if_bge.c revision 1.246 1 1.246 msaitoh /* $NetBSD: if_bge.c,v 1.246 2013/05/24 02:29:36 msaitoh Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.203 msaitoh * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.246 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.246 2013/05/24 02:29:36 msaitoh Exp $");
83 1.1 fvdl
84 1.1 fvdl #include <sys/param.h>
85 1.1 fvdl #include <sys/systm.h>
86 1.1 fvdl #include <sys/callout.h>
87 1.1 fvdl #include <sys/sockio.h>
88 1.1 fvdl #include <sys/mbuf.h>
89 1.1 fvdl #include <sys/malloc.h>
90 1.1 fvdl #include <sys/kernel.h>
91 1.1 fvdl #include <sys/device.h>
92 1.1 fvdl #include <sys/socket.h>
93 1.64 jonathan #include <sys/sysctl.h>
94 1.1 fvdl
95 1.1 fvdl #include <net/if.h>
96 1.1 fvdl #include <net/if_dl.h>
97 1.1 fvdl #include <net/if_media.h>
98 1.1 fvdl #include <net/if_ether.h>
99 1.1 fvdl
100 1.148 mlelstv #include <sys/rnd.h>
101 1.148 mlelstv
102 1.1 fvdl #ifdef INET
103 1.1 fvdl #include <netinet/in.h>
104 1.1 fvdl #include <netinet/in_systm.h>
105 1.1 fvdl #include <netinet/in_var.h>
106 1.1 fvdl #include <netinet/ip.h>
107 1.1 fvdl #endif
108 1.1 fvdl
109 1.95 jonathan /* Headers for TCP Segmentation Offload (TSO) */
110 1.95 jonathan #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 1.95 jonathan #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 1.95 jonathan #include <netinet/ip.h> /* for struct ip */
113 1.95 jonathan #include <netinet/tcp.h> /* for struct tcphdr */
114 1.95 jonathan
115 1.95 jonathan
116 1.1 fvdl #include <net/bpf.h>
117 1.1 fvdl
118 1.1 fvdl #include <dev/pci/pcireg.h>
119 1.1 fvdl #include <dev/pci/pcivar.h>
120 1.1 fvdl #include <dev/pci/pcidevs.h>
121 1.1 fvdl
122 1.1 fvdl #include <dev/mii/mii.h>
123 1.1 fvdl #include <dev/mii/miivar.h>
124 1.1 fvdl #include <dev/mii/miidevs.h>
125 1.1 fvdl #include <dev/mii/brgphyreg.h>
126 1.1 fvdl
127 1.1 fvdl #include <dev/pci/if_bgereg.h>
128 1.164 msaitoh #include <dev/pci/if_bgevar.h>
129 1.1 fvdl
130 1.164 msaitoh #include <prop/proplib.h>
131 1.1 fvdl
132 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133 1.46 jonathan
134 1.63 jonathan
135 1.63 jonathan /*
136 1.63 jonathan * Tunable thresholds for rx-side bge interrupt mitigation.
137 1.63 jonathan */
138 1.63 jonathan
139 1.63 jonathan /*
140 1.63 jonathan * The pairs of values below were obtained from empirical measurement
141 1.63 jonathan * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 1.63 jonathan * interrupt for every N packets received, where N is, approximately,
143 1.63 jonathan * the second value (rx_max_bds) in each pair. The values are chosen
144 1.63 jonathan * such that moving from one pair to the succeeding pair was observed
145 1.63 jonathan * to roughly halve interrupt rate under sustained input packet load.
146 1.63 jonathan * The values were empirically chosen to avoid overflowing internal
147 1.184 njoly * limits on the bcm5700: increasing rx_ticks much beyond 600
148 1.63 jonathan * results in internal wrapping and higher interrupt rates.
149 1.63 jonathan * The limit of 46 frames was chosen to match NFS workloads.
150 1.87 perry *
151 1.63 jonathan * These values also work well on bcm5701, bcm5704C, and (less
152 1.63 jonathan * tested) bcm5703. On other chipsets, (including the Altima chip
153 1.63 jonathan * family), the larger values may overflow internal chip limits,
154 1.63 jonathan * leading to increasing interrupt rates rather than lower interrupt
155 1.63 jonathan * rates.
156 1.63 jonathan *
157 1.63 jonathan * Applications using heavy interrupt mitigation (interrupting every
158 1.63 jonathan * 32 or 46 frames) in both directions may need to increase the TCP
159 1.63 jonathan * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 1.87 perry * full link bandwidth, due to ACKs and window updates lingering
161 1.63 jonathan * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 1.63 jonathan */
163 1.104 thorpej static const struct bge_load_rx_thresh {
164 1.63 jonathan int rx_ticks;
165 1.63 jonathan int rx_max_bds; }
166 1.63 jonathan bge_rx_threshes[] = {
167 1.199 yamt { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 1.63 jonathan { 32, 2 },
169 1.63 jonathan { 50, 4 },
170 1.63 jonathan { 100, 8 },
171 1.63 jonathan { 192, 16 },
172 1.63 jonathan { 416, 32 },
173 1.63 jonathan { 598, 46 }
174 1.63 jonathan };
175 1.63 jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176 1.63 jonathan
177 1.63 jonathan /* XXX patchable; should be sysctl'able */
178 1.177 msaitoh static int bge_auto_thresh = 1;
179 1.177 msaitoh static int bge_rx_thresh_lvl;
180 1.64 jonathan
181 1.177 msaitoh static int bge_rxthresh_nodenum;
182 1.1 fvdl
183 1.170 msaitoh typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184 1.151 cegger
185 1.237 msaitoh static uint32_t bge_chipid(const struct pci_attach_args *);
186 1.177 msaitoh static int bge_probe(device_t, cfdata_t, void *);
187 1.177 msaitoh static void bge_attach(device_t, device_t, void *);
188 1.227 msaitoh static int bge_detach(device_t, int);
189 1.177 msaitoh static void bge_release_resources(struct bge_softc *);
190 1.177 msaitoh
191 1.177 msaitoh static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 1.177 msaitoh static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 1.177 msaitoh static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 1.177 msaitoh static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 1.177 msaitoh static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 1.177 msaitoh
197 1.177 msaitoh static void bge_txeof(struct bge_softc *);
198 1.219 msaitoh static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 1.177 msaitoh static void bge_rxeof(struct bge_softc *);
200 1.177 msaitoh
201 1.177 msaitoh static void bge_asf_driver_up (struct bge_softc *);
202 1.177 msaitoh static void bge_tick(void *);
203 1.177 msaitoh static void bge_stats_update(struct bge_softc *);
204 1.177 msaitoh static void bge_stats_update_regs(struct bge_softc *);
205 1.177 msaitoh static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 1.177 msaitoh
207 1.177 msaitoh static int bge_intr(void *);
208 1.177 msaitoh static void bge_start(struct ifnet *);
209 1.186 msaitoh static int bge_ifflags_cb(struct ethercom *);
210 1.177 msaitoh static int bge_ioctl(struct ifnet *, u_long, void *);
211 1.177 msaitoh static int bge_init(struct ifnet *);
212 1.177 msaitoh static void bge_stop(struct ifnet *, int);
213 1.177 msaitoh static void bge_watchdog(struct ifnet *);
214 1.177 msaitoh static int bge_ifmedia_upd(struct ifnet *);
215 1.177 msaitoh static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 1.177 msaitoh
217 1.177 msaitoh static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 1.177 msaitoh static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219 1.177 msaitoh
220 1.177 msaitoh static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 1.177 msaitoh static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 1.177 msaitoh static void bge_setmulti(struct bge_softc *);
223 1.104 thorpej
224 1.177 msaitoh static void bge_handle_events(struct bge_softc *);
225 1.177 msaitoh static int bge_alloc_jumbo_mem(struct bge_softc *);
226 1.104 thorpej #if 0 /* XXX */
227 1.177 msaitoh static void bge_free_jumbo_mem(struct bge_softc *);
228 1.1 fvdl #endif
229 1.177 msaitoh static void *bge_jalloc(struct bge_softc *);
230 1.177 msaitoh static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 1.177 msaitoh static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 1.104 thorpej bus_dmamap_t);
233 1.177 msaitoh static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 1.177 msaitoh static int bge_init_rx_ring_std(struct bge_softc *);
235 1.177 msaitoh static void bge_free_rx_ring_std(struct bge_softc *);
236 1.177 msaitoh static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 1.177 msaitoh static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 1.177 msaitoh static void bge_free_tx_ring(struct bge_softc *);
239 1.177 msaitoh static int bge_init_tx_ring(struct bge_softc *);
240 1.177 msaitoh
241 1.177 msaitoh static int bge_chipinit(struct bge_softc *);
242 1.177 msaitoh static int bge_blockinit(struct bge_softc *);
243 1.216 msaitoh static int bge_phy_addr(struct bge_softc *);
244 1.177 msaitoh static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 1.177 msaitoh static void bge_writemem_ind(struct bge_softc *, int, int);
246 1.177 msaitoh static void bge_writembx(struct bge_softc *, int, int);
247 1.211 msaitoh static void bge_writembx_flush(struct bge_softc *, int, int);
248 1.177 msaitoh static void bge_writemem_direct(struct bge_softc *, int, int);
249 1.177 msaitoh static void bge_writereg_ind(struct bge_softc *, int, int);
250 1.177 msaitoh static void bge_set_max_readrq(struct bge_softc *);
251 1.177 msaitoh
252 1.177 msaitoh static int bge_miibus_readreg(device_t, int, int);
253 1.177 msaitoh static void bge_miibus_writereg(device_t, int, int, int);
254 1.201 matt static void bge_miibus_statchg(struct ifnet *);
255 1.177 msaitoh
256 1.216 msaitoh #define BGE_RESET_SHUTDOWN 0
257 1.216 msaitoh #define BGE_RESET_START 1
258 1.216 msaitoh #define BGE_RESET_SUSPEND 2
259 1.177 msaitoh static void bge_sig_post_reset(struct bge_softc *, int);
260 1.177 msaitoh static void bge_sig_legacy(struct bge_softc *, int);
261 1.177 msaitoh static void bge_sig_pre_reset(struct bge_softc *, int);
262 1.216 msaitoh static void bge_wait_for_event_ack(struct bge_softc *);
263 1.177 msaitoh static void bge_stop_fw(struct bge_softc *);
264 1.177 msaitoh static int bge_reset(struct bge_softc *);
265 1.177 msaitoh static void bge_link_upd(struct bge_softc *);
266 1.207 msaitoh static void bge_sysctl_init(struct bge_softc *);
267 1.207 msaitoh static int bge_sysctl_verify(SYSCTLFN_PROTO);
268 1.95 jonathan
269 1.216 msaitoh static void bge_ape_lock_init(struct bge_softc *);
270 1.216 msaitoh static void bge_ape_read_fw_ver(struct bge_softc *);
271 1.216 msaitoh static int bge_ape_lock(struct bge_softc *, int);
272 1.216 msaitoh static void bge_ape_unlock(struct bge_softc *, int);
273 1.216 msaitoh static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 1.216 msaitoh static void bge_ape_driver_state_change(struct bge_softc *, int);
275 1.216 msaitoh
276 1.1 fvdl #ifdef BGE_DEBUG
277 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
278 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 1.95 jonathan #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 1.1 fvdl int bgedebug = 0;
281 1.95 jonathan int bge_tso_debug = 0;
282 1.172 msaitoh void bge_debug_info(struct bge_softc *);
283 1.1 fvdl #else
284 1.1 fvdl #define DPRINTF(x)
285 1.1 fvdl #define DPRINTFN(n,x)
286 1.95 jonathan #define BGE_TSO_PRINTF(x)
287 1.1 fvdl #endif
288 1.1 fvdl
289 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
290 1.72 thorpej #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 1.72 thorpej #else
294 1.72 thorpej #define BGE_EVCNT_INCR(ev) /* nothing */
295 1.72 thorpej #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 1.72 thorpej #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 1.72 thorpej #endif
298 1.72 thorpej
299 1.158 msaitoh static const struct bge_product {
300 1.158 msaitoh pci_vendor_id_t bp_vendor;
301 1.158 msaitoh pci_product_id_t bp_product;
302 1.158 msaitoh const char *bp_name;
303 1.158 msaitoh } bge_products[] = {
304 1.158 msaitoh /*
305 1.158 msaitoh * The BCM5700 documentation seems to indicate that the hardware
306 1.158 msaitoh * still has the Alteon vendor ID burned into it, though it
307 1.158 msaitoh * should always be overridden by the value in the EEPROM. We'll
308 1.158 msaitoh * check for it anyway.
309 1.158 msaitoh */
310 1.158 msaitoh { PCI_VENDOR_ALTEON,
311 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5700,
312 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
313 1.158 msaitoh },
314 1.158 msaitoh { PCI_VENDOR_ALTEON,
315 1.158 msaitoh PCI_PRODUCT_ALTEON_BCM5701,
316 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
317 1.158 msaitoh },
318 1.158 msaitoh { PCI_VENDOR_ALTIMA,
319 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1000,
320 1.158 msaitoh "Altima AC1000 Gigabit Ethernet",
321 1.158 msaitoh },
322 1.158 msaitoh { PCI_VENDOR_ALTIMA,
323 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC1001,
324 1.158 msaitoh "Altima AC1001 Gigabit Ethernet",
325 1.158 msaitoh },
326 1.158 msaitoh { PCI_VENDOR_ALTIMA,
327 1.209 msaitoh PCI_PRODUCT_ALTIMA_AC1003,
328 1.209 msaitoh "Altima AC1003 Gigabit Ethernet",
329 1.209 msaitoh },
330 1.209 msaitoh { PCI_VENDOR_ALTIMA,
331 1.158 msaitoh PCI_PRODUCT_ALTIMA_AC9100,
332 1.158 msaitoh "Altima AC9100 Gigabit Ethernet",
333 1.158 msaitoh },
334 1.209 msaitoh { PCI_VENDOR_APPLE,
335 1.209 msaitoh PCI_PRODUCT_APPLE_BCM5701,
336 1.209 msaitoh "APPLE BCM5701 Gigabit Ethernet",
337 1.209 msaitoh },
338 1.158 msaitoh { PCI_VENDOR_BROADCOM,
339 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5700,
340 1.158 msaitoh "Broadcom BCM5700 Gigabit Ethernet",
341 1.158 msaitoh },
342 1.158 msaitoh { PCI_VENDOR_BROADCOM,
343 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5701,
344 1.158 msaitoh "Broadcom BCM5701 Gigabit Ethernet",
345 1.158 msaitoh },
346 1.158 msaitoh { PCI_VENDOR_BROADCOM,
347 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702,
348 1.158 msaitoh "Broadcom BCM5702 Gigabit Ethernet",
349 1.158 msaitoh },
350 1.158 msaitoh { PCI_VENDOR_BROADCOM,
351 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5702X,
352 1.158 msaitoh "Broadcom BCM5702X Gigabit Ethernet" },
353 1.158 msaitoh { PCI_VENDOR_BROADCOM,
354 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703,
355 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
356 1.158 msaitoh },
357 1.158 msaitoh { PCI_VENDOR_BROADCOM,
358 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703X,
359 1.158 msaitoh "Broadcom BCM5703X Gigabit Ethernet",
360 1.158 msaitoh },
361 1.158 msaitoh { PCI_VENDOR_BROADCOM,
362 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 1.158 msaitoh "Broadcom BCM5703 Gigabit Ethernet",
364 1.158 msaitoh },
365 1.178 msaitoh { PCI_VENDOR_BROADCOM,
366 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704C,
367 1.158 msaitoh "Broadcom BCM5704C Dual Gigabit Ethernet",
368 1.158 msaitoh },
369 1.178 msaitoh { PCI_VENDOR_BROADCOM,
370 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5704S,
371 1.158 msaitoh "Broadcom BCM5704S Dual Gigabit Ethernet",
372 1.158 msaitoh },
373 1.178 msaitoh { PCI_VENDOR_BROADCOM,
374 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705,
375 1.158 msaitoh "Broadcom BCM5705 Gigabit Ethernet",
376 1.158 msaitoh },
377 1.178 msaitoh { PCI_VENDOR_BROADCOM,
378 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5705F,
379 1.172 msaitoh "Broadcom BCM5705F Gigabit Ethernet",
380 1.172 msaitoh },
381 1.178 msaitoh { PCI_VENDOR_BROADCOM,
382 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705K,
383 1.158 msaitoh "Broadcom BCM5705K Gigabit Ethernet",
384 1.158 msaitoh },
385 1.178 msaitoh { PCI_VENDOR_BROADCOM,
386 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M,
387 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
388 1.158 msaitoh },
389 1.178 msaitoh { PCI_VENDOR_BROADCOM,
390 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 1.158 msaitoh "Broadcom BCM5705M Gigabit Ethernet",
392 1.158 msaitoh },
393 1.158 msaitoh { PCI_VENDOR_BROADCOM,
394 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5714,
395 1.172 msaitoh "Broadcom BCM5714 Gigabit Ethernet",
396 1.172 msaitoh },
397 1.172 msaitoh { PCI_VENDOR_BROADCOM,
398 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5714S,
399 1.172 msaitoh "Broadcom BCM5714S Gigabit Ethernet",
400 1.158 msaitoh },
401 1.158 msaitoh { PCI_VENDOR_BROADCOM,
402 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5715,
403 1.172 msaitoh "Broadcom BCM5715 Gigabit Ethernet",
404 1.158 msaitoh },
405 1.158 msaitoh { PCI_VENDOR_BROADCOM,
406 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5715S,
407 1.172 msaitoh "Broadcom BCM5715S Gigabit Ethernet",
408 1.172 msaitoh },
409 1.172 msaitoh { PCI_VENDOR_BROADCOM,
410 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5717,
411 1.172 msaitoh "Broadcom BCM5717 Gigabit Ethernet",
412 1.172 msaitoh },
413 1.172 msaitoh { PCI_VENDOR_BROADCOM,
414 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5718,
415 1.172 msaitoh "Broadcom BCM5718 Gigabit Ethernet",
416 1.172 msaitoh },
417 1.216 msaitoh { PCI_VENDOR_BROADCOM,
418 1.216 msaitoh PCI_PRODUCT_BROADCOM_BCM5719,
419 1.216 msaitoh "Broadcom BCM5719 Gigabit Ethernet",
420 1.216 msaitoh },
421 1.172 msaitoh { PCI_VENDOR_BROADCOM,
422 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5720,
423 1.172 msaitoh "Broadcom BCM5720 Gigabit Ethernet",
424 1.158 msaitoh },
425 1.158 msaitoh { PCI_VENDOR_BROADCOM,
426 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5721,
427 1.158 msaitoh "Broadcom BCM5721 Gigabit Ethernet",
428 1.158 msaitoh },
429 1.158 msaitoh { PCI_VENDOR_BROADCOM,
430 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5722,
431 1.158 msaitoh "Broadcom BCM5722 Gigabit Ethernet",
432 1.158 msaitoh },
433 1.158 msaitoh { PCI_VENDOR_BROADCOM,
434 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5723,
435 1.172 msaitoh "Broadcom BCM5723 Gigabit Ethernet",
436 1.172 msaitoh },
437 1.172 msaitoh { PCI_VENDOR_BROADCOM,
438 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5724,
439 1.172 msaitoh "Broadcom BCM5724 Gigabit Ethernet",
440 1.172 msaitoh },
441 1.172 msaitoh { PCI_VENDOR_BROADCOM,
442 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750,
443 1.158 msaitoh "Broadcom BCM5750 Gigabit Ethernet",
444 1.158 msaitoh },
445 1.158 msaitoh { PCI_VENDOR_BROADCOM,
446 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5750M,
447 1.158 msaitoh "Broadcom BCM5750M Gigabit Ethernet",
448 1.158 msaitoh },
449 1.158 msaitoh { PCI_VENDOR_BROADCOM,
450 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751,
451 1.158 msaitoh "Broadcom BCM5751 Gigabit Ethernet",
452 1.158 msaitoh },
453 1.158 msaitoh { PCI_VENDOR_BROADCOM,
454 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5751F,
455 1.172 msaitoh "Broadcom BCM5751F Gigabit Ethernet",
456 1.172 msaitoh },
457 1.172 msaitoh { PCI_VENDOR_BROADCOM,
458 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5751M,
459 1.158 msaitoh "Broadcom BCM5751M Gigabit Ethernet",
460 1.158 msaitoh },
461 1.158 msaitoh { PCI_VENDOR_BROADCOM,
462 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752,
463 1.158 msaitoh "Broadcom BCM5752 Gigabit Ethernet",
464 1.158 msaitoh },
465 1.158 msaitoh { PCI_VENDOR_BROADCOM,
466 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5752M,
467 1.158 msaitoh "Broadcom BCM5752M Gigabit Ethernet",
468 1.158 msaitoh },
469 1.158 msaitoh { PCI_VENDOR_BROADCOM,
470 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753,
471 1.158 msaitoh "Broadcom BCM5753 Gigabit Ethernet",
472 1.158 msaitoh },
473 1.158 msaitoh { PCI_VENDOR_BROADCOM,
474 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5753F,
475 1.172 msaitoh "Broadcom BCM5753F Gigabit Ethernet",
476 1.172 msaitoh },
477 1.172 msaitoh { PCI_VENDOR_BROADCOM,
478 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5753M,
479 1.158 msaitoh "Broadcom BCM5753M Gigabit Ethernet",
480 1.158 msaitoh },
481 1.158 msaitoh { PCI_VENDOR_BROADCOM,
482 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754,
483 1.158 msaitoh "Broadcom BCM5754 Gigabit Ethernet",
484 1.158 msaitoh },
485 1.158 msaitoh { PCI_VENDOR_BROADCOM,
486 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5754M,
487 1.158 msaitoh "Broadcom BCM5754M Gigabit Ethernet",
488 1.158 msaitoh },
489 1.158 msaitoh { PCI_VENDOR_BROADCOM,
490 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755,
491 1.158 msaitoh "Broadcom BCM5755 Gigabit Ethernet",
492 1.158 msaitoh },
493 1.158 msaitoh { PCI_VENDOR_BROADCOM,
494 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5755M,
495 1.158 msaitoh "Broadcom BCM5755M Gigabit Ethernet",
496 1.158 msaitoh },
497 1.172 msaitoh { PCI_VENDOR_BROADCOM,
498 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5756,
499 1.172 msaitoh "Broadcom BCM5756 Gigabit Ethernet",
500 1.172 msaitoh },
501 1.172 msaitoh { PCI_VENDOR_BROADCOM,
502 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761,
503 1.172 msaitoh "Broadcom BCM5761 Gigabit Ethernet",
504 1.172 msaitoh },
505 1.172 msaitoh { PCI_VENDOR_BROADCOM,
506 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761E,
507 1.172 msaitoh "Broadcom BCM5761E Gigabit Ethernet",
508 1.172 msaitoh },
509 1.172 msaitoh { PCI_VENDOR_BROADCOM,
510 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761S,
511 1.172 msaitoh "Broadcom BCM5761S Gigabit Ethernet",
512 1.172 msaitoh },
513 1.172 msaitoh { PCI_VENDOR_BROADCOM,
514 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5761SE,
515 1.172 msaitoh "Broadcom BCM5761SE Gigabit Ethernet",
516 1.172 msaitoh },
517 1.178 msaitoh { PCI_VENDOR_BROADCOM,
518 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5764,
519 1.172 msaitoh "Broadcom BCM5764 Gigabit Ethernet",
520 1.172 msaitoh },
521 1.178 msaitoh { PCI_VENDOR_BROADCOM,
522 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780,
523 1.158 msaitoh "Broadcom BCM5780 Gigabit Ethernet",
524 1.158 msaitoh },
525 1.178 msaitoh { PCI_VENDOR_BROADCOM,
526 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5780S,
527 1.158 msaitoh "Broadcom BCM5780S Gigabit Ethernet",
528 1.158 msaitoh },
529 1.178 msaitoh { PCI_VENDOR_BROADCOM,
530 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5781,
531 1.172 msaitoh "Broadcom BCM5781 Gigabit Ethernet",
532 1.172 msaitoh },
533 1.178 msaitoh { PCI_VENDOR_BROADCOM,
534 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5782,
535 1.158 msaitoh "Broadcom BCM5782 Gigabit Ethernet",
536 1.158 msaitoh },
537 1.158 msaitoh { PCI_VENDOR_BROADCOM,
538 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5784M,
539 1.172 msaitoh "BCM5784M NetLink 1000baseT Ethernet",
540 1.172 msaitoh },
541 1.172 msaitoh { PCI_VENDOR_BROADCOM,
542 1.209 msaitoh PCI_PRODUCT_BROADCOM_BCM5785F,
543 1.209 msaitoh "BCM5785F NetLink 10/100 Ethernet",
544 1.209 msaitoh },
545 1.209 msaitoh { PCI_VENDOR_BROADCOM,
546 1.209 msaitoh PCI_PRODUCT_BROADCOM_BCM5785G,
547 1.209 msaitoh "BCM5785G NetLink 1000baseT Ethernet",
548 1.209 msaitoh },
549 1.209 msaitoh { PCI_VENDOR_BROADCOM,
550 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5786,
551 1.158 msaitoh "Broadcom BCM5786 Gigabit Ethernet",
552 1.158 msaitoh },
553 1.158 msaitoh { PCI_VENDOR_BROADCOM,
554 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787,
555 1.158 msaitoh "Broadcom BCM5787 Gigabit Ethernet",
556 1.158 msaitoh },
557 1.158 msaitoh { PCI_VENDOR_BROADCOM,
558 1.209 msaitoh PCI_PRODUCT_BROADCOM_BCM5787F,
559 1.209 msaitoh "Broadcom BCM5787F 10/100 Ethernet",
560 1.209 msaitoh },
561 1.209 msaitoh { PCI_VENDOR_BROADCOM,
562 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5787M,
563 1.158 msaitoh "Broadcom BCM5787M Gigabit Ethernet",
564 1.158 msaitoh },
565 1.178 msaitoh { PCI_VENDOR_BROADCOM,
566 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5788,
567 1.158 msaitoh "Broadcom BCM5788 Gigabit Ethernet",
568 1.158 msaitoh },
569 1.178 msaitoh { PCI_VENDOR_BROADCOM,
570 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5789,
571 1.158 msaitoh "Broadcom BCM5789 Gigabit Ethernet",
572 1.158 msaitoh },
573 1.178 msaitoh { PCI_VENDOR_BROADCOM,
574 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901,
575 1.158 msaitoh "Broadcom BCM5901 Fast Ethernet",
576 1.158 msaitoh },
577 1.178 msaitoh { PCI_VENDOR_BROADCOM,
578 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5901A2,
579 1.158 msaitoh "Broadcom BCM5901A2 Fast Ethernet",
580 1.158 msaitoh },
581 1.178 msaitoh { PCI_VENDOR_BROADCOM,
582 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM5903M,
583 1.172 msaitoh "Broadcom BCM5903M Fast Ethernet",
584 1.158 msaitoh },
585 1.158 msaitoh { PCI_VENDOR_BROADCOM,
586 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906,
587 1.158 msaitoh "Broadcom BCM5906 Fast Ethernet",
588 1.158 msaitoh },
589 1.158 msaitoh { PCI_VENDOR_BROADCOM,
590 1.158 msaitoh PCI_PRODUCT_BROADCOM_BCM5906M,
591 1.158 msaitoh "Broadcom BCM5906M Fast Ethernet",
592 1.158 msaitoh },
593 1.172 msaitoh { PCI_VENDOR_BROADCOM,
594 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57760,
595 1.172 msaitoh "Broadcom BCM57760 Fast Ethernet",
596 1.172 msaitoh },
597 1.172 msaitoh { PCI_VENDOR_BROADCOM,
598 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57761,
599 1.172 msaitoh "Broadcom BCM57761 Fast Ethernet",
600 1.172 msaitoh },
601 1.172 msaitoh { PCI_VENDOR_BROADCOM,
602 1.202 tsutsui PCI_PRODUCT_BROADCOM_BCM57762,
603 1.202 tsutsui "Broadcom BCM57762 Gigabit Ethernet",
604 1.202 tsutsui },
605 1.202 tsutsui { PCI_VENDOR_BROADCOM,
606 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57765,
607 1.172 msaitoh "Broadcom BCM57765 Fast Ethernet",
608 1.172 msaitoh },
609 1.172 msaitoh { PCI_VENDOR_BROADCOM,
610 1.216 msaitoh PCI_PRODUCT_BROADCOM_BCM57766,
611 1.216 msaitoh "Broadcom BCM57766 Fast Ethernet",
612 1.216 msaitoh },
613 1.216 msaitoh { PCI_VENDOR_BROADCOM,
614 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57780,
615 1.172 msaitoh "Broadcom BCM57780 Fast Ethernet",
616 1.172 msaitoh },
617 1.172 msaitoh { PCI_VENDOR_BROADCOM,
618 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57781,
619 1.172 msaitoh "Broadcom BCM57781 Fast Ethernet",
620 1.172 msaitoh },
621 1.172 msaitoh { PCI_VENDOR_BROADCOM,
622 1.216 msaitoh PCI_PRODUCT_BROADCOM_BCM57782,
623 1.216 msaitoh "Broadcom BCM57782 Fast Ethernet",
624 1.216 msaitoh },
625 1.216 msaitoh { PCI_VENDOR_BROADCOM,
626 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57785,
627 1.172 msaitoh "Broadcom BCM57785 Fast Ethernet",
628 1.172 msaitoh },
629 1.172 msaitoh { PCI_VENDOR_BROADCOM,
630 1.216 msaitoh PCI_PRODUCT_BROADCOM_BCM57786,
631 1.216 msaitoh "Broadcom BCM57786 Fast Ethernet",
632 1.216 msaitoh },
633 1.216 msaitoh { PCI_VENDOR_BROADCOM,
634 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57788,
635 1.172 msaitoh "Broadcom BCM57788 Fast Ethernet",
636 1.172 msaitoh },
637 1.172 msaitoh { PCI_VENDOR_BROADCOM,
638 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57790,
639 1.172 msaitoh "Broadcom BCM57790 Fast Ethernet",
640 1.172 msaitoh },
641 1.172 msaitoh { PCI_VENDOR_BROADCOM,
642 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57791,
643 1.172 msaitoh "Broadcom BCM57791 Fast Ethernet",
644 1.172 msaitoh },
645 1.172 msaitoh { PCI_VENDOR_BROADCOM,
646 1.172 msaitoh PCI_PRODUCT_BROADCOM_BCM57795,
647 1.172 msaitoh "Broadcom BCM57795 Fast Ethernet",
648 1.172 msaitoh },
649 1.172 msaitoh { PCI_VENDOR_SCHNEIDERKOCH,
650 1.172 msaitoh PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 1.172 msaitoh "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 1.172 msaitoh },
653 1.172 msaitoh { PCI_VENDOR_3COM,
654 1.172 msaitoh PCI_PRODUCT_3COM_3C996,
655 1.172 msaitoh "3Com 3c996 Gigabit Ethernet",
656 1.172 msaitoh },
657 1.196 mrg { PCI_VENDOR_FUJITSU4,
658 1.196 mrg PCI_PRODUCT_FUJITSU4_PW008GE4,
659 1.196 mrg "Fujitsu PW008GE4 Gigabit Ethernet",
660 1.196 mrg },
661 1.196 mrg { PCI_VENDOR_FUJITSU4,
662 1.196 mrg PCI_PRODUCT_FUJITSU4_PW008GE5,
663 1.196 mrg "Fujitsu PW008GE5 Gigabit Ethernet",
664 1.196 mrg },
665 1.196 mrg { PCI_VENDOR_FUJITSU4,
666 1.196 mrg PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 1.196 mrg "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 1.196 mrg },
669 1.158 msaitoh { 0,
670 1.158 msaitoh 0,
671 1.158 msaitoh NULL },
672 1.158 msaitoh };
673 1.158 msaitoh
674 1.215 msaitoh #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 1.172 msaitoh #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
676 1.215 msaitoh #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
677 1.172 msaitoh #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
678 1.215 msaitoh #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
679 1.215 msaitoh #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
680 1.214 msaitoh #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
681 1.214 msaitoh #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
682 1.166 msaitoh
683 1.158 msaitoh static const struct bge_revision {
684 1.158 msaitoh uint32_t br_chipid;
685 1.158 msaitoh const char *br_name;
686 1.158 msaitoh } bge_revisions[] = {
687 1.158 msaitoh { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
688 1.158 msaitoh { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
689 1.158 msaitoh { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
690 1.158 msaitoh { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
691 1.158 msaitoh { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
692 1.158 msaitoh { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
693 1.158 msaitoh { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
694 1.158 msaitoh { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
695 1.158 msaitoh { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
696 1.158 msaitoh { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
697 1.158 msaitoh { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
698 1.158 msaitoh { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
699 1.172 msaitoh { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
700 1.172 msaitoh { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
701 1.172 msaitoh { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
702 1.172 msaitoh { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
703 1.172 msaitoh { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
704 1.158 msaitoh { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
705 1.158 msaitoh { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
706 1.158 msaitoh { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
707 1.158 msaitoh { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
708 1.159 msaitoh { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
709 1.158 msaitoh { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
710 1.158 msaitoh { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
711 1.158 msaitoh { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
712 1.158 msaitoh { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
713 1.158 msaitoh { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
714 1.158 msaitoh { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
715 1.161 msaitoh { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
716 1.161 msaitoh { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
717 1.161 msaitoh { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
718 1.161 msaitoh { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
719 1.161 msaitoh { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
720 1.161 msaitoh { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
721 1.158 msaitoh { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
722 1.158 msaitoh { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
723 1.158 msaitoh { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
724 1.159 msaitoh { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
725 1.159 msaitoh { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
726 1.159 msaitoh { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
727 1.159 msaitoh { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
728 1.159 msaitoh { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
729 1.159 msaitoh { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
730 1.216 msaitoh { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
731 1.216 msaitoh { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
732 1.216 msaitoh { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
733 1.216 msaitoh { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
734 1.158 msaitoh { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
735 1.158 msaitoh { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
736 1.158 msaitoh { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
737 1.158 msaitoh { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
738 1.172 msaitoh { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
739 1.172 msaitoh { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
740 1.172 msaitoh { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
741 1.172 msaitoh { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
742 1.172 msaitoh /* 5754 and 5787 share the same ASIC ID */
743 1.158 msaitoh { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
744 1.158 msaitoh { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
745 1.158 msaitoh { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
746 1.206 msaitoh { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
747 1.161 msaitoh { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
748 1.161 msaitoh { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
749 1.214 msaitoh { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
750 1.214 msaitoh { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
751 1.172 msaitoh { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
752 1.172 msaitoh { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
753 1.172 msaitoh
754 1.158 msaitoh { 0, NULL }
755 1.158 msaitoh };
756 1.158 msaitoh
757 1.158 msaitoh /*
758 1.158 msaitoh * Some defaults for major revisions, so that newer steppings
759 1.158 msaitoh * that we don't know about have a shot at working.
760 1.158 msaitoh */
761 1.158 msaitoh static const struct bge_revision bge_majorrevs[] = {
762 1.158 msaitoh { BGE_ASICREV_BCM5700, "unknown BCM5700" },
763 1.158 msaitoh { BGE_ASICREV_BCM5701, "unknown BCM5701" },
764 1.158 msaitoh { BGE_ASICREV_BCM5703, "unknown BCM5703" },
765 1.158 msaitoh { BGE_ASICREV_BCM5704, "unknown BCM5704" },
766 1.158 msaitoh { BGE_ASICREV_BCM5705, "unknown BCM5705" },
767 1.162 msaitoh { BGE_ASICREV_BCM5750, "unknown BCM5750" },
768 1.216 msaitoh { BGE_ASICREV_BCM5714, "unknown BCM5714" },
769 1.158 msaitoh { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
770 1.172 msaitoh { BGE_ASICREV_BCM5752, "unknown BCM5752" },
771 1.172 msaitoh { BGE_ASICREV_BCM5780, "unknown BCM5780" },
772 1.158 msaitoh { BGE_ASICREV_BCM5755, "unknown BCM5755" },
773 1.172 msaitoh { BGE_ASICREV_BCM5761, "unknown BCM5761" },
774 1.172 msaitoh { BGE_ASICREV_BCM5784, "unknown BCM5784" },
775 1.172 msaitoh { BGE_ASICREV_BCM5785, "unknown BCM5785" },
776 1.162 msaitoh /* 5754 and 5787 share the same ASIC ID */
777 1.166 msaitoh { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
778 1.172 msaitoh { BGE_ASICREV_BCM5906, "unknown BCM5906" },
779 1.216 msaitoh { BGE_ASICREV_BCM57765, "unknown BCM57765" },
780 1.216 msaitoh { BGE_ASICREV_BCM57766, "unknown BCM57766" },
781 1.172 msaitoh { BGE_ASICREV_BCM57780, "unknown BCM57780" },
782 1.172 msaitoh { BGE_ASICREV_BCM5717, "unknown BCM5717" },
783 1.216 msaitoh { BGE_ASICREV_BCM5719, "unknown BCM5719" },
784 1.216 msaitoh { BGE_ASICREV_BCM5720, "unknown BCM5720" },
785 1.172 msaitoh
786 1.158 msaitoh { 0, NULL }
787 1.158 msaitoh };
788 1.17 thorpej
789 1.177 msaitoh static int bge_allow_asf = 1;
790 1.177 msaitoh
791 1.227 msaitoh CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
792 1.227 msaitoh bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
793 1.1 fvdl
794 1.170 msaitoh static uint32_t
795 1.104 thorpej bge_readmem_ind(struct bge_softc *sc, int off)
796 1.1 fvdl {
797 1.1 fvdl pcireg_t val;
798 1.1 fvdl
799 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
800 1.216 msaitoh off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
801 1.216 msaitoh return 0;
802 1.216 msaitoh
803 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
804 1.141 jmcneill val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
805 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
806 1.1 fvdl return val;
807 1.1 fvdl }
808 1.1 fvdl
809 1.104 thorpej static void
810 1.104 thorpej bge_writemem_ind(struct bge_softc *sc, int off, int val)
811 1.1 fvdl {
812 1.216 msaitoh
813 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
814 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
815 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
816 1.1 fvdl }
817 1.1 fvdl
818 1.177 msaitoh /*
819 1.177 msaitoh * PCI Express only
820 1.177 msaitoh */
821 1.177 msaitoh static void
822 1.177 msaitoh bge_set_max_readrq(struct bge_softc *sc)
823 1.177 msaitoh {
824 1.177 msaitoh pcireg_t val;
825 1.177 msaitoh
826 1.180 msaitoh val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
827 1.238 msaitoh + PCIE_DCSR);
828 1.238 msaitoh val &= ~PCIE_DCSR_MAX_READ_REQ;
829 1.216 msaitoh switch (sc->bge_expmrq) {
830 1.216 msaitoh case 2048:
831 1.216 msaitoh val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
832 1.216 msaitoh break;
833 1.216 msaitoh case 4096:
834 1.177 msaitoh val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
835 1.216 msaitoh break;
836 1.216 msaitoh default:
837 1.216 msaitoh panic("incorrect expmrq value(%d)", sc->bge_expmrq);
838 1.216 msaitoh break;
839 1.177 msaitoh }
840 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
841 1.238 msaitoh + PCIE_DCSR, val);
842 1.177 msaitoh }
843 1.177 msaitoh
844 1.1 fvdl #ifdef notdef
845 1.170 msaitoh static uint32_t
846 1.104 thorpej bge_readreg_ind(struct bge_softc *sc, int off)
847 1.1 fvdl {
848 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
849 1.158 msaitoh return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
850 1.1 fvdl }
851 1.1 fvdl #endif
852 1.1 fvdl
853 1.104 thorpej static void
854 1.104 thorpej bge_writereg_ind(struct bge_softc *sc, int off, int val)
855 1.1 fvdl {
856 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
857 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
858 1.1 fvdl }
859 1.1 fvdl
860 1.151 cegger static void
861 1.151 cegger bge_writemem_direct(struct bge_softc *sc, int off, int val)
862 1.151 cegger {
863 1.151 cegger CSR_WRITE_4(sc, off, val);
864 1.151 cegger }
865 1.151 cegger
866 1.151 cegger static void
867 1.151 cegger bge_writembx(struct bge_softc *sc, int off, int val)
868 1.151 cegger {
869 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
870 1.151 cegger off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
871 1.151 cegger
872 1.151 cegger CSR_WRITE_4(sc, off, val);
873 1.151 cegger }
874 1.151 cegger
875 1.211 msaitoh static void
876 1.211 msaitoh bge_writembx_flush(struct bge_softc *sc, int off, int val)
877 1.211 msaitoh {
878 1.211 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
879 1.211 msaitoh off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
880 1.211 msaitoh
881 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, off, val);
882 1.211 msaitoh }
883 1.211 msaitoh
884 1.216 msaitoh /*
885 1.216 msaitoh * Clear all stale locks and select the lock for this driver instance.
886 1.216 msaitoh */
887 1.216 msaitoh void
888 1.216 msaitoh bge_ape_lock_init(struct bge_softc *sc)
889 1.216 msaitoh {
890 1.216 msaitoh struct pci_attach_args *pa = &(sc->bge_pa);
891 1.216 msaitoh uint32_t bit, regbase;
892 1.216 msaitoh int i;
893 1.216 msaitoh
894 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
895 1.216 msaitoh regbase = BGE_APE_LOCK_GRANT;
896 1.216 msaitoh else
897 1.216 msaitoh regbase = BGE_APE_PER_LOCK_GRANT;
898 1.216 msaitoh
899 1.216 msaitoh /* Clear any stale locks. */
900 1.216 msaitoh for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
901 1.216 msaitoh switch (i) {
902 1.216 msaitoh case BGE_APE_LOCK_PHY0:
903 1.216 msaitoh case BGE_APE_LOCK_PHY1:
904 1.216 msaitoh case BGE_APE_LOCK_PHY2:
905 1.216 msaitoh case BGE_APE_LOCK_PHY3:
906 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 1.216 msaitoh break;
908 1.216 msaitoh default:
909 1.231 msaitoh if (pa->pa_function == 0)
910 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
911 1.216 msaitoh else
912 1.216 msaitoh bit = (1 << pa->pa_function);
913 1.216 msaitoh }
914 1.216 msaitoh APE_WRITE_4(sc, regbase + 4 * i, bit);
915 1.216 msaitoh }
916 1.216 msaitoh
917 1.216 msaitoh /* Select the PHY lock based on the device's function number. */
918 1.216 msaitoh switch (pa->pa_function) {
919 1.216 msaitoh case 0:
920 1.216 msaitoh sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
921 1.216 msaitoh break;
922 1.216 msaitoh case 1:
923 1.216 msaitoh sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
924 1.216 msaitoh break;
925 1.216 msaitoh case 2:
926 1.216 msaitoh sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
927 1.216 msaitoh break;
928 1.216 msaitoh case 3:
929 1.216 msaitoh sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
930 1.216 msaitoh break;
931 1.216 msaitoh default:
932 1.216 msaitoh printf("%s: PHY lock not supported on function\n",
933 1.216 msaitoh device_xname(sc->bge_dev));
934 1.216 msaitoh break;
935 1.216 msaitoh }
936 1.216 msaitoh }
937 1.216 msaitoh
938 1.216 msaitoh /*
939 1.216 msaitoh * Check for APE firmware, set flags, and print version info.
940 1.216 msaitoh */
941 1.216 msaitoh void
942 1.216 msaitoh bge_ape_read_fw_ver(struct bge_softc *sc)
943 1.216 msaitoh {
944 1.216 msaitoh const char *fwtype;
945 1.216 msaitoh uint32_t apedata, features;
946 1.216 msaitoh
947 1.216 msaitoh /* Check for a valid APE signature in shared memory. */
948 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
949 1.216 msaitoh if (apedata != BGE_APE_SEG_SIG_MAGIC) {
950 1.216 msaitoh sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
951 1.216 msaitoh return;
952 1.216 msaitoh }
953 1.216 msaitoh
954 1.216 msaitoh /* Check if APE firmware is running. */
955 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
956 1.216 msaitoh if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
957 1.216 msaitoh printf("%s: APE signature found but FW status not ready! "
958 1.216 msaitoh "0x%08x\n", device_xname(sc->bge_dev), apedata);
959 1.216 msaitoh return;
960 1.216 msaitoh }
961 1.216 msaitoh
962 1.216 msaitoh sc->bge_mfw_flags |= BGE_MFW_ON_APE;
963 1.216 msaitoh
964 1.216 msaitoh /* Fetch the APE firwmare type and version. */
965 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
966 1.216 msaitoh features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
967 1.216 msaitoh if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
968 1.216 msaitoh sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
969 1.216 msaitoh fwtype = "NCSI";
970 1.216 msaitoh } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
971 1.216 msaitoh sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
972 1.216 msaitoh fwtype = "DASH";
973 1.216 msaitoh } else
974 1.216 msaitoh fwtype = "UNKN";
975 1.216 msaitoh
976 1.216 msaitoh /* Print the APE firmware version. */
977 1.216 msaitoh printf(", APE firmware %s %d.%d.%d.%d", fwtype,
978 1.216 msaitoh (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
979 1.216 msaitoh (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
980 1.216 msaitoh (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
981 1.216 msaitoh (apedata & BGE_APE_FW_VERSION_BLDMSK));
982 1.216 msaitoh }
983 1.216 msaitoh
984 1.216 msaitoh int
985 1.216 msaitoh bge_ape_lock(struct bge_softc *sc, int locknum)
986 1.216 msaitoh {
987 1.216 msaitoh struct pci_attach_args *pa = &(sc->bge_pa);
988 1.216 msaitoh uint32_t bit, gnt, req, status;
989 1.216 msaitoh int i, off;
990 1.216 msaitoh
991 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
992 1.216 msaitoh return (0);
993 1.216 msaitoh
994 1.216 msaitoh /* Lock request/grant registers have different bases. */
995 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
996 1.216 msaitoh req = BGE_APE_LOCK_REQ;
997 1.216 msaitoh gnt = BGE_APE_LOCK_GRANT;
998 1.216 msaitoh } else {
999 1.216 msaitoh req = BGE_APE_PER_LOCK_REQ;
1000 1.216 msaitoh gnt = BGE_APE_PER_LOCK_GRANT;
1001 1.216 msaitoh }
1002 1.216 msaitoh
1003 1.216 msaitoh off = 4 * locknum;
1004 1.216 msaitoh
1005 1.216 msaitoh switch (locknum) {
1006 1.216 msaitoh case BGE_APE_LOCK_GPIO:
1007 1.216 msaitoh /* Lock required when using GPIO. */
1008 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1009 1.216 msaitoh return (0);
1010 1.216 msaitoh if (pa->pa_function == 0)
1011 1.216 msaitoh bit = BGE_APE_LOCK_REQ_DRIVER0;
1012 1.216 msaitoh else
1013 1.216 msaitoh bit = (1 << pa->pa_function);
1014 1.216 msaitoh break;
1015 1.216 msaitoh case BGE_APE_LOCK_GRC:
1016 1.216 msaitoh /* Lock required to reset the device. */
1017 1.216 msaitoh if (pa->pa_function == 0)
1018 1.216 msaitoh bit = BGE_APE_LOCK_REQ_DRIVER0;
1019 1.216 msaitoh else
1020 1.216 msaitoh bit = (1 << pa->pa_function);
1021 1.216 msaitoh break;
1022 1.216 msaitoh case BGE_APE_LOCK_MEM:
1023 1.216 msaitoh /* Lock required when accessing certain APE memory. */
1024 1.216 msaitoh if (pa->pa_function == 0)
1025 1.216 msaitoh bit = BGE_APE_LOCK_REQ_DRIVER0;
1026 1.216 msaitoh else
1027 1.216 msaitoh bit = (1 << pa->pa_function);
1028 1.216 msaitoh break;
1029 1.216 msaitoh case BGE_APE_LOCK_PHY0:
1030 1.216 msaitoh case BGE_APE_LOCK_PHY1:
1031 1.216 msaitoh case BGE_APE_LOCK_PHY2:
1032 1.216 msaitoh case BGE_APE_LOCK_PHY3:
1033 1.216 msaitoh /* Lock required when accessing PHYs. */
1034 1.216 msaitoh bit = BGE_APE_LOCK_REQ_DRIVER0;
1035 1.216 msaitoh break;
1036 1.216 msaitoh default:
1037 1.216 msaitoh return (EINVAL);
1038 1.216 msaitoh }
1039 1.216 msaitoh
1040 1.216 msaitoh /* Request a lock. */
1041 1.216 msaitoh APE_WRITE_4_FLUSH(sc, req + off, bit);
1042 1.216 msaitoh
1043 1.216 msaitoh /* Wait up to 1 second to acquire lock. */
1044 1.216 msaitoh for (i = 0; i < 20000; i++) {
1045 1.216 msaitoh status = APE_READ_4(sc, gnt + off);
1046 1.216 msaitoh if (status == bit)
1047 1.216 msaitoh break;
1048 1.216 msaitoh DELAY(50);
1049 1.216 msaitoh }
1050 1.216 msaitoh
1051 1.216 msaitoh /* Handle any errors. */
1052 1.216 msaitoh if (status != bit) {
1053 1.216 msaitoh printf("%s: APE lock %d request failed! "
1054 1.216 msaitoh "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1055 1.216 msaitoh device_xname(sc->bge_dev),
1056 1.216 msaitoh locknum, req + off, bit & 0xFFFF, gnt + off,
1057 1.216 msaitoh status & 0xFFFF);
1058 1.216 msaitoh /* Revoke the lock request. */
1059 1.216 msaitoh APE_WRITE_4(sc, gnt + off, bit);
1060 1.216 msaitoh return (EBUSY);
1061 1.216 msaitoh }
1062 1.216 msaitoh
1063 1.216 msaitoh return (0);
1064 1.216 msaitoh }
1065 1.216 msaitoh
1066 1.216 msaitoh void
1067 1.216 msaitoh bge_ape_unlock(struct bge_softc *sc, int locknum)
1068 1.216 msaitoh {
1069 1.216 msaitoh struct pci_attach_args *pa = &(sc->bge_pa);
1070 1.216 msaitoh uint32_t bit, gnt;
1071 1.216 msaitoh int off;
1072 1.216 msaitoh
1073 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1074 1.216 msaitoh return;
1075 1.216 msaitoh
1076 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1077 1.216 msaitoh gnt = BGE_APE_LOCK_GRANT;
1078 1.216 msaitoh else
1079 1.216 msaitoh gnt = BGE_APE_PER_LOCK_GRANT;
1080 1.216 msaitoh
1081 1.216 msaitoh off = 4 * locknum;
1082 1.216 msaitoh
1083 1.216 msaitoh switch (locknum) {
1084 1.216 msaitoh case BGE_APE_LOCK_GPIO:
1085 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1086 1.216 msaitoh return;
1087 1.216 msaitoh if (pa->pa_function == 0)
1088 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
1089 1.216 msaitoh else
1090 1.216 msaitoh bit = (1 << pa->pa_function);
1091 1.216 msaitoh break;
1092 1.216 msaitoh case BGE_APE_LOCK_GRC:
1093 1.216 msaitoh if (pa->pa_function == 0)
1094 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
1095 1.216 msaitoh else
1096 1.216 msaitoh bit = (1 << pa->pa_function);
1097 1.216 msaitoh break;
1098 1.216 msaitoh case BGE_APE_LOCK_MEM:
1099 1.216 msaitoh if (pa->pa_function == 0)
1100 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
1101 1.216 msaitoh else
1102 1.216 msaitoh bit = (1 << pa->pa_function);
1103 1.216 msaitoh break;
1104 1.216 msaitoh case BGE_APE_LOCK_PHY0:
1105 1.216 msaitoh case BGE_APE_LOCK_PHY1:
1106 1.216 msaitoh case BGE_APE_LOCK_PHY2:
1107 1.216 msaitoh case BGE_APE_LOCK_PHY3:
1108 1.216 msaitoh bit = BGE_APE_LOCK_GRANT_DRIVER0;
1109 1.216 msaitoh break;
1110 1.216 msaitoh default:
1111 1.216 msaitoh return;
1112 1.216 msaitoh }
1113 1.216 msaitoh
1114 1.216 msaitoh /* Write and flush for consecutive bge_ape_lock() */
1115 1.216 msaitoh APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1116 1.216 msaitoh }
1117 1.216 msaitoh
1118 1.216 msaitoh /*
1119 1.216 msaitoh * Send an event to the APE firmware.
1120 1.216 msaitoh */
1121 1.216 msaitoh void
1122 1.216 msaitoh bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1123 1.216 msaitoh {
1124 1.216 msaitoh uint32_t apedata;
1125 1.216 msaitoh int i;
1126 1.216 msaitoh
1127 1.216 msaitoh /* NCSI does not support APE events. */
1128 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1129 1.216 msaitoh return;
1130 1.216 msaitoh
1131 1.216 msaitoh /* Wait up to 1ms for APE to service previous event. */
1132 1.216 msaitoh for (i = 10; i > 0; i--) {
1133 1.216 msaitoh if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1134 1.216 msaitoh break;
1135 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1136 1.216 msaitoh if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1137 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1138 1.216 msaitoh BGE_APE_EVENT_STATUS_EVENT_PENDING);
1139 1.216 msaitoh bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1141 1.216 msaitoh break;
1142 1.216 msaitoh }
1143 1.216 msaitoh bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1144 1.216 msaitoh DELAY(100);
1145 1.216 msaitoh }
1146 1.216 msaitoh if (i == 0) {
1147 1.216 msaitoh printf("%s: APE event 0x%08x send timed out\n",
1148 1.216 msaitoh device_xname(sc->bge_dev), event);
1149 1.216 msaitoh }
1150 1.216 msaitoh }
1151 1.216 msaitoh
1152 1.216 msaitoh void
1153 1.216 msaitoh bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1154 1.216 msaitoh {
1155 1.216 msaitoh uint32_t apedata, event;
1156 1.216 msaitoh
1157 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1158 1.216 msaitoh return;
1159 1.216 msaitoh
1160 1.216 msaitoh switch (kind) {
1161 1.216 msaitoh case BGE_RESET_START:
1162 1.216 msaitoh /* If this is the first load, clear the load counter. */
1163 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1164 1.216 msaitoh if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1165 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1166 1.216 msaitoh else {
1167 1.216 msaitoh apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1168 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1169 1.216 msaitoh }
1170 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1171 1.216 msaitoh BGE_APE_HOST_SEG_SIG_MAGIC);
1172 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1173 1.216 msaitoh BGE_APE_HOST_SEG_LEN_MAGIC);
1174 1.216 msaitoh
1175 1.216 msaitoh /* Add some version info if bge(4) supports it. */
1176 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1177 1.216 msaitoh BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1178 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1179 1.216 msaitoh BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1180 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1181 1.216 msaitoh BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1182 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 1.216 msaitoh BGE_APE_HOST_DRVR_STATE_START);
1184 1.216 msaitoh event = BGE_APE_EVENT_STATUS_STATE_START;
1185 1.216 msaitoh break;
1186 1.216 msaitoh case BGE_RESET_SHUTDOWN:
1187 1.216 msaitoh APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1188 1.216 msaitoh BGE_APE_HOST_DRVR_STATE_UNLOAD);
1189 1.216 msaitoh event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1190 1.216 msaitoh break;
1191 1.216 msaitoh case BGE_RESET_SUSPEND:
1192 1.216 msaitoh event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1193 1.216 msaitoh break;
1194 1.216 msaitoh default:
1195 1.216 msaitoh return;
1196 1.216 msaitoh }
1197 1.216 msaitoh
1198 1.216 msaitoh bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1199 1.216 msaitoh BGE_APE_EVENT_STATUS_STATE_CHNGE);
1200 1.216 msaitoh }
1201 1.216 msaitoh
1202 1.170 msaitoh static uint8_t
1203 1.170 msaitoh bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1204 1.151 cegger {
1205 1.170 msaitoh uint32_t access, byte = 0;
1206 1.151 cegger int i;
1207 1.151 cegger
1208 1.151 cegger /* Lock. */
1209 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1210 1.151 cegger for (i = 0; i < 8000; i++) {
1211 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1212 1.151 cegger break;
1213 1.151 cegger DELAY(20);
1214 1.151 cegger }
1215 1.151 cegger if (i == 8000)
1216 1.170 msaitoh return 1;
1217 1.151 cegger
1218 1.151 cegger /* Enable access. */
1219 1.151 cegger access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1220 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1221 1.151 cegger
1222 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1223 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1224 1.151 cegger for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1225 1.151 cegger DELAY(10);
1226 1.151 cegger if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1227 1.151 cegger DELAY(10);
1228 1.151 cegger break;
1229 1.151 cegger }
1230 1.151 cegger }
1231 1.151 cegger
1232 1.151 cegger if (i == BGE_TIMEOUT * 10) {
1233 1.151 cegger aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1234 1.170 msaitoh return 1;
1235 1.151 cegger }
1236 1.151 cegger
1237 1.151 cegger /* Get result. */
1238 1.151 cegger byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1239 1.151 cegger
1240 1.151 cegger *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1241 1.151 cegger
1242 1.151 cegger /* Disable access. */
1243 1.151 cegger CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1244 1.151 cegger
1245 1.151 cegger /* Unlock. */
1246 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1247 1.151 cegger
1248 1.170 msaitoh return 0;
1249 1.151 cegger }
1250 1.151 cegger
1251 1.151 cegger /*
1252 1.151 cegger * Read a sequence of bytes from NVRAM.
1253 1.151 cegger */
1254 1.151 cegger static int
1255 1.170 msaitoh bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1256 1.151 cegger {
1257 1.203 msaitoh int error = 0, i;
1258 1.170 msaitoh uint8_t byte = 0;
1259 1.151 cegger
1260 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1261 1.170 msaitoh return 1;
1262 1.151 cegger
1263 1.151 cegger for (i = 0; i < cnt; i++) {
1264 1.203 msaitoh error = bge_nvram_getbyte(sc, off + i, &byte);
1265 1.203 msaitoh if (error)
1266 1.151 cegger break;
1267 1.151 cegger *(dest + i) = byte;
1268 1.151 cegger }
1269 1.151 cegger
1270 1.203 msaitoh return (error ? 1 : 0);
1271 1.151 cegger }
1272 1.151 cegger
1273 1.1 fvdl /*
1274 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
1275 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
1276 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
1277 1.1 fvdl * access method.
1278 1.1 fvdl */
1279 1.170 msaitoh static uint8_t
1280 1.170 msaitoh bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1281 1.1 fvdl {
1282 1.1 fvdl int i;
1283 1.170 msaitoh uint32_t byte = 0;
1284 1.1 fvdl
1285 1.1 fvdl /*
1286 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
1287 1.1 fvdl * having to use the bitbang method.
1288 1.1 fvdl */
1289 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1290 1.1 fvdl
1291 1.1 fvdl /* Reset the EEPROM, load the clock period. */
1292 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
1293 1.161 msaitoh BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1294 1.1 fvdl DELAY(20);
1295 1.1 fvdl
1296 1.1 fvdl /* Issue the read EEPROM command. */
1297 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1298 1.1 fvdl
1299 1.1 fvdl /* Wait for completion */
1300 1.170 msaitoh for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1301 1.1 fvdl DELAY(10);
1302 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1303 1.1 fvdl break;
1304 1.1 fvdl }
1305 1.1 fvdl
1306 1.172 msaitoh if (i == BGE_TIMEOUT * 10) {
1307 1.138 joerg aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1308 1.177 msaitoh return 1;
1309 1.1 fvdl }
1310 1.1 fvdl
1311 1.1 fvdl /* Get result. */
1312 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
1313 1.1 fvdl
1314 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1315 1.1 fvdl
1316 1.170 msaitoh return 0;
1317 1.1 fvdl }
1318 1.1 fvdl
1319 1.1 fvdl /*
1320 1.1 fvdl * Read a sequence of bytes from the EEPROM.
1321 1.1 fvdl */
1322 1.104 thorpej static int
1323 1.126 christos bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1324 1.1 fvdl {
1325 1.203 msaitoh int error = 0, i;
1326 1.170 msaitoh uint8_t byte = 0;
1327 1.126 christos char *dest = destv;
1328 1.1 fvdl
1329 1.1 fvdl for (i = 0; i < cnt; i++) {
1330 1.203 msaitoh error = bge_eeprom_getbyte(sc, off + i, &byte);
1331 1.203 msaitoh if (error)
1332 1.1 fvdl break;
1333 1.1 fvdl *(dest + i) = byte;
1334 1.1 fvdl }
1335 1.1 fvdl
1336 1.203 msaitoh return (error ? 1 : 0);
1337 1.1 fvdl }
1338 1.1 fvdl
1339 1.104 thorpej static int
1340 1.104 thorpej bge_miibus_readreg(device_t dev, int phy, int reg)
1341 1.1 fvdl {
1342 1.138 joerg struct bge_softc *sc = device_private(dev);
1343 1.170 msaitoh uint32_t val;
1344 1.172 msaitoh uint32_t autopoll;
1345 1.1 fvdl int i;
1346 1.1 fvdl
1347 1.216 msaitoh if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1348 1.170 msaitoh return 0;
1349 1.1 fvdl
1350 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
1351 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1352 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1353 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1354 1.211 msaitoh BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1355 1.216 msaitoh DELAY(80);
1356 1.25 jonathan }
1357 1.25 jonathan
1358 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1359 1.172 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg));
1360 1.1 fvdl
1361 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1362 1.216 msaitoh delay(10);
1363 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
1364 1.216 msaitoh if (!(val & BGE_MICOMM_BUSY)) {
1365 1.216 msaitoh DELAY(5);
1366 1.216 msaitoh val = CSR_READ_4(sc, BGE_MI_COMM);
1367 1.1 fvdl break;
1368 1.216 msaitoh }
1369 1.1 fvdl }
1370 1.1 fvdl
1371 1.1 fvdl if (i == BGE_TIMEOUT) {
1372 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1373 1.29 itojun val = 0;
1374 1.25 jonathan goto done;
1375 1.1 fvdl }
1376 1.1 fvdl
1377 1.25 jonathan done:
1378 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1379 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1380 1.211 msaitoh BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1381 1.216 msaitoh DELAY(80);
1382 1.25 jonathan }
1383 1.29 itojun
1384 1.216 msaitoh bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1385 1.216 msaitoh
1386 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
1387 1.170 msaitoh return 0;
1388 1.1 fvdl
1389 1.158 msaitoh return (val & 0xFFFF);
1390 1.1 fvdl }
1391 1.1 fvdl
1392 1.104 thorpej static void
1393 1.104 thorpej bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1394 1.1 fvdl {
1395 1.138 joerg struct bge_softc *sc = device_private(dev);
1396 1.172 msaitoh uint32_t autopoll;
1397 1.29 itojun int i;
1398 1.1 fvdl
1399 1.216 msaitoh if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 1.151 cegger return;
1401 1.151 cegger
1402 1.151 cegger if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1403 1.208 msaitoh (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1404 1.151 cegger return;
1405 1.151 cegger
1406 1.161 msaitoh /* Reading with autopolling on may trigger PCI errors */
1407 1.172 msaitoh autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1408 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1409 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1410 1.211 msaitoh BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1411 1.216 msaitoh DELAY(80);
1412 1.25 jonathan }
1413 1.29 itojun
1414 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1415 1.177 msaitoh BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1416 1.1 fvdl
1417 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1418 1.151 cegger delay(10);
1419 1.151 cegger if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1420 1.151 cegger delay(5);
1421 1.151 cegger CSR_READ_4(sc, BGE_MI_COMM);
1422 1.1 fvdl break;
1423 1.151 cegger }
1424 1.1 fvdl }
1425 1.1 fvdl
1426 1.172 msaitoh if (autopoll & BGE_MIMODE_AUTOPOLL) {
1427 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1428 1.211 msaitoh BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1429 1.216 msaitoh delay(80);
1430 1.25 jonathan }
1431 1.29 itojun
1432 1.216 msaitoh bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1433 1.216 msaitoh
1434 1.138 joerg if (i == BGE_TIMEOUT)
1435 1.138 joerg aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1436 1.1 fvdl }
1437 1.1 fvdl
1438 1.104 thorpej static void
1439 1.201 matt bge_miibus_statchg(struct ifnet *ifp)
1440 1.1 fvdl {
1441 1.201 matt struct bge_softc *sc = ifp->if_softc;
1442 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
1443 1.216 msaitoh uint32_t mac_mode, rx_mode, tx_mode;
1444 1.1 fvdl
1445 1.69 thorpej /*
1446 1.69 thorpej * Get flow control negotiation result.
1447 1.69 thorpej */
1448 1.69 thorpej if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1449 1.69 thorpej (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1450 1.69 thorpej sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1451 1.69 thorpej mii->mii_media_active &= ~IFM_ETH_FMASK;
1452 1.69 thorpej }
1453 1.69 thorpej
1454 1.216 msaitoh /* Set the port mode (MII/GMII) to match the link speed. */
1455 1.216 msaitoh mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1456 1.216 msaitoh ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1457 1.216 msaitoh tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1458 1.216 msaitoh rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1459 1.161 msaitoh if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1460 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1461 1.216 msaitoh mac_mode |= BGE_PORTMODE_GMII;
1462 1.161 msaitoh else
1463 1.216 msaitoh mac_mode |= BGE_PORTMODE_MII;
1464 1.216 msaitoh
1465 1.216 msaitoh tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1466 1.216 msaitoh rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1467 1.216 msaitoh if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1468 1.216 msaitoh if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1469 1.216 msaitoh tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1470 1.216 msaitoh if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1471 1.216 msaitoh rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1472 1.216 msaitoh } else
1473 1.216 msaitoh mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1474 1.1 fvdl
1475 1.216 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1476 1.211 msaitoh DELAY(40);
1477 1.216 msaitoh CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1478 1.216 msaitoh CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1479 1.1 fvdl }
1480 1.1 fvdl
1481 1.1 fvdl /*
1482 1.63 jonathan * Update rx threshold levels to values in a particular slot
1483 1.63 jonathan * of the interrupt-mitigation table bge_rx_threshes.
1484 1.63 jonathan */
1485 1.104 thorpej static void
1486 1.63 jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
1487 1.63 jonathan {
1488 1.63 jonathan struct bge_softc *sc = ifp->if_softc;
1489 1.63 jonathan int s;
1490 1.63 jonathan
1491 1.63 jonathan /* For now, just save the new Rx-intr thresholds and record
1492 1.63 jonathan * that a threshold update is pending. Updating the hardware
1493 1.63 jonathan * registers here (even at splhigh()) is observed to
1494 1.63 jonathan * occasionaly cause glitches where Rx-interrupts are not
1495 1.68 keihan * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1496 1.63 jonathan */
1497 1.63 jonathan s = splnet();
1498 1.63 jonathan sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1499 1.63 jonathan sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1500 1.63 jonathan sc->bge_pending_rxintr_change = 1;
1501 1.63 jonathan splx(s);
1502 1.63 jonathan }
1503 1.63 jonathan
1504 1.63 jonathan
1505 1.63 jonathan /*
1506 1.63 jonathan * Update Rx thresholds of all bge devices
1507 1.63 jonathan */
1508 1.104 thorpej static void
1509 1.63 jonathan bge_update_all_threshes(int lvl)
1510 1.63 jonathan {
1511 1.63 jonathan struct ifnet *ifp;
1512 1.63 jonathan const char * const namebuf = "bge";
1513 1.63 jonathan int namelen;
1514 1.63 jonathan
1515 1.63 jonathan if (lvl < 0)
1516 1.63 jonathan lvl = 0;
1517 1.170 msaitoh else if (lvl >= NBGE_RX_THRESH)
1518 1.63 jonathan lvl = NBGE_RX_THRESH - 1;
1519 1.87 perry
1520 1.63 jonathan namelen = strlen(namebuf);
1521 1.63 jonathan /*
1522 1.63 jonathan * Now search all the interfaces for this name/number
1523 1.63 jonathan */
1524 1.81 matt IFNET_FOREACH(ifp) {
1525 1.67 jonathan if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1526 1.63 jonathan continue;
1527 1.63 jonathan /* We got a match: update if doing auto-threshold-tuning */
1528 1.63 jonathan if (bge_auto_thresh)
1529 1.67 jonathan bge_set_thresh(ifp, lvl);
1530 1.63 jonathan }
1531 1.63 jonathan }
1532 1.63 jonathan
1533 1.63 jonathan /*
1534 1.1 fvdl * Handle events that have triggered interrupts.
1535 1.1 fvdl */
1536 1.104 thorpej static void
1537 1.116 christos bge_handle_events(struct bge_softc *sc)
1538 1.1 fvdl {
1539 1.1 fvdl
1540 1.1 fvdl return;
1541 1.1 fvdl }
1542 1.1 fvdl
1543 1.1 fvdl /*
1544 1.1 fvdl * Memory management for jumbo frames.
1545 1.1 fvdl */
1546 1.1 fvdl
1547 1.104 thorpej static int
1548 1.104 thorpej bge_alloc_jumbo_mem(struct bge_softc *sc)
1549 1.1 fvdl {
1550 1.126 christos char *ptr, *kva;
1551 1.1 fvdl bus_dma_segment_t seg;
1552 1.1 fvdl int i, rseg, state, error;
1553 1.1 fvdl struct bge_jpool_entry *entry;
1554 1.1 fvdl
1555 1.1 fvdl state = error = 0;
1556 1.1 fvdl
1557 1.1 fvdl /* Grab a big chunk o' storage. */
1558 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1559 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1560 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1561 1.1 fvdl return ENOBUFS;
1562 1.1 fvdl }
1563 1.1 fvdl
1564 1.1 fvdl state = 1;
1565 1.126 christos if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1566 1.1 fvdl BUS_DMA_NOWAIT)) {
1567 1.138 joerg aprint_error_dev(sc->bge_dev,
1568 1.138 joerg "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1569 1.1 fvdl error = ENOBUFS;
1570 1.1 fvdl goto out;
1571 1.1 fvdl }
1572 1.1 fvdl
1573 1.1 fvdl state = 2;
1574 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1575 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1576 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1577 1.1 fvdl error = ENOBUFS;
1578 1.1 fvdl goto out;
1579 1.1 fvdl }
1580 1.1 fvdl
1581 1.1 fvdl state = 3;
1582 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1583 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1584 1.138 joerg aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1585 1.1 fvdl error = ENOBUFS;
1586 1.1 fvdl goto out;
1587 1.1 fvdl }
1588 1.1 fvdl
1589 1.1 fvdl state = 4;
1590 1.126 christos sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1591 1.89 christos DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1592 1.1 fvdl
1593 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
1594 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
1595 1.1 fvdl
1596 1.1 fvdl /*
1597 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
1598 1.1 fvdl * in an array.
1599 1.1 fvdl */
1600 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
1601 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
1602 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
1603 1.1 fvdl ptr += BGE_JLEN;
1604 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
1605 1.1 fvdl M_DEVBUF, M_NOWAIT);
1606 1.1 fvdl if (entry == NULL) {
1607 1.138 joerg aprint_error_dev(sc->bge_dev,
1608 1.138 joerg "no memory for jumbo buffer queue!\n");
1609 1.1 fvdl error = ENOBUFS;
1610 1.1 fvdl goto out;
1611 1.1 fvdl }
1612 1.1 fvdl entry->slot = i;
1613 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1614 1.1 fvdl entry, jpool_entries);
1615 1.1 fvdl }
1616 1.1 fvdl out:
1617 1.1 fvdl if (error != 0) {
1618 1.1 fvdl switch (state) {
1619 1.1 fvdl case 4:
1620 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
1621 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1622 1.1 fvdl case 3:
1623 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
1624 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
1625 1.1 fvdl case 2:
1626 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1627 1.1 fvdl case 1:
1628 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1629 1.1 fvdl break;
1630 1.1 fvdl default:
1631 1.1 fvdl break;
1632 1.1 fvdl }
1633 1.1 fvdl }
1634 1.1 fvdl
1635 1.1 fvdl return error;
1636 1.1 fvdl }
1637 1.1 fvdl
1638 1.1 fvdl /*
1639 1.1 fvdl * Allocate a jumbo buffer.
1640 1.1 fvdl */
1641 1.104 thorpej static void *
1642 1.104 thorpej bge_jalloc(struct bge_softc *sc)
1643 1.1 fvdl {
1644 1.1 fvdl struct bge_jpool_entry *entry;
1645 1.1 fvdl
1646 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1647 1.1 fvdl
1648 1.1 fvdl if (entry == NULL) {
1649 1.138 joerg aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1650 1.170 msaitoh return NULL;
1651 1.1 fvdl }
1652 1.1 fvdl
1653 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1654 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1655 1.158 msaitoh return (sc->bge_cdata.bge_jslots[entry->slot]);
1656 1.1 fvdl }
1657 1.1 fvdl
1658 1.1 fvdl /*
1659 1.1 fvdl * Release a jumbo buffer.
1660 1.1 fvdl */
1661 1.104 thorpej static void
1662 1.126 christos bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1663 1.1 fvdl {
1664 1.1 fvdl struct bge_jpool_entry *entry;
1665 1.1 fvdl struct bge_softc *sc;
1666 1.1 fvdl int i, s;
1667 1.1 fvdl
1668 1.1 fvdl /* Extract the softc struct pointer. */
1669 1.1 fvdl sc = (struct bge_softc *)arg;
1670 1.1 fvdl
1671 1.1 fvdl if (sc == NULL)
1672 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
1673 1.1 fvdl
1674 1.1 fvdl /* calculate the slot this buffer belongs to */
1675 1.1 fvdl
1676 1.126 christos i = ((char *)buf
1677 1.126 christos - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1678 1.1 fvdl
1679 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
1680 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
1681 1.1 fvdl
1682 1.1 fvdl s = splvm();
1683 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1684 1.1 fvdl if (entry == NULL)
1685 1.1 fvdl panic("bge_jfree: buffer not in use!");
1686 1.1 fvdl entry->slot = i;
1687 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1688 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1689 1.1 fvdl
1690 1.1 fvdl if (__predict_true(m != NULL))
1691 1.140 ad pool_cache_put(mb_cache, m);
1692 1.1 fvdl splx(s);
1693 1.1 fvdl }
1694 1.1 fvdl
1695 1.1 fvdl
1696 1.1 fvdl /*
1697 1.184 njoly * Initialize a standard receive ring descriptor.
1698 1.1 fvdl */
1699 1.104 thorpej static int
1700 1.178 msaitoh bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1701 1.178 msaitoh bus_dmamap_t dmamap)
1702 1.1 fvdl {
1703 1.1 fvdl struct mbuf *m_new = NULL;
1704 1.1 fvdl struct bge_rx_bd *r;
1705 1.1 fvdl int error;
1706 1.1 fvdl
1707 1.1 fvdl if (dmamap == NULL) {
1708 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1709 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1710 1.1 fvdl if (error != 0)
1711 1.1 fvdl return error;
1712 1.1 fvdl }
1713 1.1 fvdl
1714 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1715 1.1 fvdl
1716 1.1 fvdl if (m == NULL) {
1717 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1718 1.158 msaitoh if (m_new == NULL)
1719 1.170 msaitoh return ENOBUFS;
1720 1.1 fvdl
1721 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
1722 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
1723 1.1 fvdl m_freem(m_new);
1724 1.170 msaitoh return ENOBUFS;
1725 1.1 fvdl }
1726 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1727 1.1 fvdl
1728 1.1 fvdl } else {
1729 1.1 fvdl m_new = m;
1730 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1731 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
1732 1.1 fvdl }
1733 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1734 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1735 1.124 bouyer if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1736 1.124 bouyer BUS_DMA_READ|BUS_DMA_NOWAIT))
1737 1.170 msaitoh return ENOBUFS;
1738 1.178 msaitoh bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1739 1.124 bouyer BUS_DMASYNC_PREREAD);
1740 1.1 fvdl
1741 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1742 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
1743 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1744 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
1745 1.1 fvdl r->bge_len = m_new->m_len;
1746 1.1 fvdl r->bge_idx = i;
1747 1.1 fvdl
1748 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1749 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
1750 1.1 fvdl i * sizeof (struct bge_rx_bd),
1751 1.1 fvdl sizeof (struct bge_rx_bd),
1752 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1753 1.1 fvdl
1754 1.170 msaitoh return 0;
1755 1.1 fvdl }
1756 1.1 fvdl
1757 1.1 fvdl /*
1758 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
1759 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
1760 1.1 fvdl */
1761 1.104 thorpej static int
1762 1.104 thorpej bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1763 1.1 fvdl {
1764 1.1 fvdl struct mbuf *m_new = NULL;
1765 1.1 fvdl struct bge_rx_bd *r;
1766 1.126 christos void *buf = NULL;
1767 1.1 fvdl
1768 1.1 fvdl if (m == NULL) {
1769 1.1 fvdl
1770 1.1 fvdl /* Allocate the mbuf. */
1771 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1772 1.158 msaitoh if (m_new == NULL)
1773 1.170 msaitoh return ENOBUFS;
1774 1.1 fvdl
1775 1.1 fvdl /* Allocate the jumbo buffer */
1776 1.1 fvdl buf = bge_jalloc(sc);
1777 1.1 fvdl if (buf == NULL) {
1778 1.1 fvdl m_freem(m_new);
1779 1.138 joerg aprint_error_dev(sc->bge_dev,
1780 1.138 joerg "jumbo allocation failed -- packet dropped!\n");
1781 1.170 msaitoh return ENOBUFS;
1782 1.1 fvdl }
1783 1.1 fvdl
1784 1.1 fvdl /* Attach the buffer to the mbuf. */
1785 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1786 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1787 1.1 fvdl bge_jfree, sc);
1788 1.74 yamt m_new->m_flags |= M_EXT_RW;
1789 1.1 fvdl } else {
1790 1.1 fvdl m_new = m;
1791 1.124 bouyer buf = m_new->m_data = m_new->m_ext.ext_buf;
1792 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1793 1.1 fvdl }
1794 1.157 msaitoh if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1795 1.125 bouyer m_adj(m_new, ETHER_ALIGN);
1796 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1797 1.126 christos mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1798 1.124 bouyer BUS_DMASYNC_PREREAD);
1799 1.1 fvdl /* Set up the descriptor. */
1800 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1801 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1802 1.172 msaitoh BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1803 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1804 1.1 fvdl r->bge_len = m_new->m_len;
1805 1.1 fvdl r->bge_idx = i;
1806 1.1 fvdl
1807 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1808 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1809 1.1 fvdl i * sizeof (struct bge_rx_bd),
1810 1.1 fvdl sizeof (struct bge_rx_bd),
1811 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1812 1.1 fvdl
1813 1.170 msaitoh return 0;
1814 1.1 fvdl }
1815 1.1 fvdl
1816 1.1 fvdl /*
1817 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1818 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
1819 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
1820 1.1 fvdl * the NIC.
1821 1.1 fvdl */
1822 1.104 thorpej static int
1823 1.104 thorpej bge_init_rx_ring_std(struct bge_softc *sc)
1824 1.1 fvdl {
1825 1.1 fvdl int i;
1826 1.1 fvdl
1827 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
1828 1.1 fvdl return 0;
1829 1.1 fvdl
1830 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
1831 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1832 1.170 msaitoh return ENOBUFS;
1833 1.1 fvdl }
1834 1.1 fvdl
1835 1.1 fvdl sc->bge_std = i - 1;
1836 1.151 cegger bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1837 1.1 fvdl
1838 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
1839 1.1 fvdl
1840 1.170 msaitoh return 0;
1841 1.1 fvdl }
1842 1.1 fvdl
1843 1.104 thorpej static void
1844 1.104 thorpej bge_free_rx_ring_std(struct bge_softc *sc)
1845 1.1 fvdl {
1846 1.1 fvdl int i;
1847 1.1 fvdl
1848 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
1849 1.1 fvdl return;
1850 1.1 fvdl
1851 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1852 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1853 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1854 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1855 1.87 perry bus_dmamap_destroy(sc->bge_dmatag,
1856 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
1857 1.1 fvdl }
1858 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1859 1.1 fvdl sizeof(struct bge_rx_bd));
1860 1.1 fvdl }
1861 1.1 fvdl
1862 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
1863 1.1 fvdl }
1864 1.1 fvdl
1865 1.104 thorpej static int
1866 1.104 thorpej bge_init_rx_ring_jumbo(struct bge_softc *sc)
1867 1.1 fvdl {
1868 1.1 fvdl int i;
1869 1.34 jonathan volatile struct bge_rcb *rcb;
1870 1.1 fvdl
1871 1.59 martin if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1872 1.59 martin return 0;
1873 1.59 martin
1874 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1875 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1876 1.170 msaitoh return ENOBUFS;
1877 1.205 msaitoh }
1878 1.1 fvdl
1879 1.1 fvdl sc->bge_jumbo = i - 1;
1880 1.59 martin sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1881 1.1 fvdl
1882 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1883 1.34 jonathan rcb->bge_maxlen_flags = 0;
1884 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1885 1.1 fvdl
1886 1.151 cegger bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1887 1.1 fvdl
1888 1.170 msaitoh return 0;
1889 1.1 fvdl }
1890 1.1 fvdl
1891 1.104 thorpej static void
1892 1.104 thorpej bge_free_rx_ring_jumbo(struct bge_softc *sc)
1893 1.1 fvdl {
1894 1.1 fvdl int i;
1895 1.1 fvdl
1896 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1897 1.1 fvdl return;
1898 1.1 fvdl
1899 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1900 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1901 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1902 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1903 1.1 fvdl }
1904 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1905 1.1 fvdl sizeof(struct bge_rx_bd));
1906 1.1 fvdl }
1907 1.1 fvdl
1908 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1909 1.1 fvdl }
1910 1.1 fvdl
1911 1.104 thorpej static void
1912 1.104 thorpej bge_free_tx_ring(struct bge_softc *sc)
1913 1.1 fvdl {
1914 1.204 msaitoh int i;
1915 1.1 fvdl struct txdmamap_pool_entry *dma;
1916 1.1 fvdl
1917 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
1918 1.1 fvdl return;
1919 1.1 fvdl
1920 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
1921 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1922 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
1923 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
1924 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1925 1.1 fvdl link);
1926 1.1 fvdl sc->txdma[i] = 0;
1927 1.1 fvdl }
1928 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1929 1.1 fvdl sizeof(struct bge_tx_bd));
1930 1.1 fvdl }
1931 1.1 fvdl
1932 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1933 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1934 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1935 1.1 fvdl free(dma, M_DEVBUF);
1936 1.1 fvdl }
1937 1.1 fvdl
1938 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
1939 1.1 fvdl }
1940 1.1 fvdl
1941 1.104 thorpej static int
1942 1.104 thorpej bge_init_tx_ring(struct bge_softc *sc)
1943 1.1 fvdl {
1944 1.1 fvdl int i;
1945 1.1 fvdl bus_dmamap_t dmamap;
1946 1.1 fvdl struct txdmamap_pool_entry *dma;
1947 1.1 fvdl
1948 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
1949 1.1 fvdl return 0;
1950 1.1 fvdl
1951 1.1 fvdl sc->bge_txcnt = 0;
1952 1.1 fvdl sc->bge_tx_saved_considx = 0;
1953 1.94 jonathan
1954 1.94 jonathan /* Initialize transmit producer index for host-memory send ring. */
1955 1.94 jonathan sc->bge_tx_prodidx = 0;
1956 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1957 1.158 msaitoh /* 5700 b2 errata */
1958 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1959 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1960 1.25 jonathan
1961 1.158 msaitoh /* NIC-memory send ring not used; initialize to zero. */
1962 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1963 1.158 msaitoh /* 5700 b2 errata */
1964 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1965 1.151 cegger bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1966 1.1 fvdl
1967 1.1 fvdl SLIST_INIT(&sc->txdma_list);
1968 1.246 msaitoh for (i = 0; i < BGE_TX_RING_CNT; i++) {
1969 1.95 jonathan if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1970 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1971 1.1 fvdl &dmamap))
1972 1.170 msaitoh return ENOBUFS;
1973 1.1 fvdl if (dmamap == NULL)
1974 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1975 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1976 1.1 fvdl if (dma == NULL) {
1977 1.138 joerg aprint_error_dev(sc->bge_dev,
1978 1.138 joerg "can't alloc txdmamap_pool_entry\n");
1979 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1980 1.170 msaitoh return ENOMEM;
1981 1.1 fvdl }
1982 1.1 fvdl dma->dmamap = dmamap;
1983 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1984 1.1 fvdl }
1985 1.1 fvdl
1986 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1987 1.1 fvdl
1988 1.170 msaitoh return 0;
1989 1.1 fvdl }
1990 1.1 fvdl
1991 1.104 thorpej static void
1992 1.104 thorpej bge_setmulti(struct bge_softc *sc)
1993 1.1 fvdl {
1994 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1995 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1996 1.1 fvdl struct ether_multi *enm;
1997 1.1 fvdl struct ether_multistep step;
1998 1.170 msaitoh uint32_t hashes[4] = { 0, 0, 0, 0 };
1999 1.170 msaitoh uint32_t h;
2000 1.1 fvdl int i;
2001 1.1 fvdl
2002 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
2003 1.13 thorpej goto allmulti;
2004 1.1 fvdl
2005 1.1 fvdl /* Now program new ones. */
2006 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
2007 1.1 fvdl while (enm != NULL) {
2008 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2009 1.13 thorpej /*
2010 1.13 thorpej * We must listen to a range of multicast addresses.
2011 1.13 thorpej * For now, just accept all multicasts, rather than
2012 1.13 thorpej * trying to set only those filter bits needed to match
2013 1.13 thorpej * the range. (At this time, the only use of address
2014 1.13 thorpej * ranges is for IP multicast routing, for which the
2015 1.13 thorpej * range is big enough to require all bits set.)
2016 1.13 thorpej */
2017 1.13 thorpej goto allmulti;
2018 1.13 thorpej }
2019 1.13 thorpej
2020 1.158 msaitoh h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2021 1.1 fvdl
2022 1.158 msaitoh /* Just want the 7 least-significant bits. */
2023 1.158 msaitoh h &= 0x7f;
2024 1.1 fvdl
2025 1.158 msaitoh hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2026 1.158 msaitoh ETHER_NEXT_MULTI(step, enm);
2027 1.25 jonathan }
2028 1.25 jonathan
2029 1.158 msaitoh ifp->if_flags &= ~IFF_ALLMULTI;
2030 1.158 msaitoh goto setit;
2031 1.1 fvdl
2032 1.158 msaitoh allmulti:
2033 1.158 msaitoh ifp->if_flags |= IFF_ALLMULTI;
2034 1.158 msaitoh hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2035 1.133 markd
2036 1.158 msaitoh setit:
2037 1.158 msaitoh for (i = 0; i < 4; i++)
2038 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2039 1.158 msaitoh }
2040 1.133 markd
2041 1.177 msaitoh static void
2042 1.178 msaitoh bge_sig_pre_reset(struct bge_softc *sc, int type)
2043 1.177 msaitoh {
2044 1.208 msaitoh
2045 1.177 msaitoh /*
2046 1.177 msaitoh * Some chips don't like this so only do this if ASF is enabled
2047 1.177 msaitoh */
2048 1.177 msaitoh if (sc->bge_asf_mode)
2049 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2050 1.1 fvdl
2051 1.177 msaitoh if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2052 1.177 msaitoh switch (type) {
2053 1.177 msaitoh case BGE_RESET_START:
2054 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2055 1.216 msaitoh BGE_FW_DRV_STATE_START);
2056 1.216 msaitoh break;
2057 1.216 msaitoh case BGE_RESET_SHUTDOWN:
2058 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2059 1.216 msaitoh BGE_FW_DRV_STATE_UNLOAD);
2060 1.177 msaitoh break;
2061 1.216 msaitoh case BGE_RESET_SUSPEND:
2062 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2063 1.216 msaitoh BGE_FW_DRV_STATE_SUSPEND);
2064 1.177 msaitoh break;
2065 1.177 msaitoh }
2066 1.177 msaitoh }
2067 1.216 msaitoh
2068 1.216 msaitoh if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2069 1.216 msaitoh bge_ape_driver_state_change(sc, type);
2070 1.177 msaitoh }
2071 1.177 msaitoh
2072 1.177 msaitoh static void
2073 1.178 msaitoh bge_sig_post_reset(struct bge_softc *sc, int type)
2074 1.177 msaitoh {
2075 1.178 msaitoh
2076 1.177 msaitoh if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2077 1.177 msaitoh switch (type) {
2078 1.177 msaitoh case BGE_RESET_START:
2079 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 1.216 msaitoh BGE_FW_DRV_STATE_START_DONE);
2081 1.177 msaitoh /* START DONE */
2082 1.177 msaitoh break;
2083 1.216 msaitoh case BGE_RESET_SHUTDOWN:
2084 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2085 1.216 msaitoh BGE_FW_DRV_STATE_UNLOAD_DONE);
2086 1.177 msaitoh break;
2087 1.177 msaitoh }
2088 1.177 msaitoh }
2089 1.216 msaitoh
2090 1.216 msaitoh if (type == BGE_RESET_SHUTDOWN)
2091 1.216 msaitoh bge_ape_driver_state_change(sc, type);
2092 1.177 msaitoh }
2093 1.177 msaitoh
2094 1.177 msaitoh static void
2095 1.178 msaitoh bge_sig_legacy(struct bge_softc *sc, int type)
2096 1.177 msaitoh {
2097 1.178 msaitoh
2098 1.177 msaitoh if (sc->bge_asf_mode) {
2099 1.177 msaitoh switch (type) {
2100 1.177 msaitoh case BGE_RESET_START:
2101 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 1.216 msaitoh BGE_FW_DRV_STATE_START);
2103 1.177 msaitoh break;
2104 1.216 msaitoh case BGE_RESET_SHUTDOWN:
2105 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 1.216 msaitoh BGE_FW_DRV_STATE_UNLOAD);
2107 1.177 msaitoh break;
2108 1.177 msaitoh }
2109 1.177 msaitoh }
2110 1.177 msaitoh }
2111 1.177 msaitoh
2112 1.177 msaitoh static void
2113 1.216 msaitoh bge_wait_for_event_ack(struct bge_softc *sc)
2114 1.216 msaitoh {
2115 1.216 msaitoh int i;
2116 1.216 msaitoh
2117 1.216 msaitoh /* wait up to 2500usec */
2118 1.216 msaitoh for (i = 0; i < 250; i++) {
2119 1.216 msaitoh if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2120 1.216 msaitoh BGE_RX_CPU_DRV_EVENT))
2121 1.216 msaitoh break;
2122 1.216 msaitoh DELAY(10);
2123 1.216 msaitoh }
2124 1.216 msaitoh }
2125 1.216 msaitoh
2126 1.216 msaitoh static void
2127 1.178 msaitoh bge_stop_fw(struct bge_softc *sc)
2128 1.177 msaitoh {
2129 1.1 fvdl
2130 1.177 msaitoh if (sc->bge_asf_mode) {
2131 1.216 msaitoh bge_wait_for_event_ack(sc);
2132 1.216 msaitoh
2133 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2134 1.216 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2135 1.216 msaitoh CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2136 1.177 msaitoh
2137 1.216 msaitoh bge_wait_for_event_ack(sc);
2138 1.177 msaitoh }
2139 1.177 msaitoh }
2140 1.1 fvdl
2141 1.180 msaitoh static int
2142 1.180 msaitoh bge_poll_fw(struct bge_softc *sc)
2143 1.180 msaitoh {
2144 1.180 msaitoh uint32_t val;
2145 1.180 msaitoh int i;
2146 1.180 msaitoh
2147 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2148 1.180 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
2149 1.180 msaitoh val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2150 1.180 msaitoh if (val & BGE_VCPU_STATUS_INIT_DONE)
2151 1.180 msaitoh break;
2152 1.180 msaitoh DELAY(100);
2153 1.180 msaitoh }
2154 1.180 msaitoh if (i >= BGE_TIMEOUT) {
2155 1.180 msaitoh aprint_error_dev(sc->bge_dev, "reset timed out\n");
2156 1.180 msaitoh return -1;
2157 1.180 msaitoh }
2158 1.180 msaitoh } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2159 1.180 msaitoh /*
2160 1.180 msaitoh * Poll the value location we just wrote until
2161 1.180 msaitoh * we see the 1's complement of the magic number.
2162 1.180 msaitoh * This indicates that the firmware initialization
2163 1.180 msaitoh * is complete.
2164 1.180 msaitoh * XXX 1000ms for Flash and 10000ms for SEEPROM.
2165 1.180 msaitoh */
2166 1.180 msaitoh for (i = 0; i < BGE_TIMEOUT; i++) {
2167 1.216 msaitoh val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2168 1.216 msaitoh if (val == ~BGE_SRAM_FW_MB_MAGIC)
2169 1.180 msaitoh break;
2170 1.180 msaitoh DELAY(10);
2171 1.180 msaitoh }
2172 1.180 msaitoh
2173 1.180 msaitoh if (i >= BGE_TIMEOUT) {
2174 1.180 msaitoh aprint_error_dev(sc->bge_dev,
2175 1.180 msaitoh "firmware handshake timed out, val = %x\n", val);
2176 1.180 msaitoh return -1;
2177 1.180 msaitoh }
2178 1.180 msaitoh }
2179 1.180 msaitoh
2180 1.214 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2181 1.214 msaitoh /* tg3 says we have to wait extra time */
2182 1.214 msaitoh delay(10 * 1000);
2183 1.214 msaitoh }
2184 1.214 msaitoh
2185 1.180 msaitoh return 0;
2186 1.180 msaitoh }
2187 1.180 msaitoh
2188 1.216 msaitoh int
2189 1.216 msaitoh bge_phy_addr(struct bge_softc *sc)
2190 1.216 msaitoh {
2191 1.216 msaitoh struct pci_attach_args *pa = &(sc->bge_pa);
2192 1.216 msaitoh int phy_addr = 1;
2193 1.216 msaitoh
2194 1.216 msaitoh /*
2195 1.216 msaitoh * PHY address mapping for various devices.
2196 1.216 msaitoh *
2197 1.216 msaitoh * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2198 1.216 msaitoh * ---------+-------+-------+-------+-------+
2199 1.216 msaitoh * BCM57XX | 1 | X | X | X |
2200 1.216 msaitoh * BCM5704 | 1 | X | 1 | X |
2201 1.216 msaitoh * BCM5717 | 1 | 8 | 2 | 9 |
2202 1.216 msaitoh * BCM5719 | 1 | 8 | 2 | 9 |
2203 1.216 msaitoh * BCM5720 | 1 | 8 | 2 | 9 |
2204 1.216 msaitoh *
2205 1.216 msaitoh * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2206 1.216 msaitoh * ---------+-------+-------+-------+-------+
2207 1.216 msaitoh * BCM57XX | X | X | X | X |
2208 1.216 msaitoh * BCM5704 | X | X | X | X |
2209 1.216 msaitoh * BCM5717 | X | X | X | X |
2210 1.216 msaitoh * BCM5719 | 3 | 10 | 4 | 11 |
2211 1.216 msaitoh * BCM5720 | X | X | X | X |
2212 1.216 msaitoh *
2213 1.216 msaitoh * Other addresses may respond but they are not
2214 1.216 msaitoh * IEEE compliant PHYs and should be ignored.
2215 1.216 msaitoh */
2216 1.216 msaitoh switch (BGE_ASICREV(sc->bge_chipid)) {
2217 1.216 msaitoh case BGE_ASICREV_BCM5717:
2218 1.216 msaitoh case BGE_ASICREV_BCM5719:
2219 1.216 msaitoh case BGE_ASICREV_BCM5720:
2220 1.216 msaitoh phy_addr = pa->pa_function;
2221 1.234 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2222 1.216 msaitoh phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2223 1.216 msaitoh BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2224 1.216 msaitoh } else {
2225 1.216 msaitoh phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2226 1.216 msaitoh BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2227 1.216 msaitoh }
2228 1.216 msaitoh }
2229 1.216 msaitoh
2230 1.216 msaitoh return phy_addr;
2231 1.216 msaitoh }
2232 1.216 msaitoh
2233 1.158 msaitoh /*
2234 1.158 msaitoh * Do endian, PCI and DMA initialization. Also check the on-board ROM
2235 1.158 msaitoh * self-test results.
2236 1.158 msaitoh */
2237 1.158 msaitoh static int
2238 1.158 msaitoh bge_chipinit(struct bge_softc *sc)
2239 1.158 msaitoh {
2240 1.214 msaitoh uint32_t dma_rw_ctl, mode_ctl, reg;
2241 1.178 msaitoh int i;
2242 1.1 fvdl
2243 1.158 msaitoh /* Set endianness before we access any non-PCI registers. */
2244 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2245 1.158 msaitoh BGE_INIT);
2246 1.1 fvdl
2247 1.158 msaitoh /*
2248 1.158 msaitoh * Clear the MAC statistics block in the NIC's
2249 1.158 msaitoh * internal memory.
2250 1.158 msaitoh */
2251 1.158 msaitoh for (i = BGE_STATS_BLOCK;
2252 1.170 msaitoh i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2253 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2254 1.1 fvdl
2255 1.158 msaitoh for (i = BGE_STATUS_BLOCK;
2256 1.170 msaitoh i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2257 1.158 msaitoh BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2258 1.1 fvdl
2259 1.214 msaitoh /* 5717 workaround from tg3 */
2260 1.214 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2261 1.214 msaitoh /* Save */
2262 1.214 msaitoh mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2263 1.214 msaitoh
2264 1.214 msaitoh /* Temporary modify MODE_CTL to control TLP */
2265 1.214 msaitoh reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2266 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2267 1.214 msaitoh
2268 1.214 msaitoh /* Control TLP */
2269 1.214 msaitoh reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2270 1.214 msaitoh BGE_TLP_PHYCTL1);
2271 1.214 msaitoh CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2272 1.214 msaitoh reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2273 1.214 msaitoh
2274 1.214 msaitoh /* Restore */
2275 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276 1.214 msaitoh }
2277 1.230 christos
2278 1.214 msaitoh /* XXX Should we use 57765_FAMILY? */
2279 1.214 msaitoh if (BGE_IS_57765_PLUS(sc)) {
2280 1.214 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2281 1.214 msaitoh /* Save */
2282 1.214 msaitoh mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2283 1.214 msaitoh
2284 1.214 msaitoh /* Temporary modify MODE_CTL to control TLP */
2285 1.214 msaitoh reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2286 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL,
2287 1.214 msaitoh reg | BGE_MODECTL_PCIE_TLPADDR1);
2288 1.230 christos
2289 1.214 msaitoh /* Control TLP */
2290 1.214 msaitoh reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 1.214 msaitoh BGE_TLP_PHYCTL5);
2292 1.214 msaitoh CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2293 1.214 msaitoh reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2294 1.214 msaitoh
2295 1.214 msaitoh /* Restore */
2296 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 1.214 msaitoh }
2298 1.214 msaitoh if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2299 1.214 msaitoh reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2300 1.214 msaitoh CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2301 1.214 msaitoh reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2302 1.214 msaitoh
2303 1.214 msaitoh /* Save */
2304 1.214 msaitoh mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305 1.214 msaitoh
2306 1.214 msaitoh /* Temporary modify MODE_CTL to control TLP */
2307 1.214 msaitoh reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 1.214 msaitoh reg | BGE_MODECTL_PCIE_TLPADDR0);
2310 1.214 msaitoh
2311 1.214 msaitoh /* Control TLP */
2312 1.214 msaitoh reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 1.214 msaitoh BGE_TLP_FTSMAX);
2314 1.214 msaitoh reg &= ~BGE_TLP_FTSMAX_MSK;
2315 1.214 msaitoh CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2316 1.214 msaitoh reg | BGE_TLP_FTSMAX_VAL);
2317 1.214 msaitoh
2318 1.214 msaitoh /* Restore */
2319 1.214 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2320 1.214 msaitoh }
2321 1.214 msaitoh
2322 1.214 msaitoh reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2323 1.214 msaitoh reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2324 1.214 msaitoh reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2325 1.214 msaitoh CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2326 1.214 msaitoh }
2327 1.214 msaitoh
2328 1.158 msaitoh /* Set up the PCI DMA control register. */
2329 1.166 msaitoh dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2330 1.158 msaitoh if (sc->bge_flags & BGE_PCIE) {
2331 1.166 msaitoh /* Read watermark not used, 128 bytes for write. */
2332 1.158 msaitoh DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2333 1.158 msaitoh device_xname(sc->bge_dev)));
2334 1.204 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2335 1.170 msaitoh } else if (sc->bge_flags & BGE_PCIX) {
2336 1.158 msaitoh DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2337 1.158 msaitoh device_xname(sc->bge_dev)));
2338 1.158 msaitoh /* PCI-X bus */
2339 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc)) {
2340 1.172 msaitoh /* 256 bytes for read and write. */
2341 1.204 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2342 1.204 msaitoh BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2343 1.172 msaitoh
2344 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2345 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2346 1.172 msaitoh else
2347 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2348 1.172 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2349 1.172 msaitoh /* 1536 bytes for read, 384 bytes for write. */
2350 1.204 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2351 1.204 msaitoh BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2352 1.172 msaitoh } else {
2353 1.172 msaitoh /* 384 bytes for read and write. */
2354 1.204 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2355 1.204 msaitoh BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2356 1.172 msaitoh (0x0F);
2357 1.172 msaitoh }
2358 1.172 msaitoh
2359 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2360 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2361 1.172 msaitoh uint32_t tmp;
2362 1.172 msaitoh
2363 1.172 msaitoh /* Set ONEDMA_ATONCE for hardware workaround. */
2364 1.226 msaitoh tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2365 1.172 msaitoh if (tmp == 6 || tmp == 7)
2366 1.172 msaitoh dma_rw_ctl |=
2367 1.172 msaitoh BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2368 1.172 msaitoh
2369 1.172 msaitoh /* Set PCI-X DMA write workaround. */
2370 1.172 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2371 1.158 msaitoh }
2372 1.158 msaitoh } else {
2373 1.172 msaitoh /* Conventional PCI bus: 256 bytes for read and write. */
2374 1.158 msaitoh DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2375 1.158 msaitoh device_xname(sc->bge_dev)));
2376 1.204 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2377 1.204 msaitoh BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2378 1.204 msaitoh
2379 1.160 msaitoh if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2380 1.160 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2381 1.158 msaitoh dma_rw_ctl |= 0x0F;
2382 1.158 msaitoh }
2383 1.157 msaitoh
2384 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2385 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2386 1.161 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2387 1.161 msaitoh BGE_PCIDMARWCTL_ASRT_ALL_BE;
2388 1.178 msaitoh
2389 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2390 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2391 1.161 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2392 1.161 msaitoh
2393 1.214 msaitoh if (BGE_IS_5717_PLUS(sc)) {
2394 1.214 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2395 1.214 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2396 1.214 msaitoh dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2397 1.214 msaitoh
2398 1.214 msaitoh /*
2399 1.214 msaitoh * Enable HW workaround for controllers that misinterpret
2400 1.214 msaitoh * a status tag update and leave interrupts permanently
2401 1.214 msaitoh * disabled.
2402 1.214 msaitoh */
2403 1.214 msaitoh if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2404 1.214 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2405 1.214 msaitoh dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2406 1.214 msaitoh }
2407 1.214 msaitoh
2408 1.177 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2409 1.177 msaitoh dma_rw_ctl);
2410 1.120 tsutsui
2411 1.158 msaitoh /*
2412 1.158 msaitoh * Set up general mode register.
2413 1.158 msaitoh */
2414 1.216 msaitoh mode_ctl = BGE_DMA_SWAP_OPTIONS;
2415 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2416 1.216 msaitoh /* Retain Host-2-BMC settings written by APE firmware. */
2417 1.216 msaitoh mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2418 1.216 msaitoh (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2419 1.216 msaitoh BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2420 1.216 msaitoh BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2421 1.216 msaitoh }
2422 1.216 msaitoh mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2423 1.216 msaitoh BGE_MODECTL_TX_NO_PHDR_CSUM;
2424 1.16 thorpej
2425 1.158 msaitoh /*
2426 1.172 msaitoh * BCM5701 B5 have a bug causing data corruption when using
2427 1.172 msaitoh * 64-bit DMA reads, which can be terminated early and then
2428 1.172 msaitoh * completed later as 32-bit accesses, in combination with
2429 1.172 msaitoh * certain bridges.
2430 1.172 msaitoh */
2431 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2432 1.172 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2433 1.216 msaitoh mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2434 1.172 msaitoh
2435 1.172 msaitoh /*
2436 1.177 msaitoh * Tell the firmware the driver is running
2437 1.177 msaitoh */
2438 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
2439 1.216 msaitoh mode_ctl |= BGE_MODECTL_STACKUP;
2440 1.216 msaitoh
2441 1.216 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2442 1.177 msaitoh
2443 1.177 msaitoh /*
2444 1.158 msaitoh * Disable memory write invalidate. Apparently it is not supported
2445 1.158 msaitoh * properly by these devices.
2446 1.158 msaitoh */
2447 1.172 msaitoh PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2448 1.172 msaitoh PCI_COMMAND_INVALIDATE_ENABLE);
2449 1.16 thorpej
2450 1.158 msaitoh #ifdef __brokenalpha__
2451 1.158 msaitoh /*
2452 1.158 msaitoh * Must insure that we do not cross an 8K (bytes) boundary
2453 1.158 msaitoh * for DMA reads. Our highest limit is 1K bytes. This is a
2454 1.158 msaitoh * restriction on some ALPHA platforms with early revision
2455 1.158 msaitoh * 21174 PCI chipsets, such as the AlphaPC 164lx
2456 1.158 msaitoh */
2457 1.158 msaitoh PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2458 1.158 msaitoh #endif
2459 1.16 thorpej
2460 1.158 msaitoh /* Set the timer prescaler (always 66MHz) */
2461 1.216 msaitoh CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2462 1.16 thorpej
2463 1.159 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2464 1.159 msaitoh DELAY(40); /* XXX */
2465 1.159 msaitoh
2466 1.159 msaitoh /* Put PHY into ready state */
2467 1.211 msaitoh BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2468 1.159 msaitoh DELAY(40);
2469 1.159 msaitoh }
2470 1.159 msaitoh
2471 1.170 msaitoh return 0;
2472 1.158 msaitoh }
2473 1.16 thorpej
2474 1.158 msaitoh static int
2475 1.158 msaitoh bge_blockinit(struct bge_softc *sc)
2476 1.158 msaitoh {
2477 1.177 msaitoh volatile struct bge_rcb *rcb;
2478 1.177 msaitoh bus_size_t rcb_addr;
2479 1.177 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
2480 1.177 msaitoh bge_hostaddr taddr;
2481 1.216 msaitoh uint32_t dmactl, val;
2482 1.222 msaitoh int i, limit;
2483 1.16 thorpej
2484 1.158 msaitoh /*
2485 1.158 msaitoh * Initialize the memory window pointer register so that
2486 1.158 msaitoh * we can access the first 32K of internal NIC RAM. This will
2487 1.158 msaitoh * allow us to set up the TX send ring RCBs and the RX return
2488 1.158 msaitoh * ring RCBs, plus other things which live in NIC memory.
2489 1.158 msaitoh */
2490 1.158 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2491 1.120 tsutsui
2492 1.216 msaitoh if (!BGE_IS_5705_PLUS(sc)) {
2493 1.236 msaitoh /* 57XX step 33 */
2494 1.236 msaitoh /* Configure mbuf memory pool */
2495 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2496 1.172 msaitoh BGE_BUFFPOOL_1);
2497 1.172 msaitoh
2498 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2499 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2500 1.172 msaitoh else
2501 1.172 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2502 1.40 fvdl
2503 1.236 msaitoh /* 57XX step 34 */
2504 1.158 msaitoh /* Configure DMA resource pool */
2505 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 1.158 msaitoh BGE_DMA_DESCRIPTORS);
2507 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 1.158 msaitoh }
2509 1.40 fvdl
2510 1.236 msaitoh /* 5718 step 11, 57XX step 35 */
2511 1.236 msaitoh /*
2512 1.236 msaitoh * Configure mbuf pool watermarks. New broadcom docs strongly
2513 1.236 msaitoh * recommend these.
2514 1.236 msaitoh */
2515 1.216 msaitoh if (BGE_IS_5717_PLUS(sc)) {
2516 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2517 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2518 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2519 1.202 tsutsui } else if (BGE_IS_5705_PLUS(sc)) {
2520 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2521 1.202 tsutsui
2522 1.202 tsutsui if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2523 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2524 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2525 1.202 tsutsui } else {
2526 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2527 1.202 tsutsui CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2528 1.202 tsutsui }
2529 1.158 msaitoh } else {
2530 1.218 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2531 1.218 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2532 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2533 1.158 msaitoh }
2534 1.25 jonathan
2535 1.236 msaitoh /* 57XX step 36 */
2536 1.236 msaitoh /* Configure DMA resource watermarks */
2537 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2538 1.158 msaitoh CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2539 1.51 fvdl
2540 1.236 msaitoh /* 5718 step 13, 57XX step 38 */
2541 1.236 msaitoh /* Enable buffer manager */
2542 1.216 msaitoh val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2543 1.216 msaitoh /*
2544 1.216 msaitoh * Change the arbitration algorithm of TXMBUF read request to
2545 1.216 msaitoh * round-robin instead of priority based for BCM5719. When
2546 1.216 msaitoh * TXFIFO is almost empty, RDMA will hold its request until
2547 1.216 msaitoh * TXFIFO is not almost empty.
2548 1.216 msaitoh */
2549 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2550 1.216 msaitoh val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2551 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2552 1.216 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2553 1.216 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2554 1.216 msaitoh val |= BGE_BMANMODE_LOMBUF_ATTN;
2555 1.216 msaitoh CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2556 1.44 hannken
2557 1.236 msaitoh /* 57XX step 39 */
2558 1.236 msaitoh /* Poll for buffer manager start indication */
2559 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2560 1.216 msaitoh DELAY(10);
2561 1.172 msaitoh if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2562 1.172 msaitoh break;
2563 1.172 msaitoh }
2564 1.51 fvdl
2565 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2566 1.172 msaitoh aprint_error_dev(sc->bge_dev,
2567 1.172 msaitoh "buffer manager failed to start\n");
2568 1.172 msaitoh return ENXIO;
2569 1.158 msaitoh }
2570 1.51 fvdl
2571 1.236 msaitoh /* 57XX step 40 */
2572 1.236 msaitoh /* Enable flow-through queues */
2573 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2574 1.158 msaitoh CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2575 1.76 cube
2576 1.158 msaitoh /* Wait until queue initialization is complete */
2577 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2578 1.158 msaitoh if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2579 1.158 msaitoh break;
2580 1.158 msaitoh DELAY(10);
2581 1.158 msaitoh }
2582 1.76 cube
2583 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2584 1.158 msaitoh aprint_error_dev(sc->bge_dev,
2585 1.158 msaitoh "flow-through queue init failed\n");
2586 1.170 msaitoh return ENXIO;
2587 1.158 msaitoh }
2588 1.92 gavan
2589 1.222 msaitoh /*
2590 1.222 msaitoh * Summary of rings supported by the controller:
2591 1.222 msaitoh *
2592 1.222 msaitoh * Standard Receive Producer Ring
2593 1.222 msaitoh * - This ring is used to feed receive buffers for "standard"
2594 1.222 msaitoh * sized frames (typically 1536 bytes) to the controller.
2595 1.222 msaitoh *
2596 1.222 msaitoh * Jumbo Receive Producer Ring
2597 1.222 msaitoh * - This ring is used to feed receive buffers for jumbo sized
2598 1.222 msaitoh * frames (i.e. anything bigger than the "standard" frames)
2599 1.222 msaitoh * to the controller.
2600 1.222 msaitoh *
2601 1.222 msaitoh * Mini Receive Producer Ring
2602 1.222 msaitoh * - This ring is used to feed receive buffers for "mini"
2603 1.222 msaitoh * sized frames to the controller.
2604 1.222 msaitoh * - This feature required external memory for the controller
2605 1.222 msaitoh * but was never used in a production system. Should always
2606 1.222 msaitoh * be disabled.
2607 1.222 msaitoh *
2608 1.222 msaitoh * Receive Return Ring
2609 1.222 msaitoh * - After the controller has placed an incoming frame into a
2610 1.222 msaitoh * receive buffer that buffer is moved into a receive return
2611 1.222 msaitoh * ring. The driver is then responsible to passing the
2612 1.222 msaitoh * buffer up to the stack. Many versions of the controller
2613 1.222 msaitoh * support multiple RR rings.
2614 1.222 msaitoh *
2615 1.222 msaitoh * Send Ring
2616 1.222 msaitoh * - This ring is used for outgoing frames. Many versions of
2617 1.222 msaitoh * the controller support multiple send rings.
2618 1.222 msaitoh */
2619 1.222 msaitoh
2620 1.236 msaitoh /* 5718 step 15, 57XX step 41 */
2621 1.236 msaitoh /* Initialize the standard RX ring control block */
2622 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2623 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2624 1.236 msaitoh /* 5718 step 16 */
2625 1.222 msaitoh if (BGE_IS_5717_PLUS(sc)) {
2626 1.222 msaitoh /*
2627 1.222 msaitoh * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2628 1.222 msaitoh * Bits 15-2 : Maximum RX frame size
2629 1.222 msaitoh * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2630 1.222 msaitoh * Bit 0 : Reserved
2631 1.222 msaitoh */
2632 1.202 tsutsui rcb->bge_maxlen_flags =
2633 1.202 tsutsui BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2634 1.222 msaitoh } else if (BGE_IS_5705_PLUS(sc)) {
2635 1.222 msaitoh /*
2636 1.222 msaitoh * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2637 1.222 msaitoh * Bits 15-2 : Reserved (should be 0)
2638 1.222 msaitoh * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2639 1.222 msaitoh * Bit 0 : Reserved
2640 1.222 msaitoh */
2641 1.158 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2642 1.222 msaitoh } else {
2643 1.222 msaitoh /*
2644 1.222 msaitoh * Ring size is always XXX entries
2645 1.222 msaitoh * Bits 31-16: Maximum RX frame size
2646 1.222 msaitoh * Bits 15-2 : Reserved (should be 0)
2647 1.222 msaitoh * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2648 1.222 msaitoh * Bit 0 : Reserved
2649 1.222 msaitoh */
2650 1.158 msaitoh rcb->bge_maxlen_flags =
2651 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2652 1.222 msaitoh }
2653 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2654 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2655 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2656 1.216 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2657 1.216 msaitoh else
2658 1.216 msaitoh rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2659 1.222 msaitoh /* Write the standard receive producer ring control block. */
2660 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2661 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2662 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2663 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2664 1.119 tsutsui
2665 1.222 msaitoh /* Reset the standard receive producer ring producer index. */
2666 1.222 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2667 1.222 msaitoh
2668 1.236 msaitoh /* 57XX step 42 */
2669 1.158 msaitoh /*
2670 1.236 msaitoh * Initialize the jumbo RX ring control block
2671 1.158 msaitoh * We set the 'ring disabled' bit in the flags
2672 1.158 msaitoh * field until we're actually ready to start
2673 1.158 msaitoh * using this ring (i.e. once we set the MTU
2674 1.158 msaitoh * high enough to require it).
2675 1.158 msaitoh */
2676 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
2677 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2678 1.172 msaitoh BGE_HOSTADDR(rcb->bge_hostaddr,
2679 1.158 msaitoh BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2680 1.222 msaitoh rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2681 1.222 msaitoh BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2682 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2683 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2684 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2685 1.216 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2686 1.216 msaitoh else
2687 1.216 msaitoh rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2688 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2689 1.158 msaitoh rcb->bge_hostaddr.bge_addr_hi);
2690 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2691 1.158 msaitoh rcb->bge_hostaddr.bge_addr_lo);
2692 1.222 msaitoh /* Program the jumbo receive producer ring RCB parameters. */
2693 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2694 1.158 msaitoh rcb->bge_maxlen_flags);
2695 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2696 1.216 msaitoh /* Reset the jumbo receive producer ring producer index. */
2697 1.216 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2698 1.216 msaitoh }
2699 1.149 sborrill
2700 1.236 msaitoh /* 57XX step 43 */
2701 1.216 msaitoh /* Disable the mini receive producer ring RCB. */
2702 1.216 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2703 1.158 msaitoh /* Set up dummy disabled mini ring RCB */
2704 1.158 msaitoh rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2705 1.222 msaitoh rcb->bge_maxlen_flags =
2706 1.222 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2707 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2708 1.158 msaitoh rcb->bge_maxlen_flags);
2709 1.216 msaitoh /* Reset the mini receive producer ring producer index. */
2710 1.216 msaitoh bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2711 1.133 markd
2712 1.158 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2713 1.158 msaitoh offsetof(struct bge_ring_data, bge_info),
2714 1.158 msaitoh sizeof (struct bge_gib),
2715 1.158 msaitoh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2716 1.158 msaitoh }
2717 1.133 markd
2718 1.206 msaitoh /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2719 1.206 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2720 1.206 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2721 1.206 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2722 1.206 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2723 1.206 msaitoh CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2724 1.206 msaitoh (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2725 1.206 msaitoh }
2726 1.236 msaitoh /* 5718 step 14, 57XX step 44 */
2727 1.158 msaitoh /*
2728 1.222 msaitoh * The BD ring replenish thresholds control how often the
2729 1.222 msaitoh * hardware fetches new BD's from the producer rings in host
2730 1.222 msaitoh * memory. Setting the value too low on a busy system can
2731 1.222 msaitoh * starve the hardware and recue the throughpout.
2732 1.222 msaitoh *
2733 1.158 msaitoh * Set the BD ring replenish thresholds. The recommended
2734 1.158 msaitoh * values are 1/8th the number of descriptors allocated to
2735 1.222 msaitoh * each ring, but since we try to avoid filling the entire
2736 1.222 msaitoh * ring we set these to the minimal value of 8. This needs to
2737 1.222 msaitoh * be done on several of the supported chip revisions anyway,
2738 1.222 msaitoh * to work around HW bugs.
2739 1.158 msaitoh */
2740 1.222 msaitoh CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2741 1.222 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc))
2742 1.222 msaitoh CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2743 1.157 msaitoh
2744 1.236 msaitoh /* 5718 step 18 */
2745 1.216 msaitoh if (BGE_IS_5717_PLUS(sc)) {
2746 1.172 msaitoh CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2747 1.172 msaitoh CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2748 1.172 msaitoh }
2749 1.172 msaitoh
2750 1.236 msaitoh /* 57XX step 45 */
2751 1.158 msaitoh /*
2752 1.222 msaitoh * Disable all send rings by setting the 'ring disabled' bit
2753 1.222 msaitoh * in the flags field of all the TX send ring control blocks,
2754 1.222 msaitoh * located in NIC memory.
2755 1.158 msaitoh */
2756 1.222 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2757 1.222 msaitoh /* 5700 to 5704 had 16 send rings. */
2758 1.222 msaitoh limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2759 1.222 msaitoh } else
2760 1.222 msaitoh limit = 1;
2761 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2762 1.222 msaitoh for (i = 0; i < limit; i++) {
2763 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2764 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2765 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2766 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
2767 1.158 msaitoh }
2768 1.157 msaitoh
2769 1.236 msaitoh /* 57XX step 46 and 47 */
2770 1.222 msaitoh /* Configure send ring RCB 0 (we use only the first ring) */
2771 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2772 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2773 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2774 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2775 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2776 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2777 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2778 1.216 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2779 1.216 msaitoh else
2780 1.216 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2781 1.158 msaitoh BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2782 1.222 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2783 1.222 msaitoh BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2784 1.157 msaitoh
2785 1.236 msaitoh /* 57XX step 48 */
2786 1.222 msaitoh /*
2787 1.222 msaitoh * Disable all receive return rings by setting the
2788 1.222 msaitoh * 'ring diabled' bit in the flags field of all the receive
2789 1.222 msaitoh * return ring control blocks, located in NIC memory.
2790 1.222 msaitoh */
2791 1.222 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2792 1.222 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2793 1.222 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2794 1.222 msaitoh /* Should be 17, use 16 until we get an SRAM map. */
2795 1.222 msaitoh limit = 16;
2796 1.222 msaitoh } else if (BGE_IS_5700_FAMILY(sc))
2797 1.222 msaitoh limit = BGE_RX_RINGS_MAX;
2798 1.222 msaitoh else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2799 1.222 msaitoh BGE_IS_57765_PLUS(sc))
2800 1.222 msaitoh limit = 4;
2801 1.222 msaitoh else
2802 1.222 msaitoh limit = 1;
2803 1.222 msaitoh /* Disable all receive return rings */
2804 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2805 1.222 msaitoh for (i = 0; i < limit; i++) {
2806 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2807 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2808 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2809 1.172 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2810 1.172 msaitoh BGE_RCB_FLAG_RING_DISABLED));
2811 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2812 1.158 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2813 1.170 msaitoh (i * (sizeof(uint64_t))), 0);
2814 1.158 msaitoh rcb_addr += sizeof(struct bge_rcb);
2815 1.158 msaitoh }
2816 1.157 msaitoh
2817 1.236 msaitoh /* 57XX step 49 */
2818 1.158 msaitoh /*
2819 1.222 msaitoh * Set up receive return ring 0. Note that the NIC address
2820 1.222 msaitoh * for RX return rings is 0x0. The return rings live entirely
2821 1.222 msaitoh * within the host, so the nicaddr field in the RCB isn't used.
2822 1.158 msaitoh */
2823 1.158 msaitoh rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2824 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2825 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2826 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2827 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2828 1.158 msaitoh RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2829 1.158 msaitoh BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2830 1.157 msaitoh
2831 1.236 msaitoh /* 5718 step 24, 57XX step 53 */
2832 1.158 msaitoh /* Set random backoff seed for TX */
2833 1.158 msaitoh CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2834 1.235 msaitoh (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2835 1.235 msaitoh CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2836 1.235 msaitoh CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2837 1.158 msaitoh BGE_TX_BACKOFF_SEED_MASK);
2838 1.157 msaitoh
2839 1.236 msaitoh /* 5718 step 26, 57XX step 55 */
2840 1.158 msaitoh /* Set inter-packet gap */
2841 1.216 msaitoh val = 0x2620;
2842 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2843 1.216 msaitoh val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2844 1.216 msaitoh (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2845 1.216 msaitoh CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2846 1.51 fvdl
2847 1.236 msaitoh /* 5718 step 27, 57XX step 56 */
2848 1.158 msaitoh /*
2849 1.158 msaitoh * Specify which ring to use for packets that don't match
2850 1.158 msaitoh * any RX rules.
2851 1.158 msaitoh */
2852 1.158 msaitoh CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2853 1.157 msaitoh
2854 1.236 msaitoh /* 5718 step 28, 57XX step 57 */
2855 1.158 msaitoh /*
2856 1.158 msaitoh * Configure number of RX lists. One interrupt distribution
2857 1.158 msaitoh * list, sixteen active lists, one bad frames class.
2858 1.158 msaitoh */
2859 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2860 1.157 msaitoh
2861 1.236 msaitoh /* 5718 step 29, 57XX step 58 */
2862 1.158 msaitoh /* Inialize RX list placement stats mask. */
2863 1.244 msaitoh if (BGE_IS_575X_PLUS(sc)) {
2864 1.244 msaitoh val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2865 1.244 msaitoh val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2866 1.244 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2867 1.244 msaitoh } else
2868 1.244 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2869 1.244 msaitoh
2870 1.236 msaitoh /* 5718 step 30, 57XX step 59 */
2871 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2872 1.157 msaitoh
2873 1.236 msaitoh /* 5718 step 33, 57XX step 62 */
2874 1.158 msaitoh /* Disable host coalescing until we get it set up */
2875 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2876 1.51 fvdl
2877 1.236 msaitoh /* 5718 step 34, 57XX step 63 */
2878 1.158 msaitoh /* Poll to make sure it's shut down. */
2879 1.172 msaitoh for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2880 1.216 msaitoh DELAY(10);
2881 1.158 msaitoh if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2882 1.158 msaitoh break;
2883 1.158 msaitoh }
2884 1.151 cegger
2885 1.172 msaitoh if (i == BGE_TIMEOUT * 2) {
2886 1.158 msaitoh aprint_error_dev(sc->bge_dev,
2887 1.158 msaitoh "host coalescing engine failed to idle\n");
2888 1.170 msaitoh return ENXIO;
2889 1.158 msaitoh }
2890 1.51 fvdl
2891 1.236 msaitoh /* 5718 step 35, 36, 37 */
2892 1.158 msaitoh /* Set up host coalescing defaults */
2893 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2894 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2895 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2896 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2897 1.216 msaitoh if (!(BGE_IS_5705_PLUS(sc))) {
2898 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2899 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2900 1.51 fvdl }
2901 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2902 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2903 1.51 fvdl
2904 1.158 msaitoh /* Set up address of statistics block */
2905 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
2906 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2907 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2908 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2909 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2910 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2911 1.16 thorpej }
2912 1.16 thorpej
2913 1.236 msaitoh /* 5718 step 38 */
2914 1.158 msaitoh /* Set up address of status block */
2915 1.172 msaitoh BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2916 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2917 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2918 1.158 msaitoh CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2919 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2920 1.158 msaitoh sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2921 1.16 thorpej
2922 1.216 msaitoh /* Set up status block size. */
2923 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2924 1.216 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2925 1.216 msaitoh val = BGE_STATBLKSZ_FULL;
2926 1.216 msaitoh bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2927 1.216 msaitoh } else {
2928 1.216 msaitoh val = BGE_STATBLKSZ_32BYTE;
2929 1.216 msaitoh bzero(&sc->bge_rdata->bge_status_block, 32);
2930 1.216 msaitoh }
2931 1.216 msaitoh
2932 1.236 msaitoh /* 5718 step 39, 57XX step 73 */
2933 1.158 msaitoh /* Turn on host coalescing state machine */
2934 1.216 msaitoh CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2935 1.7 thorpej
2936 1.236 msaitoh /* 5718 step 40, 57XX step 74 */
2937 1.158 msaitoh /* Turn on RX BD completion state machine and enable attentions */
2938 1.158 msaitoh CSR_WRITE_4(sc, BGE_RBDC_MODE,
2939 1.161 msaitoh BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2940 1.7 thorpej
2941 1.236 msaitoh /* 5718 step 41, 57XX step 75 */
2942 1.158 msaitoh /* Turn on RX list placement state machine */
2943 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2944 1.51 fvdl
2945 1.236 msaitoh /* 57XX step 76 */
2946 1.158 msaitoh /* Turn on RX list selector state machine. */
2947 1.216 msaitoh if (!(BGE_IS_5705_PLUS(sc)))
2948 1.158 msaitoh CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2949 1.51 fvdl
2950 1.161 msaitoh val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2951 1.161 msaitoh BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2952 1.161 msaitoh BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2953 1.161 msaitoh BGE_MACMODE_FRMHDR_DMA_ENB;
2954 1.161 msaitoh
2955 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2956 1.177 msaitoh val |= BGE_PORTMODE_TBI;
2957 1.161 msaitoh else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2958 1.177 msaitoh val |= BGE_PORTMODE_GMII;
2959 1.161 msaitoh else
2960 1.177 msaitoh val |= BGE_PORTMODE_MII;
2961 1.161 msaitoh
2962 1.236 msaitoh /* 5718 step 42 and 43, 57XX step 77 and 78 */
2963 1.216 msaitoh /* Allow APE to send/receive frames. */
2964 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2965 1.216 msaitoh val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2966 1.216 msaitoh
2967 1.158 msaitoh /* Turn on DMA, clear stats */
2968 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2969 1.236 msaitoh /* 5718 step 44 */
2970 1.211 msaitoh DELAY(40);
2971 1.161 msaitoh
2972 1.236 msaitoh /* 5718 step 45, 57XX step 79 */
2973 1.158 msaitoh /* Set misc. local control, enable interrupts on attentions */
2974 1.222 msaitoh CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2975 1.224 msaitoh if (BGE_IS_5717_PLUS(sc)) {
2976 1.224 msaitoh CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2977 1.236 msaitoh /* 5718 step 46 */
2978 1.224 msaitoh DELAY(100);
2979 1.224 msaitoh }
2980 1.80 fredb
2981 1.236 msaitoh /* 57XX step 81 */
2982 1.158 msaitoh /* Turn on DMA completion state machine */
2983 1.216 msaitoh if (!(BGE_IS_5705_PLUS(sc)))
2984 1.158 msaitoh CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2985 1.149 sborrill
2986 1.236 msaitoh /* 5718 step 47, 57XX step 82 */
2987 1.203 msaitoh val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2988 1.203 msaitoh
2989 1.236 msaitoh /* 5718 step 48 */
2990 1.216 msaitoh /* Enable host coalescing bug fix. */
2991 1.203 msaitoh if (BGE_IS_5755_PLUS(sc))
2992 1.203 msaitoh val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2993 1.203 msaitoh
2994 1.206 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2995 1.206 msaitoh val |= BGE_WDMAMODE_BURST_ALL_DATA;
2996 1.206 msaitoh
2997 1.158 msaitoh /* Turn on write DMA state machine */
2998 1.213 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2999 1.236 msaitoh /* 5718 step 49 */
3000 1.213 msaitoh DELAY(40);
3001 1.203 msaitoh
3002 1.203 msaitoh val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3003 1.216 msaitoh
3004 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3005 1.216 msaitoh val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3006 1.216 msaitoh
3007 1.203 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3008 1.203 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3009 1.203 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3010 1.203 msaitoh val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3011 1.203 msaitoh BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3012 1.203 msaitoh BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3013 1.76 cube
3014 1.203 msaitoh if (sc->bge_flags & BGE_PCIE)
3015 1.204 msaitoh val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3016 1.203 msaitoh if (sc->bge_flags & BGE_TSO)
3017 1.203 msaitoh val |= BGE_RDMAMODE_TSO4_ENABLE;
3018 1.76 cube
3019 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3020 1.216 msaitoh val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3021 1.216 msaitoh BGE_RDMAMODE_H2BNC_VLAN_DET;
3022 1.216 msaitoh /*
3023 1.216 msaitoh * Allow multiple outstanding read requests from
3024 1.216 msaitoh * non-LSO read DMA engine.
3025 1.216 msaitoh */
3026 1.216 msaitoh val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3027 1.216 msaitoh }
3028 1.216 msaitoh
3029 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3030 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3031 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3032 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3033 1.217 msaitoh BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
3034 1.216 msaitoh dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3035 1.216 msaitoh /*
3036 1.216 msaitoh * Adjust tx margin to prevent TX data corruption and
3037 1.216 msaitoh * fix internal FIFO overflow.
3038 1.216 msaitoh */
3039 1.219 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3040 1.216 msaitoh dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3041 1.216 msaitoh BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3042 1.216 msaitoh BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3043 1.216 msaitoh dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3044 1.216 msaitoh BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3045 1.216 msaitoh BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3046 1.216 msaitoh }
3047 1.216 msaitoh /*
3048 1.216 msaitoh * Enable fix for read DMA FIFO overruns.
3049 1.216 msaitoh * The fix is to limit the number of RX BDs
3050 1.216 msaitoh * the hardware would fetch at a fime.
3051 1.216 msaitoh */
3052 1.216 msaitoh CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3053 1.216 msaitoh BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3054 1.216 msaitoh }
3055 1.216 msaitoh
3056 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3057 1.216 msaitoh CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3058 1.216 msaitoh CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3059 1.216 msaitoh BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3060 1.216 msaitoh BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3061 1.216 msaitoh } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3062 1.216 msaitoh /*
3063 1.216 msaitoh * Allow 4KB burst length reads for non-LSO frames.
3064 1.216 msaitoh * Enable 512B burst length reads for buffer descriptors.
3065 1.216 msaitoh */
3066 1.216 msaitoh CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3067 1.216 msaitoh CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3068 1.216 msaitoh BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3069 1.216 msaitoh BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3070 1.216 msaitoh }
3071 1.216 msaitoh
3072 1.158 msaitoh /* Turn on read DMA state machine */
3073 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3074 1.236 msaitoh /* 5718 step 52 */
3075 1.203 msaitoh delay(40);
3076 1.128 tron
3077 1.236 msaitoh /* 5718 step 56, 57XX step 84 */
3078 1.158 msaitoh /* Turn on RX data completion state machine */
3079 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3080 1.128 tron
3081 1.158 msaitoh /* Turn on RX data and RX BD initiator state machine */
3082 1.158 msaitoh CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3083 1.133 markd
3084 1.236 msaitoh /* 57XX step 85 */
3085 1.158 msaitoh /* Turn on Mbuf cluster free state machine */
3086 1.216 msaitoh if (!BGE_IS_5705_PLUS(sc))
3087 1.158 msaitoh CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3088 1.133 markd
3089 1.236 msaitoh /* 5718 step 57, 57XX step 86 */
3090 1.158 msaitoh /* Turn on send data completion state machine */
3091 1.172 msaitoh val = BGE_SDCMODE_ENABLE;
3092 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3093 1.172 msaitoh val |= BGE_SDCMODE_CDELAY;
3094 1.172 msaitoh CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3095 1.106 jonathan
3096 1.236 msaitoh /* 5718 step 58 */
3097 1.225 msaitoh /* Turn on send BD completion state machine */
3098 1.225 msaitoh CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3099 1.225 msaitoh
3100 1.236 msaitoh /* 57XX step 88 */
3101 1.225 msaitoh /* Turn on RX BD initiator state machine */
3102 1.225 msaitoh CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3103 1.225 msaitoh
3104 1.236 msaitoh /* 5718 step 60, 57XX step 90 */
3105 1.158 msaitoh /* Turn on send data initiator state machine */
3106 1.172 msaitoh if (sc->bge_flags & BGE_TSO) {
3107 1.158 msaitoh /* XXX: magic value from Linux driver */
3108 1.222 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3109 1.222 msaitoh BGE_SDIMODE_HW_LSO_PRE_DMA);
3110 1.177 msaitoh } else
3111 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3112 1.106 jonathan
3113 1.236 msaitoh /* 5718 step 61, 57XX step 91 */
3114 1.158 msaitoh /* Turn on send BD initiator state machine */
3115 1.158 msaitoh CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3116 1.133 markd
3117 1.236 msaitoh /* 5718 step 62, 57XX step 92 */
3118 1.158 msaitoh /* Turn on send BD selector state machine */
3119 1.158 msaitoh CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3120 1.135 taca
3121 1.236 msaitoh /* 5718 step 31, 57XX step 60 */
3122 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3123 1.236 msaitoh /* 5718 step 32, 57XX step 61 */
3124 1.158 msaitoh CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3125 1.161 msaitoh BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3126 1.133 markd
3127 1.158 msaitoh /* ack/clear link change events */
3128 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3129 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3130 1.172 msaitoh BGE_MACSTAT_LINK_CHANGED);
3131 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, 0);
3132 1.106 jonathan
3133 1.216 msaitoh /*
3134 1.216 msaitoh * Enable attention when the link has changed state for
3135 1.216 msaitoh * devices that use auto polling.
3136 1.216 msaitoh */
3137 1.158 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3138 1.158 msaitoh CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3139 1.178 msaitoh } else {
3140 1.236 msaitoh /* 5718 step 68 */
3141 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3142 1.236 msaitoh /* 5718 step 69 (optionally) */
3143 1.161 msaitoh BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3144 1.158 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3145 1.158 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3146 1.158 msaitoh BGE_EVTENB_MI_INTERRUPT);
3147 1.158 msaitoh }
3148 1.70 tron
3149 1.161 msaitoh /*
3150 1.161 msaitoh * Clear any pending link state attention.
3151 1.161 msaitoh * Otherwise some link state change events may be lost until attention
3152 1.161 msaitoh * is cleared by bge_intr() -> bge_link_upd() sequence.
3153 1.161 msaitoh * It's not necessary on newer BCM chips - perhaps enabling link
3154 1.161 msaitoh * state change attentions implies clearing pending attention.
3155 1.161 msaitoh */
3156 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3157 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3158 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
3159 1.161 msaitoh
3160 1.158 msaitoh /* Enable link state change attentions. */
3161 1.158 msaitoh BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3162 1.51 fvdl
3163 1.170 msaitoh return 0;
3164 1.158 msaitoh }
3165 1.7 thorpej
3166 1.158 msaitoh static const struct bge_revision *
3167 1.158 msaitoh bge_lookup_rev(uint32_t chipid)
3168 1.158 msaitoh {
3169 1.158 msaitoh const struct bge_revision *br;
3170 1.7 thorpej
3171 1.158 msaitoh for (br = bge_revisions; br->br_name != NULL; br++) {
3172 1.158 msaitoh if (br->br_chipid == chipid)
3173 1.170 msaitoh return br;
3174 1.158 msaitoh }
3175 1.151 cegger
3176 1.158 msaitoh for (br = bge_majorrevs; br->br_name != NULL; br++) {
3177 1.158 msaitoh if (br->br_chipid == BGE_ASICREV(chipid))
3178 1.170 msaitoh return br;
3179 1.158 msaitoh }
3180 1.151 cegger
3181 1.170 msaitoh return NULL;
3182 1.158 msaitoh }
3183 1.7 thorpej
3184 1.7 thorpej static const struct bge_product *
3185 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
3186 1.7 thorpej {
3187 1.7 thorpej const struct bge_product *bp;
3188 1.7 thorpej
3189 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
3190 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3191 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3192 1.170 msaitoh return bp;
3193 1.7 thorpej }
3194 1.7 thorpej
3195 1.170 msaitoh return NULL;
3196 1.7 thorpej }
3197 1.7 thorpej
3198 1.215 msaitoh static uint32_t
3199 1.215 msaitoh bge_chipid(const struct pci_attach_args *pa)
3200 1.215 msaitoh {
3201 1.215 msaitoh uint32_t id;
3202 1.215 msaitoh
3203 1.215 msaitoh id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3204 1.215 msaitoh >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3205 1.215 msaitoh
3206 1.215 msaitoh if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3207 1.215 msaitoh switch (PCI_PRODUCT(pa->pa_id)) {
3208 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM5717:
3209 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM5718:
3210 1.216 msaitoh case PCI_PRODUCT_BROADCOM_BCM5719:
3211 1.216 msaitoh case PCI_PRODUCT_BROADCOM_BCM5720:
3212 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3213 1.215 msaitoh id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3214 1.215 msaitoh BGE_PCI_GEN2_PRODID_ASICREV);
3215 1.215 msaitoh break;
3216 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57761:
3217 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57762:
3218 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57765:
3219 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57766:
3220 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57781:
3221 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57785:
3222 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57791:
3223 1.215 msaitoh case PCI_PRODUCT_BROADCOM_BCM57795:
3224 1.215 msaitoh id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3225 1.215 msaitoh BGE_PCI_GEN15_PRODID_ASICREV);
3226 1.215 msaitoh break;
3227 1.215 msaitoh default:
3228 1.215 msaitoh id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3229 1.215 msaitoh BGE_PCI_PRODID_ASICREV);
3230 1.215 msaitoh break;
3231 1.215 msaitoh }
3232 1.215 msaitoh }
3233 1.215 msaitoh
3234 1.215 msaitoh return id;
3235 1.215 msaitoh }
3236 1.25 jonathan
3237 1.1 fvdl /*
3238 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3239 1.1 fvdl * against our list and return its name if we find a match. Note
3240 1.1 fvdl * that since the Broadcom controller contains VPD support, we
3241 1.1 fvdl * can get the device name string from the controller itself instead
3242 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
3243 1.1 fvdl * we'll always announce the right product name.
3244 1.1 fvdl */
3245 1.104 thorpej static int
3246 1.116 christos bge_probe(device_t parent, cfdata_t match, void *aux)
3247 1.1 fvdl {
3248 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3249 1.1 fvdl
3250 1.7 thorpej if (bge_lookup(pa) != NULL)
3251 1.170 msaitoh return 1;
3252 1.1 fvdl
3253 1.170 msaitoh return 0;
3254 1.1 fvdl }
3255 1.1 fvdl
3256 1.104 thorpej static void
3257 1.116 christos bge_attach(device_t parent, device_t self, void *aux)
3258 1.1 fvdl {
3259 1.138 joerg struct bge_softc *sc = device_private(self);
3260 1.1 fvdl struct pci_attach_args *pa = aux;
3261 1.164 msaitoh prop_dictionary_t dict;
3262 1.7 thorpej const struct bge_product *bp;
3263 1.16 thorpej const struct bge_revision *br;
3264 1.143 tron pci_chipset_tag_t pc;
3265 1.1 fvdl pci_intr_handle_t ih;
3266 1.1 fvdl const char *intrstr = NULL;
3267 1.241 msaitoh uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4;
3268 1.170 msaitoh uint32_t command;
3269 1.1 fvdl struct ifnet *ifp;
3270 1.170 msaitoh uint32_t misccfg;
3271 1.126 christos void * kva;
3272 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
3273 1.216 msaitoh pcireg_t memtype, subid, reg;
3274 1.1 fvdl bus_addr_t memaddr;
3275 1.170 msaitoh uint32_t pm_ctl;
3276 1.174 martin bool no_seeprom;
3277 1.220 msaitoh int capmask;
3278 1.87 perry
3279 1.7 thorpej bp = bge_lookup(pa);
3280 1.7 thorpej KASSERT(bp != NULL);
3281 1.7 thorpej
3282 1.141 jmcneill sc->sc_pc = pa->pa_pc;
3283 1.141 jmcneill sc->sc_pcitag = pa->pa_tag;
3284 1.138 joerg sc->bge_dev = self;
3285 1.1 fvdl
3286 1.216 msaitoh sc->bge_pa = *pa;
3287 1.172 msaitoh pc = sc->sc_pc;
3288 1.172 msaitoh subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3289 1.172 msaitoh
3290 1.30 thorpej aprint_naive(": Ethernet controller\n");
3291 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
3292 1.1 fvdl
3293 1.1 fvdl /*
3294 1.1 fvdl * Map control/status registers.
3295 1.1 fvdl */
3296 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
3297 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3298 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3299 1.141 jmcneill pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3300 1.141 jmcneill command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3301 1.1 fvdl
3302 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3303 1.138 joerg aprint_error_dev(sc->bge_dev,
3304 1.138 joerg "failed to enable memory mapping!\n");
3305 1.1 fvdl return;
3306 1.1 fvdl }
3307 1.1 fvdl
3308 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
3309 1.141 jmcneill memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3310 1.178 msaitoh switch (memtype) {
3311 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3312 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3313 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3314 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3315 1.227 msaitoh &memaddr, &sc->bge_bsize) == 0)
3316 1.1 fvdl break;
3317 1.1 fvdl default:
3318 1.138 joerg aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3319 1.1 fvdl return;
3320 1.1 fvdl }
3321 1.1 fvdl
3322 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
3323 1.1 fvdl if (pci_intr_map(pa, &ih)) {
3324 1.138 joerg aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3325 1.1 fvdl return;
3326 1.1 fvdl }
3327 1.1 fvdl
3328 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
3329 1.1 fvdl intrstr = pci_intr_string(pc, ih);
3330 1.1 fvdl
3331 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
3332 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3333 1.1 fvdl
3334 1.1 fvdl if (sc->bge_intrhand == NULL) {
3335 1.138 joerg aprint_error_dev(sc->bge_dev,
3336 1.138 joerg "couldn't establish interrupt%s%s\n",
3337 1.138 joerg intrstr ? " at " : "", intrstr ? intrstr : "");
3338 1.1 fvdl return;
3339 1.1 fvdl }
3340 1.138 joerg aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3341 1.1 fvdl
3342 1.215 msaitoh /* Save various chip information. */
3343 1.215 msaitoh sc->bge_chipid = bge_chipid(pa);
3344 1.216 msaitoh sc->bge_phy_addr = bge_phy_addr(sc);
3345 1.76 cube
3346 1.198 cegger if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3347 1.198 cegger &sc->bge_pciecap, NULL) != 0)
3348 1.198 cegger || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3349 1.171 msaitoh /* PCIe */
3350 1.157 msaitoh sc->bge_flags |= BGE_PCIE;
3351 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3352 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3353 1.216 msaitoh sc->bge_expmrq = 2048;
3354 1.216 msaitoh else
3355 1.216 msaitoh sc->bge_expmrq = 4096;
3356 1.177 msaitoh bge_set_max_readrq(sc);
3357 1.171 msaitoh } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3358 1.171 msaitoh BGE_PCISTATE_PCI_BUSMODE) == 0) {
3359 1.171 msaitoh /* PCI-X */
3360 1.157 msaitoh sc->bge_flags |= BGE_PCIX;
3361 1.180 msaitoh if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3362 1.180 msaitoh &sc->bge_pcixcap, NULL) == 0)
3363 1.180 msaitoh aprint_error_dev(sc->bge_dev,
3364 1.180 msaitoh "unable to find PCIX capability\n");
3365 1.171 msaitoh }
3366 1.76 cube
3367 1.216 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3368 1.216 msaitoh /*
3369 1.216 msaitoh * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3370 1.216 msaitoh * can clobber the chip's PCI config-space power control
3371 1.216 msaitoh * registers, leaving the card in D3 powersave state. We do
3372 1.216 msaitoh * not have memory-mapped registers in this state, so force
3373 1.216 msaitoh * device into D0 state before starting initialization.
3374 1.216 msaitoh */
3375 1.216 msaitoh pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3376 1.216 msaitoh pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3377 1.216 msaitoh pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3378 1.216 msaitoh pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3379 1.216 msaitoh DELAY(1000); /* 27 usec is allegedly sufficent */
3380 1.216 msaitoh }
3381 1.216 msaitoh
3382 1.215 msaitoh /* Save chipset family. */
3383 1.215 msaitoh switch (BGE_ASICREV(sc->bge_chipid)) {
3384 1.215 msaitoh case BGE_ASICREV_BCM57765:
3385 1.215 msaitoh case BGE_ASICREV_BCM57766:
3386 1.215 msaitoh sc->bge_flags |= BGE_57765_PLUS;
3387 1.215 msaitoh /* FALLTHROUGH */
3388 1.215 msaitoh case BGE_ASICREV_BCM5717:
3389 1.216 msaitoh case BGE_ASICREV_BCM5719:
3390 1.216 msaitoh case BGE_ASICREV_BCM5720:
3391 1.215 msaitoh sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3392 1.215 msaitoh BGE_5705_PLUS;
3393 1.215 msaitoh break;
3394 1.215 msaitoh case BGE_ASICREV_BCM5755:
3395 1.215 msaitoh case BGE_ASICREV_BCM5761:
3396 1.215 msaitoh case BGE_ASICREV_BCM5784:
3397 1.215 msaitoh case BGE_ASICREV_BCM5785:
3398 1.215 msaitoh case BGE_ASICREV_BCM5787:
3399 1.215 msaitoh case BGE_ASICREV_BCM57780:
3400 1.215 msaitoh sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3401 1.215 msaitoh break;
3402 1.215 msaitoh case BGE_ASICREV_BCM5700:
3403 1.215 msaitoh case BGE_ASICREV_BCM5701:
3404 1.215 msaitoh case BGE_ASICREV_BCM5703:
3405 1.215 msaitoh case BGE_ASICREV_BCM5704:
3406 1.215 msaitoh sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3407 1.215 msaitoh break;
3408 1.215 msaitoh case BGE_ASICREV_BCM5714_A0:
3409 1.215 msaitoh case BGE_ASICREV_BCM5780:
3410 1.215 msaitoh case BGE_ASICREV_BCM5714:
3411 1.172 msaitoh sc->bge_flags |= BGE_5714_FAMILY;
3412 1.215 msaitoh /* FALLTHROUGH */
3413 1.215 msaitoh case BGE_ASICREV_BCM5750:
3414 1.215 msaitoh case BGE_ASICREV_BCM5752:
3415 1.215 msaitoh case BGE_ASICREV_BCM5906:
3416 1.207 msaitoh sc->bge_flags |= BGE_575X_PLUS;
3417 1.215 msaitoh /* FALLTHROUGH */
3418 1.215 msaitoh case BGE_ASICREV_BCM5705:
3419 1.172 msaitoh sc->bge_flags |= BGE_5705_PLUS;
3420 1.215 msaitoh break;
3421 1.215 msaitoh }
3422 1.172 msaitoh
3423 1.216 msaitoh /* Identify chips with APE processor. */
3424 1.216 msaitoh switch (BGE_ASICREV(sc->bge_chipid)) {
3425 1.216 msaitoh case BGE_ASICREV_BCM5717:
3426 1.216 msaitoh case BGE_ASICREV_BCM5719:
3427 1.216 msaitoh case BGE_ASICREV_BCM5720:
3428 1.216 msaitoh case BGE_ASICREV_BCM5761:
3429 1.216 msaitoh sc->bge_flags |= BGE_APE;
3430 1.216 msaitoh break;
3431 1.216 msaitoh }
3432 1.216 msaitoh
3433 1.216 msaitoh /* Chips with APE need BAR2 access for APE registers/memory. */
3434 1.216 msaitoh if ((sc->bge_flags & BGE_APE) != 0) {
3435 1.216 msaitoh memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3436 1.216 msaitoh if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3437 1.227 msaitoh &sc->bge_apetag, &sc->bge_apehandle, NULL,
3438 1.227 msaitoh &sc->bge_apesize)) {
3439 1.216 msaitoh aprint_error_dev(sc->bge_dev,
3440 1.216 msaitoh "couldn't map BAR2 memory\n");
3441 1.216 msaitoh return;
3442 1.216 msaitoh }
3443 1.216 msaitoh
3444 1.216 msaitoh /* Enable APE register/memory access by host driver. */
3445 1.216 msaitoh reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3446 1.216 msaitoh reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3447 1.216 msaitoh BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3448 1.216 msaitoh BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3449 1.216 msaitoh pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3450 1.216 msaitoh
3451 1.216 msaitoh bge_ape_lock_init(sc);
3452 1.216 msaitoh bge_ape_read_fw_ver(sc);
3453 1.216 msaitoh }
3454 1.216 msaitoh
3455 1.216 msaitoh /* Identify the chips that use an CPMU. */
3456 1.216 msaitoh if (BGE_IS_5717_PLUS(sc) ||
3457 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3458 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3459 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3460 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3461 1.216 msaitoh sc->bge_flags |= BGE_CPMU_PRESENT;
3462 1.216 msaitoh
3463 1.216 msaitoh if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3464 1.216 msaitoh CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3465 1.216 msaitoh else
3466 1.216 msaitoh CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3467 1.216 msaitoh
3468 1.172 msaitoh /*
3469 1.172 msaitoh * When using the BCM5701 in PCI-X mode, data corruption has
3470 1.172 msaitoh * been observed in the first few bytes of some received packets.
3471 1.172 msaitoh * Aligning the packet buffer in memory eliminates the corruption.
3472 1.172 msaitoh * Unfortunately, this misaligns the packet payloads. On platforms
3473 1.172 msaitoh * which do not support unaligned accesses, we will realign the
3474 1.172 msaitoh * payloads by copying the received packets.
3475 1.172 msaitoh */
3476 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3477 1.172 msaitoh sc->bge_flags & BGE_PCIX)
3478 1.172 msaitoh sc->bge_flags |= BGE_RX_ALIGNBUG;
3479 1.172 msaitoh
3480 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
3481 1.172 msaitoh sc->bge_flags |= BGE_JUMBO_CAPABLE;
3482 1.172 msaitoh
3483 1.172 msaitoh misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3484 1.172 msaitoh misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3485 1.172 msaitoh
3486 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3487 1.172 msaitoh (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3488 1.172 msaitoh misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3489 1.172 msaitoh sc->bge_flags |= BGE_IS_5788;
3490 1.172 msaitoh
3491 1.172 msaitoh /*
3492 1.172 msaitoh * Some controllers seem to require a special firmware to use
3493 1.172 msaitoh * TSO. But the firmware is not available to FreeBSD and Linux
3494 1.172 msaitoh * claims that the TSO performed by the firmware is slower than
3495 1.172 msaitoh * hardware based TSO. Moreover the firmware based TSO has one
3496 1.172 msaitoh * known bug which can't handle TSO if ethernet header + IP/TCP
3497 1.172 msaitoh * header is greater than 80 bytes. The workaround for the TSO
3498 1.172 msaitoh * bug exist but it seems it's too expensive than not using
3499 1.172 msaitoh * TSO at all. Some hardwares also have the TSO bug so limit
3500 1.172 msaitoh * the TSO to the controllers that are not affected TSO issues
3501 1.172 msaitoh * (e.g. 5755 or higher).
3502 1.172 msaitoh */
3503 1.172 msaitoh if (BGE_IS_5755_PLUS(sc)) {
3504 1.172 msaitoh /*
3505 1.172 msaitoh * BCM5754 and BCM5787 shares the same ASIC id so
3506 1.172 msaitoh * explicit device id check is required.
3507 1.172 msaitoh */
3508 1.172 msaitoh if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3509 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3510 1.172 msaitoh sc->bge_flags |= BGE_TSO;
3511 1.172 msaitoh }
3512 1.172 msaitoh
3513 1.220 msaitoh capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3514 1.172 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3515 1.172 msaitoh (misccfg == 0x4000 || misccfg == 0x8000)) ||
3516 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3517 1.172 msaitoh PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3518 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3519 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3520 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3521 1.172 msaitoh (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3522 1.172 msaitoh (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3523 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3524 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3525 1.172 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3526 1.216 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3527 1.216 msaitoh PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3528 1.220 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3529 1.220 msaitoh capmask &= ~BMSR_EXTSTAT;
3530 1.220 msaitoh sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3531 1.220 msaitoh }
3532 1.172 msaitoh
3533 1.172 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3534 1.172 msaitoh (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3535 1.172 msaitoh (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3536 1.220 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3537 1.220 msaitoh sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3538 1.172 msaitoh
3539 1.220 msaitoh /* Set various PHY bug flags. */
3540 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3541 1.162 msaitoh sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3542 1.162 msaitoh sc->bge_flags |= BGE_PHY_CRC_BUG;
3543 1.162 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3544 1.162 msaitoh BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3545 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADC_BUG;
3546 1.162 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3547 1.162 msaitoh sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3548 1.220 msaitoh if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3549 1.220 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3550 1.220 msaitoh PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3551 1.220 msaitoh sc->bge_flags |= BGE_PHY_NO_3LED;
3552 1.172 msaitoh if (BGE_IS_5705_PLUS(sc) &&
3553 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3554 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3555 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3556 1.216 msaitoh !BGE_IS_5717_PLUS(sc)) {
3557 1.162 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3558 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3559 1.172 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3560 1.162 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3561 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3562 1.162 msaitoh PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3563 1.162 msaitoh sc->bge_flags |= BGE_PHY_JITTER_BUG;
3564 1.162 msaitoh if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3565 1.162 msaitoh sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3566 1.216 msaitoh } else
3567 1.162 msaitoh sc->bge_flags |= BGE_PHY_BER_BUG;
3568 1.162 msaitoh }
3569 1.162 msaitoh
3570 1.174 martin /*
3571 1.174 martin * SEEPROM check.
3572 1.174 martin * First check if firmware knows we do not have SEEPROM.
3573 1.174 martin */
3574 1.180 msaitoh if (prop_dictionary_get_bool(device_properties(self),
3575 1.174 martin "without-seeprom", &no_seeprom) && no_seeprom)
3576 1.174 martin sc->bge_flags |= BGE_NO_EEPROM;
3577 1.174 martin
3578 1.228 msaitoh else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3579 1.228 msaitoh sc->bge_flags |= BGE_NO_EEPROM;
3580 1.228 msaitoh
3581 1.174 martin /* Now check the 'ROM failed' bit on the RX CPU */
3582 1.174 martin else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3583 1.172 msaitoh sc->bge_flags |= BGE_NO_EEPROM;
3584 1.172 msaitoh
3585 1.177 msaitoh sc->bge_asf_mode = 0;
3586 1.216 msaitoh /* No ASF if APE present. */
3587 1.245 martin if (0 && (sc->bge_flags & BGE_APE) == 0) {
3588 1.216 msaitoh if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3589 1.216 msaitoh BGE_SRAM_DATA_SIG_MAGIC)) {
3590 1.216 msaitoh if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3591 1.216 msaitoh BGE_HWCFG_ASF) {
3592 1.216 msaitoh sc->bge_asf_mode |= ASF_ENABLE;
3593 1.216 msaitoh sc->bge_asf_mode |= ASF_STACKUP;
3594 1.216 msaitoh if (BGE_IS_575X_PLUS(sc))
3595 1.216 msaitoh sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3596 1.177 msaitoh }
3597 1.177 msaitoh }
3598 1.177 msaitoh }
3599 1.177 msaitoh
3600 1.243 msaitoh /* 5718 reset step 5, 57XX step 5b-5d */
3601 1.243 msaitoh /* Set swap options before using bge_readmem_ind() */
3602 1.243 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3603 1.243 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3604 1.243 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3605 1.243 msaitoh
3606 1.241 msaitoh /*
3607 1.241 msaitoh * Read the hardware config word in the first 32k of NIC internal
3608 1.241 msaitoh * memory, or fall back to the config word in the EEPROM.
3609 1.241 msaitoh * Note: on some BCM5700 cards, this value appears to be unset.
3610 1.241 msaitoh */
3611 1.241 msaitoh hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3612 1.245 martin if (0 && bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3613 1.241 msaitoh BGE_SRAM_DATA_SIG_MAGIC) {
3614 1.241 msaitoh uint32_t tmp;
3615 1.241 msaitoh
3616 1.241 msaitoh hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3617 1.241 msaitoh tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3618 1.241 msaitoh BGE_SRAM_DATA_VER_SHIFT;
3619 1.241 msaitoh if ((0 < tmp) && (tmp < 0x100))
3620 1.241 msaitoh hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3621 1.241 msaitoh if (sc->bge_flags & BGE_PCIE)
3622 1.241 msaitoh hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3623 1.241 msaitoh if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3624 1.241 msaitoh hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3625 1.241 msaitoh } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3626 1.241 msaitoh bge_read_eeprom(sc, (void *)&hwcfg,
3627 1.241 msaitoh BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3628 1.241 msaitoh hwcfg = be32toh(hwcfg);
3629 1.241 msaitoh }
3630 1.241 msaitoh aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3631 1.241 msaitoh hwcfg, hwcfg2, hwcfg3, hwcfg4);
3632 1.241 msaitoh
3633 1.232 msaitoh /*
3634 1.232 msaitoh * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3635 1.232 msaitoh * lock in bge_reset().
3636 1.232 msaitoh */
3637 1.232 msaitoh CSR_WRITE_4(sc, BGE_EE_ADDR,
3638 1.232 msaitoh BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3639 1.232 msaitoh delay(1000);
3640 1.232 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3641 1.232 msaitoh
3642 1.177 msaitoh bge_stop_fw(sc);
3643 1.216 msaitoh bge_sig_pre_reset(sc, BGE_RESET_START);
3644 1.178 msaitoh if (bge_reset(sc))
3645 1.177 msaitoh aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3646 1.177 msaitoh
3647 1.216 msaitoh bge_sig_legacy(sc, BGE_RESET_START);
3648 1.216 msaitoh bge_sig_post_reset(sc, BGE_RESET_START);
3649 1.177 msaitoh
3650 1.1 fvdl if (bge_chipinit(sc)) {
3651 1.138 joerg aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3652 1.1 fvdl bge_release_resources(sc);
3653 1.1 fvdl return;
3654 1.1 fvdl }
3655 1.1 fvdl
3656 1.1 fvdl /*
3657 1.203 msaitoh * Get station address from the EEPROM.
3658 1.1 fvdl */
3659 1.151 cegger if (bge_get_eaddr(sc, eaddr)) {
3660 1.178 msaitoh aprint_error_dev(sc->bge_dev,
3661 1.178 msaitoh "failed to read station address\n");
3662 1.1 fvdl bge_release_resources(sc);
3663 1.1 fvdl return;
3664 1.1 fvdl }
3665 1.1 fvdl
3666 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
3667 1.51 fvdl
3668 1.16 thorpej if (br == NULL) {
3669 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3670 1.172 msaitoh sc->bge_chipid);
3671 1.16 thorpej } else {
3672 1.172 msaitoh aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3673 1.172 msaitoh br->br_name, sc->bge_chipid);
3674 1.16 thorpej }
3675 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3676 1.1 fvdl
3677 1.1 fvdl /* Allocate the general information block and ring buffers. */
3678 1.41 fvdl if (pci_dma64_available(pa))
3679 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
3680 1.41 fvdl else
3681 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
3682 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
3683 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3684 1.227 msaitoh PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3685 1.227 msaitoh &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3686 1.138 joerg aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3687 1.1 fvdl return;
3688 1.1 fvdl }
3689 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
3690 1.227 msaitoh if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3691 1.227 msaitoh sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3692 1.1 fvdl BUS_DMA_NOWAIT)) {
3693 1.138 joerg aprint_error_dev(sc->bge_dev,
3694 1.138 joerg "can't map DMA buffers (%zu bytes)\n",
3695 1.138 joerg sizeof(struct bge_ring_data));
3696 1.227 msaitoh bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3697 1.227 msaitoh sc->bge_ring_rseg);
3698 1.1 fvdl return;
3699 1.1 fvdl }
3700 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
3701 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3702 1.1 fvdl sizeof(struct bge_ring_data), 0,
3703 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3704 1.138 joerg aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3705 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
3706 1.1 fvdl sizeof(struct bge_ring_data));
3707 1.227 msaitoh bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3708 1.227 msaitoh sc->bge_ring_rseg);
3709 1.1 fvdl return;
3710 1.1 fvdl }
3711 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
3712 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3713 1.1 fvdl sizeof(struct bge_ring_data), NULL,
3714 1.1 fvdl BUS_DMA_NOWAIT)) {
3715 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3716 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
3717 1.1 fvdl sizeof(struct bge_ring_data));
3718 1.227 msaitoh bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3719 1.227 msaitoh sc->bge_ring_rseg);
3720 1.1 fvdl return;
3721 1.1 fvdl }
3722 1.1 fvdl
3723 1.1 fvdl DPRINTFN(5, ("bzero\n"));
3724 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
3725 1.1 fvdl
3726 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3727 1.1 fvdl
3728 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
3729 1.166 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc)) {
3730 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
3731 1.138 joerg aprint_error_dev(sc->bge_dev,
3732 1.138 joerg "jumbo buffer allocation failed\n");
3733 1.44 hannken } else
3734 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3735 1.44 hannken }
3736 1.1 fvdl
3737 1.1 fvdl /* Set default tuneable values. */
3738 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3739 1.1 fvdl sc->bge_rx_coal_ticks = 150;
3740 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
3741 1.25 jonathan sc->bge_tx_coal_ticks = 300;
3742 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
3743 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
3744 1.95 jonathan sc->bge_tx_coal_ticks = (12 * 5);
3745 1.146 mlelstv sc->bge_tx_max_coal_bds = (12 * 5);
3746 1.138 joerg aprint_verbose_dev(sc->bge_dev,
3747 1.138 joerg "setting short Tx thresholds\n");
3748 1.95 jonathan }
3749 1.1 fvdl
3750 1.216 msaitoh if (BGE_IS_5717_PLUS(sc))
3751 1.202 tsutsui sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3752 1.202 tsutsui else if (BGE_IS_5705_PLUS(sc))
3753 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3754 1.172 msaitoh else
3755 1.172 msaitoh sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3756 1.172 msaitoh
3757 1.1 fvdl /* Set up ifnet structure */
3758 1.1 fvdl ifp = &sc->ethercom.ec_if;
3759 1.1 fvdl ifp->if_softc = sc;
3760 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3761 1.1 fvdl ifp->if_ioctl = bge_ioctl;
3762 1.141 jmcneill ifp->if_stop = bge_stop;
3763 1.1 fvdl ifp->if_start = bge_start;
3764 1.1 fvdl ifp->if_init = bge_init;
3765 1.1 fvdl ifp->if_watchdog = bge_watchdog;
3766 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3767 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
3768 1.115 tsutsui DPRINTFN(5, ("strcpy if_xname\n"));
3769 1.138 joerg strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3770 1.1 fvdl
3771 1.157 msaitoh if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3772 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
3773 1.172 msaitoh IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3774 1.172 msaitoh #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3775 1.172 msaitoh sc->ethercom.ec_if.if_capabilities |=
3776 1.88 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3777 1.88 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3778 1.172 msaitoh #endif
3779 1.87 perry sc->ethercom.ec_capabilities |=
3780 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3781 1.1 fvdl
3782 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
3783 1.95 jonathan sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3784 1.95 jonathan
3785 1.1 fvdl /*
3786 1.1 fvdl * Do MII setup.
3787 1.1 fvdl */
3788 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
3789 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
3790 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
3791 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
3792 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
3793 1.1 fvdl
3794 1.1 fvdl /*
3795 1.203 msaitoh * Figure out what sort of media we have by checking the hardware
3796 1.241 msaitoh * config word. Note: on some BCM5700 cards, this value appears to be
3797 1.241 msaitoh * unset. If that's the case, we have to rely on identifying the NIC
3798 1.241 msaitoh * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3799 1.241 msaitoh * The SysKonnect SK-9D41 is a 1000baseSX card.
3800 1.1 fvdl */
3801 1.161 msaitoh if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3802 1.161 msaitoh (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3803 1.161 msaitoh if (BGE_IS_5714_FAMILY(sc))
3804 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_MII;
3805 1.161 msaitoh else
3806 1.161 msaitoh sc->bge_flags |= BGE_PHY_FIBER_TBI;
3807 1.161 msaitoh }
3808 1.1 fvdl
3809 1.195 jym /* set phyflags and chipid before mii_attach() */
3810 1.167 msaitoh dict = device_properties(self);
3811 1.167 msaitoh prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3812 1.195 jym prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3813 1.167 msaitoh
3814 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3815 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3816 1.1 fvdl bge_ifmedia_sts);
3817 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3818 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3819 1.1 fvdl 0, NULL);
3820 1.177 msaitoh ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3821 1.177 msaitoh ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3822 1.155 he /* Pretend the user requested this setting */
3823 1.162 msaitoh sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3824 1.1 fvdl } else {
3825 1.1 fvdl /*
3826 1.177 msaitoh * Do transceiver setup and tell the firmware the
3827 1.177 msaitoh * driver is down so we can try to get access the
3828 1.177 msaitoh * probe if ASF is running. Retry a couple of times
3829 1.177 msaitoh * if we get a conflict with the ASF firmware accessing
3830 1.177 msaitoh * the PHY.
3831 1.1 fvdl */
3832 1.177 msaitoh BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3833 1.177 msaitoh bge_asf_driver_up(sc);
3834 1.177 msaitoh
3835 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3836 1.1 fvdl bge_ifmedia_sts);
3837 1.220 msaitoh mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3838 1.216 msaitoh sc->bge_phy_addr, MII_OFFSET_ANY,
3839 1.216 msaitoh MIIF_DOPAUSE);
3840 1.87 perry
3841 1.142 dyoung if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3842 1.138 joerg aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3843 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
3844 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
3845 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
3846 1.1 fvdl IFM_ETHER|IFM_MANUAL);
3847 1.1 fvdl } else
3848 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
3849 1.1 fvdl IFM_ETHER|IFM_AUTO);
3850 1.177 msaitoh
3851 1.177 msaitoh /*
3852 1.177 msaitoh * Now tell the firmware we are going up after probing the PHY
3853 1.177 msaitoh */
3854 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
3855 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3856 1.1 fvdl }
3857 1.1 fvdl
3858 1.1 fvdl /*
3859 1.1 fvdl * Call MI attach routine.
3860 1.1 fvdl */
3861 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
3862 1.1 fvdl if_attach(ifp);
3863 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
3864 1.1 fvdl ether_ifattach(ifp, eaddr);
3865 1.186 msaitoh ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3866 1.148 mlelstv rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3867 1.148 mlelstv RND_TYPE_NET, 0);
3868 1.72 thorpej #ifdef BGE_EVENT_COUNTERS
3869 1.72 thorpej /*
3870 1.72 thorpej * Attach event counters.
3871 1.72 thorpej */
3872 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3873 1.138 joerg NULL, device_xname(sc->bge_dev), "intr");
3874 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3875 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xoff");
3876 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3877 1.138 joerg NULL, device_xname(sc->bge_dev), "tx_xon");
3878 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3879 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xoff");
3880 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3881 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_xon");
3882 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3883 1.138 joerg NULL, device_xname(sc->bge_dev), "rx_macctl");
3884 1.72 thorpej evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3885 1.138 joerg NULL, device_xname(sc->bge_dev), "xoffentered");
3886 1.72 thorpej #endif /* BGE_EVENT_COUNTERS */
3887 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
3888 1.132 ad callout_init(&sc->bge_timeout, 0);
3889 1.82 jmcneill
3890 1.168 tsutsui if (pmf_device_register(self, NULL, NULL))
3891 1.168 tsutsui pmf_class_network_register(self, ifp);
3892 1.168 tsutsui else
3893 1.141 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
3894 1.172 msaitoh
3895 1.207 msaitoh bge_sysctl_init(sc);
3896 1.190 jruoho
3897 1.172 msaitoh #ifdef BGE_DEBUG
3898 1.172 msaitoh bge_debug_info(sc);
3899 1.172 msaitoh #endif
3900 1.1 fvdl }
3901 1.1 fvdl
3902 1.227 msaitoh /*
3903 1.227 msaitoh * Stop all chip I/O so that the kernel's probe routines don't
3904 1.227 msaitoh * get confused by errant DMAs when rebooting.
3905 1.227 msaitoh */
3906 1.227 msaitoh static int
3907 1.227 msaitoh bge_detach(device_t self, int flags __unused)
3908 1.227 msaitoh {
3909 1.227 msaitoh struct bge_softc *sc = device_private(self);
3910 1.227 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
3911 1.227 msaitoh int s;
3912 1.227 msaitoh
3913 1.227 msaitoh s = splnet();
3914 1.227 msaitoh /* Stop the interface. Callouts are stopped in it. */
3915 1.227 msaitoh bge_stop(ifp, 1);
3916 1.227 msaitoh splx(s);
3917 1.227 msaitoh
3918 1.227 msaitoh mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3919 1.230 christos
3920 1.227 msaitoh /* Delete all remaining media. */
3921 1.227 msaitoh ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3922 1.227 msaitoh
3923 1.227 msaitoh ether_ifdetach(ifp);
3924 1.227 msaitoh if_detach(ifp);
3925 1.227 msaitoh
3926 1.227 msaitoh bge_release_resources(sc);
3927 1.227 msaitoh
3928 1.227 msaitoh return 0;
3929 1.227 msaitoh }
3930 1.227 msaitoh
3931 1.104 thorpej static void
3932 1.104 thorpej bge_release_resources(struct bge_softc *sc)
3933 1.1 fvdl {
3934 1.1 fvdl
3935 1.227 msaitoh /* Disestablish the interrupt handler */
3936 1.227 msaitoh if (sc->bge_intrhand != NULL) {
3937 1.227 msaitoh pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3938 1.227 msaitoh sc->bge_intrhand = NULL;
3939 1.227 msaitoh }
3940 1.227 msaitoh
3941 1.239 msaitoh if (sc->bge_dmatag != NULL) {
3942 1.239 msaitoh bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3943 1.239 msaitoh bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3944 1.239 msaitoh bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3945 1.239 msaitoh sizeof(struct bge_ring_data));
3946 1.239 msaitoh bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3947 1.239 msaitoh }
3948 1.227 msaitoh
3949 1.227 msaitoh /* Unmap the device registers */
3950 1.227 msaitoh if (sc->bge_bsize != 0) {
3951 1.227 msaitoh bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3952 1.227 msaitoh sc->bge_bsize = 0;
3953 1.227 msaitoh }
3954 1.227 msaitoh
3955 1.227 msaitoh /* Unmap the APE registers */
3956 1.227 msaitoh if (sc->bge_apesize != 0) {
3957 1.227 msaitoh bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3958 1.227 msaitoh sc->bge_apesize);
3959 1.227 msaitoh sc->bge_apesize = 0;
3960 1.227 msaitoh }
3961 1.1 fvdl }
3962 1.1 fvdl
3963 1.177 msaitoh static int
3964 1.104 thorpej bge_reset(struct bge_softc *sc)
3965 1.1 fvdl {
3966 1.216 msaitoh uint32_t cachesize, command;
3967 1.216 msaitoh uint32_t reset, mac_mode, mac_mode_mask;
3968 1.180 msaitoh pcireg_t devctl, reg;
3969 1.76 cube int i, val;
3970 1.151 cegger void (*write_op)(struct bge_softc *, int, int);
3971 1.151 cegger
3972 1.216 msaitoh mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3973 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3974 1.216 msaitoh mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3975 1.216 msaitoh mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3976 1.216 msaitoh
3977 1.216 msaitoh if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3978 1.216 msaitoh (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3979 1.178 msaitoh if (sc->bge_flags & BGE_PCIE)
3980 1.151 cegger write_op = bge_writemem_direct;
3981 1.178 msaitoh else
3982 1.151 cegger write_op = bge_writemem_ind;
3983 1.178 msaitoh } else
3984 1.151 cegger write_op = bge_writereg_ind;
3985 1.1 fvdl
3986 1.236 msaitoh /* 57XX step 4 */
3987 1.236 msaitoh /* Acquire the NVM lock */
3988 1.232 msaitoh if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
3989 1.232 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3990 1.216 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3991 1.216 msaitoh CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3992 1.216 msaitoh for (i = 0; i < 8000; i++) {
3993 1.216 msaitoh if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3994 1.216 msaitoh BGE_NVRAMSWARB_GNT1)
3995 1.216 msaitoh break;
3996 1.216 msaitoh DELAY(20);
3997 1.216 msaitoh }
3998 1.216 msaitoh if (i == 8000) {
3999 1.216 msaitoh printf("%s: NVRAM lock timedout!\n",
4000 1.216 msaitoh device_xname(sc->bge_dev));
4001 1.216 msaitoh }
4002 1.216 msaitoh }
4003 1.243 msaitoh
4004 1.216 msaitoh /* Take APE lock when performing reset. */
4005 1.216 msaitoh bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4006 1.216 msaitoh
4007 1.236 msaitoh /* 57XX step 3 */
4008 1.1 fvdl /* Save some important PCI state. */
4009 1.141 jmcneill cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4010 1.236 msaitoh /* 5718 reset step 3 */
4011 1.141 jmcneill command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4012 1.180 msaitoh
4013 1.236 msaitoh /* 5718 reset step 5, 57XX step 5b-5d */
4014 1.141 jmcneill pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4015 1.172 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4016 1.172 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4017 1.1 fvdl
4018 1.180 msaitoh /* XXX ???: Disable fastboot on controllers that support it. */
4019 1.134 markd if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4020 1.172 msaitoh BGE_IS_5755_PLUS(sc))
4021 1.119 tsutsui CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4022 1.119 tsutsui
4023 1.236 msaitoh /* 5718 reset step 2, 57XX step 6 */
4024 1.177 msaitoh /*
4025 1.236 msaitoh * Write the magic number to SRAM at offset 0xB50.
4026 1.177 msaitoh * When firmware finishes its initialization it will
4027 1.177 msaitoh * write ~BGE_MAGIC_NUMBER to the same location.
4028 1.177 msaitoh */
4029 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4030 1.177 msaitoh
4031 1.236 msaitoh /* 5718 reset step 6, 57XX step 7 */
4032 1.216 msaitoh reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4033 1.76 cube /*
4034 1.76 cube * XXX: from FreeBSD/Linux; no documentation
4035 1.76 cube */
4036 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
4037 1.214 msaitoh if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4038 1.214 msaitoh !BGE_IS_57765_PLUS(sc) &&
4039 1.216 msaitoh (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4040 1.214 msaitoh (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4041 1.157 msaitoh /* PCI Express 1.0 system */
4042 1.214 msaitoh CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4043 1.214 msaitoh BGE_PHY_PCIE_SCRAM_MODE);
4044 1.214 msaitoh }
4045 1.76 cube if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4046 1.157 msaitoh /*
4047 1.157 msaitoh * Prevent PCI Express link training
4048 1.157 msaitoh * during global reset.
4049 1.157 msaitoh */
4050 1.76 cube CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4051 1.222 msaitoh reset |= (1 << 29);
4052 1.76 cube }
4053 1.76 cube }
4054 1.76 cube
4055 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4056 1.180 msaitoh i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4057 1.180 msaitoh CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4058 1.180 msaitoh i | BGE_VCPU_STATUS_DRV_RESET);
4059 1.180 msaitoh i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4060 1.180 msaitoh CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4061 1.180 msaitoh i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4062 1.180 msaitoh }
4063 1.180 msaitoh
4064 1.161 msaitoh /*
4065 1.161 msaitoh * Set GPHY Power Down Override to leave GPHY
4066 1.161 msaitoh * powered up in D0 uninitialized.
4067 1.161 msaitoh */
4068 1.216 msaitoh if (BGE_IS_5705_PLUS(sc) &&
4069 1.216 msaitoh (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4070 1.216 msaitoh reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4071 1.161 msaitoh
4072 1.1 fvdl /* Issue global reset */
4073 1.216 msaitoh write_op(sc, BGE_MISC_CFG, reset);
4074 1.151 cegger
4075 1.236 msaitoh /* 5718 reset step 7, 57XX step 8 */
4076 1.180 msaitoh if (sc->bge_flags & BGE_PCIE)
4077 1.180 msaitoh delay(100*1000); /* too big */
4078 1.180 msaitoh else
4079 1.216 msaitoh delay(1000);
4080 1.151 cegger
4081 1.157 msaitoh if (sc->bge_flags & BGE_PCIE) {
4082 1.76 cube if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4083 1.76 cube DELAY(500000);
4084 1.76 cube /* XXX: Magic Numbers */
4085 1.170 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4086 1.170 msaitoh BGE_PCI_UNKNOWN0);
4087 1.170 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4088 1.170 msaitoh BGE_PCI_UNKNOWN0,
4089 1.76 cube reg | (1 << 15));
4090 1.76 cube }
4091 1.177 msaitoh devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4092 1.238 msaitoh sc->bge_pciecap + PCIE_DCSR);
4093 1.177 msaitoh /* Clear enable no snoop and disable relaxed ordering. */
4094 1.238 msaitoh devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4095 1.238 msaitoh PCIE_DCSR_ENA_NO_SNOOP);
4096 1.216 msaitoh
4097 1.216 msaitoh /* Set PCIE max payload size to 128 for older PCIe devices */
4098 1.216 msaitoh if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4099 1.216 msaitoh devctl &= ~(0x00e0);
4100 1.179 msaitoh /* Clear device status register. Write 1b to clear */
4101 1.238 msaitoh devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4102 1.238 msaitoh | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4103 1.177 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4104 1.238 msaitoh sc->bge_pciecap + PCIE_DCSR, devctl);
4105 1.216 msaitoh bge_set_max_readrq(sc);
4106 1.216 msaitoh }
4107 1.216 msaitoh
4108 1.216 msaitoh /* From Linux: dummy read to flush PCI posted writes */
4109 1.216 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4110 1.216 msaitoh
4111 1.236 msaitoh /*
4112 1.236 msaitoh * Reset some of the PCI state that got zapped by reset
4113 1.236 msaitoh * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4114 1.236 msaitoh * set, too.
4115 1.236 msaitoh */
4116 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4117 1.216 msaitoh BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4118 1.216 msaitoh BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4119 1.216 msaitoh val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4120 1.216 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4121 1.216 msaitoh (sc->bge_flags & BGE_PCIX) != 0)
4122 1.216 msaitoh val |= BGE_PCISTATE_RETRY_SAME_DMA;
4123 1.216 msaitoh if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4124 1.216 msaitoh val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4125 1.216 msaitoh BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4126 1.216 msaitoh BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4127 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4128 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4129 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4130 1.216 msaitoh
4131 1.216 msaitoh /* Step 11: disable PCI-X Relaxed Ordering. */
4132 1.216 msaitoh if (sc->bge_flags & BGE_PCIX) {
4133 1.216 msaitoh reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4134 1.238 msaitoh + PCIX_CMD);
4135 1.216 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4136 1.238 msaitoh + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4137 1.76 cube }
4138 1.76 cube
4139 1.236 msaitoh /* 5718 reset step 10, 57XX step 12 */
4140 1.236 msaitoh /* Enable memory arbiter. */
4141 1.216 msaitoh if (BGE_IS_5714_FAMILY(sc)) {
4142 1.216 msaitoh val = CSR_READ_4(sc, BGE_MARB_MODE);
4143 1.216 msaitoh CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4144 1.216 msaitoh } else
4145 1.216 msaitoh CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4146 1.1 fvdl
4147 1.180 msaitoh /* XXX 5721, 5751 and 5752 */
4148 1.180 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4149 1.180 msaitoh /* Step 19: */
4150 1.180 msaitoh BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4151 1.180 msaitoh /* Step 20: */
4152 1.180 msaitoh BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4153 1.44 hannken }
4154 1.1 fvdl
4155 1.236 msaitoh /* 5718 reset step 12, 57XX step 15 and 16 */
4156 1.236 msaitoh /* Fix up byte swapping */
4157 1.216 msaitoh CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4158 1.180 msaitoh
4159 1.236 msaitoh /* 5718 reset step 13, 57XX step 17 */
4160 1.223 msaitoh /*
4161 1.223 msaitoh * Wait for the bootcode to complete initialization.
4162 1.223 msaitoh * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4163 1.236 msaitoh * Section 7". For 57XX, it's optional.
4164 1.223 msaitoh */
4165 1.223 msaitoh if (BGE_IS_5717_PLUS(sc)) {
4166 1.223 msaitoh for (i = 0; i < 1000*1000; i++) {
4167 1.223 msaitoh val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4168 1.223 msaitoh if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4169 1.223 msaitoh break;
4170 1.223 msaitoh DELAY(10);
4171 1.223 msaitoh }
4172 1.223 msaitoh }
4173 1.223 msaitoh
4174 1.236 msaitoh /* 57XX step 21 */
4175 1.181 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4176 1.181 msaitoh pcireg_t msidata;
4177 1.230 christos
4178 1.181 msaitoh msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4179 1.181 msaitoh BGE_PCI_MSI_DATA);
4180 1.181 msaitoh msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4181 1.181 msaitoh pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4182 1.181 msaitoh msidata);
4183 1.181 msaitoh }
4184 1.151 cegger
4185 1.236 msaitoh /* 57XX step 18 */
4186 1.237 msaitoh /* Write mac mode.
4187 1.216 msaitoh * XXX Write 0x0c for 5703S and 5704S
4188 1.1 fvdl */
4189 1.216 msaitoh val = CSR_READ_4(sc, BGE_MAC_MODE);
4190 1.216 msaitoh val = (val & ~mac_mode_mask) | mac_mode;
4191 1.216 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4192 1.216 msaitoh DELAY(40);
4193 1.1 fvdl
4194 1.216 msaitoh bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4195 1.1 fvdl
4196 1.236 msaitoh /* 57XX step 17 */
4197 1.236 msaitoh /* Poll until the firmware initialization is complete */
4198 1.216 msaitoh bge_poll_fw(sc);
4199 1.177 msaitoh
4200 1.161 msaitoh /*
4201 1.161 msaitoh * The 5704 in TBI mode apparently needs some special
4202 1.161 msaitoh * adjustment to insure the SERDES drive level is set
4203 1.161 msaitoh * to 1.2V.
4204 1.161 msaitoh */
4205 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4206 1.161 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4207 1.170 msaitoh uint32_t serdescfg;
4208 1.161 msaitoh
4209 1.161 msaitoh serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4210 1.161 msaitoh serdescfg = (serdescfg & ~0xFFF) | 0x880;
4211 1.161 msaitoh CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4212 1.161 msaitoh }
4213 1.161 msaitoh
4214 1.161 msaitoh if (sc->bge_flags & BGE_PCIE &&
4215 1.214 msaitoh !BGE_IS_57765_PLUS(sc) &&
4216 1.172 msaitoh sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4217 1.214 msaitoh BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4218 1.172 msaitoh uint32_t v;
4219 1.172 msaitoh
4220 1.172 msaitoh /* Enable PCI Express bug fix */
4221 1.217 msaitoh v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4222 1.217 msaitoh CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4223 1.217 msaitoh v | BGE_TLP_DATA_FIFO_PROTECT);
4224 1.172 msaitoh }
4225 1.216 msaitoh
4226 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4227 1.216 msaitoh BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4228 1.216 msaitoh CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4229 1.177 msaitoh
4230 1.177 msaitoh return 0;
4231 1.1 fvdl }
4232 1.1 fvdl
4233 1.1 fvdl /*
4234 1.1 fvdl * Frame reception handling. This is called if there's a frame
4235 1.1 fvdl * on the receive return list.
4236 1.1 fvdl *
4237 1.1 fvdl * Note: we have to be able to handle two possibilities here:
4238 1.184 njoly * 1) the frame is from the jumbo receive ring
4239 1.1 fvdl * 2) the frame is from the standard receive ring
4240 1.1 fvdl */
4241 1.1 fvdl
4242 1.104 thorpej static void
4243 1.104 thorpej bge_rxeof(struct bge_softc *sc)
4244 1.1 fvdl {
4245 1.1 fvdl struct ifnet *ifp;
4246 1.172 msaitoh uint16_t rx_prod, rx_cons;
4247 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
4248 1.1 fvdl bus_dmamap_t dmamap;
4249 1.1 fvdl bus_addr_t offset, toff;
4250 1.1 fvdl bus_size_t tlen;
4251 1.1 fvdl int tosync;
4252 1.1 fvdl
4253 1.172 msaitoh rx_cons = sc->bge_rx_saved_considx;
4254 1.172 msaitoh rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4255 1.172 msaitoh
4256 1.172 msaitoh /* Nothing to do */
4257 1.172 msaitoh if (rx_cons == rx_prod)
4258 1.172 msaitoh return;
4259 1.172 msaitoh
4260 1.1 fvdl ifp = &sc->ethercom.ec_if;
4261 1.1 fvdl
4262 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4263 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
4264 1.1 fvdl sizeof (struct bge_status_block),
4265 1.1 fvdl BUS_DMASYNC_POSTREAD);
4266 1.1 fvdl
4267 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4268 1.172 msaitoh tosync = rx_prod - rx_cons;
4269 1.1 fvdl
4270 1.200 tls if (tosync != 0)
4271 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
4272 1.148 mlelstv
4273 1.172 msaitoh toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4274 1.1 fvdl
4275 1.1 fvdl if (tosync < 0) {
4276 1.172 msaitoh tlen = (sc->bge_return_ring_cnt - rx_cons) *
4277 1.1 fvdl sizeof (struct bge_rx_bd);
4278 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4279 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
4280 1.1 fvdl tosync = -tosync;
4281 1.1 fvdl }
4282 1.1 fvdl
4283 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4284 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
4285 1.1 fvdl BUS_DMASYNC_POSTREAD);
4286 1.1 fvdl
4287 1.172 msaitoh while (rx_cons != rx_prod) {
4288 1.1 fvdl struct bge_rx_bd *cur_rx;
4289 1.170 msaitoh uint32_t rxidx;
4290 1.1 fvdl struct mbuf *m = NULL;
4291 1.1 fvdl
4292 1.172 msaitoh cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4293 1.1 fvdl
4294 1.1 fvdl rxidx = cur_rx->bge_idx;
4295 1.172 msaitoh BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4296 1.1 fvdl
4297 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4298 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4299 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4300 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4301 1.1 fvdl jumbocnt++;
4302 1.124 bouyer bus_dmamap_sync(sc->bge_dmatag,
4303 1.124 bouyer sc->bge_cdata.bge_rx_jumbo_map,
4304 1.126 christos mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4305 1.125 bouyer BGE_JLEN, BUS_DMASYNC_POSTREAD);
4306 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4307 1.1 fvdl ifp->if_ierrors++;
4308 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4309 1.1 fvdl continue;
4310 1.1 fvdl }
4311 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4312 1.1 fvdl NULL)== ENOBUFS) {
4313 1.1 fvdl ifp->if_ierrors++;
4314 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4315 1.1 fvdl continue;
4316 1.1 fvdl }
4317 1.1 fvdl } else {
4318 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4319 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4320 1.124 bouyer
4321 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4322 1.1 fvdl stdcnt++;
4323 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4324 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4325 1.197 cegger if (dmamap == NULL) {
4326 1.197 cegger ifp->if_ierrors++;
4327 1.197 cegger bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4328 1.197 cegger continue;
4329 1.197 cegger }
4330 1.125 bouyer bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4331 1.125 bouyer dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4332 1.125 bouyer bus_dmamap_unload(sc->bge_dmatag, dmamap);
4333 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4334 1.1 fvdl ifp->if_ierrors++;
4335 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4336 1.1 fvdl continue;
4337 1.1 fvdl }
4338 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
4339 1.1 fvdl NULL, dmamap) == ENOBUFS) {
4340 1.1 fvdl ifp->if_ierrors++;
4341 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4342 1.1 fvdl continue;
4343 1.1 fvdl }
4344 1.1 fvdl }
4345 1.1 fvdl
4346 1.1 fvdl ifp->if_ipackets++;
4347 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
4348 1.178 msaitoh /*
4349 1.178 msaitoh * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4350 1.178 msaitoh * the Rx buffer has the layer-2 header unaligned.
4351 1.178 msaitoh * If our CPU requires alignment, re-align by copying.
4352 1.178 msaitoh */
4353 1.157 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4354 1.127 tsutsui memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4355 1.178 msaitoh cur_rx->bge_len);
4356 1.37 jonathan m->m_data += ETHER_ALIGN;
4357 1.37 jonathan }
4358 1.37 jonathan #endif
4359 1.87 perry
4360 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4361 1.1 fvdl m->m_pkthdr.rcvif = ifp;
4362 1.1 fvdl
4363 1.1 fvdl /*
4364 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
4365 1.1 fvdl */
4366 1.182 joerg bpf_mtap(ifp, m);
4367 1.1 fvdl
4368 1.219 msaitoh bge_rxcsum(sc, cur_rx, m);
4369 1.219 msaitoh
4370 1.219 msaitoh /*
4371 1.219 msaitoh * If we received a packet with a vlan tag, pass it
4372 1.219 msaitoh * to vlan_input() instead of ether_input().
4373 1.219 msaitoh */
4374 1.219 msaitoh if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4375 1.219 msaitoh VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4376 1.219 msaitoh }
4377 1.219 msaitoh
4378 1.219 msaitoh (*ifp->if_input)(ifp, m);
4379 1.219 msaitoh }
4380 1.219 msaitoh
4381 1.219 msaitoh sc->bge_rx_saved_considx = rx_cons;
4382 1.219 msaitoh bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4383 1.219 msaitoh if (stdcnt)
4384 1.219 msaitoh bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4385 1.219 msaitoh if (jumbocnt)
4386 1.219 msaitoh bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4387 1.219 msaitoh }
4388 1.219 msaitoh
4389 1.219 msaitoh static void
4390 1.219 msaitoh bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4391 1.219 msaitoh {
4392 1.46 jonathan
4393 1.219 msaitoh if (BGE_IS_5717_PLUS(sc)) {
4394 1.219 msaitoh if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4395 1.219 msaitoh if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4396 1.219 msaitoh m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4397 1.216 msaitoh if ((cur_rx->bge_error_flag &
4398 1.216 msaitoh BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4399 1.216 msaitoh m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4400 1.219 msaitoh if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4401 1.219 msaitoh m->m_pkthdr.csum_data =
4402 1.219 msaitoh cur_rx->bge_tcp_udp_csum;
4403 1.219 msaitoh m->m_pkthdr.csum_flags |=
4404 1.219 msaitoh (M_CSUM_TCPv4|M_CSUM_UDPv4|
4405 1.219 msaitoh M_CSUM_DATA);
4406 1.219 msaitoh }
4407 1.216 msaitoh }
4408 1.219 msaitoh } else {
4409 1.219 msaitoh if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4410 1.219 msaitoh m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4411 1.219 msaitoh if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4412 1.219 msaitoh m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4413 1.46 jonathan /*
4414 1.46 jonathan * Rx transport checksum-offload may also
4415 1.46 jonathan * have bugs with packets which, when transmitted,
4416 1.46 jonathan * were `runts' requiring padding.
4417 1.46 jonathan */
4418 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4419 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4420 1.219 msaitoh m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4421 1.46 jonathan m->m_pkthdr.csum_data =
4422 1.46 jonathan cur_rx->bge_tcp_udp_csum;
4423 1.46 jonathan m->m_pkthdr.csum_flags |=
4424 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
4425 1.219 msaitoh M_CSUM_DATA);
4426 1.1 fvdl }
4427 1.1 fvdl }
4428 1.1 fvdl }
4429 1.1 fvdl
4430 1.104 thorpej static void
4431 1.104 thorpej bge_txeof(struct bge_softc *sc)
4432 1.1 fvdl {
4433 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
4434 1.1 fvdl struct ifnet *ifp;
4435 1.1 fvdl struct txdmamap_pool_entry *dma;
4436 1.1 fvdl bus_addr_t offset, toff;
4437 1.1 fvdl bus_size_t tlen;
4438 1.1 fvdl int tosync;
4439 1.1 fvdl struct mbuf *m;
4440 1.1 fvdl
4441 1.1 fvdl ifp = &sc->ethercom.ec_if;
4442 1.1 fvdl
4443 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4444 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
4445 1.1 fvdl sizeof (struct bge_status_block),
4446 1.1 fvdl BUS_DMASYNC_POSTREAD);
4447 1.1 fvdl
4448 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
4449 1.87 perry tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4450 1.1 fvdl sc->bge_tx_saved_considx;
4451 1.1 fvdl
4452 1.200 tls if (tosync != 0)
4453 1.148 mlelstv rnd_add_uint32(&sc->rnd_source, tosync);
4454 1.148 mlelstv
4455 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4456 1.1 fvdl
4457 1.1 fvdl if (tosync < 0) {
4458 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4459 1.1 fvdl sizeof (struct bge_tx_bd);
4460 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4461 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4462 1.1 fvdl tosync = -tosync;
4463 1.1 fvdl }
4464 1.1 fvdl
4465 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4466 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
4467 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4468 1.1 fvdl
4469 1.1 fvdl /*
4470 1.1 fvdl * Go through our tx ring and free mbufs for those
4471 1.1 fvdl * frames that have been sent.
4472 1.1 fvdl */
4473 1.1 fvdl while (sc->bge_tx_saved_considx !=
4474 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4475 1.170 msaitoh uint32_t idx = 0;
4476 1.1 fvdl
4477 1.1 fvdl idx = sc->bge_tx_saved_considx;
4478 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4479 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4480 1.1 fvdl ifp->if_opackets++;
4481 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
4482 1.1 fvdl if (m != NULL) {
4483 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
4484 1.1 fvdl dma = sc->txdma[idx];
4485 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4486 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4487 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4488 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4489 1.1 fvdl sc->txdma[idx] = NULL;
4490 1.1 fvdl
4491 1.1 fvdl m_freem(m);
4492 1.1 fvdl }
4493 1.1 fvdl sc->bge_txcnt--;
4494 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4495 1.1 fvdl ifp->if_timer = 0;
4496 1.1 fvdl }
4497 1.1 fvdl
4498 1.1 fvdl if (cur_tx != NULL)
4499 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
4500 1.1 fvdl }
4501 1.1 fvdl
4502 1.104 thorpej static int
4503 1.104 thorpej bge_intr(void *xsc)
4504 1.1 fvdl {
4505 1.1 fvdl struct bge_softc *sc;
4506 1.1 fvdl struct ifnet *ifp;
4507 1.161 msaitoh uint32_t statusword;
4508 1.1 fvdl
4509 1.1 fvdl sc = xsc;
4510 1.1 fvdl ifp = &sc->ethercom.ec_if;
4511 1.1 fvdl
4512 1.161 msaitoh /* It is possible for the interrupt to arrive before
4513 1.161 msaitoh * the status block is updated prior to the interrupt.
4514 1.161 msaitoh * Reading the PCI State register will confirm whether the
4515 1.161 msaitoh * interrupt is ours and will flush the status block.
4516 1.161 msaitoh */
4517 1.144 mlelstv
4518 1.161 msaitoh /* read status word from status block */
4519 1.240 msaitoh bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4520 1.240 msaitoh offsetof(struct bge_ring_data, bge_status_block),
4521 1.240 msaitoh sizeof (struct bge_status_block),
4522 1.240 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4523 1.161 msaitoh statusword = sc->bge_rdata->bge_status_block.bge_status;
4524 1.144 mlelstv
4525 1.161 msaitoh if ((statusword & BGE_STATFLAG_UPDATED) ||
4526 1.226 msaitoh (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4527 1.161 msaitoh /* Ack interrupt and stop others from occuring. */
4528 1.211 msaitoh bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4529 1.144 mlelstv
4530 1.161 msaitoh BGE_EVCNT_INCR(sc->bge_ev_intr);
4531 1.1 fvdl
4532 1.161 msaitoh /* clear status word */
4533 1.161 msaitoh sc->bge_rdata->bge_status_block.bge_status = 0;
4534 1.72 thorpej
4535 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4536 1.161 msaitoh statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4537 1.161 msaitoh BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4538 1.161 msaitoh bge_link_upd(sc);
4539 1.1 fvdl
4540 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING) {
4541 1.161 msaitoh /* Check RX return ring producer/consumer */
4542 1.161 msaitoh bge_rxeof(sc);
4543 1.144 mlelstv
4544 1.161 msaitoh /* Check TX ring producer/consumer */
4545 1.161 msaitoh bge_txeof(sc);
4546 1.1 fvdl }
4547 1.1 fvdl
4548 1.161 msaitoh if (sc->bge_pending_rxintr_change) {
4549 1.161 msaitoh uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4550 1.161 msaitoh uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4551 1.161 msaitoh uint32_t junk;
4552 1.1 fvdl
4553 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4554 1.161 msaitoh DELAY(10);
4555 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4556 1.1 fvdl
4557 1.161 msaitoh CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4558 1.161 msaitoh DELAY(10);
4559 1.161 msaitoh junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4560 1.58 jonathan
4561 1.161 msaitoh sc->bge_pending_rxintr_change = 0;
4562 1.161 msaitoh }
4563 1.161 msaitoh bge_handle_events(sc);
4564 1.87 perry
4565 1.161 msaitoh /* Re-enable interrupts. */
4566 1.211 msaitoh bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4567 1.58 jonathan
4568 1.161 msaitoh if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4569 1.161 msaitoh bge_start(ifp);
4570 1.1 fvdl
4571 1.170 msaitoh return 1;
4572 1.161 msaitoh } else
4573 1.170 msaitoh return 0;
4574 1.1 fvdl }
4575 1.1 fvdl
4576 1.104 thorpej static void
4577 1.177 msaitoh bge_asf_driver_up(struct bge_softc *sc)
4578 1.177 msaitoh {
4579 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP) {
4580 1.177 msaitoh /* Send ASF heartbeat aprox. every 2s */
4581 1.177 msaitoh if (sc->bge_asf_count)
4582 1.177 msaitoh sc->bge_asf_count --;
4583 1.177 msaitoh else {
4584 1.180 msaitoh sc->bge_asf_count = 2;
4585 1.216 msaitoh
4586 1.216 msaitoh bge_wait_for_event_ack(sc);
4587 1.216 msaitoh
4588 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4589 1.216 msaitoh BGE_FW_CMD_DRV_ALIVE);
4590 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4591 1.216 msaitoh bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4592 1.216 msaitoh BGE_FW_HB_TIMEOUT_SEC);
4593 1.216 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4594 1.216 msaitoh CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4595 1.216 msaitoh BGE_RX_CPU_DRV_EVENT);
4596 1.177 msaitoh }
4597 1.177 msaitoh }
4598 1.177 msaitoh }
4599 1.177 msaitoh
4600 1.177 msaitoh static void
4601 1.104 thorpej bge_tick(void *xsc)
4602 1.1 fvdl {
4603 1.1 fvdl struct bge_softc *sc = xsc;
4604 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
4605 1.1 fvdl int s;
4606 1.1 fvdl
4607 1.1 fvdl s = splnet();
4608 1.1 fvdl
4609 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
4610 1.172 msaitoh bge_stats_update_regs(sc);
4611 1.172 msaitoh else
4612 1.172 msaitoh bge_stats_update(sc);
4613 1.1 fvdl
4614 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4615 1.161 msaitoh /*
4616 1.161 msaitoh * Since in TBI mode auto-polling can't be used we should poll
4617 1.161 msaitoh * link status manually. Here we register pending link event
4618 1.161 msaitoh * and trigger interrupt.
4619 1.161 msaitoh */
4620 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4621 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4622 1.161 msaitoh } else {
4623 1.161 msaitoh /*
4624 1.161 msaitoh * Do not touch PHY if we have link up. This could break
4625 1.161 msaitoh * IPMI/ASF mode or produce extra input errors.
4626 1.161 msaitoh * (extra input errors was reported for bcm5701 & bcm5704).
4627 1.161 msaitoh */
4628 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4629 1.161 msaitoh mii_tick(mii);
4630 1.161 msaitoh }
4631 1.161 msaitoh
4632 1.216 msaitoh bge_asf_driver_up(sc);
4633 1.216 msaitoh
4634 1.161 msaitoh callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4635 1.1 fvdl
4636 1.1 fvdl splx(s);
4637 1.1 fvdl }
4638 1.1 fvdl
4639 1.104 thorpej static void
4640 1.172 msaitoh bge_stats_update_regs(struct bge_softc *sc)
4641 1.172 msaitoh {
4642 1.172 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
4643 1.172 msaitoh
4644 1.172 msaitoh ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4645 1.172 msaitoh offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4646 1.172 msaitoh
4647 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4648 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4649 1.172 msaitoh ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4650 1.172 msaitoh }
4651 1.172 msaitoh
4652 1.172 msaitoh static void
4653 1.104 thorpej bge_stats_update(struct bge_softc *sc)
4654 1.1 fvdl {
4655 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
4656 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4657 1.44 hannken
4658 1.1 fvdl #define READ_STAT(sc, stats, stat) \
4659 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4660 1.1 fvdl
4661 1.1 fvdl ifp->if_collisions +=
4662 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4663 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4664 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4665 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4666 1.1 fvdl ifp->if_collisions;
4667 1.1 fvdl
4668 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4669 1.72 thorpej READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4670 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4671 1.72 thorpej READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4672 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4673 1.72 thorpej READ_STAT(sc, stats,
4674 1.72 thorpej xoffPauseFramesReceived.bge_addr_lo));
4675 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4676 1.72 thorpej READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4677 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4678 1.72 thorpej READ_STAT(sc, stats,
4679 1.72 thorpej macControlFramesReceived.bge_addr_lo));
4680 1.72 thorpej BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4681 1.72 thorpej READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4682 1.72 thorpej
4683 1.1 fvdl #undef READ_STAT
4684 1.1 fvdl
4685 1.1 fvdl #ifdef notdef
4686 1.1 fvdl ifp->if_collisions +=
4687 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4688 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4689 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4690 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4691 1.1 fvdl ifp->if_collisions;
4692 1.1 fvdl #endif
4693 1.1 fvdl }
4694 1.1 fvdl
4695 1.46 jonathan /*
4696 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4697 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4698 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
4699 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
4700 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
4701 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
4702 1.46 jonathan */
4703 1.102 perry static inline int
4704 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
4705 1.46 jonathan {
4706 1.46 jonathan struct mbuf *last = NULL;
4707 1.46 jonathan int padlen;
4708 1.46 jonathan
4709 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4710 1.46 jonathan
4711 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
4712 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
4713 1.113 tsutsui M_TRAILINGSPACE(pkt) >= padlen) {
4714 1.46 jonathan last = pkt;
4715 1.46 jonathan } else {
4716 1.46 jonathan /*
4717 1.46 jonathan * Walk packet chain to find last mbuf. We will either
4718 1.87 perry * pad there, or append a new mbuf and pad it
4719 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
4720 1.46 jonathan */
4721 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
4722 1.114 tsutsui continue; /* do nothing */
4723 1.46 jonathan }
4724 1.46 jonathan
4725 1.46 jonathan /* `last' now points to last in chain. */
4726 1.114 tsutsui if (M_TRAILINGSPACE(last) < padlen) {
4727 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
4728 1.46 jonathan struct mbuf *n;
4729 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
4730 1.129 joerg if (n == NULL)
4731 1.129 joerg return ENOBUFS;
4732 1.46 jonathan n->m_len = 0;
4733 1.46 jonathan last->m_next = n;
4734 1.46 jonathan last = n;
4735 1.46 jonathan }
4736 1.46 jonathan }
4737 1.46 jonathan
4738 1.114 tsutsui KDASSERT(!M_READONLY(last));
4739 1.114 tsutsui KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4740 1.114 tsutsui
4741 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
4742 1.126 christos memset(mtod(last, char *) + last->m_len, 0, padlen);
4743 1.46 jonathan last->m_len += padlen;
4744 1.46 jonathan pkt->m_pkthdr.len += padlen;
4745 1.46 jonathan return 0;
4746 1.46 jonathan }
4747 1.45 jonathan
4748 1.45 jonathan /*
4749 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4750 1.45 jonathan */
4751 1.102 perry static inline int
4752 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
4753 1.45 jonathan {
4754 1.45 jonathan struct mbuf *m, *prev;
4755 1.45 jonathan int totlen, prevlen;
4756 1.45 jonathan
4757 1.45 jonathan prev = NULL;
4758 1.45 jonathan totlen = 0;
4759 1.45 jonathan prevlen = -1;
4760 1.45 jonathan
4761 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4762 1.45 jonathan int mlen = m->m_len;
4763 1.45 jonathan int shortfall = 8 - mlen ;
4764 1.45 jonathan
4765 1.45 jonathan totlen += mlen;
4766 1.203 msaitoh if (mlen == 0)
4767 1.45 jonathan continue;
4768 1.45 jonathan if (mlen >= 8)
4769 1.45 jonathan continue;
4770 1.45 jonathan
4771 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
4772 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
4773 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
4774 1.45 jonathan */
4775 1.45 jonathan
4776 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
4777 1.113 tsutsui if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4778 1.115 tsutsui memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4779 1.45 jonathan prev->m_len += mlen;
4780 1.45 jonathan m->m_len = 0;
4781 1.45 jonathan /* XXX stitch chain */
4782 1.45 jonathan prev->m_next = m_free(m);
4783 1.45 jonathan m = prev;
4784 1.45 jonathan continue;
4785 1.45 jonathan }
4786 1.113 tsutsui else if (m->m_next != NULL &&
4787 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
4788 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
4789 1.45 jonathan /* m is writable and have enough data in next, pull up. */
4790 1.45 jonathan
4791 1.115 tsutsui memcpy(m->m_data + m->m_len, m->m_next->m_data,
4792 1.115 tsutsui shortfall);
4793 1.45 jonathan m->m_len += shortfall;
4794 1.45 jonathan m->m_next->m_len -= shortfall;
4795 1.45 jonathan m->m_next->m_data += shortfall;
4796 1.45 jonathan }
4797 1.45 jonathan else if (m->m_next == NULL || 1) {
4798 1.45 jonathan /* Got a runt at the very end of the packet.
4799 1.45 jonathan * borrow data from the tail of the preceding mbuf and
4800 1.45 jonathan * update its length in-place. (The original data is still
4801 1.45 jonathan * valid, so we can do this even if prev is not writable.)
4802 1.45 jonathan */
4803 1.45 jonathan
4804 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
4805 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4806 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4807 1.111 christos
4808 1.45 jonathan if ((prev->m_len - shortfall) < 8)
4809 1.45 jonathan shortfall = prev->m_len;
4810 1.87 perry
4811 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
4812 1.45 jonathan if (!M_READONLY(m)) {
4813 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
4814 1.45 jonathan void *m_dat;
4815 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
4816 1.45 jonathan m->m_pktdat : m->dat;
4817 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
4818 1.45 jonathan m->m_data = m_dat;
4819 1.45 jonathan }
4820 1.45 jonathan } else
4821 1.45 jonathan #endif /* just do the safe slow thing */
4822 1.45 jonathan {
4823 1.45 jonathan struct mbuf * n = NULL;
4824 1.45 jonathan int newprevlen = prev->m_len - shortfall;
4825 1.45 jonathan
4826 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
4827 1.45 jonathan if (n == NULL)
4828 1.45 jonathan return ENOBUFS;
4829 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
4830 1.45 jonathan /*,
4831 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4832 1.45 jonathan
4833 1.45 jonathan /* first copy the data we're stealing from prev */
4834 1.115 tsutsui memcpy(n->m_data, prev->m_data + newprevlen,
4835 1.115 tsutsui shortfall);
4836 1.45 jonathan
4837 1.45 jonathan /* update prev->m_len accordingly */
4838 1.45 jonathan prev->m_len -= shortfall;
4839 1.45 jonathan
4840 1.45 jonathan /* copy data from runt m */
4841 1.115 tsutsui memcpy(n->m_data + shortfall, m->m_data,
4842 1.115 tsutsui m->m_len);
4843 1.45 jonathan
4844 1.45 jonathan /* n holds what we stole from prev, plus m */
4845 1.45 jonathan n->m_len = shortfall + m->m_len;
4846 1.45 jonathan
4847 1.45 jonathan /* stitch n into chain and free m */
4848 1.45 jonathan n->m_next = m->m_next;
4849 1.45 jonathan prev->m_next = n;
4850 1.45 jonathan /* KASSERT(m->m_next == NULL); */
4851 1.45 jonathan m->m_next = NULL;
4852 1.45 jonathan m_free(m);
4853 1.45 jonathan m = n; /* for continuing loop */
4854 1.45 jonathan }
4855 1.45 jonathan }
4856 1.45 jonathan prevlen = m->m_len;
4857 1.45 jonathan }
4858 1.45 jonathan return 0;
4859 1.45 jonathan }
4860 1.45 jonathan
4861 1.1 fvdl /*
4862 1.207 msaitoh * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4863 1.1 fvdl * pointers to descriptors.
4864 1.1 fvdl */
4865 1.104 thorpej static int
4866 1.170 msaitoh bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4867 1.1 fvdl {
4868 1.1 fvdl struct bge_tx_bd *f = NULL;
4869 1.170 msaitoh uint32_t frag, cur;
4870 1.170 msaitoh uint16_t csum_flags = 0;
4871 1.170 msaitoh uint16_t txbd_tso_flags = 0;
4872 1.1 fvdl struct txdmamap_pool_entry *dma;
4873 1.1 fvdl bus_dmamap_t dmamap;
4874 1.1 fvdl int i = 0;
4875 1.29 itojun struct m_tag *mtag;
4876 1.95 jonathan int use_tso, maxsegsize, error;
4877 1.107 blymn
4878 1.1 fvdl cur = frag = *txidx;
4879 1.1 fvdl
4880 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
4881 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4882 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4883 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4884 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4885 1.1 fvdl }
4886 1.1 fvdl
4887 1.87 perry /*
4888 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
4889 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
4890 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
4891 1.46 jonathan * (For now, do this for all chip versions, until newer
4892 1.46 jonathan * are confirmed to not require the workaround.)
4893 1.46 jonathan */
4894 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4895 1.46 jonathan #ifdef notyet
4896 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4897 1.87 perry #endif
4898 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4899 1.46 jonathan goto check_dma_bug;
4900 1.46 jonathan
4901 1.170 msaitoh if (bge_cksum_pad(m_head) != 0)
4902 1.46 jonathan return ENOBUFS;
4903 1.46 jonathan
4904 1.46 jonathan check_dma_bug:
4905 1.157 msaitoh if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4906 1.29 itojun goto doit;
4907 1.157 msaitoh
4908 1.25 jonathan /*
4909 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
4910 1.87 perry * less than eight bytes. If we encounter a teeny mbuf
4911 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
4912 1.25 jonathan */
4913 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
4914 1.45 jonathan return ENOBUFS;
4915 1.25 jonathan
4916 1.25 jonathan doit:
4917 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
4918 1.1 fvdl if (dma == NULL)
4919 1.1 fvdl return ENOBUFS;
4920 1.1 fvdl dmamap = dma->dmamap;
4921 1.1 fvdl
4922 1.1 fvdl /*
4923 1.95 jonathan * Set up any necessary TSO state before we start packing...
4924 1.95 jonathan */
4925 1.95 jonathan use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4926 1.95 jonathan if (!use_tso) {
4927 1.95 jonathan maxsegsize = 0;
4928 1.95 jonathan } else { /* TSO setup */
4929 1.95 jonathan unsigned mss;
4930 1.95 jonathan struct ether_header *eh;
4931 1.95 jonathan unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4932 1.95 jonathan struct mbuf * m0 = m_head;
4933 1.95 jonathan struct ip *ip;
4934 1.95 jonathan struct tcphdr *th;
4935 1.95 jonathan int iphl, hlen;
4936 1.95 jonathan
4937 1.95 jonathan /*
4938 1.95 jonathan * XXX It would be nice if the mbuf pkthdr had offset
4939 1.95 jonathan * fields for the protocol headers.
4940 1.95 jonathan */
4941 1.95 jonathan
4942 1.95 jonathan eh = mtod(m0, struct ether_header *);
4943 1.95 jonathan switch (htons(eh->ether_type)) {
4944 1.95 jonathan case ETHERTYPE_IP:
4945 1.95 jonathan offset = ETHER_HDR_LEN;
4946 1.95 jonathan break;
4947 1.95 jonathan
4948 1.95 jonathan case ETHERTYPE_VLAN:
4949 1.95 jonathan offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4950 1.95 jonathan break;
4951 1.95 jonathan
4952 1.95 jonathan default:
4953 1.95 jonathan /*
4954 1.95 jonathan * Don't support this protocol or encapsulation.
4955 1.95 jonathan */
4956 1.170 msaitoh return ENOBUFS;
4957 1.95 jonathan }
4958 1.95 jonathan
4959 1.95 jonathan /*
4960 1.95 jonathan * TCP/IP headers are in the first mbuf; we can do
4961 1.95 jonathan * this the easy way.
4962 1.95 jonathan */
4963 1.95 jonathan iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4964 1.95 jonathan hlen = iphl + offset;
4965 1.95 jonathan if (__predict_false(m0->m_len <
4966 1.95 jonathan (hlen + sizeof(struct tcphdr)))) {
4967 1.95 jonathan
4968 1.138 joerg aprint_debug_dev(sc->bge_dev,
4969 1.138 joerg "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4970 1.138 joerg "not handled yet\n",
4971 1.138 joerg m0->m_len, hlen+ sizeof(struct tcphdr));
4972 1.95 jonathan #ifdef NOTYET
4973 1.95 jonathan /*
4974 1.95 jonathan * XXX jonathan (at) NetBSD.org: untested.
4975 1.95 jonathan * how to force this branch to be taken?
4976 1.95 jonathan */
4977 1.95 jonathan BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4978 1.95 jonathan
4979 1.95 jonathan m_copydata(m0, offset, sizeof(ip), &ip);
4980 1.95 jonathan m_copydata(m0, hlen, sizeof(th), &th);
4981 1.95 jonathan
4982 1.95 jonathan ip.ip_len = 0;
4983 1.95 jonathan
4984 1.95 jonathan m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4985 1.95 jonathan sizeof(ip.ip_len), &ip.ip_len);
4986 1.95 jonathan
4987 1.95 jonathan th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4988 1.95 jonathan ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4989 1.95 jonathan
4990 1.95 jonathan m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4991 1.95 jonathan sizeof(th.th_sum), &th.th_sum);
4992 1.95 jonathan
4993 1.95 jonathan hlen += th.th_off << 2;
4994 1.95 jonathan iptcp_opt_words = hlen;
4995 1.95 jonathan #else
4996 1.95 jonathan /*
4997 1.95 jonathan * if_wm "hard" case not yet supported, can we not
4998 1.95 jonathan * mandate it out of existence?
4999 1.95 jonathan */
5000 1.95 jonathan (void) ip; (void)th; (void) ip_tcp_hlen;
5001 1.95 jonathan
5002 1.95 jonathan return ENOBUFS;
5003 1.95 jonathan #endif
5004 1.95 jonathan } else {
5005 1.126 christos ip = (struct ip *) (mtod(m0, char *) + offset);
5006 1.126 christos th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5007 1.95 jonathan ip_tcp_hlen = iphl + (th->th_off << 2);
5008 1.95 jonathan
5009 1.95 jonathan /* Total IP/TCP options, in 32-bit words */
5010 1.95 jonathan iptcp_opt_words = (ip_tcp_hlen
5011 1.95 jonathan - sizeof(struct tcphdr)
5012 1.95 jonathan - sizeof(struct ip)) >> 2;
5013 1.95 jonathan }
5014 1.207 msaitoh if (BGE_IS_575X_PLUS(sc)) {
5015 1.95 jonathan th->th_sum = 0;
5016 1.95 jonathan csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5017 1.95 jonathan } else {
5018 1.95 jonathan /*
5019 1.107 blymn * XXX jonathan (at) NetBSD.org: 5705 untested.
5020 1.95 jonathan * Requires TSO firmware patch for 5701/5703/5704.
5021 1.95 jonathan */
5022 1.95 jonathan th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5023 1.95 jonathan ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5024 1.95 jonathan }
5025 1.95 jonathan
5026 1.95 jonathan mss = m_head->m_pkthdr.segsz;
5027 1.107 blymn txbd_tso_flags |=
5028 1.95 jonathan BGE_TXBDFLAG_CPU_PRE_DMA |
5029 1.95 jonathan BGE_TXBDFLAG_CPU_POST_DMA;
5030 1.95 jonathan
5031 1.95 jonathan /*
5032 1.95 jonathan * Our NIC TSO-assist assumes TSO has standard, optionless
5033 1.95 jonathan * IPv4 and TCP headers, which total 40 bytes. By default,
5034 1.95 jonathan * the NIC copies 40 bytes of IP/TCP header from the
5035 1.95 jonathan * supplied header into the IP/TCP header portion of
5036 1.95 jonathan * each post-TSO-segment. If the supplied packet has IP or
5037 1.95 jonathan * TCP options, we need to tell the NIC to copy those extra
5038 1.95 jonathan * bytes into each post-TSO header, in addition to the normal
5039 1.95 jonathan * 40-byte IP/TCP header (and to leave space accordingly).
5040 1.95 jonathan * Unfortunately, the driver encoding of option length
5041 1.95 jonathan * varies across different ASIC families.
5042 1.95 jonathan */
5043 1.95 jonathan tcp_seg_flags = 0;
5044 1.95 jonathan if (iptcp_opt_words) {
5045 1.172 msaitoh if (BGE_IS_5705_PLUS(sc)) {
5046 1.95 jonathan tcp_seg_flags =
5047 1.95 jonathan iptcp_opt_words << 11;
5048 1.95 jonathan } else {
5049 1.95 jonathan txbd_tso_flags |=
5050 1.95 jonathan iptcp_opt_words << 12;
5051 1.95 jonathan }
5052 1.95 jonathan }
5053 1.95 jonathan maxsegsize = mss | tcp_seg_flags;
5054 1.95 jonathan ip->ip_len = htons(mss + ip_tcp_hlen);
5055 1.95 jonathan
5056 1.95 jonathan } /* TSO setup */
5057 1.95 jonathan
5058 1.95 jonathan /*
5059 1.1 fvdl * Start packing the mbufs in this chain into
5060 1.1 fvdl * the fragment pointers. Stop when we run out
5061 1.1 fvdl * of fragments or hit the end of the mbuf chain.
5062 1.1 fvdl */
5063 1.95 jonathan error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5064 1.95 jonathan BUS_DMA_NOWAIT);
5065 1.170 msaitoh if (error)
5066 1.170 msaitoh return ENOBUFS;
5067 1.118 tsutsui /*
5068 1.118 tsutsui * Sanity check: avoid coming within 16 descriptors
5069 1.118 tsutsui * of the end of the ring.
5070 1.118 tsutsui */
5071 1.118 tsutsui if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5072 1.118 tsutsui BGE_TSO_PRINTF(("%s: "
5073 1.118 tsutsui " dmamap_load_mbuf too close to ring wrap\n",
5074 1.138 joerg device_xname(sc->bge_dev)));
5075 1.118 tsutsui goto fail_unload;
5076 1.118 tsutsui }
5077 1.95 jonathan
5078 1.95 jonathan mtag = sc->ethercom.ec_nvlans ?
5079 1.95 jonathan m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5080 1.1 fvdl
5081 1.6 thorpej
5082 1.95 jonathan /* Iterate over dmap-map fragments. */
5083 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
5084 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
5085 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5086 1.1 fvdl break;
5087 1.107 blymn
5088 1.172 msaitoh BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5089 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
5090 1.95 jonathan
5091 1.95 jonathan /*
5092 1.95 jonathan * For 5751 and follow-ons, for TSO we must turn
5093 1.95 jonathan * off checksum-assist flag in the tx-descr, and
5094 1.95 jonathan * supply the ASIC-revision-specific encoding
5095 1.95 jonathan * of TSO flags and segsize.
5096 1.95 jonathan */
5097 1.95 jonathan if (use_tso) {
5098 1.207 msaitoh if (BGE_IS_575X_PLUS(sc) || i == 0) {
5099 1.95 jonathan f->bge_rsvd = maxsegsize;
5100 1.95 jonathan f->bge_flags = csum_flags | txbd_tso_flags;
5101 1.95 jonathan } else {
5102 1.95 jonathan f->bge_rsvd = 0;
5103 1.95 jonathan f->bge_flags =
5104 1.95 jonathan (csum_flags | txbd_tso_flags) & 0x0fff;
5105 1.95 jonathan }
5106 1.95 jonathan } else {
5107 1.95 jonathan f->bge_rsvd = 0;
5108 1.95 jonathan f->bge_flags = csum_flags;
5109 1.95 jonathan }
5110 1.1 fvdl
5111 1.28 itojun if (mtag != NULL) {
5112 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5113 1.85 jdolecek f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5114 1.1 fvdl } else {
5115 1.1 fvdl f->bge_vlan_tag = 0;
5116 1.1 fvdl }
5117 1.1 fvdl cur = frag;
5118 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
5119 1.1 fvdl }
5120 1.1 fvdl
5121 1.95 jonathan if (i < dmamap->dm_nsegs) {
5122 1.95 jonathan BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5123 1.138 joerg device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5124 1.118 tsutsui goto fail_unload;
5125 1.95 jonathan }
5126 1.1 fvdl
5127 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5128 1.1 fvdl BUS_DMASYNC_PREWRITE);
5129 1.1 fvdl
5130 1.95 jonathan if (frag == sc->bge_tx_saved_considx) {
5131 1.95 jonathan BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5132 1.138 joerg device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5133 1.95 jonathan
5134 1.118 tsutsui goto fail_unload;
5135 1.95 jonathan }
5136 1.1 fvdl
5137 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5138 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
5139 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5140 1.1 fvdl sc->txdma[cur] = dma;
5141 1.118 tsutsui sc->bge_txcnt += dmamap->dm_nsegs;
5142 1.1 fvdl
5143 1.1 fvdl *txidx = frag;
5144 1.1 fvdl
5145 1.170 msaitoh return 0;
5146 1.118 tsutsui
5147 1.158 msaitoh fail_unload:
5148 1.118 tsutsui bus_dmamap_unload(sc->bge_dmatag, dmamap);
5149 1.118 tsutsui
5150 1.118 tsutsui return ENOBUFS;
5151 1.1 fvdl }
5152 1.1 fvdl
5153 1.1 fvdl /*
5154 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5155 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
5156 1.1 fvdl */
5157 1.104 thorpej static void
5158 1.104 thorpej bge_start(struct ifnet *ifp)
5159 1.1 fvdl {
5160 1.1 fvdl struct bge_softc *sc;
5161 1.1 fvdl struct mbuf *m_head = NULL;
5162 1.170 msaitoh uint32_t prodidx;
5163 1.1 fvdl int pkts = 0;
5164 1.1 fvdl
5165 1.1 fvdl sc = ifp->if_softc;
5166 1.1 fvdl
5167 1.131 mlelstv if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5168 1.1 fvdl return;
5169 1.1 fvdl
5170 1.94 jonathan prodidx = sc->bge_tx_prodidx;
5171 1.1 fvdl
5172 1.170 msaitoh while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5173 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
5174 1.1 fvdl if (m_head == NULL)
5175 1.1 fvdl break;
5176 1.1 fvdl
5177 1.1 fvdl #if 0
5178 1.1 fvdl /*
5179 1.1 fvdl * XXX
5180 1.1 fvdl * safety overkill. If this is a fragmented packet chain
5181 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
5182 1.1 fvdl * it if we have enough descriptors to handle the entire
5183 1.1 fvdl * chain at once.
5184 1.1 fvdl * (paranoia -- may not actually be needed)
5185 1.1 fvdl */
5186 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
5187 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5188 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5189 1.86 thorpej M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5190 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
5191 1.1 fvdl break;
5192 1.1 fvdl }
5193 1.1 fvdl }
5194 1.1 fvdl #endif
5195 1.1 fvdl
5196 1.1 fvdl /*
5197 1.1 fvdl * Pack the data into the transmit ring. If we
5198 1.1 fvdl * don't have room, set the OACTIVE flag and wait
5199 1.1 fvdl * for the NIC to drain the ring.
5200 1.1 fvdl */
5201 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
5202 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
5203 1.1 fvdl break;
5204 1.1 fvdl }
5205 1.1 fvdl
5206 1.1 fvdl /* now we are committed to transmit the packet */
5207 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
5208 1.1 fvdl pkts++;
5209 1.1 fvdl
5210 1.1 fvdl /*
5211 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
5212 1.1 fvdl * to him.
5213 1.1 fvdl */
5214 1.182 joerg bpf_mtap(ifp, m_head);
5215 1.1 fvdl }
5216 1.1 fvdl if (pkts == 0)
5217 1.1 fvdl return;
5218 1.1 fvdl
5219 1.1 fvdl /* Transmit */
5220 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5221 1.158 msaitoh /* 5700 b2 errata */
5222 1.158 msaitoh if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5223 1.151 cegger bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5224 1.1 fvdl
5225 1.94 jonathan sc->bge_tx_prodidx = prodidx;
5226 1.94 jonathan
5227 1.1 fvdl /*
5228 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
5229 1.1 fvdl */
5230 1.1 fvdl ifp->if_timer = 5;
5231 1.1 fvdl }
5232 1.1 fvdl
5233 1.104 thorpej static int
5234 1.104 thorpej bge_init(struct ifnet *ifp)
5235 1.1 fvdl {
5236 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
5237 1.170 msaitoh const uint16_t *m;
5238 1.206 msaitoh uint32_t mode;
5239 1.142 dyoung int s, error = 0;
5240 1.1 fvdl
5241 1.1 fvdl s = splnet();
5242 1.1 fvdl
5243 1.1 fvdl ifp = &sc->ethercom.ec_if;
5244 1.1 fvdl
5245 1.1 fvdl /* Cancel pending I/O and flush buffers. */
5246 1.141 jmcneill bge_stop(ifp, 0);
5247 1.177 msaitoh
5248 1.177 msaitoh bge_stop_fw(sc);
5249 1.177 msaitoh bge_sig_pre_reset(sc, BGE_RESET_START);
5250 1.1 fvdl bge_reset(sc);
5251 1.177 msaitoh bge_sig_legacy(sc, BGE_RESET_START);
5252 1.177 msaitoh bge_sig_post_reset(sc, BGE_RESET_START);
5253 1.177 msaitoh
5254 1.1 fvdl bge_chipinit(sc);
5255 1.1 fvdl
5256 1.1 fvdl /*
5257 1.1 fvdl * Init the various state machines, ring
5258 1.1 fvdl * control blocks and firmware.
5259 1.1 fvdl */
5260 1.1 fvdl error = bge_blockinit(sc);
5261 1.1 fvdl if (error != 0) {
5262 1.138 joerg aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5263 1.1 fvdl error);
5264 1.1 fvdl splx(s);
5265 1.1 fvdl return error;
5266 1.1 fvdl }
5267 1.1 fvdl
5268 1.1 fvdl ifp = &sc->ethercom.ec_if;
5269 1.1 fvdl
5270 1.236 msaitoh /* 5718 step 25, 57XX step 54 */
5271 1.1 fvdl /* Specify MTU. */
5272 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5273 1.107 blymn ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5274 1.1 fvdl
5275 1.236 msaitoh /* 5718 step 23 */
5276 1.1 fvdl /* Load our MAC address. */
5277 1.170 msaitoh m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5278 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5279 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5280 1.1 fvdl
5281 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
5282 1.178 msaitoh if (ifp->if_flags & IFF_PROMISC)
5283 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5284 1.178 msaitoh else
5285 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5286 1.1 fvdl
5287 1.1 fvdl /* Program multicast filter. */
5288 1.1 fvdl bge_setmulti(sc);
5289 1.1 fvdl
5290 1.1 fvdl /* Init RX ring. */
5291 1.1 fvdl bge_init_rx_ring_std(sc);
5292 1.1 fvdl
5293 1.161 msaitoh /*
5294 1.161 msaitoh * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5295 1.161 msaitoh * memory to insure that the chip has in fact read the first
5296 1.161 msaitoh * entry of the ring.
5297 1.161 msaitoh */
5298 1.161 msaitoh if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5299 1.170 msaitoh uint32_t v, i;
5300 1.161 msaitoh for (i = 0; i < 10; i++) {
5301 1.161 msaitoh DELAY(20);
5302 1.161 msaitoh v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5303 1.161 msaitoh if (v == (MCLBYTES - ETHER_ALIGN))
5304 1.161 msaitoh break;
5305 1.161 msaitoh }
5306 1.161 msaitoh if (i == 10)
5307 1.161 msaitoh aprint_error_dev(sc->bge_dev,
5308 1.161 msaitoh "5705 A0 chip failed to load RX ring\n");
5309 1.161 msaitoh }
5310 1.161 msaitoh
5311 1.1 fvdl /* Init jumbo RX ring. */
5312 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5313 1.1 fvdl bge_init_rx_ring_jumbo(sc);
5314 1.1 fvdl
5315 1.1 fvdl /* Init our RX return ring index */
5316 1.1 fvdl sc->bge_rx_saved_considx = 0;
5317 1.1 fvdl
5318 1.1 fvdl /* Init TX ring. */
5319 1.1 fvdl bge_init_tx_ring(sc);
5320 1.1 fvdl
5321 1.236 msaitoh /* 5718 step 63, 57XX step 94 */
5322 1.206 msaitoh /* Enable TX MAC state machine lockup fix. */
5323 1.206 msaitoh mode = CSR_READ_4(sc, BGE_TX_MODE);
5324 1.206 msaitoh if (BGE_IS_5755_PLUS(sc) ||
5325 1.206 msaitoh BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5326 1.206 msaitoh mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5327 1.216 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5328 1.216 msaitoh mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5329 1.216 msaitoh mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5330 1.216 msaitoh (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5331 1.216 msaitoh }
5332 1.206 msaitoh
5333 1.1 fvdl /* Turn on transmitter */
5334 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5335 1.236 msaitoh /* 5718 step 64 */
5336 1.206 msaitoh DELAY(100);
5337 1.1 fvdl
5338 1.236 msaitoh /* 5718 step 65, 57XX step 95 */
5339 1.1 fvdl /* Turn on receiver */
5340 1.216 msaitoh mode = CSR_READ_4(sc, BGE_RX_MODE);
5341 1.216 msaitoh if (BGE_IS_5755_PLUS(sc))
5342 1.216 msaitoh mode |= BGE_RXMODE_IPV6_ENABLE;
5343 1.216 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5344 1.236 msaitoh /* 5718 step 66 */
5345 1.206 msaitoh DELAY(10);
5346 1.1 fvdl
5347 1.236 msaitoh /* 5718 step 12 */
5348 1.71 thorpej CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5349 1.71 thorpej
5350 1.1 fvdl /* Tell firmware we're alive. */
5351 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5352 1.1 fvdl
5353 1.1 fvdl /* Enable host interrupts. */
5354 1.226 msaitoh BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5355 1.226 msaitoh BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5356 1.211 msaitoh bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5357 1.1 fvdl
5358 1.142 dyoung if ((error = bge_ifmedia_upd(ifp)) != 0)
5359 1.142 dyoung goto out;
5360 1.1 fvdl
5361 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
5362 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
5363 1.1 fvdl
5364 1.142 dyoung callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5365 1.142 dyoung
5366 1.142 dyoung out:
5367 1.186 msaitoh sc->bge_if_flags = ifp->if_flags;
5368 1.1 fvdl splx(s);
5369 1.1 fvdl
5370 1.142 dyoung return error;
5371 1.1 fvdl }
5372 1.1 fvdl
5373 1.1 fvdl /*
5374 1.1 fvdl * Set media options.
5375 1.1 fvdl */
5376 1.104 thorpej static int
5377 1.104 thorpej bge_ifmedia_upd(struct ifnet *ifp)
5378 1.1 fvdl {
5379 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
5380 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
5381 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
5382 1.142 dyoung int rc;
5383 1.1 fvdl
5384 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
5385 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5386 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5387 1.170 msaitoh return EINVAL;
5388 1.170 msaitoh switch (IFM_SUBTYPE(ifm->ifm_media)) {
5389 1.1 fvdl case IFM_AUTO:
5390 1.161 msaitoh /*
5391 1.161 msaitoh * The BCM5704 ASIC appears to have a special
5392 1.161 msaitoh * mechanism for programming the autoneg
5393 1.161 msaitoh * advertisement registers in TBI mode.
5394 1.161 msaitoh */
5395 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5396 1.170 msaitoh uint32_t sgdig;
5397 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5398 1.161 msaitoh if (sgdig & BGE_SGDIGSTS_DONE) {
5399 1.161 msaitoh CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5400 1.161 msaitoh sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5401 1.161 msaitoh sgdig |= BGE_SGDIGCFG_AUTO |
5402 1.161 msaitoh BGE_SGDIGCFG_PAUSE_CAP |
5403 1.161 msaitoh BGE_SGDIGCFG_ASYM_PAUSE;
5404 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5405 1.161 msaitoh sgdig | BGE_SGDIGCFG_SEND);
5406 1.161 msaitoh DELAY(5);
5407 1.211 msaitoh CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5408 1.211 msaitoh sgdig);
5409 1.161 msaitoh }
5410 1.161 msaitoh }
5411 1.1 fvdl break;
5412 1.1 fvdl case IFM_1000_SX:
5413 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5414 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
5415 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
5416 1.1 fvdl } else {
5417 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
5418 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
5419 1.1 fvdl }
5420 1.216 msaitoh DELAY(40);
5421 1.1 fvdl break;
5422 1.1 fvdl default:
5423 1.170 msaitoh return EINVAL;
5424 1.1 fvdl }
5425 1.69 thorpej /* XXX 802.3x flow control for 1000BASE-SX */
5426 1.170 msaitoh return 0;
5427 1.1 fvdl }
5428 1.1 fvdl
5429 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5430 1.142 dyoung if ((rc = mii_mediachg(mii)) == ENXIO)
5431 1.142 dyoung return 0;
5432 1.161 msaitoh
5433 1.161 msaitoh /*
5434 1.161 msaitoh * Force an interrupt so that we will call bge_link_upd
5435 1.161 msaitoh * if needed and clear any pending link state attention.
5436 1.161 msaitoh * Without this we are not getting any further interrupts
5437 1.161 msaitoh * for link state changes and thus will not UP the link and
5438 1.161 msaitoh * not be able to send in bge_start. The only way to get
5439 1.161 msaitoh * things working was to receive a packet and get a RX intr.
5440 1.161 msaitoh */
5441 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5442 1.161 msaitoh sc->bge_flags & BGE_IS_5788)
5443 1.161 msaitoh BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5444 1.161 msaitoh else
5445 1.161 msaitoh BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5446 1.161 msaitoh
5447 1.142 dyoung return rc;
5448 1.1 fvdl }
5449 1.1 fvdl
5450 1.1 fvdl /*
5451 1.1 fvdl * Report current media status.
5452 1.1 fvdl */
5453 1.104 thorpej static void
5454 1.104 thorpej bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5455 1.1 fvdl {
5456 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
5457 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
5458 1.1 fvdl
5459 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5460 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
5461 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
5462 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
5463 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
5464 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
5465 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
5466 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5467 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
5468 1.1 fvdl else
5469 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
5470 1.1 fvdl return;
5471 1.1 fvdl }
5472 1.1 fvdl
5473 1.1 fvdl mii_pollstat(mii);
5474 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
5475 1.69 thorpej ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5476 1.69 thorpej sc->bge_flowflags;
5477 1.1 fvdl }
5478 1.1 fvdl
5479 1.104 thorpej static int
5480 1.186 msaitoh bge_ifflags_cb(struct ethercom *ec)
5481 1.186 msaitoh {
5482 1.186 msaitoh struct ifnet *ifp = &ec->ec_if;
5483 1.186 msaitoh struct bge_softc *sc = ifp->if_softc;
5484 1.186 msaitoh int change = ifp->if_flags ^ sc->bge_if_flags;
5485 1.186 msaitoh
5486 1.186 msaitoh if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5487 1.186 msaitoh return ENETRESET;
5488 1.186 msaitoh else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5489 1.186 msaitoh return 0;
5490 1.186 msaitoh
5491 1.186 msaitoh if ((ifp->if_flags & IFF_PROMISC) == 0)
5492 1.186 msaitoh BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5493 1.186 msaitoh else
5494 1.186 msaitoh BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5495 1.186 msaitoh
5496 1.186 msaitoh bge_setmulti(sc);
5497 1.186 msaitoh
5498 1.186 msaitoh sc->bge_if_flags = ifp->if_flags;
5499 1.186 msaitoh return 0;
5500 1.186 msaitoh }
5501 1.186 msaitoh
5502 1.186 msaitoh static int
5503 1.126 christos bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5504 1.1 fvdl {
5505 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
5506 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
5507 1.1 fvdl int s, error = 0;
5508 1.1 fvdl struct mii_data *mii;
5509 1.1 fvdl
5510 1.1 fvdl s = splnet();
5511 1.1 fvdl
5512 1.170 msaitoh switch (command) {
5513 1.1 fvdl case SIOCSIFMEDIA:
5514 1.69 thorpej /* XXX Flow control is not supported for 1000BASE-SX */
5515 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5516 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
5517 1.69 thorpej sc->bge_flowflags = 0;
5518 1.69 thorpej }
5519 1.69 thorpej
5520 1.69 thorpej /* Flow control requires full-duplex mode. */
5521 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5522 1.69 thorpej (ifr->ifr_media & IFM_FDX) == 0) {
5523 1.69 thorpej ifr->ifr_media &= ~IFM_ETH_FMASK;
5524 1.69 thorpej }
5525 1.69 thorpej if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5526 1.69 thorpej if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5527 1.157 msaitoh /* We can do both TXPAUSE and RXPAUSE. */
5528 1.69 thorpej ifr->ifr_media |=
5529 1.69 thorpej IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5530 1.69 thorpej }
5531 1.69 thorpej sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5532 1.69 thorpej }
5533 1.69 thorpej /* FALLTHROUGH */
5534 1.1 fvdl case SIOCGIFMEDIA:
5535 1.157 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5536 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5537 1.1 fvdl command);
5538 1.1 fvdl } else {
5539 1.1 fvdl mii = &sc->bge_mii;
5540 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5541 1.1 fvdl command);
5542 1.1 fvdl }
5543 1.1 fvdl break;
5544 1.1 fvdl default:
5545 1.152 tron if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5546 1.152 tron break;
5547 1.152 tron
5548 1.152 tron error = 0;
5549 1.152 tron
5550 1.152 tron if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5551 1.152 tron ;
5552 1.152 tron else if (ifp->if_flags & IFF_RUNNING)
5553 1.152 tron bge_setmulti(sc);
5554 1.1 fvdl break;
5555 1.1 fvdl }
5556 1.1 fvdl
5557 1.1 fvdl splx(s);
5558 1.1 fvdl
5559 1.170 msaitoh return error;
5560 1.1 fvdl }
5561 1.1 fvdl
5562 1.104 thorpej static void
5563 1.104 thorpej bge_watchdog(struct ifnet *ifp)
5564 1.1 fvdl {
5565 1.1 fvdl struct bge_softc *sc;
5566 1.1 fvdl
5567 1.1 fvdl sc = ifp->if_softc;
5568 1.1 fvdl
5569 1.138 joerg aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5570 1.1 fvdl
5571 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
5572 1.1 fvdl bge_init(ifp);
5573 1.1 fvdl
5574 1.1 fvdl ifp->if_oerrors++;
5575 1.1 fvdl }
5576 1.1 fvdl
5577 1.11 thorpej static void
5578 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5579 1.11 thorpej {
5580 1.11 thorpej int i;
5581 1.11 thorpej
5582 1.211 msaitoh BGE_CLRBIT_FLUSH(sc, reg, bit);
5583 1.11 thorpej
5584 1.180 msaitoh for (i = 0; i < 1000; i++) {
5585 1.216 msaitoh delay(100);
5586 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
5587 1.11 thorpej return;
5588 1.11 thorpej }
5589 1.11 thorpej
5590 1.165 msaitoh /*
5591 1.165 msaitoh * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5592 1.165 msaitoh * on some environment (and once after boot?)
5593 1.165 msaitoh */
5594 1.165 msaitoh if (reg != BGE_SRS_MODE)
5595 1.165 msaitoh aprint_error_dev(sc->bge_dev,
5596 1.165 msaitoh "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5597 1.165 msaitoh (u_long)reg, bit);
5598 1.11 thorpej }
5599 1.11 thorpej
5600 1.1 fvdl /*
5601 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
5602 1.1 fvdl * RX and TX lists.
5603 1.1 fvdl */
5604 1.104 thorpej static void
5605 1.141 jmcneill bge_stop(struct ifnet *ifp, int disable)
5606 1.1 fvdl {
5607 1.141 jmcneill struct bge_softc *sc = ifp->if_softc;
5608 1.1 fvdl
5609 1.1 fvdl callout_stop(&sc->bge_timeout);
5610 1.1 fvdl
5611 1.216 msaitoh /* Disable host interrupts. */
5612 1.226 msaitoh BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5613 1.216 msaitoh bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5614 1.216 msaitoh
5615 1.1 fvdl /*
5616 1.177 msaitoh * Tell firmware we're shutting down.
5617 1.177 msaitoh */
5618 1.177 msaitoh bge_stop_fw(sc);
5619 1.216 msaitoh bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5620 1.177 msaitoh
5621 1.177 msaitoh /*
5622 1.208 msaitoh * Disable all of the receiver blocks.
5623 1.1 fvdl */
5624 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5625 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5626 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5627 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
5628 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5629 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5630 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5631 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5632 1.1 fvdl
5633 1.1 fvdl /*
5634 1.208 msaitoh * Disable all of the transmit blocks.
5635 1.1 fvdl */
5636 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5637 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5638 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5639 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5640 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5641 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
5642 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5643 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5644 1.1 fvdl
5645 1.216 msaitoh BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5646 1.216 msaitoh delay(40);
5647 1.216 msaitoh
5648 1.216 msaitoh bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5649 1.216 msaitoh
5650 1.1 fvdl /*
5651 1.1 fvdl * Shut down all of the memory managers and related
5652 1.1 fvdl * state machines.
5653 1.1 fvdl */
5654 1.236 msaitoh /* 5718 step 5a,5b */
5655 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5656 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5657 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
5658 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5659 1.11 thorpej
5660 1.236 msaitoh /* 5718 step 5c,5d */
5661 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5662 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5663 1.11 thorpej
5664 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc)) {
5665 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5666 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5667 1.44 hannken }
5668 1.1 fvdl
5669 1.177 msaitoh bge_reset(sc);
5670 1.216 msaitoh bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5671 1.216 msaitoh bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5672 1.1 fvdl
5673 1.1 fvdl /*
5674 1.177 msaitoh * Keep the ASF firmware running if up.
5675 1.1 fvdl */
5676 1.177 msaitoh if (sc->bge_asf_mode & ASF_STACKUP)
5677 1.177 msaitoh BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5678 1.177 msaitoh else
5679 1.177 msaitoh BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5680 1.1 fvdl
5681 1.1 fvdl /* Free the RX lists. */
5682 1.1 fvdl bge_free_rx_ring_std(sc);
5683 1.1 fvdl
5684 1.1 fvdl /* Free jumbo RX list. */
5685 1.172 msaitoh if (BGE_IS_JUMBO_CAPABLE(sc))
5686 1.172 msaitoh bge_free_rx_ring_jumbo(sc);
5687 1.1 fvdl
5688 1.1 fvdl /* Free TX buffers. */
5689 1.1 fvdl bge_free_tx_ring(sc);
5690 1.1 fvdl
5691 1.1 fvdl /*
5692 1.1 fvdl * Isolate/power down the PHY.
5693 1.1 fvdl */
5694 1.157 msaitoh if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5695 1.1 fvdl mii_down(&sc->bge_mii);
5696 1.1 fvdl
5697 1.161 msaitoh sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5698 1.1 fvdl
5699 1.161 msaitoh /* Clear MAC's link state (PHY may still have link UP). */
5700 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5701 1.1 fvdl
5702 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5703 1.1 fvdl }
5704 1.1 fvdl
5705 1.161 msaitoh static void
5706 1.161 msaitoh bge_link_upd(struct bge_softc *sc)
5707 1.161 msaitoh {
5708 1.161 msaitoh struct ifnet *ifp = &sc->ethercom.ec_if;
5709 1.161 msaitoh struct mii_data *mii = &sc->bge_mii;
5710 1.170 msaitoh uint32_t status;
5711 1.161 msaitoh int link;
5712 1.161 msaitoh
5713 1.161 msaitoh /* Clear 'pending link event' flag */
5714 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5715 1.161 msaitoh
5716 1.161 msaitoh /*
5717 1.161 msaitoh * Process link state changes.
5718 1.161 msaitoh * Grrr. The link status word in the status block does
5719 1.161 msaitoh * not work correctly on the BCM5700 rev AX and BX chips,
5720 1.161 msaitoh * according to all available information. Hence, we have
5721 1.161 msaitoh * to enable MII interrupts in order to properly obtain
5722 1.161 msaitoh * async link changes. Unfortunately, this also means that
5723 1.161 msaitoh * we have to read the MAC status register to detect link
5724 1.161 msaitoh * changes, thereby adding an additional register access to
5725 1.161 msaitoh * the interrupt handler.
5726 1.161 msaitoh */
5727 1.161 msaitoh
5728 1.161 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5729 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
5730 1.161 msaitoh if (status & BGE_MACSTAT_MI_INTERRUPT) {
5731 1.161 msaitoh mii_pollstat(mii);
5732 1.161 msaitoh
5733 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5734 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
5735 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5736 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
5737 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5738 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
5739 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5740 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5741 1.161 msaitoh
5742 1.161 msaitoh /* Clear the interrupt */
5743 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5744 1.161 msaitoh BGE_EVTENB_MI_INTERRUPT);
5745 1.216 msaitoh bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5746 1.216 msaitoh BRGPHY_MII_ISR);
5747 1.216 msaitoh bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5748 1.216 msaitoh BRGPHY_MII_IMR, BRGPHY_INTRS);
5749 1.161 msaitoh }
5750 1.161 msaitoh return;
5751 1.161 msaitoh }
5752 1.161 msaitoh
5753 1.161 msaitoh if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5754 1.161 msaitoh status = CSR_READ_4(sc, BGE_MAC_STS);
5755 1.161 msaitoh if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5756 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5757 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
5758 1.219 msaitoh if (BGE_ASICREV(sc->bge_chipid)
5759 1.219 msaitoh == BGE_ASICREV_BCM5704) {
5760 1.161 msaitoh BGE_CLRBIT(sc, BGE_MAC_MODE,
5761 1.161 msaitoh BGE_MACMODE_TBI_SEND_CFGS);
5762 1.219 msaitoh DELAY(40);
5763 1.219 msaitoh }
5764 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5765 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_UP);
5766 1.161 msaitoh }
5767 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5768 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5769 1.161 msaitoh if_link_state_change(ifp, LINK_STATE_DOWN);
5770 1.161 msaitoh }
5771 1.178 msaitoh /*
5772 1.161 msaitoh * Discard link events for MII/GMII cards if MI auto-polling disabled.
5773 1.161 msaitoh * This should not happen since mii callouts are locked now, but
5774 1.161 msaitoh * we keep this check for debug.
5775 1.161 msaitoh */
5776 1.161 msaitoh } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5777 1.178 msaitoh /*
5778 1.161 msaitoh * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5779 1.161 msaitoh * bit in status word always set. Workaround this bug by
5780 1.161 msaitoh * reading PHY link status directly.
5781 1.161 msaitoh */
5782 1.161 msaitoh link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5783 1.161 msaitoh BGE_STS_LINK : 0;
5784 1.161 msaitoh
5785 1.161 msaitoh if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5786 1.161 msaitoh mii_pollstat(mii);
5787 1.161 msaitoh
5788 1.161 msaitoh if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5789 1.161 msaitoh mii->mii_media_status & IFM_ACTIVE &&
5790 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5791 1.161 msaitoh BGE_STS_SETBIT(sc, BGE_STS_LINK);
5792 1.161 msaitoh else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5793 1.161 msaitoh (!(mii->mii_media_status & IFM_ACTIVE) ||
5794 1.161 msaitoh IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5795 1.161 msaitoh BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5796 1.161 msaitoh }
5797 1.161 msaitoh }
5798 1.161 msaitoh
5799 1.161 msaitoh /* Clear the attention */
5800 1.161 msaitoh CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5801 1.161 msaitoh BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5802 1.161 msaitoh BGE_MACSTAT_LINK_CHANGED);
5803 1.161 msaitoh }
5804 1.161 msaitoh
5805 1.64 jonathan static int
5806 1.207 msaitoh bge_sysctl_verify(SYSCTLFN_ARGS)
5807 1.64 jonathan {
5808 1.64 jonathan int error, t;
5809 1.64 jonathan struct sysctlnode node;
5810 1.64 jonathan
5811 1.64 jonathan node = *rnode;
5812 1.64 jonathan t = *(int*)rnode->sysctl_data;
5813 1.64 jonathan node.sysctl_data = &t;
5814 1.64 jonathan error = sysctl_lookup(SYSCTLFN_CALL(&node));
5815 1.64 jonathan if (error || newp == NULL)
5816 1.170 msaitoh return error;
5817 1.64 jonathan
5818 1.64 jonathan #if 0
5819 1.64 jonathan DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5820 1.64 jonathan node.sysctl_num, rnode->sysctl_num));
5821 1.64 jonathan #endif
5822 1.64 jonathan
5823 1.64 jonathan if (node.sysctl_num == bge_rxthresh_nodenum) {
5824 1.64 jonathan if (t < 0 || t >= NBGE_RX_THRESH)
5825 1.170 msaitoh return EINVAL;
5826 1.64 jonathan bge_update_all_threshes(t);
5827 1.64 jonathan } else
5828 1.170 msaitoh return EINVAL;
5829 1.64 jonathan
5830 1.64 jonathan *(int*)rnode->sysctl_data = t;
5831 1.64 jonathan
5832 1.170 msaitoh return 0;
5833 1.64 jonathan }
5834 1.64 jonathan
5835 1.64 jonathan /*
5836 1.65 atatat * Set up sysctl(3) MIB, hw.bge.*.
5837 1.64 jonathan */
5838 1.190 jruoho static void
5839 1.207 msaitoh bge_sysctl_init(struct bge_softc *sc)
5840 1.64 jonathan {
5841 1.66 atatat int rc, bge_root_num;
5842 1.90 atatat const struct sysctlnode *node;
5843 1.64 jonathan
5844 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5845 1.64 jonathan CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5846 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5847 1.203 msaitoh goto out;
5848 1.64 jonathan }
5849 1.64 jonathan
5850 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5851 1.190 jruoho 0, CTLTYPE_NODE, "bge",
5852 1.73 atatat SYSCTL_DESCR("BGE interface controls"),
5853 1.64 jonathan NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5854 1.203 msaitoh goto out;
5855 1.64 jonathan }
5856 1.64 jonathan
5857 1.66 atatat bge_root_num = node->sysctl_num;
5858 1.66 atatat
5859 1.64 jonathan /* BGE Rx interrupt mitigation level */
5860 1.190 jruoho if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5861 1.190 jruoho CTLFLAG_READWRITE,
5862 1.73 atatat CTLTYPE_INT, "rx_lvl",
5863 1.73 atatat SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5864 1.207 msaitoh bge_sysctl_verify, 0,
5865 1.64 jonathan &bge_rx_thresh_lvl,
5866 1.66 atatat 0, CTL_HW, bge_root_num, CTL_CREATE,
5867 1.64 jonathan CTL_EOL)) != 0) {
5868 1.203 msaitoh goto out;
5869 1.64 jonathan }
5870 1.64 jonathan
5871 1.64 jonathan bge_rxthresh_nodenum = node->sysctl_num;
5872 1.64 jonathan
5873 1.64 jonathan return;
5874 1.64 jonathan
5875 1.203 msaitoh out:
5876 1.138 joerg aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5877 1.64 jonathan }
5878 1.151 cegger
5879 1.172 msaitoh #ifdef BGE_DEBUG
5880 1.172 msaitoh void
5881 1.172 msaitoh bge_debug_info(struct bge_softc *sc)
5882 1.172 msaitoh {
5883 1.172 msaitoh
5884 1.172 msaitoh printf("Hardware Flags:\n");
5885 1.214 msaitoh if (BGE_IS_57765_PLUS(sc))
5886 1.214 msaitoh printf(" - 57765 Plus\n");
5887 1.214 msaitoh if (BGE_IS_5717_PLUS(sc))
5888 1.214 msaitoh printf(" - 5717 Plus\n");
5889 1.172 msaitoh if (BGE_IS_5755_PLUS(sc))
5890 1.172 msaitoh printf(" - 5755 Plus\n");
5891 1.207 msaitoh if (BGE_IS_575X_PLUS(sc))
5892 1.207 msaitoh printf(" - 575X Plus\n");
5893 1.172 msaitoh if (BGE_IS_5705_PLUS(sc))
5894 1.172 msaitoh printf(" - 5705 Plus\n");
5895 1.172 msaitoh if (BGE_IS_5714_FAMILY(sc))
5896 1.172 msaitoh printf(" - 5714 Family\n");
5897 1.172 msaitoh if (BGE_IS_5700_FAMILY(sc))
5898 1.172 msaitoh printf(" - 5700 Family\n");
5899 1.172 msaitoh if (sc->bge_flags & BGE_IS_5788)
5900 1.172 msaitoh printf(" - 5788\n");
5901 1.172 msaitoh if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5902 1.172 msaitoh printf(" - Supports Jumbo Frames\n");
5903 1.172 msaitoh if (sc->bge_flags & BGE_NO_EEPROM)
5904 1.173 msaitoh printf(" - No EEPROM\n");
5905 1.172 msaitoh if (sc->bge_flags & BGE_PCIX)
5906 1.172 msaitoh printf(" - PCI-X Bus\n");
5907 1.172 msaitoh if (sc->bge_flags & BGE_PCIE)
5908 1.172 msaitoh printf(" - PCI Express Bus\n");
5909 1.172 msaitoh if (sc->bge_flags & BGE_RX_ALIGNBUG)
5910 1.172 msaitoh printf(" - RX Alignment Bug\n");
5911 1.216 msaitoh if (sc->bge_flags & BGE_APE)
5912 1.216 msaitoh printf(" - APE\n");
5913 1.214 msaitoh if (sc->bge_flags & BGE_CPMU_PRESENT)
5914 1.214 msaitoh printf(" - CPMU\n");
5915 1.172 msaitoh if (sc->bge_flags & BGE_TSO)
5916 1.172 msaitoh printf(" - TSO\n");
5917 1.220 msaitoh
5918 1.220 msaitoh if (sc->bge_flags & BGE_PHY_NO_3LED)
5919 1.220 msaitoh printf(" - No 3 LEDs\n");
5920 1.220 msaitoh if (sc->bge_flags & BGE_PHY_CRC_BUG)
5921 1.220 msaitoh printf(" - CRC bug\n");
5922 1.220 msaitoh if (sc->bge_flags & BGE_PHY_ADC_BUG)
5923 1.220 msaitoh printf(" - ADC bug\n");
5924 1.220 msaitoh if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5925 1.220 msaitoh printf(" - 5704 A0 bug\n");
5926 1.220 msaitoh if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5927 1.220 msaitoh printf(" - jitter bug\n");
5928 1.221 msaitoh if (sc->bge_flags & BGE_PHY_BER_BUG)
5929 1.220 msaitoh printf(" - BER bug\n");
5930 1.220 msaitoh if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5931 1.220 msaitoh printf(" - adjust trim\n");
5932 1.220 msaitoh if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5933 1.220 msaitoh printf(" - no wirespeed\n");
5934 1.172 msaitoh }
5935 1.172 msaitoh #endif /* BGE_DEBUG */
5936 1.172 msaitoh
5937 1.172 msaitoh static int
5938 1.172 msaitoh bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5939 1.172 msaitoh {
5940 1.172 msaitoh prop_dictionary_t dict;
5941 1.172 msaitoh prop_data_t ea;
5942 1.172 msaitoh
5943 1.172 msaitoh if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5944 1.172 msaitoh return 1;
5945 1.172 msaitoh
5946 1.172 msaitoh dict = device_properties(sc->bge_dev);
5947 1.172 msaitoh ea = prop_dictionary_get(dict, "mac-address");
5948 1.172 msaitoh if (ea != NULL) {
5949 1.172 msaitoh KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5950 1.172 msaitoh KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5951 1.172 msaitoh memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5952 1.172 msaitoh return 0;
5953 1.172 msaitoh }
5954 1.172 msaitoh
5955 1.172 msaitoh return 1;
5956 1.172 msaitoh }
5957 1.172 msaitoh
5958 1.178 msaitoh static int
5959 1.170 msaitoh bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5960 1.151 cegger {
5961 1.170 msaitoh uint32_t mac_addr;
5962 1.151 cegger
5963 1.205 msaitoh mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5964 1.151 cegger if ((mac_addr >> 16) == 0x484b) {
5965 1.151 cegger ether_addr[0] = (uint8_t)(mac_addr >> 8);
5966 1.151 cegger ether_addr[1] = (uint8_t)mac_addr;
5967 1.205 msaitoh mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5968 1.151 cegger ether_addr[2] = (uint8_t)(mac_addr >> 24);
5969 1.151 cegger ether_addr[3] = (uint8_t)(mac_addr >> 16);
5970 1.151 cegger ether_addr[4] = (uint8_t)(mac_addr >> 8);
5971 1.151 cegger ether_addr[5] = (uint8_t)mac_addr;
5972 1.170 msaitoh return 0;
5973 1.151 cegger }
5974 1.170 msaitoh return 1;
5975 1.151 cegger }
5976 1.151 cegger
5977 1.151 cegger static int
5978 1.170 msaitoh bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5979 1.151 cegger {
5980 1.151 cegger int mac_offset = BGE_EE_MAC_OFFSET;
5981 1.151 cegger
5982 1.177 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5983 1.151 cegger mac_offset = BGE_EE_MAC_OFFSET_5906;
5984 1.151 cegger
5985 1.151 cegger return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5986 1.151 cegger ETHER_ADDR_LEN));
5987 1.151 cegger }
5988 1.151 cegger
5989 1.151 cegger static int
5990 1.170 msaitoh bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5991 1.151 cegger {
5992 1.151 cegger
5993 1.170 msaitoh if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5994 1.170 msaitoh return 1;
5995 1.151 cegger
5996 1.151 cegger return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5997 1.151 cegger ETHER_ADDR_LEN));
5998 1.151 cegger }
5999 1.151 cegger
6000 1.151 cegger static int
6001 1.170 msaitoh bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6002 1.151 cegger {
6003 1.151 cegger static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6004 1.151 cegger /* NOTE: Order is critical */
6005 1.172 msaitoh bge_get_eaddr_fw,
6006 1.151 cegger bge_get_eaddr_mem,
6007 1.151 cegger bge_get_eaddr_nvram,
6008 1.151 cegger bge_get_eaddr_eeprom,
6009 1.151 cegger NULL
6010 1.151 cegger };
6011 1.151 cegger const bge_eaddr_fcn_t *func;
6012 1.151 cegger
6013 1.151 cegger for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6014 1.151 cegger if ((*func)(sc, eaddr) == 0)
6015 1.151 cegger break;
6016 1.151 cegger }
6017 1.151 cegger return (*func == NULL ? ENXIO : 0);
6018 1.151 cegger }
6019