if_bge.c revision 1.158 1 1.158 msaitoh /* $NetBSD: if_bge.c,v 1.158 2009/03/22 18:14:59 msaitoh Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.158 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.158 2009/03/22 18:14:59 msaitoh Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.148 mlelstv #include "rnd.h"
87 1.1 fvdl
88 1.1 fvdl #include <sys/param.h>
89 1.1 fvdl #include <sys/systm.h>
90 1.1 fvdl #include <sys/callout.h>
91 1.1 fvdl #include <sys/sockio.h>
92 1.1 fvdl #include <sys/mbuf.h>
93 1.1 fvdl #include <sys/malloc.h>
94 1.1 fvdl #include <sys/kernel.h>
95 1.1 fvdl #include <sys/device.h>
96 1.1 fvdl #include <sys/socket.h>
97 1.64 jonathan #include <sys/sysctl.h>
98 1.1 fvdl
99 1.1 fvdl #include <net/if.h>
100 1.1 fvdl #include <net/if_dl.h>
101 1.1 fvdl #include <net/if_media.h>
102 1.1 fvdl #include <net/if_ether.h>
103 1.1 fvdl
104 1.148 mlelstv #if NRND > 0
105 1.148 mlelstv #include <sys/rnd.h>
106 1.148 mlelstv #endif
107 1.148 mlelstv
108 1.1 fvdl #ifdef INET
109 1.1 fvdl #include <netinet/in.h>
110 1.1 fvdl #include <netinet/in_systm.h>
111 1.1 fvdl #include <netinet/in_var.h>
112 1.1 fvdl #include <netinet/ip.h>
113 1.1 fvdl #endif
114 1.1 fvdl
115 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
116 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
119 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
120 1.95 jonathan
121 1.95 jonathan
122 1.1 fvdl #if NBPFILTER > 0
123 1.1 fvdl #include <net/bpf.h>
124 1.1 fvdl #endif
125 1.1 fvdl
126 1.1 fvdl #include <dev/pci/pcireg.h>
127 1.1 fvdl #include <dev/pci/pcivar.h>
128 1.1 fvdl #include <dev/pci/pcidevs.h>
129 1.1 fvdl
130 1.1 fvdl #include <dev/mii/mii.h>
131 1.1 fvdl #include <dev/mii/miivar.h>
132 1.1 fvdl #include <dev/mii/miidevs.h>
133 1.1 fvdl #include <dev/mii/brgphyreg.h>
134 1.1 fvdl
135 1.1 fvdl #include <dev/pci/if_bgereg.h>
136 1.1 fvdl
137 1.1 fvdl #include <uvm/uvm_extern.h>
138 1.1 fvdl
139 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140 1.46 jonathan
141 1.63 jonathan
142 1.63 jonathan /*
143 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
144 1.63 jonathan */
145 1.63 jonathan
146 1.63 jonathan /*
147 1.63 jonathan * The pairs of values below were obtained from empirical measurement
148 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
150 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
151 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
152 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
153 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
154 1.63 jonathan * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 1.63 jonathan * results in internal wrapping and higher interrupt rates.
156 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
157 1.87 perry *
158 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
159 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
160 1.63 jonathan * family), the larger values may overflow internal chip limits,
161 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
162 1.63 jonathan * rates.
163 1.63 jonathan *
164 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
165 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
166 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
168 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 1.63 jonathan */
170 1.104 thorpej static const struct bge_load_rx_thresh {
171 1.63 jonathan int rx_ticks;
172 1.63 jonathan int rx_max_bds; }
173 1.63 jonathan bge_rx_threshes[] = {
174 1.63 jonathan { 32, 2 },
175 1.63 jonathan { 50, 4 },
176 1.63 jonathan { 100, 8 },
177 1.63 jonathan { 192, 16 },
178 1.63 jonathan { 416, 32 },
179 1.63 jonathan { 598, 46 }
180 1.63 jonathan };
181 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182 1.63 jonathan
183 1.63 jonathan /* XXX patchable; should be sysctl'able */
184 1.64 jonathan static int bge_auto_thresh = 1;
185 1.64 jonathan static int bge_rx_thresh_lvl;
186 1.64 jonathan
187 1.104 thorpej static int bge_rxthresh_nodenum;
188 1.1 fvdl
189 1.151 cegger typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
190 1.151 cegger
191 1.104 thorpej static int bge_probe(device_t, cfdata_t, void *);
192 1.104 thorpej static void bge_attach(device_t, device_t, void *);
193 1.104 thorpej static void bge_release_resources(struct bge_softc *);
194 1.104 thorpej static void bge_txeof(struct bge_softc *);
195 1.104 thorpej static void bge_rxeof(struct bge_softc *);
196 1.104 thorpej
197 1.151 cegger static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
198 1.151 cegger static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
199 1.151 cegger static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
200 1.151 cegger static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
201 1.151 cegger
202 1.104 thorpej static void bge_tick(void *);
203 1.104 thorpej static void bge_stats_update(struct bge_softc *);
204 1.104 thorpej static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
205 1.104 thorpej
206 1.104 thorpej static int bge_intr(void *);
207 1.104 thorpej static void bge_start(struct ifnet *);
208 1.126 christos static int bge_ioctl(struct ifnet *, u_long, void *);
209 1.104 thorpej static int bge_init(struct ifnet *);
210 1.141 jmcneill static void bge_stop(struct ifnet *, int);
211 1.104 thorpej static void bge_watchdog(struct ifnet *);
212 1.104 thorpej static int bge_ifmedia_upd(struct ifnet *);
213 1.104 thorpej static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214 1.104 thorpej
215 1.104 thorpej static void bge_setmulti(struct bge_softc *);
216 1.104 thorpej
217 1.104 thorpej static void bge_handle_events(struct bge_softc *);
218 1.104 thorpej static int bge_alloc_jumbo_mem(struct bge_softc *);
219 1.104 thorpej #if 0 /* XXX */
220 1.104 thorpej static void bge_free_jumbo_mem(struct bge_softc *);
221 1.1 fvdl #endif
222 1.104 thorpej static void *bge_jalloc(struct bge_softc *);
223 1.126 christos static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 1.104 thorpej static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
225 1.104 thorpej bus_dmamap_t);
226 1.104 thorpej static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 1.104 thorpej static int bge_init_rx_ring_std(struct bge_softc *);
228 1.104 thorpej static void bge_free_rx_ring_std(struct bge_softc *);
229 1.104 thorpej static int bge_init_rx_ring_jumbo(struct bge_softc *);
230 1.104 thorpej static void bge_free_rx_ring_jumbo(struct bge_softc *);
231 1.104 thorpej static void bge_free_tx_ring(struct bge_softc *);
232 1.104 thorpej static int bge_init_tx_ring(struct bge_softc *);
233 1.104 thorpej
234 1.104 thorpej static int bge_chipinit(struct bge_softc *);
235 1.104 thorpej static int bge_blockinit(struct bge_softc *);
236 1.104 thorpej static int bge_setpowerstate(struct bge_softc *, int);
237 1.1 fvdl
238 1.104 thorpej static void bge_reset(struct bge_softc *);
239 1.95 jonathan
240 1.1 fvdl #define BGE_DEBUG
241 1.1 fvdl #ifdef BGE_DEBUG
242 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
243 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
244 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
245 1.1 fvdl int bgedebug = 0;
246 1.95 jonathan int bge_tso_debug = 0;
247 1.1 fvdl #else
248 1.1 fvdl #define DPRINTF(x)
249 1.1 fvdl #define DPRINTFN(n,x)
250 1.95 jonathan #define BGE_TSO_PRINTF(x)
251 1.1 fvdl #endif
252 1.1 fvdl
253 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
254 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
255 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
256 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
257 1.72 thorpej #else
258 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
259 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
260 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
261 1.72 thorpej #endif
262 1.72 thorpej
263 1.158 msaitoh static const struct bge_product {
264 1.158 msaitoh pci_vendor_id_t bp_vendor;
265 1.158 msaitoh pci_product_id_t bp_product;
266 1.158 msaitoh const char *bp_name;
267 1.158 msaitoh } bge_products[] = {
268 1.158 msaitoh /*
269 1.158 msaitoh * The BCM5700 documentation seems to indicate that the hardware
270 1.158 msaitoh * still has the Alteon vendor ID burned into it, though it
271 1.158 msaitoh * should always be overridden by the value in the EEPROM. We'll
272 1.158 msaitoh * check for it anyway.
273 1.158 msaitoh */
274 1.158 msaitoh { PCI_VENDOR_ALTEON,
275 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5700,
276 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
277 1.158 msaitoh },
278 1.158 msaitoh { PCI_VENDOR_ALTEON,
279 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5701,
280 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
281 1.158 msaitoh },
282 1.158 msaitoh { PCI_VENDOR_ALTIMA,
283 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1000,
284 1.158 msaitoh "Altima AC1000 Gigabit Ethernet",
285 1.158 msaitoh },
286 1.158 msaitoh { PCI_VENDOR_ALTIMA,
287 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1001,
288 1.158 msaitoh "Altima AC1001 Gigabit Ethernet",
289 1.158 msaitoh },
290 1.158 msaitoh { PCI_VENDOR_ALTIMA,
291 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC9100,
292 1.158 msaitoh "Altima AC9100 Gigabit Ethernet",
293 1.158 msaitoh },
294 1.158 msaitoh { PCI_VENDOR_BROADCOM,
295 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5700,
296 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
297 1.158 msaitoh },
298 1.158 msaitoh { PCI_VENDOR_BROADCOM,
299 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5701,
300 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
301 1.158 msaitoh },
302 1.158 msaitoh { PCI_VENDOR_BROADCOM,
303 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702,
304 1.158 msaitoh "Broadcom BCM5702 Gigabit Ethernet",
305 1.158 msaitoh },
306 1.158 msaitoh { PCI_VENDOR_BROADCOM,
307 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702X,
308 1.158 msaitoh "Broadcom BCM5702X Gigabit Ethernet" },
309 1.158 msaitoh { PCI_VENDOR_BROADCOM,
310 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703,
311 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
312 1.158 msaitoh },
313 1.158 msaitoh { PCI_VENDOR_BROADCOM,
314 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703X,
315 1.158 msaitoh "Broadcom BCM5703X Gigabit Ethernet",
316 1.158 msaitoh },
317 1.158 msaitoh { PCI_VENDOR_BROADCOM,
318 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703_ALT,
319 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
320 1.158 msaitoh },
321 1.158 msaitoh { PCI_VENDOR_BROADCOM,
322 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704C,
323 1.158 msaitoh "Broadcom BCM5704C Dual Gigabit Ethernet",
324 1.158 msaitoh },
325 1.158 msaitoh { PCI_VENDOR_BROADCOM,
326 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704S,
327 1.158 msaitoh "Broadcom BCM5704S Dual Gigabit Ethernet",
328 1.158 msaitoh },
329 1.158 msaitoh { PCI_VENDOR_BROADCOM,
330 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705,
331 1.158 msaitoh "Broadcom BCM5705 Gigabit Ethernet",
332 1.158 msaitoh },
333 1.158 msaitoh { PCI_VENDOR_BROADCOM,
334 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705K,
335 1.158 msaitoh "Broadcom BCM5705K Gigabit Ethernet",
336 1.158 msaitoh },
337 1.158 msaitoh { PCI_VENDOR_BROADCOM,
338 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M,
339 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
340 1.158 msaitoh },
341 1.158 msaitoh { PCI_VENDOR_BROADCOM,
342 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
343 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
344 1.158 msaitoh },
345 1.158 msaitoh { PCI_VENDOR_BROADCOM,
346 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5714,
347 1.158 msaitoh "Broadcom BCM5714/5715 Gigabit Ethernet",
348 1.158 msaitoh },
349 1.158 msaitoh { PCI_VENDOR_BROADCOM,
350 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5715,
351 1.158 msaitoh "Broadcom BCM5714/5715 Gigabit Ethernet",
352 1.158 msaitoh },
353 1.158 msaitoh { PCI_VENDOR_BROADCOM,
354 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
355 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
356 1.158 msaitoh },
357 1.158 msaitoh { PCI_VENDOR_BROADCOM,
358 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5721,
359 1.158 msaitoh "Broadcom BCM5721 Gigabit Ethernet",
360 1.158 msaitoh },
361 1.158 msaitoh { PCI_VENDOR_BROADCOM,
362 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5722,
363 1.158 msaitoh "Broadcom BCM5722 Gigabit Ethernet",
364 1.158 msaitoh },
365 1.158 msaitoh { PCI_VENDOR_BROADCOM,
366 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750,
367 1.158 msaitoh "Broadcom BCM5750 Gigabit Ethernet",
368 1.158 msaitoh },
369 1.158 msaitoh { PCI_VENDOR_BROADCOM,
370 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750M,
371 1.158 msaitoh "Broadcom BCM5750M Gigabit Ethernet",
372 1.158 msaitoh },
373 1.158 msaitoh { PCI_VENDOR_BROADCOM,
374 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751,
375 1.158 msaitoh "Broadcom BCM5751 Gigabit Ethernet",
376 1.158 msaitoh },
377 1.158 msaitoh { PCI_VENDOR_BROADCOM,
378 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751M,
379 1.158 msaitoh "Broadcom BCM5751M Gigabit Ethernet",
380 1.158 msaitoh },
381 1.158 msaitoh { PCI_VENDOR_BROADCOM,
382 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752,
383 1.158 msaitoh "Broadcom BCM5752 Gigabit Ethernet",
384 1.158 msaitoh },
385 1.158 msaitoh { PCI_VENDOR_BROADCOM,
386 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752M,
387 1.158 msaitoh "Broadcom BCM5752M Gigabit Ethernet",
388 1.158 msaitoh },
389 1.158 msaitoh { PCI_VENDOR_BROADCOM,
390 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753,
391 1.158 msaitoh "Broadcom BCM5753 Gigabit Ethernet",
392 1.158 msaitoh },
393 1.158 msaitoh { PCI_VENDOR_BROADCOM,
394 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753M,
395 1.158 msaitoh "Broadcom BCM5753M Gigabit Ethernet",
396 1.158 msaitoh },
397 1.158 msaitoh { PCI_VENDOR_BROADCOM,
398 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754,
399 1.158 msaitoh "Broadcom BCM5754 Gigabit Ethernet",
400 1.158 msaitoh },
401 1.158 msaitoh { PCI_VENDOR_BROADCOM,
402 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754M,
403 1.158 msaitoh "Broadcom BCM5754M Gigabit Ethernet",
404 1.158 msaitoh },
405 1.158 msaitoh { PCI_VENDOR_BROADCOM,
406 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755,
407 1.158 msaitoh "Broadcom BCM5755 Gigabit Ethernet",
408 1.158 msaitoh },
409 1.158 msaitoh { PCI_VENDOR_BROADCOM,
410 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755M,
411 1.158 msaitoh "Broadcom BCM5755M Gigabit Ethernet",
412 1.158 msaitoh },
413 1.158 msaitoh { PCI_VENDOR_BROADCOM,
414 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780,
415 1.158 msaitoh "Broadcom BCM5780 Gigabit Ethernet",
416 1.158 msaitoh },
417 1.158 msaitoh { PCI_VENDOR_BROADCOM,
418 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780S,
419 1.158 msaitoh "Broadcom BCM5780S Gigabit Ethernet",
420 1.158 msaitoh },
421 1.158 msaitoh { PCI_VENDOR_BROADCOM,
422 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5782,
423 1.158 msaitoh "Broadcom BCM5782 Gigabit Ethernet",
424 1.158 msaitoh },
425 1.158 msaitoh { PCI_VENDOR_BROADCOM,
426 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5786,
427 1.158 msaitoh "Broadcom BCM5786 Gigabit Ethernet",
428 1.158 msaitoh },
429 1.158 msaitoh { PCI_VENDOR_BROADCOM,
430 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787,
431 1.158 msaitoh "Broadcom BCM5787 Gigabit Ethernet",
432 1.158 msaitoh },
433 1.158 msaitoh { PCI_VENDOR_BROADCOM,
434 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787M,
435 1.158 msaitoh "Broadcom BCM5787M Gigabit Ethernet",
436 1.158 msaitoh },
437 1.158 msaitoh { PCI_VENDOR_BROADCOM,
438 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5788,
439 1.158 msaitoh "Broadcom BCM5788 Gigabit Ethernet",
440 1.158 msaitoh },
441 1.158 msaitoh { PCI_VENDOR_BROADCOM,
442 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
443 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
444 1.158 msaitoh },
445 1.158 msaitoh { PCI_VENDOR_BROADCOM,
446 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901,
447 1.158 msaitoh "Broadcom BCM5901 Fast Ethernet",
448 1.158 msaitoh },
449 1.158 msaitoh { PCI_VENDOR_BROADCOM,
450 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901A2,
451 1.158 msaitoh "Broadcom BCM5901A2 Fast Ethernet",
452 1.158 msaitoh },
453 1.158 msaitoh { PCI_VENDOR_SCHNEIDERKOCH,
454 1.158 msaitoh PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
455 1.158 msaitoh "SysKonnect SK-9Dx1 Gigabit Ethernet",
456 1.158 msaitoh },
457 1.158 msaitoh { PCI_VENDOR_3COM,
458 1.158 msaitoh PCI_PRODUCT_3COM_3C996,
459 1.158 msaitoh "3Com 3c996 Gigabit Ethernet",
460 1.158 msaitoh },
461 1.158 msaitoh { PCI_VENDOR_BROADCOM,
462 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906,
463 1.158 msaitoh "Broadcom BCM5906 Fast Ethernet",
464 1.158 msaitoh },
465 1.158 msaitoh { PCI_VENDOR_BROADCOM,
466 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906M,
467 1.158 msaitoh "Broadcom BCM5906M Fast Ethernet",
468 1.158 msaitoh },
469 1.158 msaitoh { 0,
470 1.158 msaitoh 0,
471 1.158 msaitoh NULL },
472 1.158 msaitoh };
473 1.158 msaitoh
474 1.95 jonathan /*
475 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
476 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
477 1.95 jonathan * in general behave like a 5705, except with additional quirks.
478 1.95 jonathan * This driver's current handling of the 5721 is wrong;
479 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
480 1.95 jonathan * (defined here until the thought is done).
481 1.95 jonathan */
482 1.99 jonathan #define BGE_IS_5714_FAMILY(sc) \
483 1.120 tsutsui (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
484 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
485 1.120 tsutsui BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
486 1.99 jonathan
487 1.95 jonathan #define BGE_IS_5750_OR_BEYOND(sc) \
488 1.99 jonathan (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
489 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
490 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
491 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
492 1.151 cegger BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
493 1.99 jonathan BGE_IS_5714_FAMILY(sc) )
494 1.95 jonathan
495 1.95 jonathan #define BGE_IS_5705_OR_BEYOND(sc) \
496 1.157 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
497 1.157 msaitoh (BGE_IS_5750_OR_BEYOND(sc)))
498 1.95 jonathan
499 1.158 msaitoh static const struct bge_revision {
500 1.158 msaitoh uint32_t br_chipid;
501 1.158 msaitoh const char *br_name;
502 1.158 msaitoh } bge_revisions[] = {
503 1.158 msaitoh { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
504 1.158 msaitoh { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
505 1.158 msaitoh { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
506 1.158 msaitoh { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
507 1.158 msaitoh { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
508 1.158 msaitoh { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
509 1.158 msaitoh /* This is treated like a BCM5700 Bx */
510 1.158 msaitoh { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
511 1.158 msaitoh { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
512 1.158 msaitoh { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
513 1.158 msaitoh { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
514 1.158 msaitoh { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
515 1.158 msaitoh { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
516 1.158 msaitoh { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
517 1.158 msaitoh { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
518 1.158 msaitoh { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
519 1.158 msaitoh { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
520 1.158 msaitoh { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
521 1.158 msaitoh { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
522 1.158 msaitoh { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
523 1.158 msaitoh { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
524 1.158 msaitoh { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
525 1.158 msaitoh { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
526 1.158 msaitoh { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
527 1.158 msaitoh { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
528 1.158 msaitoh { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
529 1.158 msaitoh { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
530 1.158 msaitoh { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
531 1.158 msaitoh { BGE_CHIPID_BCM5751_A1, "BCM5751 A1" },
532 1.158 msaitoh { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
533 1.158 msaitoh { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
534 1.158 msaitoh { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
535 1.158 msaitoh { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
536 1.158 msaitoh { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
537 1.158 msaitoh { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
538 1.158 msaitoh { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
539 1.158 msaitoh { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
540 1.158 msaitoh { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
541 1.158 msaitoh { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
542 1.158 msaitoh { 0, NULL }
543 1.158 msaitoh };
544 1.158 msaitoh
545 1.158 msaitoh /*
546 1.158 msaitoh * Some defaults for major revisions, so that newer steppings
547 1.158 msaitoh * that we don't know about have a shot at working.
548 1.158 msaitoh */
549 1.158 msaitoh static const struct bge_revision bge_majorrevs[] = {
550 1.158 msaitoh { BGE_ASICREV_BCM5700, "unknown BCM5700" },
551 1.158 msaitoh { BGE_ASICREV_BCM5701, "unknown BCM5701" },
552 1.158 msaitoh { BGE_ASICREV_BCM5703, "unknown BCM5703" },
553 1.158 msaitoh { BGE_ASICREV_BCM5704, "unknown BCM5704" },
554 1.158 msaitoh { BGE_ASICREV_BCM5705, "unknown BCM5705" },
555 1.158 msaitoh { BGE_ASICREV_BCM5750, "unknown BCM575x family" },
556 1.158 msaitoh { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
557 1.158 msaitoh { BGE_ASICREV_BCM5714, "unknown BCM5714" },
558 1.158 msaitoh { BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
559 1.158 msaitoh { BGE_ASICREV_BCM5755, "unknown BCM5755" },
560 1.158 msaitoh { BGE_ASICREV_BCM5780, "unknown BCM5780" },
561 1.158 msaitoh { BGE_ASICREV_BCM5787, "unknown BCM5787" },
562 1.158 msaitoh { BGE_ASICREV_BCM5906, "unknown BCM5906" },
563 1.158 msaitoh { 0, NULL }
564 1.158 msaitoh };
565 1.17 thorpej
566 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
567 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
568 1.1 fvdl
569 1.104 thorpej static u_int32_t
570 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
571 1.1 fvdl {
572 1.1 fvdl pcireg_t val;
573 1.1 fvdl
574 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
575 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
576 1.1 fvdl return val;
577 1.1 fvdl }
578 1.1 fvdl
579 1.104 thorpej static void
580 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
581 1.1 fvdl {
582 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
583 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
584 1.1 fvdl }
585 1.1 fvdl
586 1.1 fvdl #ifdef notdef
587 1.104 thorpej static u_int32_t
588 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
589 1.1 fvdl {
590 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
591 1.158 msaitoh return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
592 1.1 fvdl }
593 1.1 fvdl #endif
594 1.1 fvdl
595 1.104 thorpej static void
596 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
597 1.1 fvdl {
598 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
599 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
600 1.1 fvdl }
601 1.1 fvdl
602 1.151 cegger static void
603 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
604 1.151 cegger {
605 1.151 cegger CSR_WRITE_4(sc, off, val);
606 1.151 cegger }
607 1.151 cegger
608 1.151 cegger static void
609 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
610 1.151 cegger {
611 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
612 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
613 1.151 cegger
614 1.151 cegger CSR_WRITE_4(sc, off, val);
615 1.151 cegger }
616 1.151 cegger
617 1.151 cegger static u_int8_t
618 1.151 cegger bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
619 1.151 cegger {
620 1.151 cegger u_int32_t access, byte = 0;
621 1.151 cegger int i;
622 1.151 cegger
623 1.151 cegger /* Lock. */
624 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
625 1.151 cegger for (i = 0; i < 8000; i++) {
626 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
627 1.151 cegger break;
628 1.151 cegger DELAY(20);
629 1.151 cegger }
630 1.151 cegger if (i == 8000)
631 1.151 cegger return (1);
632 1.151 cegger
633 1.151 cegger /* Enable access. */
634 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
635 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
636 1.151 cegger
637 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
638 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
639 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
640 1.151 cegger DELAY(10);
641 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
642 1.151 cegger DELAY(10);
643 1.151 cegger break;
644 1.151 cegger }
645 1.151 cegger }
646 1.151 cegger
647 1.151 cegger if (i == BGE_TIMEOUT * 10) {
648 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
649 1.151 cegger return (1);
650 1.151 cegger }
651 1.151 cegger
652 1.151 cegger /* Get result. */
653 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
654 1.151 cegger
655 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
656 1.151 cegger
657 1.151 cegger /* Disable access. */
658 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
659 1.151 cegger
660 1.151 cegger /* Unlock. */
661 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
662 1.151 cegger CSR_READ_4(sc, BGE_NVRAM_SWARB);
663 1.151 cegger
664 1.151 cegger return (0);
665 1.151 cegger }
666 1.151 cegger
667 1.151 cegger /*
668 1.151 cegger * Read a sequence of bytes from NVRAM.
669 1.151 cegger */
670 1.151 cegger static int
671 1.151 cegger bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
672 1.151 cegger {
673 1.151 cegger int err = 0, i;
674 1.151 cegger u_int8_t byte = 0;
675 1.151 cegger
676 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
677 1.151 cegger return (1);
678 1.151 cegger
679 1.151 cegger for (i = 0; i < cnt; i++) {
680 1.151 cegger err = bge_nvram_getbyte(sc, off + i, &byte);
681 1.151 cegger if (err)
682 1.151 cegger break;
683 1.151 cegger *(dest + i) = byte;
684 1.151 cegger }
685 1.151 cegger
686 1.151 cegger return (err ? 1 : 0);
687 1.151 cegger }
688 1.151 cegger
689 1.1 fvdl /*
690 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
691 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
692 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
693 1.1 fvdl * access method.
694 1.1 fvdl */
695 1.104 thorpej static u_int8_t
696 1.104 thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
697 1.1 fvdl {
698 1.1 fvdl int i;
699 1.1 fvdl u_int32_t byte = 0;
700 1.1 fvdl
701 1.1 fvdl /*
702 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
703 1.1 fvdl * having to use the bitbang method.
704 1.1 fvdl */
705 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
706 1.1 fvdl
707 1.1 fvdl /* Reset the EEPROM, load the clock period. */
708 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
709 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
710 1.1 fvdl DELAY(20);
711 1.1 fvdl
712 1.1 fvdl /* Issue the read EEPROM command. */
713 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
714 1.1 fvdl
715 1.1 fvdl /* Wait for completion */
716 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
717 1.1 fvdl DELAY(10);
718 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
719 1.1 fvdl break;
720 1.1 fvdl }
721 1.1 fvdl
722 1.1 fvdl if (i == BGE_TIMEOUT) {
723 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
724 1.158 msaitoh return (0);
725 1.1 fvdl }
726 1.1 fvdl
727 1.1 fvdl /* Get result. */
728 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
729 1.1 fvdl
730 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
731 1.1 fvdl
732 1.158 msaitoh return (0);
733 1.1 fvdl }
734 1.1 fvdl
735 1.1 fvdl /*
736 1.1 fvdl * Read a sequence of bytes from the EEPROM.
737 1.1 fvdl */
738 1.104 thorpej static int
739 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
740 1.1 fvdl {
741 1.1 fvdl int err = 0, i;
742 1.1 fvdl u_int8_t byte = 0;
743 1.126 christos char *dest = destv;
744 1.1 fvdl
745 1.1 fvdl for (i = 0; i < cnt; i++) {
746 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
747 1.1 fvdl if (err)
748 1.1 fvdl break;
749 1.1 fvdl *(dest + i) = byte;
750 1.1 fvdl }
751 1.1 fvdl
752 1.158 msaitoh return (err ? 1 : 0);
753 1.1 fvdl }
754 1.1 fvdl
755 1.104 thorpej static int
756 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
757 1.1 fvdl {
758 1.138 joerg struct bge_softc *sc = device_private(dev);
759 1.1 fvdl u_int32_t val;
760 1.25 jonathan u_int32_t saved_autopoll;
761 1.1 fvdl int i;
762 1.1 fvdl
763 1.25 jonathan /*
764 1.156 msaitoh * Broadcom's own driver always assumes the internal
765 1.156 msaitoh * PHY is at GMII address 1. On some chips, the PHY responds
766 1.156 msaitoh * to accesses at all addresses, which could cause us to
767 1.156 msaitoh * bogusly attach the PHY 32 times at probe type. Always
768 1.156 msaitoh * restricting the lookup to address 1 is simpler than
769 1.156 msaitoh * trying to figure out which chips revisions should be
770 1.156 msaitoh * special-cased.
771 1.25 jonathan */
772 1.156 msaitoh if (phy != 1)
773 1.158 msaitoh return (0);
774 1.1 fvdl
775 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
776 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
777 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
778 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
779 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
780 1.25 jonathan DELAY(40);
781 1.25 jonathan }
782 1.25 jonathan
783 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
784 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
785 1.1 fvdl
786 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
787 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
788 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
789 1.1 fvdl break;
790 1.9 thorpej delay(10);
791 1.1 fvdl }
792 1.1 fvdl
793 1.1 fvdl if (i == BGE_TIMEOUT) {
794 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
795 1.29 itojun val = 0;
796 1.25 jonathan goto done;
797 1.1 fvdl }
798 1.1 fvdl
799 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
800 1.1 fvdl
801 1.25 jonathan done:
802 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
803 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
804 1.25 jonathan DELAY(40);
805 1.25 jonathan }
806 1.29 itojun
807 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
808 1.158 msaitoh return (0);
809 1.1 fvdl
810 1.158 msaitoh return (val & 0xFFFF);
811 1.1 fvdl }
812 1.1 fvdl
813 1.104 thorpej static void
814 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
815 1.1 fvdl {
816 1.138 joerg struct bge_softc *sc = device_private(dev);
817 1.29 itojun u_int32_t saved_autopoll;
818 1.29 itojun int i;
819 1.1 fvdl
820 1.151 cegger if (phy!=1) {
821 1.151 cegger return;
822 1.151 cegger }
823 1.151 cegger
824 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
825 1.151 cegger (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
826 1.151 cegger return;
827 1.151 cegger }
828 1.151 cegger
829 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
830 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
831 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
832 1.25 jonathan delay(40);
833 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
834 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
835 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
836 1.25 jonathan }
837 1.29 itojun
838 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
839 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
840 1.1 fvdl
841 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
842 1.151 cegger delay(10);
843 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
844 1.151 cegger delay(5);
845 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
846 1.1 fvdl break;
847 1.151 cegger }
848 1.1 fvdl }
849 1.1 fvdl
850 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
851 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
852 1.25 jonathan delay(40);
853 1.25 jonathan }
854 1.29 itojun
855 1.138 joerg if (i == BGE_TIMEOUT)
856 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
857 1.1 fvdl }
858 1.1 fvdl
859 1.104 thorpej static void
860 1.104 thorpej bge_miibus_statchg(device_t dev)
861 1.1 fvdl {
862 1.138 joerg struct bge_softc *sc = device_private(dev);
863 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
864 1.1 fvdl
865 1.69 thorpej /*
866 1.69 thorpej * Get flow control negotiation result.
867 1.69 thorpej */
868 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
869 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
870 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
871 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
872 1.69 thorpej }
873 1.69 thorpej
874 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
875 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
876 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
877 1.158 msaitoh } else
878 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
879 1.1 fvdl
880 1.158 msaitoh if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
881 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
882 1.158 msaitoh else
883 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
884 1.69 thorpej
885 1.69 thorpej /*
886 1.69 thorpej * 802.3x flow control
887 1.69 thorpej */
888 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
889 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
890 1.158 msaitoh else
891 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
892 1.158 msaitoh
893 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
894 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
895 1.158 msaitoh else
896 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
897 1.1 fvdl }
898 1.1 fvdl
899 1.1 fvdl /*
900 1.63 jonathan * Update rx threshold levels to values in a particular slot
901 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
902 1.63 jonathan */
903 1.104 thorpej static void
904 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
905 1.63 jonathan {
906 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
907 1.63 jonathan int s;
908 1.63 jonathan
909 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
910 1.63 jonathan * that a threshold update is pending. Updating the hardware
911 1.63 jonathan * registers here (even at splhigh()) is observed to
912 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
913 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
914 1.63 jonathan */
915 1.63 jonathan s = splnet();
916 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
917 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
918 1.63 jonathan sc->bge_pending_rxintr_change = 1;
919 1.63 jonathan splx(s);
920 1.63 jonathan
921 1.63 jonathan return;
922 1.63 jonathan }
923 1.63 jonathan
924 1.63 jonathan
925 1.63 jonathan /*
926 1.63 jonathan * Update Rx thresholds of all bge devices
927 1.63 jonathan */
928 1.104 thorpej static void
929 1.63 jonathan bge_update_all_threshes(int lvl)
930 1.63 jonathan {
931 1.63 jonathan struct ifnet *ifp;
932 1.63 jonathan const char * const namebuf = "bge";
933 1.63 jonathan int namelen;
934 1.63 jonathan
935 1.63 jonathan if (lvl < 0)
936 1.63 jonathan lvl = 0;
937 1.63 jonathan else if( lvl >= NBGE_RX_THRESH)
938 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
939 1.87 perry
940 1.63 jonathan namelen = strlen(namebuf);
941 1.63 jonathan /*
942 1.63 jonathan * Now search all the interfaces for this name/number
943 1.63 jonathan */
944 1.81 matt IFNET_FOREACH(ifp) {
945 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
946 1.63 jonathan continue;
947 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
948 1.63 jonathan if (bge_auto_thresh)
949 1.67 jonathan bge_set_thresh(ifp, lvl);
950 1.63 jonathan }
951 1.63 jonathan }
952 1.63 jonathan
953 1.63 jonathan /*
954 1.1 fvdl * Handle events that have triggered interrupts.
955 1.1 fvdl */
956 1.104 thorpej static void
957 1.116 christos bge_handle_events(struct bge_softc *sc)
958 1.1 fvdl {
959 1.1 fvdl
960 1.1 fvdl return;
961 1.1 fvdl }
962 1.1 fvdl
963 1.1 fvdl /*
964 1.1 fvdl * Memory management for jumbo frames.
965 1.1 fvdl */
966 1.1 fvdl
967 1.104 thorpej static int
968 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
969 1.1 fvdl {
970 1.126 christos char *ptr, *kva;
971 1.1 fvdl bus_dma_segment_t seg;
972 1.1 fvdl int i, rseg, state, error;
973 1.1 fvdl struct bge_jpool_entry *entry;
974 1.1 fvdl
975 1.1 fvdl state = error = 0;
976 1.1 fvdl
977 1.1 fvdl /* Grab a big chunk o' storage. */
978 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
979 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
980 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
981 1.1 fvdl return ENOBUFS;
982 1.1 fvdl }
983 1.1 fvdl
984 1.1 fvdl state = 1;
985 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
986 1.1 fvdl BUS_DMA_NOWAIT)) {
987 1.138 joerg aprint_error_dev(sc->bge_dev,
988 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
989 1.1 fvdl error = ENOBUFS;
990 1.1 fvdl goto out;
991 1.1 fvdl }
992 1.1 fvdl
993 1.1 fvdl state = 2;
994 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
995 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
996 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
997 1.1 fvdl error = ENOBUFS;
998 1.1 fvdl goto out;
999 1.1 fvdl }
1000 1.1 fvdl
1001 1.1 fvdl state = 3;
1002 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1003 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1004 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1005 1.1 fvdl error = ENOBUFS;
1006 1.1 fvdl goto out;
1007 1.1 fvdl }
1008 1.1 fvdl
1009 1.1 fvdl state = 4;
1010 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1011 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1012 1.1 fvdl
1013 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
1014 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
1015 1.1 fvdl
1016 1.1 fvdl /*
1017 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
1018 1.1 fvdl * in an array.
1019 1.1 fvdl */
1020 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
1021 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
1022 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
1023 1.1 fvdl ptr += BGE_JLEN;
1024 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
1025 1.1 fvdl M_DEVBUF, M_NOWAIT);
1026 1.1 fvdl if (entry == NULL) {
1027 1.138 joerg aprint_error_dev(sc->bge_dev,
1028 1.138 joerg "no memory for jumbo buffer queue!\n");
1029 1.1 fvdl error = ENOBUFS;
1030 1.1 fvdl goto out;
1031 1.1 fvdl }
1032 1.1 fvdl entry->slot = i;
1033 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1034 1.1 fvdl entry, jpool_entries);
1035 1.1 fvdl }
1036 1.1 fvdl out:
1037 1.1 fvdl if (error != 0) {
1038 1.1 fvdl switch (state) {
1039 1.1 fvdl case 4:
1040 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
1041 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1042 1.1 fvdl case 3:
1043 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
1044 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1045 1.1 fvdl case 2:
1046 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1047 1.1 fvdl case 1:
1048 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1049 1.1 fvdl break;
1050 1.1 fvdl default:
1051 1.1 fvdl break;
1052 1.1 fvdl }
1053 1.1 fvdl }
1054 1.1 fvdl
1055 1.1 fvdl return error;
1056 1.1 fvdl }
1057 1.1 fvdl
1058 1.1 fvdl /*
1059 1.1 fvdl * Allocate a jumbo buffer.
1060 1.1 fvdl */
1061 1.104 thorpej static void *
1062 1.104 thorpej bge_jalloc(struct bge_softc *sc)
1063 1.1 fvdl {
1064 1.1 fvdl struct bge_jpool_entry *entry;
1065 1.1 fvdl
1066 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1067 1.1 fvdl
1068 1.1 fvdl if (entry == NULL) {
1069 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1070 1.158 msaitoh return (NULL);
1071 1.1 fvdl }
1072 1.1 fvdl
1073 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1074 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1075 1.158 msaitoh return (sc->bge_cdata.bge_jslots[entry->slot]);
1076 1.1 fvdl }
1077 1.1 fvdl
1078 1.1 fvdl /*
1079 1.1 fvdl * Release a jumbo buffer.
1080 1.1 fvdl */
1081 1.104 thorpej static void
1082 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1083 1.1 fvdl {
1084 1.1 fvdl struct bge_jpool_entry *entry;
1085 1.1 fvdl struct bge_softc *sc;
1086 1.1 fvdl int i, s;
1087 1.1 fvdl
1088 1.1 fvdl /* Extract the softc struct pointer. */
1089 1.1 fvdl sc = (struct bge_softc *)arg;
1090 1.1 fvdl
1091 1.1 fvdl if (sc == NULL)
1092 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
1093 1.1 fvdl
1094 1.1 fvdl /* calculate the slot this buffer belongs to */
1095 1.1 fvdl
1096 1.126 christos i = ((char *)buf
1097 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1098 1.1 fvdl
1099 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
1100 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
1101 1.1 fvdl
1102 1.1 fvdl s = splvm();
1103 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1104 1.1 fvdl if (entry == NULL)
1105 1.1 fvdl panic("bge_jfree: buffer not in use!");
1106 1.1 fvdl entry->slot = i;
1107 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1108 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1109 1.1 fvdl
1110 1.1 fvdl if (__predict_true(m != NULL))
1111 1.140 ad pool_cache_put(mb_cache, m);
1112 1.1 fvdl splx(s);
1113 1.1 fvdl }
1114 1.1 fvdl
1115 1.1 fvdl
1116 1.1 fvdl /*
1117 1.1 fvdl * Intialize a standard receive ring descriptor.
1118 1.1 fvdl */
1119 1.104 thorpej static int
1120 1.104 thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1121 1.1 fvdl {
1122 1.1 fvdl struct mbuf *m_new = NULL;
1123 1.1 fvdl struct bge_rx_bd *r;
1124 1.1 fvdl int error;
1125 1.1 fvdl
1126 1.1 fvdl if (dmamap == NULL) {
1127 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1128 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1129 1.1 fvdl if (error != 0)
1130 1.1 fvdl return error;
1131 1.1 fvdl }
1132 1.1 fvdl
1133 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1134 1.1 fvdl
1135 1.1 fvdl if (m == NULL) {
1136 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1137 1.158 msaitoh if (m_new == NULL)
1138 1.158 msaitoh return (ENOBUFS);
1139 1.1 fvdl
1140 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
1141 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
1142 1.1 fvdl m_freem(m_new);
1143 1.158 msaitoh return (ENOBUFS);
1144 1.1 fvdl }
1145 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1146 1.1 fvdl
1147 1.1 fvdl } else {
1148 1.1 fvdl m_new = m;
1149 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1150 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
1151 1.1 fvdl }
1152 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1153 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1154 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1155 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
1156 1.158 msaitoh return (ENOBUFS);
1157 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1158 1.124 bouyer BUS_DMASYNC_PREREAD);
1159 1.1 fvdl
1160 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1161 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
1162 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
1163 1.10 fvdl dmamap->dm_segs[0].ds_addr);
1164 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
1165 1.1 fvdl r->bge_len = m_new->m_len;
1166 1.1 fvdl r->bge_idx = i;
1167 1.1 fvdl
1168 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1169 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
1170 1.1 fvdl i * sizeof (struct bge_rx_bd),
1171 1.1 fvdl sizeof (struct bge_rx_bd),
1172 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1173 1.1 fvdl
1174 1.158 msaitoh return (0);
1175 1.1 fvdl }
1176 1.1 fvdl
1177 1.1 fvdl /*
1178 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1179 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1180 1.1 fvdl */
1181 1.104 thorpej static int
1182 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1183 1.1 fvdl {
1184 1.1 fvdl struct mbuf *m_new = NULL;
1185 1.1 fvdl struct bge_rx_bd *r;
1186 1.126 christos void *buf = NULL;
1187 1.1 fvdl
1188 1.1 fvdl if (m == NULL) {
1189 1.1 fvdl
1190 1.1 fvdl /* Allocate the mbuf. */
1191 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1192 1.158 msaitoh if (m_new == NULL)
1193 1.158 msaitoh return (ENOBUFS);
1194 1.1 fvdl
1195 1.1 fvdl /* Allocate the jumbo buffer */
1196 1.1 fvdl buf = bge_jalloc(sc);
1197 1.1 fvdl if (buf == NULL) {
1198 1.1 fvdl m_freem(m_new);
1199 1.138 joerg aprint_error_dev(sc->bge_dev,
1200 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1201 1.158 msaitoh return (ENOBUFS);
1202 1.1 fvdl }
1203 1.1 fvdl
1204 1.1 fvdl /* Attach the buffer to the mbuf. */
1205 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1206 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1207 1.1 fvdl bge_jfree, sc);
1208 1.74 yamt m_new->m_flags |= M_EXT_RW;
1209 1.1 fvdl } else {
1210 1.1 fvdl m_new = m;
1211 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1212 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1213 1.1 fvdl }
1214 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1215 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1216 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1217 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1218 1.124 bouyer BUS_DMASYNC_PREREAD);
1219 1.1 fvdl /* Set up the descriptor. */
1220 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1221 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1222 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1223 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1224 1.1 fvdl r->bge_len = m_new->m_len;
1225 1.1 fvdl r->bge_idx = i;
1226 1.1 fvdl
1227 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1228 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1229 1.1 fvdl i * sizeof (struct bge_rx_bd),
1230 1.1 fvdl sizeof (struct bge_rx_bd),
1231 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1232 1.1 fvdl
1233 1.158 msaitoh return (0);
1234 1.1 fvdl }
1235 1.1 fvdl
1236 1.1 fvdl /*
1237 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1238 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1239 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1240 1.1 fvdl * the NIC.
1241 1.1 fvdl */
1242 1.104 thorpej static int
1243 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1244 1.1 fvdl {
1245 1.1 fvdl int i;
1246 1.1 fvdl
1247 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1248 1.1 fvdl return 0;
1249 1.1 fvdl
1250 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1251 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1252 1.158 msaitoh return (ENOBUFS);
1253 1.1 fvdl }
1254 1.1 fvdl
1255 1.1 fvdl sc->bge_std = i - 1;
1256 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1257 1.1 fvdl
1258 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1259 1.1 fvdl
1260 1.158 msaitoh return (0);
1261 1.1 fvdl }
1262 1.1 fvdl
1263 1.104 thorpej static void
1264 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1265 1.1 fvdl {
1266 1.1 fvdl int i;
1267 1.1 fvdl
1268 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1269 1.1 fvdl return;
1270 1.1 fvdl
1271 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1272 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1273 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1274 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1275 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1276 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1277 1.1 fvdl }
1278 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1279 1.1 fvdl sizeof(struct bge_rx_bd));
1280 1.1 fvdl }
1281 1.1 fvdl
1282 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1283 1.1 fvdl }
1284 1.1 fvdl
1285 1.104 thorpej static int
1286 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1287 1.1 fvdl {
1288 1.1 fvdl int i;
1289 1.34 jonathan volatile struct bge_rcb *rcb;
1290 1.1 fvdl
1291 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1292 1.59 martin return 0;
1293 1.59 martin
1294 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1295 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1296 1.158 msaitoh return (ENOBUFS);
1297 1.1 fvdl };
1298 1.1 fvdl
1299 1.1 fvdl sc->bge_jumbo = i - 1;
1300 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1301 1.1 fvdl
1302 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1303 1.34 jonathan rcb->bge_maxlen_flags = 0;
1304 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1305 1.1 fvdl
1306 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1307 1.1 fvdl
1308 1.158 msaitoh return (0);
1309 1.1 fvdl }
1310 1.1 fvdl
1311 1.104 thorpej static void
1312 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1313 1.1 fvdl {
1314 1.1 fvdl int i;
1315 1.1 fvdl
1316 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1317 1.1 fvdl return;
1318 1.1 fvdl
1319 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1320 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1321 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1322 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1323 1.1 fvdl }
1324 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1325 1.1 fvdl sizeof(struct bge_rx_bd));
1326 1.1 fvdl }
1327 1.1 fvdl
1328 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1329 1.1 fvdl }
1330 1.1 fvdl
1331 1.104 thorpej static void
1332 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1333 1.1 fvdl {
1334 1.1 fvdl int i, freed;
1335 1.1 fvdl struct txdmamap_pool_entry *dma;
1336 1.1 fvdl
1337 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1338 1.1 fvdl return;
1339 1.1 fvdl
1340 1.1 fvdl freed = 0;
1341 1.1 fvdl
1342 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1343 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1344 1.1 fvdl freed++;
1345 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1346 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1347 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1348 1.1 fvdl link);
1349 1.1 fvdl sc->txdma[i] = 0;
1350 1.1 fvdl }
1351 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1352 1.1 fvdl sizeof(struct bge_tx_bd));
1353 1.1 fvdl }
1354 1.1 fvdl
1355 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1356 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1357 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1358 1.1 fvdl free(dma, M_DEVBUF);
1359 1.1 fvdl }
1360 1.1 fvdl
1361 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1362 1.1 fvdl }
1363 1.1 fvdl
1364 1.104 thorpej static int
1365 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1366 1.1 fvdl {
1367 1.1 fvdl int i;
1368 1.1 fvdl bus_dmamap_t dmamap;
1369 1.1 fvdl struct txdmamap_pool_entry *dma;
1370 1.1 fvdl
1371 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1372 1.1 fvdl return 0;
1373 1.1 fvdl
1374 1.1 fvdl sc->bge_txcnt = 0;
1375 1.1 fvdl sc->bge_tx_saved_considx = 0;
1376 1.94 jonathan
1377 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1378 1.94 jonathan sc->bge_tx_prodidx = 0;
1379 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1380 1.158 msaitoh /* 5700 b2 errata */
1381 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1382 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1383 1.25 jonathan
1384 1.158 msaitoh /* NIC-memory send ring not used; initialize to zero. */
1385 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1386 1.158 msaitoh /* 5700 b2 errata */
1387 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1388 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1389 1.1 fvdl
1390 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1391 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1392 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1393 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1394 1.1 fvdl &dmamap))
1395 1.158 msaitoh return (ENOBUFS);
1396 1.1 fvdl if (dmamap == NULL)
1397 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1398 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1399 1.1 fvdl if (dma == NULL) {
1400 1.138 joerg aprint_error_dev(sc->bge_dev,
1401 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1402 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1403 1.1 fvdl return (ENOMEM);
1404 1.1 fvdl }
1405 1.1 fvdl dma->dmamap = dmamap;
1406 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1407 1.1 fvdl }
1408 1.1 fvdl
1409 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1410 1.1 fvdl
1411 1.158 msaitoh return (0);
1412 1.1 fvdl }
1413 1.1 fvdl
1414 1.104 thorpej static void
1415 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1416 1.1 fvdl {
1417 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1418 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1419 1.1 fvdl struct ether_multi *enm;
1420 1.1 fvdl struct ether_multistep step;
1421 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1422 1.1 fvdl u_int32_t h;
1423 1.1 fvdl int i;
1424 1.1 fvdl
1425 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1426 1.13 thorpej goto allmulti;
1427 1.1 fvdl
1428 1.1 fvdl /* Now program new ones. */
1429 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1430 1.1 fvdl while (enm != NULL) {
1431 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1432 1.13 thorpej /*
1433 1.13 thorpej * We must listen to a range of multicast addresses.
1434 1.13 thorpej * For now, just accept all multicasts, rather than
1435 1.13 thorpej * trying to set only those filter bits needed to match
1436 1.13 thorpej * the range. (At this time, the only use of address
1437 1.13 thorpej * ranges is for IP multicast routing, for which the
1438 1.13 thorpej * range is big enough to require all bits set.)
1439 1.13 thorpej */
1440 1.13 thorpej goto allmulti;
1441 1.13 thorpej }
1442 1.13 thorpej
1443 1.158 msaitoh h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1444 1.1 fvdl
1445 1.158 msaitoh /* Just want the 7 least-significant bits. */
1446 1.158 msaitoh h &= 0x7f;
1447 1.1 fvdl
1448 1.158 msaitoh hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1449 1.158 msaitoh ETHER_NEXT_MULTI(step, enm);
1450 1.25 jonathan }
1451 1.25 jonathan
1452 1.158 msaitoh ifp->if_flags &= ~IFF_ALLMULTI;
1453 1.158 msaitoh goto setit;
1454 1.1 fvdl
1455 1.158 msaitoh allmulti:
1456 1.158 msaitoh ifp->if_flags |= IFF_ALLMULTI;
1457 1.158 msaitoh hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1458 1.133 markd
1459 1.158 msaitoh setit:
1460 1.158 msaitoh for (i = 0; i < 4; i++)
1461 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1462 1.158 msaitoh }
1463 1.133 markd
1464 1.158 msaitoh const int bge_swapbits[] = {
1465 1.158 msaitoh 0,
1466 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA,
1467 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA,
1468 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1469 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1470 1.1 fvdl
1471 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1472 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1473 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1474 1.95 jonathan
1475 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1476 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1477 1.95 jonathan
1478 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1479 1.95 jonathan
1480 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1481 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1482 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1483 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1484 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1485 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1486 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1487 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1488 1.1 fvdl
1489 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1490 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1491 1.158 msaitoh };
1492 1.1 fvdl
1493 1.158 msaitoh int bge_swapindex = 0;
1494 1.1 fvdl
1495 1.158 msaitoh /*
1496 1.158 msaitoh * Do endian, PCI and DMA initialization. Also check the on-board ROM
1497 1.158 msaitoh * self-test results.
1498 1.158 msaitoh */
1499 1.158 msaitoh static int
1500 1.158 msaitoh bge_chipinit(struct bge_softc *sc)
1501 1.158 msaitoh {
1502 1.158 msaitoh u_int32_t cachesize;
1503 1.158 msaitoh int i;
1504 1.158 msaitoh u_int32_t dma_rw_ctl;
1505 1.1 fvdl
1506 1.1 fvdl
1507 1.158 msaitoh /* Set endianness before we access any non-PCI registers. */
1508 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1509 1.158 msaitoh BGE_INIT);
1510 1.1 fvdl
1511 1.158 msaitoh /* Set power state to D0. */
1512 1.158 msaitoh bge_setpowerstate(sc, 0);
1513 1.1 fvdl
1514 1.158 msaitoh /*
1515 1.158 msaitoh * Check the 'ROM failed' bit on the RX CPU to see if
1516 1.158 msaitoh * self-tests passed.
1517 1.158 msaitoh */
1518 1.158 msaitoh if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1519 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1520 1.158 msaitoh "RX CPU self-diagnostics failed!\n");
1521 1.158 msaitoh return (ENODEV);
1522 1.95 jonathan }
1523 1.1 fvdl
1524 1.158 msaitoh /* Clear the MAC control register */
1525 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1526 1.1 fvdl
1527 1.158 msaitoh /*
1528 1.158 msaitoh * Clear the MAC statistics block in the NIC's
1529 1.158 msaitoh * internal memory.
1530 1.158 msaitoh */
1531 1.158 msaitoh for (i = BGE_STATS_BLOCK;
1532 1.158 msaitoh i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1533 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1534 1.1 fvdl
1535 1.158 msaitoh for (i = BGE_STATUS_BLOCK;
1536 1.158 msaitoh i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1537 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1538 1.1 fvdl
1539 1.158 msaitoh /* Set up the PCI DMA control register. */
1540 1.158 msaitoh if (sc->bge_flags & BGE_PCIE) {
1541 1.158 msaitoh u_int32_t device_ctl;
1542 1.1 fvdl
1543 1.158 msaitoh /* From FreeBSD */
1544 1.158 msaitoh DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1545 1.158 msaitoh device_xname(sc->bge_dev)));
1546 1.158 msaitoh dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1547 1.158 msaitoh (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1548 1.158 msaitoh (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1549 1.1 fvdl
1550 1.158 msaitoh /* jonathan: alternative from Linux driver */
1551 1.158 msaitoh #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1552 1.158 msaitoh #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1553 1.1 fvdl
1554 1.158 msaitoh dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1555 1.158 msaitoh device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1556 1.158 msaitoh BGE_PCI_CONF_DEV_CTRL);
1557 1.158 msaitoh aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1558 1.1 fvdl
1559 1.158 msaitoh if ((device_ctl & 0x00e0) && 0) {
1560 1.158 msaitoh /*
1561 1.158 msaitoh * XXX jonathan (at) NetBSD.org:
1562 1.158 msaitoh * This clause is exactly what the Broadcom-supplied
1563 1.158 msaitoh * Linux does; but given overall register programming
1564 1.158 msaitoh * by if_bge(4), this larger DMA-write watermark
1565 1.158 msaitoh * value causes bcm5721 chips to totally wedge.
1566 1.158 msaitoh */
1567 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1568 1.158 msaitoh } else {
1569 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1570 1.158 msaitoh }
1571 1.158 msaitoh } else if (sc->bge_flags & BGE_PCIX){
1572 1.158 msaitoh DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1573 1.158 msaitoh device_xname(sc->bge_dev)));
1574 1.158 msaitoh /* PCI-X bus */
1575 1.158 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1576 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1577 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1578 1.158 msaitoh (0x0F);
1579 1.158 msaitoh /*
1580 1.158 msaitoh * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1581 1.158 msaitoh * for hardware bugs, which means we should also clear
1582 1.158 msaitoh * the low-order MINDMA bits. In addition, the 5704
1583 1.158 msaitoh * uses a different encoding of read/write watermarks.
1584 1.158 msaitoh */
1585 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1586 1.158 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1587 1.158 msaitoh /* should be 0x1f0000 */
1588 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1589 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1590 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1591 1.158 msaitoh }
1592 1.158 msaitoh else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1593 1.158 msaitoh dma_rw_ctl &= 0xfffffff0;
1594 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1595 1.158 msaitoh }
1596 1.158 msaitoh else if (BGE_IS_5714_FAMILY(sc)) {
1597 1.158 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1598 1.158 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1599 1.158 msaitoh /* XXX magic values, Broadcom-supplied Linux driver */
1600 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1601 1.158 msaitoh dma_rw_ctl |= (1 << 20) | (1 << 18) |
1602 1.158 msaitoh BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1603 1.158 msaitoh else
1604 1.158 msaitoh dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1605 1.158 msaitoh }
1606 1.158 msaitoh } else {
1607 1.158 msaitoh /* Conventional PCI bus */
1608 1.158 msaitoh DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1609 1.158 msaitoh device_xname(sc->bge_dev)));
1610 1.158 msaitoh dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1611 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1612 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1613 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
1614 1.158 msaitoh dma_rw_ctl |= 0x0F;
1615 1.158 msaitoh }
1616 1.157 msaitoh
1617 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1618 1.120 tsutsui
1619 1.158 msaitoh /*
1620 1.158 msaitoh * Set up general mode register.
1621 1.158 msaitoh */
1622 1.158 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1623 1.158 msaitoh BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1624 1.158 msaitoh BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1625 1.16 thorpej
1626 1.158 msaitoh /* Get cache line size. */
1627 1.158 msaitoh cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1628 1.16 thorpej
1629 1.158 msaitoh /*
1630 1.158 msaitoh * Avoid violating PCI spec on certain chip revs.
1631 1.158 msaitoh */
1632 1.158 msaitoh if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1633 1.158 msaitoh PCIM_CMD_MWIEN) {
1634 1.158 msaitoh switch(cachesize) {
1635 1.158 msaitoh case 1:
1636 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1637 1.158 msaitoh BGE_PCI_WRITE_BNDRY_16BYTES);
1638 1.158 msaitoh break;
1639 1.158 msaitoh case 2:
1640 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1641 1.158 msaitoh BGE_PCI_WRITE_BNDRY_32BYTES);
1642 1.158 msaitoh break;
1643 1.158 msaitoh case 4:
1644 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1645 1.158 msaitoh BGE_PCI_WRITE_BNDRY_64BYTES);
1646 1.158 msaitoh break;
1647 1.158 msaitoh case 8:
1648 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1649 1.158 msaitoh BGE_PCI_WRITE_BNDRY_128BYTES);
1650 1.158 msaitoh break;
1651 1.158 msaitoh case 16:
1652 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1653 1.158 msaitoh BGE_PCI_WRITE_BNDRY_256BYTES);
1654 1.158 msaitoh break;
1655 1.158 msaitoh case 32:
1656 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1657 1.158 msaitoh BGE_PCI_WRITE_BNDRY_512BYTES);
1658 1.158 msaitoh break;
1659 1.158 msaitoh case 64:
1660 1.158 msaitoh PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1661 1.158 msaitoh BGE_PCI_WRITE_BNDRY_1024BYTES);
1662 1.158 msaitoh break;
1663 1.158 msaitoh default:
1664 1.158 msaitoh /* Disable PCI memory write and invalidate. */
1665 1.158 msaitoh #if 0
1666 1.158 msaitoh if (bootverbose)
1667 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1668 1.158 msaitoh "cache line size %d not supported "
1669 1.158 msaitoh "disabling PCI MWI\n",
1670 1.158 msaitoh #endif
1671 1.158 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1672 1.158 msaitoh PCIM_CMD_MWIEN);
1673 1.158 msaitoh break;
1674 1.158 msaitoh }
1675 1.158 msaitoh }
1676 1.16 thorpej
1677 1.158 msaitoh /*
1678 1.158 msaitoh * Disable memory write invalidate. Apparently it is not supported
1679 1.158 msaitoh * properly by these devices.
1680 1.158 msaitoh */
1681 1.158 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1682 1.16 thorpej
1683 1.16 thorpej
1684 1.158 msaitoh #ifdef __brokenalpha__
1685 1.158 msaitoh /*
1686 1.158 msaitoh * Must insure that we do not cross an 8K (bytes) boundary
1687 1.158 msaitoh * for DMA reads. Our highest limit is 1K bytes. This is a
1688 1.158 msaitoh * restriction on some ALPHA platforms with early revision
1689 1.158 msaitoh * 21174 PCI chipsets, such as the AlphaPC 164lx
1690 1.158 msaitoh */
1691 1.158 msaitoh PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1692 1.158 msaitoh #endif
1693 1.16 thorpej
1694 1.158 msaitoh /* Set the timer prescaler (always 66MHz) */
1695 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1696 1.16 thorpej
1697 1.158 msaitoh return (0);
1698 1.158 msaitoh }
1699 1.16 thorpej
1700 1.158 msaitoh static int
1701 1.158 msaitoh bge_blockinit(struct bge_softc *sc)
1702 1.158 msaitoh {
1703 1.158 msaitoh volatile struct bge_rcb *rcb;
1704 1.158 msaitoh bus_size_t rcb_addr;
1705 1.158 msaitoh int i;
1706 1.158 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
1707 1.158 msaitoh bge_hostaddr taddr;
1708 1.16 thorpej
1709 1.158 msaitoh /*
1710 1.158 msaitoh * Initialize the memory window pointer register so that
1711 1.158 msaitoh * we can access the first 32K of internal NIC RAM. This will
1712 1.158 msaitoh * allow us to set up the TX send ring RCBs and the RX return
1713 1.158 msaitoh * ring RCBs, plus other things which live in NIC memory.
1714 1.158 msaitoh */
1715 1.55 pooka
1716 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1717 1.120 tsutsui
1718 1.158 msaitoh /* Configure mbuf memory pool */
1719 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1720 1.158 msaitoh if (sc->bge_extram) {
1721 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1722 1.158 msaitoh BGE_EXT_SSRAM);
1723 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1724 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1725 1.158 msaitoh else
1726 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1727 1.158 msaitoh } else {
1728 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1729 1.158 msaitoh BGE_BUFFPOOL_1);
1730 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1731 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1732 1.158 msaitoh else
1733 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1734 1.158 msaitoh }
1735 1.40 fvdl
1736 1.158 msaitoh /* Configure DMA resource pool */
1737 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1738 1.158 msaitoh BGE_DMA_DESCRIPTORS);
1739 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1740 1.158 msaitoh }
1741 1.40 fvdl
1742 1.158 msaitoh /* Configure mbuf pool watermarks */
1743 1.158 msaitoh #ifdef ORIG_WPAUL_VALUES
1744 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1745 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1746 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1747 1.158 msaitoh #else
1748 1.49 fvdl
1749 1.158 msaitoh /* new broadcom docs strongly recommend these: */
1750 1.158 msaitoh if (!BGE_IS_5705_OR_BEYOND(sc)) {
1751 1.158 msaitoh if (ifp->if_mtu > ETHER_MAX_LEN) {
1752 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1753 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1754 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1755 1.158 msaitoh } else {
1756 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1757 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1758 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1759 1.158 msaitoh }
1760 1.158 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1761 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1762 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1763 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1764 1.158 msaitoh } else {
1765 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1766 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1767 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1768 1.158 msaitoh }
1769 1.158 msaitoh #endif
1770 1.25 jonathan
1771 1.158 msaitoh /* Configure DMA resource watermarks */
1772 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1773 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1774 1.51 fvdl
1775 1.158 msaitoh /* Enable buffer manager */
1776 1.158 msaitoh if (!BGE_IS_5705_OR_BEYOND(sc)) {
1777 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MODE,
1778 1.158 msaitoh BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1779 1.44 hannken
1780 1.158 msaitoh /* Poll for buffer manager start indication */
1781 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1782 1.158 msaitoh if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1783 1.158 msaitoh break;
1784 1.158 msaitoh DELAY(10);
1785 1.158 msaitoh }
1786 1.51 fvdl
1787 1.158 msaitoh if (i == BGE_TIMEOUT) {
1788 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1789 1.158 msaitoh "buffer manager failed to start\n");
1790 1.158 msaitoh return (ENXIO);
1791 1.158 msaitoh }
1792 1.158 msaitoh }
1793 1.51 fvdl
1794 1.158 msaitoh /* Enable flow-through queues */
1795 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1796 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1797 1.76 cube
1798 1.158 msaitoh /* Wait until queue initialization is complete */
1799 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1800 1.158 msaitoh if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1801 1.158 msaitoh break;
1802 1.158 msaitoh DELAY(10);
1803 1.158 msaitoh }
1804 1.76 cube
1805 1.158 msaitoh if (i == BGE_TIMEOUT) {
1806 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1807 1.158 msaitoh "flow-through queue init failed\n");
1808 1.158 msaitoh return (ENXIO);
1809 1.158 msaitoh }
1810 1.92 gavan
1811 1.158 msaitoh /* Initialize the standard RX ring control block */
1812 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1813 1.158 msaitoh bge_set_hostaddr(&rcb->bge_hostaddr,
1814 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1815 1.158 msaitoh if (BGE_IS_5705_OR_BEYOND(sc))
1816 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1817 1.158 msaitoh else
1818 1.158 msaitoh rcb->bge_maxlen_flags =
1819 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1820 1.158 msaitoh if (sc->bge_extram)
1821 1.158 msaitoh rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1822 1.158 msaitoh else
1823 1.158 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1824 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1825 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1826 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1827 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1828 1.119 tsutsui
1829 1.158 msaitoh if (BGE_IS_5705_OR_BEYOND(sc))
1830 1.158 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1831 1.158 msaitoh else
1832 1.158 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1833 1.119 tsutsui
1834 1.158 msaitoh /*
1835 1.158 msaitoh * Initialize the jumbo RX ring control block
1836 1.158 msaitoh * We set the 'ring disabled' bit in the flags
1837 1.158 msaitoh * field until we're actually ready to start
1838 1.158 msaitoh * using this ring (i.e. once we set the MTU
1839 1.158 msaitoh * high enough to require it).
1840 1.158 msaitoh */
1841 1.158 msaitoh if (!BGE_IS_5705_OR_BEYOND(sc)) {
1842 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1843 1.158 msaitoh bge_set_hostaddr(&rcb->bge_hostaddr,
1844 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1845 1.158 msaitoh rcb->bge_maxlen_flags =
1846 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1847 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1848 1.158 msaitoh if (sc->bge_extram)
1849 1.158 msaitoh rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1850 1.158 msaitoh else
1851 1.158 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1852 1.119 tsutsui
1853 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1854 1.158 msaitoh rcb->bge_hostaddr.bge_addr_hi);
1855 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1856 1.158 msaitoh rcb->bge_hostaddr.bge_addr_lo);
1857 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1858 1.158 msaitoh rcb->bge_maxlen_flags);
1859 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1860 1.149 sborrill
1861 1.158 msaitoh /* Set up dummy disabled mini ring RCB */
1862 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1863 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1864 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1865 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1866 1.158 msaitoh rcb->bge_maxlen_flags);
1867 1.133 markd
1868 1.158 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1869 1.158 msaitoh offsetof(struct bge_ring_data, bge_info),
1870 1.158 msaitoh sizeof (struct bge_gib),
1871 1.158 msaitoh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1872 1.158 msaitoh }
1873 1.133 markd
1874 1.158 msaitoh /*
1875 1.158 msaitoh * Set the BD ring replenish thresholds. The recommended
1876 1.158 msaitoh * values are 1/8th the number of descriptors allocated to
1877 1.158 msaitoh * each ring.
1878 1.158 msaitoh */
1879 1.158 msaitoh i = BGE_STD_RX_RING_CNT / 8;
1880 1.133 markd
1881 1.158 msaitoh /*
1882 1.158 msaitoh * Use a value of 8 for the following chips to workaround HW errata.
1883 1.158 msaitoh * Some of these chips have been added based on empirical
1884 1.158 msaitoh * evidence (they don't work unless this is done).
1885 1.158 msaitoh */
1886 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1887 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1888 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1889 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1890 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1891 1.158 msaitoh i = 8;
1892 1.16 thorpej
1893 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1894 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1895 1.157 msaitoh
1896 1.158 msaitoh /*
1897 1.158 msaitoh * Disable all unused send rings by setting the 'ring disabled'
1898 1.158 msaitoh * bit in the flags field of all the TX send ring control blocks.
1899 1.158 msaitoh * These are located in NIC memory.
1900 1.158 msaitoh */
1901 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1902 1.158 msaitoh for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1903 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1904 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1905 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1906 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1907 1.158 msaitoh }
1908 1.157 msaitoh
1909 1.158 msaitoh /* Configure TX RCB 0 (we use only the first ring) */
1910 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1911 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1912 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1913 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1914 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1915 1.158 msaitoh BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1916 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
1917 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1918 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1919 1.157 msaitoh
1920 1.158 msaitoh /* Disable all unused RX return rings */
1921 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1922 1.158 msaitoh for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1923 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1924 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1925 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1926 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1927 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED));
1928 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1929 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1930 1.158 msaitoh (i * (sizeof(u_int64_t))), 0);
1931 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1932 1.158 msaitoh }
1933 1.157 msaitoh
1934 1.158 msaitoh /* Initialize RX ring indexes */
1935 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1936 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1937 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1938 1.157 msaitoh
1939 1.158 msaitoh /*
1940 1.158 msaitoh * Set up RX return ring 0
1941 1.158 msaitoh * Note that the NIC address for RX return rings is 0x00000000.
1942 1.158 msaitoh * The return rings live entirely within the host, so the
1943 1.158 msaitoh * nicaddr field in the RCB isn't used.
1944 1.158 msaitoh */
1945 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1946 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1947 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1948 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1949 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1950 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1951 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1952 1.157 msaitoh
1953 1.158 msaitoh /* Set random backoff seed for TX */
1954 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1955 1.158 msaitoh CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1956 1.158 msaitoh CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1957 1.158 msaitoh CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1958 1.158 msaitoh BGE_TX_BACKOFF_SEED_MASK);
1959 1.157 msaitoh
1960 1.158 msaitoh /* Set inter-packet gap */
1961 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1962 1.51 fvdl
1963 1.158 msaitoh /*
1964 1.158 msaitoh * Specify which ring to use for packets that don't match
1965 1.158 msaitoh * any RX rules.
1966 1.158 msaitoh */
1967 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1968 1.157 msaitoh
1969 1.158 msaitoh /*
1970 1.158 msaitoh * Configure number of RX lists. One interrupt distribution
1971 1.158 msaitoh * list, sixteen active lists, one bad frames class.
1972 1.158 msaitoh */
1973 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1974 1.157 msaitoh
1975 1.158 msaitoh /* Inialize RX list placement stats mask. */
1976 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1977 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1978 1.157 msaitoh
1979 1.158 msaitoh /* Disable host coalescing until we get it set up */
1980 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1981 1.51 fvdl
1982 1.158 msaitoh /* Poll to make sure it's shut down. */
1983 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1984 1.158 msaitoh if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1985 1.158 msaitoh break;
1986 1.158 msaitoh DELAY(10);
1987 1.158 msaitoh }
1988 1.151 cegger
1989 1.158 msaitoh if (i == BGE_TIMEOUT) {
1990 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1991 1.158 msaitoh "host coalescing engine failed to idle\n");
1992 1.158 msaitoh return (ENXIO);
1993 1.158 msaitoh }
1994 1.51 fvdl
1995 1.158 msaitoh /* Set up host coalescing defaults */
1996 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1997 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1998 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1999 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2000 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2001 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2002 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2003 1.51 fvdl }
2004 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2005 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2006 1.51 fvdl
2007 1.158 msaitoh /* Set up address of statistics block */
2008 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2009 1.158 msaitoh bge_set_hostaddr(&taddr,
2010 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2011 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2012 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2013 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2014 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2015 1.16 thorpej }
2016 1.16 thorpej
2017 1.158 msaitoh /* Set up address of status block */
2018 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2019 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2020 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2021 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2022 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2023 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2024 1.16 thorpej
2025 1.158 msaitoh /* Turn on host coalescing state machine */
2026 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2027 1.7 thorpej
2028 1.158 msaitoh /* Turn on RX BD completion state machine and enable attentions */
2029 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDC_MODE,
2030 1.158 msaitoh BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
2031 1.7 thorpej
2032 1.158 msaitoh /* Turn on RX list placement state machine */
2033 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2034 1.51 fvdl
2035 1.158 msaitoh /* Turn on RX list selector state machine. */
2036 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2037 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2038 1.51 fvdl
2039 1.158 msaitoh /* Turn on DMA, clear stats */
2040 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
2041 1.158 msaitoh BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
2042 1.158 msaitoh BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
2043 1.158 msaitoh BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
2044 1.158 msaitoh ((sc->bge_flags & BGE_PHY_FIBER_TBI) ? BGE_PORTMODE_TBI
2045 1.158 msaitoh : BGE_PORTMODE_MII));
2046 1.51 fvdl
2047 1.158 msaitoh /* Set misc. local control, enable interrupts on attentions */
2048 1.158 msaitoh sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2049 1.51 fvdl
2050 1.158 msaitoh #ifdef notdef
2051 1.158 msaitoh /* Assert GPIO pins for PHY reset */
2052 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2053 1.158 msaitoh BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2054 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2055 1.158 msaitoh BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2056 1.158 msaitoh #endif
2057 1.98 jonathan
2058 1.158 msaitoh #if defined(not_quite_yet)
2059 1.158 msaitoh /* Linux driver enables enable gpio pin #1 on 5700s */
2060 1.158 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2061 1.158 msaitoh sc->bge_local_ctrl_reg |=
2062 1.158 msaitoh (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2063 1.158 msaitoh }
2064 1.158 msaitoh #endif
2065 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2066 1.80 fredb
2067 1.158 msaitoh /* Turn on DMA completion state machine */
2068 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2069 1.158 msaitoh CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2070 1.149 sborrill
2071 1.158 msaitoh /* Turn on write DMA state machine */
2072 1.158 msaitoh {
2073 1.158 msaitoh uint32_t bge_wdma_mode =
2074 1.158 msaitoh BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2075 1.76 cube
2076 1.158 msaitoh /* Enable host coalescing bug fix; see Linux tg3.c */
2077 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2078 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2079 1.158 msaitoh bge_wdma_mode |= (1 << 29);
2080 1.76 cube
2081 1.158 msaitoh CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2082 1.158 msaitoh }
2083 1.76 cube
2084 1.158 msaitoh /* Turn on read DMA state machine */
2085 1.158 msaitoh {
2086 1.158 msaitoh uint32_t dma_read_modebits;
2087 1.91 gavan
2088 1.158 msaitoh dma_read_modebits =
2089 1.158 msaitoh BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2090 1.98 jonathan
2091 1.158 msaitoh if ((sc->bge_flags & BGE_PCIE) && 0) {
2092 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2093 1.158 msaitoh } else if (BGE_IS_5705_OR_BEYOND(sc)) {
2094 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
2095 1.158 msaitoh }
2096 1.119 tsutsui
2097 1.158 msaitoh /* XXX broadcom-supplied linux driver; undocumented */
2098 1.158 msaitoh if (BGE_IS_5750_OR_BEYOND(sc)) {
2099 1.158 msaitoh /*
2100 1.158 msaitoh * XXX: magic values.
2101 1.158 msaitoh * From Broadcom-supplied Linux driver; apparently
2102 1.158 msaitoh * required to workaround a DMA bug affecting TSO
2103 1.158 msaitoh * on bcm575x/bcm5721?
2104 1.158 msaitoh */
2105 1.158 msaitoh dma_read_modebits |= (1 << 27);
2106 1.158 msaitoh }
2107 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2108 1.158 msaitoh }
2109 1.128 tron
2110 1.158 msaitoh /* Turn on RX data completion state machine */
2111 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2112 1.128 tron
2113 1.158 msaitoh /* Turn on RX BD initiator state machine */
2114 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2115 1.133 markd
2116 1.158 msaitoh /* Turn on RX data and RX BD initiator state machine */
2117 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2118 1.133 markd
2119 1.158 msaitoh /* Turn on Mbuf cluster free state machine */
2120 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2121 1.158 msaitoh CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2122 1.133 markd
2123 1.158 msaitoh /* Turn on send BD completion state machine */
2124 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2125 1.133 markd
2126 1.158 msaitoh /* Turn on send data completion state machine */
2127 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2128 1.106 jonathan
2129 1.158 msaitoh /* Turn on send data initiator state machine */
2130 1.158 msaitoh if (BGE_IS_5750_OR_BEYOND(sc)) {
2131 1.158 msaitoh /* XXX: magic value from Linux driver */
2132 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2133 1.158 msaitoh } else {
2134 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2135 1.158 msaitoh }
2136 1.106 jonathan
2137 1.158 msaitoh /* Turn on send BD initiator state machine */
2138 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2139 1.133 markd
2140 1.158 msaitoh /* Turn on send BD selector state machine */
2141 1.158 msaitoh CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2142 1.135 taca
2143 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2144 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2145 1.158 msaitoh BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
2146 1.133 markd
2147 1.158 msaitoh /* ack/clear link change events */
2148 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2149 1.158 msaitoh BGE_MACSTAT_CFG_CHANGED);
2150 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, 0);
2151 1.106 jonathan
2152 1.158 msaitoh /* Enable PHY auto polling (for MII/GMII only) */
2153 1.158 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2154 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2155 1.158 msaitoh } else {
2156 1.158 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
2157 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2158 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2159 1.158 msaitoh BGE_EVTENB_MI_INTERRUPT);
2160 1.158 msaitoh }
2161 1.70 tron
2162 1.158 msaitoh /* Enable link state change attentions. */
2163 1.158 msaitoh BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2164 1.51 fvdl
2165 1.158 msaitoh return (0);
2166 1.158 msaitoh }
2167 1.7 thorpej
2168 1.158 msaitoh static const struct bge_revision *
2169 1.158 msaitoh bge_lookup_rev(uint32_t chipid)
2170 1.158 msaitoh {
2171 1.158 msaitoh const struct bge_revision *br;
2172 1.7 thorpej
2173 1.158 msaitoh for (br = bge_revisions; br->br_name != NULL; br++) {
2174 1.158 msaitoh if (br->br_chipid == chipid)
2175 1.158 msaitoh return (br);
2176 1.158 msaitoh }
2177 1.151 cegger
2178 1.158 msaitoh for (br = bge_majorrevs; br->br_name != NULL; br++) {
2179 1.158 msaitoh if (br->br_chipid == BGE_ASICREV(chipid))
2180 1.158 msaitoh return (br);
2181 1.158 msaitoh }
2182 1.151 cegger
2183 1.158 msaitoh return (NULL);
2184 1.158 msaitoh }
2185 1.7 thorpej
2186 1.7 thorpej static const struct bge_product *
2187 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2188 1.7 thorpej {
2189 1.7 thorpej const struct bge_product *bp;
2190 1.7 thorpej
2191 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2192 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2193 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2194 1.7 thorpej return (bp);
2195 1.7 thorpej }
2196 1.7 thorpej
2197 1.7 thorpej return (NULL);
2198 1.7 thorpej }
2199 1.7 thorpej
2200 1.104 thorpej static int
2201 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2202 1.25 jonathan {
2203 1.25 jonathan #ifdef NOTYET
2204 1.25 jonathan u_int32_t pm_ctl = 0;
2205 1.25 jonathan
2206 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2207 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2208 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2209 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2210 1.25 jonathan
2211 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2212 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2213 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2214 1.25 jonathan pm_ctl |= (1 << 8);
2215 1.25 jonathan
2216 1.25 jonathan if (powerlevel == 0) {
2217 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2218 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2219 1.25 jonathan pm_ctl, 2);
2220 1.25 jonathan DELAY(10000);
2221 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2222 1.25 jonathan DELAY(10000);
2223 1.25 jonathan
2224 1.25 jonathan #ifdef NOTYET
2225 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2226 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2227 1.25 jonathan #endif
2228 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2229 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2230 1.25 jonathan return 0;
2231 1.25 jonathan }
2232 1.25 jonathan
2233 1.25 jonathan
2234 1.25 jonathan /*
2235 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2236 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2237 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
2238 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2239 1.25 jonathan */
2240 1.138 joerg aprint_error_dev(sc->bge_dev,
2241 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2242 1.138 joerg powerlevel);
2243 1.25 jonathan #endif
2244 1.25 jonathan return EOPNOTSUPP;
2245 1.25 jonathan }
2246 1.25 jonathan
2247 1.25 jonathan
2248 1.1 fvdl /*
2249 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2250 1.1 fvdl * against our list and return its name if we find a match. Note
2251 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2252 1.1 fvdl * can get the device name string from the controller itself instead
2253 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2254 1.1 fvdl * we'll always announce the right product name.
2255 1.1 fvdl */
2256 1.104 thorpej static int
2257 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2258 1.1 fvdl {
2259 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2260 1.1 fvdl
2261 1.7 thorpej if (bge_lookup(pa) != NULL)
2262 1.1 fvdl return (1);
2263 1.1 fvdl
2264 1.1 fvdl return (0);
2265 1.1 fvdl }
2266 1.1 fvdl
2267 1.104 thorpej static void
2268 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2269 1.1 fvdl {
2270 1.138 joerg struct bge_softc *sc = device_private(self);
2271 1.1 fvdl struct pci_attach_args *pa = aux;
2272 1.7 thorpej const struct bge_product *bp;
2273 1.16 thorpej const struct bge_revision *br;
2274 1.143 tron pci_chipset_tag_t pc;
2275 1.1 fvdl pci_intr_handle_t ih;
2276 1.1 fvdl const char *intrstr = NULL;
2277 1.1 fvdl bus_dma_segment_t seg;
2278 1.1 fvdl int rseg;
2279 1.1 fvdl u_int32_t hwcfg = 0;
2280 1.1 fvdl u_int32_t command;
2281 1.1 fvdl struct ifnet *ifp;
2282 1.126 christos void * kva;
2283 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2284 1.1 fvdl pcireg_t memtype;
2285 1.1 fvdl bus_addr_t memaddr;
2286 1.1 fvdl bus_size_t memsize;
2287 1.25 jonathan u_int32_t pm_ctl;
2288 1.87 perry
2289 1.7 thorpej bp = bge_lookup(pa);
2290 1.7 thorpej KASSERT(bp != NULL);
2291 1.7 thorpej
2292 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2293 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2294 1.138 joerg sc->bge_dev = self;
2295 1.1 fvdl
2296 1.30 thorpej aprint_naive(": Ethernet controller\n");
2297 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2298 1.1 fvdl
2299 1.1 fvdl /*
2300 1.1 fvdl * Map control/status registers.
2301 1.1 fvdl */
2302 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2303 1.143 tron pc = sc->sc_pc;
2304 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2305 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2306 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2307 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2308 1.1 fvdl
2309 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2310 1.138 joerg aprint_error_dev(sc->bge_dev,
2311 1.138 joerg "failed to enable memory mapping!\n");
2312 1.1 fvdl return;
2313 1.1 fvdl }
2314 1.1 fvdl
2315 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2316 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2317 1.1 fvdl switch (memtype) {
2318 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2319 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2320 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2321 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2322 1.1 fvdl &memaddr, &memsize) == 0)
2323 1.1 fvdl break;
2324 1.1 fvdl default:
2325 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2326 1.1 fvdl return;
2327 1.1 fvdl }
2328 1.1 fvdl
2329 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2330 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2331 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2332 1.1 fvdl return;
2333 1.1 fvdl }
2334 1.1 fvdl
2335 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2336 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2337 1.1 fvdl
2338 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2339 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2340 1.1 fvdl
2341 1.1 fvdl if (sc->bge_intrhand == NULL) {
2342 1.138 joerg aprint_error_dev(sc->bge_dev,
2343 1.138 joerg "couldn't establish interrupt%s%s\n",
2344 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2345 1.1 fvdl return;
2346 1.1 fvdl }
2347 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2348 1.1 fvdl
2349 1.25 jonathan /*
2350 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2351 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2352 1.25 jonathan * leaving the card in D3 powersave state.
2353 1.25 jonathan * We do not have memory-mapped registers in this state,
2354 1.25 jonathan * so force device into D0 state before starting initialization.
2355 1.25 jonathan */
2356 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2357 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2358 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2359 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2360 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2361 1.25 jonathan
2362 1.76 cube /*
2363 1.76 cube * Save ASIC rev. Look up any quirks associated with this
2364 1.76 cube * ASIC.
2365 1.76 cube */
2366 1.76 cube sc->bge_chipid =
2367 1.141 jmcneill pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2368 1.76 cube BGE_PCIMISCCTL_ASICREV;
2369 1.76 cube
2370 1.76 cube /*
2371 1.76 cube * Detect PCI-Express devices
2372 1.76 cube * XXX: guessed from Linux/FreeBSD; no documentation
2373 1.76 cube */
2374 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2375 1.108 jonathan NULL, NULL) != 0)
2376 1.157 msaitoh sc->bge_flags |= BGE_PCIE;
2377 1.157 msaitoh
2378 1.157 msaitoh /*
2379 1.157 msaitoh * PCI-X check.
2380 1.157 msaitoh */
2381 1.157 msaitoh if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2382 1.157 msaitoh BGE_PCISTATE_PCI_BUSMODE) == 0)
2383 1.157 msaitoh sc->bge_flags |= BGE_PCIX;
2384 1.76 cube
2385 1.1 fvdl /* Try to reset the chip. */
2386 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2387 1.1 fvdl bge_reset(sc);
2388 1.1 fvdl
2389 1.1 fvdl if (bge_chipinit(sc)) {
2390 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2391 1.1 fvdl bge_release_resources(sc);
2392 1.1 fvdl return;
2393 1.1 fvdl }
2394 1.1 fvdl
2395 1.1 fvdl /*
2396 1.1 fvdl * Get station address from the EEPROM.
2397 1.1 fvdl */
2398 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
2399 1.151 cegger aprint_error_dev(sc->bge_dev,
2400 1.151 cegger "failed to reade station address\n");
2401 1.1 fvdl bge_release_resources(sc);
2402 1.1 fvdl return;
2403 1.1 fvdl }
2404 1.1 fvdl
2405 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2406 1.51 fvdl
2407 1.16 thorpej if (br == NULL) {
2408 1.138 joerg aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2409 1.138 joerg sc->bge_chipid >> 16);
2410 1.16 thorpej } else {
2411 1.138 joerg aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2412 1.56 pooka br->br_name, sc->bge_chipid >> 16);
2413 1.16 thorpej }
2414 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2415 1.1 fvdl
2416 1.1 fvdl /* Allocate the general information block and ring buffers. */
2417 1.41 fvdl if (pci_dma64_available(pa))
2418 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2419 1.41 fvdl else
2420 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2421 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2422 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2423 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2424 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2425 1.1 fvdl return;
2426 1.1 fvdl }
2427 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2428 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2429 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2430 1.1 fvdl BUS_DMA_NOWAIT)) {
2431 1.138 joerg aprint_error_dev(sc->bge_dev,
2432 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2433 1.138 joerg sizeof(struct bge_ring_data));
2434 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2435 1.1 fvdl return;
2436 1.1 fvdl }
2437 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2438 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2439 1.1 fvdl sizeof(struct bge_ring_data), 0,
2440 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2441 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2442 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2443 1.1 fvdl sizeof(struct bge_ring_data));
2444 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2445 1.1 fvdl return;
2446 1.1 fvdl }
2447 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2448 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2449 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2450 1.1 fvdl BUS_DMA_NOWAIT)) {
2451 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2452 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2453 1.1 fvdl sizeof(struct bge_ring_data));
2454 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2455 1.1 fvdl return;
2456 1.1 fvdl }
2457 1.1 fvdl
2458 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2459 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2460 1.1 fvdl
2461 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2462 1.1 fvdl
2463 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2464 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2465 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2466 1.138 joerg aprint_error_dev(sc->bge_dev,
2467 1.138 joerg "jumbo buffer allocation failed\n");
2468 1.44 hannken } else
2469 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2470 1.44 hannken }
2471 1.1 fvdl
2472 1.1 fvdl /* Set default tuneable values. */
2473 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2474 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2475 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2476 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2477 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2478 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2479 1.25 jonathan #else
2480 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2481 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2482 1.25 jonathan #endif
2483 1.157 msaitoh if (BGE_IS_5705_OR_BEYOND(sc)) {
2484 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2485 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2486 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2487 1.138 joerg "setting short Tx thresholds\n");
2488 1.95 jonathan }
2489 1.1 fvdl
2490 1.1 fvdl /* Set up ifnet structure */
2491 1.1 fvdl ifp = &sc->ethercom.ec_if;
2492 1.1 fvdl ifp->if_softc = sc;
2493 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2494 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2495 1.141 jmcneill ifp->if_stop = bge_stop;
2496 1.1 fvdl ifp->if_start = bge_start;
2497 1.1 fvdl ifp->if_init = bge_init;
2498 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2499 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2500 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2501 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2502 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2503 1.1 fvdl
2504 1.157 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2505 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2506 1.88 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2507 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2508 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2509 1.87 perry sc->ethercom.ec_capabilities |=
2510 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2511 1.1 fvdl
2512 1.157 msaitoh if (sc->bge_flags & BGE_PCIE)
2513 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2514 1.95 jonathan
2515 1.1 fvdl /*
2516 1.1 fvdl * Do MII setup.
2517 1.1 fvdl */
2518 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2519 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2520 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2521 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2522 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2523 1.1 fvdl
2524 1.1 fvdl /*
2525 1.1 fvdl * Figure out what sort of media we have by checking the
2526 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2527 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2528 1.1 fvdl * cards, this value appears to be unset. If that's the
2529 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2530 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2531 1.1 fvdl */
2532 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2533 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2534 1.35 jonathan } else {
2535 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2536 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2537 1.35 jonathan hwcfg = be32toh(hwcfg);
2538 1.35 jonathan }
2539 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2540 1.157 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
2541 1.1 fvdl
2542 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2543 1.141 jmcneill if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2544 1.1 fvdl SK_SUBSYSID_9D41)
2545 1.157 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
2546 1.1 fvdl
2547 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2548 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2549 1.1 fvdl bge_ifmedia_sts);
2550 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2551 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2552 1.1 fvdl 0, NULL);
2553 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2554 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2555 1.155 he /* Pretend the user requested this setting */
2556 1.155 he sc->bge_ifmedia.ifm_media =
2557 1.155 he sc->bge_ifmedia.ifm_cur->ifm_media;
2558 1.1 fvdl } else {
2559 1.1 fvdl /*
2560 1.1 fvdl * Do transceiver setup.
2561 1.1 fvdl */
2562 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2563 1.1 fvdl bge_ifmedia_sts);
2564 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2565 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2566 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2567 1.87 perry
2568 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2569 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2570 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2571 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2572 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2573 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2574 1.1 fvdl } else
2575 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2576 1.1 fvdl IFM_ETHER|IFM_AUTO);
2577 1.1 fvdl }
2578 1.1 fvdl
2579 1.1 fvdl /*
2580 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2581 1.37 jonathan * been observed in the first few bytes of some received packets.
2582 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2583 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2584 1.37 jonathan * which do not support unaligned accesses, we will realign the
2585 1.37 jonathan * payloads by copying the received packets.
2586 1.37 jonathan */
2587 1.157 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2588 1.157 msaitoh sc->bge_flags & BGE_PCIX)
2589 1.157 msaitoh sc->bge_flags |= BGE_RX_ALIGNBUG;
2590 1.37 jonathan
2591 1.37 jonathan /*
2592 1.1 fvdl * Call MI attach routine.
2593 1.1 fvdl */
2594 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2595 1.1 fvdl if_attach(ifp);
2596 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2597 1.1 fvdl ether_ifattach(ifp, eaddr);
2598 1.148 mlelstv #if NRND > 0
2599 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2600 1.148 mlelstv RND_TYPE_NET, 0);
2601 1.148 mlelstv #endif
2602 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
2603 1.72 thorpej /*
2604 1.72 thorpej * Attach event counters.
2605 1.72 thorpej */
2606 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2607 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
2608 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2609 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
2610 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2611 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
2612 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2613 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
2614 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2615 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
2616 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2617 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
2618 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2619 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
2620 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
2621 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2622 1.132 ad callout_init(&sc->bge_timeout, 0);
2623 1.82 jmcneill
2624 1.141 jmcneill if (!pmf_device_register(self, NULL, NULL))
2625 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
2626 1.141 jmcneill else
2627 1.141 jmcneill pmf_class_network_register(self, ifp);
2628 1.1 fvdl }
2629 1.1 fvdl
2630 1.104 thorpej static void
2631 1.104 thorpej bge_release_resources(struct bge_softc *sc)
2632 1.1 fvdl {
2633 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2634 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2635 1.1 fvdl
2636 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2637 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2638 1.1 fvdl }
2639 1.1 fvdl
2640 1.104 thorpej static void
2641 1.104 thorpej bge_reset(struct bge_softc *sc)
2642 1.1 fvdl {
2643 1.61 jonathan u_int32_t cachesize, command, pcistate, new_pcistate;
2644 1.76 cube int i, val;
2645 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
2646 1.151 cegger
2647 1.151 cegger if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2648 1.151 cegger (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2649 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2650 1.151 cegger write_op = bge_writemem_direct;
2651 1.151 cegger } else {
2652 1.151 cegger write_op = bge_writemem_ind;
2653 1.151 cegger }
2654 1.151 cegger } else {
2655 1.151 cegger write_op = bge_writereg_ind;
2656 1.151 cegger }
2657 1.151 cegger
2658 1.1 fvdl
2659 1.1 fvdl /* Save some important PCI state. */
2660 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2661 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2662 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2663 1.1 fvdl
2664 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2665 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2666 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2667 1.1 fvdl
2668 1.119 tsutsui /*
2669 1.119 tsutsui * Disable the firmware fastboot feature on 5752 ASIC
2670 1.119 tsutsui * to avoid firmware timeout.
2671 1.119 tsutsui */
2672 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2673 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2674 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2675 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2676 1.119 tsutsui
2677 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2678 1.76 cube /*
2679 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2680 1.76 cube */
2681 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2682 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2683 1.157 msaitoh /* PCI Express 1.0 system */
2684 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2685 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2686 1.157 msaitoh /*
2687 1.157 msaitoh * Prevent PCI Express link training
2688 1.157 msaitoh * during global reset.
2689 1.157 msaitoh */
2690 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2691 1.76 cube val |= (1<<29);
2692 1.76 cube }
2693 1.76 cube }
2694 1.76 cube
2695 1.1 fvdl /* Issue global reset */
2696 1.151 cegger write_op(sc, BGE_MISC_CFG, val);
2697 1.151 cegger
2698 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2699 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2700 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2701 1.151 cegger i | BGE_VCPU_STATUS_DRV_RESET);
2702 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2703 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2704 1.151 cegger i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2705 1.151 cegger }
2706 1.151 cegger
2707 1.151 cegger
2708 1.1 fvdl
2709 1.1 fvdl DELAY(1000);
2710 1.1 fvdl
2711 1.76 cube /*
2712 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2713 1.76 cube */
2714 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2715 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2716 1.76 cube pcireg_t reg;
2717 1.76 cube
2718 1.76 cube DELAY(500000);
2719 1.76 cube /* XXX: Magic Numbers */
2720 1.141 jmcneill reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2721 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2722 1.76 cube reg | (1 << 15));
2723 1.76 cube }
2724 1.95 jonathan /*
2725 1.95 jonathan * XXX: Magic Numbers.
2726 1.95 jonathan * Sets maximal PCI-e payload and clears any PCI-e errors.
2727 1.95 jonathan * Should be replaced with references to PCI config-space
2728 1.95 jonathan * capability block for PCI-Express.
2729 1.95 jonathan */
2730 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2731 1.95 jonathan BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2732 1.95 jonathan
2733 1.76 cube }
2734 1.76 cube
2735 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2736 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2737 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2738 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2739 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2740 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2741 1.151 cegger write_op(sc, BGE_MISC_CFG, (65 << 1));
2742 1.1 fvdl
2743 1.1 fvdl /* Enable memory arbiter. */
2744 1.109 jonathan {
2745 1.99 jonathan uint32_t marbmode = 0;
2746 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2747 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2748 1.99 jonathan }
2749 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2750 1.44 hannken }
2751 1.1 fvdl
2752 1.139 msaitoh
2753 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2754 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
2755 1.151 cegger val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2756 1.151 cegger if (val & BGE_VCPU_STATUS_INIT_DONE)
2757 1.151 cegger break;
2758 1.151 cegger DELAY(100);
2759 1.151 cegger }
2760 1.151 cegger if (i == BGE_TIMEOUT) {
2761 1.151 cegger aprint_error_dev(sc->bge_dev, "reset timed out\n");
2762 1.151 cegger return;
2763 1.151 cegger }
2764 1.151 cegger } else {
2765 1.151 cegger /*
2766 1.151 cegger * Write the magic number to the firmware mailbox at 0xb50
2767 1.151 cegger * so that the driver can synchronize with the firmware.
2768 1.151 cegger */
2769 1.151 cegger bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2770 1.1 fvdl
2771 1.95 jonathan /*
2772 1.151 cegger * Poll the value location we just wrote until
2773 1.151 cegger * we see the 1's complement of the magic number.
2774 1.151 cegger * This indicates that the firmware initialization
2775 1.151 cegger * is complete.
2776 1.95 jonathan */
2777 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
2778 1.151 cegger val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2779 1.151 cegger if (val == ~BGE_MAGIC_NUMBER)
2780 1.151 cegger break;
2781 1.151 cegger DELAY(1000);
2782 1.151 cegger }
2783 1.151 cegger
2784 1.151 cegger if (i >= BGE_TIMEOUT) {
2785 1.151 cegger aprint_error_dev(sc->bge_dev,
2786 1.151 cegger "firmware handshake timed out, val = %x\n", val);
2787 1.151 cegger /*
2788 1.151 cegger * XXX: occasionally fired on bcm5721, but without
2789 1.151 cegger * apparent harm. For now, keep going if we timeout
2790 1.151 cegger * against PCI-E devices.
2791 1.151 cegger */
2792 1.157 msaitoh if ((sc->bge_flags & BGE_PCIE) == 0)
2793 1.151 cegger return;
2794 1.151 cegger }
2795 1.1 fvdl }
2796 1.1 fvdl
2797 1.1 fvdl /*
2798 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2799 1.1 fvdl * return to its original pre-reset state. This is a
2800 1.1 fvdl * fairly good indicator of reset completion. If we don't
2801 1.1 fvdl * wait for the reset to fully complete, trying to read
2802 1.1 fvdl * from the device's non-PCI registers may yield garbage
2803 1.1 fvdl * results.
2804 1.1 fvdl */
2805 1.139 msaitoh for (i = 0; i < 10000; i++) {
2806 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2807 1.61 jonathan BGE_PCI_PCISTATE);
2808 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2809 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
2810 1.1 fvdl break;
2811 1.1 fvdl DELAY(10);
2812 1.1 fvdl }
2813 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2814 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
2815 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2816 1.61 jonathan }
2817 1.1 fvdl
2818 1.76 cube /* XXX: from FreeBSD/Linux; no documentation */
2819 1.157 msaitoh if (sc->bge_flags & BGE_PCIE &&
2820 1.157 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2821 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2822 1.76 cube
2823 1.1 fvdl /* Enable memory arbiter. */
2824 1.109 jonathan /* XXX why do this twice? */
2825 1.109 jonathan {
2826 1.99 jonathan uint32_t marbmode = 0;
2827 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2828 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2829 1.99 jonathan }
2830 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2831 1.44 hannken }
2832 1.1 fvdl
2833 1.1 fvdl /* Fix up byte swapping */
2834 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2835 1.1 fvdl
2836 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2837 1.1 fvdl
2838 1.1 fvdl DELAY(10000);
2839 1.1 fvdl }
2840 1.1 fvdl
2841 1.1 fvdl /*
2842 1.1 fvdl * Frame reception handling. This is called if there's a frame
2843 1.1 fvdl * on the receive return list.
2844 1.1 fvdl *
2845 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2846 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2847 1.1 fvdl * 2) the frame is from the standard receive ring
2848 1.1 fvdl */
2849 1.1 fvdl
2850 1.104 thorpej static void
2851 1.104 thorpej bge_rxeof(struct bge_softc *sc)
2852 1.1 fvdl {
2853 1.1 fvdl struct ifnet *ifp;
2854 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2855 1.1 fvdl bus_dmamap_t dmamap;
2856 1.1 fvdl bus_addr_t offset, toff;
2857 1.1 fvdl bus_size_t tlen;
2858 1.1 fvdl int tosync;
2859 1.1 fvdl
2860 1.1 fvdl ifp = &sc->ethercom.ec_if;
2861 1.1 fvdl
2862 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2863 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2864 1.1 fvdl sizeof (struct bge_status_block),
2865 1.1 fvdl BUS_DMASYNC_POSTREAD);
2866 1.1 fvdl
2867 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2868 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2869 1.1 fvdl sc->bge_rx_saved_considx;
2870 1.1 fvdl
2871 1.148 mlelstv #if NRND > 0
2872 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2873 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
2874 1.148 mlelstv #endif
2875 1.148 mlelstv
2876 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2877 1.1 fvdl
2878 1.1 fvdl if (tosync < 0) {
2879 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2880 1.1 fvdl sizeof (struct bge_rx_bd);
2881 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2882 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2883 1.1 fvdl tosync = -tosync;
2884 1.1 fvdl }
2885 1.1 fvdl
2886 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2887 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
2888 1.1 fvdl BUS_DMASYNC_POSTREAD);
2889 1.1 fvdl
2890 1.1 fvdl while(sc->bge_rx_saved_considx !=
2891 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2892 1.1 fvdl struct bge_rx_bd *cur_rx;
2893 1.1 fvdl u_int32_t rxidx;
2894 1.1 fvdl struct mbuf *m = NULL;
2895 1.1 fvdl
2896 1.1 fvdl cur_rx = &sc->bge_rdata->
2897 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2898 1.1 fvdl
2899 1.1 fvdl rxidx = cur_rx->bge_idx;
2900 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2901 1.1 fvdl
2902 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2903 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2904 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2905 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2906 1.1 fvdl jumbocnt++;
2907 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
2908 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
2909 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
2910 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
2911 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2912 1.1 fvdl ifp->if_ierrors++;
2913 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2914 1.1 fvdl continue;
2915 1.1 fvdl }
2916 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2917 1.1 fvdl NULL)== ENOBUFS) {
2918 1.1 fvdl ifp->if_ierrors++;
2919 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2920 1.1 fvdl continue;
2921 1.1 fvdl }
2922 1.1 fvdl } else {
2923 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2924 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2925 1.124 bouyer
2926 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2927 1.1 fvdl stdcnt++;
2928 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2929 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2930 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
2931 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2932 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
2933 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2934 1.1 fvdl ifp->if_ierrors++;
2935 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2936 1.1 fvdl continue;
2937 1.1 fvdl }
2938 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2939 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2940 1.1 fvdl ifp->if_ierrors++;
2941 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2942 1.1 fvdl continue;
2943 1.1 fvdl }
2944 1.1 fvdl }
2945 1.1 fvdl
2946 1.1 fvdl ifp->if_ipackets++;
2947 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
2948 1.37 jonathan /*
2949 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2950 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
2951 1.37 jonathan * If our CPU requires alignment, re-align by copying.
2952 1.37 jonathan */
2953 1.157 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG) {
2954 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
2955 1.37 jonathan cur_rx->bge_len);
2956 1.37 jonathan m->m_data += ETHER_ALIGN;
2957 1.37 jonathan }
2958 1.37 jonathan #endif
2959 1.87 perry
2960 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2961 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2962 1.1 fvdl
2963 1.1 fvdl #if NBPFILTER > 0
2964 1.1 fvdl /*
2965 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2966 1.1 fvdl */
2967 1.1 fvdl if (ifp->if_bpf)
2968 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2969 1.1 fvdl #endif
2970 1.1 fvdl
2971 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2972 1.46 jonathan
2973 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2974 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2975 1.46 jonathan /*
2976 1.46 jonathan * Rx transport checksum-offload may also
2977 1.46 jonathan * have bugs with packets which, when transmitted,
2978 1.46 jonathan * were `runts' requiring padding.
2979 1.46 jonathan */
2980 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2981 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2982 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2983 1.46 jonathan m->m_pkthdr.csum_data =
2984 1.46 jonathan cur_rx->bge_tcp_udp_csum;
2985 1.46 jonathan m->m_pkthdr.csum_flags |=
2986 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
2987 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2988 1.1 fvdl }
2989 1.1 fvdl
2990 1.1 fvdl /*
2991 1.1 fvdl * If we received a packet with a vlan tag, pass it
2992 1.1 fvdl * to vlan_input() instead of ether_input().
2993 1.1 fvdl */
2994 1.150 dsl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2995 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2996 1.150 dsl }
2997 1.1 fvdl
2998 1.1 fvdl (*ifp->if_input)(ifp, m);
2999 1.1 fvdl }
3000 1.1 fvdl
3001 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3002 1.1 fvdl if (stdcnt)
3003 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3004 1.1 fvdl if (jumbocnt)
3005 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3006 1.1 fvdl }
3007 1.1 fvdl
3008 1.104 thorpej static void
3009 1.104 thorpej bge_txeof(struct bge_softc *sc)
3010 1.1 fvdl {
3011 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3012 1.1 fvdl struct ifnet *ifp;
3013 1.1 fvdl struct txdmamap_pool_entry *dma;
3014 1.1 fvdl bus_addr_t offset, toff;
3015 1.1 fvdl bus_size_t tlen;
3016 1.1 fvdl int tosync;
3017 1.1 fvdl struct mbuf *m;
3018 1.1 fvdl
3019 1.1 fvdl ifp = &sc->ethercom.ec_if;
3020 1.1 fvdl
3021 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3022 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3023 1.1 fvdl sizeof (struct bge_status_block),
3024 1.1 fvdl BUS_DMASYNC_POSTREAD);
3025 1.1 fvdl
3026 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3027 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3028 1.1 fvdl sc->bge_tx_saved_considx;
3029 1.1 fvdl
3030 1.148 mlelstv #if NRND > 0
3031 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3032 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3033 1.148 mlelstv #endif
3034 1.148 mlelstv
3035 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3036 1.1 fvdl
3037 1.1 fvdl if (tosync < 0) {
3038 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3039 1.1 fvdl sizeof (struct bge_tx_bd);
3040 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3041 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3042 1.1 fvdl tosync = -tosync;
3043 1.1 fvdl }
3044 1.1 fvdl
3045 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3046 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3047 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3048 1.1 fvdl
3049 1.1 fvdl /*
3050 1.1 fvdl * Go through our tx ring and free mbufs for those
3051 1.1 fvdl * frames that have been sent.
3052 1.1 fvdl */
3053 1.1 fvdl while (sc->bge_tx_saved_considx !=
3054 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3055 1.1 fvdl u_int32_t idx = 0;
3056 1.1 fvdl
3057 1.1 fvdl idx = sc->bge_tx_saved_considx;
3058 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3059 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3060 1.1 fvdl ifp->if_opackets++;
3061 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3062 1.1 fvdl if (m != NULL) {
3063 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3064 1.1 fvdl dma = sc->txdma[idx];
3065 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3066 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3067 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3068 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3069 1.1 fvdl sc->txdma[idx] = NULL;
3070 1.1 fvdl
3071 1.1 fvdl m_freem(m);
3072 1.1 fvdl }
3073 1.1 fvdl sc->bge_txcnt--;
3074 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3075 1.1 fvdl ifp->if_timer = 0;
3076 1.1 fvdl }
3077 1.1 fvdl
3078 1.1 fvdl if (cur_tx != NULL)
3079 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3080 1.1 fvdl }
3081 1.1 fvdl
3082 1.104 thorpej static int
3083 1.104 thorpej bge_intr(void *xsc)
3084 1.1 fvdl {
3085 1.1 fvdl struct bge_softc *sc;
3086 1.1 fvdl struct ifnet *ifp;
3087 1.1 fvdl
3088 1.1 fvdl sc = xsc;
3089 1.1 fvdl ifp = &sc->ethercom.ec_if;
3090 1.1 fvdl
3091 1.144 mlelstv /*
3092 1.144 mlelstv * Ascertain whether the interrupt is from this bge device.
3093 1.144 mlelstv * Do the cheap test first.
3094 1.144 mlelstv */
3095 1.144 mlelstv if ((sc->bge_rdata->bge_status_block.bge_status &
3096 1.144 mlelstv BGE_STATFLAG_UPDATED) == 0) {
3097 1.144 mlelstv /*
3098 1.144 mlelstv * Sometimes, the interrupt comes in before the
3099 1.144 mlelstv * DMA update of the status block (performed prior
3100 1.144 mlelstv * to the interrupt itself) has completed.
3101 1.144 mlelstv * In that case, do the (extremely expensive!)
3102 1.144 mlelstv * PCI-config-space register read.
3103 1.144 mlelstv */
3104 1.144 mlelstv uint32_t pcistate =
3105 1.144 mlelstv pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3106 1.144 mlelstv
3107 1.144 mlelstv if (pcistate & BGE_PCISTATE_INTR_STATE)
3108 1.144 mlelstv return (0);
3109 1.144 mlelstv
3110 1.144 mlelstv }
3111 1.144 mlelstv /*
3112 1.144 mlelstv * If we reach here, then the interrupt is for us.
3113 1.144 mlelstv */
3114 1.144 mlelstv
3115 1.1 fvdl /* Ack interrupt and stop others from occuring. */
3116 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3117 1.1 fvdl
3118 1.72 thorpej BGE_EVCNT_INCR(sc->bge_ev_intr);
3119 1.72 thorpej
3120 1.1 fvdl /*
3121 1.1 fvdl * Process link state changes.
3122 1.1 fvdl * Grrr. The link status word in the status block does
3123 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
3124 1.101 skrll * according to all available information. Hence, we have
3125 1.1 fvdl * to enable MII interrupts in order to properly obtain
3126 1.1 fvdl * async link changes. Unfortunately, this also means that
3127 1.1 fvdl * we have to read the MAC status register to detect link
3128 1.1 fvdl * changes, thereby adding an additional register access to
3129 1.1 fvdl * the interrupt handler.
3130 1.1 fvdl */
3131 1.1 fvdl
3132 1.157 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3133 1.1 fvdl u_int32_t status;
3134 1.1 fvdl
3135 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
3136 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
3137 1.1 fvdl sc->bge_link = 0;
3138 1.1 fvdl callout_stop(&sc->bge_timeout);
3139 1.1 fvdl bge_tick(sc);
3140 1.1 fvdl /* Clear the interrupt */
3141 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3142 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
3143 1.138 joerg bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3144 1.138 joerg bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3145 1.1 fvdl BRGPHY_INTRS);
3146 1.1 fvdl }
3147 1.1 fvdl } else {
3148 1.144 mlelstv u_int32_t status;
3149 1.144 mlelstv
3150 1.144 mlelstv status = CSR_READ_4(sc, BGE_MAC_STS);
3151 1.144 mlelstv if (status & BGE_MACSTAT_LINK_CHANGED) {
3152 1.1 fvdl sc->bge_link = 0;
3153 1.1 fvdl callout_stop(&sc->bge_timeout);
3154 1.1 fvdl bge_tick(sc);
3155 1.1 fvdl /* Clear the interrupt */
3156 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3157 1.44 hannken BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3158 1.44 hannken BGE_MACSTAT_LINK_CHANGED);
3159 1.1 fvdl }
3160 1.1 fvdl }
3161 1.1 fvdl
3162 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3163 1.1 fvdl /* Check RX return ring producer/consumer */
3164 1.1 fvdl bge_rxeof(sc);
3165 1.1 fvdl
3166 1.1 fvdl /* Check TX ring producer/consumer */
3167 1.1 fvdl bge_txeof(sc);
3168 1.1 fvdl }
3169 1.1 fvdl
3170 1.58 jonathan if (sc->bge_pending_rxintr_change) {
3171 1.58 jonathan uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3172 1.58 jonathan uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3173 1.58 jonathan uint32_t junk;
3174 1.58 jonathan
3175 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3176 1.58 jonathan DELAY(10);
3177 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3178 1.87 perry
3179 1.58 jonathan CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3180 1.58 jonathan DELAY(10);
3181 1.58 jonathan junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3182 1.58 jonathan
3183 1.58 jonathan sc->bge_pending_rxintr_change = 0;
3184 1.58 jonathan }
3185 1.1 fvdl bge_handle_events(sc);
3186 1.1 fvdl
3187 1.1 fvdl /* Re-enable interrupts. */
3188 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3189 1.1 fvdl
3190 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3191 1.1 fvdl bge_start(ifp);
3192 1.1 fvdl
3193 1.1 fvdl return (1);
3194 1.1 fvdl }
3195 1.1 fvdl
3196 1.104 thorpej static void
3197 1.104 thorpej bge_tick(void *xsc)
3198 1.1 fvdl {
3199 1.1 fvdl struct bge_softc *sc = xsc;
3200 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3201 1.1 fvdl int s;
3202 1.1 fvdl
3203 1.1 fvdl s = splnet();
3204 1.1 fvdl
3205 1.1 fvdl bge_stats_update(sc);
3206 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3207 1.1 fvdl
3208 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3209 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3210 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
3211 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3212 1.1 fvdl }
3213 1.147 mlelstv } else
3214 1.147 mlelstv mii_tick(mii);
3215 1.1 fvdl
3216 1.1 fvdl splx(s);
3217 1.1 fvdl }
3218 1.1 fvdl
3219 1.104 thorpej static void
3220 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3221 1.1 fvdl {
3222 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3223 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3224 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
3225 1.44 hannken
3226 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
3227 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3228 1.1 fvdl
3229 1.157 msaitoh if (BGE_IS_5705_OR_BEYOND(sc)) {
3230 1.44 hannken ifp->if_collisions +=
3231 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3232 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3233 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3234 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3235 1.72 thorpej
3236 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3237 1.72 thorpej READ_RSTAT(sc, rstats, outXoffSent));
3238 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3239 1.72 thorpej READ_RSTAT(sc, rstats, outXonSent));
3240 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3241 1.72 thorpej READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3242 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3243 1.72 thorpej READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3244 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3245 1.72 thorpej READ_RSTAT(sc, rstats, macControlFramesReceived));
3246 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3247 1.72 thorpej READ_RSTAT(sc, rstats, xoffStateEntered));
3248 1.44 hannken return;
3249 1.44 hannken }
3250 1.44 hannken
3251 1.44 hannken #undef READ_RSTAT
3252 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3253 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3254 1.1 fvdl
3255 1.1 fvdl ifp->if_collisions +=
3256 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3257 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3258 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3259 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3260 1.1 fvdl ifp->if_collisions;
3261 1.1 fvdl
3262 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3263 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3264 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3265 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3266 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3267 1.72 thorpej READ_STAT(sc, stats,
3268 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3269 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3270 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3271 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3272 1.72 thorpej READ_STAT(sc, stats,
3273 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3274 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3275 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3276 1.72 thorpej
3277 1.1 fvdl #undef READ_STAT
3278 1.1 fvdl
3279 1.1 fvdl #ifdef notdef
3280 1.1 fvdl ifp->if_collisions +=
3281 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3282 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3283 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3284 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3285 1.1 fvdl ifp->if_collisions;
3286 1.1 fvdl #endif
3287 1.1 fvdl }
3288 1.1 fvdl
3289 1.46 jonathan /*
3290 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3291 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3292 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3293 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3294 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3295 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3296 1.46 jonathan */
3297 1.102 perry static inline int
3298 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3299 1.46 jonathan {
3300 1.46 jonathan struct mbuf *last = NULL;
3301 1.46 jonathan int padlen;
3302 1.46 jonathan
3303 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3304 1.46 jonathan
3305 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3306 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3307 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3308 1.46 jonathan last = pkt;
3309 1.46 jonathan } else {
3310 1.46 jonathan /*
3311 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3312 1.87 perry * pad there, or append a new mbuf and pad it
3313 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3314 1.46 jonathan */
3315 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3316 1.114 tsutsui continue; /* do nothing */
3317 1.46 jonathan }
3318 1.46 jonathan
3319 1.46 jonathan /* `last' now points to last in chain. */
3320 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3321 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3322 1.46 jonathan struct mbuf *n;
3323 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3324 1.129 joerg if (n == NULL)
3325 1.129 joerg return ENOBUFS;
3326 1.46 jonathan n->m_len = 0;
3327 1.46 jonathan last->m_next = n;
3328 1.46 jonathan last = n;
3329 1.46 jonathan }
3330 1.46 jonathan }
3331 1.46 jonathan
3332 1.114 tsutsui KDASSERT(!M_READONLY(last));
3333 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3334 1.114 tsutsui
3335 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3336 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3337 1.46 jonathan last->m_len += padlen;
3338 1.46 jonathan pkt->m_pkthdr.len += padlen;
3339 1.46 jonathan return 0;
3340 1.46 jonathan }
3341 1.45 jonathan
3342 1.45 jonathan /*
3343 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3344 1.45 jonathan */
3345 1.102 perry static inline int
3346 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3347 1.45 jonathan {
3348 1.45 jonathan struct mbuf *m, *prev;
3349 1.45 jonathan int totlen, prevlen;
3350 1.45 jonathan
3351 1.45 jonathan prev = NULL;
3352 1.45 jonathan totlen = 0;
3353 1.45 jonathan prevlen = -1;
3354 1.45 jonathan
3355 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3356 1.45 jonathan int mlen = m->m_len;
3357 1.45 jonathan int shortfall = 8 - mlen ;
3358 1.45 jonathan
3359 1.45 jonathan totlen += mlen;
3360 1.45 jonathan if (mlen == 0) {
3361 1.45 jonathan continue;
3362 1.45 jonathan }
3363 1.45 jonathan if (mlen >= 8)
3364 1.45 jonathan continue;
3365 1.45 jonathan
3366 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3367 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3368 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3369 1.45 jonathan */
3370 1.45 jonathan
3371 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3372 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3373 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3374 1.45 jonathan prev->m_len += mlen;
3375 1.45 jonathan m->m_len = 0;
3376 1.45 jonathan /* XXX stitch chain */
3377 1.45 jonathan prev->m_next = m_free(m);
3378 1.45 jonathan m = prev;
3379 1.45 jonathan continue;
3380 1.45 jonathan }
3381 1.113 tsutsui else if (m->m_next != NULL &&
3382 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3383 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3384 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3385 1.45 jonathan
3386 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3387 1.115 tsutsui shortfall);
3388 1.45 jonathan m->m_len += shortfall;
3389 1.45 jonathan m->m_next->m_len -= shortfall;
3390 1.45 jonathan m->m_next->m_data += shortfall;
3391 1.45 jonathan }
3392 1.45 jonathan else if (m->m_next == NULL || 1) {
3393 1.45 jonathan /* Got a runt at the very end of the packet.
3394 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3395 1.45 jonathan * update its length in-place. (The original data is still
3396 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3397 1.45 jonathan */
3398 1.45 jonathan
3399 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3400 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3401 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3402 1.111 christos
3403 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3404 1.45 jonathan shortfall = prev->m_len;
3405 1.87 perry
3406 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3407 1.45 jonathan if (!M_READONLY(m)) {
3408 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3409 1.45 jonathan void *m_dat;
3410 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3411 1.45 jonathan m->m_pktdat : m->dat;
3412 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3413 1.45 jonathan m->m_data = m_dat;
3414 1.45 jonathan }
3415 1.45 jonathan } else
3416 1.45 jonathan #endif /* just do the safe slow thing */
3417 1.45 jonathan {
3418 1.45 jonathan struct mbuf * n = NULL;
3419 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3420 1.45 jonathan
3421 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3422 1.45 jonathan if (n == NULL)
3423 1.45 jonathan return ENOBUFS;
3424 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3425 1.45 jonathan /*,
3426 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3427 1.45 jonathan
3428 1.45 jonathan /* first copy the data we're stealing from prev */
3429 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3430 1.115 tsutsui shortfall);
3431 1.45 jonathan
3432 1.45 jonathan /* update prev->m_len accordingly */
3433 1.45 jonathan prev->m_len -= shortfall;
3434 1.45 jonathan
3435 1.45 jonathan /* copy data from runt m */
3436 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3437 1.115 tsutsui m->m_len);
3438 1.45 jonathan
3439 1.45 jonathan /* n holds what we stole from prev, plus m */
3440 1.45 jonathan n->m_len = shortfall + m->m_len;
3441 1.45 jonathan
3442 1.45 jonathan /* stitch n into chain and free m */
3443 1.45 jonathan n->m_next = m->m_next;
3444 1.45 jonathan prev->m_next = n;
3445 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3446 1.45 jonathan m->m_next = NULL;
3447 1.45 jonathan m_free(m);
3448 1.45 jonathan m = n; /* for continuing loop */
3449 1.45 jonathan }
3450 1.45 jonathan }
3451 1.45 jonathan prevlen = m->m_len;
3452 1.45 jonathan }
3453 1.45 jonathan return 0;
3454 1.45 jonathan }
3455 1.45 jonathan
3456 1.1 fvdl /*
3457 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3458 1.1 fvdl * pointers to descriptors.
3459 1.1 fvdl */
3460 1.104 thorpej static int
3461 1.104 thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3462 1.1 fvdl {
3463 1.1 fvdl struct bge_tx_bd *f = NULL;
3464 1.118 tsutsui u_int32_t frag, cur;
3465 1.1 fvdl u_int16_t csum_flags = 0;
3466 1.95 jonathan u_int16_t txbd_tso_flags = 0;
3467 1.1 fvdl struct txdmamap_pool_entry *dma;
3468 1.1 fvdl bus_dmamap_t dmamap;
3469 1.1 fvdl int i = 0;
3470 1.29 itojun struct m_tag *mtag;
3471 1.95 jonathan int use_tso, maxsegsize, error;
3472 1.107 blymn
3473 1.1 fvdl cur = frag = *txidx;
3474 1.1 fvdl
3475 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3476 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3477 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3478 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3479 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3480 1.1 fvdl }
3481 1.1 fvdl
3482 1.87 perry /*
3483 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3484 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3485 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3486 1.46 jonathan * (For now, do this for all chip versions, until newer
3487 1.46 jonathan * are confirmed to not require the workaround.)
3488 1.46 jonathan */
3489 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3490 1.46 jonathan #ifdef notyet
3491 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3492 1.87 perry #endif
3493 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3494 1.46 jonathan goto check_dma_bug;
3495 1.46 jonathan
3496 1.95 jonathan if (bge_cksum_pad(m_head) != 0) {
3497 1.46 jonathan return ENOBUFS;
3498 1.95 jonathan }
3499 1.46 jonathan
3500 1.46 jonathan check_dma_bug:
3501 1.157 msaitoh if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3502 1.29 itojun goto doit;
3503 1.157 msaitoh
3504 1.25 jonathan /*
3505 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3506 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3507 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3508 1.25 jonathan */
3509 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3510 1.45 jonathan return ENOBUFS;
3511 1.25 jonathan
3512 1.25 jonathan doit:
3513 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3514 1.1 fvdl if (dma == NULL)
3515 1.1 fvdl return ENOBUFS;
3516 1.1 fvdl dmamap = dma->dmamap;
3517 1.1 fvdl
3518 1.1 fvdl /*
3519 1.95 jonathan * Set up any necessary TSO state before we start packing...
3520 1.95 jonathan */
3521 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3522 1.95 jonathan if (!use_tso) {
3523 1.95 jonathan maxsegsize = 0;
3524 1.95 jonathan } else { /* TSO setup */
3525 1.95 jonathan unsigned mss;
3526 1.95 jonathan struct ether_header *eh;
3527 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3528 1.95 jonathan struct mbuf * m0 = m_head;
3529 1.95 jonathan struct ip *ip;
3530 1.95 jonathan struct tcphdr *th;
3531 1.95 jonathan int iphl, hlen;
3532 1.95 jonathan
3533 1.95 jonathan /*
3534 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3535 1.95 jonathan * fields for the protocol headers.
3536 1.95 jonathan */
3537 1.95 jonathan
3538 1.95 jonathan eh = mtod(m0, struct ether_header *);
3539 1.95 jonathan switch (htons(eh->ether_type)) {
3540 1.95 jonathan case ETHERTYPE_IP:
3541 1.95 jonathan offset = ETHER_HDR_LEN;
3542 1.95 jonathan break;
3543 1.95 jonathan
3544 1.95 jonathan case ETHERTYPE_VLAN:
3545 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3546 1.95 jonathan break;
3547 1.95 jonathan
3548 1.95 jonathan default:
3549 1.95 jonathan /*
3550 1.95 jonathan * Don't support this protocol or encapsulation.
3551 1.95 jonathan */
3552 1.95 jonathan return (ENOBUFS);
3553 1.95 jonathan }
3554 1.95 jonathan
3555 1.95 jonathan /*
3556 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3557 1.95 jonathan * this the easy way.
3558 1.95 jonathan */
3559 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3560 1.95 jonathan hlen = iphl + offset;
3561 1.95 jonathan if (__predict_false(m0->m_len <
3562 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
3563 1.95 jonathan
3564 1.138 joerg aprint_debug_dev(sc->bge_dev,
3565 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3566 1.138 joerg "not handled yet\n",
3567 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
3568 1.95 jonathan #ifdef NOTYET
3569 1.95 jonathan /*
3570 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
3571 1.95 jonathan * how to force this branch to be taken?
3572 1.95 jonathan */
3573 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3574 1.95 jonathan
3575 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
3576 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
3577 1.95 jonathan
3578 1.95 jonathan ip.ip_len = 0;
3579 1.95 jonathan
3580 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3581 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
3582 1.95 jonathan
3583 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3584 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3585 1.95 jonathan
3586 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3587 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
3588 1.95 jonathan
3589 1.95 jonathan hlen += th.th_off << 2;
3590 1.95 jonathan iptcp_opt_words = hlen;
3591 1.95 jonathan #else
3592 1.95 jonathan /*
3593 1.95 jonathan * if_wm "hard" case not yet supported, can we not
3594 1.95 jonathan * mandate it out of existence?
3595 1.95 jonathan */
3596 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
3597 1.95 jonathan
3598 1.95 jonathan return ENOBUFS;
3599 1.95 jonathan #endif
3600 1.95 jonathan } else {
3601 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
3602 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3603 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
3604 1.95 jonathan
3605 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
3606 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
3607 1.95 jonathan - sizeof(struct tcphdr)
3608 1.95 jonathan - sizeof(struct ip)) >> 2;
3609 1.95 jonathan }
3610 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
3611 1.95 jonathan th->th_sum = 0;
3612 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3613 1.95 jonathan } else {
3614 1.95 jonathan /*
3615 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
3616 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
3617 1.95 jonathan */
3618 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3619 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3620 1.95 jonathan }
3621 1.95 jonathan
3622 1.95 jonathan mss = m_head->m_pkthdr.segsz;
3623 1.107 blymn txbd_tso_flags |=
3624 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
3625 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
3626 1.95 jonathan
3627 1.95 jonathan /*
3628 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
3629 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
3630 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
3631 1.95 jonathan * supplied header into the IP/TCP header portion of
3632 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
3633 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
3634 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
3635 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
3636 1.95 jonathan * Unfortunately, the driver encoding of option length
3637 1.95 jonathan * varies across different ASIC families.
3638 1.95 jonathan */
3639 1.95 jonathan tcp_seg_flags = 0;
3640 1.95 jonathan if (iptcp_opt_words) {
3641 1.95 jonathan if ( BGE_IS_5705_OR_BEYOND(sc)) {
3642 1.95 jonathan tcp_seg_flags =
3643 1.95 jonathan iptcp_opt_words << 11;
3644 1.95 jonathan } else {
3645 1.95 jonathan txbd_tso_flags |=
3646 1.95 jonathan iptcp_opt_words << 12;
3647 1.95 jonathan }
3648 1.95 jonathan }
3649 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
3650 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
3651 1.95 jonathan
3652 1.95 jonathan } /* TSO setup */
3653 1.95 jonathan
3654 1.95 jonathan /*
3655 1.1 fvdl * Start packing the mbufs in this chain into
3656 1.1 fvdl * the fragment pointers. Stop when we run out
3657 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3658 1.1 fvdl */
3659 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3660 1.95 jonathan BUS_DMA_NOWAIT);
3661 1.95 jonathan if (error) {
3662 1.158 msaitoh return (ENOBUFS);
3663 1.95 jonathan }
3664 1.118 tsutsui /*
3665 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
3666 1.118 tsutsui * of the end of the ring.
3667 1.118 tsutsui */
3668 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3669 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
3670 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
3671 1.138 joerg device_xname(sc->bge_dev)));
3672 1.118 tsutsui goto fail_unload;
3673 1.118 tsutsui }
3674 1.95 jonathan
3675 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
3676 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3677 1.1 fvdl
3678 1.6 thorpej
3679 1.95 jonathan /* Iterate over dmap-map fragments. */
3680 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3681 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3682 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3683 1.1 fvdl break;
3684 1.107 blymn
3685 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3686 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3687 1.95 jonathan
3688 1.95 jonathan /*
3689 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
3690 1.95 jonathan * off checksum-assist flag in the tx-descr, and
3691 1.95 jonathan * supply the ASIC-revision-specific encoding
3692 1.95 jonathan * of TSO flags and segsize.
3693 1.95 jonathan */
3694 1.95 jonathan if (use_tso) {
3695 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3696 1.95 jonathan f->bge_rsvd = maxsegsize;
3697 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
3698 1.95 jonathan } else {
3699 1.95 jonathan f->bge_rsvd = 0;
3700 1.95 jonathan f->bge_flags =
3701 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
3702 1.95 jonathan }
3703 1.95 jonathan } else {
3704 1.95 jonathan f->bge_rsvd = 0;
3705 1.95 jonathan f->bge_flags = csum_flags;
3706 1.95 jonathan }
3707 1.1 fvdl
3708 1.28 itojun if (mtag != NULL) {
3709 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3710 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3711 1.1 fvdl } else {
3712 1.1 fvdl f->bge_vlan_tag = 0;
3713 1.1 fvdl }
3714 1.1 fvdl cur = frag;
3715 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
3716 1.1 fvdl }
3717 1.1 fvdl
3718 1.95 jonathan if (i < dmamap->dm_nsegs) {
3719 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3720 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3721 1.118 tsutsui goto fail_unload;
3722 1.95 jonathan }
3723 1.1 fvdl
3724 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3725 1.1 fvdl BUS_DMASYNC_PREWRITE);
3726 1.1 fvdl
3727 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
3728 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3729 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3730 1.95 jonathan
3731 1.118 tsutsui goto fail_unload;
3732 1.95 jonathan }
3733 1.1 fvdl
3734 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3735 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
3736 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3737 1.1 fvdl sc->txdma[cur] = dma;
3738 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
3739 1.1 fvdl
3740 1.1 fvdl *txidx = frag;
3741 1.1 fvdl
3742 1.158 msaitoh return (0);
3743 1.118 tsutsui
3744 1.158 msaitoh fail_unload:
3745 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
3746 1.118 tsutsui
3747 1.118 tsutsui return ENOBUFS;
3748 1.1 fvdl }
3749 1.1 fvdl
3750 1.1 fvdl /*
3751 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3752 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
3753 1.1 fvdl */
3754 1.104 thorpej static void
3755 1.104 thorpej bge_start(struct ifnet *ifp)
3756 1.1 fvdl {
3757 1.1 fvdl struct bge_softc *sc;
3758 1.1 fvdl struct mbuf *m_head = NULL;
3759 1.94 jonathan u_int32_t prodidx;
3760 1.1 fvdl int pkts = 0;
3761 1.1 fvdl
3762 1.1 fvdl sc = ifp->if_softc;
3763 1.1 fvdl
3764 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3765 1.1 fvdl return;
3766 1.1 fvdl
3767 1.94 jonathan prodidx = sc->bge_tx_prodidx;
3768 1.1 fvdl
3769 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3770 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
3771 1.1 fvdl if (m_head == NULL)
3772 1.1 fvdl break;
3773 1.1 fvdl
3774 1.1 fvdl #if 0
3775 1.1 fvdl /*
3776 1.1 fvdl * XXX
3777 1.1 fvdl * safety overkill. If this is a fragmented packet chain
3778 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
3779 1.1 fvdl * it if we have enough descriptors to handle the entire
3780 1.1 fvdl * chain at once.
3781 1.1 fvdl * (paranoia -- may not actually be needed)
3782 1.1 fvdl */
3783 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
3784 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3785 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3786 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3787 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3788 1.1 fvdl break;
3789 1.1 fvdl }
3790 1.1 fvdl }
3791 1.1 fvdl #endif
3792 1.1 fvdl
3793 1.1 fvdl /*
3794 1.1 fvdl * Pack the data into the transmit ring. If we
3795 1.1 fvdl * don't have room, set the OACTIVE flag and wait
3796 1.1 fvdl * for the NIC to drain the ring.
3797 1.1 fvdl */
3798 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
3799 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3800 1.1 fvdl break;
3801 1.1 fvdl }
3802 1.1 fvdl
3803 1.1 fvdl /* now we are committed to transmit the packet */
3804 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
3805 1.1 fvdl pkts++;
3806 1.1 fvdl
3807 1.1 fvdl #if NBPFILTER > 0
3808 1.1 fvdl /*
3809 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
3810 1.1 fvdl * to him.
3811 1.1 fvdl */
3812 1.1 fvdl if (ifp->if_bpf)
3813 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
3814 1.1 fvdl #endif
3815 1.1 fvdl }
3816 1.1 fvdl if (pkts == 0)
3817 1.1 fvdl return;
3818 1.1 fvdl
3819 1.1 fvdl /* Transmit */
3820 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3821 1.158 msaitoh /* 5700 b2 errata */
3822 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
3823 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3824 1.1 fvdl
3825 1.94 jonathan sc->bge_tx_prodidx = prodidx;
3826 1.94 jonathan
3827 1.1 fvdl /*
3828 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
3829 1.1 fvdl */
3830 1.1 fvdl ifp->if_timer = 5;
3831 1.1 fvdl }
3832 1.1 fvdl
3833 1.104 thorpej static int
3834 1.104 thorpej bge_init(struct ifnet *ifp)
3835 1.1 fvdl {
3836 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3837 1.137 dyoung const u_int16_t *m;
3838 1.142 dyoung int s, error = 0;
3839 1.1 fvdl
3840 1.1 fvdl s = splnet();
3841 1.1 fvdl
3842 1.1 fvdl ifp = &sc->ethercom.ec_if;
3843 1.1 fvdl
3844 1.1 fvdl /* Cancel pending I/O and flush buffers. */
3845 1.141 jmcneill bge_stop(ifp, 0);
3846 1.1 fvdl bge_reset(sc);
3847 1.1 fvdl bge_chipinit(sc);
3848 1.1 fvdl
3849 1.1 fvdl /*
3850 1.1 fvdl * Init the various state machines, ring
3851 1.1 fvdl * control blocks and firmware.
3852 1.1 fvdl */
3853 1.1 fvdl error = bge_blockinit(sc);
3854 1.1 fvdl if (error != 0) {
3855 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3856 1.1 fvdl error);
3857 1.1 fvdl splx(s);
3858 1.1 fvdl return error;
3859 1.1 fvdl }
3860 1.1 fvdl
3861 1.1 fvdl ifp = &sc->ethercom.ec_if;
3862 1.1 fvdl
3863 1.1 fvdl /* Specify MTU. */
3864 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3865 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3866 1.1 fvdl
3867 1.1 fvdl /* Load our MAC address. */
3868 1.137 dyoung m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3869 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3870 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3871 1.1 fvdl
3872 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
3873 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
3874 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3875 1.1 fvdl } else {
3876 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3877 1.1 fvdl }
3878 1.1 fvdl
3879 1.1 fvdl /* Program multicast filter. */
3880 1.1 fvdl bge_setmulti(sc);
3881 1.1 fvdl
3882 1.1 fvdl /* Init RX ring. */
3883 1.1 fvdl bge_init_rx_ring_std(sc);
3884 1.1 fvdl
3885 1.1 fvdl /* Init jumbo RX ring. */
3886 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3887 1.1 fvdl bge_init_rx_ring_jumbo(sc);
3888 1.1 fvdl
3889 1.1 fvdl /* Init our RX return ring index */
3890 1.1 fvdl sc->bge_rx_saved_considx = 0;
3891 1.1 fvdl
3892 1.1 fvdl /* Init TX ring. */
3893 1.1 fvdl bge_init_tx_ring(sc);
3894 1.1 fvdl
3895 1.1 fvdl /* Turn on transmitter */
3896 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3897 1.1 fvdl
3898 1.1 fvdl /* Turn on receiver */
3899 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3900 1.1 fvdl
3901 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3902 1.71 thorpej
3903 1.1 fvdl /* Tell firmware we're alive. */
3904 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3905 1.1 fvdl
3906 1.1 fvdl /* Enable host interrupts. */
3907 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3908 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3909 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3910 1.1 fvdl
3911 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
3912 1.142 dyoung goto out;
3913 1.1 fvdl
3914 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
3915 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3916 1.1 fvdl
3917 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3918 1.142 dyoung
3919 1.142 dyoung out:
3920 1.1 fvdl splx(s);
3921 1.1 fvdl
3922 1.142 dyoung return error;
3923 1.1 fvdl }
3924 1.1 fvdl
3925 1.1 fvdl /*
3926 1.1 fvdl * Set media options.
3927 1.1 fvdl */
3928 1.104 thorpej static int
3929 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
3930 1.1 fvdl {
3931 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3932 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3933 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
3934 1.142 dyoung int rc;
3935 1.1 fvdl
3936 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
3937 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3938 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3939 1.158 msaitoh return (EINVAL);
3940 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
3941 1.1 fvdl case IFM_AUTO:
3942 1.1 fvdl break;
3943 1.1 fvdl case IFM_1000_SX:
3944 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3945 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
3946 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3947 1.1 fvdl } else {
3948 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
3949 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3950 1.1 fvdl }
3951 1.1 fvdl break;
3952 1.1 fvdl default:
3953 1.158 msaitoh return (EINVAL);
3954 1.1 fvdl }
3955 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
3956 1.158 msaitoh return (0);
3957 1.1 fvdl }
3958 1.1 fvdl
3959 1.1 fvdl sc->bge_link = 0;
3960 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
3961 1.142 dyoung return 0;
3962 1.142 dyoung return rc;
3963 1.1 fvdl }
3964 1.1 fvdl
3965 1.1 fvdl /*
3966 1.1 fvdl * Report current media status.
3967 1.1 fvdl */
3968 1.104 thorpej static void
3969 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3970 1.1 fvdl {
3971 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3972 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3973 1.1 fvdl
3974 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3975 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
3976 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
3977 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3978 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
3979 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
3980 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
3981 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3982 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
3983 1.1 fvdl else
3984 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
3985 1.1 fvdl return;
3986 1.1 fvdl }
3987 1.1 fvdl
3988 1.1 fvdl mii_pollstat(mii);
3989 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
3990 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3991 1.69 thorpej sc->bge_flowflags;
3992 1.1 fvdl }
3993 1.1 fvdl
3994 1.104 thorpej static int
3995 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
3996 1.1 fvdl {
3997 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3998 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
3999 1.1 fvdl int s, error = 0;
4000 1.1 fvdl struct mii_data *mii;
4001 1.1 fvdl
4002 1.1 fvdl s = splnet();
4003 1.1 fvdl
4004 1.1 fvdl switch(command) {
4005 1.1 fvdl case SIOCSIFFLAGS:
4006 1.153 dyoung if ((error = ifioctl_common(ifp, command, data)) != 0)
4007 1.153 dyoung break;
4008 1.1 fvdl if (ifp->if_flags & IFF_UP) {
4009 1.1 fvdl /*
4010 1.1 fvdl * If only the state of the PROMISC flag changed,
4011 1.1 fvdl * then just use the 'set promisc mode' command
4012 1.1 fvdl * instead of reinitializing the entire NIC. Doing
4013 1.1 fvdl * a full re-init means reloading the firmware and
4014 1.1 fvdl * waiting for it to start up, which may take a
4015 1.1 fvdl * second or two.
4016 1.1 fvdl */
4017 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
4018 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
4019 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
4020 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
4021 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4022 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
4023 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
4024 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
4025 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
4026 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4027 1.103 rpaulo } else if (!(sc->bge_if_flags & IFF_UP))
4028 1.1 fvdl bge_init(ifp);
4029 1.1 fvdl } else {
4030 1.141 jmcneill if (ifp->if_flags & IFF_RUNNING)
4031 1.141 jmcneill bge_stop(ifp, 1);
4032 1.1 fvdl }
4033 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
4034 1.1 fvdl error = 0;
4035 1.1 fvdl break;
4036 1.1 fvdl case SIOCSIFMEDIA:
4037 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4038 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4039 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4040 1.69 thorpej sc->bge_flowflags = 0;
4041 1.69 thorpej }
4042 1.69 thorpej
4043 1.69 thorpej /* Flow control requires full-duplex mode. */
4044 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4045 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4046 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4047 1.69 thorpej }
4048 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4049 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4050 1.157 msaitoh /* We can do both TXPAUSE and RXPAUSE. */
4051 1.69 thorpej ifr->ifr_media |=
4052 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4053 1.69 thorpej }
4054 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4055 1.69 thorpej }
4056 1.69 thorpej /* FALLTHROUGH */
4057 1.1 fvdl case SIOCGIFMEDIA:
4058 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4059 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4060 1.1 fvdl command);
4061 1.1 fvdl } else {
4062 1.1 fvdl mii = &sc->bge_mii;
4063 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4064 1.1 fvdl command);
4065 1.1 fvdl }
4066 1.1 fvdl break;
4067 1.1 fvdl default:
4068 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4069 1.152 tron break;
4070 1.152 tron
4071 1.152 tron error = 0;
4072 1.152 tron
4073 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4074 1.152 tron ;
4075 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
4076 1.152 tron bge_setmulti(sc);
4077 1.1 fvdl break;
4078 1.1 fvdl }
4079 1.1 fvdl
4080 1.1 fvdl splx(s);
4081 1.1 fvdl
4082 1.158 msaitoh return (error);
4083 1.1 fvdl }
4084 1.1 fvdl
4085 1.104 thorpej static void
4086 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4087 1.1 fvdl {
4088 1.1 fvdl struct bge_softc *sc;
4089 1.1 fvdl
4090 1.1 fvdl sc = ifp->if_softc;
4091 1.1 fvdl
4092 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4093 1.1 fvdl
4094 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4095 1.1 fvdl bge_init(ifp);
4096 1.1 fvdl
4097 1.1 fvdl ifp->if_oerrors++;
4098 1.1 fvdl }
4099 1.1 fvdl
4100 1.11 thorpej static void
4101 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4102 1.11 thorpej {
4103 1.11 thorpej int i;
4104 1.11 thorpej
4105 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4106 1.11 thorpej
4107 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
4108 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4109 1.11 thorpej return;
4110 1.11 thorpej delay(100);
4111 1.157 msaitoh if (sc->bge_flags & BGE_PCIE)
4112 1.95 jonathan DELAY(1000);
4113 1.11 thorpej }
4114 1.11 thorpej
4115 1.138 joerg aprint_error_dev(sc->bge_dev,
4116 1.138 joerg "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4117 1.11 thorpej }
4118 1.11 thorpej
4119 1.1 fvdl /*
4120 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4121 1.1 fvdl * RX and TX lists.
4122 1.1 fvdl */
4123 1.104 thorpej static void
4124 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4125 1.1 fvdl {
4126 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4127 1.1 fvdl
4128 1.1 fvdl callout_stop(&sc->bge_timeout);
4129 1.1 fvdl
4130 1.1 fvdl /*
4131 1.1 fvdl * Disable all of the receiver blocks
4132 1.1 fvdl */
4133 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4134 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4135 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4136 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4137 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4138 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4139 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4140 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4141 1.1 fvdl
4142 1.1 fvdl /*
4143 1.1 fvdl * Disable all of the transmit blocks
4144 1.1 fvdl */
4145 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4146 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4147 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4148 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4149 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4150 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4151 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4152 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4153 1.1 fvdl
4154 1.1 fvdl /*
4155 1.1 fvdl * Shut down all of the memory managers and related
4156 1.1 fvdl * state machines.
4157 1.1 fvdl */
4158 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4159 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4160 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4161 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4162 1.11 thorpej
4163 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4164 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4165 1.11 thorpej
4166 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
4167 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4168 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4169 1.44 hannken }
4170 1.1 fvdl
4171 1.1 fvdl /* Disable host interrupts. */
4172 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4173 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4174 1.1 fvdl
4175 1.1 fvdl /*
4176 1.1 fvdl * Tell firmware we're shutting down.
4177 1.1 fvdl */
4178 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4179 1.1 fvdl
4180 1.1 fvdl /* Free the RX lists. */
4181 1.1 fvdl bge_free_rx_ring_std(sc);
4182 1.1 fvdl
4183 1.1 fvdl /* Free jumbo RX list. */
4184 1.1 fvdl bge_free_rx_ring_jumbo(sc);
4185 1.1 fvdl
4186 1.1 fvdl /* Free TX buffers. */
4187 1.1 fvdl bge_free_tx_ring(sc);
4188 1.1 fvdl
4189 1.1 fvdl /*
4190 1.1 fvdl * Isolate/power down the PHY.
4191 1.1 fvdl */
4192 1.157 msaitoh if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4193 1.1 fvdl mii_down(&sc->bge_mii);
4194 1.1 fvdl
4195 1.1 fvdl sc->bge_link = 0;
4196 1.1 fvdl
4197 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4198 1.1 fvdl
4199 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4200 1.1 fvdl }
4201 1.1 fvdl
4202 1.64 jonathan static int
4203 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4204 1.64 jonathan {
4205 1.64 jonathan int error, t;
4206 1.64 jonathan struct sysctlnode node;
4207 1.64 jonathan
4208 1.64 jonathan node = *rnode;
4209 1.64 jonathan t = *(int*)rnode->sysctl_data;
4210 1.64 jonathan node.sysctl_data = &t;
4211 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4212 1.64 jonathan if (error || newp == NULL)
4213 1.64 jonathan return (error);
4214 1.64 jonathan
4215 1.64 jonathan #if 0
4216 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4217 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4218 1.64 jonathan #endif
4219 1.64 jonathan
4220 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4221 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4222 1.64 jonathan return (EINVAL);
4223 1.64 jonathan bge_update_all_threshes(t);
4224 1.64 jonathan } else
4225 1.64 jonathan return (EINVAL);
4226 1.64 jonathan
4227 1.64 jonathan *(int*)rnode->sysctl_data = t;
4228 1.64 jonathan
4229 1.64 jonathan return (0);
4230 1.64 jonathan }
4231 1.64 jonathan
4232 1.64 jonathan /*
4233 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4234 1.64 jonathan *
4235 1.64 jonathan * TBD condition SYSCTL_PERMANENT on being an LKM or not
4236 1.64 jonathan */
4237 1.64 jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4238 1.64 jonathan {
4239 1.66 atatat int rc, bge_root_num;
4240 1.90 atatat const struct sysctlnode *node;
4241 1.64 jonathan
4242 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4243 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4244 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4245 1.64 jonathan goto err;
4246 1.64 jonathan }
4247 1.64 jonathan
4248 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, &node,
4249 1.73 atatat CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4250 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4251 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4252 1.64 jonathan goto err;
4253 1.64 jonathan }
4254 1.64 jonathan
4255 1.66 atatat bge_root_num = node->sysctl_num;
4256 1.66 atatat
4257 1.64 jonathan /* BGE Rx interrupt mitigation level */
4258 1.87 perry if ((rc = sysctl_createv(clog, 0, NULL, &node,
4259 1.64 jonathan CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4260 1.73 atatat CTLTYPE_INT, "rx_lvl",
4261 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4262 1.73 atatat sysctl_bge_verify, 0,
4263 1.64 jonathan &bge_rx_thresh_lvl,
4264 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4265 1.64 jonathan CTL_EOL)) != 0) {
4266 1.64 jonathan goto err;
4267 1.64 jonathan }
4268 1.64 jonathan
4269 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4270 1.64 jonathan
4271 1.64 jonathan return;
4272 1.64 jonathan
4273 1.64 jonathan err:
4274 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4275 1.64 jonathan }
4276 1.151 cegger
4277 1.151 cegger static int
4278 1.151 cegger bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4279 1.151 cegger {
4280 1.151 cegger u_int32_t mac_addr;
4281 1.151 cegger
4282 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c14);
4283 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
4284 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
4285 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
4286 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c18);
4287 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
4288 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
4289 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
4290 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
4291 1.151 cegger return (0);
4292 1.151 cegger }
4293 1.151 cegger return (1);
4294 1.151 cegger }
4295 1.151 cegger
4296 1.151 cegger static int
4297 1.151 cegger bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4298 1.151 cegger {
4299 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
4300 1.151 cegger
4301 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4302 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
4303 1.151 cegger }
4304 1.151 cegger
4305 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4306 1.151 cegger ETHER_ADDR_LEN));
4307 1.151 cegger }
4308 1.151 cegger
4309 1.151 cegger static int
4310 1.151 cegger bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4311 1.151 cegger {
4312 1.151 cegger
4313 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4314 1.151 cegger return (1);
4315 1.151 cegger }
4316 1.151 cegger
4317 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4318 1.151 cegger ETHER_ADDR_LEN));
4319 1.151 cegger }
4320 1.151 cegger
4321 1.151 cegger static int
4322 1.151 cegger bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4323 1.151 cegger {
4324 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4325 1.151 cegger /* NOTE: Order is critical */
4326 1.151 cegger bge_get_eaddr_mem,
4327 1.151 cegger bge_get_eaddr_nvram,
4328 1.151 cegger bge_get_eaddr_eeprom,
4329 1.151 cegger NULL
4330 1.151 cegger };
4331 1.151 cegger const bge_eaddr_fcn_t *func;
4332 1.151 cegger
4333 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4334 1.151 cegger if ((*func)(sc, eaddr) == 0)
4335 1.151 cegger break;
4336 1.151 cegger }
4337 1.151 cegger return (*func == NULL ? ENXIO : 0);
4338 1.151 cegger }
4339