Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.174
      1  1.174    martin /*	$NetBSD: if_bge.c,v 1.174 2010/01/24 23:09:26 martin Exp $	*/
      2    1.8   thorpej 
      3    1.1      fvdl /*
      4    1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5    1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6    1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7    1.1      fvdl  *
      8    1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9    1.1      fvdl  * modification, are permitted provided that the following conditions
     10    1.1      fvdl  * are met:
     11    1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12    1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13    1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14    1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15    1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16    1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17    1.1      fvdl  *    must display the following acknowledgement:
     18    1.1      fvdl  *	This product includes software developed by Bill Paul.
     19    1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20    1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21    1.1      fvdl  *    without specific prior written permission.
     22    1.1      fvdl  *
     23    1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24    1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25    1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26    1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27    1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28    1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29    1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30    1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31    1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32    1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33    1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34    1.1      fvdl  *
     35    1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36    1.1      fvdl  */
     37    1.1      fvdl 
     38    1.1      fvdl /*
     39   1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40    1.1      fvdl  *
     41   1.12   thorpej  * NetBSD version by:
     42   1.12   thorpej  *
     43   1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44   1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45   1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46   1.12   thorpej  *
     47   1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48    1.1      fvdl  * Senior Engineer, Wind River Systems
     49    1.1      fvdl  */
     50    1.1      fvdl 
     51    1.1      fvdl /*
     52    1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53    1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54    1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55    1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56    1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57    1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58    1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59    1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60    1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61    1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62    1.1      fvdl  * into the driver.
     63    1.1      fvdl  *
     64    1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66    1.1      fvdl  *
     67    1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68   1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69    1.1      fvdl  * does not support external SSRAM.
     70    1.1      fvdl  *
     71    1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72    1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73    1.1      fvdl  *
     74    1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75    1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76    1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77    1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78    1.1      fvdl  * ring.
     79    1.1      fvdl  */
     80   1.43     lukem 
     81   1.43     lukem #include <sys/cdefs.h>
     82  1.174    martin __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.174 2010/01/24 23:09:26 martin Exp $");
     83    1.1      fvdl 
     84    1.1      fvdl #include "vlan.h"
     85  1.148   mlelstv #include "rnd.h"
     86    1.1      fvdl 
     87    1.1      fvdl #include <sys/param.h>
     88    1.1      fvdl #include <sys/systm.h>
     89    1.1      fvdl #include <sys/callout.h>
     90    1.1      fvdl #include <sys/sockio.h>
     91    1.1      fvdl #include <sys/mbuf.h>
     92    1.1      fvdl #include <sys/malloc.h>
     93    1.1      fvdl #include <sys/kernel.h>
     94    1.1      fvdl #include <sys/device.h>
     95    1.1      fvdl #include <sys/socket.h>
     96   1.64  jonathan #include <sys/sysctl.h>
     97    1.1      fvdl 
     98    1.1      fvdl #include <net/if.h>
     99    1.1      fvdl #include <net/if_dl.h>
    100    1.1      fvdl #include <net/if_media.h>
    101    1.1      fvdl #include <net/if_ether.h>
    102    1.1      fvdl 
    103  1.148   mlelstv #if NRND > 0
    104  1.148   mlelstv #include <sys/rnd.h>
    105  1.148   mlelstv #endif
    106  1.148   mlelstv 
    107    1.1      fvdl #ifdef INET
    108    1.1      fvdl #include <netinet/in.h>
    109    1.1      fvdl #include <netinet/in_systm.h>
    110    1.1      fvdl #include <netinet/in_var.h>
    111    1.1      fvdl #include <netinet/ip.h>
    112    1.1      fvdl #endif
    113    1.1      fvdl 
    114   1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    115   1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116   1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117   1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    118   1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    119   1.95  jonathan 
    120   1.95  jonathan 
    121    1.1      fvdl #include <net/bpf.h>
    122    1.1      fvdl 
    123    1.1      fvdl #include <dev/pci/pcireg.h>
    124    1.1      fvdl #include <dev/pci/pcivar.h>
    125    1.1      fvdl #include <dev/pci/pcidevs.h>
    126    1.1      fvdl 
    127    1.1      fvdl #include <dev/mii/mii.h>
    128    1.1      fvdl #include <dev/mii/miivar.h>
    129    1.1      fvdl #include <dev/mii/miidevs.h>
    130    1.1      fvdl #include <dev/mii/brgphyreg.h>
    131    1.1      fvdl 
    132    1.1      fvdl #include <dev/pci/if_bgereg.h>
    133  1.164   msaitoh #include <dev/pci/if_bgevar.h>
    134    1.1      fvdl 
    135    1.1      fvdl #include <uvm/uvm_extern.h>
    136  1.164   msaitoh #include <prop/proplib.h>
    137    1.1      fvdl 
    138   1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    139   1.46  jonathan 
    140   1.63  jonathan 
    141   1.63  jonathan /*
    142   1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    143   1.63  jonathan  */
    144   1.63  jonathan 
    145   1.63  jonathan /*
    146   1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    147   1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    148   1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    149   1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    150   1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    151   1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    152   1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    153   1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    154   1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    155   1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    156   1.87     perry  *
    157   1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    158   1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    159   1.63  jonathan  * family), the larger values may overflow internal chip limits,
    160   1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    161   1.63  jonathan  * rates.
    162   1.63  jonathan  *
    163   1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    164   1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    165   1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    166   1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    167   1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    168   1.63  jonathan  */
    169  1.104   thorpej static const struct bge_load_rx_thresh {
    170   1.63  jonathan 	int rx_ticks;
    171   1.63  jonathan 	int rx_max_bds; }
    172   1.63  jonathan bge_rx_threshes[] = {
    173   1.63  jonathan 	{ 32,   2 },
    174   1.63  jonathan 	{ 50,   4 },
    175   1.63  jonathan 	{ 100,  8 },
    176   1.63  jonathan 	{ 192, 16 },
    177   1.63  jonathan 	{ 416, 32 },
    178   1.63  jonathan 	{ 598, 46 }
    179   1.63  jonathan };
    180   1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    181   1.63  jonathan 
    182   1.63  jonathan /* XXX patchable; should be sysctl'able */
    183   1.64  jonathan static int	bge_auto_thresh = 1;
    184   1.64  jonathan static int	bge_rx_thresh_lvl;
    185   1.64  jonathan 
    186  1.104   thorpej static int	bge_rxthresh_nodenum;
    187    1.1      fvdl 
    188  1.170   msaitoh typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    189  1.151    cegger 
    190  1.104   thorpej static int	bge_probe(device_t, cfdata_t, void *);
    191  1.104   thorpej static void	bge_attach(device_t, device_t, void *);
    192  1.104   thorpej static void	bge_release_resources(struct bge_softc *);
    193  1.104   thorpej static void	bge_txeof(struct bge_softc *);
    194  1.104   thorpej static void	bge_rxeof(struct bge_softc *);
    195  1.104   thorpej 
    196  1.172   msaitoh static int	bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    197  1.170   msaitoh static int 	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    198  1.170   msaitoh static int 	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    199  1.170   msaitoh static int 	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    200  1.170   msaitoh static int 	bge_get_eaddr(struct bge_softc *, uint8_t[]);
    201  1.151    cegger 
    202  1.104   thorpej static void	bge_tick(void *);
    203  1.104   thorpej static void	bge_stats_update(struct bge_softc *);
    204  1.172   msaitoh static void	bge_stats_update_regs(struct bge_softc *);
    205  1.170   msaitoh static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206  1.104   thorpej 
    207  1.104   thorpej static int	bge_intr(void *);
    208  1.104   thorpej static void	bge_start(struct ifnet *);
    209  1.126  christos static int	bge_ioctl(struct ifnet *, u_long, void *);
    210  1.104   thorpej static int	bge_init(struct ifnet *);
    211  1.141  jmcneill static void	bge_stop(struct ifnet *, int);
    212  1.104   thorpej static void	bge_watchdog(struct ifnet *);
    213  1.104   thorpej static int	bge_ifmedia_upd(struct ifnet *);
    214  1.104   thorpej static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215  1.104   thorpej 
    216  1.104   thorpej static void	bge_setmulti(struct bge_softc *);
    217  1.104   thorpej 
    218  1.104   thorpej static void	bge_handle_events(struct bge_softc *);
    219  1.104   thorpej static int	bge_alloc_jumbo_mem(struct bge_softc *);
    220  1.104   thorpej #if 0 /* XXX */
    221  1.104   thorpej static void	bge_free_jumbo_mem(struct bge_softc *);
    222    1.1      fvdl #endif
    223  1.104   thorpej static void	*bge_jalloc(struct bge_softc *);
    224  1.126  christos static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    225  1.104   thorpej static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    226  1.104   thorpej 			       bus_dmamap_t);
    227  1.104   thorpej static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    228  1.104   thorpej static int	bge_init_rx_ring_std(struct bge_softc *);
    229  1.104   thorpej static void	bge_free_rx_ring_std(struct bge_softc *);
    230  1.104   thorpej static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    231  1.104   thorpej static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    232  1.104   thorpej static void	bge_free_tx_ring(struct bge_softc *);
    233  1.104   thorpej static int	bge_init_tx_ring(struct bge_softc *);
    234  1.104   thorpej 
    235  1.104   thorpej static int	bge_chipinit(struct bge_softc *);
    236  1.104   thorpej static int	bge_blockinit(struct bge_softc *);
    237  1.104   thorpej static int	bge_setpowerstate(struct bge_softc *, int);
    238    1.1      fvdl 
    239  1.104   thorpej static void	bge_reset(struct bge_softc *);
    240  1.161   msaitoh static void	bge_link_upd(struct bge_softc *);
    241   1.95  jonathan 
    242    1.1      fvdl #ifdef BGE_DEBUG
    243    1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    244    1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    245   1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    246    1.1      fvdl int	bgedebug = 0;
    247   1.95  jonathan int	bge_tso_debug = 0;
    248  1.172   msaitoh void		bge_debug_info(struct bge_softc *);
    249    1.1      fvdl #else
    250    1.1      fvdl #define DPRINTF(x)
    251    1.1      fvdl #define DPRINTFN(n,x)
    252   1.95  jonathan #define BGE_TSO_PRINTF(x)
    253    1.1      fvdl #endif
    254    1.1      fvdl 
    255   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    256   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    257   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    258   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    259   1.72   thorpej #else
    260   1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    261   1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    262   1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    263   1.72   thorpej #endif
    264   1.72   thorpej 
    265  1.158   msaitoh static const struct bge_product {
    266  1.158   msaitoh 	pci_vendor_id_t		bp_vendor;
    267  1.158   msaitoh 	pci_product_id_t	bp_product;
    268  1.158   msaitoh 	const char		*bp_name;
    269  1.158   msaitoh } bge_products[] = {
    270  1.158   msaitoh 	/*
    271  1.158   msaitoh 	 * The BCM5700 documentation seems to indicate that the hardware
    272  1.158   msaitoh 	 * still has the Alteon vendor ID burned into it, though it
    273  1.158   msaitoh 	 * should always be overridden by the value in the EEPROM.  We'll
    274  1.158   msaitoh 	 * check for it anyway.
    275  1.158   msaitoh 	 */
    276  1.158   msaitoh 	{ PCI_VENDOR_ALTEON,
    277  1.158   msaitoh 	  PCI_PRODUCT_ALTEON_BCM5700,
    278  1.158   msaitoh 	  "Broadcom BCM5700 Gigabit Ethernet",
    279  1.158   msaitoh 	  },
    280  1.158   msaitoh 	{ PCI_VENDOR_ALTEON,
    281  1.158   msaitoh 	  PCI_PRODUCT_ALTEON_BCM5701,
    282  1.158   msaitoh 	  "Broadcom BCM5701 Gigabit Ethernet",
    283  1.158   msaitoh 	  },
    284  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    285  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC1000,
    286  1.158   msaitoh 	  "Altima AC1000 Gigabit Ethernet",
    287  1.158   msaitoh 	  },
    288  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    289  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC1001,
    290  1.158   msaitoh 	  "Altima AC1001 Gigabit Ethernet",
    291  1.158   msaitoh 	   },
    292  1.158   msaitoh 	{ PCI_VENDOR_ALTIMA,
    293  1.158   msaitoh 	  PCI_PRODUCT_ALTIMA_AC9100,
    294  1.158   msaitoh 	  "Altima AC9100 Gigabit Ethernet",
    295  1.158   msaitoh 	  },
    296  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    297  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5700,
    298  1.158   msaitoh 	  "Broadcom BCM5700 Gigabit Ethernet",
    299  1.158   msaitoh 	  },
    300  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    301  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5701,
    302  1.158   msaitoh 	  "Broadcom BCM5701 Gigabit Ethernet",
    303  1.158   msaitoh 	  },
    304  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    305  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5702,
    306  1.158   msaitoh 	  "Broadcom BCM5702 Gigabit Ethernet",
    307  1.158   msaitoh 	  },
    308  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    309  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    310  1.158   msaitoh 	  "Broadcom BCM5702X Gigabit Ethernet" },
    311  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    312  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703,
    313  1.158   msaitoh 	  "Broadcom BCM5703 Gigabit Ethernet",
    314  1.158   msaitoh 	  },
    315  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    316  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    317  1.158   msaitoh 	  "Broadcom BCM5703X Gigabit Ethernet",
    318  1.158   msaitoh 	  },
    319  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    320  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    321  1.158   msaitoh 	  "Broadcom BCM5703 Gigabit Ethernet",
    322  1.158   msaitoh 	  },
    323  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    324  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    325  1.158   msaitoh 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    326  1.158   msaitoh 	  },
    327  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    328  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    329  1.158   msaitoh 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    330  1.158   msaitoh 	  },
    331  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    332  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705,
    333  1.158   msaitoh 	  "Broadcom BCM5705 Gigabit Ethernet",
    334  1.158   msaitoh 	  },
    335  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    336  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    337  1.172   msaitoh 	  "Broadcom BCM5705F Gigabit Ethernet",
    338  1.172   msaitoh 	  },
    339  1.172   msaitoh    	{ PCI_VENDOR_BROADCOM,
    340  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    341  1.158   msaitoh 	  "Broadcom BCM5705K Gigabit Ethernet",
    342  1.158   msaitoh 	  },
    343  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    344  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    345  1.158   msaitoh 	  "Broadcom BCM5705M Gigabit Ethernet",
    346  1.158   msaitoh 	  },
    347  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    348  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    349  1.158   msaitoh 	  "Broadcom BCM5705M Gigabit Ethernet",
    350  1.158   msaitoh 	  },
    351  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    352  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5714,
    353  1.172   msaitoh 	  "Broadcom BCM5714 Gigabit Ethernet",
    354  1.172   msaitoh 	  },
    355  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    356  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    357  1.172   msaitoh 	  "Broadcom BCM5714S Gigabit Ethernet",
    358  1.158   msaitoh 	  },
    359  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    360  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5715,
    361  1.172   msaitoh 	  "Broadcom BCM5715 Gigabit Ethernet",
    362  1.158   msaitoh 	  },
    363  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    364  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    365  1.172   msaitoh 	  "Broadcom BCM5715S Gigabit Ethernet",
    366  1.172   msaitoh 	  },
    367  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    368  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5717,
    369  1.172   msaitoh 	  "Broadcom BCM5717 Gigabit Ethernet",
    370  1.172   msaitoh 	  },
    371  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    372  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5718,
    373  1.172   msaitoh 	  "Broadcom BCM5718 Gigabit Ethernet",
    374  1.172   msaitoh 	  },
    375  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    376  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5720,
    377  1.172   msaitoh 	  "Broadcom BCM5720 Gigabit Ethernet",
    378  1.158   msaitoh 	  },
    379  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    380  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5721,
    381  1.158   msaitoh 	  "Broadcom BCM5721 Gigabit Ethernet",
    382  1.158   msaitoh 	  },
    383  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    384  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5722,
    385  1.158   msaitoh 	  "Broadcom BCM5722 Gigabit Ethernet",
    386  1.158   msaitoh 	  },
    387  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    388  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5723,
    389  1.172   msaitoh 	  "Broadcom BCM5723 Gigabit Ethernet",
    390  1.172   msaitoh 	  },
    391  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    392  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5724,
    393  1.172   msaitoh 	  "Broadcom BCM5724 Gigabit Ethernet",
    394  1.172   msaitoh 	  },
    395  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    396  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5750,
    397  1.158   msaitoh 	  "Broadcom BCM5750 Gigabit Ethernet",
    398  1.158   msaitoh 	  },
    399  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    400  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    401  1.158   msaitoh 	  "Broadcom BCM5750M Gigabit Ethernet",
    402  1.158   msaitoh 	  },
    403  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    404  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5751,
    405  1.158   msaitoh 	  "Broadcom BCM5751 Gigabit Ethernet",
    406  1.158   msaitoh 	  },
    407  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    408  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    409  1.172   msaitoh 	  "Broadcom BCM5751F Gigabit Ethernet",
    410  1.172   msaitoh 	  },
    411  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    412  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    413  1.158   msaitoh 	  "Broadcom BCM5751M Gigabit Ethernet",
    414  1.158   msaitoh 	  },
    415  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    416  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5752,
    417  1.158   msaitoh 	  "Broadcom BCM5752 Gigabit Ethernet",
    418  1.158   msaitoh 	  },
    419  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    420  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    421  1.158   msaitoh 	  "Broadcom BCM5752M Gigabit Ethernet",
    422  1.158   msaitoh 	  },
    423  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    424  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5753,
    425  1.158   msaitoh 	  "Broadcom BCM5753 Gigabit Ethernet",
    426  1.158   msaitoh 	  },
    427  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    428  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    429  1.172   msaitoh 	  "Broadcom BCM5753F Gigabit Ethernet",
    430  1.172   msaitoh 	  },
    431  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    432  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    433  1.158   msaitoh 	  "Broadcom BCM5753M Gigabit Ethernet",
    434  1.158   msaitoh 	  },
    435  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    436  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5754,
    437  1.158   msaitoh 	  "Broadcom BCM5754 Gigabit Ethernet",
    438  1.158   msaitoh 	},
    439  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    440  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    441  1.158   msaitoh 	  "Broadcom BCM5754M Gigabit Ethernet",
    442  1.158   msaitoh 	},
    443  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    444  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5755,
    445  1.158   msaitoh 	  "Broadcom BCM5755 Gigabit Ethernet",
    446  1.158   msaitoh 	},
    447  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    448  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    449  1.158   msaitoh 	  "Broadcom BCM5755M Gigabit Ethernet",
    450  1.158   msaitoh 	},
    451  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    452  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5756,
    453  1.172   msaitoh 	  "Broadcom BCM5756 Gigabit Ethernet",
    454  1.172   msaitoh 	},
    455  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    456  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5761,
    457  1.172   msaitoh 	  "Broadcom BCM5761 Gigabit Ethernet",
    458  1.172   msaitoh 	},
    459  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    460  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    461  1.172   msaitoh 	  "Broadcom BCM5761E Gigabit Ethernet",
    462  1.172   msaitoh 	},
    463  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    464  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    465  1.172   msaitoh 	  "Broadcom BCM5761S Gigabit Ethernet",
    466  1.172   msaitoh 	},
    467  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    468  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    469  1.172   msaitoh 	  "Broadcom BCM5761SE Gigabit Ethernet",
    470  1.172   msaitoh 	},
    471  1.172   msaitoh    	{ PCI_VENDOR_BROADCOM,
    472  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5764,
    473  1.172   msaitoh 	  "Broadcom BCM5764 Gigabit Ethernet",
    474  1.172   msaitoh 	  },
    475  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    476  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5780,
    477  1.158   msaitoh 	  "Broadcom BCM5780 Gigabit Ethernet",
    478  1.158   msaitoh 	  },
    479  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    480  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    481  1.158   msaitoh 	  "Broadcom BCM5780S Gigabit Ethernet",
    482  1.158   msaitoh 	  },
    483  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    484  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5781,
    485  1.172   msaitoh 	  "Broadcom BCM5781 Gigabit Ethernet",
    486  1.172   msaitoh 	  },
    487  1.172   msaitoh    	{ PCI_VENDOR_BROADCOM,
    488  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5782,
    489  1.158   msaitoh 	  "Broadcom BCM5782 Gigabit Ethernet",
    490  1.158   msaitoh 	},
    491  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    492  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    493  1.172   msaitoh 	  "BCM5784M NetLink 1000baseT Ethernet",
    494  1.172   msaitoh 	},
    495  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    496  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5786,
    497  1.158   msaitoh 	  "Broadcom BCM5786 Gigabit Ethernet",
    498  1.158   msaitoh 	},
    499  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    500  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5787,
    501  1.158   msaitoh 	  "Broadcom BCM5787 Gigabit Ethernet",
    502  1.158   msaitoh 	},
    503  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    504  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    505  1.158   msaitoh 	  "Broadcom BCM5787M Gigabit Ethernet",
    506  1.158   msaitoh 	},
    507  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    508  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5788,
    509  1.158   msaitoh 	  "Broadcom BCM5788 Gigabit Ethernet",
    510  1.158   msaitoh 	  },
    511  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    512  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5789,
    513  1.158   msaitoh 	  "Broadcom BCM5789 Gigabit Ethernet",
    514  1.158   msaitoh 	  },
    515  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    516  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5901,
    517  1.158   msaitoh 	  "Broadcom BCM5901 Fast Ethernet",
    518  1.158   msaitoh 	  },
    519  1.158   msaitoh    	{ PCI_VENDOR_BROADCOM,
    520  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    521  1.158   msaitoh 	  "Broadcom BCM5901A2 Fast Ethernet",
    522  1.158   msaitoh 	  },
    523  1.172   msaitoh    	{ PCI_VENDOR_BROADCOM,
    524  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    525  1.172   msaitoh 	  "Broadcom BCM5903M Fast Ethernet",
    526  1.158   msaitoh 	  },
    527  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    528  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5906,
    529  1.158   msaitoh 	  "Broadcom BCM5906 Fast Ethernet",
    530  1.158   msaitoh 	  },
    531  1.158   msaitoh 	{ PCI_VENDOR_BROADCOM,
    532  1.158   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    533  1.158   msaitoh 	  "Broadcom BCM5906M Fast Ethernet",
    534  1.158   msaitoh 	  },
    535  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    536  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57760,
    537  1.172   msaitoh 	  "Broadcom BCM57760 Fast Ethernet",
    538  1.172   msaitoh 	  },
    539  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    540  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57761,
    541  1.172   msaitoh 	  "Broadcom BCM57761 Fast Ethernet",
    542  1.172   msaitoh 	  },
    543  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    544  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57765,
    545  1.172   msaitoh 	  "Broadcom BCM57765 Fast Ethernet",
    546  1.172   msaitoh 	  },
    547  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    548  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57780,
    549  1.172   msaitoh 	  "Broadcom BCM57780 Fast Ethernet",
    550  1.172   msaitoh 	  },
    551  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    552  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57781,
    553  1.172   msaitoh 	  "Broadcom BCM57781 Fast Ethernet",
    554  1.172   msaitoh 	  },
    555  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    556  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57785,
    557  1.172   msaitoh 	  "Broadcom BCM57785 Fast Ethernet",
    558  1.172   msaitoh 	  },
    559  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    560  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57788,
    561  1.172   msaitoh 	  "Broadcom BCM57788 Fast Ethernet",
    562  1.172   msaitoh 	  },
    563  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    564  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57790,
    565  1.172   msaitoh 	  "Broadcom BCM57790 Fast Ethernet",
    566  1.172   msaitoh 	  },
    567  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    568  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57791,
    569  1.172   msaitoh 	  "Broadcom BCM57791 Fast Ethernet",
    570  1.172   msaitoh 	  },
    571  1.172   msaitoh 	{ PCI_VENDOR_BROADCOM,
    572  1.172   msaitoh 	  PCI_PRODUCT_BROADCOM_BCM57795,
    573  1.172   msaitoh 	  "Broadcom BCM57795 Fast Ethernet",
    574  1.172   msaitoh 	  },
    575  1.172   msaitoh 	{ PCI_VENDOR_SCHNEIDERKOCH,
    576  1.172   msaitoh 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    577  1.172   msaitoh 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    578  1.172   msaitoh 	  },
    579  1.172   msaitoh 	{ PCI_VENDOR_3COM,
    580  1.172   msaitoh 	  PCI_PRODUCT_3COM_3C996,
    581  1.172   msaitoh 	  "3Com 3c996 Gigabit Ethernet",
    582  1.172   msaitoh 	  },
    583  1.158   msaitoh 	{ 0,
    584  1.158   msaitoh 	  0,
    585  1.158   msaitoh 	  NULL },
    586  1.158   msaitoh };
    587  1.158   msaitoh 
    588   1.95  jonathan /*
    589   1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    590  1.107     blymn  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    591   1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    592   1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    593   1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    594   1.95  jonathan  * (defined here until the thought is done).
    595   1.95  jonathan  */
    596  1.172   msaitoh #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    597  1.172   msaitoh #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    598  1.172   msaitoh #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    599  1.172   msaitoh #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    600  1.172   msaitoh #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    601  1.172   msaitoh #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    602  1.166   msaitoh 
    603  1.158   msaitoh static const struct bge_revision {
    604  1.158   msaitoh 	uint32_t		br_chipid;
    605  1.158   msaitoh 	const char		*br_name;
    606  1.158   msaitoh } bge_revisions[] = {
    607  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    608  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    609  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    610  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    611  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    612  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    613  1.158   msaitoh 	/* This is treated like a BCM5700 Bx */
    614  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    615  1.158   msaitoh 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    616  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    617  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    618  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    619  1.158   msaitoh 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    620  1.172   msaitoh 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    621  1.172   msaitoh 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    622  1.172   msaitoh 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    623  1.172   msaitoh 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    624  1.172   msaitoh 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    625  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    626  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    627  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    628  1.158   msaitoh 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    629  1.159   msaitoh 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    630  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    631  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    632  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    633  1.158   msaitoh 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    634  1.158   msaitoh 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    635  1.158   msaitoh 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    636  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    637  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    638  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    639  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    640  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    641  1.161   msaitoh 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    642  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    643  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    644  1.158   msaitoh 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    645  1.159   msaitoh 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    646  1.159   msaitoh 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    647  1.159   msaitoh 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    648  1.159   msaitoh 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    649  1.159   msaitoh 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    650  1.159   msaitoh 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    651  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    652  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    653  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    654  1.158   msaitoh 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    655  1.172   msaitoh 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    656  1.172   msaitoh 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    657  1.172   msaitoh 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    658  1.172   msaitoh 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    659  1.172   msaitoh 	/* 5754 and 5787 share the same ASIC ID */
    660  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    661  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    662  1.158   msaitoh 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    663  1.161   msaitoh 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    664  1.161   msaitoh 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    665  1.172   msaitoh 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    666  1.172   msaitoh 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    667  1.172   msaitoh 
    668  1.158   msaitoh 	{ 0, NULL }
    669  1.158   msaitoh };
    670  1.158   msaitoh 
    671  1.158   msaitoh /*
    672  1.158   msaitoh  * Some defaults for major revisions, so that newer steppings
    673  1.158   msaitoh  * that we don't know about have a shot at working.
    674  1.158   msaitoh  */
    675  1.158   msaitoh static const struct bge_revision bge_majorrevs[] = {
    676  1.158   msaitoh 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    677  1.158   msaitoh 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    678  1.158   msaitoh 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    679  1.158   msaitoh 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    680  1.158   msaitoh 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    681  1.162   msaitoh 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    682  1.158   msaitoh 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    683  1.172   msaitoh 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    684  1.172   msaitoh 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    685  1.158   msaitoh 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    686  1.158   msaitoh 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    687  1.172   msaitoh 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    688  1.172   msaitoh 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    689  1.172   msaitoh 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    690  1.162   msaitoh 	/* 5754 and 5787 share the same ASIC ID */
    691  1.166   msaitoh 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    692  1.172   msaitoh 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    693  1.172   msaitoh 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    694  1.172   msaitoh 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    695  1.172   msaitoh 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    696  1.172   msaitoh 
    697  1.158   msaitoh 	{ 0, NULL }
    698  1.158   msaitoh };
    699   1.17   thorpej 
    700  1.138     joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    701   1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    702    1.1      fvdl 
    703  1.170   msaitoh static uint32_t
    704  1.104   thorpej bge_readmem_ind(struct bge_softc *sc, int off)
    705    1.1      fvdl {
    706    1.1      fvdl 	pcireg_t val;
    707    1.1      fvdl 
    708  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    709  1.141  jmcneill 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    710    1.1      fvdl 	return val;
    711    1.1      fvdl }
    712    1.1      fvdl 
    713  1.104   thorpej static void
    714  1.104   thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
    715    1.1      fvdl {
    716  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    717  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    718    1.1      fvdl }
    719    1.1      fvdl 
    720    1.1      fvdl #ifdef notdef
    721  1.170   msaitoh static uint32_t
    722  1.104   thorpej bge_readreg_ind(struct bge_softc *sc, int off)
    723    1.1      fvdl {
    724  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    725  1.158   msaitoh 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    726    1.1      fvdl }
    727    1.1      fvdl #endif
    728    1.1      fvdl 
    729  1.104   thorpej static void
    730  1.104   thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
    731    1.1      fvdl {
    732  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    733  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    734    1.1      fvdl }
    735    1.1      fvdl 
    736  1.151    cegger static void
    737  1.151    cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
    738  1.151    cegger {
    739  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    740  1.151    cegger }
    741  1.151    cegger 
    742  1.151    cegger static void
    743  1.151    cegger bge_writembx(struct bge_softc *sc, int off, int val)
    744  1.151    cegger {
    745  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    746  1.151    cegger 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    747  1.151    cegger 
    748  1.151    cegger 	CSR_WRITE_4(sc, off, val);
    749  1.151    cegger }
    750  1.151    cegger 
    751  1.170   msaitoh static uint8_t
    752  1.170   msaitoh bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    753  1.151    cegger {
    754  1.170   msaitoh 	uint32_t access, byte = 0;
    755  1.151    cegger 	int i;
    756  1.151    cegger 
    757  1.151    cegger 	/* Lock. */
    758  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    759  1.151    cegger 	for (i = 0; i < 8000; i++) {
    760  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    761  1.151    cegger 			break;
    762  1.151    cegger 		DELAY(20);
    763  1.151    cegger 	}
    764  1.151    cegger 	if (i == 8000)
    765  1.170   msaitoh 		return 1;
    766  1.151    cegger 
    767  1.151    cegger 	/* Enable access. */
    768  1.151    cegger 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    769  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    770  1.151    cegger 
    771  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    772  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    773  1.151    cegger 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    774  1.151    cegger 		DELAY(10);
    775  1.151    cegger 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    776  1.151    cegger 			DELAY(10);
    777  1.151    cegger 			break;
    778  1.151    cegger 		}
    779  1.151    cegger 	}
    780  1.151    cegger 
    781  1.151    cegger 	if (i == BGE_TIMEOUT * 10) {
    782  1.151    cegger 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    783  1.170   msaitoh 		return 1;
    784  1.151    cegger 	}
    785  1.151    cegger 
    786  1.151    cegger 	/* Get result. */
    787  1.151    cegger 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    788  1.151    cegger 
    789  1.151    cegger 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    790  1.151    cegger 
    791  1.151    cegger 	/* Disable access. */
    792  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    793  1.151    cegger 
    794  1.151    cegger 	/* Unlock. */
    795  1.151    cegger 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    796  1.151    cegger 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    797  1.151    cegger 
    798  1.170   msaitoh 	return 0;
    799  1.151    cegger }
    800  1.151    cegger 
    801  1.151    cegger /*
    802  1.151    cegger  * Read a sequence of bytes from NVRAM.
    803  1.151    cegger  */
    804  1.151    cegger static int
    805  1.170   msaitoh bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    806  1.151    cegger {
    807  1.151    cegger 	int err = 0, i;
    808  1.170   msaitoh 	uint8_t byte = 0;
    809  1.151    cegger 
    810  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    811  1.170   msaitoh 		return 1;
    812  1.151    cegger 
    813  1.151    cegger 	for (i = 0; i < cnt; i++) {
    814  1.151    cegger 		err = bge_nvram_getbyte(sc, off + i, &byte);
    815  1.151    cegger 		if (err)
    816  1.151    cegger 			break;
    817  1.151    cegger 		*(dest + i) = byte;
    818  1.151    cegger 	}
    819  1.151    cegger 
    820  1.151    cegger 	return (err ? 1 : 0);
    821  1.151    cegger }
    822  1.151    cegger 
    823    1.1      fvdl /*
    824    1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    825    1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    826    1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    827    1.1      fvdl  * access method.
    828    1.1      fvdl  */
    829  1.170   msaitoh static uint8_t
    830  1.170   msaitoh bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    831    1.1      fvdl {
    832    1.1      fvdl 	int i;
    833  1.170   msaitoh 	uint32_t byte = 0;
    834    1.1      fvdl 
    835    1.1      fvdl 	/*
    836    1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    837    1.1      fvdl 	 * having to use the bitbang method.
    838    1.1      fvdl 	 */
    839    1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    840    1.1      fvdl 
    841    1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    842    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    843  1.161   msaitoh 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    844    1.1      fvdl 	DELAY(20);
    845    1.1      fvdl 
    846    1.1      fvdl 	/* Issue the read EEPROM command. */
    847    1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    848    1.1      fvdl 
    849    1.1      fvdl 	/* Wait for completion */
    850  1.170   msaitoh 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    851    1.1      fvdl 		DELAY(10);
    852    1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    853    1.1      fvdl 			break;
    854    1.1      fvdl 	}
    855    1.1      fvdl 
    856  1.172   msaitoh 	if (i == BGE_TIMEOUT * 10) {
    857  1.138     joerg 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    858  1.170   msaitoh 		return 0;
    859    1.1      fvdl 	}
    860    1.1      fvdl 
    861    1.1      fvdl 	/* Get result. */
    862    1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    863    1.1      fvdl 
    864    1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    865    1.1      fvdl 
    866  1.170   msaitoh 	return 0;
    867    1.1      fvdl }
    868    1.1      fvdl 
    869    1.1      fvdl /*
    870    1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    871    1.1      fvdl  */
    872  1.104   thorpej static int
    873  1.126  christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    874    1.1      fvdl {
    875    1.1      fvdl 	int err = 0, i;
    876  1.170   msaitoh 	uint8_t byte = 0;
    877  1.126  christos 	char *dest = destv;
    878    1.1      fvdl 
    879    1.1      fvdl 	for (i = 0; i < cnt; i++) {
    880    1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    881    1.1      fvdl 		if (err)
    882    1.1      fvdl 			break;
    883    1.1      fvdl 		*(dest + i) = byte;
    884    1.1      fvdl 	}
    885    1.1      fvdl 
    886  1.158   msaitoh 	return (err ? 1 : 0);
    887    1.1      fvdl }
    888    1.1      fvdl 
    889  1.104   thorpej static int
    890  1.104   thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
    891    1.1      fvdl {
    892  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    893  1.170   msaitoh 	uint32_t val;
    894  1.172   msaitoh 	uint32_t autopoll;
    895    1.1      fvdl 	int i;
    896    1.1      fvdl 
    897   1.25  jonathan 	/*
    898  1.156   msaitoh 	 * Broadcom's own driver always assumes the internal
    899  1.156   msaitoh 	 * PHY is at GMII address 1. On some chips, the PHY responds
    900  1.156   msaitoh 	 * to accesses at all addresses, which could cause us to
    901  1.156   msaitoh 	 * bogusly attach the PHY 32 times at probe type. Always
    902  1.156   msaitoh 	 * restricting the lookup to address 1 is simpler than
    903  1.156   msaitoh 	 * trying to figure out which chips revisions should be
    904  1.156   msaitoh 	 * special-cased.
    905   1.25  jonathan 	 */
    906  1.156   msaitoh 	if (phy != 1)
    907  1.170   msaitoh 		return 0;
    908    1.1      fvdl 
    909   1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    910  1.172   msaitoh 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    911  1.172   msaitoh 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    912  1.161   msaitoh 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    913  1.172   msaitoh 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    914   1.25  jonathan 		DELAY(40);
    915   1.25  jonathan 	}
    916   1.25  jonathan 
    917  1.172   msaitoh 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    918  1.172   msaitoh 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    919    1.1      fvdl 
    920    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    921    1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    922    1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    923    1.1      fvdl 			break;
    924    1.9   thorpej 		delay(10);
    925    1.1      fvdl 	}
    926    1.1      fvdl 
    927    1.1      fvdl 	if (i == BGE_TIMEOUT) {
    928  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    929   1.29    itojun 		val = 0;
    930   1.25  jonathan 		goto done;
    931    1.1      fvdl 	}
    932    1.1      fvdl 
    933    1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    934    1.1      fvdl 
    935   1.25  jonathan done:
    936  1.172   msaitoh 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    937  1.161   msaitoh 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    938  1.172   msaitoh 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    939   1.25  jonathan 		DELAY(40);
    940   1.25  jonathan 	}
    941   1.29    itojun 
    942    1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    943  1.170   msaitoh 		return 0;
    944    1.1      fvdl 
    945  1.158   msaitoh 	return (val & 0xFFFF);
    946    1.1      fvdl }
    947    1.1      fvdl 
    948  1.104   thorpej static void
    949  1.104   thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    950    1.1      fvdl {
    951  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    952  1.172   msaitoh 	uint32_t autopoll;
    953   1.29    itojun 	int i;
    954    1.1      fvdl 
    955  1.151    cegger 	if (phy!=1) {
    956  1.151    cegger 		return;
    957  1.151    cegger 	}
    958  1.151    cegger 
    959  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    960  1.151    cegger 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    961  1.151    cegger 		return;
    962  1.151    cegger 	}
    963  1.151    cegger 
    964  1.161   msaitoh 	/* Reading with autopolling on may trigger PCI errors */
    965  1.172   msaitoh 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    966  1.172   msaitoh 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    967   1.25  jonathan 		delay(40);
    968  1.161   msaitoh 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    969  1.172   msaitoh 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    970   1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    971   1.25  jonathan 	}
    972   1.29    itojun 
    973  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
    974  1.161   msaitoh 	    BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
    975    1.1      fvdl 
    976    1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    977  1.151    cegger 		delay(10);
    978  1.151    cegger 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    979  1.151    cegger 			delay(5);
    980  1.151    cegger 			CSR_READ_4(sc, BGE_MI_COMM);
    981    1.1      fvdl 			break;
    982  1.151    cegger 		}
    983    1.1      fvdl 	}
    984    1.1      fvdl 
    985  1.172   msaitoh 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    986  1.161   msaitoh 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    987  1.172   msaitoh 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    988   1.25  jonathan 		delay(40);
    989   1.25  jonathan 	}
    990   1.29    itojun 
    991  1.138     joerg 	if (i == BGE_TIMEOUT)
    992  1.138     joerg 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    993    1.1      fvdl }
    994    1.1      fvdl 
    995  1.104   thorpej static void
    996  1.104   thorpej bge_miibus_statchg(device_t dev)
    997    1.1      fvdl {
    998  1.138     joerg 	struct bge_softc *sc = device_private(dev);
    999    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   1000    1.1      fvdl 
   1001   1.69   thorpej 	/*
   1002   1.69   thorpej 	 * Get flow control negotiation result.
   1003   1.69   thorpej 	 */
   1004   1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1005   1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1006   1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1007   1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1008   1.69   thorpej 	}
   1009   1.69   thorpej 
   1010    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1011  1.161   msaitoh 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1012  1.161   msaitoh 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1013    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1014  1.161   msaitoh 	else
   1015    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1016    1.1      fvdl 
   1017  1.158   msaitoh 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1018    1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1019  1.158   msaitoh 	else
   1020    1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1021   1.69   thorpej 
   1022   1.69   thorpej 	/*
   1023   1.69   thorpej 	 * 802.3x flow control
   1024   1.69   thorpej 	 */
   1025  1.158   msaitoh 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1026   1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1027  1.158   msaitoh 	else
   1028   1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1029  1.158   msaitoh 
   1030  1.158   msaitoh 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1031   1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1032  1.158   msaitoh 	else
   1033   1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1034    1.1      fvdl }
   1035    1.1      fvdl 
   1036    1.1      fvdl /*
   1037   1.63  jonathan  * Update rx threshold levels to values in a particular slot
   1038   1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
   1039   1.63  jonathan  */
   1040  1.104   thorpej static void
   1041   1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
   1042   1.63  jonathan {
   1043   1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
   1044   1.63  jonathan 	int s;
   1045   1.63  jonathan 
   1046   1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
   1047   1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
   1048   1.63  jonathan 	 * registers here (even at splhigh()) is observed to
   1049   1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
   1050   1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1051   1.63  jonathan 	 */
   1052   1.63  jonathan 	s = splnet();
   1053   1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1054   1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1055   1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
   1056   1.63  jonathan 	splx(s);
   1057   1.63  jonathan 
   1058   1.63  jonathan 	 return;
   1059   1.63  jonathan }
   1060   1.63  jonathan 
   1061   1.63  jonathan 
   1062   1.63  jonathan /*
   1063   1.63  jonathan  * Update Rx thresholds of all bge devices
   1064   1.63  jonathan  */
   1065  1.104   thorpej static void
   1066   1.63  jonathan bge_update_all_threshes(int lvl)
   1067   1.63  jonathan {
   1068   1.63  jonathan 	struct ifnet *ifp;
   1069   1.63  jonathan 	const char * const namebuf = "bge";
   1070   1.63  jonathan 	int namelen;
   1071   1.63  jonathan 
   1072   1.63  jonathan 	if (lvl < 0)
   1073   1.63  jonathan 		lvl = 0;
   1074  1.170   msaitoh 	else if (lvl >= NBGE_RX_THRESH)
   1075   1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
   1076   1.87     perry 
   1077   1.63  jonathan 	namelen = strlen(namebuf);
   1078   1.63  jonathan 	/*
   1079   1.63  jonathan 	 * Now search all the interfaces for this name/number
   1080   1.63  jonathan 	 */
   1081   1.81      matt 	IFNET_FOREACH(ifp) {
   1082   1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1083   1.63  jonathan 		      continue;
   1084   1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
   1085   1.63  jonathan 		if (bge_auto_thresh)
   1086   1.67  jonathan 			bge_set_thresh(ifp, lvl);
   1087   1.63  jonathan 	}
   1088   1.63  jonathan }
   1089   1.63  jonathan 
   1090   1.63  jonathan /*
   1091    1.1      fvdl  * Handle events that have triggered interrupts.
   1092    1.1      fvdl  */
   1093  1.104   thorpej static void
   1094  1.116  christos bge_handle_events(struct bge_softc *sc)
   1095    1.1      fvdl {
   1096    1.1      fvdl 
   1097    1.1      fvdl 	return;
   1098    1.1      fvdl }
   1099    1.1      fvdl 
   1100    1.1      fvdl /*
   1101    1.1      fvdl  * Memory management for jumbo frames.
   1102    1.1      fvdl  */
   1103    1.1      fvdl 
   1104  1.104   thorpej static int
   1105  1.104   thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
   1106    1.1      fvdl {
   1107  1.126  christos 	char *ptr, *kva;
   1108    1.1      fvdl 	bus_dma_segment_t	seg;
   1109    1.1      fvdl 	int		i, rseg, state, error;
   1110    1.1      fvdl 	struct bge_jpool_entry   *entry;
   1111    1.1      fvdl 
   1112    1.1      fvdl 	state = error = 0;
   1113    1.1      fvdl 
   1114    1.1      fvdl 	/* Grab a big chunk o' storage. */
   1115    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1116    1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1117  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1118    1.1      fvdl 		return ENOBUFS;
   1119    1.1      fvdl 	}
   1120    1.1      fvdl 
   1121    1.1      fvdl 	state = 1;
   1122  1.126  christos 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1123    1.1      fvdl 	    BUS_DMA_NOWAIT)) {
   1124  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   1125  1.138     joerg 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1126    1.1      fvdl 		error = ENOBUFS;
   1127    1.1      fvdl 		goto out;
   1128    1.1      fvdl 	}
   1129    1.1      fvdl 
   1130    1.1      fvdl 	state = 2;
   1131    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1132    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1133  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1134    1.1      fvdl 		error = ENOBUFS;
   1135    1.1      fvdl 		goto out;
   1136    1.1      fvdl 	}
   1137    1.1      fvdl 
   1138    1.1      fvdl 	state = 3;
   1139    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1140    1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1141  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1142    1.1      fvdl 		error = ENOBUFS;
   1143    1.1      fvdl 		goto out;
   1144    1.1      fvdl 	}
   1145    1.1      fvdl 
   1146    1.1      fvdl 	state = 4;
   1147  1.126  christos 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1148   1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1149    1.1      fvdl 
   1150    1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
   1151    1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1152    1.1      fvdl 
   1153    1.1      fvdl 	/*
   1154    1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
   1155    1.1      fvdl 	 * in an array.
   1156    1.1      fvdl 	 */
   1157    1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1158    1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
   1159    1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
   1160    1.1      fvdl 		ptr += BGE_JLEN;
   1161    1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
   1162    1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
   1163    1.1      fvdl 		if (entry == NULL) {
   1164  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1165  1.138     joerg 			    "no memory for jumbo buffer queue!\n");
   1166    1.1      fvdl 			error = ENOBUFS;
   1167    1.1      fvdl 			goto out;
   1168    1.1      fvdl 		}
   1169    1.1      fvdl 		entry->slot = i;
   1170    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1171    1.1      fvdl 				 entry, jpool_entries);
   1172    1.1      fvdl 	}
   1173    1.1      fvdl out:
   1174    1.1      fvdl 	if (error != 0) {
   1175    1.1      fvdl 		switch (state) {
   1176    1.1      fvdl 		case 4:
   1177    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
   1178    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
   1179    1.1      fvdl 		case 3:
   1180    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
   1181    1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
   1182    1.1      fvdl 		case 2:
   1183    1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1184    1.1      fvdl 		case 1:
   1185    1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1186    1.1      fvdl 			break;
   1187    1.1      fvdl 		default:
   1188    1.1      fvdl 			break;
   1189    1.1      fvdl 		}
   1190    1.1      fvdl 	}
   1191    1.1      fvdl 
   1192    1.1      fvdl 	return error;
   1193    1.1      fvdl }
   1194    1.1      fvdl 
   1195    1.1      fvdl /*
   1196    1.1      fvdl  * Allocate a jumbo buffer.
   1197    1.1      fvdl  */
   1198  1.104   thorpej static void *
   1199  1.104   thorpej bge_jalloc(struct bge_softc *sc)
   1200    1.1      fvdl {
   1201    1.1      fvdl 	struct bge_jpool_entry   *entry;
   1202    1.1      fvdl 
   1203    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1204    1.1      fvdl 
   1205    1.1      fvdl 	if (entry == NULL) {
   1206  1.138     joerg 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1207  1.170   msaitoh 		return NULL;
   1208    1.1      fvdl 	}
   1209    1.1      fvdl 
   1210    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1211    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1212  1.158   msaitoh 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1213    1.1      fvdl }
   1214    1.1      fvdl 
   1215    1.1      fvdl /*
   1216    1.1      fvdl  * Release a jumbo buffer.
   1217    1.1      fvdl  */
   1218  1.104   thorpej static void
   1219  1.126  christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1220    1.1      fvdl {
   1221    1.1      fvdl 	struct bge_jpool_entry *entry;
   1222    1.1      fvdl 	struct bge_softc *sc;
   1223    1.1      fvdl 	int i, s;
   1224    1.1      fvdl 
   1225    1.1      fvdl 	/* Extract the softc struct pointer. */
   1226    1.1      fvdl 	sc = (struct bge_softc *)arg;
   1227    1.1      fvdl 
   1228    1.1      fvdl 	if (sc == NULL)
   1229    1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
   1230    1.1      fvdl 
   1231    1.1      fvdl 	/* calculate the slot this buffer belongs to */
   1232    1.1      fvdl 
   1233  1.126  christos 	i = ((char *)buf
   1234  1.126  christos 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1235    1.1      fvdl 
   1236    1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
   1237    1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1238    1.1      fvdl 
   1239    1.1      fvdl 	s = splvm();
   1240    1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1241    1.1      fvdl 	if (entry == NULL)
   1242    1.1      fvdl 		panic("bge_jfree: buffer not in use!");
   1243    1.1      fvdl 	entry->slot = i;
   1244    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1245    1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1246    1.1      fvdl 
   1247    1.1      fvdl 	if (__predict_true(m != NULL))
   1248  1.140        ad   		pool_cache_put(mb_cache, m);
   1249    1.1      fvdl 	splx(s);
   1250    1.1      fvdl }
   1251    1.1      fvdl 
   1252    1.1      fvdl 
   1253    1.1      fvdl /*
   1254    1.1      fvdl  * Intialize a standard receive ring descriptor.
   1255    1.1      fvdl  */
   1256  1.104   thorpej static int
   1257  1.104   thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1258    1.1      fvdl {
   1259    1.1      fvdl 	struct mbuf		*m_new = NULL;
   1260    1.1      fvdl 	struct bge_rx_bd	*r;
   1261    1.1      fvdl 	int			error;
   1262    1.1      fvdl 
   1263    1.1      fvdl 	if (dmamap == NULL) {
   1264    1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1265    1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1266    1.1      fvdl 		if (error != 0)
   1267    1.1      fvdl 			return error;
   1268    1.1      fvdl 	}
   1269    1.1      fvdl 
   1270    1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1271    1.1      fvdl 
   1272    1.1      fvdl 	if (m == NULL) {
   1273    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1274  1.158   msaitoh 		if (m_new == NULL)
   1275  1.170   msaitoh 			return ENOBUFS;
   1276    1.1      fvdl 
   1277    1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
   1278    1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
   1279    1.1      fvdl 			m_freem(m_new);
   1280  1.170   msaitoh 			return ENOBUFS;
   1281    1.1      fvdl 		}
   1282    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1283    1.1      fvdl 
   1284    1.1      fvdl 	} else {
   1285    1.1      fvdl 		m_new = m;
   1286    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1287    1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
   1288    1.1      fvdl 	}
   1289  1.157   msaitoh 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1290  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
   1291  1.124    bouyer 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1292  1.124    bouyer 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1293  1.170   msaitoh 		return ENOBUFS;
   1294  1.125    bouyer 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1295  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
   1296    1.1      fvdl 
   1297    1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1298    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1299  1.172   msaitoh 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1300    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
   1301    1.1      fvdl 	r->bge_len = m_new->m_len;
   1302    1.1      fvdl 	r->bge_idx = i;
   1303    1.1      fvdl 
   1304    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1305    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1306    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1307    1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1308    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1309    1.1      fvdl 
   1310  1.170   msaitoh 	return 0;
   1311    1.1      fvdl }
   1312    1.1      fvdl 
   1313    1.1      fvdl /*
   1314    1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
   1315    1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
   1316    1.1      fvdl  */
   1317  1.104   thorpej static int
   1318  1.104   thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1319    1.1      fvdl {
   1320    1.1      fvdl 	struct mbuf *m_new = NULL;
   1321    1.1      fvdl 	struct bge_rx_bd *r;
   1322  1.126  christos 	void *buf = NULL;
   1323    1.1      fvdl 
   1324    1.1      fvdl 	if (m == NULL) {
   1325    1.1      fvdl 
   1326    1.1      fvdl 		/* Allocate the mbuf. */
   1327    1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1328  1.158   msaitoh 		if (m_new == NULL)
   1329  1.170   msaitoh 			return ENOBUFS;
   1330    1.1      fvdl 
   1331    1.1      fvdl 		/* Allocate the jumbo buffer */
   1332    1.1      fvdl 		buf = bge_jalloc(sc);
   1333    1.1      fvdl 		if (buf == NULL) {
   1334    1.1      fvdl 			m_freem(m_new);
   1335  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1336  1.138     joerg 			    "jumbo allocation failed -- packet dropped!\n");
   1337  1.170   msaitoh 			return ENOBUFS;
   1338    1.1      fvdl 		}
   1339    1.1      fvdl 
   1340    1.1      fvdl 		/* Attach the buffer to the mbuf. */
   1341    1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1342    1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1343    1.1      fvdl 		    bge_jfree, sc);
   1344   1.74      yamt 		m_new->m_flags |= M_EXT_RW;
   1345    1.1      fvdl 	} else {
   1346    1.1      fvdl 		m_new = m;
   1347  1.124    bouyer 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1348    1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1349    1.1      fvdl 	}
   1350  1.157   msaitoh 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1351  1.125    bouyer 	    m_adj(m_new, ETHER_ALIGN);
   1352  1.124    bouyer 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1353  1.126  christos 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1354  1.124    bouyer 	    BUS_DMASYNC_PREREAD);
   1355    1.1      fvdl 	/* Set up the descriptor. */
   1356    1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1357    1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1358  1.172   msaitoh 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1359    1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1360    1.1      fvdl 	r->bge_len = m_new->m_len;
   1361    1.1      fvdl 	r->bge_idx = i;
   1362    1.1      fvdl 
   1363    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1364    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1365    1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1366    1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1367    1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1368    1.1      fvdl 
   1369  1.170   msaitoh 	return 0;
   1370    1.1      fvdl }
   1371    1.1      fvdl 
   1372    1.1      fvdl /*
   1373    1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1374    1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1375    1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1376    1.1      fvdl  * the NIC.
   1377    1.1      fvdl  */
   1378  1.104   thorpej static int
   1379  1.104   thorpej bge_init_rx_ring_std(struct bge_softc *sc)
   1380    1.1      fvdl {
   1381    1.1      fvdl 	int i;
   1382    1.1      fvdl 
   1383    1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
   1384    1.1      fvdl 		return 0;
   1385    1.1      fvdl 
   1386    1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
   1387    1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1388  1.170   msaitoh 			return ENOBUFS;
   1389    1.1      fvdl 	}
   1390    1.1      fvdl 
   1391    1.1      fvdl 	sc->bge_std = i - 1;
   1392  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1393    1.1      fvdl 
   1394    1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
   1395    1.1      fvdl 
   1396  1.170   msaitoh 	return 0;
   1397    1.1      fvdl }
   1398    1.1      fvdl 
   1399  1.104   thorpej static void
   1400  1.104   thorpej bge_free_rx_ring_std(struct bge_softc *sc)
   1401    1.1      fvdl {
   1402    1.1      fvdl 	int i;
   1403    1.1      fvdl 
   1404    1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1405    1.1      fvdl 		return;
   1406    1.1      fvdl 
   1407    1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1408    1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1409    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1410    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1411   1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
   1412    1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
   1413    1.1      fvdl 		}
   1414    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1415    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1416    1.1      fvdl 	}
   1417    1.1      fvdl 
   1418    1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1419    1.1      fvdl }
   1420    1.1      fvdl 
   1421  1.104   thorpej static int
   1422  1.104   thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1423    1.1      fvdl {
   1424    1.1      fvdl 	int i;
   1425   1.34  jonathan 	volatile struct bge_rcb *rcb;
   1426    1.1      fvdl 
   1427   1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1428   1.59    martin 		return 0;
   1429   1.59    martin 
   1430    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1431    1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1432  1.170   msaitoh 			return ENOBUFS;
   1433    1.1      fvdl 	};
   1434    1.1      fvdl 
   1435    1.1      fvdl 	sc->bge_jumbo = i - 1;
   1436   1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1437    1.1      fvdl 
   1438    1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1439   1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1440   1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1441    1.1      fvdl 
   1442  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1443    1.1      fvdl 
   1444  1.170   msaitoh 	return 0;
   1445    1.1      fvdl }
   1446    1.1      fvdl 
   1447  1.104   thorpej static void
   1448  1.104   thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1449    1.1      fvdl {
   1450    1.1      fvdl 	int i;
   1451    1.1      fvdl 
   1452    1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1453    1.1      fvdl 		return;
   1454    1.1      fvdl 
   1455    1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1456    1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1457    1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1458    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1459    1.1      fvdl 		}
   1460    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1461    1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1462    1.1      fvdl 	}
   1463    1.1      fvdl 
   1464    1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1465    1.1      fvdl }
   1466    1.1      fvdl 
   1467  1.104   thorpej static void
   1468  1.104   thorpej bge_free_tx_ring(struct bge_softc *sc)
   1469    1.1      fvdl {
   1470    1.1      fvdl 	int i, freed;
   1471    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1472    1.1      fvdl 
   1473    1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1474    1.1      fvdl 		return;
   1475    1.1      fvdl 
   1476    1.1      fvdl 	freed = 0;
   1477    1.1      fvdl 
   1478    1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1479    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1480    1.1      fvdl 			freed++;
   1481    1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1482    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1483    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1484    1.1      fvdl 					    link);
   1485    1.1      fvdl 			sc->txdma[i] = 0;
   1486    1.1      fvdl 		}
   1487    1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1488    1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1489    1.1      fvdl 	}
   1490    1.1      fvdl 
   1491    1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1492    1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1493    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1494    1.1      fvdl 		free(dma, M_DEVBUF);
   1495    1.1      fvdl 	}
   1496    1.1      fvdl 
   1497    1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1498    1.1      fvdl }
   1499    1.1      fvdl 
   1500  1.104   thorpej static int
   1501  1.104   thorpej bge_init_tx_ring(struct bge_softc *sc)
   1502    1.1      fvdl {
   1503    1.1      fvdl 	int i;
   1504    1.1      fvdl 	bus_dmamap_t dmamap;
   1505    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1506    1.1      fvdl 
   1507    1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1508    1.1      fvdl 		return 0;
   1509    1.1      fvdl 
   1510    1.1      fvdl 	sc->bge_txcnt = 0;
   1511    1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1512   1.94  jonathan 
   1513   1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1514   1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1515  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1516  1.158   msaitoh 	/* 5700 b2 errata */
   1517  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1518  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1519   1.25  jonathan 
   1520  1.158   msaitoh 	/* NIC-memory send ring not used; initialize to zero. */
   1521  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1522  1.158   msaitoh 	/* 5700 b2 errata */
   1523  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1524  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1525    1.1      fvdl 
   1526    1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1527    1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1528   1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1529    1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1530    1.1      fvdl 		    &dmamap))
   1531  1.170   msaitoh 			return ENOBUFS;
   1532    1.1      fvdl 		if (dmamap == NULL)
   1533    1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1534    1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1535    1.1      fvdl 		if (dma == NULL) {
   1536  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   1537  1.138     joerg 			    "can't alloc txdmamap_pool_entry\n");
   1538    1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1539  1.170   msaitoh 			return ENOMEM;
   1540    1.1      fvdl 		}
   1541    1.1      fvdl 		dma->dmamap = dmamap;
   1542    1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1543    1.1      fvdl 	}
   1544    1.1      fvdl 
   1545    1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1546    1.1      fvdl 
   1547  1.170   msaitoh 	return 0;
   1548    1.1      fvdl }
   1549    1.1      fvdl 
   1550  1.104   thorpej static void
   1551  1.104   thorpej bge_setmulti(struct bge_softc *sc)
   1552    1.1      fvdl {
   1553    1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1554    1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1555    1.1      fvdl 	struct ether_multi	*enm;
   1556    1.1      fvdl 	struct ether_multistep  step;
   1557  1.170   msaitoh 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1558  1.170   msaitoh 	uint32_t		h;
   1559    1.1      fvdl 	int			i;
   1560    1.1      fvdl 
   1561   1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1562   1.13   thorpej 		goto allmulti;
   1563    1.1      fvdl 
   1564    1.1      fvdl 	/* Now program new ones. */
   1565    1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1566    1.1      fvdl 	while (enm != NULL) {
   1567   1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1568   1.13   thorpej 			/*
   1569   1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1570   1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1571   1.13   thorpej 			 * trying to set only those filter bits needed to match
   1572   1.13   thorpej 			 * the range.  (At this time, the only use of address
   1573   1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1574   1.13   thorpej 			 * range is big enough to require all bits set.)
   1575   1.13   thorpej 			 */
   1576   1.13   thorpej 			goto allmulti;
   1577   1.13   thorpej 		}
   1578   1.13   thorpej 
   1579  1.158   msaitoh 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1580    1.1      fvdl 
   1581  1.158   msaitoh 		/* Just want the 7 least-significant bits. */
   1582  1.158   msaitoh 		h &= 0x7f;
   1583    1.1      fvdl 
   1584  1.158   msaitoh 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1585  1.158   msaitoh 		ETHER_NEXT_MULTI(step, enm);
   1586   1.25  jonathan 	}
   1587   1.25  jonathan 
   1588  1.158   msaitoh 	ifp->if_flags &= ~IFF_ALLMULTI;
   1589  1.158   msaitoh 	goto setit;
   1590    1.1      fvdl 
   1591  1.158   msaitoh  allmulti:
   1592  1.158   msaitoh 	ifp->if_flags |= IFF_ALLMULTI;
   1593  1.158   msaitoh 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1594  1.133     markd 
   1595  1.158   msaitoh  setit:
   1596  1.158   msaitoh 	for (i = 0; i < 4; i++)
   1597  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1598  1.158   msaitoh }
   1599  1.133     markd 
   1600  1.158   msaitoh const int bge_swapbits[] = {
   1601  1.158   msaitoh 	0,
   1602  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA,
   1603  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA,
   1604  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1605  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1606    1.1      fvdl 
   1607  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1608  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1609  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1610   1.95  jonathan 
   1611  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1612  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1613   1.95  jonathan 
   1614  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1615   1.95  jonathan 
   1616  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1617  1.158   msaitoh 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1618  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1619  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1620  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1621  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1622  1.158   msaitoh 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1623  1.158   msaitoh 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1624    1.1      fvdl 
   1625  1.158   msaitoh 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1626  1.158   msaitoh 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1627  1.158   msaitoh };
   1628    1.1      fvdl 
   1629  1.158   msaitoh int bge_swapindex = 0;
   1630    1.1      fvdl 
   1631  1.158   msaitoh /*
   1632  1.158   msaitoh  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1633  1.158   msaitoh  * self-test results.
   1634  1.158   msaitoh  */
   1635  1.158   msaitoh static int
   1636  1.158   msaitoh bge_chipinit(struct bge_softc *sc)
   1637  1.158   msaitoh {
   1638  1.158   msaitoh 	int			i;
   1639  1.170   msaitoh 	uint32_t		dma_rw_ctl;
   1640    1.1      fvdl 
   1641    1.1      fvdl 
   1642  1.158   msaitoh 	/* Set endianness before we access any non-PCI registers. */
   1643  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1644  1.158   msaitoh 	    BGE_INIT);
   1645    1.1      fvdl 
   1646  1.158   msaitoh 	/* Set power state to D0. */
   1647  1.158   msaitoh 	bge_setpowerstate(sc, 0);
   1648    1.1      fvdl 
   1649  1.158   msaitoh 	/* Clear the MAC control register */
   1650  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1651    1.1      fvdl 
   1652  1.158   msaitoh 	/*
   1653  1.158   msaitoh 	 * Clear the MAC statistics block in the NIC's
   1654  1.158   msaitoh 	 * internal memory.
   1655  1.158   msaitoh 	 */
   1656  1.158   msaitoh 	for (i = BGE_STATS_BLOCK;
   1657  1.170   msaitoh 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1658  1.158   msaitoh 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1659    1.1      fvdl 
   1660  1.158   msaitoh 	for (i = BGE_STATUS_BLOCK;
   1661  1.170   msaitoh 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1662  1.158   msaitoh 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1663    1.1      fvdl 
   1664  1.158   msaitoh 	/* Set up the PCI DMA control register. */
   1665  1.166   msaitoh 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1666  1.158   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   1667  1.166   msaitoh 		/* Read watermark not used, 128 bytes for write. */
   1668  1.158   msaitoh 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1669  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1670  1.166   msaitoh 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1671  1.170   msaitoh 	} else if (sc->bge_flags & BGE_PCIX) {
   1672  1.158   msaitoh 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1673  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1674  1.158   msaitoh 		/* PCI-X bus */
   1675  1.172   msaitoh 		if (BGE_IS_5714_FAMILY(sc)) {
   1676  1.172   msaitoh 			/* 256 bytes for read and write. */
   1677  1.172   msaitoh 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1678  1.172   msaitoh 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1679  1.172   msaitoh 
   1680  1.172   msaitoh 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1681  1.172   msaitoh 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1682  1.172   msaitoh 			else
   1683  1.172   msaitoh 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1684  1.172   msaitoh 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1685  1.172   msaitoh 			/* 1536 bytes for read, 384 bytes for write. */
   1686  1.172   msaitoh 			dma_rw_ctl |=
   1687  1.158   msaitoh 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1688  1.158   msaitoh 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1689  1.172   msaitoh 		} else {
   1690  1.172   msaitoh 			/* 384 bytes for read and write. */
   1691  1.172   msaitoh 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1692  1.172   msaitoh 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1693  1.172   msaitoh 			    (0x0F);
   1694  1.172   msaitoh 		}
   1695  1.172   msaitoh 
   1696  1.172   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1697  1.172   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1698  1.172   msaitoh 			uint32_t tmp;
   1699  1.172   msaitoh 
   1700  1.172   msaitoh 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1701  1.172   msaitoh 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1702  1.172   msaitoh 			if (tmp == 6 || tmp == 7)
   1703  1.172   msaitoh 				dma_rw_ctl |=
   1704  1.172   msaitoh 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1705  1.172   msaitoh 
   1706  1.172   msaitoh 			/* Set PCI-X DMA write workaround. */
   1707  1.172   msaitoh 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1708  1.158   msaitoh 		}
   1709  1.158   msaitoh 	} else {
   1710  1.172   msaitoh 		/* Conventional PCI bus: 256 bytes for read and write. */
   1711  1.158   msaitoh 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1712  1.158   msaitoh 		    device_xname(sc->bge_dev)));
   1713  1.166   msaitoh 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1714  1.166   msaitoh 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1715  1.160   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1716  1.160   msaitoh 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1717  1.158   msaitoh 			dma_rw_ctl |= 0x0F;
   1718  1.158   msaitoh 	}
   1719  1.157   msaitoh 
   1720  1.161   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1721  1.161   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1722  1.161   msaitoh 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1723  1.161   msaitoh 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1724  1.161   msaitoh 
   1725  1.161   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1726  1.161   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1727  1.161   msaitoh 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1728  1.161   msaitoh 
   1729  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1730  1.120   tsutsui 
   1731  1.158   msaitoh 	/*
   1732  1.158   msaitoh 	 * Set up general mode register.
   1733  1.158   msaitoh 	 */
   1734  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1735  1.161   msaitoh 		    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1736  1.161   msaitoh 		    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1737   1.16   thorpej 
   1738  1.158   msaitoh 	/*
   1739  1.172   msaitoh 	 * BCM5701 B5 have a bug causing data corruption when using
   1740  1.172   msaitoh 	 * 64-bit DMA reads, which can be terminated early and then
   1741  1.172   msaitoh 	 * completed later as 32-bit accesses, in combination with
   1742  1.172   msaitoh 	 * certain bridges.
   1743  1.172   msaitoh 	 */
   1744  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1745  1.172   msaitoh 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1746  1.172   msaitoh 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1747  1.172   msaitoh 
   1748  1.172   msaitoh 	/*
   1749  1.158   msaitoh 	 * Disable memory write invalidate.  Apparently it is not supported
   1750  1.158   msaitoh 	 * properly by these devices.
   1751  1.158   msaitoh 	 */
   1752  1.172   msaitoh 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1753  1.172   msaitoh 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1754   1.16   thorpej 
   1755  1.158   msaitoh #ifdef __brokenalpha__
   1756  1.158   msaitoh 	/*
   1757  1.158   msaitoh 	 * Must insure that we do not cross an 8K (bytes) boundary
   1758  1.158   msaitoh 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1759  1.158   msaitoh 	 * restriction on some ALPHA platforms with early revision
   1760  1.158   msaitoh 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1761  1.158   msaitoh 	 */
   1762  1.158   msaitoh 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1763  1.158   msaitoh #endif
   1764   1.16   thorpej 
   1765  1.158   msaitoh 	/* Set the timer prescaler (always 66MHz) */
   1766  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1767   1.16   thorpej 
   1768  1.159   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1769  1.159   msaitoh 		DELAY(40);	/* XXX */
   1770  1.159   msaitoh 
   1771  1.159   msaitoh 		/* Put PHY into ready state */
   1772  1.159   msaitoh 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1773  1.159   msaitoh 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1774  1.159   msaitoh 		DELAY(40);
   1775  1.159   msaitoh 	}
   1776  1.159   msaitoh 
   1777  1.170   msaitoh 	return 0;
   1778  1.158   msaitoh }
   1779   1.16   thorpej 
   1780  1.158   msaitoh static int
   1781  1.158   msaitoh bge_blockinit(struct bge_softc *sc)
   1782  1.158   msaitoh {
   1783  1.158   msaitoh 	volatile struct bge_rcb		*rcb;
   1784  1.158   msaitoh 	bus_size_t		rcb_addr;
   1785  1.158   msaitoh 	int			i;
   1786  1.158   msaitoh 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1787  1.158   msaitoh 	bge_hostaddr		taddr;
   1788  1.170   msaitoh 	uint32_t		val;
   1789   1.16   thorpej 
   1790  1.158   msaitoh 	/*
   1791  1.158   msaitoh 	 * Initialize the memory window pointer register so that
   1792  1.158   msaitoh 	 * we can access the first 32K of internal NIC RAM. This will
   1793  1.158   msaitoh 	 * allow us to set up the TX send ring RCBs and the RX return
   1794  1.158   msaitoh 	 * ring RCBs, plus other things which live in NIC memory.
   1795  1.158   msaitoh 	 */
   1796   1.55     pooka 
   1797  1.158   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1798  1.120   tsutsui 
   1799  1.158   msaitoh 	/* Configure mbuf memory pool */
   1800  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc)) {
   1801  1.172   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1802  1.172   msaitoh 		    BGE_BUFFPOOL_1);
   1803  1.172   msaitoh 
   1804  1.172   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1805  1.172   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1806  1.172   msaitoh 		else
   1807  1.172   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1808   1.40      fvdl 
   1809  1.158   msaitoh 		/* Configure DMA resource pool */
   1810  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1811  1.158   msaitoh 		    BGE_DMA_DESCRIPTORS);
   1812  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1813  1.158   msaitoh 	}
   1814   1.40      fvdl 
   1815  1.158   msaitoh 	/* Configure mbuf pool watermarks */
   1816  1.158   msaitoh #ifdef ORIG_WPAUL_VALUES
   1817  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1818  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1819  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1820  1.158   msaitoh #else
   1821   1.49      fvdl 
   1822  1.158   msaitoh 	/* new broadcom docs strongly recommend these: */
   1823  1.172   msaitoh 	if (!BGE_IS_5705_PLUS(sc)) {
   1824  1.158   msaitoh 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1825  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1826  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1827  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1828  1.158   msaitoh 		} else {
   1829  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1830  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1831  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1832  1.158   msaitoh 		}
   1833  1.158   msaitoh 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1834  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1835  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1836  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1837  1.158   msaitoh 	} else {
   1838  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1839  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1840  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1841  1.158   msaitoh 	}
   1842  1.158   msaitoh #endif
   1843   1.25  jonathan 
   1844  1.158   msaitoh 	/* Configure DMA resource watermarks */
   1845  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1846  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1847   1.51      fvdl 
   1848  1.158   msaitoh 	/* Enable buffer manager */
   1849  1.172   msaitoh 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1850  1.172   msaitoh 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1851   1.44   hannken 
   1852  1.172   msaitoh 	/* Poll for buffer manager start indication */
   1853  1.172   msaitoh 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1854  1.172   msaitoh 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1855  1.172   msaitoh 			break;
   1856  1.172   msaitoh 		DELAY(10);
   1857  1.172   msaitoh 	}
   1858   1.51      fvdl 
   1859  1.172   msaitoh 	if (i == BGE_TIMEOUT * 2) {
   1860  1.172   msaitoh 		aprint_error_dev(sc->bge_dev,
   1861  1.172   msaitoh 		    "buffer manager failed to start\n");
   1862  1.172   msaitoh 		return ENXIO;
   1863  1.158   msaitoh 	}
   1864   1.51      fvdl 
   1865  1.158   msaitoh 	/* Enable flow-through queues */
   1866  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1867  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1868   1.76      cube 
   1869  1.158   msaitoh 	/* Wait until queue initialization is complete */
   1870  1.172   msaitoh 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1871  1.158   msaitoh 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1872  1.158   msaitoh 			break;
   1873  1.158   msaitoh 		DELAY(10);
   1874  1.158   msaitoh 	}
   1875   1.76      cube 
   1876  1.172   msaitoh 	if (i == BGE_TIMEOUT * 2) {
   1877  1.158   msaitoh 		aprint_error_dev(sc->bge_dev,
   1878  1.158   msaitoh 		    "flow-through queue init failed\n");
   1879  1.170   msaitoh 		return ENXIO;
   1880  1.158   msaitoh 	}
   1881   1.92     gavan 
   1882  1.158   msaitoh 	/* Initialize the standard RX ring control block */
   1883  1.158   msaitoh 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1884  1.172   msaitoh 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1885  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   1886  1.158   msaitoh 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1887  1.158   msaitoh 	else
   1888  1.158   msaitoh 		rcb->bge_maxlen_flags =
   1889  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1890  1.172   msaitoh 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1891  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1892  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1893  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1894  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1895  1.119   tsutsui 
   1896  1.158   msaitoh 	/*
   1897  1.158   msaitoh 	 * Initialize the jumbo RX ring control block
   1898  1.158   msaitoh 	 * We set the 'ring disabled' bit in the flags
   1899  1.158   msaitoh 	 * field until we're actually ready to start
   1900  1.158   msaitoh 	 * using this ring (i.e. once we set the MTU
   1901  1.158   msaitoh 	 * high enough to require it).
   1902  1.158   msaitoh 	 */
   1903  1.166   msaitoh 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   1904  1.158   msaitoh 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1905  1.172   msaitoh 		BGE_HOSTADDR(rcb->bge_hostaddr,
   1906  1.158   msaitoh 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1907  1.158   msaitoh 		rcb->bge_maxlen_flags =
   1908  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1909  1.158   msaitoh 			BGE_RCB_FLAG_RING_DISABLED);
   1910  1.172   msaitoh 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1911  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1912  1.158   msaitoh 		    rcb->bge_hostaddr.bge_addr_hi);
   1913  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1914  1.158   msaitoh 		    rcb->bge_hostaddr.bge_addr_lo);
   1915  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1916  1.158   msaitoh 		    rcb->bge_maxlen_flags);
   1917  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1918  1.149  sborrill 
   1919  1.158   msaitoh 		/* Set up dummy disabled mini ring RCB */
   1920  1.158   msaitoh 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1921  1.158   msaitoh 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1922  1.158   msaitoh 		    BGE_RCB_FLAG_RING_DISABLED);
   1923  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1924  1.158   msaitoh 		    rcb->bge_maxlen_flags);
   1925  1.133     markd 
   1926  1.158   msaitoh 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1927  1.158   msaitoh 		    offsetof(struct bge_ring_data, bge_info),
   1928  1.158   msaitoh 		    sizeof (struct bge_gib),
   1929  1.158   msaitoh 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1930  1.158   msaitoh 	}
   1931  1.133     markd 
   1932  1.158   msaitoh 	/*
   1933  1.158   msaitoh 	 * Set the BD ring replenish thresholds. The recommended
   1934  1.158   msaitoh 	 * values are 1/8th the number of descriptors allocated to
   1935  1.158   msaitoh 	 * each ring.
   1936  1.158   msaitoh 	 */
   1937  1.158   msaitoh 	i = BGE_STD_RX_RING_CNT / 8;
   1938  1.133     markd 
   1939  1.158   msaitoh 	/*
   1940  1.158   msaitoh 	 * Use a value of 8 for the following chips to workaround HW errata.
   1941  1.158   msaitoh 	 * Some of these chips have been added based on empirical
   1942  1.158   msaitoh 	 * evidence (they don't work unless this is done).
   1943  1.158   msaitoh 	 */
   1944  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   1945  1.158   msaitoh 		i = 8;
   1946   1.16   thorpej 
   1947  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1948  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   1949  1.157   msaitoh 
   1950  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1951  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   1952  1.172   msaitoh 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   1953  1.172   msaitoh 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   1954  1.172   msaitoh 	}
   1955  1.172   msaitoh 
   1956  1.158   msaitoh 	/*
   1957  1.158   msaitoh 	 * Disable all unused send rings by setting the 'ring disabled'
   1958  1.158   msaitoh 	 * bit in the flags field of all the TX send ring control blocks.
   1959  1.158   msaitoh 	 * These are located in NIC memory.
   1960  1.158   msaitoh 	 */
   1961  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1962  1.158   msaitoh 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1963  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1964  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   1965  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1966  1.158   msaitoh 		rcb_addr += sizeof(struct bge_rcb);
   1967  1.158   msaitoh 	}
   1968  1.157   msaitoh 
   1969  1.158   msaitoh 	/* Configure TX RCB 0 (we use only the first ring) */
   1970  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1971  1.172   msaitoh 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1972  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1973  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1974  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1975  1.158   msaitoh 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1976  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   1977  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1978  1.158   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1979  1.157   msaitoh 
   1980  1.158   msaitoh 	/* Disable all unused RX return rings */
   1981  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1982  1.158   msaitoh 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1983  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1984  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1985  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1986  1.172   msaitoh 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1987  1.172   msaitoh 			BGE_RCB_FLAG_RING_DISABLED));
   1988  1.158   msaitoh 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1989  1.158   msaitoh 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1990  1.170   msaitoh 		    (i * (sizeof(uint64_t))), 0);
   1991  1.158   msaitoh 		rcb_addr += sizeof(struct bge_rcb);
   1992  1.158   msaitoh 	}
   1993  1.157   msaitoh 
   1994  1.158   msaitoh 	/* Initialize RX ring indexes */
   1995  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1996  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1997  1.158   msaitoh 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1998  1.157   msaitoh 
   1999  1.158   msaitoh 	/*
   2000  1.158   msaitoh 	 * Set up RX return ring 0
   2001  1.158   msaitoh 	 * Note that the NIC address for RX return rings is 0x00000000.
   2002  1.158   msaitoh 	 * The return rings live entirely within the host, so the
   2003  1.158   msaitoh 	 * nicaddr field in the RCB isn't used.
   2004  1.158   msaitoh 	 */
   2005  1.158   msaitoh 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2006  1.172   msaitoh 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2007  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2008  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2009  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2010  1.158   msaitoh 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2011  1.158   msaitoh 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2012  1.157   msaitoh 
   2013  1.158   msaitoh 	/* Set random backoff seed for TX */
   2014  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2015  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2016  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2017  1.158   msaitoh 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2018  1.158   msaitoh 	    BGE_TX_BACKOFF_SEED_MASK);
   2019  1.157   msaitoh 
   2020  1.158   msaitoh 	/* Set inter-packet gap */
   2021  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2022   1.51      fvdl 
   2023  1.158   msaitoh 	/*
   2024  1.158   msaitoh 	 * Specify which ring to use for packets that don't match
   2025  1.158   msaitoh 	 * any RX rules.
   2026  1.158   msaitoh 	 */
   2027  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2028  1.157   msaitoh 
   2029  1.158   msaitoh 	/*
   2030  1.158   msaitoh 	 * Configure number of RX lists. One interrupt distribution
   2031  1.158   msaitoh 	 * list, sixteen active lists, one bad frames class.
   2032  1.158   msaitoh 	 */
   2033  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2034  1.157   msaitoh 
   2035  1.158   msaitoh 	/* Inialize RX list placement stats mask. */
   2036  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2037  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2038  1.157   msaitoh 
   2039  1.158   msaitoh 	/* Disable host coalescing until we get it set up */
   2040  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2041   1.51      fvdl 
   2042  1.158   msaitoh 	/* Poll to make sure it's shut down. */
   2043  1.172   msaitoh 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2044  1.158   msaitoh 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2045  1.158   msaitoh 			break;
   2046  1.158   msaitoh 		DELAY(10);
   2047  1.158   msaitoh 	}
   2048  1.151    cegger 
   2049  1.172   msaitoh 	if (i == BGE_TIMEOUT * 2) {
   2050  1.158   msaitoh 		aprint_error_dev(sc->bge_dev,
   2051  1.158   msaitoh 		    "host coalescing engine failed to idle\n");
   2052  1.170   msaitoh 		return ENXIO;
   2053  1.158   msaitoh 	}
   2054   1.51      fvdl 
   2055  1.158   msaitoh 	/* Set up host coalescing defaults */
   2056  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2057  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2058  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2059  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2060  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc)) {
   2061  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2062  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2063   1.51      fvdl 	}
   2064  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2065  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2066   1.51      fvdl 
   2067  1.158   msaitoh 	/* Set up address of statistics block */
   2068  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc)) {
   2069  1.172   msaitoh 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2070  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2071  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2072  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2073  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2074   1.16   thorpej 	}
   2075   1.16   thorpej 
   2076  1.158   msaitoh 	/* Set up address of status block */
   2077  1.172   msaitoh 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2078  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2079  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2080  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2081  1.158   msaitoh 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2082  1.158   msaitoh 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2083   1.16   thorpej 
   2084  1.158   msaitoh 	/* Turn on host coalescing state machine */
   2085  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2086    1.7   thorpej 
   2087  1.158   msaitoh 	/* Turn on RX BD completion state machine and enable attentions */
   2088  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2089  1.161   msaitoh 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2090    1.7   thorpej 
   2091  1.158   msaitoh 	/* Turn on RX list placement state machine */
   2092  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2093   1.51      fvdl 
   2094  1.158   msaitoh 	/* Turn on RX list selector state machine. */
   2095  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   2096  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2097   1.51      fvdl 
   2098  1.161   msaitoh 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2099  1.161   msaitoh 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2100  1.161   msaitoh 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2101  1.161   msaitoh 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2102  1.161   msaitoh 
   2103  1.161   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2104  1.161   msaitoh 	    val |= BGE_PORTMODE_TBI;
   2105  1.161   msaitoh 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2106  1.161   msaitoh 	    val |= BGE_PORTMODE_GMII;
   2107  1.161   msaitoh 	else
   2108  1.161   msaitoh 	    val |= BGE_PORTMODE_MII;
   2109  1.161   msaitoh 
   2110  1.158   msaitoh 	/* Turn on DMA, clear stats */
   2111  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2112  1.161   msaitoh 
   2113   1.51      fvdl 
   2114  1.158   msaitoh 	/* Set misc. local control, enable interrupts on attentions */
   2115  1.158   msaitoh 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2116   1.51      fvdl 
   2117  1.158   msaitoh #ifdef notdef
   2118  1.158   msaitoh 	/* Assert GPIO pins for PHY reset */
   2119  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2120  1.158   msaitoh 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2121  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2122  1.158   msaitoh 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2123  1.158   msaitoh #endif
   2124   1.98  jonathan 
   2125  1.158   msaitoh #if defined(not_quite_yet)
   2126  1.158   msaitoh 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2127  1.158   msaitoh 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2128  1.158   msaitoh 		sc->bge_local_ctrl_reg |=
   2129  1.158   msaitoh 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2130  1.158   msaitoh 	}
   2131  1.158   msaitoh #endif
   2132  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2133   1.80     fredb 
   2134  1.158   msaitoh 	/* Turn on DMA completion state machine */
   2135  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   2136  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2137  1.149  sborrill 
   2138  1.158   msaitoh 	/* Turn on write DMA state machine */
   2139  1.158   msaitoh 	{
   2140  1.158   msaitoh 		uint32_t bge_wdma_mode =
   2141  1.158   msaitoh 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2142   1.76      cube 
   2143  1.158   msaitoh 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2144  1.172   msaitoh 		if (BGE_IS_5755_PLUS(sc))
   2145  1.172   msaitoh 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2146   1.76      cube 
   2147  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2148  1.158   msaitoh         }
   2149   1.76      cube 
   2150  1.158   msaitoh 	/* Turn on read DMA state machine */
   2151  1.158   msaitoh 	{
   2152  1.158   msaitoh 		uint32_t dma_read_modebits;
   2153   1.91     gavan 
   2154  1.158   msaitoh 		dma_read_modebits =
   2155  1.158   msaitoh 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2156   1.98  jonathan 
   2157  1.172   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2158  1.172   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2159  1.172   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2160  1.172   msaitoh 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2161  1.172   msaitoh 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2162  1.172   msaitoh 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2163  1.172   msaitoh 
   2164  1.172   msaitoh 		if (sc->bge_flags & BGE_PCIE)
   2165  1.158   msaitoh 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2166  1.172   msaitoh 		if (sc->bge_flags & BGE_TSO)
   2167  1.172   msaitoh 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2168  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2169  1.172   msaitoh 		delay(40);
   2170  1.158   msaitoh 	}
   2171  1.128      tron 
   2172  1.158   msaitoh 	/* Turn on RX data completion state machine */
   2173  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2174  1.128      tron 
   2175  1.158   msaitoh 	/* Turn on RX BD initiator state machine */
   2176  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2177  1.133     markd 
   2178  1.158   msaitoh 	/* Turn on RX data and RX BD initiator state machine */
   2179  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2180  1.133     markd 
   2181  1.158   msaitoh 	/* Turn on Mbuf cluster free state machine */
   2182  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   2183  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2184  1.133     markd 
   2185  1.158   msaitoh 	/* Turn on send BD completion state machine */
   2186  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2187  1.133     markd 
   2188  1.158   msaitoh 	/* Turn on send data completion state machine */
   2189  1.172   msaitoh 	val = BGE_SDCMODE_ENABLE;
   2190  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2191  1.172   msaitoh 		val |= BGE_SDCMODE_CDELAY;
   2192  1.172   msaitoh 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2193  1.106  jonathan 
   2194  1.158   msaitoh 	/* Turn on send data initiator state machine */
   2195  1.172   msaitoh 	if (sc->bge_flags & BGE_TSO) {
   2196  1.158   msaitoh 		/* XXX: magic value from Linux driver */
   2197  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2198  1.158   msaitoh 	} else {
   2199  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2200  1.158   msaitoh 	}
   2201  1.106  jonathan 
   2202  1.158   msaitoh 	/* Turn on send BD initiator state machine */
   2203  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2204  1.133     markd 
   2205  1.158   msaitoh 	/* Turn on send BD selector state machine */
   2206  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2207  1.135      taca 
   2208  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2209  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2210  1.161   msaitoh 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2211  1.133     markd 
   2212  1.158   msaitoh 	/* ack/clear link change events */
   2213  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2214  1.161   msaitoh 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2215  1.172   msaitoh 	    BGE_MACSTAT_LINK_CHANGED);
   2216  1.158   msaitoh 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2217  1.106  jonathan 
   2218  1.158   msaitoh 	/* Enable PHY auto polling (for MII/GMII only) */
   2219  1.158   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2220  1.158   msaitoh 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2221  1.158   msaitoh  	} else {
   2222  1.161   msaitoh 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2223  1.161   msaitoh 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2224  1.158   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2225  1.158   msaitoh 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2226  1.158   msaitoh 			    BGE_EVTENB_MI_INTERRUPT);
   2227  1.158   msaitoh 	}
   2228   1.70      tron 
   2229  1.161   msaitoh 	/*
   2230  1.161   msaitoh 	 * Clear any pending link state attention.
   2231  1.161   msaitoh 	 * Otherwise some link state change events may be lost until attention
   2232  1.161   msaitoh 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2233  1.161   msaitoh 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2234  1.161   msaitoh 	 * state change attentions implies clearing pending attention.
   2235  1.161   msaitoh 	 */
   2236  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2237  1.161   msaitoh 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2238  1.161   msaitoh 	    BGE_MACSTAT_LINK_CHANGED);
   2239  1.161   msaitoh 
   2240  1.158   msaitoh 	/* Enable link state change attentions. */
   2241  1.158   msaitoh 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2242   1.51      fvdl 
   2243  1.170   msaitoh 	return 0;
   2244  1.158   msaitoh }
   2245    1.7   thorpej 
   2246  1.158   msaitoh static const struct bge_revision *
   2247  1.158   msaitoh bge_lookup_rev(uint32_t chipid)
   2248  1.158   msaitoh {
   2249  1.158   msaitoh 	const struct bge_revision *br;
   2250    1.7   thorpej 
   2251  1.158   msaitoh 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2252  1.158   msaitoh 		if (br->br_chipid == chipid)
   2253  1.170   msaitoh 			return br;
   2254  1.158   msaitoh 	}
   2255  1.151    cegger 
   2256  1.158   msaitoh 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2257  1.158   msaitoh 		if (br->br_chipid == BGE_ASICREV(chipid))
   2258  1.170   msaitoh 			return br;
   2259  1.158   msaitoh 	}
   2260  1.151    cegger 
   2261  1.170   msaitoh 	return NULL;
   2262  1.158   msaitoh }
   2263    1.7   thorpej 
   2264    1.7   thorpej static const struct bge_product *
   2265    1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2266    1.7   thorpej {
   2267    1.7   thorpej 	const struct bge_product *bp;
   2268    1.7   thorpej 
   2269    1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2270    1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2271    1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2272  1.170   msaitoh 			return bp;
   2273    1.7   thorpej 	}
   2274    1.7   thorpej 
   2275  1.170   msaitoh 	return NULL;
   2276    1.7   thorpej }
   2277    1.7   thorpej 
   2278  1.104   thorpej static int
   2279  1.116  christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2280   1.25  jonathan {
   2281   1.25  jonathan #ifdef NOTYET
   2282  1.170   msaitoh 	uint32_t pm_ctl = 0;
   2283   1.25  jonathan 
   2284   1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2285   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2286   1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2287   1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2288   1.25  jonathan 
   2289   1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2290   1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2291   1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2292   1.25  jonathan 	pm_ctl |= (1 << 8);
   2293   1.25  jonathan 
   2294   1.25  jonathan 	if (powerlevel == 0) {
   2295   1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2296   1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2297   1.25  jonathan 		    pm_ctl, 2);
   2298   1.25  jonathan 		DELAY(10000);
   2299   1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2300   1.25  jonathan 		DELAY(10000);
   2301   1.25  jonathan 
   2302   1.25  jonathan #ifdef NOTYET
   2303   1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2304   1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2305   1.25  jonathan #endif
   2306   1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2307   1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2308   1.25  jonathan 		return 0;
   2309   1.25  jonathan 	}
   2310   1.25  jonathan 
   2311   1.25  jonathan 
   2312   1.25  jonathan 	/*
   2313   1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2314   1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2315   1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2316   1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2317   1.25  jonathan 	 */
   2318  1.138     joerg 	aprint_error_dev(sc->bge_dev,
   2319  1.138     joerg 	    "power state %d unimplemented; check GPIO pins\n",
   2320  1.138     joerg 	    powerlevel);
   2321   1.25  jonathan #endif
   2322   1.25  jonathan 	return EOPNOTSUPP;
   2323   1.25  jonathan }
   2324   1.25  jonathan 
   2325   1.25  jonathan 
   2326    1.1      fvdl /*
   2327    1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2328    1.1      fvdl  * against our list and return its name if we find a match. Note
   2329    1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2330    1.1      fvdl  * can get the device name string from the controller itself instead
   2331    1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2332    1.1      fvdl  * we'll always announce the right product name.
   2333    1.1      fvdl  */
   2334  1.104   thorpej static int
   2335  1.116  christos bge_probe(device_t parent, cfdata_t match, void *aux)
   2336    1.1      fvdl {
   2337    1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2338    1.1      fvdl 
   2339    1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2340  1.170   msaitoh 		return 1;
   2341    1.1      fvdl 
   2342  1.170   msaitoh 	return 0;
   2343    1.1      fvdl }
   2344    1.1      fvdl 
   2345  1.104   thorpej static void
   2346  1.116  christos bge_attach(device_t parent, device_t self, void *aux)
   2347    1.1      fvdl {
   2348  1.138     joerg 	struct bge_softc	*sc = device_private(self);
   2349    1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2350  1.164   msaitoh 	prop_dictionary_t dict;
   2351    1.7   thorpej 	const struct bge_product *bp;
   2352   1.16   thorpej 	const struct bge_revision *br;
   2353  1.143      tron 	pci_chipset_tag_t	pc;
   2354    1.1      fvdl 	pci_intr_handle_t	ih;
   2355    1.1      fvdl 	const char		*intrstr = NULL;
   2356    1.1      fvdl 	bus_dma_segment_t	seg;
   2357    1.1      fvdl 	int			rseg;
   2358  1.170   msaitoh 	uint32_t		hwcfg = 0;
   2359  1.170   msaitoh 	uint32_t		command;
   2360    1.1      fvdl 	struct ifnet		*ifp;
   2361  1.170   msaitoh 	uint32_t		misccfg;
   2362  1.126  christos 	void *			kva;
   2363    1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2364  1.172   msaitoh 	pcireg_t		memtype, subid;
   2365    1.1      fvdl 	bus_addr_t		memaddr;
   2366    1.1      fvdl 	bus_size_t		memsize;
   2367  1.170   msaitoh 	uint32_t		pm_ctl;
   2368  1.174    martin 	prop_data_t		eaddrprop;
   2369  1.174    martin 	bool			no_seeprom;
   2370   1.87     perry 
   2371    1.7   thorpej 	bp = bge_lookup(pa);
   2372    1.7   thorpej 	KASSERT(bp != NULL);
   2373    1.7   thorpej 
   2374  1.141  jmcneill 	sc->sc_pc = pa->pa_pc;
   2375  1.141  jmcneill 	sc->sc_pcitag = pa->pa_tag;
   2376  1.138     joerg 	sc->bge_dev = self;
   2377    1.1      fvdl 
   2378  1.172   msaitoh 	pc = sc->sc_pc;
   2379  1.172   msaitoh 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2380  1.172   msaitoh 
   2381   1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2382   1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2383    1.1      fvdl 
   2384    1.1      fvdl 	/*
   2385    1.1      fvdl 	 * Map control/status registers.
   2386    1.1      fvdl 	 */
   2387    1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2388  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2389    1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2390  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2391  1.141  jmcneill 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2392    1.1      fvdl 
   2393    1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2394  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2395  1.138     joerg 		    "failed to enable memory mapping!\n");
   2396    1.1      fvdl 		return;
   2397    1.1      fvdl 	}
   2398    1.1      fvdl 
   2399    1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2400  1.141  jmcneill 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2401    1.1      fvdl  	switch (memtype) {
   2402   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2403   1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2404    1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2405   1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2406    1.1      fvdl 		    &memaddr, &memsize) == 0)
   2407    1.1      fvdl 			break;
   2408    1.1      fvdl 	default:
   2409  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2410    1.1      fvdl 		return;
   2411    1.1      fvdl 	}
   2412    1.1      fvdl 
   2413    1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2414    1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2415  1.138     joerg 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2416    1.1      fvdl 		return;
   2417    1.1      fvdl 	}
   2418    1.1      fvdl 
   2419    1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2420    1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2421    1.1      fvdl 
   2422    1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2423    1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2424    1.1      fvdl 
   2425    1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2426  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2427  1.138     joerg 		    "couldn't establish interrupt%s%s\n",
   2428  1.138     joerg 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2429    1.1      fvdl 		return;
   2430    1.1      fvdl 	}
   2431  1.138     joerg 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2432    1.1      fvdl 
   2433   1.25  jonathan 	/*
   2434   1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2435   1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2436   1.25  jonathan 	 * leaving the card in D3 powersave state.
   2437   1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2438   1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2439   1.25  jonathan 	 */
   2440  1.141  jmcneill 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2441   1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2442   1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2443  1.141  jmcneill 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2444   1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2445   1.25  jonathan 
   2446   1.76      cube 	/*
   2447  1.162   msaitoh 	 * Save ASIC rev.
   2448   1.76      cube 	 */
   2449   1.76      cube 	sc->bge_chipid =
   2450  1.172   msaitoh 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2451  1.172   msaitoh 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2452  1.172   msaitoh 
   2453  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2454  1.172   msaitoh 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2455  1.172   msaitoh 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2456  1.172   msaitoh 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2457  1.172   msaitoh 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2458  1.172   msaitoh 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2459  1.172   msaitoh 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2460  1.172   msaitoh 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2461  1.172   msaitoh 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2462  1.172   msaitoh 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2463  1.172   msaitoh 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2464  1.172   msaitoh 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2465  1.172   msaitoh 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2466  1.172   msaitoh 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2467  1.172   msaitoh 		else
   2468  1.172   msaitoh 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2469  1.172   msaitoh 			    BGE_PCI_PRODID_ASICREV);
   2470  1.172   msaitoh 	}
   2471   1.76      cube 
   2472  1.141  jmcneill 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2473  1.171   msaitoh 	        NULL, NULL) != 0) {
   2474  1.171   msaitoh 		/* PCIe */
   2475  1.157   msaitoh 		sc->bge_flags |= BGE_PCIE;
   2476  1.171   msaitoh 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2477  1.171   msaitoh 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2478  1.171   msaitoh 		/* PCI-X */
   2479  1.157   msaitoh 		sc->bge_flags |= BGE_PCIX;
   2480  1.171   msaitoh 	}
   2481   1.76      cube 
   2482  1.172   msaitoh 	/* chipid */
   2483  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2484  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2485  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2486  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2487  1.172   msaitoh 		sc->bge_flags |= BGE_5700_FAMILY;
   2488  1.172   msaitoh 
   2489  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2490  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2491  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2492  1.172   msaitoh 		sc->bge_flags |= BGE_5714_FAMILY;
   2493  1.172   msaitoh 
   2494  1.172   msaitoh 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2495  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2496  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2497  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2498  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2499  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2500  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2501  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2502  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2503  1.172   msaitoh 		sc->bge_flags |= BGE_5755_PLUS;
   2504  1.172   msaitoh 
   2505  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2506  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2507  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2508  1.172   msaitoh 	    BGE_IS_5755_PLUS(sc) ||
   2509  1.172   msaitoh 	    BGE_IS_5714_FAMILY(sc))
   2510  1.172   msaitoh 		sc->bge_flags |= BGE_5750_PLUS;
   2511  1.172   msaitoh 
   2512  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2513  1.172   msaitoh 	    BGE_IS_5750_OR_BEYOND(sc))
   2514  1.172   msaitoh 		sc->bge_flags |= BGE_5705_PLUS;
   2515  1.172   msaitoh 
   2516  1.172   msaitoh 	/*
   2517  1.172   msaitoh 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2518  1.172   msaitoh 	 * been observed in the first few bytes of some received packets.
   2519  1.172   msaitoh 	 * Aligning the packet buffer in memory eliminates the corruption.
   2520  1.172   msaitoh 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2521  1.172   msaitoh 	 * which do not support unaligned accesses, we will realign the
   2522  1.172   msaitoh 	 * payloads by copying the received packets.
   2523  1.172   msaitoh 	 */
   2524  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2525  1.172   msaitoh 	    sc->bge_flags & BGE_PCIX)
   2526  1.172   msaitoh 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2527  1.172   msaitoh 
   2528  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   2529  1.172   msaitoh 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2530  1.172   msaitoh 
   2531  1.172   msaitoh 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2532  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2533  1.172   msaitoh 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2534  1.172   msaitoh 		sc->bge_flags |= BGE_NO_3LED;
   2535  1.172   msaitoh 
   2536  1.172   msaitoh 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2537  1.172   msaitoh 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2538  1.172   msaitoh 
   2539  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2540  1.172   msaitoh 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2541  1.172   msaitoh 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2542  1.172   msaitoh 		sc->bge_flags |= BGE_IS_5788;
   2543  1.172   msaitoh 
   2544  1.172   msaitoh 	/*
   2545  1.172   msaitoh 	 * Some controllers seem to require a special firmware to use
   2546  1.172   msaitoh 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2547  1.172   msaitoh 	 * claims that the TSO performed by the firmware is slower than
   2548  1.172   msaitoh 	 * hardware based TSO. Moreover the firmware based TSO has one
   2549  1.172   msaitoh 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2550  1.172   msaitoh 	 * header is greater than 80 bytes. The workaround for the TSO
   2551  1.172   msaitoh 	 * bug exist but it seems it's too expensive than not using
   2552  1.172   msaitoh 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2553  1.172   msaitoh 	 * the TSO to the controllers that are not affected TSO issues
   2554  1.172   msaitoh 	 * (e.g. 5755 or higher).
   2555  1.172   msaitoh 	 */
   2556  1.172   msaitoh 	if (BGE_IS_5755_PLUS(sc)) {
   2557  1.172   msaitoh 		/*
   2558  1.172   msaitoh 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2559  1.172   msaitoh 		 * explicit device id check is required.
   2560  1.172   msaitoh 		 */
   2561  1.172   msaitoh 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2562  1.172   msaitoh 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2563  1.172   msaitoh 			sc->bge_flags |= BGE_TSO;
   2564  1.172   msaitoh 	}
   2565  1.172   msaitoh 
   2566  1.172   msaitoh 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2567  1.172   msaitoh 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2568  1.172   msaitoh 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2569  1.172   msaitoh 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2570  1.172   msaitoh 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2571  1.172   msaitoh 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2572  1.172   msaitoh 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2573  1.172   msaitoh 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2574  1.172   msaitoh 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2575  1.172   msaitoh 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2576  1.172   msaitoh 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2577  1.172   msaitoh 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2578  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2579  1.172   msaitoh 		sc->bge_flags |= BGE_10_100_ONLY;
   2580  1.172   msaitoh 
   2581  1.172   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2582  1.172   msaitoh 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2583  1.172   msaitoh 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2584  1.172   msaitoh 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2585  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2586  1.172   msaitoh 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2587  1.172   msaitoh 
   2588  1.162   msaitoh 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2589  1.162   msaitoh 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2590  1.162   msaitoh 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2591  1.162   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2592  1.162   msaitoh 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2593  1.162   msaitoh 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2594  1.162   msaitoh 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2595  1.162   msaitoh 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2596  1.162   msaitoh 
   2597  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc) &&
   2598  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2599  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2600  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2601  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2602  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2603  1.162   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2604  1.172   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2605  1.172   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2606  1.162   msaitoh 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2607  1.162   msaitoh 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2608  1.162   msaitoh 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2609  1.162   msaitoh 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2610  1.162   msaitoh 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2611  1.162   msaitoh 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2612  1.162   msaitoh 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2613  1.162   msaitoh 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2614  1.162   msaitoh 	}
   2615  1.162   msaitoh 
   2616  1.174    martin 	/*
   2617  1.174    martin 	 * SEEPROM check.
   2618  1.174    martin 	 * First check if firmware knows we do not have SEEPROM.
   2619  1.174    martin 	 */
   2620  1.174    martin 	 if (prop_dictionary_get_bool(device_properties(self),
   2621  1.174    martin 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2622  1.174    martin 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2623  1.174    martin 
   2624  1.174    martin 	/* Now check the 'ROM failed' bit on the RX CPU */
   2625  1.174    martin 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2626  1.172   msaitoh 		sc->bge_flags |= BGE_NO_EEPROM;
   2627  1.172   msaitoh 
   2628    1.1      fvdl 	/* Try to reset the chip. */
   2629    1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2630    1.1      fvdl 	bge_reset(sc);
   2631    1.1      fvdl 
   2632    1.1      fvdl 	if (bge_chipinit(sc)) {
   2633  1.138     joerg 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2634    1.1      fvdl 		bge_release_resources(sc);
   2635    1.1      fvdl 		return;
   2636    1.1      fvdl 	}
   2637    1.1      fvdl 
   2638    1.1      fvdl 	/*
   2639  1.174    martin 	 * Get station address from the EEPROM (or use firmware values
   2640  1.174    martin 	 * if provided via device properties)
   2641    1.1      fvdl 	 */
   2642  1.174    martin 	eaddrprop = prop_dictionary_get(device_properties(self), "mac-address");
   2643  1.174    martin 
   2644  1.174    martin 	if (eaddrprop != NULL && prop_data_size(eaddrprop) == ETHER_ADDR_LEN) {
   2645  1.174    martin 		memcpy(eaddr, prop_data_data_nocopy(eaddrprop),
   2646  1.174    martin 			    ETHER_ADDR_LEN);
   2647  1.174    martin 		goto got_eaddr;
   2648  1.174    martin 	}
   2649  1.174    martin 
   2650  1.151    cegger 	if (bge_get_eaddr(sc, eaddr)) {
   2651  1.151    cegger 		aprint_error_dev(sc->bge_dev,
   2652  1.170   msaitoh 		"failed to read station address\n");
   2653    1.1      fvdl 		bge_release_resources(sc);
   2654    1.1      fvdl 		return;
   2655    1.1      fvdl 	}
   2656    1.1      fvdl 
   2657  1.174    martin got_eaddr:
   2658   1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2659   1.51      fvdl 
   2660   1.16   thorpej 	if (br == NULL) {
   2661  1.172   msaitoh 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2662  1.172   msaitoh 		    sc->bge_chipid);
   2663   1.16   thorpej 	} else {
   2664  1.172   msaitoh 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2665  1.172   msaitoh 		    br->br_name, sc->bge_chipid);
   2666   1.16   thorpej 	}
   2667   1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2668    1.1      fvdl 
   2669    1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2670   1.41      fvdl 	if (pci_dma64_available(pa))
   2671   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2672   1.41      fvdl 	else
   2673   1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2674    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2675    1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2676    1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2677  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2678    1.1      fvdl 		return;
   2679    1.1      fvdl 	}
   2680    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2681    1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2682    1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2683    1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2684  1.138     joerg 		aprint_error_dev(sc->bge_dev,
   2685  1.138     joerg 		    "can't map DMA buffers (%zu bytes)\n",
   2686  1.138     joerg 		    sizeof(struct bge_ring_data));
   2687    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2688    1.1      fvdl 		return;
   2689    1.1      fvdl 	}
   2690    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2691    1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2692    1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2693    1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2694  1.138     joerg 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2695    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2696    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2697    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2698    1.1      fvdl 		return;
   2699    1.1      fvdl 	}
   2700    1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2701    1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2702    1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2703    1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2704    1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2705    1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2706    1.1      fvdl 				 sizeof(struct bge_ring_data));
   2707    1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2708    1.1      fvdl 		return;
   2709    1.1      fvdl 	}
   2710    1.1      fvdl 
   2711    1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2712    1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2713    1.1      fvdl 
   2714   1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2715    1.1      fvdl 
   2716    1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2717  1.166   msaitoh 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2718   1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2719  1.138     joerg 			aprint_error_dev(sc->bge_dev,
   2720  1.138     joerg 			    "jumbo buffer allocation failed\n");
   2721   1.44   hannken 		} else
   2722   1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2723   1.44   hannken 	}
   2724    1.1      fvdl 
   2725    1.1      fvdl 	/* Set default tuneable values. */
   2726    1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2727    1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2728   1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2729   1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2730    1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2731    1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2732   1.25  jonathan #else
   2733   1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2734   1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2735   1.25  jonathan #endif
   2736  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc)) {
   2737   1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2738  1.146   mlelstv 		sc->bge_tx_max_coal_bds = (12 * 5);
   2739  1.138     joerg 			aprint_verbose_dev(sc->bge_dev,
   2740  1.138     joerg 			    "setting short Tx thresholds\n");
   2741   1.95  jonathan 	}
   2742    1.1      fvdl 
   2743  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   2744  1.172   msaitoh 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2745  1.172   msaitoh 	else
   2746  1.172   msaitoh 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2747  1.172   msaitoh 
   2748    1.1      fvdl 	/* Set up ifnet structure */
   2749    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2750    1.1      fvdl 	ifp->if_softc = sc;
   2751    1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2752    1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2753  1.141  jmcneill 	ifp->if_stop = bge_stop;
   2754    1.1      fvdl 	ifp->if_start = bge_start;
   2755    1.1      fvdl 	ifp->if_init = bge_init;
   2756    1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2757   1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2758    1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2759  1.115   tsutsui 	DPRINTFN(5, ("strcpy if_xname\n"));
   2760  1.138     joerg 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2761    1.1      fvdl 
   2762  1.157   msaitoh 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2763   1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2764  1.172   msaitoh 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2765  1.172   msaitoh #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2766  1.172   msaitoh 		sc->ethercom.ec_if.if_capabilities |=
   2767   1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2768   1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2769  1.172   msaitoh #endif
   2770   1.87     perry 	sc->ethercom.ec_capabilities |=
   2771    1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2772    1.1      fvdl 
   2773  1.172   msaitoh 	if (sc->bge_flags & BGE_TSO)
   2774   1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2775   1.95  jonathan 
   2776    1.1      fvdl 	/*
   2777    1.1      fvdl 	 * Do MII setup.
   2778    1.1      fvdl 	 */
   2779    1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2780    1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2781    1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2782    1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2783    1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2784    1.1      fvdl 
   2785    1.1      fvdl 	/*
   2786    1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2787   1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2788   1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2789    1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2790    1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2791    1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2792    1.1      fvdl 	 */
   2793   1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2794   1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2795   1.35  jonathan 	} else {
   2796  1.126  christos 		bge_read_eeprom(sc, (void *)&hwcfg,
   2797    1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2798   1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2799   1.35  jonathan 	}
   2800    1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2801  1.161   msaitoh 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2802  1.161   msaitoh 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2803  1.161   msaitoh 		if (BGE_IS_5714_FAMILY(sc))
   2804  1.161   msaitoh 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2805  1.161   msaitoh 		else
   2806  1.161   msaitoh 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2807  1.161   msaitoh 	}
   2808    1.1      fvdl 
   2809  1.167   msaitoh 	/* set phyflags before mii_attach() */
   2810  1.167   msaitoh 	dict = device_properties(self);
   2811  1.167   msaitoh 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2812  1.167   msaitoh 
   2813  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2814    1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2815    1.1      fvdl 		    bge_ifmedia_sts);
   2816    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2817    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2818    1.1      fvdl 			    0, NULL);
   2819    1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2820    1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2821  1.155        he 		/* Pretend the user requested this setting */
   2822  1.162   msaitoh 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2823    1.1      fvdl 	} else {
   2824    1.1      fvdl 		/*
   2825    1.1      fvdl 		 * Do transceiver setup.
   2826    1.1      fvdl 		 */
   2827    1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2828    1.1      fvdl 			     bge_ifmedia_sts);
   2829  1.138     joerg 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2830   1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2831   1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2832   1.87     perry 
   2833  1.142    dyoung 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2834  1.138     joerg 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2835    1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2836    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2837    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2838    1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2839    1.1      fvdl 		} else
   2840    1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2841    1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2842    1.1      fvdl 	}
   2843    1.1      fvdl 
   2844    1.1      fvdl 	/*
   2845    1.1      fvdl 	 * Call MI attach routine.
   2846    1.1      fvdl 	 */
   2847    1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2848    1.1      fvdl 	if_attach(ifp);
   2849    1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2850    1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2851  1.148   mlelstv #if NRND > 0
   2852  1.148   mlelstv 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2853  1.148   mlelstv 		RND_TYPE_NET, 0);
   2854  1.148   mlelstv #endif
   2855   1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2856   1.72   thorpej 	/*
   2857   1.72   thorpej 	 * Attach event counters.
   2858   1.72   thorpej 	 */
   2859   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2860  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "intr");
   2861   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2862  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2863   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2864  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2865   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2866  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2867   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2868  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2869   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2870  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2871   1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2872  1.138     joerg 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2873   1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2874    1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2875  1.132        ad 	callout_init(&sc->bge_timeout, 0);
   2876   1.82  jmcneill 
   2877  1.168   tsutsui 	if (pmf_device_register(self, NULL, NULL))
   2878  1.168   tsutsui 		pmf_class_network_register(self, ifp);
   2879  1.168   tsutsui 	else
   2880  1.141  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
   2881  1.172   msaitoh 
   2882  1.172   msaitoh #ifdef BGE_DEBUG
   2883  1.172   msaitoh 	bge_debug_info(sc);
   2884  1.172   msaitoh #endif
   2885    1.1      fvdl }
   2886    1.1      fvdl 
   2887  1.104   thorpej static void
   2888  1.104   thorpej bge_release_resources(struct bge_softc *sc)
   2889    1.1      fvdl {
   2890    1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2891    1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2892    1.1      fvdl 
   2893    1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2894    1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2895    1.1      fvdl }
   2896    1.1      fvdl 
   2897  1.104   thorpej static void
   2898  1.104   thorpej bge_reset(struct bge_softc *sc)
   2899    1.1      fvdl {
   2900  1.170   msaitoh 	uint32_t cachesize, command, pcistate, new_pcistate;
   2901   1.76      cube 	int i, val;
   2902  1.151    cegger 	void (*write_op)(struct bge_softc *, int, int);
   2903  1.151    cegger 
   2904  1.151    cegger 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2905  1.151    cegger 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2906  1.157   msaitoh 	    	if (sc->bge_flags & BGE_PCIE) {
   2907  1.151    cegger 			write_op = bge_writemem_direct;
   2908  1.151    cegger 		} else {
   2909  1.151    cegger 			write_op = bge_writemem_ind;
   2910  1.151    cegger 		}
   2911  1.151    cegger 	} else {
   2912  1.151    cegger 		write_op = bge_writereg_ind;
   2913  1.151    cegger 	}
   2914  1.151    cegger 
   2915    1.1      fvdl 
   2916    1.1      fvdl 	/* Save some important PCI state. */
   2917  1.141  jmcneill 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2918  1.141  jmcneill 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2919  1.141  jmcneill 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2920    1.1      fvdl 
   2921  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2922  1.172   msaitoh 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   2923  1.172   msaitoh 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   2924    1.1      fvdl 
   2925  1.162   msaitoh 	/* Disable fastboot on controllers that support it. */
   2926  1.134     markd 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2927  1.172   msaitoh 	    BGE_IS_5755_PLUS(sc))
   2928  1.119   tsutsui 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2929  1.119   tsutsui 
   2930   1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2931   1.76      cube 	/*
   2932   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2933   1.76      cube 	 */
   2934  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   2935   1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2936  1.157   msaitoh 			/* PCI Express 1.0 system */
   2937   1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2938   1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2939  1.157   msaitoh 			/*
   2940  1.157   msaitoh 			 * Prevent PCI Express link training
   2941  1.157   msaitoh 			 * during global reset.
   2942  1.157   msaitoh 			 */
   2943   1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2944   1.76      cube 			val |= (1<<29);
   2945   1.76      cube 		}
   2946   1.76      cube 	}
   2947   1.76      cube 
   2948  1.161   msaitoh 	/*
   2949  1.161   msaitoh 	 * Set GPHY Power Down Override to leave GPHY
   2950  1.161   msaitoh 	 * powered up in D0 uninitialized.
   2951  1.161   msaitoh 	 */
   2952  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   2953  1.161   msaitoh 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   2954  1.161   msaitoh 
   2955    1.1      fvdl 	/* Issue global reset */
   2956  1.151    cegger 	write_op(sc, BGE_MISC_CFG, val);
   2957  1.151    cegger 
   2958  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2959  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2960  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2961  1.151    cegger 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2962  1.151    cegger 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2963  1.151    cegger 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2964  1.151    cegger 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2965  1.151    cegger 	}
   2966  1.151    cegger 
   2967    1.1      fvdl 	DELAY(1000);
   2968    1.1      fvdl 
   2969   1.76      cube 	/*
   2970   1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2971   1.76      cube 	 */
   2972  1.157   msaitoh 	if (sc->bge_flags & BGE_PCIE) {
   2973   1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2974   1.76      cube 			pcireg_t reg;
   2975   1.76      cube 
   2976   1.76      cube 			DELAY(500000);
   2977   1.76      cube 			/* XXX: Magic Numbers */
   2978  1.170   msaitoh 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2979  1.170   msaitoh 			    BGE_PCI_UNKNOWN0);
   2980  1.170   msaitoh 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2981  1.170   msaitoh 			    BGE_PCI_UNKNOWN0,
   2982   1.76      cube 			    reg | (1 << 15));
   2983   1.76      cube 		}
   2984   1.95  jonathan 		/*
   2985   1.95  jonathan 		 * XXX: Magic Numbers.
   2986   1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2987   1.95  jonathan 		 * Should be replaced with references to PCI config-space
   2988   1.95  jonathan 		 * capability block for PCI-Express.
   2989   1.95  jonathan 		 */
   2990  1.141  jmcneill 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2991   1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2992   1.95  jonathan 
   2993   1.76      cube 	}
   2994   1.76      cube 
   2995    1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2996  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2997  1.172   msaitoh 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   2998  1.172   msaitoh 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   2999  1.172   msaitoh 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3000  1.141  jmcneill 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3001  1.151    cegger 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3002    1.1      fvdl 
   3003    1.1      fvdl 	/* Enable memory arbiter. */
   3004  1.109  jonathan 	{
   3005   1.99  jonathan 		uint32_t marbmode = 0;
   3006   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   3007  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3008   1.99  jonathan 		}
   3009   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3010   1.44   hannken 	}
   3011    1.1      fvdl 
   3012  1.172   msaitoh  	/*
   3013  1.172   msaitoh 	 * Prevent PXE restart: write a magic number to the
   3014  1.172   msaitoh 	 * general communications memory at 0xB50.
   3015  1.172   msaitoh 	 */
   3016  1.172   msaitoh 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3017  1.139   msaitoh 
   3018  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3019  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3020  1.151    cegger 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3021  1.151    cegger 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3022  1.151    cegger 				break;
   3023  1.151    cegger 			DELAY(100);
   3024  1.151    cegger 		}
   3025  1.151    cegger 		if (i == BGE_TIMEOUT) {
   3026  1.151    cegger 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3027  1.151    cegger 			return;
   3028  1.151    cegger 		}
   3029  1.151    cegger 	} else {
   3030  1.151    cegger 		/*
   3031  1.151    cegger 		 * Poll the value location we just wrote until
   3032  1.151    cegger 		 * we see the 1's complement of the magic number.
   3033  1.151    cegger 		 * This indicates that the firmware initialization
   3034  1.151    cegger 		 * is complete.
   3035   1.95  jonathan 		 */
   3036  1.151    cegger 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3037  1.151    cegger 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3038  1.151    cegger 			if (val == ~BGE_MAGIC_NUMBER)
   3039  1.151    cegger 				break;
   3040  1.172   msaitoh 			DELAY(10);
   3041  1.151    cegger 		}
   3042  1.151    cegger 
   3043  1.172   msaitoh 		if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM))) {
   3044  1.151    cegger 			aprint_error_dev(sc->bge_dev,
   3045  1.151    cegger 			    "firmware handshake timed out, val = %x\n", val);
   3046  1.151    cegger 			/*
   3047  1.151    cegger 			 * XXX: occasionally fired on bcm5721, but without
   3048  1.151    cegger 			 * apparent harm.  For now, keep going if we timeout
   3049  1.151    cegger 			 * against PCI-E devices.
   3050  1.151    cegger 			 */
   3051  1.157   msaitoh 			if ((sc->bge_flags & BGE_PCIE) == 0)
   3052  1.151    cegger 				  return;
   3053  1.151    cegger 		}
   3054    1.1      fvdl 	}
   3055    1.1      fvdl 
   3056    1.1      fvdl 	/*
   3057    1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   3058    1.1      fvdl 	 * return to its original pre-reset state. This is a
   3059    1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   3060    1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   3061    1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   3062    1.1      fvdl 	 * results.
   3063    1.1      fvdl 	 */
   3064  1.172   msaitoh 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3065  1.141  jmcneill 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3066   1.61  jonathan 		    BGE_PCI_PCISTATE);
   3067   1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3068   1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3069    1.1      fvdl 			break;
   3070    1.1      fvdl 		DELAY(10);
   3071    1.1      fvdl 	}
   3072   1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3073   1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3074  1.138     joerg 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3075   1.61  jonathan 	}
   3076    1.1      fvdl 
   3077  1.172   msaitoh #if 0
   3078    1.1      fvdl 	/* Enable memory arbiter. */
   3079  1.109  jonathan 	/* XXX why do this twice? */
   3080  1.109  jonathan 	{
   3081   1.99  jonathan 		uint32_t marbmode = 0;
   3082   1.99  jonathan 		if (BGE_IS_5714_FAMILY(sc)) {
   3083  1.100  jonathan 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3084   1.99  jonathan 		}
   3085   1.99  jonathan  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3086   1.44   hannken 	}
   3087  1.172   msaitoh #endif
   3088    1.1      fvdl 
   3089    1.1      fvdl 	/* Fix up byte swapping */
   3090    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3091    1.1      fvdl 
   3092    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3093    1.1      fvdl 
   3094  1.161   msaitoh 	/*
   3095  1.161   msaitoh 	 * The 5704 in TBI mode apparently needs some special
   3096  1.161   msaitoh 	 * adjustment to insure the SERDES drive level is set
   3097  1.161   msaitoh 	 * to 1.2V.
   3098  1.161   msaitoh 	 */
   3099  1.161   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3100  1.161   msaitoh 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3101  1.170   msaitoh 		uint32_t serdescfg;
   3102  1.161   msaitoh 
   3103  1.161   msaitoh 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3104  1.161   msaitoh 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3105  1.161   msaitoh 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3106  1.161   msaitoh 	}
   3107  1.161   msaitoh 
   3108  1.161   msaitoh 	if (sc->bge_flags & BGE_PCIE &&
   3109  1.172   msaitoh 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3110  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3111  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3112  1.172   msaitoh 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3113  1.172   msaitoh 		uint32_t v;
   3114  1.172   msaitoh 
   3115  1.172   msaitoh 		/* Enable PCI Express bug fix */
   3116  1.172   msaitoh 		v = CSR_READ_4(sc, 0x7c00);
   3117  1.172   msaitoh 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3118  1.172   msaitoh 	}
   3119    1.1      fvdl 	DELAY(10000);
   3120    1.1      fvdl }
   3121    1.1      fvdl 
   3122    1.1      fvdl /*
   3123    1.1      fvdl  * Frame reception handling. This is called if there's a frame
   3124    1.1      fvdl  * on the receive return list.
   3125    1.1      fvdl  *
   3126    1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   3127    1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   3128    1.1      fvdl  * 2) the frame is from the standard receive ring
   3129    1.1      fvdl  */
   3130    1.1      fvdl 
   3131  1.104   thorpej static void
   3132  1.104   thorpej bge_rxeof(struct bge_softc *sc)
   3133    1.1      fvdl {
   3134    1.1      fvdl 	struct ifnet *ifp;
   3135  1.172   msaitoh 	uint16_t rx_prod, rx_cons;
   3136    1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   3137    1.1      fvdl 	bus_dmamap_t dmamap;
   3138    1.1      fvdl 	bus_addr_t offset, toff;
   3139    1.1      fvdl 	bus_size_t tlen;
   3140    1.1      fvdl 	int tosync;
   3141    1.1      fvdl 
   3142  1.172   msaitoh 	rx_cons = sc->bge_rx_saved_considx;
   3143  1.172   msaitoh 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3144  1.172   msaitoh 
   3145  1.172   msaitoh 	/* Nothing to do */
   3146  1.172   msaitoh 	if (rx_cons == rx_prod)
   3147  1.172   msaitoh 		return;
   3148  1.172   msaitoh 
   3149    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3150    1.1      fvdl 
   3151    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3152    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3153    1.1      fvdl 	    sizeof (struct bge_status_block),
   3154    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3155    1.1      fvdl 
   3156    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3157  1.172   msaitoh 	tosync = rx_prod - rx_cons;
   3158    1.1      fvdl 
   3159  1.148   mlelstv #if NRND > 0
   3160  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3161  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   3162  1.148   mlelstv #endif
   3163  1.148   mlelstv 
   3164  1.172   msaitoh 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3165    1.1      fvdl 
   3166    1.1      fvdl 	if (tosync < 0) {
   3167  1.172   msaitoh 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3168    1.1      fvdl 		    sizeof (struct bge_rx_bd);
   3169    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3170    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3171    1.1      fvdl 		tosync = -tosync;
   3172    1.1      fvdl 	}
   3173    1.1      fvdl 
   3174    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3175    1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   3176    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3177    1.1      fvdl 
   3178  1.172   msaitoh 	while (rx_cons != rx_prod) {
   3179    1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   3180  1.170   msaitoh 		uint32_t		rxidx;
   3181    1.1      fvdl 		struct mbuf		*m = NULL;
   3182    1.1      fvdl 
   3183  1.172   msaitoh 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3184    1.1      fvdl 
   3185    1.1      fvdl 		rxidx = cur_rx->bge_idx;
   3186  1.172   msaitoh 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3187    1.1      fvdl 
   3188    1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3189    1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3190    1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3191    1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3192    1.1      fvdl 			jumbocnt++;
   3193  1.124    bouyer 			bus_dmamap_sync(sc->bge_dmatag,
   3194  1.124    bouyer 			    sc->bge_cdata.bge_rx_jumbo_map,
   3195  1.126  christos 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3196  1.125    bouyer 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3197    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3198    1.1      fvdl 				ifp->if_ierrors++;
   3199    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3200    1.1      fvdl 				continue;
   3201    1.1      fvdl 			}
   3202    1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3203    1.1      fvdl 					     NULL)== ENOBUFS) {
   3204    1.1      fvdl 				ifp->if_ierrors++;
   3205    1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3206    1.1      fvdl 				continue;
   3207    1.1      fvdl 			}
   3208    1.1      fvdl 		} else {
   3209    1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3210    1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3211  1.124    bouyer 
   3212    1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3213    1.1      fvdl 			stdcnt++;
   3214    1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3215    1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3216  1.125    bouyer 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3217  1.125    bouyer 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3218  1.125    bouyer 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3219    1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3220    1.1      fvdl 				ifp->if_ierrors++;
   3221    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3222    1.1      fvdl 				continue;
   3223    1.1      fvdl 			}
   3224    1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   3225    1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   3226    1.1      fvdl 				ifp->if_ierrors++;
   3227    1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3228    1.1      fvdl 				continue;
   3229    1.1      fvdl 			}
   3230    1.1      fvdl 		}
   3231    1.1      fvdl 
   3232    1.1      fvdl 		ifp->if_ipackets++;
   3233   1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   3234   1.37  jonathan                 /*
   3235   1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3236   1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   3237   1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   3238   1.37  jonathan                  */
   3239  1.157   msaitoh 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3240  1.127   tsutsui 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3241   1.37  jonathan                                 cur_rx->bge_len);
   3242   1.37  jonathan 			m->m_data += ETHER_ALIGN;
   3243   1.37  jonathan 		}
   3244   1.37  jonathan #endif
   3245   1.87     perry 
   3246   1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3247    1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   3248    1.1      fvdl 
   3249    1.1      fvdl 		/*
   3250    1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   3251    1.1      fvdl 		 */
   3252    1.1      fvdl 		if (ifp->if_bpf)
   3253  1.169     pooka 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   3254    1.1      fvdl 
   3255   1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3256   1.46  jonathan 
   3257   1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3258   1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3259   1.46  jonathan 		/*
   3260   1.46  jonathan 		 * Rx transport checksum-offload may also
   3261   1.46  jonathan 		 * have bugs with packets which, when transmitted,
   3262   1.46  jonathan 		 * were `runts' requiring padding.
   3263   1.46  jonathan 		 */
   3264   1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3265   1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3266   1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3267   1.46  jonathan 			m->m_pkthdr.csum_data =
   3268   1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   3269   1.46  jonathan 			m->m_pkthdr.csum_flags |=
   3270   1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3271   1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3272    1.1      fvdl 		}
   3273    1.1      fvdl 
   3274    1.1      fvdl 		/*
   3275    1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   3276    1.1      fvdl 		 * to vlan_input() instead of ether_input().
   3277    1.1      fvdl 		 */
   3278  1.150       dsl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3279   1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3280  1.150       dsl 		}
   3281    1.1      fvdl 
   3282    1.1      fvdl 		(*ifp->if_input)(ifp, m);
   3283    1.1      fvdl 	}
   3284    1.1      fvdl 
   3285  1.172   msaitoh 	sc->bge_rx_saved_considx = rx_cons;
   3286  1.151    cegger 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3287    1.1      fvdl 	if (stdcnt)
   3288  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3289    1.1      fvdl 	if (jumbocnt)
   3290  1.151    cegger 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3291    1.1      fvdl }
   3292    1.1      fvdl 
   3293  1.104   thorpej static void
   3294  1.104   thorpej bge_txeof(struct bge_softc *sc)
   3295    1.1      fvdl {
   3296    1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   3297    1.1      fvdl 	struct ifnet *ifp;
   3298    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3299    1.1      fvdl 	bus_addr_t offset, toff;
   3300    1.1      fvdl 	bus_size_t tlen;
   3301    1.1      fvdl 	int tosync;
   3302    1.1      fvdl 	struct mbuf *m;
   3303    1.1      fvdl 
   3304    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3305    1.1      fvdl 
   3306    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3307    1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3308    1.1      fvdl 	    sizeof (struct bge_status_block),
   3309    1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3310    1.1      fvdl 
   3311    1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3312   1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3313    1.1      fvdl 	    sc->bge_tx_saved_considx;
   3314    1.1      fvdl 
   3315  1.148   mlelstv #if NRND > 0
   3316  1.148   mlelstv 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3317  1.148   mlelstv 		rnd_add_uint32(&sc->rnd_source, tosync);
   3318  1.148   mlelstv #endif
   3319  1.148   mlelstv 
   3320    1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3321    1.1      fvdl 
   3322    1.1      fvdl 	if (tosync < 0) {
   3323    1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3324    1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3325    1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3326    1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3327    1.1      fvdl 		tosync = -tosync;
   3328    1.1      fvdl 	}
   3329    1.1      fvdl 
   3330    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3331    1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3332    1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3333    1.1      fvdl 
   3334    1.1      fvdl 	/*
   3335    1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3336    1.1      fvdl 	 * frames that have been sent.
   3337    1.1      fvdl 	 */
   3338    1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3339    1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3340  1.170   msaitoh 		uint32_t		idx = 0;
   3341    1.1      fvdl 
   3342    1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3343    1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3344    1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3345    1.1      fvdl 			ifp->if_opackets++;
   3346    1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3347    1.1      fvdl 		if (m != NULL) {
   3348    1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3349    1.1      fvdl 			dma = sc->txdma[idx];
   3350    1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3351    1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3352    1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3353    1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3354    1.1      fvdl 			sc->txdma[idx] = NULL;
   3355    1.1      fvdl 
   3356    1.1      fvdl 			m_freem(m);
   3357    1.1      fvdl 		}
   3358    1.1      fvdl 		sc->bge_txcnt--;
   3359    1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3360    1.1      fvdl 		ifp->if_timer = 0;
   3361    1.1      fvdl 	}
   3362    1.1      fvdl 
   3363    1.1      fvdl 	if (cur_tx != NULL)
   3364    1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3365    1.1      fvdl }
   3366    1.1      fvdl 
   3367  1.104   thorpej static int
   3368  1.104   thorpej bge_intr(void *xsc)
   3369    1.1      fvdl {
   3370    1.1      fvdl 	struct bge_softc *sc;
   3371    1.1      fvdl 	struct ifnet *ifp;
   3372  1.161   msaitoh 	uint32_t statusword;
   3373    1.1      fvdl 
   3374    1.1      fvdl 	sc = xsc;
   3375    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3376    1.1      fvdl 
   3377  1.161   msaitoh 	/* It is possible for the interrupt to arrive before
   3378  1.161   msaitoh 	 * the status block is updated prior to the interrupt.
   3379  1.161   msaitoh 	 * Reading the PCI State register will confirm whether the
   3380  1.161   msaitoh 	 * interrupt is ours and will flush the status block.
   3381  1.161   msaitoh 	 */
   3382  1.144   mlelstv 
   3383  1.161   msaitoh 	/* read status word from status block */
   3384  1.161   msaitoh 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3385  1.144   mlelstv 
   3386  1.161   msaitoh 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3387  1.161   msaitoh 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3388  1.161   msaitoh 		/* Ack interrupt and stop others from occuring. */
   3389  1.161   msaitoh 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3390  1.144   mlelstv 
   3391  1.161   msaitoh 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3392    1.1      fvdl 
   3393  1.161   msaitoh 		/* clear status word */
   3394  1.161   msaitoh 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3395   1.72   thorpej 
   3396  1.161   msaitoh 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3397  1.161   msaitoh 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3398  1.161   msaitoh 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3399  1.161   msaitoh 			bge_link_upd(sc);
   3400    1.1      fvdl 
   3401  1.161   msaitoh 		if (ifp->if_flags & IFF_RUNNING) {
   3402  1.161   msaitoh 			/* Check RX return ring producer/consumer */
   3403  1.161   msaitoh 			bge_rxeof(sc);
   3404  1.144   mlelstv 
   3405  1.161   msaitoh 			/* Check TX ring producer/consumer */
   3406  1.161   msaitoh 			bge_txeof(sc);
   3407    1.1      fvdl 		}
   3408    1.1      fvdl 
   3409  1.161   msaitoh 		if (sc->bge_pending_rxintr_change) {
   3410  1.161   msaitoh 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3411  1.161   msaitoh 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3412  1.161   msaitoh 			uint32_t junk;
   3413    1.1      fvdl 
   3414  1.161   msaitoh 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3415  1.161   msaitoh 			DELAY(10);
   3416  1.161   msaitoh 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3417    1.1      fvdl 
   3418  1.161   msaitoh 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3419  1.161   msaitoh 			DELAY(10);
   3420  1.161   msaitoh 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3421   1.58  jonathan 
   3422  1.161   msaitoh 			sc->bge_pending_rxintr_change = 0;
   3423  1.161   msaitoh 		}
   3424  1.161   msaitoh 		bge_handle_events(sc);
   3425   1.87     perry 
   3426  1.161   msaitoh 		/* Re-enable interrupts. */
   3427  1.161   msaitoh 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3428   1.58  jonathan 
   3429  1.161   msaitoh 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3430  1.161   msaitoh 			bge_start(ifp);
   3431    1.1      fvdl 
   3432  1.170   msaitoh 		return 1;
   3433  1.161   msaitoh 	} else
   3434  1.170   msaitoh 		return 0;
   3435    1.1      fvdl }
   3436    1.1      fvdl 
   3437  1.104   thorpej static void
   3438  1.104   thorpej bge_tick(void *xsc)
   3439    1.1      fvdl {
   3440    1.1      fvdl 	struct bge_softc *sc = xsc;
   3441    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3442    1.1      fvdl 	int s;
   3443    1.1      fvdl 
   3444    1.1      fvdl 	s = splnet();
   3445    1.1      fvdl 
   3446  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   3447  1.172   msaitoh 		bge_stats_update_regs(sc);
   3448  1.172   msaitoh 	else
   3449  1.172   msaitoh 		bge_stats_update(sc);
   3450    1.1      fvdl 
   3451  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3452  1.161   msaitoh 		/*
   3453  1.161   msaitoh 		 * Since in TBI mode auto-polling can't be used we should poll
   3454  1.161   msaitoh 		 * link status manually. Here we register pending link event
   3455  1.161   msaitoh 		 * and trigger interrupt.
   3456  1.161   msaitoh 		 */
   3457  1.161   msaitoh 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3458  1.161   msaitoh 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3459  1.161   msaitoh 	} else {
   3460  1.161   msaitoh 		/*
   3461  1.161   msaitoh 		 * Do not touch PHY if we have link up. This could break
   3462  1.161   msaitoh 		 * IPMI/ASF mode or produce extra input errors.
   3463  1.161   msaitoh 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3464  1.161   msaitoh 		 */
   3465  1.161   msaitoh 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3466  1.161   msaitoh 			mii_tick(mii);
   3467  1.161   msaitoh 	}
   3468  1.161   msaitoh 
   3469  1.161   msaitoh 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3470    1.1      fvdl 
   3471    1.1      fvdl 	splx(s);
   3472    1.1      fvdl }
   3473    1.1      fvdl 
   3474  1.104   thorpej static void
   3475  1.172   msaitoh bge_stats_update_regs(struct bge_softc *sc)
   3476  1.172   msaitoh {
   3477  1.172   msaitoh 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3478  1.172   msaitoh 
   3479  1.172   msaitoh 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3480  1.172   msaitoh 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3481  1.172   msaitoh 
   3482  1.172   msaitoh 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3483  1.172   msaitoh 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3484  1.172   msaitoh 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3485  1.172   msaitoh }
   3486  1.172   msaitoh 
   3487  1.172   msaitoh static void
   3488  1.104   thorpej bge_stats_update(struct bge_softc *sc)
   3489    1.1      fvdl {
   3490    1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3491    1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3492   1.44   hannken 
   3493    1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3494    1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3495    1.1      fvdl 
   3496    1.1      fvdl 	ifp->if_collisions +=
   3497    1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3498    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3499    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3500    1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3501    1.1      fvdl 	  ifp->if_collisions;
   3502    1.1      fvdl 
   3503   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3504   1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3505   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3506   1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3507   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3508   1.72   thorpej 		      READ_STAT(sc, stats,
   3509   1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3510   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3511   1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3512   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3513   1.72   thorpej 		      READ_STAT(sc, stats,
   3514   1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3515   1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3516   1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3517   1.72   thorpej 
   3518    1.1      fvdl #undef READ_STAT
   3519    1.1      fvdl 
   3520    1.1      fvdl #ifdef notdef
   3521    1.1      fvdl 	ifp->if_collisions +=
   3522    1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3523    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3524    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3525    1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3526    1.1      fvdl 	   ifp->if_collisions;
   3527    1.1      fvdl #endif
   3528    1.1      fvdl }
   3529    1.1      fvdl 
   3530   1.46  jonathan /*
   3531   1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3532   1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3533   1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3534   1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3535   1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3536   1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3537   1.46  jonathan  */
   3538  1.102     perry static inline int
   3539   1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3540   1.46  jonathan {
   3541   1.46  jonathan 	struct mbuf *last = NULL;
   3542   1.46  jonathan 	int padlen;
   3543   1.46  jonathan 
   3544   1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3545   1.46  jonathan 
   3546   1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3547   1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3548  1.113   tsutsui 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3549   1.46  jonathan 		last = pkt;
   3550   1.46  jonathan 	} else {
   3551   1.46  jonathan 		/*
   3552   1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3553   1.87     perry 		 * pad there, or append a new mbuf and pad it
   3554   1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3555   1.46  jonathan 		 */
   3556   1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3557  1.114   tsutsui 	      	       continue; /* do nothing */
   3558   1.46  jonathan 		}
   3559   1.46  jonathan 
   3560   1.46  jonathan 		/* `last' now points to last in chain. */
   3561  1.114   tsutsui 		if (M_TRAILINGSPACE(last) < padlen) {
   3562   1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3563   1.46  jonathan 			struct mbuf *n;
   3564   1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3565  1.129     joerg 			if (n == NULL)
   3566  1.129     joerg 				return ENOBUFS;
   3567   1.46  jonathan 			n->m_len = 0;
   3568   1.46  jonathan 			last->m_next = n;
   3569   1.46  jonathan 			last = n;
   3570   1.46  jonathan 		}
   3571   1.46  jonathan 	}
   3572   1.46  jonathan 
   3573  1.114   tsutsui 	KDASSERT(!M_READONLY(last));
   3574  1.114   tsutsui 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3575  1.114   tsutsui 
   3576   1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3577  1.126  christos 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3578   1.46  jonathan 	last->m_len += padlen;
   3579   1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3580   1.46  jonathan 	return 0;
   3581   1.46  jonathan }
   3582   1.45  jonathan 
   3583   1.45  jonathan /*
   3584   1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3585   1.45  jonathan  */
   3586  1.102     perry static inline int
   3587   1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3588   1.45  jonathan {
   3589   1.45  jonathan 	struct mbuf	*m, *prev;
   3590   1.45  jonathan 	int 		totlen, prevlen;
   3591   1.45  jonathan 
   3592   1.45  jonathan 	prev = NULL;
   3593   1.45  jonathan 	totlen = 0;
   3594   1.45  jonathan 	prevlen = -1;
   3595   1.45  jonathan 
   3596   1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3597   1.45  jonathan 		int mlen = m->m_len;
   3598   1.45  jonathan 		int shortfall = 8 - mlen ;
   3599   1.45  jonathan 
   3600   1.45  jonathan 		totlen += mlen;
   3601   1.45  jonathan 		if (mlen == 0) {
   3602   1.45  jonathan 			continue;
   3603   1.45  jonathan 		}
   3604   1.45  jonathan 		if (mlen >= 8)
   3605   1.45  jonathan 			continue;
   3606   1.45  jonathan 
   3607   1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3608   1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3609   1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3610   1.45  jonathan 		 */
   3611   1.45  jonathan 
   3612   1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3613  1.113   tsutsui 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3614  1.115   tsutsui 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3615   1.45  jonathan 			prev->m_len += mlen;
   3616   1.45  jonathan 			m->m_len = 0;
   3617   1.45  jonathan 			/* XXX stitch chain */
   3618   1.45  jonathan 			prev->m_next = m_free(m);
   3619   1.45  jonathan 			m = prev;
   3620   1.45  jonathan 			continue;
   3621   1.45  jonathan 		}
   3622  1.113   tsutsui 		else if (m->m_next != NULL &&
   3623   1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3624   1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3625   1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3626   1.45  jonathan 
   3627  1.115   tsutsui 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3628  1.115   tsutsui 			    shortfall);
   3629   1.45  jonathan 			m->m_len += shortfall;
   3630   1.45  jonathan 			m->m_next->m_len -= shortfall;
   3631   1.45  jonathan 			m->m_next->m_data += shortfall;
   3632   1.45  jonathan 		}
   3633   1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3634   1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3635   1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3636   1.45  jonathan 			 * update its length in-place. (The original data is still
   3637   1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3638   1.45  jonathan 			 */
   3639   1.45  jonathan 
   3640   1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3641   1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3642   1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3643  1.111  christos 
   3644   1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3645   1.45  jonathan 				shortfall = prev->m_len;
   3646   1.87     perry 
   3647   1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3648   1.45  jonathan 			if (!M_READONLY(m)) {
   3649   1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3650   1.45  jonathan 					void *m_dat;
   3651   1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3652   1.45  jonathan 					  m->m_pktdat : m->dat;
   3653   1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3654   1.45  jonathan 					m->m_data = m_dat;
   3655   1.45  jonathan 				    }
   3656   1.45  jonathan 			} else
   3657   1.45  jonathan #endif	/* just do the safe slow thing */
   3658   1.45  jonathan 			{
   3659   1.45  jonathan 				struct mbuf * n = NULL;
   3660   1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3661   1.45  jonathan 
   3662   1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3663   1.45  jonathan 				if (n == NULL)
   3664   1.45  jonathan 				   return ENOBUFS;
   3665   1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3666   1.45  jonathan 					/*,
   3667   1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3668   1.45  jonathan 
   3669   1.45  jonathan 				/* first copy the data we're stealing from prev */
   3670  1.115   tsutsui 				memcpy(n->m_data, prev->m_data + newprevlen,
   3671  1.115   tsutsui 				    shortfall);
   3672   1.45  jonathan 
   3673   1.45  jonathan 				/* update prev->m_len accordingly */
   3674   1.45  jonathan 				prev->m_len -= shortfall;
   3675   1.45  jonathan 
   3676   1.45  jonathan 				/* copy data from runt m */
   3677  1.115   tsutsui 				memcpy(n->m_data + shortfall, m->m_data,
   3678  1.115   tsutsui 				    m->m_len);
   3679   1.45  jonathan 
   3680   1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3681   1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3682   1.45  jonathan 
   3683   1.45  jonathan 				/* stitch n into chain and free m */
   3684   1.45  jonathan 				n->m_next = m->m_next;
   3685   1.45  jonathan 				prev->m_next = n;
   3686   1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3687   1.45  jonathan 				m->m_next = NULL;
   3688   1.45  jonathan 				m_free(m);
   3689   1.45  jonathan 				m = n;	/* for continuing loop */
   3690   1.45  jonathan 			}
   3691   1.45  jonathan 		}
   3692   1.45  jonathan 		prevlen = m->m_len;
   3693   1.45  jonathan 	}
   3694   1.45  jonathan 	return 0;
   3695   1.45  jonathan }
   3696   1.45  jonathan 
   3697    1.1      fvdl /*
   3698    1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3699    1.1      fvdl  * pointers to descriptors.
   3700    1.1      fvdl  */
   3701  1.104   thorpej static int
   3702  1.170   msaitoh bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3703    1.1      fvdl {
   3704    1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3705  1.170   msaitoh 	uint32_t		frag, cur;
   3706  1.170   msaitoh 	uint16_t		csum_flags = 0;
   3707  1.170   msaitoh 	uint16_t		txbd_tso_flags = 0;
   3708    1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3709    1.1      fvdl 	bus_dmamap_t dmamap;
   3710    1.1      fvdl 	int			i = 0;
   3711   1.29    itojun 	struct m_tag		*mtag;
   3712   1.95  jonathan 	int			use_tso, maxsegsize, error;
   3713  1.107     blymn 
   3714    1.1      fvdl 	cur = frag = *txidx;
   3715    1.1      fvdl 
   3716    1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3717    1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3718    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3719    1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3720    1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3721    1.1      fvdl 	}
   3722    1.1      fvdl 
   3723   1.87     perry 	/*
   3724   1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3725   1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3726   1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3727   1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3728   1.46  jonathan 	 * are confirmed to not require the workaround.)
   3729   1.46  jonathan 	 */
   3730   1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3731   1.46  jonathan #ifdef notyet
   3732   1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3733   1.87     perry #endif
   3734   1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3735   1.46  jonathan 		goto check_dma_bug;
   3736   1.46  jonathan 
   3737  1.170   msaitoh 	if (bge_cksum_pad(m_head) != 0)
   3738   1.46  jonathan 	    return ENOBUFS;
   3739   1.46  jonathan 
   3740   1.46  jonathan check_dma_bug:
   3741  1.157   msaitoh 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3742   1.29    itojun 		goto doit;
   3743  1.157   msaitoh 
   3744   1.25  jonathan 	/*
   3745   1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3746   1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3747   1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3748   1.25  jonathan 	 */
   3749   1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3750   1.45  jonathan 		return ENOBUFS;
   3751   1.25  jonathan 
   3752   1.25  jonathan doit:
   3753    1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3754    1.1      fvdl 	if (dma == NULL)
   3755    1.1      fvdl 		return ENOBUFS;
   3756    1.1      fvdl 	dmamap = dma->dmamap;
   3757    1.1      fvdl 
   3758    1.1      fvdl 	/*
   3759   1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3760   1.95  jonathan 	 */
   3761   1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3762   1.95  jonathan 	if (!use_tso) {
   3763   1.95  jonathan 		maxsegsize = 0;
   3764   1.95  jonathan 	} else {	/* TSO setup */
   3765   1.95  jonathan 		unsigned  mss;
   3766   1.95  jonathan 		struct ether_header *eh;
   3767   1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3768   1.95  jonathan 		struct mbuf * m0 = m_head;
   3769   1.95  jonathan 		struct ip *ip;
   3770   1.95  jonathan 		struct tcphdr *th;
   3771   1.95  jonathan 		int iphl, hlen;
   3772   1.95  jonathan 
   3773   1.95  jonathan 		/*
   3774   1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3775   1.95  jonathan 		 * fields for the protocol headers.
   3776   1.95  jonathan 		 */
   3777   1.95  jonathan 
   3778   1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3779   1.95  jonathan 		switch (htons(eh->ether_type)) {
   3780   1.95  jonathan 		case ETHERTYPE_IP:
   3781   1.95  jonathan 			offset = ETHER_HDR_LEN;
   3782   1.95  jonathan 			break;
   3783   1.95  jonathan 
   3784   1.95  jonathan 		case ETHERTYPE_VLAN:
   3785   1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3786   1.95  jonathan 			break;
   3787   1.95  jonathan 
   3788   1.95  jonathan 		default:
   3789   1.95  jonathan 			/*
   3790   1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3791   1.95  jonathan 			 */
   3792  1.170   msaitoh 			return ENOBUFS;
   3793   1.95  jonathan 		}
   3794   1.95  jonathan 
   3795   1.95  jonathan 		/*
   3796   1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3797   1.95  jonathan 		 * this the easy way.
   3798   1.95  jonathan 		 */
   3799   1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3800   1.95  jonathan 		hlen = iphl + offset;
   3801   1.95  jonathan 		if (__predict_false(m0->m_len <
   3802   1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3803   1.95  jonathan 
   3804  1.138     joerg 			aprint_debug_dev(sc->bge_dev,
   3805  1.138     joerg 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3806  1.138     joerg 			    "not handled yet\n",
   3807  1.138     joerg 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3808   1.95  jonathan #ifdef NOTYET
   3809   1.95  jonathan 			/*
   3810   1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3811   1.95  jonathan 			 * how to force  this branch to be taken?
   3812   1.95  jonathan 			 */
   3813   1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3814   1.95  jonathan 
   3815   1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3816   1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3817   1.95  jonathan 
   3818   1.95  jonathan 			ip.ip_len = 0;
   3819   1.95  jonathan 
   3820   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3821   1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3822   1.95  jonathan 
   3823   1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3824   1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3825   1.95  jonathan 
   3826   1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3827   1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3828   1.95  jonathan 
   3829   1.95  jonathan 			hlen += th.th_off << 2;
   3830   1.95  jonathan 			iptcp_opt_words	= hlen;
   3831   1.95  jonathan #else
   3832   1.95  jonathan 			/*
   3833   1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3834   1.95  jonathan 			 * mandate it out of existence?
   3835   1.95  jonathan 			 */
   3836   1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3837   1.95  jonathan 
   3838   1.95  jonathan 			return ENOBUFS;
   3839   1.95  jonathan #endif
   3840   1.95  jonathan 		} else {
   3841  1.126  christos 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3842  1.126  christos 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3843   1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3844   1.95  jonathan 
   3845   1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3846   1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3847   1.95  jonathan 					   - sizeof(struct tcphdr)
   3848   1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3849   1.95  jonathan 		}
   3850   1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3851   1.95  jonathan 			th->th_sum = 0;
   3852   1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3853   1.95  jonathan 		} else {
   3854   1.95  jonathan 			/*
   3855  1.107     blymn 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3856   1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3857   1.95  jonathan 			 */
   3858   1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3859   1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3860   1.95  jonathan 		}
   3861   1.95  jonathan 
   3862   1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3863  1.107     blymn 		txbd_tso_flags |=
   3864   1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3865   1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3866   1.95  jonathan 
   3867   1.95  jonathan 		/*
   3868   1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3869   1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3870   1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3871   1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3872   1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3873   1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3874   1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3875   1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3876   1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3877   1.95  jonathan 		 * varies across different ASIC families.
   3878   1.95  jonathan 		 */
   3879   1.95  jonathan 		tcp_seg_flags = 0;
   3880   1.95  jonathan 		if (iptcp_opt_words) {
   3881  1.172   msaitoh 			if (BGE_IS_5705_PLUS(sc)) {
   3882   1.95  jonathan 				tcp_seg_flags =
   3883   1.95  jonathan 					iptcp_opt_words << 11;
   3884   1.95  jonathan 			} else {
   3885   1.95  jonathan 				txbd_tso_flags |=
   3886   1.95  jonathan 					iptcp_opt_words << 12;
   3887   1.95  jonathan 			}
   3888   1.95  jonathan 		}
   3889   1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3890   1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3891   1.95  jonathan 
   3892   1.95  jonathan 	}	/* TSO setup */
   3893   1.95  jonathan 
   3894   1.95  jonathan 	/*
   3895    1.1      fvdl 	 * Start packing the mbufs in this chain into
   3896    1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3897    1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3898    1.1      fvdl 	 */
   3899   1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3900   1.95  jonathan 	    BUS_DMA_NOWAIT);
   3901  1.170   msaitoh 	if (error)
   3902  1.170   msaitoh 		return ENOBUFS;
   3903  1.118   tsutsui 	/*
   3904  1.118   tsutsui 	 * Sanity check: avoid coming within 16 descriptors
   3905  1.118   tsutsui 	 * of the end of the ring.
   3906  1.118   tsutsui 	 */
   3907  1.118   tsutsui 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3908  1.118   tsutsui 		BGE_TSO_PRINTF(("%s: "
   3909  1.118   tsutsui 		    " dmamap_load_mbuf too close to ring wrap\n",
   3910  1.138     joerg 		    device_xname(sc->bge_dev)));
   3911  1.118   tsutsui 		goto fail_unload;
   3912  1.118   tsutsui 	}
   3913   1.95  jonathan 
   3914   1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3915   1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3916    1.1      fvdl 
   3917    1.6   thorpej 
   3918   1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3919    1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3920    1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3921    1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3922    1.1      fvdl 			break;
   3923  1.107     blymn 
   3924  1.172   msaitoh 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3925    1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3926   1.95  jonathan 
   3927   1.95  jonathan 		/*
   3928   1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3929   1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3930   1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3931   1.95  jonathan 		 * of TSO flags and segsize.
   3932   1.95  jonathan 		 */
   3933   1.95  jonathan 		if (use_tso) {
   3934   1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3935   1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3936   1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3937   1.95  jonathan 			} else {
   3938   1.95  jonathan 				f->bge_rsvd = 0;
   3939   1.95  jonathan 				f->bge_flags =
   3940   1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3941   1.95  jonathan 			}
   3942   1.95  jonathan 		} else {
   3943   1.95  jonathan 			f->bge_rsvd = 0;
   3944   1.95  jonathan 			f->bge_flags = csum_flags;
   3945   1.95  jonathan 		}
   3946    1.1      fvdl 
   3947   1.28    itojun 		if (mtag != NULL) {
   3948    1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3949   1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3950    1.1      fvdl 		} else {
   3951    1.1      fvdl 			f->bge_vlan_tag = 0;
   3952    1.1      fvdl 		}
   3953    1.1      fvdl 		cur = frag;
   3954    1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3955    1.1      fvdl 	}
   3956    1.1      fvdl 
   3957   1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   3958   1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3959  1.138     joerg 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3960  1.118   tsutsui 		goto fail_unload;
   3961   1.95  jonathan 	}
   3962    1.1      fvdl 
   3963    1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3964    1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3965    1.1      fvdl 
   3966   1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   3967   1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3968  1.138     joerg 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3969   1.95  jonathan 
   3970  1.118   tsutsui 		goto fail_unload;
   3971   1.95  jonathan 	}
   3972    1.1      fvdl 
   3973    1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3974    1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3975    1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3976    1.1      fvdl 	sc->txdma[cur] = dma;
   3977  1.118   tsutsui 	sc->bge_txcnt += dmamap->dm_nsegs;
   3978    1.1      fvdl 
   3979    1.1      fvdl 	*txidx = frag;
   3980    1.1      fvdl 
   3981  1.170   msaitoh 	return 0;
   3982  1.118   tsutsui 
   3983  1.158   msaitoh fail_unload:
   3984  1.118   tsutsui 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3985  1.118   tsutsui 
   3986  1.118   tsutsui 	return ENOBUFS;
   3987    1.1      fvdl }
   3988    1.1      fvdl 
   3989    1.1      fvdl /*
   3990    1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3991    1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3992    1.1      fvdl  */
   3993  1.104   thorpej static void
   3994  1.104   thorpej bge_start(struct ifnet *ifp)
   3995    1.1      fvdl {
   3996    1.1      fvdl 	struct bge_softc *sc;
   3997    1.1      fvdl 	struct mbuf *m_head = NULL;
   3998  1.170   msaitoh 	uint32_t prodidx;
   3999    1.1      fvdl 	int pkts = 0;
   4000    1.1      fvdl 
   4001    1.1      fvdl 	sc = ifp->if_softc;
   4002    1.1      fvdl 
   4003  1.131   mlelstv 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4004    1.1      fvdl 		return;
   4005    1.1      fvdl 
   4006   1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   4007    1.1      fvdl 
   4008  1.170   msaitoh 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4009    1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   4010    1.1      fvdl 		if (m_head == NULL)
   4011    1.1      fvdl 			break;
   4012    1.1      fvdl 
   4013    1.1      fvdl #if 0
   4014    1.1      fvdl 		/*
   4015    1.1      fvdl 		 * XXX
   4016    1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   4017    1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   4018    1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   4019    1.1      fvdl 		 * chain at once.
   4020    1.1      fvdl 		 * (paranoia -- may not actually be needed)
   4021    1.1      fvdl 		 */
   4022    1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   4023    1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4024    1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4025   1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4026    1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   4027    1.1      fvdl 				break;
   4028    1.1      fvdl 			}
   4029    1.1      fvdl 		}
   4030    1.1      fvdl #endif
   4031    1.1      fvdl 
   4032    1.1      fvdl 		/*
   4033    1.1      fvdl 		 * Pack the data into the transmit ring. If we
   4034    1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   4035    1.1      fvdl 		 * for the NIC to drain the ring.
   4036    1.1      fvdl 		 */
   4037    1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   4038    1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   4039    1.1      fvdl 			break;
   4040    1.1      fvdl 		}
   4041    1.1      fvdl 
   4042    1.1      fvdl 		/* now we are committed to transmit the packet */
   4043    1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4044    1.1      fvdl 		pkts++;
   4045    1.1      fvdl 
   4046    1.1      fvdl 		/*
   4047    1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   4048    1.1      fvdl 		 * to him.
   4049    1.1      fvdl 		 */
   4050    1.1      fvdl 		if (ifp->if_bpf)
   4051  1.169     pooka 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
   4052    1.1      fvdl 	}
   4053    1.1      fvdl 	if (pkts == 0)
   4054    1.1      fvdl 		return;
   4055    1.1      fvdl 
   4056    1.1      fvdl 	/* Transmit */
   4057  1.151    cegger 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4058  1.158   msaitoh 	/* 5700 b2 errata */
   4059  1.158   msaitoh 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4060  1.151    cegger 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4061    1.1      fvdl 
   4062   1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   4063   1.94  jonathan 
   4064    1.1      fvdl 	/*
   4065    1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   4066    1.1      fvdl 	 */
   4067    1.1      fvdl 	ifp->if_timer = 5;
   4068    1.1      fvdl }
   4069    1.1      fvdl 
   4070  1.104   thorpej static int
   4071  1.104   thorpej bge_init(struct ifnet *ifp)
   4072    1.1      fvdl {
   4073    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4074  1.170   msaitoh 	const uint16_t *m;
   4075  1.142    dyoung 	int s, error = 0;
   4076    1.1      fvdl 
   4077    1.1      fvdl 	s = splnet();
   4078    1.1      fvdl 
   4079    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   4080    1.1      fvdl 
   4081    1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   4082  1.141  jmcneill 	bge_stop(ifp, 0);
   4083    1.1      fvdl 	bge_reset(sc);
   4084    1.1      fvdl 	bge_chipinit(sc);
   4085    1.1      fvdl 
   4086    1.1      fvdl 	/*
   4087    1.1      fvdl 	 * Init the various state machines, ring
   4088    1.1      fvdl 	 * control blocks and firmware.
   4089    1.1      fvdl 	 */
   4090    1.1      fvdl 	error = bge_blockinit(sc);
   4091    1.1      fvdl 	if (error != 0) {
   4092  1.138     joerg 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4093    1.1      fvdl 		    error);
   4094    1.1      fvdl 		splx(s);
   4095    1.1      fvdl 		return error;
   4096    1.1      fvdl 	}
   4097    1.1      fvdl 
   4098    1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   4099    1.1      fvdl 
   4100    1.1      fvdl 	/* Specify MTU. */
   4101    1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4102  1.107     blymn 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4103    1.1      fvdl 
   4104    1.1      fvdl 	/* Load our MAC address. */
   4105  1.170   msaitoh 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4106    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4107    1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4108    1.1      fvdl 
   4109    1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   4110    1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   4111    1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4112    1.1      fvdl 	} else {
   4113    1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4114    1.1      fvdl 	}
   4115    1.1      fvdl 
   4116    1.1      fvdl 	/* Program multicast filter. */
   4117    1.1      fvdl 	bge_setmulti(sc);
   4118    1.1      fvdl 
   4119    1.1      fvdl 	/* Init RX ring. */
   4120    1.1      fvdl 	bge_init_rx_ring_std(sc);
   4121    1.1      fvdl 
   4122  1.161   msaitoh 	/*
   4123  1.161   msaitoh 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4124  1.161   msaitoh 	 * memory to insure that the chip has in fact read the first
   4125  1.161   msaitoh 	 * entry of the ring.
   4126  1.161   msaitoh 	 */
   4127  1.161   msaitoh 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4128  1.170   msaitoh 		uint32_t		v, i;
   4129  1.161   msaitoh 		for (i = 0; i < 10; i++) {
   4130  1.161   msaitoh 			DELAY(20);
   4131  1.161   msaitoh 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4132  1.161   msaitoh 			if (v == (MCLBYTES - ETHER_ALIGN))
   4133  1.161   msaitoh 				break;
   4134  1.161   msaitoh 		}
   4135  1.161   msaitoh 		if (i == 10)
   4136  1.161   msaitoh 			aprint_error_dev(sc->bge_dev,
   4137  1.161   msaitoh 			    "5705 A0 chip failed to load RX ring\n");
   4138  1.161   msaitoh 	}
   4139  1.161   msaitoh 
   4140    1.1      fvdl 	/* Init jumbo RX ring. */
   4141    1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4142    1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   4143    1.1      fvdl 
   4144    1.1      fvdl 	/* Init our RX return ring index */
   4145    1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   4146    1.1      fvdl 
   4147    1.1      fvdl 	/* Init TX ring. */
   4148    1.1      fvdl 	bge_init_tx_ring(sc);
   4149    1.1      fvdl 
   4150    1.1      fvdl 	/* Turn on transmitter */
   4151    1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4152    1.1      fvdl 
   4153    1.1      fvdl 	/* Turn on receiver */
   4154    1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4155    1.1      fvdl 
   4156   1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4157   1.71   thorpej 
   4158    1.1      fvdl 	/* Tell firmware we're alive. */
   4159    1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4160    1.1      fvdl 
   4161    1.1      fvdl 	/* Enable host interrupts. */
   4162    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4163    1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4164  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4165    1.1      fvdl 
   4166  1.142    dyoung 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4167  1.142    dyoung 		goto out;
   4168    1.1      fvdl 
   4169    1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   4170    1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   4171    1.1      fvdl 
   4172  1.142    dyoung 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4173  1.142    dyoung 
   4174  1.142    dyoung out:
   4175    1.1      fvdl 	splx(s);
   4176    1.1      fvdl 
   4177  1.142    dyoung 	return error;
   4178    1.1      fvdl }
   4179    1.1      fvdl 
   4180    1.1      fvdl /*
   4181    1.1      fvdl  * Set media options.
   4182    1.1      fvdl  */
   4183  1.104   thorpej static int
   4184  1.104   thorpej bge_ifmedia_upd(struct ifnet *ifp)
   4185    1.1      fvdl {
   4186    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4187    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4188    1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4189  1.142    dyoung 	int rc;
   4190    1.1      fvdl 
   4191    1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4192  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4193    1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4194  1.170   msaitoh 			return EINVAL;
   4195  1.170   msaitoh 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4196    1.1      fvdl 		case IFM_AUTO:
   4197  1.161   msaitoh 			/*
   4198  1.161   msaitoh 			 * The BCM5704 ASIC appears to have a special
   4199  1.161   msaitoh 			 * mechanism for programming the autoneg
   4200  1.161   msaitoh 			 * advertisement registers in TBI mode.
   4201  1.161   msaitoh 			 */
   4202  1.161   msaitoh 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4203  1.170   msaitoh 				uint32_t sgdig;
   4204  1.161   msaitoh 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4205  1.161   msaitoh 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4206  1.161   msaitoh 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4207  1.161   msaitoh 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4208  1.161   msaitoh 					sgdig |= BGE_SGDIGCFG_AUTO |
   4209  1.161   msaitoh 					    BGE_SGDIGCFG_PAUSE_CAP |
   4210  1.161   msaitoh 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4211  1.161   msaitoh 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4212  1.161   msaitoh 					    sgdig | BGE_SGDIGCFG_SEND);
   4213  1.161   msaitoh 					DELAY(5);
   4214  1.161   msaitoh 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4215  1.161   msaitoh 				}
   4216  1.161   msaitoh 			}
   4217    1.1      fvdl 			break;
   4218    1.1      fvdl 		case IFM_1000_SX:
   4219    1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4220    1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4221    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4222    1.1      fvdl 			} else {
   4223    1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4224    1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   4225    1.1      fvdl 			}
   4226    1.1      fvdl 			break;
   4227    1.1      fvdl 		default:
   4228  1.170   msaitoh 			return EINVAL;
   4229    1.1      fvdl 		}
   4230   1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   4231  1.170   msaitoh 		return 0;
   4232    1.1      fvdl 	}
   4233    1.1      fvdl 
   4234  1.161   msaitoh 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4235  1.142    dyoung 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4236  1.142    dyoung 		return 0;
   4237  1.161   msaitoh 
   4238  1.161   msaitoh 	/*
   4239  1.161   msaitoh 	 * Force an interrupt so that we will call bge_link_upd
   4240  1.161   msaitoh 	 * if needed and clear any pending link state attention.
   4241  1.161   msaitoh 	 * Without this we are not getting any further interrupts
   4242  1.161   msaitoh 	 * for link state changes and thus will not UP the link and
   4243  1.161   msaitoh 	 * not be able to send in bge_start. The only way to get
   4244  1.161   msaitoh 	 * things working was to receive a packet and get a RX intr.
   4245  1.161   msaitoh 	 */
   4246  1.161   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4247  1.161   msaitoh 	    sc->bge_flags & BGE_IS_5788)
   4248  1.161   msaitoh 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4249  1.161   msaitoh 	else
   4250  1.161   msaitoh 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4251  1.161   msaitoh 
   4252  1.142    dyoung 	return rc;
   4253    1.1      fvdl }
   4254    1.1      fvdl 
   4255    1.1      fvdl /*
   4256    1.1      fvdl  * Report current media status.
   4257    1.1      fvdl  */
   4258  1.104   thorpej static void
   4259  1.104   thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4260    1.1      fvdl {
   4261    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4262    1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   4263    1.1      fvdl 
   4264  1.157   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4265    1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   4266    1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   4267    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4268    1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4269    1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   4270    1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   4271    1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4272    1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   4273    1.1      fvdl 		else
   4274    1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   4275    1.1      fvdl 		return;
   4276    1.1      fvdl 	}
   4277    1.1      fvdl 
   4278    1.1      fvdl 	mii_pollstat(mii);
   4279    1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   4280   1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4281   1.69   thorpej 	    sc->bge_flowflags;
   4282    1.1      fvdl }
   4283    1.1      fvdl 
   4284  1.104   thorpej static int
   4285  1.126  christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4286    1.1      fvdl {
   4287    1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   4288    1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   4289    1.1      fvdl 	int s, error = 0;
   4290    1.1      fvdl 	struct mii_data *mii;
   4291    1.1      fvdl 
   4292    1.1      fvdl 	s = splnet();
   4293    1.1      fvdl 
   4294  1.170   msaitoh 	switch (command) {
   4295    1.1      fvdl 	case SIOCSIFFLAGS:
   4296  1.153    dyoung 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4297  1.153    dyoung 			break;
   4298    1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   4299    1.1      fvdl 			/*
   4300    1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   4301    1.1      fvdl 			 * then just use the 'set promisc mode' command
   4302    1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   4303    1.1      fvdl 			 * a full re-init means reloading the firmware and
   4304    1.1      fvdl 			 * waiting for it to start up, which may take a
   4305    1.1      fvdl 			 * second or two.
   4306    1.1      fvdl 			 */
   4307    1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   4308    1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   4309    1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4310    1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   4311    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4312    1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   4313    1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   4314    1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   4315    1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4316    1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4317  1.103    rpaulo 			} else if (!(sc->bge_if_flags & IFF_UP))
   4318    1.1      fvdl 				bge_init(ifp);
   4319    1.1      fvdl 		} else {
   4320  1.141  jmcneill 			if (ifp->if_flags & IFF_RUNNING)
   4321  1.141  jmcneill 				bge_stop(ifp, 1);
   4322    1.1      fvdl 		}
   4323    1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   4324    1.1      fvdl 		error = 0;
   4325    1.1      fvdl 		break;
   4326    1.1      fvdl 	case SIOCSIFMEDIA:
   4327   1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   4328  1.157   msaitoh 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4329   1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4330   1.69   thorpej 			sc->bge_flowflags = 0;
   4331   1.69   thorpej 		}
   4332   1.69   thorpej 
   4333   1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4334   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4335   1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4336   1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4337   1.69   thorpej 		}
   4338   1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4339   1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4340  1.157   msaitoh 				/* We can do both TXPAUSE and RXPAUSE. */
   4341   1.69   thorpej 				ifr->ifr_media |=
   4342   1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4343   1.69   thorpej 			}
   4344   1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4345   1.69   thorpej 		}
   4346   1.69   thorpej 		/* FALLTHROUGH */
   4347    1.1      fvdl 	case SIOCGIFMEDIA:
   4348  1.157   msaitoh 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4349    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4350    1.1      fvdl 			    command);
   4351    1.1      fvdl 		} else {
   4352    1.1      fvdl 			mii = &sc->bge_mii;
   4353    1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4354    1.1      fvdl 			    command);
   4355    1.1      fvdl 		}
   4356    1.1      fvdl 		break;
   4357    1.1      fvdl 	default:
   4358  1.152      tron 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4359  1.152      tron 			break;
   4360  1.152      tron 
   4361  1.152      tron 		error = 0;
   4362  1.152      tron 
   4363  1.152      tron 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4364  1.152      tron 			;
   4365  1.152      tron 		else if (ifp->if_flags & IFF_RUNNING)
   4366  1.152      tron 			bge_setmulti(sc);
   4367    1.1      fvdl 		break;
   4368    1.1      fvdl 	}
   4369    1.1      fvdl 
   4370    1.1      fvdl 	splx(s);
   4371    1.1      fvdl 
   4372  1.170   msaitoh 	return error;
   4373    1.1      fvdl }
   4374    1.1      fvdl 
   4375  1.104   thorpej static void
   4376  1.104   thorpej bge_watchdog(struct ifnet *ifp)
   4377    1.1      fvdl {
   4378    1.1      fvdl 	struct bge_softc *sc;
   4379    1.1      fvdl 
   4380    1.1      fvdl 	sc = ifp->if_softc;
   4381    1.1      fvdl 
   4382  1.138     joerg 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4383    1.1      fvdl 
   4384    1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4385    1.1      fvdl 	bge_init(ifp);
   4386    1.1      fvdl 
   4387    1.1      fvdl 	ifp->if_oerrors++;
   4388    1.1      fvdl }
   4389    1.1      fvdl 
   4390   1.11   thorpej static void
   4391   1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4392   1.11   thorpej {
   4393   1.11   thorpej 	int i;
   4394   1.11   thorpej 
   4395   1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4396   1.11   thorpej 
   4397   1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4398   1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4399   1.11   thorpej 			return;
   4400   1.11   thorpej 		delay(100);
   4401  1.157   msaitoh 		if (sc->bge_flags & BGE_PCIE)
   4402   1.95  jonathan 		  DELAY(1000);
   4403   1.11   thorpej 	}
   4404   1.11   thorpej 
   4405  1.165   msaitoh 	/*
   4406  1.165   msaitoh 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4407  1.165   msaitoh 	 * on some environment (and once after boot?)
   4408  1.165   msaitoh 	 */
   4409  1.165   msaitoh 	if (reg != BGE_SRS_MODE)
   4410  1.165   msaitoh 		aprint_error_dev(sc->bge_dev,
   4411  1.165   msaitoh 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4412  1.165   msaitoh 		    (u_long)reg, bit);
   4413   1.11   thorpej }
   4414   1.11   thorpej 
   4415    1.1      fvdl /*
   4416    1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4417    1.1      fvdl  * RX and TX lists.
   4418    1.1      fvdl  */
   4419  1.104   thorpej static void
   4420  1.141  jmcneill bge_stop(struct ifnet *ifp, int disable)
   4421    1.1      fvdl {
   4422  1.141  jmcneill 	struct bge_softc *sc = ifp->if_softc;
   4423    1.1      fvdl 
   4424    1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4425    1.1      fvdl 
   4426    1.1      fvdl 	/*
   4427    1.1      fvdl 	 * Disable all of the receiver blocks
   4428    1.1      fvdl 	 */
   4429   1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4430   1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4431   1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4432  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   4433   1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4434   1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4435   1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4436   1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4437    1.1      fvdl 
   4438    1.1      fvdl 	/*
   4439    1.1      fvdl 	 * Disable all of the transmit blocks
   4440    1.1      fvdl 	 */
   4441   1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4442   1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4443   1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4444   1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4445   1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4446  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   4447   1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4448   1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4449    1.1      fvdl 
   4450    1.1      fvdl 	/*
   4451    1.1      fvdl 	 * Shut down all of the memory managers and related
   4452    1.1      fvdl 	 * state machines.
   4453    1.1      fvdl 	 */
   4454   1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4455   1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4456  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   4457   1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4458   1.11   thorpej 
   4459    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4460    1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4461   1.11   thorpej 
   4462  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc)) {
   4463   1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4464   1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4465   1.44   hannken 	}
   4466    1.1      fvdl 
   4467    1.1      fvdl 	/* Disable host interrupts. */
   4468    1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4469  1.151    cegger 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4470    1.1      fvdl 
   4471    1.1      fvdl 	/*
   4472    1.1      fvdl 	 * Tell firmware we're shutting down.
   4473    1.1      fvdl 	 */
   4474    1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4475    1.1      fvdl 
   4476    1.1      fvdl 	/* Free the RX lists. */
   4477    1.1      fvdl 	bge_free_rx_ring_std(sc);
   4478    1.1      fvdl 
   4479    1.1      fvdl 	/* Free jumbo RX list. */
   4480  1.172   msaitoh 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4481  1.172   msaitoh 		bge_free_rx_ring_jumbo(sc);
   4482    1.1      fvdl 
   4483    1.1      fvdl 	/* Free TX buffers. */
   4484    1.1      fvdl 	bge_free_tx_ring(sc);
   4485    1.1      fvdl 
   4486    1.1      fvdl 	/*
   4487    1.1      fvdl 	 * Isolate/power down the PHY.
   4488    1.1      fvdl 	 */
   4489  1.157   msaitoh 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4490    1.1      fvdl 		mii_down(&sc->bge_mii);
   4491    1.1      fvdl 
   4492  1.161   msaitoh 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4493    1.1      fvdl 
   4494  1.161   msaitoh 	/* Clear MAC's link state (PHY may still have link UP). */
   4495  1.161   msaitoh 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4496    1.1      fvdl 
   4497    1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4498    1.1      fvdl }
   4499    1.1      fvdl 
   4500  1.161   msaitoh static void
   4501  1.161   msaitoh bge_link_upd(struct bge_softc *sc)
   4502  1.161   msaitoh {
   4503  1.161   msaitoh 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4504  1.161   msaitoh 	struct mii_data *mii = &sc->bge_mii;
   4505  1.170   msaitoh 	uint32_t status;
   4506  1.161   msaitoh 	int link;
   4507  1.161   msaitoh 
   4508  1.161   msaitoh 	/* Clear 'pending link event' flag */
   4509  1.161   msaitoh 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4510  1.161   msaitoh 
   4511  1.161   msaitoh 	/*
   4512  1.161   msaitoh 	 * Process link state changes.
   4513  1.161   msaitoh 	 * Grrr. The link status word in the status block does
   4514  1.161   msaitoh 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4515  1.161   msaitoh 	 * according to all available information. Hence, we have
   4516  1.161   msaitoh 	 * to enable MII interrupts in order to properly obtain
   4517  1.161   msaitoh 	 * async link changes. Unfortunately, this also means that
   4518  1.161   msaitoh 	 * we have to read the MAC status register to detect link
   4519  1.161   msaitoh 	 * changes, thereby adding an additional register access to
   4520  1.161   msaitoh 	 * the interrupt handler.
   4521  1.161   msaitoh 	 */
   4522  1.161   msaitoh 
   4523  1.161   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4524  1.161   msaitoh 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4525  1.161   msaitoh 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4526  1.161   msaitoh 			mii_pollstat(mii);
   4527  1.161   msaitoh 
   4528  1.161   msaitoh 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4529  1.161   msaitoh 			    mii->mii_media_status & IFM_ACTIVE &&
   4530  1.161   msaitoh 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4531  1.161   msaitoh 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4532  1.161   msaitoh 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4533  1.161   msaitoh 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4534  1.161   msaitoh 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4535  1.161   msaitoh 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4536  1.161   msaitoh 
   4537  1.161   msaitoh 			/* Clear the interrupt */
   4538  1.161   msaitoh 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4539  1.161   msaitoh 			    BGE_EVTENB_MI_INTERRUPT);
   4540  1.161   msaitoh 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4541  1.161   msaitoh 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4542  1.161   msaitoh 			    BRGPHY_INTRS);
   4543  1.161   msaitoh 		}
   4544  1.161   msaitoh 		return;
   4545  1.161   msaitoh 	}
   4546  1.161   msaitoh 
   4547  1.161   msaitoh 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4548  1.161   msaitoh 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4549  1.161   msaitoh 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4550  1.161   msaitoh 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4551  1.161   msaitoh 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4552  1.161   msaitoh 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4553  1.161   msaitoh 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4554  1.161   msaitoh 					    BGE_MACMODE_TBI_SEND_CFGS);
   4555  1.161   msaitoh 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4556  1.161   msaitoh 				if_link_state_change(ifp, LINK_STATE_UP);
   4557  1.161   msaitoh 			}
   4558  1.161   msaitoh 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4559  1.161   msaitoh 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4560  1.161   msaitoh 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4561  1.161   msaitoh 		}
   4562  1.161   msaitoh         /*
   4563  1.161   msaitoh 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4564  1.161   msaitoh 	 * This should not happen since mii callouts are locked now, but
   4565  1.161   msaitoh 	 * we keep this check for debug.
   4566  1.161   msaitoh 	 */
   4567  1.161   msaitoh 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4568  1.161   msaitoh 		/*
   4569  1.161   msaitoh 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4570  1.161   msaitoh 		 * bit in status word always set. Workaround this bug by
   4571  1.161   msaitoh 		 * reading PHY link status directly.
   4572  1.161   msaitoh 		 */
   4573  1.161   msaitoh 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4574  1.161   msaitoh 		    BGE_STS_LINK : 0;
   4575  1.161   msaitoh 
   4576  1.161   msaitoh 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4577  1.161   msaitoh 			mii_pollstat(mii);
   4578  1.161   msaitoh 
   4579  1.161   msaitoh 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4580  1.161   msaitoh 			    mii->mii_media_status & IFM_ACTIVE &&
   4581  1.161   msaitoh 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4582  1.161   msaitoh 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4583  1.161   msaitoh 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4584  1.161   msaitoh 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4585  1.161   msaitoh 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4586  1.161   msaitoh 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4587  1.161   msaitoh 		}
   4588  1.161   msaitoh 	}
   4589  1.161   msaitoh 
   4590  1.161   msaitoh 	/* Clear the attention */
   4591  1.161   msaitoh 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4592  1.161   msaitoh 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4593  1.161   msaitoh 	    BGE_MACSTAT_LINK_CHANGED);
   4594  1.161   msaitoh }
   4595  1.161   msaitoh 
   4596   1.64  jonathan static int
   4597   1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4598   1.64  jonathan {
   4599   1.64  jonathan 	int error, t;
   4600   1.64  jonathan 	struct sysctlnode node;
   4601   1.64  jonathan 
   4602   1.64  jonathan 	node = *rnode;
   4603   1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4604   1.64  jonathan 	node.sysctl_data = &t;
   4605   1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4606   1.64  jonathan 	if (error || newp == NULL)
   4607  1.170   msaitoh 		return error;
   4608   1.64  jonathan 
   4609   1.64  jonathan #if 0
   4610   1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4611   1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4612   1.64  jonathan #endif
   4613   1.64  jonathan 
   4614   1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4615   1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4616  1.170   msaitoh 			return EINVAL;
   4617   1.64  jonathan 		bge_update_all_threshes(t);
   4618   1.64  jonathan 	} else
   4619  1.170   msaitoh 		return EINVAL;
   4620   1.64  jonathan 
   4621   1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4622   1.64  jonathan 
   4623  1.170   msaitoh 	return 0;
   4624   1.64  jonathan }
   4625   1.64  jonathan 
   4626   1.64  jonathan /*
   4627   1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4628   1.64  jonathan  *
   4629   1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4630   1.64  jonathan  */
   4631   1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4632   1.64  jonathan {
   4633   1.66    atatat 	int rc, bge_root_num;
   4634   1.90    atatat 	const struct sysctlnode *node;
   4635   1.64  jonathan 
   4636   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4637   1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4638   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4639   1.64  jonathan 		goto err;
   4640   1.64  jonathan 	}
   4641   1.64  jonathan 
   4642   1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4643   1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4644   1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4645   1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4646   1.64  jonathan 		goto err;
   4647   1.64  jonathan 	}
   4648   1.64  jonathan 
   4649   1.66    atatat 	bge_root_num = node->sysctl_num;
   4650   1.66    atatat 
   4651   1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4652   1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4653   1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4654   1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4655   1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4656   1.73    atatat 	    sysctl_bge_verify, 0,
   4657   1.64  jonathan 	    &bge_rx_thresh_lvl,
   4658   1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4659   1.64  jonathan 	    CTL_EOL)) != 0) {
   4660   1.64  jonathan 		goto err;
   4661   1.64  jonathan 	}
   4662   1.64  jonathan 
   4663   1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4664   1.64  jonathan 
   4665   1.64  jonathan 	return;
   4666   1.64  jonathan 
   4667   1.64  jonathan err:
   4668  1.138     joerg 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4669   1.64  jonathan }
   4670  1.151    cegger 
   4671  1.172   msaitoh #ifdef BGE_DEBUG
   4672  1.172   msaitoh void
   4673  1.172   msaitoh bge_debug_info(struct bge_softc *sc)
   4674  1.172   msaitoh {
   4675  1.172   msaitoh 
   4676  1.172   msaitoh 	printf("Hardware Flags:\n");
   4677  1.172   msaitoh 	if (BGE_IS_5755_PLUS(sc))
   4678  1.172   msaitoh 		printf(" - 5755 Plus\n");
   4679  1.172   msaitoh 	if (BGE_IS_5750_OR_BEYOND(sc))
   4680  1.172   msaitoh 		printf(" - 5750 Plus\n");
   4681  1.172   msaitoh 	if (BGE_IS_5705_PLUS(sc))
   4682  1.172   msaitoh 		printf(" - 5705 Plus\n");
   4683  1.172   msaitoh 	if (BGE_IS_5714_FAMILY(sc))
   4684  1.172   msaitoh 		printf(" - 5714 Family\n");
   4685  1.172   msaitoh 	if (BGE_IS_5700_FAMILY(sc))
   4686  1.172   msaitoh 		printf(" - 5700 Family\n");
   4687  1.172   msaitoh 	if (sc->bge_flags & BGE_IS_5788)
   4688  1.172   msaitoh 		printf(" - 5788\n");
   4689  1.172   msaitoh 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4690  1.172   msaitoh 		printf(" - Supports Jumbo Frames\n");
   4691  1.172   msaitoh 	if (sc->bge_flags & BGE_NO_EEPROM)
   4692  1.173   msaitoh 		printf(" - No EEPROM\n");
   4693  1.172   msaitoh 	if (sc->bge_flags & BGE_PCIX)
   4694  1.172   msaitoh 		printf(" - PCI-X Bus\n");
   4695  1.172   msaitoh 	if (sc->bge_flags & BGE_PCIE)
   4696  1.172   msaitoh 		printf(" - PCI Express Bus\n");
   4697  1.172   msaitoh 	if (sc->bge_flags & BGE_NO_3LED)
   4698  1.172   msaitoh 		printf(" - No 3 LEDs\n");
   4699  1.172   msaitoh 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4700  1.172   msaitoh 		printf(" - RX Alignment Bug\n");
   4701  1.172   msaitoh 	if (sc->bge_flags & BGE_TSO)
   4702  1.172   msaitoh 		printf(" - TSO\n");
   4703  1.172   msaitoh }
   4704  1.172   msaitoh #endif /* BGE_DEBUG */
   4705  1.172   msaitoh 
   4706  1.172   msaitoh static int
   4707  1.172   msaitoh bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4708  1.172   msaitoh {
   4709  1.172   msaitoh 	prop_dictionary_t dict;
   4710  1.172   msaitoh 	prop_data_t ea;
   4711  1.172   msaitoh 
   4712  1.172   msaitoh 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4713  1.172   msaitoh 		return 1;
   4714  1.172   msaitoh 
   4715  1.172   msaitoh 	dict = device_properties(sc->bge_dev);
   4716  1.172   msaitoh 	ea = prop_dictionary_get(dict, "mac-address");
   4717  1.172   msaitoh 	if (ea != NULL) {
   4718  1.172   msaitoh 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4719  1.172   msaitoh 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4720  1.172   msaitoh 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4721  1.172   msaitoh 		return 0;
   4722  1.172   msaitoh 	}
   4723  1.172   msaitoh 
   4724  1.172   msaitoh 	return 1;
   4725  1.172   msaitoh }
   4726  1.172   msaitoh 
   4727  1.151    cegger static int
   4728  1.170   msaitoh bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4729  1.151    cegger {
   4730  1.170   msaitoh 	uint32_t mac_addr;
   4731  1.151    cegger 
   4732  1.151    cegger 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4733  1.151    cegger 	if ((mac_addr >> 16) == 0x484b) {
   4734  1.151    cegger 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4735  1.151    cegger 		ether_addr[1] = (uint8_t)mac_addr;
   4736  1.151    cegger 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4737  1.151    cegger 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4738  1.151    cegger 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4739  1.151    cegger 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4740  1.151    cegger 		ether_addr[5] = (uint8_t)mac_addr;
   4741  1.170   msaitoh 		return 0;
   4742  1.151    cegger 	}
   4743  1.170   msaitoh 	return 1;
   4744  1.151    cegger }
   4745  1.151    cegger 
   4746  1.151    cegger static int
   4747  1.170   msaitoh bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4748  1.151    cegger {
   4749  1.151    cegger 	int mac_offset = BGE_EE_MAC_OFFSET;
   4750  1.151    cegger 
   4751  1.151    cegger 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4752  1.151    cegger 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4753  1.151    cegger 	}
   4754  1.151    cegger 
   4755  1.151    cegger 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4756  1.151    cegger 	    ETHER_ADDR_LEN));
   4757  1.151    cegger }
   4758  1.151    cegger 
   4759  1.151    cegger static int
   4760  1.170   msaitoh bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4761  1.151    cegger {
   4762  1.151    cegger 
   4763  1.170   msaitoh 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4764  1.170   msaitoh 		return 1;
   4765  1.151    cegger 
   4766  1.151    cegger 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4767  1.151    cegger 	   ETHER_ADDR_LEN));
   4768  1.151    cegger }
   4769  1.151    cegger 
   4770  1.151    cegger static int
   4771  1.170   msaitoh bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4772  1.151    cegger {
   4773  1.151    cegger 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4774  1.151    cegger 		/* NOTE: Order is critical */
   4775  1.172   msaitoh 		bge_get_eaddr_fw,
   4776  1.151    cegger 		bge_get_eaddr_mem,
   4777  1.151    cegger 		bge_get_eaddr_nvram,
   4778  1.151    cegger 		bge_get_eaddr_eeprom,
   4779  1.151    cegger 		NULL
   4780  1.151    cegger 	};
   4781  1.151    cegger 	const bge_eaddr_fcn_t *func;
   4782  1.151    cegger 
   4783  1.151    cegger 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4784  1.151    cegger 		if ((*func)(sc, eaddr) == 0)
   4785  1.151    cegger 			break;
   4786  1.151    cegger 	}
   4787  1.151    cegger 	return (*func == NULL ? ENXIO : 0);
   4788  1.151    cegger }
   4789