if_bge.c revision 1.156 1 1.156 msaitoh /* $NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.156 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.148 mlelstv #include "rnd.h"
87 1.1 fvdl
88 1.1 fvdl #include <sys/param.h>
89 1.1 fvdl #include <sys/systm.h>
90 1.1 fvdl #include <sys/callout.h>
91 1.1 fvdl #include <sys/sockio.h>
92 1.1 fvdl #include <sys/mbuf.h>
93 1.1 fvdl #include <sys/malloc.h>
94 1.1 fvdl #include <sys/kernel.h>
95 1.1 fvdl #include <sys/device.h>
96 1.1 fvdl #include <sys/socket.h>
97 1.64 jonathan #include <sys/sysctl.h>
98 1.1 fvdl
99 1.1 fvdl #include <net/if.h>
100 1.1 fvdl #include <net/if_dl.h>
101 1.1 fvdl #include <net/if_media.h>
102 1.1 fvdl #include <net/if_ether.h>
103 1.1 fvdl
104 1.148 mlelstv #if NRND > 0
105 1.148 mlelstv #include <sys/rnd.h>
106 1.148 mlelstv #endif
107 1.148 mlelstv
108 1.1 fvdl #ifdef INET
109 1.1 fvdl #include <netinet/in.h>
110 1.1 fvdl #include <netinet/in_systm.h>
111 1.1 fvdl #include <netinet/in_var.h>
112 1.1 fvdl #include <netinet/ip.h>
113 1.1 fvdl #endif
114 1.1 fvdl
115 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
116 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
119 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
120 1.95 jonathan
121 1.95 jonathan
122 1.1 fvdl #if NBPFILTER > 0
123 1.1 fvdl #include <net/bpf.h>
124 1.1 fvdl #endif
125 1.1 fvdl
126 1.1 fvdl #include <dev/pci/pcireg.h>
127 1.1 fvdl #include <dev/pci/pcivar.h>
128 1.1 fvdl #include <dev/pci/pcidevs.h>
129 1.1 fvdl
130 1.1 fvdl #include <dev/mii/mii.h>
131 1.1 fvdl #include <dev/mii/miivar.h>
132 1.1 fvdl #include <dev/mii/miidevs.h>
133 1.1 fvdl #include <dev/mii/brgphyreg.h>
134 1.1 fvdl
135 1.1 fvdl #include <dev/pci/if_bgereg.h>
136 1.1 fvdl
137 1.1 fvdl #include <uvm/uvm_extern.h>
138 1.1 fvdl
139 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140 1.46 jonathan
141 1.63 jonathan
142 1.63 jonathan /*
143 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
144 1.63 jonathan */
145 1.63 jonathan
146 1.63 jonathan /*
147 1.63 jonathan * The pairs of values below were obtained from empirical measurement
148 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
150 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
151 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
152 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
153 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
154 1.63 jonathan * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 1.63 jonathan * results in internal wrapping and higher interrupt rates.
156 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
157 1.87 perry *
158 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
159 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
160 1.63 jonathan * family), the larger values may overflow internal chip limits,
161 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
162 1.63 jonathan * rates.
163 1.63 jonathan *
164 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
165 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
166 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
168 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 1.63 jonathan */
170 1.104 thorpej static const struct bge_load_rx_thresh {
171 1.63 jonathan int rx_ticks;
172 1.63 jonathan int rx_max_bds; }
173 1.63 jonathan bge_rx_threshes[] = {
174 1.63 jonathan { 32, 2 },
175 1.63 jonathan { 50, 4 },
176 1.63 jonathan { 100, 8 },
177 1.63 jonathan { 192, 16 },
178 1.63 jonathan { 416, 32 },
179 1.63 jonathan { 598, 46 }
180 1.63 jonathan };
181 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182 1.63 jonathan
183 1.63 jonathan /* XXX patchable; should be sysctl'able */
184 1.64 jonathan static int bge_auto_thresh = 1;
185 1.64 jonathan static int bge_rx_thresh_lvl;
186 1.64 jonathan
187 1.104 thorpej static int bge_rxthresh_nodenum;
188 1.1 fvdl
189 1.151 cegger typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
190 1.151 cegger
191 1.104 thorpej static int bge_probe(device_t, cfdata_t, void *);
192 1.104 thorpej static void bge_attach(device_t, device_t, void *);
193 1.104 thorpej static void bge_release_resources(struct bge_softc *);
194 1.104 thorpej static void bge_txeof(struct bge_softc *);
195 1.104 thorpej static void bge_rxeof(struct bge_softc *);
196 1.104 thorpej
197 1.151 cegger static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
198 1.151 cegger static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
199 1.151 cegger static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
200 1.151 cegger static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
201 1.151 cegger
202 1.104 thorpej static void bge_tick(void *);
203 1.104 thorpej static void bge_stats_update(struct bge_softc *);
204 1.104 thorpej static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
205 1.104 thorpej
206 1.104 thorpej static int bge_intr(void *);
207 1.104 thorpej static void bge_start(struct ifnet *);
208 1.126 christos static int bge_ioctl(struct ifnet *, u_long, void *);
209 1.104 thorpej static int bge_init(struct ifnet *);
210 1.141 jmcneill static void bge_stop(struct ifnet *, int);
211 1.104 thorpej static void bge_watchdog(struct ifnet *);
212 1.104 thorpej static int bge_ifmedia_upd(struct ifnet *);
213 1.104 thorpej static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214 1.104 thorpej
215 1.104 thorpej static void bge_setmulti(struct bge_softc *);
216 1.104 thorpej
217 1.104 thorpej static void bge_handle_events(struct bge_softc *);
218 1.104 thorpej static int bge_alloc_jumbo_mem(struct bge_softc *);
219 1.104 thorpej #if 0 /* XXX */
220 1.104 thorpej static void bge_free_jumbo_mem(struct bge_softc *);
221 1.1 fvdl #endif
222 1.104 thorpej static void *bge_jalloc(struct bge_softc *);
223 1.126 christos static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 1.104 thorpej static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
225 1.104 thorpej bus_dmamap_t);
226 1.104 thorpej static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 1.104 thorpej static int bge_init_rx_ring_std(struct bge_softc *);
228 1.104 thorpej static void bge_free_rx_ring_std(struct bge_softc *);
229 1.104 thorpej static int bge_init_rx_ring_jumbo(struct bge_softc *);
230 1.104 thorpej static void bge_free_rx_ring_jumbo(struct bge_softc *);
231 1.104 thorpej static void bge_free_tx_ring(struct bge_softc *);
232 1.104 thorpej static int bge_init_tx_ring(struct bge_softc *);
233 1.104 thorpej
234 1.104 thorpej static int bge_chipinit(struct bge_softc *);
235 1.104 thorpej static int bge_blockinit(struct bge_softc *);
236 1.104 thorpej static int bge_setpowerstate(struct bge_softc *, int);
237 1.1 fvdl
238 1.104 thorpej static void bge_reset(struct bge_softc *);
239 1.95 jonathan
240 1.1 fvdl #define BGE_DEBUG
241 1.1 fvdl #ifdef BGE_DEBUG
242 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
243 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
244 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
245 1.1 fvdl int bgedebug = 0;
246 1.95 jonathan int bge_tso_debug = 0;
247 1.1 fvdl #else
248 1.1 fvdl #define DPRINTF(x)
249 1.1 fvdl #define DPRINTFN(n,x)
250 1.95 jonathan #define BGE_TSO_PRINTF(x)
251 1.1 fvdl #endif
252 1.1 fvdl
253 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
254 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
255 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
256 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
257 1.72 thorpej #else
258 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
259 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
260 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
261 1.72 thorpej #endif
262 1.72 thorpej
263 1.17 thorpej /* Various chip quirks. */
264 1.17 thorpej #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
265 1.18 thorpej #define BGE_QUIRK_CSUM_BROKEN 0x00000002
266 1.25 jonathan #define BGE_QUIRK_5700_SMALLDMA 0x00000008
267 1.25 jonathan #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
268 1.36 jonathan #define BGE_QUIRK_PRODUCER_BUG 0x00000020
269 1.37 jonathan #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
270 1.44 hannken #define BGE_QUIRK_5705_CORE 0x00000080
271 1.54 fvdl #define BGE_QUIRK_FEWER_MBUFS 0x00000100
272 1.25 jonathan
273 1.95 jonathan /*
274 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
275 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
276 1.95 jonathan * in general behave like a 5705, except with additional quirks.
277 1.95 jonathan * This driver's current handling of the 5721 is wrong;
278 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
279 1.95 jonathan * (defined here until the thought is done).
280 1.95 jonathan */
281 1.99 jonathan #define BGE_IS_5714_FAMILY(sc) \
282 1.120 tsutsui (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
283 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
284 1.120 tsutsui BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
285 1.99 jonathan
286 1.95 jonathan #define BGE_IS_5750_OR_BEYOND(sc) \
287 1.99 jonathan (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
288 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
289 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
290 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
291 1.151 cegger BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
292 1.99 jonathan BGE_IS_5714_FAMILY(sc) )
293 1.95 jonathan
294 1.95 jonathan #define BGE_IS_5705_OR_BEYOND(sc) \
295 1.95 jonathan ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
296 1.95 jonathan BGE_IS_5750_OR_BEYOND(sc) )
297 1.95 jonathan
298 1.95 jonathan
299 1.25 jonathan /* following bugs are common to bcm5700 rev B, all flavours */
300 1.25 jonathan #define BGE_QUIRK_5700_COMMON \
301 1.25 jonathan (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
302 1.17 thorpej
303 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
304 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
305 1.1 fvdl
306 1.104 thorpej static u_int32_t
307 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
308 1.1 fvdl {
309 1.1 fvdl pcireg_t val;
310 1.1 fvdl
311 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
312 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
313 1.1 fvdl return val;
314 1.1 fvdl }
315 1.1 fvdl
316 1.104 thorpej static void
317 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
318 1.1 fvdl {
319 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
320 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
321 1.1 fvdl }
322 1.1 fvdl
323 1.1 fvdl #ifdef notdef
324 1.104 thorpej static u_int32_t
325 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
326 1.1 fvdl {
327 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
328 1.141 jmcneill return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
329 1.1 fvdl }
330 1.1 fvdl #endif
331 1.1 fvdl
332 1.104 thorpej static void
333 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
334 1.1 fvdl {
335 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
336 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
337 1.1 fvdl }
338 1.1 fvdl
339 1.151 cegger static void
340 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
341 1.151 cegger {
342 1.151 cegger CSR_WRITE_4(sc, off, val);
343 1.151 cegger }
344 1.151 cegger
345 1.151 cegger static void
346 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
347 1.151 cegger {
348 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
349 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
350 1.151 cegger
351 1.151 cegger CSR_WRITE_4(sc, off, val);
352 1.151 cegger }
353 1.151 cegger
354 1.1 fvdl #ifdef notdef
355 1.104 thorpej static u_int8_t
356 1.104 thorpej bge_vpd_readbyte(struct bge_softc *sc, int addr)
357 1.1 fvdl {
358 1.1 fvdl int i;
359 1.1 fvdl u_int32_t val;
360 1.1 fvdl
361 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
362 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
363 1.1 fvdl DELAY(10);
364 1.141 jmcneill if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
365 1.1 fvdl BGE_VPD_FLAG)
366 1.1 fvdl break;
367 1.1 fvdl }
368 1.1 fvdl
369 1.1 fvdl if (i == BGE_TIMEOUT) {
370 1.138 joerg aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
371 1.1 fvdl return(0);
372 1.1 fvdl }
373 1.1 fvdl
374 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
375 1.1 fvdl
376 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
377 1.1 fvdl }
378 1.1 fvdl
379 1.104 thorpej static void
380 1.104 thorpej bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
381 1.1 fvdl {
382 1.1 fvdl int i;
383 1.1 fvdl u_int8_t *ptr;
384 1.1 fvdl
385 1.1 fvdl ptr = (u_int8_t *)res;
386 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
387 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
388 1.1 fvdl }
389 1.1 fvdl
390 1.104 thorpej static void
391 1.104 thorpej bge_vpd_read(struct bge_softc *sc)
392 1.1 fvdl {
393 1.1 fvdl int pos = 0, i;
394 1.1 fvdl struct vpd_res res;
395 1.1 fvdl
396 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
397 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
398 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
399 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
400 1.1 fvdl sc->bge_vpd_prodname = NULL;
401 1.1 fvdl sc->bge_vpd_readonly = NULL;
402 1.1 fvdl
403 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
404 1.1 fvdl
405 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
406 1.138 joerg aprint_error_dev("bad VPD resource id: expected %x got %x\n",
407 1.138 joerg VPD_RES_ID, res.vr_id);
408 1.1 fvdl return;
409 1.1 fvdl }
410 1.1 fvdl
411 1.1 fvdl pos += sizeof(res);
412 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
413 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
414 1.1 fvdl panic("bge_vpd_read");
415 1.1 fvdl for (i = 0; i < res.vr_len; i++)
416 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
417 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
418 1.1 fvdl pos += i;
419 1.1 fvdl
420 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
421 1.1 fvdl
422 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
423 1.138 joerg aprint_error_dev(sc->bge_dev,
424 1.138 joerg "bad VPD resource id: expected %x got %x\n",
425 1.138 joerg VPD_RES_READ, res.vr_id);
426 1.1 fvdl return;
427 1.1 fvdl }
428 1.1 fvdl
429 1.1 fvdl pos += sizeof(res);
430 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
431 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
432 1.1 fvdl panic("bge_vpd_read");
433 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
434 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
435 1.1 fvdl }
436 1.1 fvdl #endif
437 1.1 fvdl
438 1.151 cegger static u_int8_t
439 1.151 cegger bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
440 1.151 cegger {
441 1.151 cegger u_int32_t access, byte = 0;
442 1.151 cegger int i;
443 1.151 cegger
444 1.151 cegger /* Lock. */
445 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
446 1.151 cegger for (i = 0; i < 8000; i++) {
447 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
448 1.151 cegger break;
449 1.151 cegger DELAY(20);
450 1.151 cegger }
451 1.151 cegger if (i == 8000)
452 1.151 cegger return (1);
453 1.151 cegger
454 1.151 cegger /* Enable access. */
455 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
456 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
457 1.151 cegger
458 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
459 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
460 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
461 1.151 cegger DELAY(10);
462 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
463 1.151 cegger DELAY(10);
464 1.151 cegger break;
465 1.151 cegger }
466 1.151 cegger }
467 1.151 cegger
468 1.151 cegger if (i == BGE_TIMEOUT * 10) {
469 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
470 1.151 cegger return (1);
471 1.151 cegger }
472 1.151 cegger
473 1.151 cegger /* Get result. */
474 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
475 1.151 cegger
476 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
477 1.151 cegger
478 1.151 cegger /* Disable access. */
479 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
480 1.151 cegger
481 1.151 cegger /* Unlock. */
482 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
483 1.151 cegger CSR_READ_4(sc, BGE_NVRAM_SWARB);
484 1.151 cegger
485 1.151 cegger return (0);
486 1.151 cegger }
487 1.151 cegger
488 1.151 cegger /*
489 1.151 cegger * Read a sequence of bytes from NVRAM.
490 1.151 cegger */
491 1.151 cegger static int
492 1.151 cegger bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
493 1.151 cegger {
494 1.151 cegger int err = 0, i;
495 1.151 cegger u_int8_t byte = 0;
496 1.151 cegger
497 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
498 1.151 cegger return (1);
499 1.151 cegger
500 1.151 cegger for (i = 0; i < cnt; i++) {
501 1.151 cegger err = bge_nvram_getbyte(sc, off + i, &byte);
502 1.151 cegger if (err)
503 1.151 cegger break;
504 1.151 cegger *(dest + i) = byte;
505 1.151 cegger }
506 1.151 cegger
507 1.151 cegger return (err ? 1 : 0);
508 1.151 cegger }
509 1.151 cegger
510 1.151 cegger
511 1.1 fvdl /*
512 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
513 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
514 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
515 1.1 fvdl * access method.
516 1.1 fvdl */
517 1.104 thorpej static u_int8_t
518 1.104 thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
519 1.1 fvdl {
520 1.1 fvdl int i;
521 1.1 fvdl u_int32_t byte = 0;
522 1.1 fvdl
523 1.1 fvdl /*
524 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
525 1.1 fvdl * having to use the bitbang method.
526 1.1 fvdl */
527 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
528 1.1 fvdl
529 1.1 fvdl /* Reset the EEPROM, load the clock period. */
530 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
531 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
532 1.1 fvdl DELAY(20);
533 1.1 fvdl
534 1.1 fvdl /* Issue the read EEPROM command. */
535 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
536 1.1 fvdl
537 1.1 fvdl /* Wait for completion */
538 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
539 1.1 fvdl DELAY(10);
540 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
541 1.1 fvdl break;
542 1.1 fvdl }
543 1.1 fvdl
544 1.1 fvdl if (i == BGE_TIMEOUT) {
545 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
546 1.1 fvdl return(0);
547 1.1 fvdl }
548 1.1 fvdl
549 1.1 fvdl /* Get result. */
550 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
551 1.1 fvdl
552 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
553 1.1 fvdl
554 1.1 fvdl return(0);
555 1.1 fvdl }
556 1.1 fvdl
557 1.1 fvdl /*
558 1.1 fvdl * Read a sequence of bytes from the EEPROM.
559 1.1 fvdl */
560 1.104 thorpej static int
561 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
562 1.1 fvdl {
563 1.1 fvdl int err = 0, i;
564 1.1 fvdl u_int8_t byte = 0;
565 1.126 christos char *dest = destv;
566 1.1 fvdl
567 1.1 fvdl for (i = 0; i < cnt; i++) {
568 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
569 1.1 fvdl if (err)
570 1.1 fvdl break;
571 1.1 fvdl *(dest + i) = byte;
572 1.1 fvdl }
573 1.1 fvdl
574 1.1 fvdl return(err ? 1 : 0);
575 1.1 fvdl }
576 1.1 fvdl
577 1.104 thorpej static int
578 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
579 1.1 fvdl {
580 1.138 joerg struct bge_softc *sc = device_private(dev);
581 1.1 fvdl u_int32_t val;
582 1.25 jonathan u_int32_t saved_autopoll;
583 1.1 fvdl int i;
584 1.1 fvdl
585 1.25 jonathan /*
586 1.156 msaitoh * Broadcom's own driver always assumes the internal
587 1.156 msaitoh * PHY is at GMII address 1. On some chips, the PHY responds
588 1.156 msaitoh * to accesses at all addresses, which could cause us to
589 1.156 msaitoh * bogusly attach the PHY 32 times at probe type. Always
590 1.156 msaitoh * restricting the lookup to address 1 is simpler than
591 1.156 msaitoh * trying to figure out which chips revisions should be
592 1.156 msaitoh * special-cased.
593 1.25 jonathan */
594 1.156 msaitoh if (phy != 1)
595 1.156 msaitoh return (0);
596 1.1 fvdl
597 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
598 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
599 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
600 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
601 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
602 1.25 jonathan DELAY(40);
603 1.25 jonathan }
604 1.25 jonathan
605 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
606 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
607 1.1 fvdl
608 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
609 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
610 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
611 1.1 fvdl break;
612 1.9 thorpej delay(10);
613 1.1 fvdl }
614 1.1 fvdl
615 1.1 fvdl if (i == BGE_TIMEOUT) {
616 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
617 1.29 itojun val = 0;
618 1.25 jonathan goto done;
619 1.1 fvdl }
620 1.1 fvdl
621 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
622 1.1 fvdl
623 1.25 jonathan done:
624 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
625 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
626 1.25 jonathan DELAY(40);
627 1.25 jonathan }
628 1.29 itojun
629 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
630 1.1 fvdl return(0);
631 1.1 fvdl
632 1.1 fvdl return(val & 0xFFFF);
633 1.1 fvdl }
634 1.1 fvdl
635 1.104 thorpej static void
636 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
637 1.1 fvdl {
638 1.138 joerg struct bge_softc *sc = device_private(dev);
639 1.29 itojun u_int32_t saved_autopoll;
640 1.29 itojun int i;
641 1.1 fvdl
642 1.151 cegger if (phy!=1) {
643 1.151 cegger return;
644 1.151 cegger }
645 1.151 cegger
646 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
647 1.151 cegger (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
648 1.151 cegger return;
649 1.151 cegger }
650 1.151 cegger
651 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
652 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
653 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
654 1.25 jonathan delay(40);
655 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
656 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
657 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
658 1.25 jonathan }
659 1.29 itojun
660 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
661 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
662 1.1 fvdl
663 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
664 1.151 cegger delay(10);
665 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
666 1.151 cegger delay(5);
667 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
668 1.1 fvdl break;
669 1.151 cegger }
670 1.1 fvdl }
671 1.1 fvdl
672 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
673 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
674 1.25 jonathan delay(40);
675 1.25 jonathan }
676 1.29 itojun
677 1.138 joerg if (i == BGE_TIMEOUT)
678 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
679 1.1 fvdl }
680 1.1 fvdl
681 1.104 thorpej static void
682 1.104 thorpej bge_miibus_statchg(device_t dev)
683 1.1 fvdl {
684 1.138 joerg struct bge_softc *sc = device_private(dev);
685 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
686 1.1 fvdl
687 1.69 thorpej /*
688 1.69 thorpej * Get flow control negotiation result.
689 1.69 thorpej */
690 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
691 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
692 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
693 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
694 1.69 thorpej }
695 1.69 thorpej
696 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
697 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
698 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
699 1.1 fvdl } else {
700 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
701 1.1 fvdl }
702 1.1 fvdl
703 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
704 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
705 1.1 fvdl } else {
706 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
707 1.1 fvdl }
708 1.69 thorpej
709 1.69 thorpej /*
710 1.69 thorpej * 802.3x flow control
711 1.69 thorpej */
712 1.69 thorpej if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
713 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
714 1.69 thorpej } else {
715 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
716 1.69 thorpej }
717 1.69 thorpej if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
718 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
719 1.69 thorpej } else {
720 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
721 1.69 thorpej }
722 1.1 fvdl }
723 1.1 fvdl
724 1.1 fvdl /*
725 1.63 jonathan * Update rx threshold levels to values in a particular slot
726 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
727 1.63 jonathan */
728 1.104 thorpej static void
729 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
730 1.63 jonathan {
731 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
732 1.63 jonathan int s;
733 1.63 jonathan
734 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
735 1.63 jonathan * that a threshold update is pending. Updating the hardware
736 1.63 jonathan * registers here (even at splhigh()) is observed to
737 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
738 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
739 1.63 jonathan */
740 1.63 jonathan s = splnet();
741 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
742 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
743 1.63 jonathan sc->bge_pending_rxintr_change = 1;
744 1.63 jonathan splx(s);
745 1.63 jonathan
746 1.63 jonathan return;
747 1.63 jonathan }
748 1.63 jonathan
749 1.63 jonathan
750 1.63 jonathan /*
751 1.63 jonathan * Update Rx thresholds of all bge devices
752 1.63 jonathan */
753 1.104 thorpej static void
754 1.63 jonathan bge_update_all_threshes(int lvl)
755 1.63 jonathan {
756 1.63 jonathan struct ifnet *ifp;
757 1.63 jonathan const char * const namebuf = "bge";
758 1.63 jonathan int namelen;
759 1.63 jonathan
760 1.63 jonathan if (lvl < 0)
761 1.63 jonathan lvl = 0;
762 1.63 jonathan else if( lvl >= NBGE_RX_THRESH)
763 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
764 1.87 perry
765 1.63 jonathan namelen = strlen(namebuf);
766 1.63 jonathan /*
767 1.63 jonathan * Now search all the interfaces for this name/number
768 1.63 jonathan */
769 1.81 matt IFNET_FOREACH(ifp) {
770 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
771 1.63 jonathan continue;
772 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
773 1.63 jonathan if (bge_auto_thresh)
774 1.67 jonathan bge_set_thresh(ifp, lvl);
775 1.63 jonathan }
776 1.63 jonathan }
777 1.63 jonathan
778 1.63 jonathan /*
779 1.1 fvdl * Handle events that have triggered interrupts.
780 1.1 fvdl */
781 1.104 thorpej static void
782 1.116 christos bge_handle_events(struct bge_softc *sc)
783 1.1 fvdl {
784 1.1 fvdl
785 1.1 fvdl return;
786 1.1 fvdl }
787 1.1 fvdl
788 1.1 fvdl /*
789 1.1 fvdl * Memory management for jumbo frames.
790 1.1 fvdl */
791 1.1 fvdl
792 1.104 thorpej static int
793 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
794 1.1 fvdl {
795 1.126 christos char *ptr, *kva;
796 1.1 fvdl bus_dma_segment_t seg;
797 1.1 fvdl int i, rseg, state, error;
798 1.1 fvdl struct bge_jpool_entry *entry;
799 1.1 fvdl
800 1.1 fvdl state = error = 0;
801 1.1 fvdl
802 1.1 fvdl /* Grab a big chunk o' storage. */
803 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
804 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
805 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
806 1.1 fvdl return ENOBUFS;
807 1.1 fvdl }
808 1.1 fvdl
809 1.1 fvdl state = 1;
810 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
811 1.1 fvdl BUS_DMA_NOWAIT)) {
812 1.138 joerg aprint_error_dev(sc->bge_dev,
813 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
814 1.1 fvdl error = ENOBUFS;
815 1.1 fvdl goto out;
816 1.1 fvdl }
817 1.1 fvdl
818 1.1 fvdl state = 2;
819 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
820 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
821 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
822 1.1 fvdl error = ENOBUFS;
823 1.1 fvdl goto out;
824 1.1 fvdl }
825 1.1 fvdl
826 1.1 fvdl state = 3;
827 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
828 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
829 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
830 1.1 fvdl error = ENOBUFS;
831 1.1 fvdl goto out;
832 1.1 fvdl }
833 1.1 fvdl
834 1.1 fvdl state = 4;
835 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
836 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
837 1.1 fvdl
838 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
839 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
840 1.1 fvdl
841 1.1 fvdl /*
842 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
843 1.1 fvdl * in an array.
844 1.1 fvdl */
845 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
846 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
847 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
848 1.1 fvdl ptr += BGE_JLEN;
849 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
850 1.1 fvdl M_DEVBUF, M_NOWAIT);
851 1.1 fvdl if (entry == NULL) {
852 1.138 joerg aprint_error_dev(sc->bge_dev,
853 1.138 joerg "no memory for jumbo buffer queue!\n");
854 1.1 fvdl error = ENOBUFS;
855 1.1 fvdl goto out;
856 1.1 fvdl }
857 1.1 fvdl entry->slot = i;
858 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
859 1.1 fvdl entry, jpool_entries);
860 1.1 fvdl }
861 1.1 fvdl out:
862 1.1 fvdl if (error != 0) {
863 1.1 fvdl switch (state) {
864 1.1 fvdl case 4:
865 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
866 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
867 1.1 fvdl case 3:
868 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
869 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
870 1.1 fvdl case 2:
871 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
872 1.1 fvdl case 1:
873 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
874 1.1 fvdl break;
875 1.1 fvdl default:
876 1.1 fvdl break;
877 1.1 fvdl }
878 1.1 fvdl }
879 1.1 fvdl
880 1.1 fvdl return error;
881 1.1 fvdl }
882 1.1 fvdl
883 1.1 fvdl /*
884 1.1 fvdl * Allocate a jumbo buffer.
885 1.1 fvdl */
886 1.104 thorpej static void *
887 1.104 thorpej bge_jalloc(struct bge_softc *sc)
888 1.1 fvdl {
889 1.1 fvdl struct bge_jpool_entry *entry;
890 1.1 fvdl
891 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
892 1.1 fvdl
893 1.1 fvdl if (entry == NULL) {
894 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
895 1.1 fvdl return(NULL);
896 1.1 fvdl }
897 1.1 fvdl
898 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
899 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
900 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
901 1.1 fvdl }
902 1.1 fvdl
903 1.1 fvdl /*
904 1.1 fvdl * Release a jumbo buffer.
905 1.1 fvdl */
906 1.104 thorpej static void
907 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
908 1.1 fvdl {
909 1.1 fvdl struct bge_jpool_entry *entry;
910 1.1 fvdl struct bge_softc *sc;
911 1.1 fvdl int i, s;
912 1.1 fvdl
913 1.1 fvdl /* Extract the softc struct pointer. */
914 1.1 fvdl sc = (struct bge_softc *)arg;
915 1.1 fvdl
916 1.1 fvdl if (sc == NULL)
917 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
918 1.1 fvdl
919 1.1 fvdl /* calculate the slot this buffer belongs to */
920 1.1 fvdl
921 1.126 christos i = ((char *)buf
922 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
923 1.1 fvdl
924 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
925 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
926 1.1 fvdl
927 1.1 fvdl s = splvm();
928 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
929 1.1 fvdl if (entry == NULL)
930 1.1 fvdl panic("bge_jfree: buffer not in use!");
931 1.1 fvdl entry->slot = i;
932 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
933 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
934 1.1 fvdl
935 1.1 fvdl if (__predict_true(m != NULL))
936 1.140 ad pool_cache_put(mb_cache, m);
937 1.1 fvdl splx(s);
938 1.1 fvdl }
939 1.1 fvdl
940 1.1 fvdl
941 1.1 fvdl /*
942 1.1 fvdl * Intialize a standard receive ring descriptor.
943 1.1 fvdl */
944 1.104 thorpej static int
945 1.104 thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
946 1.1 fvdl {
947 1.1 fvdl struct mbuf *m_new = NULL;
948 1.1 fvdl struct bge_rx_bd *r;
949 1.1 fvdl int error;
950 1.1 fvdl
951 1.1 fvdl if (dmamap == NULL) {
952 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
953 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
954 1.1 fvdl if (error != 0)
955 1.1 fvdl return error;
956 1.1 fvdl }
957 1.1 fvdl
958 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
959 1.1 fvdl
960 1.1 fvdl if (m == NULL) {
961 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
962 1.1 fvdl if (m_new == NULL) {
963 1.1 fvdl return(ENOBUFS);
964 1.1 fvdl }
965 1.1 fvdl
966 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
967 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
968 1.1 fvdl m_freem(m_new);
969 1.1 fvdl return(ENOBUFS);
970 1.1 fvdl }
971 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
972 1.1 fvdl
973 1.1 fvdl } else {
974 1.1 fvdl m_new = m;
975 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
976 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
977 1.1 fvdl }
978 1.125 bouyer if (!sc->bge_rx_alignment_bug)
979 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
980 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
981 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
982 1.124 bouyer return(ENOBUFS);
983 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
984 1.124 bouyer BUS_DMASYNC_PREREAD);
985 1.1 fvdl
986 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
987 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
988 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
989 1.10 fvdl dmamap->dm_segs[0].ds_addr);
990 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
991 1.1 fvdl r->bge_len = m_new->m_len;
992 1.1 fvdl r->bge_idx = i;
993 1.1 fvdl
994 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
995 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
996 1.1 fvdl i * sizeof (struct bge_rx_bd),
997 1.1 fvdl sizeof (struct bge_rx_bd),
998 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
999 1.1 fvdl
1000 1.1 fvdl return(0);
1001 1.1 fvdl }
1002 1.1 fvdl
1003 1.1 fvdl /*
1004 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1005 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1006 1.1 fvdl */
1007 1.104 thorpej static int
1008 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1009 1.1 fvdl {
1010 1.1 fvdl struct mbuf *m_new = NULL;
1011 1.1 fvdl struct bge_rx_bd *r;
1012 1.126 christos void *buf = NULL;
1013 1.1 fvdl
1014 1.1 fvdl if (m == NULL) {
1015 1.1 fvdl
1016 1.1 fvdl /* Allocate the mbuf. */
1017 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1018 1.1 fvdl if (m_new == NULL) {
1019 1.1 fvdl return(ENOBUFS);
1020 1.1 fvdl }
1021 1.1 fvdl
1022 1.1 fvdl /* Allocate the jumbo buffer */
1023 1.1 fvdl buf = bge_jalloc(sc);
1024 1.1 fvdl if (buf == NULL) {
1025 1.1 fvdl m_freem(m_new);
1026 1.138 joerg aprint_error_dev(sc->bge_dev,
1027 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1028 1.1 fvdl return(ENOBUFS);
1029 1.1 fvdl }
1030 1.1 fvdl
1031 1.1 fvdl /* Attach the buffer to the mbuf. */
1032 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1033 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1034 1.1 fvdl bge_jfree, sc);
1035 1.74 yamt m_new->m_flags |= M_EXT_RW;
1036 1.1 fvdl } else {
1037 1.1 fvdl m_new = m;
1038 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1039 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1040 1.1 fvdl }
1041 1.125 bouyer if (!sc->bge_rx_alignment_bug)
1042 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1043 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1044 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1045 1.124 bouyer BUS_DMASYNC_PREREAD);
1046 1.1 fvdl /* Set up the descriptor. */
1047 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1048 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1049 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1050 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1051 1.1 fvdl r->bge_len = m_new->m_len;
1052 1.1 fvdl r->bge_idx = i;
1053 1.1 fvdl
1054 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1055 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1056 1.1 fvdl i * sizeof (struct bge_rx_bd),
1057 1.1 fvdl sizeof (struct bge_rx_bd),
1058 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1059 1.1 fvdl
1060 1.1 fvdl return(0);
1061 1.1 fvdl }
1062 1.1 fvdl
1063 1.1 fvdl /*
1064 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1065 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1066 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1067 1.1 fvdl * the NIC.
1068 1.1 fvdl */
1069 1.104 thorpej static int
1070 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1071 1.1 fvdl {
1072 1.1 fvdl int i;
1073 1.1 fvdl
1074 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1075 1.1 fvdl return 0;
1076 1.1 fvdl
1077 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1078 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1079 1.1 fvdl return(ENOBUFS);
1080 1.1 fvdl }
1081 1.1 fvdl
1082 1.1 fvdl sc->bge_std = i - 1;
1083 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1084 1.1 fvdl
1085 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1086 1.1 fvdl
1087 1.1 fvdl return(0);
1088 1.1 fvdl }
1089 1.1 fvdl
1090 1.104 thorpej static void
1091 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1092 1.1 fvdl {
1093 1.1 fvdl int i;
1094 1.1 fvdl
1095 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1096 1.1 fvdl return;
1097 1.1 fvdl
1098 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1099 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1100 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1101 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1102 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1103 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1104 1.1 fvdl }
1105 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1106 1.1 fvdl sizeof(struct bge_rx_bd));
1107 1.1 fvdl }
1108 1.1 fvdl
1109 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1110 1.1 fvdl }
1111 1.1 fvdl
1112 1.104 thorpej static int
1113 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1114 1.1 fvdl {
1115 1.1 fvdl int i;
1116 1.34 jonathan volatile struct bge_rcb *rcb;
1117 1.1 fvdl
1118 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1119 1.59 martin return 0;
1120 1.59 martin
1121 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1122 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1123 1.1 fvdl return(ENOBUFS);
1124 1.1 fvdl };
1125 1.1 fvdl
1126 1.1 fvdl sc->bge_jumbo = i - 1;
1127 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1128 1.1 fvdl
1129 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1130 1.34 jonathan rcb->bge_maxlen_flags = 0;
1131 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1132 1.1 fvdl
1133 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1134 1.1 fvdl
1135 1.1 fvdl return(0);
1136 1.1 fvdl }
1137 1.1 fvdl
1138 1.104 thorpej static void
1139 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1140 1.1 fvdl {
1141 1.1 fvdl int i;
1142 1.1 fvdl
1143 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1144 1.1 fvdl return;
1145 1.1 fvdl
1146 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1147 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1148 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1149 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1150 1.1 fvdl }
1151 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1152 1.1 fvdl sizeof(struct bge_rx_bd));
1153 1.1 fvdl }
1154 1.1 fvdl
1155 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1156 1.1 fvdl }
1157 1.1 fvdl
1158 1.104 thorpej static void
1159 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1160 1.1 fvdl {
1161 1.1 fvdl int i, freed;
1162 1.1 fvdl struct txdmamap_pool_entry *dma;
1163 1.1 fvdl
1164 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1165 1.1 fvdl return;
1166 1.1 fvdl
1167 1.1 fvdl freed = 0;
1168 1.1 fvdl
1169 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1170 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1171 1.1 fvdl freed++;
1172 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1173 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1174 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1175 1.1 fvdl link);
1176 1.1 fvdl sc->txdma[i] = 0;
1177 1.1 fvdl }
1178 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1179 1.1 fvdl sizeof(struct bge_tx_bd));
1180 1.1 fvdl }
1181 1.1 fvdl
1182 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1183 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1184 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1185 1.1 fvdl free(dma, M_DEVBUF);
1186 1.1 fvdl }
1187 1.1 fvdl
1188 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1189 1.1 fvdl }
1190 1.1 fvdl
1191 1.104 thorpej static int
1192 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1193 1.1 fvdl {
1194 1.1 fvdl int i;
1195 1.1 fvdl bus_dmamap_t dmamap;
1196 1.1 fvdl struct txdmamap_pool_entry *dma;
1197 1.1 fvdl
1198 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1199 1.1 fvdl return 0;
1200 1.1 fvdl
1201 1.1 fvdl sc->bge_txcnt = 0;
1202 1.1 fvdl sc->bge_tx_saved_considx = 0;
1203 1.94 jonathan
1204 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1205 1.94 jonathan sc->bge_tx_prodidx = 0;
1206 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1207 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1208 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1209 1.25 jonathan
1210 1.94 jonathan /* NIC-memory send ring not used; initialize to zero. */
1211 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1212 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1213 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1214 1.1 fvdl
1215 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1216 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1217 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1218 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1219 1.1 fvdl &dmamap))
1220 1.1 fvdl return(ENOBUFS);
1221 1.1 fvdl if (dmamap == NULL)
1222 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1223 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1224 1.1 fvdl if (dma == NULL) {
1225 1.138 joerg aprint_error_dev(sc->bge_dev,
1226 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1227 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1228 1.1 fvdl return (ENOMEM);
1229 1.1 fvdl }
1230 1.1 fvdl dma->dmamap = dmamap;
1231 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1232 1.1 fvdl }
1233 1.1 fvdl
1234 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1235 1.1 fvdl
1236 1.1 fvdl return(0);
1237 1.1 fvdl }
1238 1.1 fvdl
1239 1.104 thorpej static void
1240 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1241 1.1 fvdl {
1242 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1243 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1244 1.1 fvdl struct ether_multi *enm;
1245 1.1 fvdl struct ether_multistep step;
1246 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1247 1.1 fvdl u_int32_t h;
1248 1.1 fvdl int i;
1249 1.1 fvdl
1250 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1251 1.13 thorpej goto allmulti;
1252 1.1 fvdl
1253 1.1 fvdl /* Now program new ones. */
1254 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1255 1.1 fvdl while (enm != NULL) {
1256 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1257 1.13 thorpej /*
1258 1.13 thorpej * We must listen to a range of multicast addresses.
1259 1.13 thorpej * For now, just accept all multicasts, rather than
1260 1.13 thorpej * trying to set only those filter bits needed to match
1261 1.13 thorpej * the range. (At this time, the only use of address
1262 1.13 thorpej * ranges is for IP multicast routing, for which the
1263 1.13 thorpej * range is big enough to require all bits set.)
1264 1.13 thorpej */
1265 1.13 thorpej goto allmulti;
1266 1.13 thorpej }
1267 1.13 thorpej
1268 1.13 thorpej h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1269 1.13 thorpej
1270 1.13 thorpej /* Just want the 7 least-significant bits. */
1271 1.13 thorpej h &= 0x7f;
1272 1.13 thorpej
1273 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1274 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1275 1.1 fvdl }
1276 1.1 fvdl
1277 1.13 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
1278 1.13 thorpej goto setit;
1279 1.13 thorpej
1280 1.13 thorpej allmulti:
1281 1.13 thorpej ifp->if_flags |= IFF_ALLMULTI;
1282 1.13 thorpej hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1283 1.13 thorpej
1284 1.13 thorpej setit:
1285 1.1 fvdl for (i = 0; i < 4; i++)
1286 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1287 1.1 fvdl }
1288 1.1 fvdl
1289 1.24 matt const int bge_swapbits[] = {
1290 1.1 fvdl 0,
1291 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1292 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1293 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1294 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1295 1.1 fvdl
1296 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1297 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1298 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1299 1.1 fvdl
1300 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1301 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1302 1.1 fvdl
1303 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1304 1.1 fvdl
1305 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1306 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1307 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1308 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1309 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1310 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1311 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1312 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1313 1.1 fvdl
1314 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1315 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1316 1.1 fvdl };
1317 1.1 fvdl
1318 1.1 fvdl int bge_swapindex = 0;
1319 1.1 fvdl
1320 1.1 fvdl /*
1321 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1322 1.1 fvdl * self-test results.
1323 1.1 fvdl */
1324 1.104 thorpej static int
1325 1.104 thorpej bge_chipinit(struct bge_softc *sc)
1326 1.1 fvdl {
1327 1.1 fvdl u_int32_t cachesize;
1328 1.1 fvdl int i;
1329 1.25 jonathan u_int32_t dma_rw_ctl;
1330 1.1 fvdl
1331 1.1 fvdl
1332 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1333 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1334 1.1 fvdl BGE_INIT);
1335 1.1 fvdl
1336 1.25 jonathan /* Set power state to D0. */
1337 1.25 jonathan bge_setpowerstate(sc, 0);
1338 1.87 perry
1339 1.1 fvdl /*
1340 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1341 1.1 fvdl * self-tests passed.
1342 1.1 fvdl */
1343 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1344 1.138 joerg aprint_error_dev(sc->bge_dev,
1345 1.138 joerg "RX CPU self-diagnostics failed!\n");
1346 1.1 fvdl return(ENODEV);
1347 1.1 fvdl }
1348 1.1 fvdl
1349 1.1 fvdl /* Clear the MAC control register */
1350 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1351 1.1 fvdl
1352 1.1 fvdl /*
1353 1.1 fvdl * Clear the MAC statistics block in the NIC's
1354 1.1 fvdl * internal memory.
1355 1.1 fvdl */
1356 1.1 fvdl for (i = BGE_STATS_BLOCK;
1357 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1358 1.141 jmcneill BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1359 1.1 fvdl
1360 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1361 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1362 1.141 jmcneill BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1363 1.1 fvdl
1364 1.1 fvdl /* Set up the PCI DMA control register. */
1365 1.76 cube if (sc->bge_pcie) {
1366 1.95 jonathan u_int32_t device_ctl;
1367 1.95 jonathan
1368 1.76 cube /* From FreeBSD */
1369 1.76 cube DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1370 1.138 joerg device_xname(sc->bge_dev)));
1371 1.76 cube dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1372 1.76 cube (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1373 1.76 cube (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1374 1.95 jonathan
1375 1.95 jonathan /* jonathan: alternative from Linux driver */
1376 1.107 blymn #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1377 1.95 jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1378 1.95 jonathan
1379 1.95 jonathan dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1380 1.141 jmcneill device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1381 1.95 jonathan BGE_PCI_CONF_DEV_CTRL);
1382 1.138 joerg aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1383 1.95 jonathan
1384 1.95 jonathan if ((device_ctl & 0x00e0) && 0) {
1385 1.95 jonathan /*
1386 1.95 jonathan * XXX jonathan (at) NetBSD.org:
1387 1.95 jonathan * This clause is exactly what the Broadcom-supplied
1388 1.95 jonathan * Linux does; but given overall register programming
1389 1.95 jonathan * by if_bge(4), this larger DMA-write watermark
1390 1.95 jonathan * value causes bcm5721 chips to totally wedge.
1391 1.95 jonathan */
1392 1.95 jonathan dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1393 1.95 jonathan } else {
1394 1.95 jonathan dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1395 1.95 jonathan }
1396 1.141 jmcneill } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1397 1.25 jonathan BGE_PCISTATE_PCI_BUSMODE) {
1398 1.25 jonathan /* Conventional PCI bus */
1399 1.138 joerg DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1400 1.138 joerg device_xname(sc->bge_dev)));
1401 1.25 jonathan dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1402 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1403 1.44 hannken (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1404 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1405 1.44 hannken dma_rw_ctl |= 0x0F;
1406 1.44 hannken }
1407 1.25 jonathan } else {
1408 1.138 joerg DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1409 1.138 joerg device_xname(sc->bge_dev)));
1410 1.25 jonathan /* PCI-X bus */
1411 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1412 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1413 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1414 1.25 jonathan (0x0F);
1415 1.25 jonathan /*
1416 1.25 jonathan * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1417 1.25 jonathan * for hardware bugs, which means we should also clear
1418 1.25 jonathan * the low-order MINDMA bits. In addition, the 5704
1419 1.25 jonathan * uses a different encoding of read/write watermarks.
1420 1.25 jonathan */
1421 1.57 jonathan if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1422 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1423 1.25 jonathan /* should be 0x1f0000 */
1424 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1425 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1426 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1427 1.25 jonathan }
1428 1.57 jonathan else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1429 1.25 jonathan dma_rw_ctl &= 0xfffffff0;
1430 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1431 1.25 jonathan }
1432 1.99 jonathan else if (BGE_IS_5714_FAMILY(sc)) {
1433 1.99 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1434 1.99 jonathan dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1435 1.99 jonathan /* XXX magic values, Broadcom-supplied Linux driver */
1436 1.99 jonathan if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1437 1.99 jonathan dma_rw_ctl |= (1 << 20) | (1 << 18) |
1438 1.99 jonathan BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1439 1.99 jonathan else
1440 1.99 jonathan dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1441 1.99 jonathan }
1442 1.25 jonathan }
1443 1.25 jonathan
1444 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1445 1.1 fvdl
1446 1.1 fvdl /*
1447 1.1 fvdl * Set up general mode register.
1448 1.1 fvdl */
1449 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1450 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1451 1.54 fvdl BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1452 1.1 fvdl
1453 1.1 fvdl /* Get cache line size. */
1454 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1455 1.1 fvdl
1456 1.1 fvdl /*
1457 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1458 1.1 fvdl */
1459 1.141 jmcneill if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1460 1.1 fvdl PCIM_CMD_MWIEN) {
1461 1.1 fvdl switch(cachesize) {
1462 1.1 fvdl case 1:
1463 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1464 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1465 1.1 fvdl break;
1466 1.1 fvdl case 2:
1467 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1468 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1469 1.1 fvdl break;
1470 1.1 fvdl case 4:
1471 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1472 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1473 1.1 fvdl break;
1474 1.1 fvdl case 8:
1475 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1476 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1477 1.1 fvdl break;
1478 1.1 fvdl case 16:
1479 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1480 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1481 1.1 fvdl break;
1482 1.1 fvdl case 32:
1483 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1484 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1485 1.1 fvdl break;
1486 1.1 fvdl case 64:
1487 1.141 jmcneill PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1488 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1489 1.1 fvdl break;
1490 1.1 fvdl default:
1491 1.1 fvdl /* Disable PCI memory write and invalidate. */
1492 1.1 fvdl #if 0
1493 1.1 fvdl if (bootverbose)
1494 1.138 joerg aprint_error_dev(sc->bge_dev,
1495 1.138 joerg "cache line size %d not supported "
1496 1.138 joerg "disabling PCI MWI\n",
1497 1.1 fvdl #endif
1498 1.141 jmcneill PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1499 1.1 fvdl PCIM_CMD_MWIEN);
1500 1.1 fvdl break;
1501 1.1 fvdl }
1502 1.1 fvdl }
1503 1.1 fvdl
1504 1.25 jonathan /*
1505 1.25 jonathan * Disable memory write invalidate. Apparently it is not supported
1506 1.25 jonathan * properly by these devices.
1507 1.25 jonathan */
1508 1.141 jmcneill PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1509 1.25 jonathan
1510 1.25 jonathan
1511 1.1 fvdl #ifdef __brokenalpha__
1512 1.1 fvdl /*
1513 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1514 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1515 1.1 fvdl * restriction on some ALPHA platforms with early revision
1516 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1517 1.1 fvdl */
1518 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1519 1.1 fvdl #endif
1520 1.1 fvdl
1521 1.33 tsutsui /* Set the timer prescaler (always 66MHz) */
1522 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1523 1.1 fvdl
1524 1.1 fvdl return(0);
1525 1.1 fvdl }
1526 1.1 fvdl
1527 1.104 thorpej static int
1528 1.104 thorpej bge_blockinit(struct bge_softc *sc)
1529 1.1 fvdl {
1530 1.34 jonathan volatile struct bge_rcb *rcb;
1531 1.1 fvdl bus_size_t rcb_addr;
1532 1.1 fvdl int i;
1533 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1534 1.1 fvdl bge_hostaddr taddr;
1535 1.1 fvdl
1536 1.1 fvdl /*
1537 1.1 fvdl * Initialize the memory window pointer register so that
1538 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1539 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1540 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1541 1.1 fvdl */
1542 1.1 fvdl
1543 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1544 1.1 fvdl
1545 1.1 fvdl /* Configure mbuf memory pool */
1546 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1547 1.44 hannken if (sc->bge_extram) {
1548 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1549 1.44 hannken BGE_EXT_SSRAM);
1550 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1551 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1552 1.54 fvdl else
1553 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1554 1.44 hannken } else {
1555 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1556 1.44 hannken BGE_BUFFPOOL_1);
1557 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1558 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1559 1.54 fvdl else
1560 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1561 1.44 hannken }
1562 1.44 hannken
1563 1.44 hannken /* Configure DMA resource pool */
1564 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1565 1.44 hannken BGE_DMA_DESCRIPTORS);
1566 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1567 1.1 fvdl }
1568 1.1 fvdl
1569 1.1 fvdl /* Configure mbuf pool watermarks */
1570 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
1571 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1572 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1573 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1574 1.25 jonathan #else
1575 1.154 cegger
1576 1.25 jonathan /* new broadcom docs strongly recommend these: */
1577 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1578 1.71 thorpej if (ifp->if_mtu > ETHER_MAX_LEN) {
1579 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1580 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1581 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1582 1.71 thorpej } else {
1583 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1584 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1585 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1586 1.71 thorpej }
1587 1.154 cegger } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1588 1.154 cegger CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1589 1.154 cegger CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1590 1.154 cegger CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1591 1.44 hannken } else {
1592 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1593 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1594 1.71 thorpej CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1595 1.44 hannken }
1596 1.25 jonathan #endif
1597 1.1 fvdl
1598 1.1 fvdl /* Configure DMA resource watermarks */
1599 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1600 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1601 1.1 fvdl
1602 1.1 fvdl /* Enable buffer manager */
1603 1.151 cegger if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1604 1.151 cegger CSR_WRITE_4(sc, BGE_BMAN_MODE,
1605 1.151 cegger BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1606 1.44 hannken
1607 1.151 cegger /* Poll for buffer manager start indication */
1608 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
1609 1.151 cegger if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1610 1.151 cegger break;
1611 1.151 cegger DELAY(10);
1612 1.151 cegger }
1613 1.1 fvdl
1614 1.151 cegger if (i == BGE_TIMEOUT) {
1615 1.151 cegger aprint_error_dev(sc->bge_dev,
1616 1.151 cegger "buffer manager failed to start\n");
1617 1.151 cegger return(ENXIO);
1618 1.151 cegger }
1619 1.1 fvdl }
1620 1.1 fvdl
1621 1.1 fvdl /* Enable flow-through queues */
1622 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1623 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1624 1.1 fvdl
1625 1.1 fvdl /* Wait until queue initialization is complete */
1626 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1627 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1628 1.1 fvdl break;
1629 1.1 fvdl DELAY(10);
1630 1.1 fvdl }
1631 1.1 fvdl
1632 1.1 fvdl if (i == BGE_TIMEOUT) {
1633 1.138 joerg aprint_error_dev(sc->bge_dev,
1634 1.138 joerg "flow-through queue init failed\n");
1635 1.1 fvdl return(ENXIO);
1636 1.1 fvdl }
1637 1.1 fvdl
1638 1.1 fvdl /* Initialize the standard RX ring control block */
1639 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1640 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1641 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1642 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1643 1.44 hannken rcb->bge_maxlen_flags =
1644 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1645 1.44 hannken } else {
1646 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1647 1.44 hannken }
1648 1.1 fvdl if (sc->bge_extram)
1649 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1650 1.1 fvdl else
1651 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1652 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1653 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1654 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1655 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1656 1.1 fvdl
1657 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1658 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1659 1.44 hannken } else {
1660 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1661 1.44 hannken }
1662 1.44 hannken
1663 1.1 fvdl /*
1664 1.1 fvdl * Initialize the jumbo RX ring control block
1665 1.1 fvdl * We set the 'ring disabled' bit in the flags
1666 1.1 fvdl * field until we're actually ready to start
1667 1.1 fvdl * using this ring (i.e. once we set the MTU
1668 1.1 fvdl * high enough to require it).
1669 1.1 fvdl */
1670 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1671 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1672 1.44 hannken bge_set_hostaddr(&rcb->bge_hostaddr,
1673 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1674 1.87 perry rcb->bge_maxlen_flags =
1675 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1676 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1677 1.44 hannken if (sc->bge_extram)
1678 1.44 hannken rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1679 1.44 hannken else
1680 1.44 hannken rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1681 1.87 perry
1682 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1683 1.44 hannken rcb->bge_hostaddr.bge_addr_hi);
1684 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1685 1.44 hannken rcb->bge_hostaddr.bge_addr_lo);
1686 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1687 1.44 hannken rcb->bge_maxlen_flags);
1688 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1689 1.44 hannken
1690 1.44 hannken /* Set up dummy disabled mini ring RCB */
1691 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1692 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1693 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1694 1.44 hannken CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1695 1.44 hannken rcb->bge_maxlen_flags);
1696 1.1 fvdl
1697 1.44 hannken bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1698 1.44 hannken offsetof(struct bge_ring_data, bge_info),
1699 1.44 hannken sizeof (struct bge_gib),
1700 1.44 hannken BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1701 1.44 hannken }
1702 1.1 fvdl
1703 1.1 fvdl /*
1704 1.133 markd * Set the BD ring replenish thresholds. The recommended
1705 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1706 1.1 fvdl * each ring.
1707 1.1 fvdl */
1708 1.133 markd i = BGE_STD_RX_RING_CNT / 8;
1709 1.133 markd
1710 1.133 markd /*
1711 1.133 markd * Use a value of 8 for the following chips to workaround HW errata.
1712 1.133 markd * Some of these chips have been added based on empirical
1713 1.133 markd * evidence (they don't work unless this is done).
1714 1.133 markd */
1715 1.133 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1716 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1717 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1718 1.151 cegger BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1719 1.151 cegger BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1720 1.133 markd i = 8;
1721 1.133 markd
1722 1.133 markd CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1723 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1724 1.1 fvdl
1725 1.1 fvdl /*
1726 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1727 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1728 1.1 fvdl * These are located in NIC memory.
1729 1.1 fvdl */
1730 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1731 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1732 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1733 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1734 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1735 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1736 1.1 fvdl }
1737 1.1 fvdl
1738 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1739 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1740 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1741 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1742 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1743 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1744 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1745 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1746 1.87 perry RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1747 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1748 1.44 hannken }
1749 1.1 fvdl
1750 1.1 fvdl /* Disable all unused RX return rings */
1751 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1752 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1753 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1754 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1755 1.87 perry RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1756 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1757 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED));
1758 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1759 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1760 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1761 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1762 1.1 fvdl }
1763 1.1 fvdl
1764 1.1 fvdl /* Initialize RX ring indexes */
1765 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1766 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1767 1.151 cegger bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1768 1.1 fvdl
1769 1.1 fvdl /*
1770 1.1 fvdl * Set up RX return ring 0
1771 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1772 1.1 fvdl * The return rings live entirely within the host, so the
1773 1.1 fvdl * nicaddr field in the RCB isn't used.
1774 1.1 fvdl */
1775 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1776 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1777 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1778 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1779 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1780 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1781 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1782 1.1 fvdl
1783 1.1 fvdl /* Set random backoff seed for TX */
1784 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1785 1.136 dyoung CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1786 1.136 dyoung CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1787 1.136 dyoung CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1788 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1789 1.1 fvdl
1790 1.1 fvdl /* Set inter-packet gap */
1791 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1792 1.1 fvdl
1793 1.1 fvdl /*
1794 1.1 fvdl * Specify which ring to use for packets that don't match
1795 1.1 fvdl * any RX rules.
1796 1.1 fvdl */
1797 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1798 1.1 fvdl
1799 1.1 fvdl /*
1800 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1801 1.1 fvdl * list, sixteen active lists, one bad frames class.
1802 1.1 fvdl */
1803 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1804 1.1 fvdl
1805 1.1 fvdl /* Inialize RX list placement stats mask. */
1806 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1807 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1808 1.1 fvdl
1809 1.1 fvdl /* Disable host coalescing until we get it set up */
1810 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1811 1.1 fvdl
1812 1.1 fvdl /* Poll to make sure it's shut down. */
1813 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1814 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1815 1.1 fvdl break;
1816 1.1 fvdl DELAY(10);
1817 1.1 fvdl }
1818 1.1 fvdl
1819 1.1 fvdl if (i == BGE_TIMEOUT) {
1820 1.138 joerg aprint_error_dev(sc->bge_dev,
1821 1.138 joerg "host coalescing engine failed to idle\n");
1822 1.1 fvdl return(ENXIO);
1823 1.1 fvdl }
1824 1.1 fvdl
1825 1.1 fvdl /* Set up host coalescing defaults */
1826 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1827 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1828 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1829 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1830 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1831 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1832 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1833 1.44 hannken }
1834 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1835 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1836 1.1 fvdl
1837 1.1 fvdl /* Set up address of statistics block */
1838 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1839 1.44 hannken bge_set_hostaddr(&taddr,
1840 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1841 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1842 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1843 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1844 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1845 1.44 hannken }
1846 1.1 fvdl
1847 1.1 fvdl /* Set up address of status block */
1848 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1849 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1850 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1851 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1852 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1853 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1854 1.1 fvdl
1855 1.1 fvdl /* Turn on host coalescing state machine */
1856 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1857 1.1 fvdl
1858 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1859 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1860 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1861 1.1 fvdl
1862 1.1 fvdl /* Turn on RX list placement state machine */
1863 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1864 1.1 fvdl
1865 1.1 fvdl /* Turn on RX list selector state machine. */
1866 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1867 1.44 hannken CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1868 1.44 hannken }
1869 1.1 fvdl
1870 1.1 fvdl /* Turn on DMA, clear stats */
1871 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1872 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1873 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1874 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1875 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1876 1.1 fvdl
1877 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1878 1.25 jonathan sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1879 1.1 fvdl
1880 1.1 fvdl #ifdef notdef
1881 1.1 fvdl /* Assert GPIO pins for PHY reset */
1882 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1883 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1884 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1885 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1886 1.1 fvdl #endif
1887 1.1 fvdl
1888 1.25 jonathan #if defined(not_quite_yet)
1889 1.25 jonathan /* Linux driver enables enable gpio pin #1 on 5700s */
1890 1.51 fvdl if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1891 1.87 perry sc->bge_local_ctrl_reg |=
1892 1.25 jonathan (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1893 1.25 jonathan }
1894 1.87 perry #endif
1895 1.25 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1896 1.25 jonathan
1897 1.1 fvdl /* Turn on DMA completion state machine */
1898 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1899 1.44 hannken CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1900 1.44 hannken }
1901 1.1 fvdl
1902 1.1 fvdl /* Turn on write DMA state machine */
1903 1.133 markd {
1904 1.133 markd uint32_t bge_wdma_mode =
1905 1.133 markd BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1906 1.133 markd
1907 1.133 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1908 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1909 1.133 markd /* Enable host coalescing bug fix; see Linux tg3.c */
1910 1.133 markd bge_wdma_mode |= (1 << 29);
1911 1.133 markd
1912 1.133 markd CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1913 1.133 markd }
1914 1.1 fvdl
1915 1.1 fvdl /* Turn on read DMA state machine */
1916 1.95 jonathan {
1917 1.95 jonathan uint32_t dma_read_modebits;
1918 1.95 jonathan
1919 1.95 jonathan dma_read_modebits =
1920 1.95 jonathan BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1921 1.95 jonathan
1922 1.95 jonathan if (sc->bge_pcie && 0) {
1923 1.95 jonathan dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1924 1.95 jonathan } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1925 1.95 jonathan dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1926 1.95 jonathan }
1927 1.95 jonathan
1928 1.95 jonathan /* XXX broadcom-supplied linux driver; undocumented */
1929 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
1930 1.95 jonathan /*
1931 1.95 jonathan * XXX: magic values.
1932 1.95 jonathan * From Broadcom-supplied Linux driver; apparently
1933 1.95 jonathan * required to workaround a DMA bug affecting TSO
1934 1.95 jonathan * on bcm575x/bcm5721?
1935 1.95 jonathan */
1936 1.95 jonathan dma_read_modebits |= (1 << 27);
1937 1.95 jonathan }
1938 1.95 jonathan CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1939 1.95 jonathan }
1940 1.1 fvdl
1941 1.1 fvdl /* Turn on RX data completion state machine */
1942 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1943 1.1 fvdl
1944 1.1 fvdl /* Turn on RX BD initiator state machine */
1945 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1946 1.1 fvdl
1947 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1948 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1949 1.1 fvdl
1950 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1951 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1952 1.44 hannken CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1953 1.44 hannken }
1954 1.1 fvdl
1955 1.1 fvdl /* Turn on send BD completion state machine */
1956 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1957 1.1 fvdl
1958 1.1 fvdl /* Turn on send data completion state machine */
1959 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1960 1.1 fvdl
1961 1.1 fvdl /* Turn on send data initiator state machine */
1962 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
1963 1.95 jonathan /* XXX: magic value from Linux driver */
1964 1.95 jonathan CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1965 1.95 jonathan } else {
1966 1.95 jonathan CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1967 1.95 jonathan }
1968 1.1 fvdl
1969 1.1 fvdl /* Turn on send BD initiator state machine */
1970 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1971 1.1 fvdl
1972 1.1 fvdl /* Turn on send BD selector state machine */
1973 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1974 1.1 fvdl
1975 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1976 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1977 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1978 1.1 fvdl
1979 1.1 fvdl /* ack/clear link change events */
1980 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1981 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1982 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1983 1.1 fvdl
1984 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1985 1.1 fvdl if (sc->bge_tbi) {
1986 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1987 1.1 fvdl } else {
1988 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1989 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1990 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1991 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1992 1.1 fvdl }
1993 1.1 fvdl
1994 1.1 fvdl /* Enable link state change attentions. */
1995 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1996 1.1 fvdl
1997 1.1 fvdl return(0);
1998 1.1 fvdl }
1999 1.1 fvdl
2000 1.16 thorpej static const struct bge_revision {
2001 1.51 fvdl uint32_t br_chipid;
2002 1.16 thorpej uint32_t br_quirks;
2003 1.16 thorpej const char *br_name;
2004 1.16 thorpej } bge_revisions[] = {
2005 1.51 fvdl { BGE_CHIPID_BCM5700_A0,
2006 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
2007 1.16 thorpej "BCM5700 A0" },
2008 1.16 thorpej
2009 1.51 fvdl { BGE_CHIPID_BCM5700_A1,
2010 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
2011 1.16 thorpej "BCM5700 A1" },
2012 1.16 thorpej
2013 1.51 fvdl { BGE_CHIPID_BCM5700_B0,
2014 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
2015 1.16 thorpej "BCM5700 B0" },
2016 1.16 thorpej
2017 1.51 fvdl { BGE_CHIPID_BCM5700_B1,
2018 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2019 1.16 thorpej "BCM5700 B1" },
2020 1.16 thorpej
2021 1.51 fvdl { BGE_CHIPID_BCM5700_B2,
2022 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2023 1.16 thorpej "BCM5700 B2" },
2024 1.16 thorpej
2025 1.120 tsutsui { BGE_CHIPID_BCM5700_B3,
2026 1.120 tsutsui BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2027 1.120 tsutsui "BCM5700 B3" },
2028 1.120 tsutsui
2029 1.17 thorpej /* This is treated like a BCM5700 Bx */
2030 1.51 fvdl { BGE_CHIPID_BCM5700_ALTIMA,
2031 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2032 1.16 thorpej "BCM5700 Altima" },
2033 1.16 thorpej
2034 1.51 fvdl { BGE_CHIPID_BCM5700_C0,
2035 1.16 thorpej 0,
2036 1.16 thorpej "BCM5700 C0" },
2037 1.16 thorpej
2038 1.51 fvdl { BGE_CHIPID_BCM5701_A0,
2039 1.37 jonathan 0, /*XXX really, just not known */
2040 1.16 thorpej "BCM5701 A0" },
2041 1.16 thorpej
2042 1.51 fvdl { BGE_CHIPID_BCM5701_B0,
2043 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2044 1.16 thorpej "BCM5701 B0" },
2045 1.16 thorpej
2046 1.51 fvdl { BGE_CHIPID_BCM5701_B2,
2047 1.117 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2048 1.16 thorpej "BCM5701 B2" },
2049 1.16 thorpej
2050 1.51 fvdl { BGE_CHIPID_BCM5701_B5,
2051 1.37 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2052 1.16 thorpej "BCM5701 B5" },
2053 1.16 thorpej
2054 1.51 fvdl { BGE_CHIPID_BCM5703_A0,
2055 1.16 thorpej 0,
2056 1.16 thorpej "BCM5703 A0" },
2057 1.16 thorpej
2058 1.51 fvdl { BGE_CHIPID_BCM5703_A1,
2059 1.16 thorpej 0,
2060 1.16 thorpej "BCM5703 A1" },
2061 1.16 thorpej
2062 1.51 fvdl { BGE_CHIPID_BCM5703_A2,
2063 1.24 matt BGE_QUIRK_ONLY_PHY_1,
2064 1.16 thorpej "BCM5703 A2" },
2065 1.16 thorpej
2066 1.55 pooka { BGE_CHIPID_BCM5703_A3,
2067 1.55 pooka BGE_QUIRK_ONLY_PHY_1,
2068 1.55 pooka "BCM5703 A3" },
2069 1.55 pooka
2070 1.120 tsutsui { BGE_CHIPID_BCM5703_B0,
2071 1.120 tsutsui BGE_QUIRK_ONLY_PHY_1,
2072 1.120 tsutsui "BCM5703 B0" },
2073 1.120 tsutsui
2074 1.51 fvdl { BGE_CHIPID_BCM5704_A0,
2075 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2076 1.25 jonathan "BCM5704 A0" },
2077 1.40 fvdl
2078 1.51 fvdl { BGE_CHIPID_BCM5704_A1,
2079 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2080 1.40 fvdl "BCM5704 A1" },
2081 1.40 fvdl
2082 1.51 fvdl { BGE_CHIPID_BCM5704_A2,
2083 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2084 1.40 fvdl "BCM5704 A2" },
2085 1.49 fvdl
2086 1.51 fvdl { BGE_CHIPID_BCM5704_A3,
2087 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2088 1.49 fvdl "BCM5704 A3" },
2089 1.25 jonathan
2090 1.51 fvdl { BGE_CHIPID_BCM5705_A0,
2091 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2092 1.51 fvdl "BCM5705 A0" },
2093 1.51 fvdl
2094 1.51 fvdl { BGE_CHIPID_BCM5705_A1,
2095 1.44 hannken BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2096 1.44 hannken "BCM5705 A1" },
2097 1.44 hannken
2098 1.51 fvdl { BGE_CHIPID_BCM5705_A2,
2099 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2100 1.51 fvdl "BCM5705 A2" },
2101 1.51 fvdl
2102 1.51 fvdl { BGE_CHIPID_BCM5705_A3,
2103 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2104 1.51 fvdl "BCM5705 A3" },
2105 1.51 fvdl
2106 1.76 cube { BGE_CHIPID_BCM5750_A0,
2107 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2108 1.121 tsutsui "BCM5750 A0" },
2109 1.76 cube
2110 1.76 cube { BGE_CHIPID_BCM5750_A1,
2111 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2112 1.76 cube "BCM5750 A1" },
2113 1.76 cube
2114 1.92 gavan { BGE_CHIPID_BCM5751_A1,
2115 1.92 gavan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2116 1.92 gavan "BCM5751 A1" },
2117 1.92 gavan
2118 1.119 tsutsui { BGE_CHIPID_BCM5752_A0,
2119 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2120 1.119 tsutsui "BCM5752 A0" },
2121 1.119 tsutsui
2122 1.119 tsutsui { BGE_CHIPID_BCM5752_A1,
2123 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2124 1.119 tsutsui "BCM5752 A1" },
2125 1.119 tsutsui
2126 1.119 tsutsui { BGE_CHIPID_BCM5752_A2,
2127 1.119 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2128 1.119 tsutsui "BCM5752 A2" },
2129 1.119 tsutsui
2130 1.149 sborrill { BGE_CHIPID_BCM5755_A0,
2131 1.149 sborrill BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2132 1.149 sborrill "BCM5755 A0" },
2133 1.149 sborrill
2134 1.149 sborrill { BGE_CHIPID_BCM5755_A1,
2135 1.149 sborrill BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2136 1.149 sborrill "BCM5755 A1" },
2137 1.149 sborrill
2138 1.149 sborrill { BGE_CHIPID_BCM5755_A2,
2139 1.149 sborrill BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2140 1.149 sborrill "BCM5755 A2" },
2141 1.149 sborrill
2142 1.149 sborrill { BGE_CHIPID_BCM5755_C0,
2143 1.149 sborrill BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2144 1.149 sborrill "BCM5755 C0" },
2145 1.149 sborrill
2146 1.133 markd { BGE_CHIPID_BCM5787_A0,
2147 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2148 1.133 markd "BCM5754/5787 A0" },
2149 1.133 markd
2150 1.133 markd { BGE_CHIPID_BCM5787_A1,
2151 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2152 1.133 markd "BCM5754/5787 A1" },
2153 1.133 markd
2154 1.133 markd { BGE_CHIPID_BCM5787_A2,
2155 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2156 1.133 markd "BCM5754/5787 A2" },
2157 1.133 markd
2158 1.16 thorpej { 0, 0, NULL }
2159 1.16 thorpej };
2160 1.16 thorpej
2161 1.51 fvdl /*
2162 1.51 fvdl * Some defaults for major revisions, so that newer steppings
2163 1.51 fvdl * that we don't know about have a shot at working.
2164 1.51 fvdl */
2165 1.51 fvdl static const struct bge_revision bge_majorrevs[] = {
2166 1.51 fvdl { BGE_ASICREV_BCM5700,
2167 1.51 fvdl BGE_QUIRK_LINK_STATE_BROKEN,
2168 1.51 fvdl "unknown BCM5700" },
2169 1.51 fvdl
2170 1.51 fvdl { BGE_ASICREV_BCM5701,
2171 1.51 fvdl BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2172 1.51 fvdl "unknown BCM5701" },
2173 1.51 fvdl
2174 1.51 fvdl { BGE_ASICREV_BCM5703,
2175 1.51 fvdl 0,
2176 1.51 fvdl "unknown BCM5703" },
2177 1.51 fvdl
2178 1.51 fvdl { BGE_ASICREV_BCM5704,
2179 1.51 fvdl BGE_QUIRK_ONLY_PHY_1,
2180 1.51 fvdl "unknown BCM5704" },
2181 1.51 fvdl
2182 1.51 fvdl { BGE_ASICREV_BCM5705,
2183 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2184 1.51 fvdl "unknown BCM5705" },
2185 1.51 fvdl
2186 1.76 cube { BGE_ASICREV_BCM5750,
2187 1.76 cube BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2188 1.98 jonathan "unknown BCM575x family" },
2189 1.98 jonathan
2190 1.120 tsutsui { BGE_ASICREV_BCM5714_A0,
2191 1.120 tsutsui BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2192 1.120 tsutsui "unknown BCM5714" },
2193 1.120 tsutsui
2194 1.98 jonathan { BGE_ASICREV_BCM5714,
2195 1.98 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2196 1.98 jonathan "unknown BCM5714" },
2197 1.98 jonathan
2198 1.98 jonathan { BGE_ASICREV_BCM5752,
2199 1.98 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2200 1.98 jonathan "unknown BCM5752 family" },
2201 1.98 jonathan
2202 1.133 markd { BGE_ASICREV_BCM5755,
2203 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2204 1.133 markd "unknown BCM5755" },
2205 1.98 jonathan
2206 1.106 jonathan { BGE_ASICREV_BCM5780,
2207 1.106 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2208 1.106 jonathan "unknown BCM5780" },
2209 1.106 jonathan
2210 1.133 markd { BGE_ASICREV_BCM5787,
2211 1.133 markd BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2212 1.133 markd "unknown BCM5787" },
2213 1.133 markd
2214 1.151 cegger { BGE_ASICREV_BCM5906,
2215 1.151 cegger BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2216 1.151 cegger "unknown BCM5906" },
2217 1.151 cegger
2218 1.51 fvdl { 0,
2219 1.51 fvdl 0,
2220 1.51 fvdl NULL }
2221 1.51 fvdl };
2222 1.51 fvdl
2223 1.51 fvdl
2224 1.16 thorpej static const struct bge_revision *
2225 1.51 fvdl bge_lookup_rev(uint32_t chipid)
2226 1.16 thorpej {
2227 1.16 thorpej const struct bge_revision *br;
2228 1.16 thorpej
2229 1.16 thorpej for (br = bge_revisions; br->br_name != NULL; br++) {
2230 1.51 fvdl if (br->br_chipid == chipid)
2231 1.51 fvdl return (br);
2232 1.51 fvdl }
2233 1.51 fvdl
2234 1.51 fvdl for (br = bge_majorrevs; br->br_name != NULL; br++) {
2235 1.51 fvdl if (br->br_chipid == BGE_ASICREV(chipid))
2236 1.16 thorpej return (br);
2237 1.16 thorpej }
2238 1.16 thorpej
2239 1.16 thorpej return (NULL);
2240 1.16 thorpej }
2241 1.16 thorpej
2242 1.7 thorpej static const struct bge_product {
2243 1.7 thorpej pci_vendor_id_t bp_vendor;
2244 1.7 thorpej pci_product_id_t bp_product;
2245 1.7 thorpej const char *bp_name;
2246 1.7 thorpej } bge_products[] = {
2247 1.7 thorpej /*
2248 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
2249 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
2250 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
2251 1.7 thorpej * check for it anyway.
2252 1.7 thorpej */
2253 1.7 thorpej { PCI_VENDOR_ALTEON,
2254 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
2255 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
2256 1.51 fvdl },
2257 1.7 thorpej { PCI_VENDOR_ALTEON,
2258 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
2259 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
2260 1.51 fvdl },
2261 1.7 thorpej
2262 1.7 thorpej { PCI_VENDOR_ALTIMA,
2263 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
2264 1.51 fvdl "Altima AC1000 Gigabit Ethernet",
2265 1.51 fvdl },
2266 1.14 enami { PCI_VENDOR_ALTIMA,
2267 1.14 enami PCI_PRODUCT_ALTIMA_AC1001,
2268 1.51 fvdl "Altima AC1001 Gigabit Ethernet",
2269 1.51 fvdl },
2270 1.7 thorpej { PCI_VENDOR_ALTIMA,
2271 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
2272 1.51 fvdl "Altima AC9100 Gigabit Ethernet",
2273 1.51 fvdl },
2274 1.7 thorpej
2275 1.7 thorpej { PCI_VENDOR_BROADCOM,
2276 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
2277 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
2278 1.51 fvdl },
2279 1.7 thorpej { PCI_VENDOR_BROADCOM,
2280 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
2281 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
2282 1.51 fvdl },
2283 1.24 matt { PCI_VENDOR_BROADCOM,
2284 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702,
2285 1.51 fvdl "Broadcom BCM5702 Gigabit Ethernet",
2286 1.51 fvdl },
2287 1.24 matt { PCI_VENDOR_BROADCOM,
2288 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702X,
2289 1.24 matt "Broadcom BCM5702X Gigabit Ethernet" },
2290 1.51 fvdl
2291 1.24 matt { PCI_VENDOR_BROADCOM,
2292 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703,
2293 1.51 fvdl "Broadcom BCM5703 Gigabit Ethernet",
2294 1.51 fvdl },
2295 1.24 matt { PCI_VENDOR_BROADCOM,
2296 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703X,
2297 1.51 fvdl "Broadcom BCM5703X Gigabit Ethernet",
2298 1.51 fvdl },
2299 1.55 pooka { PCI_VENDOR_BROADCOM,
2300 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2301 1.120 tsutsui "Broadcom BCM5703 Gigabit Ethernet",
2302 1.55 pooka },
2303 1.51 fvdl
2304 1.25 jonathan { PCI_VENDOR_BROADCOM,
2305 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704C,
2306 1.51 fvdl "Broadcom BCM5704C Dual Gigabit Ethernet",
2307 1.51 fvdl },
2308 1.25 jonathan { PCI_VENDOR_BROADCOM,
2309 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704S,
2310 1.51 fvdl "Broadcom BCM5704S Dual Gigabit Ethernet",
2311 1.51 fvdl },
2312 1.51 fvdl
2313 1.51 fvdl { PCI_VENDOR_BROADCOM,
2314 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5705,
2315 1.51 fvdl "Broadcom BCM5705 Gigabit Ethernet",
2316 1.51 fvdl },
2317 1.51 fvdl { PCI_VENDOR_BROADCOM,
2318 1.79 jmmv PCI_PRODUCT_BROADCOM_BCM5705K,
2319 1.78 tacha "Broadcom BCM5705K Gigabit Ethernet",
2320 1.78 tacha },
2321 1.78 tacha { PCI_VENDOR_BROADCOM,
2322 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5705M,
2323 1.122 tsutsui "Broadcom BCM5705M Gigabit Ethernet",
2324 1.51 fvdl },
2325 1.44 hannken { PCI_VENDOR_BROADCOM,
2326 1.122 tsutsui PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2327 1.51 fvdl "Broadcom BCM5705M Gigabit Ethernet",
2328 1.51 fvdl },
2329 1.51 fvdl
2330 1.76 cube { PCI_VENDOR_BROADCOM,
2331 1.98 jonathan PCI_PRODUCT_BROADCOM_BCM5714,
2332 1.98 jonathan "Broadcom BCM5714/5715 Gigabit Ethernet",
2333 1.98 jonathan },
2334 1.105 christos { PCI_VENDOR_BROADCOM,
2335 1.130 cube PCI_PRODUCT_BROADCOM_BCM5715,
2336 1.130 cube "Broadcom BCM5714/5715 Gigabit Ethernet",
2337 1.130 cube },
2338 1.130 cube { PCI_VENDOR_BROADCOM,
2339 1.105 christos PCI_PRODUCT_BROADCOM_BCM5789,
2340 1.105 christos "Broadcom BCM5789 Gigabit Ethernet",
2341 1.105 christos },
2342 1.98 jonathan
2343 1.98 jonathan { PCI_VENDOR_BROADCOM,
2344 1.80 fredb PCI_PRODUCT_BROADCOM_BCM5721,
2345 1.80 fredb "Broadcom BCM5721 Gigabit Ethernet",
2346 1.80 fredb },
2347 1.80 fredb
2348 1.80 fredb { PCI_VENDOR_BROADCOM,
2349 1.149 sborrill PCI_PRODUCT_BROADCOM_BCM5722,
2350 1.149 sborrill "Broadcom BCM5722 Gigabit Ethernet",
2351 1.149 sborrill },
2352 1.149 sborrill
2353 1.149 sborrill { PCI_VENDOR_BROADCOM,
2354 1.76 cube PCI_PRODUCT_BROADCOM_BCM5750,
2355 1.76 cube "Broadcom BCM5750 Gigabit Ethernet",
2356 1.76 cube },
2357 1.76 cube
2358 1.76 cube { PCI_VENDOR_BROADCOM,
2359 1.76 cube PCI_PRODUCT_BROADCOM_BCM5750M,
2360 1.76 cube "Broadcom BCM5750M Gigabit Ethernet",
2361 1.76 cube },
2362 1.76 cube
2363 1.76 cube { PCI_VENDOR_BROADCOM,
2364 1.76 cube PCI_PRODUCT_BROADCOM_BCM5751,
2365 1.76 cube "Broadcom BCM5751 Gigabit Ethernet",
2366 1.76 cube },
2367 1.76 cube
2368 1.91 gavan { PCI_VENDOR_BROADCOM,
2369 1.91 gavan PCI_PRODUCT_BROADCOM_BCM5751M,
2370 1.91 gavan "Broadcom BCM5751M Gigabit Ethernet",
2371 1.91 gavan },
2372 1.91 gavan
2373 1.98 jonathan { PCI_VENDOR_BROADCOM,
2374 1.98 jonathan PCI_PRODUCT_BROADCOM_BCM5752,
2375 1.98 jonathan "Broadcom BCM5752 Gigabit Ethernet",
2376 1.98 jonathan },
2377 1.98 jonathan
2378 1.119 tsutsui { PCI_VENDOR_BROADCOM,
2379 1.119 tsutsui PCI_PRODUCT_BROADCOM_BCM5752M,
2380 1.119 tsutsui "Broadcom BCM5752M Gigabit Ethernet",
2381 1.119 tsutsui },
2382 1.119 tsutsui
2383 1.128 tron { PCI_VENDOR_BROADCOM,
2384 1.128 tron PCI_PRODUCT_BROADCOM_BCM5753,
2385 1.128 tron "Broadcom BCM5753 Gigabit Ethernet",
2386 1.128 tron },
2387 1.128 tron
2388 1.128 tron { PCI_VENDOR_BROADCOM,
2389 1.128 tron PCI_PRODUCT_BROADCOM_BCM5753M,
2390 1.128 tron "Broadcom BCM5753M Gigabit Ethernet",
2391 1.128 tron },
2392 1.128 tron
2393 1.133 markd { PCI_VENDOR_BROADCOM,
2394 1.133 markd PCI_PRODUCT_BROADCOM_BCM5754,
2395 1.133 markd "Broadcom BCM5754 Gigabit Ethernet",
2396 1.133 markd },
2397 1.133 markd
2398 1.133 markd { PCI_VENDOR_BROADCOM,
2399 1.133 markd PCI_PRODUCT_BROADCOM_BCM5754M,
2400 1.133 markd "Broadcom BCM5754M Gigabit Ethernet",
2401 1.133 markd },
2402 1.133 markd
2403 1.133 markd { PCI_VENDOR_BROADCOM,
2404 1.133 markd PCI_PRODUCT_BROADCOM_BCM5755,
2405 1.133 markd "Broadcom BCM5755 Gigabit Ethernet",
2406 1.133 markd },
2407 1.133 markd
2408 1.133 markd { PCI_VENDOR_BROADCOM,
2409 1.133 markd PCI_PRODUCT_BROADCOM_BCM5755M,
2410 1.133 markd "Broadcom BCM5755M Gigabit Ethernet",
2411 1.133 markd },
2412 1.133 markd
2413 1.51 fvdl { PCI_VENDOR_BROADCOM,
2414 1.106 jonathan PCI_PRODUCT_BROADCOM_BCM5780,
2415 1.106 jonathan "Broadcom BCM5780 Gigabit Ethernet",
2416 1.106 jonathan },
2417 1.106 jonathan
2418 1.106 jonathan { PCI_VENDOR_BROADCOM,
2419 1.106 jonathan PCI_PRODUCT_BROADCOM_BCM5780S,
2420 1.106 jonathan "Broadcom BCM5780S Gigabit Ethernet",
2421 1.106 jonathan },
2422 1.106 jonathan
2423 1.106 jonathan { PCI_VENDOR_BROADCOM,
2424 1.70 tron PCI_PRODUCT_BROADCOM_BCM5782,
2425 1.70 tron "Broadcom BCM5782 Gigabit Ethernet",
2426 1.133 markd },
2427 1.133 markd
2428 1.133 markd { PCI_VENDOR_BROADCOM,
2429 1.135 taca PCI_PRODUCT_BROADCOM_BCM5786,
2430 1.135 taca "Broadcom BCM5786 Gigabit Ethernet",
2431 1.135 taca },
2432 1.135 taca
2433 1.135 taca { PCI_VENDOR_BROADCOM,
2434 1.133 markd PCI_PRODUCT_BROADCOM_BCM5787,
2435 1.133 markd "Broadcom BCM5787 Gigabit Ethernet",
2436 1.133 markd },
2437 1.133 markd
2438 1.133 markd { PCI_VENDOR_BROADCOM,
2439 1.133 markd PCI_PRODUCT_BROADCOM_BCM5787M,
2440 1.133 markd "Broadcom BCM5787M Gigabit Ethernet",
2441 1.133 markd },
2442 1.106 jonathan
2443 1.70 tron { PCI_VENDOR_BROADCOM,
2444 1.70 tron PCI_PRODUCT_BROADCOM_BCM5788,
2445 1.70 tron "Broadcom BCM5788 Gigabit Ethernet",
2446 1.70 tron },
2447 1.97 fvdl { PCI_VENDOR_BROADCOM,
2448 1.97 fvdl PCI_PRODUCT_BROADCOM_BCM5789,
2449 1.97 fvdl "Broadcom BCM5789 Gigabit Ethernet",
2450 1.97 fvdl },
2451 1.70 tron
2452 1.70 tron { PCI_VENDOR_BROADCOM,
2453 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901,
2454 1.51 fvdl "Broadcom BCM5901 Fast Ethernet",
2455 1.51 fvdl },
2456 1.51 fvdl { PCI_VENDOR_BROADCOM,
2457 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901A2,
2458 1.51 fvdl "Broadcom BCM5901A2 Fast Ethernet",
2459 1.51 fvdl },
2460 1.51 fvdl
2461 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
2462 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2463 1.51 fvdl "SysKonnect SK-9Dx1 Gigabit Ethernet",
2464 1.51 fvdl },
2465 1.7 thorpej
2466 1.7 thorpej { PCI_VENDOR_3COM,
2467 1.7 thorpej PCI_PRODUCT_3COM_3C996,
2468 1.51 fvdl "3Com 3c996 Gigabit Ethernet",
2469 1.51 fvdl },
2470 1.7 thorpej
2471 1.151 cegger { PCI_VENDOR_BROADCOM,
2472 1.151 cegger PCI_PRODUCT_BROADCOM_BCM5906,
2473 1.151 cegger "Broadcom BCM5906 Fast Ethernet",
2474 1.151 cegger },
2475 1.151 cegger
2476 1.151 cegger { PCI_VENDOR_BROADCOM,
2477 1.151 cegger PCI_PRODUCT_BROADCOM_BCM5906M,
2478 1.151 cegger "Broadcom BCM5906M Fast Ethernet",
2479 1.151 cegger },
2480 1.151 cegger
2481 1.7 thorpej { 0,
2482 1.7 thorpej 0,
2483 1.7 thorpej NULL },
2484 1.7 thorpej };
2485 1.7 thorpej
2486 1.7 thorpej static const struct bge_product *
2487 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2488 1.7 thorpej {
2489 1.7 thorpej const struct bge_product *bp;
2490 1.7 thorpej
2491 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2492 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2493 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2494 1.7 thorpej return (bp);
2495 1.7 thorpej }
2496 1.7 thorpej
2497 1.7 thorpej return (NULL);
2498 1.7 thorpej }
2499 1.7 thorpej
2500 1.104 thorpej static int
2501 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2502 1.25 jonathan {
2503 1.25 jonathan #ifdef NOTYET
2504 1.25 jonathan u_int32_t pm_ctl = 0;
2505 1.25 jonathan
2506 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2507 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2508 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2509 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2510 1.25 jonathan
2511 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2512 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2513 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2514 1.25 jonathan pm_ctl |= (1 << 8);
2515 1.25 jonathan
2516 1.25 jonathan if (powerlevel == 0) {
2517 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2518 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2519 1.25 jonathan pm_ctl, 2);
2520 1.25 jonathan DELAY(10000);
2521 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2522 1.25 jonathan DELAY(10000);
2523 1.25 jonathan
2524 1.25 jonathan #ifdef NOTYET
2525 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2526 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2527 1.25 jonathan #endif
2528 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2529 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2530 1.25 jonathan return 0;
2531 1.25 jonathan }
2532 1.25 jonathan
2533 1.25 jonathan
2534 1.25 jonathan /*
2535 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2536 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2537 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
2538 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2539 1.25 jonathan */
2540 1.138 joerg aprint_error_dev(sc->bge_dev,
2541 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2542 1.138 joerg powerlevel);
2543 1.25 jonathan #endif
2544 1.25 jonathan return EOPNOTSUPP;
2545 1.25 jonathan }
2546 1.25 jonathan
2547 1.25 jonathan
2548 1.1 fvdl /*
2549 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2550 1.1 fvdl * against our list and return its name if we find a match. Note
2551 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2552 1.1 fvdl * can get the device name string from the controller itself instead
2553 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2554 1.1 fvdl * we'll always announce the right product name.
2555 1.1 fvdl */
2556 1.104 thorpej static int
2557 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2558 1.1 fvdl {
2559 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2560 1.1 fvdl
2561 1.7 thorpej if (bge_lookup(pa) != NULL)
2562 1.1 fvdl return (1);
2563 1.1 fvdl
2564 1.1 fvdl return (0);
2565 1.1 fvdl }
2566 1.1 fvdl
2567 1.104 thorpej static void
2568 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2569 1.1 fvdl {
2570 1.138 joerg struct bge_softc *sc = device_private(self);
2571 1.1 fvdl struct pci_attach_args *pa = aux;
2572 1.7 thorpej const struct bge_product *bp;
2573 1.16 thorpej const struct bge_revision *br;
2574 1.143 tron pci_chipset_tag_t pc;
2575 1.1 fvdl pci_intr_handle_t ih;
2576 1.1 fvdl const char *intrstr = NULL;
2577 1.1 fvdl bus_dma_segment_t seg;
2578 1.1 fvdl int rseg;
2579 1.1 fvdl u_int32_t hwcfg = 0;
2580 1.1 fvdl u_int32_t command;
2581 1.1 fvdl struct ifnet *ifp;
2582 1.126 christos void * kva;
2583 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2584 1.1 fvdl pcireg_t memtype;
2585 1.1 fvdl bus_addr_t memaddr;
2586 1.1 fvdl bus_size_t memsize;
2587 1.25 jonathan u_int32_t pm_ctl;
2588 1.87 perry
2589 1.7 thorpej bp = bge_lookup(pa);
2590 1.7 thorpej KASSERT(bp != NULL);
2591 1.7 thorpej
2592 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2593 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2594 1.138 joerg sc->bge_dev = self;
2595 1.1 fvdl
2596 1.30 thorpej aprint_naive(": Ethernet controller\n");
2597 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2598 1.1 fvdl
2599 1.1 fvdl /*
2600 1.1 fvdl * Map control/status registers.
2601 1.1 fvdl */
2602 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2603 1.143 tron pc = sc->sc_pc;
2604 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2605 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2606 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2607 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2608 1.1 fvdl
2609 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2610 1.138 joerg aprint_error_dev(sc->bge_dev,
2611 1.138 joerg "failed to enable memory mapping!\n");
2612 1.1 fvdl return;
2613 1.1 fvdl }
2614 1.1 fvdl
2615 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2616 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2617 1.1 fvdl switch (memtype) {
2618 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2619 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2620 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2621 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2622 1.1 fvdl &memaddr, &memsize) == 0)
2623 1.1 fvdl break;
2624 1.1 fvdl default:
2625 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2626 1.1 fvdl return;
2627 1.1 fvdl }
2628 1.1 fvdl
2629 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2630 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2631 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2632 1.1 fvdl return;
2633 1.1 fvdl }
2634 1.1 fvdl
2635 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2636 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2637 1.1 fvdl
2638 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2639 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2640 1.1 fvdl
2641 1.1 fvdl if (sc->bge_intrhand == NULL) {
2642 1.138 joerg aprint_error_dev(sc->bge_dev,
2643 1.138 joerg "couldn't establish interrupt%s%s\n",
2644 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2645 1.1 fvdl return;
2646 1.1 fvdl }
2647 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2648 1.1 fvdl
2649 1.25 jonathan /*
2650 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2651 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2652 1.25 jonathan * leaving the card in D3 powersave state.
2653 1.25 jonathan * We do not have memory-mapped registers in this state,
2654 1.25 jonathan * so force device into D0 state before starting initialization.
2655 1.25 jonathan */
2656 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2657 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2658 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2659 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2660 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2661 1.25 jonathan
2662 1.76 cube /*
2663 1.76 cube * Save ASIC rev. Look up any quirks associated with this
2664 1.76 cube * ASIC.
2665 1.76 cube */
2666 1.76 cube sc->bge_chipid =
2667 1.141 jmcneill pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2668 1.76 cube BGE_PCIMISCCTL_ASICREV;
2669 1.76 cube
2670 1.76 cube /*
2671 1.76 cube * Detect PCI-Express devices
2672 1.76 cube * XXX: guessed from Linux/FreeBSD; no documentation
2673 1.76 cube */
2674 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2675 1.108 jonathan NULL, NULL) != 0)
2676 1.76 cube sc->bge_pcie = 1;
2677 1.76 cube else
2678 1.76 cube sc->bge_pcie = 0;
2679 1.76 cube
2680 1.1 fvdl /* Try to reset the chip. */
2681 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2682 1.1 fvdl bge_reset(sc);
2683 1.1 fvdl
2684 1.1 fvdl if (bge_chipinit(sc)) {
2685 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2686 1.1 fvdl bge_release_resources(sc);
2687 1.1 fvdl return;
2688 1.1 fvdl }
2689 1.1 fvdl
2690 1.1 fvdl /*
2691 1.1 fvdl * Get station address from the EEPROM.
2692 1.1 fvdl */
2693 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
2694 1.151 cegger aprint_error_dev(sc->bge_dev,
2695 1.151 cegger "failed to reade station address\n");
2696 1.1 fvdl bge_release_resources(sc);
2697 1.1 fvdl return;
2698 1.1 fvdl }
2699 1.1 fvdl
2700 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2701 1.51 fvdl
2702 1.16 thorpej if (br == NULL) {
2703 1.138 joerg aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2704 1.138 joerg sc->bge_chipid >> 16);
2705 1.52 fvdl sc->bge_quirks = 0;
2706 1.16 thorpej } else {
2707 1.138 joerg aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2708 1.56 pooka br->br_name, sc->bge_chipid >> 16);
2709 1.51 fvdl sc->bge_quirks |= br->br_quirks;
2710 1.16 thorpej }
2711 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2712 1.1 fvdl
2713 1.1 fvdl /* Allocate the general information block and ring buffers. */
2714 1.41 fvdl if (pci_dma64_available(pa))
2715 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2716 1.41 fvdl else
2717 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2718 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2719 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2720 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2721 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2722 1.1 fvdl return;
2723 1.1 fvdl }
2724 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2725 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2726 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2727 1.1 fvdl BUS_DMA_NOWAIT)) {
2728 1.138 joerg aprint_error_dev(sc->bge_dev,
2729 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2730 1.138 joerg sizeof(struct bge_ring_data));
2731 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2732 1.1 fvdl return;
2733 1.1 fvdl }
2734 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2735 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2736 1.1 fvdl sizeof(struct bge_ring_data), 0,
2737 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2738 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2739 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2740 1.1 fvdl sizeof(struct bge_ring_data));
2741 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2742 1.1 fvdl return;
2743 1.1 fvdl }
2744 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2745 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2746 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2747 1.1 fvdl BUS_DMA_NOWAIT)) {
2748 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2749 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2750 1.1 fvdl sizeof(struct bge_ring_data));
2751 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2752 1.1 fvdl return;
2753 1.1 fvdl }
2754 1.1 fvdl
2755 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2756 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2757 1.1 fvdl
2758 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2759 1.1 fvdl
2760 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2761 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2762 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2763 1.138 joerg aprint_error_dev(sc->bge_dev,
2764 1.138 joerg "jumbo buffer allocation failed\n");
2765 1.44 hannken } else
2766 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2767 1.44 hannken }
2768 1.1 fvdl
2769 1.1 fvdl /* Set default tuneable values. */
2770 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2771 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2772 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2773 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2774 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2775 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2776 1.25 jonathan #else
2777 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2778 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2779 1.25 jonathan #endif
2780 1.95 jonathan if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2781 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2782 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2783 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2784 1.138 joerg "setting short Tx thresholds\n");
2785 1.95 jonathan }
2786 1.1 fvdl
2787 1.1 fvdl /* Set up ifnet structure */
2788 1.1 fvdl ifp = &sc->ethercom.ec_if;
2789 1.1 fvdl ifp->if_softc = sc;
2790 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2791 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2792 1.141 jmcneill ifp->if_stop = bge_stop;
2793 1.1 fvdl ifp->if_start = bge_start;
2794 1.1 fvdl ifp->if_init = bge_init;
2795 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2796 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2797 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2798 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2799 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2800 1.1 fvdl
2801 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2802 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2803 1.88 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2804 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2805 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2806 1.87 perry sc->ethercom.ec_capabilities |=
2807 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2808 1.1 fvdl
2809 1.95 jonathan if (sc->bge_pcie)
2810 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2811 1.95 jonathan
2812 1.1 fvdl /*
2813 1.1 fvdl * Do MII setup.
2814 1.1 fvdl */
2815 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2816 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2817 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2818 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2819 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2820 1.1 fvdl
2821 1.1 fvdl /*
2822 1.1 fvdl * Figure out what sort of media we have by checking the
2823 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2824 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2825 1.1 fvdl * cards, this value appears to be unset. If that's the
2826 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2827 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2828 1.1 fvdl */
2829 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2830 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2831 1.35 jonathan } else {
2832 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2833 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2834 1.35 jonathan hwcfg = be32toh(hwcfg);
2835 1.35 jonathan }
2836 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2837 1.1 fvdl sc->bge_tbi = 1;
2838 1.1 fvdl
2839 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2840 1.141 jmcneill if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2841 1.1 fvdl SK_SUBSYSID_9D41)
2842 1.1 fvdl sc->bge_tbi = 1;
2843 1.1 fvdl
2844 1.1 fvdl if (sc->bge_tbi) {
2845 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2846 1.1 fvdl bge_ifmedia_sts);
2847 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2848 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2849 1.1 fvdl 0, NULL);
2850 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2851 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2852 1.155 he /* Pretend the user requested this setting */
2853 1.155 he sc->bge_ifmedia.ifm_media =
2854 1.155 he sc->bge_ifmedia.ifm_cur->ifm_media;
2855 1.1 fvdl } else {
2856 1.1 fvdl /*
2857 1.1 fvdl * Do transceiver setup.
2858 1.1 fvdl */
2859 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2860 1.1 fvdl bge_ifmedia_sts);
2861 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2862 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2863 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2864 1.87 perry
2865 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2866 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2867 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2868 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2869 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2870 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2871 1.1 fvdl } else
2872 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2873 1.1 fvdl IFM_ETHER|IFM_AUTO);
2874 1.1 fvdl }
2875 1.1 fvdl
2876 1.1 fvdl /*
2877 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2878 1.37 jonathan * been observed in the first few bytes of some received packets.
2879 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2880 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2881 1.37 jonathan * which do not support unaligned accesses, we will realign the
2882 1.37 jonathan * payloads by copying the received packets.
2883 1.37 jonathan */
2884 1.37 jonathan if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2885 1.37 jonathan /* If in PCI-X mode, work around the alignment bug. */
2886 1.141 jmcneill if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2887 1.37 jonathan (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2888 1.37 jonathan BGE_PCISTATE_PCI_BUSSPEED)
2889 1.37 jonathan sc->bge_rx_alignment_bug = 1;
2890 1.37 jonathan }
2891 1.37 jonathan
2892 1.37 jonathan /*
2893 1.1 fvdl * Call MI attach routine.
2894 1.1 fvdl */
2895 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2896 1.1 fvdl if_attach(ifp);
2897 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2898 1.1 fvdl ether_ifattach(ifp, eaddr);
2899 1.148 mlelstv #if NRND > 0
2900 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2901 1.148 mlelstv RND_TYPE_NET, 0);
2902 1.148 mlelstv #endif
2903 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
2904 1.72 thorpej /*
2905 1.72 thorpej * Attach event counters.
2906 1.72 thorpej */
2907 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2908 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
2909 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2910 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
2911 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2912 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
2913 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2914 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
2915 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2916 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
2917 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2918 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
2919 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2920 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
2921 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
2922 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2923 1.132 ad callout_init(&sc->bge_timeout, 0);
2924 1.82 jmcneill
2925 1.141 jmcneill if (!pmf_device_register(self, NULL, NULL))
2926 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
2927 1.141 jmcneill else
2928 1.141 jmcneill pmf_class_network_register(self, ifp);
2929 1.1 fvdl }
2930 1.1 fvdl
2931 1.104 thorpej static void
2932 1.104 thorpej bge_release_resources(struct bge_softc *sc)
2933 1.1 fvdl {
2934 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2935 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2936 1.1 fvdl
2937 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2938 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2939 1.1 fvdl }
2940 1.1 fvdl
2941 1.104 thorpej static void
2942 1.104 thorpej bge_reset(struct bge_softc *sc)
2943 1.1 fvdl {
2944 1.61 jonathan u_int32_t cachesize, command, pcistate, new_pcistate;
2945 1.76 cube int i, val;
2946 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
2947 1.151 cegger
2948 1.151 cegger if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2949 1.151 cegger (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2950 1.151 cegger if (sc->bge_pcie) {
2951 1.151 cegger write_op = bge_writemem_direct;
2952 1.151 cegger } else {
2953 1.151 cegger write_op = bge_writemem_ind;
2954 1.151 cegger }
2955 1.151 cegger } else {
2956 1.151 cegger write_op = bge_writereg_ind;
2957 1.151 cegger }
2958 1.151 cegger
2959 1.1 fvdl
2960 1.1 fvdl /* Save some important PCI state. */
2961 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2962 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2963 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2964 1.1 fvdl
2965 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2966 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2967 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2968 1.1 fvdl
2969 1.119 tsutsui /*
2970 1.119 tsutsui * Disable the firmware fastboot feature on 5752 ASIC
2971 1.119 tsutsui * to avoid firmware timeout.
2972 1.119 tsutsui */
2973 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2974 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2975 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2976 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2977 1.119 tsutsui
2978 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2979 1.76 cube /*
2980 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2981 1.76 cube */
2982 1.76 cube if (sc->bge_pcie) {
2983 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2984 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2985 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2986 1.76 cube /* No idea what that actually means */
2987 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2988 1.76 cube val |= (1<<29);
2989 1.76 cube }
2990 1.76 cube }
2991 1.76 cube
2992 1.1 fvdl /* Issue global reset */
2993 1.151 cegger write_op(sc, BGE_MISC_CFG, val);
2994 1.151 cegger
2995 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2996 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2997 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2998 1.151 cegger i | BGE_VCPU_STATUS_DRV_RESET);
2999 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3000 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3001 1.151 cegger i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3002 1.151 cegger }
3003 1.151 cegger
3004 1.151 cegger
3005 1.1 fvdl
3006 1.1 fvdl DELAY(1000);
3007 1.1 fvdl
3008 1.76 cube /*
3009 1.76 cube * XXX: from FreeBSD/Linux; no documentation
3010 1.76 cube */
3011 1.76 cube if (sc->bge_pcie) {
3012 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3013 1.76 cube pcireg_t reg;
3014 1.76 cube
3015 1.76 cube DELAY(500000);
3016 1.76 cube /* XXX: Magic Numbers */
3017 1.141 jmcneill reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
3018 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
3019 1.76 cube reg | (1 << 15));
3020 1.76 cube }
3021 1.95 jonathan /*
3022 1.95 jonathan * XXX: Magic Numbers.
3023 1.95 jonathan * Sets maximal PCI-e payload and clears any PCI-e errors.
3024 1.95 jonathan * Should be replaced with references to PCI config-space
3025 1.95 jonathan * capability block for PCI-Express.
3026 1.95 jonathan */
3027 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3028 1.95 jonathan BGE_PCI_CONF_DEV_CTRL, 0xf5000);
3029 1.95 jonathan
3030 1.76 cube }
3031 1.76 cube
3032 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
3033 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3034 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
3035 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
3036 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3037 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3038 1.151 cegger write_op(sc, BGE_MISC_CFG, (65 << 1));
3039 1.1 fvdl
3040 1.1 fvdl /* Enable memory arbiter. */
3041 1.109 jonathan {
3042 1.99 jonathan uint32_t marbmode = 0;
3043 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
3044 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3045 1.99 jonathan }
3046 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3047 1.44 hannken }
3048 1.1 fvdl
3049 1.139 msaitoh
3050 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3051 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
3052 1.151 cegger val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3053 1.151 cegger if (val & BGE_VCPU_STATUS_INIT_DONE)
3054 1.151 cegger break;
3055 1.151 cegger DELAY(100);
3056 1.151 cegger }
3057 1.151 cegger if (i == BGE_TIMEOUT) {
3058 1.151 cegger aprint_error_dev(sc->bge_dev, "reset timed out\n");
3059 1.151 cegger return;
3060 1.151 cegger }
3061 1.151 cegger } else {
3062 1.151 cegger /*
3063 1.151 cegger * Write the magic number to the firmware mailbox at 0xb50
3064 1.151 cegger * so that the driver can synchronize with the firmware.
3065 1.151 cegger */
3066 1.151 cegger bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3067 1.1 fvdl
3068 1.95 jonathan /*
3069 1.151 cegger * Poll the value location we just wrote until
3070 1.151 cegger * we see the 1's complement of the magic number.
3071 1.151 cegger * This indicates that the firmware initialization
3072 1.151 cegger * is complete.
3073 1.95 jonathan */
3074 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
3075 1.151 cegger val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3076 1.151 cegger if (val == ~BGE_MAGIC_NUMBER)
3077 1.151 cegger break;
3078 1.151 cegger DELAY(1000);
3079 1.151 cegger }
3080 1.151 cegger
3081 1.151 cegger if (i >= BGE_TIMEOUT) {
3082 1.151 cegger aprint_error_dev(sc->bge_dev,
3083 1.151 cegger "firmware handshake timed out, val = %x\n", val);
3084 1.151 cegger /*
3085 1.151 cegger * XXX: occasionally fired on bcm5721, but without
3086 1.151 cegger * apparent harm. For now, keep going if we timeout
3087 1.151 cegger * against PCI-E devices.
3088 1.151 cegger */
3089 1.151 cegger if (!sc->bge_pcie)
3090 1.151 cegger return;
3091 1.151 cegger }
3092 1.1 fvdl }
3093 1.1 fvdl
3094 1.1 fvdl /*
3095 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
3096 1.1 fvdl * return to its original pre-reset state. This is a
3097 1.1 fvdl * fairly good indicator of reset completion. If we don't
3098 1.1 fvdl * wait for the reset to fully complete, trying to read
3099 1.1 fvdl * from the device's non-PCI registers may yield garbage
3100 1.1 fvdl * results.
3101 1.1 fvdl */
3102 1.139 msaitoh for (i = 0; i < 10000; i++) {
3103 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3104 1.61 jonathan BGE_PCI_PCISTATE);
3105 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3106 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
3107 1.1 fvdl break;
3108 1.1 fvdl DELAY(10);
3109 1.1 fvdl }
3110 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3111 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
3112 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3113 1.61 jonathan }
3114 1.1 fvdl
3115 1.76 cube /* XXX: from FreeBSD/Linux; no documentation */
3116 1.76 cube if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
3117 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
3118 1.76 cube
3119 1.1 fvdl /* Enable memory arbiter. */
3120 1.109 jonathan /* XXX why do this twice? */
3121 1.109 jonathan {
3122 1.99 jonathan uint32_t marbmode = 0;
3123 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
3124 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3125 1.99 jonathan }
3126 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3127 1.44 hannken }
3128 1.1 fvdl
3129 1.1 fvdl /* Fix up byte swapping */
3130 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3131 1.1 fvdl
3132 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3133 1.1 fvdl
3134 1.1 fvdl DELAY(10000);
3135 1.1 fvdl }
3136 1.1 fvdl
3137 1.1 fvdl /*
3138 1.1 fvdl * Frame reception handling. This is called if there's a frame
3139 1.1 fvdl * on the receive return list.
3140 1.1 fvdl *
3141 1.1 fvdl * Note: we have to be able to handle two possibilities here:
3142 1.1 fvdl * 1) the frame is from the jumbo recieve ring
3143 1.1 fvdl * 2) the frame is from the standard receive ring
3144 1.1 fvdl */
3145 1.1 fvdl
3146 1.104 thorpej static void
3147 1.104 thorpej bge_rxeof(struct bge_softc *sc)
3148 1.1 fvdl {
3149 1.1 fvdl struct ifnet *ifp;
3150 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
3151 1.1 fvdl bus_dmamap_t dmamap;
3152 1.1 fvdl bus_addr_t offset, toff;
3153 1.1 fvdl bus_size_t tlen;
3154 1.1 fvdl int tosync;
3155 1.1 fvdl
3156 1.1 fvdl ifp = &sc->ethercom.ec_if;
3157 1.1 fvdl
3158 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3159 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3160 1.1 fvdl sizeof (struct bge_status_block),
3161 1.1 fvdl BUS_DMASYNC_POSTREAD);
3162 1.1 fvdl
3163 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3164 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
3165 1.1 fvdl sc->bge_rx_saved_considx;
3166 1.1 fvdl
3167 1.148 mlelstv #if NRND > 0
3168 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3169 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3170 1.148 mlelstv #endif
3171 1.148 mlelstv
3172 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
3173 1.1 fvdl
3174 1.1 fvdl if (tosync < 0) {
3175 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
3176 1.1 fvdl sizeof (struct bge_rx_bd);
3177 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3178 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
3179 1.1 fvdl tosync = -tosync;
3180 1.1 fvdl }
3181 1.1 fvdl
3182 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3183 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
3184 1.1 fvdl BUS_DMASYNC_POSTREAD);
3185 1.1 fvdl
3186 1.1 fvdl while(sc->bge_rx_saved_considx !=
3187 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3188 1.1 fvdl struct bge_rx_bd *cur_rx;
3189 1.1 fvdl u_int32_t rxidx;
3190 1.1 fvdl struct mbuf *m = NULL;
3191 1.1 fvdl
3192 1.1 fvdl cur_rx = &sc->bge_rdata->
3193 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
3194 1.1 fvdl
3195 1.1 fvdl rxidx = cur_rx->bge_idx;
3196 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3197 1.1 fvdl
3198 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3199 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3200 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3201 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3202 1.1 fvdl jumbocnt++;
3203 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
3204 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
3205 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3206 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
3207 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3208 1.1 fvdl ifp->if_ierrors++;
3209 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3210 1.1 fvdl continue;
3211 1.1 fvdl }
3212 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3213 1.1 fvdl NULL)== ENOBUFS) {
3214 1.1 fvdl ifp->if_ierrors++;
3215 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3216 1.1 fvdl continue;
3217 1.1 fvdl }
3218 1.1 fvdl } else {
3219 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3220 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3221 1.124 bouyer
3222 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3223 1.1 fvdl stdcnt++;
3224 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3225 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3226 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3227 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3228 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
3229 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3230 1.1 fvdl ifp->if_ierrors++;
3231 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3232 1.1 fvdl continue;
3233 1.1 fvdl }
3234 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
3235 1.1 fvdl NULL, dmamap) == ENOBUFS) {
3236 1.1 fvdl ifp->if_ierrors++;
3237 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3238 1.1 fvdl continue;
3239 1.1 fvdl }
3240 1.1 fvdl }
3241 1.1 fvdl
3242 1.1 fvdl ifp->if_ipackets++;
3243 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
3244 1.37 jonathan /*
3245 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3246 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
3247 1.37 jonathan * If our CPU requires alignment, re-align by copying.
3248 1.37 jonathan */
3249 1.37 jonathan if (sc->bge_rx_alignment_bug) {
3250 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3251 1.37 jonathan cur_rx->bge_len);
3252 1.37 jonathan m->m_data += ETHER_ALIGN;
3253 1.37 jonathan }
3254 1.37 jonathan #endif
3255 1.87 perry
3256 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3257 1.1 fvdl m->m_pkthdr.rcvif = ifp;
3258 1.1 fvdl
3259 1.1 fvdl #if NBPFILTER > 0
3260 1.1 fvdl /*
3261 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
3262 1.1 fvdl */
3263 1.1 fvdl if (ifp->if_bpf)
3264 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
3265 1.1 fvdl #endif
3266 1.1 fvdl
3267 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3268 1.46 jonathan
3269 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3270 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3271 1.46 jonathan /*
3272 1.46 jonathan * Rx transport checksum-offload may also
3273 1.46 jonathan * have bugs with packets which, when transmitted,
3274 1.46 jonathan * were `runts' requiring padding.
3275 1.46 jonathan */
3276 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3277 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3278 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3279 1.46 jonathan m->m_pkthdr.csum_data =
3280 1.46 jonathan cur_rx->bge_tcp_udp_csum;
3281 1.46 jonathan m->m_pkthdr.csum_flags |=
3282 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
3283 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3284 1.1 fvdl }
3285 1.1 fvdl
3286 1.1 fvdl /*
3287 1.1 fvdl * If we received a packet with a vlan tag, pass it
3288 1.1 fvdl * to vlan_input() instead of ether_input().
3289 1.1 fvdl */
3290 1.150 dsl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3291 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3292 1.150 dsl }
3293 1.1 fvdl
3294 1.1 fvdl (*ifp->if_input)(ifp, m);
3295 1.1 fvdl }
3296 1.1 fvdl
3297 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3298 1.1 fvdl if (stdcnt)
3299 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3300 1.1 fvdl if (jumbocnt)
3301 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3302 1.1 fvdl }
3303 1.1 fvdl
3304 1.104 thorpej static void
3305 1.104 thorpej bge_txeof(struct bge_softc *sc)
3306 1.1 fvdl {
3307 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3308 1.1 fvdl struct ifnet *ifp;
3309 1.1 fvdl struct txdmamap_pool_entry *dma;
3310 1.1 fvdl bus_addr_t offset, toff;
3311 1.1 fvdl bus_size_t tlen;
3312 1.1 fvdl int tosync;
3313 1.1 fvdl struct mbuf *m;
3314 1.1 fvdl
3315 1.1 fvdl ifp = &sc->ethercom.ec_if;
3316 1.1 fvdl
3317 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3318 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3319 1.1 fvdl sizeof (struct bge_status_block),
3320 1.1 fvdl BUS_DMASYNC_POSTREAD);
3321 1.1 fvdl
3322 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3323 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3324 1.1 fvdl sc->bge_tx_saved_considx;
3325 1.1 fvdl
3326 1.148 mlelstv #if NRND > 0
3327 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3328 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3329 1.148 mlelstv #endif
3330 1.148 mlelstv
3331 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3332 1.1 fvdl
3333 1.1 fvdl if (tosync < 0) {
3334 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3335 1.1 fvdl sizeof (struct bge_tx_bd);
3336 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3337 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3338 1.1 fvdl tosync = -tosync;
3339 1.1 fvdl }
3340 1.1 fvdl
3341 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3342 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3343 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3344 1.1 fvdl
3345 1.1 fvdl /*
3346 1.1 fvdl * Go through our tx ring and free mbufs for those
3347 1.1 fvdl * frames that have been sent.
3348 1.1 fvdl */
3349 1.1 fvdl while (sc->bge_tx_saved_considx !=
3350 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3351 1.1 fvdl u_int32_t idx = 0;
3352 1.1 fvdl
3353 1.1 fvdl idx = sc->bge_tx_saved_considx;
3354 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3355 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3356 1.1 fvdl ifp->if_opackets++;
3357 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3358 1.1 fvdl if (m != NULL) {
3359 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3360 1.1 fvdl dma = sc->txdma[idx];
3361 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3362 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3363 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3364 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3365 1.1 fvdl sc->txdma[idx] = NULL;
3366 1.1 fvdl
3367 1.1 fvdl m_freem(m);
3368 1.1 fvdl }
3369 1.1 fvdl sc->bge_txcnt--;
3370 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3371 1.1 fvdl ifp->if_timer = 0;
3372 1.1 fvdl }
3373 1.1 fvdl
3374 1.1 fvdl if (cur_tx != NULL)
3375 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3376 1.1 fvdl }
3377 1.1 fvdl
3378 1.104 thorpej static int
3379 1.104 thorpej bge_intr(void *xsc)
3380 1.1 fvdl {
3381 1.1 fvdl struct bge_softc *sc;
3382 1.1 fvdl struct ifnet *ifp;
3383 1.1 fvdl
3384 1.1 fvdl sc = xsc;
3385 1.1 fvdl ifp = &sc->ethercom.ec_if;
3386 1.1 fvdl
3387 1.144 mlelstv /*
3388 1.144 mlelstv * Ascertain whether the interrupt is from this bge device.
3389 1.144 mlelstv * Do the cheap test first.
3390 1.144 mlelstv */
3391 1.144 mlelstv if ((sc->bge_rdata->bge_status_block.bge_status &
3392 1.144 mlelstv BGE_STATFLAG_UPDATED) == 0) {
3393 1.144 mlelstv /*
3394 1.144 mlelstv * Sometimes, the interrupt comes in before the
3395 1.144 mlelstv * DMA update of the status block (performed prior
3396 1.144 mlelstv * to the interrupt itself) has completed.
3397 1.144 mlelstv * In that case, do the (extremely expensive!)
3398 1.144 mlelstv * PCI-config-space register read.
3399 1.144 mlelstv */
3400 1.144 mlelstv uint32_t pcistate =
3401 1.144 mlelstv pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3402 1.144 mlelstv
3403 1.144 mlelstv if (pcistate & BGE_PCISTATE_INTR_STATE)
3404 1.144 mlelstv return (0);
3405 1.144 mlelstv
3406 1.144 mlelstv }
3407 1.144 mlelstv /*
3408 1.144 mlelstv * If we reach here, then the interrupt is for us.
3409 1.144 mlelstv */
3410 1.144 mlelstv
3411 1.1 fvdl /* Ack interrupt and stop others from occuring. */
3412 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3413 1.1 fvdl
3414 1.72 thorpej BGE_EVCNT_INCR(sc->bge_ev_intr);
3415 1.72 thorpej
3416 1.1 fvdl /*
3417 1.1 fvdl * Process link state changes.
3418 1.1 fvdl * Grrr. The link status word in the status block does
3419 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
3420 1.101 skrll * according to all available information. Hence, we have
3421 1.1 fvdl * to enable MII interrupts in order to properly obtain
3422 1.1 fvdl * async link changes. Unfortunately, this also means that
3423 1.1 fvdl * we have to read the MAC status register to detect link
3424 1.1 fvdl * changes, thereby adding an additional register access to
3425 1.1 fvdl * the interrupt handler.
3426 1.1 fvdl */
3427 1.1 fvdl
3428 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3429 1.1 fvdl u_int32_t status;
3430 1.1 fvdl
3431 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
3432 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
3433 1.1 fvdl sc->bge_link = 0;
3434 1.1 fvdl callout_stop(&sc->bge_timeout);
3435 1.1 fvdl bge_tick(sc);
3436 1.1 fvdl /* Clear the interrupt */
3437 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3438 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
3439 1.138 joerg bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3440 1.138 joerg bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3441 1.1 fvdl BRGPHY_INTRS);
3442 1.1 fvdl }
3443 1.1 fvdl } else {
3444 1.144 mlelstv u_int32_t status;
3445 1.144 mlelstv
3446 1.144 mlelstv status = CSR_READ_4(sc, BGE_MAC_STS);
3447 1.144 mlelstv if (status & BGE_MACSTAT_LINK_CHANGED) {
3448 1.1 fvdl sc->bge_link = 0;
3449 1.1 fvdl callout_stop(&sc->bge_timeout);
3450 1.1 fvdl bge_tick(sc);
3451 1.1 fvdl /* Clear the interrupt */
3452 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3453 1.44 hannken BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3454 1.44 hannken BGE_MACSTAT_LINK_CHANGED);
3455 1.1 fvdl }
3456 1.1 fvdl }
3457 1.1 fvdl
3458 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3459 1.1 fvdl /* Check RX return ring producer/consumer */
3460 1.1 fvdl bge_rxeof(sc);
3461 1.1 fvdl
3462 1.1 fvdl /* Check TX ring producer/consumer */
3463 1.1 fvdl bge_txeof(sc);
3464 1.1 fvdl }
3465 1.1 fvdl
3466 1.58 jonathan if (sc->bge_pending_rxintr_change) {
3467 1.58 jonathan uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3468 1.58 jonathan uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3469 1.58 jonathan uint32_t junk;
3470 1.58 jonathan
3471 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3472 1.58 jonathan DELAY(10);
3473 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3474 1.87 perry
3475 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3476 1.58 jonathan DELAY(10);
3477 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3478 1.58 jonathan
3479 1.58 jonathan sc->bge_pending_rxintr_change = 0;
3480 1.58 jonathan }
3481 1.1 fvdl bge_handle_events(sc);
3482 1.1 fvdl
3483 1.1 fvdl /* Re-enable interrupts. */
3484 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3485 1.1 fvdl
3486 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3487 1.1 fvdl bge_start(ifp);
3488 1.1 fvdl
3489 1.1 fvdl return (1);
3490 1.1 fvdl }
3491 1.1 fvdl
3492 1.104 thorpej static void
3493 1.104 thorpej bge_tick(void *xsc)
3494 1.1 fvdl {
3495 1.1 fvdl struct bge_softc *sc = xsc;
3496 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3497 1.1 fvdl int s;
3498 1.1 fvdl
3499 1.1 fvdl s = splnet();
3500 1.1 fvdl
3501 1.1 fvdl bge_stats_update(sc);
3502 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3503 1.1 fvdl
3504 1.1 fvdl if (sc->bge_tbi) {
3505 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3506 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
3507 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3508 1.1 fvdl }
3509 1.147 mlelstv } else
3510 1.147 mlelstv mii_tick(mii);
3511 1.1 fvdl
3512 1.1 fvdl splx(s);
3513 1.1 fvdl }
3514 1.1 fvdl
3515 1.104 thorpej static void
3516 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3517 1.1 fvdl {
3518 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3519 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3520 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
3521 1.44 hannken
3522 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
3523 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3524 1.1 fvdl
3525 1.44 hannken if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3526 1.44 hannken ifp->if_collisions +=
3527 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3528 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3529 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3530 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3531 1.72 thorpej
3532 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3533 1.72 thorpej READ_RSTAT(sc, rstats, outXoffSent));
3534 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3535 1.72 thorpej READ_RSTAT(sc, rstats, outXonSent));
3536 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3537 1.72 thorpej READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3538 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3539 1.72 thorpej READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3540 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3541 1.72 thorpej READ_RSTAT(sc, rstats, macControlFramesReceived));
3542 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3543 1.72 thorpej READ_RSTAT(sc, rstats, xoffStateEntered));
3544 1.44 hannken return;
3545 1.44 hannken }
3546 1.44 hannken
3547 1.44 hannken #undef READ_RSTAT
3548 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3549 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3550 1.1 fvdl
3551 1.1 fvdl ifp->if_collisions +=
3552 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3553 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3554 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3555 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3556 1.1 fvdl ifp->if_collisions;
3557 1.1 fvdl
3558 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3559 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3560 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3561 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3562 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3563 1.72 thorpej READ_STAT(sc, stats,
3564 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3565 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3566 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3567 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3568 1.72 thorpej READ_STAT(sc, stats,
3569 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3570 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3571 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3572 1.72 thorpej
3573 1.1 fvdl #undef READ_STAT
3574 1.1 fvdl
3575 1.1 fvdl #ifdef notdef
3576 1.1 fvdl ifp->if_collisions +=
3577 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3578 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3579 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3580 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3581 1.1 fvdl ifp->if_collisions;
3582 1.1 fvdl #endif
3583 1.1 fvdl }
3584 1.1 fvdl
3585 1.46 jonathan /*
3586 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3587 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3588 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3589 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3590 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3591 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3592 1.46 jonathan */
3593 1.102 perry static inline int
3594 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3595 1.46 jonathan {
3596 1.46 jonathan struct mbuf *last = NULL;
3597 1.46 jonathan int padlen;
3598 1.46 jonathan
3599 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3600 1.46 jonathan
3601 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3602 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3603 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3604 1.46 jonathan last = pkt;
3605 1.46 jonathan } else {
3606 1.46 jonathan /*
3607 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3608 1.87 perry * pad there, or append a new mbuf and pad it
3609 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3610 1.46 jonathan */
3611 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3612 1.114 tsutsui continue; /* do nothing */
3613 1.46 jonathan }
3614 1.46 jonathan
3615 1.46 jonathan /* `last' now points to last in chain. */
3616 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3617 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3618 1.46 jonathan struct mbuf *n;
3619 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3620 1.129 joerg if (n == NULL)
3621 1.129 joerg return ENOBUFS;
3622 1.46 jonathan n->m_len = 0;
3623 1.46 jonathan last->m_next = n;
3624 1.46 jonathan last = n;
3625 1.46 jonathan }
3626 1.46 jonathan }
3627 1.46 jonathan
3628 1.114 tsutsui KDASSERT(!M_READONLY(last));
3629 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3630 1.114 tsutsui
3631 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3632 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3633 1.46 jonathan last->m_len += padlen;
3634 1.46 jonathan pkt->m_pkthdr.len += padlen;
3635 1.46 jonathan return 0;
3636 1.46 jonathan }
3637 1.45 jonathan
3638 1.45 jonathan /*
3639 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3640 1.45 jonathan */
3641 1.102 perry static inline int
3642 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3643 1.45 jonathan {
3644 1.45 jonathan struct mbuf *m, *prev;
3645 1.45 jonathan int totlen, prevlen;
3646 1.45 jonathan
3647 1.45 jonathan prev = NULL;
3648 1.45 jonathan totlen = 0;
3649 1.45 jonathan prevlen = -1;
3650 1.45 jonathan
3651 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3652 1.45 jonathan int mlen = m->m_len;
3653 1.45 jonathan int shortfall = 8 - mlen ;
3654 1.45 jonathan
3655 1.45 jonathan totlen += mlen;
3656 1.45 jonathan if (mlen == 0) {
3657 1.45 jonathan continue;
3658 1.45 jonathan }
3659 1.45 jonathan if (mlen >= 8)
3660 1.45 jonathan continue;
3661 1.45 jonathan
3662 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3663 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3664 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3665 1.45 jonathan */
3666 1.45 jonathan
3667 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3668 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3669 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3670 1.45 jonathan prev->m_len += mlen;
3671 1.45 jonathan m->m_len = 0;
3672 1.45 jonathan /* XXX stitch chain */
3673 1.45 jonathan prev->m_next = m_free(m);
3674 1.45 jonathan m = prev;
3675 1.45 jonathan continue;
3676 1.45 jonathan }
3677 1.113 tsutsui else if (m->m_next != NULL &&
3678 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3679 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3680 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3681 1.45 jonathan
3682 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3683 1.115 tsutsui shortfall);
3684 1.45 jonathan m->m_len += shortfall;
3685 1.45 jonathan m->m_next->m_len -= shortfall;
3686 1.45 jonathan m->m_next->m_data += shortfall;
3687 1.45 jonathan }
3688 1.45 jonathan else if (m->m_next == NULL || 1) {
3689 1.45 jonathan /* Got a runt at the very end of the packet.
3690 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3691 1.45 jonathan * update its length in-place. (The original data is still
3692 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3693 1.45 jonathan */
3694 1.45 jonathan
3695 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3696 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3697 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3698 1.111 christos
3699 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3700 1.45 jonathan shortfall = prev->m_len;
3701 1.87 perry
3702 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3703 1.45 jonathan if (!M_READONLY(m)) {
3704 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3705 1.45 jonathan void *m_dat;
3706 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3707 1.45 jonathan m->m_pktdat : m->dat;
3708 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3709 1.45 jonathan m->m_data = m_dat;
3710 1.45 jonathan }
3711 1.45 jonathan } else
3712 1.45 jonathan #endif /* just do the safe slow thing */
3713 1.45 jonathan {
3714 1.45 jonathan struct mbuf * n = NULL;
3715 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3716 1.45 jonathan
3717 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3718 1.45 jonathan if (n == NULL)
3719 1.45 jonathan return ENOBUFS;
3720 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3721 1.45 jonathan /*,
3722 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3723 1.45 jonathan
3724 1.45 jonathan /* first copy the data we're stealing from prev */
3725 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3726 1.115 tsutsui shortfall);
3727 1.45 jonathan
3728 1.45 jonathan /* update prev->m_len accordingly */
3729 1.45 jonathan prev->m_len -= shortfall;
3730 1.45 jonathan
3731 1.45 jonathan /* copy data from runt m */
3732 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3733 1.115 tsutsui m->m_len);
3734 1.45 jonathan
3735 1.45 jonathan /* n holds what we stole from prev, plus m */
3736 1.45 jonathan n->m_len = shortfall + m->m_len;
3737 1.45 jonathan
3738 1.45 jonathan /* stitch n into chain and free m */
3739 1.45 jonathan n->m_next = m->m_next;
3740 1.45 jonathan prev->m_next = n;
3741 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3742 1.45 jonathan m->m_next = NULL;
3743 1.45 jonathan m_free(m);
3744 1.45 jonathan m = n; /* for continuing loop */
3745 1.45 jonathan }
3746 1.45 jonathan }
3747 1.45 jonathan prevlen = m->m_len;
3748 1.45 jonathan }
3749 1.45 jonathan return 0;
3750 1.45 jonathan }
3751 1.45 jonathan
3752 1.1 fvdl /*
3753 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3754 1.1 fvdl * pointers to descriptors.
3755 1.1 fvdl */
3756 1.104 thorpej static int
3757 1.104 thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3758 1.1 fvdl {
3759 1.1 fvdl struct bge_tx_bd *f = NULL;
3760 1.118 tsutsui u_int32_t frag, cur;
3761 1.1 fvdl u_int16_t csum_flags = 0;
3762 1.95 jonathan u_int16_t txbd_tso_flags = 0;
3763 1.1 fvdl struct txdmamap_pool_entry *dma;
3764 1.1 fvdl bus_dmamap_t dmamap;
3765 1.1 fvdl int i = 0;
3766 1.29 itojun struct m_tag *mtag;
3767 1.95 jonathan int use_tso, maxsegsize, error;
3768 1.107 blymn
3769 1.1 fvdl cur = frag = *txidx;
3770 1.1 fvdl
3771 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3772 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3773 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3774 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3775 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3776 1.1 fvdl }
3777 1.1 fvdl
3778 1.87 perry /*
3779 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3780 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3781 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3782 1.46 jonathan * (For now, do this for all chip versions, until newer
3783 1.46 jonathan * are confirmed to not require the workaround.)
3784 1.46 jonathan */
3785 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3786 1.46 jonathan #ifdef notyet
3787 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3788 1.87 perry #endif
3789 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3790 1.46 jonathan goto check_dma_bug;
3791 1.46 jonathan
3792 1.95 jonathan if (bge_cksum_pad(m_head) != 0) {
3793 1.46 jonathan return ENOBUFS;
3794 1.95 jonathan }
3795 1.46 jonathan
3796 1.46 jonathan check_dma_bug:
3797 1.25 jonathan if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3798 1.29 itojun goto doit;
3799 1.25 jonathan /*
3800 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3801 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3802 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3803 1.25 jonathan */
3804 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3805 1.45 jonathan return ENOBUFS;
3806 1.25 jonathan
3807 1.25 jonathan doit:
3808 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3809 1.1 fvdl if (dma == NULL)
3810 1.1 fvdl return ENOBUFS;
3811 1.1 fvdl dmamap = dma->dmamap;
3812 1.1 fvdl
3813 1.1 fvdl /*
3814 1.95 jonathan * Set up any necessary TSO state before we start packing...
3815 1.95 jonathan */
3816 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3817 1.95 jonathan if (!use_tso) {
3818 1.95 jonathan maxsegsize = 0;
3819 1.95 jonathan } else { /* TSO setup */
3820 1.95 jonathan unsigned mss;
3821 1.95 jonathan struct ether_header *eh;
3822 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3823 1.95 jonathan struct mbuf * m0 = m_head;
3824 1.95 jonathan struct ip *ip;
3825 1.95 jonathan struct tcphdr *th;
3826 1.95 jonathan int iphl, hlen;
3827 1.95 jonathan
3828 1.95 jonathan /*
3829 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3830 1.95 jonathan * fields for the protocol headers.
3831 1.95 jonathan */
3832 1.95 jonathan
3833 1.95 jonathan eh = mtod(m0, struct ether_header *);
3834 1.95 jonathan switch (htons(eh->ether_type)) {
3835 1.95 jonathan case ETHERTYPE_IP:
3836 1.95 jonathan offset = ETHER_HDR_LEN;
3837 1.95 jonathan break;
3838 1.95 jonathan
3839 1.95 jonathan case ETHERTYPE_VLAN:
3840 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3841 1.95 jonathan break;
3842 1.95 jonathan
3843 1.95 jonathan default:
3844 1.95 jonathan /*
3845 1.95 jonathan * Don't support this protocol or encapsulation.
3846 1.95 jonathan */
3847 1.95 jonathan return (ENOBUFS);
3848 1.95 jonathan }
3849 1.95 jonathan
3850 1.95 jonathan /*
3851 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3852 1.95 jonathan * this the easy way.
3853 1.95 jonathan */
3854 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3855 1.95 jonathan hlen = iphl + offset;
3856 1.95 jonathan if (__predict_false(m0->m_len <
3857 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
3858 1.95 jonathan
3859 1.138 joerg aprint_debug_dev(sc->bge_dev,
3860 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3861 1.138 joerg "not handled yet\n",
3862 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
3863 1.95 jonathan #ifdef NOTYET
3864 1.95 jonathan /*
3865 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
3866 1.95 jonathan * how to force this branch to be taken?
3867 1.95 jonathan */
3868 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3869 1.95 jonathan
3870 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
3871 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
3872 1.95 jonathan
3873 1.95 jonathan ip.ip_len = 0;
3874 1.95 jonathan
3875 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3876 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
3877 1.95 jonathan
3878 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3879 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3880 1.95 jonathan
3881 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3882 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
3883 1.95 jonathan
3884 1.95 jonathan hlen += th.th_off << 2;
3885 1.95 jonathan iptcp_opt_words = hlen;
3886 1.95 jonathan #else
3887 1.95 jonathan /*
3888 1.95 jonathan * if_wm "hard" case not yet supported, can we not
3889 1.95 jonathan * mandate it out of existence?
3890 1.95 jonathan */
3891 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
3892 1.95 jonathan
3893 1.95 jonathan return ENOBUFS;
3894 1.95 jonathan #endif
3895 1.95 jonathan } else {
3896 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
3897 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3898 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
3899 1.95 jonathan
3900 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
3901 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
3902 1.95 jonathan - sizeof(struct tcphdr)
3903 1.95 jonathan - sizeof(struct ip)) >> 2;
3904 1.95 jonathan }
3905 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
3906 1.95 jonathan th->th_sum = 0;
3907 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3908 1.95 jonathan } else {
3909 1.95 jonathan /*
3910 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
3911 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
3912 1.95 jonathan */
3913 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3914 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3915 1.95 jonathan }
3916 1.95 jonathan
3917 1.95 jonathan mss = m_head->m_pkthdr.segsz;
3918 1.107 blymn txbd_tso_flags |=
3919 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
3920 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
3921 1.95 jonathan
3922 1.95 jonathan /*
3923 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
3924 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
3925 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
3926 1.95 jonathan * supplied header into the IP/TCP header portion of
3927 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
3928 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
3929 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
3930 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
3931 1.95 jonathan * Unfortunately, the driver encoding of option length
3932 1.95 jonathan * varies across different ASIC families.
3933 1.95 jonathan */
3934 1.95 jonathan tcp_seg_flags = 0;
3935 1.95 jonathan if (iptcp_opt_words) {
3936 1.95 jonathan if ( BGE_IS_5705_OR_BEYOND(sc)) {
3937 1.95 jonathan tcp_seg_flags =
3938 1.95 jonathan iptcp_opt_words << 11;
3939 1.95 jonathan } else {
3940 1.95 jonathan txbd_tso_flags |=
3941 1.95 jonathan iptcp_opt_words << 12;
3942 1.95 jonathan }
3943 1.95 jonathan }
3944 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
3945 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
3946 1.95 jonathan
3947 1.95 jonathan } /* TSO setup */
3948 1.95 jonathan
3949 1.95 jonathan /*
3950 1.1 fvdl * Start packing the mbufs in this chain into
3951 1.1 fvdl * the fragment pointers. Stop when we run out
3952 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3953 1.1 fvdl */
3954 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3955 1.95 jonathan BUS_DMA_NOWAIT);
3956 1.95 jonathan if (error) {
3957 1.1 fvdl return(ENOBUFS);
3958 1.95 jonathan }
3959 1.118 tsutsui /*
3960 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
3961 1.118 tsutsui * of the end of the ring.
3962 1.118 tsutsui */
3963 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3964 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
3965 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
3966 1.138 joerg device_xname(sc->bge_dev)));
3967 1.118 tsutsui goto fail_unload;
3968 1.118 tsutsui }
3969 1.95 jonathan
3970 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
3971 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3972 1.1 fvdl
3973 1.6 thorpej
3974 1.95 jonathan /* Iterate over dmap-map fragments. */
3975 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3976 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3977 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3978 1.1 fvdl break;
3979 1.107 blymn
3980 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3981 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3982 1.95 jonathan
3983 1.95 jonathan /*
3984 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
3985 1.95 jonathan * off checksum-assist flag in the tx-descr, and
3986 1.95 jonathan * supply the ASIC-revision-specific encoding
3987 1.95 jonathan * of TSO flags and segsize.
3988 1.95 jonathan */
3989 1.95 jonathan if (use_tso) {
3990 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3991 1.95 jonathan f->bge_rsvd = maxsegsize;
3992 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
3993 1.95 jonathan } else {
3994 1.95 jonathan f->bge_rsvd = 0;
3995 1.95 jonathan f->bge_flags =
3996 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
3997 1.95 jonathan }
3998 1.95 jonathan } else {
3999 1.95 jonathan f->bge_rsvd = 0;
4000 1.95 jonathan f->bge_flags = csum_flags;
4001 1.95 jonathan }
4002 1.1 fvdl
4003 1.28 itojun if (mtag != NULL) {
4004 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4005 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4006 1.1 fvdl } else {
4007 1.1 fvdl f->bge_vlan_tag = 0;
4008 1.1 fvdl }
4009 1.1 fvdl cur = frag;
4010 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
4011 1.1 fvdl }
4012 1.1 fvdl
4013 1.95 jonathan if (i < dmamap->dm_nsegs) {
4014 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4015 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4016 1.118 tsutsui goto fail_unload;
4017 1.95 jonathan }
4018 1.1 fvdl
4019 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4020 1.1 fvdl BUS_DMASYNC_PREWRITE);
4021 1.1 fvdl
4022 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
4023 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4024 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4025 1.95 jonathan
4026 1.118 tsutsui goto fail_unload;
4027 1.95 jonathan }
4028 1.1 fvdl
4029 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4030 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
4031 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4032 1.1 fvdl sc->txdma[cur] = dma;
4033 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
4034 1.1 fvdl
4035 1.1 fvdl *txidx = frag;
4036 1.1 fvdl
4037 1.1 fvdl return(0);
4038 1.118 tsutsui
4039 1.118 tsutsui fail_unload:
4040 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
4041 1.118 tsutsui
4042 1.118 tsutsui return ENOBUFS;
4043 1.1 fvdl }
4044 1.1 fvdl
4045 1.1 fvdl /*
4046 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4047 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
4048 1.1 fvdl */
4049 1.104 thorpej static void
4050 1.104 thorpej bge_start(struct ifnet *ifp)
4051 1.1 fvdl {
4052 1.1 fvdl struct bge_softc *sc;
4053 1.1 fvdl struct mbuf *m_head = NULL;
4054 1.94 jonathan u_int32_t prodidx;
4055 1.1 fvdl int pkts = 0;
4056 1.1 fvdl
4057 1.1 fvdl sc = ifp->if_softc;
4058 1.1 fvdl
4059 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4060 1.1 fvdl return;
4061 1.1 fvdl
4062 1.94 jonathan prodidx = sc->bge_tx_prodidx;
4063 1.1 fvdl
4064 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4065 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
4066 1.1 fvdl if (m_head == NULL)
4067 1.1 fvdl break;
4068 1.1 fvdl
4069 1.1 fvdl #if 0
4070 1.1 fvdl /*
4071 1.1 fvdl * XXX
4072 1.1 fvdl * safety overkill. If this is a fragmented packet chain
4073 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
4074 1.1 fvdl * it if we have enough descriptors to handle the entire
4075 1.1 fvdl * chain at once.
4076 1.1 fvdl * (paranoia -- may not actually be needed)
4077 1.1 fvdl */
4078 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
4079 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4080 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4081 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4082 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4083 1.1 fvdl break;
4084 1.1 fvdl }
4085 1.1 fvdl }
4086 1.1 fvdl #endif
4087 1.1 fvdl
4088 1.1 fvdl /*
4089 1.1 fvdl * Pack the data into the transmit ring. If we
4090 1.1 fvdl * don't have room, set the OACTIVE flag and wait
4091 1.1 fvdl * for the NIC to drain the ring.
4092 1.1 fvdl */
4093 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
4094 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4095 1.1 fvdl break;
4096 1.1 fvdl }
4097 1.1 fvdl
4098 1.1 fvdl /* now we are committed to transmit the packet */
4099 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
4100 1.1 fvdl pkts++;
4101 1.1 fvdl
4102 1.1 fvdl #if NBPFILTER > 0
4103 1.1 fvdl /*
4104 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
4105 1.1 fvdl * to him.
4106 1.1 fvdl */
4107 1.1 fvdl if (ifp->if_bpf)
4108 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
4109 1.1 fvdl #endif
4110 1.1 fvdl }
4111 1.1 fvdl if (pkts == 0)
4112 1.1 fvdl return;
4113 1.1 fvdl
4114 1.1 fvdl /* Transmit */
4115 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4116 1.29 itojun if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
4117 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4118 1.1 fvdl
4119 1.94 jonathan sc->bge_tx_prodidx = prodidx;
4120 1.94 jonathan
4121 1.1 fvdl /*
4122 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
4123 1.1 fvdl */
4124 1.1 fvdl ifp->if_timer = 5;
4125 1.1 fvdl }
4126 1.1 fvdl
4127 1.104 thorpej static int
4128 1.104 thorpej bge_init(struct ifnet *ifp)
4129 1.1 fvdl {
4130 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4131 1.137 dyoung const u_int16_t *m;
4132 1.142 dyoung int s, error = 0;
4133 1.1 fvdl
4134 1.1 fvdl s = splnet();
4135 1.1 fvdl
4136 1.1 fvdl ifp = &sc->ethercom.ec_if;
4137 1.1 fvdl
4138 1.1 fvdl /* Cancel pending I/O and flush buffers. */
4139 1.141 jmcneill bge_stop(ifp, 0);
4140 1.1 fvdl bge_reset(sc);
4141 1.1 fvdl bge_chipinit(sc);
4142 1.1 fvdl
4143 1.1 fvdl /*
4144 1.1 fvdl * Init the various state machines, ring
4145 1.1 fvdl * control blocks and firmware.
4146 1.1 fvdl */
4147 1.1 fvdl error = bge_blockinit(sc);
4148 1.1 fvdl if (error != 0) {
4149 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4150 1.1 fvdl error);
4151 1.1 fvdl splx(s);
4152 1.1 fvdl return error;
4153 1.1 fvdl }
4154 1.1 fvdl
4155 1.1 fvdl ifp = &sc->ethercom.ec_if;
4156 1.1 fvdl
4157 1.1 fvdl /* Specify MTU. */
4158 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4159 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4160 1.1 fvdl
4161 1.1 fvdl /* Load our MAC address. */
4162 1.137 dyoung m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4163 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4164 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4165 1.1 fvdl
4166 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
4167 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
4168 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4169 1.1 fvdl } else {
4170 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4171 1.1 fvdl }
4172 1.1 fvdl
4173 1.1 fvdl /* Program multicast filter. */
4174 1.1 fvdl bge_setmulti(sc);
4175 1.1 fvdl
4176 1.1 fvdl /* Init RX ring. */
4177 1.1 fvdl bge_init_rx_ring_std(sc);
4178 1.1 fvdl
4179 1.1 fvdl /* Init jumbo RX ring. */
4180 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4181 1.1 fvdl bge_init_rx_ring_jumbo(sc);
4182 1.1 fvdl
4183 1.1 fvdl /* Init our RX return ring index */
4184 1.1 fvdl sc->bge_rx_saved_considx = 0;
4185 1.1 fvdl
4186 1.1 fvdl /* Init TX ring. */
4187 1.1 fvdl bge_init_tx_ring(sc);
4188 1.1 fvdl
4189 1.1 fvdl /* Turn on transmitter */
4190 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4191 1.1 fvdl
4192 1.1 fvdl /* Turn on receiver */
4193 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4194 1.1 fvdl
4195 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4196 1.71 thorpej
4197 1.1 fvdl /* Tell firmware we're alive. */
4198 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4199 1.1 fvdl
4200 1.1 fvdl /* Enable host interrupts. */
4201 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4202 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4203 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4204 1.1 fvdl
4205 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
4206 1.142 dyoung goto out;
4207 1.1 fvdl
4208 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
4209 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
4210 1.1 fvdl
4211 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4212 1.142 dyoung
4213 1.142 dyoung out:
4214 1.1 fvdl splx(s);
4215 1.1 fvdl
4216 1.142 dyoung return error;
4217 1.1 fvdl }
4218 1.1 fvdl
4219 1.1 fvdl /*
4220 1.1 fvdl * Set media options.
4221 1.1 fvdl */
4222 1.104 thorpej static int
4223 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
4224 1.1 fvdl {
4225 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4226 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4227 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
4228 1.142 dyoung int rc;
4229 1.1 fvdl
4230 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
4231 1.1 fvdl if (sc->bge_tbi) {
4232 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4233 1.1 fvdl return(EINVAL);
4234 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
4235 1.1 fvdl case IFM_AUTO:
4236 1.1 fvdl break;
4237 1.1 fvdl case IFM_1000_SX:
4238 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4239 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
4240 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4241 1.1 fvdl } else {
4242 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
4243 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4244 1.1 fvdl }
4245 1.1 fvdl break;
4246 1.1 fvdl default:
4247 1.1 fvdl return(EINVAL);
4248 1.1 fvdl }
4249 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
4250 1.1 fvdl return(0);
4251 1.1 fvdl }
4252 1.1 fvdl
4253 1.1 fvdl sc->bge_link = 0;
4254 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
4255 1.142 dyoung return 0;
4256 1.142 dyoung return rc;
4257 1.1 fvdl }
4258 1.1 fvdl
4259 1.1 fvdl /*
4260 1.1 fvdl * Report current media status.
4261 1.1 fvdl */
4262 1.104 thorpej static void
4263 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4264 1.1 fvdl {
4265 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4266 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4267 1.1 fvdl
4268 1.1 fvdl if (sc->bge_tbi) {
4269 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
4270 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
4271 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
4272 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
4273 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
4274 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
4275 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4276 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
4277 1.1 fvdl else
4278 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
4279 1.1 fvdl return;
4280 1.1 fvdl }
4281 1.1 fvdl
4282 1.1 fvdl mii_pollstat(mii);
4283 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
4284 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4285 1.69 thorpej sc->bge_flowflags;
4286 1.1 fvdl }
4287 1.1 fvdl
4288 1.104 thorpej static int
4289 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4290 1.1 fvdl {
4291 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4292 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
4293 1.1 fvdl int s, error = 0;
4294 1.1 fvdl struct mii_data *mii;
4295 1.1 fvdl
4296 1.1 fvdl s = splnet();
4297 1.1 fvdl
4298 1.1 fvdl switch(command) {
4299 1.1 fvdl case SIOCSIFFLAGS:
4300 1.153 dyoung if ((error = ifioctl_common(ifp, command, data)) != 0)
4301 1.153 dyoung break;
4302 1.1 fvdl if (ifp->if_flags & IFF_UP) {
4303 1.1 fvdl /*
4304 1.1 fvdl * If only the state of the PROMISC flag changed,
4305 1.1 fvdl * then just use the 'set promisc mode' command
4306 1.1 fvdl * instead of reinitializing the entire NIC. Doing
4307 1.1 fvdl * a full re-init means reloading the firmware and
4308 1.1 fvdl * waiting for it to start up, which may take a
4309 1.1 fvdl * second or two.
4310 1.1 fvdl */
4311 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
4312 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
4313 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
4314 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
4315 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4316 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
4317 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
4318 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
4319 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
4320 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4321 1.103 rpaulo } else if (!(sc->bge_if_flags & IFF_UP))
4322 1.1 fvdl bge_init(ifp);
4323 1.1 fvdl } else {
4324 1.141 jmcneill if (ifp->if_flags & IFF_RUNNING)
4325 1.141 jmcneill bge_stop(ifp, 1);
4326 1.1 fvdl }
4327 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
4328 1.1 fvdl error = 0;
4329 1.1 fvdl break;
4330 1.1 fvdl case SIOCSIFMEDIA:
4331 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4332 1.69 thorpej if (sc->bge_tbi) {
4333 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4334 1.69 thorpej sc->bge_flowflags = 0;
4335 1.69 thorpej }
4336 1.69 thorpej
4337 1.69 thorpej /* Flow control requires full-duplex mode. */
4338 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4339 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4340 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4341 1.69 thorpej }
4342 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4343 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4344 1.69 thorpej /* We an do both TXPAUSE and RXPAUSE. */
4345 1.69 thorpej ifr->ifr_media |=
4346 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4347 1.69 thorpej }
4348 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4349 1.69 thorpej }
4350 1.69 thorpej /* FALLTHROUGH */
4351 1.1 fvdl case SIOCGIFMEDIA:
4352 1.1 fvdl if (sc->bge_tbi) {
4353 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4354 1.1 fvdl command);
4355 1.1 fvdl } else {
4356 1.1 fvdl mii = &sc->bge_mii;
4357 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4358 1.1 fvdl command);
4359 1.1 fvdl }
4360 1.1 fvdl break;
4361 1.1 fvdl default:
4362 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4363 1.152 tron break;
4364 1.152 tron
4365 1.152 tron error = 0;
4366 1.152 tron
4367 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4368 1.152 tron ;
4369 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
4370 1.152 tron bge_setmulti(sc);
4371 1.1 fvdl break;
4372 1.1 fvdl }
4373 1.1 fvdl
4374 1.1 fvdl splx(s);
4375 1.1 fvdl
4376 1.1 fvdl return(error);
4377 1.1 fvdl }
4378 1.1 fvdl
4379 1.104 thorpej static void
4380 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4381 1.1 fvdl {
4382 1.1 fvdl struct bge_softc *sc;
4383 1.1 fvdl
4384 1.1 fvdl sc = ifp->if_softc;
4385 1.1 fvdl
4386 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4387 1.1 fvdl
4388 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4389 1.1 fvdl bge_init(ifp);
4390 1.1 fvdl
4391 1.1 fvdl ifp->if_oerrors++;
4392 1.1 fvdl }
4393 1.1 fvdl
4394 1.11 thorpej static void
4395 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4396 1.11 thorpej {
4397 1.11 thorpej int i;
4398 1.11 thorpej
4399 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4400 1.11 thorpej
4401 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
4402 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4403 1.11 thorpej return;
4404 1.11 thorpej delay(100);
4405 1.95 jonathan if (sc->bge_pcie)
4406 1.95 jonathan DELAY(1000);
4407 1.11 thorpej }
4408 1.11 thorpej
4409 1.138 joerg aprint_error_dev(sc->bge_dev,
4410 1.138 joerg "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4411 1.11 thorpej }
4412 1.11 thorpej
4413 1.1 fvdl /*
4414 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4415 1.1 fvdl * RX and TX lists.
4416 1.1 fvdl */
4417 1.104 thorpej static void
4418 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4419 1.1 fvdl {
4420 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4421 1.1 fvdl
4422 1.1 fvdl callout_stop(&sc->bge_timeout);
4423 1.1 fvdl
4424 1.1 fvdl /*
4425 1.1 fvdl * Disable all of the receiver blocks
4426 1.1 fvdl */
4427 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4428 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4429 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4430 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4431 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4432 1.44 hannken }
4433 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4434 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4435 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4436 1.1 fvdl
4437 1.1 fvdl /*
4438 1.1 fvdl * Disable all of the transmit blocks
4439 1.1 fvdl */
4440 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4441 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4442 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4443 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4444 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4445 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4446 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4447 1.44 hannken }
4448 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4449 1.1 fvdl
4450 1.1 fvdl /*
4451 1.1 fvdl * Shut down all of the memory managers and related
4452 1.1 fvdl * state machines.
4453 1.1 fvdl */
4454 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4455 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4456 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4457 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4458 1.44 hannken }
4459 1.11 thorpej
4460 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4461 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4462 1.11 thorpej
4463 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4464 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4465 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4466 1.44 hannken }
4467 1.1 fvdl
4468 1.1 fvdl /* Disable host interrupts. */
4469 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4470 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4471 1.1 fvdl
4472 1.1 fvdl /*
4473 1.1 fvdl * Tell firmware we're shutting down.
4474 1.1 fvdl */
4475 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4476 1.1 fvdl
4477 1.1 fvdl /* Free the RX lists. */
4478 1.1 fvdl bge_free_rx_ring_std(sc);
4479 1.1 fvdl
4480 1.1 fvdl /* Free jumbo RX list. */
4481 1.1 fvdl bge_free_rx_ring_jumbo(sc);
4482 1.1 fvdl
4483 1.1 fvdl /* Free TX buffers. */
4484 1.1 fvdl bge_free_tx_ring(sc);
4485 1.1 fvdl
4486 1.1 fvdl /*
4487 1.1 fvdl * Isolate/power down the PHY.
4488 1.1 fvdl */
4489 1.1 fvdl if (!sc->bge_tbi)
4490 1.1 fvdl mii_down(&sc->bge_mii);
4491 1.1 fvdl
4492 1.1 fvdl sc->bge_link = 0;
4493 1.1 fvdl
4494 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4495 1.1 fvdl
4496 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4497 1.1 fvdl }
4498 1.1 fvdl
4499 1.64 jonathan static int
4500 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4501 1.64 jonathan {
4502 1.64 jonathan int error, t;
4503 1.64 jonathan struct sysctlnode node;
4504 1.64 jonathan
4505 1.64 jonathan node = *rnode;
4506 1.64 jonathan t = *(int*)rnode->sysctl_data;
4507 1.64 jonathan node.sysctl_data = &t;
4508 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4509 1.64 jonathan if (error || newp == NULL)
4510 1.64 jonathan return (error);
4511 1.64 jonathan
4512 1.64 jonathan #if 0
4513 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4514 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4515 1.64 jonathan #endif
4516 1.64 jonathan
4517 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4518 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4519 1.64 jonathan return (EINVAL);
4520 1.64 jonathan bge_update_all_threshes(t);
4521 1.64 jonathan } else
4522 1.64 jonathan return (EINVAL);
4523 1.64 jonathan
4524 1.64 jonathan *(int*)rnode->sysctl_data = t;
4525 1.64 jonathan
4526 1.64 jonathan return (0);
4527 1.64 jonathan }
4528 1.64 jonathan
4529 1.64 jonathan /*
4530 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4531 1.64 jonathan *
4532 1.64 jonathan * TBD condition SYSCTL_PERMANENT on being an LKM or not
4533 1.64 jonathan */
4534 1.64 jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4535 1.64 jonathan {
4536 1.66 atatat int rc, bge_root_num;
4537 1.90 atatat const struct sysctlnode *node;
4538 1.64 jonathan
4539 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4540 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4541 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4542 1.64 jonathan goto err;
4543 1.64 jonathan }
4544 1.64 jonathan
4545 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, &node,
4546 1.73 atatat CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4547 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4548 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4549 1.64 jonathan goto err;
4550 1.64 jonathan }
4551 1.64 jonathan
4552 1.66 atatat bge_root_num = node->sysctl_num;
4553 1.66 atatat
4554 1.64 jonathan /* BGE Rx interrupt mitigation level */
4555 1.87 perry if ((rc = sysctl_createv(clog, 0, NULL, &node,
4556 1.64 jonathan CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4557 1.73 atatat CTLTYPE_INT, "rx_lvl",
4558 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4559 1.73 atatat sysctl_bge_verify, 0,
4560 1.64 jonathan &bge_rx_thresh_lvl,
4561 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4562 1.64 jonathan CTL_EOL)) != 0) {
4563 1.64 jonathan goto err;
4564 1.64 jonathan }
4565 1.64 jonathan
4566 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4567 1.64 jonathan
4568 1.64 jonathan return;
4569 1.64 jonathan
4570 1.64 jonathan err:
4571 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4572 1.64 jonathan }
4573 1.151 cegger
4574 1.151 cegger static int
4575 1.151 cegger bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4576 1.151 cegger {
4577 1.151 cegger u_int32_t mac_addr;
4578 1.151 cegger
4579 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c14);
4580 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
4581 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
4582 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
4583 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c18);
4584 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
4585 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
4586 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
4587 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
4588 1.151 cegger return (0);
4589 1.151 cegger }
4590 1.151 cegger return (1);
4591 1.151 cegger }
4592 1.151 cegger
4593 1.151 cegger static int
4594 1.151 cegger bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4595 1.151 cegger {
4596 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
4597 1.151 cegger
4598 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4599 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
4600 1.151 cegger }
4601 1.151 cegger
4602 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4603 1.151 cegger ETHER_ADDR_LEN));
4604 1.151 cegger }
4605 1.151 cegger
4606 1.151 cegger static int
4607 1.151 cegger bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4608 1.151 cegger {
4609 1.151 cegger
4610 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4611 1.151 cegger return (1);
4612 1.151 cegger }
4613 1.151 cegger
4614 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4615 1.151 cegger ETHER_ADDR_LEN));
4616 1.151 cegger }
4617 1.151 cegger
4618 1.151 cegger static int
4619 1.151 cegger bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4620 1.151 cegger {
4621 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4622 1.151 cegger /* NOTE: Order is critical */
4623 1.151 cegger bge_get_eaddr_mem,
4624 1.151 cegger bge_get_eaddr_nvram,
4625 1.151 cegger bge_get_eaddr_eeprom,
4626 1.151 cegger NULL
4627 1.151 cegger };
4628 1.151 cegger const bge_eaddr_fcn_t *func;
4629 1.151 cegger
4630 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4631 1.151 cegger if ((*func)(sc, eaddr) == 0)
4632 1.151 cegger break;
4633 1.151 cegger }
4634 1.151 cegger return (*func == NULL ? ENXIO : 0);
4635 1.151 cegger }
4636