Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.30
      1  1.30   thorpej /*	$NetBSD: if_bge.c,v 1.30 2003/01/31 01:03:35 thorpej Exp $	*/
      2   1.8   thorpej 
      3   1.1      fvdl /*
      4   1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5   1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6   1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7   1.1      fvdl  *
      8   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9   1.1      fvdl  * modification, are permitted provided that the following conditions
     10   1.1      fvdl  * are met:
     11   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17   1.1      fvdl  *    must display the following acknowledgement:
     18   1.1      fvdl  *	This product includes software developed by Bill Paul.
     19   1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20   1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21   1.1      fvdl  *    without specific prior written permission.
     22   1.1      fvdl  *
     23   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33   1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34   1.1      fvdl  *
     35   1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36   1.1      fvdl  */
     37   1.1      fvdl 
     38   1.1      fvdl /*
     39  1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40   1.1      fvdl  *
     41  1.12   thorpej  * NetBSD version by:
     42  1.12   thorpej  *
     43  1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  1.25  jonathan  *	jonathan Stone <joanthan (at) dsg.stanford.edu>
     46  1.12   thorpej  *
     47  1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48   1.1      fvdl  * Senior Engineer, Wind River Systems
     49   1.1      fvdl  */
     50   1.1      fvdl 
     51   1.1      fvdl /*
     52   1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53   1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54   1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55   1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56   1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57   1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58   1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59   1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60   1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61   1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62   1.1      fvdl  * into the driver.
     63   1.1      fvdl  *
     64   1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65   1.1      fvdl  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
     66   1.1      fvdl  *
     67   1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69   1.1      fvdl  * does not support external SSRAM.
     70   1.1      fvdl  *
     71   1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72   1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73   1.1      fvdl  *
     74   1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75   1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76   1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77   1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78   1.1      fvdl  * ring.
     79   1.1      fvdl  */
     80   1.1      fvdl 
     81   1.1      fvdl #include "bpfilter.h"
     82   1.1      fvdl #include "vlan.h"
     83   1.1      fvdl 
     84   1.1      fvdl #include <sys/param.h>
     85   1.1      fvdl #include <sys/systm.h>
     86   1.1      fvdl #include <sys/callout.h>
     87   1.1      fvdl #include <sys/sockio.h>
     88   1.1      fvdl #include <sys/mbuf.h>
     89   1.1      fvdl #include <sys/malloc.h>
     90   1.1      fvdl #include <sys/kernel.h>
     91   1.1      fvdl #include <sys/device.h>
     92   1.1      fvdl #include <sys/socket.h>
     93   1.1      fvdl 
     94   1.1      fvdl #include <net/if.h>
     95   1.1      fvdl #include <net/if_dl.h>
     96   1.1      fvdl #include <net/if_media.h>
     97   1.1      fvdl #include <net/if_ether.h>
     98   1.1      fvdl 
     99   1.1      fvdl #ifdef INET
    100   1.1      fvdl #include <netinet/in.h>
    101   1.1      fvdl #include <netinet/in_systm.h>
    102   1.1      fvdl #include <netinet/in_var.h>
    103   1.1      fvdl #include <netinet/ip.h>
    104   1.1      fvdl #endif
    105   1.1      fvdl 
    106   1.1      fvdl #if NBPFILTER > 0
    107   1.1      fvdl #include <net/bpf.h>
    108   1.1      fvdl #endif
    109   1.1      fvdl 
    110   1.1      fvdl #include <dev/pci/pcireg.h>
    111   1.1      fvdl #include <dev/pci/pcivar.h>
    112   1.1      fvdl #include <dev/pci/pcidevs.h>
    113   1.1      fvdl 
    114   1.1      fvdl #include <dev/mii/mii.h>
    115   1.1      fvdl #include <dev/mii/miivar.h>
    116   1.1      fvdl #include <dev/mii/miidevs.h>
    117   1.1      fvdl #include <dev/mii/brgphyreg.h>
    118   1.1      fvdl 
    119   1.1      fvdl #include <dev/pci/if_bgereg.h>
    120   1.1      fvdl 
    121   1.1      fvdl #include <uvm/uvm_extern.h>
    122   1.1      fvdl 
    123   1.1      fvdl int bge_probe(struct device *, struct cfdata *, void *);
    124   1.1      fvdl void bge_attach(struct device *, struct device *, void *);
    125   1.1      fvdl void bge_release_resources(struct bge_softc *);
    126   1.1      fvdl void bge_txeof(struct bge_softc *);
    127   1.1      fvdl void bge_rxeof(struct bge_softc *);
    128   1.1      fvdl 
    129   1.1      fvdl void bge_tick(void *);
    130   1.1      fvdl void bge_stats_update(struct bge_softc *);
    131   1.1      fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    132   1.1      fvdl 
    133   1.1      fvdl int bge_intr(void *);
    134   1.1      fvdl void bge_start(struct ifnet *);
    135   1.1      fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
    136   1.1      fvdl int bge_init(struct ifnet *);
    137   1.1      fvdl void bge_stop(struct bge_softc *);
    138   1.1      fvdl void bge_watchdog(struct ifnet *);
    139   1.1      fvdl void bge_shutdown(void *);
    140   1.1      fvdl int bge_ifmedia_upd(struct ifnet *);
    141   1.1      fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    142   1.1      fvdl 
    143   1.1      fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    144   1.1      fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    145   1.1      fvdl 
    146   1.1      fvdl void bge_setmulti(struct bge_softc *);
    147   1.1      fvdl 
    148   1.1      fvdl void bge_handle_events(struct bge_softc *);
    149   1.1      fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
    150   1.1      fvdl void bge_free_jumbo_mem(struct bge_softc *);
    151   1.1      fvdl void *bge_jalloc(struct bge_softc *);
    152   1.1      fvdl void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
    153   1.1      fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    154   1.1      fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    155   1.1      fvdl int bge_init_rx_ring_std(struct bge_softc *);
    156   1.1      fvdl void bge_free_rx_ring_std(struct bge_softc *);
    157   1.1      fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
    158   1.1      fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
    159   1.1      fvdl void bge_free_tx_ring(struct bge_softc *);
    160   1.1      fvdl int bge_init_tx_ring(struct bge_softc *);
    161   1.1      fvdl 
    162   1.1      fvdl int bge_chipinit(struct bge_softc *);
    163   1.1      fvdl int bge_blockinit(struct bge_softc *);
    164  1.25  jonathan int bge_setpowerstate(struct bge_softc *, int);
    165   1.1      fvdl 
    166   1.1      fvdl #ifdef notdef
    167   1.1      fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    168   1.1      fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    169   1.1      fvdl void bge_vpd_read(struct bge_softc *);
    170   1.1      fvdl #endif
    171   1.1      fvdl 
    172   1.1      fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
    173   1.1      fvdl void bge_writemem_ind(struct bge_softc *, int, int);
    174   1.1      fvdl #ifdef notdef
    175   1.1      fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
    176   1.1      fvdl #endif
    177   1.1      fvdl void bge_writereg_ind(struct bge_softc *, int, int);
    178   1.1      fvdl 
    179   1.1      fvdl int bge_miibus_readreg(struct device *, int, int);
    180   1.1      fvdl void bge_miibus_writereg(struct device *, int, int, int);
    181   1.1      fvdl void bge_miibus_statchg(struct device *);
    182   1.1      fvdl 
    183   1.1      fvdl void bge_reset(struct bge_softc *);
    184   1.1      fvdl 
    185   1.1      fvdl void bge_dump_status(struct bge_softc *);
    186   1.1      fvdl void bge_dump_rxbd(struct bge_rx_bd *);
    187   1.1      fvdl 
    188   1.1      fvdl #define BGE_DEBUG
    189   1.1      fvdl #ifdef BGE_DEBUG
    190   1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    191   1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    192   1.1      fvdl int	bgedebug = 0;
    193   1.1      fvdl #else
    194   1.1      fvdl #define DPRINTF(x)
    195   1.1      fvdl #define DPRINTFN(n,x)
    196   1.1      fvdl #endif
    197   1.1      fvdl 
    198  1.17   thorpej /* Various chip quirks. */
    199  1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    200  1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    201  1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    202  1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    203  1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    204  1.27  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000011
    205  1.25  jonathan 
    206  1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    207  1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    208  1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    209  1.17   thorpej 
    210  1.21   thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
    211  1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    212   1.1      fvdl 
    213   1.1      fvdl u_int32_t
    214   1.1      fvdl bge_readmem_ind(sc, off)
    215   1.1      fvdl 	struct bge_softc *sc;
    216   1.1      fvdl 	int off;
    217   1.1      fvdl {
    218   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    219   1.1      fvdl 	pcireg_t val;
    220   1.1      fvdl 
    221   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    222   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    223   1.1      fvdl 	return val;
    224   1.1      fvdl }
    225   1.1      fvdl 
    226   1.1      fvdl void
    227   1.1      fvdl bge_writemem_ind(sc, off, val)
    228   1.1      fvdl 	struct bge_softc *sc;
    229   1.1      fvdl 	int off, val;
    230   1.1      fvdl {
    231   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    232   1.1      fvdl 
    233   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    234   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    235   1.1      fvdl }
    236   1.1      fvdl 
    237   1.1      fvdl #ifdef notdef
    238   1.1      fvdl u_int32_t
    239   1.1      fvdl bge_readreg_ind(sc, off)
    240   1.1      fvdl 	struct bge_softc *sc;
    241   1.1      fvdl 	int off;
    242   1.1      fvdl {
    243   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    244   1.1      fvdl 
    245   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    246   1.1      fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    247   1.1      fvdl }
    248   1.1      fvdl #endif
    249   1.1      fvdl 
    250   1.1      fvdl void
    251   1.1      fvdl bge_writereg_ind(sc, off, val)
    252   1.1      fvdl 	struct bge_softc *sc;
    253   1.1      fvdl 	int off, val;
    254   1.1      fvdl {
    255   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    256   1.1      fvdl 
    257   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    258   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    259   1.1      fvdl }
    260   1.1      fvdl 
    261   1.1      fvdl #ifdef notdef
    262   1.1      fvdl u_int8_t
    263   1.1      fvdl bge_vpd_readbyte(sc, addr)
    264   1.1      fvdl 	struct bge_softc *sc;
    265   1.1      fvdl 	int addr;
    266   1.1      fvdl {
    267   1.1      fvdl 	int i;
    268   1.1      fvdl 	u_int32_t val;
    269   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    270   1.1      fvdl 
    271   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    272   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    273   1.1      fvdl 		DELAY(10);
    274   1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    275   1.1      fvdl 		    BGE_VPD_FLAG)
    276   1.1      fvdl 			break;
    277   1.1      fvdl 	}
    278   1.1      fvdl 
    279   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    280   1.1      fvdl 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    281   1.1      fvdl 		return(0);
    282   1.1      fvdl 	}
    283   1.1      fvdl 
    284   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    285   1.1      fvdl 
    286   1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    287   1.1      fvdl }
    288   1.1      fvdl 
    289   1.1      fvdl void
    290   1.1      fvdl bge_vpd_read_res(sc, res, addr)
    291   1.1      fvdl 	struct bge_softc *sc;
    292   1.1      fvdl 	struct vpd_res *res;
    293   1.1      fvdl 	int addr;
    294   1.1      fvdl {
    295   1.1      fvdl 	int i;
    296   1.1      fvdl 	u_int8_t *ptr;
    297   1.1      fvdl 
    298   1.1      fvdl 	ptr = (u_int8_t *)res;
    299   1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    300   1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    301   1.1      fvdl }
    302   1.1      fvdl 
    303   1.1      fvdl void
    304   1.1      fvdl bge_vpd_read(sc)
    305   1.1      fvdl 	struct bge_softc *sc;
    306   1.1      fvdl {
    307   1.1      fvdl 	int pos = 0, i;
    308   1.1      fvdl 	struct vpd_res res;
    309   1.1      fvdl 
    310   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    311   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    312   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    313   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    314   1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    315   1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    316   1.1      fvdl 
    317   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    318   1.1      fvdl 
    319   1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    320   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    321   1.1      fvdl 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    322   1.1      fvdl 		return;
    323   1.1      fvdl 	}
    324   1.1      fvdl 
    325   1.1      fvdl 	pos += sizeof(res);
    326   1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    327   1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    328   1.1      fvdl 		panic("bge_vpd_read");
    329   1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    330   1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    331   1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    332   1.1      fvdl 	pos += i;
    333   1.1      fvdl 
    334   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    335   1.1      fvdl 
    336   1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    337   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    338   1.1      fvdl 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    339   1.1      fvdl 		return;
    340   1.1      fvdl 	}
    341   1.1      fvdl 
    342   1.1      fvdl 	pos += sizeof(res);
    343   1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    344   1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    345   1.1      fvdl 		panic("bge_vpd_read");
    346   1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    347   1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    348   1.1      fvdl }
    349   1.1      fvdl #endif
    350   1.1      fvdl 
    351   1.1      fvdl /*
    352   1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    353   1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    354   1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    355   1.1      fvdl  * access method.
    356   1.1      fvdl  */
    357   1.1      fvdl u_int8_t
    358   1.1      fvdl bge_eeprom_getbyte(sc, addr, dest)
    359   1.1      fvdl 	struct bge_softc *sc;
    360   1.1      fvdl 	int addr;
    361   1.1      fvdl 	u_int8_t *dest;
    362   1.1      fvdl {
    363   1.1      fvdl 	int i;
    364   1.1      fvdl 	u_int32_t byte = 0;
    365   1.1      fvdl 
    366   1.1      fvdl 	/*
    367   1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    368   1.1      fvdl 	 * having to use the bitbang method.
    369   1.1      fvdl 	 */
    370   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    371   1.1      fvdl 
    372   1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    373   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    374   1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    375   1.1      fvdl 	DELAY(20);
    376   1.1      fvdl 
    377   1.1      fvdl 	/* Issue the read EEPROM command. */
    378   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    379   1.1      fvdl 
    380   1.1      fvdl 	/* Wait for completion */
    381   1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    382   1.1      fvdl 		DELAY(10);
    383   1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    384   1.1      fvdl 			break;
    385   1.1      fvdl 	}
    386   1.1      fvdl 
    387   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    388   1.1      fvdl 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    389   1.1      fvdl 		return(0);
    390   1.1      fvdl 	}
    391   1.1      fvdl 
    392   1.1      fvdl 	/* Get result. */
    393   1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    394   1.1      fvdl 
    395   1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    396   1.1      fvdl 
    397   1.1      fvdl 	return(0);
    398   1.1      fvdl }
    399   1.1      fvdl 
    400   1.1      fvdl /*
    401   1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    402   1.1      fvdl  */
    403   1.1      fvdl int
    404   1.1      fvdl bge_read_eeprom(sc, dest, off, cnt)
    405   1.1      fvdl 	struct bge_softc *sc;
    406   1.1      fvdl 	caddr_t dest;
    407   1.1      fvdl 	int off;
    408   1.1      fvdl 	int cnt;
    409   1.1      fvdl {
    410   1.1      fvdl 	int err = 0, i;
    411   1.1      fvdl 	u_int8_t byte = 0;
    412   1.1      fvdl 
    413   1.1      fvdl 	for (i = 0; i < cnt; i++) {
    414   1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    415   1.1      fvdl 		if (err)
    416   1.1      fvdl 			break;
    417   1.1      fvdl 		*(dest + i) = byte;
    418   1.1      fvdl 	}
    419   1.1      fvdl 
    420   1.1      fvdl 	return(err ? 1 : 0);
    421   1.1      fvdl }
    422   1.1      fvdl 
    423   1.1      fvdl int
    424   1.1      fvdl bge_miibus_readreg(dev, phy, reg)
    425   1.1      fvdl 	struct device *dev;
    426   1.1      fvdl 	int phy, reg;
    427   1.1      fvdl {
    428   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    429   1.1      fvdl 	struct ifnet *ifp;
    430   1.1      fvdl 	u_int32_t val;
    431  1.25  jonathan 	u_int32_t saved_autopoll;
    432   1.1      fvdl 	int i;
    433   1.1      fvdl 
    434   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
    435   1.1      fvdl 
    436  1.25  jonathan 	/*
    437  1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    438  1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    439  1.25  jonathan 	 */
    440  1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    441   1.1      fvdl 		return(0);
    442   1.1      fvdl 
    443  1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    444  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    445  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    446  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    447  1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    448  1.25  jonathan 		DELAY(40);
    449  1.25  jonathan 	}
    450  1.25  jonathan 
    451   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    452   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    453   1.1      fvdl 
    454   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    455   1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    456   1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    457   1.1      fvdl 			break;
    458   1.9   thorpej 		delay(10);
    459   1.1      fvdl 	}
    460   1.1      fvdl 
    461   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    462   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    463  1.29    itojun 		val = 0;
    464  1.25  jonathan 		goto done;
    465   1.1      fvdl 	}
    466   1.1      fvdl 
    467   1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    468   1.1      fvdl 
    469  1.25  jonathan done:
    470  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    471  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    472  1.25  jonathan 		DELAY(40);
    473  1.25  jonathan 	}
    474  1.29    itojun 
    475   1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    476   1.1      fvdl 		return(0);
    477   1.1      fvdl 
    478   1.1      fvdl 	return(val & 0xFFFF);
    479   1.1      fvdl }
    480   1.1      fvdl 
    481   1.1      fvdl void
    482   1.1      fvdl bge_miibus_writereg(dev, phy, reg, val)
    483   1.1      fvdl 	struct device *dev;
    484   1.1      fvdl 	int phy, reg, val;
    485   1.1      fvdl {
    486   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    487  1.29    itojun 	u_int32_t saved_autopoll;
    488  1.29    itojun 	int i;
    489   1.1      fvdl 
    490  1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    491  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    492  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    493  1.25  jonathan 		delay(40);
    494  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    495  1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    496  1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    497  1.25  jonathan 	}
    498  1.29    itojun 
    499   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    500   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    501   1.1      fvdl 
    502   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    503   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    504   1.1      fvdl 			break;
    505   1.9   thorpej 		delay(10);
    506   1.1      fvdl 	}
    507   1.1      fvdl 
    508  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    509  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    510  1.25  jonathan 		delay(40);
    511  1.25  jonathan 	}
    512  1.29    itojun 
    513   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    514   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    515   1.1      fvdl 	}
    516   1.1      fvdl }
    517   1.1      fvdl 
    518   1.1      fvdl void
    519   1.1      fvdl bge_miibus_statchg(dev)
    520   1.1      fvdl 	struct device *dev;
    521   1.1      fvdl {
    522   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    523   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    524   1.1      fvdl 
    525   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    526   1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    527   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    528   1.1      fvdl 	} else {
    529   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    530   1.1      fvdl 	}
    531   1.1      fvdl 
    532   1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    533   1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    534   1.1      fvdl 	} else {
    535   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    536   1.1      fvdl 	}
    537   1.1      fvdl }
    538   1.1      fvdl 
    539   1.1      fvdl /*
    540   1.1      fvdl  * Handle events that have triggered interrupts.
    541   1.1      fvdl  */
    542   1.1      fvdl void
    543   1.1      fvdl bge_handle_events(sc)
    544   1.1      fvdl 	struct bge_softc		*sc;
    545   1.1      fvdl {
    546   1.1      fvdl 
    547   1.1      fvdl 	return;
    548   1.1      fvdl }
    549   1.1      fvdl 
    550   1.1      fvdl /*
    551   1.1      fvdl  * Memory management for jumbo frames.
    552   1.1      fvdl  */
    553   1.1      fvdl 
    554   1.1      fvdl int
    555   1.1      fvdl bge_alloc_jumbo_mem(sc)
    556   1.1      fvdl 	struct bge_softc		*sc;
    557   1.1      fvdl {
    558   1.1      fvdl 	caddr_t			ptr, kva;
    559   1.1      fvdl 	bus_dma_segment_t	seg;
    560   1.1      fvdl 	int		i, rseg, state, error;
    561   1.1      fvdl 	struct bge_jpool_entry   *entry;
    562   1.1      fvdl 
    563   1.1      fvdl 	state = error = 0;
    564   1.1      fvdl 
    565   1.1      fvdl 	/* Grab a big chunk o' storage. */
    566   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    567   1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    568   1.1      fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    569   1.1      fvdl 		return ENOBUFS;
    570   1.1      fvdl 	}
    571   1.1      fvdl 
    572   1.1      fvdl 	state = 1;
    573   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    574   1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    575   1.1      fvdl 		printf("%s: can't map dma buffers (%d bytes)\n",
    576   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    577   1.1      fvdl 		error = ENOBUFS;
    578   1.1      fvdl 		goto out;
    579   1.1      fvdl 	}
    580   1.1      fvdl 
    581   1.1      fvdl 	state = 2;
    582   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    583   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    584   1.1      fvdl 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
    585   1.1      fvdl 		error = ENOBUFS;
    586   1.1      fvdl 		goto out;
    587   1.1      fvdl 	}
    588   1.1      fvdl 
    589   1.1      fvdl 	state = 3;
    590   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    591   1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    592   1.1      fvdl 		printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
    593   1.1      fvdl 		error = ENOBUFS;
    594   1.1      fvdl 		goto out;
    595   1.1      fvdl 	}
    596   1.1      fvdl 
    597   1.1      fvdl 	state = 4;
    598   1.1      fvdl 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    599   1.1      fvdl 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    600   1.1      fvdl 
    601   1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    602   1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    603   1.1      fvdl 
    604   1.1      fvdl 	/*
    605   1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    606   1.1      fvdl 	 * in an array.
    607   1.1      fvdl 	 */
    608   1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    609   1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    610   1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    611   1.1      fvdl 		ptr += BGE_JLEN;
    612   1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    613   1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    614   1.1      fvdl 		if (entry == NULL) {
    615   1.1      fvdl 			printf("%s: no memory for jumbo buffer queue!\n",
    616   1.1      fvdl 			    sc->bge_dev.dv_xname);
    617   1.1      fvdl 			error = ENOBUFS;
    618   1.1      fvdl 			goto out;
    619   1.1      fvdl 		}
    620   1.1      fvdl 		entry->slot = i;
    621   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    622   1.1      fvdl 				 entry, jpool_entries);
    623   1.1      fvdl 	}
    624   1.1      fvdl out:
    625   1.1      fvdl 	if (error != 0) {
    626   1.1      fvdl 		switch (state) {
    627   1.1      fvdl 		case 4:
    628   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    629   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    630   1.1      fvdl 		case 3:
    631   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    632   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    633   1.1      fvdl 		case 2:
    634   1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    635   1.1      fvdl 		case 1:
    636   1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    637   1.1      fvdl 			break;
    638   1.1      fvdl 		default:
    639   1.1      fvdl 			break;
    640   1.1      fvdl 		}
    641   1.1      fvdl 	}
    642   1.1      fvdl 
    643   1.1      fvdl 	return error;
    644   1.1      fvdl }
    645   1.1      fvdl 
    646   1.1      fvdl /*
    647   1.1      fvdl  * Allocate a jumbo buffer.
    648   1.1      fvdl  */
    649   1.1      fvdl void *
    650   1.1      fvdl bge_jalloc(sc)
    651   1.1      fvdl 	struct bge_softc		*sc;
    652   1.1      fvdl {
    653   1.1      fvdl 	struct bge_jpool_entry   *entry;
    654   1.1      fvdl 
    655   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    656   1.1      fvdl 
    657   1.1      fvdl 	if (entry == NULL) {
    658   1.1      fvdl 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    659   1.1      fvdl 		return(NULL);
    660   1.1      fvdl 	}
    661   1.1      fvdl 
    662   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    663   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    664   1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    665   1.1      fvdl }
    666   1.1      fvdl 
    667   1.1      fvdl /*
    668   1.1      fvdl  * Release a jumbo buffer.
    669   1.1      fvdl  */
    670   1.1      fvdl void
    671   1.1      fvdl bge_jfree(m, buf, size, arg)
    672   1.1      fvdl 	struct mbuf	*m;
    673   1.1      fvdl 	caddr_t		buf;
    674   1.1      fvdl 	u_int		size;
    675   1.1      fvdl 	void		*arg;
    676   1.1      fvdl {
    677   1.1      fvdl 	struct bge_jpool_entry *entry;
    678   1.1      fvdl 	struct bge_softc *sc;
    679   1.1      fvdl 	int i, s;
    680   1.1      fvdl 
    681   1.1      fvdl 	/* Extract the softc struct pointer. */
    682   1.1      fvdl 	sc = (struct bge_softc *)arg;
    683   1.1      fvdl 
    684   1.1      fvdl 	if (sc == NULL)
    685   1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    686   1.1      fvdl 
    687   1.1      fvdl 	/* calculate the slot this buffer belongs to */
    688   1.1      fvdl 
    689   1.1      fvdl 	i = ((caddr_t)buf
    690   1.1      fvdl 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    691   1.1      fvdl 
    692   1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    693   1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    694   1.1      fvdl 
    695   1.1      fvdl 	s = splvm();
    696   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    697   1.1      fvdl 	if (entry == NULL)
    698   1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    699   1.1      fvdl 	entry->slot = i;
    700   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    701   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    702   1.1      fvdl 
    703   1.1      fvdl 	if (__predict_true(m != NULL))
    704   1.1      fvdl   		pool_cache_put(&mbpool_cache, m);
    705   1.1      fvdl 	splx(s);
    706   1.1      fvdl }
    707   1.1      fvdl 
    708   1.1      fvdl 
    709   1.1      fvdl /*
    710   1.1      fvdl  * Intialize a standard receive ring descriptor.
    711   1.1      fvdl  */
    712   1.1      fvdl int
    713   1.1      fvdl bge_newbuf_std(sc, i, m, dmamap)
    714   1.1      fvdl 	struct bge_softc	*sc;
    715   1.1      fvdl 	int			i;
    716   1.1      fvdl 	struct mbuf		*m;
    717   1.1      fvdl 	bus_dmamap_t dmamap;
    718   1.1      fvdl {
    719   1.1      fvdl 	struct mbuf		*m_new = NULL;
    720   1.1      fvdl 	struct bge_rx_bd	*r;
    721   1.1      fvdl 	int			error;
    722   1.1      fvdl 
    723   1.1      fvdl 	if (dmamap == NULL) {
    724   1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    725   1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    726   1.1      fvdl 		if (error != 0)
    727   1.1      fvdl 			return error;
    728   1.1      fvdl 	}
    729   1.1      fvdl 
    730   1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    731   1.1      fvdl 
    732   1.1      fvdl 	if (m == NULL) {
    733   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    734   1.1      fvdl 		if (m_new == NULL) {
    735   1.1      fvdl 			return(ENOBUFS);
    736   1.1      fvdl 		}
    737   1.1      fvdl 
    738   1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    739   1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    740   1.1      fvdl 			m_freem(m_new);
    741   1.1      fvdl 			return(ENOBUFS);
    742   1.1      fvdl 		}
    743   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    744  1.10      fvdl 		m_adj(m_new, ETHER_ALIGN);
    745   1.1      fvdl 
    746   1.1      fvdl 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    747   1.1      fvdl 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    748   1.1      fvdl 			return(ENOBUFS);
    749   1.1      fvdl 	} else {
    750   1.1      fvdl 		m_new = m;
    751   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    752   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    753  1.10      fvdl 		m_adj(m_new, ETHER_ALIGN);
    754   1.1      fvdl 	}
    755   1.1      fvdl 
    756   1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    757   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    758   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    759  1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    760   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    761   1.1      fvdl 	r->bge_len = m_new->m_len;
    762   1.1      fvdl 	r->bge_idx = i;
    763   1.1      fvdl 
    764   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    765   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    766   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    767   1.1      fvdl 	    sizeof (struct bge_rx_bd),
    768   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    769   1.1      fvdl 
    770   1.1      fvdl 	return(0);
    771   1.1      fvdl }
    772   1.1      fvdl 
    773   1.1      fvdl /*
    774   1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    775   1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
    776   1.1      fvdl  */
    777   1.1      fvdl int
    778   1.1      fvdl bge_newbuf_jumbo(sc, i, m)
    779   1.1      fvdl 	struct bge_softc *sc;
    780   1.1      fvdl 	int i;
    781   1.1      fvdl 	struct mbuf *m;
    782   1.1      fvdl {
    783   1.1      fvdl 	struct mbuf *m_new = NULL;
    784   1.1      fvdl 	struct bge_rx_bd *r;
    785   1.1      fvdl 
    786   1.1      fvdl 	if (m == NULL) {
    787   1.1      fvdl 		caddr_t			*buf = NULL;
    788   1.1      fvdl 
    789   1.1      fvdl 		/* Allocate the mbuf. */
    790   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    791   1.1      fvdl 		if (m_new == NULL) {
    792   1.1      fvdl 			return(ENOBUFS);
    793   1.1      fvdl 		}
    794   1.1      fvdl 
    795   1.1      fvdl 		/* Allocate the jumbo buffer */
    796   1.1      fvdl 		buf = bge_jalloc(sc);
    797   1.1      fvdl 		if (buf == NULL) {
    798   1.1      fvdl 			m_freem(m_new);
    799   1.1      fvdl 			printf("%s: jumbo allocation failed "
    800   1.1      fvdl 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    801   1.1      fvdl 			return(ENOBUFS);
    802   1.1      fvdl 		}
    803   1.1      fvdl 
    804   1.1      fvdl 		/* Attach the buffer to the mbuf. */
    805   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    806   1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    807   1.1      fvdl 		    bge_jfree, sc);
    808   1.1      fvdl 	} else {
    809   1.1      fvdl 		m_new = m;
    810   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    811   1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    812   1.1      fvdl 	}
    813   1.1      fvdl 
    814   1.1      fvdl 	m_adj(m_new, ETHER_ALIGN);
    815   1.1      fvdl 	/* Set up the descriptor. */
    816   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    817   1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    818   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    819   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    820   1.1      fvdl 	r->bge_len = m_new->m_len;
    821   1.1      fvdl 	r->bge_idx = i;
    822   1.1      fvdl 
    823   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    824   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    825   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    826   1.1      fvdl 	    sizeof (struct bge_rx_bd),
    827   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    828   1.1      fvdl 
    829   1.1      fvdl 	return(0);
    830   1.1      fvdl }
    831   1.1      fvdl 
    832   1.1      fvdl /*
    833   1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    834   1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
    835   1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
    836   1.1      fvdl  * the NIC.
    837   1.1      fvdl  */
    838   1.1      fvdl int
    839   1.1      fvdl bge_init_rx_ring_std(sc)
    840   1.1      fvdl 	struct bge_softc *sc;
    841   1.1      fvdl {
    842   1.1      fvdl 	int i;
    843   1.1      fvdl 
    844   1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
    845   1.1      fvdl 		return 0;
    846   1.1      fvdl 
    847   1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
    848   1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    849   1.1      fvdl 			return(ENOBUFS);
    850   1.1      fvdl 	}
    851   1.1      fvdl 
    852   1.1      fvdl 	sc->bge_std = i - 1;
    853   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    854   1.1      fvdl 
    855   1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
    856   1.1      fvdl 
    857   1.1      fvdl 	return(0);
    858   1.1      fvdl }
    859   1.1      fvdl 
    860   1.1      fvdl void
    861   1.1      fvdl bge_free_rx_ring_std(sc)
    862   1.1      fvdl 	struct bge_softc *sc;
    863   1.1      fvdl {
    864   1.1      fvdl 	int i;
    865   1.1      fvdl 
    866   1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    867   1.1      fvdl 		return;
    868   1.1      fvdl 
    869   1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    870   1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    871   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    872   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    873   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    874   1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
    875   1.1      fvdl 		}
    876   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    877   1.1      fvdl 		    sizeof(struct bge_rx_bd));
    878   1.1      fvdl 	}
    879   1.1      fvdl 
    880   1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
    881   1.1      fvdl }
    882   1.1      fvdl 
    883   1.1      fvdl int
    884   1.1      fvdl bge_init_rx_ring_jumbo(sc)
    885   1.1      fvdl 	struct bge_softc *sc;
    886   1.1      fvdl {
    887   1.1      fvdl 	int i;
    888   1.1      fvdl 	struct bge_rcb *rcb;
    889   1.1      fvdl 	struct bge_rcb_opaque *rcbo;
    890   1.1      fvdl 
    891   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    892   1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    893   1.1      fvdl 			return(ENOBUFS);
    894   1.1      fvdl 	};
    895   1.1      fvdl 
    896   1.1      fvdl 	sc->bge_jumbo = i - 1;
    897   1.1      fvdl 
    898   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    899   1.1      fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
    900   1.1      fvdl 	rcb->bge_flags = 0;
    901   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
    902   1.1      fvdl 
    903   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    904   1.1      fvdl 
    905   1.1      fvdl 	return(0);
    906   1.1      fvdl }
    907   1.1      fvdl 
    908   1.1      fvdl void
    909   1.1      fvdl bge_free_rx_ring_jumbo(sc)
    910   1.1      fvdl 	struct bge_softc *sc;
    911   1.1      fvdl {
    912   1.1      fvdl 	int i;
    913   1.1      fvdl 
    914   1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    915   1.1      fvdl 		return;
    916   1.1      fvdl 
    917   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    918   1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    919   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    920   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    921   1.1      fvdl 		}
    922   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    923   1.1      fvdl 		    sizeof(struct bge_rx_bd));
    924   1.1      fvdl 	}
    925   1.1      fvdl 
    926   1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    927   1.1      fvdl }
    928   1.1      fvdl 
    929   1.1      fvdl void
    930   1.1      fvdl bge_free_tx_ring(sc)
    931   1.1      fvdl 	struct bge_softc *sc;
    932   1.1      fvdl {
    933   1.1      fvdl 	int i, freed;
    934   1.1      fvdl 	struct txdmamap_pool_entry *dma;
    935   1.1      fvdl 
    936   1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    937   1.1      fvdl 		return;
    938   1.1      fvdl 
    939   1.1      fvdl 	freed = 0;
    940   1.1      fvdl 
    941   1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    942   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    943   1.1      fvdl 			freed++;
    944   1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    945   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    946   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    947   1.1      fvdl 					    link);
    948   1.1      fvdl 			sc->txdma[i] = 0;
    949   1.1      fvdl 		}
    950   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    951   1.1      fvdl 		    sizeof(struct bge_tx_bd));
    952   1.1      fvdl 	}
    953   1.1      fvdl 
    954   1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    955   1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    956   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    957   1.1      fvdl 		free(dma, M_DEVBUF);
    958   1.1      fvdl 	}
    959   1.1      fvdl 
    960   1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
    961   1.1      fvdl }
    962   1.1      fvdl 
    963   1.1      fvdl int
    964   1.1      fvdl bge_init_tx_ring(sc)
    965   1.1      fvdl 	struct bge_softc *sc;
    966   1.1      fvdl {
    967   1.1      fvdl 	int i;
    968   1.1      fvdl 	bus_dmamap_t dmamap;
    969   1.1      fvdl 	struct txdmamap_pool_entry *dma;
    970   1.1      fvdl 
    971   1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
    972   1.1      fvdl 		return 0;
    973   1.1      fvdl 
    974   1.1      fvdl 	sc->bge_txcnt = 0;
    975   1.1      fvdl 	sc->bge_tx_saved_considx = 0;
    976   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    977  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    978  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    979  1.25  jonathan 
    980   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    981  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    982  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    983   1.1      fvdl 
    984   1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
    985   1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
    986   1.1      fvdl 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    987   1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    988   1.1      fvdl 		    &dmamap))
    989   1.1      fvdl 			return(ENOBUFS);
    990   1.1      fvdl 		if (dmamap == NULL)
    991   1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
    992   1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
    993   1.1      fvdl 		if (dma == NULL) {
    994   1.1      fvdl 			printf("%s: can't alloc txdmamap_pool_entry\n",
    995   1.1      fvdl 			    sc->bge_dev.dv_xname);
    996   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
    997   1.1      fvdl 			return (ENOMEM);
    998   1.1      fvdl 		}
    999   1.1      fvdl 		dma->dmamap = dmamap;
   1000   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1001   1.1      fvdl 	}
   1002   1.1      fvdl 
   1003   1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1004   1.1      fvdl 
   1005   1.1      fvdl 	return(0);
   1006   1.1      fvdl }
   1007   1.1      fvdl 
   1008   1.1      fvdl void
   1009   1.1      fvdl bge_setmulti(sc)
   1010   1.1      fvdl 	struct bge_softc *sc;
   1011   1.1      fvdl {
   1012   1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1013   1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1014   1.1      fvdl 	struct ether_multi	*enm;
   1015   1.1      fvdl 	struct ether_multistep  step;
   1016   1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1017   1.1      fvdl 	u_int32_t		h;
   1018   1.1      fvdl 	int			i;
   1019   1.1      fvdl 
   1020  1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1021  1.13   thorpej 		goto allmulti;
   1022   1.1      fvdl 
   1023   1.1      fvdl 	/* Now program new ones. */
   1024   1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1025   1.1      fvdl 	while (enm != NULL) {
   1026  1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1027  1.13   thorpej 			/*
   1028  1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1029  1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1030  1.13   thorpej 			 * trying to set only those filter bits needed to match
   1031  1.13   thorpej 			 * the range.  (At this time, the only use of address
   1032  1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1033  1.13   thorpej 			 * range is big enough to require all bits set.)
   1034  1.13   thorpej 			 */
   1035  1.13   thorpej 			goto allmulti;
   1036  1.13   thorpej 		}
   1037  1.13   thorpej 
   1038  1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1039  1.13   thorpej 
   1040  1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1041  1.13   thorpej 		h &= 0x7f;
   1042  1.13   thorpej 
   1043   1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1044   1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1045   1.1      fvdl 	}
   1046   1.1      fvdl 
   1047  1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1048  1.13   thorpej 	goto setit;
   1049  1.13   thorpej 
   1050  1.13   thorpej  allmulti:
   1051  1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1052  1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1053  1.13   thorpej 
   1054  1.13   thorpej  setit:
   1055   1.1      fvdl 	for (i = 0; i < 4; i++)
   1056   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1057   1.1      fvdl }
   1058   1.1      fvdl 
   1059  1.24      matt const int bge_swapbits[] = {
   1060   1.1      fvdl 	0,
   1061   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1062   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1063   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1064   1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1065   1.1      fvdl 
   1066   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1067   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1068   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1069   1.1      fvdl 
   1070   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1071   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1072   1.1      fvdl 
   1073   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1074   1.1      fvdl 
   1075   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1076   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1077   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1078   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1079   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1080   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1081   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1082   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1083   1.1      fvdl 
   1084   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1085   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1086   1.1      fvdl };
   1087   1.1      fvdl 
   1088   1.1      fvdl int bge_swapindex = 0;
   1089   1.1      fvdl 
   1090   1.1      fvdl /*
   1091   1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1092   1.1      fvdl  * self-test results.
   1093   1.1      fvdl  */
   1094   1.1      fvdl int
   1095   1.1      fvdl bge_chipinit(sc)
   1096   1.1      fvdl 	struct bge_softc *sc;
   1097   1.1      fvdl {
   1098   1.1      fvdl 	u_int32_t		cachesize;
   1099   1.1      fvdl 	int			i;
   1100  1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1101   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1102   1.1      fvdl 
   1103   1.1      fvdl 
   1104   1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1105   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1106   1.1      fvdl 	    BGE_INIT);
   1107   1.1      fvdl 
   1108  1.25  jonathan 	/* Set power state to D0. */
   1109  1.25  jonathan 	bge_setpowerstate(sc, 0);
   1110  1.25  jonathan 
   1111   1.1      fvdl 	/*
   1112   1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1113   1.1      fvdl 	 * self-tests passed.
   1114   1.1      fvdl 	 */
   1115   1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1116   1.1      fvdl 		printf("%s: RX CPU self-diagnostics failed!\n",
   1117   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1118   1.1      fvdl 		return(ENODEV);
   1119   1.1      fvdl 	}
   1120   1.1      fvdl 
   1121   1.1      fvdl 	/* Clear the MAC control register */
   1122   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1123   1.1      fvdl 
   1124   1.1      fvdl 	/*
   1125   1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1126   1.1      fvdl 	 * internal memory.
   1127   1.1      fvdl 	 */
   1128   1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1129   1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1130   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1131   1.1      fvdl 
   1132   1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1133   1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1134   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1135   1.1      fvdl 
   1136   1.1      fvdl 	/* Set up the PCI DMA control register. */
   1137  1.25  jonathan 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1138  1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1139  1.25  jonathan 		/* Conventional PCI bus */
   1140  1.25  jonathan 	  	DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
   1141  1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1142  1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1143  1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1144  1.25  jonathan 		   (0x0F));
   1145  1.25  jonathan 	} else {
   1146  1.25  jonathan 	  	DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
   1147  1.25  jonathan 		/* PCI-X bus */
   1148  1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1149  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1150  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1151  1.25  jonathan 		    (0x0F);
   1152  1.25  jonathan 		/*
   1153  1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1154  1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1155  1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1156  1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1157  1.25  jonathan 		 */
   1158  1.25  jonathan 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
   1159  1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1160  1.25  jonathan 			  /* should be 0x1f0000 */
   1161  1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1162  1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1163  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1164  1.25  jonathan 		}
   1165  1.25  jonathan 		else if ((sc->bge_asicrev >> 28) ==
   1166  1.25  jonathan 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
   1167  1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1168  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1169  1.25  jonathan 		}
   1170  1.25  jonathan 	}
   1171  1.25  jonathan 
   1172  1.25  jonathan 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1173   1.1      fvdl 
   1174   1.1      fvdl 	/*
   1175   1.1      fvdl 	 * Set up general mode register.
   1176   1.1      fvdl 	 */
   1177   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1178   1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1179   1.1      fvdl 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
   1180   1.1      fvdl 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
   1181   1.1      fvdl 
   1182   1.1      fvdl 	/* Get cache line size. */
   1183   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1184   1.1      fvdl 
   1185   1.1      fvdl 	/*
   1186   1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1187   1.1      fvdl 	 */
   1188   1.1      fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1189   1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1190   1.1      fvdl 		switch(cachesize) {
   1191   1.1      fvdl 		case 1:
   1192   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1193   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1194   1.1      fvdl 			break;
   1195   1.1      fvdl 		case 2:
   1196   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1197   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1198   1.1      fvdl 			break;
   1199   1.1      fvdl 		case 4:
   1200   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1201   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1202   1.1      fvdl 			break;
   1203   1.1      fvdl 		case 8:
   1204   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1205   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1206   1.1      fvdl 			break;
   1207   1.1      fvdl 		case 16:
   1208   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1209   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1210   1.1      fvdl 			break;
   1211   1.1      fvdl 		case 32:
   1212   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1213   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1214   1.1      fvdl 			break;
   1215   1.1      fvdl 		case 64:
   1216   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1217   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1218   1.1      fvdl 			break;
   1219   1.1      fvdl 		default:
   1220   1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1221   1.1      fvdl #if 0
   1222   1.1      fvdl 			if (bootverbose)
   1223   1.1      fvdl 				printf("%s: cache line size %d not "
   1224   1.1      fvdl 				    "supported; disabling PCI MWI\n",
   1225   1.1      fvdl 				    sc->bge_dev.dv_xname, cachesize);
   1226   1.1      fvdl #endif
   1227   1.1      fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1228   1.1      fvdl 			    PCIM_CMD_MWIEN);
   1229   1.1      fvdl 			break;
   1230   1.1      fvdl 		}
   1231   1.1      fvdl 	}
   1232   1.1      fvdl 
   1233  1.25  jonathan 	/*
   1234  1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1235  1.25  jonathan 	 * properly by these devices.
   1236  1.25  jonathan 	 */
   1237  1.25  jonathan 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1238  1.25  jonathan 
   1239  1.25  jonathan 
   1240   1.1      fvdl #ifdef __brokenalpha__
   1241   1.1      fvdl 	/*
   1242   1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1243   1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1244   1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1245   1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1246   1.1      fvdl 	 */
   1247   1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1248   1.1      fvdl #endif
   1249   1.1      fvdl 
   1250   1.1      fvdl 	/* Set the timer prescaler (always 66Mhz) */
   1251   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1252   1.1      fvdl 
   1253   1.1      fvdl 	return(0);
   1254   1.1      fvdl }
   1255   1.1      fvdl 
   1256   1.1      fvdl int
   1257   1.1      fvdl bge_blockinit(sc)
   1258   1.1      fvdl 	struct bge_softc *sc;
   1259   1.1      fvdl {
   1260   1.1      fvdl 	struct bge_rcb		*rcb;
   1261   1.1      fvdl 	struct bge_rcb_opaque	*rcbo;
   1262   1.1      fvdl 	bus_size_t		rcb_addr;
   1263   1.1      fvdl 	int			i;
   1264   1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1265   1.1      fvdl 	bge_hostaddr		taddr;
   1266   1.1      fvdl 
   1267   1.1      fvdl 	/*
   1268   1.1      fvdl 	 * Initialize the memory window pointer register so that
   1269   1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1270   1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1271   1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1272   1.1      fvdl 	 */
   1273   1.1      fvdl 
   1274   1.1      fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1275   1.1      fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1276   1.1      fvdl 
   1277   1.1      fvdl 	/* Configure mbuf memory pool */
   1278   1.1      fvdl 	if (sc->bge_extram) {
   1279   1.1      fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
   1280   1.1      fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1281   1.1      fvdl 	} else {
   1282   1.1      fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   1283   1.1      fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1284   1.1      fvdl 	}
   1285   1.1      fvdl 
   1286   1.1      fvdl 	/* Configure DMA resource pool */
   1287   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
   1288   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1289   1.1      fvdl 
   1290   1.1      fvdl 	/* Configure mbuf pool watermarks */
   1291  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1292   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1293   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1294   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1295  1.25  jonathan #else
   1296  1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1297  1.25  jonathan 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1298  1.25  jonathan 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1299  1.25  jonathan 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1300  1.25  jonathan #endif
   1301   1.1      fvdl 
   1302   1.1      fvdl 	/* Configure DMA resource watermarks */
   1303   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1304   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1305   1.1      fvdl 
   1306   1.1      fvdl 	/* Enable buffer manager */
   1307   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1308   1.1      fvdl 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1309   1.1      fvdl 
   1310   1.1      fvdl 	/* Poll for buffer manager start indication */
   1311   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1312   1.1      fvdl 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1313   1.1      fvdl 			break;
   1314   1.1      fvdl 		DELAY(10);
   1315   1.1      fvdl 	}
   1316   1.1      fvdl 
   1317   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1318   1.1      fvdl 		printf("%s: buffer manager failed to start\n",
   1319   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1320   1.1      fvdl 		return(ENXIO);
   1321   1.1      fvdl 	}
   1322   1.1      fvdl 
   1323   1.1      fvdl 	/* Enable flow-through queues */
   1324   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1325   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1326   1.1      fvdl 
   1327   1.1      fvdl 	/* Wait until queue initialization is complete */
   1328   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1329   1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1330   1.1      fvdl 			break;
   1331   1.1      fvdl 		DELAY(10);
   1332   1.1      fvdl 	}
   1333   1.1      fvdl 
   1334   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1335   1.1      fvdl 		printf("%s: flow-through queue init failed\n",
   1336   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1337   1.1      fvdl 		return(ENXIO);
   1338   1.1      fvdl 	}
   1339   1.1      fvdl 
   1340   1.1      fvdl 	/* Initialize the standard RX ring control block */
   1341   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1342   1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1343   1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1344   1.1      fvdl 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1345   1.1      fvdl 	if (sc->bge_extram)
   1346   1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1347   1.1      fvdl 	else
   1348   1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1349   1.1      fvdl 	rcb->bge_flags = 0;
   1350   1.1      fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1351   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
   1352   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
   1353   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1354   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
   1355   1.1      fvdl 
   1356   1.1      fvdl 	/*
   1357   1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1358   1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1359   1.1      fvdl 	 * field until we're actually ready to start
   1360   1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1361   1.1      fvdl 	 * high enough to require it).
   1362   1.1      fvdl 	 */
   1363   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1364   1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1365   1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1366   1.1      fvdl 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1367   1.1      fvdl 	if (sc->bge_extram)
   1368   1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1369   1.1      fvdl 	else
   1370   1.1      fvdl 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1371   1.1      fvdl 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1372   1.1      fvdl 
   1373   1.1      fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1374   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
   1375   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
   1376   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1377   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
   1378   1.1      fvdl 
   1379   1.1      fvdl 	/* Set up dummy disabled mini ring RCB */
   1380   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1381   1.1      fvdl 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1382   1.1      fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1383   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1384   1.1      fvdl 
   1385   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1386   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
   1387   1.1      fvdl 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1388   1.1      fvdl 
   1389   1.1      fvdl 	/*
   1390   1.1      fvdl 	 * Set the BD ring replentish thresholds. The recommended
   1391   1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1392   1.1      fvdl 	 * each ring.
   1393   1.1      fvdl 	 */
   1394   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1395   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1396   1.1      fvdl 
   1397   1.1      fvdl 	/*
   1398   1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1399   1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1400   1.1      fvdl 	 * These are located in NIC memory.
   1401   1.1      fvdl 	 */
   1402   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1403   1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1404   1.1      fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1405   1.1      fvdl 			    BGE_RCB_FLAG_RING_DISABLED);
   1406   1.1      fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
   1407   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1408   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1409   1.1      fvdl 	}
   1410   1.1      fvdl 
   1411   1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1412   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1413   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1414   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1415   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1416   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1417   1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1418   1.1      fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
   1419   1.1      fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1420   1.1      fvdl 
   1421   1.1      fvdl 	/* Disable all unused RX return rings */
   1422   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1423   1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1424   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1425   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1426   1.1      fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1427   1.1      fvdl 			    BGE_RCB_FLAG_RING_DISABLED);
   1428   1.1      fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1429   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1430   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1431   1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1432   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1433   1.1      fvdl 	}
   1434   1.1      fvdl 
   1435   1.1      fvdl 	/* Initialize RX ring indexes */
   1436   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1437   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1438   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1439   1.1      fvdl 
   1440   1.1      fvdl 	/*
   1441   1.1      fvdl 	 * Set up RX return ring 0
   1442   1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1443   1.1      fvdl 	 * The return rings live entirely within the host, so the
   1444   1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1445   1.1      fvdl 	 */
   1446   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1447   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1448   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1449   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1450   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1451   1.1      fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1452   1.1      fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1453   1.1      fvdl 
   1454   1.1      fvdl 	/* Set random backoff seed for TX */
   1455   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1456   1.1      fvdl 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1457   1.1      fvdl 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1458   1.1      fvdl 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1459   1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1460   1.1      fvdl 
   1461   1.1      fvdl 	/* Set inter-packet gap */
   1462   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1463   1.1      fvdl 
   1464   1.1      fvdl 	/*
   1465   1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1466   1.1      fvdl 	 * any RX rules.
   1467   1.1      fvdl 	 */
   1468   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1469   1.1      fvdl 
   1470   1.1      fvdl 	/*
   1471   1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1472   1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1473   1.1      fvdl 	 */
   1474   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1475   1.1      fvdl 
   1476   1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1477   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1478   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1479   1.1      fvdl 
   1480   1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1481   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1482   1.1      fvdl 
   1483   1.1      fvdl 	/* Poll to make sure it's shut down. */
   1484   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1485   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1486   1.1      fvdl 			break;
   1487   1.1      fvdl 		DELAY(10);
   1488   1.1      fvdl 	}
   1489   1.1      fvdl 
   1490   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1491   1.1      fvdl 		printf("%s: host coalescing engine failed to idle\n",
   1492   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1493   1.1      fvdl 		return(ENXIO);
   1494   1.1      fvdl 	}
   1495   1.1      fvdl 
   1496   1.1      fvdl 	/* Set up host coalescing defaults */
   1497   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1498   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1499   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1500   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1501   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1502   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1503   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1504   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1505   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1506   1.1      fvdl 
   1507   1.1      fvdl 	/* Set up address of statistics block */
   1508   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1509   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1510   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1511   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1512   1.1      fvdl 
   1513   1.1      fvdl 	/* Set up address of status block */
   1514   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1515   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1516   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1517   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1518   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1519   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1520   1.1      fvdl 
   1521   1.1      fvdl 	/* Turn on host coalescing state machine */
   1522   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1523   1.1      fvdl 
   1524   1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1525   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1526   1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1527   1.1      fvdl 
   1528   1.1      fvdl 	/* Turn on RX list placement state machine */
   1529   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1530   1.1      fvdl 
   1531   1.1      fvdl 	/* Turn on RX list selector state machine. */
   1532   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1533   1.1      fvdl 
   1534   1.1      fvdl 	/* Turn on DMA, clear stats */
   1535   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1536   1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1537   1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1538   1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1539   1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1540   1.1      fvdl 
   1541   1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1542  1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1543   1.1      fvdl 
   1544   1.1      fvdl #ifdef notdef
   1545   1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1546   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1547   1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1548   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1549   1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1550   1.1      fvdl #endif
   1551   1.1      fvdl 
   1552  1.25  jonathan #if defined(not_quite_yet)
   1553  1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1554  1.25  jonathan 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
   1555  1.25  jonathan 		sc->bge_local_ctrl_reg |=
   1556  1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1557  1.25  jonathan 	}
   1558  1.25  jonathan #endif
   1559  1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1560  1.25  jonathan 
   1561   1.1      fvdl 	/* Turn on DMA completion state machine */
   1562   1.1      fvdl 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1563   1.1      fvdl 
   1564   1.1      fvdl 	/* Turn on write DMA state machine */
   1565   1.1      fvdl 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1566   1.1      fvdl 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1567   1.1      fvdl 
   1568   1.1      fvdl 	/* Turn on read DMA state machine */
   1569   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1570   1.1      fvdl 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1571   1.1      fvdl 
   1572   1.1      fvdl 	/* Turn on RX data completion state machine */
   1573   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1574   1.1      fvdl 
   1575   1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1576   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1577   1.1      fvdl 
   1578   1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1579   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1580   1.1      fvdl 
   1581   1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1582   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1583   1.1      fvdl 
   1584   1.1      fvdl 	/* Turn on send BD completion state machine */
   1585   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1586   1.1      fvdl 
   1587   1.1      fvdl 	/* Turn on send data completion state machine */
   1588   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1589   1.1      fvdl 
   1590   1.1      fvdl 	/* Turn on send data initiator state machine */
   1591   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1592   1.1      fvdl 
   1593   1.1      fvdl 	/* Turn on send BD initiator state machine */
   1594   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1595   1.1      fvdl 
   1596   1.1      fvdl 	/* Turn on send BD selector state machine */
   1597   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1598   1.1      fvdl 
   1599   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1600   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1601   1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1602   1.1      fvdl 
   1603   1.1      fvdl 	/* init LED register */
   1604   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
   1605   1.1      fvdl 
   1606   1.1      fvdl 	/* ack/clear link change events */
   1607   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1608   1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1609   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1610   1.1      fvdl 
   1611   1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1612   1.1      fvdl 	if (sc->bge_tbi) {
   1613   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1614   1.1      fvdl  	} else {
   1615   1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1616  1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1617   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1618   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1619   1.1      fvdl 	}
   1620   1.1      fvdl 
   1621   1.1      fvdl 	/* Enable link state change attentions. */
   1622   1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1623   1.1      fvdl 
   1624   1.1      fvdl 	return(0);
   1625   1.1      fvdl }
   1626   1.1      fvdl 
   1627  1.16   thorpej static const struct bge_revision {
   1628  1.16   thorpej 	uint32_t		br_asicrev;
   1629  1.16   thorpej 	uint32_t		br_quirks;
   1630  1.16   thorpej 	const char		*br_name;
   1631  1.16   thorpej } bge_revisions[] = {
   1632  1.16   thorpej 	{ BGE_ASICREV_BCM5700_A0,
   1633  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1634  1.16   thorpej 	  "BCM5700 A0" },
   1635  1.16   thorpej 
   1636  1.16   thorpej 	{ BGE_ASICREV_BCM5700_A1,
   1637  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1638  1.16   thorpej 	  "BCM5700 A1" },
   1639  1.16   thorpej 
   1640  1.16   thorpej 	{ BGE_ASICREV_BCM5700_B0,
   1641  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1642  1.16   thorpej 	  "BCM5700 B0" },
   1643  1.16   thorpej 
   1644  1.16   thorpej 	{ BGE_ASICREV_BCM5700_B1,
   1645  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1646  1.16   thorpej 	  "BCM5700 B1" },
   1647  1.16   thorpej 
   1648  1.16   thorpej 	{ BGE_ASICREV_BCM5700_B2,
   1649  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1650  1.16   thorpej 	  "BCM5700 B2" },
   1651  1.16   thorpej 
   1652  1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   1653  1.16   thorpej 	{ BGE_ASICREV_BCM5700_ALTIMA,
   1654  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1655  1.16   thorpej 	  "BCM5700 Altima" },
   1656  1.16   thorpej 
   1657  1.16   thorpej 	{ BGE_ASICREV_BCM5700_C0,
   1658  1.16   thorpej 	  0,
   1659  1.16   thorpej 	  "BCM5700 C0" },
   1660  1.16   thorpej 
   1661  1.16   thorpej 	{ BGE_ASICREV_BCM5701_A0,
   1662  1.16   thorpej 	  0,
   1663  1.16   thorpej 	  "BCM5701 A0" },
   1664  1.16   thorpej 
   1665  1.16   thorpej 	{ BGE_ASICREV_BCM5701_B0,
   1666  1.16   thorpej 	  0,
   1667  1.16   thorpej 	  "BCM5701 B0" },
   1668  1.16   thorpej 
   1669  1.16   thorpej 	{ BGE_ASICREV_BCM5701_B2,
   1670  1.16   thorpej 	  0,
   1671  1.16   thorpej 	  "BCM5701 B2" },
   1672  1.16   thorpej 
   1673  1.16   thorpej 	{ BGE_ASICREV_BCM5701_B5,
   1674  1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1675  1.16   thorpej 	  "BCM5701 B5" },
   1676  1.16   thorpej 
   1677  1.16   thorpej 	{ BGE_ASICREV_BCM5703_A0,
   1678  1.16   thorpej 	  0,
   1679  1.16   thorpej 	  "BCM5703 A0" },
   1680  1.16   thorpej 
   1681  1.16   thorpej 	{ BGE_ASICREV_BCM5703_A1,
   1682  1.16   thorpej 	  0,
   1683  1.16   thorpej 	  "BCM5703 A1" },
   1684  1.16   thorpej 
   1685  1.16   thorpej 	{ BGE_ASICREV_BCM5703_A2,
   1686  1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1687  1.16   thorpej 	  "BCM5703 A2" },
   1688  1.16   thorpej 
   1689  1.25  jonathan 	{ BGE_ASICREV_BCM5704_A0,
   1690  1.25  jonathan   	  BGE_QUIRK_ONLY_PHY_1,
   1691  1.25  jonathan 	  "BCM5704 A0" },
   1692  1.25  jonathan 
   1693  1.16   thorpej 	{ 0, 0, NULL }
   1694  1.16   thorpej };
   1695  1.16   thorpej 
   1696  1.16   thorpej static const struct bge_revision *
   1697  1.16   thorpej bge_lookup_rev(uint32_t asicrev)
   1698  1.16   thorpej {
   1699  1.16   thorpej 	const struct bge_revision *br;
   1700  1.16   thorpej 
   1701  1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1702  1.16   thorpej 		if (br->br_asicrev == asicrev)
   1703  1.16   thorpej 			return (br);
   1704  1.16   thorpej 	}
   1705  1.16   thorpej 
   1706  1.16   thorpej 	return (NULL);
   1707  1.16   thorpej }
   1708  1.16   thorpej 
   1709   1.7   thorpej static const struct bge_product {
   1710   1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   1711   1.7   thorpej 	pci_product_id_t	bp_product;
   1712   1.7   thorpej 	const char		*bp_name;
   1713   1.7   thorpej } bge_products[] = {
   1714   1.7   thorpej 	/*
   1715   1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   1716   1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   1717   1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   1718   1.7   thorpej 	 * check for it anyway.
   1719   1.7   thorpej 	 */
   1720   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   1721   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   1722   1.7   thorpej 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1723   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   1724   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   1725   1.7   thorpej 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1726   1.7   thorpej 
   1727   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   1728   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   1729   1.7   thorpej 	  "Altima AC1000 Gigabit Ethernet" },
   1730  1.14     enami 	{ PCI_VENDOR_ALTIMA,
   1731  1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   1732  1.14     enami 	  "Altima AC1001 Gigabit Ethernet" },
   1733   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   1734   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   1735   1.7   thorpej 	  "Altima AC9100 Gigabit Ethernet" },
   1736   1.7   thorpej 
   1737   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   1738   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1739   1.7   thorpej 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1740   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   1741   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1742  1.24      matt 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1743  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   1744  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1745  1.24      matt 	  "Broadcom BCM5702 Gigabit Ethernet" },
   1746  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   1747  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1748  1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1749  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   1750  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1751  1.24      matt 	  "Broadcom BCM5703 Gigabit Ethernet" },
   1752  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   1753  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1754  1.24      matt 	  "Broadcom BCM5703X Gigabit Ethernet" },
   1755  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   1756  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1757  1.25  jonathan 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
   1758  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   1759  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   1760  1.25  jonathan 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
   1761  1.25  jonathan 
   1762   1.7   thorpej 
   1763   1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1764   1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1765   1.8   thorpej 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
   1766   1.7   thorpej 
   1767   1.7   thorpej 	{ PCI_VENDOR_3COM,
   1768   1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   1769   1.7   thorpej 	  "3Com 3c996 Gigabit Ethernet" },
   1770   1.7   thorpej 
   1771   1.7   thorpej 	{ 0,
   1772   1.7   thorpej 	  0,
   1773   1.7   thorpej 	  NULL },
   1774   1.7   thorpej };
   1775   1.7   thorpej 
   1776   1.7   thorpej static const struct bge_product *
   1777   1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   1778   1.7   thorpej {
   1779   1.7   thorpej 	const struct bge_product *bp;
   1780   1.7   thorpej 
   1781   1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1782   1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1783   1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1784   1.7   thorpej 			return (bp);
   1785   1.7   thorpej 	}
   1786   1.7   thorpej 
   1787   1.7   thorpej 	return (NULL);
   1788   1.7   thorpej }
   1789   1.7   thorpej 
   1790  1.25  jonathan int
   1791  1.25  jonathan bge_setpowerstate(sc, powerlevel)
   1792  1.25  jonathan 	struct bge_softc *sc;
   1793  1.25  jonathan 	int powerlevel;
   1794  1.25  jonathan {
   1795  1.25  jonathan #ifdef NOTYET
   1796  1.25  jonathan 	u_int32_t pm_ctl = 0;
   1797  1.25  jonathan 
   1798  1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   1799  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   1800  1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   1801  1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   1802  1.25  jonathan 
   1803  1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   1804  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   1805  1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   1806  1.25  jonathan 	pm_ctl |= (1 << 8);
   1807  1.25  jonathan 
   1808  1.25  jonathan 	if (powerlevel == 0) {
   1809  1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   1810  1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   1811  1.25  jonathan 		    pm_ctl, 2);
   1812  1.25  jonathan 		DELAY(10000);
   1813  1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1814  1.25  jonathan 		DELAY(10000);
   1815  1.25  jonathan 
   1816  1.25  jonathan #ifdef NOTYET
   1817  1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   1818  1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   1819  1.25  jonathan #endif
   1820  1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   1821  1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   1822  1.25  jonathan 		return 0;
   1823  1.25  jonathan 	}
   1824  1.25  jonathan 
   1825  1.25  jonathan 
   1826  1.25  jonathan 	/*
   1827  1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   1828  1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   1829  1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   1830  1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   1831  1.25  jonathan 	 */
   1832  1.25  jonathan 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   1833  1.25  jonathan 	       sc->bge_dev.dv_xname, powerlevel);
   1834  1.25  jonathan #endif
   1835  1.25  jonathan 	return EOPNOTSUPP;
   1836  1.25  jonathan }
   1837  1.25  jonathan 
   1838  1.25  jonathan 
   1839   1.1      fvdl /*
   1840   1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   1841   1.1      fvdl  * against our list and return its name if we find a match. Note
   1842   1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   1843   1.1      fvdl  * can get the device name string from the controller itself instead
   1844   1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   1845   1.1      fvdl  * we'll always announce the right product name.
   1846   1.1      fvdl  */
   1847   1.1      fvdl int
   1848   1.1      fvdl bge_probe(parent, match, aux)
   1849   1.1      fvdl 	struct device *parent;
   1850   1.1      fvdl 	struct cfdata *match;
   1851   1.1      fvdl 	void *aux;
   1852   1.1      fvdl {
   1853   1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1854   1.1      fvdl 
   1855   1.7   thorpej 	if (bge_lookup(pa) != NULL)
   1856   1.1      fvdl 		return (1);
   1857   1.1      fvdl 
   1858   1.1      fvdl 	return (0);
   1859   1.1      fvdl }
   1860   1.1      fvdl 
   1861   1.1      fvdl void
   1862   1.1      fvdl bge_attach(parent, self, aux)
   1863   1.1      fvdl 	struct device *parent, *self;
   1864   1.1      fvdl 	void *aux;
   1865   1.1      fvdl {
   1866   1.1      fvdl 	struct bge_softc	*sc = (struct bge_softc *)self;
   1867   1.1      fvdl 	struct pci_attach_args	*pa = aux;
   1868   1.7   thorpej 	const struct bge_product *bp;
   1869  1.16   thorpej 	const struct bge_revision *br;
   1870   1.1      fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   1871   1.1      fvdl 	pci_intr_handle_t	ih;
   1872   1.1      fvdl 	const char		*intrstr = NULL;
   1873   1.1      fvdl 	bus_dma_segment_t	seg;
   1874   1.1      fvdl 	int			rseg;
   1875   1.1      fvdl 	u_int32_t		hwcfg = 0;
   1876  1.24      matt 	u_int32_t		mac_addr = 0;
   1877   1.1      fvdl 	u_int32_t		command;
   1878   1.1      fvdl 	struct ifnet		*ifp;
   1879   1.1      fvdl 	caddr_t			kva;
   1880   1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   1881   1.1      fvdl 	pcireg_t		memtype;
   1882   1.1      fvdl 	bus_addr_t		memaddr;
   1883   1.1      fvdl 	bus_size_t		memsize;
   1884  1.25  jonathan 	u_int32_t		pm_ctl;
   1885  1.25  jonathan 
   1886   1.7   thorpej 	bp = bge_lookup(pa);
   1887   1.7   thorpej 	KASSERT(bp != NULL);
   1888   1.7   thorpej 
   1889   1.1      fvdl 	sc->bge_pa = *pa;
   1890   1.1      fvdl 
   1891  1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   1892  1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   1893   1.1      fvdl 
   1894   1.1      fvdl 	/*
   1895   1.1      fvdl 	 * Map control/status registers.
   1896   1.1      fvdl 	 */
   1897   1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   1898   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1899   1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   1900   1.1      fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1901   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1902   1.1      fvdl 
   1903   1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1904  1.30   thorpej 		aprint_error("%s: failed to enable memory mapping!\n",
   1905   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1906   1.1      fvdl 		return;
   1907   1.1      fvdl 	}
   1908   1.1      fvdl 
   1909   1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   1910   1.1      fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   1911   1.1      fvdl  	switch (memtype) {
   1912  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1913  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1914   1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   1915  1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   1916   1.1      fvdl 		    &memaddr, &memsize) == 0)
   1917   1.1      fvdl 			break;
   1918   1.1      fvdl 	default:
   1919  1.30   thorpej 		aprint_error("%s: can't find mem space\n",
   1920   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1921   1.1      fvdl 		return;
   1922   1.1      fvdl 	}
   1923   1.1      fvdl 
   1924   1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   1925   1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   1926  1.30   thorpej 		aprint_error("%s: couldn't map interrupt\n",
   1927   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1928   1.1      fvdl 		return;
   1929   1.1      fvdl 	}
   1930   1.1      fvdl 
   1931   1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   1932   1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   1933   1.1      fvdl 
   1934   1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   1935   1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   1936   1.1      fvdl 
   1937   1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   1938  1.30   thorpej 		aprint_error("%s: couldn't establish interrupt",
   1939   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1940   1.1      fvdl 		if (intrstr != NULL)
   1941  1.30   thorpej 			aprint_normal(" at %s", intrstr);
   1942  1.30   thorpej 		aprint_normal("\n");
   1943   1.1      fvdl 		return;
   1944   1.1      fvdl 	}
   1945  1.30   thorpej 	aprint_normal("%s: interrupting at %s\n",
   1946  1.30   thorpej 	    sc->bge_dev.dv_xname, intrstr);
   1947   1.1      fvdl 
   1948  1.25  jonathan 	/*
   1949  1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   1950  1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   1951  1.25  jonathan 	 * leaving the card in D3 powersave state.
   1952  1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   1953  1.25  jonathan 	 * so force device into D0 state before starting initialization.
   1954  1.25  jonathan 	 */
   1955  1.25  jonathan 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   1956  1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   1957  1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   1958  1.25  jonathan 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   1959  1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   1960  1.25  jonathan 
   1961   1.1      fvdl 	/* Try to reset the chip. */
   1962   1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   1963   1.1      fvdl 	bge_reset(sc);
   1964   1.1      fvdl 
   1965   1.1      fvdl 	if (bge_chipinit(sc)) {
   1966  1.30   thorpej 		aprint_error("%s: chip initialization failed\n",
   1967   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1968   1.1      fvdl 		bge_release_resources(sc);
   1969   1.1      fvdl 		return;
   1970   1.1      fvdl 	}
   1971   1.1      fvdl 
   1972   1.1      fvdl 	/*
   1973   1.1      fvdl 	 * Get station address from the EEPROM.
   1974   1.1      fvdl 	 */
   1975  1.24      matt 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   1976  1.24      matt 	if ((mac_addr >> 16) == 0x484b) {
   1977  1.24      matt 		eaddr[0] = (u_char)(mac_addr >> 8);
   1978  1.24      matt 		eaddr[1] = (u_char)(mac_addr >> 0);
   1979  1.24      matt 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   1980  1.24      matt 		eaddr[2] = (u_char)(mac_addr >> 24);
   1981  1.24      matt 		eaddr[3] = (u_char)(mac_addr >> 16);
   1982  1.24      matt 		eaddr[4] = (u_char)(mac_addr >> 8);
   1983  1.24      matt 		eaddr[5] = (u_char)(mac_addr >> 0);
   1984  1.24      matt 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   1985   1.1      fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1986  1.30   thorpej 		aprint_error("%s: failed to read station address\n",
   1987  1.23  kristerw 		    sc->bge_dev.dv_xname);
   1988   1.1      fvdl 		bge_release_resources(sc);
   1989   1.1      fvdl 		return;
   1990   1.1      fvdl 	}
   1991   1.1      fvdl 
   1992   1.1      fvdl 	/*
   1993  1.16   thorpej 	 * Save ASIC rev.  Look up any quirks associated with this
   1994  1.16   thorpej 	 * ASIC.
   1995   1.1      fvdl 	 */
   1996  1.16   thorpej 	sc->bge_asicrev =
   1997  1.16   thorpej 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   1998  1.16   thorpej 	    BGE_PCIMISCCTL_ASICREV;
   1999  1.16   thorpej 	br = bge_lookup_rev(sc->bge_asicrev);
   2000  1.16   thorpej 
   2001  1.30   thorpej 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2002  1.16   thorpej 	if (br == NULL) {
   2003  1.30   thorpej 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
   2004  1.16   thorpej 		sc->bge_quirks = 0;
   2005  1.16   thorpej 	} else {
   2006  1.30   thorpej 		aprint_normal("ASIC %s", br->br_name);
   2007  1.16   thorpej 		sc->bge_quirks = br->br_quirks;
   2008  1.16   thorpej 	}
   2009  1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2010   1.1      fvdl 
   2011   1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2012   1.1      fvdl 	sc->bge_dmatag = pa->pa_dmat;
   2013   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2014   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2015   1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2016  1.30   thorpej 		aprint_error("%s: can't alloc rx buffers\n",
   2017  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2018   1.1      fvdl 		return;
   2019   1.1      fvdl 	}
   2020   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2021   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2022   1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2023   1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2024  1.30   thorpej 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
   2025   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2026   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2027   1.1      fvdl 		return;
   2028   1.1      fvdl 	}
   2029   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2030   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2031   1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2032   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2033  1.30   thorpej 		aprint_error("%s: can't create dma map\n",
   2034  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2035   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2036   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2037   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2038   1.1      fvdl 		return;
   2039   1.1      fvdl 	}
   2040   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2041   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2042   1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2043   1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2044   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2045   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2046   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2047   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2048   1.1      fvdl 		return;
   2049   1.1      fvdl 	}
   2050   1.1      fvdl 
   2051   1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2052   1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2053   1.1      fvdl 
   2054  1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2055   1.1      fvdl 
   2056   1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2057   1.1      fvdl 	if (bge_alloc_jumbo_mem(sc)) {
   2058  1.30   thorpej 		aprint_error("%s: jumbo buffer allocation failed\n",
   2059   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2060   1.8   thorpej 	} else
   2061   1.8   thorpej 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2062   1.1      fvdl 
   2063   1.1      fvdl 	/* Set default tuneable values. */
   2064   1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2065   1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2066  1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2067  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2068   1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2069   1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2070  1.25  jonathan #else
   2071  1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2072  1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2073  1.25  jonathan #endif
   2074   1.1      fvdl 
   2075   1.1      fvdl 	/* Set up ifnet structure */
   2076   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2077   1.1      fvdl 	ifp->if_softc = sc;
   2078   1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2079   1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2080   1.1      fvdl 	ifp->if_start = bge_start;
   2081   1.1      fvdl 	ifp->if_init = bge_init;
   2082   1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2083   1.1      fvdl 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
   2084   1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2085   1.1      fvdl 	DPRINTFN(5, ("bcopy\n"));
   2086   1.1      fvdl 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2087   1.1      fvdl 
   2088  1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2089  1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2090  1.18   thorpej 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2091   1.1      fvdl 	sc->ethercom.ec_capabilities |=
   2092   1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2093   1.1      fvdl 
   2094   1.1      fvdl 	/*
   2095   1.1      fvdl 	 * Do MII setup.
   2096   1.1      fvdl 	 */
   2097   1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2098   1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2099   1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2100   1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2101   1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2102   1.1      fvdl 
   2103   1.1      fvdl 	/*
   2104   1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2105   1.1      fvdl 	 * hardware config word in the EEPROM. Note: on some BCM5700
   2106   1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2107   1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2108   1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2109   1.1      fvdl 	 */
   2110   1.1      fvdl 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2111   1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2112   1.1      fvdl 	if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2113   1.1      fvdl 		sc->bge_tbi = 1;
   2114   1.1      fvdl 
   2115   1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2116   1.1      fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2117   1.1      fvdl 	    SK_SUBSYSID_9D41)
   2118   1.1      fvdl 		sc->bge_tbi = 1;
   2119   1.1      fvdl 
   2120   1.1      fvdl 	if (sc->bge_tbi) {
   2121   1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2122   1.1      fvdl 		    bge_ifmedia_sts);
   2123   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2124   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2125   1.1      fvdl 			    0, NULL);
   2126   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2127   1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2128   1.1      fvdl 	} else {
   2129   1.1      fvdl 		/*
   2130   1.1      fvdl 		 * Do transceiver setup.
   2131   1.1      fvdl 		 */
   2132   1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2133   1.1      fvdl 			     bge_ifmedia_sts);
   2134   1.1      fvdl 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2135   1.1      fvdl 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
   2136   1.1      fvdl 
   2137   1.1      fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2138   1.1      fvdl 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2139   1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2140   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2141   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2142   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2143   1.1      fvdl 		} else
   2144   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2145   1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2146   1.1      fvdl 	}
   2147   1.1      fvdl 
   2148   1.1      fvdl 	/*
   2149   1.1      fvdl 	 * Call MI attach routine.
   2150   1.1      fvdl 	 */
   2151   1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2152   1.1      fvdl 	if_attach(ifp);
   2153   1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2154   1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2155   1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2156   1.1      fvdl 	callout_init(&sc->bge_timeout);
   2157   1.1      fvdl }
   2158   1.1      fvdl 
   2159   1.1      fvdl void
   2160   1.1      fvdl bge_release_resources(sc)
   2161   1.1      fvdl 	struct bge_softc *sc;
   2162   1.1      fvdl {
   2163   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2164   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2165   1.1      fvdl 
   2166   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2167   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2168   1.1      fvdl }
   2169   1.1      fvdl 
   2170   1.1      fvdl void
   2171   1.1      fvdl bge_reset(sc)
   2172   1.1      fvdl 	struct bge_softc *sc;
   2173   1.1      fvdl {
   2174   1.1      fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   2175   1.1      fvdl 	u_int32_t cachesize, command, pcistate;
   2176   1.1      fvdl 	int i, val = 0;
   2177   1.1      fvdl 
   2178   1.1      fvdl 	/* Save some important PCI state. */
   2179   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2180   1.1      fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2181   1.1      fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2182   1.1      fvdl 
   2183   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2184   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2185   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2186   1.1      fvdl 
   2187   1.1      fvdl 	/* Issue global reset */
   2188   1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2189   1.1      fvdl 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2190   1.1      fvdl 
   2191   1.1      fvdl 	DELAY(1000);
   2192   1.1      fvdl 
   2193   1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2194   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2195   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2196   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2197   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2198   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2199   1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2200   1.1      fvdl 
   2201   1.1      fvdl 	/* Enable memory arbiter. */
   2202   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2203   1.1      fvdl 
   2204   1.1      fvdl 	/*
   2205   1.1      fvdl 	 * Prevent PXE restart: write a magic number to the
   2206   1.1      fvdl 	 * general communications memory at 0xB50.
   2207   1.1      fvdl 	 */
   2208   1.1      fvdl 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2209   1.1      fvdl 
   2210   1.1      fvdl 	/*
   2211   1.1      fvdl 	 * Poll the value location we just wrote until
   2212   1.1      fvdl 	 * we see the 1's complement of the magic number.
   2213   1.1      fvdl 	 * This indicates that the firmware initialization
   2214   1.1      fvdl 	 * is complete.
   2215   1.1      fvdl 	 */
   2216   1.1      fvdl 	for (i = 0; i < 750; i++) {
   2217   1.1      fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2218   1.1      fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   2219   1.1      fvdl 			break;
   2220   1.1      fvdl 		DELAY(1000);
   2221   1.1      fvdl 	}
   2222   1.1      fvdl 
   2223   1.8   thorpej 	if (i == 750) {
   2224   1.1      fvdl 		printf("%s: firmware handshake timed out, val = %x\n",
   2225   1.1      fvdl 		    sc->bge_dev.dv_xname, val);
   2226   1.1      fvdl 		return;
   2227   1.1      fvdl 	}
   2228   1.1      fvdl 
   2229   1.1      fvdl 	/*
   2230   1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2231   1.1      fvdl 	 * return to its original pre-reset state. This is a
   2232   1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2233   1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2234   1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2235   1.1      fvdl 	 * results.
   2236   1.1      fvdl 	 */
   2237   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2238   1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2239   1.1      fvdl 		    pcistate)
   2240   1.1      fvdl 			break;
   2241   1.1      fvdl 		DELAY(10);
   2242   1.1      fvdl 	}
   2243   1.1      fvdl 
   2244   1.1      fvdl 	/* Enable memory arbiter. */
   2245   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2246   1.1      fvdl 
   2247   1.1      fvdl 	/* Fix up byte swapping */
   2248   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2249   1.1      fvdl 
   2250   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2251   1.1      fvdl 
   2252   1.1      fvdl 	DELAY(10000);
   2253   1.1      fvdl }
   2254   1.1      fvdl 
   2255   1.1      fvdl /*
   2256   1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2257   1.1      fvdl  * on the receive return list.
   2258   1.1      fvdl  *
   2259   1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2260   1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2261   1.1      fvdl  * 2) the frame is from the standard receive ring
   2262   1.1      fvdl  */
   2263   1.1      fvdl 
   2264   1.1      fvdl void
   2265   1.1      fvdl bge_rxeof(sc)
   2266   1.1      fvdl 	struct bge_softc *sc;
   2267   1.1      fvdl {
   2268   1.1      fvdl 	struct ifnet *ifp;
   2269   1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2270   1.1      fvdl 	int have_tag = 0;
   2271   1.1      fvdl 	u_int16_t vlan_tag = 0;
   2272   1.1      fvdl 	bus_dmamap_t dmamap;
   2273   1.1      fvdl 	bus_addr_t offset, toff;
   2274   1.1      fvdl 	bus_size_t tlen;
   2275   1.1      fvdl 	int tosync;
   2276   1.1      fvdl 
   2277   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2278   1.1      fvdl 
   2279   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2280   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2281   1.1      fvdl 	    sizeof (struct bge_status_block),
   2282   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2283   1.1      fvdl 
   2284   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2285   1.1      fvdl 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2286   1.1      fvdl 	    sc->bge_rx_saved_considx;
   2287   1.1      fvdl 
   2288   1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2289   1.1      fvdl 
   2290   1.1      fvdl 	if (tosync < 0) {
   2291   1.1      fvdl 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
   2292   1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2293   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2294   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2295   1.1      fvdl 		tosync = -tosync;
   2296   1.1      fvdl 	}
   2297   1.1      fvdl 
   2298   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2299   1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2300   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2301   1.1      fvdl 
   2302   1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   2303   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2304   1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   2305   1.1      fvdl 		u_int32_t		rxidx;
   2306   1.1      fvdl 		struct mbuf		*m = NULL;
   2307   1.1      fvdl 
   2308   1.1      fvdl 		cur_rx = &sc->bge_rdata->
   2309   1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2310   1.1      fvdl 
   2311   1.1      fvdl 		rxidx = cur_rx->bge_idx;
   2312   1.1      fvdl 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
   2313   1.1      fvdl 
   2314   1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2315   1.1      fvdl 			have_tag = 1;
   2316   1.1      fvdl 			vlan_tag = cur_rx->bge_vlan_tag;
   2317   1.1      fvdl 		}
   2318   1.1      fvdl 
   2319   1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2320   1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2321   1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2322   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2323   1.1      fvdl 			jumbocnt++;
   2324   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2325   1.1      fvdl 				ifp->if_ierrors++;
   2326   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2327   1.1      fvdl 				continue;
   2328   1.1      fvdl 			}
   2329   1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2330   1.1      fvdl 					     NULL)== ENOBUFS) {
   2331   1.1      fvdl 				ifp->if_ierrors++;
   2332   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2333   1.1      fvdl 				continue;
   2334   1.1      fvdl 			}
   2335   1.1      fvdl 		} else {
   2336   1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2337   1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2338   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2339   1.1      fvdl 			stdcnt++;
   2340   1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2341   1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2342   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2343   1.1      fvdl 				ifp->if_ierrors++;
   2344   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2345   1.1      fvdl 				continue;
   2346   1.1      fvdl 			}
   2347   1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2348   1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   2349   1.1      fvdl 				ifp->if_ierrors++;
   2350   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2351   1.1      fvdl 				continue;
   2352   1.1      fvdl 			}
   2353   1.1      fvdl 		}
   2354   1.1      fvdl 
   2355   1.1      fvdl 		ifp->if_ipackets++;
   2356   1.1      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
   2357   1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   2358   1.1      fvdl 
   2359   1.1      fvdl #if NBPFILTER > 0
   2360   1.1      fvdl 		/*
   2361   1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2362   1.1      fvdl 		 */
   2363   1.1      fvdl 		if (ifp->if_bpf)
   2364   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   2365   1.1      fvdl #endif
   2366   1.1      fvdl 
   2367  1.18   thorpej 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
   2368   1.2      fvdl 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2369   1.2      fvdl 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2370   1.2      fvdl 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2371   1.4      fvdl #if 0	/* XXX appears to be broken */
   2372   1.2      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   2373   1.2      fvdl 				m->m_pkthdr.csum_data =
   2374   1.2      fvdl 				    cur_rx->bge_tcp_udp_csum;
   2375   1.2      fvdl 				m->m_pkthdr.csum_flags |=
   2376   1.2      fvdl 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
   2377   1.2      fvdl 			}
   2378   1.4      fvdl #endif
   2379   1.1      fvdl 		}
   2380   1.1      fvdl 
   2381   1.1      fvdl 		/*
   2382   1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   2383   1.1      fvdl 		 * to vlan_input() instead of ether_input().
   2384   1.1      fvdl 		 */
   2385   1.1      fvdl 		if (have_tag) {
   2386  1.28    itojun 			struct m_tag *mtag;
   2387   1.1      fvdl 
   2388  1.28    itojun 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2389  1.28    itojun 			    M_NOWAIT);
   2390  1.28    itojun 			if (mtag != NULL) {
   2391  1.28    itojun 				*(u_int *)(mtag + 1) = vlan_tag;
   2392  1.28    itojun 				m_tag_prepend(m, mtag);
   2393   1.1      fvdl 				have_tag = vlan_tag = 0;
   2394   1.1      fvdl 			} else {
   2395   1.1      fvdl 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2396   1.1      fvdl 				m_freem(m);
   2397   1.1      fvdl 				have_tag = vlan_tag = 0;
   2398   1.1      fvdl 				continue;
   2399   1.1      fvdl 			}
   2400   1.1      fvdl 		}
   2401   1.1      fvdl 		(*ifp->if_input)(ifp, m);
   2402   1.1      fvdl 	}
   2403   1.1      fvdl 
   2404   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2405   1.1      fvdl 	if (stdcnt)
   2406   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2407   1.1      fvdl 	if (jumbocnt)
   2408   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2409   1.1      fvdl }
   2410   1.1      fvdl 
   2411   1.1      fvdl void
   2412   1.1      fvdl bge_txeof(sc)
   2413   1.1      fvdl 	struct bge_softc *sc;
   2414   1.1      fvdl {
   2415   1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   2416   1.1      fvdl 	struct ifnet *ifp;
   2417   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   2418   1.1      fvdl 	bus_addr_t offset, toff;
   2419   1.1      fvdl 	bus_size_t tlen;
   2420   1.1      fvdl 	int tosync;
   2421   1.1      fvdl 	struct mbuf *m;
   2422   1.1      fvdl 
   2423   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2424   1.1      fvdl 
   2425   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2426   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2427   1.1      fvdl 	    sizeof (struct bge_status_block),
   2428   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2429   1.1      fvdl 
   2430   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2431   1.1      fvdl 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2432   1.1      fvdl 	    sc->bge_tx_saved_considx;
   2433   1.1      fvdl 
   2434   1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2435   1.1      fvdl 
   2436   1.1      fvdl 	if (tosync < 0) {
   2437   1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2438   1.1      fvdl 		    sizeof (struct bge_tx_bd);
   2439   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2440   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2441   1.1      fvdl 		tosync = -tosync;
   2442   1.1      fvdl 	}
   2443   1.1      fvdl 
   2444   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2445   1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   2446   1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2447   1.1      fvdl 
   2448   1.1      fvdl 	/*
   2449   1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   2450   1.1      fvdl 	 * frames that have been sent.
   2451   1.1      fvdl 	 */
   2452   1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   2453   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2454   1.1      fvdl 		u_int32_t		idx = 0;
   2455   1.1      fvdl 
   2456   1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   2457   1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2458   1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2459   1.1      fvdl 			ifp->if_opackets++;
   2460   1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   2461   1.1      fvdl 		if (m != NULL) {
   2462   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2463   1.1      fvdl 			dma = sc->txdma[idx];
   2464   1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2465   1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2466   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2467   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2468   1.1      fvdl 			sc->txdma[idx] = NULL;
   2469   1.1      fvdl 
   2470   1.1      fvdl 			m_freem(m);
   2471   1.1      fvdl 		}
   2472   1.1      fvdl 		sc->bge_txcnt--;
   2473   1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2474   1.1      fvdl 		ifp->if_timer = 0;
   2475   1.1      fvdl 	}
   2476   1.1      fvdl 
   2477   1.1      fvdl 	if (cur_tx != NULL)
   2478   1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   2479   1.1      fvdl }
   2480   1.1      fvdl 
   2481   1.1      fvdl int
   2482   1.1      fvdl bge_intr(xsc)
   2483   1.1      fvdl 	void *xsc;
   2484   1.1      fvdl {
   2485   1.1      fvdl 	struct bge_softc *sc;
   2486   1.1      fvdl 	struct ifnet *ifp;
   2487   1.1      fvdl 
   2488   1.1      fvdl 	sc = xsc;
   2489   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2490   1.1      fvdl 
   2491   1.1      fvdl #ifdef notdef
   2492   1.1      fvdl 	/* Avoid this for now -- checking this register is expensive. */
   2493   1.1      fvdl 	/* Make sure this is really our interrupt. */
   2494   1.1      fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2495   1.1      fvdl 		return (0);
   2496   1.1      fvdl #endif
   2497   1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   2498   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2499   1.1      fvdl 
   2500   1.1      fvdl 	/*
   2501   1.1      fvdl 	 * Process link state changes.
   2502   1.1      fvdl 	 * Grrr. The link status word in the status block does
   2503   1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2504   1.1      fvdl 	 * according to all avaibable information. Hence, we have
   2505   1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   2506   1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   2507   1.1      fvdl 	 * we have to read the MAC status register to detect link
   2508   1.1      fvdl 	 * changes, thereby adding an additional register access to
   2509   1.1      fvdl 	 * the interrupt handler.
   2510   1.1      fvdl 	 */
   2511   1.1      fvdl 
   2512  1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2513   1.1      fvdl 		u_int32_t		status;
   2514   1.1      fvdl 
   2515   1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2516   1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2517   1.1      fvdl 			sc->bge_link = 0;
   2518   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   2519   1.1      fvdl 			bge_tick(sc);
   2520   1.1      fvdl 			/* Clear the interrupt */
   2521   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2522   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   2523   1.1      fvdl 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2524   1.1      fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2525   1.1      fvdl 			    BRGPHY_INTRS);
   2526   1.1      fvdl 		}
   2527   1.1      fvdl 	} else {
   2528   1.1      fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   2529   1.1      fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2530   1.1      fvdl 			sc->bge_link = 0;
   2531   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   2532   1.1      fvdl 			bge_tick(sc);
   2533   1.1      fvdl 			/* Clear the interrupt */
   2534   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2535   1.1      fvdl 			    BGE_MACSTAT_CFG_CHANGED);
   2536   1.1      fvdl 		}
   2537   1.1      fvdl 	}
   2538   1.1      fvdl 
   2539   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   2540   1.1      fvdl 		/* Check RX return ring producer/consumer */
   2541   1.1      fvdl 		bge_rxeof(sc);
   2542   1.1      fvdl 
   2543   1.1      fvdl 		/* Check TX ring producer/consumer */
   2544   1.1      fvdl 		bge_txeof(sc);
   2545   1.1      fvdl 	}
   2546   1.1      fvdl 
   2547   1.1      fvdl 	bge_handle_events(sc);
   2548   1.1      fvdl 
   2549   1.1      fvdl 	/* Re-enable interrupts. */
   2550   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2551   1.1      fvdl 
   2552   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2553   1.1      fvdl 		bge_start(ifp);
   2554   1.1      fvdl 
   2555   1.1      fvdl 	return (1);
   2556   1.1      fvdl }
   2557   1.1      fvdl 
   2558   1.1      fvdl void
   2559   1.1      fvdl bge_tick(xsc)
   2560   1.1      fvdl 	void *xsc;
   2561   1.1      fvdl {
   2562   1.1      fvdl 	struct bge_softc *sc = xsc;
   2563   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   2564   1.1      fvdl 	struct ifmedia *ifm = NULL;
   2565   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2566   1.1      fvdl 	int s;
   2567   1.1      fvdl 
   2568   1.1      fvdl 	s = splnet();
   2569   1.1      fvdl 
   2570   1.1      fvdl 	bge_stats_update(sc);
   2571   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2572   1.1      fvdl 	if (sc->bge_link) {
   2573   1.1      fvdl 		splx(s);
   2574   1.1      fvdl 		return;
   2575   1.1      fvdl 	}
   2576   1.1      fvdl 
   2577   1.1      fvdl 	if (sc->bge_tbi) {
   2578   1.1      fvdl 		ifm = &sc->bge_ifmedia;
   2579   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2580   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2581   1.1      fvdl 			sc->bge_link++;
   2582   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2583   1.1      fvdl 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2584   1.1      fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2585   1.1      fvdl 				bge_start(ifp);
   2586   1.1      fvdl 		}
   2587   1.1      fvdl 		splx(s);
   2588   1.1      fvdl 		return;
   2589   1.1      fvdl 	}
   2590   1.1      fvdl 
   2591   1.1      fvdl 	mii_tick(mii);
   2592   1.1      fvdl 
   2593   1.1      fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2594   1.1      fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2595   1.1      fvdl 		sc->bge_link++;
   2596   1.1      fvdl 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   2597   1.1      fvdl 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   2598   1.1      fvdl 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2599   1.1      fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2600   1.1      fvdl 			bge_start(ifp);
   2601   1.1      fvdl 	}
   2602   1.1      fvdl 
   2603   1.1      fvdl 	splx(s);
   2604   1.1      fvdl }
   2605   1.1      fvdl 
   2606   1.1      fvdl void
   2607   1.1      fvdl bge_stats_update(sc)
   2608   1.1      fvdl 	struct bge_softc *sc;
   2609   1.1      fvdl {
   2610   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2611   1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2612   1.1      fvdl 
   2613   1.1      fvdl #define READ_STAT(sc, stats, stat) \
   2614   1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2615   1.1      fvdl 
   2616   1.1      fvdl 	ifp->if_collisions +=
   2617   1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2618   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2619   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2620   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2621   1.1      fvdl 	  ifp->if_collisions;
   2622   1.1      fvdl 
   2623   1.1      fvdl #undef READ_STAT
   2624   1.1      fvdl 
   2625   1.1      fvdl #ifdef notdef
   2626   1.1      fvdl 	ifp->if_collisions +=
   2627   1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2628   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2629   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2630   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2631   1.1      fvdl 	   ifp->if_collisions;
   2632   1.1      fvdl #endif
   2633   1.1      fvdl }
   2634   1.1      fvdl 
   2635   1.1      fvdl /*
   2636   1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2637   1.1      fvdl  * pointers to descriptors.
   2638   1.1      fvdl  */
   2639   1.1      fvdl int
   2640   1.1      fvdl bge_encap(sc, m_head, txidx)
   2641   1.1      fvdl 	struct bge_softc *sc;
   2642   1.1      fvdl 	struct mbuf *m_head;
   2643   1.1      fvdl 	u_int32_t *txidx;
   2644   1.1      fvdl {
   2645   1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   2646   1.1      fvdl 	u_int32_t		frag, cur, cnt = 0;
   2647   1.1      fvdl 	u_int16_t		csum_flags = 0;
   2648   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   2649   1.1      fvdl 	bus_dmamap_t dmamap;
   2650   1.1      fvdl 	int			i = 0;
   2651  1.29    itojun 	struct m_tag		*mtag;
   2652  1.29    itojun 	struct mbuf		*prev, *m;
   2653  1.29    itojun 	int			totlen, prevlen;
   2654   1.1      fvdl 
   2655   1.1      fvdl 	cur = frag = *txidx;
   2656   1.1      fvdl 
   2657   1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   2658   1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   2659   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   2660   1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2661   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   2662   1.1      fvdl 	}
   2663   1.1      fvdl 
   2664  1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   2665  1.29    itojun 		goto doit;
   2666  1.25  jonathan 	/*
   2667  1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   2668  1.25  jonathan 	 * less than eight bytes.  If we encounter a teeny mbuf
   2669  1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   2670  1.25  jonathan 	 */
   2671  1.25  jonathan 	prev = NULL;
   2672  1.25  jonathan 	totlen = 0;
   2673  1.25  jonathan 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
   2674  1.25  jonathan 		int mlen = m->m_len;
   2675  1.25  jonathan 
   2676  1.25  jonathan 		totlen += mlen;
   2677  1.25  jonathan 		if (mlen == 0) {
   2678  1.25  jonathan 			/* print a warning? */
   2679  1.25  jonathan 			continue;
   2680  1.25  jonathan 		}
   2681  1.25  jonathan 		if (mlen >= 8)
   2682  1.25  jonathan 			continue;
   2683  1.25  jonathan 
   2684  1.25  jonathan 		/* If we get here, mbuf data is too small for DMA engine. */
   2685  1.25  jonathan 		if (m->m_next != 0) {
   2686  1.25  jonathan 			  /* Internal frag. If fits in prev, copy it there. */
   2687  1.25  jonathan 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
   2688  1.29    itojun 			      !M_READONLY(prev)) {
   2689  1.25  jonathan 			  	bcopy(m->m_data,
   2690  1.25  jonathan 				      prev->m_data+prev->m_len,
   2691  1.25  jonathan 				      mlen);
   2692  1.25  jonathan 				prev->m_len += mlen;
   2693  1.25  jonathan 				m->m_len = 0;
   2694  1.25  jonathan 				MFREE(m, prev->m_next); /* XXX stitch chain */
   2695  1.25  jonathan 				m = prev;
   2696  1.25  jonathan 				continue;
   2697  1.25  jonathan 			  } else {
   2698  1.25  jonathan 				struct mbuf *n;
   2699  1.25  jonathan 				/* slow copy */
   2700  1.25  jonathan slowcopy:
   2701  1.25  jonathan 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
   2702  1.25  jonathan 				m_freem(m_head);
   2703  1.25  jonathan 				if (n == 0)
   2704  1.25  jonathan 					return 0;
   2705  1.25  jonathan 				m_head  = n;
   2706  1.25  jonathan 				goto doit;
   2707  1.25  jonathan 			  }
   2708  1.25  jonathan 		} else if ((totlen -mlen +8) >= 1500) {
   2709  1.25  jonathan 			goto slowcopy;
   2710  1.25  jonathan 		}
   2711  1.25  jonathan 		prevlen = m->m_len;
   2712  1.25  jonathan 	}
   2713  1.25  jonathan 
   2714  1.25  jonathan doit:
   2715   1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   2716   1.1      fvdl 	if (dma == NULL)
   2717   1.1      fvdl 		return ENOBUFS;
   2718   1.1      fvdl 	dmamap = dma->dmamap;
   2719   1.1      fvdl 
   2720   1.1      fvdl 	/*
   2721   1.1      fvdl 	 * Start packing the mbufs in this chain into
   2722   1.1      fvdl 	 * the fragment pointers. Stop when we run out
   2723   1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   2724   1.1      fvdl 	 */
   2725   1.1      fvdl 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   2726   1.1      fvdl 	    BUS_DMA_NOWAIT))
   2727   1.1      fvdl 		return(ENOBUFS);
   2728   1.1      fvdl 
   2729  1.28    itojun 	mtag = sc->ethercom.ec_nvlans ?
   2730  1.28    itojun 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   2731   1.6   thorpej 
   2732   1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2733   1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   2734   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   2735   1.1      fvdl 			break;
   2736   1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   2737   1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   2738   1.1      fvdl 		f->bge_flags = csum_flags;
   2739   1.1      fvdl 
   2740  1.28    itojun 		if (mtag != NULL) {
   2741   1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   2742  1.28    itojun 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   2743   1.1      fvdl 		} else {
   2744   1.1      fvdl 			f->bge_vlan_tag = 0;
   2745   1.1      fvdl 		}
   2746   1.1      fvdl 		/*
   2747   1.1      fvdl 		 * Sanity check: avoid coming within 16 descriptors
   2748   1.1      fvdl 		 * of the end of the ring.
   2749   1.1      fvdl 		 */
   2750   1.1      fvdl 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   2751   1.1      fvdl 			return(ENOBUFS);
   2752   1.1      fvdl 		cur = frag;
   2753   1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   2754   1.1      fvdl 		cnt++;
   2755   1.1      fvdl 	}
   2756   1.1      fvdl 
   2757   1.1      fvdl 	if (i < dmamap->dm_nsegs)
   2758   1.1      fvdl 		return ENOBUFS;
   2759   1.1      fvdl 
   2760   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   2761   1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   2762   1.1      fvdl 
   2763   1.1      fvdl 	if (frag == sc->bge_tx_saved_considx)
   2764   1.1      fvdl 		return(ENOBUFS);
   2765   1.1      fvdl 
   2766   1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   2767   1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   2768   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   2769   1.1      fvdl 	sc->txdma[cur] = dma;
   2770   1.1      fvdl 	sc->bge_txcnt += cnt;
   2771   1.1      fvdl 
   2772   1.1      fvdl 	*txidx = frag;
   2773   1.1      fvdl 
   2774   1.1      fvdl 	return(0);
   2775   1.1      fvdl }
   2776   1.1      fvdl 
   2777   1.1      fvdl /*
   2778   1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2779   1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   2780   1.1      fvdl  */
   2781   1.1      fvdl void
   2782   1.1      fvdl bge_start(ifp)
   2783   1.1      fvdl 	struct ifnet *ifp;
   2784   1.1      fvdl {
   2785   1.1      fvdl 	struct bge_softc *sc;
   2786   1.1      fvdl 	struct mbuf *m_head = NULL;
   2787   1.1      fvdl 	u_int32_t prodidx = 0;
   2788   1.1      fvdl 	int pkts = 0;
   2789   1.1      fvdl 
   2790   1.1      fvdl 	sc = ifp->if_softc;
   2791   1.1      fvdl 
   2792   1.1      fvdl 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   2793   1.1      fvdl 		return;
   2794   1.1      fvdl 
   2795   1.1      fvdl 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   2796   1.1      fvdl 
   2797   1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   2798   1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   2799   1.1      fvdl 		if (m_head == NULL)
   2800   1.1      fvdl 			break;
   2801   1.1      fvdl 
   2802   1.1      fvdl #if 0
   2803   1.1      fvdl 		/*
   2804   1.1      fvdl 		 * XXX
   2805   1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   2806   1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   2807   1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   2808   1.1      fvdl 		 * chain at once.
   2809   1.1      fvdl 		 * (paranoia -- may not actually be needed)
   2810   1.1      fvdl 		 */
   2811   1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   2812   1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   2813   1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   2814   1.1      fvdl 			    m_head->m_pkthdr.csum_data + 16) {
   2815   1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   2816   1.1      fvdl 				break;
   2817   1.1      fvdl 			}
   2818   1.1      fvdl 		}
   2819   1.1      fvdl #endif
   2820   1.1      fvdl 
   2821   1.1      fvdl 		/*
   2822   1.1      fvdl 		 * Pack the data into the transmit ring. If we
   2823   1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   2824   1.1      fvdl 		 * for the NIC to drain the ring.
   2825   1.1      fvdl 		 */
   2826   1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   2827   1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   2828   1.1      fvdl 			break;
   2829   1.1      fvdl 		}
   2830   1.1      fvdl 
   2831   1.1      fvdl 		/* now we are committed to transmit the packet */
   2832   1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2833   1.1      fvdl 		pkts++;
   2834   1.1      fvdl 
   2835   1.1      fvdl #if NBPFILTER > 0
   2836   1.1      fvdl 		/*
   2837   1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   2838   1.1      fvdl 		 * to him.
   2839   1.1      fvdl 		 */
   2840   1.1      fvdl 		if (ifp->if_bpf)
   2841   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   2842   1.1      fvdl #endif
   2843   1.1      fvdl 	}
   2844   1.1      fvdl 	if (pkts == 0)
   2845   1.1      fvdl 		return;
   2846   1.1      fvdl 
   2847   1.1      fvdl 	/* Transmit */
   2848   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2849  1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   2850  1.29    itojun 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2851   1.1      fvdl 
   2852   1.1      fvdl 	/*
   2853   1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   2854   1.1      fvdl 	 */
   2855   1.1      fvdl 	ifp->if_timer = 5;
   2856   1.1      fvdl }
   2857   1.1      fvdl 
   2858   1.1      fvdl int
   2859   1.1      fvdl bge_init(ifp)
   2860   1.1      fvdl 	struct ifnet *ifp;
   2861   1.1      fvdl {
   2862   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   2863   1.1      fvdl 	u_int16_t *m;
   2864   1.1      fvdl 	int s, error;
   2865   1.1      fvdl 
   2866   1.1      fvdl 	s = splnet();
   2867   1.1      fvdl 
   2868   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2869   1.1      fvdl 
   2870   1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   2871   1.1      fvdl 	bge_stop(sc);
   2872   1.1      fvdl 	bge_reset(sc);
   2873   1.1      fvdl 	bge_chipinit(sc);
   2874   1.1      fvdl 
   2875   1.1      fvdl 	/*
   2876   1.1      fvdl 	 * Init the various state machines, ring
   2877   1.1      fvdl 	 * control blocks and firmware.
   2878   1.1      fvdl 	 */
   2879   1.1      fvdl 	error = bge_blockinit(sc);
   2880   1.1      fvdl 	if (error != 0) {
   2881   1.1      fvdl 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   2882   1.1      fvdl 		    error);
   2883   1.1      fvdl 		splx(s);
   2884   1.1      fvdl 		return error;
   2885   1.1      fvdl 	}
   2886   1.1      fvdl 
   2887   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2888   1.1      fvdl 
   2889   1.1      fvdl 	/* Specify MTU. */
   2890   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   2891   1.1      fvdl 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2892   1.1      fvdl 
   2893   1.1      fvdl 	/* Load our MAC address. */
   2894   1.1      fvdl 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   2895   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   2896   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   2897   1.1      fvdl 
   2898   1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   2899   1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   2900   1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2901   1.1      fvdl 	} else {
   2902   1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2903   1.1      fvdl 	}
   2904   1.1      fvdl 
   2905   1.1      fvdl 	/* Program multicast filter. */
   2906   1.1      fvdl 	bge_setmulti(sc);
   2907   1.1      fvdl 
   2908   1.1      fvdl 	/* Init RX ring. */
   2909   1.1      fvdl 	bge_init_rx_ring_std(sc);
   2910   1.1      fvdl 
   2911   1.1      fvdl 	/* Init jumbo RX ring. */
   2912   1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2913   1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   2914   1.1      fvdl 
   2915   1.1      fvdl 	/* Init our RX return ring index */
   2916   1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   2917   1.1      fvdl 
   2918   1.1      fvdl 	/* Init TX ring. */
   2919   1.1      fvdl 	bge_init_tx_ring(sc);
   2920   1.1      fvdl 
   2921   1.1      fvdl 	/* Turn on transmitter */
   2922   1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   2923   1.1      fvdl 
   2924   1.1      fvdl 	/* Turn on receiver */
   2925   1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2926   1.1      fvdl 
   2927   1.1      fvdl 	/* Tell firmware we're alive. */
   2928   1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2929   1.1      fvdl 
   2930   1.1      fvdl 	/* Enable host interrupts. */
   2931   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   2932   1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2933   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2934   1.1      fvdl 
   2935   1.1      fvdl 	bge_ifmedia_upd(ifp);
   2936   1.1      fvdl 
   2937   1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   2938   1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   2939   1.1      fvdl 
   2940   1.1      fvdl 	splx(s);
   2941   1.1      fvdl 
   2942   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2943   1.1      fvdl 
   2944   1.1      fvdl 	return 0;
   2945   1.1      fvdl }
   2946   1.1      fvdl 
   2947   1.1      fvdl /*
   2948   1.1      fvdl  * Set media options.
   2949   1.1      fvdl  */
   2950   1.1      fvdl int
   2951   1.1      fvdl bge_ifmedia_upd(ifp)
   2952   1.1      fvdl 	struct ifnet *ifp;
   2953   1.1      fvdl {
   2954   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   2955   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   2956   1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   2957   1.1      fvdl 
   2958   1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   2959   1.1      fvdl 	if (sc->bge_tbi) {
   2960   1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2961   1.1      fvdl 			return(EINVAL);
   2962   1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2963   1.1      fvdl 		case IFM_AUTO:
   2964   1.1      fvdl 			break;
   2965   1.1      fvdl 		case IFM_1000_SX:
   2966   1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2967   1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   2968   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   2969   1.1      fvdl 			} else {
   2970   1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   2971   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   2972   1.1      fvdl 			}
   2973   1.1      fvdl 			break;
   2974   1.1      fvdl 		default:
   2975   1.1      fvdl 			return(EINVAL);
   2976   1.1      fvdl 		}
   2977   1.1      fvdl 		return(0);
   2978   1.1      fvdl 	}
   2979   1.1      fvdl 
   2980   1.1      fvdl 	sc->bge_link = 0;
   2981   1.1      fvdl 	mii_mediachg(mii);
   2982   1.1      fvdl 
   2983   1.1      fvdl 	return(0);
   2984   1.1      fvdl }
   2985   1.1      fvdl 
   2986   1.1      fvdl /*
   2987   1.1      fvdl  * Report current media status.
   2988   1.1      fvdl  */
   2989   1.1      fvdl void
   2990   1.1      fvdl bge_ifmedia_sts(ifp, ifmr)
   2991   1.1      fvdl 	struct ifnet *ifp;
   2992   1.1      fvdl 	struct ifmediareq *ifmr;
   2993   1.1      fvdl {
   2994   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   2995   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   2996   1.1      fvdl 
   2997   1.1      fvdl 	if (sc->bge_tbi) {
   2998   1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   2999   1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   3000   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3001   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3002   1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   3003   1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   3004   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3005   1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   3006   1.1      fvdl 		else
   3007   1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   3008   1.1      fvdl 		return;
   3009   1.1      fvdl 	}
   3010   1.1      fvdl 
   3011   1.1      fvdl 	mii_pollstat(mii);
   3012   1.1      fvdl 	ifmr->ifm_active = mii->mii_media_active;
   3013   1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   3014   1.1      fvdl }
   3015   1.1      fvdl 
   3016   1.1      fvdl int
   3017   1.1      fvdl bge_ioctl(ifp, command, data)
   3018   1.1      fvdl 	struct ifnet *ifp;
   3019   1.1      fvdl 	u_long command;
   3020   1.1      fvdl 	caddr_t data;
   3021   1.1      fvdl {
   3022   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3023   1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   3024   1.1      fvdl 	int s, error = 0;
   3025   1.1      fvdl 	struct mii_data *mii;
   3026   1.1      fvdl 
   3027   1.1      fvdl 	s = splnet();
   3028   1.1      fvdl 
   3029   1.1      fvdl 	switch(command) {
   3030   1.1      fvdl 	case SIOCSIFFLAGS:
   3031   1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   3032   1.1      fvdl 			/*
   3033   1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   3034   1.1      fvdl 			 * then just use the 'set promisc mode' command
   3035   1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   3036   1.1      fvdl 			 * a full re-init means reloading the firmware and
   3037   1.1      fvdl 			 * waiting for it to start up, which may take a
   3038   1.1      fvdl 			 * second or two.
   3039   1.1      fvdl 			 */
   3040   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   3041   1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   3042   1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3043   1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   3044   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3045   1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   3046   1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   3047   1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   3048   1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3049   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3050   1.1      fvdl 			} else
   3051   1.1      fvdl 				bge_init(ifp);
   3052   1.1      fvdl 		} else {
   3053   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   3054   1.1      fvdl 				bge_stop(sc);
   3055   1.1      fvdl 			}
   3056   1.1      fvdl 		}
   3057   1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   3058   1.1      fvdl 		error = 0;
   3059   1.1      fvdl 		break;
   3060   1.1      fvdl 	case SIOCSIFMEDIA:
   3061   1.1      fvdl 	case SIOCGIFMEDIA:
   3062   1.1      fvdl 		if (sc->bge_tbi) {
   3063   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3064   1.1      fvdl 			    command);
   3065   1.1      fvdl 		} else {
   3066   1.1      fvdl 			mii = &sc->bge_mii;
   3067   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3068   1.1      fvdl 			    command);
   3069   1.1      fvdl 		}
   3070   1.1      fvdl 		error = 0;
   3071   1.1      fvdl 		break;
   3072   1.1      fvdl 	default:
   3073   1.1      fvdl 		error = ether_ioctl(ifp, command, data);
   3074   1.1      fvdl 		if (error == ENETRESET) {
   3075   1.1      fvdl 			bge_setmulti(sc);
   3076   1.1      fvdl 			error = 0;
   3077   1.1      fvdl 		}
   3078   1.1      fvdl 		break;
   3079   1.1      fvdl 	}
   3080   1.1      fvdl 
   3081   1.1      fvdl 	splx(s);
   3082   1.1      fvdl 
   3083   1.1      fvdl 	return(error);
   3084   1.1      fvdl }
   3085   1.1      fvdl 
   3086   1.1      fvdl void
   3087   1.1      fvdl bge_watchdog(ifp)
   3088   1.1      fvdl 	struct ifnet *ifp;
   3089   1.1      fvdl {
   3090   1.1      fvdl 	struct bge_softc *sc;
   3091   1.1      fvdl 
   3092   1.1      fvdl 	sc = ifp->if_softc;
   3093   1.1      fvdl 
   3094   1.1      fvdl 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3095   1.1      fvdl 
   3096   1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   3097   1.1      fvdl 	bge_init(ifp);
   3098   1.1      fvdl 
   3099   1.1      fvdl 	ifp->if_oerrors++;
   3100   1.1      fvdl }
   3101   1.1      fvdl 
   3102  1.11   thorpej static void
   3103  1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3104  1.11   thorpej {
   3105  1.11   thorpej 	int i;
   3106  1.11   thorpej 
   3107  1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   3108  1.11   thorpej 
   3109  1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3110  1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3111  1.11   thorpej 			return;
   3112  1.11   thorpej 		delay(100);
   3113  1.11   thorpej 	}
   3114  1.11   thorpej 
   3115  1.11   thorpej 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3116  1.11   thorpej 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3117  1.11   thorpej }
   3118  1.11   thorpej 
   3119   1.1      fvdl /*
   3120   1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   3121   1.1      fvdl  * RX and TX lists.
   3122   1.1      fvdl  */
   3123   1.1      fvdl void
   3124   1.1      fvdl bge_stop(sc)
   3125   1.1      fvdl 	struct bge_softc *sc;
   3126   1.1      fvdl {
   3127   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3128   1.1      fvdl 
   3129   1.1      fvdl 	callout_stop(&sc->bge_timeout);
   3130   1.1      fvdl 
   3131   1.1      fvdl 	/*
   3132   1.1      fvdl 	 * Disable all of the receiver blocks
   3133   1.1      fvdl 	 */
   3134  1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3135  1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3136  1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3137  1.11   thorpej 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3138  1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3139  1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3140  1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3141   1.1      fvdl 
   3142   1.1      fvdl 	/*
   3143   1.1      fvdl 	 * Disable all of the transmit blocks
   3144   1.1      fvdl 	 */
   3145  1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3146  1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3147  1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3148  1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3149  1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3150  1.11   thorpej 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3151  1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3152   1.1      fvdl 
   3153   1.1      fvdl 	/*
   3154   1.1      fvdl 	 * Shut down all of the memory managers and related
   3155   1.1      fvdl 	 * state machines.
   3156   1.1      fvdl 	 */
   3157  1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3158  1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3159  1.11   thorpej 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3160  1.11   thorpej 
   3161   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3162   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3163  1.11   thorpej 
   3164  1.11   thorpej 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3165  1.11   thorpej 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3166   1.1      fvdl 
   3167   1.1      fvdl 	/* Disable host interrupts. */
   3168   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3169   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3170   1.1      fvdl 
   3171   1.1      fvdl 	/*
   3172   1.1      fvdl 	 * Tell firmware we're shutting down.
   3173   1.1      fvdl 	 */
   3174   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3175   1.1      fvdl 
   3176   1.1      fvdl 	/* Free the RX lists. */
   3177   1.1      fvdl 	bge_free_rx_ring_std(sc);
   3178   1.1      fvdl 
   3179   1.1      fvdl 	/* Free jumbo RX list. */
   3180   1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   3181   1.1      fvdl 
   3182   1.1      fvdl 	/* Free TX buffers. */
   3183   1.1      fvdl 	bge_free_tx_ring(sc);
   3184   1.1      fvdl 
   3185   1.1      fvdl 	/*
   3186   1.1      fvdl 	 * Isolate/power down the PHY.
   3187   1.1      fvdl 	 */
   3188   1.1      fvdl 	if (!sc->bge_tbi)
   3189   1.1      fvdl 		mii_down(&sc->bge_mii);
   3190   1.1      fvdl 
   3191   1.1      fvdl 	sc->bge_link = 0;
   3192   1.1      fvdl 
   3193   1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3194   1.1      fvdl 
   3195   1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3196   1.1      fvdl }
   3197   1.1      fvdl 
   3198   1.1      fvdl /*
   3199   1.1      fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   3200   1.1      fvdl  * get confused by errant DMAs when rebooting.
   3201   1.1      fvdl  */
   3202   1.1      fvdl void
   3203   1.1      fvdl bge_shutdown(xsc)
   3204   1.1      fvdl 	void *xsc;
   3205   1.1      fvdl {
   3206   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3207   1.1      fvdl 
   3208   1.1      fvdl 	bge_stop(sc);
   3209   1.1      fvdl 	bge_reset(sc);
   3210   1.1      fvdl }
   3211