej static int
   4121  1.104   thorpej bge_init(struct ifnet *ifp)
   4122    1.1      fvdl {
   4123    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4124  1.137    dyoung 	const u_int16_t *m;
   4125  1.142    dyoung 	int s, error = 0;
   4126    1.1      fvdl 
   4127    1.1      fvdl 	s = splnet();
   4128    1.1      fvdl 
   4129    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   4130    1.1      fvdl 
   4131    1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   4132  1.141  jmcneill 	bge_stop(ifp, 0);
   4133    1.1      fvdl 	bge_reset(sc);
   4134    1.1      fvdl 	bge_chipinit(sc);
   4135    1.1      fvdl 
   4136    1.1      fvdl 	/*
   4137    1.1      fvdl 	 * Init the various state machines, ring
   4138    1.1      fvdl 	 * control blocks and firmware.
   4139    1.1      fvdl 	 */
   4140    1.1      fvdl 	error = bge_blockinit(sc);
   4141    1.1      fvdl 	if (error != 0) {
   4142  1.138     joerg 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4143    1.1      fvdl 		    error);
   4144    1.1      fvdl 		splx(s);
   4145    1.1      fvdl 		return error;
   4146    1.1      fvdl 	}
   4147    1.1      fvdl 
   4148    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   4149    1.1      fvdl 
   4150    1.1      fvdl 	/* Specify MTU. */
   4151    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4152  1.107     blymn 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4153    1.1      fvdl 
   4154    1.1      fvdl 	/* Load our MAC address. */
   4155  1.137    dyoung 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4156    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4157    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4158    1.1      fvdl 
   4159    1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   4160    1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   4161    1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4162    1.1      fvdl 	} else {
   4163    1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4164    1.1      fvdl 	}
   4165    1.1      fvdl 
   4166    1.1      fvdl 	/* Program multicast filter. */
   4167    1.1      fvdl 	bge_setmulti(sc);
   4168    1.1      fvdl 
   4169    1.1      fvdl 	/* Init RX ring. */
   4170    1.1      fvdl 	bge_init_rx_ring_std(sc);
   4171    1.1      fvdl 
   4172    1.1      fvdl 	/* Init jumbo RX ring. */
   4173    1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4174    1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   4175    1.1      fvdl 
   4176    1.1      fvdl 	/* Init our RX return ring index */
   4177    1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   4178    1.1      fvdl 
   4179    1.1      fvdl 	/* Init TX ring. */
   4180    1.1      fvdl 	bge_init_tx_ring(sc);
   4181    1.1      fvdl 
   4182    1.1      fvdl 	/* Turn on transmitter */
   4183    1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4184    1.1      fvdl 
   4185    1.1      fvdl 	/* Turn on receiver */
   4186    1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4187    1.1      fvdl 
   4188   1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4189   1.71   thorpej 
   4190    1.1      fvdl 	/* Tell firmware we're alive. */
   4191    1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4192    1.1      fvdl 
   4193    1.1      fvdl 	/* Enable host interrupts. */
   4194    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4195    1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4196  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4197    1.1      fvdl 
   4198  1.142    dyoung 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4199  1.142    dyoung 		goto out;
   4200    1.1      fvdl 
   4201    1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   4202    1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   4203    1.1      fvdl 
   4204  1.142    dyoung 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4205  1.142    dyoung 
   4206  1.142    dyoung out:
   4207    1.1      fvdl 	splx(s);
   4208    1.1      fvdl 
   4209  1.142    dyoung 	return error;
   4210    1.1      fvdl }
   4211    1.1      fvdl 
   4212    1.1      fvdl /*
   4213    1.1      fvdl  * Set media options.
   4214    1.1      fvdl  */
   4215  1.104   thorpej static int
   4216  1.104   thorpej bge_ifmedia_upd(struct ifnet *ifp)
   4217    1.1      fvdl {
   4218    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4219    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4220    1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4221  1.142    dyoung 	int rc;
   4222    1.1      fvdl 
   4223    1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4224    1.1      fvdl 	if (sc->bge_tbi) {
   4225    1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4226    1.1      fvdl 			return(EINVAL);
   4227    1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4228    1.1      fvdl 		case IFM_AUTO:
   4229    1.1      fvdl 			break;
   4230    1.1      fvdl 		case IFM_1000_SX:
   4231    1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4232    1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4233    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4234    1.1      fvdl 			} else {
   4235    1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4236    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4237    1.1      fvdl 			}
   4238    1.1      fvdl 			break;
   4239    1.1      fvdl 		default:
   4240    1.1      fvdl 			return(EINVAL);
   4241    1.1      fvdl 		}
   4242   1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   4243    1.1      fvdl 		return(0);
   4244    1.1      fvdl 	}
   4245    1.1      fvdl 
   4246    1.1      fvdl 	sc->bge_link = 0;
   4247  1.142    dyoung 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4248  1.142    dyoung 		return 0;
   4249  1.142    dyoung 	return rc;
   4250    1.1      fvdl }
   4251    1.1      fvdl 
   4252    1.1      fvdl /*
   4253    1.1      fvdl  * Report current media status.
   4254    1.1      fvdl  */
   4255  1.104   thorpej static void
   4256  1.104   thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4257    1.1      fvdl {
   4258    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4259    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4260    1.1      fvdl 
   4261    1.1      fvdl 	if (sc->bge_tbi) {
   4262    1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   4263    1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   4264    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4265    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4266    1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   4267    1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   4268    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4269    1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   4270    1.1      fvdl 		else
   4271    1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   4272    1.1      fvdl 		return;
   4273    1.1      fvdl 	}
   4274    1.1      fvdl 
   4275    1.1      fvdl 	mii_pollstat(mii);
   4276    1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   4277   1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4278   1.69   thorpej 	    sc->bge_flowflags;
   4279    1.1      fvdl }
   4280    1.1      fvdl 
   4281  1.104   thorpej static int
   4282  1.126  christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4283    1.1      fvdl {
   4284    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4285    1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   4286    1.1      fvdl 	int s, error = 0;
   4287    1.1      fvdl 	struct mii_data *mii;
   4288    1.1      fvdl 
   4289    1.1      fvdl 	s = splnet();
   4290    1.1      fvdl 
   4291    1.1      fvdl 	switch(command) {
   4292    1.1      fvdl 	case SIOCSIFFLAGS:
   4293  1.153    dyoung 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4294  1.153    dyoung 			break;
   4295    1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   4296    1.1      fvdl 			/*
   4297    1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   4298    1.1      fvdl 			 * then just use the 'set promisc mode' command
   4299    1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   4300    1.1      fvdl 			 * a full re-init means reloading the firmware and
   4301    1.1      fvdl 			 * waiting for it to start up, which may take a
   4302    1.1      fvdl 			 * second or two.
   4303    1.1      fvdl 			 */
   4304    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   4305    1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   4306    1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4307    1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   4308    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4309    1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   4310    1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   4311    1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   4312    1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4313    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4314  1.103    rpaulo 			} else if (!(sc->bge_if_flags & IFF_UP))
   4315    1.1      fvdl 				bge_init(ifp);
   4316    1.1      fvdl 		} else {
   4317  1.141  jmcneill 			if (ifp->if_flags & IFF_RUNNING)
   4318  1.141  jmcneill 				bge_stop(ifp, 1);
   4319    1.1      fvdl 		}
   4320    1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   4321    1.1      fvdl 		error = 0;
   4322    1.1      fvdl 		break;
   4323    1.1      fvdl 	case SIOCSIFMEDIA:
   4324   1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   4325   1.69   thorpej 		if (sc->bge_tbi) {
   4326   1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4327   1.69   thorpej 			sc->bge_flowflags = 0;
   4328   1.69   thorpej 		}
   4329   1.69   thorpej 
   4330   1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4331   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4332   1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4333   1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4334   1.69   thorpej 		}
   4335   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4336   1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4337   1.69   thorpej 				/* We an do both TXPAUSE and RXPAUSE. */
   4338   1.69   thorpej 				ifr->ifr_media |=
   4339   1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4340   1.69   thorpej 			}
   4341   1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4342   1.69   thorpej 		}
   4343   1.69   thorpej 		/* FALLTHROUGH */
   4344    1.1      fvdl 	case SIOCGIFMEDIA:
   4345    1.1      fvdl 		if (sc->bge_tbi) {
   4346    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4347    1.1      fvdl 			    command);
   4348    1.1      fvdl 		} else {
   4349    1.1      fvdl 			mii = &sc->bge_mii;
   4350    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4351    1.1      fvdl 			    command);
   4352    1.1      fvdl 		}
   4353    1.1      fvdl 		break;
   4354    1.1      fvdl 	default:
   4355  1.152      tron 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4356  1.152      tron 			break;
   4357  1.152      tron 
   4358  1.152      tron 		error = 0;
   4359  1.152      tron 
   4360  1.152      tron 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4361  1.152      tron 			;
   4362  1.152      tron 		else if (ifp->if_flags & IFF_RUNNING)
   4363  1.152      tron 			bge_setmulti(sc);
   4364    1.1      fvdl 		break;
   4365    1.1      fvdl 	}
   4366    1.1      fvdl 
   4367    1.1      fvdl 	splx(s);
   4368    1.1      fvdl 
   4369    1.1      fvdl 	return(error);
   4370    1.1      fvdl }
   4371    1.1      fvdl 
   4372  1.104   thorpej static void
   4373  1.104   thorpej bge_watchdog(struct ifnet *ifp)
   4374    1.1      fvdl {
   4375    1.1      fvdl 	struct bge_softc *sc;
   4376    1.1      fvdl 
   4377    1.1      fvdl 	sc = ifp->if_softc;
   4378    1.1      fvdl 
   4379  1.138     joerg 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4380    1.1      fvdl 
   4381    1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4382    1.1      fvdl 	bge_init(ifp);
   4383    1.1      fvdl 
   4384    1.1      fvdl 	ifp->if_oerrors++;
   4385    1.1      fvdl }
   4386    1.1      fvdl 
   4387   1.11   thorpej static void
   4388   1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4389   1.11   thorpej {
   4390   1.11   thorpej 	int i;
   4391   1.11   thorpej 
   4392   1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4393   1.11   thorpej 
   4394   1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4395   1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4396   1.11   thorpej 			return;
   4397   1.11   thorpej 		delay(100);
   4398   1.95  jonathan 		if (sc->bge_pcie)
   4399   1.95  jonathan 		  DELAY(1000);
   4400   1.11   thorpej 	}
   4401   1.11   thorpej 
   4402  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   4403  1.138     joerg 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4404   1.11   thorpej }
   4405   1.11   thorpej 
   4406    1.1      fvdl /*
   4407    1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4408    1.1      fvdl  * RX and TX lists.
   4409    1.1      fvdl  */
   4410  1.104   thorpej static void
   4411  1.141  jmcneill bge_stop(struct ifnet *ifp, int disable)
   4412    1.1      fvdl {
   4413  1.141  jmcneill 	struct bge_softc *sc = ifp->if_softc;
   4414    1.1      fvdl 
   4415    1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4416    1.1      fvdl 
   4417    1.1      fvdl 	/*
   4418    1.1      fvdl 	 * Disable all of the receiver blocks
   4419    1.1      fvdl 	 */
   4420   1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4421   1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4422   1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4423   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4424   1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4425   1.44   hannken 	}
   4426   1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4427   1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4428   1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4429    1.1      fvdl 
   4430    1.1      fvdl 	/*
   4431    1.1      fvdl 	 * Disable all of the transmit blocks
   4432    1.1      fvdl 	 */
   4433   1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4434   1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4435   1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4436   1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4437   1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4438   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4439   1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4440   1.44   hannken 	}
   4441   1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4442    1.1      fvdl 
   4443    1.1      fvdl 	/*
   4444    1.1      fvdl 	 * Shut down all of the memory managers and related
   4445    1.1      fvdl 	 * state machines.
   4446    1.1      fvdl 	 */
   4447   1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4448   1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4449   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4450   1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4451   1.44   hannken 	}
   4452   1.11   thorpej 
   4453    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4454    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4455   1.11   thorpej 
   4456   1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4457   1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4458   1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4459   1.44   hannken 	}
   4460    1.1      fvdl 
   4461    1.1      fvdl 	/* Disable host interrupts. */
   4462    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4463  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4464    1.1      fvdl 
   4465    1.1      fvdl 	/*
   4466    1.1      fvdl 	 * Tell firmware we're shutting down.
   4467    1.1      fvdl 	 */
   4468    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4469    1.1      fvdl 
   4470    1.1      fvdl 	/* Free the RX lists. */
   4471    1.1      fvdl 	bge_free_rx_ring_std(sc);
   4472    1.1      fvdl 
   4473    1.1      fvdl 	/* Free jumbo RX list. */
   4474    1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   4475    1.1      fvdl 
   4476    1.1      fvdl 	/* Free TX buffers. */
   4477    1.1      fvdl 	bge_free_tx_ring(sc);
   4478    1.1      fvdl 
   4479    1.1      fvdl 	/*
   4480    1.1      fvdl 	 * Isolate/power down the PHY.
   4481    1.1      fvdl 	 */
   4482    1.1      fvdl 	if (!sc->bge_tbi)
   4483    1.1      fvdl 		mii_down(&sc->bge_mii);
   4484    1.1      fvdl 
   4485    1.1      fvdl 	sc->bge_link = 0;
   4486    1.1      fvdl 
   4487    1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4488    1.1      fvdl 
   4489    1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4490    1.1      fvdl }
   4491    1.1      fvdl 
   4492   1.64  jonathan static int
   4493   1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4494   1.64  jonathan {
   4495   1.64  jonathan 	int error, t;
   4496   1.64  jonathan 	struct sysctlnode node;
   4497   1.64  jonathan 
   4498   1.64  jonathan 	node = *rnode;
   4499   1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4500   1.64  jonathan 	node.sysctl_data = &t;
   4501   1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4502   1.64  jonathan 	if (error || newp == NULL)
   4503   1.64  jonathan 		return (error);
   4504   1.64  jonathan 
   4505   1.64  jonathan #if 0
   4506   1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4507   1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4508   1.64  jonathan #endif
   4509   1.64  jonathan 
   4510   1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4511   1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4512   1.64  jonathan 			return (EINVAL);
   4513   1.64  jonathan 		bge_update_all_threshes(t);
   4514   1.64  jonathan 	} else
   4515   1.64  jonathan 		return (EINVAL);
   4516   1.64  jonathan 
   4517   1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4518   1.64  jonathan 
   4519   1.64  jonathan 	return (0);
   4520   1.64  jonathan }
   4521   1.64  jonathan 
   4522   1.64  jonathan /*
   4523   1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4524   1.64  jonathan  *
   4525   1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4526   1.64  jonathan  */
   4527   1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4528   1.64  jonathan {
   4529   1.66    atatat 	int rc, bge_root_num;
   4530   1.90    atatat 	const struct sysctlnode *node;
   4531   1.64  jonathan 
   4532   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4533   1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4534   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4535   1.64  jonathan 		goto err;
   4536   1.64  jonathan 	}
   4537   1.64  jonathan 
   4538   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4539   1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4540   1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4541   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4542   1.64  jonathan 		goto err;
   4543   1.64  jonathan 	}
   4544   1.64  jonathan 
   4545   1.66    atatat 	bge_root_num = node->sysctl_num;
   4546   1.66    atatat 
   4547   1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4548   1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4549   1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4550   1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4551   1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4552   1.73    atatat 	    sysctl_bge_verify, 0,
   4553   1.64  jonathan 	    &bge_rx_thresh_lvl,
   4554   1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4555   1.64  jonathan 	    CTL_EOL)) != 0) {
   4556   1.64  jonathan 		goto err;
   4557   1.64  jonathan 	}
   4558   1.64  jonathan 
   4559   1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4560   1.64  jonathan 
   4561   1.64  jonathan 	return;
   4562   1.64  jonathan 
   4563   1.64  jonathan err:
   4564  1.138     joerg 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4565   1.64  jonathan }
   4566  1.151    cegger 
   4567  1.151    cegger static int
   4568  1.151    cegger bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
   4569  1.151    cegger {
   4570  1.151    cegger 	u_int32_t mac_addr;
   4571  1.151    cegger 
   4572  1.151    cegger 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4573  1.151    cegger 	if ((mac_addr >> 16) == 0x484b) {
   4574  1.151    cegger 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4575  1.151    cegger 		ether_addr[1] = (uint8_t)mac_addr;
   4576  1.151    cegger 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4577  1.151    cegger 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4578  1.151    cegger 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4579  1.151    cegger 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4580  1.151    cegger 		ether_addr[5] = (uint8_t)mac_addr;
   4581  1.151    cegger 		return (0);
   4582  1.151    cegger 	}
   4583  1.151    cegger 	return (1);
   4584  1.151    cegger }
   4585  1.151    cegger 
   4586  1.151    cegger static int
   4587  1.151    cegger bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
   4588  1.151    cegger {
   4589  1.151    cegger 	int mac_offset = BGE_EE_MAC_OFFSET;
   4590  1.151    cegger 
   4591  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4592  1.151    cegger 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4593  1.151    cegger 	}
   4594  1.151    cegger 
   4595  1.151    cegger 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4596  1.151    cegger 	    ETHER_ADDR_LEN));
   4597  1.151    cegger }
   4598  1.151    cegger 
   4599  1.151    cegger static int
   4600  1.151    cegger bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
   4601  1.151    cegger {
   4602  1.151    cegger 
   4603  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4604  1.151    cegger 		return (1);
   4605  1.151    cegger 	}
   4606  1.151    cegger 
   4607  1.151    cegger 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4608  1.151    cegger 	   ETHER_ADDR_LEN));
   4609  1.151    cegger }
   4610  1.151    cegger 
   4611  1.151    cegger static int
   4612  1.151    cegger bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
   4613  1.151    cegger {
   4614  1.151    cegger 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4615  1.151    cegger 		/* NOTE: Order is critical */
   4616  1.151    cegger 		bge_get_eaddr_mem,
   4617  1.151    cegger 		bge_get_eaddr_nvram,
   4618  1.151    cegger 		bge_get_eaddr_eeprom,
   4619  1.151    cegger 		NULL
   4620  1.151    cegger 	};
   4621  1.151    cegger 	const bge_eaddr_fcn_t *func;
   4622  1.151    cegger 
   4623  1.151    cegger 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4624  1.151    cegger 		if ((*func)(sc, eaddr) == 0)
   4625  1.151    cegger 			break;
   4626  1.151    cegger 	}
   4627  1.151    cegger 	return (*func == NULL ? ENXIO : 0);
   4628  1.151    cegger }
   4629