Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.158
      1  1.158   msaitoh /*	$NetBSD: if_bge.c,v 1.158 2009/03/22 18:14:59 msaitoh Exp $	*/
      2    1.8   thorpej 
      3    1.1      fvdl /*
      4    1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5    1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6    1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7    1.1      fvdl  *
      8    1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9    1.1      fvdl  * modification, are permitted provided that the following conditions
     10    1.1      fvdl  * are met:
     11    1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12    1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13    1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14    1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15    1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16    1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17    1.1      fvdl  *    must display the following acknowledgement:
     18    1.1      fvdl  *	This product includes software developed by Bill Paul.
     19    1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20    1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21    1.1      fvdl  *    without specific prior written permission.
     22    1.1      fvdl  *
     23    1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24    1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25    1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26    1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27    1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33    1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34    1.1      fvdl  *
     35    1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36    1.1      fvdl  */
     37    1.1      fvdl 
     38    1.1      fvdl /*
     39   1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40    1.1      fvdl  *
     41   1.12   thorpej  * NetBSD version by:
     42   1.12   thorpej  *
     43   1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44   1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45   1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46   1.12   thorpej  *
     47   1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48    1.1      fvdl  * Senior Engineer, Wind River Systems
     49    1.1      fvdl  */
     50    1.1      fvdl 
     51    1.1      fvdl /*
     52    1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53    1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54    1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55    1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56    1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57    1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58    1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59    1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60    1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61    1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62    1.1      fvdl  * into the driver.
     63    1.1      fvdl  *
     64    1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66    1.1      fvdl  *
     67    1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68   1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69    1.1      fvdl  * does not support external SSRAM.
     70    1.1      fvdl  *
     71    1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72    1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73    1.1      fvdl  *
     74    1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75    1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76    1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77    1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78    1.1      fvdl  * ring.
     79    1.1      fvdl  */
     80   1.43     lukem 
     81   1.43     lukem #include <sys/cdefs.h>
     82  1.158   msaitoh __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.158 2009/03/22 18:14:59 msaitoh Exp $");
     83    1.1      fvdl 
     84    1.1      fvdl #include "bpfilter.h"
     85    1.1      fvdl #include "vlan.h"
     86  1.148   mlelstv #include "rnd.h"
     87    1.1      fvdl 
     88    1.1      fvdl #include <sys/param.h>
     89    1.1      fvdl #include <sys/systm.h>
     90    1.1      fvdl #include <sys/callout.h>
     91    1.1      fvdl #include <sys/sockio.h>
     92    1.1      fvdl #include <sys/mbuf.h>
     93    1.1      fvdl #include <sys/malloc.h>
     94    1.1      fvdl #include <sys/kernel.h>
     95    1.1      fvdl #include <sys/device.h>
     96    1.1      fvdl #include <sys/socket.h>
     97   1.64  jonathan #include <sys/sysctl.h>
     98    1.1      fvdl 
     99    1.1      fvdl #include <net/if.h>
    100    1.1      fvdl #include <net/if_dl.h>
    101    1.1      fvdl #include <net/if_media.h>
    102    1.1      fvdl #include <net/if_ether.h>
    103    1.1      fvdl 
    104  1.148   mlelstv #if NRND > 0
    105  1.148   mlelstv #include <sys/rnd.h>
    106  1.148   mlelstv #endif
    107  1.148   mlelstv 
    108    1.1      fvdl #ifdef INET
    109    1.1      fvdl #include <netinet/in.h>
    110    1.1      fvdl #include <netinet/in_systm.h>
    111    1.1      fvdl #include <netinet/in_var.h>
    112    1.1      fvdl #include <netinet/ip.h>
    113    1.1      fvdl #endif
    114    1.1      fvdl 
    115   1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    116   1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117   1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118   1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    119   1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    120   1.95  jonathan 
    121   1.95  jonathan 
    122    1.1      fvdl #if NBPFILTER > 0
    123    1.1      fvdl #include <net/bpf.h>
    124    1.1      fvdl #endif
    125    1.1      fvdl 
    126    1.1      fvdl #include <dev/pci/pcireg.h>
    127    1.1      fvdl #include <dev/pci/pcivar.h>
    128    1.1      fvdl #include <dev/pci/pcidevs.h>
    129    1.1      fvdl 
    130    1.1      fvdl #include <dev/mii/mii.h>
    131    1.1      fvdl #include <dev/mii/miivar.h>
    132    1.1      fvdl #include <dev/mii/miidevs.h>
    133    1.1      fvdl #include <dev/mii/brgphyreg.h>
    134    1.1      fvdl 
    135    1.1      fvdl #include <dev/pci/if_bgereg.h>
    136    1.1      fvdl 
    137    1.1      fvdl #include <uvm/uvm_extern.h>
    138    1.1      fvdl 
    139   1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    140   1.46  jonathan 
    141   1.63  jonathan 
    142   1.63  jonathan /*
    143   1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    144   1.63  jonathan  */
    145   1.63  jonathan 
    146   1.63  jonathan /*
    147   1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    148   1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    149   1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    150   1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    151   1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    152   1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    153   1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    154   1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    155   1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    156   1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    157   1.87     perry  *
    158   1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    159   1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    160   1.63  jonathan  * family), the larger values may overflow internal chip limits,
    161   1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    162   1.63  jonathan  * rates.
    163   1.63  jonathan  *
    164   1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    165   1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    166   1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    167   1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    168   1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    169   1.63  jonathan  */
    170  1.104   thorpej static const struct bge_load_rx_thresh {
    171   1.63  jonathan 	int rx_ticks;
    172   1.63  jonathan 	int rx_max_bds; }
    173   1.63  jonathan bge_rx_threshes[] = {
    174   1.63  jonathan 	{ 32,   2 },
    175   1.63  jonathan 	{ 50,   4 },
    176   1.63  jonathan 	{ 100,  8 },
    177   1.63  jonathan 	{ 192, 16 },
    178   1.63  jonathan 	{ 416, 32 },
    179   1.63  jonathan 	{ 598, 46 }
    180   1.63  jonathan };
    181   1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    182   1.63  jonathan 
    183   1.63  jonathan /* XXX patchable; should be sysctl'able */
    184   1.64  jonathan static int	bge_auto_thresh = 1;
    185   1.64  jonathan static int	bge_rx_thresh_lvl;
    186   1.64  jonathan 
    187  1.104   thorpej static int	bge_rxthresh_nodenum;
    188    1.1      fvdl 
    189  1.151    cegger typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
    190  1.151    cegger 
    191  1.104   thorpej static int	bge_probe(device_t, cfdata_t, void *);
    192  1.104   thorpej static void	bge_attach(device_t, device_t, void *);
    193  1.104   thorpej static void	bge_release_resources(struct bge_softc *);
    194  1.104   thorpej static void	bge_txeof(struct bge_softc *);
    195  1.104   thorpej static void	bge_rxeof(struct bge_softc *);
    196  1.104   thorpej 
    197  1.151    cegger static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
    198  1.151    cegger static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
    199  1.151    cegger static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
    200  1.151    cegger static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
    201  1.151    cegger 
    202  1.104   thorpej static void	bge_tick(void *);
    203  1.104   thorpej static void	bge_stats_update(struct bge_softc *);
    204  1.104   thorpej static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    205  1.104   thorpej 
    206  1.104   thorpej static int	bge_intr(void *);
    207  1.104   thorpej static void	bge_start(struct ifnet *);
    208  1.126  christos static int	bge_ioctl(struct ifnet *, u_long, void *);
    209  1.104   thorpej static int	bge_init(struct ifnet *);
    210  1.141  jmcneill static void	bge_stop(struct ifnet *, int);
    211  1.104   thorpej static void	bge_watchdog(struct ifnet *);
    212  1.104   thorpej static int	bge_ifmedia_upd(struct ifnet *);
    213  1.104   thorpej static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    214  1.104   thorpej 
    215  1.104   thorpej static void	bge_setmulti(struct bge_softc *);
    216  1.104   thorpej 
    217  1.104   thorpej static void	bge_handle_events(struct bge_softc *);
    218  1.104   thorpej static int	bge_alloc_jumbo_mem(struct bge_softc *);
    219  1.104   thorpej #if 0 /* XXX */
    220  1.104   thorpej static void	bge_free_jumbo_mem(struct bge_softc *);
    221    1.1      fvdl #endif
    222  1.104   thorpej static void	*bge_jalloc(struct bge_softc *);
    223  1.126  christos static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    224  1.104   thorpej static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    225  1.104   thorpej 			       bus_dmamap_t);
    226  1.104   thorpej static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    227  1.104   thorpej static int	bge_init_rx_ring_std(struct bge_softc *);
    228  1.104   thorpej static void	bge_free_rx_ring_std(struct bge_softc *);
    229  1.104   thorpej static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    230  1.104   thorpej static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    231  1.104   thorpej static void	bge_free_tx_ring(struct bge_softc *);
    232  1.104   thorpej static int	bge_init_tx_ring(struct bge_softc *);
    233  1.104   thorpej 
    234  1.104   thorpej static int	bge_chipinit(struct bge_softc *);
    235  1.104   thorpej static int	bge_blockinit(struct bge_softc *);
    236  1.104   thorpej static int	bge_setpowerstate(struct bge_softc *, int);
    237    1.1      fvdl 
    238  1.104   thorpej static void	bge_reset(struct bge_softc *);
    239   1.95  jonathan 
    240    1.1      fvdl #define BGE_DEBUG
    241    1.1      fvdl #ifdef BGE_DEBUG
    242    1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    243    1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    244   1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    245    1.1      fvdl int	bgedebug = 0;
    246   1.95  jonathan int	bge_tso_debug = 0;
    247    1.1      fvdl #else
    248    1.1      fvdl #define DPRINTF(x)
    249    1.1      fvdl #define DPRINTFN(n,x)
    250   1.95  jonathan #define BGE_TSO_PRINTF(x)
    251    1.1      fvdl #endif
    252    1.1      fvdl 
    253   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    254   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    255   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    256   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    257   1.72   thorpej #else
    258   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    259   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    260   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    261   1.72   thorpej #endif
    262   1.72   thorpej 
    263  1.158   msaitoh static const struct bge_product {
    264  1.158   msaitoh 	pci_vendor_id_t		bp_vendor;
    265  1.158   msaitoh 	pci_product_id_t	bp_product;
    266  1.158   msaitoh 	const char		*bp_name;
    267  1.158   msaitoh } bge_products[] = {
    268  1.158   msaitoh 	/*
    269  1.158   msaitoh 	 * The BCM5700 documentation seems to indicate that the hardware
    270  1.158   msaitoh 	 * still has the Alteon vendor ID burned into it, though it
    271  1.158   msaitoh 	 * should always be overridden by the value in the EEPROM.  We'll
    272  1.158   msaitoh 	 * check for it anyway.
    273  1.158   msaitoh 	 */
    274  1.158   msaitoh 	{ PCI_VENDOR_ALTEON,
    275  1.158   msaitoh 	  PCI_PRODUCT_ALTEON_BCM5700,
    276  1.158   msaitoh 	  "Broadcom BCM5700 Gigabit Ethernet",
    277  1.158   msaitoh 	  },
    278  1.158   msaitoh 	{ PCI_VENDOR_ALTEON,
    279  1.158   msaitoh 	  PCI_PRODUCT_ALTEON_BCM5701,
    280  1.158   msaitoh 	  "Broadcom BCM5701 Gigabit Ethernet",
    281  1.158   msaitoh 	  },
    282  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    283  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC1000,
    284  1.158   msaitoh 	  "Altima AC1000 Gigabit Ethernet",
    285  1.158   msaitoh 	  },
    286  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    287  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC1001,
    288  1.158   msaitoh 	  "Altima AC1001 Gigabit Ethernet",
    289  1.158   msaitoh 	   },
    290  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    291  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC9100,
    292  1.158   msaitoh 	  "Altima AC9100 Gigabit Ethernet",
    293  1.158   msaitoh 	  },
    294  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    295  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5700,
    296  1.158   msaitoh 	  "Broadcom BCM5700 Gigabit Ethernet",
    297  1.158   msaitoh 	  },
    298  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    299  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5701,
    300  1.158   msaitoh 	  "Broadcom BCM5701 Gigabit Ethernet",
    301  1.158   msaitoh 	  },
    302  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    303  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5702,
    304  1.158   msaitoh 	  "Broadcom BCM5702 Gigabit Ethernet",
    305  1.158   msaitoh 	  },
    306  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    307  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    308  1.158   msaitoh 	  "Broadcom BCM5702X Gigabit Ethernet" },
    309  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    310  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703,
    311  1.158   msaitoh 	  "Broadcom BCM5703 Gigabit Ethernet",
    312  1.158   msaitoh 	  },
    313  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    314  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    315  1.158   msaitoh 	  "Broadcom BCM5703X Gigabit Ethernet",
    316  1.158   msaitoh 	  },
    317  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    318  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    319  1.158   msaitoh 	  "Broadcom BCM5703 Gigabit Ethernet",
    320  1.158   msaitoh 	  },
    321  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    322  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    323  1.158   msaitoh 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    324  1.158   msaitoh 	  },
    325  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    326  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    327  1.158   msaitoh 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    328  1.158   msaitoh 	  },
    329  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    330  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705,
    331  1.158   msaitoh 	  "Broadcom BCM5705 Gigabit Ethernet",
    332  1.158   msaitoh 	  },
    333  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    334  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    335  1.158   msaitoh 	  "Broadcom BCM5705K Gigabit Ethernet",
    336  1.158   msaitoh 	  },
    337  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    338  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    339  1.158   msaitoh 	  "Broadcom BCM5705M Gigabit Ethernet",
    340  1.158   msaitoh 	  },
    341  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    342  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    343  1.158   msaitoh 	  "Broadcom BCM5705M Gigabit Ethernet",
    344  1.158   msaitoh 	  },
    345  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    346  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5714,
    347  1.158   msaitoh 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    348  1.158   msaitoh 	  },
    349  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    350  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5715,
    351  1.158   msaitoh 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    352  1.158   msaitoh 	  },
    353  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    354  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5789,
    355  1.158   msaitoh 	  "Broadcom BCM5789 Gigabit Ethernet",
    356  1.158   msaitoh 	  },
    357  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    358  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5721,
    359  1.158   msaitoh 	  "Broadcom BCM5721 Gigabit Ethernet",
    360  1.158   msaitoh 	  },
    361  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    362  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5722,
    363  1.158   msaitoh 	  "Broadcom BCM5722 Gigabit Ethernet",
    364  1.158   msaitoh 	  },
    365  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    366  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5750,
    367  1.158   msaitoh 	  "Broadcom BCM5750 Gigabit Ethernet",
    368  1.158   msaitoh 	  },
    369  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    370  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    371  1.158   msaitoh 	  "Broadcom BCM5750M Gigabit Ethernet",
    372  1.158   msaitoh 	  },
    373  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    374  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5751,
    375  1.158   msaitoh 	  "Broadcom BCM5751 Gigabit Ethernet",
    376  1.158   msaitoh 	  },
    377  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    378  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    379  1.158   msaitoh 	  "Broadcom BCM5751M Gigabit Ethernet",
    380  1.158   msaitoh 	  },
    381  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    382  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5752,
    383  1.158   msaitoh 	  "Broadcom BCM5752 Gigabit Ethernet",
    384  1.158   msaitoh 	  },
    385  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    386  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    387  1.158   msaitoh 	  "Broadcom BCM5752M Gigabit Ethernet",
    388  1.158   msaitoh 	  },
    389  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    390  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5753,
    391  1.158   msaitoh 	  "Broadcom BCM5753 Gigabit Ethernet",
    392  1.158   msaitoh 	  },
    393  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    394  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    395  1.158   msaitoh 	  "Broadcom BCM5753M Gigabit Ethernet",
    396  1.158   msaitoh 	  },
    397  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    398  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5754,
    399  1.158   msaitoh 	  "Broadcom BCM5754 Gigabit Ethernet",
    400  1.158   msaitoh 	},
    401  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    402  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    403  1.158   msaitoh 	  "Broadcom BCM5754M Gigabit Ethernet",
    404  1.158   msaitoh 	},
    405  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    406  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5755,
    407  1.158   msaitoh 	  "Broadcom BCM5755 Gigabit Ethernet",
    408  1.158   msaitoh 	},
    409  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    410  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    411  1.158   msaitoh 	  "Broadcom BCM5755M Gigabit Ethernet",
    412  1.158   msaitoh 	},
    413  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    414  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5780,
    415  1.158   msaitoh 	  "Broadcom BCM5780 Gigabit Ethernet",
    416  1.158   msaitoh 	  },
    417  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    418  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    419  1.158   msaitoh 	  "Broadcom BCM5780S Gigabit Ethernet",
    420  1.158   msaitoh 	  },
    421  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    422  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5782,
    423  1.158   msaitoh 	  "Broadcom BCM5782 Gigabit Ethernet",
    424  1.158   msaitoh 	},
    425  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    426  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5786,
    427  1.158   msaitoh 	  "Broadcom BCM5786 Gigabit Ethernet",
    428  1.158   msaitoh 	},
    429  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    430  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5787,
    431  1.158   msaitoh 	  "Broadcom BCM5787 Gigabit Ethernet",
    432  1.158   msaitoh 	},
    433  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    434  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    435  1.158   msaitoh 	  "Broadcom BCM5787M Gigabit Ethernet",
    436  1.158   msaitoh 	},
    437  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    438  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5788,
    439  1.158   msaitoh 	  "Broadcom BCM5788 Gigabit Ethernet",
    440  1.158   msaitoh 	  },
    441  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    442  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5789,
    443  1.158   msaitoh 	  "Broadcom BCM5789 Gigabit Ethernet",
    444  1.158   msaitoh 	  },
    445  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    446  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5901,
    447  1.158   msaitoh 	  "Broadcom BCM5901 Fast Ethernet",
    448  1.158   msaitoh 	  },
    449  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    450  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    451  1.158   msaitoh 	  "Broadcom BCM5901A2 Fast Ethernet",
    452  1.158   msaitoh 	  },
    453  1.158   msaitoh 	{ PCI_VENDOR_SCHNEIDERKOCH,
    454  1.158   msaitoh 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    455  1.158   msaitoh 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    456  1.158   msaitoh 	  },
    457  1.158   msaitoh 	{ PCI_VENDOR_3COM,
    458  1.158   msaitoh 	  PCI_PRODUCT_3COM_3C996,
    459  1.158   msaitoh 	  "3Com 3c996 Gigabit Ethernet",
    460  1.158   msaitoh 	  },
    461  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    462  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5906,
    463  1.158   msaitoh 	  "Broadcom BCM5906 Fast Ethernet",
    464  1.158   msaitoh 	  },
    465  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    466  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    467  1.158   msaitoh 	  "Broadcom BCM5906M Fast Ethernet",
    468  1.158   msaitoh 	  },
    469  1.158   msaitoh 	{ 0,
    470  1.158   msaitoh 	  0,
    471  1.158   msaitoh 	  NULL },
    472  1.158   msaitoh };
    473  1.158   msaitoh 
    474   1.95  jonathan /*
    475   1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    476  1.107     blymn  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    477   1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    478   1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    479   1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    480   1.95  jonathan  * (defined here until the thought is done).
    481   1.95  jonathan  */
    482   1.99  jonathan #define BGE_IS_5714_FAMILY(sc) \
    483  1.120   tsutsui 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    484   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    485  1.120   tsutsui 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    486   1.99  jonathan 
    487   1.95  jonathan #define BGE_IS_5750_OR_BEYOND(sc)  \
    488   1.99  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    489   1.99  jonathan 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    490  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    491  1.133     markd 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    492  1.151    cegger 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    493   1.99  jonathan 	 BGE_IS_5714_FAMILY(sc) )
    494   1.95  jonathan 
    495   1.95  jonathan #define BGE_IS_5705_OR_BEYOND(sc)  \
    496  1.157   msaitoh 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
    497  1.157   msaitoh 	    (BGE_IS_5750_OR_BEYOND(sc)))
    498   1.95  jonathan 
    499  1.158   msaitoh static const struct bge_revision {
    500  1.158   msaitoh 	uint32_t		br_chipid;
    501  1.158   msaitoh 	const char		*br_name;
    502  1.158   msaitoh } bge_revisions[] = {
    503  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    504  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    505  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    506  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    507  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    508  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    509  1.158   msaitoh 	/* This is treated like a BCM5700 Bx */
    510  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    511  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    512  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    513  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    514  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    515  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    516  1.158   msaitoh 	{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
    517  1.158   msaitoh 	{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
    518  1.158   msaitoh 	{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
    519  1.158   msaitoh 	{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
    520  1.158   msaitoh 	{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
    521  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    522  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    523  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    524  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    525  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    526  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    527  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    528  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    529  1.158   msaitoh 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    530  1.158   msaitoh 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    531  1.158   msaitoh 	{ BGE_CHIPID_BCM5751_A1, "BCM5751 A1" },
    532  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    533  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    534  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    535  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    536  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    537  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    538  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    539  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    540  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    541  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    542  1.158   msaitoh 	{ 0, NULL }
    543  1.158   msaitoh };
    544  1.158   msaitoh 
    545  1.158   msaitoh /*
    546  1.158   msaitoh  * Some defaults for major revisions, so that newer steppings
    547  1.158   msaitoh  * that we don't know about have a shot at working.
    548  1.158   msaitoh  */
    549  1.158   msaitoh static const struct bge_revision bge_majorrevs[] = {
    550  1.158   msaitoh 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    551  1.158   msaitoh 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    552  1.158   msaitoh 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    553  1.158   msaitoh 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    554  1.158   msaitoh 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    555  1.158   msaitoh 	{ BGE_ASICREV_BCM5750, "unknown BCM575x family" },
    556  1.158   msaitoh 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    557  1.158   msaitoh 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    558  1.158   msaitoh 	{ BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
    559  1.158   msaitoh 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    560  1.158   msaitoh 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    561  1.158   msaitoh 	{ BGE_ASICREV_BCM5787, "unknown BCM5787" },
    562  1.158   msaitoh 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    563  1.158   msaitoh 	{ 0, NULL }
    564  1.158   msaitoh };
    565   1.17   thorpej 
    566  1.138     joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    567   1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    568    1.1      fvdl 
    569  1.104   thorpej static u_int32_t
    570  1.104   thorpej bge_readmem_ind(struct bge_softc *sc, int off)
    571    1.1      fvdl {
    572    1.1      fvdl 	pcireg_t val;
    573    1.1      fvdl 
    574  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    575  1.141  jmcneill 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    576    1.1      fvdl 	return val;
    577    1.1      fvdl }
    578    1.1      fvdl 
    579  1.104   thorpej static void
    580  1.104   thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
    581    1.1      fvdl {
    582  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    583  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    584    1.1      fvdl }
    585    1.1      fvdl 
    586    1.1      fvdl #ifdef notdef
    587  1.104   thorpej static u_int32_t
    588  1.104   thorpej bge_readreg_ind(struct bge_softc *sc, int off)
    589    1.1      fvdl {
    590  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    591  1.158   msaitoh 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    592    1.1      fvdl }
    593    1.1      fvdl #endif
    594    1.1      fvdl 
    595  1.104   thorpej static void
    596  1.104   thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
    597    1.1      fvdl {
    598  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    599  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    600    1.1      fvdl }
    601    1.1      fvdl 
    602  1.151    cegger static void
    603  1.151    cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
    604  1.151    cegger {
    605  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    606  1.151    cegger }
    607  1.151    cegger 
    608  1.151    cegger static void
    609  1.151    cegger bge_writembx(struct bge_softc *sc, int off, int val)
    610  1.151    cegger {
    611  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    612  1.151    cegger 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    613  1.151    cegger 
    614  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    615  1.151    cegger }
    616  1.151    cegger 
    617  1.151    cegger static u_int8_t
    618  1.151    cegger bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    619  1.151    cegger {
    620  1.151    cegger 	u_int32_t access, byte = 0;
    621  1.151    cegger 	int i;
    622  1.151    cegger 
    623  1.151    cegger 	/* Lock. */
    624  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    625  1.151    cegger 	for (i = 0; i < 8000; i++) {
    626  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    627  1.151    cegger 			break;
    628  1.151    cegger 		DELAY(20);
    629  1.151    cegger 	}
    630  1.151    cegger 	if (i == 8000)
    631  1.151    cegger 		return (1);
    632  1.151    cegger 
    633  1.151    cegger 	/* Enable access. */
    634  1.151    cegger 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    635  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    636  1.151    cegger 
    637  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    638  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    639  1.151    cegger 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    640  1.151    cegger 		DELAY(10);
    641  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    642  1.151    cegger 			DELAY(10);
    643  1.151    cegger 			break;
    644  1.151    cegger 		}
    645  1.151    cegger 	}
    646  1.151    cegger 
    647  1.151    cegger 	if (i == BGE_TIMEOUT * 10) {
    648  1.151    cegger 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    649  1.151    cegger 		return (1);
    650  1.151    cegger 	}
    651  1.151    cegger 
    652  1.151    cegger 	/* Get result. */
    653  1.151    cegger 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    654  1.151    cegger 
    655  1.151    cegger 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    656  1.151    cegger 
    657  1.151    cegger 	/* Disable access. */
    658  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    659  1.151    cegger 
    660  1.151    cegger 	/* Unlock. */
    661  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    662  1.151    cegger 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    663  1.151    cegger 
    664  1.151    cegger 	return (0);
    665  1.151    cegger }
    666  1.151    cegger 
    667  1.151    cegger /*
    668  1.151    cegger  * Read a sequence of bytes from NVRAM.
    669  1.151    cegger  */
    670  1.151    cegger static int
    671  1.151    cegger bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
    672  1.151    cegger {
    673  1.151    cegger 	int err = 0, i;
    674  1.151    cegger 	u_int8_t byte = 0;
    675  1.151    cegger 
    676  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    677  1.151    cegger 		return (1);
    678  1.151    cegger 
    679  1.151    cegger 	for (i = 0; i < cnt; i++) {
    680  1.151    cegger 		err = bge_nvram_getbyte(sc, off + i, &byte);
    681  1.151    cegger 		if (err)
    682  1.151    cegger 			break;
    683  1.151    cegger 		*(dest + i) = byte;
    684  1.151    cegger 	}
    685  1.151    cegger 
    686  1.151    cegger 	return (err ? 1 : 0);
    687  1.151    cegger }
    688  1.151    cegger 
    689    1.1      fvdl /*
    690    1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    691    1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    692    1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    693    1.1      fvdl  * access method.
    694    1.1      fvdl  */
    695  1.104   thorpej static u_int8_t
    696  1.104   thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    697    1.1      fvdl {
    698    1.1      fvdl 	int i;
    699    1.1      fvdl 	u_int32_t byte = 0;
    700    1.1      fvdl 
    701    1.1      fvdl 	/*
    702    1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    703    1.1      fvdl 	 * having to use the bitbang method.
    704    1.1      fvdl 	 */
    705    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    706    1.1      fvdl 
    707    1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    708    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    709    1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    710    1.1      fvdl 	DELAY(20);
    711    1.1      fvdl 
    712    1.1      fvdl 	/* Issue the read EEPROM command. */
    713    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    714    1.1      fvdl 
    715    1.1      fvdl 	/* Wait for completion */
    716    1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    717    1.1      fvdl 		DELAY(10);
    718    1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    719    1.1      fvdl 			break;
    720    1.1      fvdl 	}
    721    1.1      fvdl 
    722    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    723  1.138     joerg 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    724  1.158   msaitoh 		return (0);
    725    1.1      fvdl 	}
    726    1.1      fvdl 
    727    1.1      fvdl 	/* Get result. */
    728    1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    729    1.1      fvdl 
    730    1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    731    1.1      fvdl 
    732  1.158   msaitoh 	return (0);
    733    1.1      fvdl }
    734    1.1      fvdl 
    735    1.1      fvdl /*
    736    1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    737    1.1      fvdl  */
    738  1.104   thorpej static int
    739  1.126  christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    740    1.1      fvdl {
    741    1.1      fvdl 	int err = 0, i;
    742    1.1      fvdl 	u_int8_t byte = 0;
    743  1.126  christos 	char *dest = destv;
    744    1.1      fvdl 
    745    1.1      fvdl 	for (i = 0; i < cnt; i++) {
    746    1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    747    1.1      fvdl 		if (err)
    748    1.1      fvdl 			break;
    749    1.1      fvdl 		*(dest + i) = byte;
    750    1.1      fvdl 	}
    751    1.1      fvdl 
    752  1.158   msaitoh 	return (err ? 1 : 0);
    753    1.1      fvdl }
    754    1.1      fvdl 
    755  1.104   thorpej static int
    756  1.104   thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
    757    1.1      fvdl {
    758  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    759    1.1      fvdl 	u_int32_t val;
    760   1.25  jonathan 	u_int32_t saved_autopoll;
    761    1.1      fvdl 	int i;
    762    1.1      fvdl 
    763   1.25  jonathan 	/*
    764  1.156   msaitoh 	 * Broadcom's own driver always assumes the internal
    765  1.156   msaitoh 	 * PHY is at GMII address 1. On some chips, the PHY responds
    766  1.156   msaitoh 	 * to accesses at all addresses, which could cause us to
    767  1.156   msaitoh 	 * bogusly attach the PHY 32 times at probe type. Always
    768  1.156   msaitoh 	 * restricting the lookup to address 1 is simpler than
    769  1.156   msaitoh 	 * trying to figure out which chips revisions should be
    770  1.156   msaitoh 	 * special-cased.
    771   1.25  jonathan 	 */
    772  1.156   msaitoh 	if (phy != 1)
    773  1.158   msaitoh 		return (0);
    774    1.1      fvdl 
    775   1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    776   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    777   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    778   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    779   1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    780   1.25  jonathan 		DELAY(40);
    781   1.25  jonathan 	}
    782   1.25  jonathan 
    783    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    784    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    785    1.1      fvdl 
    786    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    787    1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    788    1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    789    1.1      fvdl 			break;
    790    1.9   thorpej 		delay(10);
    791    1.1      fvdl 	}
    792    1.1      fvdl 
    793    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    794  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    795   1.29    itojun 		val = 0;
    796   1.25  jonathan 		goto done;
    797    1.1      fvdl 	}
    798    1.1      fvdl 
    799    1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    800    1.1      fvdl 
    801   1.25  jonathan done:
    802   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    803   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    804   1.25  jonathan 		DELAY(40);
    805   1.25  jonathan 	}
    806   1.29    itojun 
    807    1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    808  1.158   msaitoh 		return (0);
    809    1.1      fvdl 
    810  1.158   msaitoh 	return (val & 0xFFFF);
    811    1.1      fvdl }
    812    1.1      fvdl 
    813  1.104   thorpej static void
    814  1.104   thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    815    1.1      fvdl {
    816  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    817   1.29    itojun 	u_int32_t saved_autopoll;
    818   1.29    itojun 	int i;
    819    1.1      fvdl 
    820  1.151    cegger 	if (phy!=1) {
    821  1.151    cegger 		return;
    822  1.151    cegger 	}
    823  1.151    cegger 
    824  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    825  1.151    cegger 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    826  1.151    cegger 		return;
    827  1.151    cegger 	}
    828  1.151    cegger 
    829   1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    830   1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    831   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    832   1.25  jonathan 		delay(40);
    833   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    834   1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    835   1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    836   1.25  jonathan 	}
    837   1.29    itojun 
    838    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    839    1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    840    1.1      fvdl 
    841    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    842  1.151    cegger 		delay(10);
    843  1.151    cegger 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    844  1.151    cegger 			delay(5);
    845  1.151    cegger 			CSR_READ_4(sc, BGE_MI_COMM);
    846    1.1      fvdl 			break;
    847  1.151    cegger 		}
    848    1.1      fvdl 	}
    849    1.1      fvdl 
    850   1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    851   1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    852   1.25  jonathan 		delay(40);
    853   1.25  jonathan 	}
    854   1.29    itojun 
    855  1.138     joerg 	if (i == BGE_TIMEOUT)
    856  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    857    1.1      fvdl }
    858    1.1      fvdl 
    859  1.104   thorpej static void
    860  1.104   thorpej bge_miibus_statchg(device_t dev)
    861    1.1      fvdl {
    862  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    863    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    864    1.1      fvdl 
    865   1.69   thorpej 	/*
    866   1.69   thorpej 	 * Get flow control negotiation result.
    867   1.69   thorpej 	 */
    868   1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    869   1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    870   1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    871   1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    872   1.69   thorpej 	}
    873   1.69   thorpej 
    874    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    875    1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    876    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    877  1.158   msaitoh 	} else
    878    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    879    1.1      fvdl 
    880  1.158   msaitoh 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    881    1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    882  1.158   msaitoh 	else
    883    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    884   1.69   thorpej 
    885   1.69   thorpej 	/*
    886   1.69   thorpej 	 * 802.3x flow control
    887   1.69   thorpej 	 */
    888  1.158   msaitoh 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
    889   1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    890  1.158   msaitoh 	else
    891   1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    892  1.158   msaitoh 
    893  1.158   msaitoh 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
    894   1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    895  1.158   msaitoh 	else
    896   1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    897    1.1      fvdl }
    898    1.1      fvdl 
    899    1.1      fvdl /*
    900   1.63  jonathan  * Update rx threshold levels to values in a particular slot
    901   1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    902   1.63  jonathan  */
    903  1.104   thorpej static void
    904   1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    905   1.63  jonathan {
    906   1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    907   1.63  jonathan 	int s;
    908   1.63  jonathan 
    909   1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    910   1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    911   1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    912   1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    913   1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    914   1.63  jonathan 	 */
    915   1.63  jonathan 	s = splnet();
    916   1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    917   1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    918   1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    919   1.63  jonathan 	splx(s);
    920   1.63  jonathan 
    921   1.63  jonathan 	 return;
    922   1.63  jonathan }
    923   1.63  jonathan 
    924   1.63  jonathan 
    925   1.63  jonathan /*
    926   1.63  jonathan  * Update Rx thresholds of all bge devices
    927   1.63  jonathan  */
    928  1.104   thorpej static void
    929   1.63  jonathan bge_update_all_threshes(int lvl)
    930   1.63  jonathan {
    931   1.63  jonathan 	struct ifnet *ifp;
    932   1.63  jonathan 	const char * const namebuf = "bge";
    933   1.63  jonathan 	int namelen;
    934   1.63  jonathan 
    935   1.63  jonathan 	if (lvl < 0)
    936   1.63  jonathan 		lvl = 0;
    937   1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    938   1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    939   1.87     perry 
    940   1.63  jonathan 	namelen = strlen(namebuf);
    941   1.63  jonathan 	/*
    942   1.63  jonathan 	 * Now search all the interfaces for this name/number
    943   1.63  jonathan 	 */
    944   1.81      matt 	IFNET_FOREACH(ifp) {
    945   1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    946   1.63  jonathan 		      continue;
    947   1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    948   1.63  jonathan 		if (bge_auto_thresh)
    949   1.67  jonathan 			bge_set_thresh(ifp, lvl);
    950   1.63  jonathan 	}
    951   1.63  jonathan }
    952   1.63  jonathan 
    953   1.63  jonathan /*
    954    1.1      fvdl  * Handle events that have triggered interrupts.
    955    1.1      fvdl  */
    956  1.104   thorpej static void
    957  1.116  christos bge_handle_events(struct bge_softc *sc)
    958    1.1      fvdl {
    959    1.1      fvdl 
    960    1.1      fvdl 	return;
    961    1.1      fvdl }
    962    1.1      fvdl 
    963    1.1      fvdl /*
    964    1.1      fvdl  * Memory management for jumbo frames.
    965    1.1      fvdl  */
    966    1.1      fvdl 
    967  1.104   thorpej static int
    968  1.104   thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
    969    1.1      fvdl {
    970  1.126  christos 	char *ptr, *kva;
    971    1.1      fvdl 	bus_dma_segment_t	seg;
    972    1.1      fvdl 	int		i, rseg, state, error;
    973    1.1      fvdl 	struct bge_jpool_entry   *entry;
    974    1.1      fvdl 
    975    1.1      fvdl 	state = error = 0;
    976    1.1      fvdl 
    977    1.1      fvdl 	/* Grab a big chunk o' storage. */
    978    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    979    1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    980  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    981    1.1      fvdl 		return ENOBUFS;
    982    1.1      fvdl 	}
    983    1.1      fvdl 
    984    1.1      fvdl 	state = 1;
    985  1.126  christos 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    986    1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    987  1.138     joerg 		aprint_error_dev(sc->bge_dev,
    988  1.138     joerg 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    989    1.1      fvdl 		error = ENOBUFS;
    990    1.1      fvdl 		goto out;
    991    1.1      fvdl 	}
    992    1.1      fvdl 
    993    1.1      fvdl 	state = 2;
    994    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    995    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    996  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    997    1.1      fvdl 		error = ENOBUFS;
    998    1.1      fvdl 		goto out;
    999    1.1      fvdl 	}
   1000    1.1      fvdl 
   1001    1.1      fvdl 	state = 3;
   1002    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1003    1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1004  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1005    1.1      fvdl 		error = ENOBUFS;
   1006    1.1      fvdl 		goto out;
   1007    1.1      fvdl 	}
   1008    1.1      fvdl 
   1009    1.1      fvdl 	state = 4;
   1010  1.126  christos 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1011   1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1012    1.1      fvdl 
   1013    1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
   1014    1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1015    1.1      fvdl 
   1016    1.1      fvdl 	/*
   1017    1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
   1018    1.1      fvdl 	 * in an array.
   1019    1.1      fvdl 	 */
   1020    1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1021    1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
   1022    1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
   1023    1.1      fvdl 		ptr += BGE_JLEN;
   1024    1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
   1025    1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
   1026    1.1      fvdl 		if (entry == NULL) {
   1027  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1028  1.138     joerg 			    "no memory for jumbo buffer queue!\n");
   1029    1.1      fvdl 			error = ENOBUFS;
   1030    1.1      fvdl 			goto out;
   1031    1.1      fvdl 		}
   1032    1.1      fvdl 		entry->slot = i;
   1033    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1034    1.1      fvdl 				 entry, jpool_entries);
   1035    1.1      fvdl 	}
   1036    1.1      fvdl out:
   1037    1.1      fvdl 	if (error != 0) {
   1038    1.1      fvdl 		switch (state) {
   1039    1.1      fvdl 		case 4:
   1040    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
   1041    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
   1042    1.1      fvdl 		case 3:
   1043    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
   1044    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
   1045    1.1      fvdl 		case 2:
   1046    1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1047    1.1      fvdl 		case 1:
   1048    1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1049    1.1      fvdl 			break;
   1050    1.1      fvdl 		default:
   1051    1.1      fvdl 			break;
   1052    1.1      fvdl 		}
   1053    1.1      fvdl 	}
   1054    1.1      fvdl 
   1055    1.1      fvdl 	return error;
   1056    1.1      fvdl }
   1057    1.1      fvdl 
   1058    1.1      fvdl /*
   1059    1.1      fvdl  * Allocate a jumbo buffer.
   1060    1.1      fvdl  */
   1061  1.104   thorpej static void *
   1062  1.104   thorpej bge_jalloc(struct bge_softc *sc)
   1063    1.1      fvdl {
   1064    1.1      fvdl 	struct bge_jpool_entry   *entry;
   1065    1.1      fvdl 
   1066    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1067    1.1      fvdl 
   1068    1.1      fvdl 	if (entry == NULL) {
   1069  1.138     joerg 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1070  1.158   msaitoh 		return (NULL);
   1071    1.1      fvdl 	}
   1072    1.1      fvdl 
   1073    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1074    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1075  1.158   msaitoh 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1076    1.1      fvdl }
   1077    1.1      fvdl 
   1078    1.1      fvdl /*
   1079    1.1      fvdl  * Release a jumbo buffer.
   1080    1.1      fvdl  */
   1081  1.104   thorpej static void
   1082  1.126  christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1083    1.1      fvdl {
   1084    1.1      fvdl 	struct bge_jpool_entry *entry;
   1085    1.1      fvdl 	struct bge_softc *sc;
   1086    1.1      fvdl 	int i, s;
   1087    1.1      fvdl 
   1088    1.1      fvdl 	/* Extract the softc struct pointer. */
   1089    1.1      fvdl 	sc = (struct bge_softc *)arg;
   1090    1.1      fvdl 
   1091    1.1      fvdl 	if (sc == NULL)
   1092    1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
   1093    1.1      fvdl 
   1094    1.1      fvdl 	/* calculate the slot this buffer belongs to */
   1095    1.1      fvdl 
   1096  1.126  christos 	i = ((char *)buf
   1097  1.126  christos 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1098    1.1      fvdl 
   1099    1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
   1100    1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1101    1.1      fvdl 
   1102    1.1      fvdl 	s = splvm();
   1103    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1104    1.1      fvdl 	if (entry == NULL)
   1105    1.1      fvdl 		panic("bge_jfree: buffer not in use!");
   1106    1.1      fvdl 	entry->slot = i;
   1107    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1108    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1109    1.1      fvdl 
   1110    1.1      fvdl 	if (__predict_true(m != NULL))
   1111  1.140        ad   		pool_cache_put(mb_cache, m);
   1112    1.1      fvdl 	splx(s);
   1113    1.1      fvdl }
   1114    1.1      fvdl 
   1115    1.1      fvdl 
   1116    1.1      fvdl /*
   1117    1.1      fvdl  * Intialize a standard receive ring descriptor.
   1118    1.1      fvdl  */
   1119  1.104   thorpej static int
   1120  1.104   thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1121    1.1      fvdl {
   1122    1.1      fvdl 	struct mbuf		*m_new = NULL;
   1123    1.1      fvdl 	struct bge_rx_bd	*r;
   1124    1.1      fvdl 	int			error;
   1125    1.1      fvdl 
   1126    1.1      fvdl 	if (dmamap == NULL) {
   1127    1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1128    1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1129    1.1      fvdl 		if (error != 0)
   1130    1.1      fvdl 			return error;
   1131    1.1      fvdl 	}
   1132    1.1      fvdl 
   1133    1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1134    1.1      fvdl 
   1135    1.1      fvdl 	if (m == NULL) {
   1136    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1137  1.158   msaitoh 		if (m_new == NULL)
   1138  1.158   msaitoh 			return (ENOBUFS);
   1139    1.1      fvdl 
   1140    1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
   1141    1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
   1142    1.1      fvdl 			m_freem(m_new);
   1143  1.158   msaitoh 			return (ENOBUFS);
   1144    1.1      fvdl 		}
   1145    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1146    1.1      fvdl 
   1147    1.1      fvdl 	} else {
   1148    1.1      fvdl 		m_new = m;
   1149    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1150    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
   1151    1.1      fvdl 	}
   1152  1.157   msaitoh 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1153  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
   1154  1.124    bouyer 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1155  1.124    bouyer 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1156  1.158   msaitoh 		return (ENOBUFS);
   1157  1.125    bouyer 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1158  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
   1159    1.1      fvdl 
   1160    1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1161    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1162    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
   1163   1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
   1164    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
   1165    1.1      fvdl 	r->bge_len = m_new->m_len;
   1166    1.1      fvdl 	r->bge_idx = i;
   1167    1.1      fvdl 
   1168    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1169    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1170    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1171    1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1172    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1173    1.1      fvdl 
   1174  1.158   msaitoh 	return (0);
   1175    1.1      fvdl }
   1176    1.1      fvdl 
   1177    1.1      fvdl /*
   1178    1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
   1179    1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
   1180    1.1      fvdl  */
   1181  1.104   thorpej static int
   1182  1.104   thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1183    1.1      fvdl {
   1184    1.1      fvdl 	struct mbuf *m_new = NULL;
   1185    1.1      fvdl 	struct bge_rx_bd *r;
   1186  1.126  christos 	void *buf = NULL;
   1187    1.1      fvdl 
   1188    1.1      fvdl 	if (m == NULL) {
   1189    1.1      fvdl 
   1190    1.1      fvdl 		/* Allocate the mbuf. */
   1191    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1192  1.158   msaitoh 		if (m_new == NULL)
   1193  1.158   msaitoh 			return (ENOBUFS);
   1194    1.1      fvdl 
   1195    1.1      fvdl 		/* Allocate the jumbo buffer */
   1196    1.1      fvdl 		buf = bge_jalloc(sc);
   1197    1.1      fvdl 		if (buf == NULL) {
   1198    1.1      fvdl 			m_freem(m_new);
   1199  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1200  1.138     joerg 			    "jumbo allocation failed -- packet dropped!\n");
   1201  1.158   msaitoh 			return (ENOBUFS);
   1202    1.1      fvdl 		}
   1203    1.1      fvdl 
   1204    1.1      fvdl 		/* Attach the buffer to the mbuf. */
   1205    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1206    1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1207    1.1      fvdl 		    bge_jfree, sc);
   1208   1.74      yamt 		m_new->m_flags |= M_EXT_RW;
   1209    1.1      fvdl 	} else {
   1210    1.1      fvdl 		m_new = m;
   1211  1.124    bouyer 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1212    1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1213    1.1      fvdl 	}
   1214  1.157   msaitoh 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1215  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
   1216  1.124    bouyer 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1217  1.126  christos 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1218  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
   1219    1.1      fvdl 	/* Set up the descriptor. */
   1220    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1221    1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1222    1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1223    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1224    1.1      fvdl 	r->bge_len = m_new->m_len;
   1225    1.1      fvdl 	r->bge_idx = i;
   1226    1.1      fvdl 
   1227    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1228    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1229    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1230    1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1231    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1232    1.1      fvdl 
   1233  1.158   msaitoh 	return (0);
   1234    1.1      fvdl }
   1235    1.1      fvdl 
   1236    1.1      fvdl /*
   1237    1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1238    1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1239    1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1240    1.1      fvdl  * the NIC.
   1241    1.1      fvdl  */
   1242  1.104   thorpej static int
   1243  1.104   thorpej bge_init_rx_ring_std(struct bge_softc *sc)
   1244    1.1      fvdl {
   1245    1.1      fvdl 	int i;
   1246    1.1      fvdl 
   1247    1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
   1248    1.1      fvdl 		return 0;
   1249    1.1      fvdl 
   1250    1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
   1251    1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1252  1.158   msaitoh 			return (ENOBUFS);
   1253    1.1      fvdl 	}
   1254    1.1      fvdl 
   1255    1.1      fvdl 	sc->bge_std = i - 1;
   1256  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1257    1.1      fvdl 
   1258    1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
   1259    1.1      fvdl 
   1260  1.158   msaitoh 	return (0);
   1261    1.1      fvdl }
   1262    1.1      fvdl 
   1263  1.104   thorpej static void
   1264  1.104   thorpej bge_free_rx_ring_std(struct bge_softc *sc)
   1265    1.1      fvdl {
   1266    1.1      fvdl 	int i;
   1267    1.1      fvdl 
   1268    1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1269    1.1      fvdl 		return;
   1270    1.1      fvdl 
   1271    1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1272    1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1273    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1274    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1275   1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
   1276    1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
   1277    1.1      fvdl 		}
   1278    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1279    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1280    1.1      fvdl 	}
   1281    1.1      fvdl 
   1282    1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1283    1.1      fvdl }
   1284    1.1      fvdl 
   1285  1.104   thorpej static int
   1286  1.104   thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1287    1.1      fvdl {
   1288    1.1      fvdl 	int i;
   1289   1.34  jonathan 	volatile struct bge_rcb *rcb;
   1290    1.1      fvdl 
   1291   1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1292   1.59    martin 		return 0;
   1293   1.59    martin 
   1294    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1295    1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1296  1.158   msaitoh 			return (ENOBUFS);
   1297    1.1      fvdl 	};
   1298    1.1      fvdl 
   1299    1.1      fvdl 	sc->bge_jumbo = i - 1;
   1300   1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1301    1.1      fvdl 
   1302    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1303   1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1304   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1305    1.1      fvdl 
   1306  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1307    1.1      fvdl 
   1308  1.158   msaitoh 	return (0);
   1309    1.1      fvdl }
   1310    1.1      fvdl 
   1311  1.104   thorpej static void
   1312  1.104   thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1313    1.1      fvdl {
   1314    1.1      fvdl 	int i;
   1315    1.1      fvdl 
   1316    1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1317    1.1      fvdl 		return;
   1318    1.1      fvdl 
   1319    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1320    1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1321    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1322    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1323    1.1      fvdl 		}
   1324    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1325    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1326    1.1      fvdl 	}
   1327    1.1      fvdl 
   1328    1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1329    1.1      fvdl }
   1330    1.1      fvdl 
   1331  1.104   thorpej static void
   1332  1.104   thorpej bge_free_tx_ring(struct bge_softc *sc)
   1333    1.1      fvdl {
   1334    1.1      fvdl 	int i, freed;
   1335    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1336    1.1      fvdl 
   1337    1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1338    1.1      fvdl 		return;
   1339    1.1      fvdl 
   1340    1.1      fvdl 	freed = 0;
   1341    1.1      fvdl 
   1342    1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1343    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1344    1.1      fvdl 			freed++;
   1345    1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1346    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1347    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1348    1.1      fvdl 					    link);
   1349    1.1      fvdl 			sc->txdma[i] = 0;
   1350    1.1      fvdl 		}
   1351    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1352    1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1353    1.1      fvdl 	}
   1354    1.1      fvdl 
   1355    1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1356    1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1357    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1358    1.1      fvdl 		free(dma, M_DEVBUF);
   1359    1.1      fvdl 	}
   1360    1.1      fvdl 
   1361    1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1362    1.1      fvdl }
   1363    1.1      fvdl 
   1364  1.104   thorpej static int
   1365  1.104   thorpej bge_init_tx_ring(struct bge_softc *sc)
   1366    1.1      fvdl {
   1367    1.1      fvdl 	int i;
   1368    1.1      fvdl 	bus_dmamap_t dmamap;
   1369    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1370    1.1      fvdl 
   1371    1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1372    1.1      fvdl 		return 0;
   1373    1.1      fvdl 
   1374    1.1      fvdl 	sc->bge_txcnt = 0;
   1375    1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1376   1.94  jonathan 
   1377   1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1378   1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1379  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1380  1.158   msaitoh 	/* 5700 b2 errata */
   1381  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1382  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1383   1.25  jonathan 
   1384  1.158   msaitoh 	/* NIC-memory send ring not used; initialize to zero. */
   1385  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1386  1.158   msaitoh 	/* 5700 b2 errata */
   1387  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1388  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1389    1.1      fvdl 
   1390    1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1391    1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1392   1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1393    1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1394    1.1      fvdl 		    &dmamap))
   1395  1.158   msaitoh 			return (ENOBUFS);
   1396    1.1      fvdl 		if (dmamap == NULL)
   1397    1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1398    1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1399    1.1      fvdl 		if (dma == NULL) {
   1400  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1401  1.138     joerg 			    "can't alloc txdmamap_pool_entry\n");
   1402    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1403    1.1      fvdl 			return (ENOMEM);
   1404    1.1      fvdl 		}
   1405    1.1      fvdl 		dma->dmamap = dmamap;
   1406    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1407    1.1      fvdl 	}
   1408    1.1      fvdl 
   1409    1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1410    1.1      fvdl 
   1411  1.158   msaitoh 	return (0);
   1412    1.1      fvdl }
   1413    1.1      fvdl 
   1414  1.104   thorpej static void
   1415  1.104   thorpej bge_setmulti(struct bge_softc *sc)
   1416    1.1      fvdl {
   1417    1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1418    1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1419    1.1      fvdl 	struct ether_multi	*enm;
   1420    1.1      fvdl 	struct ether_multistep  step;
   1421    1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1422    1.1      fvdl 	u_int32_t		h;
   1423    1.1      fvdl 	int			i;
   1424    1.1      fvdl 
   1425   1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1426   1.13   thorpej 		goto allmulti;
   1427    1.1      fvdl 
   1428    1.1      fvdl 	/* Now program new ones. */
   1429    1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1430    1.1      fvdl 	while (enm != NULL) {
   1431   1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1432   1.13   thorpej 			/*
   1433   1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1434   1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1435   1.13   thorpej 			 * trying to set only those filter bits needed to match
   1436   1.13   thorpej 			 * the range.  (At this time, the only use of address
   1437   1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1438   1.13   thorpej 			 * range is big enough to require all bits set.)
   1439   1.13   thorpej 			 */
   1440   1.13   thorpej 			goto allmulti;
   1441   1.13   thorpej 		}
   1442   1.13   thorpej 
   1443  1.158   msaitoh 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1444    1.1      fvdl 
   1445  1.158   msaitoh 		/* Just want the 7 least-significant bits. */
   1446  1.158   msaitoh 		h &= 0x7f;
   1447    1.1      fvdl 
   1448  1.158   msaitoh 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1449  1.158   msaitoh 		ETHER_NEXT_MULTI(step, enm);
   1450   1.25  jonathan 	}
   1451   1.25  jonathan 
   1452  1.158   msaitoh 	ifp->if_flags &= ~IFF_ALLMULTI;
   1453  1.158   msaitoh 	goto setit;
   1454    1.1      fvdl 
   1455  1.158   msaitoh  allmulti:
   1456  1.158   msaitoh 	ifp->if_flags |= IFF_ALLMULTI;
   1457  1.158   msaitoh 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1458  1.133     markd 
   1459  1.158   msaitoh  setit:
   1460  1.158   msaitoh 	for (i = 0; i < 4; i++)
   1461  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1462  1.158   msaitoh }
   1463  1.133     markd 
   1464  1.158   msaitoh const int bge_swapbits[] = {
   1465  1.158   msaitoh 	0,
   1466  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA,
   1467  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA,
   1468  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1469  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1470    1.1      fvdl 
   1471  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1472  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1473  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1474   1.95  jonathan 
   1475  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1476  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1477   1.95  jonathan 
   1478  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1479   1.95  jonathan 
   1480  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1481  1.158   msaitoh 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1482  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1483  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1484  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1485  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1486  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1487  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1488    1.1      fvdl 
   1489  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1490  1.158   msaitoh 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1491  1.158   msaitoh };
   1492    1.1      fvdl 
   1493  1.158   msaitoh int bge_swapindex = 0;
   1494    1.1      fvdl 
   1495  1.158   msaitoh /*
   1496  1.158   msaitoh  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1497  1.158   msaitoh  * self-test results.
   1498  1.158   msaitoh  */
   1499  1.158   msaitoh static int
   1500  1.158   msaitoh bge_chipinit(struct bge_softc *sc)
   1501  1.158   msaitoh {
   1502  1.158   msaitoh 	u_int32_t		cachesize;
   1503  1.158   msaitoh 	int			i;
   1504  1.158   msaitoh 	u_int32_t		dma_rw_ctl;
   1505    1.1      fvdl 
   1506    1.1      fvdl 
   1507  1.158   msaitoh 	/* Set endianness before we access any non-PCI registers. */
   1508  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1509  1.158   msaitoh 	    BGE_INIT);
   1510    1.1      fvdl 
   1511  1.158   msaitoh 	/* Set power state to D0. */
   1512  1.158   msaitoh 	bge_setpowerstate(sc, 0);
   1513    1.1      fvdl 
   1514  1.158   msaitoh 	/*
   1515  1.158   msaitoh 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1516  1.158   msaitoh 	 * self-tests passed.
   1517  1.158   msaitoh 	 */
   1518  1.158   msaitoh 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1519  1.158   msaitoh 		aprint_error_dev(sc->bge_dev,
   1520  1.158   msaitoh 		    "RX CPU self-diagnostics failed!\n");
   1521  1.158   msaitoh 		return (ENODEV);
   1522   1.95  jonathan 	}
   1523    1.1      fvdl 
   1524  1.158   msaitoh 	/* Clear the MAC control register */
   1525  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1526    1.1      fvdl 
   1527  1.158   msaitoh 	/*
   1528  1.158   msaitoh 	 * Clear the MAC statistics block in the NIC's
   1529  1.158   msaitoh 	 * internal memory.
   1530  1.158   msaitoh 	 */
   1531  1.158   msaitoh 	for (i = BGE_STATS_BLOCK;
   1532  1.158   msaitoh 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1533  1.158   msaitoh 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1534    1.1      fvdl 
   1535  1.158   msaitoh 	for (i = BGE_STATUS_BLOCK;
   1536  1.158   msaitoh 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1537  1.158   msaitoh 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1538    1.1      fvdl 
   1539  1.158   msaitoh 	/* Set up the PCI DMA control register. */
   1540  1.158   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   1541  1.158   msaitoh 	  u_int32_t device_ctl;
   1542    1.1      fvdl 
   1543  1.158   msaitoh 		/* From FreeBSD */
   1544  1.158   msaitoh 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1545  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1546  1.158   msaitoh 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1547  1.158   msaitoh 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1548  1.158   msaitoh 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1549    1.1      fvdl 
   1550  1.158   msaitoh 		/* jonathan: alternative from Linux driver */
   1551  1.158   msaitoh #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1552  1.158   msaitoh #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1553    1.1      fvdl 
   1554  1.158   msaitoh 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1555  1.158   msaitoh 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1556  1.158   msaitoh 					   BGE_PCI_CONF_DEV_CTRL);
   1557  1.158   msaitoh 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1558    1.1      fvdl 
   1559  1.158   msaitoh 		if ((device_ctl & 0x00e0) && 0) {
   1560  1.158   msaitoh 			/*
   1561  1.158   msaitoh 			 * XXX jonathan (at) NetBSD.org:
   1562  1.158   msaitoh 			 * This clause is exactly what the Broadcom-supplied
   1563  1.158   msaitoh 			 * Linux does; but given overall register programming
   1564  1.158   msaitoh 			 * by if_bge(4), this larger DMA-write watermark
   1565  1.158   msaitoh 			 * value causes bcm5721 chips to totally wedge.
   1566  1.158   msaitoh 			 */
   1567  1.158   msaitoh 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1568  1.158   msaitoh 		} else {
   1569  1.158   msaitoh 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1570  1.158   msaitoh 		}
   1571  1.158   msaitoh 	} else if (sc->bge_flags & BGE_PCIX){
   1572  1.158   msaitoh 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1573  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1574  1.158   msaitoh 		/* PCI-X bus */
   1575  1.158   msaitoh 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1576  1.158   msaitoh 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1577  1.158   msaitoh 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1578  1.158   msaitoh 		    (0x0F);
   1579  1.158   msaitoh 		/*
   1580  1.158   msaitoh 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1581  1.158   msaitoh 		 * for hardware bugs, which means we should also clear
   1582  1.158   msaitoh 		 * the low-order MINDMA bits.  In addition, the 5704
   1583  1.158   msaitoh 		 * uses a different encoding of read/write watermarks.
   1584  1.158   msaitoh 		 */
   1585  1.158   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1586  1.158   msaitoh 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1587  1.158   msaitoh 			  /* should be 0x1f0000 */
   1588  1.158   msaitoh 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1589  1.158   msaitoh 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1590  1.158   msaitoh 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1591  1.158   msaitoh 		}
   1592  1.158   msaitoh 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1593  1.158   msaitoh 			dma_rw_ctl &=  0xfffffff0;
   1594  1.158   msaitoh 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1595  1.158   msaitoh 		}
   1596  1.158   msaitoh 		else if (BGE_IS_5714_FAMILY(sc)) {
   1597  1.158   msaitoh 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1598  1.158   msaitoh 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1599  1.158   msaitoh 			/* XXX magic values, Broadcom-supplied Linux driver */
   1600  1.158   msaitoh 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1601  1.158   msaitoh 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1602  1.158   msaitoh 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1603  1.158   msaitoh 			else
   1604  1.158   msaitoh 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1605  1.158   msaitoh 		}
   1606  1.158   msaitoh 	} else {
   1607  1.158   msaitoh 		/* Conventional PCI bus */
   1608  1.158   msaitoh 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1609  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1610  1.158   msaitoh 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1611  1.158   msaitoh 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1612  1.158   msaitoh 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1613  1.158   msaitoh 		if (!(BGE_IS_5705_OR_BEYOND(sc)))
   1614  1.158   msaitoh 			dma_rw_ctl |= 0x0F;
   1615  1.158   msaitoh 	}
   1616  1.157   msaitoh 
   1617  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1618  1.120   tsutsui 
   1619  1.158   msaitoh 	/*
   1620  1.158   msaitoh 	 * Set up general mode register.
   1621  1.158   msaitoh 	 */
   1622  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1623  1.158   msaitoh 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1624  1.158   msaitoh 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1625   1.16   thorpej 
   1626  1.158   msaitoh 	/* Get cache line size. */
   1627  1.158   msaitoh 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1628   1.16   thorpej 
   1629  1.158   msaitoh 	/*
   1630  1.158   msaitoh 	 * Avoid violating PCI spec on certain chip revs.
   1631  1.158   msaitoh 	 */
   1632  1.158   msaitoh 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1633  1.158   msaitoh 	    PCIM_CMD_MWIEN) {
   1634  1.158   msaitoh 		switch(cachesize) {
   1635  1.158   msaitoh 		case 1:
   1636  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1637  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1638  1.158   msaitoh 			break;
   1639  1.158   msaitoh 		case 2:
   1640  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1641  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1642  1.158   msaitoh 			break;
   1643  1.158   msaitoh 		case 4:
   1644  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1645  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1646  1.158   msaitoh 			break;
   1647  1.158   msaitoh 		case 8:
   1648  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1649  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1650  1.158   msaitoh 			break;
   1651  1.158   msaitoh 		case 16:
   1652  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1653  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1654  1.158   msaitoh 			break;
   1655  1.158   msaitoh 		case 32:
   1656  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1657  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1658  1.158   msaitoh 			break;
   1659  1.158   msaitoh 		case 64:
   1660  1.158   msaitoh 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1661  1.158   msaitoh 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1662  1.158   msaitoh 			break;
   1663  1.158   msaitoh 		default:
   1664  1.158   msaitoh 		/* Disable PCI memory write and invalidate. */
   1665  1.158   msaitoh #if 0
   1666  1.158   msaitoh 			if (bootverbose)
   1667  1.158   msaitoh 				aprint_error_dev(sc->bge_dev,
   1668  1.158   msaitoh 				    "cache line size %d not supported "
   1669  1.158   msaitoh 				    "disabling PCI MWI\n",
   1670  1.158   msaitoh #endif
   1671  1.158   msaitoh 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1672  1.158   msaitoh 			    PCIM_CMD_MWIEN);
   1673  1.158   msaitoh 			break;
   1674  1.158   msaitoh 		}
   1675  1.158   msaitoh 	}
   1676   1.16   thorpej 
   1677  1.158   msaitoh 	/*
   1678  1.158   msaitoh 	 * Disable memory write invalidate.  Apparently it is not supported
   1679  1.158   msaitoh 	 * properly by these devices.
   1680  1.158   msaitoh 	 */
   1681  1.158   msaitoh 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1682   1.16   thorpej 
   1683   1.16   thorpej 
   1684  1.158   msaitoh #ifdef __brokenalpha__
   1685  1.158   msaitoh 	/*
   1686  1.158   msaitoh 	 * Must insure that we do not cross an 8K (bytes) boundary
   1687  1.158   msaitoh 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1688  1.158   msaitoh 	 * restriction on some ALPHA platforms with early revision
   1689  1.158   msaitoh 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1690  1.158   msaitoh 	 */
   1691  1.158   msaitoh 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1692  1.158   msaitoh #endif
   1693   1.16   thorpej 
   1694  1.158   msaitoh 	/* Set the timer prescaler (always 66MHz) */
   1695  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1696   1.16   thorpej 
   1697  1.158   msaitoh 	return (0);
   1698  1.158   msaitoh }
   1699   1.16   thorpej 
   1700  1.158   msaitoh static int
   1701  1.158   msaitoh bge_blockinit(struct bge_softc *sc)
   1702  1.158   msaitoh {
   1703  1.158   msaitoh 	volatile struct bge_rcb		*rcb;
   1704  1.158   msaitoh 	bus_size_t		rcb_addr;
   1705  1.158   msaitoh 	int			i;
   1706  1.158   msaitoh 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1707  1.158   msaitoh 	bge_hostaddr		taddr;
   1708   1.16   thorpej 
   1709  1.158   msaitoh 	/*
   1710  1.158   msaitoh 	 * Initialize the memory window pointer register so that
   1711  1.158   msaitoh 	 * we can access the first 32K of internal NIC RAM. This will
   1712  1.158   msaitoh 	 * allow us to set up the TX send ring RCBs and the RX return
   1713  1.158   msaitoh 	 * ring RCBs, plus other things which live in NIC memory.
   1714  1.158   msaitoh 	 */
   1715   1.55     pooka 
   1716  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1717  1.120   tsutsui 
   1718  1.158   msaitoh 	/* Configure mbuf memory pool */
   1719  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1720  1.158   msaitoh 		if (sc->bge_extram) {
   1721  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1722  1.158   msaitoh 			    BGE_EXT_SSRAM);
   1723  1.158   msaitoh 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1724  1.158   msaitoh 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1725  1.158   msaitoh 			else
   1726  1.158   msaitoh 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1727  1.158   msaitoh 		} else {
   1728  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1729  1.158   msaitoh 			    BGE_BUFFPOOL_1);
   1730  1.158   msaitoh 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1731  1.158   msaitoh 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1732  1.158   msaitoh 			else
   1733  1.158   msaitoh 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1734  1.158   msaitoh 		}
   1735   1.40      fvdl 
   1736  1.158   msaitoh 		/* Configure DMA resource pool */
   1737  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1738  1.158   msaitoh 		    BGE_DMA_DESCRIPTORS);
   1739  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1740  1.158   msaitoh 	}
   1741   1.40      fvdl 
   1742  1.158   msaitoh 	/* Configure mbuf pool watermarks */
   1743  1.158   msaitoh #ifdef ORIG_WPAUL_VALUES
   1744  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1745  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1746  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1747  1.158   msaitoh #else
   1748   1.49      fvdl 
   1749  1.158   msaitoh 	/* new broadcom docs strongly recommend these: */
   1750  1.158   msaitoh 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1751  1.158   msaitoh 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1752  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1753  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1754  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1755  1.158   msaitoh 		} else {
   1756  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1757  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1758  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1759  1.158   msaitoh 		}
   1760  1.158   msaitoh 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1761  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1762  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1763  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1764  1.158   msaitoh 	} else {
   1765  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1766  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1767  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1768  1.158   msaitoh 	}
   1769  1.158   msaitoh #endif
   1770   1.25  jonathan 
   1771  1.158   msaitoh 	/* Configure DMA resource watermarks */
   1772  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1773  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1774   1.51      fvdl 
   1775  1.158   msaitoh 	/* Enable buffer manager */
   1776  1.158   msaitoh 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1777  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1778  1.158   msaitoh 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1779   1.44   hannken 
   1780  1.158   msaitoh 		/* Poll for buffer manager start indication */
   1781  1.158   msaitoh 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1782  1.158   msaitoh 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1783  1.158   msaitoh 				break;
   1784  1.158   msaitoh 			DELAY(10);
   1785  1.158   msaitoh 		}
   1786   1.51      fvdl 
   1787  1.158   msaitoh 		if (i == BGE_TIMEOUT) {
   1788  1.158   msaitoh 			aprint_error_dev(sc->bge_dev,
   1789  1.158   msaitoh 			    "buffer manager failed to start\n");
   1790  1.158   msaitoh 			return (ENXIO);
   1791  1.158   msaitoh 		}
   1792  1.158   msaitoh 	}
   1793   1.51      fvdl 
   1794  1.158   msaitoh 	/* Enable flow-through queues */
   1795  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1796  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1797   1.76      cube 
   1798  1.158   msaitoh 	/* Wait until queue initialization is complete */
   1799  1.158   msaitoh 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1800  1.158   msaitoh 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1801  1.158   msaitoh 			break;
   1802  1.158   msaitoh 		DELAY(10);
   1803  1.158   msaitoh 	}
   1804   1.76      cube 
   1805  1.158   msaitoh 	if (i == BGE_TIMEOUT) {
   1806  1.158   msaitoh 		aprint_error_dev(sc->bge_dev,
   1807  1.158   msaitoh 		    "flow-through queue init failed\n");
   1808  1.158   msaitoh 		return (ENXIO);
   1809  1.158   msaitoh 	}
   1810   1.92     gavan 
   1811  1.158   msaitoh 	/* Initialize the standard RX ring control block */
   1812  1.158   msaitoh 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1813  1.158   msaitoh 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1814  1.158   msaitoh 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1815  1.158   msaitoh 	if (BGE_IS_5705_OR_BEYOND(sc))
   1816  1.158   msaitoh 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1817  1.158   msaitoh 	else
   1818  1.158   msaitoh 		rcb->bge_maxlen_flags =
   1819  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1820  1.158   msaitoh 	if (sc->bge_extram)
   1821  1.158   msaitoh 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1822  1.158   msaitoh 	else
   1823  1.158   msaitoh 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1824  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1825  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1826  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1827  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1828  1.119   tsutsui 
   1829  1.158   msaitoh 	if (BGE_IS_5705_OR_BEYOND(sc))
   1830  1.158   msaitoh 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1831  1.158   msaitoh 	else
   1832  1.158   msaitoh 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1833  1.119   tsutsui 
   1834  1.158   msaitoh 	/*
   1835  1.158   msaitoh 	 * Initialize the jumbo RX ring control block
   1836  1.158   msaitoh 	 * We set the 'ring disabled' bit in the flags
   1837  1.158   msaitoh 	 * field until we're actually ready to start
   1838  1.158   msaitoh 	 * using this ring (i.e. once we set the MTU
   1839  1.158   msaitoh 	 * high enough to require it).
   1840  1.158   msaitoh 	 */
   1841  1.158   msaitoh 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1842  1.158   msaitoh 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1843  1.158   msaitoh 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1844  1.158   msaitoh 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1845  1.158   msaitoh 		rcb->bge_maxlen_flags =
   1846  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1847  1.158   msaitoh 			BGE_RCB_FLAG_RING_DISABLED);
   1848  1.158   msaitoh 		if (sc->bge_extram)
   1849  1.158   msaitoh 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1850  1.158   msaitoh 		else
   1851  1.158   msaitoh 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1852  1.119   tsutsui 
   1853  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1854  1.158   msaitoh 		    rcb->bge_hostaddr.bge_addr_hi);
   1855  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1856  1.158   msaitoh 		    rcb->bge_hostaddr.bge_addr_lo);
   1857  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1858  1.158   msaitoh 		    rcb->bge_maxlen_flags);
   1859  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1860  1.149  sborrill 
   1861  1.158   msaitoh 		/* Set up dummy disabled mini ring RCB */
   1862  1.158   msaitoh 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1863  1.158   msaitoh 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1864  1.158   msaitoh 		    BGE_RCB_FLAG_RING_DISABLED);
   1865  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1866  1.158   msaitoh 		    rcb->bge_maxlen_flags);
   1867  1.133     markd 
   1868  1.158   msaitoh 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1869  1.158   msaitoh 		    offsetof(struct bge_ring_data, bge_info),
   1870  1.158   msaitoh 		    sizeof (struct bge_gib),
   1871  1.158   msaitoh 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1872  1.158   msaitoh 	}
   1873  1.133     markd 
   1874  1.158   msaitoh 	/*
   1875  1.158   msaitoh 	 * Set the BD ring replenish thresholds. The recommended
   1876  1.158   msaitoh 	 * values are 1/8th the number of descriptors allocated to
   1877  1.158   msaitoh 	 * each ring.
   1878  1.158   msaitoh 	 */
   1879  1.158   msaitoh 	i = BGE_STD_RX_RING_CNT / 8;
   1880  1.133     markd 
   1881  1.158   msaitoh 	/*
   1882  1.158   msaitoh 	 * Use a value of 8 for the following chips to workaround HW errata.
   1883  1.158   msaitoh 	 * Some of these chips have been added based on empirical
   1884  1.158   msaitoh 	 * evidence (they don't work unless this is done).
   1885  1.158   msaitoh 	 */
   1886  1.158   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1887  1.158   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1888  1.158   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1889  1.158   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1890  1.158   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1891  1.158   msaitoh 		i = 8;
   1892   1.16   thorpej 
   1893  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1894  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1895  1.157   msaitoh 
   1896  1.158   msaitoh 	/*
   1897  1.158   msaitoh 	 * Disable all unused send rings by setting the 'ring disabled'
   1898  1.158   msaitoh 	 * bit in the flags field of all the TX send ring control blocks.
   1899  1.158   msaitoh 	 * These are located in NIC memory.
   1900  1.158   msaitoh 	 */
   1901  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1902  1.158   msaitoh 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1903  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1904  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   1905  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1906  1.158   msaitoh 		rcb_addr += sizeof(struct bge_rcb);
   1907  1.158   msaitoh 	}
   1908  1.157   msaitoh 
   1909  1.158   msaitoh 	/* Configure TX RCB 0 (we use only the first ring) */
   1910  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1911  1.158   msaitoh 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1912  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1913  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1914  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1915  1.158   msaitoh 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1916  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   1917  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1918  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1919  1.157   msaitoh 
   1920  1.158   msaitoh 	/* Disable all unused RX return rings */
   1921  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1922  1.158   msaitoh 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1923  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1924  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1925  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1926  1.158   msaitoh 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1927  1.158   msaitoh                                      BGE_RCB_FLAG_RING_DISABLED));
   1928  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1929  1.158   msaitoh 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1930  1.158   msaitoh 		    (i * (sizeof(u_int64_t))), 0);
   1931  1.158   msaitoh 		rcb_addr += sizeof(struct bge_rcb);
   1932  1.158   msaitoh 	}
   1933  1.157   msaitoh 
   1934  1.158   msaitoh 	/* Initialize RX ring indexes */
   1935  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1936  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1937  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1938  1.157   msaitoh 
   1939  1.158   msaitoh 	/*
   1940  1.158   msaitoh 	 * Set up RX return ring 0
   1941  1.158   msaitoh 	 * Note that the NIC address for RX return rings is 0x00000000.
   1942  1.158   msaitoh 	 * The return rings live entirely within the host, so the
   1943  1.158   msaitoh 	 * nicaddr field in the RCB isn't used.
   1944  1.158   msaitoh 	 */
   1945  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1946  1.158   msaitoh 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1947  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1948  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1949  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1950  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1951  1.158   msaitoh 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1952  1.157   msaitoh 
   1953  1.158   msaitoh 	/* Set random backoff seed for TX */
   1954  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1955  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1956  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1957  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1958  1.158   msaitoh 	    BGE_TX_BACKOFF_SEED_MASK);
   1959  1.157   msaitoh 
   1960  1.158   msaitoh 	/* Set inter-packet gap */
   1961  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1962   1.51      fvdl 
   1963  1.158   msaitoh 	/*
   1964  1.158   msaitoh 	 * Specify which ring to use for packets that don't match
   1965  1.158   msaitoh 	 * any RX rules.
   1966  1.158   msaitoh 	 */
   1967  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1968  1.157   msaitoh 
   1969  1.158   msaitoh 	/*
   1970  1.158   msaitoh 	 * Configure number of RX lists. One interrupt distribution
   1971  1.158   msaitoh 	 * list, sixteen active lists, one bad frames class.
   1972  1.158   msaitoh 	 */
   1973  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1974  1.157   msaitoh 
   1975  1.158   msaitoh 	/* Inialize RX list placement stats mask. */
   1976  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1977  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1978  1.157   msaitoh 
   1979  1.158   msaitoh 	/* Disable host coalescing until we get it set up */
   1980  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1981   1.51      fvdl 
   1982  1.158   msaitoh 	/* Poll to make sure it's shut down. */
   1983  1.158   msaitoh 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1984  1.158   msaitoh 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1985  1.158   msaitoh 			break;
   1986  1.158   msaitoh 		DELAY(10);
   1987  1.158   msaitoh 	}
   1988  1.151    cegger 
   1989  1.158   msaitoh 	if (i == BGE_TIMEOUT) {
   1990  1.158   msaitoh 		aprint_error_dev(sc->bge_dev,
   1991  1.158   msaitoh 		    "host coalescing engine failed to idle\n");
   1992  1.158   msaitoh 		return (ENXIO);
   1993  1.158   msaitoh 	}
   1994   1.51      fvdl 
   1995  1.158   msaitoh 	/* Set up host coalescing defaults */
   1996  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1997  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1998  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1999  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2000  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   2001  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2002  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2003   1.51      fvdl 	}
   2004  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2005  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2006   1.51      fvdl 
   2007  1.158   msaitoh 	/* Set up address of statistics block */
   2008  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   2009  1.158   msaitoh 		bge_set_hostaddr(&taddr,
   2010  1.158   msaitoh 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2011  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2012  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2013  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2014  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2015   1.16   thorpej 	}
   2016   1.16   thorpej 
   2017  1.158   msaitoh 	/* Set up address of status block */
   2018  1.158   msaitoh 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2019  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2020  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2021  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2022  1.158   msaitoh 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2023  1.158   msaitoh 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2024   1.16   thorpej 
   2025  1.158   msaitoh 	/* Turn on host coalescing state machine */
   2026  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2027    1.7   thorpej 
   2028  1.158   msaitoh 	/* Turn on RX BD completion state machine and enable attentions */
   2029  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2030  1.158   msaitoh 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   2031    1.7   thorpej 
   2032  1.158   msaitoh 	/* Turn on RX list placement state machine */
   2033  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2034   1.51      fvdl 
   2035  1.158   msaitoh 	/* Turn on RX list selector state machine. */
   2036  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2037  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2038   1.51      fvdl 
   2039  1.158   msaitoh 	/* Turn on DMA, clear stats */
   2040  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   2041  1.158   msaitoh 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   2042  1.158   msaitoh 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   2043  1.158   msaitoh 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   2044  1.158   msaitoh 	    ((sc->bge_flags & BGE_PHY_FIBER_TBI) ? BGE_PORTMODE_TBI
   2045  1.158   msaitoh 		: BGE_PORTMODE_MII));
   2046   1.51      fvdl 
   2047  1.158   msaitoh 	/* Set misc. local control, enable interrupts on attentions */
   2048  1.158   msaitoh 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2049   1.51      fvdl 
   2050  1.158   msaitoh #ifdef notdef
   2051  1.158   msaitoh 	/* Assert GPIO pins for PHY reset */
   2052  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2053  1.158   msaitoh 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2054  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2055  1.158   msaitoh 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2056  1.158   msaitoh #endif
   2057   1.98  jonathan 
   2058  1.158   msaitoh #if defined(not_quite_yet)
   2059  1.158   msaitoh 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2060  1.158   msaitoh 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2061  1.158   msaitoh 		sc->bge_local_ctrl_reg |=
   2062  1.158   msaitoh 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2063  1.158   msaitoh 	}
   2064  1.158   msaitoh #endif
   2065  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2066   1.80     fredb 
   2067  1.158   msaitoh 	/* Turn on DMA completion state machine */
   2068  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2069  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2070  1.149  sborrill 
   2071  1.158   msaitoh 	/* Turn on write DMA state machine */
   2072  1.158   msaitoh 	{
   2073  1.158   msaitoh 		uint32_t bge_wdma_mode =
   2074  1.158   msaitoh 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2075   1.76      cube 
   2076  1.158   msaitoh 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2077  1.158   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2078  1.158   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2079  1.158   msaitoh 			bge_wdma_mode |= (1 << 29);
   2080   1.76      cube 
   2081  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2082  1.158   msaitoh         }
   2083   1.76      cube 
   2084  1.158   msaitoh 	/* Turn on read DMA state machine */
   2085  1.158   msaitoh 	{
   2086  1.158   msaitoh 		uint32_t dma_read_modebits;
   2087   1.91     gavan 
   2088  1.158   msaitoh 		dma_read_modebits =
   2089  1.158   msaitoh 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2090   1.98  jonathan 
   2091  1.158   msaitoh 		if ((sc->bge_flags & BGE_PCIE) && 0) {
   2092  1.158   msaitoh 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2093  1.158   msaitoh 		} else if (BGE_IS_5705_OR_BEYOND(sc)) {
   2094  1.158   msaitoh 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   2095  1.158   msaitoh 		}
   2096  1.119   tsutsui 
   2097  1.158   msaitoh 		/* XXX broadcom-supplied linux driver; undocumented */
   2098  1.158   msaitoh 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   2099  1.158   msaitoh  			/*
   2100  1.158   msaitoh 			 * XXX: magic values.
   2101  1.158   msaitoh 			 * From Broadcom-supplied Linux driver;  apparently
   2102  1.158   msaitoh 			 * required to workaround a DMA bug affecting TSO
   2103  1.158   msaitoh 			 * on bcm575x/bcm5721?
   2104  1.158   msaitoh 			 */
   2105  1.158   msaitoh 			dma_read_modebits |= (1 << 27);
   2106  1.158   msaitoh 		}
   2107  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2108  1.158   msaitoh 	}
   2109  1.128      tron 
   2110  1.158   msaitoh 	/* Turn on RX data completion state machine */
   2111  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2112  1.128      tron 
   2113  1.158   msaitoh 	/* Turn on RX BD initiator state machine */
   2114  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2115  1.133     markd 
   2116  1.158   msaitoh 	/* Turn on RX data and RX BD initiator state machine */
   2117  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2118  1.133     markd 
   2119  1.158   msaitoh 	/* Turn on Mbuf cluster free state machine */
   2120  1.158   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2121  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2122  1.133     markd 
   2123  1.158   msaitoh 	/* Turn on send BD completion state machine */
   2124  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2125  1.133     markd 
   2126  1.158   msaitoh 	/* Turn on send data completion state machine */
   2127  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   2128  1.106  jonathan 
   2129  1.158   msaitoh 	/* Turn on send data initiator state machine */
   2130  1.158   msaitoh 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   2131  1.158   msaitoh 		/* XXX: magic value from Linux driver */
   2132  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2133  1.158   msaitoh 	} else {
   2134  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2135  1.158   msaitoh 	}
   2136  1.106  jonathan 
   2137  1.158   msaitoh 	/* Turn on send BD initiator state machine */
   2138  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2139  1.133     markd 
   2140  1.158   msaitoh 	/* Turn on send BD selector state machine */
   2141  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2142  1.135      taca 
   2143  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2144  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2145  1.158   msaitoh 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   2146  1.133     markd 
   2147  1.158   msaitoh 	/* ack/clear link change events */
   2148  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2149  1.158   msaitoh 	    BGE_MACSTAT_CFG_CHANGED);
   2150  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2151  1.106  jonathan 
   2152  1.158   msaitoh 	/* Enable PHY auto polling (for MII/GMII only) */
   2153  1.158   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2154  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2155  1.158   msaitoh  	} else {
   2156  1.158   msaitoh 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   2157  1.158   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2158  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2159  1.158   msaitoh 			    BGE_EVTENB_MI_INTERRUPT);
   2160  1.158   msaitoh 	}
   2161   1.70      tron 
   2162  1.158   msaitoh 	/* Enable link state change attentions. */
   2163  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2164   1.51      fvdl 
   2165  1.158   msaitoh 	return (0);
   2166  1.158   msaitoh }
   2167    1.7   thorpej 
   2168  1.158   msaitoh static const struct bge_revision *
   2169  1.158   msaitoh bge_lookup_rev(uint32_t chipid)
   2170  1.158   msaitoh {
   2171  1.158   msaitoh 	const struct bge_revision *br;
   2172    1.7   thorpej 
   2173  1.158   msaitoh 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2174  1.158   msaitoh 		if (br->br_chipid == chipid)
   2175  1.158   msaitoh 			return (br);
   2176  1.158   msaitoh 	}
   2177  1.151    cegger 
   2178  1.158   msaitoh 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2179  1.158   msaitoh 		if (br->br_chipid == BGE_ASICREV(chipid))
   2180  1.158   msaitoh 			return (br);
   2181  1.158   msaitoh 	}
   2182  1.151    cegger 
   2183  1.158   msaitoh 	return (NULL);
   2184  1.158   msaitoh }
   2185    1.7   thorpej 
   2186    1.7   thorpej static const struct bge_product *
   2187    1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2188    1.7   thorpej {
   2189    1.7   thorpej 	const struct bge_product *bp;
   2190    1.7   thorpej 
   2191    1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2192    1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2193    1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2194    1.7   thorpej 			return (bp);
   2195    1.7   thorpej 	}
   2196    1.7   thorpej 
   2197    1.7   thorpej 	return (NULL);
   2198    1.7   thorpej }
   2199    1.7   thorpej 
   2200  1.104   thorpej static int
   2201  1.116  christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2202   1.25  jonathan {
   2203   1.25  jonathan #ifdef NOTYET
   2204   1.25  jonathan 	u_int32_t pm_ctl = 0;
   2205   1.25  jonathan 
   2206   1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2207   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2208   1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2209   1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2210   1.25  jonathan 
   2211   1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2212   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2213   1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2214   1.25  jonathan 	pm_ctl |= (1 << 8);
   2215   1.25  jonathan 
   2216   1.25  jonathan 	if (powerlevel == 0) {
   2217   1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2218   1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2219   1.25  jonathan 		    pm_ctl, 2);
   2220   1.25  jonathan 		DELAY(10000);
   2221   1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2222   1.25  jonathan 		DELAY(10000);
   2223   1.25  jonathan 
   2224   1.25  jonathan #ifdef NOTYET
   2225   1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2226   1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2227   1.25  jonathan #endif
   2228   1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2229   1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2230   1.25  jonathan 		return 0;
   2231   1.25  jonathan 	}
   2232   1.25  jonathan 
   2233   1.25  jonathan 
   2234   1.25  jonathan 	/*
   2235   1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2236   1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2237   1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2238   1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2239   1.25  jonathan 	 */
   2240  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   2241  1.138     joerg 	    "power state %d unimplemented; check GPIO pins\n",
   2242  1.138     joerg 	    powerlevel);
   2243   1.25  jonathan #endif
   2244   1.25  jonathan 	return EOPNOTSUPP;
   2245   1.25  jonathan }
   2246   1.25  jonathan 
   2247   1.25  jonathan 
   2248    1.1      fvdl /*
   2249    1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2250    1.1      fvdl  * against our list and return its name if we find a match. Note
   2251    1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2252    1.1      fvdl  * can get the device name string from the controller itself instead
   2253    1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2254    1.1      fvdl  * we'll always announce the right product name.
   2255    1.1      fvdl  */
   2256  1.104   thorpej static int
   2257  1.116  christos bge_probe(device_t parent, cfdata_t match, void *aux)
   2258    1.1      fvdl {
   2259    1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2260    1.1      fvdl 
   2261    1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2262    1.1      fvdl 		return (1);
   2263    1.1      fvdl 
   2264    1.1      fvdl 	return (0);
   2265    1.1      fvdl }
   2266    1.1      fvdl 
   2267  1.104   thorpej static void
   2268  1.116  christos bge_attach(device_t parent, device_t self, void *aux)
   2269    1.1      fvdl {
   2270  1.138     joerg 	struct bge_softc	*sc = device_private(self);
   2271    1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2272    1.7   thorpej 	const struct bge_product *bp;
   2273   1.16   thorpej 	const struct bge_revision *br;
   2274  1.143      tron 	pci_chipset_tag_t	pc;
   2275    1.1      fvdl 	pci_intr_handle_t	ih;
   2276    1.1      fvdl 	const char		*intrstr = NULL;
   2277    1.1      fvdl 	bus_dma_segment_t	seg;
   2278    1.1      fvdl 	int			rseg;
   2279    1.1      fvdl 	u_int32_t		hwcfg = 0;
   2280    1.1      fvdl 	u_int32_t		command;
   2281    1.1      fvdl 	struct ifnet		*ifp;
   2282  1.126  christos 	void *			kva;
   2283    1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2284    1.1      fvdl 	pcireg_t		memtype;
   2285    1.1      fvdl 	bus_addr_t		memaddr;
   2286    1.1      fvdl 	bus_size_t		memsize;
   2287   1.25  jonathan 	u_int32_t		pm_ctl;
   2288   1.87     perry 
   2289    1.7   thorpej 	bp = bge_lookup(pa);
   2290    1.7   thorpej 	KASSERT(bp != NULL);
   2291    1.7   thorpej 
   2292  1.141  jmcneill 	sc->sc_pc = pa->pa_pc;
   2293  1.141  jmcneill 	sc->sc_pcitag = pa->pa_tag;
   2294  1.138     joerg 	sc->bge_dev = self;
   2295    1.1      fvdl 
   2296   1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2297   1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2298    1.1      fvdl 
   2299    1.1      fvdl 	/*
   2300    1.1      fvdl 	 * Map control/status registers.
   2301    1.1      fvdl 	 */
   2302    1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2303  1.143      tron 	pc = sc->sc_pc;
   2304  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2305    1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2306  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2307  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2308    1.1      fvdl 
   2309    1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2310  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2311  1.138     joerg 		    "failed to enable memory mapping!\n");
   2312    1.1      fvdl 		return;
   2313    1.1      fvdl 	}
   2314    1.1      fvdl 
   2315    1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2316  1.141  jmcneill 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2317    1.1      fvdl  	switch (memtype) {
   2318   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2319   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2320    1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2321   1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2322    1.1      fvdl 		    &memaddr, &memsize) == 0)
   2323    1.1      fvdl 			break;
   2324    1.1      fvdl 	default:
   2325  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2326    1.1      fvdl 		return;
   2327    1.1      fvdl 	}
   2328    1.1      fvdl 
   2329    1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2330    1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2331  1.138     joerg 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2332    1.1      fvdl 		return;
   2333    1.1      fvdl 	}
   2334    1.1      fvdl 
   2335    1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2336    1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2337    1.1      fvdl 
   2338    1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2339    1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2340    1.1      fvdl 
   2341    1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2342  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2343  1.138     joerg 		    "couldn't establish interrupt%s%s\n",
   2344  1.138     joerg 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2345    1.1      fvdl 		return;
   2346    1.1      fvdl 	}
   2347  1.138     joerg 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2348    1.1      fvdl 
   2349   1.25  jonathan 	/*
   2350   1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2351   1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2352   1.25  jonathan 	 * leaving the card in D3 powersave state.
   2353   1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2354   1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2355   1.25  jonathan 	 */
   2356  1.141  jmcneill 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2357   1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2358   1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2359  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2360   1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2361   1.25  jonathan 
   2362   1.76      cube 	/*
   2363   1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2364   1.76      cube 	 * ASIC.
   2365   1.76      cube 	 */
   2366   1.76      cube 	sc->bge_chipid =
   2367  1.141  jmcneill 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2368   1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2369   1.76      cube 
   2370   1.76      cube 	/*
   2371   1.76      cube 	 * Detect PCI-Express devices
   2372   1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2373   1.76      cube 	 */
   2374  1.141  jmcneill 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2375  1.108  jonathan 	        NULL, NULL) != 0)
   2376  1.157   msaitoh 		sc->bge_flags |= BGE_PCIE;
   2377  1.157   msaitoh 
   2378  1.157   msaitoh 	/*
   2379  1.157   msaitoh 	 * PCI-X check.
   2380  1.157   msaitoh 	 */
   2381  1.157   msaitoh 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2382  1.157   msaitoh 		BGE_PCISTATE_PCI_BUSMODE) == 0)
   2383  1.157   msaitoh 		sc->bge_flags |= BGE_PCIX;
   2384   1.76      cube 
   2385    1.1      fvdl 	/* Try to reset the chip. */
   2386    1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2387    1.1      fvdl 	bge_reset(sc);
   2388    1.1      fvdl 
   2389    1.1      fvdl 	if (bge_chipinit(sc)) {
   2390  1.138     joerg 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2391    1.1      fvdl 		bge_release_resources(sc);
   2392    1.1      fvdl 		return;
   2393    1.1      fvdl 	}
   2394    1.1      fvdl 
   2395    1.1      fvdl 	/*
   2396    1.1      fvdl 	 * Get station address from the EEPROM.
   2397    1.1      fvdl 	 */
   2398  1.151    cegger 	if (bge_get_eaddr(sc, eaddr)) {
   2399  1.151    cegger 		aprint_error_dev(sc->bge_dev,
   2400  1.151    cegger 		"failed to reade station address\n");
   2401    1.1      fvdl 		bge_release_resources(sc);
   2402    1.1      fvdl 		return;
   2403    1.1      fvdl 	}
   2404    1.1      fvdl 
   2405   1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2406   1.51      fvdl 
   2407   1.16   thorpej 	if (br == NULL) {
   2408  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2409  1.138     joerg 		    sc->bge_chipid >> 16);
   2410   1.16   thorpej 	} else {
   2411  1.138     joerg 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2412   1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2413   1.16   thorpej 	}
   2414   1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2415    1.1      fvdl 
   2416    1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2417   1.41      fvdl 	if (pci_dma64_available(pa))
   2418   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2419   1.41      fvdl 	else
   2420   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2421    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2422    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2423    1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2424  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2425    1.1      fvdl 		return;
   2426    1.1      fvdl 	}
   2427    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2428    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2429    1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2430    1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2431  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2432  1.138     joerg 		    "can't map DMA buffers (%zu bytes)\n",
   2433  1.138     joerg 		    sizeof(struct bge_ring_data));
   2434    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2435    1.1      fvdl 		return;
   2436    1.1      fvdl 	}
   2437    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2438    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2439    1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2440    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2441  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2442    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2443    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2444    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2445    1.1      fvdl 		return;
   2446    1.1      fvdl 	}
   2447    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2448    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2449    1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2450    1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2451    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2452    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2453    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2454    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2455    1.1      fvdl 		return;
   2456    1.1      fvdl 	}
   2457    1.1      fvdl 
   2458    1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2459    1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2460    1.1      fvdl 
   2461   1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2462    1.1      fvdl 
   2463    1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2464  1.157   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   2465   1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2466  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   2467  1.138     joerg 			    "jumbo buffer allocation failed\n");
   2468   1.44   hannken 		} else
   2469   1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2470   1.44   hannken 	}
   2471    1.1      fvdl 
   2472    1.1      fvdl 	/* Set default tuneable values. */
   2473    1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2474    1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2475   1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2476   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2477    1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2478    1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2479   1.25  jonathan #else
   2480   1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2481   1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2482   1.25  jonathan #endif
   2483  1.157   msaitoh 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   2484   1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2485  1.146   mlelstv 		sc->bge_tx_max_coal_bds = (12 * 5);
   2486  1.138     joerg 			aprint_verbose_dev(sc->bge_dev,
   2487  1.138     joerg 			    "setting short Tx thresholds\n");
   2488   1.95  jonathan 	}
   2489    1.1      fvdl 
   2490    1.1      fvdl 	/* Set up ifnet structure */
   2491    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2492    1.1      fvdl 	ifp->if_softc = sc;
   2493    1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2494    1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2495  1.141  jmcneill 	ifp->if_stop = bge_stop;
   2496    1.1      fvdl 	ifp->if_start = bge_start;
   2497    1.1      fvdl 	ifp->if_init = bge_init;
   2498    1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2499   1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2500    1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2501  1.115   tsutsui 	DPRINTFN(5, ("strcpy if_xname\n"));
   2502  1.138     joerg 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2503    1.1      fvdl 
   2504  1.157   msaitoh 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2505   1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2506   1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2507   1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2508   1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2509   1.87     perry 	sc->ethercom.ec_capabilities |=
   2510    1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2511    1.1      fvdl 
   2512  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE)
   2513   1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2514   1.95  jonathan 
   2515    1.1      fvdl 	/*
   2516    1.1      fvdl 	 * Do MII setup.
   2517    1.1      fvdl 	 */
   2518    1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2519    1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2520    1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2521    1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2522    1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2523    1.1      fvdl 
   2524    1.1      fvdl 	/*
   2525    1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2526   1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2527   1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2528    1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2529    1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2530    1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2531    1.1      fvdl 	 */
   2532   1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2533   1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2534   1.35  jonathan 	} else {
   2535  1.126  christos 		bge_read_eeprom(sc, (void *)&hwcfg,
   2536    1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2537   1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2538   1.35  jonathan 	}
   2539   1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2540  1.157   msaitoh 		sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2541    1.1      fvdl 
   2542    1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2543  1.141  jmcneill 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2544    1.1      fvdl 	    SK_SUBSYSID_9D41)
   2545  1.157   msaitoh 		sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2546    1.1      fvdl 
   2547  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2548    1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2549    1.1      fvdl 		    bge_ifmedia_sts);
   2550    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2551    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2552    1.1      fvdl 			    0, NULL);
   2553    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2554    1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2555  1.155        he 		/* Pretend the user requested this setting */
   2556  1.155        he 		sc->bge_ifmedia.ifm_media =
   2557  1.155        he 			sc->bge_ifmedia.ifm_cur->ifm_media;
   2558    1.1      fvdl 	} else {
   2559    1.1      fvdl 		/*
   2560    1.1      fvdl 		 * Do transceiver setup.
   2561    1.1      fvdl 		 */
   2562    1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2563    1.1      fvdl 			     bge_ifmedia_sts);
   2564  1.138     joerg 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2565   1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2566   1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2567   1.87     perry 
   2568  1.142    dyoung 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2569  1.138     joerg 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2570    1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2571    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2572    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2573    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2574    1.1      fvdl 		} else
   2575    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2576    1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2577    1.1      fvdl 	}
   2578    1.1      fvdl 
   2579    1.1      fvdl 	/*
   2580   1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2581   1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2582   1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2583   1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2584   1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2585   1.37  jonathan 	 * payloads by copying the received packets.
   2586   1.37  jonathan 	 */
   2587  1.157   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2588  1.157   msaitoh 		sc->bge_flags & BGE_PCIX)
   2589  1.157   msaitoh 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2590   1.37  jonathan 
   2591   1.37  jonathan 	/*
   2592    1.1      fvdl 	 * Call MI attach routine.
   2593    1.1      fvdl 	 */
   2594    1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2595    1.1      fvdl 	if_attach(ifp);
   2596    1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2597    1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2598  1.148   mlelstv #if NRND > 0
   2599  1.148   mlelstv 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2600  1.148   mlelstv 		RND_TYPE_NET, 0);
   2601  1.148   mlelstv #endif
   2602   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2603   1.72   thorpej 	/*
   2604   1.72   thorpej 	 * Attach event counters.
   2605   1.72   thorpej 	 */
   2606   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2607  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "intr");
   2608   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2609  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2610   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2611  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2612   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2613  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2614   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2615  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2616   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2617  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2618   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2619  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2620   1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2621    1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2622  1.132        ad 	callout_init(&sc->bge_timeout, 0);
   2623   1.82  jmcneill 
   2624  1.141  jmcneill 	if (!pmf_device_register(self, NULL, NULL))
   2625  1.141  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
   2626  1.141  jmcneill 	else
   2627  1.141  jmcneill 		pmf_class_network_register(self, ifp);
   2628    1.1      fvdl }
   2629    1.1      fvdl 
   2630  1.104   thorpej static void
   2631  1.104   thorpej bge_release_resources(struct bge_softc *sc)
   2632    1.1      fvdl {
   2633    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2634    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2635    1.1      fvdl 
   2636    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2637    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2638    1.1      fvdl }
   2639    1.1      fvdl 
   2640  1.104   thorpej static void
   2641  1.104   thorpej bge_reset(struct bge_softc *sc)
   2642    1.1      fvdl {
   2643   1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2644   1.76      cube 	int i, val;
   2645  1.151    cegger 	void (*write_op)(struct bge_softc *, int, int);
   2646  1.151    cegger 
   2647  1.151    cegger 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2648  1.151    cegger 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2649  1.157   msaitoh 	    	if (sc->bge_flags & BGE_PCIE) {
   2650  1.151    cegger 			write_op = bge_writemem_direct;
   2651  1.151    cegger 		} else {
   2652  1.151    cegger 			write_op = bge_writemem_ind;
   2653  1.151    cegger 		}
   2654  1.151    cegger 	} else {
   2655  1.151    cegger 		write_op = bge_writereg_ind;
   2656  1.151    cegger 	}
   2657  1.151    cegger 
   2658    1.1      fvdl 
   2659    1.1      fvdl 	/* Save some important PCI state. */
   2660  1.141  jmcneill 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2661  1.141  jmcneill 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2662  1.141  jmcneill 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2663    1.1      fvdl 
   2664  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2665    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2666    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2667    1.1      fvdl 
   2668  1.119   tsutsui 	/*
   2669  1.119   tsutsui 	 * Disable the firmware fastboot feature on 5752 ASIC
   2670  1.119   tsutsui 	 * to avoid firmware timeout.
   2671  1.119   tsutsui 	 */
   2672  1.134     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2673  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2674  1.134     markd 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2675  1.119   tsutsui 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2676  1.119   tsutsui 
   2677   1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2678   1.76      cube 	/*
   2679   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2680   1.76      cube 	 */
   2681  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   2682   1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2683  1.157   msaitoh 			/* PCI Express 1.0 system */
   2684   1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2685   1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2686  1.157   msaitoh 			/*
   2687  1.157   msaitoh 			 * Prevent PCI Express link training
   2688  1.157   msaitoh 			 * during global reset.
   2689  1.157   msaitoh 			 */
   2690   1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2691   1.76      cube 			val |= (1<<29);
   2692   1.76      cube 		}
   2693   1.76      cube 	}
   2694   1.76      cube 
   2695    1.1      fvdl 	/* Issue global reset */
   2696  1.151    cegger 	write_op(sc, BGE_MISC_CFG, val);
   2697  1.151    cegger 
   2698  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2699  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2700  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2701  1.151    cegger 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2702  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2703  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2704  1.151    cegger 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2705  1.151    cegger 	}
   2706  1.151    cegger 
   2707  1.151    cegger 
   2708    1.1      fvdl 
   2709    1.1      fvdl 	DELAY(1000);
   2710    1.1      fvdl 
   2711   1.76      cube 	/*
   2712   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2713   1.76      cube 	 */
   2714  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   2715   1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2716   1.76      cube 			pcireg_t reg;
   2717   1.76      cube 
   2718   1.76      cube 			DELAY(500000);
   2719   1.76      cube 			/* XXX: Magic Numbers */
   2720  1.141  jmcneill 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   2721  1.141  jmcneill 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   2722   1.76      cube 			    reg | (1 << 15));
   2723   1.76      cube 		}
   2724   1.95  jonathan 		/*
   2725   1.95  jonathan 		 * XXX: Magic Numbers.
   2726   1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2727   1.95  jonathan 		 * Should be replaced with references to PCI config-space
   2728   1.95  jonathan 		 * capability block for PCI-Express.
   2729   1.95  jonathan 		 */
   2730  1.141  jmcneill 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2731   1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2732   1.95  jonathan 
   2733   1.76      cube 	}
   2734   1.76      cube 
   2735    1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2736  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2737    1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2738    1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2739  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   2740  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   2741  1.151    cegger 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   2742    1.1      fvdl 
   2743    1.1      fvdl 	/* Enable memory arbiter. */
   2744  1.109  jonathan 	{
   2745   1.99  jonathan 		uint32_t marbmode = 0;
   2746   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2747  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2748   1.99  jonathan 		}
   2749   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2750   1.44   hannken 	}
   2751    1.1      fvdl 
   2752  1.139   msaitoh 
   2753  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2754  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2755  1.151    cegger 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2756  1.151    cegger 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2757  1.151    cegger 				break;
   2758  1.151    cegger 			DELAY(100);
   2759  1.151    cegger 		}
   2760  1.151    cegger 		if (i == BGE_TIMEOUT) {
   2761  1.151    cegger 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2762  1.151    cegger 			return;
   2763  1.151    cegger 		}
   2764  1.151    cegger 	} else {
   2765  1.151    cegger 		/*
   2766  1.151    cegger 		 * Write the magic number to the firmware mailbox at 0xb50
   2767  1.151    cegger 		 * so that the driver can synchronize with the firmware.
   2768  1.151    cegger 		 */
   2769  1.151    cegger 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2770    1.1      fvdl 
   2771   1.95  jonathan 		/*
   2772  1.151    cegger 		 * Poll the value location we just wrote until
   2773  1.151    cegger 		 * we see the 1's complement of the magic number.
   2774  1.151    cegger 		 * This indicates that the firmware initialization
   2775  1.151    cegger 		 * is complete.
   2776   1.95  jonathan 		 */
   2777  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2778  1.151    cegger 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2779  1.151    cegger 			if (val == ~BGE_MAGIC_NUMBER)
   2780  1.151    cegger 				break;
   2781  1.151    cegger 			DELAY(1000);
   2782  1.151    cegger 		}
   2783  1.151    cegger 
   2784  1.151    cegger 		if (i >= BGE_TIMEOUT) {
   2785  1.151    cegger 			aprint_error_dev(sc->bge_dev,
   2786  1.151    cegger 			    "firmware handshake timed out, val = %x\n", val);
   2787  1.151    cegger 			/*
   2788  1.151    cegger 			 * XXX: occasionally fired on bcm5721, but without
   2789  1.151    cegger 			 * apparent harm.  For now, keep going if we timeout
   2790  1.151    cegger 			 * against PCI-E devices.
   2791  1.151    cegger 			 */
   2792  1.157   msaitoh 			if ((sc->bge_flags & BGE_PCIE) == 0)
   2793  1.151    cegger 				  return;
   2794  1.151    cegger 		}
   2795    1.1      fvdl 	}
   2796    1.1      fvdl 
   2797    1.1      fvdl 	/*
   2798    1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2799    1.1      fvdl 	 * return to its original pre-reset state. This is a
   2800    1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2801    1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2802    1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2803    1.1      fvdl 	 * results.
   2804    1.1      fvdl 	 */
   2805  1.139   msaitoh 	for (i = 0; i < 10000; i++) {
   2806  1.141  jmcneill 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2807   1.61  jonathan 		    BGE_PCI_PCISTATE);
   2808   1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2809   1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2810    1.1      fvdl 			break;
   2811    1.1      fvdl 		DELAY(10);
   2812    1.1      fvdl 	}
   2813   1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2814   1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2815  1.138     joerg 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2816   1.61  jonathan 	}
   2817    1.1      fvdl 
   2818   1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   2819  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE &&
   2820  1.157   msaitoh 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2821   1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2822   1.76      cube 
   2823    1.1      fvdl 	/* Enable memory arbiter. */
   2824  1.109  jonathan 	/* XXX why do this twice? */
   2825  1.109  jonathan 	{
   2826   1.99  jonathan 		uint32_t marbmode = 0;
   2827   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   2828  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2829   1.99  jonathan 		}
   2830   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2831   1.44   hannken 	}
   2832    1.1      fvdl 
   2833    1.1      fvdl 	/* Fix up byte swapping */
   2834    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2835    1.1      fvdl 
   2836    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2837    1.1      fvdl 
   2838    1.1      fvdl 	DELAY(10000);
   2839    1.1      fvdl }
   2840    1.1      fvdl 
   2841    1.1      fvdl /*
   2842    1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2843    1.1      fvdl  * on the receive return list.
   2844    1.1      fvdl  *
   2845    1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2846    1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2847    1.1      fvdl  * 2) the frame is from the standard receive ring
   2848    1.1      fvdl  */
   2849    1.1      fvdl 
   2850  1.104   thorpej static void
   2851  1.104   thorpej bge_rxeof(struct bge_softc *sc)
   2852    1.1      fvdl {
   2853    1.1      fvdl 	struct ifnet *ifp;
   2854    1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2855    1.1      fvdl 	bus_dmamap_t dmamap;
   2856    1.1      fvdl 	bus_addr_t offset, toff;
   2857    1.1      fvdl 	bus_size_t tlen;
   2858    1.1      fvdl 	int tosync;
   2859    1.1      fvdl 
   2860    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2861    1.1      fvdl 
   2862    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2863    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2864    1.1      fvdl 	    sizeof (struct bge_status_block),
   2865    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2866    1.1      fvdl 
   2867    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2868   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2869    1.1      fvdl 	    sc->bge_rx_saved_considx;
   2870    1.1      fvdl 
   2871  1.148   mlelstv #if NRND > 0
   2872  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   2873  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   2874  1.148   mlelstv #endif
   2875  1.148   mlelstv 
   2876    1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2877    1.1      fvdl 
   2878    1.1      fvdl 	if (tosync < 0) {
   2879   1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2880    1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2881    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2882    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2883    1.1      fvdl 		tosync = -tosync;
   2884    1.1      fvdl 	}
   2885    1.1      fvdl 
   2886    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2887    1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2888    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2889    1.1      fvdl 
   2890    1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   2891    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2892    1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   2893    1.1      fvdl 		u_int32_t		rxidx;
   2894    1.1      fvdl 		struct mbuf		*m = NULL;
   2895    1.1      fvdl 
   2896    1.1      fvdl 		cur_rx = &sc->bge_rdata->
   2897    1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2898    1.1      fvdl 
   2899    1.1      fvdl 		rxidx = cur_rx->bge_idx;
   2900   1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2901    1.1      fvdl 
   2902    1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2903    1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2904    1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2905    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2906    1.1      fvdl 			jumbocnt++;
   2907  1.124    bouyer 			bus_dmamap_sync(sc->bge_dmatag,
   2908  1.124    bouyer 			    sc->bge_cdata.bge_rx_jumbo_map,
   2909  1.126  christos 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   2910  1.125    bouyer 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   2911    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2912    1.1      fvdl 				ifp->if_ierrors++;
   2913    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2914    1.1      fvdl 				continue;
   2915    1.1      fvdl 			}
   2916    1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2917    1.1      fvdl 					     NULL)== ENOBUFS) {
   2918    1.1      fvdl 				ifp->if_ierrors++;
   2919    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2920    1.1      fvdl 				continue;
   2921    1.1      fvdl 			}
   2922    1.1      fvdl 		} else {
   2923    1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2924    1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2925  1.124    bouyer 
   2926    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2927    1.1      fvdl 			stdcnt++;
   2928    1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2929    1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2930  1.125    bouyer 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   2931  1.125    bouyer 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2932  1.125    bouyer 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   2933    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2934    1.1      fvdl 				ifp->if_ierrors++;
   2935    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2936    1.1      fvdl 				continue;
   2937    1.1      fvdl 			}
   2938    1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2939    1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   2940    1.1      fvdl 				ifp->if_ierrors++;
   2941    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2942    1.1      fvdl 				continue;
   2943    1.1      fvdl 			}
   2944    1.1      fvdl 		}
   2945    1.1      fvdl 
   2946    1.1      fvdl 		ifp->if_ipackets++;
   2947   1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   2948   1.37  jonathan                 /*
   2949   1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2950   1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   2951   1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   2952   1.37  jonathan                  */
   2953  1.157   msaitoh 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   2954  1.127   tsutsui 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   2955   1.37  jonathan                                 cur_rx->bge_len);
   2956   1.37  jonathan 			m->m_data += ETHER_ALIGN;
   2957   1.37  jonathan 		}
   2958   1.37  jonathan #endif
   2959   1.87     perry 
   2960   1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2961    1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   2962    1.1      fvdl 
   2963    1.1      fvdl #if NBPFILTER > 0
   2964    1.1      fvdl 		/*
   2965    1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2966    1.1      fvdl 		 */
   2967    1.1      fvdl 		if (ifp->if_bpf)
   2968    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   2969    1.1      fvdl #endif
   2970    1.1      fvdl 
   2971   1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2972   1.46  jonathan 
   2973   1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2974   1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2975   1.46  jonathan 		/*
   2976   1.46  jonathan 		 * Rx transport checksum-offload may also
   2977   1.46  jonathan 		 * have bugs with packets which, when transmitted,
   2978   1.46  jonathan 		 * were `runts' requiring padding.
   2979   1.46  jonathan 		 */
   2980   1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2981   1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2982   1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2983   1.46  jonathan 			m->m_pkthdr.csum_data =
   2984   1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   2985   1.46  jonathan 			m->m_pkthdr.csum_flags |=
   2986   1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2987   1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2988    1.1      fvdl 		}
   2989    1.1      fvdl 
   2990    1.1      fvdl 		/*
   2991    1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   2992    1.1      fvdl 		 * to vlan_input() instead of ether_input().
   2993    1.1      fvdl 		 */
   2994  1.150       dsl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2995   1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   2996  1.150       dsl 		}
   2997    1.1      fvdl 
   2998    1.1      fvdl 		(*ifp->if_input)(ifp, m);
   2999    1.1      fvdl 	}
   3000    1.1      fvdl 
   3001  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3002    1.1      fvdl 	if (stdcnt)
   3003  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3004    1.1      fvdl 	if (jumbocnt)
   3005  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3006    1.1      fvdl }
   3007    1.1      fvdl 
   3008  1.104   thorpej static void
   3009  1.104   thorpej bge_txeof(struct bge_softc *sc)
   3010    1.1      fvdl {
   3011    1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   3012    1.1      fvdl 	struct ifnet *ifp;
   3013    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3014    1.1      fvdl 	bus_addr_t offset, toff;
   3015    1.1      fvdl 	bus_size_t tlen;
   3016    1.1      fvdl 	int tosync;
   3017    1.1      fvdl 	struct mbuf *m;
   3018    1.1      fvdl 
   3019    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3020    1.1      fvdl 
   3021    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3022    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3023    1.1      fvdl 	    sizeof (struct bge_status_block),
   3024    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3025    1.1      fvdl 
   3026    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3027   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3028    1.1      fvdl 	    sc->bge_tx_saved_considx;
   3029    1.1      fvdl 
   3030  1.148   mlelstv #if NRND > 0
   3031  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3032  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   3033  1.148   mlelstv #endif
   3034  1.148   mlelstv 
   3035    1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3036    1.1      fvdl 
   3037    1.1      fvdl 	if (tosync < 0) {
   3038    1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3039    1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3040    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3041    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3042    1.1      fvdl 		tosync = -tosync;
   3043    1.1      fvdl 	}
   3044    1.1      fvdl 
   3045    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3046    1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3047    1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3048    1.1      fvdl 
   3049    1.1      fvdl 	/*
   3050    1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3051    1.1      fvdl 	 * frames that have been sent.
   3052    1.1      fvdl 	 */
   3053    1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3054    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3055    1.1      fvdl 		u_int32_t		idx = 0;
   3056    1.1      fvdl 
   3057    1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3058    1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3059    1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3060    1.1      fvdl 			ifp->if_opackets++;
   3061    1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3062    1.1      fvdl 		if (m != NULL) {
   3063    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3064    1.1      fvdl 			dma = sc->txdma[idx];
   3065    1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3066    1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3067    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3068    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3069    1.1      fvdl 			sc->txdma[idx] = NULL;
   3070    1.1      fvdl 
   3071    1.1      fvdl 			m_freem(m);
   3072    1.1      fvdl 		}
   3073    1.1      fvdl 		sc->bge_txcnt--;
   3074    1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3075    1.1      fvdl 		ifp->if_timer = 0;
   3076    1.1      fvdl 	}
   3077    1.1      fvdl 
   3078    1.1      fvdl 	if (cur_tx != NULL)
   3079    1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3080    1.1      fvdl }
   3081    1.1      fvdl 
   3082  1.104   thorpej static int
   3083  1.104   thorpej bge_intr(void *xsc)
   3084    1.1      fvdl {
   3085    1.1      fvdl 	struct bge_softc *sc;
   3086    1.1      fvdl 	struct ifnet *ifp;
   3087    1.1      fvdl 
   3088    1.1      fvdl 	sc = xsc;
   3089    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3090    1.1      fvdl 
   3091  1.144   mlelstv 	/*
   3092  1.144   mlelstv 	 * Ascertain whether the interrupt is from this bge device.
   3093  1.144   mlelstv 	 * Do the cheap test first.
   3094  1.144   mlelstv 	 */
   3095  1.144   mlelstv 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3096  1.144   mlelstv 	    BGE_STATFLAG_UPDATED) == 0) {
   3097  1.144   mlelstv 		/*
   3098  1.144   mlelstv 		 * Sometimes, the interrupt comes in before the
   3099  1.144   mlelstv 		 * DMA update of the status block (performed prior
   3100  1.144   mlelstv 		 * to the  interrupt itself) has completed.
   3101  1.144   mlelstv 		 * In that case, do the (extremely expensive!)
   3102  1.144   mlelstv 		 * PCI-config-space register read.
   3103  1.144   mlelstv 		 */
   3104  1.144   mlelstv 		uint32_t pcistate =
   3105  1.144   mlelstv 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3106  1.144   mlelstv 
   3107  1.144   mlelstv 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3108  1.144   mlelstv 			return (0);
   3109  1.144   mlelstv 
   3110  1.144   mlelstv 	}
   3111  1.144   mlelstv 	/*
   3112  1.144   mlelstv 	 *  If we reach here, then the interrupt is for us.
   3113  1.144   mlelstv 	 */
   3114  1.144   mlelstv 
   3115    1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   3116  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3117    1.1      fvdl 
   3118   1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3119   1.72   thorpej 
   3120    1.1      fvdl 	/*
   3121    1.1      fvdl 	 * Process link state changes.
   3122    1.1      fvdl 	 * Grrr. The link status word in the status block does
   3123    1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3124  1.101     skrll 	 * according to all available information. Hence, we have
   3125    1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   3126    1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   3127    1.1      fvdl 	 * we have to read the MAC status register to detect link
   3128    1.1      fvdl 	 * changes, thereby adding an additional register access to
   3129    1.1      fvdl 	 * the interrupt handler.
   3130    1.1      fvdl 	 */
   3131    1.1      fvdl 
   3132  1.157   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3133    1.1      fvdl 		u_int32_t		status;
   3134    1.1      fvdl 
   3135    1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3136    1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3137    1.1      fvdl 			sc->bge_link = 0;
   3138    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3139    1.1      fvdl 			bge_tick(sc);
   3140    1.1      fvdl 			/* Clear the interrupt */
   3141    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3142    1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3143  1.138     joerg 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3144  1.138     joerg 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3145    1.1      fvdl 			    BRGPHY_INTRS);
   3146    1.1      fvdl 		}
   3147    1.1      fvdl 	} else {
   3148  1.144   mlelstv 		u_int32_t		status;
   3149  1.144   mlelstv 
   3150  1.144   mlelstv 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3151  1.144   mlelstv 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3152    1.1      fvdl 			sc->bge_link = 0;
   3153    1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3154    1.1      fvdl 			bge_tick(sc);
   3155    1.1      fvdl 			/* Clear the interrupt */
   3156    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3157   1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3158   1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3159    1.1      fvdl 		}
   3160    1.1      fvdl 	}
   3161    1.1      fvdl 
   3162    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3163    1.1      fvdl 		/* Check RX return ring producer/consumer */
   3164    1.1      fvdl 		bge_rxeof(sc);
   3165    1.1      fvdl 
   3166    1.1      fvdl 		/* Check TX ring producer/consumer */
   3167    1.1      fvdl 		bge_txeof(sc);
   3168    1.1      fvdl 	}
   3169    1.1      fvdl 
   3170   1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3171   1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3172   1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3173   1.58  jonathan 		uint32_t junk;
   3174   1.58  jonathan 
   3175   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3176   1.58  jonathan 		DELAY(10);
   3177   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3178   1.87     perry 
   3179   1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3180   1.58  jonathan 		DELAY(10);
   3181   1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3182   1.58  jonathan 
   3183   1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3184   1.58  jonathan 	}
   3185    1.1      fvdl 	bge_handle_events(sc);
   3186    1.1      fvdl 
   3187    1.1      fvdl 	/* Re-enable interrupts. */
   3188  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3189    1.1      fvdl 
   3190    1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3191    1.1      fvdl 		bge_start(ifp);
   3192    1.1      fvdl 
   3193    1.1      fvdl 	return (1);
   3194    1.1      fvdl }
   3195    1.1      fvdl 
   3196  1.104   thorpej static void
   3197  1.104   thorpej bge_tick(void *xsc)
   3198    1.1      fvdl {
   3199    1.1      fvdl 	struct bge_softc *sc = xsc;
   3200    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3201    1.1      fvdl 	int s;
   3202    1.1      fvdl 
   3203    1.1      fvdl 	s = splnet();
   3204    1.1      fvdl 
   3205    1.1      fvdl 	bge_stats_update(sc);
   3206    1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3207    1.1      fvdl 
   3208  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3209    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3210    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3211    1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3212    1.1      fvdl 		}
   3213  1.147   mlelstv 	} else
   3214  1.147   mlelstv 		mii_tick(mii);
   3215    1.1      fvdl 
   3216    1.1      fvdl 	splx(s);
   3217    1.1      fvdl }
   3218    1.1      fvdl 
   3219  1.104   thorpej static void
   3220  1.104   thorpej bge_stats_update(struct bge_softc *sc)
   3221    1.1      fvdl {
   3222    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3223    1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3224   1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3225   1.44   hannken 
   3226   1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3227   1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3228    1.1      fvdl 
   3229  1.157   msaitoh 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   3230   1.44   hannken 		ifp->if_collisions +=
   3231   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3232   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3233   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3234   1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3235   1.72   thorpej 
   3236   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3237   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3238   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3239   1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3240   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3241   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3242   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3243   1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3244   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3245   1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3246   1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3247   1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3248   1.44   hannken 		return;
   3249   1.44   hannken 	}
   3250   1.44   hannken 
   3251   1.44   hannken #undef READ_RSTAT
   3252    1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3253    1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3254    1.1      fvdl 
   3255    1.1      fvdl 	ifp->if_collisions +=
   3256    1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3257    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3258    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3259    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3260    1.1      fvdl 	  ifp->if_collisions;
   3261    1.1      fvdl 
   3262   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3263   1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3264   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3265   1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3266   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3267   1.72   thorpej 		      READ_STAT(sc, stats,
   3268   1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3269   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3270   1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3271   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3272   1.72   thorpej 		      READ_STAT(sc, stats,
   3273   1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3274   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3275   1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3276   1.72   thorpej 
   3277    1.1      fvdl #undef READ_STAT
   3278    1.1      fvdl 
   3279    1.1      fvdl #ifdef notdef
   3280    1.1      fvdl 	ifp->if_collisions +=
   3281    1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3282    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3283    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3284    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3285    1.1      fvdl 	   ifp->if_collisions;
   3286    1.1      fvdl #endif
   3287    1.1      fvdl }
   3288    1.1      fvdl 
   3289   1.46  jonathan /*
   3290   1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3291   1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3292   1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3293   1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3294   1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3295   1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3296   1.46  jonathan  */
   3297  1.102     perry static inline int
   3298   1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3299   1.46  jonathan {
   3300   1.46  jonathan 	struct mbuf *last = NULL;
   3301   1.46  jonathan 	int padlen;
   3302   1.46  jonathan 
   3303   1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3304   1.46  jonathan 
   3305   1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3306   1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3307  1.113   tsutsui 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3308   1.46  jonathan 		last = pkt;
   3309   1.46  jonathan 	} else {
   3310   1.46  jonathan 		/*
   3311   1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3312   1.87     perry 		 * pad there, or append a new mbuf and pad it
   3313   1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3314   1.46  jonathan 		 */
   3315   1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3316  1.114   tsutsui 	      	       continue; /* do nothing */
   3317   1.46  jonathan 		}
   3318   1.46  jonathan 
   3319   1.46  jonathan 		/* `last' now points to last in chain. */
   3320  1.114   tsutsui 		if (M_TRAILINGSPACE(last) < padlen) {
   3321   1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3322   1.46  jonathan 			struct mbuf *n;
   3323   1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3324  1.129     joerg 			if (n == NULL)
   3325  1.129     joerg 				return ENOBUFS;
   3326   1.46  jonathan 			n->m_len = 0;
   3327   1.46  jonathan 			last->m_next = n;
   3328   1.46  jonathan 			last = n;
   3329   1.46  jonathan 		}
   3330   1.46  jonathan 	}
   3331   1.46  jonathan 
   3332  1.114   tsutsui 	KDASSERT(!M_READONLY(last));
   3333  1.114   tsutsui 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3334  1.114   tsutsui 
   3335   1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3336  1.126  christos 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3337   1.46  jonathan 	last->m_len += padlen;
   3338   1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3339   1.46  jonathan 	return 0;
   3340   1.46  jonathan }
   3341   1.45  jonathan 
   3342   1.45  jonathan /*
   3343   1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3344   1.45  jonathan  */
   3345  1.102     perry static inline int
   3346   1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3347   1.45  jonathan {
   3348   1.45  jonathan 	struct mbuf	*m, *prev;
   3349   1.45  jonathan 	int 		totlen, prevlen;
   3350   1.45  jonathan 
   3351   1.45  jonathan 	prev = NULL;
   3352   1.45  jonathan 	totlen = 0;
   3353   1.45  jonathan 	prevlen = -1;
   3354   1.45  jonathan 
   3355   1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3356   1.45  jonathan 		int mlen = m->m_len;
   3357   1.45  jonathan 		int shortfall = 8 - mlen ;
   3358   1.45  jonathan 
   3359   1.45  jonathan 		totlen += mlen;
   3360   1.45  jonathan 		if (mlen == 0) {
   3361   1.45  jonathan 			continue;
   3362   1.45  jonathan 		}
   3363   1.45  jonathan 		if (mlen >= 8)
   3364   1.45  jonathan 			continue;
   3365   1.45  jonathan 
   3366   1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3367   1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3368   1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3369   1.45  jonathan 		 */
   3370   1.45  jonathan 
   3371   1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3372  1.113   tsutsui 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3373  1.115   tsutsui 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3374   1.45  jonathan 			prev->m_len += mlen;
   3375   1.45  jonathan 			m->m_len = 0;
   3376   1.45  jonathan 			/* XXX stitch chain */
   3377   1.45  jonathan 			prev->m_next = m_free(m);
   3378   1.45  jonathan 			m = prev;
   3379   1.45  jonathan 			continue;
   3380   1.45  jonathan 		}
   3381  1.113   tsutsui 		else if (m->m_next != NULL &&
   3382   1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3383   1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3384   1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3385   1.45  jonathan 
   3386  1.115   tsutsui 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3387  1.115   tsutsui 			    shortfall);
   3388   1.45  jonathan 			m->m_len += shortfall;
   3389   1.45  jonathan 			m->m_next->m_len -= shortfall;
   3390   1.45  jonathan 			m->m_next->m_data += shortfall;
   3391   1.45  jonathan 		}
   3392   1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3393   1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3394   1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3395   1.45  jonathan 			 * update its length in-place. (The original data is still
   3396   1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3397   1.45  jonathan 			 */
   3398   1.45  jonathan 
   3399   1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3400   1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3401   1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3402  1.111  christos 
   3403   1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3404   1.45  jonathan 				shortfall = prev->m_len;
   3405   1.87     perry 
   3406   1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3407   1.45  jonathan 			if (!M_READONLY(m)) {
   3408   1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3409   1.45  jonathan 					void *m_dat;
   3410   1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3411   1.45  jonathan 					  m->m_pktdat : m->dat;
   3412   1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3413   1.45  jonathan 					m->m_data = m_dat;
   3414   1.45  jonathan 				    }
   3415   1.45  jonathan 			} else
   3416   1.45  jonathan #endif	/* just do the safe slow thing */
   3417   1.45  jonathan 			{
   3418   1.45  jonathan 				struct mbuf * n = NULL;
   3419   1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3420   1.45  jonathan 
   3421   1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3422   1.45  jonathan 				if (n == NULL)
   3423   1.45  jonathan 				   return ENOBUFS;
   3424   1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3425   1.45  jonathan 					/*,
   3426   1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3427   1.45  jonathan 
   3428   1.45  jonathan 				/* first copy the data we're stealing from prev */
   3429  1.115   tsutsui 				memcpy(n->m_data, prev->m_data + newprevlen,
   3430  1.115   tsutsui 				    shortfall);
   3431   1.45  jonathan 
   3432   1.45  jonathan 				/* update prev->m_len accordingly */
   3433   1.45  jonathan 				prev->m_len -= shortfall;
   3434   1.45  jonathan 
   3435   1.45  jonathan 				/* copy data from runt m */
   3436  1.115   tsutsui 				memcpy(n->m_data + shortfall, m->m_data,
   3437  1.115   tsutsui 				    m->m_len);
   3438   1.45  jonathan 
   3439   1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3440   1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3441   1.45  jonathan 
   3442   1.45  jonathan 				/* stitch n into chain and free m */
   3443   1.45  jonathan 				n->m_next = m->m_next;
   3444   1.45  jonathan 				prev->m_next = n;
   3445   1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3446   1.45  jonathan 				m->m_next = NULL;
   3447   1.45  jonathan 				m_free(m);
   3448   1.45  jonathan 				m = n;	/* for continuing loop */
   3449   1.45  jonathan 			}
   3450   1.45  jonathan 		}
   3451   1.45  jonathan 		prevlen = m->m_len;
   3452   1.45  jonathan 	}
   3453   1.45  jonathan 	return 0;
   3454   1.45  jonathan }
   3455   1.45  jonathan 
   3456    1.1      fvdl /*
   3457    1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3458    1.1      fvdl  * pointers to descriptors.
   3459    1.1      fvdl  */
   3460  1.104   thorpej static int
   3461  1.104   thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3462    1.1      fvdl {
   3463    1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3464  1.118   tsutsui 	u_int32_t		frag, cur;
   3465    1.1      fvdl 	u_int16_t		csum_flags = 0;
   3466   1.95  jonathan 	u_int16_t		txbd_tso_flags = 0;
   3467    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3468    1.1      fvdl 	bus_dmamap_t dmamap;
   3469    1.1      fvdl 	int			i = 0;
   3470   1.29    itojun 	struct m_tag		*mtag;
   3471   1.95  jonathan 	int			use_tso, maxsegsize, error;
   3472  1.107     blymn 
   3473    1.1      fvdl 	cur = frag = *txidx;
   3474    1.1      fvdl 
   3475    1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3476    1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3477    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3478    1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3479    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3480    1.1      fvdl 	}
   3481    1.1      fvdl 
   3482   1.87     perry 	/*
   3483   1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3484   1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3485   1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3486   1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3487   1.46  jonathan 	 * are confirmed to not require the workaround.)
   3488   1.46  jonathan 	 */
   3489   1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3490   1.46  jonathan #ifdef notyet
   3491   1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3492   1.87     perry #endif
   3493   1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3494   1.46  jonathan 		goto check_dma_bug;
   3495   1.46  jonathan 
   3496   1.95  jonathan 	if (bge_cksum_pad(m_head) != 0) {
   3497   1.46  jonathan 	    return ENOBUFS;
   3498   1.95  jonathan 	}
   3499   1.46  jonathan 
   3500   1.46  jonathan check_dma_bug:
   3501  1.157   msaitoh 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3502   1.29    itojun 		goto doit;
   3503  1.157   msaitoh 
   3504   1.25  jonathan 	/*
   3505   1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3506   1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3507   1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3508   1.25  jonathan 	 */
   3509   1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3510   1.45  jonathan 		return ENOBUFS;
   3511   1.25  jonathan 
   3512   1.25  jonathan doit:
   3513    1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3514    1.1      fvdl 	if (dma == NULL)
   3515    1.1      fvdl 		return ENOBUFS;
   3516    1.1      fvdl 	dmamap = dma->dmamap;
   3517    1.1      fvdl 
   3518    1.1      fvdl 	/*
   3519   1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3520   1.95  jonathan 	 */
   3521   1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3522   1.95  jonathan 	if (!use_tso) {
   3523   1.95  jonathan 		maxsegsize = 0;
   3524   1.95  jonathan 	} else {	/* TSO setup */
   3525   1.95  jonathan 		unsigned  mss;
   3526   1.95  jonathan 		struct ether_header *eh;
   3527   1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3528   1.95  jonathan 		struct mbuf * m0 = m_head;
   3529   1.95  jonathan 		struct ip *ip;
   3530   1.95  jonathan 		struct tcphdr *th;
   3531   1.95  jonathan 		int iphl, hlen;
   3532   1.95  jonathan 
   3533   1.95  jonathan 		/*
   3534   1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3535   1.95  jonathan 		 * fields for the protocol headers.
   3536   1.95  jonathan 		 */
   3537   1.95  jonathan 
   3538   1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3539   1.95  jonathan 		switch (htons(eh->ether_type)) {
   3540   1.95  jonathan 		case ETHERTYPE_IP:
   3541   1.95  jonathan 			offset = ETHER_HDR_LEN;
   3542   1.95  jonathan 			break;
   3543   1.95  jonathan 
   3544   1.95  jonathan 		case ETHERTYPE_VLAN:
   3545   1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3546   1.95  jonathan 			break;
   3547   1.95  jonathan 
   3548   1.95  jonathan 		default:
   3549   1.95  jonathan 			/*
   3550   1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3551   1.95  jonathan 			 */
   3552   1.95  jonathan 			return (ENOBUFS);
   3553   1.95  jonathan 		}
   3554   1.95  jonathan 
   3555   1.95  jonathan 		/*
   3556   1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3557   1.95  jonathan 		 * this the easy way.
   3558   1.95  jonathan 		 */
   3559   1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3560   1.95  jonathan 		hlen = iphl + offset;
   3561   1.95  jonathan 		if (__predict_false(m0->m_len <
   3562   1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3563   1.95  jonathan 
   3564  1.138     joerg 			aprint_debug_dev(sc->bge_dev,
   3565  1.138     joerg 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3566  1.138     joerg 			    "not handled yet\n",
   3567  1.138     joerg 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3568   1.95  jonathan #ifdef NOTYET
   3569   1.95  jonathan 			/*
   3570   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3571   1.95  jonathan 			 * how to force  this branch to be taken?
   3572   1.95  jonathan 			 */
   3573   1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3574   1.95  jonathan 
   3575   1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3576   1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3577   1.95  jonathan 
   3578   1.95  jonathan 			ip.ip_len = 0;
   3579   1.95  jonathan 
   3580   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3581   1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3582   1.95  jonathan 
   3583   1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3584   1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3585   1.95  jonathan 
   3586   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3587   1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3588   1.95  jonathan 
   3589   1.95  jonathan 			hlen += th.th_off << 2;
   3590   1.95  jonathan 			iptcp_opt_words	= hlen;
   3591   1.95  jonathan #else
   3592   1.95  jonathan 			/*
   3593   1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3594   1.95  jonathan 			 * mandate it out of existence?
   3595   1.95  jonathan 			 */
   3596   1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3597   1.95  jonathan 
   3598   1.95  jonathan 			return ENOBUFS;
   3599   1.95  jonathan #endif
   3600   1.95  jonathan 		} else {
   3601  1.126  christos 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3602  1.126  christos 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3603   1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3604   1.95  jonathan 
   3605   1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3606   1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3607   1.95  jonathan 					   - sizeof(struct tcphdr)
   3608   1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3609   1.95  jonathan 		}
   3610   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3611   1.95  jonathan 			th->th_sum = 0;
   3612   1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3613   1.95  jonathan 		} else {
   3614   1.95  jonathan 			/*
   3615  1.107     blymn 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3616   1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3617   1.95  jonathan 			 */
   3618   1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3619   1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3620   1.95  jonathan 		}
   3621   1.95  jonathan 
   3622   1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3623  1.107     blymn 		txbd_tso_flags |=
   3624   1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3625   1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3626   1.95  jonathan 
   3627   1.95  jonathan 		/*
   3628   1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3629   1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3630   1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3631   1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3632   1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3633   1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3634   1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3635   1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3636   1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3637   1.95  jonathan 		 * varies across different ASIC families.
   3638   1.95  jonathan 		 */
   3639   1.95  jonathan 		tcp_seg_flags = 0;
   3640   1.95  jonathan 		if (iptcp_opt_words) {
   3641   1.95  jonathan 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3642   1.95  jonathan 				tcp_seg_flags =
   3643   1.95  jonathan 					iptcp_opt_words << 11;
   3644   1.95  jonathan 			} else {
   3645   1.95  jonathan 				txbd_tso_flags |=
   3646   1.95  jonathan 					iptcp_opt_words << 12;
   3647   1.95  jonathan 			}
   3648   1.95  jonathan 		}
   3649   1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3650   1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3651   1.95  jonathan 
   3652   1.95  jonathan 	}	/* TSO setup */
   3653   1.95  jonathan 
   3654   1.95  jonathan 	/*
   3655    1.1      fvdl 	 * Start packing the mbufs in this chain into
   3656    1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3657    1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3658    1.1      fvdl 	 */
   3659   1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3660   1.95  jonathan 	    BUS_DMA_NOWAIT);
   3661   1.95  jonathan 	if (error) {
   3662  1.158   msaitoh 		return (ENOBUFS);
   3663   1.95  jonathan 	}
   3664  1.118   tsutsui 	/*
   3665  1.118   tsutsui 	 * Sanity check: avoid coming within 16 descriptors
   3666  1.118   tsutsui 	 * of the end of the ring.
   3667  1.118   tsutsui 	 */
   3668  1.118   tsutsui 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3669  1.118   tsutsui 		BGE_TSO_PRINTF(("%s: "
   3670  1.118   tsutsui 		    " dmamap_load_mbuf too close to ring wrap\n",
   3671  1.138     joerg 		    device_xname(sc->bge_dev)));
   3672  1.118   tsutsui 		goto fail_unload;
   3673  1.118   tsutsui 	}
   3674   1.95  jonathan 
   3675   1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3676   1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3677    1.1      fvdl 
   3678    1.6   thorpej 
   3679   1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3680    1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3681    1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3682    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3683    1.1      fvdl 			break;
   3684  1.107     blymn 
   3685    1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3686    1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3687   1.95  jonathan 
   3688   1.95  jonathan 		/*
   3689   1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3690   1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3691   1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3692   1.95  jonathan 		 * of TSO flags and segsize.
   3693   1.95  jonathan 		 */
   3694   1.95  jonathan 		if (use_tso) {
   3695   1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3696   1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3697   1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3698   1.95  jonathan 			} else {
   3699   1.95  jonathan 				f->bge_rsvd = 0;
   3700   1.95  jonathan 				f->bge_flags =
   3701   1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3702   1.95  jonathan 			}
   3703   1.95  jonathan 		} else {
   3704   1.95  jonathan 			f->bge_rsvd = 0;
   3705   1.95  jonathan 			f->bge_flags = csum_flags;
   3706   1.95  jonathan 		}
   3707    1.1      fvdl 
   3708   1.28    itojun 		if (mtag != NULL) {
   3709    1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3710   1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3711    1.1      fvdl 		} else {
   3712    1.1      fvdl 			f->bge_vlan_tag = 0;
   3713    1.1      fvdl 		}
   3714    1.1      fvdl 		cur = frag;
   3715    1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3716    1.1      fvdl 	}
   3717    1.1      fvdl 
   3718   1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   3719   1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3720  1.138     joerg 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3721  1.118   tsutsui 		goto fail_unload;
   3722   1.95  jonathan 	}
   3723    1.1      fvdl 
   3724    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3725    1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3726    1.1      fvdl 
   3727   1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   3728   1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3729  1.138     joerg 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3730   1.95  jonathan 
   3731  1.118   tsutsui 		goto fail_unload;
   3732   1.95  jonathan 	}
   3733    1.1      fvdl 
   3734    1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3735    1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3736    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3737    1.1      fvdl 	sc->txdma[cur] = dma;
   3738  1.118   tsutsui 	sc->bge_txcnt += dmamap->dm_nsegs;
   3739    1.1      fvdl 
   3740    1.1      fvdl 	*txidx = frag;
   3741    1.1      fvdl 
   3742  1.158   msaitoh 	return (0);
   3743  1.118   tsutsui 
   3744  1.158   msaitoh fail_unload:
   3745  1.118   tsutsui 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3746  1.118   tsutsui 
   3747  1.118   tsutsui 	return ENOBUFS;
   3748    1.1      fvdl }
   3749    1.1      fvdl 
   3750    1.1      fvdl /*
   3751    1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3752    1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3753    1.1      fvdl  */
   3754  1.104   thorpej static void
   3755  1.104   thorpej bge_start(struct ifnet *ifp)
   3756    1.1      fvdl {
   3757    1.1      fvdl 	struct bge_softc *sc;
   3758    1.1      fvdl 	struct mbuf *m_head = NULL;
   3759   1.94  jonathan 	u_int32_t prodidx;
   3760    1.1      fvdl 	int pkts = 0;
   3761    1.1      fvdl 
   3762    1.1      fvdl 	sc = ifp->if_softc;
   3763    1.1      fvdl 
   3764  1.131   mlelstv 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3765    1.1      fvdl 		return;
   3766    1.1      fvdl 
   3767   1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   3768    1.1      fvdl 
   3769    1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3770    1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   3771    1.1      fvdl 		if (m_head == NULL)
   3772    1.1      fvdl 			break;
   3773    1.1      fvdl 
   3774    1.1      fvdl #if 0
   3775    1.1      fvdl 		/*
   3776    1.1      fvdl 		 * XXX
   3777    1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   3778    1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   3779    1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   3780    1.1      fvdl 		 * chain at once.
   3781    1.1      fvdl 		 * (paranoia -- may not actually be needed)
   3782    1.1      fvdl 		 */
   3783    1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   3784    1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3785    1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3786   1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3787    1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   3788    1.1      fvdl 				break;
   3789    1.1      fvdl 			}
   3790    1.1      fvdl 		}
   3791    1.1      fvdl #endif
   3792    1.1      fvdl 
   3793    1.1      fvdl 		/*
   3794    1.1      fvdl 		 * Pack the data into the transmit ring. If we
   3795    1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   3796    1.1      fvdl 		 * for the NIC to drain the ring.
   3797    1.1      fvdl 		 */
   3798    1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   3799    1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   3800    1.1      fvdl 			break;
   3801    1.1      fvdl 		}
   3802    1.1      fvdl 
   3803    1.1      fvdl 		/* now we are committed to transmit the packet */
   3804    1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3805    1.1      fvdl 		pkts++;
   3806    1.1      fvdl 
   3807    1.1      fvdl #if NBPFILTER > 0
   3808    1.1      fvdl 		/*
   3809    1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   3810    1.1      fvdl 		 * to him.
   3811    1.1      fvdl 		 */
   3812    1.1      fvdl 		if (ifp->if_bpf)
   3813    1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   3814    1.1      fvdl #endif
   3815    1.1      fvdl 	}
   3816    1.1      fvdl 	if (pkts == 0)
   3817    1.1      fvdl 		return;
   3818    1.1      fvdl 
   3819    1.1      fvdl 	/* Transmit */
   3820  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3821  1.158   msaitoh 	/* 5700 b2 errata */
   3822  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   3823  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3824    1.1      fvdl 
   3825   1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   3826   1.94  jonathan 
   3827    1.1      fvdl 	/*
   3828    1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   3829    1.1      fvdl 	 */
   3830    1.1      fvdl 	ifp->if_timer = 5;
   3831    1.1      fvdl }
   3832    1.1      fvdl 
   3833  1.104   thorpej static int
   3834  1.104   thorpej bge_init(struct ifnet *ifp)
   3835    1.1      fvdl {
   3836    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3837  1.137    dyoung 	const u_int16_t *m;
   3838  1.142    dyoung 	int s, error = 0;
   3839    1.1      fvdl 
   3840    1.1      fvdl 	s = splnet();
   3841    1.1      fvdl 
   3842    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3843    1.1      fvdl 
   3844    1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   3845  1.141  jmcneill 	bge_stop(ifp, 0);
   3846    1.1      fvdl 	bge_reset(sc);
   3847    1.1      fvdl 	bge_chipinit(sc);
   3848    1.1      fvdl 
   3849    1.1      fvdl 	/*
   3850    1.1      fvdl 	 * Init the various state machines, ring
   3851    1.1      fvdl 	 * control blocks and firmware.
   3852    1.1      fvdl 	 */
   3853    1.1      fvdl 	error = bge_blockinit(sc);
   3854    1.1      fvdl 	if (error != 0) {
   3855  1.138     joerg 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3856    1.1      fvdl 		    error);
   3857    1.1      fvdl 		splx(s);
   3858    1.1      fvdl 		return error;
   3859    1.1      fvdl 	}
   3860    1.1      fvdl 
   3861    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3862    1.1      fvdl 
   3863    1.1      fvdl 	/* Specify MTU. */
   3864    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3865  1.107     blymn 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3866    1.1      fvdl 
   3867    1.1      fvdl 	/* Load our MAC address. */
   3868  1.137    dyoung 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3869    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3870    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3871    1.1      fvdl 
   3872    1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   3873    1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   3874    1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3875    1.1      fvdl 	} else {
   3876    1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3877    1.1      fvdl 	}
   3878    1.1      fvdl 
   3879    1.1      fvdl 	/* Program multicast filter. */
   3880    1.1      fvdl 	bge_setmulti(sc);
   3881    1.1      fvdl 
   3882    1.1      fvdl 	/* Init RX ring. */
   3883    1.1      fvdl 	bge_init_rx_ring_std(sc);
   3884    1.1      fvdl 
   3885    1.1      fvdl 	/* Init jumbo RX ring. */
   3886    1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3887    1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   3888    1.1      fvdl 
   3889    1.1      fvdl 	/* Init our RX return ring index */
   3890    1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   3891    1.1      fvdl 
   3892    1.1      fvdl 	/* Init TX ring. */
   3893    1.1      fvdl 	bge_init_tx_ring(sc);
   3894    1.1      fvdl 
   3895    1.1      fvdl 	/* Turn on transmitter */
   3896    1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3897    1.1      fvdl 
   3898    1.1      fvdl 	/* Turn on receiver */
   3899    1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3900    1.1      fvdl 
   3901   1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3902   1.71   thorpej 
   3903    1.1      fvdl 	/* Tell firmware we're alive. */
   3904    1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3905    1.1      fvdl 
   3906    1.1      fvdl 	/* Enable host interrupts. */
   3907    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3908    1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3909  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3910    1.1      fvdl 
   3911  1.142    dyoung 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   3912  1.142    dyoung 		goto out;
   3913    1.1      fvdl 
   3914    1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   3915    1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   3916    1.1      fvdl 
   3917  1.142    dyoung 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3918  1.142    dyoung 
   3919  1.142    dyoung out:
   3920    1.1      fvdl 	splx(s);
   3921    1.1      fvdl 
   3922  1.142    dyoung 	return error;
   3923    1.1      fvdl }
   3924    1.1      fvdl 
   3925    1.1      fvdl /*
   3926    1.1      fvdl  * Set media options.
   3927    1.1      fvdl  */
   3928  1.104   thorpej static int
   3929  1.104   thorpej bge_ifmedia_upd(struct ifnet *ifp)
   3930    1.1      fvdl {
   3931    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3932    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3933    1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3934  1.142    dyoung 	int rc;
   3935    1.1      fvdl 
   3936    1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3937  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3938    1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3939  1.158   msaitoh 			return (EINVAL);
   3940    1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3941    1.1      fvdl 		case IFM_AUTO:
   3942    1.1      fvdl 			break;
   3943    1.1      fvdl 		case IFM_1000_SX:
   3944    1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3945    1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3946    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3947    1.1      fvdl 			} else {
   3948    1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3949    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3950    1.1      fvdl 			}
   3951    1.1      fvdl 			break;
   3952    1.1      fvdl 		default:
   3953  1.158   msaitoh 			return (EINVAL);
   3954    1.1      fvdl 		}
   3955   1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   3956  1.158   msaitoh 		return (0);
   3957    1.1      fvdl 	}
   3958    1.1      fvdl 
   3959    1.1      fvdl 	sc->bge_link = 0;
   3960  1.142    dyoung 	if ((rc = mii_mediachg(mii)) == ENXIO)
   3961  1.142    dyoung 		return 0;
   3962  1.142    dyoung 	return rc;
   3963    1.1      fvdl }
   3964    1.1      fvdl 
   3965    1.1      fvdl /*
   3966    1.1      fvdl  * Report current media status.
   3967    1.1      fvdl  */
   3968  1.104   thorpej static void
   3969  1.104   thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3970    1.1      fvdl {
   3971    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3972    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3973    1.1      fvdl 
   3974  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3975    1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   3976    1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   3977    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3978    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3979    1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   3980    1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   3981    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3982    1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   3983    1.1      fvdl 		else
   3984    1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   3985    1.1      fvdl 		return;
   3986    1.1      fvdl 	}
   3987    1.1      fvdl 
   3988    1.1      fvdl 	mii_pollstat(mii);
   3989    1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   3990   1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   3991   1.69   thorpej 	    sc->bge_flowflags;
   3992    1.1      fvdl }
   3993    1.1      fvdl 
   3994  1.104   thorpej static int
   3995  1.126  christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   3996    1.1      fvdl {
   3997    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3998    1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   3999    1.1      fvdl 	int s, error = 0;
   4000    1.1      fvdl 	struct mii_data *mii;
   4001    1.1      fvdl 
   4002    1.1      fvdl 	s = splnet();
   4003    1.1      fvdl 
   4004    1.1      fvdl 	switch(command) {
   4005    1.1      fvdl 	case SIOCSIFFLAGS:
   4006  1.153    dyoung 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4007  1.153    dyoung 			break;
   4008    1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   4009    1.1      fvdl 			/*
   4010    1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   4011    1.1      fvdl 			 * then just use the 'set promisc mode' command
   4012    1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   4013    1.1      fvdl 			 * a full re-init means reloading the firmware and
   4014    1.1      fvdl 			 * waiting for it to start up, which may take a
   4015    1.1      fvdl 			 * second or two.
   4016    1.1      fvdl 			 */
   4017    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   4018    1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   4019    1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4020    1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   4021    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4022    1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   4023    1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   4024    1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   4025    1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4026    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4027  1.103    rpaulo 			} else if (!(sc->bge_if_flags & IFF_UP))
   4028    1.1      fvdl 				bge_init(ifp);
   4029    1.1      fvdl 		} else {
   4030  1.141  jmcneill 			if (ifp->if_flags & IFF_RUNNING)
   4031  1.141  jmcneill 				bge_stop(ifp, 1);
   4032    1.1      fvdl 		}
   4033    1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   4034    1.1      fvdl 		error = 0;
   4035    1.1      fvdl 		break;
   4036    1.1      fvdl 	case SIOCSIFMEDIA:
   4037   1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   4038  1.157   msaitoh 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4039   1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4040   1.69   thorpej 			sc->bge_flowflags = 0;
   4041   1.69   thorpej 		}
   4042   1.69   thorpej 
   4043   1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4044   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4045   1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4046   1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4047   1.69   thorpej 		}
   4048   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4049   1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4050  1.157   msaitoh 				/* We can do both TXPAUSE and RXPAUSE. */
   4051   1.69   thorpej 				ifr->ifr_media |=
   4052   1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4053   1.69   thorpej 			}
   4054   1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4055   1.69   thorpej 		}
   4056   1.69   thorpej 		/* FALLTHROUGH */
   4057    1.1      fvdl 	case SIOCGIFMEDIA:
   4058  1.157   msaitoh 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4059    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4060    1.1      fvdl 			    command);
   4061    1.1      fvdl 		} else {
   4062    1.1      fvdl 			mii = &sc->bge_mii;
   4063    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4064    1.1      fvdl 			    command);
   4065    1.1      fvdl 		}
   4066    1.1      fvdl 		break;
   4067    1.1      fvdl 	default:
   4068  1.152      tron 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4069  1.152      tron 			break;
   4070  1.152      tron 
   4071  1.152      tron 		error = 0;
   4072  1.152      tron 
   4073  1.152      tron 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4074  1.152      tron 			;
   4075  1.152      tron 		else if (ifp->if_flags & IFF_RUNNING)
   4076  1.152      tron 			bge_setmulti(sc);
   4077    1.1      fvdl 		break;
   4078    1.1      fvdl 	}
   4079    1.1      fvdl 
   4080    1.1      fvdl 	splx(s);
   4081    1.1      fvdl 
   4082  1.158   msaitoh 	return (error);
   4083    1.1      fvdl }
   4084    1.1      fvdl 
   4085  1.104   thorpej static void
   4086  1.104   thorpej bge_watchdog(struct ifnet *ifp)
   4087    1.1      fvdl {
   4088    1.1      fvdl 	struct bge_softc *sc;
   4089    1.1      fvdl 
   4090    1.1      fvdl 	sc = ifp->if_softc;
   4091    1.1      fvdl 
   4092  1.138     joerg 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4093    1.1      fvdl 
   4094    1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4095    1.1      fvdl 	bge_init(ifp);
   4096    1.1      fvdl 
   4097    1.1      fvdl 	ifp->if_oerrors++;
   4098    1.1      fvdl }
   4099    1.1      fvdl 
   4100   1.11   thorpej static void
   4101   1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4102   1.11   thorpej {
   4103   1.11   thorpej 	int i;
   4104   1.11   thorpej 
   4105   1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4106   1.11   thorpej 
   4107   1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4108   1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4109   1.11   thorpej 			return;
   4110   1.11   thorpej 		delay(100);
   4111  1.157   msaitoh 		if (sc->bge_flags & BGE_PCIE)
   4112   1.95  jonathan 		  DELAY(1000);
   4113   1.11   thorpej 	}
   4114   1.11   thorpej 
   4115  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   4116  1.138     joerg 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4117   1.11   thorpej }
   4118   1.11   thorpej 
   4119    1.1      fvdl /*
   4120    1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4121    1.1      fvdl  * RX and TX lists.
   4122    1.1      fvdl  */
   4123  1.104   thorpej static void
   4124  1.141  jmcneill bge_stop(struct ifnet *ifp, int disable)
   4125    1.1      fvdl {
   4126  1.141  jmcneill 	struct bge_softc *sc = ifp->if_softc;
   4127    1.1      fvdl 
   4128    1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4129    1.1      fvdl 
   4130    1.1      fvdl 	/*
   4131    1.1      fvdl 	 * Disable all of the receiver blocks
   4132    1.1      fvdl 	 */
   4133   1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4134   1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4135   1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4136  1.157   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4137   1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4138   1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4139   1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4140   1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4141    1.1      fvdl 
   4142    1.1      fvdl 	/*
   4143    1.1      fvdl 	 * Disable all of the transmit blocks
   4144    1.1      fvdl 	 */
   4145   1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4146   1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4147   1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4148   1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4149   1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4150  1.157   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4151   1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4152   1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4153    1.1      fvdl 
   4154    1.1      fvdl 	/*
   4155    1.1      fvdl 	 * Shut down all of the memory managers and related
   4156    1.1      fvdl 	 * state machines.
   4157    1.1      fvdl 	 */
   4158   1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4159   1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4160  1.157   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4161   1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4162   1.11   thorpej 
   4163    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4164    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4165   1.11   thorpej 
   4166  1.157   msaitoh 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   4167   1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4168   1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4169   1.44   hannken 	}
   4170    1.1      fvdl 
   4171    1.1      fvdl 	/* Disable host interrupts. */
   4172    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4173  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4174    1.1      fvdl 
   4175    1.1      fvdl 	/*
   4176    1.1      fvdl 	 * Tell firmware we're shutting down.
   4177    1.1      fvdl 	 */
   4178    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4179    1.1      fvdl 
   4180    1.1      fvdl 	/* Free the RX lists. */
   4181    1.1      fvdl 	bge_free_rx_ring_std(sc);
   4182    1.1      fvdl 
   4183    1.1      fvdl 	/* Free jumbo RX list. */
   4184    1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   4185    1.1      fvdl 
   4186    1.1      fvdl 	/* Free TX buffers. */
   4187    1.1      fvdl 	bge_free_tx_ring(sc);
   4188    1.1      fvdl 
   4189    1.1      fvdl 	/*
   4190    1.1      fvdl 	 * Isolate/power down the PHY.
   4191    1.1      fvdl 	 */
   4192  1.157   msaitoh 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4193    1.1      fvdl 		mii_down(&sc->bge_mii);
   4194    1.1      fvdl 
   4195    1.1      fvdl 	sc->bge_link = 0;
   4196    1.1      fvdl 
   4197    1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4198    1.1      fvdl 
   4199    1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4200    1.1      fvdl }
   4201    1.1      fvdl 
   4202   1.64  jonathan static int
   4203   1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4204   1.64  jonathan {
   4205   1.64  jonathan 	int error, t;
   4206   1.64  jonathan 	struct sysctlnode node;
   4207   1.64  jonathan 
   4208   1.64  jonathan 	node = *rnode;
   4209   1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4210   1.64  jonathan 	node.sysctl_data = &t;
   4211   1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4212   1.64  jonathan 	if (error || newp == NULL)
   4213   1.64  jonathan 		return (error);
   4214   1.64  jonathan 
   4215   1.64  jonathan #if 0
   4216   1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4217   1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4218   1.64  jonathan #endif
   4219   1.64  jonathan 
   4220   1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4221   1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4222   1.64  jonathan 			return (EINVAL);
   4223   1.64  jonathan 		bge_update_all_threshes(t);
   4224   1.64  jonathan 	} else
   4225   1.64  jonathan 		return (EINVAL);
   4226   1.64  jonathan 
   4227   1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4228   1.64  jonathan 
   4229   1.64  jonathan 	return (0);
   4230   1.64  jonathan }
   4231   1.64  jonathan 
   4232   1.64  jonathan /*
   4233   1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4234   1.64  jonathan  *
   4235   1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4236   1.64  jonathan  */
   4237   1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4238   1.64  jonathan {
   4239   1.66    atatat 	int rc, bge_root_num;
   4240   1.90    atatat 	const struct sysctlnode *node;
   4241   1.64  jonathan 
   4242   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4243   1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4244   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4245   1.64  jonathan 		goto err;
   4246   1.64  jonathan 	}
   4247   1.64  jonathan 
   4248   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4249   1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4250   1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4251   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4252   1.64  jonathan 		goto err;
   4253   1.64  jonathan 	}
   4254   1.64  jonathan 
   4255   1.66    atatat 	bge_root_num = node->sysctl_num;
   4256   1.66    atatat 
   4257   1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4258   1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4259   1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4260   1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4261   1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4262   1.73    atatat 	    sysctl_bge_verify, 0,
   4263   1.64  jonathan 	    &bge_rx_thresh_lvl,
   4264   1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4265   1.64  jonathan 	    CTL_EOL)) != 0) {
   4266   1.64  jonathan 		goto err;
   4267   1.64  jonathan 	}
   4268   1.64  jonathan 
   4269   1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4270   1.64  jonathan 
   4271   1.64  jonathan 	return;
   4272   1.64  jonathan 
   4273   1.64  jonathan err:
   4274  1.138     joerg 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4275   1.64  jonathan }
   4276  1.151    cegger 
   4277  1.151    cegger static int
   4278  1.151    cegger bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
   4279  1.151    cegger {
   4280  1.151    cegger 	u_int32_t mac_addr;
   4281  1.151    cegger 
   4282  1.151    cegger 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4283  1.151    cegger 	if ((mac_addr >> 16) == 0x484b) {
   4284  1.151    cegger 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4285  1.151    cegger 		ether_addr[1] = (uint8_t)mac_addr;
   4286  1.151    cegger 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4287  1.151    cegger 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4288  1.151    cegger 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4289  1.151    cegger 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4290  1.151    cegger 		ether_addr[5] = (uint8_t)mac_addr;
   4291  1.151    cegger 		return (0);
   4292  1.151    cegger 	}
   4293  1.151    cegger 	return (1);
   4294  1.151    cegger }
   4295  1.151    cegger 
   4296  1.151    cegger static int
   4297  1.151    cegger bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
   4298  1.151    cegger {
   4299  1.151    cegger 	int mac_offset = BGE_EE_MAC_OFFSET;
   4300  1.151    cegger 
   4301  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4302  1.151    cegger 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4303  1.151    cegger 	}
   4304  1.151    cegger 
   4305  1.151    cegger 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4306  1.151    cegger 	    ETHER_ADDR_LEN));
   4307  1.151    cegger }
   4308  1.151    cegger 
   4309  1.151    cegger static int
   4310  1.151    cegger bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
   4311  1.151    cegger {
   4312  1.151    cegger 
   4313  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4314  1.151    cegger 		return (1);
   4315  1.151    cegger 	}
   4316  1.151    cegger 
   4317  1.151    cegger 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4318  1.151    cegger 	   ETHER_ADDR_LEN));
   4319  1.151    cegger }
   4320  1.151    cegger 
   4321  1.151    cegger static int
   4322  1.151    cegger bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
   4323  1.151    cegger {
   4324  1.151    cegger 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4325  1.151    cegger 		/* NOTE: Order is critical */
   4326  1.151    cegger 		bge_get_eaddr_mem,
   4327  1.151    cegger 		bge_get_eaddr_nvram,
   4328  1.151    cegger 		bge_get_eaddr_eeprom,
   4329  1.151    cegger 		NULL
   4330  1.151    cegger 	};
   4331  1.151    cegger 	const bge_eaddr_fcn_t *func;
   4332  1.151    cegger 
   4333  1.151    cegger 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4334  1.151    cegger 		if ((*func)(sc, eaddr) == 0)
   4335  1.151    cegger 			break;
   4336  1.151    cegger 	}
   4337  1.151    cegger 	return (*func == NULL ? ENXIO : 0);
   4338  1.151    cegger }
   4339