if_bge.c revision 1.174 1 1.174 martin /* $NetBSD: if_bge.c,v 1.174 2010/01/24 23:09:26 martin Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.174 martin __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.174 2010/01/24 23:09:26 martin Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "vlan.h"
85 1.148 mlelstv #include "rnd.h"
86 1.1 fvdl
87 1.1 fvdl #include <sys/param.h>
88 1.1 fvdl #include <sys/systm.h>
89 1.1 fvdl #include <sys/callout.h>
90 1.1 fvdl #include <sys/sockio.h>
91 1.1 fvdl #include <sys/mbuf.h>
92 1.1 fvdl #include <sys/malloc.h>
93 1.1 fvdl #include <sys/kernel.h>
94 1.1 fvdl #include <sys/device.h>
95 1.1 fvdl #include <sys/socket.h>
96 1.64 jonathan #include <sys/sysctl.h>
97 1.1 fvdl
98 1.1 fvdl #include <net/if.h>
99 1.1 fvdl #include <net/if_dl.h>
100 1.1 fvdl #include <net/if_media.h>
101 1.1 fvdl #include <net/if_ether.h>
102 1.1 fvdl
103 1.148 mlelstv #if NRND > 0
104 1.148 mlelstv #include <sys/rnd.h>
105 1.148 mlelstv #endif
106 1.148 mlelstv
107 1.1 fvdl #ifdef INET
108 1.1 fvdl #include <netinet/in.h>
109 1.1 fvdl #include <netinet/in_systm.h>
110 1.1 fvdl #include <netinet/in_var.h>
111 1.1 fvdl #include <netinet/ip.h>
112 1.1 fvdl #endif
113 1.1 fvdl
114 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
115 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
116 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
117 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
118 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
119 1.95 jonathan
120 1.95 jonathan
121 1.1 fvdl #include <net/bpf.h>
122 1.1 fvdl
123 1.1 fvdl #include <dev/pci/pcireg.h>
124 1.1 fvdl #include <dev/pci/pcivar.h>
125 1.1 fvdl #include <dev/pci/pcidevs.h>
126 1.1 fvdl
127 1.1 fvdl #include <dev/mii/mii.h>
128 1.1 fvdl #include <dev/mii/miivar.h>
129 1.1 fvdl #include <dev/mii/miidevs.h>
130 1.1 fvdl #include <dev/mii/brgphyreg.h>
131 1.1 fvdl
132 1.1 fvdl #include <dev/pci/if_bgereg.h>
133 1.164 msaitoh #include <dev/pci/if_bgevar.h>
134 1.1 fvdl
135 1.1 fvdl #include <uvm/uvm_extern.h>
136 1.164 msaitoh #include <prop/proplib.h>
137 1.1 fvdl
138 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
139 1.46 jonathan
140 1.63 jonathan
141 1.63 jonathan /*
142 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
143 1.63 jonathan */
144 1.63 jonathan
145 1.63 jonathan /*
146 1.63 jonathan * The pairs of values below were obtained from empirical measurement
147 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
148 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
149 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
150 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
151 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
152 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
153 1.63 jonathan * limits on the bcm5700: inreasing rx_ticks much beyond 600
154 1.63 jonathan * results in internal wrapping and higher interrupt rates.
155 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
156 1.87 perry *
157 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
158 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
159 1.63 jonathan * family), the larger values may overflow internal chip limits,
160 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
161 1.63 jonathan * rates.
162 1.63 jonathan *
163 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
164 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
165 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
166 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
167 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
168 1.63 jonathan */
169 1.104 thorpej static const struct bge_load_rx_thresh {
170 1.63 jonathan int rx_ticks;
171 1.63 jonathan int rx_max_bds; }
172 1.63 jonathan bge_rx_threshes[] = {
173 1.63 jonathan { 32, 2 },
174 1.63 jonathan { 50, 4 },
175 1.63 jonathan { 100, 8 },
176 1.63 jonathan { 192, 16 },
177 1.63 jonathan { 416, 32 },
178 1.63 jonathan { 598, 46 }
179 1.63 jonathan };
180 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
181 1.63 jonathan
182 1.63 jonathan /* XXX patchable; should be sysctl'able */
183 1.64 jonathan static int bge_auto_thresh = 1;
184 1.64 jonathan static int bge_rx_thresh_lvl;
185 1.64 jonathan
186 1.104 thorpej static int bge_rxthresh_nodenum;
187 1.1 fvdl
188 1.170 msaitoh typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
189 1.151 cegger
190 1.104 thorpej static int bge_probe(device_t, cfdata_t, void *);
191 1.104 thorpej static void bge_attach(device_t, device_t, void *);
192 1.104 thorpej static void bge_release_resources(struct bge_softc *);
193 1.104 thorpej static void bge_txeof(struct bge_softc *);
194 1.104 thorpej static void bge_rxeof(struct bge_softc *);
195 1.104 thorpej
196 1.172 msaitoh static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
197 1.170 msaitoh static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
198 1.170 msaitoh static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
199 1.170 msaitoh static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
200 1.170 msaitoh static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
201 1.151 cegger
202 1.104 thorpej static void bge_tick(void *);
203 1.104 thorpej static void bge_stats_update(struct bge_softc *);
204 1.172 msaitoh static void bge_stats_update_regs(struct bge_softc *);
205 1.170 msaitoh static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 1.104 thorpej
207 1.104 thorpej static int bge_intr(void *);
208 1.104 thorpej static void bge_start(struct ifnet *);
209 1.126 christos static int bge_ioctl(struct ifnet *, u_long, void *);
210 1.104 thorpej static int bge_init(struct ifnet *);
211 1.141 jmcneill static void bge_stop(struct ifnet *, int);
212 1.104 thorpej static void bge_watchdog(struct ifnet *);
213 1.104 thorpej static int bge_ifmedia_upd(struct ifnet *);
214 1.104 thorpej static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215 1.104 thorpej
216 1.104 thorpej static void bge_setmulti(struct bge_softc *);
217 1.104 thorpej
218 1.104 thorpej static void bge_handle_events(struct bge_softc *);
219 1.104 thorpej static int bge_alloc_jumbo_mem(struct bge_softc *);
220 1.104 thorpej #if 0 /* XXX */
221 1.104 thorpej static void bge_free_jumbo_mem(struct bge_softc *);
222 1.1 fvdl #endif
223 1.104 thorpej static void *bge_jalloc(struct bge_softc *);
224 1.126 christos static void bge_jfree(struct mbuf *, void *, size_t, void *);
225 1.104 thorpej static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
226 1.104 thorpej bus_dmamap_t);
227 1.104 thorpej static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
228 1.104 thorpej static int bge_init_rx_ring_std(struct bge_softc *);
229 1.104 thorpej static void bge_free_rx_ring_std(struct bge_softc *);
230 1.104 thorpej static int bge_init_rx_ring_jumbo(struct bge_softc *);
231 1.104 thorpej static void bge_free_rx_ring_jumbo(struct bge_softc *);
232 1.104 thorpej static void bge_free_tx_ring(struct bge_softc *);
233 1.104 thorpej static int bge_init_tx_ring(struct bge_softc *);
234 1.104 thorpej
235 1.104 thorpej static int bge_chipinit(struct bge_softc *);
236 1.104 thorpej static int bge_blockinit(struct bge_softc *);
237 1.104 thorpej static int bge_setpowerstate(struct bge_softc *, int);
238 1.1 fvdl
239 1.104 thorpej static void bge_reset(struct bge_softc *);
240 1.161 msaitoh static void bge_link_upd(struct bge_softc *);
241 1.95 jonathan
242 1.1 fvdl #ifdef BGE_DEBUG
243 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
244 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
245 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
246 1.1 fvdl int bgedebug = 0;
247 1.95 jonathan int bge_tso_debug = 0;
248 1.172 msaitoh void bge_debug_info(struct bge_softc *);
249 1.1 fvdl #else
250 1.1 fvdl #define DPRINTF(x)
251 1.1 fvdl #define DPRINTFN(n,x)
252 1.95 jonathan #define BGE_TSO_PRINTF(x)
253 1.1 fvdl #endif
254 1.1 fvdl
255 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
256 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
257 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
258 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
259 1.72 thorpej #else
260 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
261 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
262 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
263 1.72 thorpej #endif
264 1.72 thorpej
265 1.158 msaitoh static const struct bge_product {
266 1.158 msaitoh pci_vendor_id_t bp_vendor;
267 1.158 msaitoh pci_product_id_t bp_product;
268 1.158 msaitoh const char *bp_name;
269 1.158 msaitoh } bge_products[] = {
270 1.158 msaitoh /*
271 1.158 msaitoh * The BCM5700 documentation seems to indicate that the hardware
272 1.158 msaitoh * still has the Alteon vendor ID burned into it, though it
273 1.158 msaitoh * should always be overridden by the value in the EEPROM. We'll
274 1.158 msaitoh * check for it anyway.
275 1.158 msaitoh */
276 1.158 msaitoh { PCI_VENDOR_ALTEON,
277 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5700,
278 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
279 1.158 msaitoh },
280 1.158 msaitoh { PCI_VENDOR_ALTEON,
281 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5701,
282 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
283 1.158 msaitoh },
284 1.158 msaitoh { PCI_VENDOR_ALTIMA,
285 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1000,
286 1.158 msaitoh "Altima AC1000 Gigabit Ethernet",
287 1.158 msaitoh },
288 1.158 msaitoh { PCI_VENDOR_ALTIMA,
289 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1001,
290 1.158 msaitoh "Altima AC1001 Gigabit Ethernet",
291 1.158 msaitoh },
292 1.158 msaitoh { PCI_VENDOR_ALTIMA,
293 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC9100,
294 1.158 msaitoh "Altima AC9100 Gigabit Ethernet",
295 1.158 msaitoh },
296 1.158 msaitoh { PCI_VENDOR_BROADCOM,
297 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5700,
298 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
299 1.158 msaitoh },
300 1.158 msaitoh { PCI_VENDOR_BROADCOM,
301 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5701,
302 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
303 1.158 msaitoh },
304 1.158 msaitoh { PCI_VENDOR_BROADCOM,
305 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702,
306 1.158 msaitoh "Broadcom BCM5702 Gigabit Ethernet",
307 1.158 msaitoh },
308 1.158 msaitoh { PCI_VENDOR_BROADCOM,
309 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702X,
310 1.158 msaitoh "Broadcom BCM5702X Gigabit Ethernet" },
311 1.158 msaitoh { PCI_VENDOR_BROADCOM,
312 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703,
313 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
314 1.158 msaitoh },
315 1.158 msaitoh { PCI_VENDOR_BROADCOM,
316 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703X,
317 1.158 msaitoh "Broadcom BCM5703X Gigabit Ethernet",
318 1.158 msaitoh },
319 1.158 msaitoh { PCI_VENDOR_BROADCOM,
320 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703_ALT,
321 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
322 1.158 msaitoh },
323 1.158 msaitoh { PCI_VENDOR_BROADCOM,
324 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704C,
325 1.158 msaitoh "Broadcom BCM5704C Dual Gigabit Ethernet",
326 1.158 msaitoh },
327 1.158 msaitoh { PCI_VENDOR_BROADCOM,
328 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704S,
329 1.158 msaitoh "Broadcom BCM5704S Dual Gigabit Ethernet",
330 1.158 msaitoh },
331 1.158 msaitoh { PCI_VENDOR_BROADCOM,
332 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705,
333 1.158 msaitoh "Broadcom BCM5705 Gigabit Ethernet",
334 1.158 msaitoh },
335 1.158 msaitoh { PCI_VENDOR_BROADCOM,
336 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5705F,
337 1.172 msaitoh "Broadcom BCM5705F Gigabit Ethernet",
338 1.172 msaitoh },
339 1.172 msaitoh { PCI_VENDOR_BROADCOM,
340 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705K,
341 1.158 msaitoh "Broadcom BCM5705K Gigabit Ethernet",
342 1.158 msaitoh },
343 1.158 msaitoh { PCI_VENDOR_BROADCOM,
344 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M,
345 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
346 1.158 msaitoh },
347 1.158 msaitoh { PCI_VENDOR_BROADCOM,
348 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
349 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
350 1.158 msaitoh },
351 1.158 msaitoh { PCI_VENDOR_BROADCOM,
352 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5714,
353 1.172 msaitoh "Broadcom BCM5714 Gigabit Ethernet",
354 1.172 msaitoh },
355 1.172 msaitoh { PCI_VENDOR_BROADCOM,
356 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5714S,
357 1.172 msaitoh "Broadcom BCM5714S Gigabit Ethernet",
358 1.158 msaitoh },
359 1.158 msaitoh { PCI_VENDOR_BROADCOM,
360 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5715,
361 1.172 msaitoh "Broadcom BCM5715 Gigabit Ethernet",
362 1.158 msaitoh },
363 1.158 msaitoh { PCI_VENDOR_BROADCOM,
364 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5715S,
365 1.172 msaitoh "Broadcom BCM5715S Gigabit Ethernet",
366 1.172 msaitoh },
367 1.172 msaitoh { PCI_VENDOR_BROADCOM,
368 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5717,
369 1.172 msaitoh "Broadcom BCM5717 Gigabit Ethernet",
370 1.172 msaitoh },
371 1.172 msaitoh { PCI_VENDOR_BROADCOM,
372 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5718,
373 1.172 msaitoh "Broadcom BCM5718 Gigabit Ethernet",
374 1.172 msaitoh },
375 1.172 msaitoh { PCI_VENDOR_BROADCOM,
376 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5720,
377 1.172 msaitoh "Broadcom BCM5720 Gigabit Ethernet",
378 1.158 msaitoh },
379 1.158 msaitoh { PCI_VENDOR_BROADCOM,
380 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5721,
381 1.158 msaitoh "Broadcom BCM5721 Gigabit Ethernet",
382 1.158 msaitoh },
383 1.158 msaitoh { PCI_VENDOR_BROADCOM,
384 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5722,
385 1.158 msaitoh "Broadcom BCM5722 Gigabit Ethernet",
386 1.158 msaitoh },
387 1.158 msaitoh { PCI_VENDOR_BROADCOM,
388 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5723,
389 1.172 msaitoh "Broadcom BCM5723 Gigabit Ethernet",
390 1.172 msaitoh },
391 1.172 msaitoh { PCI_VENDOR_BROADCOM,
392 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5724,
393 1.172 msaitoh "Broadcom BCM5724 Gigabit Ethernet",
394 1.172 msaitoh },
395 1.172 msaitoh { PCI_VENDOR_BROADCOM,
396 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750,
397 1.158 msaitoh "Broadcom BCM5750 Gigabit Ethernet",
398 1.158 msaitoh },
399 1.158 msaitoh { PCI_VENDOR_BROADCOM,
400 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750M,
401 1.158 msaitoh "Broadcom BCM5750M Gigabit Ethernet",
402 1.158 msaitoh },
403 1.158 msaitoh { PCI_VENDOR_BROADCOM,
404 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751,
405 1.158 msaitoh "Broadcom BCM5751 Gigabit Ethernet",
406 1.158 msaitoh },
407 1.158 msaitoh { PCI_VENDOR_BROADCOM,
408 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5751F,
409 1.172 msaitoh "Broadcom BCM5751F Gigabit Ethernet",
410 1.172 msaitoh },
411 1.172 msaitoh { PCI_VENDOR_BROADCOM,
412 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751M,
413 1.158 msaitoh "Broadcom BCM5751M Gigabit Ethernet",
414 1.158 msaitoh },
415 1.158 msaitoh { PCI_VENDOR_BROADCOM,
416 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752,
417 1.158 msaitoh "Broadcom BCM5752 Gigabit Ethernet",
418 1.158 msaitoh },
419 1.158 msaitoh { PCI_VENDOR_BROADCOM,
420 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752M,
421 1.158 msaitoh "Broadcom BCM5752M Gigabit Ethernet",
422 1.158 msaitoh },
423 1.158 msaitoh { PCI_VENDOR_BROADCOM,
424 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753,
425 1.158 msaitoh "Broadcom BCM5753 Gigabit Ethernet",
426 1.158 msaitoh },
427 1.158 msaitoh { PCI_VENDOR_BROADCOM,
428 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5753F,
429 1.172 msaitoh "Broadcom BCM5753F Gigabit Ethernet",
430 1.172 msaitoh },
431 1.172 msaitoh { PCI_VENDOR_BROADCOM,
432 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753M,
433 1.158 msaitoh "Broadcom BCM5753M Gigabit Ethernet",
434 1.158 msaitoh },
435 1.158 msaitoh { PCI_VENDOR_BROADCOM,
436 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754,
437 1.158 msaitoh "Broadcom BCM5754 Gigabit Ethernet",
438 1.158 msaitoh },
439 1.158 msaitoh { PCI_VENDOR_BROADCOM,
440 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754M,
441 1.158 msaitoh "Broadcom BCM5754M Gigabit Ethernet",
442 1.158 msaitoh },
443 1.158 msaitoh { PCI_VENDOR_BROADCOM,
444 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755,
445 1.158 msaitoh "Broadcom BCM5755 Gigabit Ethernet",
446 1.158 msaitoh },
447 1.158 msaitoh { PCI_VENDOR_BROADCOM,
448 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755M,
449 1.158 msaitoh "Broadcom BCM5755M Gigabit Ethernet",
450 1.158 msaitoh },
451 1.172 msaitoh { PCI_VENDOR_BROADCOM,
452 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5756,
453 1.172 msaitoh "Broadcom BCM5756 Gigabit Ethernet",
454 1.172 msaitoh },
455 1.172 msaitoh { PCI_VENDOR_BROADCOM,
456 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761,
457 1.172 msaitoh "Broadcom BCM5761 Gigabit Ethernet",
458 1.172 msaitoh },
459 1.172 msaitoh { PCI_VENDOR_BROADCOM,
460 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761E,
461 1.172 msaitoh "Broadcom BCM5761E Gigabit Ethernet",
462 1.172 msaitoh },
463 1.172 msaitoh { PCI_VENDOR_BROADCOM,
464 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761S,
465 1.172 msaitoh "Broadcom BCM5761S Gigabit Ethernet",
466 1.172 msaitoh },
467 1.172 msaitoh { PCI_VENDOR_BROADCOM,
468 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761SE,
469 1.172 msaitoh "Broadcom BCM5761SE Gigabit Ethernet",
470 1.172 msaitoh },
471 1.172 msaitoh { PCI_VENDOR_BROADCOM,
472 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5764,
473 1.172 msaitoh "Broadcom BCM5764 Gigabit Ethernet",
474 1.172 msaitoh },
475 1.158 msaitoh { PCI_VENDOR_BROADCOM,
476 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780,
477 1.158 msaitoh "Broadcom BCM5780 Gigabit Ethernet",
478 1.158 msaitoh },
479 1.158 msaitoh { PCI_VENDOR_BROADCOM,
480 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780S,
481 1.158 msaitoh "Broadcom BCM5780S Gigabit Ethernet",
482 1.158 msaitoh },
483 1.158 msaitoh { PCI_VENDOR_BROADCOM,
484 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5781,
485 1.172 msaitoh "Broadcom BCM5781 Gigabit Ethernet",
486 1.172 msaitoh },
487 1.172 msaitoh { PCI_VENDOR_BROADCOM,
488 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5782,
489 1.158 msaitoh "Broadcom BCM5782 Gigabit Ethernet",
490 1.158 msaitoh },
491 1.158 msaitoh { PCI_VENDOR_BROADCOM,
492 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5784M,
493 1.172 msaitoh "BCM5784M NetLink 1000baseT Ethernet",
494 1.172 msaitoh },
495 1.172 msaitoh { PCI_VENDOR_BROADCOM,
496 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5786,
497 1.158 msaitoh "Broadcom BCM5786 Gigabit Ethernet",
498 1.158 msaitoh },
499 1.158 msaitoh { PCI_VENDOR_BROADCOM,
500 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787,
501 1.158 msaitoh "Broadcom BCM5787 Gigabit Ethernet",
502 1.158 msaitoh },
503 1.158 msaitoh { PCI_VENDOR_BROADCOM,
504 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787M,
505 1.158 msaitoh "Broadcom BCM5787M Gigabit Ethernet",
506 1.158 msaitoh },
507 1.158 msaitoh { PCI_VENDOR_BROADCOM,
508 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5788,
509 1.158 msaitoh "Broadcom BCM5788 Gigabit Ethernet",
510 1.158 msaitoh },
511 1.158 msaitoh { PCI_VENDOR_BROADCOM,
512 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
513 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
514 1.158 msaitoh },
515 1.158 msaitoh { PCI_VENDOR_BROADCOM,
516 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901,
517 1.158 msaitoh "Broadcom BCM5901 Fast Ethernet",
518 1.158 msaitoh },
519 1.158 msaitoh { PCI_VENDOR_BROADCOM,
520 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901A2,
521 1.158 msaitoh "Broadcom BCM5901A2 Fast Ethernet",
522 1.158 msaitoh },
523 1.172 msaitoh { PCI_VENDOR_BROADCOM,
524 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5903M,
525 1.172 msaitoh "Broadcom BCM5903M Fast Ethernet",
526 1.158 msaitoh },
527 1.158 msaitoh { PCI_VENDOR_BROADCOM,
528 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906,
529 1.158 msaitoh "Broadcom BCM5906 Fast Ethernet",
530 1.158 msaitoh },
531 1.158 msaitoh { PCI_VENDOR_BROADCOM,
532 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906M,
533 1.158 msaitoh "Broadcom BCM5906M Fast Ethernet",
534 1.158 msaitoh },
535 1.172 msaitoh { PCI_VENDOR_BROADCOM,
536 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57760,
537 1.172 msaitoh "Broadcom BCM57760 Fast Ethernet",
538 1.172 msaitoh },
539 1.172 msaitoh { PCI_VENDOR_BROADCOM,
540 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57761,
541 1.172 msaitoh "Broadcom BCM57761 Fast Ethernet",
542 1.172 msaitoh },
543 1.172 msaitoh { PCI_VENDOR_BROADCOM,
544 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57765,
545 1.172 msaitoh "Broadcom BCM57765 Fast Ethernet",
546 1.172 msaitoh },
547 1.172 msaitoh { PCI_VENDOR_BROADCOM,
548 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57780,
549 1.172 msaitoh "Broadcom BCM57780 Fast Ethernet",
550 1.172 msaitoh },
551 1.172 msaitoh { PCI_VENDOR_BROADCOM,
552 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57781,
553 1.172 msaitoh "Broadcom BCM57781 Fast Ethernet",
554 1.172 msaitoh },
555 1.172 msaitoh { PCI_VENDOR_BROADCOM,
556 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57785,
557 1.172 msaitoh "Broadcom BCM57785 Fast Ethernet",
558 1.172 msaitoh },
559 1.172 msaitoh { PCI_VENDOR_BROADCOM,
560 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57788,
561 1.172 msaitoh "Broadcom BCM57788 Fast Ethernet",
562 1.172 msaitoh },
563 1.172 msaitoh { PCI_VENDOR_BROADCOM,
564 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57790,
565 1.172 msaitoh "Broadcom BCM57790 Fast Ethernet",
566 1.172 msaitoh },
567 1.172 msaitoh { PCI_VENDOR_BROADCOM,
568 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57791,
569 1.172 msaitoh "Broadcom BCM57791 Fast Ethernet",
570 1.172 msaitoh },
571 1.172 msaitoh { PCI_VENDOR_BROADCOM,
572 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57795,
573 1.172 msaitoh "Broadcom BCM57795 Fast Ethernet",
574 1.172 msaitoh },
575 1.172 msaitoh { PCI_VENDOR_SCHNEIDERKOCH,
576 1.172 msaitoh PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
577 1.172 msaitoh "SysKonnect SK-9Dx1 Gigabit Ethernet",
578 1.172 msaitoh },
579 1.172 msaitoh { PCI_VENDOR_3COM,
580 1.172 msaitoh PCI_PRODUCT_3COM_3C996,
581 1.172 msaitoh "3Com 3c996 Gigabit Ethernet",
582 1.172 msaitoh },
583 1.158 msaitoh { 0,
584 1.158 msaitoh 0,
585 1.158 msaitoh NULL },
586 1.158 msaitoh };
587 1.158 msaitoh
588 1.95 jonathan /*
589 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
590 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
591 1.95 jonathan * in general behave like a 5705, except with additional quirks.
592 1.95 jonathan * This driver's current handling of the 5721 is wrong;
593 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
594 1.95 jonathan * (defined here until the thought is done).
595 1.95 jonathan */
596 1.172 msaitoh #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
597 1.172 msaitoh #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
598 1.172 msaitoh #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
599 1.172 msaitoh #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
600 1.172 msaitoh #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
601 1.172 msaitoh #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
602 1.166 msaitoh
603 1.158 msaitoh static const struct bge_revision {
604 1.158 msaitoh uint32_t br_chipid;
605 1.158 msaitoh const char *br_name;
606 1.158 msaitoh } bge_revisions[] = {
607 1.158 msaitoh { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
608 1.158 msaitoh { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
609 1.158 msaitoh { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
610 1.158 msaitoh { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
611 1.158 msaitoh { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
612 1.158 msaitoh { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
613 1.158 msaitoh /* This is treated like a BCM5700 Bx */
614 1.158 msaitoh { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
615 1.158 msaitoh { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
616 1.158 msaitoh { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
617 1.158 msaitoh { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
618 1.158 msaitoh { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
619 1.158 msaitoh { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
620 1.172 msaitoh { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
621 1.172 msaitoh { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
622 1.172 msaitoh { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
623 1.172 msaitoh { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
624 1.172 msaitoh { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
625 1.158 msaitoh { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
626 1.158 msaitoh { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
627 1.158 msaitoh { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
628 1.158 msaitoh { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
629 1.159 msaitoh { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
630 1.158 msaitoh { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
631 1.158 msaitoh { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
632 1.158 msaitoh { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
633 1.158 msaitoh { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
634 1.158 msaitoh { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
635 1.158 msaitoh { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
636 1.161 msaitoh { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
637 1.161 msaitoh { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
638 1.161 msaitoh { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
639 1.161 msaitoh { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
640 1.161 msaitoh { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
641 1.161 msaitoh { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
642 1.158 msaitoh { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
643 1.158 msaitoh { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
644 1.158 msaitoh { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
645 1.159 msaitoh { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
646 1.159 msaitoh { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
647 1.159 msaitoh { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
648 1.159 msaitoh { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
649 1.159 msaitoh { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
650 1.159 msaitoh { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
651 1.158 msaitoh { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
652 1.158 msaitoh { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
653 1.158 msaitoh { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
654 1.158 msaitoh { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
655 1.172 msaitoh { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
656 1.172 msaitoh { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
657 1.172 msaitoh { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
658 1.172 msaitoh { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
659 1.172 msaitoh /* 5754 and 5787 share the same ASIC ID */
660 1.158 msaitoh { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
661 1.158 msaitoh { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
662 1.158 msaitoh { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
663 1.161 msaitoh { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
664 1.161 msaitoh { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
665 1.172 msaitoh { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
666 1.172 msaitoh { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
667 1.172 msaitoh
668 1.158 msaitoh { 0, NULL }
669 1.158 msaitoh };
670 1.158 msaitoh
671 1.158 msaitoh /*
672 1.158 msaitoh * Some defaults for major revisions, so that newer steppings
673 1.158 msaitoh * that we don't know about have a shot at working.
674 1.158 msaitoh */
675 1.158 msaitoh static const struct bge_revision bge_majorrevs[] = {
676 1.158 msaitoh { BGE_ASICREV_BCM5700, "unknown BCM5700" },
677 1.158 msaitoh { BGE_ASICREV_BCM5701, "unknown BCM5701" },
678 1.158 msaitoh { BGE_ASICREV_BCM5703, "unknown BCM5703" },
679 1.158 msaitoh { BGE_ASICREV_BCM5704, "unknown BCM5704" },
680 1.158 msaitoh { BGE_ASICREV_BCM5705, "unknown BCM5705" },
681 1.162 msaitoh { BGE_ASICREV_BCM5750, "unknown BCM5750" },
682 1.158 msaitoh { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
683 1.172 msaitoh { BGE_ASICREV_BCM5752, "unknown BCM5752" },
684 1.172 msaitoh { BGE_ASICREV_BCM5780, "unknown BCM5780" },
685 1.158 msaitoh { BGE_ASICREV_BCM5714, "unknown BCM5714" },
686 1.158 msaitoh { BGE_ASICREV_BCM5755, "unknown BCM5755" },
687 1.172 msaitoh { BGE_ASICREV_BCM5761, "unknown BCM5761" },
688 1.172 msaitoh { BGE_ASICREV_BCM5784, "unknown BCM5784" },
689 1.172 msaitoh { BGE_ASICREV_BCM5785, "unknown BCM5785" },
690 1.162 msaitoh /* 5754 and 5787 share the same ASIC ID */
691 1.166 msaitoh { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
692 1.172 msaitoh { BGE_ASICREV_BCM5906, "unknown BCM5906" },
693 1.172 msaitoh { BGE_ASICREV_BCM57780, "unknown BCM57780" },
694 1.172 msaitoh { BGE_ASICREV_BCM5717, "unknown BCM5717" },
695 1.172 msaitoh { BGE_ASICREV_BCM57765, "unknown BCM57765" },
696 1.172 msaitoh
697 1.158 msaitoh { 0, NULL }
698 1.158 msaitoh };
699 1.17 thorpej
700 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
701 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
702 1.1 fvdl
703 1.170 msaitoh static uint32_t
704 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
705 1.1 fvdl {
706 1.1 fvdl pcireg_t val;
707 1.1 fvdl
708 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
709 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
710 1.1 fvdl return val;
711 1.1 fvdl }
712 1.1 fvdl
713 1.104 thorpej static void
714 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
715 1.1 fvdl {
716 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
717 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
718 1.1 fvdl }
719 1.1 fvdl
720 1.1 fvdl #ifdef notdef
721 1.170 msaitoh static uint32_t
722 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
723 1.1 fvdl {
724 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
725 1.158 msaitoh return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
726 1.1 fvdl }
727 1.1 fvdl #endif
728 1.1 fvdl
729 1.104 thorpej static void
730 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
731 1.1 fvdl {
732 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
733 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
734 1.1 fvdl }
735 1.1 fvdl
736 1.151 cegger static void
737 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
738 1.151 cegger {
739 1.151 cegger CSR_WRITE_4(sc, off, val);
740 1.151 cegger }
741 1.151 cegger
742 1.151 cegger static void
743 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
744 1.151 cegger {
745 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
746 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
747 1.151 cegger
748 1.151 cegger CSR_WRITE_4(sc, off, val);
749 1.151 cegger }
750 1.151 cegger
751 1.170 msaitoh static uint8_t
752 1.170 msaitoh bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
753 1.151 cegger {
754 1.170 msaitoh uint32_t access, byte = 0;
755 1.151 cegger int i;
756 1.151 cegger
757 1.151 cegger /* Lock. */
758 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
759 1.151 cegger for (i = 0; i < 8000; i++) {
760 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
761 1.151 cegger break;
762 1.151 cegger DELAY(20);
763 1.151 cegger }
764 1.151 cegger if (i == 8000)
765 1.170 msaitoh return 1;
766 1.151 cegger
767 1.151 cegger /* Enable access. */
768 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
769 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
770 1.151 cegger
771 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
772 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
773 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
774 1.151 cegger DELAY(10);
775 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
776 1.151 cegger DELAY(10);
777 1.151 cegger break;
778 1.151 cegger }
779 1.151 cegger }
780 1.151 cegger
781 1.151 cegger if (i == BGE_TIMEOUT * 10) {
782 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
783 1.170 msaitoh return 1;
784 1.151 cegger }
785 1.151 cegger
786 1.151 cegger /* Get result. */
787 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
788 1.151 cegger
789 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
790 1.151 cegger
791 1.151 cegger /* Disable access. */
792 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
793 1.151 cegger
794 1.151 cegger /* Unlock. */
795 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
796 1.151 cegger CSR_READ_4(sc, BGE_NVRAM_SWARB);
797 1.151 cegger
798 1.170 msaitoh return 0;
799 1.151 cegger }
800 1.151 cegger
801 1.151 cegger /*
802 1.151 cegger * Read a sequence of bytes from NVRAM.
803 1.151 cegger */
804 1.151 cegger static int
805 1.170 msaitoh bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
806 1.151 cegger {
807 1.151 cegger int err = 0, i;
808 1.170 msaitoh uint8_t byte = 0;
809 1.151 cegger
810 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
811 1.170 msaitoh return 1;
812 1.151 cegger
813 1.151 cegger for (i = 0; i < cnt; i++) {
814 1.151 cegger err = bge_nvram_getbyte(sc, off + i, &byte);
815 1.151 cegger if (err)
816 1.151 cegger break;
817 1.151 cegger *(dest + i) = byte;
818 1.151 cegger }
819 1.151 cegger
820 1.151 cegger return (err ? 1 : 0);
821 1.151 cegger }
822 1.151 cegger
823 1.1 fvdl /*
824 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
825 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
826 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
827 1.1 fvdl * access method.
828 1.1 fvdl */
829 1.170 msaitoh static uint8_t
830 1.170 msaitoh bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
831 1.1 fvdl {
832 1.1 fvdl int i;
833 1.170 msaitoh uint32_t byte = 0;
834 1.1 fvdl
835 1.1 fvdl /*
836 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
837 1.1 fvdl * having to use the bitbang method.
838 1.1 fvdl */
839 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
840 1.1 fvdl
841 1.1 fvdl /* Reset the EEPROM, load the clock period. */
842 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
843 1.161 msaitoh BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
844 1.1 fvdl DELAY(20);
845 1.1 fvdl
846 1.1 fvdl /* Issue the read EEPROM command. */
847 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
848 1.1 fvdl
849 1.1 fvdl /* Wait for completion */
850 1.170 msaitoh for (i = 0; i < BGE_TIMEOUT * 10; i++) {
851 1.1 fvdl DELAY(10);
852 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
853 1.1 fvdl break;
854 1.1 fvdl }
855 1.1 fvdl
856 1.172 msaitoh if (i == BGE_TIMEOUT * 10) {
857 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
858 1.170 msaitoh return 0;
859 1.1 fvdl }
860 1.1 fvdl
861 1.1 fvdl /* Get result. */
862 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
863 1.1 fvdl
864 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
865 1.1 fvdl
866 1.170 msaitoh return 0;
867 1.1 fvdl }
868 1.1 fvdl
869 1.1 fvdl /*
870 1.1 fvdl * Read a sequence of bytes from the EEPROM.
871 1.1 fvdl */
872 1.104 thorpej static int
873 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
874 1.1 fvdl {
875 1.1 fvdl int err = 0, i;
876 1.170 msaitoh uint8_t byte = 0;
877 1.126 christos char *dest = destv;
878 1.1 fvdl
879 1.1 fvdl for (i = 0; i < cnt; i++) {
880 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
881 1.1 fvdl if (err)
882 1.1 fvdl break;
883 1.1 fvdl *(dest + i) = byte;
884 1.1 fvdl }
885 1.1 fvdl
886 1.158 msaitoh return (err ? 1 : 0);
887 1.1 fvdl }
888 1.1 fvdl
889 1.104 thorpej static int
890 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
891 1.1 fvdl {
892 1.138 joerg struct bge_softc *sc = device_private(dev);
893 1.170 msaitoh uint32_t val;
894 1.172 msaitoh uint32_t autopoll;
895 1.1 fvdl int i;
896 1.1 fvdl
897 1.25 jonathan /*
898 1.156 msaitoh * Broadcom's own driver always assumes the internal
899 1.156 msaitoh * PHY is at GMII address 1. On some chips, the PHY responds
900 1.156 msaitoh * to accesses at all addresses, which could cause us to
901 1.156 msaitoh * bogusly attach the PHY 32 times at probe type. Always
902 1.156 msaitoh * restricting the lookup to address 1 is simpler than
903 1.156 msaitoh * trying to figure out which chips revisions should be
904 1.156 msaitoh * special-cased.
905 1.25 jonathan */
906 1.156 msaitoh if (phy != 1)
907 1.170 msaitoh return 0;
908 1.1 fvdl
909 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
910 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
911 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
912 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
913 1.172 msaitoh BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
914 1.25 jonathan DELAY(40);
915 1.25 jonathan }
916 1.25 jonathan
917 1.172 msaitoh CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
918 1.172 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg));
919 1.1 fvdl
920 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
921 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
922 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
923 1.1 fvdl break;
924 1.9 thorpej delay(10);
925 1.1 fvdl }
926 1.1 fvdl
927 1.1 fvdl if (i == BGE_TIMEOUT) {
928 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
929 1.29 itojun val = 0;
930 1.25 jonathan goto done;
931 1.1 fvdl }
932 1.1 fvdl
933 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
934 1.1 fvdl
935 1.25 jonathan done:
936 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
937 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
938 1.172 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
939 1.25 jonathan DELAY(40);
940 1.25 jonathan }
941 1.29 itojun
942 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
943 1.170 msaitoh return 0;
944 1.1 fvdl
945 1.158 msaitoh return (val & 0xFFFF);
946 1.1 fvdl }
947 1.1 fvdl
948 1.104 thorpej static void
949 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
950 1.1 fvdl {
951 1.138 joerg struct bge_softc *sc = device_private(dev);
952 1.172 msaitoh uint32_t autopoll;
953 1.29 itojun int i;
954 1.1 fvdl
955 1.151 cegger if (phy!=1) {
956 1.151 cegger return;
957 1.151 cegger }
958 1.151 cegger
959 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
960 1.151 cegger (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
961 1.151 cegger return;
962 1.151 cegger }
963 1.151 cegger
964 1.161 msaitoh /* Reading with autopolling on may trigger PCI errors */
965 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
966 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
967 1.25 jonathan delay(40);
968 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
969 1.172 msaitoh BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
970 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
971 1.25 jonathan }
972 1.29 itojun
973 1.161 msaitoh CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
974 1.161 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
975 1.1 fvdl
976 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
977 1.151 cegger delay(10);
978 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
979 1.151 cegger delay(5);
980 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
981 1.1 fvdl break;
982 1.151 cegger }
983 1.1 fvdl }
984 1.1 fvdl
985 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
986 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
987 1.172 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
988 1.25 jonathan delay(40);
989 1.25 jonathan }
990 1.29 itojun
991 1.138 joerg if (i == BGE_TIMEOUT)
992 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
993 1.1 fvdl }
994 1.1 fvdl
995 1.104 thorpej static void
996 1.104 thorpej bge_miibus_statchg(device_t dev)
997 1.1 fvdl {
998 1.138 joerg struct bge_softc *sc = device_private(dev);
999 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
1000 1.1 fvdl
1001 1.69 thorpej /*
1002 1.69 thorpej * Get flow control negotiation result.
1003 1.69 thorpej */
1004 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1005 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1006 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1007 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
1008 1.69 thorpej }
1009 1.69 thorpej
1010 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1011 1.161 msaitoh if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1012 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1013 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1014 1.161 msaitoh else
1015 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1016 1.1 fvdl
1017 1.158 msaitoh if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1018 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1019 1.158 msaitoh else
1020 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1021 1.69 thorpej
1022 1.69 thorpej /*
1023 1.69 thorpej * 802.3x flow control
1024 1.69 thorpej */
1025 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1026 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1027 1.158 msaitoh else
1028 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1029 1.158 msaitoh
1030 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1031 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1032 1.158 msaitoh else
1033 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1034 1.1 fvdl }
1035 1.1 fvdl
1036 1.1 fvdl /*
1037 1.63 jonathan * Update rx threshold levels to values in a particular slot
1038 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
1039 1.63 jonathan */
1040 1.104 thorpej static void
1041 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
1042 1.63 jonathan {
1043 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
1044 1.63 jonathan int s;
1045 1.63 jonathan
1046 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
1047 1.63 jonathan * that a threshold update is pending. Updating the hardware
1048 1.63 jonathan * registers here (even at splhigh()) is observed to
1049 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
1050 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1051 1.63 jonathan */
1052 1.63 jonathan s = splnet();
1053 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1054 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1055 1.63 jonathan sc->bge_pending_rxintr_change = 1;
1056 1.63 jonathan splx(s);
1057 1.63 jonathan
1058 1.63 jonathan return;
1059 1.63 jonathan }
1060 1.63 jonathan
1061 1.63 jonathan
1062 1.63 jonathan /*
1063 1.63 jonathan * Update Rx thresholds of all bge devices
1064 1.63 jonathan */
1065 1.104 thorpej static void
1066 1.63 jonathan bge_update_all_threshes(int lvl)
1067 1.63 jonathan {
1068 1.63 jonathan struct ifnet *ifp;
1069 1.63 jonathan const char * const namebuf = "bge";
1070 1.63 jonathan int namelen;
1071 1.63 jonathan
1072 1.63 jonathan if (lvl < 0)
1073 1.63 jonathan lvl = 0;
1074 1.170 msaitoh else if (lvl >= NBGE_RX_THRESH)
1075 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
1076 1.87 perry
1077 1.63 jonathan namelen = strlen(namebuf);
1078 1.63 jonathan /*
1079 1.63 jonathan * Now search all the interfaces for this name/number
1080 1.63 jonathan */
1081 1.81 matt IFNET_FOREACH(ifp) {
1082 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1083 1.63 jonathan continue;
1084 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
1085 1.63 jonathan if (bge_auto_thresh)
1086 1.67 jonathan bge_set_thresh(ifp, lvl);
1087 1.63 jonathan }
1088 1.63 jonathan }
1089 1.63 jonathan
1090 1.63 jonathan /*
1091 1.1 fvdl * Handle events that have triggered interrupts.
1092 1.1 fvdl */
1093 1.104 thorpej static void
1094 1.116 christos bge_handle_events(struct bge_softc *sc)
1095 1.1 fvdl {
1096 1.1 fvdl
1097 1.1 fvdl return;
1098 1.1 fvdl }
1099 1.1 fvdl
1100 1.1 fvdl /*
1101 1.1 fvdl * Memory management for jumbo frames.
1102 1.1 fvdl */
1103 1.1 fvdl
1104 1.104 thorpej static int
1105 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
1106 1.1 fvdl {
1107 1.126 christos char *ptr, *kva;
1108 1.1 fvdl bus_dma_segment_t seg;
1109 1.1 fvdl int i, rseg, state, error;
1110 1.1 fvdl struct bge_jpool_entry *entry;
1111 1.1 fvdl
1112 1.1 fvdl state = error = 0;
1113 1.1 fvdl
1114 1.1 fvdl /* Grab a big chunk o' storage. */
1115 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1116 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1117 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1118 1.1 fvdl return ENOBUFS;
1119 1.1 fvdl }
1120 1.1 fvdl
1121 1.1 fvdl state = 1;
1122 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1123 1.1 fvdl BUS_DMA_NOWAIT)) {
1124 1.138 joerg aprint_error_dev(sc->bge_dev,
1125 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1126 1.1 fvdl error = ENOBUFS;
1127 1.1 fvdl goto out;
1128 1.1 fvdl }
1129 1.1 fvdl
1130 1.1 fvdl state = 2;
1131 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1132 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1133 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1134 1.1 fvdl error = ENOBUFS;
1135 1.1 fvdl goto out;
1136 1.1 fvdl }
1137 1.1 fvdl
1138 1.1 fvdl state = 3;
1139 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1140 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1141 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1142 1.1 fvdl error = ENOBUFS;
1143 1.1 fvdl goto out;
1144 1.1 fvdl }
1145 1.1 fvdl
1146 1.1 fvdl state = 4;
1147 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1148 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1149 1.1 fvdl
1150 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
1151 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
1152 1.1 fvdl
1153 1.1 fvdl /*
1154 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
1155 1.1 fvdl * in an array.
1156 1.1 fvdl */
1157 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
1158 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
1159 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
1160 1.1 fvdl ptr += BGE_JLEN;
1161 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
1162 1.1 fvdl M_DEVBUF, M_NOWAIT);
1163 1.1 fvdl if (entry == NULL) {
1164 1.138 joerg aprint_error_dev(sc->bge_dev,
1165 1.138 joerg "no memory for jumbo buffer queue!\n");
1166 1.1 fvdl error = ENOBUFS;
1167 1.1 fvdl goto out;
1168 1.1 fvdl }
1169 1.1 fvdl entry->slot = i;
1170 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1171 1.1 fvdl entry, jpool_entries);
1172 1.1 fvdl }
1173 1.1 fvdl out:
1174 1.1 fvdl if (error != 0) {
1175 1.1 fvdl switch (state) {
1176 1.1 fvdl case 4:
1177 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
1178 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1179 1.1 fvdl case 3:
1180 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
1181 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1182 1.1 fvdl case 2:
1183 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1184 1.1 fvdl case 1:
1185 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1186 1.1 fvdl break;
1187 1.1 fvdl default:
1188 1.1 fvdl break;
1189 1.1 fvdl }
1190 1.1 fvdl }
1191 1.1 fvdl
1192 1.1 fvdl return error;
1193 1.1 fvdl }
1194 1.1 fvdl
1195 1.1 fvdl /*
1196 1.1 fvdl * Allocate a jumbo buffer.
1197 1.1 fvdl */
1198 1.104 thorpej static void *
1199 1.104 thorpej bge_jalloc(struct bge_softc *sc)
1200 1.1 fvdl {
1201 1.1 fvdl struct bge_jpool_entry *entry;
1202 1.1 fvdl
1203 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1204 1.1 fvdl
1205 1.1 fvdl if (entry == NULL) {
1206 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1207 1.170 msaitoh return NULL;
1208 1.1 fvdl }
1209 1.1 fvdl
1210 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1211 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1212 1.158 msaitoh return (sc->bge_cdata.bge_jslots[entry->slot]);
1213 1.1 fvdl }
1214 1.1 fvdl
1215 1.1 fvdl /*
1216 1.1 fvdl * Release a jumbo buffer.
1217 1.1 fvdl */
1218 1.104 thorpej static void
1219 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1220 1.1 fvdl {
1221 1.1 fvdl struct bge_jpool_entry *entry;
1222 1.1 fvdl struct bge_softc *sc;
1223 1.1 fvdl int i, s;
1224 1.1 fvdl
1225 1.1 fvdl /* Extract the softc struct pointer. */
1226 1.1 fvdl sc = (struct bge_softc *)arg;
1227 1.1 fvdl
1228 1.1 fvdl if (sc == NULL)
1229 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
1230 1.1 fvdl
1231 1.1 fvdl /* calculate the slot this buffer belongs to */
1232 1.1 fvdl
1233 1.126 christos i = ((char *)buf
1234 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1235 1.1 fvdl
1236 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
1237 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
1238 1.1 fvdl
1239 1.1 fvdl s = splvm();
1240 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1241 1.1 fvdl if (entry == NULL)
1242 1.1 fvdl panic("bge_jfree: buffer not in use!");
1243 1.1 fvdl entry->slot = i;
1244 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1245 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1246 1.1 fvdl
1247 1.1 fvdl if (__predict_true(m != NULL))
1248 1.140 ad pool_cache_put(mb_cache, m);
1249 1.1 fvdl splx(s);
1250 1.1 fvdl }
1251 1.1 fvdl
1252 1.1 fvdl
1253 1.1 fvdl /*
1254 1.1 fvdl * Intialize a standard receive ring descriptor.
1255 1.1 fvdl */
1256 1.104 thorpej static int
1257 1.104 thorpej bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1258 1.1 fvdl {
1259 1.1 fvdl struct mbuf *m_new = NULL;
1260 1.1 fvdl struct bge_rx_bd *r;
1261 1.1 fvdl int error;
1262 1.1 fvdl
1263 1.1 fvdl if (dmamap == NULL) {
1264 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1265 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1266 1.1 fvdl if (error != 0)
1267 1.1 fvdl return error;
1268 1.1 fvdl }
1269 1.1 fvdl
1270 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1271 1.1 fvdl
1272 1.1 fvdl if (m == NULL) {
1273 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1274 1.158 msaitoh if (m_new == NULL)
1275 1.170 msaitoh return ENOBUFS;
1276 1.1 fvdl
1277 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
1278 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
1279 1.1 fvdl m_freem(m_new);
1280 1.170 msaitoh return ENOBUFS;
1281 1.1 fvdl }
1282 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1283 1.1 fvdl
1284 1.1 fvdl } else {
1285 1.1 fvdl m_new = m;
1286 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1287 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
1288 1.1 fvdl }
1289 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1290 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1291 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1292 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
1293 1.170 msaitoh return ENOBUFS;
1294 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1295 1.124 bouyer BUS_DMASYNC_PREREAD);
1296 1.1 fvdl
1297 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1298 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
1299 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1300 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
1301 1.1 fvdl r->bge_len = m_new->m_len;
1302 1.1 fvdl r->bge_idx = i;
1303 1.1 fvdl
1304 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1305 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
1306 1.1 fvdl i * sizeof (struct bge_rx_bd),
1307 1.1 fvdl sizeof (struct bge_rx_bd),
1308 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1309 1.1 fvdl
1310 1.170 msaitoh return 0;
1311 1.1 fvdl }
1312 1.1 fvdl
1313 1.1 fvdl /*
1314 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1315 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1316 1.1 fvdl */
1317 1.104 thorpej static int
1318 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1319 1.1 fvdl {
1320 1.1 fvdl struct mbuf *m_new = NULL;
1321 1.1 fvdl struct bge_rx_bd *r;
1322 1.126 christos void *buf = NULL;
1323 1.1 fvdl
1324 1.1 fvdl if (m == NULL) {
1325 1.1 fvdl
1326 1.1 fvdl /* Allocate the mbuf. */
1327 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1328 1.158 msaitoh if (m_new == NULL)
1329 1.170 msaitoh return ENOBUFS;
1330 1.1 fvdl
1331 1.1 fvdl /* Allocate the jumbo buffer */
1332 1.1 fvdl buf = bge_jalloc(sc);
1333 1.1 fvdl if (buf == NULL) {
1334 1.1 fvdl m_freem(m_new);
1335 1.138 joerg aprint_error_dev(sc->bge_dev,
1336 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1337 1.170 msaitoh return ENOBUFS;
1338 1.1 fvdl }
1339 1.1 fvdl
1340 1.1 fvdl /* Attach the buffer to the mbuf. */
1341 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1342 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1343 1.1 fvdl bge_jfree, sc);
1344 1.74 yamt m_new->m_flags |= M_EXT_RW;
1345 1.1 fvdl } else {
1346 1.1 fvdl m_new = m;
1347 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1348 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1349 1.1 fvdl }
1350 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1351 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1352 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1353 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1354 1.124 bouyer BUS_DMASYNC_PREREAD);
1355 1.1 fvdl /* Set up the descriptor. */
1356 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1357 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1358 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1359 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1360 1.1 fvdl r->bge_len = m_new->m_len;
1361 1.1 fvdl r->bge_idx = i;
1362 1.1 fvdl
1363 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1364 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1365 1.1 fvdl i * sizeof (struct bge_rx_bd),
1366 1.1 fvdl sizeof (struct bge_rx_bd),
1367 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1368 1.1 fvdl
1369 1.170 msaitoh return 0;
1370 1.1 fvdl }
1371 1.1 fvdl
1372 1.1 fvdl /*
1373 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1374 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1375 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1376 1.1 fvdl * the NIC.
1377 1.1 fvdl */
1378 1.104 thorpej static int
1379 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1380 1.1 fvdl {
1381 1.1 fvdl int i;
1382 1.1 fvdl
1383 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1384 1.1 fvdl return 0;
1385 1.1 fvdl
1386 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1387 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1388 1.170 msaitoh return ENOBUFS;
1389 1.1 fvdl }
1390 1.1 fvdl
1391 1.1 fvdl sc->bge_std = i - 1;
1392 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1393 1.1 fvdl
1394 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1395 1.1 fvdl
1396 1.170 msaitoh return 0;
1397 1.1 fvdl }
1398 1.1 fvdl
1399 1.104 thorpej static void
1400 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1401 1.1 fvdl {
1402 1.1 fvdl int i;
1403 1.1 fvdl
1404 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1405 1.1 fvdl return;
1406 1.1 fvdl
1407 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1408 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1409 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1410 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1411 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1412 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1413 1.1 fvdl }
1414 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1415 1.1 fvdl sizeof(struct bge_rx_bd));
1416 1.1 fvdl }
1417 1.1 fvdl
1418 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1419 1.1 fvdl }
1420 1.1 fvdl
1421 1.104 thorpej static int
1422 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1423 1.1 fvdl {
1424 1.1 fvdl int i;
1425 1.34 jonathan volatile struct bge_rcb *rcb;
1426 1.1 fvdl
1427 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1428 1.59 martin return 0;
1429 1.59 martin
1430 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1431 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1432 1.170 msaitoh return ENOBUFS;
1433 1.1 fvdl };
1434 1.1 fvdl
1435 1.1 fvdl sc->bge_jumbo = i - 1;
1436 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1437 1.1 fvdl
1438 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1439 1.34 jonathan rcb->bge_maxlen_flags = 0;
1440 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1441 1.1 fvdl
1442 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1443 1.1 fvdl
1444 1.170 msaitoh return 0;
1445 1.1 fvdl }
1446 1.1 fvdl
1447 1.104 thorpej static void
1448 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1449 1.1 fvdl {
1450 1.1 fvdl int i;
1451 1.1 fvdl
1452 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1453 1.1 fvdl return;
1454 1.1 fvdl
1455 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1456 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1457 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1458 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1459 1.1 fvdl }
1460 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1461 1.1 fvdl sizeof(struct bge_rx_bd));
1462 1.1 fvdl }
1463 1.1 fvdl
1464 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1465 1.1 fvdl }
1466 1.1 fvdl
1467 1.104 thorpej static void
1468 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1469 1.1 fvdl {
1470 1.1 fvdl int i, freed;
1471 1.1 fvdl struct txdmamap_pool_entry *dma;
1472 1.1 fvdl
1473 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1474 1.1 fvdl return;
1475 1.1 fvdl
1476 1.1 fvdl freed = 0;
1477 1.1 fvdl
1478 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1479 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1480 1.1 fvdl freed++;
1481 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1482 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1483 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1484 1.1 fvdl link);
1485 1.1 fvdl sc->txdma[i] = 0;
1486 1.1 fvdl }
1487 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1488 1.1 fvdl sizeof(struct bge_tx_bd));
1489 1.1 fvdl }
1490 1.1 fvdl
1491 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1492 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1493 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1494 1.1 fvdl free(dma, M_DEVBUF);
1495 1.1 fvdl }
1496 1.1 fvdl
1497 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1498 1.1 fvdl }
1499 1.1 fvdl
1500 1.104 thorpej static int
1501 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1502 1.1 fvdl {
1503 1.1 fvdl int i;
1504 1.1 fvdl bus_dmamap_t dmamap;
1505 1.1 fvdl struct txdmamap_pool_entry *dma;
1506 1.1 fvdl
1507 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1508 1.1 fvdl return 0;
1509 1.1 fvdl
1510 1.1 fvdl sc->bge_txcnt = 0;
1511 1.1 fvdl sc->bge_tx_saved_considx = 0;
1512 1.94 jonathan
1513 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1514 1.94 jonathan sc->bge_tx_prodidx = 0;
1515 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1516 1.158 msaitoh /* 5700 b2 errata */
1517 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1518 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1519 1.25 jonathan
1520 1.158 msaitoh /* NIC-memory send ring not used; initialize to zero. */
1521 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1522 1.158 msaitoh /* 5700 b2 errata */
1523 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1524 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1525 1.1 fvdl
1526 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1527 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1528 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1529 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1530 1.1 fvdl &dmamap))
1531 1.170 msaitoh return ENOBUFS;
1532 1.1 fvdl if (dmamap == NULL)
1533 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1534 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1535 1.1 fvdl if (dma == NULL) {
1536 1.138 joerg aprint_error_dev(sc->bge_dev,
1537 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1538 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1539 1.170 msaitoh return ENOMEM;
1540 1.1 fvdl }
1541 1.1 fvdl dma->dmamap = dmamap;
1542 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1543 1.1 fvdl }
1544 1.1 fvdl
1545 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1546 1.1 fvdl
1547 1.170 msaitoh return 0;
1548 1.1 fvdl }
1549 1.1 fvdl
1550 1.104 thorpej static void
1551 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1552 1.1 fvdl {
1553 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1554 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1555 1.1 fvdl struct ether_multi *enm;
1556 1.1 fvdl struct ether_multistep step;
1557 1.170 msaitoh uint32_t hashes[4] = { 0, 0, 0, 0 };
1558 1.170 msaitoh uint32_t h;
1559 1.1 fvdl int i;
1560 1.1 fvdl
1561 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1562 1.13 thorpej goto allmulti;
1563 1.1 fvdl
1564 1.1 fvdl /* Now program new ones. */
1565 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1566 1.1 fvdl while (enm != NULL) {
1567 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1568 1.13 thorpej /*
1569 1.13 thorpej * We must listen to a range of multicast addresses.
1570 1.13 thorpej * For now, just accept all multicasts, rather than
1571 1.13 thorpej * trying to set only those filter bits needed to match
1572 1.13 thorpej * the range. (At this time, the only use of address
1573 1.13 thorpej * ranges is for IP multicast routing, for which the
1574 1.13 thorpej * range is big enough to require all bits set.)
1575 1.13 thorpej */
1576 1.13 thorpej goto allmulti;
1577 1.13 thorpej }
1578 1.13 thorpej
1579 1.158 msaitoh h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1580 1.1 fvdl
1581 1.158 msaitoh /* Just want the 7 least-significant bits. */
1582 1.158 msaitoh h &= 0x7f;
1583 1.1 fvdl
1584 1.158 msaitoh hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1585 1.158 msaitoh ETHER_NEXT_MULTI(step, enm);
1586 1.25 jonathan }
1587 1.25 jonathan
1588 1.158 msaitoh ifp->if_flags &= ~IFF_ALLMULTI;
1589 1.158 msaitoh goto setit;
1590 1.1 fvdl
1591 1.158 msaitoh allmulti:
1592 1.158 msaitoh ifp->if_flags |= IFF_ALLMULTI;
1593 1.158 msaitoh hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1594 1.133 markd
1595 1.158 msaitoh setit:
1596 1.158 msaitoh for (i = 0; i < 4; i++)
1597 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1598 1.158 msaitoh }
1599 1.133 markd
1600 1.158 msaitoh const int bge_swapbits[] = {
1601 1.158 msaitoh 0,
1602 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA,
1603 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA,
1604 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1605 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1606 1.1 fvdl
1607 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1608 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1609 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1610 1.95 jonathan
1611 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1612 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1613 1.95 jonathan
1614 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1615 1.95 jonathan
1616 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1617 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME,
1618 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1619 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1620 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1621 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1622 1.158 msaitoh BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1623 1.158 msaitoh BGE_MODECTL_WORDSWAP_NONFRAME,
1624 1.1 fvdl
1625 1.158 msaitoh BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1626 1.158 msaitoh BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1627 1.158 msaitoh };
1628 1.1 fvdl
1629 1.158 msaitoh int bge_swapindex = 0;
1630 1.1 fvdl
1631 1.158 msaitoh /*
1632 1.158 msaitoh * Do endian, PCI and DMA initialization. Also check the on-board ROM
1633 1.158 msaitoh * self-test results.
1634 1.158 msaitoh */
1635 1.158 msaitoh static int
1636 1.158 msaitoh bge_chipinit(struct bge_softc *sc)
1637 1.158 msaitoh {
1638 1.158 msaitoh int i;
1639 1.170 msaitoh uint32_t dma_rw_ctl;
1640 1.1 fvdl
1641 1.1 fvdl
1642 1.158 msaitoh /* Set endianness before we access any non-PCI registers. */
1643 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1644 1.158 msaitoh BGE_INIT);
1645 1.1 fvdl
1646 1.158 msaitoh /* Set power state to D0. */
1647 1.158 msaitoh bge_setpowerstate(sc, 0);
1648 1.1 fvdl
1649 1.158 msaitoh /* Clear the MAC control register */
1650 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1651 1.1 fvdl
1652 1.158 msaitoh /*
1653 1.158 msaitoh * Clear the MAC statistics block in the NIC's
1654 1.158 msaitoh * internal memory.
1655 1.158 msaitoh */
1656 1.158 msaitoh for (i = BGE_STATS_BLOCK;
1657 1.170 msaitoh i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1658 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1659 1.1 fvdl
1660 1.158 msaitoh for (i = BGE_STATUS_BLOCK;
1661 1.170 msaitoh i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1662 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1663 1.1 fvdl
1664 1.158 msaitoh /* Set up the PCI DMA control register. */
1665 1.166 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1666 1.158 msaitoh if (sc->bge_flags & BGE_PCIE) {
1667 1.166 msaitoh /* Read watermark not used, 128 bytes for write. */
1668 1.158 msaitoh DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1669 1.158 msaitoh device_xname(sc->bge_dev)));
1670 1.166 msaitoh dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1671 1.170 msaitoh } else if (sc->bge_flags & BGE_PCIX) {
1672 1.158 msaitoh DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1673 1.158 msaitoh device_xname(sc->bge_dev)));
1674 1.158 msaitoh /* PCI-X bus */
1675 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc)) {
1676 1.172 msaitoh /* 256 bytes for read and write. */
1677 1.172 msaitoh dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1678 1.172 msaitoh (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1679 1.172 msaitoh
1680 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1681 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1682 1.172 msaitoh else
1683 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1684 1.172 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1685 1.172 msaitoh /* 1536 bytes for read, 384 bytes for write. */
1686 1.172 msaitoh dma_rw_ctl |=
1687 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1688 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1689 1.172 msaitoh } else {
1690 1.172 msaitoh /* 384 bytes for read and write. */
1691 1.172 msaitoh dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1692 1.172 msaitoh (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1693 1.172 msaitoh (0x0F);
1694 1.172 msaitoh }
1695 1.172 msaitoh
1696 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1697 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1698 1.172 msaitoh uint32_t tmp;
1699 1.172 msaitoh
1700 1.172 msaitoh /* Set ONEDMA_ATONCE for hardware workaround. */
1701 1.172 msaitoh tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1702 1.172 msaitoh if (tmp == 6 || tmp == 7)
1703 1.172 msaitoh dma_rw_ctl |=
1704 1.172 msaitoh BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1705 1.172 msaitoh
1706 1.172 msaitoh /* Set PCI-X DMA write workaround. */
1707 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1708 1.158 msaitoh }
1709 1.158 msaitoh } else {
1710 1.172 msaitoh /* Conventional PCI bus: 256 bytes for read and write. */
1711 1.158 msaitoh DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1712 1.158 msaitoh device_xname(sc->bge_dev)));
1713 1.166 msaitoh dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1714 1.166 msaitoh (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1715 1.160 msaitoh if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1716 1.160 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1717 1.158 msaitoh dma_rw_ctl |= 0x0F;
1718 1.158 msaitoh }
1719 1.157 msaitoh
1720 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1721 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1722 1.161 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1723 1.161 msaitoh BGE_PCIDMARWCTL_ASRT_ALL_BE;
1724 1.161 msaitoh
1725 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1726 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1727 1.161 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1728 1.161 msaitoh
1729 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1730 1.120 tsutsui
1731 1.158 msaitoh /*
1732 1.158 msaitoh * Set up general mode register.
1733 1.158 msaitoh */
1734 1.161 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1735 1.161 msaitoh BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1736 1.161 msaitoh BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1737 1.16 thorpej
1738 1.158 msaitoh /*
1739 1.172 msaitoh * BCM5701 B5 have a bug causing data corruption when using
1740 1.172 msaitoh * 64-bit DMA reads, which can be terminated early and then
1741 1.172 msaitoh * completed later as 32-bit accesses, in combination with
1742 1.172 msaitoh * certain bridges.
1743 1.172 msaitoh */
1744 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1745 1.172 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1746 1.172 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1747 1.172 msaitoh
1748 1.172 msaitoh /*
1749 1.158 msaitoh * Disable memory write invalidate. Apparently it is not supported
1750 1.158 msaitoh * properly by these devices.
1751 1.158 msaitoh */
1752 1.172 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1753 1.172 msaitoh PCI_COMMAND_INVALIDATE_ENABLE);
1754 1.16 thorpej
1755 1.158 msaitoh #ifdef __brokenalpha__
1756 1.158 msaitoh /*
1757 1.158 msaitoh * Must insure that we do not cross an 8K (bytes) boundary
1758 1.158 msaitoh * for DMA reads. Our highest limit is 1K bytes. This is a
1759 1.158 msaitoh * restriction on some ALPHA platforms with early revision
1760 1.158 msaitoh * 21174 PCI chipsets, such as the AlphaPC 164lx
1761 1.158 msaitoh */
1762 1.158 msaitoh PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1763 1.158 msaitoh #endif
1764 1.16 thorpej
1765 1.158 msaitoh /* Set the timer prescaler (always 66MHz) */
1766 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1767 1.16 thorpej
1768 1.159 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1769 1.159 msaitoh DELAY(40); /* XXX */
1770 1.159 msaitoh
1771 1.159 msaitoh /* Put PHY into ready state */
1772 1.159 msaitoh BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1773 1.159 msaitoh CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1774 1.159 msaitoh DELAY(40);
1775 1.159 msaitoh }
1776 1.159 msaitoh
1777 1.170 msaitoh return 0;
1778 1.158 msaitoh }
1779 1.16 thorpej
1780 1.158 msaitoh static int
1781 1.158 msaitoh bge_blockinit(struct bge_softc *sc)
1782 1.158 msaitoh {
1783 1.158 msaitoh volatile struct bge_rcb *rcb;
1784 1.158 msaitoh bus_size_t rcb_addr;
1785 1.158 msaitoh int i;
1786 1.158 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
1787 1.158 msaitoh bge_hostaddr taddr;
1788 1.170 msaitoh uint32_t val;
1789 1.16 thorpej
1790 1.158 msaitoh /*
1791 1.158 msaitoh * Initialize the memory window pointer register so that
1792 1.158 msaitoh * we can access the first 32K of internal NIC RAM. This will
1793 1.158 msaitoh * allow us to set up the TX send ring RCBs and the RX return
1794 1.158 msaitoh * ring RCBs, plus other things which live in NIC memory.
1795 1.158 msaitoh */
1796 1.55 pooka
1797 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1798 1.120 tsutsui
1799 1.158 msaitoh /* Configure mbuf memory pool */
1800 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
1801 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1802 1.172 msaitoh BGE_BUFFPOOL_1);
1803 1.172 msaitoh
1804 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1805 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1806 1.172 msaitoh else
1807 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1808 1.40 fvdl
1809 1.158 msaitoh /* Configure DMA resource pool */
1810 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1811 1.158 msaitoh BGE_DMA_DESCRIPTORS);
1812 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1813 1.158 msaitoh }
1814 1.40 fvdl
1815 1.158 msaitoh /* Configure mbuf pool watermarks */
1816 1.158 msaitoh #ifdef ORIG_WPAUL_VALUES
1817 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1818 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1819 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1820 1.158 msaitoh #else
1821 1.49 fvdl
1822 1.158 msaitoh /* new broadcom docs strongly recommend these: */
1823 1.172 msaitoh if (!BGE_IS_5705_PLUS(sc)) {
1824 1.158 msaitoh if (ifp->if_mtu > ETHER_MAX_LEN) {
1825 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1826 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1827 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1828 1.158 msaitoh } else {
1829 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1830 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1831 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1832 1.158 msaitoh }
1833 1.158 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1834 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1835 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1836 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1837 1.158 msaitoh } else {
1838 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1839 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1840 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1841 1.158 msaitoh }
1842 1.158 msaitoh #endif
1843 1.25 jonathan
1844 1.158 msaitoh /* Configure DMA resource watermarks */
1845 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1846 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1847 1.51 fvdl
1848 1.158 msaitoh /* Enable buffer manager */
1849 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MODE,
1850 1.172 msaitoh BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1851 1.44 hannken
1852 1.172 msaitoh /* Poll for buffer manager start indication */
1853 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1854 1.172 msaitoh if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1855 1.172 msaitoh break;
1856 1.172 msaitoh DELAY(10);
1857 1.172 msaitoh }
1858 1.51 fvdl
1859 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
1860 1.172 msaitoh aprint_error_dev(sc->bge_dev,
1861 1.172 msaitoh "buffer manager failed to start\n");
1862 1.172 msaitoh return ENXIO;
1863 1.158 msaitoh }
1864 1.51 fvdl
1865 1.158 msaitoh /* Enable flow-through queues */
1866 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1867 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1868 1.76 cube
1869 1.158 msaitoh /* Wait until queue initialization is complete */
1870 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1871 1.158 msaitoh if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1872 1.158 msaitoh break;
1873 1.158 msaitoh DELAY(10);
1874 1.158 msaitoh }
1875 1.76 cube
1876 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
1877 1.158 msaitoh aprint_error_dev(sc->bge_dev,
1878 1.158 msaitoh "flow-through queue init failed\n");
1879 1.170 msaitoh return ENXIO;
1880 1.158 msaitoh }
1881 1.92 gavan
1882 1.158 msaitoh /* Initialize the standard RX ring control block */
1883 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1884 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1885 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
1886 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1887 1.158 msaitoh else
1888 1.158 msaitoh rcb->bge_maxlen_flags =
1889 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1890 1.172 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1891 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1892 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1893 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1894 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1895 1.119 tsutsui
1896 1.158 msaitoh /*
1897 1.158 msaitoh * Initialize the jumbo RX ring control block
1898 1.158 msaitoh * We set the 'ring disabled' bit in the flags
1899 1.158 msaitoh * field until we're actually ready to start
1900 1.158 msaitoh * using this ring (i.e. once we set the MTU
1901 1.158 msaitoh * high enough to require it).
1902 1.158 msaitoh */
1903 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
1904 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1905 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr,
1906 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1907 1.158 msaitoh rcb->bge_maxlen_flags =
1908 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1909 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1910 1.172 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1911 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1912 1.158 msaitoh rcb->bge_hostaddr.bge_addr_hi);
1913 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1914 1.158 msaitoh rcb->bge_hostaddr.bge_addr_lo);
1915 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1916 1.158 msaitoh rcb->bge_maxlen_flags);
1917 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1918 1.149 sborrill
1919 1.158 msaitoh /* Set up dummy disabled mini ring RCB */
1920 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1921 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1922 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
1923 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1924 1.158 msaitoh rcb->bge_maxlen_flags);
1925 1.133 markd
1926 1.158 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1927 1.158 msaitoh offsetof(struct bge_ring_data, bge_info),
1928 1.158 msaitoh sizeof (struct bge_gib),
1929 1.158 msaitoh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1930 1.158 msaitoh }
1931 1.133 markd
1932 1.158 msaitoh /*
1933 1.158 msaitoh * Set the BD ring replenish thresholds. The recommended
1934 1.158 msaitoh * values are 1/8th the number of descriptors allocated to
1935 1.158 msaitoh * each ring.
1936 1.158 msaitoh */
1937 1.158 msaitoh i = BGE_STD_RX_RING_CNT / 8;
1938 1.133 markd
1939 1.158 msaitoh /*
1940 1.158 msaitoh * Use a value of 8 for the following chips to workaround HW errata.
1941 1.158 msaitoh * Some of these chips have been added based on empirical
1942 1.158 msaitoh * evidence (they don't work unless this is done).
1943 1.158 msaitoh */
1944 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
1945 1.158 msaitoh i = 8;
1946 1.16 thorpej
1947 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1948 1.161 msaitoh CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
1949 1.157 msaitoh
1950 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1951 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
1952 1.172 msaitoh CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
1953 1.172 msaitoh CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
1954 1.172 msaitoh }
1955 1.172 msaitoh
1956 1.158 msaitoh /*
1957 1.158 msaitoh * Disable all unused send rings by setting the 'ring disabled'
1958 1.158 msaitoh * bit in the flags field of all the TX send ring control blocks.
1959 1.158 msaitoh * These are located in NIC memory.
1960 1.158 msaitoh */
1961 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1962 1.158 msaitoh for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1963 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1964 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1965 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1966 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1967 1.158 msaitoh }
1968 1.157 msaitoh
1969 1.158 msaitoh /* Configure TX RCB 0 (we use only the first ring) */
1970 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1971 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1972 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1973 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1974 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1975 1.158 msaitoh BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1976 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
1977 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1978 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1979 1.157 msaitoh
1980 1.158 msaitoh /* Disable all unused RX return rings */
1981 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1982 1.158 msaitoh for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1983 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1984 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1985 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1986 1.172 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1987 1.172 msaitoh BGE_RCB_FLAG_RING_DISABLED));
1988 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1989 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1990 1.170 msaitoh (i * (sizeof(uint64_t))), 0);
1991 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
1992 1.158 msaitoh }
1993 1.157 msaitoh
1994 1.158 msaitoh /* Initialize RX ring indexes */
1995 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1996 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1997 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1998 1.157 msaitoh
1999 1.158 msaitoh /*
2000 1.158 msaitoh * Set up RX return ring 0
2001 1.158 msaitoh * Note that the NIC address for RX return rings is 0x00000000.
2002 1.158 msaitoh * The return rings live entirely within the host, so the
2003 1.158 msaitoh * nicaddr field in the RCB isn't used.
2004 1.158 msaitoh */
2005 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2006 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2007 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2008 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2009 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2010 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2011 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2012 1.157 msaitoh
2013 1.158 msaitoh /* Set random backoff seed for TX */
2014 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2015 1.158 msaitoh CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2016 1.158 msaitoh CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2017 1.158 msaitoh CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2018 1.158 msaitoh BGE_TX_BACKOFF_SEED_MASK);
2019 1.157 msaitoh
2020 1.158 msaitoh /* Set inter-packet gap */
2021 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2022 1.51 fvdl
2023 1.158 msaitoh /*
2024 1.158 msaitoh * Specify which ring to use for packets that don't match
2025 1.158 msaitoh * any RX rules.
2026 1.158 msaitoh */
2027 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2028 1.157 msaitoh
2029 1.158 msaitoh /*
2030 1.158 msaitoh * Configure number of RX lists. One interrupt distribution
2031 1.158 msaitoh * list, sixteen active lists, one bad frames class.
2032 1.158 msaitoh */
2033 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2034 1.157 msaitoh
2035 1.158 msaitoh /* Inialize RX list placement stats mask. */
2036 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2037 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2038 1.157 msaitoh
2039 1.158 msaitoh /* Disable host coalescing until we get it set up */
2040 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2041 1.51 fvdl
2042 1.158 msaitoh /* Poll to make sure it's shut down. */
2043 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2044 1.158 msaitoh if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2045 1.158 msaitoh break;
2046 1.158 msaitoh DELAY(10);
2047 1.158 msaitoh }
2048 1.151 cegger
2049 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2050 1.158 msaitoh aprint_error_dev(sc->bge_dev,
2051 1.158 msaitoh "host coalescing engine failed to idle\n");
2052 1.170 msaitoh return ENXIO;
2053 1.158 msaitoh }
2054 1.51 fvdl
2055 1.158 msaitoh /* Set up host coalescing defaults */
2056 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2057 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2058 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2059 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2060 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2061 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2062 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2063 1.51 fvdl }
2064 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2065 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2066 1.51 fvdl
2067 1.158 msaitoh /* Set up address of statistics block */
2068 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2069 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2070 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2071 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2072 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2073 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2074 1.16 thorpej }
2075 1.16 thorpej
2076 1.158 msaitoh /* Set up address of status block */
2077 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2078 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2079 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2080 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2081 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2082 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2083 1.16 thorpej
2084 1.158 msaitoh /* Turn on host coalescing state machine */
2085 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2086 1.7 thorpej
2087 1.158 msaitoh /* Turn on RX BD completion state machine and enable attentions */
2088 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDC_MODE,
2089 1.161 msaitoh BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2090 1.7 thorpej
2091 1.158 msaitoh /* Turn on RX list placement state machine */
2092 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2093 1.51 fvdl
2094 1.158 msaitoh /* Turn on RX list selector state machine. */
2095 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2096 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2097 1.51 fvdl
2098 1.161 msaitoh val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2099 1.161 msaitoh BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2100 1.161 msaitoh BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2101 1.161 msaitoh BGE_MACMODE_FRMHDR_DMA_ENB;
2102 1.161 msaitoh
2103 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2104 1.161 msaitoh val |= BGE_PORTMODE_TBI;
2105 1.161 msaitoh else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2106 1.161 msaitoh val |= BGE_PORTMODE_GMII;
2107 1.161 msaitoh else
2108 1.161 msaitoh val |= BGE_PORTMODE_MII;
2109 1.161 msaitoh
2110 1.158 msaitoh /* Turn on DMA, clear stats */
2111 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2112 1.161 msaitoh
2113 1.51 fvdl
2114 1.158 msaitoh /* Set misc. local control, enable interrupts on attentions */
2115 1.158 msaitoh sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2116 1.51 fvdl
2117 1.158 msaitoh #ifdef notdef
2118 1.158 msaitoh /* Assert GPIO pins for PHY reset */
2119 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2120 1.158 msaitoh BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2121 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2122 1.158 msaitoh BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2123 1.158 msaitoh #endif
2124 1.98 jonathan
2125 1.158 msaitoh #if defined(not_quite_yet)
2126 1.158 msaitoh /* Linux driver enables enable gpio pin #1 on 5700s */
2127 1.158 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2128 1.158 msaitoh sc->bge_local_ctrl_reg |=
2129 1.158 msaitoh (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2130 1.158 msaitoh }
2131 1.158 msaitoh #endif
2132 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2133 1.80 fredb
2134 1.158 msaitoh /* Turn on DMA completion state machine */
2135 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2136 1.158 msaitoh CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2137 1.149 sborrill
2138 1.158 msaitoh /* Turn on write DMA state machine */
2139 1.158 msaitoh {
2140 1.158 msaitoh uint32_t bge_wdma_mode =
2141 1.158 msaitoh BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2142 1.76 cube
2143 1.158 msaitoh /* Enable host coalescing bug fix; see Linux tg3.c */
2144 1.172 msaitoh if (BGE_IS_5755_PLUS(sc))
2145 1.172 msaitoh bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2146 1.76 cube
2147 1.158 msaitoh CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2148 1.158 msaitoh }
2149 1.76 cube
2150 1.158 msaitoh /* Turn on read DMA state machine */
2151 1.158 msaitoh {
2152 1.158 msaitoh uint32_t dma_read_modebits;
2153 1.91 gavan
2154 1.158 msaitoh dma_read_modebits =
2155 1.158 msaitoh BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2156 1.98 jonathan
2157 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2158 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2159 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2160 1.172 msaitoh dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2161 1.172 msaitoh BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2162 1.172 msaitoh BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2163 1.172 msaitoh
2164 1.172 msaitoh if (sc->bge_flags & BGE_PCIE)
2165 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2166 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
2167 1.172 msaitoh dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2168 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2169 1.172 msaitoh delay(40);
2170 1.158 msaitoh }
2171 1.128 tron
2172 1.158 msaitoh /* Turn on RX data completion state machine */
2173 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2174 1.128 tron
2175 1.158 msaitoh /* Turn on RX BD initiator state machine */
2176 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2177 1.133 markd
2178 1.158 msaitoh /* Turn on RX data and RX BD initiator state machine */
2179 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2180 1.133 markd
2181 1.158 msaitoh /* Turn on Mbuf cluster free state machine */
2182 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2183 1.158 msaitoh CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2184 1.133 markd
2185 1.158 msaitoh /* Turn on send BD completion state machine */
2186 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2187 1.133 markd
2188 1.158 msaitoh /* Turn on send data completion state machine */
2189 1.172 msaitoh val = BGE_SDCMODE_ENABLE;
2190 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2191 1.172 msaitoh val |= BGE_SDCMODE_CDELAY;
2192 1.172 msaitoh CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2193 1.106 jonathan
2194 1.158 msaitoh /* Turn on send data initiator state machine */
2195 1.172 msaitoh if (sc->bge_flags & BGE_TSO) {
2196 1.158 msaitoh /* XXX: magic value from Linux driver */
2197 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2198 1.158 msaitoh } else {
2199 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2200 1.158 msaitoh }
2201 1.106 jonathan
2202 1.158 msaitoh /* Turn on send BD initiator state machine */
2203 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2204 1.133 markd
2205 1.158 msaitoh /* Turn on send BD selector state machine */
2206 1.158 msaitoh CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2207 1.135 taca
2208 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2209 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2210 1.161 msaitoh BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2211 1.133 markd
2212 1.158 msaitoh /* ack/clear link change events */
2213 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2214 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2215 1.172 msaitoh BGE_MACSTAT_LINK_CHANGED);
2216 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, 0);
2217 1.106 jonathan
2218 1.158 msaitoh /* Enable PHY auto polling (for MII/GMII only) */
2219 1.158 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2220 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2221 1.158 msaitoh } else {
2222 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2223 1.161 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2224 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2225 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2226 1.158 msaitoh BGE_EVTENB_MI_INTERRUPT);
2227 1.158 msaitoh }
2228 1.70 tron
2229 1.161 msaitoh /*
2230 1.161 msaitoh * Clear any pending link state attention.
2231 1.161 msaitoh * Otherwise some link state change events may be lost until attention
2232 1.161 msaitoh * is cleared by bge_intr() -> bge_link_upd() sequence.
2233 1.161 msaitoh * It's not necessary on newer BCM chips - perhaps enabling link
2234 1.161 msaitoh * state change attentions implies clearing pending attention.
2235 1.161 msaitoh */
2236 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2237 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2238 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
2239 1.161 msaitoh
2240 1.158 msaitoh /* Enable link state change attentions. */
2241 1.158 msaitoh BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2242 1.51 fvdl
2243 1.170 msaitoh return 0;
2244 1.158 msaitoh }
2245 1.7 thorpej
2246 1.158 msaitoh static const struct bge_revision *
2247 1.158 msaitoh bge_lookup_rev(uint32_t chipid)
2248 1.158 msaitoh {
2249 1.158 msaitoh const struct bge_revision *br;
2250 1.7 thorpej
2251 1.158 msaitoh for (br = bge_revisions; br->br_name != NULL; br++) {
2252 1.158 msaitoh if (br->br_chipid == chipid)
2253 1.170 msaitoh return br;
2254 1.158 msaitoh }
2255 1.151 cegger
2256 1.158 msaitoh for (br = bge_majorrevs; br->br_name != NULL; br++) {
2257 1.158 msaitoh if (br->br_chipid == BGE_ASICREV(chipid))
2258 1.170 msaitoh return br;
2259 1.158 msaitoh }
2260 1.151 cegger
2261 1.170 msaitoh return NULL;
2262 1.158 msaitoh }
2263 1.7 thorpej
2264 1.7 thorpej static const struct bge_product *
2265 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2266 1.7 thorpej {
2267 1.7 thorpej const struct bge_product *bp;
2268 1.7 thorpej
2269 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2270 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2271 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2272 1.170 msaitoh return bp;
2273 1.7 thorpej }
2274 1.7 thorpej
2275 1.170 msaitoh return NULL;
2276 1.7 thorpej }
2277 1.7 thorpej
2278 1.104 thorpej static int
2279 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2280 1.25 jonathan {
2281 1.25 jonathan #ifdef NOTYET
2282 1.170 msaitoh uint32_t pm_ctl = 0;
2283 1.25 jonathan
2284 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2285 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2286 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2287 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2288 1.25 jonathan
2289 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2290 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2291 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2292 1.25 jonathan pm_ctl |= (1 << 8);
2293 1.25 jonathan
2294 1.25 jonathan if (powerlevel == 0) {
2295 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2296 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2297 1.25 jonathan pm_ctl, 2);
2298 1.25 jonathan DELAY(10000);
2299 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2300 1.25 jonathan DELAY(10000);
2301 1.25 jonathan
2302 1.25 jonathan #ifdef NOTYET
2303 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2304 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2305 1.25 jonathan #endif
2306 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2307 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2308 1.25 jonathan return 0;
2309 1.25 jonathan }
2310 1.25 jonathan
2311 1.25 jonathan
2312 1.25 jonathan /*
2313 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2314 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2315 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
2316 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2317 1.25 jonathan */
2318 1.138 joerg aprint_error_dev(sc->bge_dev,
2319 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2320 1.138 joerg powerlevel);
2321 1.25 jonathan #endif
2322 1.25 jonathan return EOPNOTSUPP;
2323 1.25 jonathan }
2324 1.25 jonathan
2325 1.25 jonathan
2326 1.1 fvdl /*
2327 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2328 1.1 fvdl * against our list and return its name if we find a match. Note
2329 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2330 1.1 fvdl * can get the device name string from the controller itself instead
2331 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2332 1.1 fvdl * we'll always announce the right product name.
2333 1.1 fvdl */
2334 1.104 thorpej static int
2335 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2336 1.1 fvdl {
2337 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2338 1.1 fvdl
2339 1.7 thorpej if (bge_lookup(pa) != NULL)
2340 1.170 msaitoh return 1;
2341 1.1 fvdl
2342 1.170 msaitoh return 0;
2343 1.1 fvdl }
2344 1.1 fvdl
2345 1.104 thorpej static void
2346 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2347 1.1 fvdl {
2348 1.138 joerg struct bge_softc *sc = device_private(self);
2349 1.1 fvdl struct pci_attach_args *pa = aux;
2350 1.164 msaitoh prop_dictionary_t dict;
2351 1.7 thorpej const struct bge_product *bp;
2352 1.16 thorpej const struct bge_revision *br;
2353 1.143 tron pci_chipset_tag_t pc;
2354 1.1 fvdl pci_intr_handle_t ih;
2355 1.1 fvdl const char *intrstr = NULL;
2356 1.1 fvdl bus_dma_segment_t seg;
2357 1.1 fvdl int rseg;
2358 1.170 msaitoh uint32_t hwcfg = 0;
2359 1.170 msaitoh uint32_t command;
2360 1.1 fvdl struct ifnet *ifp;
2361 1.170 msaitoh uint32_t misccfg;
2362 1.126 christos void * kva;
2363 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2364 1.172 msaitoh pcireg_t memtype, subid;
2365 1.1 fvdl bus_addr_t memaddr;
2366 1.1 fvdl bus_size_t memsize;
2367 1.170 msaitoh uint32_t pm_ctl;
2368 1.174 martin prop_data_t eaddrprop;
2369 1.174 martin bool no_seeprom;
2370 1.87 perry
2371 1.7 thorpej bp = bge_lookup(pa);
2372 1.7 thorpej KASSERT(bp != NULL);
2373 1.7 thorpej
2374 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2375 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2376 1.138 joerg sc->bge_dev = self;
2377 1.1 fvdl
2378 1.172 msaitoh pc = sc->sc_pc;
2379 1.172 msaitoh subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2380 1.172 msaitoh
2381 1.30 thorpej aprint_naive(": Ethernet controller\n");
2382 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2383 1.1 fvdl
2384 1.1 fvdl /*
2385 1.1 fvdl * Map control/status registers.
2386 1.1 fvdl */
2387 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2388 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2389 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2390 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2391 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2392 1.1 fvdl
2393 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2394 1.138 joerg aprint_error_dev(sc->bge_dev,
2395 1.138 joerg "failed to enable memory mapping!\n");
2396 1.1 fvdl return;
2397 1.1 fvdl }
2398 1.1 fvdl
2399 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2400 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2401 1.1 fvdl switch (memtype) {
2402 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2403 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2404 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2405 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2406 1.1 fvdl &memaddr, &memsize) == 0)
2407 1.1 fvdl break;
2408 1.1 fvdl default:
2409 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2410 1.1 fvdl return;
2411 1.1 fvdl }
2412 1.1 fvdl
2413 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2414 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2415 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2416 1.1 fvdl return;
2417 1.1 fvdl }
2418 1.1 fvdl
2419 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2420 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2421 1.1 fvdl
2422 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2423 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2424 1.1 fvdl
2425 1.1 fvdl if (sc->bge_intrhand == NULL) {
2426 1.138 joerg aprint_error_dev(sc->bge_dev,
2427 1.138 joerg "couldn't establish interrupt%s%s\n",
2428 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2429 1.1 fvdl return;
2430 1.1 fvdl }
2431 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2432 1.1 fvdl
2433 1.25 jonathan /*
2434 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2435 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2436 1.25 jonathan * leaving the card in D3 powersave state.
2437 1.25 jonathan * We do not have memory-mapped registers in this state,
2438 1.25 jonathan * so force device into D0 state before starting initialization.
2439 1.25 jonathan */
2440 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2441 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2442 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2443 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2444 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2445 1.25 jonathan
2446 1.76 cube /*
2447 1.162 msaitoh * Save ASIC rev.
2448 1.76 cube */
2449 1.76 cube sc->bge_chipid =
2450 1.172 msaitoh pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2451 1.172 msaitoh >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2452 1.172 msaitoh
2453 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2454 1.172 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2455 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2456 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2457 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2458 1.172 msaitoh BGE_PCI_GEN2_PRODID_ASICREV);
2459 1.172 msaitoh else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2460 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2461 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2462 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2463 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2464 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2465 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2466 1.172 msaitoh BGE_PCI_GEN15_PRODID_ASICREV);
2467 1.172 msaitoh else
2468 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2469 1.172 msaitoh BGE_PCI_PRODID_ASICREV);
2470 1.172 msaitoh }
2471 1.76 cube
2472 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2473 1.171 msaitoh NULL, NULL) != 0) {
2474 1.171 msaitoh /* PCIe */
2475 1.157 msaitoh sc->bge_flags |= BGE_PCIE;
2476 1.171 msaitoh } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2477 1.171 msaitoh BGE_PCISTATE_PCI_BUSMODE) == 0) {
2478 1.171 msaitoh /* PCI-X */
2479 1.157 msaitoh sc->bge_flags |= BGE_PCIX;
2480 1.171 msaitoh }
2481 1.76 cube
2482 1.172 msaitoh /* chipid */
2483 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2484 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2485 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2486 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2487 1.172 msaitoh sc->bge_flags |= BGE_5700_FAMILY;
2488 1.172 msaitoh
2489 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2490 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2491 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2492 1.172 msaitoh sc->bge_flags |= BGE_5714_FAMILY;
2493 1.172 msaitoh
2494 1.172 msaitoh /* Intentionally exclude BGE_ASICREV_BCM5906 */
2495 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2496 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2497 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2498 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2499 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2500 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2501 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2502 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2503 1.172 msaitoh sc->bge_flags |= BGE_5755_PLUS;
2504 1.172 msaitoh
2505 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2506 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2507 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2508 1.172 msaitoh BGE_IS_5755_PLUS(sc) ||
2509 1.172 msaitoh BGE_IS_5714_FAMILY(sc))
2510 1.172 msaitoh sc->bge_flags |= BGE_5750_PLUS;
2511 1.172 msaitoh
2512 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2513 1.172 msaitoh BGE_IS_5750_OR_BEYOND(sc))
2514 1.172 msaitoh sc->bge_flags |= BGE_5705_PLUS;
2515 1.172 msaitoh
2516 1.172 msaitoh /*
2517 1.172 msaitoh * When using the BCM5701 in PCI-X mode, data corruption has
2518 1.172 msaitoh * been observed in the first few bytes of some received packets.
2519 1.172 msaitoh * Aligning the packet buffer in memory eliminates the corruption.
2520 1.172 msaitoh * Unfortunately, this misaligns the packet payloads. On platforms
2521 1.172 msaitoh * which do not support unaligned accesses, we will realign the
2522 1.172 msaitoh * payloads by copying the received packets.
2523 1.172 msaitoh */
2524 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2525 1.172 msaitoh sc->bge_flags & BGE_PCIX)
2526 1.172 msaitoh sc->bge_flags |= BGE_RX_ALIGNBUG;
2527 1.172 msaitoh
2528 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2529 1.172 msaitoh sc->bge_flags |= BGE_JUMBO_CAPABLE;
2530 1.172 msaitoh
2531 1.172 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2532 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2533 1.172 msaitoh PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2534 1.172 msaitoh sc->bge_flags |= BGE_NO_3LED;
2535 1.172 msaitoh
2536 1.172 msaitoh misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2537 1.172 msaitoh misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2538 1.172 msaitoh
2539 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2540 1.172 msaitoh (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2541 1.172 msaitoh misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2542 1.172 msaitoh sc->bge_flags |= BGE_IS_5788;
2543 1.172 msaitoh
2544 1.172 msaitoh /*
2545 1.172 msaitoh * Some controllers seem to require a special firmware to use
2546 1.172 msaitoh * TSO. But the firmware is not available to FreeBSD and Linux
2547 1.172 msaitoh * claims that the TSO performed by the firmware is slower than
2548 1.172 msaitoh * hardware based TSO. Moreover the firmware based TSO has one
2549 1.172 msaitoh * known bug which can't handle TSO if ethernet header + IP/TCP
2550 1.172 msaitoh * header is greater than 80 bytes. The workaround for the TSO
2551 1.172 msaitoh * bug exist but it seems it's too expensive than not using
2552 1.172 msaitoh * TSO at all. Some hardwares also have the TSO bug so limit
2553 1.172 msaitoh * the TSO to the controllers that are not affected TSO issues
2554 1.172 msaitoh * (e.g. 5755 or higher).
2555 1.172 msaitoh */
2556 1.172 msaitoh if (BGE_IS_5755_PLUS(sc)) {
2557 1.172 msaitoh /*
2558 1.172 msaitoh * BCM5754 and BCM5787 shares the same ASIC id so
2559 1.172 msaitoh * explicit device id check is required.
2560 1.172 msaitoh */
2561 1.172 msaitoh if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2562 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2563 1.172 msaitoh sc->bge_flags |= BGE_TSO;
2564 1.172 msaitoh }
2565 1.172 msaitoh
2566 1.172 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2567 1.172 msaitoh (misccfg == 0x4000 || misccfg == 0x8000)) ||
2568 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2569 1.172 msaitoh PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2570 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2571 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2572 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2573 1.172 msaitoh (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2574 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2575 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2576 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2577 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2578 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2579 1.172 msaitoh sc->bge_flags |= BGE_10_100_ONLY;
2580 1.172 msaitoh
2581 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2582 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2583 1.172 msaitoh (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2584 1.172 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2585 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2586 1.172 msaitoh sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2587 1.172 msaitoh
2588 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2589 1.162 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2590 1.162 msaitoh sc->bge_flags |= BGE_PHY_CRC_BUG;
2591 1.162 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2592 1.162 msaitoh BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2593 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADC_BUG;
2594 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2595 1.162 msaitoh sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2596 1.162 msaitoh
2597 1.172 msaitoh if (BGE_IS_5705_PLUS(sc) &&
2598 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2599 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2600 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2601 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2602 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2603 1.162 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2604 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2605 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2606 1.162 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2607 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2608 1.162 msaitoh PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2609 1.162 msaitoh sc->bge_flags |= BGE_PHY_JITTER_BUG;
2610 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2611 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2612 1.162 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2613 1.162 msaitoh sc->bge_flags |= BGE_PHY_BER_BUG;
2614 1.162 msaitoh }
2615 1.162 msaitoh
2616 1.174 martin /*
2617 1.174 martin * SEEPROM check.
2618 1.174 martin * First check if firmware knows we do not have SEEPROM.
2619 1.174 martin */
2620 1.174 martin if (prop_dictionary_get_bool(device_properties(self),
2621 1.174 martin "without-seeprom", &no_seeprom) && no_seeprom)
2622 1.174 martin sc->bge_flags |= BGE_NO_EEPROM;
2623 1.174 martin
2624 1.174 martin /* Now check the 'ROM failed' bit on the RX CPU */
2625 1.174 martin else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2626 1.172 msaitoh sc->bge_flags |= BGE_NO_EEPROM;
2627 1.172 msaitoh
2628 1.1 fvdl /* Try to reset the chip. */
2629 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2630 1.1 fvdl bge_reset(sc);
2631 1.1 fvdl
2632 1.1 fvdl if (bge_chipinit(sc)) {
2633 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2634 1.1 fvdl bge_release_resources(sc);
2635 1.1 fvdl return;
2636 1.1 fvdl }
2637 1.1 fvdl
2638 1.1 fvdl /*
2639 1.174 martin * Get station address from the EEPROM (or use firmware values
2640 1.174 martin * if provided via device properties)
2641 1.1 fvdl */
2642 1.174 martin eaddrprop = prop_dictionary_get(device_properties(self), "mac-address");
2643 1.174 martin
2644 1.174 martin if (eaddrprop != NULL && prop_data_size(eaddrprop) == ETHER_ADDR_LEN) {
2645 1.174 martin memcpy(eaddr, prop_data_data_nocopy(eaddrprop),
2646 1.174 martin ETHER_ADDR_LEN);
2647 1.174 martin goto got_eaddr;
2648 1.174 martin }
2649 1.174 martin
2650 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
2651 1.151 cegger aprint_error_dev(sc->bge_dev,
2652 1.170 msaitoh "failed to read station address\n");
2653 1.1 fvdl bge_release_resources(sc);
2654 1.1 fvdl return;
2655 1.1 fvdl }
2656 1.1 fvdl
2657 1.174 martin got_eaddr:
2658 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2659 1.51 fvdl
2660 1.16 thorpej if (br == NULL) {
2661 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2662 1.172 msaitoh sc->bge_chipid);
2663 1.16 thorpej } else {
2664 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2665 1.172 msaitoh br->br_name, sc->bge_chipid);
2666 1.16 thorpej }
2667 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2668 1.1 fvdl
2669 1.1 fvdl /* Allocate the general information block and ring buffers. */
2670 1.41 fvdl if (pci_dma64_available(pa))
2671 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2672 1.41 fvdl else
2673 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2674 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2675 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2676 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2677 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2678 1.1 fvdl return;
2679 1.1 fvdl }
2680 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2681 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2682 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2683 1.1 fvdl BUS_DMA_NOWAIT)) {
2684 1.138 joerg aprint_error_dev(sc->bge_dev,
2685 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2686 1.138 joerg sizeof(struct bge_ring_data));
2687 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2688 1.1 fvdl return;
2689 1.1 fvdl }
2690 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2691 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2692 1.1 fvdl sizeof(struct bge_ring_data), 0,
2693 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2694 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2695 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2696 1.1 fvdl sizeof(struct bge_ring_data));
2697 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2698 1.1 fvdl return;
2699 1.1 fvdl }
2700 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2701 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2702 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2703 1.1 fvdl BUS_DMA_NOWAIT)) {
2704 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2705 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2706 1.1 fvdl sizeof(struct bge_ring_data));
2707 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2708 1.1 fvdl return;
2709 1.1 fvdl }
2710 1.1 fvdl
2711 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2712 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2713 1.1 fvdl
2714 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2715 1.1 fvdl
2716 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2717 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
2718 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2719 1.138 joerg aprint_error_dev(sc->bge_dev,
2720 1.138 joerg "jumbo buffer allocation failed\n");
2721 1.44 hannken } else
2722 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2723 1.44 hannken }
2724 1.1 fvdl
2725 1.1 fvdl /* Set default tuneable values. */
2726 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2727 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2728 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2729 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2730 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2731 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2732 1.25 jonathan #else
2733 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2734 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2735 1.25 jonathan #endif
2736 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
2737 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2738 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2739 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2740 1.138 joerg "setting short Tx thresholds\n");
2741 1.95 jonathan }
2742 1.1 fvdl
2743 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
2744 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2745 1.172 msaitoh else
2746 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2747 1.172 msaitoh
2748 1.1 fvdl /* Set up ifnet structure */
2749 1.1 fvdl ifp = &sc->ethercom.ec_if;
2750 1.1 fvdl ifp->if_softc = sc;
2751 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2752 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2753 1.141 jmcneill ifp->if_stop = bge_stop;
2754 1.1 fvdl ifp->if_start = bge_start;
2755 1.1 fvdl ifp->if_init = bge_init;
2756 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2757 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2758 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2759 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2760 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2761 1.1 fvdl
2762 1.157 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2763 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2764 1.172 msaitoh IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2765 1.172 msaitoh #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2766 1.172 msaitoh sc->ethercom.ec_if.if_capabilities |=
2767 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2768 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2769 1.172 msaitoh #endif
2770 1.87 perry sc->ethercom.ec_capabilities |=
2771 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2772 1.1 fvdl
2773 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
2774 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2775 1.95 jonathan
2776 1.1 fvdl /*
2777 1.1 fvdl * Do MII setup.
2778 1.1 fvdl */
2779 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2780 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2781 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2782 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2783 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2784 1.1 fvdl
2785 1.1 fvdl /*
2786 1.1 fvdl * Figure out what sort of media we have by checking the
2787 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2788 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2789 1.1 fvdl * cards, this value appears to be unset. If that's the
2790 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2791 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2792 1.1 fvdl */
2793 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2794 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2795 1.35 jonathan } else {
2796 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2797 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2798 1.35 jonathan hwcfg = be32toh(hwcfg);
2799 1.35 jonathan }
2800 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2801 1.161 msaitoh if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2802 1.161 msaitoh (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2803 1.161 msaitoh if (BGE_IS_5714_FAMILY(sc))
2804 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_MII;
2805 1.161 msaitoh else
2806 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
2807 1.161 msaitoh }
2808 1.1 fvdl
2809 1.167 msaitoh /* set phyflags before mii_attach() */
2810 1.167 msaitoh dict = device_properties(self);
2811 1.167 msaitoh prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2812 1.167 msaitoh
2813 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2814 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2815 1.1 fvdl bge_ifmedia_sts);
2816 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2817 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2818 1.1 fvdl 0, NULL);
2819 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2820 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2821 1.155 he /* Pretend the user requested this setting */
2822 1.162 msaitoh sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2823 1.1 fvdl } else {
2824 1.1 fvdl /*
2825 1.1 fvdl * Do transceiver setup.
2826 1.1 fvdl */
2827 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2828 1.1 fvdl bge_ifmedia_sts);
2829 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2830 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2831 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2832 1.87 perry
2833 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2834 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2835 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2836 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2837 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2838 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2839 1.1 fvdl } else
2840 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2841 1.1 fvdl IFM_ETHER|IFM_AUTO);
2842 1.1 fvdl }
2843 1.1 fvdl
2844 1.1 fvdl /*
2845 1.1 fvdl * Call MI attach routine.
2846 1.1 fvdl */
2847 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2848 1.1 fvdl if_attach(ifp);
2849 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2850 1.1 fvdl ether_ifattach(ifp, eaddr);
2851 1.148 mlelstv #if NRND > 0
2852 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2853 1.148 mlelstv RND_TYPE_NET, 0);
2854 1.148 mlelstv #endif
2855 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
2856 1.72 thorpej /*
2857 1.72 thorpej * Attach event counters.
2858 1.72 thorpej */
2859 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2860 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
2861 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2862 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
2863 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2864 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
2865 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2866 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
2867 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2868 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
2869 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2870 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
2871 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2872 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
2873 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
2874 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2875 1.132 ad callout_init(&sc->bge_timeout, 0);
2876 1.82 jmcneill
2877 1.168 tsutsui if (pmf_device_register(self, NULL, NULL))
2878 1.168 tsutsui pmf_class_network_register(self, ifp);
2879 1.168 tsutsui else
2880 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
2881 1.172 msaitoh
2882 1.172 msaitoh #ifdef BGE_DEBUG
2883 1.172 msaitoh bge_debug_info(sc);
2884 1.172 msaitoh #endif
2885 1.1 fvdl }
2886 1.1 fvdl
2887 1.104 thorpej static void
2888 1.104 thorpej bge_release_resources(struct bge_softc *sc)
2889 1.1 fvdl {
2890 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2891 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2892 1.1 fvdl
2893 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2894 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2895 1.1 fvdl }
2896 1.1 fvdl
2897 1.104 thorpej static void
2898 1.104 thorpej bge_reset(struct bge_softc *sc)
2899 1.1 fvdl {
2900 1.170 msaitoh uint32_t cachesize, command, pcistate, new_pcistate;
2901 1.76 cube int i, val;
2902 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
2903 1.151 cegger
2904 1.151 cegger if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2905 1.151 cegger (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2906 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2907 1.151 cegger write_op = bge_writemem_direct;
2908 1.151 cegger } else {
2909 1.151 cegger write_op = bge_writemem_ind;
2910 1.151 cegger }
2911 1.151 cegger } else {
2912 1.151 cegger write_op = bge_writereg_ind;
2913 1.151 cegger }
2914 1.151 cegger
2915 1.1 fvdl
2916 1.1 fvdl /* Save some important PCI state. */
2917 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2918 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2919 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2920 1.1 fvdl
2921 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2922 1.172 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2923 1.172 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
2924 1.1 fvdl
2925 1.162 msaitoh /* Disable fastboot on controllers that support it. */
2926 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2927 1.172 msaitoh BGE_IS_5755_PLUS(sc))
2928 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2929 1.119 tsutsui
2930 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2931 1.76 cube /*
2932 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2933 1.76 cube */
2934 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2935 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2936 1.157 msaitoh /* PCI Express 1.0 system */
2937 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2938 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2939 1.157 msaitoh /*
2940 1.157 msaitoh * Prevent PCI Express link training
2941 1.157 msaitoh * during global reset.
2942 1.157 msaitoh */
2943 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2944 1.76 cube val |= (1<<29);
2945 1.76 cube }
2946 1.76 cube }
2947 1.76 cube
2948 1.161 msaitoh /*
2949 1.161 msaitoh * Set GPHY Power Down Override to leave GPHY
2950 1.161 msaitoh * powered up in D0 uninitialized.
2951 1.161 msaitoh */
2952 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
2953 1.161 msaitoh val |= BGE_MISCCFG_KEEP_GPHY_POWER;
2954 1.161 msaitoh
2955 1.1 fvdl /* Issue global reset */
2956 1.151 cegger write_op(sc, BGE_MISC_CFG, val);
2957 1.151 cegger
2958 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2959 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2960 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2961 1.151 cegger i | BGE_VCPU_STATUS_DRV_RESET);
2962 1.151 cegger i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2963 1.151 cegger CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2964 1.151 cegger i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2965 1.151 cegger }
2966 1.151 cegger
2967 1.1 fvdl DELAY(1000);
2968 1.1 fvdl
2969 1.76 cube /*
2970 1.76 cube * XXX: from FreeBSD/Linux; no documentation
2971 1.76 cube */
2972 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
2973 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2974 1.76 cube pcireg_t reg;
2975 1.76 cube
2976 1.76 cube DELAY(500000);
2977 1.76 cube /* XXX: Magic Numbers */
2978 1.170 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2979 1.170 msaitoh BGE_PCI_UNKNOWN0);
2980 1.170 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2981 1.170 msaitoh BGE_PCI_UNKNOWN0,
2982 1.76 cube reg | (1 << 15));
2983 1.76 cube }
2984 1.95 jonathan /*
2985 1.95 jonathan * XXX: Magic Numbers.
2986 1.95 jonathan * Sets maximal PCI-e payload and clears any PCI-e errors.
2987 1.95 jonathan * Should be replaced with references to PCI config-space
2988 1.95 jonathan * capability block for PCI-Express.
2989 1.95 jonathan */
2990 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2991 1.95 jonathan BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2992 1.95 jonathan
2993 1.76 cube }
2994 1.76 cube
2995 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2996 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2997 1.172 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2998 1.172 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
2999 1.172 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3000 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3001 1.151 cegger write_op(sc, BGE_MISC_CFG, (65 << 1));
3002 1.1 fvdl
3003 1.1 fvdl /* Enable memory arbiter. */
3004 1.109 jonathan {
3005 1.99 jonathan uint32_t marbmode = 0;
3006 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
3007 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3008 1.99 jonathan }
3009 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3010 1.44 hannken }
3011 1.1 fvdl
3012 1.172 msaitoh /*
3013 1.172 msaitoh * Prevent PXE restart: write a magic number to the
3014 1.172 msaitoh * general communications memory at 0xB50.
3015 1.172 msaitoh */
3016 1.172 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3017 1.139 msaitoh
3018 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3019 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
3020 1.151 cegger val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3021 1.151 cegger if (val & BGE_VCPU_STATUS_INIT_DONE)
3022 1.151 cegger break;
3023 1.151 cegger DELAY(100);
3024 1.151 cegger }
3025 1.151 cegger if (i == BGE_TIMEOUT) {
3026 1.151 cegger aprint_error_dev(sc->bge_dev, "reset timed out\n");
3027 1.151 cegger return;
3028 1.151 cegger }
3029 1.151 cegger } else {
3030 1.151 cegger /*
3031 1.151 cegger * Poll the value location we just wrote until
3032 1.151 cegger * we see the 1's complement of the magic number.
3033 1.151 cegger * This indicates that the firmware initialization
3034 1.151 cegger * is complete.
3035 1.95 jonathan */
3036 1.151 cegger for (i = 0; i < BGE_TIMEOUT; i++) {
3037 1.151 cegger val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3038 1.151 cegger if (val == ~BGE_MAGIC_NUMBER)
3039 1.151 cegger break;
3040 1.172 msaitoh DELAY(10);
3041 1.151 cegger }
3042 1.151 cegger
3043 1.172 msaitoh if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM))) {
3044 1.151 cegger aprint_error_dev(sc->bge_dev,
3045 1.151 cegger "firmware handshake timed out, val = %x\n", val);
3046 1.151 cegger /*
3047 1.151 cegger * XXX: occasionally fired on bcm5721, but without
3048 1.151 cegger * apparent harm. For now, keep going if we timeout
3049 1.151 cegger * against PCI-E devices.
3050 1.151 cegger */
3051 1.157 msaitoh if ((sc->bge_flags & BGE_PCIE) == 0)
3052 1.151 cegger return;
3053 1.151 cegger }
3054 1.1 fvdl }
3055 1.1 fvdl
3056 1.1 fvdl /*
3057 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
3058 1.1 fvdl * return to its original pre-reset state. This is a
3059 1.1 fvdl * fairly good indicator of reset completion. If we don't
3060 1.1 fvdl * wait for the reset to fully complete, trying to read
3061 1.1 fvdl * from the device's non-PCI registers may yield garbage
3062 1.1 fvdl * results.
3063 1.1 fvdl */
3064 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
3065 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3066 1.61 jonathan BGE_PCI_PCISTATE);
3067 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3068 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
3069 1.1 fvdl break;
3070 1.1 fvdl DELAY(10);
3071 1.1 fvdl }
3072 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3073 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
3074 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3075 1.61 jonathan }
3076 1.1 fvdl
3077 1.172 msaitoh #if 0
3078 1.1 fvdl /* Enable memory arbiter. */
3079 1.109 jonathan /* XXX why do this twice? */
3080 1.109 jonathan {
3081 1.99 jonathan uint32_t marbmode = 0;
3082 1.99 jonathan if (BGE_IS_5714_FAMILY(sc)) {
3083 1.100 jonathan marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3084 1.99 jonathan }
3085 1.99 jonathan CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3086 1.44 hannken }
3087 1.172 msaitoh #endif
3088 1.1 fvdl
3089 1.1 fvdl /* Fix up byte swapping */
3090 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3091 1.1 fvdl
3092 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3093 1.1 fvdl
3094 1.161 msaitoh /*
3095 1.161 msaitoh * The 5704 in TBI mode apparently needs some special
3096 1.161 msaitoh * adjustment to insure the SERDES drive level is set
3097 1.161 msaitoh * to 1.2V.
3098 1.161 msaitoh */
3099 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3100 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3101 1.170 msaitoh uint32_t serdescfg;
3102 1.161 msaitoh
3103 1.161 msaitoh serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3104 1.161 msaitoh serdescfg = (serdescfg & ~0xFFF) | 0x880;
3105 1.161 msaitoh CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3106 1.161 msaitoh }
3107 1.161 msaitoh
3108 1.161 msaitoh if (sc->bge_flags & BGE_PCIE &&
3109 1.172 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3110 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3111 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3112 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3113 1.172 msaitoh uint32_t v;
3114 1.172 msaitoh
3115 1.172 msaitoh /* Enable PCI Express bug fix */
3116 1.172 msaitoh v = CSR_READ_4(sc, 0x7c00);
3117 1.172 msaitoh CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3118 1.172 msaitoh }
3119 1.1 fvdl DELAY(10000);
3120 1.1 fvdl }
3121 1.1 fvdl
3122 1.1 fvdl /*
3123 1.1 fvdl * Frame reception handling. This is called if there's a frame
3124 1.1 fvdl * on the receive return list.
3125 1.1 fvdl *
3126 1.1 fvdl * Note: we have to be able to handle two possibilities here:
3127 1.1 fvdl * 1) the frame is from the jumbo recieve ring
3128 1.1 fvdl * 2) the frame is from the standard receive ring
3129 1.1 fvdl */
3130 1.1 fvdl
3131 1.104 thorpej static void
3132 1.104 thorpej bge_rxeof(struct bge_softc *sc)
3133 1.1 fvdl {
3134 1.1 fvdl struct ifnet *ifp;
3135 1.172 msaitoh uint16_t rx_prod, rx_cons;
3136 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
3137 1.1 fvdl bus_dmamap_t dmamap;
3138 1.1 fvdl bus_addr_t offset, toff;
3139 1.1 fvdl bus_size_t tlen;
3140 1.1 fvdl int tosync;
3141 1.1 fvdl
3142 1.172 msaitoh rx_cons = sc->bge_rx_saved_considx;
3143 1.172 msaitoh rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3144 1.172 msaitoh
3145 1.172 msaitoh /* Nothing to do */
3146 1.172 msaitoh if (rx_cons == rx_prod)
3147 1.172 msaitoh return;
3148 1.172 msaitoh
3149 1.1 fvdl ifp = &sc->ethercom.ec_if;
3150 1.1 fvdl
3151 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3152 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3153 1.1 fvdl sizeof (struct bge_status_block),
3154 1.1 fvdl BUS_DMASYNC_POSTREAD);
3155 1.1 fvdl
3156 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3157 1.172 msaitoh tosync = rx_prod - rx_cons;
3158 1.1 fvdl
3159 1.148 mlelstv #if NRND > 0
3160 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3161 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3162 1.148 mlelstv #endif
3163 1.148 mlelstv
3164 1.172 msaitoh toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3165 1.1 fvdl
3166 1.1 fvdl if (tosync < 0) {
3167 1.172 msaitoh tlen = (sc->bge_return_ring_cnt - rx_cons) *
3168 1.1 fvdl sizeof (struct bge_rx_bd);
3169 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3170 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
3171 1.1 fvdl tosync = -tosync;
3172 1.1 fvdl }
3173 1.1 fvdl
3174 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3175 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
3176 1.1 fvdl BUS_DMASYNC_POSTREAD);
3177 1.1 fvdl
3178 1.172 msaitoh while (rx_cons != rx_prod) {
3179 1.1 fvdl struct bge_rx_bd *cur_rx;
3180 1.170 msaitoh uint32_t rxidx;
3181 1.1 fvdl struct mbuf *m = NULL;
3182 1.1 fvdl
3183 1.172 msaitoh cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3184 1.1 fvdl
3185 1.1 fvdl rxidx = cur_rx->bge_idx;
3186 1.172 msaitoh BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3187 1.1 fvdl
3188 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3189 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3190 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3191 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3192 1.1 fvdl jumbocnt++;
3193 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
3194 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
3195 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3196 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
3197 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3198 1.1 fvdl ifp->if_ierrors++;
3199 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3200 1.1 fvdl continue;
3201 1.1 fvdl }
3202 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3203 1.1 fvdl NULL)== ENOBUFS) {
3204 1.1 fvdl ifp->if_ierrors++;
3205 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3206 1.1 fvdl continue;
3207 1.1 fvdl }
3208 1.1 fvdl } else {
3209 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3210 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3211 1.124 bouyer
3212 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3213 1.1 fvdl stdcnt++;
3214 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3215 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3216 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3217 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3218 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
3219 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3220 1.1 fvdl ifp->if_ierrors++;
3221 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3222 1.1 fvdl continue;
3223 1.1 fvdl }
3224 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
3225 1.1 fvdl NULL, dmamap) == ENOBUFS) {
3226 1.1 fvdl ifp->if_ierrors++;
3227 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3228 1.1 fvdl continue;
3229 1.1 fvdl }
3230 1.1 fvdl }
3231 1.1 fvdl
3232 1.1 fvdl ifp->if_ipackets++;
3233 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
3234 1.37 jonathan /*
3235 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3236 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
3237 1.37 jonathan * If our CPU requires alignment, re-align by copying.
3238 1.37 jonathan */
3239 1.157 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3240 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3241 1.37 jonathan cur_rx->bge_len);
3242 1.37 jonathan m->m_data += ETHER_ALIGN;
3243 1.37 jonathan }
3244 1.37 jonathan #endif
3245 1.87 perry
3246 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3247 1.1 fvdl m->m_pkthdr.rcvif = ifp;
3248 1.1 fvdl
3249 1.1 fvdl /*
3250 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
3251 1.1 fvdl */
3252 1.1 fvdl if (ifp->if_bpf)
3253 1.169 pooka bpf_ops->bpf_mtap(ifp->if_bpf, m);
3254 1.1 fvdl
3255 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3256 1.46 jonathan
3257 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3258 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3259 1.46 jonathan /*
3260 1.46 jonathan * Rx transport checksum-offload may also
3261 1.46 jonathan * have bugs with packets which, when transmitted,
3262 1.46 jonathan * were `runts' requiring padding.
3263 1.46 jonathan */
3264 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3265 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3266 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3267 1.46 jonathan m->m_pkthdr.csum_data =
3268 1.46 jonathan cur_rx->bge_tcp_udp_csum;
3269 1.46 jonathan m->m_pkthdr.csum_flags |=
3270 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
3271 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3272 1.1 fvdl }
3273 1.1 fvdl
3274 1.1 fvdl /*
3275 1.1 fvdl * If we received a packet with a vlan tag, pass it
3276 1.1 fvdl * to vlan_input() instead of ether_input().
3277 1.1 fvdl */
3278 1.150 dsl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3279 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3280 1.150 dsl }
3281 1.1 fvdl
3282 1.1 fvdl (*ifp->if_input)(ifp, m);
3283 1.1 fvdl }
3284 1.1 fvdl
3285 1.172 msaitoh sc->bge_rx_saved_considx = rx_cons;
3286 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3287 1.1 fvdl if (stdcnt)
3288 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3289 1.1 fvdl if (jumbocnt)
3290 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3291 1.1 fvdl }
3292 1.1 fvdl
3293 1.104 thorpej static void
3294 1.104 thorpej bge_txeof(struct bge_softc *sc)
3295 1.1 fvdl {
3296 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3297 1.1 fvdl struct ifnet *ifp;
3298 1.1 fvdl struct txdmamap_pool_entry *dma;
3299 1.1 fvdl bus_addr_t offset, toff;
3300 1.1 fvdl bus_size_t tlen;
3301 1.1 fvdl int tosync;
3302 1.1 fvdl struct mbuf *m;
3303 1.1 fvdl
3304 1.1 fvdl ifp = &sc->ethercom.ec_if;
3305 1.1 fvdl
3306 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3307 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3308 1.1 fvdl sizeof (struct bge_status_block),
3309 1.1 fvdl BUS_DMASYNC_POSTREAD);
3310 1.1 fvdl
3311 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3312 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3313 1.1 fvdl sc->bge_tx_saved_considx;
3314 1.1 fvdl
3315 1.148 mlelstv #if NRND > 0
3316 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3317 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3318 1.148 mlelstv #endif
3319 1.148 mlelstv
3320 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3321 1.1 fvdl
3322 1.1 fvdl if (tosync < 0) {
3323 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3324 1.1 fvdl sizeof (struct bge_tx_bd);
3325 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3326 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3327 1.1 fvdl tosync = -tosync;
3328 1.1 fvdl }
3329 1.1 fvdl
3330 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3331 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3332 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3333 1.1 fvdl
3334 1.1 fvdl /*
3335 1.1 fvdl * Go through our tx ring and free mbufs for those
3336 1.1 fvdl * frames that have been sent.
3337 1.1 fvdl */
3338 1.1 fvdl while (sc->bge_tx_saved_considx !=
3339 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3340 1.170 msaitoh uint32_t idx = 0;
3341 1.1 fvdl
3342 1.1 fvdl idx = sc->bge_tx_saved_considx;
3343 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3344 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3345 1.1 fvdl ifp->if_opackets++;
3346 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3347 1.1 fvdl if (m != NULL) {
3348 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3349 1.1 fvdl dma = sc->txdma[idx];
3350 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3351 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3352 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3353 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3354 1.1 fvdl sc->txdma[idx] = NULL;
3355 1.1 fvdl
3356 1.1 fvdl m_freem(m);
3357 1.1 fvdl }
3358 1.1 fvdl sc->bge_txcnt--;
3359 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3360 1.1 fvdl ifp->if_timer = 0;
3361 1.1 fvdl }
3362 1.1 fvdl
3363 1.1 fvdl if (cur_tx != NULL)
3364 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3365 1.1 fvdl }
3366 1.1 fvdl
3367 1.104 thorpej static int
3368 1.104 thorpej bge_intr(void *xsc)
3369 1.1 fvdl {
3370 1.1 fvdl struct bge_softc *sc;
3371 1.1 fvdl struct ifnet *ifp;
3372 1.161 msaitoh uint32_t statusword;
3373 1.1 fvdl
3374 1.1 fvdl sc = xsc;
3375 1.1 fvdl ifp = &sc->ethercom.ec_if;
3376 1.1 fvdl
3377 1.161 msaitoh /* It is possible for the interrupt to arrive before
3378 1.161 msaitoh * the status block is updated prior to the interrupt.
3379 1.161 msaitoh * Reading the PCI State register will confirm whether the
3380 1.161 msaitoh * interrupt is ours and will flush the status block.
3381 1.161 msaitoh */
3382 1.144 mlelstv
3383 1.161 msaitoh /* read status word from status block */
3384 1.161 msaitoh statusword = sc->bge_rdata->bge_status_block.bge_status;
3385 1.144 mlelstv
3386 1.161 msaitoh if ((statusword & BGE_STATFLAG_UPDATED) ||
3387 1.161 msaitoh (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3388 1.161 msaitoh /* Ack interrupt and stop others from occuring. */
3389 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3390 1.144 mlelstv
3391 1.161 msaitoh BGE_EVCNT_INCR(sc->bge_ev_intr);
3392 1.1 fvdl
3393 1.161 msaitoh /* clear status word */
3394 1.161 msaitoh sc->bge_rdata->bge_status_block.bge_status = 0;
3395 1.72 thorpej
3396 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3397 1.161 msaitoh statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3398 1.161 msaitoh BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3399 1.161 msaitoh bge_link_upd(sc);
3400 1.1 fvdl
3401 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING) {
3402 1.161 msaitoh /* Check RX return ring producer/consumer */
3403 1.161 msaitoh bge_rxeof(sc);
3404 1.144 mlelstv
3405 1.161 msaitoh /* Check TX ring producer/consumer */
3406 1.161 msaitoh bge_txeof(sc);
3407 1.1 fvdl }
3408 1.1 fvdl
3409 1.161 msaitoh if (sc->bge_pending_rxintr_change) {
3410 1.161 msaitoh uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3411 1.161 msaitoh uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3412 1.161 msaitoh uint32_t junk;
3413 1.1 fvdl
3414 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3415 1.161 msaitoh DELAY(10);
3416 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3417 1.1 fvdl
3418 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3419 1.161 msaitoh DELAY(10);
3420 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3421 1.58 jonathan
3422 1.161 msaitoh sc->bge_pending_rxintr_change = 0;
3423 1.161 msaitoh }
3424 1.161 msaitoh bge_handle_events(sc);
3425 1.87 perry
3426 1.161 msaitoh /* Re-enable interrupts. */
3427 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3428 1.58 jonathan
3429 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3430 1.161 msaitoh bge_start(ifp);
3431 1.1 fvdl
3432 1.170 msaitoh return 1;
3433 1.161 msaitoh } else
3434 1.170 msaitoh return 0;
3435 1.1 fvdl }
3436 1.1 fvdl
3437 1.104 thorpej static void
3438 1.104 thorpej bge_tick(void *xsc)
3439 1.1 fvdl {
3440 1.1 fvdl struct bge_softc *sc = xsc;
3441 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3442 1.1 fvdl int s;
3443 1.1 fvdl
3444 1.1 fvdl s = splnet();
3445 1.1 fvdl
3446 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
3447 1.172 msaitoh bge_stats_update_regs(sc);
3448 1.172 msaitoh else
3449 1.172 msaitoh bge_stats_update(sc);
3450 1.1 fvdl
3451 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3452 1.161 msaitoh /*
3453 1.161 msaitoh * Since in TBI mode auto-polling can't be used we should poll
3454 1.161 msaitoh * link status manually. Here we register pending link event
3455 1.161 msaitoh * and trigger interrupt.
3456 1.161 msaitoh */
3457 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3458 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3459 1.161 msaitoh } else {
3460 1.161 msaitoh /*
3461 1.161 msaitoh * Do not touch PHY if we have link up. This could break
3462 1.161 msaitoh * IPMI/ASF mode or produce extra input errors.
3463 1.161 msaitoh * (extra input errors was reported for bcm5701 & bcm5704).
3464 1.161 msaitoh */
3465 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3466 1.161 msaitoh mii_tick(mii);
3467 1.161 msaitoh }
3468 1.161 msaitoh
3469 1.161 msaitoh callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3470 1.1 fvdl
3471 1.1 fvdl splx(s);
3472 1.1 fvdl }
3473 1.1 fvdl
3474 1.104 thorpej static void
3475 1.172 msaitoh bge_stats_update_regs(struct bge_softc *sc)
3476 1.172 msaitoh {
3477 1.172 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
3478 1.172 msaitoh
3479 1.172 msaitoh ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3480 1.172 msaitoh offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3481 1.172 msaitoh
3482 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3483 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3484 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3485 1.172 msaitoh }
3486 1.172 msaitoh
3487 1.172 msaitoh static void
3488 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3489 1.1 fvdl {
3490 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3491 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3492 1.44 hannken
3493 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3494 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3495 1.1 fvdl
3496 1.1 fvdl ifp->if_collisions +=
3497 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3498 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3499 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3500 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3501 1.1 fvdl ifp->if_collisions;
3502 1.1 fvdl
3503 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3504 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3505 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3506 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3507 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3508 1.72 thorpej READ_STAT(sc, stats,
3509 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3510 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3511 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3512 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3513 1.72 thorpej READ_STAT(sc, stats,
3514 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3515 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3516 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3517 1.72 thorpej
3518 1.1 fvdl #undef READ_STAT
3519 1.1 fvdl
3520 1.1 fvdl #ifdef notdef
3521 1.1 fvdl ifp->if_collisions +=
3522 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3523 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3524 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3525 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3526 1.1 fvdl ifp->if_collisions;
3527 1.1 fvdl #endif
3528 1.1 fvdl }
3529 1.1 fvdl
3530 1.46 jonathan /*
3531 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3532 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3533 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3534 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3535 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3536 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3537 1.46 jonathan */
3538 1.102 perry static inline int
3539 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3540 1.46 jonathan {
3541 1.46 jonathan struct mbuf *last = NULL;
3542 1.46 jonathan int padlen;
3543 1.46 jonathan
3544 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3545 1.46 jonathan
3546 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3547 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3548 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3549 1.46 jonathan last = pkt;
3550 1.46 jonathan } else {
3551 1.46 jonathan /*
3552 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3553 1.87 perry * pad there, or append a new mbuf and pad it
3554 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3555 1.46 jonathan */
3556 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3557 1.114 tsutsui continue; /* do nothing */
3558 1.46 jonathan }
3559 1.46 jonathan
3560 1.46 jonathan /* `last' now points to last in chain. */
3561 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3562 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3563 1.46 jonathan struct mbuf *n;
3564 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3565 1.129 joerg if (n == NULL)
3566 1.129 joerg return ENOBUFS;
3567 1.46 jonathan n->m_len = 0;
3568 1.46 jonathan last->m_next = n;
3569 1.46 jonathan last = n;
3570 1.46 jonathan }
3571 1.46 jonathan }
3572 1.46 jonathan
3573 1.114 tsutsui KDASSERT(!M_READONLY(last));
3574 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3575 1.114 tsutsui
3576 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3577 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3578 1.46 jonathan last->m_len += padlen;
3579 1.46 jonathan pkt->m_pkthdr.len += padlen;
3580 1.46 jonathan return 0;
3581 1.46 jonathan }
3582 1.45 jonathan
3583 1.45 jonathan /*
3584 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3585 1.45 jonathan */
3586 1.102 perry static inline int
3587 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3588 1.45 jonathan {
3589 1.45 jonathan struct mbuf *m, *prev;
3590 1.45 jonathan int totlen, prevlen;
3591 1.45 jonathan
3592 1.45 jonathan prev = NULL;
3593 1.45 jonathan totlen = 0;
3594 1.45 jonathan prevlen = -1;
3595 1.45 jonathan
3596 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3597 1.45 jonathan int mlen = m->m_len;
3598 1.45 jonathan int shortfall = 8 - mlen ;
3599 1.45 jonathan
3600 1.45 jonathan totlen += mlen;
3601 1.45 jonathan if (mlen == 0) {
3602 1.45 jonathan continue;
3603 1.45 jonathan }
3604 1.45 jonathan if (mlen >= 8)
3605 1.45 jonathan continue;
3606 1.45 jonathan
3607 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3608 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3609 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3610 1.45 jonathan */
3611 1.45 jonathan
3612 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3613 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3614 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3615 1.45 jonathan prev->m_len += mlen;
3616 1.45 jonathan m->m_len = 0;
3617 1.45 jonathan /* XXX stitch chain */
3618 1.45 jonathan prev->m_next = m_free(m);
3619 1.45 jonathan m = prev;
3620 1.45 jonathan continue;
3621 1.45 jonathan }
3622 1.113 tsutsui else if (m->m_next != NULL &&
3623 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3624 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3625 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3626 1.45 jonathan
3627 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3628 1.115 tsutsui shortfall);
3629 1.45 jonathan m->m_len += shortfall;
3630 1.45 jonathan m->m_next->m_len -= shortfall;
3631 1.45 jonathan m->m_next->m_data += shortfall;
3632 1.45 jonathan }
3633 1.45 jonathan else if (m->m_next == NULL || 1) {
3634 1.45 jonathan /* Got a runt at the very end of the packet.
3635 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3636 1.45 jonathan * update its length in-place. (The original data is still
3637 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3638 1.45 jonathan */
3639 1.45 jonathan
3640 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3641 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3642 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3643 1.111 christos
3644 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3645 1.45 jonathan shortfall = prev->m_len;
3646 1.87 perry
3647 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3648 1.45 jonathan if (!M_READONLY(m)) {
3649 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3650 1.45 jonathan void *m_dat;
3651 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3652 1.45 jonathan m->m_pktdat : m->dat;
3653 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3654 1.45 jonathan m->m_data = m_dat;
3655 1.45 jonathan }
3656 1.45 jonathan } else
3657 1.45 jonathan #endif /* just do the safe slow thing */
3658 1.45 jonathan {
3659 1.45 jonathan struct mbuf * n = NULL;
3660 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3661 1.45 jonathan
3662 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3663 1.45 jonathan if (n == NULL)
3664 1.45 jonathan return ENOBUFS;
3665 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3666 1.45 jonathan /*,
3667 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3668 1.45 jonathan
3669 1.45 jonathan /* first copy the data we're stealing from prev */
3670 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3671 1.115 tsutsui shortfall);
3672 1.45 jonathan
3673 1.45 jonathan /* update prev->m_len accordingly */
3674 1.45 jonathan prev->m_len -= shortfall;
3675 1.45 jonathan
3676 1.45 jonathan /* copy data from runt m */
3677 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3678 1.115 tsutsui m->m_len);
3679 1.45 jonathan
3680 1.45 jonathan /* n holds what we stole from prev, plus m */
3681 1.45 jonathan n->m_len = shortfall + m->m_len;
3682 1.45 jonathan
3683 1.45 jonathan /* stitch n into chain and free m */
3684 1.45 jonathan n->m_next = m->m_next;
3685 1.45 jonathan prev->m_next = n;
3686 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3687 1.45 jonathan m->m_next = NULL;
3688 1.45 jonathan m_free(m);
3689 1.45 jonathan m = n; /* for continuing loop */
3690 1.45 jonathan }
3691 1.45 jonathan }
3692 1.45 jonathan prevlen = m->m_len;
3693 1.45 jonathan }
3694 1.45 jonathan return 0;
3695 1.45 jonathan }
3696 1.45 jonathan
3697 1.1 fvdl /*
3698 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3699 1.1 fvdl * pointers to descriptors.
3700 1.1 fvdl */
3701 1.104 thorpej static int
3702 1.170 msaitoh bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3703 1.1 fvdl {
3704 1.1 fvdl struct bge_tx_bd *f = NULL;
3705 1.170 msaitoh uint32_t frag, cur;
3706 1.170 msaitoh uint16_t csum_flags = 0;
3707 1.170 msaitoh uint16_t txbd_tso_flags = 0;
3708 1.1 fvdl struct txdmamap_pool_entry *dma;
3709 1.1 fvdl bus_dmamap_t dmamap;
3710 1.1 fvdl int i = 0;
3711 1.29 itojun struct m_tag *mtag;
3712 1.95 jonathan int use_tso, maxsegsize, error;
3713 1.107 blymn
3714 1.1 fvdl cur = frag = *txidx;
3715 1.1 fvdl
3716 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3717 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3718 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3719 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3720 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3721 1.1 fvdl }
3722 1.1 fvdl
3723 1.87 perry /*
3724 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3725 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3726 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3727 1.46 jonathan * (For now, do this for all chip versions, until newer
3728 1.46 jonathan * are confirmed to not require the workaround.)
3729 1.46 jonathan */
3730 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3731 1.46 jonathan #ifdef notyet
3732 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3733 1.87 perry #endif
3734 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3735 1.46 jonathan goto check_dma_bug;
3736 1.46 jonathan
3737 1.170 msaitoh if (bge_cksum_pad(m_head) != 0)
3738 1.46 jonathan return ENOBUFS;
3739 1.46 jonathan
3740 1.46 jonathan check_dma_bug:
3741 1.157 msaitoh if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3742 1.29 itojun goto doit;
3743 1.157 msaitoh
3744 1.25 jonathan /*
3745 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3746 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3747 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3748 1.25 jonathan */
3749 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3750 1.45 jonathan return ENOBUFS;
3751 1.25 jonathan
3752 1.25 jonathan doit:
3753 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3754 1.1 fvdl if (dma == NULL)
3755 1.1 fvdl return ENOBUFS;
3756 1.1 fvdl dmamap = dma->dmamap;
3757 1.1 fvdl
3758 1.1 fvdl /*
3759 1.95 jonathan * Set up any necessary TSO state before we start packing...
3760 1.95 jonathan */
3761 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3762 1.95 jonathan if (!use_tso) {
3763 1.95 jonathan maxsegsize = 0;
3764 1.95 jonathan } else { /* TSO setup */
3765 1.95 jonathan unsigned mss;
3766 1.95 jonathan struct ether_header *eh;
3767 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3768 1.95 jonathan struct mbuf * m0 = m_head;
3769 1.95 jonathan struct ip *ip;
3770 1.95 jonathan struct tcphdr *th;
3771 1.95 jonathan int iphl, hlen;
3772 1.95 jonathan
3773 1.95 jonathan /*
3774 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3775 1.95 jonathan * fields for the protocol headers.
3776 1.95 jonathan */
3777 1.95 jonathan
3778 1.95 jonathan eh = mtod(m0, struct ether_header *);
3779 1.95 jonathan switch (htons(eh->ether_type)) {
3780 1.95 jonathan case ETHERTYPE_IP:
3781 1.95 jonathan offset = ETHER_HDR_LEN;
3782 1.95 jonathan break;
3783 1.95 jonathan
3784 1.95 jonathan case ETHERTYPE_VLAN:
3785 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3786 1.95 jonathan break;
3787 1.95 jonathan
3788 1.95 jonathan default:
3789 1.95 jonathan /*
3790 1.95 jonathan * Don't support this protocol or encapsulation.
3791 1.95 jonathan */
3792 1.170 msaitoh return ENOBUFS;
3793 1.95 jonathan }
3794 1.95 jonathan
3795 1.95 jonathan /*
3796 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3797 1.95 jonathan * this the easy way.
3798 1.95 jonathan */
3799 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3800 1.95 jonathan hlen = iphl + offset;
3801 1.95 jonathan if (__predict_false(m0->m_len <
3802 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
3803 1.95 jonathan
3804 1.138 joerg aprint_debug_dev(sc->bge_dev,
3805 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3806 1.138 joerg "not handled yet\n",
3807 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
3808 1.95 jonathan #ifdef NOTYET
3809 1.95 jonathan /*
3810 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
3811 1.95 jonathan * how to force this branch to be taken?
3812 1.95 jonathan */
3813 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3814 1.95 jonathan
3815 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
3816 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
3817 1.95 jonathan
3818 1.95 jonathan ip.ip_len = 0;
3819 1.95 jonathan
3820 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3821 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
3822 1.95 jonathan
3823 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3824 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3825 1.95 jonathan
3826 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3827 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
3828 1.95 jonathan
3829 1.95 jonathan hlen += th.th_off << 2;
3830 1.95 jonathan iptcp_opt_words = hlen;
3831 1.95 jonathan #else
3832 1.95 jonathan /*
3833 1.95 jonathan * if_wm "hard" case not yet supported, can we not
3834 1.95 jonathan * mandate it out of existence?
3835 1.95 jonathan */
3836 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
3837 1.95 jonathan
3838 1.95 jonathan return ENOBUFS;
3839 1.95 jonathan #endif
3840 1.95 jonathan } else {
3841 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
3842 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3843 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
3844 1.95 jonathan
3845 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
3846 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
3847 1.95 jonathan - sizeof(struct tcphdr)
3848 1.95 jonathan - sizeof(struct ip)) >> 2;
3849 1.95 jonathan }
3850 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
3851 1.95 jonathan th->th_sum = 0;
3852 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3853 1.95 jonathan } else {
3854 1.95 jonathan /*
3855 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
3856 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
3857 1.95 jonathan */
3858 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3859 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3860 1.95 jonathan }
3861 1.95 jonathan
3862 1.95 jonathan mss = m_head->m_pkthdr.segsz;
3863 1.107 blymn txbd_tso_flags |=
3864 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
3865 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
3866 1.95 jonathan
3867 1.95 jonathan /*
3868 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
3869 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
3870 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
3871 1.95 jonathan * supplied header into the IP/TCP header portion of
3872 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
3873 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
3874 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
3875 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
3876 1.95 jonathan * Unfortunately, the driver encoding of option length
3877 1.95 jonathan * varies across different ASIC families.
3878 1.95 jonathan */
3879 1.95 jonathan tcp_seg_flags = 0;
3880 1.95 jonathan if (iptcp_opt_words) {
3881 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
3882 1.95 jonathan tcp_seg_flags =
3883 1.95 jonathan iptcp_opt_words << 11;
3884 1.95 jonathan } else {
3885 1.95 jonathan txbd_tso_flags |=
3886 1.95 jonathan iptcp_opt_words << 12;
3887 1.95 jonathan }
3888 1.95 jonathan }
3889 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
3890 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
3891 1.95 jonathan
3892 1.95 jonathan } /* TSO setup */
3893 1.95 jonathan
3894 1.95 jonathan /*
3895 1.1 fvdl * Start packing the mbufs in this chain into
3896 1.1 fvdl * the fragment pointers. Stop when we run out
3897 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3898 1.1 fvdl */
3899 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3900 1.95 jonathan BUS_DMA_NOWAIT);
3901 1.170 msaitoh if (error)
3902 1.170 msaitoh return ENOBUFS;
3903 1.118 tsutsui /*
3904 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
3905 1.118 tsutsui * of the end of the ring.
3906 1.118 tsutsui */
3907 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3908 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
3909 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
3910 1.138 joerg device_xname(sc->bge_dev)));
3911 1.118 tsutsui goto fail_unload;
3912 1.118 tsutsui }
3913 1.95 jonathan
3914 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
3915 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3916 1.1 fvdl
3917 1.6 thorpej
3918 1.95 jonathan /* Iterate over dmap-map fragments. */
3919 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3920 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3921 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3922 1.1 fvdl break;
3923 1.107 blymn
3924 1.172 msaitoh BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
3925 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3926 1.95 jonathan
3927 1.95 jonathan /*
3928 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
3929 1.95 jonathan * off checksum-assist flag in the tx-descr, and
3930 1.95 jonathan * supply the ASIC-revision-specific encoding
3931 1.95 jonathan * of TSO flags and segsize.
3932 1.95 jonathan */
3933 1.95 jonathan if (use_tso) {
3934 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3935 1.95 jonathan f->bge_rsvd = maxsegsize;
3936 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
3937 1.95 jonathan } else {
3938 1.95 jonathan f->bge_rsvd = 0;
3939 1.95 jonathan f->bge_flags =
3940 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
3941 1.95 jonathan }
3942 1.95 jonathan } else {
3943 1.95 jonathan f->bge_rsvd = 0;
3944 1.95 jonathan f->bge_flags = csum_flags;
3945 1.95 jonathan }
3946 1.1 fvdl
3947 1.28 itojun if (mtag != NULL) {
3948 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3949 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3950 1.1 fvdl } else {
3951 1.1 fvdl f->bge_vlan_tag = 0;
3952 1.1 fvdl }
3953 1.1 fvdl cur = frag;
3954 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
3955 1.1 fvdl }
3956 1.1 fvdl
3957 1.95 jonathan if (i < dmamap->dm_nsegs) {
3958 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3959 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3960 1.118 tsutsui goto fail_unload;
3961 1.95 jonathan }
3962 1.1 fvdl
3963 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3964 1.1 fvdl BUS_DMASYNC_PREWRITE);
3965 1.1 fvdl
3966 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
3967 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3968 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3969 1.95 jonathan
3970 1.118 tsutsui goto fail_unload;
3971 1.95 jonathan }
3972 1.1 fvdl
3973 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3974 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
3975 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3976 1.1 fvdl sc->txdma[cur] = dma;
3977 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
3978 1.1 fvdl
3979 1.1 fvdl *txidx = frag;
3980 1.1 fvdl
3981 1.170 msaitoh return 0;
3982 1.118 tsutsui
3983 1.158 msaitoh fail_unload:
3984 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
3985 1.118 tsutsui
3986 1.118 tsutsui return ENOBUFS;
3987 1.1 fvdl }
3988 1.1 fvdl
3989 1.1 fvdl /*
3990 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3991 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
3992 1.1 fvdl */
3993 1.104 thorpej static void
3994 1.104 thorpej bge_start(struct ifnet *ifp)
3995 1.1 fvdl {
3996 1.1 fvdl struct bge_softc *sc;
3997 1.1 fvdl struct mbuf *m_head = NULL;
3998 1.170 msaitoh uint32_t prodidx;
3999 1.1 fvdl int pkts = 0;
4000 1.1 fvdl
4001 1.1 fvdl sc = ifp->if_softc;
4002 1.1 fvdl
4003 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4004 1.1 fvdl return;
4005 1.1 fvdl
4006 1.94 jonathan prodidx = sc->bge_tx_prodidx;
4007 1.1 fvdl
4008 1.170 msaitoh while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4009 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
4010 1.1 fvdl if (m_head == NULL)
4011 1.1 fvdl break;
4012 1.1 fvdl
4013 1.1 fvdl #if 0
4014 1.1 fvdl /*
4015 1.1 fvdl * XXX
4016 1.1 fvdl * safety overkill. If this is a fragmented packet chain
4017 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
4018 1.1 fvdl * it if we have enough descriptors to handle the entire
4019 1.1 fvdl * chain at once.
4020 1.1 fvdl * (paranoia -- may not actually be needed)
4021 1.1 fvdl */
4022 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
4023 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4024 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4025 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4026 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4027 1.1 fvdl break;
4028 1.1 fvdl }
4029 1.1 fvdl }
4030 1.1 fvdl #endif
4031 1.1 fvdl
4032 1.1 fvdl /*
4033 1.1 fvdl * Pack the data into the transmit ring. If we
4034 1.1 fvdl * don't have room, set the OACTIVE flag and wait
4035 1.1 fvdl * for the NIC to drain the ring.
4036 1.1 fvdl */
4037 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
4038 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4039 1.1 fvdl break;
4040 1.1 fvdl }
4041 1.1 fvdl
4042 1.1 fvdl /* now we are committed to transmit the packet */
4043 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
4044 1.1 fvdl pkts++;
4045 1.1 fvdl
4046 1.1 fvdl /*
4047 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
4048 1.1 fvdl * to him.
4049 1.1 fvdl */
4050 1.1 fvdl if (ifp->if_bpf)
4051 1.169 pooka bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
4052 1.1 fvdl }
4053 1.1 fvdl if (pkts == 0)
4054 1.1 fvdl return;
4055 1.1 fvdl
4056 1.1 fvdl /* Transmit */
4057 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4058 1.158 msaitoh /* 5700 b2 errata */
4059 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4060 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4061 1.1 fvdl
4062 1.94 jonathan sc->bge_tx_prodidx = prodidx;
4063 1.94 jonathan
4064 1.1 fvdl /*
4065 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
4066 1.1 fvdl */
4067 1.1 fvdl ifp->if_timer = 5;
4068 1.1 fvdl }
4069 1.1 fvdl
4070 1.104 thorpej static int
4071 1.104 thorpej bge_init(struct ifnet *ifp)
4072 1.1 fvdl {
4073 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4074 1.170 msaitoh const uint16_t *m;
4075 1.142 dyoung int s, error = 0;
4076 1.1 fvdl
4077 1.1 fvdl s = splnet();
4078 1.1 fvdl
4079 1.1 fvdl ifp = &sc->ethercom.ec_if;
4080 1.1 fvdl
4081 1.1 fvdl /* Cancel pending I/O and flush buffers. */
4082 1.141 jmcneill bge_stop(ifp, 0);
4083 1.1 fvdl bge_reset(sc);
4084 1.1 fvdl bge_chipinit(sc);
4085 1.1 fvdl
4086 1.1 fvdl /*
4087 1.1 fvdl * Init the various state machines, ring
4088 1.1 fvdl * control blocks and firmware.
4089 1.1 fvdl */
4090 1.1 fvdl error = bge_blockinit(sc);
4091 1.1 fvdl if (error != 0) {
4092 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4093 1.1 fvdl error);
4094 1.1 fvdl splx(s);
4095 1.1 fvdl return error;
4096 1.1 fvdl }
4097 1.1 fvdl
4098 1.1 fvdl ifp = &sc->ethercom.ec_if;
4099 1.1 fvdl
4100 1.1 fvdl /* Specify MTU. */
4101 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4102 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4103 1.1 fvdl
4104 1.1 fvdl /* Load our MAC address. */
4105 1.170 msaitoh m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4106 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4107 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4108 1.1 fvdl
4109 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
4110 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
4111 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4112 1.1 fvdl } else {
4113 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4114 1.1 fvdl }
4115 1.1 fvdl
4116 1.1 fvdl /* Program multicast filter. */
4117 1.1 fvdl bge_setmulti(sc);
4118 1.1 fvdl
4119 1.1 fvdl /* Init RX ring. */
4120 1.1 fvdl bge_init_rx_ring_std(sc);
4121 1.1 fvdl
4122 1.161 msaitoh /*
4123 1.161 msaitoh * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4124 1.161 msaitoh * memory to insure that the chip has in fact read the first
4125 1.161 msaitoh * entry of the ring.
4126 1.161 msaitoh */
4127 1.161 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4128 1.170 msaitoh uint32_t v, i;
4129 1.161 msaitoh for (i = 0; i < 10; i++) {
4130 1.161 msaitoh DELAY(20);
4131 1.161 msaitoh v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4132 1.161 msaitoh if (v == (MCLBYTES - ETHER_ALIGN))
4133 1.161 msaitoh break;
4134 1.161 msaitoh }
4135 1.161 msaitoh if (i == 10)
4136 1.161 msaitoh aprint_error_dev(sc->bge_dev,
4137 1.161 msaitoh "5705 A0 chip failed to load RX ring\n");
4138 1.161 msaitoh }
4139 1.161 msaitoh
4140 1.1 fvdl /* Init jumbo RX ring. */
4141 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4142 1.1 fvdl bge_init_rx_ring_jumbo(sc);
4143 1.1 fvdl
4144 1.1 fvdl /* Init our RX return ring index */
4145 1.1 fvdl sc->bge_rx_saved_considx = 0;
4146 1.1 fvdl
4147 1.1 fvdl /* Init TX ring. */
4148 1.1 fvdl bge_init_tx_ring(sc);
4149 1.1 fvdl
4150 1.1 fvdl /* Turn on transmitter */
4151 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4152 1.1 fvdl
4153 1.1 fvdl /* Turn on receiver */
4154 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4155 1.1 fvdl
4156 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4157 1.71 thorpej
4158 1.1 fvdl /* Tell firmware we're alive. */
4159 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4160 1.1 fvdl
4161 1.1 fvdl /* Enable host interrupts. */
4162 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4163 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4164 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4165 1.1 fvdl
4166 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
4167 1.142 dyoung goto out;
4168 1.1 fvdl
4169 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
4170 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
4171 1.1 fvdl
4172 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4173 1.142 dyoung
4174 1.142 dyoung out:
4175 1.1 fvdl splx(s);
4176 1.1 fvdl
4177 1.142 dyoung return error;
4178 1.1 fvdl }
4179 1.1 fvdl
4180 1.1 fvdl /*
4181 1.1 fvdl * Set media options.
4182 1.1 fvdl */
4183 1.104 thorpej static int
4184 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
4185 1.1 fvdl {
4186 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4187 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4188 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
4189 1.142 dyoung int rc;
4190 1.1 fvdl
4191 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
4192 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4193 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4194 1.170 msaitoh return EINVAL;
4195 1.170 msaitoh switch (IFM_SUBTYPE(ifm->ifm_media)) {
4196 1.1 fvdl case IFM_AUTO:
4197 1.161 msaitoh /*
4198 1.161 msaitoh * The BCM5704 ASIC appears to have a special
4199 1.161 msaitoh * mechanism for programming the autoneg
4200 1.161 msaitoh * advertisement registers in TBI mode.
4201 1.161 msaitoh */
4202 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4203 1.170 msaitoh uint32_t sgdig;
4204 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4205 1.161 msaitoh if (sgdig & BGE_SGDIGSTS_DONE) {
4206 1.161 msaitoh CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4207 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4208 1.161 msaitoh sgdig |= BGE_SGDIGCFG_AUTO |
4209 1.161 msaitoh BGE_SGDIGCFG_PAUSE_CAP |
4210 1.161 msaitoh BGE_SGDIGCFG_ASYM_PAUSE;
4211 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4212 1.161 msaitoh sgdig | BGE_SGDIGCFG_SEND);
4213 1.161 msaitoh DELAY(5);
4214 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4215 1.161 msaitoh }
4216 1.161 msaitoh }
4217 1.1 fvdl break;
4218 1.1 fvdl case IFM_1000_SX:
4219 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4220 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
4221 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4222 1.1 fvdl } else {
4223 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
4224 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4225 1.1 fvdl }
4226 1.1 fvdl break;
4227 1.1 fvdl default:
4228 1.170 msaitoh return EINVAL;
4229 1.1 fvdl }
4230 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
4231 1.170 msaitoh return 0;
4232 1.1 fvdl }
4233 1.1 fvdl
4234 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4235 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
4236 1.142 dyoung return 0;
4237 1.161 msaitoh
4238 1.161 msaitoh /*
4239 1.161 msaitoh * Force an interrupt so that we will call bge_link_upd
4240 1.161 msaitoh * if needed and clear any pending link state attention.
4241 1.161 msaitoh * Without this we are not getting any further interrupts
4242 1.161 msaitoh * for link state changes and thus will not UP the link and
4243 1.161 msaitoh * not be able to send in bge_start. The only way to get
4244 1.161 msaitoh * things working was to receive a packet and get a RX intr.
4245 1.161 msaitoh */
4246 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4247 1.161 msaitoh sc->bge_flags & BGE_IS_5788)
4248 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4249 1.161 msaitoh else
4250 1.161 msaitoh BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4251 1.161 msaitoh
4252 1.142 dyoung return rc;
4253 1.1 fvdl }
4254 1.1 fvdl
4255 1.1 fvdl /*
4256 1.1 fvdl * Report current media status.
4257 1.1 fvdl */
4258 1.104 thorpej static void
4259 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4260 1.1 fvdl {
4261 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4262 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4263 1.1 fvdl
4264 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4265 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
4266 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
4267 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
4268 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
4269 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
4270 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
4271 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4272 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
4273 1.1 fvdl else
4274 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
4275 1.1 fvdl return;
4276 1.1 fvdl }
4277 1.1 fvdl
4278 1.1 fvdl mii_pollstat(mii);
4279 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
4280 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4281 1.69 thorpej sc->bge_flowflags;
4282 1.1 fvdl }
4283 1.1 fvdl
4284 1.104 thorpej static int
4285 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4286 1.1 fvdl {
4287 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4288 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
4289 1.1 fvdl int s, error = 0;
4290 1.1 fvdl struct mii_data *mii;
4291 1.1 fvdl
4292 1.1 fvdl s = splnet();
4293 1.1 fvdl
4294 1.170 msaitoh switch (command) {
4295 1.1 fvdl case SIOCSIFFLAGS:
4296 1.153 dyoung if ((error = ifioctl_common(ifp, command, data)) != 0)
4297 1.153 dyoung break;
4298 1.1 fvdl if (ifp->if_flags & IFF_UP) {
4299 1.1 fvdl /*
4300 1.1 fvdl * If only the state of the PROMISC flag changed,
4301 1.1 fvdl * then just use the 'set promisc mode' command
4302 1.1 fvdl * instead of reinitializing the entire NIC. Doing
4303 1.1 fvdl * a full re-init means reloading the firmware and
4304 1.1 fvdl * waiting for it to start up, which may take a
4305 1.1 fvdl * second or two.
4306 1.1 fvdl */
4307 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
4308 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
4309 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
4310 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
4311 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4312 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
4313 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
4314 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
4315 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
4316 1.1 fvdl BGE_RXMODE_RX_PROMISC);
4317 1.103 rpaulo } else if (!(sc->bge_if_flags & IFF_UP))
4318 1.1 fvdl bge_init(ifp);
4319 1.1 fvdl } else {
4320 1.141 jmcneill if (ifp->if_flags & IFF_RUNNING)
4321 1.141 jmcneill bge_stop(ifp, 1);
4322 1.1 fvdl }
4323 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
4324 1.1 fvdl error = 0;
4325 1.1 fvdl break;
4326 1.1 fvdl case SIOCSIFMEDIA:
4327 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4328 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4329 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4330 1.69 thorpej sc->bge_flowflags = 0;
4331 1.69 thorpej }
4332 1.69 thorpej
4333 1.69 thorpej /* Flow control requires full-duplex mode. */
4334 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4335 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4336 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4337 1.69 thorpej }
4338 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4339 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4340 1.157 msaitoh /* We can do both TXPAUSE and RXPAUSE. */
4341 1.69 thorpej ifr->ifr_media |=
4342 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4343 1.69 thorpej }
4344 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4345 1.69 thorpej }
4346 1.69 thorpej /* FALLTHROUGH */
4347 1.1 fvdl case SIOCGIFMEDIA:
4348 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4349 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4350 1.1 fvdl command);
4351 1.1 fvdl } else {
4352 1.1 fvdl mii = &sc->bge_mii;
4353 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4354 1.1 fvdl command);
4355 1.1 fvdl }
4356 1.1 fvdl break;
4357 1.1 fvdl default:
4358 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4359 1.152 tron break;
4360 1.152 tron
4361 1.152 tron error = 0;
4362 1.152 tron
4363 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4364 1.152 tron ;
4365 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
4366 1.152 tron bge_setmulti(sc);
4367 1.1 fvdl break;
4368 1.1 fvdl }
4369 1.1 fvdl
4370 1.1 fvdl splx(s);
4371 1.1 fvdl
4372 1.170 msaitoh return error;
4373 1.1 fvdl }
4374 1.1 fvdl
4375 1.104 thorpej static void
4376 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4377 1.1 fvdl {
4378 1.1 fvdl struct bge_softc *sc;
4379 1.1 fvdl
4380 1.1 fvdl sc = ifp->if_softc;
4381 1.1 fvdl
4382 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4383 1.1 fvdl
4384 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4385 1.1 fvdl bge_init(ifp);
4386 1.1 fvdl
4387 1.1 fvdl ifp->if_oerrors++;
4388 1.1 fvdl }
4389 1.1 fvdl
4390 1.11 thorpej static void
4391 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4392 1.11 thorpej {
4393 1.11 thorpej int i;
4394 1.11 thorpej
4395 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4396 1.11 thorpej
4397 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
4398 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4399 1.11 thorpej return;
4400 1.11 thorpej delay(100);
4401 1.157 msaitoh if (sc->bge_flags & BGE_PCIE)
4402 1.95 jonathan DELAY(1000);
4403 1.11 thorpej }
4404 1.11 thorpej
4405 1.165 msaitoh /*
4406 1.165 msaitoh * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4407 1.165 msaitoh * on some environment (and once after boot?)
4408 1.165 msaitoh */
4409 1.165 msaitoh if (reg != BGE_SRS_MODE)
4410 1.165 msaitoh aprint_error_dev(sc->bge_dev,
4411 1.165 msaitoh "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4412 1.165 msaitoh (u_long)reg, bit);
4413 1.11 thorpej }
4414 1.11 thorpej
4415 1.1 fvdl /*
4416 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4417 1.1 fvdl * RX and TX lists.
4418 1.1 fvdl */
4419 1.104 thorpej static void
4420 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4421 1.1 fvdl {
4422 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4423 1.1 fvdl
4424 1.1 fvdl callout_stop(&sc->bge_timeout);
4425 1.1 fvdl
4426 1.1 fvdl /*
4427 1.1 fvdl * Disable all of the receiver blocks
4428 1.1 fvdl */
4429 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4430 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4431 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4432 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4433 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4434 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4435 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4436 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4437 1.1 fvdl
4438 1.1 fvdl /*
4439 1.1 fvdl * Disable all of the transmit blocks
4440 1.1 fvdl */
4441 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4442 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4443 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4444 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4445 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4446 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4447 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4448 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4449 1.1 fvdl
4450 1.1 fvdl /*
4451 1.1 fvdl * Shut down all of the memory managers and related
4452 1.1 fvdl * state machines.
4453 1.1 fvdl */
4454 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4455 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4456 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4457 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4458 1.11 thorpej
4459 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4460 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4461 1.11 thorpej
4462 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
4463 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4464 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4465 1.44 hannken }
4466 1.1 fvdl
4467 1.1 fvdl /* Disable host interrupts. */
4468 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4469 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4470 1.1 fvdl
4471 1.1 fvdl /*
4472 1.1 fvdl * Tell firmware we're shutting down.
4473 1.1 fvdl */
4474 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4475 1.1 fvdl
4476 1.1 fvdl /* Free the RX lists. */
4477 1.1 fvdl bge_free_rx_ring_std(sc);
4478 1.1 fvdl
4479 1.1 fvdl /* Free jumbo RX list. */
4480 1.172 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc))
4481 1.172 msaitoh bge_free_rx_ring_jumbo(sc);
4482 1.1 fvdl
4483 1.1 fvdl /* Free TX buffers. */
4484 1.1 fvdl bge_free_tx_ring(sc);
4485 1.1 fvdl
4486 1.1 fvdl /*
4487 1.1 fvdl * Isolate/power down the PHY.
4488 1.1 fvdl */
4489 1.157 msaitoh if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4490 1.1 fvdl mii_down(&sc->bge_mii);
4491 1.1 fvdl
4492 1.161 msaitoh sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4493 1.1 fvdl
4494 1.161 msaitoh /* Clear MAC's link state (PHY may still have link UP). */
4495 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4496 1.1 fvdl
4497 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4498 1.1 fvdl }
4499 1.1 fvdl
4500 1.161 msaitoh static void
4501 1.161 msaitoh bge_link_upd(struct bge_softc *sc)
4502 1.161 msaitoh {
4503 1.161 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
4504 1.161 msaitoh struct mii_data *mii = &sc->bge_mii;
4505 1.170 msaitoh uint32_t status;
4506 1.161 msaitoh int link;
4507 1.161 msaitoh
4508 1.161 msaitoh /* Clear 'pending link event' flag */
4509 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4510 1.161 msaitoh
4511 1.161 msaitoh /*
4512 1.161 msaitoh * Process link state changes.
4513 1.161 msaitoh * Grrr. The link status word in the status block does
4514 1.161 msaitoh * not work correctly on the BCM5700 rev AX and BX chips,
4515 1.161 msaitoh * according to all available information. Hence, we have
4516 1.161 msaitoh * to enable MII interrupts in order to properly obtain
4517 1.161 msaitoh * async link changes. Unfortunately, this also means that
4518 1.161 msaitoh * we have to read the MAC status register to detect link
4519 1.161 msaitoh * changes, thereby adding an additional register access to
4520 1.161 msaitoh * the interrupt handler.
4521 1.161 msaitoh */
4522 1.161 msaitoh
4523 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4524 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4525 1.161 msaitoh if (status & BGE_MACSTAT_MI_INTERRUPT) {
4526 1.161 msaitoh mii_pollstat(mii);
4527 1.161 msaitoh
4528 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4529 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4530 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4531 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4532 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4533 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4534 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4535 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4536 1.161 msaitoh
4537 1.161 msaitoh /* Clear the interrupt */
4538 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4539 1.161 msaitoh BGE_EVTENB_MI_INTERRUPT);
4540 1.161 msaitoh bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4541 1.161 msaitoh bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4542 1.161 msaitoh BRGPHY_INTRS);
4543 1.161 msaitoh }
4544 1.161 msaitoh return;
4545 1.161 msaitoh }
4546 1.161 msaitoh
4547 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4548 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4549 1.161 msaitoh if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4550 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4551 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4552 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4553 1.161 msaitoh BGE_CLRBIT(sc, BGE_MAC_MODE,
4554 1.161 msaitoh BGE_MACMODE_TBI_SEND_CFGS);
4555 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4556 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_UP);
4557 1.161 msaitoh }
4558 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4559 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4560 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_DOWN);
4561 1.161 msaitoh }
4562 1.161 msaitoh /*
4563 1.161 msaitoh * Discard link events for MII/GMII cards if MI auto-polling disabled.
4564 1.161 msaitoh * This should not happen since mii callouts are locked now, but
4565 1.161 msaitoh * we keep this check for debug.
4566 1.161 msaitoh */
4567 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4568 1.161 msaitoh /*
4569 1.161 msaitoh * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4570 1.161 msaitoh * bit in status word always set. Workaround this bug by
4571 1.161 msaitoh * reading PHY link status directly.
4572 1.161 msaitoh */
4573 1.161 msaitoh link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4574 1.161 msaitoh BGE_STS_LINK : 0;
4575 1.161 msaitoh
4576 1.161 msaitoh if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4577 1.161 msaitoh mii_pollstat(mii);
4578 1.161 msaitoh
4579 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4580 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4581 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4582 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4583 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4584 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4585 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4586 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4587 1.161 msaitoh }
4588 1.161 msaitoh }
4589 1.161 msaitoh
4590 1.161 msaitoh /* Clear the attention */
4591 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4592 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4593 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
4594 1.161 msaitoh }
4595 1.161 msaitoh
4596 1.64 jonathan static int
4597 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4598 1.64 jonathan {
4599 1.64 jonathan int error, t;
4600 1.64 jonathan struct sysctlnode node;
4601 1.64 jonathan
4602 1.64 jonathan node = *rnode;
4603 1.64 jonathan t = *(int*)rnode->sysctl_data;
4604 1.64 jonathan node.sysctl_data = &t;
4605 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4606 1.64 jonathan if (error || newp == NULL)
4607 1.170 msaitoh return error;
4608 1.64 jonathan
4609 1.64 jonathan #if 0
4610 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4611 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4612 1.64 jonathan #endif
4613 1.64 jonathan
4614 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4615 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4616 1.170 msaitoh return EINVAL;
4617 1.64 jonathan bge_update_all_threshes(t);
4618 1.64 jonathan } else
4619 1.170 msaitoh return EINVAL;
4620 1.64 jonathan
4621 1.64 jonathan *(int*)rnode->sysctl_data = t;
4622 1.64 jonathan
4623 1.170 msaitoh return 0;
4624 1.64 jonathan }
4625 1.64 jonathan
4626 1.64 jonathan /*
4627 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4628 1.64 jonathan *
4629 1.64 jonathan * TBD condition SYSCTL_PERMANENT on being an LKM or not
4630 1.64 jonathan */
4631 1.64 jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4632 1.64 jonathan {
4633 1.66 atatat int rc, bge_root_num;
4634 1.90 atatat const struct sysctlnode *node;
4635 1.64 jonathan
4636 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4637 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4638 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4639 1.64 jonathan goto err;
4640 1.64 jonathan }
4641 1.64 jonathan
4642 1.64 jonathan if ((rc = sysctl_createv(clog, 0, NULL, &node,
4643 1.73 atatat CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4644 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4645 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4646 1.64 jonathan goto err;
4647 1.64 jonathan }
4648 1.64 jonathan
4649 1.66 atatat bge_root_num = node->sysctl_num;
4650 1.66 atatat
4651 1.64 jonathan /* BGE Rx interrupt mitigation level */
4652 1.87 perry if ((rc = sysctl_createv(clog, 0, NULL, &node,
4653 1.64 jonathan CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4654 1.73 atatat CTLTYPE_INT, "rx_lvl",
4655 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4656 1.73 atatat sysctl_bge_verify, 0,
4657 1.64 jonathan &bge_rx_thresh_lvl,
4658 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4659 1.64 jonathan CTL_EOL)) != 0) {
4660 1.64 jonathan goto err;
4661 1.64 jonathan }
4662 1.64 jonathan
4663 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4664 1.64 jonathan
4665 1.64 jonathan return;
4666 1.64 jonathan
4667 1.64 jonathan err:
4668 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4669 1.64 jonathan }
4670 1.151 cegger
4671 1.172 msaitoh #ifdef BGE_DEBUG
4672 1.172 msaitoh void
4673 1.172 msaitoh bge_debug_info(struct bge_softc *sc)
4674 1.172 msaitoh {
4675 1.172 msaitoh
4676 1.172 msaitoh printf("Hardware Flags:\n");
4677 1.172 msaitoh if (BGE_IS_5755_PLUS(sc))
4678 1.172 msaitoh printf(" - 5755 Plus\n");
4679 1.172 msaitoh if (BGE_IS_5750_OR_BEYOND(sc))
4680 1.172 msaitoh printf(" - 5750 Plus\n");
4681 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
4682 1.172 msaitoh printf(" - 5705 Plus\n");
4683 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc))
4684 1.172 msaitoh printf(" - 5714 Family\n");
4685 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4686 1.172 msaitoh printf(" - 5700 Family\n");
4687 1.172 msaitoh if (sc->bge_flags & BGE_IS_5788)
4688 1.172 msaitoh printf(" - 5788\n");
4689 1.172 msaitoh if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4690 1.172 msaitoh printf(" - Supports Jumbo Frames\n");
4691 1.172 msaitoh if (sc->bge_flags & BGE_NO_EEPROM)
4692 1.173 msaitoh printf(" - No EEPROM\n");
4693 1.172 msaitoh if (sc->bge_flags & BGE_PCIX)
4694 1.172 msaitoh printf(" - PCI-X Bus\n");
4695 1.172 msaitoh if (sc->bge_flags & BGE_PCIE)
4696 1.172 msaitoh printf(" - PCI Express Bus\n");
4697 1.172 msaitoh if (sc->bge_flags & BGE_NO_3LED)
4698 1.172 msaitoh printf(" - No 3 LEDs\n");
4699 1.172 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG)
4700 1.172 msaitoh printf(" - RX Alignment Bug\n");
4701 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
4702 1.172 msaitoh printf(" - TSO\n");
4703 1.172 msaitoh }
4704 1.172 msaitoh #endif /* BGE_DEBUG */
4705 1.172 msaitoh
4706 1.172 msaitoh static int
4707 1.172 msaitoh bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4708 1.172 msaitoh {
4709 1.172 msaitoh prop_dictionary_t dict;
4710 1.172 msaitoh prop_data_t ea;
4711 1.172 msaitoh
4712 1.172 msaitoh if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4713 1.172 msaitoh return 1;
4714 1.172 msaitoh
4715 1.172 msaitoh dict = device_properties(sc->bge_dev);
4716 1.172 msaitoh ea = prop_dictionary_get(dict, "mac-address");
4717 1.172 msaitoh if (ea != NULL) {
4718 1.172 msaitoh KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4719 1.172 msaitoh KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4720 1.172 msaitoh memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4721 1.172 msaitoh return 0;
4722 1.172 msaitoh }
4723 1.172 msaitoh
4724 1.172 msaitoh return 1;
4725 1.172 msaitoh }
4726 1.172 msaitoh
4727 1.151 cegger static int
4728 1.170 msaitoh bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4729 1.151 cegger {
4730 1.170 msaitoh uint32_t mac_addr;
4731 1.151 cegger
4732 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c14);
4733 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
4734 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
4735 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
4736 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c18);
4737 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
4738 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
4739 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
4740 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
4741 1.170 msaitoh return 0;
4742 1.151 cegger }
4743 1.170 msaitoh return 1;
4744 1.151 cegger }
4745 1.151 cegger
4746 1.151 cegger static int
4747 1.170 msaitoh bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4748 1.151 cegger {
4749 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
4750 1.151 cegger
4751 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4752 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
4753 1.151 cegger }
4754 1.151 cegger
4755 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4756 1.151 cegger ETHER_ADDR_LEN));
4757 1.151 cegger }
4758 1.151 cegger
4759 1.151 cegger static int
4760 1.170 msaitoh bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4761 1.151 cegger {
4762 1.151 cegger
4763 1.170 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4764 1.170 msaitoh return 1;
4765 1.151 cegger
4766 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4767 1.151 cegger ETHER_ADDR_LEN));
4768 1.151 cegger }
4769 1.151 cegger
4770 1.151 cegger static int
4771 1.170 msaitoh bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4772 1.151 cegger {
4773 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4774 1.151 cegger /* NOTE: Order is critical */
4775 1.172 msaitoh bge_get_eaddr_fw,
4776 1.151 cegger bge_get_eaddr_mem,
4777 1.151 cegger bge_get_eaddr_nvram,
4778 1.151 cegger bge_get_eaddr_eeprom,
4779 1.151 cegger NULL
4780 1.151 cegger };
4781 1.151 cegger const bge_eaddr_fcn_t *func;
4782 1.151 cegger
4783 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4784 1.151 cegger if ((*func)(sc, eaddr) == 0)
4785 1.151 cegger break;
4786 1.151 cegger }
4787 1.151 cegger return (*func == NULL ? ENXIO : 0);
4788 1.151 cegger }
4789