if_bge.c revision 1.194 1 1.194 buhrow /* $NetBSD: if_bge.c,v 1.194 2011/04/18 22:05:39 buhrow Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.194 buhrow __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.194 2011/04/18 22:05:39 buhrow Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "vlan.h"
85 1.148 mlelstv #include "rnd.h"
86 1.1 fvdl
87 1.1 fvdl #include <sys/param.h>
88 1.1 fvdl #include <sys/systm.h>
89 1.1 fvdl #include <sys/callout.h>
90 1.1 fvdl #include <sys/sockio.h>
91 1.1 fvdl #include <sys/mbuf.h>
92 1.1 fvdl #include <sys/malloc.h>
93 1.1 fvdl #include <sys/kernel.h>
94 1.1 fvdl #include <sys/device.h>
95 1.1 fvdl #include <sys/socket.h>
96 1.64 jonathan #include <sys/sysctl.h>
97 1.1 fvdl
98 1.1 fvdl #include <net/if.h>
99 1.1 fvdl #include <net/if_dl.h>
100 1.1 fvdl #include <net/if_media.h>
101 1.1 fvdl #include <net/if_ether.h>
102 1.1 fvdl
103 1.148 mlelstv #if NRND > 0
104 1.148 mlelstv #include <sys/rnd.h>
105 1.148 mlelstv #endif
106 1.148 mlelstv
107 1.1 fvdl #ifdef INET
108 1.1 fvdl #include <netinet/in.h>
109 1.1 fvdl #include <netinet/in_systm.h>
110 1.1 fvdl #include <netinet/in_var.h>
111 1.1 fvdl #include <netinet/ip.h>
112 1.1 fvdl #endif
113 1.1 fvdl
114 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
115 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
116 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
117 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
118 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
119 1.95 jonathan
120 1.95 jonathan
121 1.1 fvdl #include <net/bpf.h>
122 1.1 fvdl
123 1.1 fvdl #include <dev/pci/pcireg.h>
124 1.1 fvdl #include <dev/pci/pcivar.h>
125 1.1 fvdl #include <dev/pci/pcidevs.h>
126 1.1 fvdl
127 1.1 fvdl #include <dev/mii/mii.h>
128 1.1 fvdl #include <dev/mii/miivar.h>
129 1.1 fvdl #include <dev/mii/miidevs.h>
130 1.1 fvdl #include <dev/mii/brgphyreg.h>
131 1.1 fvdl
132 1.1 fvdl #include <dev/pci/if_bgereg.h>
133 1.164 msaitoh #include <dev/pci/if_bgevar.h>
134 1.1 fvdl
135 1.164 msaitoh #include <prop/proplib.h>
136 1.1 fvdl
137 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
138 1.46 jonathan
139 1.63 jonathan
140 1.63 jonathan /*
141 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
142 1.63 jonathan */
143 1.63 jonathan
144 1.63 jonathan /*
145 1.63 jonathan * The pairs of values below were obtained from empirical measurement
146 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
147 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
148 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
149 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
150 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
151 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
152 1.184 njoly * limits on the bcm5700: increasing rx_ticks much beyond 600
153 1.63 jonathan * results in internal wrapping and higher interrupt rates.
154 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
155 1.87 perry *
156 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
157 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
158 1.63 jonathan * family), the larger values may overflow internal chip limits,
159 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
160 1.63 jonathan * rates.
161 1.63 jonathan *
162 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
163 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
164 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
165 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
166 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
167 1.63 jonathan */
168 1.104 thorpej static const struct bge_load_rx_thresh {
169 1.63 jonathan int rx_ticks;
170 1.63 jonathan int rx_max_bds; }
171 1.63 jonathan bge_rx_threshes[] = {
172 1.63 jonathan { 32, 2 },
173 1.63 jonathan { 50, 4 },
174 1.63 jonathan { 100, 8 },
175 1.63 jonathan { 192, 16 },
176 1.63 jonathan { 416, 32 },
177 1.63 jonathan { 598, 46 }
178 1.63 jonathan };
179 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
180 1.63 jonathan
181 1.63 jonathan /* XXX patchable; should be sysctl'able */
182 1.177 msaitoh static int bge_auto_thresh = 1;
183 1.177 msaitoh static int bge_rx_thresh_lvl;
184 1.64 jonathan
185 1.177 msaitoh static int bge_rxthresh_nodenum;
186 1.1 fvdl
187 1.170 msaitoh typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
188 1.151 cegger
189 1.177 msaitoh static int bge_probe(device_t, cfdata_t, void *);
190 1.177 msaitoh static void bge_attach(device_t, device_t, void *);
191 1.177 msaitoh static void bge_release_resources(struct bge_softc *);
192 1.177 msaitoh
193 1.177 msaitoh static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
194 1.177 msaitoh static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
195 1.177 msaitoh static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
196 1.177 msaitoh static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
197 1.177 msaitoh static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
198 1.177 msaitoh
199 1.177 msaitoh static void bge_txeof(struct bge_softc *);
200 1.177 msaitoh static void bge_rxeof(struct bge_softc *);
201 1.177 msaitoh
202 1.177 msaitoh static void bge_asf_driver_up (struct bge_softc *);
203 1.177 msaitoh static void bge_tick(void *);
204 1.177 msaitoh static void bge_stats_update(struct bge_softc *);
205 1.177 msaitoh static void bge_stats_update_regs(struct bge_softc *);
206 1.177 msaitoh static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 1.177 msaitoh
208 1.177 msaitoh static int bge_intr(void *);
209 1.177 msaitoh static void bge_start(struct ifnet *);
210 1.186 msaitoh static int bge_ifflags_cb(struct ethercom *);
211 1.177 msaitoh static int bge_ioctl(struct ifnet *, u_long, void *);
212 1.177 msaitoh static int bge_init(struct ifnet *);
213 1.177 msaitoh static void bge_stop(struct ifnet *, int);
214 1.177 msaitoh static void bge_watchdog(struct ifnet *);
215 1.177 msaitoh static int bge_ifmedia_upd(struct ifnet *);
216 1.177 msaitoh static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 1.177 msaitoh
218 1.177 msaitoh static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 1.177 msaitoh static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 1.177 msaitoh
221 1.177 msaitoh static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 1.177 msaitoh static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 1.177 msaitoh static void bge_setmulti(struct bge_softc *);
224 1.104 thorpej
225 1.177 msaitoh static void bge_handle_events(struct bge_softc *);
226 1.177 msaitoh static int bge_alloc_jumbo_mem(struct bge_softc *);
227 1.104 thorpej #if 0 /* XXX */
228 1.177 msaitoh static void bge_free_jumbo_mem(struct bge_softc *);
229 1.1 fvdl #endif
230 1.177 msaitoh static void *bge_jalloc(struct bge_softc *);
231 1.177 msaitoh static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 1.177 msaitoh static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 1.104 thorpej bus_dmamap_t);
234 1.177 msaitoh static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 1.177 msaitoh static int bge_init_rx_ring_std(struct bge_softc *);
236 1.177 msaitoh static void bge_free_rx_ring_std(struct bge_softc *);
237 1.177 msaitoh static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 1.177 msaitoh static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 1.177 msaitoh static void bge_free_tx_ring(struct bge_softc *);
240 1.177 msaitoh static int bge_init_tx_ring(struct bge_softc *);
241 1.177 msaitoh
242 1.177 msaitoh static int bge_chipinit(struct bge_softc *);
243 1.177 msaitoh static int bge_blockinit(struct bge_softc *);
244 1.177 msaitoh static int bge_setpowerstate(struct bge_softc *, int);
245 1.177 msaitoh static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 1.177 msaitoh static void bge_writemem_ind(struct bge_softc *, int, int);
247 1.177 msaitoh static void bge_writembx(struct bge_softc *, int, int);
248 1.177 msaitoh static void bge_writemem_direct(struct bge_softc *, int, int);
249 1.177 msaitoh static void bge_writereg_ind(struct bge_softc *, int, int);
250 1.177 msaitoh static void bge_set_max_readrq(struct bge_softc *);
251 1.177 msaitoh
252 1.177 msaitoh static int bge_miibus_readreg(device_t, int, int);
253 1.177 msaitoh static void bge_miibus_writereg(device_t, int, int, int);
254 1.177 msaitoh static void bge_miibus_statchg(device_t);
255 1.177 msaitoh
256 1.177 msaitoh #define BGE_RESET_START 1
257 1.177 msaitoh #define BGE_RESET_STOP 2
258 1.177 msaitoh static void bge_sig_post_reset(struct bge_softc *, int);
259 1.177 msaitoh static void bge_sig_legacy(struct bge_softc *, int);
260 1.177 msaitoh static void bge_sig_pre_reset(struct bge_softc *, int);
261 1.177 msaitoh static void bge_stop_fw(struct bge_softc *);
262 1.177 msaitoh static int bge_reset(struct bge_softc *);
263 1.177 msaitoh static void bge_link_upd(struct bge_softc *);
264 1.190 jruoho static void sysctl_bge_init(struct bge_softc *);
265 1.190 jruoho static int sysctl_bge_verify(SYSCTLFN_PROTO);
266 1.95 jonathan
267 1.1 fvdl #ifdef BGE_DEBUG
268 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
269 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
270 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
271 1.1 fvdl int bgedebug = 0;
272 1.95 jonathan int bge_tso_debug = 0;
273 1.172 msaitoh void bge_debug_info(struct bge_softc *);
274 1.1 fvdl #else
275 1.1 fvdl #define DPRINTF(x)
276 1.1 fvdl #define DPRINTFN(n,x)
277 1.95 jonathan #define BGE_TSO_PRINTF(x)
278 1.1 fvdl #endif
279 1.1 fvdl
280 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
281 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
282 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
283 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
284 1.72 thorpej #else
285 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
286 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
287 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
288 1.72 thorpej #endif
289 1.72 thorpej
290 1.158 msaitoh static const struct bge_product {
291 1.158 msaitoh pci_vendor_id_t bp_vendor;
292 1.158 msaitoh pci_product_id_t bp_product;
293 1.158 msaitoh const char *bp_name;
294 1.158 msaitoh } bge_products[] = {
295 1.158 msaitoh /*
296 1.158 msaitoh * The BCM5700 documentation seems to indicate that the hardware
297 1.158 msaitoh * still has the Alteon vendor ID burned into it, though it
298 1.158 msaitoh * should always be overridden by the value in the EEPROM. We'll
299 1.158 msaitoh * check for it anyway.
300 1.158 msaitoh */
301 1.158 msaitoh { PCI_VENDOR_ALTEON,
302 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5700,
303 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
304 1.158 msaitoh },
305 1.158 msaitoh { PCI_VENDOR_ALTEON,
306 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5701,
307 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
308 1.158 msaitoh },
309 1.158 msaitoh { PCI_VENDOR_ALTIMA,
310 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1000,
311 1.158 msaitoh "Altima AC1000 Gigabit Ethernet",
312 1.158 msaitoh },
313 1.158 msaitoh { PCI_VENDOR_ALTIMA,
314 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1001,
315 1.158 msaitoh "Altima AC1001 Gigabit Ethernet",
316 1.158 msaitoh },
317 1.158 msaitoh { PCI_VENDOR_ALTIMA,
318 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC9100,
319 1.158 msaitoh "Altima AC9100 Gigabit Ethernet",
320 1.158 msaitoh },
321 1.158 msaitoh { PCI_VENDOR_BROADCOM,
322 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5700,
323 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
324 1.158 msaitoh },
325 1.158 msaitoh { PCI_VENDOR_BROADCOM,
326 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5701,
327 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
328 1.158 msaitoh },
329 1.158 msaitoh { PCI_VENDOR_BROADCOM,
330 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702,
331 1.158 msaitoh "Broadcom BCM5702 Gigabit Ethernet",
332 1.158 msaitoh },
333 1.158 msaitoh { PCI_VENDOR_BROADCOM,
334 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702X,
335 1.158 msaitoh "Broadcom BCM5702X Gigabit Ethernet" },
336 1.158 msaitoh { PCI_VENDOR_BROADCOM,
337 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703,
338 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
339 1.158 msaitoh },
340 1.158 msaitoh { PCI_VENDOR_BROADCOM,
341 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703X,
342 1.158 msaitoh "Broadcom BCM5703X Gigabit Ethernet",
343 1.158 msaitoh },
344 1.158 msaitoh { PCI_VENDOR_BROADCOM,
345 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703_ALT,
346 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
347 1.158 msaitoh },
348 1.178 msaitoh { PCI_VENDOR_BROADCOM,
349 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704C,
350 1.158 msaitoh "Broadcom BCM5704C Dual Gigabit Ethernet",
351 1.158 msaitoh },
352 1.178 msaitoh { PCI_VENDOR_BROADCOM,
353 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704S,
354 1.158 msaitoh "Broadcom BCM5704S Dual Gigabit Ethernet",
355 1.158 msaitoh },
356 1.178 msaitoh { PCI_VENDOR_BROADCOM,
357 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705,
358 1.158 msaitoh "Broadcom BCM5705 Gigabit Ethernet",
359 1.158 msaitoh },
360 1.178 msaitoh { PCI_VENDOR_BROADCOM,
361 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5705F,
362 1.172 msaitoh "Broadcom BCM5705F Gigabit Ethernet",
363 1.172 msaitoh },
364 1.178 msaitoh { PCI_VENDOR_BROADCOM,
365 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705K,
366 1.158 msaitoh "Broadcom BCM5705K Gigabit Ethernet",
367 1.158 msaitoh },
368 1.178 msaitoh { PCI_VENDOR_BROADCOM,
369 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M,
370 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
371 1.158 msaitoh },
372 1.178 msaitoh { PCI_VENDOR_BROADCOM,
373 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
374 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
375 1.158 msaitoh },
376 1.158 msaitoh { PCI_VENDOR_BROADCOM,
377 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5714,
378 1.172 msaitoh "Broadcom BCM5714 Gigabit Ethernet",
379 1.172 msaitoh },
380 1.172 msaitoh { PCI_VENDOR_BROADCOM,
381 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5714S,
382 1.172 msaitoh "Broadcom BCM5714S Gigabit Ethernet",
383 1.158 msaitoh },
384 1.158 msaitoh { PCI_VENDOR_BROADCOM,
385 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5715,
386 1.172 msaitoh "Broadcom BCM5715 Gigabit Ethernet",
387 1.158 msaitoh },
388 1.158 msaitoh { PCI_VENDOR_BROADCOM,
389 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5715S,
390 1.172 msaitoh "Broadcom BCM5715S Gigabit Ethernet",
391 1.172 msaitoh },
392 1.172 msaitoh { PCI_VENDOR_BROADCOM,
393 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5717,
394 1.172 msaitoh "Broadcom BCM5717 Gigabit Ethernet",
395 1.172 msaitoh },
396 1.172 msaitoh { PCI_VENDOR_BROADCOM,
397 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5718,
398 1.172 msaitoh "Broadcom BCM5718 Gigabit Ethernet",
399 1.172 msaitoh },
400 1.172 msaitoh { PCI_VENDOR_BROADCOM,
401 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5720,
402 1.172 msaitoh "Broadcom BCM5720 Gigabit Ethernet",
403 1.158 msaitoh },
404 1.158 msaitoh { PCI_VENDOR_BROADCOM,
405 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5721,
406 1.158 msaitoh "Broadcom BCM5721 Gigabit Ethernet",
407 1.158 msaitoh },
408 1.158 msaitoh { PCI_VENDOR_BROADCOM,
409 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5722,
410 1.158 msaitoh "Broadcom BCM5722 Gigabit Ethernet",
411 1.158 msaitoh },
412 1.158 msaitoh { PCI_VENDOR_BROADCOM,
413 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5723,
414 1.172 msaitoh "Broadcom BCM5723 Gigabit Ethernet",
415 1.172 msaitoh },
416 1.172 msaitoh { PCI_VENDOR_BROADCOM,
417 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5724,
418 1.172 msaitoh "Broadcom BCM5724 Gigabit Ethernet",
419 1.172 msaitoh },
420 1.172 msaitoh { PCI_VENDOR_BROADCOM,
421 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750,
422 1.158 msaitoh "Broadcom BCM5750 Gigabit Ethernet",
423 1.158 msaitoh },
424 1.158 msaitoh { PCI_VENDOR_BROADCOM,
425 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750M,
426 1.158 msaitoh "Broadcom BCM5750M Gigabit Ethernet",
427 1.158 msaitoh },
428 1.158 msaitoh { PCI_VENDOR_BROADCOM,
429 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751,
430 1.158 msaitoh "Broadcom BCM5751 Gigabit Ethernet",
431 1.158 msaitoh },
432 1.158 msaitoh { PCI_VENDOR_BROADCOM,
433 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5751F,
434 1.172 msaitoh "Broadcom BCM5751F Gigabit Ethernet",
435 1.172 msaitoh },
436 1.172 msaitoh { PCI_VENDOR_BROADCOM,
437 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751M,
438 1.158 msaitoh "Broadcom BCM5751M Gigabit Ethernet",
439 1.158 msaitoh },
440 1.158 msaitoh { PCI_VENDOR_BROADCOM,
441 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752,
442 1.158 msaitoh "Broadcom BCM5752 Gigabit Ethernet",
443 1.158 msaitoh },
444 1.158 msaitoh { PCI_VENDOR_BROADCOM,
445 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752M,
446 1.158 msaitoh "Broadcom BCM5752M Gigabit Ethernet",
447 1.158 msaitoh },
448 1.158 msaitoh { PCI_VENDOR_BROADCOM,
449 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753,
450 1.158 msaitoh "Broadcom BCM5753 Gigabit Ethernet",
451 1.158 msaitoh },
452 1.158 msaitoh { PCI_VENDOR_BROADCOM,
453 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5753F,
454 1.172 msaitoh "Broadcom BCM5753F Gigabit Ethernet",
455 1.172 msaitoh },
456 1.172 msaitoh { PCI_VENDOR_BROADCOM,
457 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753M,
458 1.158 msaitoh "Broadcom BCM5753M Gigabit Ethernet",
459 1.158 msaitoh },
460 1.158 msaitoh { PCI_VENDOR_BROADCOM,
461 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754,
462 1.158 msaitoh "Broadcom BCM5754 Gigabit Ethernet",
463 1.158 msaitoh },
464 1.158 msaitoh { PCI_VENDOR_BROADCOM,
465 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754M,
466 1.158 msaitoh "Broadcom BCM5754M Gigabit Ethernet",
467 1.158 msaitoh },
468 1.158 msaitoh { PCI_VENDOR_BROADCOM,
469 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755,
470 1.158 msaitoh "Broadcom BCM5755 Gigabit Ethernet",
471 1.158 msaitoh },
472 1.158 msaitoh { PCI_VENDOR_BROADCOM,
473 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755M,
474 1.158 msaitoh "Broadcom BCM5755M Gigabit Ethernet",
475 1.158 msaitoh },
476 1.172 msaitoh { PCI_VENDOR_BROADCOM,
477 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5756,
478 1.172 msaitoh "Broadcom BCM5756 Gigabit Ethernet",
479 1.172 msaitoh },
480 1.172 msaitoh { PCI_VENDOR_BROADCOM,
481 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761,
482 1.172 msaitoh "Broadcom BCM5761 Gigabit Ethernet",
483 1.172 msaitoh },
484 1.172 msaitoh { PCI_VENDOR_BROADCOM,
485 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761E,
486 1.172 msaitoh "Broadcom BCM5761E Gigabit Ethernet",
487 1.172 msaitoh },
488 1.172 msaitoh { PCI_VENDOR_BROADCOM,
489 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761S,
490 1.172 msaitoh "Broadcom BCM5761S Gigabit Ethernet",
491 1.172 msaitoh },
492 1.172 msaitoh { PCI_VENDOR_BROADCOM,
493 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761SE,
494 1.172 msaitoh "Broadcom BCM5761SE Gigabit Ethernet",
495 1.172 msaitoh },
496 1.178 msaitoh { PCI_VENDOR_BROADCOM,
497 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5764,
498 1.172 msaitoh "Broadcom BCM5764 Gigabit Ethernet",
499 1.172 msaitoh },
500 1.178 msaitoh { PCI_VENDOR_BROADCOM,
501 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780,
502 1.158 msaitoh "Broadcom BCM5780 Gigabit Ethernet",
503 1.158 msaitoh },
504 1.178 msaitoh { PCI_VENDOR_BROADCOM,
505 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780S,
506 1.158 msaitoh "Broadcom BCM5780S Gigabit Ethernet",
507 1.158 msaitoh },
508 1.178 msaitoh { PCI_VENDOR_BROADCOM,
509 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5781,
510 1.172 msaitoh "Broadcom BCM5781 Gigabit Ethernet",
511 1.172 msaitoh },
512 1.178 msaitoh { PCI_VENDOR_BROADCOM,
513 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5782,
514 1.158 msaitoh "Broadcom BCM5782 Gigabit Ethernet",
515 1.158 msaitoh },
516 1.158 msaitoh { PCI_VENDOR_BROADCOM,
517 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5784M,
518 1.172 msaitoh "BCM5784M NetLink 1000baseT Ethernet",
519 1.172 msaitoh },
520 1.172 msaitoh { PCI_VENDOR_BROADCOM,
521 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5786,
522 1.158 msaitoh "Broadcom BCM5786 Gigabit Ethernet",
523 1.158 msaitoh },
524 1.158 msaitoh { PCI_VENDOR_BROADCOM,
525 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787,
526 1.158 msaitoh "Broadcom BCM5787 Gigabit Ethernet",
527 1.158 msaitoh },
528 1.158 msaitoh { PCI_VENDOR_BROADCOM,
529 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787M,
530 1.158 msaitoh "Broadcom BCM5787M Gigabit Ethernet",
531 1.158 msaitoh },
532 1.178 msaitoh { PCI_VENDOR_BROADCOM,
533 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5788,
534 1.158 msaitoh "Broadcom BCM5788 Gigabit Ethernet",
535 1.158 msaitoh },
536 1.178 msaitoh { PCI_VENDOR_BROADCOM,
537 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
538 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
539 1.158 msaitoh },
540 1.178 msaitoh { PCI_VENDOR_BROADCOM,
541 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901,
542 1.158 msaitoh "Broadcom BCM5901 Fast Ethernet",
543 1.158 msaitoh },
544 1.178 msaitoh { PCI_VENDOR_BROADCOM,
545 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901A2,
546 1.158 msaitoh "Broadcom BCM5901A2 Fast Ethernet",
547 1.158 msaitoh },
548 1.178 msaitoh { PCI_VENDOR_BROADCOM,
549 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5903M,
550 1.172 msaitoh "Broadcom BCM5903M Fast Ethernet",
551 1.158 msaitoh },
552 1.158 msaitoh { PCI_VENDOR_BROADCOM,
553 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906,
554 1.158 msaitoh "Broadcom BCM5906 Fast Ethernet",
555 1.158 msaitoh },
556 1.158 msaitoh { PCI_VENDOR_BROADCOM,
557 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906M,
558 1.158 msaitoh "Broadcom BCM5906M Fast Ethernet",
559 1.158 msaitoh },
560 1.172 msaitoh { PCI_VENDOR_BROADCOM,
561 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57760,
562 1.172 msaitoh "Broadcom BCM57760 Fast Ethernet",
563 1.172 msaitoh },
564 1.172 msaitoh { PCI_VENDOR_BROADCOM,
565 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57761,
566 1.172 msaitoh "Broadcom BCM57761 Fast Ethernet",
567 1.172 msaitoh },
568 1.172 msaitoh { PCI_VENDOR_BROADCOM,
569 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57765,
570 1.172 msaitoh "Broadcom BCM57765 Fast Ethernet",
571 1.172 msaitoh },
572 1.172 msaitoh { PCI_VENDOR_BROADCOM,
573 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57780,
574 1.172 msaitoh "Broadcom BCM57780 Fast Ethernet",
575 1.172 msaitoh },
576 1.172 msaitoh { PCI_VENDOR_BROADCOM,
577 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57781,
578 1.172 msaitoh "Broadcom BCM57781 Fast Ethernet",
579 1.172 msaitoh },
580 1.172 msaitoh { PCI_VENDOR_BROADCOM,
581 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57785,
582 1.172 msaitoh "Broadcom BCM57785 Fast Ethernet",
583 1.172 msaitoh },
584 1.172 msaitoh { PCI_VENDOR_BROADCOM,
585 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57788,
586 1.172 msaitoh "Broadcom BCM57788 Fast Ethernet",
587 1.172 msaitoh },
588 1.172 msaitoh { PCI_VENDOR_BROADCOM,
589 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57790,
590 1.172 msaitoh "Broadcom BCM57790 Fast Ethernet",
591 1.172 msaitoh },
592 1.172 msaitoh { PCI_VENDOR_BROADCOM,
593 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57791,
594 1.172 msaitoh "Broadcom BCM57791 Fast Ethernet",
595 1.172 msaitoh },
596 1.172 msaitoh { PCI_VENDOR_BROADCOM,
597 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57795,
598 1.172 msaitoh "Broadcom BCM57795 Fast Ethernet",
599 1.172 msaitoh },
600 1.172 msaitoh { PCI_VENDOR_SCHNEIDERKOCH,
601 1.172 msaitoh PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
602 1.172 msaitoh "SysKonnect SK-9Dx1 Gigabit Ethernet",
603 1.172 msaitoh },
604 1.172 msaitoh { PCI_VENDOR_3COM,
605 1.172 msaitoh PCI_PRODUCT_3COM_3C996,
606 1.172 msaitoh "3Com 3c996 Gigabit Ethernet",
607 1.172 msaitoh },
608 1.158 msaitoh { 0,
609 1.158 msaitoh 0,
610 1.158 msaitoh NULL },
611 1.158 msaitoh };
612 1.158 msaitoh
613 1.95 jonathan /*
614 1.95 jonathan * XXX: how to handle variants based on 5750 and derivatives:
615 1.107 blymn * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
616 1.95 jonathan * in general behave like a 5705, except with additional quirks.
617 1.95 jonathan * This driver's current handling of the 5721 is wrong;
618 1.95 jonathan * how we map ASIC revision to "quirks" needs more thought.
619 1.95 jonathan * (defined here until the thought is done).
620 1.95 jonathan */
621 1.172 msaitoh #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
622 1.172 msaitoh #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
623 1.172 msaitoh #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
624 1.172 msaitoh #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
625 1.172 msaitoh #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
626 1.172 msaitoh #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
627 1.166 msaitoh
628 1.158 msaitoh static const struct bge_revision {
629 1.158 msaitoh uint32_t br_chipid;
630 1.158 msaitoh const char *br_name;
631 1.158 msaitoh } bge_revisions[] = {
632 1.158 msaitoh { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
633 1.158 msaitoh { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
634 1.158 msaitoh { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
635 1.158 msaitoh { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
636 1.158 msaitoh { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
637 1.158 msaitoh { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
638 1.158 msaitoh /* This is treated like a BCM5700 Bx */
639 1.158 msaitoh { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
640 1.158 msaitoh { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
641 1.158 msaitoh { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
642 1.158 msaitoh { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
643 1.158 msaitoh { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
644 1.158 msaitoh { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
645 1.172 msaitoh { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
646 1.172 msaitoh { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
647 1.172 msaitoh { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
648 1.172 msaitoh { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
649 1.172 msaitoh { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
650 1.158 msaitoh { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
651 1.158 msaitoh { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
652 1.158 msaitoh { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
653 1.158 msaitoh { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
654 1.159 msaitoh { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
655 1.158 msaitoh { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
656 1.158 msaitoh { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
657 1.158 msaitoh { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
658 1.158 msaitoh { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
659 1.158 msaitoh { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
660 1.158 msaitoh { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
661 1.161 msaitoh { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
662 1.161 msaitoh { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
663 1.161 msaitoh { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
664 1.161 msaitoh { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
665 1.161 msaitoh { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
666 1.161 msaitoh { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
667 1.158 msaitoh { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
668 1.158 msaitoh { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
669 1.158 msaitoh { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
670 1.159 msaitoh { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
671 1.159 msaitoh { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
672 1.159 msaitoh { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
673 1.159 msaitoh { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
674 1.159 msaitoh { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
675 1.159 msaitoh { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
676 1.158 msaitoh { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
677 1.158 msaitoh { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
678 1.158 msaitoh { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
679 1.158 msaitoh { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
680 1.172 msaitoh { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
681 1.172 msaitoh { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
682 1.172 msaitoh { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
683 1.172 msaitoh { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
684 1.172 msaitoh /* 5754 and 5787 share the same ASIC ID */
685 1.158 msaitoh { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
686 1.158 msaitoh { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
687 1.158 msaitoh { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
688 1.161 msaitoh { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
689 1.161 msaitoh { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
690 1.172 msaitoh { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
691 1.172 msaitoh { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
692 1.172 msaitoh
693 1.158 msaitoh { 0, NULL }
694 1.158 msaitoh };
695 1.158 msaitoh
696 1.158 msaitoh /*
697 1.158 msaitoh * Some defaults for major revisions, so that newer steppings
698 1.158 msaitoh * that we don't know about have a shot at working.
699 1.158 msaitoh */
700 1.158 msaitoh static const struct bge_revision bge_majorrevs[] = {
701 1.158 msaitoh { BGE_ASICREV_BCM5700, "unknown BCM5700" },
702 1.158 msaitoh { BGE_ASICREV_BCM5701, "unknown BCM5701" },
703 1.158 msaitoh { BGE_ASICREV_BCM5703, "unknown BCM5703" },
704 1.158 msaitoh { BGE_ASICREV_BCM5704, "unknown BCM5704" },
705 1.158 msaitoh { BGE_ASICREV_BCM5705, "unknown BCM5705" },
706 1.162 msaitoh { BGE_ASICREV_BCM5750, "unknown BCM5750" },
707 1.158 msaitoh { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
708 1.172 msaitoh { BGE_ASICREV_BCM5752, "unknown BCM5752" },
709 1.172 msaitoh { BGE_ASICREV_BCM5780, "unknown BCM5780" },
710 1.158 msaitoh { BGE_ASICREV_BCM5714, "unknown BCM5714" },
711 1.158 msaitoh { BGE_ASICREV_BCM5755, "unknown BCM5755" },
712 1.172 msaitoh { BGE_ASICREV_BCM5761, "unknown BCM5761" },
713 1.172 msaitoh { BGE_ASICREV_BCM5784, "unknown BCM5784" },
714 1.172 msaitoh { BGE_ASICREV_BCM5785, "unknown BCM5785" },
715 1.162 msaitoh /* 5754 and 5787 share the same ASIC ID */
716 1.166 msaitoh { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
717 1.172 msaitoh { BGE_ASICREV_BCM5906, "unknown BCM5906" },
718 1.172 msaitoh { BGE_ASICREV_BCM57780, "unknown BCM57780" },
719 1.172 msaitoh { BGE_ASICREV_BCM5717, "unknown BCM5717" },
720 1.172 msaitoh { BGE_ASICREV_BCM57765, "unknown BCM57765" },
721 1.172 msaitoh
722 1.158 msaitoh { 0, NULL }
723 1.158 msaitoh };
724 1.17 thorpej
725 1.177 msaitoh static int bge_allow_asf = 1;
726 1.177 msaitoh
727 1.138 joerg CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
728 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
729 1.1 fvdl
730 1.170 msaitoh static uint32_t
731 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
732 1.1 fvdl {
733 1.1 fvdl pcireg_t val;
734 1.1 fvdl
735 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
736 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
737 1.1 fvdl return val;
738 1.1 fvdl }
739 1.1 fvdl
740 1.104 thorpej static void
741 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
742 1.1 fvdl {
743 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
744 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
745 1.1 fvdl }
746 1.1 fvdl
747 1.177 msaitoh /*
748 1.177 msaitoh * PCI Express only
749 1.177 msaitoh */
750 1.177 msaitoh static void
751 1.177 msaitoh bge_set_max_readrq(struct bge_softc *sc)
752 1.177 msaitoh {
753 1.177 msaitoh pcireg_t val;
754 1.177 msaitoh
755 1.180 msaitoh val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
756 1.177 msaitoh + PCI_PCIE_DCSR);
757 1.177 msaitoh if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
758 1.177 msaitoh BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
759 1.189 sketch aprint_verbose_dev(sc->bge_dev,
760 1.189 sketch "adjust device control 0x%04x ", val);
761 1.177 msaitoh val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
762 1.177 msaitoh val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
763 1.180 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
764 1.177 msaitoh + PCI_PCIE_DCSR, val);
765 1.183 ad aprint_verbose("-> 0x%04x\n", val);
766 1.177 msaitoh }
767 1.177 msaitoh }
768 1.177 msaitoh
769 1.1 fvdl #ifdef notdef
770 1.170 msaitoh static uint32_t
771 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
772 1.1 fvdl {
773 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
774 1.158 msaitoh return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
775 1.1 fvdl }
776 1.1 fvdl #endif
777 1.1 fvdl
778 1.104 thorpej static void
779 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
780 1.1 fvdl {
781 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
782 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
783 1.1 fvdl }
784 1.1 fvdl
785 1.151 cegger static void
786 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
787 1.151 cegger {
788 1.151 cegger CSR_WRITE_4(sc, off, val);
789 1.151 cegger }
790 1.151 cegger
791 1.151 cegger static void
792 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
793 1.151 cegger {
794 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
795 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
796 1.151 cegger
797 1.151 cegger CSR_WRITE_4(sc, off, val);
798 1.151 cegger }
799 1.151 cegger
800 1.170 msaitoh static uint8_t
801 1.170 msaitoh bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
802 1.151 cegger {
803 1.170 msaitoh uint32_t access, byte = 0;
804 1.151 cegger int i;
805 1.151 cegger
806 1.151 cegger /* Lock. */
807 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
808 1.151 cegger for (i = 0; i < 8000; i++) {
809 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
810 1.151 cegger break;
811 1.151 cegger DELAY(20);
812 1.151 cegger }
813 1.151 cegger if (i == 8000)
814 1.170 msaitoh return 1;
815 1.151 cegger
816 1.151 cegger /* Enable access. */
817 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
818 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
819 1.151 cegger
820 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
821 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
822 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
823 1.151 cegger DELAY(10);
824 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
825 1.151 cegger DELAY(10);
826 1.151 cegger break;
827 1.151 cegger }
828 1.151 cegger }
829 1.151 cegger
830 1.151 cegger if (i == BGE_TIMEOUT * 10) {
831 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
832 1.170 msaitoh return 1;
833 1.151 cegger }
834 1.151 cegger
835 1.151 cegger /* Get result. */
836 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
837 1.151 cegger
838 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
839 1.151 cegger
840 1.151 cegger /* Disable access. */
841 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
842 1.151 cegger
843 1.151 cegger /* Unlock. */
844 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
845 1.151 cegger CSR_READ_4(sc, BGE_NVRAM_SWARB);
846 1.151 cegger
847 1.170 msaitoh return 0;
848 1.151 cegger }
849 1.151 cegger
850 1.151 cegger /*
851 1.151 cegger * Read a sequence of bytes from NVRAM.
852 1.151 cegger */
853 1.151 cegger static int
854 1.170 msaitoh bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
855 1.151 cegger {
856 1.151 cegger int err = 0, i;
857 1.170 msaitoh uint8_t byte = 0;
858 1.151 cegger
859 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
860 1.170 msaitoh return 1;
861 1.151 cegger
862 1.151 cegger for (i = 0; i < cnt; i++) {
863 1.151 cegger err = bge_nvram_getbyte(sc, off + i, &byte);
864 1.151 cegger if (err)
865 1.151 cegger break;
866 1.151 cegger *(dest + i) = byte;
867 1.151 cegger }
868 1.151 cegger
869 1.151 cegger return (err ? 1 : 0);
870 1.151 cegger }
871 1.151 cegger
872 1.1 fvdl /*
873 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
874 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
875 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
876 1.1 fvdl * access method.
877 1.1 fvdl */
878 1.170 msaitoh static uint8_t
879 1.170 msaitoh bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
880 1.1 fvdl {
881 1.1 fvdl int i;
882 1.170 msaitoh uint32_t byte = 0;
883 1.1 fvdl
884 1.1 fvdl /*
885 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
886 1.1 fvdl * having to use the bitbang method.
887 1.1 fvdl */
888 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
889 1.1 fvdl
890 1.1 fvdl /* Reset the EEPROM, load the clock period. */
891 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
892 1.161 msaitoh BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
893 1.1 fvdl DELAY(20);
894 1.1 fvdl
895 1.1 fvdl /* Issue the read EEPROM command. */
896 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
897 1.1 fvdl
898 1.1 fvdl /* Wait for completion */
899 1.170 msaitoh for (i = 0; i < BGE_TIMEOUT * 10; i++) {
900 1.1 fvdl DELAY(10);
901 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
902 1.1 fvdl break;
903 1.1 fvdl }
904 1.1 fvdl
905 1.172 msaitoh if (i == BGE_TIMEOUT * 10) {
906 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
907 1.177 msaitoh return 1;
908 1.1 fvdl }
909 1.1 fvdl
910 1.1 fvdl /* Get result. */
911 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
912 1.1 fvdl
913 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
914 1.1 fvdl
915 1.170 msaitoh return 0;
916 1.1 fvdl }
917 1.1 fvdl
918 1.1 fvdl /*
919 1.1 fvdl * Read a sequence of bytes from the EEPROM.
920 1.1 fvdl */
921 1.104 thorpej static int
922 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
923 1.1 fvdl {
924 1.1 fvdl int err = 0, i;
925 1.170 msaitoh uint8_t byte = 0;
926 1.126 christos char *dest = destv;
927 1.1 fvdl
928 1.1 fvdl for (i = 0; i < cnt; i++) {
929 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
930 1.1 fvdl if (err)
931 1.1 fvdl break;
932 1.1 fvdl *(dest + i) = byte;
933 1.1 fvdl }
934 1.1 fvdl
935 1.158 msaitoh return (err ? 1 : 0);
936 1.1 fvdl }
937 1.1 fvdl
938 1.104 thorpej static int
939 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
940 1.1 fvdl {
941 1.138 joerg struct bge_softc *sc = device_private(dev);
942 1.170 msaitoh uint32_t val;
943 1.172 msaitoh uint32_t autopoll;
944 1.1 fvdl int i;
945 1.1 fvdl
946 1.25 jonathan /*
947 1.156 msaitoh * Broadcom's own driver always assumes the internal
948 1.156 msaitoh * PHY is at GMII address 1. On some chips, the PHY responds
949 1.156 msaitoh * to accesses at all addresses, which could cause us to
950 1.156 msaitoh * bogusly attach the PHY 32 times at probe type. Always
951 1.156 msaitoh * restricting the lookup to address 1 is simpler than
952 1.156 msaitoh * trying to figure out which chips revisions should be
953 1.156 msaitoh * special-cased.
954 1.25 jonathan */
955 1.156 msaitoh if (phy != 1)
956 1.170 msaitoh return 0;
957 1.1 fvdl
958 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
959 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
960 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
961 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
962 1.172 msaitoh BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
963 1.25 jonathan DELAY(40);
964 1.25 jonathan }
965 1.25 jonathan
966 1.172 msaitoh CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
967 1.172 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg));
968 1.1 fvdl
969 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
970 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
971 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
972 1.1 fvdl break;
973 1.9 thorpej delay(10);
974 1.1 fvdl }
975 1.1 fvdl
976 1.1 fvdl if (i == BGE_TIMEOUT) {
977 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
978 1.29 itojun val = 0;
979 1.25 jonathan goto done;
980 1.1 fvdl }
981 1.1 fvdl
982 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
983 1.1 fvdl
984 1.25 jonathan done:
985 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
986 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
987 1.172 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
988 1.25 jonathan DELAY(40);
989 1.25 jonathan }
990 1.29 itojun
991 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
992 1.170 msaitoh return 0;
993 1.1 fvdl
994 1.158 msaitoh return (val & 0xFFFF);
995 1.1 fvdl }
996 1.1 fvdl
997 1.104 thorpej static void
998 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
999 1.1 fvdl {
1000 1.138 joerg struct bge_softc *sc = device_private(dev);
1001 1.172 msaitoh uint32_t autopoll;
1002 1.29 itojun int i;
1003 1.1 fvdl
1004 1.151 cegger if (phy!=1) {
1005 1.151 cegger return;
1006 1.151 cegger }
1007 1.151 cegger
1008 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1009 1.151 cegger (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1010 1.151 cegger return;
1011 1.151 cegger }
1012 1.151 cegger
1013 1.161 msaitoh /* Reading with autopolling on may trigger PCI errors */
1014 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1015 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1016 1.25 jonathan delay(40);
1017 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1018 1.172 msaitoh BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1019 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
1020 1.25 jonathan }
1021 1.29 itojun
1022 1.161 msaitoh CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1023 1.177 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1024 1.1 fvdl
1025 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1026 1.151 cegger delay(10);
1027 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1028 1.151 cegger delay(5);
1029 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
1030 1.1 fvdl break;
1031 1.151 cegger }
1032 1.1 fvdl }
1033 1.1 fvdl
1034 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1035 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1036 1.172 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1037 1.25 jonathan delay(40);
1038 1.25 jonathan }
1039 1.29 itojun
1040 1.138 joerg if (i == BGE_TIMEOUT)
1041 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1042 1.1 fvdl }
1043 1.1 fvdl
1044 1.104 thorpej static void
1045 1.104 thorpej bge_miibus_statchg(device_t dev)
1046 1.1 fvdl {
1047 1.138 joerg struct bge_softc *sc = device_private(dev);
1048 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
1049 1.1 fvdl
1050 1.69 thorpej /*
1051 1.69 thorpej * Get flow control negotiation result.
1052 1.69 thorpej */
1053 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1054 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1055 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1056 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
1057 1.69 thorpej }
1058 1.69 thorpej
1059 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1060 1.161 msaitoh if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1061 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1062 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1063 1.161 msaitoh else
1064 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1065 1.1 fvdl
1066 1.158 msaitoh if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1067 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1068 1.158 msaitoh else
1069 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1070 1.69 thorpej
1071 1.69 thorpej /*
1072 1.69 thorpej * 802.3x flow control
1073 1.69 thorpej */
1074 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1075 1.69 thorpej BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1076 1.158 msaitoh else
1077 1.69 thorpej BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1078 1.158 msaitoh
1079 1.158 msaitoh if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1080 1.69 thorpej BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1081 1.158 msaitoh else
1082 1.69 thorpej BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1083 1.1 fvdl }
1084 1.1 fvdl
1085 1.1 fvdl /*
1086 1.63 jonathan * Update rx threshold levels to values in a particular slot
1087 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
1088 1.63 jonathan */
1089 1.104 thorpej static void
1090 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
1091 1.63 jonathan {
1092 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
1093 1.63 jonathan int s;
1094 1.63 jonathan
1095 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
1096 1.63 jonathan * that a threshold update is pending. Updating the hardware
1097 1.63 jonathan * registers here (even at splhigh()) is observed to
1098 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
1099 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1100 1.63 jonathan */
1101 1.63 jonathan s = splnet();
1102 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1103 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1104 1.63 jonathan sc->bge_pending_rxintr_change = 1;
1105 1.63 jonathan splx(s);
1106 1.63 jonathan
1107 1.63 jonathan return;
1108 1.63 jonathan }
1109 1.63 jonathan
1110 1.63 jonathan
1111 1.63 jonathan /*
1112 1.63 jonathan * Update Rx thresholds of all bge devices
1113 1.63 jonathan */
1114 1.104 thorpej static void
1115 1.63 jonathan bge_update_all_threshes(int lvl)
1116 1.63 jonathan {
1117 1.63 jonathan struct ifnet *ifp;
1118 1.63 jonathan const char * const namebuf = "bge";
1119 1.63 jonathan int namelen;
1120 1.63 jonathan
1121 1.63 jonathan if (lvl < 0)
1122 1.63 jonathan lvl = 0;
1123 1.170 msaitoh else if (lvl >= NBGE_RX_THRESH)
1124 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
1125 1.87 perry
1126 1.63 jonathan namelen = strlen(namebuf);
1127 1.63 jonathan /*
1128 1.63 jonathan * Now search all the interfaces for this name/number
1129 1.63 jonathan */
1130 1.81 matt IFNET_FOREACH(ifp) {
1131 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1132 1.63 jonathan continue;
1133 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
1134 1.63 jonathan if (bge_auto_thresh)
1135 1.67 jonathan bge_set_thresh(ifp, lvl);
1136 1.63 jonathan }
1137 1.63 jonathan }
1138 1.63 jonathan
1139 1.63 jonathan /*
1140 1.1 fvdl * Handle events that have triggered interrupts.
1141 1.1 fvdl */
1142 1.104 thorpej static void
1143 1.116 christos bge_handle_events(struct bge_softc *sc)
1144 1.1 fvdl {
1145 1.1 fvdl
1146 1.1 fvdl return;
1147 1.1 fvdl }
1148 1.1 fvdl
1149 1.1 fvdl /*
1150 1.1 fvdl * Memory management for jumbo frames.
1151 1.1 fvdl */
1152 1.1 fvdl
1153 1.104 thorpej static int
1154 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
1155 1.1 fvdl {
1156 1.126 christos char *ptr, *kva;
1157 1.1 fvdl bus_dma_segment_t seg;
1158 1.1 fvdl int i, rseg, state, error;
1159 1.1 fvdl struct bge_jpool_entry *entry;
1160 1.1 fvdl
1161 1.1 fvdl state = error = 0;
1162 1.1 fvdl
1163 1.1 fvdl /* Grab a big chunk o' storage. */
1164 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1165 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1166 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1167 1.1 fvdl return ENOBUFS;
1168 1.1 fvdl }
1169 1.1 fvdl
1170 1.1 fvdl state = 1;
1171 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1172 1.1 fvdl BUS_DMA_NOWAIT)) {
1173 1.138 joerg aprint_error_dev(sc->bge_dev,
1174 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1175 1.1 fvdl error = ENOBUFS;
1176 1.1 fvdl goto out;
1177 1.1 fvdl }
1178 1.1 fvdl
1179 1.1 fvdl state = 2;
1180 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1181 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1182 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1183 1.1 fvdl error = ENOBUFS;
1184 1.1 fvdl goto out;
1185 1.1 fvdl }
1186 1.1 fvdl
1187 1.1 fvdl state = 3;
1188 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1189 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1190 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1191 1.1 fvdl error = ENOBUFS;
1192 1.1 fvdl goto out;
1193 1.1 fvdl }
1194 1.1 fvdl
1195 1.1 fvdl state = 4;
1196 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1197 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1198 1.1 fvdl
1199 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
1200 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
1201 1.1 fvdl
1202 1.1 fvdl /*
1203 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
1204 1.1 fvdl * in an array.
1205 1.1 fvdl */
1206 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
1207 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
1208 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
1209 1.1 fvdl ptr += BGE_JLEN;
1210 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
1211 1.1 fvdl M_DEVBUF, M_NOWAIT);
1212 1.1 fvdl if (entry == NULL) {
1213 1.138 joerg aprint_error_dev(sc->bge_dev,
1214 1.138 joerg "no memory for jumbo buffer queue!\n");
1215 1.1 fvdl error = ENOBUFS;
1216 1.1 fvdl goto out;
1217 1.1 fvdl }
1218 1.1 fvdl entry->slot = i;
1219 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1220 1.1 fvdl entry, jpool_entries);
1221 1.1 fvdl }
1222 1.1 fvdl out:
1223 1.1 fvdl if (error != 0) {
1224 1.1 fvdl switch (state) {
1225 1.1 fvdl case 4:
1226 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
1227 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1228 1.1 fvdl case 3:
1229 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
1230 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1231 1.1 fvdl case 2:
1232 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1233 1.1 fvdl case 1:
1234 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1235 1.1 fvdl break;
1236 1.1 fvdl default:
1237 1.1 fvdl break;
1238 1.1 fvdl }
1239 1.1 fvdl }
1240 1.1 fvdl
1241 1.1 fvdl return error;
1242 1.1 fvdl }
1243 1.1 fvdl
1244 1.1 fvdl /*
1245 1.1 fvdl * Allocate a jumbo buffer.
1246 1.1 fvdl */
1247 1.104 thorpej static void *
1248 1.104 thorpej bge_jalloc(struct bge_softc *sc)
1249 1.1 fvdl {
1250 1.1 fvdl struct bge_jpool_entry *entry;
1251 1.1 fvdl
1252 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1253 1.1 fvdl
1254 1.1 fvdl if (entry == NULL) {
1255 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1256 1.170 msaitoh return NULL;
1257 1.1 fvdl }
1258 1.1 fvdl
1259 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1260 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1261 1.158 msaitoh return (sc->bge_cdata.bge_jslots[entry->slot]);
1262 1.1 fvdl }
1263 1.1 fvdl
1264 1.1 fvdl /*
1265 1.1 fvdl * Release a jumbo buffer.
1266 1.1 fvdl */
1267 1.104 thorpej static void
1268 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1269 1.1 fvdl {
1270 1.1 fvdl struct bge_jpool_entry *entry;
1271 1.1 fvdl struct bge_softc *sc;
1272 1.1 fvdl int i, s;
1273 1.1 fvdl
1274 1.1 fvdl /* Extract the softc struct pointer. */
1275 1.1 fvdl sc = (struct bge_softc *)arg;
1276 1.1 fvdl
1277 1.1 fvdl if (sc == NULL)
1278 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
1279 1.1 fvdl
1280 1.1 fvdl /* calculate the slot this buffer belongs to */
1281 1.1 fvdl
1282 1.126 christos i = ((char *)buf
1283 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1284 1.1 fvdl
1285 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
1286 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
1287 1.1 fvdl
1288 1.1 fvdl s = splvm();
1289 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1290 1.1 fvdl if (entry == NULL)
1291 1.1 fvdl panic("bge_jfree: buffer not in use!");
1292 1.1 fvdl entry->slot = i;
1293 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1294 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1295 1.1 fvdl
1296 1.1 fvdl if (__predict_true(m != NULL))
1297 1.140 ad pool_cache_put(mb_cache, m);
1298 1.1 fvdl splx(s);
1299 1.1 fvdl }
1300 1.1 fvdl
1301 1.1 fvdl
1302 1.1 fvdl /*
1303 1.184 njoly * Initialize a standard receive ring descriptor.
1304 1.1 fvdl */
1305 1.104 thorpej static int
1306 1.178 msaitoh bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1307 1.178 msaitoh bus_dmamap_t dmamap)
1308 1.1 fvdl {
1309 1.1 fvdl struct mbuf *m_new = NULL;
1310 1.1 fvdl struct bge_rx_bd *r;
1311 1.1 fvdl int error;
1312 1.1 fvdl
1313 1.1 fvdl if (dmamap == NULL) {
1314 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1315 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1316 1.1 fvdl if (error != 0)
1317 1.1 fvdl return error;
1318 1.1 fvdl }
1319 1.1 fvdl
1320 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1321 1.1 fvdl
1322 1.1 fvdl if (m == NULL) {
1323 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1324 1.158 msaitoh if (m_new == NULL)
1325 1.170 msaitoh return ENOBUFS;
1326 1.1 fvdl
1327 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
1328 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
1329 1.1 fvdl m_freem(m_new);
1330 1.170 msaitoh return ENOBUFS;
1331 1.1 fvdl }
1332 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1333 1.1 fvdl
1334 1.1 fvdl } else {
1335 1.1 fvdl m_new = m;
1336 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1337 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
1338 1.1 fvdl }
1339 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1340 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1341 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1342 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
1343 1.170 msaitoh return ENOBUFS;
1344 1.178 msaitoh bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1345 1.124 bouyer BUS_DMASYNC_PREREAD);
1346 1.1 fvdl
1347 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1348 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
1349 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1350 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
1351 1.1 fvdl r->bge_len = m_new->m_len;
1352 1.1 fvdl r->bge_idx = i;
1353 1.1 fvdl
1354 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1355 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
1356 1.1 fvdl i * sizeof (struct bge_rx_bd),
1357 1.1 fvdl sizeof (struct bge_rx_bd),
1358 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1359 1.1 fvdl
1360 1.170 msaitoh return 0;
1361 1.1 fvdl }
1362 1.1 fvdl
1363 1.1 fvdl /*
1364 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1365 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1366 1.1 fvdl */
1367 1.104 thorpej static int
1368 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1369 1.1 fvdl {
1370 1.1 fvdl struct mbuf *m_new = NULL;
1371 1.1 fvdl struct bge_rx_bd *r;
1372 1.126 christos void *buf = NULL;
1373 1.1 fvdl
1374 1.1 fvdl if (m == NULL) {
1375 1.1 fvdl
1376 1.1 fvdl /* Allocate the mbuf. */
1377 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1378 1.158 msaitoh if (m_new == NULL)
1379 1.170 msaitoh return ENOBUFS;
1380 1.1 fvdl
1381 1.1 fvdl /* Allocate the jumbo buffer */
1382 1.1 fvdl buf = bge_jalloc(sc);
1383 1.1 fvdl if (buf == NULL) {
1384 1.1 fvdl m_freem(m_new);
1385 1.138 joerg aprint_error_dev(sc->bge_dev,
1386 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1387 1.170 msaitoh return ENOBUFS;
1388 1.1 fvdl }
1389 1.1 fvdl
1390 1.1 fvdl /* Attach the buffer to the mbuf. */
1391 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1392 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1393 1.1 fvdl bge_jfree, sc);
1394 1.74 yamt m_new->m_flags |= M_EXT_RW;
1395 1.1 fvdl } else {
1396 1.1 fvdl m_new = m;
1397 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1398 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1399 1.1 fvdl }
1400 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1401 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1402 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1403 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1404 1.124 bouyer BUS_DMASYNC_PREREAD);
1405 1.1 fvdl /* Set up the descriptor. */
1406 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1407 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1408 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1409 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1410 1.1 fvdl r->bge_len = m_new->m_len;
1411 1.1 fvdl r->bge_idx = i;
1412 1.1 fvdl
1413 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1414 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1415 1.1 fvdl i * sizeof (struct bge_rx_bd),
1416 1.1 fvdl sizeof (struct bge_rx_bd),
1417 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1418 1.1 fvdl
1419 1.170 msaitoh return 0;
1420 1.1 fvdl }
1421 1.1 fvdl
1422 1.1 fvdl /*
1423 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1424 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1425 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1426 1.1 fvdl * the NIC.
1427 1.1 fvdl */
1428 1.104 thorpej static int
1429 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1430 1.1 fvdl {
1431 1.1 fvdl int i;
1432 1.1 fvdl
1433 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1434 1.1 fvdl return 0;
1435 1.1 fvdl
1436 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1437 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1438 1.170 msaitoh return ENOBUFS;
1439 1.1 fvdl }
1440 1.1 fvdl
1441 1.1 fvdl sc->bge_std = i - 1;
1442 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1443 1.1 fvdl
1444 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1445 1.1 fvdl
1446 1.170 msaitoh return 0;
1447 1.1 fvdl }
1448 1.1 fvdl
1449 1.104 thorpej static void
1450 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1451 1.1 fvdl {
1452 1.1 fvdl int i;
1453 1.1 fvdl
1454 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1455 1.1 fvdl return;
1456 1.1 fvdl
1457 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1458 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1459 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1460 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1461 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1462 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1463 1.1 fvdl }
1464 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1465 1.1 fvdl sizeof(struct bge_rx_bd));
1466 1.1 fvdl }
1467 1.1 fvdl
1468 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1469 1.1 fvdl }
1470 1.1 fvdl
1471 1.104 thorpej static int
1472 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1473 1.1 fvdl {
1474 1.1 fvdl int i;
1475 1.34 jonathan volatile struct bge_rcb *rcb;
1476 1.1 fvdl
1477 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1478 1.59 martin return 0;
1479 1.59 martin
1480 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1481 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1482 1.170 msaitoh return ENOBUFS;
1483 1.1 fvdl };
1484 1.1 fvdl
1485 1.1 fvdl sc->bge_jumbo = i - 1;
1486 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1487 1.1 fvdl
1488 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1489 1.34 jonathan rcb->bge_maxlen_flags = 0;
1490 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1491 1.1 fvdl
1492 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1493 1.1 fvdl
1494 1.170 msaitoh return 0;
1495 1.1 fvdl }
1496 1.1 fvdl
1497 1.104 thorpej static void
1498 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1499 1.1 fvdl {
1500 1.1 fvdl int i;
1501 1.1 fvdl
1502 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1503 1.1 fvdl return;
1504 1.1 fvdl
1505 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1506 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1507 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1508 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1509 1.1 fvdl }
1510 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1511 1.1 fvdl sizeof(struct bge_rx_bd));
1512 1.1 fvdl }
1513 1.1 fvdl
1514 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1515 1.1 fvdl }
1516 1.1 fvdl
1517 1.104 thorpej static void
1518 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1519 1.1 fvdl {
1520 1.1 fvdl int i, freed;
1521 1.1 fvdl struct txdmamap_pool_entry *dma;
1522 1.1 fvdl
1523 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1524 1.1 fvdl return;
1525 1.1 fvdl
1526 1.1 fvdl freed = 0;
1527 1.1 fvdl
1528 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1529 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1530 1.1 fvdl freed++;
1531 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1532 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1533 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1534 1.1 fvdl link);
1535 1.1 fvdl sc->txdma[i] = 0;
1536 1.1 fvdl }
1537 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1538 1.1 fvdl sizeof(struct bge_tx_bd));
1539 1.1 fvdl }
1540 1.1 fvdl
1541 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1542 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1543 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1544 1.1 fvdl free(dma, M_DEVBUF);
1545 1.1 fvdl }
1546 1.1 fvdl
1547 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1548 1.1 fvdl }
1549 1.1 fvdl
1550 1.104 thorpej static int
1551 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1552 1.1 fvdl {
1553 1.1 fvdl int i;
1554 1.1 fvdl bus_dmamap_t dmamap;
1555 1.1 fvdl struct txdmamap_pool_entry *dma;
1556 1.1 fvdl
1557 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1558 1.1 fvdl return 0;
1559 1.1 fvdl
1560 1.1 fvdl sc->bge_txcnt = 0;
1561 1.1 fvdl sc->bge_tx_saved_considx = 0;
1562 1.94 jonathan
1563 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1564 1.94 jonathan sc->bge_tx_prodidx = 0;
1565 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1566 1.158 msaitoh /* 5700 b2 errata */
1567 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1568 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1569 1.25 jonathan
1570 1.158 msaitoh /* NIC-memory send ring not used; initialize to zero. */
1571 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1572 1.158 msaitoh /* 5700 b2 errata */
1573 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1574 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1575 1.1 fvdl
1576 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1577 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
1578 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1579 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1580 1.1 fvdl &dmamap))
1581 1.170 msaitoh return ENOBUFS;
1582 1.1 fvdl if (dmamap == NULL)
1583 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1584 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1585 1.1 fvdl if (dma == NULL) {
1586 1.138 joerg aprint_error_dev(sc->bge_dev,
1587 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1588 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1589 1.170 msaitoh return ENOMEM;
1590 1.1 fvdl }
1591 1.1 fvdl dma->dmamap = dmamap;
1592 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1593 1.1 fvdl }
1594 1.1 fvdl
1595 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1596 1.1 fvdl
1597 1.170 msaitoh return 0;
1598 1.1 fvdl }
1599 1.1 fvdl
1600 1.104 thorpej static void
1601 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1602 1.1 fvdl {
1603 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1604 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1605 1.1 fvdl struct ether_multi *enm;
1606 1.1 fvdl struct ether_multistep step;
1607 1.170 msaitoh uint32_t hashes[4] = { 0, 0, 0, 0 };
1608 1.170 msaitoh uint32_t h;
1609 1.1 fvdl int i;
1610 1.1 fvdl
1611 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1612 1.13 thorpej goto allmulti;
1613 1.1 fvdl
1614 1.1 fvdl /* Now program new ones. */
1615 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1616 1.1 fvdl while (enm != NULL) {
1617 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1618 1.13 thorpej /*
1619 1.13 thorpej * We must listen to a range of multicast addresses.
1620 1.13 thorpej * For now, just accept all multicasts, rather than
1621 1.13 thorpej * trying to set only those filter bits needed to match
1622 1.13 thorpej * the range. (At this time, the only use of address
1623 1.13 thorpej * ranges is for IP multicast routing, for which the
1624 1.13 thorpej * range is big enough to require all bits set.)
1625 1.13 thorpej */
1626 1.13 thorpej goto allmulti;
1627 1.13 thorpej }
1628 1.13 thorpej
1629 1.158 msaitoh h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1630 1.1 fvdl
1631 1.158 msaitoh /* Just want the 7 least-significant bits. */
1632 1.158 msaitoh h &= 0x7f;
1633 1.1 fvdl
1634 1.158 msaitoh hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1635 1.158 msaitoh ETHER_NEXT_MULTI(step, enm);
1636 1.25 jonathan }
1637 1.25 jonathan
1638 1.158 msaitoh ifp->if_flags &= ~IFF_ALLMULTI;
1639 1.158 msaitoh goto setit;
1640 1.1 fvdl
1641 1.158 msaitoh allmulti:
1642 1.158 msaitoh ifp->if_flags |= IFF_ALLMULTI;
1643 1.158 msaitoh hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1644 1.133 markd
1645 1.158 msaitoh setit:
1646 1.158 msaitoh for (i = 0; i < 4; i++)
1647 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1648 1.158 msaitoh }
1649 1.133 markd
1650 1.177 msaitoh static void
1651 1.178 msaitoh bge_sig_pre_reset(struct bge_softc *sc, int type)
1652 1.177 msaitoh {
1653 1.177 msaitoh /*
1654 1.177 msaitoh * Some chips don't like this so only do this if ASF is enabled
1655 1.177 msaitoh */
1656 1.177 msaitoh if (sc->bge_asf_mode)
1657 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1658 1.1 fvdl
1659 1.177 msaitoh if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1660 1.177 msaitoh switch (type) {
1661 1.177 msaitoh case BGE_RESET_START:
1662 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1663 1.177 msaitoh break;
1664 1.177 msaitoh case BGE_RESET_STOP:
1665 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1666 1.177 msaitoh break;
1667 1.177 msaitoh }
1668 1.177 msaitoh }
1669 1.177 msaitoh }
1670 1.177 msaitoh
1671 1.177 msaitoh static void
1672 1.178 msaitoh bge_sig_post_reset(struct bge_softc *sc, int type)
1673 1.177 msaitoh {
1674 1.178 msaitoh
1675 1.177 msaitoh if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1676 1.177 msaitoh switch (type) {
1677 1.177 msaitoh case BGE_RESET_START:
1678 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1679 1.177 msaitoh /* START DONE */
1680 1.177 msaitoh break;
1681 1.177 msaitoh case BGE_RESET_STOP:
1682 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1683 1.177 msaitoh break;
1684 1.177 msaitoh }
1685 1.177 msaitoh }
1686 1.177 msaitoh }
1687 1.177 msaitoh
1688 1.177 msaitoh static void
1689 1.178 msaitoh bge_sig_legacy(struct bge_softc *sc, int type)
1690 1.177 msaitoh {
1691 1.178 msaitoh
1692 1.177 msaitoh if (sc->bge_asf_mode) {
1693 1.177 msaitoh switch (type) {
1694 1.177 msaitoh case BGE_RESET_START:
1695 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1696 1.177 msaitoh break;
1697 1.177 msaitoh case BGE_RESET_STOP:
1698 1.177 msaitoh bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1699 1.177 msaitoh break;
1700 1.177 msaitoh }
1701 1.177 msaitoh }
1702 1.177 msaitoh }
1703 1.177 msaitoh
1704 1.177 msaitoh static void
1705 1.178 msaitoh bge_stop_fw(struct bge_softc *sc)
1706 1.177 msaitoh {
1707 1.177 msaitoh int i;
1708 1.1 fvdl
1709 1.177 msaitoh if (sc->bge_asf_mode) {
1710 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1711 1.177 msaitoh CSR_WRITE_4(sc, BGE_CPU_EVENT,
1712 1.177 msaitoh CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1713 1.177 msaitoh
1714 1.178 msaitoh for (i = 0; i < 100; i++) {
1715 1.177 msaitoh if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1716 1.177 msaitoh break;
1717 1.177 msaitoh DELAY(10);
1718 1.177 msaitoh }
1719 1.177 msaitoh }
1720 1.177 msaitoh }
1721 1.1 fvdl
1722 1.180 msaitoh static int
1723 1.180 msaitoh bge_poll_fw(struct bge_softc *sc)
1724 1.180 msaitoh {
1725 1.180 msaitoh uint32_t val;
1726 1.180 msaitoh int i;
1727 1.180 msaitoh
1728 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1729 1.180 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1730 1.180 msaitoh val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1731 1.180 msaitoh if (val & BGE_VCPU_STATUS_INIT_DONE)
1732 1.180 msaitoh break;
1733 1.180 msaitoh DELAY(100);
1734 1.180 msaitoh }
1735 1.180 msaitoh if (i >= BGE_TIMEOUT) {
1736 1.180 msaitoh aprint_error_dev(sc->bge_dev, "reset timed out\n");
1737 1.180 msaitoh return -1;
1738 1.180 msaitoh }
1739 1.180 msaitoh } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1740 1.180 msaitoh /*
1741 1.180 msaitoh * Poll the value location we just wrote until
1742 1.180 msaitoh * we see the 1's complement of the magic number.
1743 1.180 msaitoh * This indicates that the firmware initialization
1744 1.180 msaitoh * is complete.
1745 1.180 msaitoh * XXX 1000ms for Flash and 10000ms for SEEPROM.
1746 1.180 msaitoh */
1747 1.180 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
1748 1.180 msaitoh val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1749 1.180 msaitoh if (val == ~BGE_MAGIC_NUMBER)
1750 1.180 msaitoh break;
1751 1.180 msaitoh DELAY(10);
1752 1.180 msaitoh }
1753 1.180 msaitoh
1754 1.180 msaitoh if (i >= BGE_TIMEOUT) {
1755 1.180 msaitoh aprint_error_dev(sc->bge_dev,
1756 1.180 msaitoh "firmware handshake timed out, val = %x\n", val);
1757 1.180 msaitoh return -1;
1758 1.180 msaitoh }
1759 1.180 msaitoh }
1760 1.180 msaitoh
1761 1.180 msaitoh return 0;
1762 1.180 msaitoh }
1763 1.180 msaitoh
1764 1.158 msaitoh /*
1765 1.158 msaitoh * Do endian, PCI and DMA initialization. Also check the on-board ROM
1766 1.158 msaitoh * self-test results.
1767 1.158 msaitoh */
1768 1.158 msaitoh static int
1769 1.158 msaitoh bge_chipinit(struct bge_softc *sc)
1770 1.158 msaitoh {
1771 1.178 msaitoh int i;
1772 1.178 msaitoh uint32_t dma_rw_ctl;
1773 1.1 fvdl
1774 1.158 msaitoh /* Set endianness before we access any non-PCI registers. */
1775 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1776 1.158 msaitoh BGE_INIT);
1777 1.1 fvdl
1778 1.158 msaitoh /* Set power state to D0. */
1779 1.158 msaitoh bge_setpowerstate(sc, 0);
1780 1.1 fvdl
1781 1.158 msaitoh /* Clear the MAC control register */
1782 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1783 1.1 fvdl
1784 1.158 msaitoh /*
1785 1.158 msaitoh * Clear the MAC statistics block in the NIC's
1786 1.158 msaitoh * internal memory.
1787 1.158 msaitoh */
1788 1.158 msaitoh for (i = BGE_STATS_BLOCK;
1789 1.170 msaitoh i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1790 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1791 1.1 fvdl
1792 1.158 msaitoh for (i = BGE_STATUS_BLOCK;
1793 1.170 msaitoh i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1794 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1795 1.1 fvdl
1796 1.158 msaitoh /* Set up the PCI DMA control register. */
1797 1.166 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1798 1.158 msaitoh if (sc->bge_flags & BGE_PCIE) {
1799 1.166 msaitoh /* Read watermark not used, 128 bytes for write. */
1800 1.158 msaitoh DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1801 1.158 msaitoh device_xname(sc->bge_dev)));
1802 1.166 msaitoh dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1803 1.170 msaitoh } else if (sc->bge_flags & BGE_PCIX) {
1804 1.158 msaitoh DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1805 1.158 msaitoh device_xname(sc->bge_dev)));
1806 1.158 msaitoh /* PCI-X bus */
1807 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc)) {
1808 1.172 msaitoh /* 256 bytes for read and write. */
1809 1.172 msaitoh dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1810 1.172 msaitoh (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1811 1.172 msaitoh
1812 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1813 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1814 1.172 msaitoh else
1815 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1816 1.172 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1817 1.172 msaitoh /* 1536 bytes for read, 384 bytes for write. */
1818 1.172 msaitoh dma_rw_ctl |=
1819 1.158 msaitoh (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1820 1.158 msaitoh (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1821 1.172 msaitoh } else {
1822 1.172 msaitoh /* 384 bytes for read and write. */
1823 1.172 msaitoh dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1824 1.172 msaitoh (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1825 1.172 msaitoh (0x0F);
1826 1.172 msaitoh }
1827 1.172 msaitoh
1828 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1829 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1830 1.172 msaitoh uint32_t tmp;
1831 1.172 msaitoh
1832 1.172 msaitoh /* Set ONEDMA_ATONCE for hardware workaround. */
1833 1.172 msaitoh tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1834 1.172 msaitoh if (tmp == 6 || tmp == 7)
1835 1.172 msaitoh dma_rw_ctl |=
1836 1.172 msaitoh BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1837 1.172 msaitoh
1838 1.172 msaitoh /* Set PCI-X DMA write workaround. */
1839 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1840 1.158 msaitoh }
1841 1.158 msaitoh } else {
1842 1.172 msaitoh /* Conventional PCI bus: 256 bytes for read and write. */
1843 1.158 msaitoh DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1844 1.158 msaitoh device_xname(sc->bge_dev)));
1845 1.185 msaitoh dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1846 1.166 msaitoh (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1847 1.160 msaitoh if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1848 1.160 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1849 1.158 msaitoh dma_rw_ctl |= 0x0F;
1850 1.158 msaitoh }
1851 1.157 msaitoh
1852 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1853 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1854 1.161 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1855 1.161 msaitoh BGE_PCIDMARWCTL_ASRT_ALL_BE;
1856 1.178 msaitoh
1857 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1858 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1859 1.161 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1860 1.161 msaitoh
1861 1.177 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1862 1.177 msaitoh dma_rw_ctl);
1863 1.120 tsutsui
1864 1.158 msaitoh /*
1865 1.158 msaitoh * Set up general mode register.
1866 1.158 msaitoh */
1867 1.161 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1868 1.177 msaitoh BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1869 1.194 buhrow BGE_MODECTL_TX_NO_PHDR_CSUM);
1870 1.16 thorpej
1871 1.158 msaitoh /*
1872 1.172 msaitoh * BCM5701 B5 have a bug causing data corruption when using
1873 1.172 msaitoh * 64-bit DMA reads, which can be terminated early and then
1874 1.172 msaitoh * completed later as 32-bit accesses, in combination with
1875 1.172 msaitoh * certain bridges.
1876 1.172 msaitoh */
1877 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1878 1.172 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1879 1.172 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1880 1.172 msaitoh
1881 1.172 msaitoh /*
1882 1.177 msaitoh * Tell the firmware the driver is running
1883 1.177 msaitoh */
1884 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
1885 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1886 1.177 msaitoh
1887 1.177 msaitoh /*
1888 1.158 msaitoh * Disable memory write invalidate. Apparently it is not supported
1889 1.158 msaitoh * properly by these devices.
1890 1.158 msaitoh */
1891 1.172 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1892 1.172 msaitoh PCI_COMMAND_INVALIDATE_ENABLE);
1893 1.16 thorpej
1894 1.158 msaitoh #ifdef __brokenalpha__
1895 1.158 msaitoh /*
1896 1.158 msaitoh * Must insure that we do not cross an 8K (bytes) boundary
1897 1.158 msaitoh * for DMA reads. Our highest limit is 1K bytes. This is a
1898 1.158 msaitoh * restriction on some ALPHA platforms with early revision
1899 1.158 msaitoh * 21174 PCI chipsets, such as the AlphaPC 164lx
1900 1.158 msaitoh */
1901 1.158 msaitoh PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1902 1.158 msaitoh #endif
1903 1.16 thorpej
1904 1.158 msaitoh /* Set the timer prescaler (always 66MHz) */
1905 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1906 1.16 thorpej
1907 1.159 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1908 1.159 msaitoh DELAY(40); /* XXX */
1909 1.159 msaitoh
1910 1.159 msaitoh /* Put PHY into ready state */
1911 1.159 msaitoh BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1912 1.159 msaitoh CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1913 1.159 msaitoh DELAY(40);
1914 1.159 msaitoh }
1915 1.159 msaitoh
1916 1.170 msaitoh return 0;
1917 1.158 msaitoh }
1918 1.16 thorpej
1919 1.158 msaitoh static int
1920 1.158 msaitoh bge_blockinit(struct bge_softc *sc)
1921 1.158 msaitoh {
1922 1.177 msaitoh volatile struct bge_rcb *rcb;
1923 1.177 msaitoh bus_size_t rcb_addr;
1924 1.177 msaitoh int i;
1925 1.177 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
1926 1.177 msaitoh bge_hostaddr taddr;
1927 1.177 msaitoh uint32_t val;
1928 1.16 thorpej
1929 1.158 msaitoh /*
1930 1.158 msaitoh * Initialize the memory window pointer register so that
1931 1.158 msaitoh * we can access the first 32K of internal NIC RAM. This will
1932 1.158 msaitoh * allow us to set up the TX send ring RCBs and the RX return
1933 1.158 msaitoh * ring RCBs, plus other things which live in NIC memory.
1934 1.158 msaitoh */
1935 1.55 pooka
1936 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1937 1.120 tsutsui
1938 1.180 msaitoh /* Step 33: Configure mbuf memory pool */
1939 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
1940 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1941 1.172 msaitoh BGE_BUFFPOOL_1);
1942 1.172 msaitoh
1943 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1944 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1945 1.172 msaitoh else
1946 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1947 1.40 fvdl
1948 1.158 msaitoh /* Configure DMA resource pool */
1949 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1950 1.158 msaitoh BGE_DMA_DESCRIPTORS);
1951 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1952 1.158 msaitoh }
1953 1.40 fvdl
1954 1.180 msaitoh /* Step 35: Configure mbuf pool watermarks */
1955 1.158 msaitoh #ifdef ORIG_WPAUL_VALUES
1956 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1957 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1958 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1959 1.158 msaitoh #else
1960 1.49 fvdl
1961 1.158 msaitoh /* new broadcom docs strongly recommend these: */
1962 1.172 msaitoh if (!BGE_IS_5705_PLUS(sc)) {
1963 1.158 msaitoh if (ifp->if_mtu > ETHER_MAX_LEN) {
1964 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1965 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1966 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1967 1.158 msaitoh } else {
1968 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1969 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1970 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1971 1.158 msaitoh }
1972 1.158 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1973 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1974 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1975 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1976 1.158 msaitoh } else {
1977 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1978 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1979 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1980 1.158 msaitoh }
1981 1.158 msaitoh #endif
1982 1.25 jonathan
1983 1.180 msaitoh /* Step 36: Configure DMA resource watermarks */
1984 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1985 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1986 1.51 fvdl
1987 1.180 msaitoh /* Step 38: Enable buffer manager */
1988 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MODE,
1989 1.172 msaitoh BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1990 1.44 hannken
1991 1.180 msaitoh /* Step 39: Poll for buffer manager start indication */
1992 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1993 1.172 msaitoh if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1994 1.172 msaitoh break;
1995 1.172 msaitoh DELAY(10);
1996 1.172 msaitoh }
1997 1.51 fvdl
1998 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
1999 1.172 msaitoh aprint_error_dev(sc->bge_dev,
2000 1.172 msaitoh "buffer manager failed to start\n");
2001 1.172 msaitoh return ENXIO;
2002 1.158 msaitoh }
2003 1.51 fvdl
2004 1.180 msaitoh /* Step 40: Enable flow-through queues */
2005 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2006 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2007 1.76 cube
2008 1.158 msaitoh /* Wait until queue initialization is complete */
2009 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2010 1.158 msaitoh if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2011 1.158 msaitoh break;
2012 1.158 msaitoh DELAY(10);
2013 1.158 msaitoh }
2014 1.76 cube
2015 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2016 1.158 msaitoh aprint_error_dev(sc->bge_dev,
2017 1.158 msaitoh "flow-through queue init failed\n");
2018 1.170 msaitoh return ENXIO;
2019 1.158 msaitoh }
2020 1.92 gavan
2021 1.180 msaitoh /* Step 41: Initialize the standard RX ring control block */
2022 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2023 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2024 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
2025 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2026 1.158 msaitoh else
2027 1.158 msaitoh rcb->bge_maxlen_flags =
2028 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2029 1.172 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2030 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2031 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2032 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2033 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2034 1.119 tsutsui
2035 1.158 msaitoh /*
2036 1.180 msaitoh * Step 42: Initialize the jumbo RX ring control block
2037 1.158 msaitoh * We set the 'ring disabled' bit in the flags
2038 1.158 msaitoh * field until we're actually ready to start
2039 1.158 msaitoh * using this ring (i.e. once we set the MTU
2040 1.158 msaitoh * high enough to require it).
2041 1.158 msaitoh */
2042 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
2043 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2044 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr,
2045 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2046 1.158 msaitoh rcb->bge_maxlen_flags =
2047 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2048 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
2049 1.172 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2050 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2051 1.158 msaitoh rcb->bge_hostaddr.bge_addr_hi);
2052 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2053 1.158 msaitoh rcb->bge_hostaddr.bge_addr_lo);
2054 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2055 1.158 msaitoh rcb->bge_maxlen_flags);
2056 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2057 1.149 sborrill
2058 1.158 msaitoh /* Set up dummy disabled mini ring RCB */
2059 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2060 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2061 1.158 msaitoh BGE_RCB_FLAG_RING_DISABLED);
2062 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2063 1.158 msaitoh rcb->bge_maxlen_flags);
2064 1.133 markd
2065 1.158 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2066 1.158 msaitoh offsetof(struct bge_ring_data, bge_info),
2067 1.158 msaitoh sizeof (struct bge_gib),
2068 1.158 msaitoh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2069 1.158 msaitoh }
2070 1.133 markd
2071 1.158 msaitoh /*
2072 1.158 msaitoh * Set the BD ring replenish thresholds. The recommended
2073 1.158 msaitoh * values are 1/8th the number of descriptors allocated to
2074 1.158 msaitoh * each ring.
2075 1.158 msaitoh */
2076 1.158 msaitoh i = BGE_STD_RX_RING_CNT / 8;
2077 1.133 markd
2078 1.158 msaitoh /*
2079 1.158 msaitoh * Use a value of 8 for the following chips to workaround HW errata.
2080 1.158 msaitoh * Some of these chips have been added based on empirical
2081 1.158 msaitoh * evidence (they don't work unless this is done).
2082 1.158 msaitoh */
2083 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
2084 1.158 msaitoh i = 8;
2085 1.16 thorpej
2086 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2087 1.161 msaitoh CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2088 1.157 msaitoh
2089 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2090 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2091 1.172 msaitoh CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2092 1.172 msaitoh CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2093 1.172 msaitoh }
2094 1.172 msaitoh
2095 1.158 msaitoh /*
2096 1.158 msaitoh * Disable all unused send rings by setting the 'ring disabled'
2097 1.158 msaitoh * bit in the flags field of all the TX send ring control blocks.
2098 1.158 msaitoh * These are located in NIC memory.
2099 1.158 msaitoh */
2100 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2101 1.158 msaitoh for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2102 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2103 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2104 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2105 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
2106 1.158 msaitoh }
2107 1.157 msaitoh
2108 1.158 msaitoh /* Configure TX RCB 0 (we use only the first ring) */
2109 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2110 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2111 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2112 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2113 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2114 1.158 msaitoh BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2115 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2116 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2117 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2118 1.157 msaitoh
2119 1.158 msaitoh /* Disable all unused RX return rings */
2120 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2121 1.158 msaitoh for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2122 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2123 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2124 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2125 1.172 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2126 1.172 msaitoh BGE_RCB_FLAG_RING_DISABLED));
2127 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2128 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2129 1.170 msaitoh (i * (sizeof(uint64_t))), 0);
2130 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
2131 1.158 msaitoh }
2132 1.157 msaitoh
2133 1.158 msaitoh /* Initialize RX ring indexes */
2134 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2135 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2136 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2137 1.157 msaitoh
2138 1.158 msaitoh /*
2139 1.158 msaitoh * Set up RX return ring 0
2140 1.158 msaitoh * Note that the NIC address for RX return rings is 0x00000000.
2141 1.158 msaitoh * The return rings live entirely within the host, so the
2142 1.158 msaitoh * nicaddr field in the RCB isn't used.
2143 1.158 msaitoh */
2144 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2145 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2146 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2147 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2148 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2149 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2150 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2151 1.157 msaitoh
2152 1.158 msaitoh /* Set random backoff seed for TX */
2153 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2154 1.158 msaitoh CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2155 1.158 msaitoh CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2156 1.158 msaitoh CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2157 1.158 msaitoh BGE_TX_BACKOFF_SEED_MASK);
2158 1.157 msaitoh
2159 1.158 msaitoh /* Set inter-packet gap */
2160 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2161 1.51 fvdl
2162 1.158 msaitoh /*
2163 1.158 msaitoh * Specify which ring to use for packets that don't match
2164 1.158 msaitoh * any RX rules.
2165 1.158 msaitoh */
2166 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2167 1.157 msaitoh
2168 1.158 msaitoh /*
2169 1.158 msaitoh * Configure number of RX lists. One interrupt distribution
2170 1.158 msaitoh * list, sixteen active lists, one bad frames class.
2171 1.158 msaitoh */
2172 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2173 1.157 msaitoh
2174 1.158 msaitoh /* Inialize RX list placement stats mask. */
2175 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2176 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2177 1.157 msaitoh
2178 1.158 msaitoh /* Disable host coalescing until we get it set up */
2179 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2180 1.51 fvdl
2181 1.158 msaitoh /* Poll to make sure it's shut down. */
2182 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2183 1.158 msaitoh if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2184 1.158 msaitoh break;
2185 1.158 msaitoh DELAY(10);
2186 1.158 msaitoh }
2187 1.151 cegger
2188 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2189 1.158 msaitoh aprint_error_dev(sc->bge_dev,
2190 1.158 msaitoh "host coalescing engine failed to idle\n");
2191 1.170 msaitoh return ENXIO;
2192 1.158 msaitoh }
2193 1.51 fvdl
2194 1.158 msaitoh /* Set up host coalescing defaults */
2195 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2196 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2197 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2198 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2199 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2200 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2201 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2202 1.51 fvdl }
2203 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2204 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2205 1.51 fvdl
2206 1.158 msaitoh /* Set up address of statistics block */
2207 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2208 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2209 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2210 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2211 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2212 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2213 1.16 thorpej }
2214 1.16 thorpej
2215 1.158 msaitoh /* Set up address of status block */
2216 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2217 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2218 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2219 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2220 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2221 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2222 1.16 thorpej
2223 1.158 msaitoh /* Turn on host coalescing state machine */
2224 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2225 1.7 thorpej
2226 1.158 msaitoh /* Turn on RX BD completion state machine and enable attentions */
2227 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDC_MODE,
2228 1.161 msaitoh BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2229 1.7 thorpej
2230 1.158 msaitoh /* Turn on RX list placement state machine */
2231 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2232 1.51 fvdl
2233 1.158 msaitoh /* Turn on RX list selector state machine. */
2234 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2235 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2236 1.51 fvdl
2237 1.161 msaitoh val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2238 1.161 msaitoh BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2239 1.161 msaitoh BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2240 1.161 msaitoh BGE_MACMODE_FRMHDR_DMA_ENB;
2241 1.161 msaitoh
2242 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2243 1.177 msaitoh val |= BGE_PORTMODE_TBI;
2244 1.161 msaitoh else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2245 1.177 msaitoh val |= BGE_PORTMODE_GMII;
2246 1.161 msaitoh else
2247 1.177 msaitoh val |= BGE_PORTMODE_MII;
2248 1.161 msaitoh
2249 1.158 msaitoh /* Turn on DMA, clear stats */
2250 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2251 1.161 msaitoh
2252 1.158 msaitoh /* Set misc. local control, enable interrupts on attentions */
2253 1.158 msaitoh sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2254 1.51 fvdl
2255 1.158 msaitoh #ifdef notdef
2256 1.158 msaitoh /* Assert GPIO pins for PHY reset */
2257 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2258 1.158 msaitoh BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2259 1.158 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2260 1.158 msaitoh BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2261 1.158 msaitoh #endif
2262 1.98 jonathan
2263 1.158 msaitoh #if defined(not_quite_yet)
2264 1.158 msaitoh /* Linux driver enables enable gpio pin #1 on 5700s */
2265 1.158 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2266 1.158 msaitoh sc->bge_local_ctrl_reg |=
2267 1.158 msaitoh (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2268 1.158 msaitoh }
2269 1.158 msaitoh #endif
2270 1.158 msaitoh CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2271 1.80 fredb
2272 1.158 msaitoh /* Turn on DMA completion state machine */
2273 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2274 1.158 msaitoh CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2275 1.149 sborrill
2276 1.158 msaitoh /* Turn on write DMA state machine */
2277 1.158 msaitoh {
2278 1.158 msaitoh uint32_t bge_wdma_mode =
2279 1.158 msaitoh BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2280 1.76 cube
2281 1.158 msaitoh /* Enable host coalescing bug fix; see Linux tg3.c */
2282 1.172 msaitoh if (BGE_IS_5755_PLUS(sc))
2283 1.172 msaitoh bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2284 1.76 cube
2285 1.158 msaitoh CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2286 1.178 msaitoh }
2287 1.76 cube
2288 1.158 msaitoh /* Turn on read DMA state machine */
2289 1.158 msaitoh {
2290 1.158 msaitoh uint32_t dma_read_modebits;
2291 1.91 gavan
2292 1.158 msaitoh dma_read_modebits =
2293 1.158 msaitoh BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2294 1.98 jonathan
2295 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2296 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2297 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2298 1.172 msaitoh dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2299 1.172 msaitoh BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2300 1.172 msaitoh BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2301 1.172 msaitoh
2302 1.172 msaitoh if (sc->bge_flags & BGE_PCIE)
2303 1.158 msaitoh dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2304 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
2305 1.172 msaitoh dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2306 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2307 1.172 msaitoh delay(40);
2308 1.158 msaitoh }
2309 1.128 tron
2310 1.158 msaitoh /* Turn on RX data completion state machine */
2311 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2312 1.128 tron
2313 1.158 msaitoh /* Turn on RX BD initiator state machine */
2314 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2315 1.133 markd
2316 1.158 msaitoh /* Turn on RX data and RX BD initiator state machine */
2317 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2318 1.133 markd
2319 1.158 msaitoh /* Turn on Mbuf cluster free state machine */
2320 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2321 1.158 msaitoh CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2322 1.133 markd
2323 1.158 msaitoh /* Turn on send BD completion state machine */
2324 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2325 1.133 markd
2326 1.158 msaitoh /* Turn on send data completion state machine */
2327 1.172 msaitoh val = BGE_SDCMODE_ENABLE;
2328 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2329 1.172 msaitoh val |= BGE_SDCMODE_CDELAY;
2330 1.172 msaitoh CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2331 1.106 jonathan
2332 1.158 msaitoh /* Turn on send data initiator state machine */
2333 1.172 msaitoh if (sc->bge_flags & BGE_TSO) {
2334 1.158 msaitoh /* XXX: magic value from Linux driver */
2335 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2336 1.177 msaitoh } else
2337 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2338 1.106 jonathan
2339 1.158 msaitoh /* Turn on send BD initiator state machine */
2340 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2341 1.133 markd
2342 1.158 msaitoh /* Turn on send BD selector state machine */
2343 1.158 msaitoh CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2344 1.135 taca
2345 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2346 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2347 1.161 msaitoh BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2348 1.133 markd
2349 1.158 msaitoh /* ack/clear link change events */
2350 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2351 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2352 1.172 msaitoh BGE_MACSTAT_LINK_CHANGED);
2353 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, 0);
2354 1.106 jonathan
2355 1.158 msaitoh /* Enable PHY auto polling (for MII/GMII only) */
2356 1.158 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2357 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2358 1.178 msaitoh } else {
2359 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2360 1.161 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2361 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2362 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2363 1.158 msaitoh BGE_EVTENB_MI_INTERRUPT);
2364 1.158 msaitoh }
2365 1.70 tron
2366 1.161 msaitoh /*
2367 1.161 msaitoh * Clear any pending link state attention.
2368 1.161 msaitoh * Otherwise some link state change events may be lost until attention
2369 1.161 msaitoh * is cleared by bge_intr() -> bge_link_upd() sequence.
2370 1.161 msaitoh * It's not necessary on newer BCM chips - perhaps enabling link
2371 1.161 msaitoh * state change attentions implies clearing pending attention.
2372 1.161 msaitoh */
2373 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2374 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2375 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
2376 1.161 msaitoh
2377 1.158 msaitoh /* Enable link state change attentions. */
2378 1.158 msaitoh BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2379 1.51 fvdl
2380 1.170 msaitoh return 0;
2381 1.158 msaitoh }
2382 1.7 thorpej
2383 1.158 msaitoh static const struct bge_revision *
2384 1.158 msaitoh bge_lookup_rev(uint32_t chipid)
2385 1.158 msaitoh {
2386 1.158 msaitoh const struct bge_revision *br;
2387 1.7 thorpej
2388 1.158 msaitoh for (br = bge_revisions; br->br_name != NULL; br++) {
2389 1.158 msaitoh if (br->br_chipid == chipid)
2390 1.170 msaitoh return br;
2391 1.158 msaitoh }
2392 1.151 cegger
2393 1.158 msaitoh for (br = bge_majorrevs; br->br_name != NULL; br++) {
2394 1.158 msaitoh if (br->br_chipid == BGE_ASICREV(chipid))
2395 1.170 msaitoh return br;
2396 1.158 msaitoh }
2397 1.151 cegger
2398 1.170 msaitoh return NULL;
2399 1.158 msaitoh }
2400 1.7 thorpej
2401 1.7 thorpej static const struct bge_product *
2402 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
2403 1.7 thorpej {
2404 1.7 thorpej const struct bge_product *bp;
2405 1.7 thorpej
2406 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
2407 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2408 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2409 1.170 msaitoh return bp;
2410 1.7 thorpej }
2411 1.7 thorpej
2412 1.170 msaitoh return NULL;
2413 1.7 thorpej }
2414 1.7 thorpej
2415 1.104 thorpej static int
2416 1.116 christos bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2417 1.25 jonathan {
2418 1.25 jonathan #ifdef NOTYET
2419 1.170 msaitoh uint32_t pm_ctl = 0;
2420 1.25 jonathan
2421 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
2422 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2423 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2424 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2425 1.25 jonathan
2426 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
2427 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2428 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
2429 1.25 jonathan pm_ctl |= (1 << 8);
2430 1.25 jonathan
2431 1.25 jonathan if (powerlevel == 0) {
2432 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
2433 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2434 1.25 jonathan pm_ctl, 2);
2435 1.25 jonathan DELAY(10000);
2436 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2437 1.25 jonathan DELAY(10000);
2438 1.25 jonathan
2439 1.25 jonathan #ifdef NOTYET
2440 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2441 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2442 1.25 jonathan #endif
2443 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
2444 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
2445 1.25 jonathan return 0;
2446 1.25 jonathan }
2447 1.25 jonathan
2448 1.25 jonathan
2449 1.25 jonathan /*
2450 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
2451 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
2452 1.184 njoly * followed Broadcom's sample pcb layout. Until we verify that
2453 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
2454 1.25 jonathan */
2455 1.138 joerg aprint_error_dev(sc->bge_dev,
2456 1.138 joerg "power state %d unimplemented; check GPIO pins\n",
2457 1.138 joerg powerlevel);
2458 1.25 jonathan #endif
2459 1.25 jonathan return EOPNOTSUPP;
2460 1.25 jonathan }
2461 1.25 jonathan
2462 1.25 jonathan
2463 1.1 fvdl /*
2464 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2465 1.1 fvdl * against our list and return its name if we find a match. Note
2466 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2467 1.1 fvdl * can get the device name string from the controller itself instead
2468 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2469 1.1 fvdl * we'll always announce the right product name.
2470 1.1 fvdl */
2471 1.104 thorpej static int
2472 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
2473 1.1 fvdl {
2474 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2475 1.1 fvdl
2476 1.7 thorpej if (bge_lookup(pa) != NULL)
2477 1.170 msaitoh return 1;
2478 1.1 fvdl
2479 1.170 msaitoh return 0;
2480 1.1 fvdl }
2481 1.1 fvdl
2482 1.104 thorpej static void
2483 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
2484 1.1 fvdl {
2485 1.138 joerg struct bge_softc *sc = device_private(self);
2486 1.1 fvdl struct pci_attach_args *pa = aux;
2487 1.164 msaitoh prop_dictionary_t dict;
2488 1.7 thorpej const struct bge_product *bp;
2489 1.16 thorpej const struct bge_revision *br;
2490 1.143 tron pci_chipset_tag_t pc;
2491 1.1 fvdl pci_intr_handle_t ih;
2492 1.1 fvdl const char *intrstr = NULL;
2493 1.1 fvdl bus_dma_segment_t seg;
2494 1.1 fvdl int rseg;
2495 1.170 msaitoh uint32_t hwcfg = 0;
2496 1.170 msaitoh uint32_t command;
2497 1.1 fvdl struct ifnet *ifp;
2498 1.170 msaitoh uint32_t misccfg;
2499 1.126 christos void * kva;
2500 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2501 1.172 msaitoh pcireg_t memtype, subid;
2502 1.1 fvdl bus_addr_t memaddr;
2503 1.1 fvdl bus_size_t memsize;
2504 1.170 msaitoh uint32_t pm_ctl;
2505 1.174 martin bool no_seeprom;
2506 1.87 perry
2507 1.7 thorpej bp = bge_lookup(pa);
2508 1.7 thorpej KASSERT(bp != NULL);
2509 1.7 thorpej
2510 1.141 jmcneill sc->sc_pc = pa->pa_pc;
2511 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
2512 1.138 joerg sc->bge_dev = self;
2513 1.1 fvdl
2514 1.172 msaitoh pc = sc->sc_pc;
2515 1.172 msaitoh subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2516 1.172 msaitoh
2517 1.30 thorpej aprint_naive(": Ethernet controller\n");
2518 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2519 1.1 fvdl
2520 1.1 fvdl /*
2521 1.1 fvdl * Map control/status registers.
2522 1.1 fvdl */
2523 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2524 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2525 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2526 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2527 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2528 1.1 fvdl
2529 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2530 1.138 joerg aprint_error_dev(sc->bge_dev,
2531 1.138 joerg "failed to enable memory mapping!\n");
2532 1.1 fvdl return;
2533 1.1 fvdl }
2534 1.1 fvdl
2535 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2536 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2537 1.178 msaitoh switch (memtype) {
2538 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2539 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2540 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2541 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2542 1.1 fvdl &memaddr, &memsize) == 0)
2543 1.1 fvdl break;
2544 1.1 fvdl default:
2545 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2546 1.1 fvdl return;
2547 1.1 fvdl }
2548 1.1 fvdl
2549 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2550 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2551 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2552 1.1 fvdl return;
2553 1.1 fvdl }
2554 1.1 fvdl
2555 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2556 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2557 1.1 fvdl
2558 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2559 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2560 1.1 fvdl
2561 1.1 fvdl if (sc->bge_intrhand == NULL) {
2562 1.138 joerg aprint_error_dev(sc->bge_dev,
2563 1.138 joerg "couldn't establish interrupt%s%s\n",
2564 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
2565 1.1 fvdl return;
2566 1.1 fvdl }
2567 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2568 1.1 fvdl
2569 1.25 jonathan /*
2570 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2571 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2572 1.25 jonathan * leaving the card in D3 powersave state.
2573 1.25 jonathan * We do not have memory-mapped registers in this state,
2574 1.25 jonathan * so force device into D0 state before starting initialization.
2575 1.25 jonathan */
2576 1.141 jmcneill pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2577 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2578 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2579 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2580 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2581 1.25 jonathan
2582 1.76 cube /*
2583 1.162 msaitoh * Save ASIC rev.
2584 1.76 cube */
2585 1.76 cube sc->bge_chipid =
2586 1.172 msaitoh pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2587 1.172 msaitoh >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2588 1.172 msaitoh
2589 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2590 1.172 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2591 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2592 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2593 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2594 1.172 msaitoh BGE_PCI_GEN2_PRODID_ASICREV);
2595 1.172 msaitoh else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2596 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2597 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2598 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2599 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2600 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2601 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2602 1.172 msaitoh BGE_PCI_GEN15_PRODID_ASICREV);
2603 1.172 msaitoh else
2604 1.172 msaitoh sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2605 1.172 msaitoh BGE_PCI_PRODID_ASICREV);
2606 1.172 msaitoh }
2607 1.76 cube
2608 1.141 jmcneill if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2609 1.180 msaitoh &sc->bge_pciecap, NULL) != 0) {
2610 1.171 msaitoh /* PCIe */
2611 1.157 msaitoh sc->bge_flags |= BGE_PCIE;
2612 1.177 msaitoh bge_set_max_readrq(sc);
2613 1.171 msaitoh } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2614 1.171 msaitoh BGE_PCISTATE_PCI_BUSMODE) == 0) {
2615 1.171 msaitoh /* PCI-X */
2616 1.157 msaitoh sc->bge_flags |= BGE_PCIX;
2617 1.180 msaitoh if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2618 1.180 msaitoh &sc->bge_pcixcap, NULL) == 0)
2619 1.180 msaitoh aprint_error_dev(sc->bge_dev,
2620 1.180 msaitoh "unable to find PCIX capability\n");
2621 1.171 msaitoh }
2622 1.76 cube
2623 1.172 msaitoh /* chipid */
2624 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2625 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2626 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2627 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2628 1.172 msaitoh sc->bge_flags |= BGE_5700_FAMILY;
2629 1.172 msaitoh
2630 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2631 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2632 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2633 1.172 msaitoh sc->bge_flags |= BGE_5714_FAMILY;
2634 1.172 msaitoh
2635 1.172 msaitoh /* Intentionally exclude BGE_ASICREV_BCM5906 */
2636 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2637 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2638 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2639 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2640 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2641 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2642 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2643 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2644 1.172 msaitoh sc->bge_flags |= BGE_5755_PLUS;
2645 1.172 msaitoh
2646 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2647 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2648 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2649 1.172 msaitoh BGE_IS_5755_PLUS(sc) ||
2650 1.172 msaitoh BGE_IS_5714_FAMILY(sc))
2651 1.172 msaitoh sc->bge_flags |= BGE_5750_PLUS;
2652 1.172 msaitoh
2653 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2654 1.172 msaitoh BGE_IS_5750_OR_BEYOND(sc))
2655 1.172 msaitoh sc->bge_flags |= BGE_5705_PLUS;
2656 1.172 msaitoh
2657 1.172 msaitoh /*
2658 1.172 msaitoh * When using the BCM5701 in PCI-X mode, data corruption has
2659 1.172 msaitoh * been observed in the first few bytes of some received packets.
2660 1.172 msaitoh * Aligning the packet buffer in memory eliminates the corruption.
2661 1.172 msaitoh * Unfortunately, this misaligns the packet payloads. On platforms
2662 1.172 msaitoh * which do not support unaligned accesses, we will realign the
2663 1.172 msaitoh * payloads by copying the received packets.
2664 1.172 msaitoh */
2665 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2666 1.172 msaitoh sc->bge_flags & BGE_PCIX)
2667 1.172 msaitoh sc->bge_flags |= BGE_RX_ALIGNBUG;
2668 1.172 msaitoh
2669 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
2670 1.172 msaitoh sc->bge_flags |= BGE_JUMBO_CAPABLE;
2671 1.172 msaitoh
2672 1.172 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2673 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2674 1.172 msaitoh PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2675 1.172 msaitoh sc->bge_flags |= BGE_NO_3LED;
2676 1.172 msaitoh
2677 1.172 msaitoh misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2678 1.172 msaitoh misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2679 1.172 msaitoh
2680 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2681 1.172 msaitoh (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2682 1.172 msaitoh misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2683 1.172 msaitoh sc->bge_flags |= BGE_IS_5788;
2684 1.172 msaitoh
2685 1.172 msaitoh /*
2686 1.172 msaitoh * Some controllers seem to require a special firmware to use
2687 1.172 msaitoh * TSO. But the firmware is not available to FreeBSD and Linux
2688 1.172 msaitoh * claims that the TSO performed by the firmware is slower than
2689 1.172 msaitoh * hardware based TSO. Moreover the firmware based TSO has one
2690 1.172 msaitoh * known bug which can't handle TSO if ethernet header + IP/TCP
2691 1.172 msaitoh * header is greater than 80 bytes. The workaround for the TSO
2692 1.172 msaitoh * bug exist but it seems it's too expensive than not using
2693 1.172 msaitoh * TSO at all. Some hardwares also have the TSO bug so limit
2694 1.172 msaitoh * the TSO to the controllers that are not affected TSO issues
2695 1.172 msaitoh * (e.g. 5755 or higher).
2696 1.172 msaitoh */
2697 1.172 msaitoh if (BGE_IS_5755_PLUS(sc)) {
2698 1.172 msaitoh /*
2699 1.172 msaitoh * BCM5754 and BCM5787 shares the same ASIC id so
2700 1.172 msaitoh * explicit device id check is required.
2701 1.172 msaitoh */
2702 1.172 msaitoh if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2703 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2704 1.172 msaitoh sc->bge_flags |= BGE_TSO;
2705 1.172 msaitoh }
2706 1.172 msaitoh
2707 1.172 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2708 1.172 msaitoh (misccfg == 0x4000 || misccfg == 0x8000)) ||
2709 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2710 1.172 msaitoh PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2711 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2712 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2713 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2714 1.172 msaitoh (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2715 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2716 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2717 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2718 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2719 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2720 1.172 msaitoh sc->bge_flags |= BGE_10_100_ONLY;
2721 1.172 msaitoh
2722 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2723 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2724 1.172 msaitoh (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2725 1.172 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2726 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2727 1.172 msaitoh sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2728 1.172 msaitoh
2729 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2730 1.162 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2731 1.162 msaitoh sc->bge_flags |= BGE_PHY_CRC_BUG;
2732 1.162 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2733 1.162 msaitoh BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2734 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADC_BUG;
2735 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2736 1.162 msaitoh sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2737 1.162 msaitoh
2738 1.172 msaitoh if (BGE_IS_5705_PLUS(sc) &&
2739 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2740 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2741 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2742 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2743 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2744 1.162 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2745 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2746 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2747 1.162 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2748 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2749 1.162 msaitoh PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2750 1.162 msaitoh sc->bge_flags |= BGE_PHY_JITTER_BUG;
2751 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2752 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2753 1.162 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2754 1.162 msaitoh sc->bge_flags |= BGE_PHY_BER_BUG;
2755 1.162 msaitoh }
2756 1.162 msaitoh
2757 1.174 martin /*
2758 1.174 martin * SEEPROM check.
2759 1.174 martin * First check if firmware knows we do not have SEEPROM.
2760 1.174 martin */
2761 1.180 msaitoh if (prop_dictionary_get_bool(device_properties(self),
2762 1.174 martin "without-seeprom", &no_seeprom) && no_seeprom)
2763 1.174 martin sc->bge_flags |= BGE_NO_EEPROM;
2764 1.174 martin
2765 1.174 martin /* Now check the 'ROM failed' bit on the RX CPU */
2766 1.174 martin else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2767 1.172 msaitoh sc->bge_flags |= BGE_NO_EEPROM;
2768 1.172 msaitoh
2769 1.1 fvdl /* Try to reset the chip. */
2770 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2771 1.1 fvdl bge_reset(sc);
2772 1.1 fvdl
2773 1.177 msaitoh sc->bge_asf_mode = 0;
2774 1.177 msaitoh if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2775 1.177 msaitoh == BGE_MAGIC_NUMBER)) {
2776 1.177 msaitoh if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2777 1.177 msaitoh & BGE_HWCFG_ASF) {
2778 1.177 msaitoh sc->bge_asf_mode |= ASF_ENABLE;
2779 1.177 msaitoh sc->bge_asf_mode |= ASF_STACKUP;
2780 1.180 msaitoh if (BGE_IS_5750_OR_BEYOND(sc)) {
2781 1.177 msaitoh sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2782 1.177 msaitoh }
2783 1.177 msaitoh }
2784 1.177 msaitoh }
2785 1.177 msaitoh
2786 1.177 msaitoh /* Try to reset the chip again the nice way. */
2787 1.177 msaitoh bge_stop_fw(sc);
2788 1.177 msaitoh bge_sig_pre_reset(sc, BGE_RESET_STOP);
2789 1.178 msaitoh if (bge_reset(sc))
2790 1.177 msaitoh aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2791 1.177 msaitoh
2792 1.177 msaitoh bge_sig_legacy(sc, BGE_RESET_STOP);
2793 1.177 msaitoh bge_sig_post_reset(sc, BGE_RESET_STOP);
2794 1.177 msaitoh
2795 1.1 fvdl if (bge_chipinit(sc)) {
2796 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2797 1.1 fvdl bge_release_resources(sc);
2798 1.1 fvdl return;
2799 1.1 fvdl }
2800 1.1 fvdl
2801 1.1 fvdl /*
2802 1.176 martin * Get station address from the EEPROM
2803 1.1 fvdl */
2804 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
2805 1.178 msaitoh aprint_error_dev(sc->bge_dev,
2806 1.178 msaitoh "failed to read station address\n");
2807 1.1 fvdl bge_release_resources(sc);
2808 1.1 fvdl return;
2809 1.1 fvdl }
2810 1.1 fvdl
2811 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2812 1.51 fvdl
2813 1.16 thorpej if (br == NULL) {
2814 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2815 1.172 msaitoh sc->bge_chipid);
2816 1.16 thorpej } else {
2817 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2818 1.172 msaitoh br->br_name, sc->bge_chipid);
2819 1.16 thorpej }
2820 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2821 1.1 fvdl
2822 1.1 fvdl /* Allocate the general information block and ring buffers. */
2823 1.41 fvdl if (pci_dma64_available(pa))
2824 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2825 1.41 fvdl else
2826 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2827 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2828 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2829 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2830 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2831 1.1 fvdl return;
2832 1.1 fvdl }
2833 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2834 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2835 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2836 1.1 fvdl BUS_DMA_NOWAIT)) {
2837 1.138 joerg aprint_error_dev(sc->bge_dev,
2838 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
2839 1.138 joerg sizeof(struct bge_ring_data));
2840 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2841 1.1 fvdl return;
2842 1.1 fvdl }
2843 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2844 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2845 1.1 fvdl sizeof(struct bge_ring_data), 0,
2846 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2847 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2848 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2849 1.1 fvdl sizeof(struct bge_ring_data));
2850 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2851 1.1 fvdl return;
2852 1.1 fvdl }
2853 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2854 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2855 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2856 1.1 fvdl BUS_DMA_NOWAIT)) {
2857 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2858 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2859 1.1 fvdl sizeof(struct bge_ring_data));
2860 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2861 1.1 fvdl return;
2862 1.1 fvdl }
2863 1.1 fvdl
2864 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2865 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2866 1.1 fvdl
2867 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2868 1.1 fvdl
2869 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2870 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
2871 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2872 1.138 joerg aprint_error_dev(sc->bge_dev,
2873 1.138 joerg "jumbo buffer allocation failed\n");
2874 1.44 hannken } else
2875 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2876 1.44 hannken }
2877 1.1 fvdl
2878 1.1 fvdl /* Set default tuneable values. */
2879 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2880 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2881 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2882 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2883 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2884 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2885 1.25 jonathan #else
2886 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2887 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2888 1.25 jonathan #endif
2889 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
2890 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
2891 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
2892 1.138 joerg aprint_verbose_dev(sc->bge_dev,
2893 1.138 joerg "setting short Tx thresholds\n");
2894 1.95 jonathan }
2895 1.1 fvdl
2896 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
2897 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2898 1.172 msaitoh else
2899 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2900 1.172 msaitoh
2901 1.1 fvdl /* Set up ifnet structure */
2902 1.1 fvdl ifp = &sc->ethercom.ec_if;
2903 1.1 fvdl ifp->if_softc = sc;
2904 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2905 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2906 1.141 jmcneill ifp->if_stop = bge_stop;
2907 1.1 fvdl ifp->if_start = bge_start;
2908 1.1 fvdl ifp->if_init = bge_init;
2909 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2910 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2911 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2912 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
2913 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2914 1.1 fvdl
2915 1.157 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2916 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2917 1.172 msaitoh IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2918 1.172 msaitoh #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2919 1.172 msaitoh sc->ethercom.ec_if.if_capabilities |=
2920 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2921 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2922 1.172 msaitoh #endif
2923 1.87 perry sc->ethercom.ec_capabilities |=
2924 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2925 1.1 fvdl
2926 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
2927 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2928 1.95 jonathan
2929 1.1 fvdl /*
2930 1.1 fvdl * Do MII setup.
2931 1.1 fvdl */
2932 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2933 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2934 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2935 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2936 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2937 1.1 fvdl
2938 1.1 fvdl /*
2939 1.1 fvdl * Figure out what sort of media we have by checking the
2940 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2941 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2942 1.1 fvdl * cards, this value appears to be unset. If that's the
2943 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2944 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2945 1.1 fvdl */
2946 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2947 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2948 1.175 martin } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2949 1.126 christos bge_read_eeprom(sc, (void *)&hwcfg,
2950 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2951 1.35 jonathan hwcfg = be32toh(hwcfg);
2952 1.35 jonathan }
2953 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2954 1.161 msaitoh if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2955 1.161 msaitoh (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2956 1.161 msaitoh if (BGE_IS_5714_FAMILY(sc))
2957 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_MII;
2958 1.161 msaitoh else
2959 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
2960 1.161 msaitoh }
2961 1.1 fvdl
2962 1.167 msaitoh /* set phyflags before mii_attach() */
2963 1.167 msaitoh dict = device_properties(self);
2964 1.167 msaitoh prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2965 1.167 msaitoh
2966 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2967 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2968 1.1 fvdl bge_ifmedia_sts);
2969 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2970 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2971 1.1 fvdl 0, NULL);
2972 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2973 1.177 msaitoh ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2974 1.155 he /* Pretend the user requested this setting */
2975 1.162 msaitoh sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2976 1.1 fvdl } else {
2977 1.1 fvdl /*
2978 1.177 msaitoh * Do transceiver setup and tell the firmware the
2979 1.177 msaitoh * driver is down so we can try to get access the
2980 1.177 msaitoh * probe if ASF is running. Retry a couple of times
2981 1.177 msaitoh * if we get a conflict with the ASF firmware accessing
2982 1.177 msaitoh * the PHY.
2983 1.1 fvdl */
2984 1.177 msaitoh BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2985 1.177 msaitoh bge_asf_driver_up(sc);
2986 1.177 msaitoh
2987 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2988 1.1 fvdl bge_ifmedia_sts);
2989 1.138 joerg mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2990 1.69 thorpej MII_PHY_ANY, MII_OFFSET_ANY,
2991 1.69 thorpej MIIF_FORCEANEG|MIIF_DOPAUSE);
2992 1.87 perry
2993 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2994 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2995 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2996 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2997 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2998 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2999 1.1 fvdl } else
3000 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
3001 1.1 fvdl IFM_ETHER|IFM_AUTO);
3002 1.177 msaitoh
3003 1.177 msaitoh /*
3004 1.177 msaitoh * Now tell the firmware we are going up after probing the PHY
3005 1.177 msaitoh */
3006 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
3007 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3008 1.1 fvdl }
3009 1.1 fvdl
3010 1.1 fvdl /*
3011 1.1 fvdl * Call MI attach routine.
3012 1.1 fvdl */
3013 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
3014 1.1 fvdl if_attach(ifp);
3015 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
3016 1.1 fvdl ether_ifattach(ifp, eaddr);
3017 1.186 msaitoh ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3018 1.148 mlelstv #if NRND > 0
3019 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3020 1.148 mlelstv RND_TYPE_NET, 0);
3021 1.148 mlelstv #endif
3022 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
3023 1.72 thorpej /*
3024 1.72 thorpej * Attach event counters.
3025 1.72 thorpej */
3026 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3027 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
3028 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3029 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
3030 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3031 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
3032 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3033 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
3034 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3035 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
3036 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3037 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
3038 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3039 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
3040 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
3041 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
3042 1.132 ad callout_init(&sc->bge_timeout, 0);
3043 1.82 jmcneill
3044 1.168 tsutsui if (pmf_device_register(self, NULL, NULL))
3045 1.168 tsutsui pmf_class_network_register(self, ifp);
3046 1.168 tsutsui else
3047 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
3048 1.172 msaitoh
3049 1.190 jruoho sysctl_bge_init(sc);
3050 1.190 jruoho
3051 1.172 msaitoh #ifdef BGE_DEBUG
3052 1.172 msaitoh bge_debug_info(sc);
3053 1.172 msaitoh #endif
3054 1.1 fvdl }
3055 1.1 fvdl
3056 1.104 thorpej static void
3057 1.104 thorpej bge_release_resources(struct bge_softc *sc)
3058 1.1 fvdl {
3059 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
3060 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
3061 1.1 fvdl
3062 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
3063 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
3064 1.1 fvdl }
3065 1.1 fvdl
3066 1.177 msaitoh static int
3067 1.104 thorpej bge_reset(struct bge_softc *sc)
3068 1.1 fvdl {
3069 1.180 msaitoh uint32_t cachesize, command, pcistate, marbmode;
3070 1.180 msaitoh #if 0
3071 1.180 msaitoh uint32_t new_pcistate;
3072 1.180 msaitoh #endif
3073 1.180 msaitoh pcireg_t devctl, reg;
3074 1.76 cube int i, val;
3075 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
3076 1.151 cegger
3077 1.178 msaitoh if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3078 1.178 msaitoh && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3079 1.178 msaitoh if (sc->bge_flags & BGE_PCIE)
3080 1.151 cegger write_op = bge_writemem_direct;
3081 1.178 msaitoh else
3082 1.151 cegger write_op = bge_writemem_ind;
3083 1.178 msaitoh } else
3084 1.151 cegger write_op = bge_writereg_ind;
3085 1.1 fvdl
3086 1.1 fvdl /* Save some important PCI state. */
3087 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3088 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3089 1.141 jmcneill pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3090 1.1 fvdl
3091 1.180 msaitoh /* Step 5a: Enable memory arbiter. */
3092 1.180 msaitoh marbmode = 0;
3093 1.180 msaitoh if (BGE_IS_5714_FAMILY(sc))
3094 1.180 msaitoh marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3095 1.180 msaitoh CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3096 1.180 msaitoh
3097 1.180 msaitoh /* Step 5b-5d: */
3098 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3099 1.172 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3100 1.172 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3101 1.1 fvdl
3102 1.180 msaitoh /* XXX ???: Disable fastboot on controllers that support it. */
3103 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3104 1.172 msaitoh BGE_IS_5755_PLUS(sc))
3105 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3106 1.119 tsutsui
3107 1.177 msaitoh /*
3108 1.180 msaitoh * Step 6: Write the magic number to SRAM at offset 0xB50.
3109 1.177 msaitoh * When firmware finishes its initialization it will
3110 1.177 msaitoh * write ~BGE_MAGIC_NUMBER to the same location.
3111 1.177 msaitoh */
3112 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3113 1.177 msaitoh
3114 1.180 msaitoh /* Step 7: */
3115 1.76 cube val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3116 1.76 cube /*
3117 1.76 cube * XXX: from FreeBSD/Linux; no documentation
3118 1.76 cube */
3119 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
3120 1.76 cube if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3121 1.157 msaitoh /* PCI Express 1.0 system */
3122 1.76 cube CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3123 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3124 1.157 msaitoh /*
3125 1.157 msaitoh * Prevent PCI Express link training
3126 1.157 msaitoh * during global reset.
3127 1.157 msaitoh */
3128 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3129 1.76 cube val |= (1<<29);
3130 1.76 cube }
3131 1.76 cube }
3132 1.76 cube
3133 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3134 1.180 msaitoh i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3135 1.180 msaitoh CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3136 1.180 msaitoh i | BGE_VCPU_STATUS_DRV_RESET);
3137 1.180 msaitoh i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3138 1.180 msaitoh CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3139 1.180 msaitoh i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3140 1.180 msaitoh }
3141 1.180 msaitoh
3142 1.161 msaitoh /*
3143 1.161 msaitoh * Set GPHY Power Down Override to leave GPHY
3144 1.161 msaitoh * powered up in D0 uninitialized.
3145 1.161 msaitoh */
3146 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
3147 1.161 msaitoh val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3148 1.161 msaitoh
3149 1.180 msaitoh /* XXX 5721, 5751 and 5752 */
3150 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3151 1.180 msaitoh val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3152 1.180 msaitoh
3153 1.1 fvdl /* Issue global reset */
3154 1.151 cegger write_op(sc, BGE_MISC_CFG, val);
3155 1.151 cegger
3156 1.180 msaitoh /* Step 8: wait for complete */
3157 1.180 msaitoh if (sc->bge_flags & BGE_PCIE)
3158 1.180 msaitoh delay(100*1000); /* too big */
3159 1.180 msaitoh else
3160 1.180 msaitoh delay(100);
3161 1.180 msaitoh
3162 1.180 msaitoh /* From Linux: dummy read to flush PCI posted writes */
3163 1.180 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3164 1.180 msaitoh
3165 1.180 msaitoh /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3166 1.180 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3167 1.180 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3168 1.180 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3169 1.180 msaitoh | BGE_PCIMISCCTL_CLOCKCTL_RW);
3170 1.180 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3171 1.180 msaitoh write_op(sc, BGE_MISC_CFG, (65 << 1));
3172 1.180 msaitoh
3173 1.180 msaitoh /* Step 11: disable PCI-X Relaxed Ordering. */
3174 1.180 msaitoh if (sc->bge_flags & BGE_PCIX) {
3175 1.180 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3176 1.180 msaitoh + PCI_PCIX_CMD);
3177 1.180 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3178 1.180 msaitoh + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3179 1.151 cegger }
3180 1.151 cegger
3181 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
3182 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3183 1.76 cube DELAY(500000);
3184 1.76 cube /* XXX: Magic Numbers */
3185 1.170 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3186 1.170 msaitoh BGE_PCI_UNKNOWN0);
3187 1.170 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3188 1.170 msaitoh BGE_PCI_UNKNOWN0,
3189 1.76 cube reg | (1 << 15));
3190 1.76 cube }
3191 1.177 msaitoh devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3192 1.180 msaitoh sc->bge_pciecap + PCI_PCIE_DCSR);
3193 1.177 msaitoh /* Clear enable no snoop and disable relaxed ordering. */
3194 1.177 msaitoh devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3195 1.177 msaitoh /* Set PCIE max payload size to 128. */
3196 1.177 msaitoh devctl &= ~(0x00e0);
3197 1.179 msaitoh /* Clear device status register. Write 1b to clear */
3198 1.179 msaitoh devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3199 1.179 msaitoh | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3200 1.177 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3201 1.180 msaitoh sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3202 1.76 cube }
3203 1.76 cube
3204 1.180 msaitoh /* Step 12: Enable memory arbiter. */
3205 1.180 msaitoh marbmode = 0;
3206 1.180 msaitoh if (BGE_IS_5714_FAMILY(sc))
3207 1.180 msaitoh marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3208 1.180 msaitoh CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3209 1.180 msaitoh
3210 1.184 njoly /* Step 17: Poll until the firmware initialization is complete */
3211 1.180 msaitoh bge_poll_fw(sc);
3212 1.1 fvdl
3213 1.180 msaitoh /* XXX 5721, 5751 and 5752 */
3214 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3215 1.180 msaitoh /* Step 19: */
3216 1.180 msaitoh BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3217 1.180 msaitoh /* Step 20: */
3218 1.180 msaitoh BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3219 1.44 hannken }
3220 1.1 fvdl
3221 1.180 msaitoh /*
3222 1.180 msaitoh * Step 18: wirte mac mode
3223 1.180 msaitoh * XXX Write 0x0c for 5703S and 5704S
3224 1.180 msaitoh */
3225 1.180 msaitoh CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3226 1.180 msaitoh
3227 1.180 msaitoh
3228 1.180 msaitoh /* Step 21: 5822 B0 errata */
3229 1.181 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3230 1.181 msaitoh pcireg_t msidata;
3231 1.181 msaitoh
3232 1.181 msaitoh msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3233 1.181 msaitoh BGE_PCI_MSI_DATA);
3234 1.181 msaitoh msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3235 1.181 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3236 1.181 msaitoh msidata);
3237 1.181 msaitoh }
3238 1.151 cegger
3239 1.180 msaitoh /* Step 23: restore cache line size */
3240 1.180 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3241 1.1 fvdl
3242 1.180 msaitoh #if 0
3243 1.1 fvdl /*
3244 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
3245 1.1 fvdl * return to its original pre-reset state. This is a
3246 1.1 fvdl * fairly good indicator of reset completion. If we don't
3247 1.1 fvdl * wait for the reset to fully complete, trying to read
3248 1.1 fvdl * from the device's non-PCI registers may yield garbage
3249 1.1 fvdl * results.
3250 1.1 fvdl */
3251 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
3252 1.141 jmcneill new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3253 1.61 jonathan BGE_PCI_PCISTATE);
3254 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3255 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED))
3256 1.1 fvdl break;
3257 1.1 fvdl DELAY(10);
3258 1.1 fvdl }
3259 1.87 perry if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3260 1.62 jonathan (pcistate & ~BGE_PCISTATE_RESERVED)) {
3261 1.138 joerg aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3262 1.61 jonathan }
3263 1.172 msaitoh #endif
3264 1.1 fvdl
3265 1.180 msaitoh /* Step 28: Fix up byte swapping */
3266 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3267 1.1 fvdl
3268 1.177 msaitoh /* Tell the ASF firmware we are up */
3269 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
3270 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3271 1.177 msaitoh
3272 1.161 msaitoh /*
3273 1.161 msaitoh * The 5704 in TBI mode apparently needs some special
3274 1.161 msaitoh * adjustment to insure the SERDES drive level is set
3275 1.161 msaitoh * to 1.2V.
3276 1.161 msaitoh */
3277 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3278 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3279 1.170 msaitoh uint32_t serdescfg;
3280 1.161 msaitoh
3281 1.161 msaitoh serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3282 1.161 msaitoh serdescfg = (serdescfg & ~0xFFF) | 0x880;
3283 1.161 msaitoh CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3284 1.161 msaitoh }
3285 1.161 msaitoh
3286 1.161 msaitoh if (sc->bge_flags & BGE_PCIE &&
3287 1.172 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3288 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3289 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3290 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3291 1.172 msaitoh uint32_t v;
3292 1.172 msaitoh
3293 1.172 msaitoh /* Enable PCI Express bug fix */
3294 1.172 msaitoh v = CSR_READ_4(sc, 0x7c00);
3295 1.172 msaitoh CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3296 1.172 msaitoh }
3297 1.1 fvdl DELAY(10000);
3298 1.177 msaitoh
3299 1.177 msaitoh return 0;
3300 1.1 fvdl }
3301 1.1 fvdl
3302 1.1 fvdl /*
3303 1.1 fvdl * Frame reception handling. This is called if there's a frame
3304 1.1 fvdl * on the receive return list.
3305 1.1 fvdl *
3306 1.1 fvdl * Note: we have to be able to handle two possibilities here:
3307 1.184 njoly * 1) the frame is from the jumbo receive ring
3308 1.1 fvdl * 2) the frame is from the standard receive ring
3309 1.1 fvdl */
3310 1.1 fvdl
3311 1.104 thorpej static void
3312 1.104 thorpej bge_rxeof(struct bge_softc *sc)
3313 1.1 fvdl {
3314 1.1 fvdl struct ifnet *ifp;
3315 1.172 msaitoh uint16_t rx_prod, rx_cons;
3316 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
3317 1.1 fvdl bus_dmamap_t dmamap;
3318 1.1 fvdl bus_addr_t offset, toff;
3319 1.1 fvdl bus_size_t tlen;
3320 1.1 fvdl int tosync;
3321 1.1 fvdl
3322 1.172 msaitoh rx_cons = sc->bge_rx_saved_considx;
3323 1.172 msaitoh rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3324 1.172 msaitoh
3325 1.172 msaitoh /* Nothing to do */
3326 1.172 msaitoh if (rx_cons == rx_prod)
3327 1.172 msaitoh return;
3328 1.172 msaitoh
3329 1.1 fvdl ifp = &sc->ethercom.ec_if;
3330 1.1 fvdl
3331 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3332 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3333 1.1 fvdl sizeof (struct bge_status_block),
3334 1.1 fvdl BUS_DMASYNC_POSTREAD);
3335 1.1 fvdl
3336 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3337 1.172 msaitoh tosync = rx_prod - rx_cons;
3338 1.1 fvdl
3339 1.148 mlelstv #if NRND > 0
3340 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3341 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3342 1.148 mlelstv #endif
3343 1.148 mlelstv
3344 1.172 msaitoh toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3345 1.1 fvdl
3346 1.1 fvdl if (tosync < 0) {
3347 1.172 msaitoh tlen = (sc->bge_return_ring_cnt - rx_cons) *
3348 1.1 fvdl sizeof (struct bge_rx_bd);
3349 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3350 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
3351 1.1 fvdl tosync = -tosync;
3352 1.1 fvdl }
3353 1.1 fvdl
3354 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3355 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
3356 1.1 fvdl BUS_DMASYNC_POSTREAD);
3357 1.1 fvdl
3358 1.172 msaitoh while (rx_cons != rx_prod) {
3359 1.1 fvdl struct bge_rx_bd *cur_rx;
3360 1.170 msaitoh uint32_t rxidx;
3361 1.1 fvdl struct mbuf *m = NULL;
3362 1.1 fvdl
3363 1.172 msaitoh cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3364 1.1 fvdl
3365 1.1 fvdl rxidx = cur_rx->bge_idx;
3366 1.172 msaitoh BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3367 1.1 fvdl
3368 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3369 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3370 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3371 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3372 1.1 fvdl jumbocnt++;
3373 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
3374 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
3375 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3376 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
3377 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3378 1.1 fvdl ifp->if_ierrors++;
3379 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3380 1.1 fvdl continue;
3381 1.1 fvdl }
3382 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3383 1.1 fvdl NULL)== ENOBUFS) {
3384 1.1 fvdl ifp->if_ierrors++;
3385 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3386 1.1 fvdl continue;
3387 1.1 fvdl }
3388 1.1 fvdl } else {
3389 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3390 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3391 1.124 bouyer
3392 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3393 1.1 fvdl stdcnt++;
3394 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3395 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3396 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3397 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3398 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
3399 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3400 1.1 fvdl ifp->if_ierrors++;
3401 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3402 1.1 fvdl continue;
3403 1.1 fvdl }
3404 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
3405 1.1 fvdl NULL, dmamap) == ENOBUFS) {
3406 1.1 fvdl ifp->if_ierrors++;
3407 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3408 1.1 fvdl continue;
3409 1.1 fvdl }
3410 1.1 fvdl }
3411 1.1 fvdl
3412 1.1 fvdl ifp->if_ipackets++;
3413 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
3414 1.178 msaitoh /*
3415 1.178 msaitoh * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3416 1.178 msaitoh * the Rx buffer has the layer-2 header unaligned.
3417 1.178 msaitoh * If our CPU requires alignment, re-align by copying.
3418 1.178 msaitoh */
3419 1.157 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3420 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3421 1.178 msaitoh cur_rx->bge_len);
3422 1.37 jonathan m->m_data += ETHER_ALIGN;
3423 1.37 jonathan }
3424 1.37 jonathan #endif
3425 1.87 perry
3426 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3427 1.1 fvdl m->m_pkthdr.rcvif = ifp;
3428 1.1 fvdl
3429 1.1 fvdl /*
3430 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
3431 1.1 fvdl */
3432 1.182 joerg bpf_mtap(ifp, m);
3433 1.1 fvdl
3434 1.60 drochner m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3435 1.46 jonathan
3436 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3437 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3438 1.46 jonathan /*
3439 1.46 jonathan * Rx transport checksum-offload may also
3440 1.46 jonathan * have bugs with packets which, when transmitted,
3441 1.46 jonathan * were `runts' requiring padding.
3442 1.46 jonathan */
3443 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3444 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3445 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3446 1.46 jonathan m->m_pkthdr.csum_data =
3447 1.46 jonathan cur_rx->bge_tcp_udp_csum;
3448 1.46 jonathan m->m_pkthdr.csum_flags |=
3449 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
3450 1.194 buhrow M_CSUM_DATA);
3451 1.1 fvdl }
3452 1.1 fvdl
3453 1.1 fvdl /*
3454 1.1 fvdl * If we received a packet with a vlan tag, pass it
3455 1.1 fvdl * to vlan_input() instead of ether_input().
3456 1.1 fvdl */
3457 1.150 dsl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3458 1.85 jdolecek VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3459 1.150 dsl }
3460 1.1 fvdl
3461 1.1 fvdl (*ifp->if_input)(ifp, m);
3462 1.1 fvdl }
3463 1.1 fvdl
3464 1.172 msaitoh sc->bge_rx_saved_considx = rx_cons;
3465 1.151 cegger bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3466 1.1 fvdl if (stdcnt)
3467 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3468 1.1 fvdl if (jumbocnt)
3469 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3470 1.1 fvdl }
3471 1.1 fvdl
3472 1.104 thorpej static void
3473 1.104 thorpej bge_txeof(struct bge_softc *sc)
3474 1.1 fvdl {
3475 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
3476 1.1 fvdl struct ifnet *ifp;
3477 1.1 fvdl struct txdmamap_pool_entry *dma;
3478 1.1 fvdl bus_addr_t offset, toff;
3479 1.1 fvdl bus_size_t tlen;
3480 1.1 fvdl int tosync;
3481 1.1 fvdl struct mbuf *m;
3482 1.1 fvdl
3483 1.1 fvdl ifp = &sc->ethercom.ec_if;
3484 1.1 fvdl
3485 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3486 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
3487 1.1 fvdl sizeof (struct bge_status_block),
3488 1.1 fvdl BUS_DMASYNC_POSTREAD);
3489 1.1 fvdl
3490 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
3491 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3492 1.1 fvdl sc->bge_tx_saved_considx;
3493 1.1 fvdl
3494 1.148 mlelstv #if NRND > 0
3495 1.148 mlelstv if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3496 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
3497 1.148 mlelstv #endif
3498 1.148 mlelstv
3499 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3500 1.1 fvdl
3501 1.1 fvdl if (tosync < 0) {
3502 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3503 1.1 fvdl sizeof (struct bge_tx_bd);
3504 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3505 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3506 1.1 fvdl tosync = -tosync;
3507 1.1 fvdl }
3508 1.1 fvdl
3509 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3510 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
3511 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3512 1.1 fvdl
3513 1.1 fvdl /*
3514 1.1 fvdl * Go through our tx ring and free mbufs for those
3515 1.1 fvdl * frames that have been sent.
3516 1.1 fvdl */
3517 1.1 fvdl while (sc->bge_tx_saved_considx !=
3518 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3519 1.170 msaitoh uint32_t idx = 0;
3520 1.1 fvdl
3521 1.1 fvdl idx = sc->bge_tx_saved_considx;
3522 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3523 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3524 1.1 fvdl ifp->if_opackets++;
3525 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
3526 1.1 fvdl if (m != NULL) {
3527 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
3528 1.1 fvdl dma = sc->txdma[idx];
3529 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3530 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3531 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3532 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3533 1.1 fvdl sc->txdma[idx] = NULL;
3534 1.1 fvdl
3535 1.1 fvdl m_freem(m);
3536 1.1 fvdl }
3537 1.1 fvdl sc->bge_txcnt--;
3538 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3539 1.1 fvdl ifp->if_timer = 0;
3540 1.1 fvdl }
3541 1.1 fvdl
3542 1.1 fvdl if (cur_tx != NULL)
3543 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3544 1.1 fvdl }
3545 1.1 fvdl
3546 1.104 thorpej static int
3547 1.104 thorpej bge_intr(void *xsc)
3548 1.1 fvdl {
3549 1.1 fvdl struct bge_softc *sc;
3550 1.1 fvdl struct ifnet *ifp;
3551 1.161 msaitoh uint32_t statusword;
3552 1.1 fvdl
3553 1.1 fvdl sc = xsc;
3554 1.1 fvdl ifp = &sc->ethercom.ec_if;
3555 1.1 fvdl
3556 1.161 msaitoh /* It is possible for the interrupt to arrive before
3557 1.161 msaitoh * the status block is updated prior to the interrupt.
3558 1.161 msaitoh * Reading the PCI State register will confirm whether the
3559 1.161 msaitoh * interrupt is ours and will flush the status block.
3560 1.161 msaitoh */
3561 1.144 mlelstv
3562 1.161 msaitoh /* read status word from status block */
3563 1.161 msaitoh statusword = sc->bge_rdata->bge_status_block.bge_status;
3564 1.144 mlelstv
3565 1.161 msaitoh if ((statusword & BGE_STATFLAG_UPDATED) ||
3566 1.161 msaitoh (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3567 1.161 msaitoh /* Ack interrupt and stop others from occuring. */
3568 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3569 1.144 mlelstv
3570 1.161 msaitoh BGE_EVCNT_INCR(sc->bge_ev_intr);
3571 1.1 fvdl
3572 1.161 msaitoh /* clear status word */
3573 1.161 msaitoh sc->bge_rdata->bge_status_block.bge_status = 0;
3574 1.72 thorpej
3575 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3576 1.161 msaitoh statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3577 1.161 msaitoh BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3578 1.161 msaitoh bge_link_upd(sc);
3579 1.1 fvdl
3580 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING) {
3581 1.161 msaitoh /* Check RX return ring producer/consumer */
3582 1.161 msaitoh bge_rxeof(sc);
3583 1.144 mlelstv
3584 1.161 msaitoh /* Check TX ring producer/consumer */
3585 1.161 msaitoh bge_txeof(sc);
3586 1.1 fvdl }
3587 1.1 fvdl
3588 1.161 msaitoh if (sc->bge_pending_rxintr_change) {
3589 1.161 msaitoh uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3590 1.161 msaitoh uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3591 1.161 msaitoh uint32_t junk;
3592 1.1 fvdl
3593 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3594 1.161 msaitoh DELAY(10);
3595 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3596 1.1 fvdl
3597 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3598 1.161 msaitoh DELAY(10);
3599 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3600 1.58 jonathan
3601 1.161 msaitoh sc->bge_pending_rxintr_change = 0;
3602 1.161 msaitoh }
3603 1.161 msaitoh bge_handle_events(sc);
3604 1.87 perry
3605 1.161 msaitoh /* Re-enable interrupts. */
3606 1.161 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3607 1.58 jonathan
3608 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3609 1.161 msaitoh bge_start(ifp);
3610 1.1 fvdl
3611 1.170 msaitoh return 1;
3612 1.161 msaitoh } else
3613 1.170 msaitoh return 0;
3614 1.1 fvdl }
3615 1.1 fvdl
3616 1.104 thorpej static void
3617 1.177 msaitoh bge_asf_driver_up(struct bge_softc *sc)
3618 1.177 msaitoh {
3619 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP) {
3620 1.177 msaitoh /* Send ASF heartbeat aprox. every 2s */
3621 1.177 msaitoh if (sc->bge_asf_count)
3622 1.177 msaitoh sc->bge_asf_count --;
3623 1.177 msaitoh else {
3624 1.180 msaitoh sc->bge_asf_count = 2;
3625 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3626 1.177 msaitoh BGE_FW_DRV_ALIVE);
3627 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3628 1.177 msaitoh bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3629 1.177 msaitoh CSR_WRITE_4(sc, BGE_CPU_EVENT,
3630 1.177 msaitoh CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3631 1.177 msaitoh }
3632 1.177 msaitoh }
3633 1.177 msaitoh }
3634 1.177 msaitoh
3635 1.177 msaitoh static void
3636 1.104 thorpej bge_tick(void *xsc)
3637 1.1 fvdl {
3638 1.1 fvdl struct bge_softc *sc = xsc;
3639 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3640 1.1 fvdl int s;
3641 1.1 fvdl
3642 1.1 fvdl s = splnet();
3643 1.1 fvdl
3644 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
3645 1.172 msaitoh bge_stats_update_regs(sc);
3646 1.172 msaitoh else
3647 1.172 msaitoh bge_stats_update(sc);
3648 1.1 fvdl
3649 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3650 1.161 msaitoh /*
3651 1.161 msaitoh * Since in TBI mode auto-polling can't be used we should poll
3652 1.161 msaitoh * link status manually. Here we register pending link event
3653 1.161 msaitoh * and trigger interrupt.
3654 1.161 msaitoh */
3655 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3656 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3657 1.161 msaitoh } else {
3658 1.161 msaitoh /*
3659 1.161 msaitoh * Do not touch PHY if we have link up. This could break
3660 1.161 msaitoh * IPMI/ASF mode or produce extra input errors.
3661 1.161 msaitoh * (extra input errors was reported for bcm5701 & bcm5704).
3662 1.161 msaitoh */
3663 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3664 1.161 msaitoh mii_tick(mii);
3665 1.161 msaitoh }
3666 1.161 msaitoh
3667 1.161 msaitoh callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3668 1.1 fvdl
3669 1.1 fvdl splx(s);
3670 1.1 fvdl }
3671 1.1 fvdl
3672 1.104 thorpej static void
3673 1.172 msaitoh bge_stats_update_regs(struct bge_softc *sc)
3674 1.172 msaitoh {
3675 1.172 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
3676 1.172 msaitoh
3677 1.172 msaitoh ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3678 1.172 msaitoh offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3679 1.172 msaitoh
3680 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3681 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3682 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3683 1.172 msaitoh }
3684 1.172 msaitoh
3685 1.172 msaitoh static void
3686 1.104 thorpej bge_stats_update(struct bge_softc *sc)
3687 1.1 fvdl {
3688 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3689 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3690 1.44 hannken
3691 1.1 fvdl #define READ_STAT(sc, stats, stat) \
3692 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3693 1.1 fvdl
3694 1.1 fvdl ifp->if_collisions +=
3695 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3696 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3697 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3698 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3699 1.1 fvdl ifp->if_collisions;
3700 1.1 fvdl
3701 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3702 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3703 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3704 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3705 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3706 1.72 thorpej READ_STAT(sc, stats,
3707 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
3708 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3709 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3710 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3711 1.72 thorpej READ_STAT(sc, stats,
3712 1.72 thorpej macControlFramesReceived.bge_addr_lo));
3713 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3714 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3715 1.72 thorpej
3716 1.1 fvdl #undef READ_STAT
3717 1.1 fvdl
3718 1.1 fvdl #ifdef notdef
3719 1.1 fvdl ifp->if_collisions +=
3720 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3721 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3722 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3723 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3724 1.1 fvdl ifp->if_collisions;
3725 1.1 fvdl #endif
3726 1.1 fvdl }
3727 1.1 fvdl
3728 1.46 jonathan /*
3729 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3730 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3731 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
3732 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
3733 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
3734 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
3735 1.46 jonathan */
3736 1.102 perry static inline int
3737 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
3738 1.46 jonathan {
3739 1.46 jonathan struct mbuf *last = NULL;
3740 1.46 jonathan int padlen;
3741 1.46 jonathan
3742 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3743 1.46 jonathan
3744 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
3745 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
3746 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
3747 1.46 jonathan last = pkt;
3748 1.46 jonathan } else {
3749 1.46 jonathan /*
3750 1.46 jonathan * Walk packet chain to find last mbuf. We will either
3751 1.87 perry * pad there, or append a new mbuf and pad it
3752 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
3753 1.46 jonathan */
3754 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
3755 1.114 tsutsui continue; /* do nothing */
3756 1.46 jonathan }
3757 1.46 jonathan
3758 1.46 jonathan /* `last' now points to last in chain. */
3759 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
3760 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
3761 1.46 jonathan struct mbuf *n;
3762 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
3763 1.129 joerg if (n == NULL)
3764 1.129 joerg return ENOBUFS;
3765 1.46 jonathan n->m_len = 0;
3766 1.46 jonathan last->m_next = n;
3767 1.46 jonathan last = n;
3768 1.46 jonathan }
3769 1.46 jonathan }
3770 1.46 jonathan
3771 1.114 tsutsui KDASSERT(!M_READONLY(last));
3772 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3773 1.114 tsutsui
3774 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
3775 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
3776 1.46 jonathan last->m_len += padlen;
3777 1.46 jonathan pkt->m_pkthdr.len += padlen;
3778 1.46 jonathan return 0;
3779 1.46 jonathan }
3780 1.45 jonathan
3781 1.45 jonathan /*
3782 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3783 1.45 jonathan */
3784 1.102 perry static inline int
3785 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
3786 1.45 jonathan {
3787 1.45 jonathan struct mbuf *m, *prev;
3788 1.45 jonathan int totlen, prevlen;
3789 1.45 jonathan
3790 1.45 jonathan prev = NULL;
3791 1.45 jonathan totlen = 0;
3792 1.45 jonathan prevlen = -1;
3793 1.45 jonathan
3794 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3795 1.45 jonathan int mlen = m->m_len;
3796 1.45 jonathan int shortfall = 8 - mlen ;
3797 1.45 jonathan
3798 1.45 jonathan totlen += mlen;
3799 1.45 jonathan if (mlen == 0) {
3800 1.45 jonathan continue;
3801 1.45 jonathan }
3802 1.45 jonathan if (mlen >= 8)
3803 1.45 jonathan continue;
3804 1.45 jonathan
3805 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
3806 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
3807 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
3808 1.45 jonathan */
3809 1.45 jonathan
3810 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
3811 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3812 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3813 1.45 jonathan prev->m_len += mlen;
3814 1.45 jonathan m->m_len = 0;
3815 1.45 jonathan /* XXX stitch chain */
3816 1.45 jonathan prev->m_next = m_free(m);
3817 1.45 jonathan m = prev;
3818 1.45 jonathan continue;
3819 1.45 jonathan }
3820 1.113 tsutsui else if (m->m_next != NULL &&
3821 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
3822 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
3823 1.45 jonathan /* m is writable and have enough data in next, pull up. */
3824 1.45 jonathan
3825 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
3826 1.115 tsutsui shortfall);
3827 1.45 jonathan m->m_len += shortfall;
3828 1.45 jonathan m->m_next->m_len -= shortfall;
3829 1.45 jonathan m->m_next->m_data += shortfall;
3830 1.45 jonathan }
3831 1.45 jonathan else if (m->m_next == NULL || 1) {
3832 1.45 jonathan /* Got a runt at the very end of the packet.
3833 1.45 jonathan * borrow data from the tail of the preceding mbuf and
3834 1.45 jonathan * update its length in-place. (The original data is still
3835 1.45 jonathan * valid, so we can do this even if prev is not writable.)
3836 1.45 jonathan */
3837 1.45 jonathan
3838 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
3839 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3840 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3841 1.111 christos
3842 1.45 jonathan if ((prev->m_len - shortfall) < 8)
3843 1.45 jonathan shortfall = prev->m_len;
3844 1.87 perry
3845 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
3846 1.45 jonathan if (!M_READONLY(m)) {
3847 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
3848 1.45 jonathan void *m_dat;
3849 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
3850 1.45 jonathan m->m_pktdat : m->dat;
3851 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
3852 1.45 jonathan m->m_data = m_dat;
3853 1.45 jonathan }
3854 1.45 jonathan } else
3855 1.45 jonathan #endif /* just do the safe slow thing */
3856 1.45 jonathan {
3857 1.45 jonathan struct mbuf * n = NULL;
3858 1.45 jonathan int newprevlen = prev->m_len - shortfall;
3859 1.45 jonathan
3860 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3861 1.45 jonathan if (n == NULL)
3862 1.45 jonathan return ENOBUFS;
3863 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3864 1.45 jonathan /*,
3865 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3866 1.45 jonathan
3867 1.45 jonathan /* first copy the data we're stealing from prev */
3868 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
3869 1.115 tsutsui shortfall);
3870 1.45 jonathan
3871 1.45 jonathan /* update prev->m_len accordingly */
3872 1.45 jonathan prev->m_len -= shortfall;
3873 1.45 jonathan
3874 1.45 jonathan /* copy data from runt m */
3875 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
3876 1.115 tsutsui m->m_len);
3877 1.45 jonathan
3878 1.45 jonathan /* n holds what we stole from prev, plus m */
3879 1.45 jonathan n->m_len = shortfall + m->m_len;
3880 1.45 jonathan
3881 1.45 jonathan /* stitch n into chain and free m */
3882 1.45 jonathan n->m_next = m->m_next;
3883 1.45 jonathan prev->m_next = n;
3884 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3885 1.45 jonathan m->m_next = NULL;
3886 1.45 jonathan m_free(m);
3887 1.45 jonathan m = n; /* for continuing loop */
3888 1.45 jonathan }
3889 1.45 jonathan }
3890 1.45 jonathan prevlen = m->m_len;
3891 1.45 jonathan }
3892 1.45 jonathan return 0;
3893 1.45 jonathan }
3894 1.45 jonathan
3895 1.1 fvdl /*
3896 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3897 1.1 fvdl * pointers to descriptors.
3898 1.1 fvdl */
3899 1.104 thorpej static int
3900 1.170 msaitoh bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3901 1.1 fvdl {
3902 1.1 fvdl struct bge_tx_bd *f = NULL;
3903 1.170 msaitoh uint32_t frag, cur;
3904 1.170 msaitoh uint16_t csum_flags = 0;
3905 1.170 msaitoh uint16_t txbd_tso_flags = 0;
3906 1.1 fvdl struct txdmamap_pool_entry *dma;
3907 1.1 fvdl bus_dmamap_t dmamap;
3908 1.1 fvdl int i = 0;
3909 1.29 itojun struct m_tag *mtag;
3910 1.95 jonathan int use_tso, maxsegsize, error;
3911 1.107 blymn
3912 1.1 fvdl cur = frag = *txidx;
3913 1.1 fvdl
3914 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3915 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3916 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3917 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3918 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3919 1.1 fvdl }
3920 1.1 fvdl
3921 1.87 perry /*
3922 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3923 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3924 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3925 1.46 jonathan * (For now, do this for all chip versions, until newer
3926 1.46 jonathan * are confirmed to not require the workaround.)
3927 1.46 jonathan */
3928 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3929 1.46 jonathan #ifdef notyet
3930 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3931 1.87 perry #endif
3932 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3933 1.46 jonathan goto check_dma_bug;
3934 1.46 jonathan
3935 1.170 msaitoh if (bge_cksum_pad(m_head) != 0)
3936 1.46 jonathan return ENOBUFS;
3937 1.46 jonathan
3938 1.46 jonathan check_dma_bug:
3939 1.157 msaitoh if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3940 1.29 itojun goto doit;
3941 1.157 msaitoh
3942 1.25 jonathan /*
3943 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3944 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
3945 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3946 1.25 jonathan */
3947 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3948 1.45 jonathan return ENOBUFS;
3949 1.25 jonathan
3950 1.25 jonathan doit:
3951 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3952 1.1 fvdl if (dma == NULL)
3953 1.1 fvdl return ENOBUFS;
3954 1.1 fvdl dmamap = dma->dmamap;
3955 1.1 fvdl
3956 1.1 fvdl /*
3957 1.95 jonathan * Set up any necessary TSO state before we start packing...
3958 1.95 jonathan */
3959 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3960 1.95 jonathan if (!use_tso) {
3961 1.95 jonathan maxsegsize = 0;
3962 1.95 jonathan } else { /* TSO setup */
3963 1.95 jonathan unsigned mss;
3964 1.95 jonathan struct ether_header *eh;
3965 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3966 1.95 jonathan struct mbuf * m0 = m_head;
3967 1.95 jonathan struct ip *ip;
3968 1.95 jonathan struct tcphdr *th;
3969 1.95 jonathan int iphl, hlen;
3970 1.95 jonathan
3971 1.95 jonathan /*
3972 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
3973 1.95 jonathan * fields for the protocol headers.
3974 1.95 jonathan */
3975 1.95 jonathan
3976 1.95 jonathan eh = mtod(m0, struct ether_header *);
3977 1.95 jonathan switch (htons(eh->ether_type)) {
3978 1.95 jonathan case ETHERTYPE_IP:
3979 1.95 jonathan offset = ETHER_HDR_LEN;
3980 1.95 jonathan break;
3981 1.95 jonathan
3982 1.95 jonathan case ETHERTYPE_VLAN:
3983 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3984 1.95 jonathan break;
3985 1.95 jonathan
3986 1.95 jonathan default:
3987 1.95 jonathan /*
3988 1.95 jonathan * Don't support this protocol or encapsulation.
3989 1.95 jonathan */
3990 1.170 msaitoh return ENOBUFS;
3991 1.95 jonathan }
3992 1.95 jonathan
3993 1.95 jonathan /*
3994 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
3995 1.95 jonathan * this the easy way.
3996 1.95 jonathan */
3997 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3998 1.95 jonathan hlen = iphl + offset;
3999 1.95 jonathan if (__predict_false(m0->m_len <
4000 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
4001 1.95 jonathan
4002 1.138 joerg aprint_debug_dev(sc->bge_dev,
4003 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4004 1.138 joerg "not handled yet\n",
4005 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
4006 1.95 jonathan #ifdef NOTYET
4007 1.95 jonathan /*
4008 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
4009 1.95 jonathan * how to force this branch to be taken?
4010 1.95 jonathan */
4011 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4012 1.95 jonathan
4013 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
4014 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
4015 1.95 jonathan
4016 1.95 jonathan ip.ip_len = 0;
4017 1.95 jonathan
4018 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4019 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
4020 1.95 jonathan
4021 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4022 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4023 1.95 jonathan
4024 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4025 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
4026 1.95 jonathan
4027 1.95 jonathan hlen += th.th_off << 2;
4028 1.95 jonathan iptcp_opt_words = hlen;
4029 1.95 jonathan #else
4030 1.95 jonathan /*
4031 1.95 jonathan * if_wm "hard" case not yet supported, can we not
4032 1.95 jonathan * mandate it out of existence?
4033 1.95 jonathan */
4034 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
4035 1.95 jonathan
4036 1.95 jonathan return ENOBUFS;
4037 1.95 jonathan #endif
4038 1.95 jonathan } else {
4039 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
4040 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4041 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
4042 1.95 jonathan
4043 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
4044 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
4045 1.95 jonathan - sizeof(struct tcphdr)
4046 1.95 jonathan - sizeof(struct ip)) >> 2;
4047 1.95 jonathan }
4048 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc)) {
4049 1.95 jonathan th->th_sum = 0;
4050 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4051 1.95 jonathan } else {
4052 1.95 jonathan /*
4053 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
4054 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
4055 1.95 jonathan */
4056 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4057 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4058 1.95 jonathan }
4059 1.95 jonathan
4060 1.95 jonathan mss = m_head->m_pkthdr.segsz;
4061 1.107 blymn txbd_tso_flags |=
4062 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
4063 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
4064 1.95 jonathan
4065 1.95 jonathan /*
4066 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
4067 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
4068 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
4069 1.95 jonathan * supplied header into the IP/TCP header portion of
4070 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
4071 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
4072 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
4073 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
4074 1.95 jonathan * Unfortunately, the driver encoding of option length
4075 1.95 jonathan * varies across different ASIC families.
4076 1.95 jonathan */
4077 1.95 jonathan tcp_seg_flags = 0;
4078 1.95 jonathan if (iptcp_opt_words) {
4079 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
4080 1.95 jonathan tcp_seg_flags =
4081 1.95 jonathan iptcp_opt_words << 11;
4082 1.95 jonathan } else {
4083 1.95 jonathan txbd_tso_flags |=
4084 1.95 jonathan iptcp_opt_words << 12;
4085 1.95 jonathan }
4086 1.95 jonathan }
4087 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
4088 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
4089 1.95 jonathan
4090 1.95 jonathan } /* TSO setup */
4091 1.95 jonathan
4092 1.95 jonathan /*
4093 1.1 fvdl * Start packing the mbufs in this chain into
4094 1.1 fvdl * the fragment pointers. Stop when we run out
4095 1.1 fvdl * of fragments or hit the end of the mbuf chain.
4096 1.1 fvdl */
4097 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4098 1.95 jonathan BUS_DMA_NOWAIT);
4099 1.170 msaitoh if (error)
4100 1.170 msaitoh return ENOBUFS;
4101 1.118 tsutsui /*
4102 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
4103 1.118 tsutsui * of the end of the ring.
4104 1.118 tsutsui */
4105 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4106 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
4107 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
4108 1.138 joerg device_xname(sc->bge_dev)));
4109 1.118 tsutsui goto fail_unload;
4110 1.118 tsutsui }
4111 1.95 jonathan
4112 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
4113 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4114 1.1 fvdl
4115 1.6 thorpej
4116 1.95 jonathan /* Iterate over dmap-map fragments. */
4117 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
4118 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
4119 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4120 1.1 fvdl break;
4121 1.107 blymn
4122 1.172 msaitoh BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4123 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
4124 1.95 jonathan
4125 1.95 jonathan /*
4126 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
4127 1.95 jonathan * off checksum-assist flag in the tx-descr, and
4128 1.95 jonathan * supply the ASIC-revision-specific encoding
4129 1.95 jonathan * of TSO flags and segsize.
4130 1.95 jonathan */
4131 1.95 jonathan if (use_tso) {
4132 1.95 jonathan if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4133 1.95 jonathan f->bge_rsvd = maxsegsize;
4134 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
4135 1.95 jonathan } else {
4136 1.95 jonathan f->bge_rsvd = 0;
4137 1.95 jonathan f->bge_flags =
4138 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
4139 1.95 jonathan }
4140 1.95 jonathan } else {
4141 1.95 jonathan f->bge_rsvd = 0;
4142 1.95 jonathan f->bge_flags = csum_flags;
4143 1.95 jonathan }
4144 1.1 fvdl
4145 1.28 itojun if (mtag != NULL) {
4146 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4147 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4148 1.1 fvdl } else {
4149 1.1 fvdl f->bge_vlan_tag = 0;
4150 1.1 fvdl }
4151 1.1 fvdl cur = frag;
4152 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
4153 1.1 fvdl }
4154 1.1 fvdl
4155 1.95 jonathan if (i < dmamap->dm_nsegs) {
4156 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4157 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4158 1.118 tsutsui goto fail_unload;
4159 1.95 jonathan }
4160 1.1 fvdl
4161 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4162 1.1 fvdl BUS_DMASYNC_PREWRITE);
4163 1.1 fvdl
4164 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
4165 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4166 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4167 1.95 jonathan
4168 1.118 tsutsui goto fail_unload;
4169 1.95 jonathan }
4170 1.1 fvdl
4171 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4172 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
4173 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4174 1.1 fvdl sc->txdma[cur] = dma;
4175 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
4176 1.1 fvdl
4177 1.1 fvdl *txidx = frag;
4178 1.1 fvdl
4179 1.170 msaitoh return 0;
4180 1.118 tsutsui
4181 1.158 msaitoh fail_unload:
4182 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
4183 1.118 tsutsui
4184 1.118 tsutsui return ENOBUFS;
4185 1.1 fvdl }
4186 1.1 fvdl
4187 1.1 fvdl /*
4188 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4189 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
4190 1.1 fvdl */
4191 1.104 thorpej static void
4192 1.104 thorpej bge_start(struct ifnet *ifp)
4193 1.1 fvdl {
4194 1.1 fvdl struct bge_softc *sc;
4195 1.1 fvdl struct mbuf *m_head = NULL;
4196 1.170 msaitoh uint32_t prodidx;
4197 1.1 fvdl int pkts = 0;
4198 1.1 fvdl
4199 1.1 fvdl sc = ifp->if_softc;
4200 1.1 fvdl
4201 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4202 1.1 fvdl return;
4203 1.1 fvdl
4204 1.94 jonathan prodidx = sc->bge_tx_prodidx;
4205 1.1 fvdl
4206 1.170 msaitoh while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4207 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
4208 1.1 fvdl if (m_head == NULL)
4209 1.1 fvdl break;
4210 1.1 fvdl
4211 1.1 fvdl #if 0
4212 1.1 fvdl /*
4213 1.1 fvdl * XXX
4214 1.1 fvdl * safety overkill. If this is a fragmented packet chain
4215 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
4216 1.1 fvdl * it if we have enough descriptors to handle the entire
4217 1.1 fvdl * chain at once.
4218 1.1 fvdl * (paranoia -- may not actually be needed)
4219 1.1 fvdl */
4220 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
4221 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4222 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4223 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4224 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4225 1.1 fvdl break;
4226 1.1 fvdl }
4227 1.1 fvdl }
4228 1.1 fvdl #endif
4229 1.1 fvdl
4230 1.1 fvdl /*
4231 1.1 fvdl * Pack the data into the transmit ring. If we
4232 1.1 fvdl * don't have room, set the OACTIVE flag and wait
4233 1.1 fvdl * for the NIC to drain the ring.
4234 1.1 fvdl */
4235 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
4236 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
4237 1.1 fvdl break;
4238 1.1 fvdl }
4239 1.1 fvdl
4240 1.1 fvdl /* now we are committed to transmit the packet */
4241 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
4242 1.1 fvdl pkts++;
4243 1.1 fvdl
4244 1.1 fvdl /*
4245 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
4246 1.1 fvdl * to him.
4247 1.1 fvdl */
4248 1.182 joerg bpf_mtap(ifp, m_head);
4249 1.1 fvdl }
4250 1.1 fvdl if (pkts == 0)
4251 1.1 fvdl return;
4252 1.1 fvdl
4253 1.1 fvdl /* Transmit */
4254 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4255 1.158 msaitoh /* 5700 b2 errata */
4256 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4257 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4258 1.1 fvdl
4259 1.94 jonathan sc->bge_tx_prodidx = prodidx;
4260 1.94 jonathan
4261 1.1 fvdl /*
4262 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
4263 1.1 fvdl */
4264 1.1 fvdl ifp->if_timer = 5;
4265 1.1 fvdl }
4266 1.1 fvdl
4267 1.104 thorpej static int
4268 1.104 thorpej bge_init(struct ifnet *ifp)
4269 1.1 fvdl {
4270 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4271 1.170 msaitoh const uint16_t *m;
4272 1.142 dyoung int s, error = 0;
4273 1.1 fvdl
4274 1.1 fvdl s = splnet();
4275 1.1 fvdl
4276 1.1 fvdl ifp = &sc->ethercom.ec_if;
4277 1.1 fvdl
4278 1.1 fvdl /* Cancel pending I/O and flush buffers. */
4279 1.141 jmcneill bge_stop(ifp, 0);
4280 1.177 msaitoh
4281 1.177 msaitoh bge_stop_fw(sc);
4282 1.177 msaitoh bge_sig_pre_reset(sc, BGE_RESET_START);
4283 1.1 fvdl bge_reset(sc);
4284 1.177 msaitoh bge_sig_legacy(sc, BGE_RESET_START);
4285 1.177 msaitoh bge_sig_post_reset(sc, BGE_RESET_START);
4286 1.177 msaitoh
4287 1.1 fvdl bge_chipinit(sc);
4288 1.1 fvdl
4289 1.1 fvdl /*
4290 1.1 fvdl * Init the various state machines, ring
4291 1.1 fvdl * control blocks and firmware.
4292 1.1 fvdl */
4293 1.1 fvdl error = bge_blockinit(sc);
4294 1.1 fvdl if (error != 0) {
4295 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4296 1.1 fvdl error);
4297 1.1 fvdl splx(s);
4298 1.1 fvdl return error;
4299 1.1 fvdl }
4300 1.1 fvdl
4301 1.1 fvdl ifp = &sc->ethercom.ec_if;
4302 1.1 fvdl
4303 1.1 fvdl /* Specify MTU. */
4304 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4305 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4306 1.1 fvdl
4307 1.1 fvdl /* Load our MAC address. */
4308 1.170 msaitoh m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4309 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4310 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4311 1.1 fvdl
4312 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
4313 1.178 msaitoh if (ifp->if_flags & IFF_PROMISC)
4314 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4315 1.178 msaitoh else
4316 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4317 1.1 fvdl
4318 1.1 fvdl /* Program multicast filter. */
4319 1.1 fvdl bge_setmulti(sc);
4320 1.1 fvdl
4321 1.1 fvdl /* Init RX ring. */
4322 1.1 fvdl bge_init_rx_ring_std(sc);
4323 1.1 fvdl
4324 1.161 msaitoh /*
4325 1.161 msaitoh * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4326 1.161 msaitoh * memory to insure that the chip has in fact read the first
4327 1.161 msaitoh * entry of the ring.
4328 1.161 msaitoh */
4329 1.161 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4330 1.170 msaitoh uint32_t v, i;
4331 1.161 msaitoh for (i = 0; i < 10; i++) {
4332 1.161 msaitoh DELAY(20);
4333 1.161 msaitoh v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4334 1.161 msaitoh if (v == (MCLBYTES - ETHER_ALIGN))
4335 1.161 msaitoh break;
4336 1.161 msaitoh }
4337 1.161 msaitoh if (i == 10)
4338 1.161 msaitoh aprint_error_dev(sc->bge_dev,
4339 1.161 msaitoh "5705 A0 chip failed to load RX ring\n");
4340 1.161 msaitoh }
4341 1.161 msaitoh
4342 1.1 fvdl /* Init jumbo RX ring. */
4343 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4344 1.1 fvdl bge_init_rx_ring_jumbo(sc);
4345 1.1 fvdl
4346 1.1 fvdl /* Init our RX return ring index */
4347 1.1 fvdl sc->bge_rx_saved_considx = 0;
4348 1.1 fvdl
4349 1.1 fvdl /* Init TX ring. */
4350 1.1 fvdl bge_init_tx_ring(sc);
4351 1.1 fvdl
4352 1.1 fvdl /* Turn on transmitter */
4353 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4354 1.1 fvdl
4355 1.1 fvdl /* Turn on receiver */
4356 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4357 1.1 fvdl
4358 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4359 1.71 thorpej
4360 1.1 fvdl /* Tell firmware we're alive. */
4361 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4362 1.1 fvdl
4363 1.1 fvdl /* Enable host interrupts. */
4364 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4365 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4366 1.151 cegger bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4367 1.1 fvdl
4368 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
4369 1.142 dyoung goto out;
4370 1.1 fvdl
4371 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
4372 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
4373 1.1 fvdl
4374 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4375 1.142 dyoung
4376 1.142 dyoung out:
4377 1.186 msaitoh sc->bge_if_flags = ifp->if_flags;
4378 1.1 fvdl splx(s);
4379 1.1 fvdl
4380 1.142 dyoung return error;
4381 1.1 fvdl }
4382 1.1 fvdl
4383 1.1 fvdl /*
4384 1.1 fvdl * Set media options.
4385 1.1 fvdl */
4386 1.104 thorpej static int
4387 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
4388 1.1 fvdl {
4389 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4390 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4391 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
4392 1.142 dyoung int rc;
4393 1.1 fvdl
4394 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
4395 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4396 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4397 1.170 msaitoh return EINVAL;
4398 1.170 msaitoh switch (IFM_SUBTYPE(ifm->ifm_media)) {
4399 1.1 fvdl case IFM_AUTO:
4400 1.161 msaitoh /*
4401 1.161 msaitoh * The BCM5704 ASIC appears to have a special
4402 1.161 msaitoh * mechanism for programming the autoneg
4403 1.161 msaitoh * advertisement registers in TBI mode.
4404 1.161 msaitoh */
4405 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4406 1.170 msaitoh uint32_t sgdig;
4407 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4408 1.161 msaitoh if (sgdig & BGE_SGDIGSTS_DONE) {
4409 1.161 msaitoh CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4410 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4411 1.161 msaitoh sgdig |= BGE_SGDIGCFG_AUTO |
4412 1.161 msaitoh BGE_SGDIGCFG_PAUSE_CAP |
4413 1.161 msaitoh BGE_SGDIGCFG_ASYM_PAUSE;
4414 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4415 1.161 msaitoh sgdig | BGE_SGDIGCFG_SEND);
4416 1.161 msaitoh DELAY(5);
4417 1.161 msaitoh CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4418 1.161 msaitoh }
4419 1.161 msaitoh }
4420 1.1 fvdl break;
4421 1.1 fvdl case IFM_1000_SX:
4422 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4423 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
4424 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4425 1.1 fvdl } else {
4426 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
4427 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
4428 1.1 fvdl }
4429 1.1 fvdl break;
4430 1.1 fvdl default:
4431 1.170 msaitoh return EINVAL;
4432 1.1 fvdl }
4433 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
4434 1.170 msaitoh return 0;
4435 1.1 fvdl }
4436 1.1 fvdl
4437 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4438 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
4439 1.142 dyoung return 0;
4440 1.161 msaitoh
4441 1.161 msaitoh /*
4442 1.161 msaitoh * Force an interrupt so that we will call bge_link_upd
4443 1.161 msaitoh * if needed and clear any pending link state attention.
4444 1.161 msaitoh * Without this we are not getting any further interrupts
4445 1.161 msaitoh * for link state changes and thus will not UP the link and
4446 1.161 msaitoh * not be able to send in bge_start. The only way to get
4447 1.161 msaitoh * things working was to receive a packet and get a RX intr.
4448 1.161 msaitoh */
4449 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4450 1.161 msaitoh sc->bge_flags & BGE_IS_5788)
4451 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4452 1.161 msaitoh else
4453 1.161 msaitoh BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4454 1.161 msaitoh
4455 1.142 dyoung return rc;
4456 1.1 fvdl }
4457 1.1 fvdl
4458 1.1 fvdl /*
4459 1.1 fvdl * Report current media status.
4460 1.1 fvdl */
4461 1.104 thorpej static void
4462 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4463 1.1 fvdl {
4464 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4465 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4466 1.1 fvdl
4467 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4468 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
4469 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
4470 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
4471 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
4472 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
4473 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
4474 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4475 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
4476 1.1 fvdl else
4477 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
4478 1.1 fvdl return;
4479 1.1 fvdl }
4480 1.1 fvdl
4481 1.1 fvdl mii_pollstat(mii);
4482 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
4483 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4484 1.69 thorpej sc->bge_flowflags;
4485 1.1 fvdl }
4486 1.1 fvdl
4487 1.104 thorpej static int
4488 1.186 msaitoh bge_ifflags_cb(struct ethercom *ec)
4489 1.186 msaitoh {
4490 1.186 msaitoh struct ifnet *ifp = &ec->ec_if;
4491 1.186 msaitoh struct bge_softc *sc = ifp->if_softc;
4492 1.186 msaitoh int change = ifp->if_flags ^ sc->bge_if_flags;
4493 1.186 msaitoh
4494 1.186 msaitoh if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4495 1.186 msaitoh return ENETRESET;
4496 1.186 msaitoh else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4497 1.186 msaitoh return 0;
4498 1.186 msaitoh
4499 1.186 msaitoh if ((ifp->if_flags & IFF_PROMISC) == 0)
4500 1.186 msaitoh BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4501 1.186 msaitoh else
4502 1.186 msaitoh BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4503 1.186 msaitoh
4504 1.186 msaitoh bge_setmulti(sc);
4505 1.186 msaitoh
4506 1.186 msaitoh sc->bge_if_flags = ifp->if_flags;
4507 1.186 msaitoh return 0;
4508 1.186 msaitoh }
4509 1.186 msaitoh
4510 1.186 msaitoh static int
4511 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4512 1.1 fvdl {
4513 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
4514 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
4515 1.1 fvdl int s, error = 0;
4516 1.1 fvdl struct mii_data *mii;
4517 1.1 fvdl
4518 1.1 fvdl s = splnet();
4519 1.1 fvdl
4520 1.170 msaitoh switch (command) {
4521 1.1 fvdl case SIOCSIFMEDIA:
4522 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
4523 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4524 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4525 1.69 thorpej sc->bge_flowflags = 0;
4526 1.69 thorpej }
4527 1.69 thorpej
4528 1.69 thorpej /* Flow control requires full-duplex mode. */
4529 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4530 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
4531 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
4532 1.69 thorpej }
4533 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4534 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4535 1.157 msaitoh /* We can do both TXPAUSE and RXPAUSE. */
4536 1.69 thorpej ifr->ifr_media |=
4537 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4538 1.69 thorpej }
4539 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4540 1.69 thorpej }
4541 1.69 thorpej /* FALLTHROUGH */
4542 1.1 fvdl case SIOCGIFMEDIA:
4543 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4544 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4545 1.1 fvdl command);
4546 1.1 fvdl } else {
4547 1.1 fvdl mii = &sc->bge_mii;
4548 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4549 1.1 fvdl command);
4550 1.1 fvdl }
4551 1.1 fvdl break;
4552 1.1 fvdl default:
4553 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4554 1.152 tron break;
4555 1.152 tron
4556 1.152 tron error = 0;
4557 1.152 tron
4558 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4559 1.152 tron ;
4560 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
4561 1.152 tron bge_setmulti(sc);
4562 1.1 fvdl break;
4563 1.1 fvdl }
4564 1.1 fvdl
4565 1.1 fvdl splx(s);
4566 1.1 fvdl
4567 1.170 msaitoh return error;
4568 1.1 fvdl }
4569 1.1 fvdl
4570 1.104 thorpej static void
4571 1.104 thorpej bge_watchdog(struct ifnet *ifp)
4572 1.1 fvdl {
4573 1.1 fvdl struct bge_softc *sc;
4574 1.1 fvdl
4575 1.1 fvdl sc = ifp->if_softc;
4576 1.1 fvdl
4577 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4578 1.1 fvdl
4579 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
4580 1.1 fvdl bge_init(ifp);
4581 1.1 fvdl
4582 1.1 fvdl ifp->if_oerrors++;
4583 1.1 fvdl }
4584 1.1 fvdl
4585 1.11 thorpej static void
4586 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4587 1.11 thorpej {
4588 1.11 thorpej int i;
4589 1.11 thorpej
4590 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
4591 1.11 thorpej
4592 1.180 msaitoh for (i = 0; i < 1000; i++) {
4593 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
4594 1.11 thorpej return;
4595 1.11 thorpej delay(100);
4596 1.11 thorpej }
4597 1.11 thorpej
4598 1.165 msaitoh /*
4599 1.165 msaitoh * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4600 1.165 msaitoh * on some environment (and once after boot?)
4601 1.165 msaitoh */
4602 1.165 msaitoh if (reg != BGE_SRS_MODE)
4603 1.165 msaitoh aprint_error_dev(sc->bge_dev,
4604 1.165 msaitoh "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4605 1.165 msaitoh (u_long)reg, bit);
4606 1.11 thorpej }
4607 1.11 thorpej
4608 1.1 fvdl /*
4609 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
4610 1.1 fvdl * RX and TX lists.
4611 1.1 fvdl */
4612 1.104 thorpej static void
4613 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
4614 1.1 fvdl {
4615 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
4616 1.1 fvdl
4617 1.1 fvdl callout_stop(&sc->bge_timeout);
4618 1.1 fvdl
4619 1.1 fvdl /*
4620 1.177 msaitoh * Tell firmware we're shutting down.
4621 1.177 msaitoh */
4622 1.177 msaitoh bge_stop_fw(sc);
4623 1.177 msaitoh bge_sig_pre_reset(sc, BGE_RESET_STOP);
4624 1.177 msaitoh
4625 1.177 msaitoh /* Disable host interrupts. */
4626 1.177 msaitoh BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4627 1.177 msaitoh bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4628 1.177 msaitoh
4629 1.177 msaitoh /*
4630 1.1 fvdl * Disable all of the receiver blocks
4631 1.1 fvdl */
4632 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4633 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4634 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4635 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4636 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4637 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4638 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4639 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4640 1.1 fvdl
4641 1.1 fvdl /*
4642 1.1 fvdl * Disable all of the transmit blocks
4643 1.1 fvdl */
4644 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4645 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4646 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4647 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4648 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4649 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4650 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4651 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4652 1.1 fvdl
4653 1.1 fvdl /*
4654 1.1 fvdl * Shut down all of the memory managers and related
4655 1.1 fvdl * state machines.
4656 1.1 fvdl */
4657 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4658 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4659 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4660 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4661 1.11 thorpej
4662 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4663 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4664 1.11 thorpej
4665 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
4666 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4667 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4668 1.44 hannken }
4669 1.1 fvdl
4670 1.177 msaitoh bge_reset(sc);
4671 1.177 msaitoh bge_sig_legacy(sc, BGE_RESET_STOP);
4672 1.177 msaitoh bge_sig_post_reset(sc, BGE_RESET_STOP);
4673 1.1 fvdl
4674 1.1 fvdl /*
4675 1.177 msaitoh * Keep the ASF firmware running if up.
4676 1.1 fvdl */
4677 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
4678 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4679 1.177 msaitoh else
4680 1.177 msaitoh BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4681 1.1 fvdl
4682 1.1 fvdl /* Free the RX lists. */
4683 1.1 fvdl bge_free_rx_ring_std(sc);
4684 1.1 fvdl
4685 1.1 fvdl /* Free jumbo RX list. */
4686 1.172 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc))
4687 1.172 msaitoh bge_free_rx_ring_jumbo(sc);
4688 1.1 fvdl
4689 1.1 fvdl /* Free TX buffers. */
4690 1.1 fvdl bge_free_tx_ring(sc);
4691 1.1 fvdl
4692 1.1 fvdl /*
4693 1.1 fvdl * Isolate/power down the PHY.
4694 1.1 fvdl */
4695 1.157 msaitoh if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4696 1.1 fvdl mii_down(&sc->bge_mii);
4697 1.1 fvdl
4698 1.161 msaitoh sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4699 1.1 fvdl
4700 1.161 msaitoh /* Clear MAC's link state (PHY may still have link UP). */
4701 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4702 1.1 fvdl
4703 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4704 1.1 fvdl }
4705 1.1 fvdl
4706 1.161 msaitoh static void
4707 1.161 msaitoh bge_link_upd(struct bge_softc *sc)
4708 1.161 msaitoh {
4709 1.161 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
4710 1.161 msaitoh struct mii_data *mii = &sc->bge_mii;
4711 1.170 msaitoh uint32_t status;
4712 1.161 msaitoh int link;
4713 1.161 msaitoh
4714 1.161 msaitoh /* Clear 'pending link event' flag */
4715 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4716 1.161 msaitoh
4717 1.161 msaitoh /*
4718 1.161 msaitoh * Process link state changes.
4719 1.161 msaitoh * Grrr. The link status word in the status block does
4720 1.161 msaitoh * not work correctly on the BCM5700 rev AX and BX chips,
4721 1.161 msaitoh * according to all available information. Hence, we have
4722 1.161 msaitoh * to enable MII interrupts in order to properly obtain
4723 1.161 msaitoh * async link changes. Unfortunately, this also means that
4724 1.161 msaitoh * we have to read the MAC status register to detect link
4725 1.161 msaitoh * changes, thereby adding an additional register access to
4726 1.161 msaitoh * the interrupt handler.
4727 1.161 msaitoh */
4728 1.161 msaitoh
4729 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4730 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4731 1.161 msaitoh if (status & BGE_MACSTAT_MI_INTERRUPT) {
4732 1.161 msaitoh mii_pollstat(mii);
4733 1.161 msaitoh
4734 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4735 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4736 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4737 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4738 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4739 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4740 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4741 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4742 1.161 msaitoh
4743 1.161 msaitoh /* Clear the interrupt */
4744 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4745 1.161 msaitoh BGE_EVTENB_MI_INTERRUPT);
4746 1.161 msaitoh bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4747 1.161 msaitoh bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4748 1.161 msaitoh BRGPHY_INTRS);
4749 1.161 msaitoh }
4750 1.161 msaitoh return;
4751 1.161 msaitoh }
4752 1.161 msaitoh
4753 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4754 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
4755 1.161 msaitoh if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4756 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4757 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4758 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4759 1.161 msaitoh BGE_CLRBIT(sc, BGE_MAC_MODE,
4760 1.161 msaitoh BGE_MACMODE_TBI_SEND_CFGS);
4761 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4762 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_UP);
4763 1.161 msaitoh }
4764 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4765 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4766 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_DOWN);
4767 1.161 msaitoh }
4768 1.178 msaitoh /*
4769 1.161 msaitoh * Discard link events for MII/GMII cards if MI auto-polling disabled.
4770 1.161 msaitoh * This should not happen since mii callouts are locked now, but
4771 1.161 msaitoh * we keep this check for debug.
4772 1.161 msaitoh */
4773 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4774 1.178 msaitoh /*
4775 1.161 msaitoh * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4776 1.161 msaitoh * bit in status word always set. Workaround this bug by
4777 1.161 msaitoh * reading PHY link status directly.
4778 1.161 msaitoh */
4779 1.161 msaitoh link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4780 1.161 msaitoh BGE_STS_LINK : 0;
4781 1.161 msaitoh
4782 1.161 msaitoh if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4783 1.161 msaitoh mii_pollstat(mii);
4784 1.161 msaitoh
4785 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4786 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
4787 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4788 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
4789 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4790 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
4791 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4792 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4793 1.161 msaitoh }
4794 1.161 msaitoh }
4795 1.161 msaitoh
4796 1.161 msaitoh /* Clear the attention */
4797 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4798 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4799 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
4800 1.161 msaitoh }
4801 1.161 msaitoh
4802 1.64 jonathan static int
4803 1.64 jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
4804 1.64 jonathan {
4805 1.64 jonathan int error, t;
4806 1.64 jonathan struct sysctlnode node;
4807 1.64 jonathan
4808 1.64 jonathan node = *rnode;
4809 1.64 jonathan t = *(int*)rnode->sysctl_data;
4810 1.64 jonathan node.sysctl_data = &t;
4811 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
4812 1.64 jonathan if (error || newp == NULL)
4813 1.170 msaitoh return error;
4814 1.64 jonathan
4815 1.64 jonathan #if 0
4816 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4817 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
4818 1.64 jonathan #endif
4819 1.64 jonathan
4820 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
4821 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
4822 1.170 msaitoh return EINVAL;
4823 1.64 jonathan bge_update_all_threshes(t);
4824 1.64 jonathan } else
4825 1.170 msaitoh return EINVAL;
4826 1.64 jonathan
4827 1.64 jonathan *(int*)rnode->sysctl_data = t;
4828 1.64 jonathan
4829 1.170 msaitoh return 0;
4830 1.64 jonathan }
4831 1.64 jonathan
4832 1.64 jonathan /*
4833 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
4834 1.64 jonathan */
4835 1.190 jruoho static void
4836 1.190 jruoho sysctl_bge_init(struct bge_softc *sc)
4837 1.64 jonathan {
4838 1.66 atatat int rc, bge_root_num;
4839 1.90 atatat const struct sysctlnode *node;
4840 1.64 jonathan
4841 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4842 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4843 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4844 1.64 jonathan goto err;
4845 1.64 jonathan }
4846 1.64 jonathan
4847 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4848 1.190 jruoho 0, CTLTYPE_NODE, "bge",
4849 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
4850 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4851 1.64 jonathan goto err;
4852 1.64 jonathan }
4853 1.64 jonathan
4854 1.66 atatat bge_root_num = node->sysctl_num;
4855 1.66 atatat
4856 1.64 jonathan /* BGE Rx interrupt mitigation level */
4857 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4858 1.190 jruoho CTLFLAG_READWRITE,
4859 1.73 atatat CTLTYPE_INT, "rx_lvl",
4860 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4861 1.73 atatat sysctl_bge_verify, 0,
4862 1.64 jonathan &bge_rx_thresh_lvl,
4863 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
4864 1.64 jonathan CTL_EOL)) != 0) {
4865 1.64 jonathan goto err;
4866 1.64 jonathan }
4867 1.64 jonathan
4868 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
4869 1.64 jonathan
4870 1.64 jonathan return;
4871 1.64 jonathan
4872 1.64 jonathan err:
4873 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4874 1.64 jonathan }
4875 1.151 cegger
4876 1.172 msaitoh #ifdef BGE_DEBUG
4877 1.172 msaitoh void
4878 1.172 msaitoh bge_debug_info(struct bge_softc *sc)
4879 1.172 msaitoh {
4880 1.172 msaitoh
4881 1.172 msaitoh printf("Hardware Flags:\n");
4882 1.172 msaitoh if (BGE_IS_5755_PLUS(sc))
4883 1.172 msaitoh printf(" - 5755 Plus\n");
4884 1.172 msaitoh if (BGE_IS_5750_OR_BEYOND(sc))
4885 1.172 msaitoh printf(" - 5750 Plus\n");
4886 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
4887 1.172 msaitoh printf(" - 5705 Plus\n");
4888 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc))
4889 1.172 msaitoh printf(" - 5714 Family\n");
4890 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
4891 1.172 msaitoh printf(" - 5700 Family\n");
4892 1.172 msaitoh if (sc->bge_flags & BGE_IS_5788)
4893 1.172 msaitoh printf(" - 5788\n");
4894 1.172 msaitoh if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4895 1.172 msaitoh printf(" - Supports Jumbo Frames\n");
4896 1.172 msaitoh if (sc->bge_flags & BGE_NO_EEPROM)
4897 1.173 msaitoh printf(" - No EEPROM\n");
4898 1.172 msaitoh if (sc->bge_flags & BGE_PCIX)
4899 1.172 msaitoh printf(" - PCI-X Bus\n");
4900 1.172 msaitoh if (sc->bge_flags & BGE_PCIE)
4901 1.172 msaitoh printf(" - PCI Express Bus\n");
4902 1.172 msaitoh if (sc->bge_flags & BGE_NO_3LED)
4903 1.172 msaitoh printf(" - No 3 LEDs\n");
4904 1.172 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG)
4905 1.172 msaitoh printf(" - RX Alignment Bug\n");
4906 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
4907 1.172 msaitoh printf(" - TSO\n");
4908 1.172 msaitoh }
4909 1.172 msaitoh #endif /* BGE_DEBUG */
4910 1.172 msaitoh
4911 1.172 msaitoh static int
4912 1.172 msaitoh bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4913 1.172 msaitoh {
4914 1.172 msaitoh prop_dictionary_t dict;
4915 1.172 msaitoh prop_data_t ea;
4916 1.172 msaitoh
4917 1.172 msaitoh if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4918 1.172 msaitoh return 1;
4919 1.172 msaitoh
4920 1.172 msaitoh dict = device_properties(sc->bge_dev);
4921 1.172 msaitoh ea = prop_dictionary_get(dict, "mac-address");
4922 1.172 msaitoh if (ea != NULL) {
4923 1.172 msaitoh KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4924 1.172 msaitoh KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4925 1.172 msaitoh memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4926 1.172 msaitoh return 0;
4927 1.172 msaitoh }
4928 1.172 msaitoh
4929 1.172 msaitoh return 1;
4930 1.172 msaitoh }
4931 1.172 msaitoh
4932 1.178 msaitoh static int
4933 1.170 msaitoh bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4934 1.151 cegger {
4935 1.170 msaitoh uint32_t mac_addr;
4936 1.151 cegger
4937 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c14);
4938 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
4939 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
4940 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
4941 1.151 cegger mac_addr = bge_readmem_ind(sc, 0x0c18);
4942 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
4943 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
4944 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
4945 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
4946 1.170 msaitoh return 0;
4947 1.151 cegger }
4948 1.170 msaitoh return 1;
4949 1.151 cegger }
4950 1.151 cegger
4951 1.151 cegger static int
4952 1.170 msaitoh bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4953 1.151 cegger {
4954 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
4955 1.151 cegger
4956 1.177 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4957 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
4958 1.151 cegger
4959 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4960 1.151 cegger ETHER_ADDR_LEN));
4961 1.151 cegger }
4962 1.151 cegger
4963 1.151 cegger static int
4964 1.170 msaitoh bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4965 1.151 cegger {
4966 1.151 cegger
4967 1.170 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4968 1.170 msaitoh return 1;
4969 1.151 cegger
4970 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4971 1.151 cegger ETHER_ADDR_LEN));
4972 1.151 cegger }
4973 1.151 cegger
4974 1.151 cegger static int
4975 1.170 msaitoh bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4976 1.151 cegger {
4977 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4978 1.151 cegger /* NOTE: Order is critical */
4979 1.172 msaitoh bge_get_eaddr_fw,
4980 1.151 cegger bge_get_eaddr_mem,
4981 1.151 cegger bge_get_eaddr_nvram,
4982 1.151 cegger bge_get_eaddr_eeprom,
4983 1.151 cegger NULL
4984 1.151 cegger };
4985 1.151 cegger const bge_eaddr_fcn_t *func;
4986 1.151 cegger
4987 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4988 1.151 cegger if ((*func)(sc, eaddr) == 0)
4989 1.151 cegger break;
4990 1.151 cegger }
4991 1.151 cegger return (*func == NULL ? ENXIO : 0);
4992 1.151 cegger }
4993