if_bge.c revision 1.168 1 1.168 tsutsui /* $NetBSD: if_bge.c,v 1.168 2009/09/05 14:09:55 tsutsui Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.168 tsutsui __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.168 2009/09/05 14:09:55 tsutsui Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.148 mlelstv #include "rnd.h"
87 1.1 fvdl
88 1.1 fvdl #include <sys/param.h>
89 1.1 fvdl #include <sys/systm.h>
90 1.1 fvdl #include <sys/callout.h>
91 1.1 fvdl #include <sys/sockio.h>
92 1.1 fvdl #include <sys/mbuf.h>
93 1.1 fvdl #include <sys/malloc.h>
94 1.1 fvdl #include <sys/kernel.h>
95 1.1 fvdl #include <sys/device.h>
96 1.1 fvdl #include <sys/socket.h>
97 1.64 jonathan #include <sys/sysctl.h>
98 1.1 fvdl
99 1.1 fvdl #include <net/if.h>
100 1.1 fvdl #include <net/if_dl.h>
101 1.1 fvdl #include <net/if_media.h>
102 1.1 fvdl #include <net/if_ether.h>
103 1.1 fvdl
104 1.148 mlelstv #if NRND > 0
105 1.148 mlelstv #include <sys/rnd.h>
106 1.148 mlelstv #endif
107 1.148 mlelstv
108 1.1 fvdl #ifdef INET
109 1.1 fvdl #include <netinet/in.h>
110 1.1 fvdl #include <netinet/in_systm.h>
111 1.1 fvdl #include <netinet/in_var.h>
112 1.1 fvdl #include <netinet/ip.h>
113 1.1 fvdl #endif
114 1.1 fvdl
115 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
116 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
119 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
120 1.95 jonathan
121 1.95 jonathan
122 1.1 fvdl #if NBPFILTER > 0
123 1.1 fvdl #include <net/bpf.h>
124 1.1 fvdl #endif
125 1.1 fvdl
126 1.1 fvdl #include <dev/pci/pcireg.h>
127 1.1 fvdl #include <dev/pci/pcivar.h>
128 1.1 fvdl #include <dev/pci/pcidevs.h>
129 1.1 fvdl
130 1.1 fvdl #include <dev/mii/mii.h>
131 1.1 fvdl #include <dev/mii/miivar.h>
132 1.1 fvdl #include <dev/mii/miidevs.h>
133 1.1 fvdl #include <dev/mii/brgphyreg.h>
134 1.1 fvdl
135 1.1 fvdl #include <dev/pci/if_bgereg.h>
136 1.164 msaitoh #include <dev/pci/if_bgevar.h>
137 1.1 fvdl
138 1.1 fvdl #include <uvm/uvm_extern.h>
139 1.164 msaitoh #include <prop/proplib.h>
140 1.1 fvdl
141 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
142 1.46 jonathan
143 1.63 jonathan
144 1.63 jonathan /*
145 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
146 1.63 jonathan */
147 1.63 jonathan
148 1.63 jonathan /*
149 1.63 jonathan * The pairs of values below were obtained from empirical measurement
150 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
151 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
152 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
153 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
154 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
155 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
156 1.63 jonathan * limits on the bcm5700: inreasing rx_ticks much beyond 600
157 1.63 jonathan * results in internal wrapping and higher interrupt rates.
158 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
159 1.87 perry *
160 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
161 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
162 1.63 jonathan * family), the larger values may overflow internal chip limits,
163 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
164 1.63 jonathan * rates.
165 1.63 jonathan *
166 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
167 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
168 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
169 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
170 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
171 1.63 jonathan */
172 1.104 thorpej static const struct bge_load_rx_thresh {
173 1.63 jonathan int rx_ticks;
174 1.63 jonathan int rx_max_bds; }
175 1.63 jonathan bge_rx_threshes[] = {
176 1.63 jonathan { 32, 2 },
177 1.63 jonathan { 50, 4 },
178 1.63 jonathan { 100, 8 },
179 1.63 jonathan { 192, 16 },
180 1.63 jonathan { 416, 32 },
181 1.63 jonathan { 598, 46 }
182 1.63 jonathan };
183 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
184 1.63 jonathan
185 1.63 jonathan /* XXX patchable; should be sysctl'able */
186 1.64 jonathan static int bge_auto_thresh = 1;
187 1.64 jonathan static int bge_rx_thresh_lvl;
188 1.64 jonathan
189 1.104 thorpej static int bge_rxthresh_nodenum;
190 1.1 fvdl
191 1.151 cegger typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
192 1.151 cegger
193 1.104 thorpej static int bge_probe(device_t, cfdata_t, void *);
194 1.104 thorpej static void bge_attach(device_t, device_t, void *);
195 1.104 thorpej static void bge_release_resources(struct bge_softc *);
196 1.104 thorpej static void bge_txeof(struct bge_softc *);
197 1.104 thorpej static void bge_rxeof(struct bge_softc *);
198 1.104 thorpej
199 1.151 cegger static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
200 1.151 cegger static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
201 1.151 cegger static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
202 1.151 cegger static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
203 1.151 cegger
204 1.104 thorpej static void bge_tick(void *);
205 1.104 thorpej static void bge_stats_update(struct bge_softc *);
206 1.104 thorpej static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
207 1.104 thorpej
208 1.104 thorpej static int bge_intr(void *);
209 1.104 thorpej static void bge_start(struct ifnet *);
210 1.126 christos static int bge_ioctl(struct ifnet *, u_long, void *);
211 1.104 thorpej static int bge_init(struct ifnet *);
212 1.141 jmcneill static void bge_stop(struct ifnet *, int);
213 1.104 thorpej static void bge_watchdog(struct ifnet *);
214 1.104 thorpej static int bge_ifmedia_upd(struct ifnet *);
215 1.104 thorpej static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 1.104 thorpej
217 1.104 thorpej static void bge_setmulti(struct bge_softc *);
218 1.104 thorpej
219 1.104 thorpej static void bge_handle_events(struct bge_softc *);
220 1.104 thorpej static int bge_alloc_jumbo_mem(struct bge_softc *);
221 1.104 thorpej #if 0 /* XXX */
222 1.104 thorpej static void bge_free_jumbo_mem(struct bge_softc *);
223 1.1 fvdl #endif
224 1.104 thorpej static void *bge_jalloc(struct bge_softc *);
225 1.126 christos static void bge_jfree(struct mbuf *, void *, size_t, void *);
226 1.104 thorpej static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
227 1.104 thorpej bus_dmamap_t);
228 1.104 thorpej static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
229 1.104 thorpej static int bge_init_rx_ring_std(struct bge_softc *);
230 1.104 thorpej static void bge_free_rx_ring_std(struct bge_softc *);
231 1.104 thorpej static int bge_init_rx_ring_jumbo(struct bge_softc *);
232 1.104 thorpej static void bge_free_rx_ring_jumbo(struct bge_softc *);
233 1.104 thorpej static void bge_free_tx_ring(struct bge_softc *);
234 1.104 thorpej static int bge_init_tx_ring(struct bge_softc *);
235 1.104 thorpej
236 1.104 thorpej static int bge_chipinit(struct bge_softc *);
237 1.104 thorpej static int bge_blockinit(struct bge_softc *);
238 1.104 thorpej static int bge_setpowerstate(struct bge_softc *, int);
239 1.1 fvdl
240 1.104 thorpej static void bge_reset(struct bge_softc *);
241 1.161 msaitoh static void bge_link_upd(struct bge_softc *);
242 1.95 jonathan
243 1.1 fvdl #define BGE_DEBUG
244 1.1 fvdl #ifdef BGE_DEBUG
245 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
246 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
247 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
248 1.1 fvdl int bgedebug = 0;
249 1.95 jonathan int bge_tso_debug = 0;
250 1.1 fvdl #else
251 1.1 fvdl #define DPRINTF(x)
252 1.1 fvdl #define DPRINTFN(n,x)
253 1.95 jonathan #define BGE_TSO_PRINTF(x)
254 1.1 fvdl #endif
255 1.1 fvdl
256 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
257 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
258 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
259 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
260 1.72 thorpej #else
261 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
262 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
263 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
264 1.72 thorpej #endif
265 1.72 thorpej
266 1.158 msaitoh static const struct bge_product {
267 1.158 msaitoh pci_vendor_id_t bp_vendor;
268 1.158 msaitoh pci_product_id_t bp_product;
269 1.158 msaitoh const char *bp_name;
270 1.158 msaitoh } bge_products[] = {
271 1.158 msaitoh /*
272 1.158 msaitoh * The BCM5700 documentation seems to indicate that the hardware
273 1.158 msaitoh * still has the Alteon vendor ID burned into it, though it
274 1.158 msaitoh * should always be overridden by the value in the EEPROM. We'll
275 1.158 msaitoh * check for it anyway.
276 1.158 msaitoh */
277 1.158 msaitoh { PCI_VENDOR_ALTEON,
278 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5700,
279 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
280 1.158 msaitoh },
281 1.158 msaitoh { PCI_VENDOR_ALTEON,
282 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5701,
283 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
284 1.158 msaitoh },
285 1.158 msaitoh { PCI_VENDOR_ALTIMA,
286 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1000,
287 1.158 msaitoh "Altima AC1000 Gigabit Ethernet",
288 1.158 msaitoh },
289 1.158 msaitoh { PCI_VENDOR_ALTIMA,
290 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1001,
291 1.158 msaitoh "Altima AC1001 Gigabit Ethernet",
292 1.158 msaitoh },
293 1.158 msaitoh { PCI_VENDOR_ALTIMA,
294 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC9100,
295 1.158 msaitoh "Altima AC9100 Gigabit Ethernet",
296 1.158 msaitoh },
297 1.158 msaitoh { PCI_VENDOR_BROADCOM,
298 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5700,
299 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
300 1.158 msaitoh },
301 1.158 msaitoh { PCI_VENDOR_BROADCOM,
302 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5701,
303 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
304 1.158 msaitoh },
305 1.158 msaitoh { PCI_VENDOR_BROADCOM,
306 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702,
307 1.158 msaitoh "Broadcom BCM5702 Gigabit Ethernet",
308 1.158 msaitoh },
309 1.158 msaitoh { PCI_VENDOR_BROADCOM,
310 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702X,
311 1.158 msaitoh "Broadcom BCM5702X Gigabit Ethernet" },
312 1.158 msaitoh { PCI_VENDOR_BROADCOM,
313 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703,
314 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
315 1.158 msaitoh },
316 1.158 msaitoh { PCI_VENDOR_BROADCOM,
317 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703X,
318 1.158 msaitoh "Broadcom BCM5703X Gigabit Ethernet",
319 1.158 msaitoh },
320 1.158 msaitoh { PCI_VENDOR_BROADCOM,
321 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703_ALT,
322 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
323 1.158 msaitoh },
324 1.158 msaitoh { PCI_VENDOR_BROADCOM,
325 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704C,
326 1.158 msaitoh "Broadcom BCM5704C Dual Gigabit Ethernet",
327 1.158 msaitoh },
328 1.158 msaitoh { PCI_VENDOR_BROADCOM,
329 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704S,
330 1.158 msaitoh "Broadcom BCM5704S Dual Gigabit Ethernet",
331 1.158 msaitoh },
332 1.158 msaitoh { PCI_VENDOR_BROADCOM,
333 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705,
334 1.158 msaitoh "Broadcom BCM5705 Gigabit Ethernet",
335 1.158 msaitoh },
336 1.158 msaitoh { PCI_VENDOR_BROADCOM,
337 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705K,
338 1.158 msaitoh "Broadcom BCM5705K Gigabit Ethernet",
339 1.158 msaitoh },
340 1.158 msaitoh { PCI_VENDOR_BROADCOM,
341 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M,
342 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
343 1.158 msaitoh },
344 1.158 msaitoh { PCI_VENDOR_BROADCOM,
345 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
346 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
347 1.158 msaitoh },
348 1.158 msaitoh { PCI_VENDOR_BROADCOM,
349 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5714,
350 1.158 msaitoh "Broadcom BCM5714/5715 Gigabit Ethernet",
351 1.158 msaitoh },
352 1.158 msaitoh { PCI_VENDOR_BROADCOM,
353 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5715,
354 1.158 msaitoh "Broadcom BCM5714/5715 Gigabit Ethernet",
355 1.158 msaitoh },
356 1.158 msaitoh { PCI_VENDOR_BROADCOM,
357 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
358 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
359 1.158 msaitoh },
360 1.158 msaitoh { PCI_VENDOR_BROADCOM,
361 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5721,
362 1.158 msaitoh "Broadcom BCM5721 Gigabit Ethernet",
363 1.158 msaitoh },
364 1.158 msaitoh { PCI_VENDOR_BROADCOM,
365 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5722,
366 1.158 msaitoh "Broadcom BCM5722 Gigabit Ethernet",
367 1.158 msaitoh },
368 1.158 msaitoh { PCI_VENDOR_BROADCOM,
369 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750,
370 1.158 msaitoh "Broadcom BCM5750 Gigabit Ethernet",
371 1.158 msaitoh },
372 1.158 msaitoh { PCI_VENDOR_BROADCOM,
373 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750M,
374 1.158 msaitoh "Broadcom BCM5750M Gigabit Ethernet",
375 1.158 msaitoh },
376 1.158 msaitoh { PCI_VENDOR_BROADCOM,
377 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751,
378 1.158 msaitoh "Broadcom BCM5751 Gigabit Ethernet",
379 1.158 msaitoh },
380 1.158 msaitoh { PCI_VENDOR_BROADCOM,
381 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751M,
382 1.158 msaitoh "Broadcom BCM5751M Gigabit Ethernet",
383 1.158 msaitoh },
384 1.158 msaitoh { PCI_VENDOR_BROADCOM,
385 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752,
386 1.158 msaitoh "Broadcom BCM5752 Gigabit Ethernet",
387 1.158 msaitoh },
388 1.158 msaitoh { PCI_VENDOR_BROADCOM,
389 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752M,
390 1.158 msaitoh "Broadcom BCM5752M Gigabit Ethernet",
391 1.158 msaitoh },
392 1.158 msaitoh { PCI_VENDOR_BROADCOM,
393 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753,
394 1.158 msaitoh "Broadcom BCM5753 Gigabit Ethernet",
395 1.158 msaitoh },
396 1.158 msaitoh { PCI_VENDOR_BROADCOM,
397 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753M,
398 1.158 msaitoh "Broadcom BCM5753M Gigabit Ethernet",
399 1.158 msaitoh },
400 1.158 msaitoh { PCI_VENDOR_BROADCOM,
401 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754,
402 1.158 msaitoh "Broadcom BCM5754 Gigabit Ethernet",
403 1.158 msaitoh },
404 1.158 msaitoh { PCI_VENDOR_BROADCOM,
405 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754M,
406 1.158 msaitoh "Broadcom BCM5754M Gigabit Ethernet",
407 1.158 msaitoh },
408 1.158 msaitoh { PCI_VENDOR_BROADCOM,
409 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755,
410 1.158 msaitoh "Broadcom BCM5755 Gigabit Ethernet",
411 1.158 msaitoh },
412 1.158 msaitoh { PCI_VENDOR_BROADCOM,
413 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755M,
414 1.158 msaitoh "Broadcom BCM5755M Gigabit Ethernet",
415 1.158 msaitoh },
416 1.158 msaitoh { PCI_VENDOR_BROADCOM,
417 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780,
418 1.158 msaitoh "Broadcom BCM5780 Gigabit Ethernet",
419 1.158 msaitoh },
420 1.158 msaitoh { PCI_VENDOR_BROADCOM,
421 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780S,
422 1.158 msaitoh "Broadcom BCM5780S Gigabit Ethernet",
423 1.158 msaitoh },
424 1.158 msaitoh { PCI_VENDOR_BROADCOM,
425 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5782,
426 1.158 msaitoh "Broadcom BCM5782 Gigabit Ethernet",
427 1.158 msaitoh },
428 1.158 msaitoh { PCI_VENDOR_BROADCOM,
429 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5786,
430 1.158 msaitoh "Broadcom BCM5786 Gigabit Ethernet",
431 1.158 msaitoh },
432 1.158 msaitoh { PCI_VENDOR_BROADCOM,
433 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787,
434 1.158 msaitoh "Broadcom BCM5787 Gigabit Ethernet",
435 1.158 msaitoh },
436 1.158 msaitoh { PCI_VENDOR_BROADCOM,
437 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787M,
438 1.158 msaitoh "Broadcom BCM5787M Gigabit Ethernet",
439 1.158 msaitoh },
440 1.158 msaitoh { PCI_VENDOR_BROADCOM,
441 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5788,
442 1.158 msaitoh "Broadcom BCM5788 Gigabit Ethernet",
443 1.158 msaitoh },
444 1.158 msaitoh { PCI_VENDOR_BROADCOM,
445 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
446 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
447 1.158 msaitoh },
448 1.158 msaitoh { PCI_VENDOR_BROADCOM,
449 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901,
450 1.158 msaitoh "Broadcom BCM5901 Fast Ethernet",
451 1.158 msaitoh },
452 1.158 msaitoh { PCI_VENDOR_BROADCOM,
453 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901A2,
454 1.158 msaitoh "Broadcom BCM5901A2 Fast Ethernet",
455 1.158 msaitoh },
456 1.158 msaitoh { PCI_VENDOR_SCHNEIDERKOCH,
457 1.158 msaitoh PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
458 1.158 msaitoh "SysKonnect SK-9Dx1 Gigabit Ethernet",
459 1.158 msaitoh },
460 1.158 msaitoh { PCI_VENDOR_3COM,
461 1.158 msaitoh PCI_PRODUCT_3COM_3C996,
462 1.158 msaitoh "3Com 3c996 Gigabit Ethernet",
463 1.158 msaitoh },
464 1.158 msaitoh { PCI_VENDOR_BROADCOM,
465 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906,
466 1.158 msaitoh "Broadcom BCM5906 Fast Ethernet",
467 1.158 msaitoh },
468 1.158 msaitoh { PCI_VENDOR_BROADCOM,
469 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906M,
470 1.158 msaitoh "Broadcom BCM5906M Fast Ethernet",
471 1.158 msaitoh },
472 1.158 msaitoh { 0,
473 1.158 msaitoh 0,
474 1.158 msaitoh NULL },
475 1.158 msaitoh };
476 1.158 msaitoh
477 1.95 jonathan /*
478 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
479 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
480 1.95 jonathan * in general behave like a 5705, except with additional quirks.
481 1.95 jonathan * This driver's current handling of the 5721 is wrong;
482 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
483 1.95 jonathan * (defined here until the thought is done).
484 1.95 jonathan */
485 1.99 jonathan #define BGE_IS_5714_FAMILY(sc) \
486 1.120 tsutsui (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
487 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
488 1.120 tsutsui BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
489 1.99 jonathan
490 1.95 jonathan #define BGE_IS_5750_OR_BEYOND(sc) \
491 1.99 jonathan (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
492 1.99 jonathan BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
493 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
494 1.133 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
495 1.151 cegger BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
496 1.99 jonathan BGE_IS_5714_FAMILY(sc) )
497 1.95 jonathan
498 1.95 jonathan #define BGE_IS_5705_OR_BEYOND(sc) \
499 1.157 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
500 1.157 msaitoh (BGE_IS_5750_OR_BEYOND(sc)))
501 1.95 jonathan
502 1.166 msaitoh #define BGE_IS_JUMBO_CAPABLE(sc) \
503 1.166 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || \
504 1.166 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 || \
505 1.166 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || \
506 1.166 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
507 1.166 msaitoh
508 1.166 msaitoh
509 1.158 msaitoh static const struct bge_revision {
510 1.158 msaitoh uint32_t br_chipid;
511 1.158 msaitoh const char *br_name;
512 1.158 msaitoh } bge_revisions[] = {
513 1.158 msaitoh { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
514 1.158 msaitoh { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
515 1.158 msaitoh { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
516 1.158 msaitoh { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
517 1.158 msaitoh { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
518 1.158 msaitoh { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
519 1.158 msaitoh /* This is treated like a BCM5700 Bx */
520 1.158 msaitoh { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
521 1.158 msaitoh { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
522 1.158 msaitoh { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
523 1.158 msaitoh { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
524 1.158 msaitoh { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
525 1.158 msaitoh { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
526 1.158 msaitoh { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
527 1.158 msaitoh { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
528 1.158 msaitoh { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
529 1.158 msaitoh { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
530 1.158 msaitoh { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
531 1.158 msaitoh { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
532 1.158 msaitoh { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
533 1.158 msaitoh { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
534 1.158 msaitoh { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
535 1.159 msaitoh { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
536 1.158 msaitoh { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
537 1.158 msaitoh { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
538 1.158 msaitoh { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
539 1.158 msaitoh { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
540 1.158 msaitoh { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
541 1.158 msaitoh { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
542 1.161 msaitoh { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
543 1.161 msaitoh { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
544 1.161 msaitoh { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
545 1.161 msaitoh { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
546 1.161 msaitoh { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
547 1.161 msaitoh { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
548 1.158 msaitoh { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
549 1.158 msaitoh { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
550 1.158 msaitoh { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
551 1.159 msaitoh { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
552 1.159 msaitoh { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
553 1.159 msaitoh { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
554 1.159 msaitoh { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
555 1.159 msaitoh { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
556 1.159 msaitoh { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
557 1.158 msaitoh { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
558 1.158 msaitoh { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
559 1.158 msaitoh { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
560 1.158 msaitoh { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
561 1.158 msaitoh { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
562 1.158 msaitoh { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
563 1.158 msaitoh { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
564 1.161 msaitoh { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
565 1.161 msaitoh { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
566 1.158 msaitoh { 0, NULL }
567 1.158 msaitoh };
568 1.158 msaitoh
569 1.158 msaitoh /*
570 1.158 msaitoh * Some defaults for major revisions, so that newer steppings
571 1.158 msaitoh * that we don't know about have a shot at working.
572 1.158 msaitoh */
573 1.158 msaitoh static const struct bge_revision bge_majorrevs[] = {
574 1.158 msaitoh { BGE_ASICREV_BCM5700, "unknown BCM5700" },
575 1.158 msaitoh { BGE_ASICREV_BCM5701, "unknown BCM5701" },
576 1.158 msaitoh { BGE_ASICREV_BCM5703, "unknown BCM5703" },
577 1.158 msaitoh { BGE_ASICREV_BCM5704, "unknown BCM5704" },
578 1.158 msaitoh { BGE_ASICREV_BCM5705, "unknown BCM5705" },
579 1.162 msaitoh { BGE_ASICREV_BCM5750, "unknown BCM5750" },
580 1.158 msaitoh { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
581 1.158 msaitoh { BGE_ASICREV_BCM5714, "unknown BCM5714" },
582 1.158 msaitoh { BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
583 1.158 msaitoh { BGE_ASICREV_BCM5755, "unknown BCM5755" },
584 1.158 msaitoh { BGE_ASICREV_BCM5780, "unknown BCM5780" },
585 1.162 msaitoh /* 5754 and 5787 share the same ASIC ID */
586 1.166 msaitoh { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
587 1.158 msaitoh { BGE_ASICREV_BCM5906, "unknown BCM5906" },
588 1.158 msaitoh { 0, NULL }
589 1.158 msaitoh };
590 1.17 thorpej
591 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
592 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
593 1.1 fvdl
594 1.104 thorpej static u_int32_t
595 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
596 1.1 fvdl {
597 1.1 fvdl pcireg_t val;
598 1.1 fvdl
599 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
600 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
601 1.1 fvdl return val;
602 1.1 fvdl }
603 1.1 fvdl
604 1.104 thorpej static void
605 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
606 1.1 fvdl {
607 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
608 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
609 1.1 fvdl }
610 1.1 fvdl
611 1.1 fvdl #ifdef notdef
612 1.104 thorpej static u_int32_t
613 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
614 1.1 fvdl {
615 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
616 1.158 msaitoh return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
617 1.1 fvdl }
618 1.1 fvdl #endif
619 1.1 fvdl
620 1.104 thorpej static void
621 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
622 1.1 fvdl {
623 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
624 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
625 1.1 fvdl }
626 1.1 fvdl
627 1.151 cegger static void
628 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
629 1.151 cegger {
630 1.151 cegger CSR_WRITE_4(sc, off, val);
631 1.151 cegger }
632 1.151 cegger
633 1.151 cegger static void
634 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
635 1.151 cegger {
636 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
637 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
638 1.151 cegger
639 1.151 cegger CSR_WRITE_4(sc, off, val);
640 1.151 cegger }
641 1.151 cegger
642 1.151 cegger static u_int8_t
643 1.151 cegger bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
644 1.151 cegger {
645 1.151 cegger u_int32_t access, byte = 0;
646 1.151 cegger int i;
647 1.151 cegger
648 1.151 cegger /* Lock. */
649 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
650 1.151 cegger for (i = 0; i < 8000; i++) {
651 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
652 1.151 cegger break;
653 1.151 cegger DELAY(20);
654 1.151 cegger }
655 1.151 cegger if (i == 8000)
656 1.151 cegger return (1);
657 1.151 cegger
658 1.151 cegger /* Enable access. */
659 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
660 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
661 1.151 cegger
662 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
663 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
664 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
665 1.151 cegger DELAY(10);
666 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
667 1.151 cegger DELAY(10);
668 1.151 cegger break;
669 1.151 cegger }
670 1.151 cegger }
671 1.151 cegger
672 1.151 cegger if (i == BGE_TIMEOUT * 10) {
673 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
674 1.151 cegger return (1);
675 1.151 cegger }
676 1.151 cegger
677 1.151 cegger /* Get result. */
678 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
679 1.151 cegger
680 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
681 1.151 cegger
682 1.151 cegger /* Disable access. */
683 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
684 1.151 cegger
685 1.151 cegger /* Unlock. */
686 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
687 1.151 cegger CSR_READ_4(sc, BGE_NVRAM_SWARB);
688 1.151 cegger
689 1.151 cegger return (0);
690 1.151 cegger }
691 1.151 cegger
692 1.151 cegger /*
693 1.151 cegger * Read a sequence of bytes from NVRAM.
694 1.151 cegger */
695 1.151 cegger static int
696 1.151 cegger bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
697 1.151 cegger {
698 1.151 cegger int err = 0, i;
699 1.151 cegger u_int8_t byte = 0;
700 1.151 cegger
701 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
702 1.151 cegger return (1);
703 1.151 cegger
704 1.151 cegger for (i = 0; i < cnt; i++) {
705 1.151 cegger err = bge_nvram_getbyte(sc, off + i, &byte);
706 1.151 cegger if (err)
707 1.151 cegger break;
708 1.151 cegger *(dest + i) = byte;
709 1.151 cegger }
710 1.151 cegger
711 1.151 cegger return (err ? 1 : 0);
712 1.151 cegger }
713 1.151 cegger
714 1.1 fvdl /*
715 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
716 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
717 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
718 1.1 fvdl * access method.
719 1.1 fvdl */
720 1.104 thorpej static u_int8_t
721 1.104 thorpej bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
722 1.1 fvdl {
723 1.1 fvdl int i;
724 1.1 fvdl u_int32_t byte = 0;
725 1.1 fvdl
726 1.1 fvdl /*
727 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
728 1.1 fvdl * having to use the bitbang method.
729 1.1 fvdl */
730 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
731 1.1 fvdl
732 1.1 fvdl /* Reset the EEPROM, load the clock period. */
733 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
734 1.161 msaitoh BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
735 1.1 fvdl DELAY(20);
736 1.1 fvdl
737 1.1 fvdl /* Issue the read EEPROM command. */
738 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
739 1.1 fvdl
740 1.1 fvdl /* Wait for completion */
741 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
742 1.1 fvdl DELAY(10);
743 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
744 1.1 fvdl break;
745 1.1 fvdl }
746 1.1 fvdl
747 1.1 fvdl if (i == BGE_TIMEOUT) {
748 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
749 1.158 msaitoh return (0);
750 1.1 fvdl }
751 1.1 fvdl
752 1.1 fvdl /* Get result. */
753 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
754 1.1 fvdl
755 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
756 1.1 fvdl
757 1.158 msaitoh return (0);
758 1.1 fvdl }
759 1.1 fvdl
760 1.1 fvdl /*
761 1.1 fvdl * Read a sequence of bytes from the EEPROM.
762 1.1 fvdl */
763 1.104 thorpej static int
764 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
765 1.1 fvdl {
766 1.1 fvdl int err = 0, i;
767 1.1 fvdl u_int8_t byte = 0;
768 1.126 christos char *dest = destv;
769 1.1 fvdl
770 1.1 fvdl for (i = 0; i < cnt; i++) {
771 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
772 1.1 fvdl if (err)
773 1.1 fvdl break;
774 1.1 fvdl *(dest + i) = byte;
775 1.1 fvdl }
776 1.1 fvdl
777 1.158 msaitoh return (err ? 1 : 0);
778 1.1 fvdl }
779 1.1 fvdl
780 1.104 thorpej static int
781 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
782 1.1 fvdl {
783 1.138 joerg struct bge_softc *sc = device_private(dev);
784 1.1 fvdl u_int32_t val;
785 1.25 jonathan u_int32_t saved_autopoll;
786 1.1 fvdl int i;
787 1.1 fvdl
788 1.25 jonathan /*
789 1.156 msaitoh * Broadcom's own driver always assumes the internal
790 1.156 msaitoh * PHY is at GMII address 1. On some chips, the PHY responds
791 1.156 msaitoh * to accesses at all addresses, which could cause us to
792 1.156 msaitoh * bogusly attach the PHY 32 times at probe type. Always
793 1.156 msaitoh * restricting the lookup to address 1 is simpler than
794 1.156 msaitoh * trying to figure out which chips revisions should be
795 1.156 msaitoh * special-cased.
796 1.25 jonathan */
797 1.156 msaitoh if (phy != 1)
798 1.158 msaitoh return (0);
799 1.1 fvdl
800 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
801 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
802 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
803 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
804 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
805 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
806 1.25 jonathan DELAY(40);
807 1.25 jonathan }
808 1.25 jonathan
809 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
810 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
811 1.1 fvdl
812 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
813 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
814 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
815 1.1 fvdl break;
816 1.9 thorpej delay(10);
817 1.1 fvdl }
818 1.1 fvdl
819 1.1 fvdl if (i == BGE_TIMEOUT) {
820 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
821 1.29 itojun val = 0;
822 1.25 jonathan goto done;
823 1.1 fvdl }
824 1.1 fvdl
825 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
826 1.1 fvdl
827 1.25 jonathan done:
828 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
829 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
830 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
831 1.25 jonathan DELAY(40);
832 1.25 jonathan }
833 1.29 itojun
834 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
835 1.158 msaitoh return (0);
836 1.1 fvdl
837 1.158 msaitoh return (val & 0xFFFF);
838 1.1 fvdl }
839 1.1 fvdl
840 1.104 thorpej static void
841 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
842 1.1 fvdl {
843 1.138 joerg struct bge_softc *sc = device_private(dev);
844 1.29 itojun u_int32_t saved_autopoll;
845 1.29 itojun int i;
846 1.1 fvdl
847 1.151 cegger if (phy!=1) {
848 1.151 cegger return;
849 1.151 cegger }
850 1.151 cegger
851 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
852 1.151 cegger (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
853 1.151 cegger return;
854 1.151 cegger }
855 1.151 cegger
856 1.161 msaitoh /* Reading with autopolling on may trigger PCI errors */
857 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
858 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
859 1.25 jonathan delay(40);
860 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
861 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
862 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
863 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
864 1.25 jonathan }
865 1.29 itojun
866 1.161 msaitoh CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
867 1.161 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
868 1.1 fvdl
869 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
870 1.151 cegger delay(10);
871 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
872 1.151 cegger delay(5);
873 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
874 1.1 fvdl break;
875 1.151 cegger }
876 1.1 fvdl }
877 1.1 fvdl
878 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
879 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
880 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
881 1.25 jonathan delay(40);
882 1.25 jonathan }
883 1.29 itojun
884 1.138 joerg if (i == BGE_TIMEOUT)
885 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
886 1.1 fvdl }
887 1.1 fvdl
888 1.104 thorpej static void
889 1.104 thorpej bge_miibus_statchg(device_t dev)
890 1.1 fvdl {
891 1.138 joerg struct bge_softc *sc = device_private(dev);
892 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
893 1.1 fvdl
894 1.69 thorpej /*
895 1.69 thorpej * Get flow control negotiation result.
896 1.69 thorpej */
897 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
898 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
899 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
900 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
901 1.69 thorpej }
902 1.69 thorpej
903 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
904 1.161 msaitoh if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
905 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
906 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
907 1.161 msaitoh else
908 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
909 1.1 fvdl
910 1.158 msaitoh if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
911 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
912 1.158 msaitoh else
913 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
914 1.69 thorpej
915 1.69 thorpej /*
916 1.69 thorpej * 802.3x flow control
917 1.69 thorpej */
918 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
919 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
920 1.158 msaitoh else
921 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
922 1.158 msaitoh
923 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
924 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
925 1.158 msaitoh else
926 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
927 1.1 fvdl }
928 1.1 fvdl
929 1.1 fvdl /*
930 1.63 jonathan * Update rx threshold levels to values in a particular slot
931 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
932 1.63 jonathan */
933 1.104 thorpej static void
934 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
935 1.63 jonathan {
936 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
937 1.63 jonathan int s;
938 1.63 jonathan
939 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
940 1.63 jonathan * that a threshold update is pending. Updating the hardware
941 1.63 jonathan * registers here (even at splhigh()) is observed to
942 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
943 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
944 1.63 jonathan */
945 1.63 jonathan s = splnet();
946 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
947 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
948 1.63 jonathan sc->bge_pending_rxintr_change = 1;
949 1.63 jonathan splx(s);
950 1.63 jonathan
951 1.63 jonathan return;
952 1.63 jonathan }
953 1.63 jonathan
954 1.63 jonathan
955 1.63 jonathan /*
956 1.63 jonathan * Update Rx thresholds of all bge devices
957 1.63 jonathan */
958 1.104 thorpej static void
959 1.63 jonathan bge_update_all_threshes(int lvl)
960 1.63 jonathan {
961 1.63 jonathan struct ifnet *ifp;
962 1.63 jonathan const char * const namebuf = "bge";
963 1.63 jonathan int namelen;
964 1.63 jonathan
965 1.63 jonathan if (lvl < 0)
966 1.63 jonathan lvl = 0;
967 1.63 jonathan else if( lvl >= NBGE_RX_THRESH)
968 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
969 1.87 perry
970 1.63 jonathan namelen = strlen(namebuf);
971 1.63 jonathan /*
972 1.63 jonathan * Now search all the interfaces for this name/number
973 1.63 jonathan */
974 1.81 matt IFNET_FOREACH(ifp) {
975 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
976 1.63 jonathan continue;
977 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
978 1.63 jonathan if (bge_auto_thresh)
979 1.67 jonathan bge_set_thresh(ifp, lvl);
980 1.63 jonathan }
981 1.63 jonathan }
982 1.63 jonathan
983 1.63 jonathan /*
984 1.1 fvdl * Handle events that have triggered interrupts.
985 1.1 fvdl */
986 1.104 thorpej static void
987 1.116 christos bge_handle_events(struct bge_softc *sc)
988 1.1 fvdl {
989 1.1 fvdl
990 1.1 fvdl return;
991 1.1 fvdl }
992 1.1 fvdl
993 1.1 fvdl /*
994 1.1 fvdl * Memory management for jumbo frames.
995 1.1 fvdl */
996 1.1 fvdl
997 1.104 thorpej static int
998 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
999 1.1 fvdl {
1000 1.126 christos char *ptr, *kva;
1001 1.1 fvdl bus_dma_segment_t seg;
1002 1.1 fvdl int i, rseg, state, error;
1003 1.1 fvdl struct bge_jpool_entry *entry;
1004 1.1 fvdl
1005 1.1 fvdl state = error = 0;
1006 1.1 fvdl
1007 1.1 fvdl /* Grab a big chunk o' storage. */
1008 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1009 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1010 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1011 1.1 fvdl return ENOBUFS;
1012 1.1 fvdl }
1013 1.1 fvdl
1014 1.1 fvdl state = 1;
1015 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1016 1.1 fvdl BUS_DMA_NOWAIT)) {
1017 1.138 joerg aprint_error_dev(sc->bge_dev,
1018 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1019 1.1 fvdl error = ENOBUFS;
1020 1.1 fvdl goto out;
1021 1.1 fvdl }
1022 1.1 fvdl
1023 1.1 fvdl state = 2;
1024 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1025 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1026 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1027 1.1 fvdl error = ENOBUFS;
1028 1.1 fvdl goto out;
1029 1.1 fvdl }
1030 1.1 fvdl
1031 1.1 fvdl state = 3;
1032 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1033 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1034 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1035 1.1 fvdl error = ENOBUFS;
1036 1.1 fvdl goto out;
1037 1.1 fvdl }
1038 1.1 fvdl
1039 1.1 fvdl state = 4;
1040 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1041 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1042 1.1 fvdl
1043 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
1044 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
1045 1.1 fvdl
1046 1.1 fvdl /*
1047 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
1048 1.1 fvdl * in an array.
1049 1.1 fvdl */
1050 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
1051 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
1052 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
1053 1.1 fvdl ptr += BGE_JLEN;
1054 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
1055 1.1 fvdl M_DEVBUF, M_NOWAIT);
1056 1.1 fvdl if (entry == NULL) {
1057 1.138 joerg aprint_error_dev(sc->bge_dev,
1058 1.138 joerg "no memory for jumbo buffer queue!\n");
1059 1.1 fvdl error = ENOBUFS;
1060 1.1 fvdl goto out;
1061 1.1 fvdl }
1062 1.1 fvdl entry->slot = i;
1063 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1064 1.1 fvdl entry, jpool_entries);
1065 1.1 fvdl }
1066 1.1 fvdl out:
1067 1.1 fvdl if (error != 0) {
1068 1.1 fvdl switch (state) {
1069 1.1 fvdl case 4:
1070 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
1071 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1072 1.1 fvdl case 3:
1073 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
1074 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1075 1.1 fvdl case 2:
1076 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1077 1.1 fvdl case 1:
1078 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1079 1.1 fvdl break;
1080 1.1 fvdl default:
1081 1.1 fvdl break;
1082 1.1 fvdl }
1083 1.1 fvdl }
1084 1.1 fvdl
1085 1.1 fvdl return error;
1086 1.1 fvdl }
1087 1.1 fvdl
1088 1.1 fvdl /*
1089 1.1 fvdl * Allocate a jumbo buffer.
1090 1.1 fvdl */
1091 1.104 thorpej static void *
1092 1.104 thorpej bge_jalloc(struct bge_softc *sc)
1093 1.1 fvdl {
1094 1.1 fvdl struct bge_jpool_entry *entry;
1095 1.1 fvdl
1096 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1097 1.1 fvdl
1098 1.1 fvdl if (entry == NULL) {
1099 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1100 1.158 msaitoh return (NULL);
1101 1.1 fvdl }
1102 1.1 fvdl
1103 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1104 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1105 1.158 msaitoh return (sc->bge_cdata.bge_jslots[entry->slot]);
1106 1.1 fvdl }
1107 1.1 fvdl
1108 1.1 fvdl /*
1109 1.1 fvdl * Release a jumbo buffer.
1110 1.1 fvdl */
1111 1.104 thorpej static void
1112 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1113 1.1 fvdl {
1114 1.1 fvdl struct bge_jpool_entry *entry;
1115 1.1 fvdl struct bge_softc *sc;
1116 1.1 fvdl int i, s;
1117 1.1 fvdl
1118 1.1 fvdl /* Extract the softc struct pointer. */
1119 1.1 fvdl sc = (struct bge_softc *)arg;
1120 1.1 fvdl
1121 1.1 fvdl if (sc == NULL)
1122 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
1123 1.1 fvdl
1124 1.1 fvdl /* calculate the slot this buffer belongs to */
1125 1.1 fvdl
1126 1.126 christos i = ((char *)buf
1127 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1128 1.1 fvdl
1129 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
1130 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
1131 1.1 fvdl
1132 1.1 fvdl s = splvm();
1133 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1134 1.1 fvdl if (entry == NULL)
1135 1.1 fvdl panic("bge_jfree: buffer not in use!");
1136 1.1 fvdl entry->slot = i;
1137 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1138 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1139 1.1 fvdl
1140 1.1 fvdl if (__predict_true(m != NULL))
1141 1.140 ad pool_cache_put(mb_cache, m);
1142 1.1 fvdl splx(s);
1143 1.1 fvdl }
1144 1.1 fvdl
1145 1.1 fvdl
1146 1.1 fvdl /*
1147 1.1 fvdl * Intialize a standard receive ring descriptor.
1148 1.1 fvdl */
1149 1.104 thorpej static int
1150 1.104 thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1151 1.1 fvdl {
1152 1.1 fvdl struct mbuf *m_new = NULL;
1153 1.1 fvdl struct bge_rx_bd *r;
1154 1.1 fvdl int error;
1155 1.1 fvdl
1156 1.1 fvdl if (dmamap == NULL) {
1157 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1158 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1159 1.1 fvdl if (error != 0)
1160 1.1 fvdl return error;
1161 1.1 fvdl }
1162 1.1 fvdl
1163 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1164 1.1 fvdl
1165 1.1 fvdl if (m == NULL) {
1166 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1167 1.158 msaitoh if (m_new == NULL)
1168 1.158 msaitoh return (ENOBUFS);
1169 1.1 fvdl
1170 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
1171 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
1172 1.1 fvdl m_freem(m_new);
1173 1.158 msaitoh return (ENOBUFS);
1174 1.1 fvdl }
1175 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1176 1.1 fvdl
1177 1.1 fvdl } else {
1178 1.1 fvdl m_new = m;
1179 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1180 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
1181 1.1 fvdl }
1182 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1183 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1184 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1185 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
1186 1.158 msaitoh return (ENOBUFS);
1187 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1188 1.124 bouyer BUS_DMASYNC_PREREAD);
1189 1.1 fvdl
1190 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1191 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
1192 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
1193 1.10 fvdl dmamap->dm_segs[0].ds_addr);
1194 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
1195 1.1 fvdl r->bge_len = m_new->m_len;
1196 1.1 fvdl r->bge_idx = i;
1197 1.1 fvdl
1198 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1199 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
1200 1.1 fvdl i * sizeof (struct bge_rx_bd),
1201 1.1 fvdl sizeof (struct bge_rx_bd),
1202 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1203 1.1 fvdl
1204 1.158 msaitoh return (0);
1205 1.1 fvdl }
1206 1.1 fvdl
1207 1.1 fvdl /*
1208 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1209 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1210 1.1 fvdl */
1211 1.104 thorpej static int
1212 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1213 1.1 fvdl {
1214 1.1 fvdl struct mbuf *m_new = NULL;
1215 1.1 fvdl struct bge_rx_bd *r;
1216 1.126 christos void *buf = NULL;
1217 1.1 fvdl
1218 1.1 fvdl if (m == NULL) {
1219 1.1 fvdl
1220 1.1 fvdl /* Allocate the mbuf. */
1221 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1222 1.158 msaitoh if (m_new == NULL)
1223 1.158 msaitoh return (ENOBUFS);
1224 1.1 fvdl
1225 1.1 fvdl /* Allocate the jumbo buffer */
1226 1.1 fvdl buf = bge_jalloc(sc);
1227 1.1 fvdl if (buf == NULL) {
1228 1.1 fvdl m_freem(m_new);
1229 1.138 joerg aprint_error_dev(sc->bge_dev,
1230 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1231 1.158 msaitoh return (ENOBUFS);
1232 1.1 fvdl }
1233 1.1 fvdl
1234 1.1 fvdl /* Attach the buffer to the mbuf. */
1235 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1236 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1237 1.1 fvdl bge_jfree, sc);
1238 1.74 yamt m_new->m_flags |= M_EXT_RW;
1239 1.1 fvdl } else {
1240 1.1 fvdl m_new = m;
1241 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1242 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1243 1.1 fvdl }
1244 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1245 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1246 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1247 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1248 1.124 bouyer BUS_DMASYNC_PREREAD);
1249 1.1 fvdl /* Set up the descriptor. */
1250 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1251 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1252 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1253 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1254 1.1 fvdl r->bge_len = m_new->m_len;
1255 1.1 fvdl r->bge_idx = i;
1256 1.1 fvdl
1257 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1258 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1259 1.1 fvdl i * sizeof (struct bge_rx_bd),
1260 1.1 fvdl sizeof (struct bge_rx_bd),
1261 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1262 1.1 fvdl
1263 1.158 msaitoh return (0);
1264 1.1 fvdl }
1265 1.1 fvdl
1266 1.1 fvdl /*
1267 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1268 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1269 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1270 1.1 fvdl * the NIC.
1271 1.1 fvdl */
1272 1.104 thorpej static int
1273 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1274 1.1 fvdl {
1275 1.1 fvdl int i;
1276 1.1 fvdl
1277 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1278 1.1 fvdl return 0;
1279 1.1 fvdl
1280 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1281 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1282 1.158 msaitoh return (ENOBUFS);
1283 1.1 fvdl }
1284 1.1 fvdl
1285 1.1 fvdl sc->bge_std = i - 1;
1286 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1287 1.1 fvdl
1288 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1289 1.1 fvdl
1290 1.158 msaitoh return (0);
1291 1.1 fvdl }
1292 1.1 fvdl
1293 1.104 thorpej static void
1294 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1295 1.1 fvdl {
1296 1.1 fvdl int i;
1297 1.1 fvdl
1298 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1299 1.1 fvdl return;
1300 1.1 fvdl
1301 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1302 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1303 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1304 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1305 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1306 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1307 1.1 fvdl }
1308 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1309 1.1 fvdl sizeof(struct bge_rx_bd));
1310 1.1 fvdl }
1311 1.1 fvdl
1312 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1313 1.1 fvdl }
1314 1.1 fvdl
1315 1.104 thorpej static int
1316 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1317 1.1 fvdl {
1318 1.1 fvdl int i;
1319 1.34 jonathan volatile struct bge_rcb *rcb;
1320 1.1 fvdl
1321 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1322 1.59 martin return 0;
1323 1.59 martin
1324 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1325 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1326 1.158 msaitoh return (ENOBUFS);
1327 1.1 fvdl };
1328 1.1 fvdl
1329 1.1 fvdl sc->bge_jumbo = i - 1;
1330 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1331 1.1 fvdl
1332 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1333 1.34 jonathan rcb->bge_maxlen_flags = 0;
1334 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1335 1.1 fvdl
1336 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1337 1.1 fvdl
1338 1.158 msaitoh return (0);
1339 1.1 fvdl }
1340 1.1 fvdl
1341 1.104 thorpej static void
1342 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1343 1.1 fvdl {
1344 1.1 fvdl int i;
1345 1.1 fvdl
1346 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1347 1.1 fvdl return;
1348 1.1 fvdl
1349 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1350 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1351 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1352 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1353 1.1 fvdl }
1354 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1355 1.1 fvdl sizeof(struct bge_rx_bd));
1356 1.1 fvdl }
1357 1.1 fvdl
1358 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1359 1.1 fvdl }
1360 1.1 fvdl
1361 1.104 thorpej static void
1362 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1363 1.1 fvdl {
1364 1.1 fvdl int i, freed;
1365 1.1 fvdl struct txdmamap_pool_entry *dma;
1366 1.1 fvdl
1367 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1368 1.1 fvdl return;
1369 1.1 fvdl
1370 1.1 fvdl freed = 0;
1371 1.1 fvdl
1372 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1373 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1374 1.1 fvdl freed++;
1375 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1376 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1377 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1378 1.1 fvdl link);
1379 1.1 fvdl sc->txdma[i] = 0;
1380 1.1 fvdl }
1381 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1382 1.1 fvdl sizeof(struct bge_tx_bd));
1383 1.1 fvdl }
1384 1.1 fvdl
1385 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1386 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1387 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1388 1.1 fvdl free(dma, M_DEVBUF);
1389 1.1 fvdl }
1390 1.1 fvdl
1391 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1392 1.1 fvdl }
1393 1.1 fvdl
1394 1.104 thorpej static int
1395 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1396 1.1 fvdl {
1397 1.1 fvdl int i;
1398 1.1 fvdl bus_dmamap_t dmamap;
1399 1.1 fvdl struct txdmamap_pool_entry *dma;
1400 1.1 fvdl
1401 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1402 1.1 fvdl return 0;
1403 1.1 fvdl
1404 1.1 fvdl sc->bge_txcnt = 0;
1405 1.1 fvdl sc->bge_tx_saved_considx = 0;
1406 1.94 jonathan
1407 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1408 1.94 jonathan sc->bge_tx_prodidx = 0;
1409 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1410 1.158 msaitoh /* 5700 b2 errata */
1411 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1412 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1413 1.25 jonathan
1414 1.158 msaitoh /* NIC-memory send ring not used; initialize to zero. */
1415 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1416 1.158 msaitoh /* 5700 b2 errata */
1417 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1418 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1419 1.1 fvdl
1420 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1421 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1422 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1423 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1424 1.1 fvdl &dmamap))
1425 1.158 msaitoh return (ENOBUFS);
1426 1.1 fvdl if (dmamap == NULL)
1427 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1428 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1429 1.1 fvdl if (dma == NULL) {
1430 1.138 joerg aprint_error_dev(sc->bge_dev,
1431 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1432 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1433 1.1 fvdl return (ENOMEM);
1434 1.1 fvdl }
1435 1.1 fvdl dma->dmamap = dmamap;
1436 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1437 1.1 fvdl }
1438 1.1 fvdl
1439 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1440 1.1 fvdl
1441 1.158 msaitoh return (0);
1442 1.1 fvdl }
1443 1.1 fvdl
1444 1.104 thorpej static void
1445 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1446 1.1 fvdl {
1447 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1448 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1449 1.1 fvdl struct ether_multi *enm;
1450 1.1 fvdl struct ether_multistep step;
1451 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1452 1.1 fvdl u_int32_t h;
1453 1.1 fvdl int i;
1454 1.1 fvdl
1455 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1456 1.13 thorpej goto allmulti;
1457 1.1 fvdl
1458 1.1 fvdl /* Now program new ones. */
1459 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1460 1.1 fvdl while (enm != NULL) {
1461 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1462 1.13 thorpej /*
1463 1.13 thorpej * We must listen to a range of multicast addresses.
1464 1.13 thorpej * For now, just accept all multicasts, rather than
1465 1.13 thorpej * trying to set only those filter bits needed to match
1466 1.13 thorpej * the range. (At this time, the only use of address
1467 1.13 thorpej * ranges is for IP multicast routing, for which the
1468 1.13 thorpej * range is big enough to require all bits set.)
1469 1.13 thorpej */
1470 1.13 thorpej goto allmulti;
1471 1.13 thorpej }
1472 1.13 thorpej
1473 1.158 msaitoh h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1474 1.1 fvdl
1475 1.158 msaitoh /* Just want the 7 least-significant bits. */
1476 1.158 msaitoh h &= 0x7f;
1477 1.1 fvdl
1478 1.158 msaitoh hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1479 1.158 msaitoh ETHER_NEXT_MULTI(step, enm);
1480 1.25 jonathan }
1481 1.25 jonathan
1482 1.158 msaitoh ifp->if_flags &= ~IFF_ALLMULTI;
1483 1.158 msaitoh goto setit;
1484 1.1 fvdl
1485 1.158 msaitoh allmulti:
1486 1.158 msaitoh ifp->if_flags |= IFF_ALLMULTI;
1487 1.158 msaitoh hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1488 1.133 markd
1489 1.158 msaitoh setit:
1490 1.158 msaitoh for (i = 0; i < 4; i++)
1491 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1492 1.158 msaitoh }
1493 1.133 markd
1494 1.158 msaitoh const int bge_swapbits[] = {
1495 1.158 msaitoh 0,
1496 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA,
1497 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA,
1498 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1499 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1500 1.1 fvdl
1501 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1502 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1503 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1504 1.95 jonathan
1505 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1506 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1507 1.95 jonathan
1508 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1509 1.95 jonathan
1510 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1511 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1512 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1513 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1514 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1515 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1516 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1517 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1518 1.1 fvdl
1519 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1520 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1521 1.158 msaitoh };
1522 1.1 fvdl
1523 1.158 msaitoh int bge_swapindex = 0;
1524 1.1 fvdl
1525 1.158 msaitoh /*
1526 1.158 msaitoh * Do endian, PCI and DMA initialization. Also check the on-board ROM
1527 1.158 msaitoh * self-test results.
1528 1.158 msaitoh */
1529 1.158 msaitoh static int
1530 1.158 msaitoh bge_chipinit(struct bge_softc *sc)
1531 1.158 msaitoh {
1532 1.158 msaitoh int i;
1533 1.158 msaitoh u_int32_t dma_rw_ctl;
1534 1.1 fvdl
1535 1.1 fvdl
1536 1.158 msaitoh /* Set endianness before we access any non-PCI registers. */
1537 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1538 1.158 msaitoh BGE_INIT);
1539 1.1 fvdl
1540 1.158 msaitoh /* Set power state to D0. */
1541 1.158 msaitoh bge_setpowerstate(sc, 0);
1542 1.1 fvdl
1543 1.158 msaitoh /*
1544 1.158 msaitoh * Check the 'ROM failed' bit on the RX CPU to see if
1545 1.158 msaitoh * self-tests passed.
1546 1.158 msaitoh */
1547 1.158 msaitoh if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1548 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1549 1.158 msaitoh "RX CPU self-diagnostics failed!\n");
1550 1.158 msaitoh return (ENODEV);
1551 1.95 jonathan }
1552 1.1 fvdl
1553 1.158 msaitoh /* Clear the MAC control register */
1554 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1555 1.1 fvdl
1556 1.158 msaitoh /*
1557 1.158 msaitoh * Clear the MAC statistics block in the NIC's
1558 1.158 msaitoh * internal memory.
1559 1.158 msaitoh */
1560 1.158 msaitoh for (i = BGE_STATS_BLOCK;
1561 1.158 msaitoh i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1562 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1563 1.1 fvdl
1564 1.158 msaitoh for (i = BGE_STATUS_BLOCK;
1565 1.158 msaitoh i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1566 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1567 1.1 fvdl
1568 1.158 msaitoh /* Set up the PCI DMA control register. */
1569 1.166 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1570 1.158 msaitoh if (sc->bge_flags & BGE_PCIE) {
1571 1.166 msaitoh /* Read watermark not used, 128 bytes for write. */
1572 1.158 msaitoh DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1573 1.158 msaitoh device_xname(sc->bge_dev)));
1574 1.166 msaitoh dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1575 1.158 msaitoh } else if (sc->bge_flags & BGE_PCIX){
1576 1.158 msaitoh DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1577 1.158 msaitoh device_xname(sc->bge_dev)));
1578 1.158 msaitoh /* PCI-X bus */
1579 1.166 msaitoh dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1580 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1581 1.158 msaitoh (0x0F);
1582 1.158 msaitoh /*
1583 1.158 msaitoh * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1584 1.158 msaitoh * for hardware bugs, which means we should also clear
1585 1.158 msaitoh * the low-order MINDMA bits. In addition, the 5704
1586 1.158 msaitoh * uses a different encoding of read/write watermarks.
1587 1.158 msaitoh */
1588 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1589 1.158 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1590 1.158 msaitoh /* should be 0x1f0000 */
1591 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1592 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1593 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1594 1.158 msaitoh }
1595 1.158 msaitoh else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1596 1.158 msaitoh dma_rw_ctl &= 0xfffffff0;
1597 1.158 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1598 1.158 msaitoh }
1599 1.158 msaitoh else if (BGE_IS_5714_FAMILY(sc)) {
1600 1.158 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1601 1.158 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1602 1.158 msaitoh /* XXX magic values, Broadcom-supplied Linux driver */
1603 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1604 1.158 msaitoh dma_rw_ctl |= (1 << 20) | (1 << 18) |
1605 1.158 msaitoh BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1606 1.158 msaitoh else
1607 1.158 msaitoh dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1608 1.158 msaitoh }
1609 1.158 msaitoh } else {
1610 1.158 msaitoh /* Conventional PCI bus */
1611 1.158 msaitoh DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1612 1.158 msaitoh device_xname(sc->bge_dev)));
1613 1.166 msaitoh dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1614 1.166 msaitoh (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1615 1.160 msaitoh if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1616 1.160 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1617 1.158 msaitoh dma_rw_ctl |= 0x0F;
1618 1.158 msaitoh }
1619 1.157 msaitoh
1620 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1621 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1622 1.161 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1623 1.161 msaitoh BGE_PCIDMARWCTL_ASRT_ALL_BE;
1624 1.161 msaitoh
1625 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1626 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1627 1.161 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1628 1.161 msaitoh
1629 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1630 1.120 tsutsui
1631 1.158 msaitoh /*
1632 1.158 msaitoh * Set up general mode register.
1633 1.158 msaitoh */
1634 1.161 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1635 1.161 msaitoh BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1636 1.161 msaitoh BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1637 1.16 thorpej
1638 1.158 msaitoh /*
1639 1.158 msaitoh * Disable memory write invalidate. Apparently it is not supported
1640 1.158 msaitoh * properly by these devices.
1641 1.158 msaitoh */
1642 1.158 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1643 1.16 thorpej
1644 1.16 thorpej
1645 1.158 msaitoh #ifdef __brokenalpha__
1646 1.158 msaitoh /*
1647 1.158 msaitoh * Must insure that we do not cross an 8K (bytes) boundary
1648 1.158 msaitoh * for DMA reads. Our highest limit is 1K bytes. This is a
1649 1.158 msaitoh * restriction on some ALPHA platforms with early revision
1650 1.158 msaitoh * 21174 PCI chipsets, such as the AlphaPC 164lx
1651 1.158 msaitoh */
1652 1.158 msaitoh PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1653 1.158 msaitoh #endif
1654 1.16 thorpej
1655 1.158 msaitoh /* Set the timer prescaler (always 66MHz) */
1656 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1657 1.16 thorpej
1658 1.159 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1659 1.159 msaitoh DELAY(40); /* XXX */
1660 1.159 msaitoh
1661 1.159 msaitoh /* Put PHY into ready state */
1662 1.159 msaitoh BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1663 1.159 msaitoh CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1664 1.159 msaitoh DELAY(40);
1665 1.159 msaitoh }
1666 1.159 msaitoh
1667 1.158 msaitoh return (0);
1668 1.158 msaitoh }
1669 1.16 thorpej
1670 1.158 msaitoh static int
1671 1.158 msaitoh bge_blockinit(struct bge_softc *sc)
1672 1.158 msaitoh {
1673 1.158 msaitoh volatile struct bge_rcb *rcb;
1674 1.158 msaitoh bus_size_t rcb_addr;
1675 1.158 msaitoh int i;
1676 1.158 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
1677 1.158 msaitoh bge_hostaddr taddr;
1678 1.161 msaitoh u_int32_t val;
1679 1.16 thorpej
1680 1.158 msaitoh /*
1681 1.158 msaitoh * Initialize the memory window pointer register so that
1682 1.158 msaitoh * we can access the first 32K of internal NIC RAM. This will
1683 1.158 msaitoh * allow us to set up the TX send ring RCBs and the RX return
1684 1.158 msaitoh * ring RCBs, plus other things which live in NIC memory.
1685 1.158 msaitoh */
1686 1.55 pooka
1687 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1688 1.120 tsutsui
1689 1.158 msaitoh /* Configure mbuf memory pool */
1690 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1691 1.158 msaitoh if (sc->bge_extram) {
1692 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1693 1.158 msaitoh BGE_EXT_SSRAM);
1694 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1695 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1696 1.158 msaitoh else
1697 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1698 1.158 msaitoh } else {
1699 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1700 1.158 msaitoh BGE_BUFFPOOL_1);
1701 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1702 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1703 1.158 msaitoh else
1704 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1705 1.158 msaitoh }
1706 1.40 fvdl
1707 1.158 msaitoh /* Configure DMA resource pool */
1708 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1709 1.158 msaitoh BGE_DMA_DESCRIPTORS);
1710 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1711 1.158 msaitoh }
1712 1.40 fvdl
1713 1.158 msaitoh /* Configure mbuf pool watermarks */
1714 1.158 msaitoh #ifdef ORIG_WPAUL_VALUES
1715 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1716 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1717 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1718 1.158 msaitoh #else
1719 1.49 fvdl
1720 1.158 msaitoh /* new broadcom docs strongly recommend these: */
1721 1.158 msaitoh if (!BGE_IS_5705_OR_BEYOND(sc)) {
1722 1.158 msaitoh if (ifp->if_mtu > ETHER_MAX_LEN) {
1723 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1724 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1725 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1726 1.158 msaitoh } else {
1727 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1728 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1729 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1730 1.158 msaitoh }
1731 1.158 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1732 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1733 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1734 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1735 1.158 msaitoh } else {
1736 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1737 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1738 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1739 1.158 msaitoh }
1740 1.158 msaitoh #endif
1741 1.25 jonathan
1742 1.158 msaitoh /* Configure DMA resource watermarks */
1743 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1744 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1745 1.51 fvdl
1746 1.158 msaitoh /* Enable buffer manager */
1747 1.158 msaitoh if (!BGE_IS_5705_OR_BEYOND(sc)) {
1748 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MODE,
1749 1.161 msaitoh BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1750 1.44 hannken
1751 1.158 msaitoh /* Poll for buffer manager start indication */
1752 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1753 1.158 msaitoh if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1754 1.158 msaitoh break;
1755 1.158 msaitoh DELAY(10);
1756 1.158 msaitoh }
1757 1.51 fvdl
1758 1.158 msaitoh if (i == BGE_TIMEOUT) {
1759 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1760 1.158 msaitoh "buffer manager failed to start\n");
1761 1.158 msaitoh return (ENXIO);
1762 1.158 msaitoh }
1763 1.158 msaitoh }
1764 1.51 fvdl
1765 1.158 msaitoh /* Enable flow-through queues */
1766 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1767 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1768 1.76 cube
1769 1.158 msaitoh /* Wait until queue initialization is complete */
1770 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1771 1.158 msaitoh if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1772 1.158 msaitoh break;
1773 1.158 msaitoh DELAY(10);
1774 1.158 msaitoh }
1775 1.76 cube
1776 1.158 msaitoh if (i == BGE_TIMEOUT) {
1777 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1778 1.158 msaitoh "flow-through queue init failed\n");
1779 1.158 msaitoh return (ENXIO);
1780 1.158 msaitoh }
1781 1.92 gavan
1782 1.158 msaitoh /* Initialize the standard RX ring control block */
1783 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1784 1.158 msaitoh bge_set_hostaddr(&rcb->bge_hostaddr,
1785 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1786 1.158 msaitoh if (BGE_IS_5705_OR_BEYOND(sc))
1787 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1788 1.158 msaitoh else
1789 1.158 msaitoh rcb->bge_maxlen_flags =
1790 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1791 1.158 msaitoh if (sc->bge_extram)
1792 1.158 msaitoh rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1793 1.158 msaitoh else
1794 1.158 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1795 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1796 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1797 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1798 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1799 1.119 tsutsui
1800 1.158 msaitoh if (BGE_IS_5705_OR_BEYOND(sc))
1801 1.158 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1802 1.158 msaitoh else
1803 1.158 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1804 1.119 tsutsui
1805 1.158 msaitoh /*
1806 1.158 msaitoh * Initialize the jumbo RX ring control block
1807 1.158 msaitoh * We set the 'ring disabled' bit in the flags
1808 1.158 msaitoh * field until we're actually ready to start
1809 1.158 msaitoh * using this ring (i.e. once we set the MTU
1810 1.158 msaitoh * high enough to require it).
1811 1.158 msaitoh */
1812 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
1813 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1814 1.158 msaitoh bge_set_hostaddr(&rcb->bge_hostaddr,
1815 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1816 1.158 msaitoh rcb->bge_maxlen_flags =
1817 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1818 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1819 1.158 msaitoh if (sc->bge_extram)
1820 1.158 msaitoh rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1821 1.158 msaitoh else
1822 1.158 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1823 1.119 tsutsui
1824 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1825 1.158 msaitoh rcb->bge_hostaddr.bge_addr_hi);
1826 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1827 1.158 msaitoh rcb->bge_hostaddr.bge_addr_lo);
1828 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1829 1.158 msaitoh rcb->bge_maxlen_flags);
1830 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1831 1.149 sborrill
1832 1.158 msaitoh /* Set up dummy disabled mini ring RCB */
1833 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1834 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1835 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1836 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1837 1.158 msaitoh rcb->bge_maxlen_flags);
1838 1.133 markd
1839 1.158 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1840 1.158 msaitoh offsetof(struct bge_ring_data, bge_info),
1841 1.158 msaitoh sizeof (struct bge_gib),
1842 1.158 msaitoh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1843 1.158 msaitoh }
1844 1.133 markd
1845 1.158 msaitoh /*
1846 1.158 msaitoh * Set the BD ring replenish thresholds. The recommended
1847 1.158 msaitoh * values are 1/8th the number of descriptors allocated to
1848 1.158 msaitoh * each ring.
1849 1.158 msaitoh */
1850 1.158 msaitoh i = BGE_STD_RX_RING_CNT / 8;
1851 1.133 markd
1852 1.158 msaitoh /*
1853 1.158 msaitoh * Use a value of 8 for the following chips to workaround HW errata.
1854 1.158 msaitoh * Some of these chips have been added based on empirical
1855 1.158 msaitoh * evidence (they don't work unless this is done).
1856 1.158 msaitoh */
1857 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1858 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1859 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1860 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1861 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1862 1.158 msaitoh i = 8;
1863 1.16 thorpej
1864 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1865 1.161 msaitoh CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
1866 1.157 msaitoh
1867 1.158 msaitoh /*
1868 1.158 msaitoh * Disable all unused send rings by setting the 'ring disabled'
1869 1.158 msaitoh * bit in the flags field of all the TX send ring control blocks.
1870 1.158 msaitoh * These are located in NIC memory.
1871 1.158 msaitoh */
1872 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1873 1.158 msaitoh for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1874 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1875 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1876 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1877 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1878 1.158 msaitoh }
1879 1.157 msaitoh
1880 1.158 msaitoh /* Configure TX RCB 0 (we use only the first ring) */
1881 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1882 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1883 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1884 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1885 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1886 1.158 msaitoh BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1887 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
1888 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1889 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1890 1.157 msaitoh
1891 1.158 msaitoh /* Disable all unused RX return rings */
1892 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1893 1.158 msaitoh for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1894 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1895 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1896 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1897 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1898 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED));
1899 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1900 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1901 1.158 msaitoh (i * (sizeof(u_int64_t))), 0);
1902 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1903 1.158 msaitoh }
1904 1.157 msaitoh
1905 1.158 msaitoh /* Initialize RX ring indexes */
1906 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1907 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1908 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1909 1.157 msaitoh
1910 1.158 msaitoh /*
1911 1.158 msaitoh * Set up RX return ring 0
1912 1.158 msaitoh * Note that the NIC address for RX return rings is 0x00000000.
1913 1.158 msaitoh * The return rings live entirely within the host, so the
1914 1.158 msaitoh * nicaddr field in the RCB isn't used.
1915 1.158 msaitoh */
1916 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1917 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1918 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1919 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1920 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1921 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1922 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1923 1.157 msaitoh
1924 1.158 msaitoh /* Set random backoff seed for TX */
1925 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1926 1.158 msaitoh CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1927 1.158 msaitoh CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1928 1.158 msaitoh CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1929 1.158 msaitoh BGE_TX_BACKOFF_SEED_MASK);
1930 1.157 msaitoh
1931 1.158 msaitoh /* Set inter-packet gap */
1932 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1933 1.51 fvdl
1934 1.158 msaitoh /*
1935 1.158 msaitoh * Specify which ring to use for packets that don't match
1936 1.158 msaitoh * any RX rules.
1937 1.158 msaitoh */
1938 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1939 1.157 msaitoh
1940 1.158 msaitoh /*
1941 1.158 msaitoh * Configure number of RX lists. One interrupt distribution
1942 1.158 msaitoh * list, sixteen active lists, one bad frames class.
1943 1.158 msaitoh */
1944 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1945 1.157 msaitoh
1946 1.158 msaitoh /* Inialize RX list placement stats mask. */
1947 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1948 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1949 1.157 msaitoh
1950 1.158 msaitoh /* Disable host coalescing until we get it set up */
1951 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1952 1.51 fvdl
1953 1.158 msaitoh /* Poll to make sure it's shut down. */
1954 1.158 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1955 1.158 msaitoh if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1956 1.158 msaitoh break;
1957 1.158 msaitoh DELAY(10);
1958 1.158 msaitoh }
1959 1.151 cegger
1960 1.158 msaitoh if (i == BGE_TIMEOUT) {
1961 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1962 1.158 msaitoh "host coalescing engine failed to idle\n");
1963 1.158 msaitoh return (ENXIO);
1964 1.158 msaitoh }
1965 1.51 fvdl
1966 1.158 msaitoh /* Set up host coalescing defaults */
1967 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1968 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1969 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1970 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1971 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1972 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1973 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1974 1.51 fvdl }
1975 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1976 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1977 1.51 fvdl
1978 1.158 msaitoh /* Set up address of statistics block */
1979 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1980 1.158 msaitoh bge_set_hostaddr(&taddr,
1981 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1982 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1983 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1984 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1985 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1986 1.16 thorpej }
1987 1.16 thorpej
1988 1.158 msaitoh /* Set up address of status block */
1989 1.158 msaitoh bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1990 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1991 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1992 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1993 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1994 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1995 1.16 thorpej
1996 1.158 msaitoh /* Turn on host coalescing state machine */
1997 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1998 1.7 thorpej
1999 1.158 msaitoh /* Turn on RX BD completion state machine and enable attentions */
2000 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDC_MODE,
2001 1.161 msaitoh BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2002 1.7 thorpej
2003 1.158 msaitoh /* Turn on RX list placement state machine */
2004 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2005 1.51 fvdl
2006 1.158 msaitoh /* Turn on RX list selector state machine. */
2007 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2008 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2009 1.51 fvdl
2010 1.161 msaitoh val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2011 1.161 msaitoh BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2012 1.161 msaitoh BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2013 1.161 msaitoh BGE_MACMODE_FRMHDR_DMA_ENB;
2014 1.161 msaitoh
2015 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2016 1.161 msaitoh val |= BGE_PORTMODE_TBI;
2017 1.161 msaitoh else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2018 1.161 msaitoh val |= BGE_PORTMODE_GMII;
2019 1.161 msaitoh else
2020 1.161 msaitoh val |= BGE_PORTMODE_MII;
2021 1.161 msaitoh
2022 1.158 msaitoh /* Turn on DMA, clear stats */
2023 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2024 1.161 msaitoh
2025 1.51 fvdl
2026 1.158 msaitoh /* Set misc. local control, enable interrupts on attentions */
2027 1.158 msaitoh sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2028 1.51 fvdl
2029 1.158 msaitoh #ifdef notdef
2030 1.158 msaitoh /* Assert GPIO pins for PHY reset */
2031 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2032 1.158 msaitoh BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2033 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2034 1.158 msaitoh BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2035 1.158 msaitoh #endif
2036 1.98 jonathan
2037 1.158 msaitoh #if defined(not_quite_yet)
2038 1.158 msaitoh /* Linux driver enables enable gpio pin #1 on 5700s */
2039 1.158 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2040 1.158 msaitoh sc->bge_local_ctrl_reg |=
2041 1.158 msaitoh (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2042 1.158 msaitoh }
2043 1.158 msaitoh #endif
2044 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2045 1.80 fredb
2046 1.158 msaitoh /* Turn on DMA completion state machine */
2047 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2048 1.158 msaitoh CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2049 1.149 sborrill
2050 1.158 msaitoh /* Turn on write DMA state machine */
2051 1.158 msaitoh {
2052 1.158 msaitoh uint32_t bge_wdma_mode =
2053 1.158 msaitoh BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2054 1.76 cube
2055 1.158 msaitoh /* Enable host coalescing bug fix; see Linux tg3.c */
2056 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2057 1.158 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2058 1.158 msaitoh bge_wdma_mode |= (1 << 29);
2059 1.76 cube
2060 1.158 msaitoh CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2061 1.158 msaitoh }
2062 1.76 cube
2063 1.158 msaitoh /* Turn on read DMA state machine */
2064 1.158 msaitoh {
2065 1.158 msaitoh uint32_t dma_read_modebits;
2066 1.91 gavan
2067 1.158 msaitoh dma_read_modebits =
2068 1.158 msaitoh BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2069 1.98 jonathan
2070 1.158 msaitoh if ((sc->bge_flags & BGE_PCIE) && 0) {
2071 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2072 1.158 msaitoh } else if (BGE_IS_5705_OR_BEYOND(sc)) {
2073 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
2074 1.158 msaitoh }
2075 1.119 tsutsui
2076 1.158 msaitoh /* XXX broadcom-supplied linux driver; undocumented */
2077 1.158 msaitoh if (BGE_IS_5750_OR_BEYOND(sc)) {
2078 1.158 msaitoh /*
2079 1.158 msaitoh * XXX: magic values.
2080 1.158 msaitoh * From Broadcom-supplied Linux driver; apparently
2081 1.158 msaitoh * required to workaround a DMA bug affecting TSO
2082 1.158 msaitoh * on bcm575x/bcm5721?
2083 1.158 msaitoh */
2084 1.158 msaitoh dma_read_modebits |= (1 << 27);
2085 1.158 msaitoh }
2086 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2087 1.158 msaitoh }
2088 1.128 tron
2089 1.158 msaitoh /* Turn on RX data completion state machine */
2090 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2091 1.128 tron
2092 1.158 msaitoh /* Turn on RX BD initiator state machine */
2093 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2094 1.133 markd
2095 1.158 msaitoh /* Turn on RX data and RX BD initiator state machine */
2096 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2097 1.133 markd
2098 1.158 msaitoh /* Turn on Mbuf cluster free state machine */
2099 1.158 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
2100 1.158 msaitoh CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2101 1.133 markd
2102 1.158 msaitoh /* Turn on send BD completion state machine */
2103 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2104 1.133 markd
2105 1.158 msaitoh /* Turn on send data completion state machine */
2106 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2107 1.106 jonathan
2108 1.158 msaitoh /* Turn on send data initiator state machine */
2109 1.158 msaitoh if (BGE_IS_5750_OR_BEYOND(sc)) {
2110 1.158 msaitoh /* XXX: magic value from Linux driver */
2111 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2112 1.158 msaitoh } else {
2113 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2114 1.158 msaitoh }
2115 1.106 jonathan
2116 1.158 msaitoh /* Turn on send BD initiator state machine */
2117 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2118 1.133 markd
2119 1.158 msaitoh /* Turn on send BD selector state machine */
2120 1.158 msaitoh CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2121 1.135 taca
2122 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2123 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2124 1.161 msaitoh BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2125 1.133 markd
2126 1.158 msaitoh /* ack/clear link change events */
2127 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2128 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2129 1.158 msaitoh BGE_MACSTAT_CFG_CHANGED);
2130 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, 0);
2131 1.106 jonathan
2132 1.158 msaitoh /* Enable PHY auto polling (for MII/GMII only) */
2133 1.158 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2134 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2135 1.158 msaitoh } else {
2136 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2137 1.161 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2138 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2139 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2140 1.158 msaitoh BGE_EVTENB_MI_INTERRUPT);
2141 1.158 msaitoh }
2142 1.70 tron
2143 1.161 msaitoh /*
2144 1.161 msaitoh * Clear any pending link state attention.
2145 1.161 msaitoh * Otherwise some link state change events may be lost until attention
2146 1.161 msaitoh * is cleared by bge_intr() -> bge_link_upd() sequence.
2147 1.161 msaitoh * It's not necessary on newer BCM chips - perhaps enabling link
2148 1.161 msaitoh * state change attentions implies clearing pending attention.
2149 1.161 msaitoh */
2150 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2151 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2152 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
2153 1.161 msaitoh
2154 1.158 msaitoh /* Enable link state change attentions. */
2155 1.158 msaitoh BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2156 1.51 fvdl
2157 1.158 msaitoh return (0);
2158 1.158 msaitoh }
2159 1.7 thorpej
2160 1.158 msaitoh static const struct bge_revision *
2161 1.158 msaitoh bge_lookup_rev(uint32_t chipid)
2162 1.158 msaitoh {
2163 1.158 msaitoh const struct bge_revision *br;
2164 1.7 thorpej
2165 1.158 msaitoh for (br = bge_revisions; br->br_name != NULL; br++) {
2166 1.158 msaitoh if (br->br_chipid == chipid)
2167 1.158 msaitoh return (br);
2168 1.158 msaitoh }
2169 1.151 cegger
2170 1.158 msaitoh for (br = bge_majorrevs; br->br_name != NULL; br++) {
2171 1.158 msaitoh if (br->br_chipid == BGE_ASICREV(chipid))
2172 1.158 msaitoh return (br);
2173 1.158 msaitoh }
2174 1.151 cegger
2175 1.158 msaitoh return (NULL);
2176 1.158 msaitoh }
2177 1.7 thorpej
2178 1.7 thorpej static const struct bge_product *
2179 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2180 1.7 thorpej {
2181 1.7 thorpej const struct bge_product *bp;
2182 1.7 thorpej
2183 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2184 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2185 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2186 1.7 thorpej return (bp);
2187 1.7 thorpej }
2188 1.7 thorpej
2189 1.7 thorpej return (NULL);
2190 1.7 thorpej }
2191 1.7 thorpej
2192 1.104 thorpej static int
2193 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2194 1.25 jonathan {
2195 1.25 jonathan #ifdef NOTYET
2196 1.25 jonathan u_int32_t pm_ctl = 0;
2197 1.25 jonathan
2198 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2199 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2200 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2201 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2202 1.25 jonathan
2203 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2204 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2205 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2206 1.25 jonathan pm_ctl |= (1 << 8);
2207 1.25 jonathan
2208 1.25 jonathan if (powerlevel == 0) {
2209 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2210 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2211 1.25 jonathan pm_ctl, 2);
2212 1.25 jonathan DELAY(10000);
2213 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2214 1.25 jonathan DELAY(10000);
2215 1.25 jonathan
2216 1.25 jonathan #ifdef NOTYET
2217 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2218 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2219 1.25 jonathan #endif
2220 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2221 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2222 1.25 jonathan return 0;
2223 1.25 jonathan }
2224 1.25 jonathan
2225 1.25 jonathan
2226 1.25 jonathan /*
2227 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2228 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2229 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
2230 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2231 1.25 jonathan */
2232 1.138 joerg aprint_error_dev(sc->bge_dev,
2233 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2234 1.138 joerg powerlevel);
2235 1.25 jonathan #endif
2236 1.25 jonathan return EOPNOTSUPP;
2237 1.25 jonathan }
2238 1.25 jonathan
2239 1.25 jonathan
2240 1.1 fvdl /*
2241 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2242 1.1 fvdl * against our list and return its name if we find a match. Note
2243 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2244 1.1 fvdl * can get the device name string from the controller itself instead
2245 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2246 1.1 fvdl * we'll always announce the right product name.
2247 1.1 fvdl */
2248 1.104 thorpej static int
2249 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2250 1.1 fvdl {
2251 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2252 1.1 fvdl
2253 1.7 thorpej if (bge_lookup(pa) != NULL)
2254 1.1 fvdl return (1);
2255 1.1 fvdl
2256 1.1 fvdl return (0);
2257 1.1 fvdl }
2258 1.1 fvdl
2259 1.104 thorpej static void
2260 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2261 1.1 fvdl {
2262 1.138 joerg struct bge_softc *sc = device_private(self);
2263 1.1 fvdl struct pci_attach_args *pa = aux;
2264 1.164 msaitoh prop_dictionary_t dict;
2265 1.7 thorpej const struct bge_product *bp;
2266 1.16 thorpej const struct bge_revision *br;
2267 1.143 tron pci_chipset_tag_t pc;
2268 1.1 fvdl pci_intr_handle_t ih;
2269 1.1 fvdl const char *intrstr = NULL;
2270 1.1 fvdl bus_dma_segment_t seg;
2271 1.1 fvdl int rseg;
2272 1.1 fvdl u_int32_t hwcfg = 0;
2273 1.1 fvdl u_int32_t command;
2274 1.1 fvdl struct ifnet *ifp;
2275 1.161 msaitoh u_int32_t misccfg;
2276 1.126 christos void * kva;
2277 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2278 1.1 fvdl pcireg_t memtype;
2279 1.1 fvdl bus_addr_t memaddr;
2280 1.1 fvdl bus_size_t memsize;
2281 1.25 jonathan u_int32_t pm_ctl;
2282 1.87 perry
2283 1.7 thorpej bp = bge_lookup(pa);
2284 1.7 thorpej KASSERT(bp != NULL);
2285 1.7 thorpej
2286 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2287 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2288 1.138 joerg sc->bge_dev = self;
2289 1.1 fvdl
2290 1.30 thorpej aprint_naive(": Ethernet controller\n");
2291 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2292 1.1 fvdl
2293 1.1 fvdl /*
2294 1.1 fvdl * Map control/status registers.
2295 1.1 fvdl */
2296 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2297 1.143 tron pc = sc->sc_pc;
2298 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2299 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2300 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2301 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2302 1.1 fvdl
2303 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2304 1.138 joerg aprint_error_dev(sc->bge_dev,
2305 1.138 joerg "failed to enable memory mapping!\n");
2306 1.1 fvdl return;
2307 1.1 fvdl }
2308 1.1 fvdl
2309 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2310 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2311 1.1 fvdl switch (memtype) {
2312 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2313 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2314 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2315 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2316 1.1 fvdl &memaddr, &memsize) == 0)
2317 1.1 fvdl break;
2318 1.1 fvdl default:
2319 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2320 1.1 fvdl return;
2321 1.1 fvdl }
2322 1.1 fvdl
2323 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2324 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2325 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2326 1.1 fvdl return;
2327 1.1 fvdl }
2328 1.1 fvdl
2329 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2330 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2331 1.1 fvdl
2332 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2333 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2334 1.1 fvdl
2335 1.1 fvdl if (sc->bge_intrhand == NULL) {
2336 1.138 joerg aprint_error_dev(sc->bge_dev,
2337 1.138 joerg "couldn't establish interrupt%s%s\n",
2338 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2339 1.1 fvdl return;
2340 1.1 fvdl }
2341 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2342 1.1 fvdl
2343 1.25 jonathan /*
2344 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2345 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2346 1.25 jonathan * leaving the card in D3 powersave state.
2347 1.25 jonathan * We do not have memory-mapped registers in this state,
2348 1.25 jonathan * so force device into D0 state before starting initialization.
2349 1.25 jonathan */
2350 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2351 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2352 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2353 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2354 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2355 1.25 jonathan
2356 1.76 cube /*
2357 1.162 msaitoh * Save ASIC rev.
2358 1.76 cube */
2359 1.76 cube sc->bge_chipid =
2360 1.141 jmcneill pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2361 1.76 cube BGE_PCIMISCCTL_ASICREV;
2362 1.76 cube
2363 1.76 cube /*
2364 1.76 cube * Detect PCI-Express devices
2365 1.76 cube * XXX: guessed from Linux/FreeBSD; no documentation
2366 1.76 cube */
2367 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2368 1.108 jonathan NULL, NULL) != 0)
2369 1.157 msaitoh sc->bge_flags |= BGE_PCIE;
2370 1.157 msaitoh
2371 1.157 msaitoh /*
2372 1.157 msaitoh * PCI-X check.
2373 1.157 msaitoh */
2374 1.157 msaitoh if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2375 1.157 msaitoh BGE_PCISTATE_PCI_BUSMODE) == 0)
2376 1.157 msaitoh sc->bge_flags |= BGE_PCIX;
2377 1.76 cube
2378 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2379 1.162 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2380 1.162 msaitoh sc->bge_flags |= BGE_PHY_CRC_BUG;
2381 1.162 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2382 1.162 msaitoh BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2383 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADC_BUG;
2384 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2385 1.162 msaitoh sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2386 1.162 msaitoh
2387 1.162 msaitoh if (BGE_IS_5705_OR_BEYOND(sc)) {
2388 1.162 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2389 1.162 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2390 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2391 1.162 msaitoh PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2392 1.162 msaitoh sc->bge_flags |= BGE_PHY_JITTER_BUG;
2393 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2394 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2395 1.162 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2396 1.162 msaitoh sc->bge_flags |= BGE_PHY_BER_BUG;
2397 1.162 msaitoh }
2398 1.162 msaitoh
2399 1.1 fvdl /* Try to reset the chip. */
2400 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2401 1.1 fvdl bge_reset(sc);
2402 1.1 fvdl
2403 1.1 fvdl if (bge_chipinit(sc)) {
2404 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2405 1.1 fvdl bge_release_resources(sc);
2406 1.1 fvdl return;
2407 1.1 fvdl }
2408 1.1 fvdl
2409 1.1 fvdl /*
2410 1.1 fvdl * Get station address from the EEPROM.
2411 1.1 fvdl */
2412 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
2413 1.151 cegger aprint_error_dev(sc->bge_dev,
2414 1.151 cegger "failed to reade station address\n");
2415 1.1 fvdl bge_release_resources(sc);
2416 1.1 fvdl return;
2417 1.1 fvdl }
2418 1.1 fvdl
2419 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2420 1.51 fvdl
2421 1.16 thorpej if (br == NULL) {
2422 1.138 joerg aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2423 1.138 joerg sc->bge_chipid >> 16);
2424 1.16 thorpej } else {
2425 1.138 joerg aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2426 1.56 pooka br->br_name, sc->bge_chipid >> 16);
2427 1.16 thorpej }
2428 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2429 1.1 fvdl
2430 1.1 fvdl /* Allocate the general information block and ring buffers. */
2431 1.41 fvdl if (pci_dma64_available(pa))
2432 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2433 1.41 fvdl else
2434 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2435 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2436 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2437 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2438 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2439 1.1 fvdl return;
2440 1.1 fvdl }
2441 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2442 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2443 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2444 1.1 fvdl BUS_DMA_NOWAIT)) {
2445 1.138 joerg aprint_error_dev(sc->bge_dev,
2446 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2447 1.138 joerg sizeof(struct bge_ring_data));
2448 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2449 1.1 fvdl return;
2450 1.1 fvdl }
2451 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2452 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2453 1.1 fvdl sizeof(struct bge_ring_data), 0,
2454 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2455 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2456 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2457 1.1 fvdl sizeof(struct bge_ring_data));
2458 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2459 1.1 fvdl return;
2460 1.1 fvdl }
2461 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2462 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2463 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2464 1.1 fvdl BUS_DMA_NOWAIT)) {
2465 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2466 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2467 1.1 fvdl sizeof(struct bge_ring_data));
2468 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2469 1.1 fvdl return;
2470 1.1 fvdl }
2471 1.1 fvdl
2472 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2473 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2474 1.1 fvdl
2475 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2476 1.1 fvdl
2477 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2478 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
2479 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2480 1.138 joerg aprint_error_dev(sc->bge_dev,
2481 1.138 joerg "jumbo buffer allocation failed\n");
2482 1.44 hannken } else
2483 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2484 1.44 hannken }
2485 1.1 fvdl
2486 1.1 fvdl /* Set default tuneable values. */
2487 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2488 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2489 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2490 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2491 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2492 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2493 1.25 jonathan #else
2494 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2495 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2496 1.25 jonathan #endif
2497 1.157 msaitoh if (BGE_IS_5705_OR_BEYOND(sc)) {
2498 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2499 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2500 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2501 1.138 joerg "setting short Tx thresholds\n");
2502 1.95 jonathan }
2503 1.1 fvdl
2504 1.1 fvdl /* Set up ifnet structure */
2505 1.1 fvdl ifp = &sc->ethercom.ec_if;
2506 1.1 fvdl ifp->if_softc = sc;
2507 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2508 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2509 1.141 jmcneill ifp->if_stop = bge_stop;
2510 1.1 fvdl ifp->if_start = bge_start;
2511 1.1 fvdl ifp->if_init = bge_init;
2512 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2513 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2514 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2515 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2516 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2517 1.1 fvdl
2518 1.157 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2519 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2520 1.88 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2521 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2522 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2523 1.87 perry sc->ethercom.ec_capabilities |=
2524 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2525 1.1 fvdl
2526 1.157 msaitoh if (sc->bge_flags & BGE_PCIE)
2527 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2528 1.95 jonathan
2529 1.1 fvdl /*
2530 1.1 fvdl * Do MII setup.
2531 1.1 fvdl */
2532 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2533 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2534 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2535 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2536 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2537 1.1 fvdl
2538 1.1 fvdl /*
2539 1.1 fvdl * Figure out what sort of media we have by checking the
2540 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2541 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2542 1.1 fvdl * cards, this value appears to be unset. If that's the
2543 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2544 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2545 1.1 fvdl */
2546 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2547 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2548 1.35 jonathan } else {
2549 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2550 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2551 1.35 jonathan hwcfg = be32toh(hwcfg);
2552 1.35 jonathan }
2553 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2554 1.161 msaitoh if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2555 1.161 msaitoh (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2556 1.161 msaitoh if (BGE_IS_5714_FAMILY(sc))
2557 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_MII;
2558 1.161 msaitoh else
2559 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
2560 1.161 msaitoh }
2561 1.1 fvdl
2562 1.167 msaitoh /* set phyflags before mii_attach() */
2563 1.167 msaitoh dict = device_properties(self);
2564 1.167 msaitoh prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2565 1.167 msaitoh
2566 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2567 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2568 1.1 fvdl bge_ifmedia_sts);
2569 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2570 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2571 1.1 fvdl 0, NULL);
2572 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2573 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2574 1.155 he /* Pretend the user requested this setting */
2575 1.162 msaitoh sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2576 1.1 fvdl } else {
2577 1.1 fvdl /*
2578 1.1 fvdl * Do transceiver setup.
2579 1.1 fvdl */
2580 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2581 1.1 fvdl bge_ifmedia_sts);
2582 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2583 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2584 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2585 1.87 perry
2586 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2587 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2588 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2589 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2590 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2591 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2592 1.1 fvdl } else
2593 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2594 1.1 fvdl IFM_ETHER|IFM_AUTO);
2595 1.1 fvdl }
2596 1.1 fvdl
2597 1.1 fvdl /*
2598 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2599 1.37 jonathan * been observed in the first few bytes of some received packets.
2600 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2601 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2602 1.37 jonathan * which do not support unaligned accesses, we will realign the
2603 1.37 jonathan * payloads by copying the received packets.
2604 1.37 jonathan */
2605 1.157 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2606 1.157 msaitoh sc->bge_flags & BGE_PCIX)
2607 1.157 msaitoh sc->bge_flags |= BGE_RX_ALIGNBUG;
2608 1.37 jonathan
2609 1.161 msaitoh misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2610 1.161 msaitoh misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2611 1.161 msaitoh
2612 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2613 1.161 msaitoh (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2614 1.161 msaitoh misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2615 1.161 msaitoh sc->bge_flags |= BGE_IS_5788;
2616 1.161 msaitoh
2617 1.37 jonathan /*
2618 1.1 fvdl * Call MI attach routine.
2619 1.1 fvdl */
2620 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2621 1.1 fvdl if_attach(ifp);
2622 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2623 1.1 fvdl ether_ifattach(ifp, eaddr);
2624 1.148 mlelstv #if NRND > 0
2625 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2626 1.148 mlelstv RND_TYPE_NET, 0);
2627 1.148 mlelstv #endif
2628 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
2629 1.72 thorpej /*
2630 1.72 thorpej * Attach event counters.
2631 1.72 thorpej */
2632 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2633 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
2634 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2635 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
2636 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2637 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
2638 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2639 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
2640 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2641 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
2642 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2643 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
2644 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2645 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
2646 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
2647 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2648 1.132 ad callout_init(&sc->bge_timeout, 0);
2649 1.82 jmcneill
2650 1.168 tsutsui if (pmf_device_register(self, NULL, NULL))
2651 1.168 tsutsui pmf_class_network_register(self, ifp);
2652 1.168 tsutsui else
2653 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
2654 1.1 fvdl }
2655 1.1 fvdl
2656 1.104 thorpej static void
2657 1.104 thorpej bge_release_resources(struct bge_softc *sc)
2658 1.1 fvdl {
2659 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2660 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2661 1.1 fvdl
2662 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2663 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2664 1.1 fvdl }
2665 1.1 fvdl
2666 1.104 thorpej static void
2667 1.104 thorpej bge_reset(struct bge_softc *sc)
2668 1.1 fvdl {
2669 1.61 jonathan u_int32_t cachesize, command, pcistate, new_pcistate;
2670 1.76 cube int i, val;
2671 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
2672 1.151 cegger
2673 1.151 cegger if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2674 1.151 cegger (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2675 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2676 1.151 cegger write_op = bge_writemem_direct;
2677 1.151 cegger } else {
2678 1.151 cegger write_op = bge_writemem_ind;
2679 1.151 cegger }
2680 1.151 cegger } else {
2681 1.151 cegger write_op = bge_writereg_ind;
2682 1.151 cegger }
2683 1.151 cegger
2684 1.1 fvdl
2685 1.1 fvdl /* Save some important PCI state. */
2686 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2687 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2688 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2689 1.1 fvdl
2690 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2691 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2692 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2693 1.1 fvdl
2694 1.162 msaitoh /* Disable fastboot on controllers that support it. */
2695 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2696 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2697 1.134 markd BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2698 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2699 1.119 tsutsui
2700 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2701 1.76 cube /*
2702 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2703 1.76 cube */
2704 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2705 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2706 1.157 msaitoh /* PCI Express 1.0 system */
2707 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2708 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2709 1.157 msaitoh /*
2710 1.157 msaitoh * Prevent PCI Express link training
2711 1.157 msaitoh * during global reset.
2712 1.157 msaitoh */
2713 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2714 1.76 cube val |= (1<<29);
2715 1.76 cube }
2716 1.76 cube }
2717 1.76 cube
2718 1.161 msaitoh /*
2719 1.161 msaitoh * Set GPHY Power Down Override to leave GPHY
2720 1.161 msaitoh * powered up in D0 uninitialized.
2721 1.161 msaitoh */
2722 1.161 msaitoh if (BGE_IS_5705_OR_BEYOND(sc))
2723 1.161 msaitoh val |= BGE_MISCCFG_KEEP_GPHY_POWER;
2724 1.161 msaitoh
2725 1.1 fvdl /* Issue global reset */
2726 1.151 cegger write_op(sc, BGE_MISC_CFG, val);
2727 1.151 cegger
2728 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2729 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2730 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2731 1.151 cegger i | BGE_VCPU_STATUS_DRV_RESET);
2732 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2733 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2734 1.151 cegger i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2735 1.151 cegger }
2736 1.151 cegger
2737 1.1 fvdl DELAY(1000);
2738 1.1 fvdl
2739 1.76 cube /*
2740 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2741 1.76 cube */
2742 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2743 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2744 1.76 cube pcireg_t reg;
2745 1.76 cube
2746 1.76 cube DELAY(500000);
2747 1.76 cube /* XXX: Magic Numbers */
2748 1.141 jmcneill reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2749 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2750 1.76 cube reg | (1 << 15));
2751 1.76 cube }
2752 1.95 jonathan /*
2753 1.95 jonathan * XXX: Magic Numbers.
2754 1.95 jonathan * Sets maximal PCI-e payload and clears any PCI-e errors.
2755 1.95 jonathan * Should be replaced with references to PCI config-space
2756 1.95 jonathan * capability block for PCI-Express.
2757 1.95 jonathan */
2758 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2759 1.95 jonathan BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2760 1.95 jonathan
2761 1.76 cube }
2762 1.76 cube
2763 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2764 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2765 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2766 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2767 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2768 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2769 1.151 cegger write_op(sc, BGE_MISC_CFG, (65 << 1));
2770 1.1 fvdl
2771 1.1 fvdl /* Enable memory arbiter. */
2772 1.109 jonathan {
2773 1.99 jonathan uint32_t marbmode = 0;
2774 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2775 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2776 1.99 jonathan }
2777 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2778 1.44 hannken }
2779 1.1 fvdl
2780 1.139 msaitoh
2781 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2782 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
2783 1.151 cegger val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2784 1.151 cegger if (val & BGE_VCPU_STATUS_INIT_DONE)
2785 1.151 cegger break;
2786 1.151 cegger DELAY(100);
2787 1.151 cegger }
2788 1.151 cegger if (i == BGE_TIMEOUT) {
2789 1.151 cegger aprint_error_dev(sc->bge_dev, "reset timed out\n");
2790 1.151 cegger return;
2791 1.151 cegger }
2792 1.151 cegger } else {
2793 1.151 cegger /*
2794 1.151 cegger * Write the magic number to the firmware mailbox at 0xb50
2795 1.151 cegger * so that the driver can synchronize with the firmware.
2796 1.151 cegger */
2797 1.151 cegger bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2798 1.1 fvdl
2799 1.95 jonathan /*
2800 1.151 cegger * Poll the value location we just wrote until
2801 1.151 cegger * we see the 1's complement of the magic number.
2802 1.151 cegger * This indicates that the firmware initialization
2803 1.151 cegger * is complete.
2804 1.95 jonathan */
2805 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
2806 1.151 cegger val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2807 1.151 cegger if (val == ~BGE_MAGIC_NUMBER)
2808 1.151 cegger break;
2809 1.151 cegger DELAY(1000);
2810 1.151 cegger }
2811 1.151 cegger
2812 1.151 cegger if (i >= BGE_TIMEOUT) {
2813 1.151 cegger aprint_error_dev(sc->bge_dev,
2814 1.151 cegger "firmware handshake timed out, val = %x\n", val);
2815 1.151 cegger /*
2816 1.151 cegger * XXX: occasionally fired on bcm5721, but without
2817 1.151 cegger * apparent harm. For now, keep going if we timeout
2818 1.151 cegger * against PCI-E devices.
2819 1.151 cegger */
2820 1.157 msaitoh if ((sc->bge_flags & BGE_PCIE) == 0)
2821 1.151 cegger return;
2822 1.151 cegger }
2823 1.1 fvdl }
2824 1.1 fvdl
2825 1.1 fvdl /*
2826 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2827 1.1 fvdl * return to its original pre-reset state. This is a
2828 1.1 fvdl * fairly good indicator of reset completion. If we don't
2829 1.1 fvdl * wait for the reset to fully complete, trying to read
2830 1.1 fvdl * from the device's non-PCI registers may yield garbage
2831 1.1 fvdl * results.
2832 1.1 fvdl */
2833 1.139 msaitoh for (i = 0; i < 10000; i++) {
2834 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2835 1.61 jonathan BGE_PCI_PCISTATE);
2836 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2837 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
2838 1.1 fvdl break;
2839 1.1 fvdl DELAY(10);
2840 1.1 fvdl }
2841 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2842 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
2843 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2844 1.61 jonathan }
2845 1.1 fvdl
2846 1.1 fvdl /* Enable memory arbiter. */
2847 1.109 jonathan /* XXX why do this twice? */
2848 1.109 jonathan {
2849 1.99 jonathan uint32_t marbmode = 0;
2850 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
2851 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2852 1.99 jonathan }
2853 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2854 1.44 hannken }
2855 1.1 fvdl
2856 1.1 fvdl /* Fix up byte swapping */
2857 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2858 1.1 fvdl
2859 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2860 1.1 fvdl
2861 1.161 msaitoh /*
2862 1.161 msaitoh * The 5704 in TBI mode apparently needs some special
2863 1.161 msaitoh * adjustment to insure the SERDES drive level is set
2864 1.161 msaitoh * to 1.2V.
2865 1.161 msaitoh */
2866 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
2867 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2868 1.161 msaitoh u_int32_t serdescfg;
2869 1.161 msaitoh
2870 1.161 msaitoh serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2871 1.161 msaitoh serdescfg = (serdescfg & ~0xFFF) | 0x880;
2872 1.161 msaitoh CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2873 1.161 msaitoh }
2874 1.161 msaitoh
2875 1.161 msaitoh /* XXX: from FreeBSD/Linux; no documentation */
2876 1.161 msaitoh if (sc->bge_flags & BGE_PCIE &&
2877 1.161 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2878 1.161 msaitoh CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2879 1.1 fvdl DELAY(10000);
2880 1.1 fvdl }
2881 1.1 fvdl
2882 1.1 fvdl /*
2883 1.1 fvdl * Frame reception handling. This is called if there's a frame
2884 1.1 fvdl * on the receive return list.
2885 1.1 fvdl *
2886 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2887 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2888 1.1 fvdl * 2) the frame is from the standard receive ring
2889 1.1 fvdl */
2890 1.1 fvdl
2891 1.104 thorpej static void
2892 1.104 thorpej bge_rxeof(struct bge_softc *sc)
2893 1.1 fvdl {
2894 1.1 fvdl struct ifnet *ifp;
2895 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2896 1.1 fvdl bus_dmamap_t dmamap;
2897 1.1 fvdl bus_addr_t offset, toff;
2898 1.1 fvdl bus_size_t tlen;
2899 1.1 fvdl int tosync;
2900 1.1 fvdl
2901 1.1 fvdl ifp = &sc->ethercom.ec_if;
2902 1.1 fvdl
2903 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2904 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2905 1.1 fvdl sizeof (struct bge_status_block),
2906 1.1 fvdl BUS_DMASYNC_POSTREAD);
2907 1.1 fvdl
2908 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2909 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2910 1.1 fvdl sc->bge_rx_saved_considx;
2911 1.1 fvdl
2912 1.148 mlelstv #if NRND > 0
2913 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2914 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
2915 1.148 mlelstv #endif
2916 1.148 mlelstv
2917 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2918 1.1 fvdl
2919 1.1 fvdl if (tosync < 0) {
2920 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2921 1.1 fvdl sizeof (struct bge_rx_bd);
2922 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2923 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2924 1.1 fvdl tosync = -tosync;
2925 1.1 fvdl }
2926 1.1 fvdl
2927 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2928 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
2929 1.1 fvdl BUS_DMASYNC_POSTREAD);
2930 1.1 fvdl
2931 1.1 fvdl while(sc->bge_rx_saved_considx !=
2932 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2933 1.1 fvdl struct bge_rx_bd *cur_rx;
2934 1.1 fvdl u_int32_t rxidx;
2935 1.1 fvdl struct mbuf *m = NULL;
2936 1.1 fvdl
2937 1.1 fvdl cur_rx = &sc->bge_rdata->
2938 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2939 1.1 fvdl
2940 1.1 fvdl rxidx = cur_rx->bge_idx;
2941 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2942 1.1 fvdl
2943 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2944 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2945 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2946 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2947 1.1 fvdl jumbocnt++;
2948 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
2949 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
2950 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
2951 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
2952 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2953 1.1 fvdl ifp->if_ierrors++;
2954 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2955 1.1 fvdl continue;
2956 1.1 fvdl }
2957 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2958 1.1 fvdl NULL)== ENOBUFS) {
2959 1.1 fvdl ifp->if_ierrors++;
2960 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2961 1.1 fvdl continue;
2962 1.1 fvdl }
2963 1.1 fvdl } else {
2964 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2965 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2966 1.124 bouyer
2967 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2968 1.1 fvdl stdcnt++;
2969 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2970 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2971 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
2972 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2973 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
2974 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2975 1.1 fvdl ifp->if_ierrors++;
2976 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2977 1.1 fvdl continue;
2978 1.1 fvdl }
2979 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2980 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2981 1.1 fvdl ifp->if_ierrors++;
2982 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2983 1.1 fvdl continue;
2984 1.1 fvdl }
2985 1.1 fvdl }
2986 1.1 fvdl
2987 1.1 fvdl ifp->if_ipackets++;
2988 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
2989 1.37 jonathan /*
2990 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2991 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
2992 1.37 jonathan * If our CPU requires alignment, re-align by copying.
2993 1.37 jonathan */
2994 1.157 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG) {
2995 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
2996 1.37 jonathan cur_rx->bge_len);
2997 1.37 jonathan m->m_data += ETHER_ALIGN;
2998 1.37 jonathan }
2999 1.37 jonathan #endif
3000 1.87 perry
3001 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3002 1.1 fvdl m->m_pkthdr.rcvif = ifp;
3003 1.1 fvdl
3004 1.1 fvdl #if NBPFILTER > 0
3005 1.1 fvdl /*
3006 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
3007 1.1 fvdl */
3008 1.1 fvdl if (ifp->if_bpf)
3009 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
3010 1.1 fvdl #endif
3011 1.1 fvdl
3012 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3013 1.46 jonathan
3014 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3015 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3016 1.46 jonathan /*
3017 1.46 jonathan * Rx transport checksum-offload may also
3018 1.46 jonathan * have bugs with packets which, when transmitted,
3019 1.46 jonathan * were `runts' requiring padding.
3020 1.46 jonathan */
3021 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3022 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3023 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3024 1.46 jonathan m->m_pkthdr.csum_data =
3025 1.46 jonathan cur_rx->bge_tcp_udp_csum;
3026 1.46 jonathan m->m_pkthdr.csum_flags |=
3027 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
3028 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3029 1.1 fvdl }
3030 1.1 fvdl
3031 1.1 fvdl /*
3032 1.1 fvdl * If we received a packet with a vlan tag, pass it
3033 1.1 fvdl * to vlan_input() instead of ether_input().
3034 1.1 fvdl */
3035 1.150 dsl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3036 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3037 1.150 dsl }
3038 1.1 fvdl
3039 1.1 fvdl (*ifp->if_input)(ifp, m);
3040 1.1 fvdl }
3041 1.1 fvdl
3042 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3043 1.1 fvdl if (stdcnt)
3044 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3045 1.1 fvdl if (jumbocnt)
3046 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3047 1.1 fvdl }
3048 1.1 fvdl
3049 1.104 thorpej static void
3050 1.104 thorpej bge_txeof(struct bge_softc *sc)
3051 1.1 fvdl {
3052 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3053 1.1 fvdl struct ifnet *ifp;
3054 1.1 fvdl struct txdmamap_pool_entry *dma;
3055 1.1 fvdl bus_addr_t offset, toff;
3056 1.1 fvdl bus_size_t tlen;
3057 1.1 fvdl int tosync;
3058 1.1 fvdl struct mbuf *m;
3059 1.1 fvdl
3060 1.1 fvdl ifp = &sc->ethercom.ec_if;
3061 1.1 fvdl
3062 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3063 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3064 1.1 fvdl sizeof (struct bge_status_block),
3065 1.1 fvdl BUS_DMASYNC_POSTREAD);
3066 1.1 fvdl
3067 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3068 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3069 1.1 fvdl sc->bge_tx_saved_considx;
3070 1.1 fvdl
3071 1.148 mlelstv #if NRND > 0
3072 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3073 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3074 1.148 mlelstv #endif
3075 1.148 mlelstv
3076 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3077 1.1 fvdl
3078 1.1 fvdl if (tosync < 0) {
3079 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3080 1.1 fvdl sizeof (struct bge_tx_bd);
3081 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3082 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3083 1.1 fvdl tosync = -tosync;
3084 1.1 fvdl }
3085 1.1 fvdl
3086 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3087 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3088 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3089 1.1 fvdl
3090 1.1 fvdl /*
3091 1.1 fvdl * Go through our tx ring and free mbufs for those
3092 1.1 fvdl * frames that have been sent.
3093 1.1 fvdl */
3094 1.1 fvdl while (sc->bge_tx_saved_considx !=
3095 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3096 1.1 fvdl u_int32_t idx = 0;
3097 1.1 fvdl
3098 1.1 fvdl idx = sc->bge_tx_saved_considx;
3099 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3100 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3101 1.1 fvdl ifp->if_opackets++;
3102 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3103 1.1 fvdl if (m != NULL) {
3104 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3105 1.1 fvdl dma = sc->txdma[idx];
3106 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3107 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3108 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3109 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3110 1.1 fvdl sc->txdma[idx] = NULL;
3111 1.1 fvdl
3112 1.1 fvdl m_freem(m);
3113 1.1 fvdl }
3114 1.1 fvdl sc->bge_txcnt--;
3115 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3116 1.1 fvdl ifp->if_timer = 0;
3117 1.1 fvdl }
3118 1.1 fvdl
3119 1.1 fvdl if (cur_tx != NULL)
3120 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3121 1.1 fvdl }
3122 1.1 fvdl
3123 1.104 thorpej static int
3124 1.104 thorpej bge_intr(void *xsc)
3125 1.1 fvdl {
3126 1.1 fvdl struct bge_softc *sc;
3127 1.1 fvdl struct ifnet *ifp;
3128 1.161 msaitoh uint32_t statusword;
3129 1.1 fvdl
3130 1.1 fvdl sc = xsc;
3131 1.1 fvdl ifp = &sc->ethercom.ec_if;
3132 1.1 fvdl
3133 1.161 msaitoh /* It is possible for the interrupt to arrive before
3134 1.161 msaitoh * the status block is updated prior to the interrupt.
3135 1.161 msaitoh * Reading the PCI State register will confirm whether the
3136 1.161 msaitoh * interrupt is ours and will flush the status block.
3137 1.161 msaitoh */
3138 1.144 mlelstv
3139 1.161 msaitoh /* read status word from status block */
3140 1.161 msaitoh statusword = sc->bge_rdata->bge_status_block.bge_status;
3141 1.144 mlelstv
3142 1.161 msaitoh if ((statusword & BGE_STATFLAG_UPDATED) ||
3143 1.161 msaitoh (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3144 1.161 msaitoh /* Ack interrupt and stop others from occuring. */
3145 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3146 1.144 mlelstv
3147 1.161 msaitoh BGE_EVCNT_INCR(sc->bge_ev_intr);
3148 1.1 fvdl
3149 1.161 msaitoh /* clear status word */
3150 1.161 msaitoh sc->bge_rdata->bge_status_block.bge_status = 0;
3151 1.72 thorpej
3152 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3153 1.161 msaitoh statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3154 1.161 msaitoh BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3155 1.161 msaitoh bge_link_upd(sc);
3156 1.1 fvdl
3157 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING) {
3158 1.161 msaitoh /* Check RX return ring producer/consumer */
3159 1.161 msaitoh bge_rxeof(sc);
3160 1.144 mlelstv
3161 1.161 msaitoh /* Check TX ring producer/consumer */
3162 1.161 msaitoh bge_txeof(sc);
3163 1.1 fvdl }
3164 1.1 fvdl
3165 1.161 msaitoh if (sc->bge_pending_rxintr_change) {
3166 1.161 msaitoh uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3167 1.161 msaitoh uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3168 1.161 msaitoh uint32_t junk;
3169 1.1 fvdl
3170 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3171 1.161 msaitoh DELAY(10);
3172 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3173 1.1 fvdl
3174 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3175 1.161 msaitoh DELAY(10);
3176 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3177 1.58 jonathan
3178 1.161 msaitoh sc->bge_pending_rxintr_change = 0;
3179 1.161 msaitoh }
3180 1.161 msaitoh bge_handle_events(sc);
3181 1.87 perry
3182 1.161 msaitoh /* Re-enable interrupts. */
3183 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3184 1.58 jonathan
3185 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3186 1.161 msaitoh bge_start(ifp);
3187 1.1 fvdl
3188 1.161 msaitoh return (1);
3189 1.161 msaitoh } else
3190 1.161 msaitoh return (0);
3191 1.1 fvdl }
3192 1.1 fvdl
3193 1.104 thorpej static void
3194 1.104 thorpej bge_tick(void *xsc)
3195 1.1 fvdl {
3196 1.1 fvdl struct bge_softc *sc = xsc;
3197 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3198 1.1 fvdl int s;
3199 1.1 fvdl
3200 1.1 fvdl s = splnet();
3201 1.1 fvdl
3202 1.1 fvdl bge_stats_update(sc);
3203 1.1 fvdl
3204 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3205 1.161 msaitoh /*
3206 1.161 msaitoh * Since in TBI mode auto-polling can't be used we should poll
3207 1.161 msaitoh * link status manually. Here we register pending link event
3208 1.161 msaitoh * and trigger interrupt.
3209 1.161 msaitoh */
3210 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3211 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3212 1.161 msaitoh } else {
3213 1.161 msaitoh /*
3214 1.161 msaitoh * Do not touch PHY if we have link up. This could break
3215 1.161 msaitoh * IPMI/ASF mode or produce extra input errors.
3216 1.161 msaitoh * (extra input errors was reported for bcm5701 & bcm5704).
3217 1.161 msaitoh */
3218 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3219 1.161 msaitoh mii_tick(mii);
3220 1.161 msaitoh }
3221 1.161 msaitoh
3222 1.161 msaitoh callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3223 1.1 fvdl
3224 1.1 fvdl splx(s);
3225 1.1 fvdl }
3226 1.1 fvdl
3227 1.104 thorpej static void
3228 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3229 1.1 fvdl {
3230 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3231 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3232 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
3233 1.44 hannken
3234 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
3235 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3236 1.1 fvdl
3237 1.157 msaitoh if (BGE_IS_5705_OR_BEYOND(sc)) {
3238 1.44 hannken ifp->if_collisions +=
3239 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3240 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3241 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3242 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3243 1.72 thorpej
3244 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3245 1.72 thorpej READ_RSTAT(sc, rstats, outXoffSent));
3246 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3247 1.72 thorpej READ_RSTAT(sc, rstats, outXonSent));
3248 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3249 1.72 thorpej READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3250 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3251 1.72 thorpej READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3252 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3253 1.72 thorpej READ_RSTAT(sc, rstats, macControlFramesReceived));
3254 1.72 thorpej BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3255 1.72 thorpej READ_RSTAT(sc, rstats, xoffStateEntered));
3256 1.44 hannken return;
3257 1.44 hannken }
3258 1.44 hannken
3259 1.44 hannken #undef READ_RSTAT
3260 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3261 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3262 1.1 fvdl
3263 1.1 fvdl ifp->if_collisions +=
3264 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3265 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3266 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3267 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3268 1.1 fvdl ifp->if_collisions;
3269 1.1 fvdl
3270 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3271 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3272 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3273 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3274 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3275 1.72 thorpej READ_STAT(sc, stats,
3276 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3277 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3278 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3279 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3280 1.72 thorpej READ_STAT(sc, stats,
3281 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3282 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3283 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3284 1.72 thorpej
3285 1.1 fvdl #undef READ_STAT
3286 1.1 fvdl
3287 1.1 fvdl #ifdef notdef
3288 1.1 fvdl ifp->if_collisions +=
3289 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3290 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3291 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3292 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3293 1.1 fvdl ifp->if_collisions;
3294 1.1 fvdl #endif
3295 1.1 fvdl }
3296 1.1 fvdl
3297 1.46 jonathan /*
3298 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3299 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3300 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3301 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3302 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3303 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3304 1.46 jonathan */
3305 1.102 perry static inline int
3306 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3307 1.46 jonathan {
3308 1.46 jonathan struct mbuf *last = NULL;
3309 1.46 jonathan int padlen;
3310 1.46 jonathan
3311 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3312 1.46 jonathan
3313 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3314 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3315 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3316 1.46 jonathan last = pkt;
3317 1.46 jonathan } else {
3318 1.46 jonathan /*
3319 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3320 1.87 perry * pad there, or append a new mbuf and pad it
3321 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3322 1.46 jonathan */
3323 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3324 1.114 tsutsui continue; /* do nothing */
3325 1.46 jonathan }
3326 1.46 jonathan
3327 1.46 jonathan /* `last' now points to last in chain. */
3328 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3329 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3330 1.46 jonathan struct mbuf *n;
3331 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3332 1.129 joerg if (n == NULL)
3333 1.129 joerg return ENOBUFS;
3334 1.46 jonathan n->m_len = 0;
3335 1.46 jonathan last->m_next = n;
3336 1.46 jonathan last = n;
3337 1.46 jonathan }
3338 1.46 jonathan }
3339 1.46 jonathan
3340 1.114 tsutsui KDASSERT(!M_READONLY(last));
3341 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3342 1.114 tsutsui
3343 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3344 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3345 1.46 jonathan last->m_len += padlen;
3346 1.46 jonathan pkt->m_pkthdr.len += padlen;
3347 1.46 jonathan return 0;
3348 1.46 jonathan }
3349 1.45 jonathan
3350 1.45 jonathan /*
3351 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3352 1.45 jonathan */
3353 1.102 perry static inline int
3354 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3355 1.45 jonathan {
3356 1.45 jonathan struct mbuf *m, *prev;
3357 1.45 jonathan int totlen, prevlen;
3358 1.45 jonathan
3359 1.45 jonathan prev = NULL;
3360 1.45 jonathan totlen = 0;
3361 1.45 jonathan prevlen = -1;
3362 1.45 jonathan
3363 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3364 1.45 jonathan int mlen = m->m_len;
3365 1.45 jonathan int shortfall = 8 - mlen ;
3366 1.45 jonathan
3367 1.45 jonathan totlen += mlen;
3368 1.45 jonathan if (mlen == 0) {
3369 1.45 jonathan continue;
3370 1.45 jonathan }
3371 1.45 jonathan if (mlen >= 8)
3372 1.45 jonathan continue;
3373 1.45 jonathan
3374 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3375 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3376 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3377 1.45 jonathan */
3378 1.45 jonathan
3379 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3380 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3381 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3382 1.45 jonathan prev->m_len += mlen;
3383 1.45 jonathan m->m_len = 0;
3384 1.45 jonathan /* XXX stitch chain */
3385 1.45 jonathan prev->m_next = m_free(m);
3386 1.45 jonathan m = prev;
3387 1.45 jonathan continue;
3388 1.45 jonathan }
3389 1.113 tsutsui else if (m->m_next != NULL &&
3390 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3391 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3392 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3393 1.45 jonathan
3394 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3395 1.115 tsutsui shortfall);
3396 1.45 jonathan m->m_len += shortfall;
3397 1.45 jonathan m->m_next->m_len -= shortfall;
3398 1.45 jonathan m->m_next->m_data += shortfall;
3399 1.45 jonathan }
3400 1.45 jonathan else if (m->m_next == NULL || 1) {
3401 1.45 jonathan /* Got a runt at the very end of the packet.
3402 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3403 1.45 jonathan * update its length in-place. (The original data is still
3404 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3405 1.45 jonathan */
3406 1.45 jonathan
3407 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3408 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3409 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3410 1.111 christos
3411 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3412 1.45 jonathan shortfall = prev->m_len;
3413 1.87 perry
3414 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3415 1.45 jonathan if (!M_READONLY(m)) {
3416 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3417 1.45 jonathan void *m_dat;
3418 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3419 1.45 jonathan m->m_pktdat : m->dat;
3420 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3421 1.45 jonathan m->m_data = m_dat;
3422 1.45 jonathan }
3423 1.45 jonathan } else
3424 1.45 jonathan #endif /* just do the safe slow thing */
3425 1.45 jonathan {
3426 1.45 jonathan struct mbuf * n = NULL;
3427 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3428 1.45 jonathan
3429 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3430 1.45 jonathan if (n == NULL)
3431 1.45 jonathan return ENOBUFS;
3432 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3433 1.45 jonathan /*,
3434 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3435 1.45 jonathan
3436 1.45 jonathan /* first copy the data we're stealing from prev */
3437 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3438 1.115 tsutsui shortfall);
3439 1.45 jonathan
3440 1.45 jonathan /* update prev->m_len accordingly */
3441 1.45 jonathan prev->m_len -= shortfall;
3442 1.45 jonathan
3443 1.45 jonathan /* copy data from runt m */
3444 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3445 1.115 tsutsui m->m_len);
3446 1.45 jonathan
3447 1.45 jonathan /* n holds what we stole from prev, plus m */
3448 1.45 jonathan n->m_len = shortfall + m->m_len;
3449 1.45 jonathan
3450 1.45 jonathan /* stitch n into chain and free m */
3451 1.45 jonathan n->m_next = m->m_next;
3452 1.45 jonathan prev->m_next = n;
3453 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3454 1.45 jonathan m->m_next = NULL;
3455 1.45 jonathan m_free(m);
3456 1.45 jonathan m = n; /* for continuing loop */
3457 1.45 jonathan }
3458 1.45 jonathan }
3459 1.45 jonathan prevlen = m->m_len;
3460 1.45 jonathan }
3461 1.45 jonathan return 0;
3462 1.45 jonathan }
3463 1.45 jonathan
3464 1.1 fvdl /*
3465 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3466 1.1 fvdl * pointers to descriptors.
3467 1.1 fvdl */
3468 1.104 thorpej static int
3469 1.104 thorpej bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3470 1.1 fvdl {
3471 1.1 fvdl struct bge_tx_bd *f = NULL;
3472 1.118 tsutsui u_int32_t frag, cur;
3473 1.1 fvdl u_int16_t csum_flags = 0;
3474 1.95 jonathan u_int16_t txbd_tso_flags = 0;
3475 1.1 fvdl struct txdmamap_pool_entry *dma;
3476 1.1 fvdl bus_dmamap_t dmamap;
3477 1.1 fvdl int i = 0;
3478 1.29 itojun struct m_tag *mtag;
3479 1.95 jonathan int use_tso, maxsegsize, error;
3480 1.107 blymn
3481 1.1 fvdl cur = frag = *txidx;
3482 1.1 fvdl
3483 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3484 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3485 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3486 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3487 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3488 1.1 fvdl }
3489 1.1 fvdl
3490 1.87 perry /*
3491 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3492 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3493 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3494 1.46 jonathan * (For now, do this for all chip versions, until newer
3495 1.46 jonathan * are confirmed to not require the workaround.)
3496 1.46 jonathan */
3497 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3498 1.46 jonathan #ifdef notyet
3499 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3500 1.87 perry #endif
3501 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3502 1.46 jonathan goto check_dma_bug;
3503 1.46 jonathan
3504 1.95 jonathan if (bge_cksum_pad(m_head) != 0) {
3505 1.46 jonathan return ENOBUFS;
3506 1.95 jonathan }
3507 1.46 jonathan
3508 1.46 jonathan check_dma_bug:
3509 1.157 msaitoh if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3510 1.29 itojun goto doit;
3511 1.157 msaitoh
3512 1.25 jonathan /*
3513 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3514 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3515 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3516 1.25 jonathan */
3517 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3518 1.45 jonathan return ENOBUFS;
3519 1.25 jonathan
3520 1.25 jonathan doit:
3521 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3522 1.1 fvdl if (dma == NULL)
3523 1.1 fvdl return ENOBUFS;
3524 1.1 fvdl dmamap = dma->dmamap;
3525 1.1 fvdl
3526 1.1 fvdl /*
3527 1.95 jonathan * Set up any necessary TSO state before we start packing...
3528 1.95 jonathan */
3529 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3530 1.95 jonathan if (!use_tso) {
3531 1.95 jonathan maxsegsize = 0;
3532 1.95 jonathan } else { /* TSO setup */
3533 1.95 jonathan unsigned mss;
3534 1.95 jonathan struct ether_header *eh;
3535 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3536 1.95 jonathan struct mbuf * m0 = m_head;
3537 1.95 jonathan struct ip *ip;
3538 1.95 jonathan struct tcphdr *th;
3539 1.95 jonathan int iphl, hlen;
3540 1.95 jonathan
3541 1.95 jonathan /*
3542 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3543 1.95 jonathan * fields for the protocol headers.
3544 1.95 jonathan */
3545 1.95 jonathan
3546 1.95 jonathan eh = mtod(m0, struct ether_header *);
3547 1.95 jonathan switch (htons(eh->ether_type)) {
3548 1.95 jonathan case ETHERTYPE_IP:
3549 1.95 jonathan offset = ETHER_HDR_LEN;
3550 1.95 jonathan break;
3551 1.95 jonathan
3552 1.95 jonathan case ETHERTYPE_VLAN:
3553 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3554 1.95 jonathan break;
3555 1.95 jonathan
3556 1.95 jonathan default:
3557 1.95 jonathan /*
3558 1.95 jonathan * Don't support this protocol or encapsulation.
3559 1.95 jonathan */
3560 1.95 jonathan return (ENOBUFS);
3561 1.95 jonathan }
3562 1.95 jonathan
3563 1.95 jonathan /*
3564 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3565 1.95 jonathan * this the easy way.
3566 1.95 jonathan */
3567 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3568 1.95 jonathan hlen = iphl + offset;
3569 1.95 jonathan if (__predict_false(m0->m_len <
3570 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
3571 1.95 jonathan
3572 1.138 joerg aprint_debug_dev(sc->bge_dev,
3573 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3574 1.138 joerg "not handled yet\n",
3575 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
3576 1.95 jonathan #ifdef NOTYET
3577 1.95 jonathan /*
3578 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
3579 1.95 jonathan * how to force this branch to be taken?
3580 1.95 jonathan */
3581 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3582 1.95 jonathan
3583 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
3584 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
3585 1.95 jonathan
3586 1.95 jonathan ip.ip_len = 0;
3587 1.95 jonathan
3588 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3589 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
3590 1.95 jonathan
3591 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3592 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3593 1.95 jonathan
3594 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3595 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
3596 1.95 jonathan
3597 1.95 jonathan hlen += th.th_off << 2;
3598 1.95 jonathan iptcp_opt_words = hlen;
3599 1.95 jonathan #else
3600 1.95 jonathan /*
3601 1.95 jonathan * if_wm "hard" case not yet supported, can we not
3602 1.95 jonathan * mandate it out of existence?
3603 1.95 jonathan */
3604 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
3605 1.95 jonathan
3606 1.95 jonathan return ENOBUFS;
3607 1.95 jonathan #endif
3608 1.95 jonathan } else {
3609 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
3610 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3611 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
3612 1.95 jonathan
3613 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
3614 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
3615 1.95 jonathan - sizeof(struct tcphdr)
3616 1.95 jonathan - sizeof(struct ip)) >> 2;
3617 1.95 jonathan }
3618 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
3619 1.95 jonathan th->th_sum = 0;
3620 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3621 1.95 jonathan } else {
3622 1.95 jonathan /*
3623 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
3624 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
3625 1.95 jonathan */
3626 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3627 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3628 1.95 jonathan }
3629 1.95 jonathan
3630 1.95 jonathan mss = m_head->m_pkthdr.segsz;
3631 1.107 blymn txbd_tso_flags |=
3632 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
3633 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
3634 1.95 jonathan
3635 1.95 jonathan /*
3636 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
3637 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
3638 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
3639 1.95 jonathan * supplied header into the IP/TCP header portion of
3640 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
3641 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
3642 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
3643 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
3644 1.95 jonathan * Unfortunately, the driver encoding of option length
3645 1.95 jonathan * varies across different ASIC families.
3646 1.95 jonathan */
3647 1.95 jonathan tcp_seg_flags = 0;
3648 1.95 jonathan if (iptcp_opt_words) {
3649 1.95 jonathan if ( BGE_IS_5705_OR_BEYOND(sc)) {
3650 1.95 jonathan tcp_seg_flags =
3651 1.95 jonathan iptcp_opt_words << 11;
3652 1.95 jonathan } else {
3653 1.95 jonathan txbd_tso_flags |=
3654 1.95 jonathan iptcp_opt_words << 12;
3655 1.95 jonathan }
3656 1.95 jonathan }
3657 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
3658 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
3659 1.95 jonathan
3660 1.95 jonathan } /* TSO setup */
3661 1.95 jonathan
3662 1.95 jonathan /*
3663 1.1 fvdl * Start packing the mbufs in this chain into
3664 1.1 fvdl * the fragment pointers. Stop when we run out
3665 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3666 1.1 fvdl */
3667 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3668 1.95 jonathan BUS_DMA_NOWAIT);
3669 1.95 jonathan if (error) {
3670 1.158 msaitoh return (ENOBUFS);
3671 1.95 jonathan }
3672 1.118 tsutsui /*
3673 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
3674 1.118 tsutsui * of the end of the ring.
3675 1.118 tsutsui */
3676 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3677 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
3678 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
3679 1.138 joerg device_xname(sc->bge_dev)));
3680 1.118 tsutsui goto fail_unload;
3681 1.118 tsutsui }
3682 1.95 jonathan
3683 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
3684 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3685 1.1 fvdl
3686 1.6 thorpej
3687 1.95 jonathan /* Iterate over dmap-map fragments. */
3688 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3689 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3690 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3691 1.1 fvdl break;
3692 1.107 blymn
3693 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3694 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3695 1.95 jonathan
3696 1.95 jonathan /*
3697 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
3698 1.95 jonathan * off checksum-assist flag in the tx-descr, and
3699 1.95 jonathan * supply the ASIC-revision-specific encoding
3700 1.95 jonathan * of TSO flags and segsize.
3701 1.95 jonathan */
3702 1.95 jonathan if (use_tso) {
3703 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3704 1.95 jonathan f->bge_rsvd = maxsegsize;
3705 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
3706 1.95 jonathan } else {
3707 1.95 jonathan f->bge_rsvd = 0;
3708 1.95 jonathan f->bge_flags =
3709 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
3710 1.95 jonathan }
3711 1.95 jonathan } else {
3712 1.95 jonathan f->bge_rsvd = 0;
3713 1.95 jonathan f->bge_flags = csum_flags;
3714 1.95 jonathan }
3715 1.1 fvdl
3716 1.28 itojun if (mtag != NULL) {
3717 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3718 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3719 1.1 fvdl } else {
3720 1.1 fvdl f->bge_vlan_tag = 0;
3721 1.1 fvdl }
3722 1.1 fvdl cur = frag;
3723 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
3724 1.1 fvdl }
3725 1.1 fvdl
3726 1.95 jonathan if (i < dmamap->dm_nsegs) {
3727 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3728 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3729 1.118 tsutsui goto fail_unload;
3730 1.95 jonathan }
3731 1.1 fvdl
3732 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3733 1.1 fvdl BUS_DMASYNC_PREWRITE);
3734 1.1 fvdl
3735 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
3736 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3737 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3738 1.95 jonathan
3739 1.118 tsutsui goto fail_unload;
3740 1.95 jonathan }
3741 1.1 fvdl
3742 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3743 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
3744 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3745 1.1 fvdl sc->txdma[cur] = dma;
3746 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
3747 1.1 fvdl
3748 1.1 fvdl *txidx = frag;
3749 1.1 fvdl
3750 1.158 msaitoh return (0);
3751 1.118 tsutsui
3752 1.158 msaitoh fail_unload:
3753 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
3754 1.118 tsutsui
3755 1.118 tsutsui return ENOBUFS;
3756 1.1 fvdl }
3757 1.1 fvdl
3758 1.1 fvdl /*
3759 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3760 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
3761 1.1 fvdl */
3762 1.104 thorpej static void
3763 1.104 thorpej bge_start(struct ifnet *ifp)
3764 1.1 fvdl {
3765 1.1 fvdl struct bge_softc *sc;
3766 1.1 fvdl struct mbuf *m_head = NULL;
3767 1.94 jonathan u_int32_t prodidx;
3768 1.1 fvdl int pkts = 0;
3769 1.1 fvdl
3770 1.1 fvdl sc = ifp->if_softc;
3771 1.1 fvdl
3772 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3773 1.1 fvdl return;
3774 1.1 fvdl
3775 1.94 jonathan prodidx = sc->bge_tx_prodidx;
3776 1.1 fvdl
3777 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3778 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
3779 1.1 fvdl if (m_head == NULL)
3780 1.1 fvdl break;
3781 1.1 fvdl
3782 1.1 fvdl #if 0
3783 1.1 fvdl /*
3784 1.1 fvdl * XXX
3785 1.1 fvdl * safety overkill. If this is a fragmented packet chain
3786 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
3787 1.1 fvdl * it if we have enough descriptors to handle the entire
3788 1.1 fvdl * chain at once.
3789 1.1 fvdl * (paranoia -- may not actually be needed)
3790 1.1 fvdl */
3791 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
3792 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3793 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3794 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3795 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3796 1.1 fvdl break;
3797 1.1 fvdl }
3798 1.1 fvdl }
3799 1.1 fvdl #endif
3800 1.1 fvdl
3801 1.1 fvdl /*
3802 1.1 fvdl * Pack the data into the transmit ring. If we
3803 1.1 fvdl * don't have room, set the OACTIVE flag and wait
3804 1.1 fvdl * for the NIC to drain the ring.
3805 1.1 fvdl */
3806 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
3807 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3808 1.1 fvdl break;
3809 1.1 fvdl }
3810 1.1 fvdl
3811 1.1 fvdl /* now we are committed to transmit the packet */
3812 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
3813 1.1 fvdl pkts++;
3814 1.1 fvdl
3815 1.1 fvdl #if NBPFILTER > 0
3816 1.1 fvdl /*
3817 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
3818 1.1 fvdl * to him.
3819 1.1 fvdl */
3820 1.1 fvdl if (ifp->if_bpf)
3821 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
3822 1.1 fvdl #endif
3823 1.1 fvdl }
3824 1.1 fvdl if (pkts == 0)
3825 1.1 fvdl return;
3826 1.1 fvdl
3827 1.1 fvdl /* Transmit */
3828 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3829 1.158 msaitoh /* 5700 b2 errata */
3830 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
3831 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3832 1.1 fvdl
3833 1.94 jonathan sc->bge_tx_prodidx = prodidx;
3834 1.94 jonathan
3835 1.1 fvdl /*
3836 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
3837 1.1 fvdl */
3838 1.1 fvdl ifp->if_timer = 5;
3839 1.1 fvdl }
3840 1.1 fvdl
3841 1.104 thorpej static int
3842 1.104 thorpej bge_init(struct ifnet *ifp)
3843 1.1 fvdl {
3844 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3845 1.137 dyoung const u_int16_t *m;
3846 1.142 dyoung int s, error = 0;
3847 1.1 fvdl
3848 1.1 fvdl s = splnet();
3849 1.1 fvdl
3850 1.1 fvdl ifp = &sc->ethercom.ec_if;
3851 1.1 fvdl
3852 1.1 fvdl /* Cancel pending I/O and flush buffers. */
3853 1.141 jmcneill bge_stop(ifp, 0);
3854 1.1 fvdl bge_reset(sc);
3855 1.1 fvdl bge_chipinit(sc);
3856 1.1 fvdl
3857 1.1 fvdl /*
3858 1.1 fvdl * Init the various state machines, ring
3859 1.1 fvdl * control blocks and firmware.
3860 1.1 fvdl */
3861 1.1 fvdl error = bge_blockinit(sc);
3862 1.1 fvdl if (error != 0) {
3863 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3864 1.1 fvdl error);
3865 1.1 fvdl splx(s);
3866 1.1 fvdl return error;
3867 1.1 fvdl }
3868 1.1 fvdl
3869 1.1 fvdl ifp = &sc->ethercom.ec_if;
3870 1.1 fvdl
3871 1.1 fvdl /* Specify MTU. */
3872 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3873 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3874 1.1 fvdl
3875 1.1 fvdl /* Load our MAC address. */
3876 1.137 dyoung m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3877 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3878 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3879 1.1 fvdl
3880 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
3881 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
3882 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3883 1.1 fvdl } else {
3884 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3885 1.1 fvdl }
3886 1.1 fvdl
3887 1.1 fvdl /* Program multicast filter. */
3888 1.1 fvdl bge_setmulti(sc);
3889 1.1 fvdl
3890 1.1 fvdl /* Init RX ring. */
3891 1.1 fvdl bge_init_rx_ring_std(sc);
3892 1.1 fvdl
3893 1.161 msaitoh /*
3894 1.161 msaitoh * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3895 1.161 msaitoh * memory to insure that the chip has in fact read the first
3896 1.161 msaitoh * entry of the ring.
3897 1.161 msaitoh */
3898 1.161 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3899 1.161 msaitoh u_int32_t v, i;
3900 1.161 msaitoh for (i = 0; i < 10; i++) {
3901 1.161 msaitoh DELAY(20);
3902 1.161 msaitoh v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3903 1.161 msaitoh if (v == (MCLBYTES - ETHER_ALIGN))
3904 1.161 msaitoh break;
3905 1.161 msaitoh }
3906 1.161 msaitoh if (i == 10)
3907 1.161 msaitoh aprint_error_dev(sc->bge_dev,
3908 1.161 msaitoh "5705 A0 chip failed to load RX ring\n");
3909 1.161 msaitoh }
3910 1.161 msaitoh
3911 1.1 fvdl /* Init jumbo RX ring. */
3912 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3913 1.1 fvdl bge_init_rx_ring_jumbo(sc);
3914 1.1 fvdl
3915 1.1 fvdl /* Init our RX return ring index */
3916 1.1 fvdl sc->bge_rx_saved_considx = 0;
3917 1.1 fvdl
3918 1.1 fvdl /* Init TX ring. */
3919 1.1 fvdl bge_init_tx_ring(sc);
3920 1.1 fvdl
3921 1.1 fvdl /* Turn on transmitter */
3922 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3923 1.1 fvdl
3924 1.1 fvdl /* Turn on receiver */
3925 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3926 1.1 fvdl
3927 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3928 1.71 thorpej
3929 1.1 fvdl /* Tell firmware we're alive. */
3930 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3931 1.1 fvdl
3932 1.1 fvdl /* Enable host interrupts. */
3933 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3934 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3935 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3936 1.1 fvdl
3937 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
3938 1.142 dyoung goto out;
3939 1.1 fvdl
3940 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
3941 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3942 1.1 fvdl
3943 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3944 1.142 dyoung
3945 1.142 dyoung out:
3946 1.1 fvdl splx(s);
3947 1.1 fvdl
3948 1.142 dyoung return error;
3949 1.1 fvdl }
3950 1.1 fvdl
3951 1.1 fvdl /*
3952 1.1 fvdl * Set media options.
3953 1.1 fvdl */
3954 1.104 thorpej static int
3955 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
3956 1.1 fvdl {
3957 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3958 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3959 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
3960 1.142 dyoung int rc;
3961 1.1 fvdl
3962 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
3963 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3964 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3965 1.158 msaitoh return (EINVAL);
3966 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
3967 1.1 fvdl case IFM_AUTO:
3968 1.161 msaitoh /*
3969 1.161 msaitoh * The BCM5704 ASIC appears to have a special
3970 1.161 msaitoh * mechanism for programming the autoneg
3971 1.161 msaitoh * advertisement registers in TBI mode.
3972 1.161 msaitoh */
3973 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3974 1.161 msaitoh u_int32_t sgdig;
3975 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
3976 1.161 msaitoh if (sgdig & BGE_SGDIGSTS_DONE) {
3977 1.161 msaitoh CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3978 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3979 1.161 msaitoh sgdig |= BGE_SGDIGCFG_AUTO |
3980 1.161 msaitoh BGE_SGDIGCFG_PAUSE_CAP |
3981 1.161 msaitoh BGE_SGDIGCFG_ASYM_PAUSE;
3982 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3983 1.161 msaitoh sgdig | BGE_SGDIGCFG_SEND);
3984 1.161 msaitoh DELAY(5);
3985 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3986 1.161 msaitoh }
3987 1.161 msaitoh }
3988 1.1 fvdl break;
3989 1.1 fvdl case IFM_1000_SX:
3990 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3991 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
3992 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3993 1.1 fvdl } else {
3994 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
3995 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3996 1.1 fvdl }
3997 1.1 fvdl break;
3998 1.1 fvdl default:
3999 1.158 msaitoh return (EINVAL);
4000 1.1 fvdl }
4001 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
4002 1.158 msaitoh return (0);
4003 1.1 fvdl }
4004 1.1 fvdl
4005 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4006 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
4007 1.142 dyoung return 0;
4008 1.161 msaitoh
4009 1.161 msaitoh /*
4010 1.161 msaitoh * Force an interrupt so that we will call bge_link_upd
4011 1.161 msaitoh * if needed and clear any pending link state attention.
4012 1.161 msaitoh * Without this we are not getting any further interrupts
4013 1.161 msaitoh * for link state changes and thus will not UP the link and
4014 1.161 msaitoh * not be able to send in bge_start. The only way to get
4015 1.161 msaitoh * things working was to receive a packet and get a RX intr.
4016 1.161 msaitoh */
4017 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4018 1.161 msaitoh sc->bge_flags & BGE_IS_5788)
4019 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4020 1.161 msaitoh else
4021 1.161 msaitoh BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4022 1.161 msaitoh
4023 1.142 dyoung return rc;
4024 1.1 fvdl }
4025 1.1 fvdl
4026 1.1 fvdl /*
4027 1.1 fvdl * Report current media status.
4028 1.1 fvdl */
4029 1.104 thorpej static void
4030 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4031 1.1 fvdl {
4032 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4033 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4034 1.1 fvdl
4035 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4036 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
4037 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
4038 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
4039 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
4040 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
4041 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
4042 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4043 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
4044 1.1 fvdl else
4045 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
4046 1.1 fvdl return;
4047 1.1 fvdl }
4048 1.1 fvdl
4049 1.1 fvdl mii_pollstat(mii);
4050 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
4051 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4052 1.69 thorpej sc->bge_flowflags;
4053 1.1 fvdl }
4054 1.1 fvdl
4055 1.104 thorpej static int
4056 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4057 1.1 fvdl {
4058 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4059 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
4060 1.1 fvdl int s, error = 0;
4061 1.1 fvdl struct mii_data *mii;
4062 1.1 fvdl
4063 1.1 fvdl s = splnet();
4064 1.1 fvdl
4065 1.1 fvdl switch(command) {
4066 1.1 fvdl case SIOCSIFFLAGS:
4067 1.153 dyoung if ((error = ifioctl_common(ifp, command, data)) != 0)
4068 1.153 dyoung break;
4069 1.1 fvdl if (ifp->if_flags & IFF_UP) {
4070 1.1 fvdl /*
4071 1.1 fvdl * If only the state of the PROMISC flag changed,
4072 1.1 fvdl * then just use the 'set promisc mode' command
4073 1.1 fvdl * instead of reinitializing the entire NIC. Doing
4074 1.1 fvdl * a full re-init means reloading the firmware and
4075 1.1 fvdl * waiting for it to start up, which may take a
4076 1.1 fvdl * second or two.
4077 1.1 fvdl */
4078 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
4079 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
4080 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
4081 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
4082 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4083 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
4084 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
4085 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
4086 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
4087 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4088 1.103 rpaulo } else if (!(sc->bge_if_flags & IFF_UP))
4089 1.1 fvdl bge_init(ifp);
4090 1.1 fvdl } else {
4091 1.141 jmcneill if (ifp->if_flags & IFF_RUNNING)
4092 1.141 jmcneill bge_stop(ifp, 1);
4093 1.1 fvdl }
4094 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
4095 1.1 fvdl error = 0;
4096 1.1 fvdl break;
4097 1.1 fvdl case SIOCSIFMEDIA:
4098 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4099 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4100 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4101 1.69 thorpej sc->bge_flowflags = 0;
4102 1.69 thorpej }
4103 1.69 thorpej
4104 1.69 thorpej /* Flow control requires full-duplex mode. */
4105 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4106 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4107 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4108 1.69 thorpej }
4109 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4110 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4111 1.157 msaitoh /* We can do both TXPAUSE and RXPAUSE. */
4112 1.69 thorpej ifr->ifr_media |=
4113 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4114 1.69 thorpej }
4115 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4116 1.69 thorpej }
4117 1.69 thorpej /* FALLTHROUGH */
4118 1.1 fvdl case SIOCGIFMEDIA:
4119 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4120 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4121 1.1 fvdl command);
4122 1.1 fvdl } else {
4123 1.1 fvdl mii = &sc->bge_mii;
4124 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4125 1.1 fvdl command);
4126 1.1 fvdl }
4127 1.1 fvdl break;
4128 1.1 fvdl default:
4129 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4130 1.152 tron break;
4131 1.152 tron
4132 1.152 tron error = 0;
4133 1.152 tron
4134 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4135 1.152 tron ;
4136 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
4137 1.152 tron bge_setmulti(sc);
4138 1.1 fvdl break;
4139 1.1 fvdl }
4140 1.1 fvdl
4141 1.1 fvdl splx(s);
4142 1.1 fvdl
4143 1.158 msaitoh return (error);
4144 1.1 fvdl }
4145 1.1 fvdl
4146 1.104 thorpej static void
4147 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4148 1.1 fvdl {
4149 1.1 fvdl struct bge_softc *sc;
4150 1.1 fvdl
4151 1.1 fvdl sc = ifp->if_softc;
4152 1.1 fvdl
4153 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4154 1.1 fvdl
4155 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4156 1.1 fvdl bge_init(ifp);
4157 1.1 fvdl
4158 1.1 fvdl ifp->if_oerrors++;
4159 1.1 fvdl }
4160 1.1 fvdl
4161 1.11 thorpej static void
4162 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4163 1.11 thorpej {
4164 1.11 thorpej int i;
4165 1.11 thorpej
4166 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4167 1.11 thorpej
4168 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
4169 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4170 1.11 thorpej return;
4171 1.11 thorpej delay(100);
4172 1.157 msaitoh if (sc->bge_flags & BGE_PCIE)
4173 1.95 jonathan DELAY(1000);
4174 1.11 thorpej }
4175 1.11 thorpej
4176 1.165 msaitoh /*
4177 1.165 msaitoh * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4178 1.165 msaitoh * on some environment (and once after boot?)
4179 1.165 msaitoh */
4180 1.165 msaitoh if (reg != BGE_SRS_MODE)
4181 1.165 msaitoh aprint_error_dev(sc->bge_dev,
4182 1.165 msaitoh "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4183 1.165 msaitoh (u_long)reg, bit);
4184 1.11 thorpej }
4185 1.11 thorpej
4186 1.1 fvdl /*
4187 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4188 1.1 fvdl * RX and TX lists.
4189 1.1 fvdl */
4190 1.104 thorpej static void
4191 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4192 1.1 fvdl {
4193 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4194 1.1 fvdl
4195 1.1 fvdl callout_stop(&sc->bge_timeout);
4196 1.1 fvdl
4197 1.1 fvdl /*
4198 1.1 fvdl * Disable all of the receiver blocks
4199 1.1 fvdl */
4200 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4201 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4202 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4203 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4204 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4205 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4206 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4207 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4208 1.1 fvdl
4209 1.1 fvdl /*
4210 1.1 fvdl * Disable all of the transmit blocks
4211 1.1 fvdl */
4212 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4213 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4214 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4215 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4216 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4217 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4218 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4219 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4220 1.1 fvdl
4221 1.1 fvdl /*
4222 1.1 fvdl * Shut down all of the memory managers and related
4223 1.1 fvdl * state machines.
4224 1.1 fvdl */
4225 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4226 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4227 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc)))
4228 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4229 1.11 thorpej
4230 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4231 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4232 1.11 thorpej
4233 1.157 msaitoh if (!(BGE_IS_5705_OR_BEYOND(sc))) {
4234 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4235 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4236 1.44 hannken }
4237 1.1 fvdl
4238 1.1 fvdl /* Disable host interrupts. */
4239 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4240 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4241 1.1 fvdl
4242 1.1 fvdl /*
4243 1.1 fvdl * Tell firmware we're shutting down.
4244 1.1 fvdl */
4245 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4246 1.1 fvdl
4247 1.1 fvdl /* Free the RX lists. */
4248 1.1 fvdl bge_free_rx_ring_std(sc);
4249 1.1 fvdl
4250 1.1 fvdl /* Free jumbo RX list. */
4251 1.1 fvdl bge_free_rx_ring_jumbo(sc);
4252 1.1 fvdl
4253 1.1 fvdl /* Free TX buffers. */
4254 1.1 fvdl bge_free_tx_ring(sc);
4255 1.1 fvdl
4256 1.1 fvdl /*
4257 1.1 fvdl * Isolate/power down the PHY.
4258 1.1 fvdl */
4259 1.157 msaitoh if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4260 1.1 fvdl mii_down(&sc->bge_mii);
4261 1.1 fvdl
4262 1.161 msaitoh sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4263 1.1 fvdl
4264 1.161 msaitoh /* Clear MAC's link state (PHY may still have link UP). */
4265 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4266 1.1 fvdl
4267 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4268 1.1 fvdl }
4269 1.1 fvdl
4270 1.161 msaitoh static void
4271 1.161 msaitoh bge_link_upd(struct bge_softc *sc)
4272 1.161 msaitoh {
4273 1.161 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
4274 1.161 msaitoh struct mii_data *mii = &sc->bge_mii;
4275 1.161 msaitoh u_int32_t status;
4276 1.161 msaitoh int link;
4277 1.161 msaitoh
4278 1.161 msaitoh /* Clear 'pending link event' flag */
4279 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4280 1.161 msaitoh
4281 1.161 msaitoh /*
4282 1.161 msaitoh * Process link state changes.
4283 1.161 msaitoh * Grrr. The link status word in the status block does
4284 1.161 msaitoh * not work correctly on the BCM5700 rev AX and BX chips,
4285 1.161 msaitoh * according to all available information. Hence, we have
4286 1.161 msaitoh * to enable MII interrupts in order to properly obtain
4287 1.161 msaitoh * async link changes. Unfortunately, this also means that
4288 1.161 msaitoh * we have to read the MAC status register to detect link
4289 1.161 msaitoh * changes, thereby adding an additional register access to
4290 1.161 msaitoh * the interrupt handler.
4291 1.161 msaitoh */
4292 1.161 msaitoh
4293 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4294 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4295 1.161 msaitoh if (status & BGE_MACSTAT_MI_INTERRUPT) {
4296 1.161 msaitoh mii_pollstat(mii);
4297 1.161 msaitoh
4298 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4299 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4300 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4301 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4302 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4303 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4304 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4305 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4306 1.161 msaitoh
4307 1.161 msaitoh /* Clear the interrupt */
4308 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4309 1.161 msaitoh BGE_EVTENB_MI_INTERRUPT);
4310 1.161 msaitoh bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4311 1.161 msaitoh bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4312 1.161 msaitoh BRGPHY_INTRS);
4313 1.161 msaitoh }
4314 1.161 msaitoh return;
4315 1.161 msaitoh }
4316 1.161 msaitoh
4317 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4318 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4319 1.161 msaitoh if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4320 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4321 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4322 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4323 1.161 msaitoh BGE_CLRBIT(sc, BGE_MAC_MODE,
4324 1.161 msaitoh BGE_MACMODE_TBI_SEND_CFGS);
4325 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4326 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_UP);
4327 1.161 msaitoh }
4328 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4329 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4330 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_DOWN);
4331 1.161 msaitoh }
4332 1.161 msaitoh /*
4333 1.161 msaitoh * Discard link events for MII/GMII cards if MI auto-polling disabled.
4334 1.161 msaitoh * This should not happen since mii callouts are locked now, but
4335 1.161 msaitoh * we keep this check for debug.
4336 1.161 msaitoh */
4337 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4338 1.161 msaitoh /*
4339 1.161 msaitoh * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4340 1.161 msaitoh * bit in status word always set. Workaround this bug by
4341 1.161 msaitoh * reading PHY link status directly.
4342 1.161 msaitoh */
4343 1.161 msaitoh link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4344 1.161 msaitoh BGE_STS_LINK : 0;
4345 1.161 msaitoh
4346 1.161 msaitoh if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4347 1.161 msaitoh mii_pollstat(mii);
4348 1.161 msaitoh
4349 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4350 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4351 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4352 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4353 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4354 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4355 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4356 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4357 1.161 msaitoh }
4358 1.161 msaitoh }
4359 1.161 msaitoh
4360 1.161 msaitoh /* Clear the attention */
4361 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4362 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4363 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
4364 1.161 msaitoh }
4365 1.161 msaitoh
4366 1.64 jonathan static int
4367 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4368 1.64 jonathan {
4369 1.64 jonathan int error, t;
4370 1.64 jonathan struct sysctlnode node;
4371 1.64 jonathan
4372 1.64 jonathan node = *rnode;
4373 1.64 jonathan t = *(int*)rnode->sysctl_data;
4374 1.64 jonathan node.sysctl_data = &t;
4375 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4376 1.64 jonathan if (error || newp == NULL)
4377 1.64 jonathan return (error);
4378 1.64 jonathan
4379 1.64 jonathan #if 0
4380 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4381 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4382 1.64 jonathan #endif
4383 1.64 jonathan
4384 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4385 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4386 1.64 jonathan return (EINVAL);
4387 1.64 jonathan bge_update_all_threshes(t);
4388 1.64 jonathan } else
4389 1.64 jonathan return (EINVAL);
4390 1.64 jonathan
4391 1.64 jonathan *(int*)rnode->sysctl_data = t;
4392 1.64 jonathan
4393 1.64 jonathan return (0);
4394 1.64 jonathan }
4395 1.64 jonathan
4396 1.64 jonathan /*
4397 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4398 1.64 jonathan *
4399 1.64 jonathan * TBD condition SYSCTL_PERMANENT on being an LKM or not
4400 1.64 jonathan */
4401 1.64 jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4402 1.64 jonathan {
4403 1.66 atatat int rc, bge_root_num;
4404 1.90 atatat const struct sysctlnode *node;
4405 1.64 jonathan
4406 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4407 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4408 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4409 1.64 jonathan goto err;
4410 1.64 jonathan }
4411 1.64 jonathan
4412 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, &node,
4413 1.73 atatat CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4414 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4415 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4416 1.64 jonathan goto err;
4417 1.64 jonathan }
4418 1.64 jonathan
4419 1.66 atatat bge_root_num = node->sysctl_num;
4420 1.66 atatat
4421 1.64 jonathan /* BGE Rx interrupt mitigation level */
4422 1.87 perry if ((rc = sysctl_createv(clog, 0, NULL, &node,
4423 1.64 jonathan CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4424 1.73 atatat CTLTYPE_INT, "rx_lvl",
4425 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4426 1.73 atatat sysctl_bge_verify, 0,
4427 1.64 jonathan &bge_rx_thresh_lvl,
4428 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4429 1.64 jonathan CTL_EOL)) != 0) {
4430 1.64 jonathan goto err;
4431 1.64 jonathan }
4432 1.64 jonathan
4433 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4434 1.64 jonathan
4435 1.64 jonathan return;
4436 1.64 jonathan
4437 1.64 jonathan err:
4438 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4439 1.64 jonathan }
4440 1.151 cegger
4441 1.151 cegger static int
4442 1.151 cegger bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4443 1.151 cegger {
4444 1.151 cegger u_int32_t mac_addr;
4445 1.151 cegger
4446 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c14);
4447 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
4448 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
4449 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
4450 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c18);
4451 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
4452 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
4453 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
4454 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
4455 1.151 cegger return (0);
4456 1.151 cegger }
4457 1.151 cegger return (1);
4458 1.151 cegger }
4459 1.151 cegger
4460 1.151 cegger static int
4461 1.151 cegger bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4462 1.151 cegger {
4463 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
4464 1.151 cegger
4465 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4466 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
4467 1.151 cegger }
4468 1.151 cegger
4469 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4470 1.151 cegger ETHER_ADDR_LEN));
4471 1.151 cegger }
4472 1.151 cegger
4473 1.151 cegger static int
4474 1.151 cegger bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4475 1.151 cegger {
4476 1.151 cegger
4477 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4478 1.151 cegger return (1);
4479 1.151 cegger }
4480 1.151 cegger
4481 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4482 1.151 cegger ETHER_ADDR_LEN));
4483 1.151 cegger }
4484 1.151 cegger
4485 1.151 cegger static int
4486 1.151 cegger bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4487 1.151 cegger {
4488 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4489 1.151 cegger /* NOTE: Order is critical */
4490 1.151 cegger bge_get_eaddr_mem,
4491 1.151 cegger bge_get_eaddr_nvram,
4492 1.151 cegger bge_get_eaddr_eeprom,
4493 1.151 cegger NULL
4494 1.151 cegger };
4495 1.151 cegger const bge_eaddr_fcn_t *func;
4496 1.151 cegger
4497 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4498 1.151 cegger if ((*func)(sc, eaddr) == 0)
4499 1.151 cegger break;
4500 1.151 cegger }
4501 1.151 cegger return (*func == NULL ? ENXIO : 0);
4502 1.151 cegger }
4503