if_bge.c revision 1.37 1 1.37 jonathan /* $NetBSD: if_bge.c,v 1.37 2003/03/07 18:57:53 jonathan Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.1 fvdl
81 1.1 fvdl #include "bpfilter.h"
82 1.1 fvdl #include "vlan.h"
83 1.1 fvdl
84 1.1 fvdl #include <sys/param.h>
85 1.1 fvdl #include <sys/systm.h>
86 1.1 fvdl #include <sys/callout.h>
87 1.1 fvdl #include <sys/sockio.h>
88 1.1 fvdl #include <sys/mbuf.h>
89 1.1 fvdl #include <sys/malloc.h>
90 1.1 fvdl #include <sys/kernel.h>
91 1.1 fvdl #include <sys/device.h>
92 1.1 fvdl #include <sys/socket.h>
93 1.1 fvdl
94 1.1 fvdl #include <net/if.h>
95 1.1 fvdl #include <net/if_dl.h>
96 1.1 fvdl #include <net/if_media.h>
97 1.1 fvdl #include <net/if_ether.h>
98 1.1 fvdl
99 1.1 fvdl #ifdef INET
100 1.1 fvdl #include <netinet/in.h>
101 1.1 fvdl #include <netinet/in_systm.h>
102 1.1 fvdl #include <netinet/in_var.h>
103 1.1 fvdl #include <netinet/ip.h>
104 1.1 fvdl #endif
105 1.1 fvdl
106 1.1 fvdl #if NBPFILTER > 0
107 1.1 fvdl #include <net/bpf.h>
108 1.1 fvdl #endif
109 1.1 fvdl
110 1.1 fvdl #include <dev/pci/pcireg.h>
111 1.1 fvdl #include <dev/pci/pcivar.h>
112 1.1 fvdl #include <dev/pci/pcidevs.h>
113 1.1 fvdl
114 1.1 fvdl #include <dev/mii/mii.h>
115 1.1 fvdl #include <dev/mii/miivar.h>
116 1.1 fvdl #include <dev/mii/miidevs.h>
117 1.1 fvdl #include <dev/mii/brgphyreg.h>
118 1.1 fvdl
119 1.1 fvdl #include <dev/pci/if_bgereg.h>
120 1.1 fvdl
121 1.1 fvdl #include <uvm/uvm_extern.h>
122 1.1 fvdl
123 1.1 fvdl int bge_probe(struct device *, struct cfdata *, void *);
124 1.1 fvdl void bge_attach(struct device *, struct device *, void *);
125 1.1 fvdl void bge_release_resources(struct bge_softc *);
126 1.1 fvdl void bge_txeof(struct bge_softc *);
127 1.1 fvdl void bge_rxeof(struct bge_softc *);
128 1.1 fvdl
129 1.1 fvdl void bge_tick(void *);
130 1.1 fvdl void bge_stats_update(struct bge_softc *);
131 1.1 fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132 1.1 fvdl
133 1.1 fvdl int bge_intr(void *);
134 1.1 fvdl void bge_start(struct ifnet *);
135 1.1 fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 1.1 fvdl int bge_init(struct ifnet *);
137 1.1 fvdl void bge_stop(struct bge_softc *);
138 1.1 fvdl void bge_watchdog(struct ifnet *);
139 1.1 fvdl void bge_shutdown(void *);
140 1.1 fvdl int bge_ifmedia_upd(struct ifnet *);
141 1.1 fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142 1.1 fvdl
143 1.1 fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 1.1 fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145 1.1 fvdl
146 1.1 fvdl void bge_setmulti(struct bge_softc *);
147 1.1 fvdl
148 1.1 fvdl void bge_handle_events(struct bge_softc *);
149 1.1 fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
150 1.1 fvdl void bge_free_jumbo_mem(struct bge_softc *);
151 1.1 fvdl void *bge_jalloc(struct bge_softc *);
152 1.31 thorpej void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 1.1 fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 1.1 fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 1.1 fvdl int bge_init_rx_ring_std(struct bge_softc *);
156 1.1 fvdl void bge_free_rx_ring_std(struct bge_softc *);
157 1.1 fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
158 1.1 fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
159 1.1 fvdl void bge_free_tx_ring(struct bge_softc *);
160 1.1 fvdl int bge_init_tx_ring(struct bge_softc *);
161 1.1 fvdl
162 1.1 fvdl int bge_chipinit(struct bge_softc *);
163 1.1 fvdl int bge_blockinit(struct bge_softc *);
164 1.25 jonathan int bge_setpowerstate(struct bge_softc *, int);
165 1.1 fvdl
166 1.1 fvdl #ifdef notdef
167 1.1 fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 1.1 fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 1.1 fvdl void bge_vpd_read(struct bge_softc *);
170 1.1 fvdl #endif
171 1.1 fvdl
172 1.1 fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 1.1 fvdl void bge_writemem_ind(struct bge_softc *, int, int);
174 1.1 fvdl #ifdef notdef
175 1.1 fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 1.1 fvdl #endif
177 1.1 fvdl void bge_writereg_ind(struct bge_softc *, int, int);
178 1.1 fvdl
179 1.1 fvdl int bge_miibus_readreg(struct device *, int, int);
180 1.1 fvdl void bge_miibus_writereg(struct device *, int, int, int);
181 1.1 fvdl void bge_miibus_statchg(struct device *);
182 1.1 fvdl
183 1.1 fvdl void bge_reset(struct bge_softc *);
184 1.1 fvdl
185 1.1 fvdl void bge_dump_status(struct bge_softc *);
186 1.1 fvdl void bge_dump_rxbd(struct bge_rx_bd *);
187 1.1 fvdl
188 1.1 fvdl #define BGE_DEBUG
189 1.1 fvdl #ifdef BGE_DEBUG
190 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
191 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 1.1 fvdl int bgedebug = 0;
193 1.1 fvdl #else
194 1.1 fvdl #define DPRINTF(x)
195 1.1 fvdl #define DPRINTFN(n,x)
196 1.1 fvdl #endif
197 1.1 fvdl
198 1.17 thorpej /* Various chip quirks. */
199 1.17 thorpej #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 1.18 thorpej #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 1.24 matt #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 1.25 jonathan #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 1.25 jonathan #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 1.36 jonathan #define BGE_QUIRK_PRODUCER_BUG 0x00000020
205 1.37 jonathan #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
206 1.25 jonathan
207 1.25 jonathan /* following bugs are common to bcm5700 rev B, all flavours */
208 1.25 jonathan #define BGE_QUIRK_5700_COMMON \
209 1.25 jonathan (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
210 1.17 thorpej
211 1.21 thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
212 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
213 1.1 fvdl
214 1.1 fvdl u_int32_t
215 1.1 fvdl bge_readmem_ind(sc, off)
216 1.1 fvdl struct bge_softc *sc;
217 1.1 fvdl int off;
218 1.1 fvdl {
219 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
220 1.1 fvdl pcireg_t val;
221 1.1 fvdl
222 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
223 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
224 1.1 fvdl return val;
225 1.1 fvdl }
226 1.1 fvdl
227 1.1 fvdl void
228 1.1 fvdl bge_writemem_ind(sc, off, val)
229 1.1 fvdl struct bge_softc *sc;
230 1.1 fvdl int off, val;
231 1.1 fvdl {
232 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
233 1.1 fvdl
234 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
235 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
236 1.1 fvdl }
237 1.1 fvdl
238 1.1 fvdl #ifdef notdef
239 1.1 fvdl u_int32_t
240 1.1 fvdl bge_readreg_ind(sc, off)
241 1.1 fvdl struct bge_softc *sc;
242 1.1 fvdl int off;
243 1.1 fvdl {
244 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
245 1.1 fvdl
246 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
247 1.1 fvdl return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
248 1.1 fvdl }
249 1.1 fvdl #endif
250 1.1 fvdl
251 1.1 fvdl void
252 1.1 fvdl bge_writereg_ind(sc, off, val)
253 1.1 fvdl struct bge_softc *sc;
254 1.1 fvdl int off, val;
255 1.1 fvdl {
256 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
257 1.1 fvdl
258 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
259 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
260 1.1 fvdl }
261 1.1 fvdl
262 1.1 fvdl #ifdef notdef
263 1.1 fvdl u_int8_t
264 1.1 fvdl bge_vpd_readbyte(sc, addr)
265 1.1 fvdl struct bge_softc *sc;
266 1.1 fvdl int addr;
267 1.1 fvdl {
268 1.1 fvdl int i;
269 1.1 fvdl u_int32_t val;
270 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
271 1.1 fvdl
272 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
273 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
274 1.1 fvdl DELAY(10);
275 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
276 1.1 fvdl BGE_VPD_FLAG)
277 1.1 fvdl break;
278 1.1 fvdl }
279 1.1 fvdl
280 1.1 fvdl if (i == BGE_TIMEOUT) {
281 1.1 fvdl printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
282 1.1 fvdl return(0);
283 1.1 fvdl }
284 1.1 fvdl
285 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
286 1.1 fvdl
287 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
288 1.1 fvdl }
289 1.1 fvdl
290 1.1 fvdl void
291 1.1 fvdl bge_vpd_read_res(sc, res, addr)
292 1.1 fvdl struct bge_softc *sc;
293 1.1 fvdl struct vpd_res *res;
294 1.1 fvdl int addr;
295 1.1 fvdl {
296 1.1 fvdl int i;
297 1.1 fvdl u_int8_t *ptr;
298 1.1 fvdl
299 1.1 fvdl ptr = (u_int8_t *)res;
300 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
301 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
302 1.1 fvdl }
303 1.1 fvdl
304 1.1 fvdl void
305 1.1 fvdl bge_vpd_read(sc)
306 1.1 fvdl struct bge_softc *sc;
307 1.1 fvdl {
308 1.1 fvdl int pos = 0, i;
309 1.1 fvdl struct vpd_res res;
310 1.1 fvdl
311 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
312 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
313 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
314 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
315 1.1 fvdl sc->bge_vpd_prodname = NULL;
316 1.1 fvdl sc->bge_vpd_readonly = NULL;
317 1.1 fvdl
318 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
319 1.1 fvdl
320 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
321 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
322 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
323 1.1 fvdl return;
324 1.1 fvdl }
325 1.1 fvdl
326 1.1 fvdl pos += sizeof(res);
327 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
328 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
329 1.1 fvdl panic("bge_vpd_read");
330 1.1 fvdl for (i = 0; i < res.vr_len; i++)
331 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
332 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
333 1.1 fvdl pos += i;
334 1.1 fvdl
335 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
336 1.1 fvdl
337 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
338 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
339 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
340 1.1 fvdl return;
341 1.1 fvdl }
342 1.1 fvdl
343 1.1 fvdl pos += sizeof(res);
344 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
345 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
346 1.1 fvdl panic("bge_vpd_read");
347 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
348 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
349 1.1 fvdl }
350 1.1 fvdl #endif
351 1.1 fvdl
352 1.1 fvdl /*
353 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
354 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
355 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
356 1.1 fvdl * access method.
357 1.1 fvdl */
358 1.1 fvdl u_int8_t
359 1.1 fvdl bge_eeprom_getbyte(sc, addr, dest)
360 1.1 fvdl struct bge_softc *sc;
361 1.1 fvdl int addr;
362 1.1 fvdl u_int8_t *dest;
363 1.1 fvdl {
364 1.1 fvdl int i;
365 1.1 fvdl u_int32_t byte = 0;
366 1.1 fvdl
367 1.1 fvdl /*
368 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
369 1.1 fvdl * having to use the bitbang method.
370 1.1 fvdl */
371 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
372 1.1 fvdl
373 1.1 fvdl /* Reset the EEPROM, load the clock period. */
374 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
375 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
376 1.1 fvdl DELAY(20);
377 1.1 fvdl
378 1.1 fvdl /* Issue the read EEPROM command. */
379 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
380 1.1 fvdl
381 1.1 fvdl /* Wait for completion */
382 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
383 1.1 fvdl DELAY(10);
384 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
385 1.1 fvdl break;
386 1.1 fvdl }
387 1.1 fvdl
388 1.1 fvdl if (i == BGE_TIMEOUT) {
389 1.1 fvdl printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
390 1.1 fvdl return(0);
391 1.1 fvdl }
392 1.1 fvdl
393 1.1 fvdl /* Get result. */
394 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
395 1.1 fvdl
396 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
397 1.1 fvdl
398 1.1 fvdl return(0);
399 1.1 fvdl }
400 1.1 fvdl
401 1.1 fvdl /*
402 1.1 fvdl * Read a sequence of bytes from the EEPROM.
403 1.1 fvdl */
404 1.1 fvdl int
405 1.1 fvdl bge_read_eeprom(sc, dest, off, cnt)
406 1.1 fvdl struct bge_softc *sc;
407 1.1 fvdl caddr_t dest;
408 1.1 fvdl int off;
409 1.1 fvdl int cnt;
410 1.1 fvdl {
411 1.1 fvdl int err = 0, i;
412 1.1 fvdl u_int8_t byte = 0;
413 1.1 fvdl
414 1.1 fvdl for (i = 0; i < cnt; i++) {
415 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
416 1.1 fvdl if (err)
417 1.1 fvdl break;
418 1.1 fvdl *(dest + i) = byte;
419 1.1 fvdl }
420 1.1 fvdl
421 1.1 fvdl return(err ? 1 : 0);
422 1.1 fvdl }
423 1.1 fvdl
424 1.1 fvdl int
425 1.1 fvdl bge_miibus_readreg(dev, phy, reg)
426 1.1 fvdl struct device *dev;
427 1.1 fvdl int phy, reg;
428 1.1 fvdl {
429 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
430 1.1 fvdl struct ifnet *ifp;
431 1.1 fvdl u_int32_t val;
432 1.25 jonathan u_int32_t saved_autopoll;
433 1.1 fvdl int i;
434 1.1 fvdl
435 1.1 fvdl ifp = &sc->ethercom.ec_if;
436 1.1 fvdl
437 1.25 jonathan /*
438 1.25 jonathan * Several chips with builtin PHYs will incorrectly answer to
439 1.25 jonathan * other PHY instances than the builtin PHY at id 1.
440 1.25 jonathan */
441 1.24 matt if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
442 1.1 fvdl return(0);
443 1.1 fvdl
444 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
445 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
446 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
447 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
448 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
449 1.25 jonathan DELAY(40);
450 1.25 jonathan }
451 1.25 jonathan
452 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
453 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
454 1.1 fvdl
455 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
456 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
457 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
458 1.1 fvdl break;
459 1.9 thorpej delay(10);
460 1.1 fvdl }
461 1.1 fvdl
462 1.1 fvdl if (i == BGE_TIMEOUT) {
463 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
464 1.29 itojun val = 0;
465 1.25 jonathan goto done;
466 1.1 fvdl }
467 1.1 fvdl
468 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
469 1.1 fvdl
470 1.25 jonathan done:
471 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
472 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
473 1.25 jonathan DELAY(40);
474 1.25 jonathan }
475 1.29 itojun
476 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
477 1.1 fvdl return(0);
478 1.1 fvdl
479 1.1 fvdl return(val & 0xFFFF);
480 1.1 fvdl }
481 1.1 fvdl
482 1.1 fvdl void
483 1.1 fvdl bge_miibus_writereg(dev, phy, reg, val)
484 1.1 fvdl struct device *dev;
485 1.1 fvdl int phy, reg, val;
486 1.1 fvdl {
487 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
488 1.29 itojun u_int32_t saved_autopoll;
489 1.29 itojun int i;
490 1.1 fvdl
491 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
492 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
493 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
494 1.25 jonathan delay(40);
495 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
496 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
497 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
498 1.25 jonathan }
499 1.29 itojun
500 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
501 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
502 1.1 fvdl
503 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
504 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
505 1.1 fvdl break;
506 1.9 thorpej delay(10);
507 1.1 fvdl }
508 1.1 fvdl
509 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
510 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
511 1.25 jonathan delay(40);
512 1.25 jonathan }
513 1.29 itojun
514 1.1 fvdl if (i == BGE_TIMEOUT) {
515 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
516 1.1 fvdl }
517 1.1 fvdl }
518 1.1 fvdl
519 1.1 fvdl void
520 1.1 fvdl bge_miibus_statchg(dev)
521 1.1 fvdl struct device *dev;
522 1.1 fvdl {
523 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
524 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
525 1.1 fvdl
526 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
527 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
528 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
529 1.1 fvdl } else {
530 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
531 1.1 fvdl }
532 1.1 fvdl
533 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
534 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
535 1.1 fvdl } else {
536 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
537 1.1 fvdl }
538 1.1 fvdl }
539 1.1 fvdl
540 1.1 fvdl /*
541 1.1 fvdl * Handle events that have triggered interrupts.
542 1.1 fvdl */
543 1.1 fvdl void
544 1.1 fvdl bge_handle_events(sc)
545 1.1 fvdl struct bge_softc *sc;
546 1.1 fvdl {
547 1.1 fvdl
548 1.1 fvdl return;
549 1.1 fvdl }
550 1.1 fvdl
551 1.1 fvdl /*
552 1.1 fvdl * Memory management for jumbo frames.
553 1.1 fvdl */
554 1.1 fvdl
555 1.1 fvdl int
556 1.1 fvdl bge_alloc_jumbo_mem(sc)
557 1.1 fvdl struct bge_softc *sc;
558 1.1 fvdl {
559 1.1 fvdl caddr_t ptr, kva;
560 1.1 fvdl bus_dma_segment_t seg;
561 1.1 fvdl int i, rseg, state, error;
562 1.1 fvdl struct bge_jpool_entry *entry;
563 1.1 fvdl
564 1.1 fvdl state = error = 0;
565 1.1 fvdl
566 1.1 fvdl /* Grab a big chunk o' storage. */
567 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
568 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
569 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
570 1.1 fvdl return ENOBUFS;
571 1.1 fvdl }
572 1.1 fvdl
573 1.1 fvdl state = 1;
574 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
575 1.1 fvdl BUS_DMA_NOWAIT)) {
576 1.1 fvdl printf("%s: can't map dma buffers (%d bytes)\n",
577 1.1 fvdl sc->bge_dev.dv_xname, (int)BGE_JMEM);
578 1.1 fvdl error = ENOBUFS;
579 1.1 fvdl goto out;
580 1.1 fvdl }
581 1.1 fvdl
582 1.1 fvdl state = 2;
583 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
584 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
585 1.1 fvdl printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
586 1.1 fvdl error = ENOBUFS;
587 1.1 fvdl goto out;
588 1.1 fvdl }
589 1.1 fvdl
590 1.1 fvdl state = 3;
591 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
592 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
593 1.1 fvdl printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
594 1.1 fvdl error = ENOBUFS;
595 1.1 fvdl goto out;
596 1.1 fvdl }
597 1.1 fvdl
598 1.1 fvdl state = 4;
599 1.1 fvdl sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
600 1.1 fvdl DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
601 1.1 fvdl
602 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
603 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
604 1.1 fvdl
605 1.1 fvdl /*
606 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
607 1.1 fvdl * in an array.
608 1.1 fvdl */
609 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
610 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
611 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
612 1.1 fvdl ptr += BGE_JLEN;
613 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
614 1.1 fvdl M_DEVBUF, M_NOWAIT);
615 1.1 fvdl if (entry == NULL) {
616 1.1 fvdl printf("%s: no memory for jumbo buffer queue!\n",
617 1.1 fvdl sc->bge_dev.dv_xname);
618 1.1 fvdl error = ENOBUFS;
619 1.1 fvdl goto out;
620 1.1 fvdl }
621 1.1 fvdl entry->slot = i;
622 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
623 1.1 fvdl entry, jpool_entries);
624 1.1 fvdl }
625 1.1 fvdl out:
626 1.1 fvdl if (error != 0) {
627 1.1 fvdl switch (state) {
628 1.1 fvdl case 4:
629 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
630 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
631 1.1 fvdl case 3:
632 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
633 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
634 1.1 fvdl case 2:
635 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
636 1.1 fvdl case 1:
637 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
638 1.1 fvdl break;
639 1.1 fvdl default:
640 1.1 fvdl break;
641 1.1 fvdl }
642 1.1 fvdl }
643 1.1 fvdl
644 1.1 fvdl return error;
645 1.1 fvdl }
646 1.1 fvdl
647 1.1 fvdl /*
648 1.1 fvdl * Allocate a jumbo buffer.
649 1.1 fvdl */
650 1.1 fvdl void *
651 1.1 fvdl bge_jalloc(sc)
652 1.1 fvdl struct bge_softc *sc;
653 1.1 fvdl {
654 1.1 fvdl struct bge_jpool_entry *entry;
655 1.1 fvdl
656 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
657 1.1 fvdl
658 1.1 fvdl if (entry == NULL) {
659 1.1 fvdl printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
660 1.1 fvdl return(NULL);
661 1.1 fvdl }
662 1.1 fvdl
663 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
664 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
665 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
666 1.1 fvdl }
667 1.1 fvdl
668 1.1 fvdl /*
669 1.1 fvdl * Release a jumbo buffer.
670 1.1 fvdl */
671 1.1 fvdl void
672 1.1 fvdl bge_jfree(m, buf, size, arg)
673 1.1 fvdl struct mbuf *m;
674 1.1 fvdl caddr_t buf;
675 1.31 thorpej size_t size;
676 1.1 fvdl void *arg;
677 1.1 fvdl {
678 1.1 fvdl struct bge_jpool_entry *entry;
679 1.1 fvdl struct bge_softc *sc;
680 1.1 fvdl int i, s;
681 1.1 fvdl
682 1.1 fvdl /* Extract the softc struct pointer. */
683 1.1 fvdl sc = (struct bge_softc *)arg;
684 1.1 fvdl
685 1.1 fvdl if (sc == NULL)
686 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
687 1.1 fvdl
688 1.1 fvdl /* calculate the slot this buffer belongs to */
689 1.1 fvdl
690 1.1 fvdl i = ((caddr_t)buf
691 1.1 fvdl - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
692 1.1 fvdl
693 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
694 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
695 1.1 fvdl
696 1.1 fvdl s = splvm();
697 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
698 1.1 fvdl if (entry == NULL)
699 1.1 fvdl panic("bge_jfree: buffer not in use!");
700 1.1 fvdl entry->slot = i;
701 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
702 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
703 1.1 fvdl
704 1.1 fvdl if (__predict_true(m != NULL))
705 1.1 fvdl pool_cache_put(&mbpool_cache, m);
706 1.1 fvdl splx(s);
707 1.1 fvdl }
708 1.1 fvdl
709 1.1 fvdl
710 1.1 fvdl /*
711 1.1 fvdl * Intialize a standard receive ring descriptor.
712 1.1 fvdl */
713 1.1 fvdl int
714 1.1 fvdl bge_newbuf_std(sc, i, m, dmamap)
715 1.1 fvdl struct bge_softc *sc;
716 1.1 fvdl int i;
717 1.1 fvdl struct mbuf *m;
718 1.1 fvdl bus_dmamap_t dmamap;
719 1.1 fvdl {
720 1.1 fvdl struct mbuf *m_new = NULL;
721 1.1 fvdl struct bge_rx_bd *r;
722 1.1 fvdl int error;
723 1.1 fvdl
724 1.1 fvdl if (dmamap == NULL) {
725 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
726 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
727 1.1 fvdl if (error != 0)
728 1.1 fvdl return error;
729 1.1 fvdl }
730 1.1 fvdl
731 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
732 1.1 fvdl
733 1.1 fvdl if (m == NULL) {
734 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
735 1.1 fvdl if (m_new == NULL) {
736 1.1 fvdl return(ENOBUFS);
737 1.1 fvdl }
738 1.1 fvdl
739 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
740 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
741 1.1 fvdl m_freem(m_new);
742 1.1 fvdl return(ENOBUFS);
743 1.1 fvdl }
744 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745 1.37 jonathan if (!sc->bge_rx_alignment_bug)
746 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
747 1.1 fvdl
748 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
749 1.1 fvdl BUS_DMA_READ|BUS_DMA_NOWAIT))
750 1.1 fvdl return(ENOBUFS);
751 1.1 fvdl } else {
752 1.1 fvdl m_new = m;
753 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
755 1.37 jonathan if (!sc->bge_rx_alignment_bug)
756 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
757 1.1 fvdl }
758 1.1 fvdl
759 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
761 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
762 1.10 fvdl dmamap->dm_segs[0].ds_addr);
763 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
764 1.1 fvdl r->bge_len = m_new->m_len;
765 1.1 fvdl r->bge_idx = i;
766 1.1 fvdl
767 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
768 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
769 1.1 fvdl i * sizeof (struct bge_rx_bd),
770 1.1 fvdl sizeof (struct bge_rx_bd),
771 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
772 1.1 fvdl
773 1.1 fvdl return(0);
774 1.1 fvdl }
775 1.1 fvdl
776 1.1 fvdl /*
777 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
778 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
779 1.1 fvdl */
780 1.1 fvdl int
781 1.1 fvdl bge_newbuf_jumbo(sc, i, m)
782 1.1 fvdl struct bge_softc *sc;
783 1.1 fvdl int i;
784 1.1 fvdl struct mbuf *m;
785 1.1 fvdl {
786 1.1 fvdl struct mbuf *m_new = NULL;
787 1.1 fvdl struct bge_rx_bd *r;
788 1.1 fvdl
789 1.1 fvdl if (m == NULL) {
790 1.1 fvdl caddr_t *buf = NULL;
791 1.1 fvdl
792 1.1 fvdl /* Allocate the mbuf. */
793 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794 1.1 fvdl if (m_new == NULL) {
795 1.1 fvdl return(ENOBUFS);
796 1.1 fvdl }
797 1.1 fvdl
798 1.1 fvdl /* Allocate the jumbo buffer */
799 1.1 fvdl buf = bge_jalloc(sc);
800 1.1 fvdl if (buf == NULL) {
801 1.1 fvdl m_freem(m_new);
802 1.1 fvdl printf("%s: jumbo allocation failed "
803 1.1 fvdl "-- packet dropped!\n", sc->bge_dev.dv_xname);
804 1.1 fvdl return(ENOBUFS);
805 1.1 fvdl }
806 1.1 fvdl
807 1.1 fvdl /* Attach the buffer to the mbuf. */
808 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
809 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
810 1.1 fvdl bge_jfree, sc);
811 1.1 fvdl } else {
812 1.1 fvdl m_new = m;
813 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
814 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
815 1.1 fvdl }
816 1.1 fvdl
817 1.37 jonathan if (!sc->bge_rx_alignment_bug)
818 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
819 1.1 fvdl /* Set up the descriptor. */
820 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
821 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
822 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
823 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
824 1.1 fvdl r->bge_len = m_new->m_len;
825 1.1 fvdl r->bge_idx = i;
826 1.1 fvdl
827 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
828 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
829 1.1 fvdl i * sizeof (struct bge_rx_bd),
830 1.1 fvdl sizeof (struct bge_rx_bd),
831 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
832 1.1 fvdl
833 1.1 fvdl return(0);
834 1.1 fvdl }
835 1.1 fvdl
836 1.1 fvdl /*
837 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
838 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
839 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
840 1.1 fvdl * the NIC.
841 1.1 fvdl */
842 1.1 fvdl int
843 1.1 fvdl bge_init_rx_ring_std(sc)
844 1.1 fvdl struct bge_softc *sc;
845 1.1 fvdl {
846 1.1 fvdl int i;
847 1.1 fvdl
848 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
849 1.1 fvdl return 0;
850 1.1 fvdl
851 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
852 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
853 1.1 fvdl return(ENOBUFS);
854 1.1 fvdl }
855 1.1 fvdl
856 1.1 fvdl sc->bge_std = i - 1;
857 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
858 1.1 fvdl
859 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
860 1.1 fvdl
861 1.1 fvdl return(0);
862 1.1 fvdl }
863 1.1 fvdl
864 1.1 fvdl void
865 1.1 fvdl bge_free_rx_ring_std(sc)
866 1.1 fvdl struct bge_softc *sc;
867 1.1 fvdl {
868 1.1 fvdl int i;
869 1.1 fvdl
870 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
871 1.1 fvdl return;
872 1.1 fvdl
873 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
874 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
875 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
876 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
877 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
878 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
879 1.1 fvdl }
880 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
881 1.1 fvdl sizeof(struct bge_rx_bd));
882 1.1 fvdl }
883 1.1 fvdl
884 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
885 1.1 fvdl }
886 1.1 fvdl
887 1.1 fvdl int
888 1.1 fvdl bge_init_rx_ring_jumbo(sc)
889 1.1 fvdl struct bge_softc *sc;
890 1.1 fvdl {
891 1.1 fvdl int i;
892 1.34 jonathan volatile struct bge_rcb *rcb;
893 1.1 fvdl
894 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
895 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
896 1.1 fvdl return(ENOBUFS);
897 1.1 fvdl };
898 1.1 fvdl
899 1.1 fvdl sc->bge_jumbo = i - 1;
900 1.1 fvdl
901 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
902 1.34 jonathan rcb->bge_maxlen_flags = 0;
903 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
904 1.1 fvdl
905 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
906 1.1 fvdl
907 1.1 fvdl return(0);
908 1.1 fvdl }
909 1.1 fvdl
910 1.1 fvdl void
911 1.1 fvdl bge_free_rx_ring_jumbo(sc)
912 1.1 fvdl struct bge_softc *sc;
913 1.1 fvdl {
914 1.1 fvdl int i;
915 1.1 fvdl
916 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
917 1.1 fvdl return;
918 1.1 fvdl
919 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
920 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
921 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
922 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
923 1.1 fvdl }
924 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
925 1.1 fvdl sizeof(struct bge_rx_bd));
926 1.1 fvdl }
927 1.1 fvdl
928 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
929 1.1 fvdl }
930 1.1 fvdl
931 1.1 fvdl void
932 1.1 fvdl bge_free_tx_ring(sc)
933 1.1 fvdl struct bge_softc *sc;
934 1.1 fvdl {
935 1.1 fvdl int i, freed;
936 1.1 fvdl struct txdmamap_pool_entry *dma;
937 1.1 fvdl
938 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
939 1.1 fvdl return;
940 1.1 fvdl
941 1.1 fvdl freed = 0;
942 1.1 fvdl
943 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
944 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
945 1.1 fvdl freed++;
946 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
947 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
948 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
949 1.1 fvdl link);
950 1.1 fvdl sc->txdma[i] = 0;
951 1.1 fvdl }
952 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
953 1.1 fvdl sizeof(struct bge_tx_bd));
954 1.1 fvdl }
955 1.1 fvdl
956 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
957 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
958 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
959 1.1 fvdl free(dma, M_DEVBUF);
960 1.1 fvdl }
961 1.1 fvdl
962 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
963 1.1 fvdl }
964 1.1 fvdl
965 1.1 fvdl int
966 1.1 fvdl bge_init_tx_ring(sc)
967 1.1 fvdl struct bge_softc *sc;
968 1.1 fvdl {
969 1.1 fvdl int i;
970 1.1 fvdl bus_dmamap_t dmamap;
971 1.1 fvdl struct txdmamap_pool_entry *dma;
972 1.1 fvdl
973 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
974 1.1 fvdl return 0;
975 1.1 fvdl
976 1.1 fvdl sc->bge_txcnt = 0;
977 1.1 fvdl sc->bge_tx_saved_considx = 0;
978 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
980 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981 1.25 jonathan
982 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
983 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
984 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 1.1 fvdl
986 1.1 fvdl SLIST_INIT(&sc->txdma_list);
987 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
988 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
989 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
990 1.1 fvdl &dmamap))
991 1.1 fvdl return(ENOBUFS);
992 1.1 fvdl if (dmamap == NULL)
993 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
994 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
995 1.1 fvdl if (dma == NULL) {
996 1.1 fvdl printf("%s: can't alloc txdmamap_pool_entry\n",
997 1.1 fvdl sc->bge_dev.dv_xname);
998 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
999 1.1 fvdl return (ENOMEM);
1000 1.1 fvdl }
1001 1.1 fvdl dma->dmamap = dmamap;
1002 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1003 1.1 fvdl }
1004 1.1 fvdl
1005 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1006 1.1 fvdl
1007 1.1 fvdl return(0);
1008 1.1 fvdl }
1009 1.1 fvdl
1010 1.1 fvdl void
1011 1.1 fvdl bge_setmulti(sc)
1012 1.1 fvdl struct bge_softc *sc;
1013 1.1 fvdl {
1014 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1015 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1016 1.1 fvdl struct ether_multi *enm;
1017 1.1 fvdl struct ether_multistep step;
1018 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1019 1.1 fvdl u_int32_t h;
1020 1.1 fvdl int i;
1021 1.1 fvdl
1022 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1023 1.13 thorpej goto allmulti;
1024 1.1 fvdl
1025 1.1 fvdl /* Now program new ones. */
1026 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1027 1.1 fvdl while (enm != NULL) {
1028 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1029 1.13 thorpej /*
1030 1.13 thorpej * We must listen to a range of multicast addresses.
1031 1.13 thorpej * For now, just accept all multicasts, rather than
1032 1.13 thorpej * trying to set only those filter bits needed to match
1033 1.13 thorpej * the range. (At this time, the only use of address
1034 1.13 thorpej * ranges is for IP multicast routing, for which the
1035 1.13 thorpej * range is big enough to require all bits set.)
1036 1.13 thorpej */
1037 1.13 thorpej goto allmulti;
1038 1.13 thorpej }
1039 1.13 thorpej
1040 1.13 thorpej h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1041 1.13 thorpej
1042 1.13 thorpej /* Just want the 7 least-significant bits. */
1043 1.13 thorpej h &= 0x7f;
1044 1.13 thorpej
1045 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1046 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1047 1.1 fvdl }
1048 1.1 fvdl
1049 1.13 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
1050 1.13 thorpej goto setit;
1051 1.13 thorpej
1052 1.13 thorpej allmulti:
1053 1.13 thorpej ifp->if_flags |= IFF_ALLMULTI;
1054 1.13 thorpej hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1055 1.13 thorpej
1056 1.13 thorpej setit:
1057 1.1 fvdl for (i = 0; i < 4; i++)
1058 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1059 1.1 fvdl }
1060 1.1 fvdl
1061 1.24 matt const int bge_swapbits[] = {
1062 1.1 fvdl 0,
1063 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1064 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1065 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1066 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1067 1.1 fvdl
1068 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1069 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1070 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1071 1.1 fvdl
1072 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1073 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1074 1.1 fvdl
1075 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1076 1.1 fvdl
1077 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1079 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1080 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1081 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1083 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1084 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1085 1.1 fvdl
1086 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1087 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1088 1.1 fvdl };
1089 1.1 fvdl
1090 1.1 fvdl int bge_swapindex = 0;
1091 1.1 fvdl
1092 1.1 fvdl /*
1093 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1094 1.1 fvdl * self-test results.
1095 1.1 fvdl */
1096 1.1 fvdl int
1097 1.1 fvdl bge_chipinit(sc)
1098 1.1 fvdl struct bge_softc *sc;
1099 1.1 fvdl {
1100 1.1 fvdl u_int32_t cachesize;
1101 1.1 fvdl int i;
1102 1.25 jonathan u_int32_t dma_rw_ctl;
1103 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
1104 1.1 fvdl
1105 1.1 fvdl
1106 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1107 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1108 1.1 fvdl BGE_INIT);
1109 1.1 fvdl
1110 1.25 jonathan /* Set power state to D0. */
1111 1.25 jonathan bge_setpowerstate(sc, 0);
1112 1.25 jonathan
1113 1.1 fvdl /*
1114 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1115 1.1 fvdl * self-tests passed.
1116 1.1 fvdl */
1117 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1118 1.1 fvdl printf("%s: RX CPU self-diagnostics failed!\n",
1119 1.1 fvdl sc->bge_dev.dv_xname);
1120 1.1 fvdl return(ENODEV);
1121 1.1 fvdl }
1122 1.1 fvdl
1123 1.1 fvdl /* Clear the MAC control register */
1124 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1125 1.1 fvdl
1126 1.1 fvdl /*
1127 1.1 fvdl * Clear the MAC statistics block in the NIC's
1128 1.1 fvdl * internal memory.
1129 1.1 fvdl */
1130 1.1 fvdl for (i = BGE_STATS_BLOCK;
1131 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133 1.1 fvdl
1134 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1135 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137 1.1 fvdl
1138 1.1 fvdl /* Set up the PCI DMA control register. */
1139 1.25 jonathan if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1140 1.25 jonathan BGE_PCISTATE_PCI_BUSMODE) {
1141 1.25 jonathan /* Conventional PCI bus */
1142 1.25 jonathan DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1143 1.25 jonathan dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1144 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1145 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1146 1.25 jonathan (0x0F));
1147 1.25 jonathan } else {
1148 1.25 jonathan DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1149 1.25 jonathan /* PCI-X bus */
1150 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1151 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1152 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1153 1.25 jonathan (0x0F);
1154 1.25 jonathan /*
1155 1.25 jonathan * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1156 1.25 jonathan * for hardware bugs, which means we should also clear
1157 1.25 jonathan * the low-order MINDMA bits. In addition, the 5704
1158 1.25 jonathan * uses a different encoding of read/write watermarks.
1159 1.25 jonathan */
1160 1.25 jonathan if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1161 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1162 1.25 jonathan /* should be 0x1f0000 */
1163 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1164 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1165 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1166 1.25 jonathan }
1167 1.25 jonathan else if ((sc->bge_asicrev >> 28) ==
1168 1.25 jonathan (BGE_ASICREV_BCM5703_A0 >> 28)) {
1169 1.25 jonathan dma_rw_ctl &= 0xfffffff0;
1170 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1171 1.25 jonathan }
1172 1.25 jonathan }
1173 1.25 jonathan
1174 1.25 jonathan pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1175 1.1 fvdl
1176 1.1 fvdl /*
1177 1.1 fvdl * Set up general mode register.
1178 1.1 fvdl */
1179 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1180 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1181 1.1 fvdl BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1182 1.1 fvdl BGE_MODECTL_RX_NO_PHDR_CSUM);
1183 1.1 fvdl
1184 1.1 fvdl /* Get cache line size. */
1185 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1186 1.1 fvdl
1187 1.1 fvdl /*
1188 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1189 1.1 fvdl */
1190 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1191 1.1 fvdl PCIM_CMD_MWIEN) {
1192 1.1 fvdl switch(cachesize) {
1193 1.1 fvdl case 1:
1194 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1195 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1196 1.1 fvdl break;
1197 1.1 fvdl case 2:
1198 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1199 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1200 1.1 fvdl break;
1201 1.1 fvdl case 4:
1202 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1204 1.1 fvdl break;
1205 1.1 fvdl case 8:
1206 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1208 1.1 fvdl break;
1209 1.1 fvdl case 16:
1210 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1212 1.1 fvdl break;
1213 1.1 fvdl case 32:
1214 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1216 1.1 fvdl break;
1217 1.1 fvdl case 64:
1218 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1219 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1220 1.1 fvdl break;
1221 1.1 fvdl default:
1222 1.1 fvdl /* Disable PCI memory write and invalidate. */
1223 1.1 fvdl #if 0
1224 1.1 fvdl if (bootverbose)
1225 1.1 fvdl printf("%s: cache line size %d not "
1226 1.1 fvdl "supported; disabling PCI MWI\n",
1227 1.1 fvdl sc->bge_dev.dv_xname, cachesize);
1228 1.1 fvdl #endif
1229 1.1 fvdl PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1230 1.1 fvdl PCIM_CMD_MWIEN);
1231 1.1 fvdl break;
1232 1.1 fvdl }
1233 1.1 fvdl }
1234 1.1 fvdl
1235 1.25 jonathan /*
1236 1.25 jonathan * Disable memory write invalidate. Apparently it is not supported
1237 1.25 jonathan * properly by these devices.
1238 1.25 jonathan */
1239 1.25 jonathan PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1240 1.25 jonathan
1241 1.25 jonathan
1242 1.1 fvdl #ifdef __brokenalpha__
1243 1.1 fvdl /*
1244 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1245 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1246 1.1 fvdl * restriction on some ALPHA platforms with early revision
1247 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1248 1.1 fvdl */
1249 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1250 1.1 fvdl #endif
1251 1.1 fvdl
1252 1.33 tsutsui /* Set the timer prescaler (always 66MHz) */
1253 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1254 1.1 fvdl
1255 1.1 fvdl return(0);
1256 1.1 fvdl }
1257 1.1 fvdl
1258 1.1 fvdl int
1259 1.1 fvdl bge_blockinit(sc)
1260 1.1 fvdl struct bge_softc *sc;
1261 1.1 fvdl {
1262 1.34 jonathan volatile struct bge_rcb *rcb;
1263 1.1 fvdl bus_size_t rcb_addr;
1264 1.1 fvdl int i;
1265 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1266 1.1 fvdl bge_hostaddr taddr;
1267 1.1 fvdl
1268 1.1 fvdl /*
1269 1.1 fvdl * Initialize the memory window pointer register so that
1270 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1271 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1272 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1273 1.1 fvdl */
1274 1.1 fvdl
1275 1.1 fvdl pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1276 1.1 fvdl BGE_PCI_MEMWIN_BASEADDR, 0);
1277 1.1 fvdl
1278 1.1 fvdl /* Configure mbuf memory pool */
1279 1.1 fvdl if (sc->bge_extram) {
1280 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1281 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1282 1.1 fvdl } else {
1283 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1284 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1285 1.1 fvdl }
1286 1.1 fvdl
1287 1.1 fvdl /* Configure DMA resource pool */
1288 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1289 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1290 1.1 fvdl
1291 1.1 fvdl /* Configure mbuf pool watermarks */
1292 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
1293 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1294 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1295 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1296 1.25 jonathan #else
1297 1.25 jonathan /* new broadcom docs strongly recommend these: */
1298 1.25 jonathan CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1299 1.25 jonathan CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1300 1.25 jonathan CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1301 1.25 jonathan #endif
1302 1.1 fvdl
1303 1.1 fvdl /* Configure DMA resource watermarks */
1304 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1305 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1306 1.1 fvdl
1307 1.1 fvdl /* Enable buffer manager */
1308 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MODE,
1309 1.1 fvdl BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1310 1.1 fvdl
1311 1.1 fvdl /* Poll for buffer manager start indication */
1312 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1313 1.1 fvdl if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1314 1.1 fvdl break;
1315 1.1 fvdl DELAY(10);
1316 1.1 fvdl }
1317 1.1 fvdl
1318 1.1 fvdl if (i == BGE_TIMEOUT) {
1319 1.1 fvdl printf("%s: buffer manager failed to start\n",
1320 1.1 fvdl sc->bge_dev.dv_xname);
1321 1.1 fvdl return(ENXIO);
1322 1.1 fvdl }
1323 1.1 fvdl
1324 1.1 fvdl /* Enable flow-through queues */
1325 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1326 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1327 1.1 fvdl
1328 1.1 fvdl /* Wait until queue initialization is complete */
1329 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1330 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1331 1.1 fvdl break;
1332 1.1 fvdl DELAY(10);
1333 1.1 fvdl }
1334 1.1 fvdl
1335 1.1 fvdl if (i == BGE_TIMEOUT) {
1336 1.1 fvdl printf("%s: flow-through queue init failed\n",
1337 1.1 fvdl sc->bge_dev.dv_xname);
1338 1.1 fvdl return(ENXIO);
1339 1.1 fvdl }
1340 1.1 fvdl
1341 1.1 fvdl /* Initialize the standard RX ring control block */
1342 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1343 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1344 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1345 1.34 jonathan rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1346 1.1 fvdl if (sc->bge_extram)
1347 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1348 1.1 fvdl else
1349 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1350 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1351 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1352 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1353 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1354 1.1 fvdl
1355 1.1 fvdl /*
1356 1.1 fvdl * Initialize the jumbo RX ring control block
1357 1.1 fvdl * We set the 'ring disabled' bit in the flags
1358 1.1 fvdl * field until we're actually ready to start
1359 1.1 fvdl * using this ring (i.e. once we set the MTU
1360 1.1 fvdl * high enough to require it).
1361 1.1 fvdl */
1362 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1363 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1364 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1365 1.34 jonathan rcb->bge_maxlen_flags =
1366 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1367 1.1 fvdl if (sc->bge_extram)
1368 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1369 1.1 fvdl else
1370 1.1 fvdl rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1371 1.1 fvdl
1372 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1373 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1374 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1375 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1376 1.1 fvdl
1377 1.1 fvdl /* Set up dummy disabled mini ring RCB */
1378 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1379 1.34 jonathan rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1380 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED);
1381 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1382 1.1 fvdl
1383 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1384 1.1 fvdl offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1385 1.1 fvdl BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1386 1.1 fvdl
1387 1.1 fvdl /*
1388 1.1 fvdl * Set the BD ring replentish thresholds. The recommended
1389 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1390 1.1 fvdl * each ring.
1391 1.1 fvdl */
1392 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1393 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1394 1.1 fvdl
1395 1.1 fvdl /*
1396 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1397 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1398 1.1 fvdl * These are located in NIC memory.
1399 1.1 fvdl */
1400 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1401 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1402 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1403 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1404 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1405 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1406 1.1 fvdl }
1407 1.1 fvdl
1408 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1409 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1410 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1411 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1412 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1413 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1414 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1415 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1416 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1417 1.1 fvdl
1418 1.1 fvdl /* Disable all unused RX return rings */
1419 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1420 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1421 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1422 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1423 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1424 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1425 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED));
1426 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1427 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1428 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1429 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1430 1.1 fvdl }
1431 1.1 fvdl
1432 1.1 fvdl /* Initialize RX ring indexes */
1433 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1434 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1435 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1436 1.1 fvdl
1437 1.1 fvdl /*
1438 1.1 fvdl * Set up RX return ring 0
1439 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1440 1.1 fvdl * The return rings live entirely within the host, so the
1441 1.1 fvdl * nicaddr field in the RCB isn't used.
1442 1.1 fvdl */
1443 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1444 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1445 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1446 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1447 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1448 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1449 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1450 1.1 fvdl
1451 1.1 fvdl /* Set random backoff seed for TX */
1452 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1453 1.1 fvdl LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1454 1.1 fvdl LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1455 1.1 fvdl LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1456 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1457 1.1 fvdl
1458 1.1 fvdl /* Set inter-packet gap */
1459 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1460 1.1 fvdl
1461 1.1 fvdl /*
1462 1.1 fvdl * Specify which ring to use for packets that don't match
1463 1.1 fvdl * any RX rules.
1464 1.1 fvdl */
1465 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1466 1.1 fvdl
1467 1.1 fvdl /*
1468 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1469 1.1 fvdl * list, sixteen active lists, one bad frames class.
1470 1.1 fvdl */
1471 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1472 1.1 fvdl
1473 1.1 fvdl /* Inialize RX list placement stats mask. */
1474 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1475 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1476 1.1 fvdl
1477 1.1 fvdl /* Disable host coalescing until we get it set up */
1478 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1479 1.1 fvdl
1480 1.1 fvdl /* Poll to make sure it's shut down. */
1481 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1482 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1483 1.1 fvdl break;
1484 1.1 fvdl DELAY(10);
1485 1.1 fvdl }
1486 1.1 fvdl
1487 1.1 fvdl if (i == BGE_TIMEOUT) {
1488 1.1 fvdl printf("%s: host coalescing engine failed to idle\n",
1489 1.1 fvdl sc->bge_dev.dv_xname);
1490 1.1 fvdl return(ENXIO);
1491 1.1 fvdl }
1492 1.1 fvdl
1493 1.1 fvdl /* Set up host coalescing defaults */
1494 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1495 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1496 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1497 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1498 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1499 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1500 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1501 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1502 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1503 1.1 fvdl
1504 1.1 fvdl /* Set up address of statistics block */
1505 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1506 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1507 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1508 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1509 1.1 fvdl
1510 1.1 fvdl /* Set up address of status block */
1511 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1512 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1513 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1514 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1515 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1516 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1517 1.1 fvdl
1518 1.1 fvdl /* Turn on host coalescing state machine */
1519 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1520 1.1 fvdl
1521 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1522 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1523 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1524 1.1 fvdl
1525 1.1 fvdl /* Turn on RX list placement state machine */
1526 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1527 1.1 fvdl
1528 1.1 fvdl /* Turn on RX list selector state machine. */
1529 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1530 1.1 fvdl
1531 1.1 fvdl /* Turn on DMA, clear stats */
1532 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1533 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1534 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1535 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1536 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1537 1.1 fvdl
1538 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1539 1.25 jonathan sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1540 1.1 fvdl
1541 1.1 fvdl #ifdef notdef
1542 1.1 fvdl /* Assert GPIO pins for PHY reset */
1543 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1544 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1545 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1546 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1547 1.1 fvdl #endif
1548 1.1 fvdl
1549 1.25 jonathan #if defined(not_quite_yet)
1550 1.25 jonathan /* Linux driver enables enable gpio pin #1 on 5700s */
1551 1.25 jonathan if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1552 1.25 jonathan sc->bge_local_ctrl_reg |=
1553 1.25 jonathan (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1554 1.25 jonathan }
1555 1.25 jonathan #endif
1556 1.25 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1557 1.25 jonathan
1558 1.1 fvdl /* Turn on DMA completion state machine */
1559 1.1 fvdl CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1560 1.1 fvdl
1561 1.1 fvdl /* Turn on write DMA state machine */
1562 1.1 fvdl CSR_WRITE_4(sc, BGE_WDMA_MODE,
1563 1.1 fvdl BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1564 1.1 fvdl
1565 1.1 fvdl /* Turn on read DMA state machine */
1566 1.1 fvdl CSR_WRITE_4(sc, BGE_RDMA_MODE,
1567 1.1 fvdl BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1568 1.1 fvdl
1569 1.1 fvdl /* Turn on RX data completion state machine */
1570 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1571 1.1 fvdl
1572 1.1 fvdl /* Turn on RX BD initiator state machine */
1573 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1574 1.1 fvdl
1575 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1576 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1577 1.1 fvdl
1578 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1579 1.1 fvdl CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1580 1.1 fvdl
1581 1.1 fvdl /* Turn on send BD completion state machine */
1582 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1583 1.1 fvdl
1584 1.1 fvdl /* Turn on send data completion state machine */
1585 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1586 1.1 fvdl
1587 1.1 fvdl /* Turn on send data initiator state machine */
1588 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1589 1.1 fvdl
1590 1.1 fvdl /* Turn on send BD initiator state machine */
1591 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1592 1.1 fvdl
1593 1.1 fvdl /* Turn on send BD selector state machine */
1594 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1595 1.1 fvdl
1596 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1597 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1598 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1599 1.1 fvdl
1600 1.1 fvdl /* init LED register */
1601 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1602 1.1 fvdl
1603 1.1 fvdl /* ack/clear link change events */
1604 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1605 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1606 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1607 1.1 fvdl
1608 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1609 1.1 fvdl if (sc->bge_tbi) {
1610 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1611 1.1 fvdl } else {
1612 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1613 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1614 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1615 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1616 1.1 fvdl }
1617 1.1 fvdl
1618 1.1 fvdl /* Enable link state change attentions. */
1619 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1620 1.1 fvdl
1621 1.1 fvdl return(0);
1622 1.1 fvdl }
1623 1.1 fvdl
1624 1.16 thorpej static const struct bge_revision {
1625 1.16 thorpej uint32_t br_asicrev;
1626 1.16 thorpej uint32_t br_quirks;
1627 1.16 thorpej const char *br_name;
1628 1.16 thorpej } bge_revisions[] = {
1629 1.16 thorpej { BGE_ASICREV_BCM5700_A0,
1630 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1631 1.16 thorpej "BCM5700 A0" },
1632 1.16 thorpej
1633 1.16 thorpej { BGE_ASICREV_BCM5700_A1,
1634 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1635 1.16 thorpej "BCM5700 A1" },
1636 1.16 thorpej
1637 1.16 thorpej { BGE_ASICREV_BCM5700_B0,
1638 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1639 1.16 thorpej "BCM5700 B0" },
1640 1.16 thorpej
1641 1.16 thorpej { BGE_ASICREV_BCM5700_B1,
1642 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1643 1.16 thorpej "BCM5700 B1" },
1644 1.16 thorpej
1645 1.16 thorpej { BGE_ASICREV_BCM5700_B2,
1646 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1647 1.16 thorpej "BCM5700 B2" },
1648 1.16 thorpej
1649 1.17 thorpej /* This is treated like a BCM5700 Bx */
1650 1.16 thorpej { BGE_ASICREV_BCM5700_ALTIMA,
1651 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1652 1.16 thorpej "BCM5700 Altima" },
1653 1.16 thorpej
1654 1.16 thorpej { BGE_ASICREV_BCM5700_C0,
1655 1.16 thorpej 0,
1656 1.16 thorpej "BCM5700 C0" },
1657 1.16 thorpej
1658 1.16 thorpej { BGE_ASICREV_BCM5701_A0,
1659 1.37 jonathan 0, /*XXX really, just not known */
1660 1.16 thorpej "BCM5701 A0" },
1661 1.16 thorpej
1662 1.16 thorpej { BGE_ASICREV_BCM5701_B0,
1663 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1664 1.16 thorpej "BCM5701 B0" },
1665 1.16 thorpej
1666 1.16 thorpej { BGE_ASICREV_BCM5701_B2,
1667 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1668 1.16 thorpej "BCM5701 B2" },
1669 1.16 thorpej
1670 1.16 thorpej { BGE_ASICREV_BCM5701_B5,
1671 1.37 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1672 1.16 thorpej "BCM5701 B5" },
1673 1.16 thorpej
1674 1.16 thorpej { BGE_ASICREV_BCM5703_A0,
1675 1.16 thorpej 0,
1676 1.16 thorpej "BCM5703 A0" },
1677 1.16 thorpej
1678 1.16 thorpej { BGE_ASICREV_BCM5703_A1,
1679 1.16 thorpej 0,
1680 1.16 thorpej "BCM5703 A1" },
1681 1.16 thorpej
1682 1.16 thorpej { BGE_ASICREV_BCM5703_A2,
1683 1.24 matt BGE_QUIRK_ONLY_PHY_1,
1684 1.16 thorpej "BCM5703 A2" },
1685 1.16 thorpej
1686 1.25 jonathan { BGE_ASICREV_BCM5704_A0,
1687 1.25 jonathan BGE_QUIRK_ONLY_PHY_1,
1688 1.25 jonathan "BCM5704 A0" },
1689 1.25 jonathan
1690 1.16 thorpej { 0, 0, NULL }
1691 1.16 thorpej };
1692 1.16 thorpej
1693 1.16 thorpej static const struct bge_revision *
1694 1.16 thorpej bge_lookup_rev(uint32_t asicrev)
1695 1.16 thorpej {
1696 1.16 thorpej const struct bge_revision *br;
1697 1.16 thorpej
1698 1.16 thorpej for (br = bge_revisions; br->br_name != NULL; br++) {
1699 1.16 thorpej if (br->br_asicrev == asicrev)
1700 1.16 thorpej return (br);
1701 1.16 thorpej }
1702 1.16 thorpej
1703 1.16 thorpej return (NULL);
1704 1.16 thorpej }
1705 1.16 thorpej
1706 1.7 thorpej static const struct bge_product {
1707 1.7 thorpej pci_vendor_id_t bp_vendor;
1708 1.7 thorpej pci_product_id_t bp_product;
1709 1.7 thorpej const char *bp_name;
1710 1.7 thorpej } bge_products[] = {
1711 1.7 thorpej /*
1712 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
1713 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
1714 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
1715 1.7 thorpej * check for it anyway.
1716 1.7 thorpej */
1717 1.7 thorpej { PCI_VENDOR_ALTEON,
1718 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
1719 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1720 1.7 thorpej { PCI_VENDOR_ALTEON,
1721 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
1722 1.7 thorpej "Broadcom BCM5701 Gigabit Ethernet" },
1723 1.7 thorpej
1724 1.7 thorpej { PCI_VENDOR_ALTIMA,
1725 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
1726 1.7 thorpej "Altima AC1000 Gigabit Ethernet" },
1727 1.14 enami { PCI_VENDOR_ALTIMA,
1728 1.14 enami PCI_PRODUCT_ALTIMA_AC1001,
1729 1.14 enami "Altima AC1001 Gigabit Ethernet" },
1730 1.7 thorpej { PCI_VENDOR_ALTIMA,
1731 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
1732 1.7 thorpej "Altima AC9100 Gigabit Ethernet" },
1733 1.7 thorpej
1734 1.7 thorpej { PCI_VENDOR_BROADCOM,
1735 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
1736 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1737 1.7 thorpej { PCI_VENDOR_BROADCOM,
1738 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
1739 1.24 matt "Broadcom BCM5701 Gigabit Ethernet" },
1740 1.24 matt { PCI_VENDOR_BROADCOM,
1741 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702,
1742 1.24 matt "Broadcom BCM5702 Gigabit Ethernet" },
1743 1.24 matt { PCI_VENDOR_BROADCOM,
1744 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702X,
1745 1.24 matt "Broadcom BCM5702X Gigabit Ethernet" },
1746 1.24 matt { PCI_VENDOR_BROADCOM,
1747 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703,
1748 1.24 matt "Broadcom BCM5703 Gigabit Ethernet" },
1749 1.24 matt { PCI_VENDOR_BROADCOM,
1750 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703X,
1751 1.24 matt "Broadcom BCM5703X Gigabit Ethernet" },
1752 1.25 jonathan { PCI_VENDOR_BROADCOM,
1753 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704C,
1754 1.25 jonathan "Broadcom BCM5704C Dual Gigabit Ethernet" },
1755 1.25 jonathan { PCI_VENDOR_BROADCOM,
1756 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704S,
1757 1.25 jonathan "Broadcom BCM5704S Dual Gigabit Ethernet" },
1758 1.25 jonathan
1759 1.7 thorpej
1760 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
1761 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1762 1.8 thorpej "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1763 1.7 thorpej
1764 1.7 thorpej { PCI_VENDOR_3COM,
1765 1.7 thorpej PCI_PRODUCT_3COM_3C996,
1766 1.7 thorpej "3Com 3c996 Gigabit Ethernet" },
1767 1.7 thorpej
1768 1.7 thorpej { 0,
1769 1.7 thorpej 0,
1770 1.7 thorpej NULL },
1771 1.7 thorpej };
1772 1.7 thorpej
1773 1.7 thorpej static const struct bge_product *
1774 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
1775 1.7 thorpej {
1776 1.7 thorpej const struct bge_product *bp;
1777 1.7 thorpej
1778 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
1779 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1780 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1781 1.7 thorpej return (bp);
1782 1.7 thorpej }
1783 1.7 thorpej
1784 1.7 thorpej return (NULL);
1785 1.7 thorpej }
1786 1.7 thorpej
1787 1.25 jonathan int
1788 1.25 jonathan bge_setpowerstate(sc, powerlevel)
1789 1.25 jonathan struct bge_softc *sc;
1790 1.25 jonathan int powerlevel;
1791 1.25 jonathan {
1792 1.25 jonathan #ifdef NOTYET
1793 1.25 jonathan u_int32_t pm_ctl = 0;
1794 1.25 jonathan
1795 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
1796 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1797 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1798 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1799 1.25 jonathan
1800 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
1801 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1802 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
1803 1.25 jonathan pm_ctl |= (1 << 8);
1804 1.25 jonathan
1805 1.25 jonathan if (powerlevel == 0) {
1806 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
1807 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1808 1.25 jonathan pm_ctl, 2);
1809 1.25 jonathan DELAY(10000);
1810 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1811 1.25 jonathan DELAY(10000);
1812 1.25 jonathan
1813 1.25 jonathan #ifdef NOTYET
1814 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1815 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1816 1.25 jonathan #endif
1817 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
1818 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
1819 1.25 jonathan return 0;
1820 1.25 jonathan }
1821 1.25 jonathan
1822 1.25 jonathan
1823 1.25 jonathan /*
1824 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
1825 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
1826 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
1827 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
1828 1.25 jonathan */
1829 1.25 jonathan printf("%s: power state %d unimplemented; check GPIO pins\n",
1830 1.25 jonathan sc->bge_dev.dv_xname, powerlevel);
1831 1.25 jonathan #endif
1832 1.25 jonathan return EOPNOTSUPP;
1833 1.25 jonathan }
1834 1.25 jonathan
1835 1.25 jonathan
1836 1.1 fvdl /*
1837 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1838 1.1 fvdl * against our list and return its name if we find a match. Note
1839 1.1 fvdl * that since the Broadcom controller contains VPD support, we
1840 1.1 fvdl * can get the device name string from the controller itself instead
1841 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
1842 1.1 fvdl * we'll always announce the right product name.
1843 1.1 fvdl */
1844 1.1 fvdl int
1845 1.1 fvdl bge_probe(parent, match, aux)
1846 1.1 fvdl struct device *parent;
1847 1.1 fvdl struct cfdata *match;
1848 1.1 fvdl void *aux;
1849 1.1 fvdl {
1850 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1851 1.1 fvdl
1852 1.7 thorpej if (bge_lookup(pa) != NULL)
1853 1.1 fvdl return (1);
1854 1.1 fvdl
1855 1.1 fvdl return (0);
1856 1.1 fvdl }
1857 1.1 fvdl
1858 1.1 fvdl void
1859 1.1 fvdl bge_attach(parent, self, aux)
1860 1.1 fvdl struct device *parent, *self;
1861 1.1 fvdl void *aux;
1862 1.1 fvdl {
1863 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)self;
1864 1.1 fvdl struct pci_attach_args *pa = aux;
1865 1.7 thorpej const struct bge_product *bp;
1866 1.16 thorpej const struct bge_revision *br;
1867 1.1 fvdl pci_chipset_tag_t pc = pa->pa_pc;
1868 1.1 fvdl pci_intr_handle_t ih;
1869 1.1 fvdl const char *intrstr = NULL;
1870 1.1 fvdl bus_dma_segment_t seg;
1871 1.1 fvdl int rseg;
1872 1.1 fvdl u_int32_t hwcfg = 0;
1873 1.24 matt u_int32_t mac_addr = 0;
1874 1.1 fvdl u_int32_t command;
1875 1.1 fvdl struct ifnet *ifp;
1876 1.1 fvdl caddr_t kva;
1877 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
1878 1.1 fvdl pcireg_t memtype;
1879 1.1 fvdl bus_addr_t memaddr;
1880 1.1 fvdl bus_size_t memsize;
1881 1.25 jonathan u_int32_t pm_ctl;
1882 1.25 jonathan
1883 1.7 thorpej bp = bge_lookup(pa);
1884 1.7 thorpej KASSERT(bp != NULL);
1885 1.7 thorpej
1886 1.1 fvdl sc->bge_pa = *pa;
1887 1.1 fvdl
1888 1.30 thorpej aprint_naive(": Ethernet controller\n");
1889 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
1890 1.1 fvdl
1891 1.1 fvdl /*
1892 1.1 fvdl * Map control/status registers.
1893 1.1 fvdl */
1894 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
1895 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1896 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1897 1.1 fvdl pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1898 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1899 1.1 fvdl
1900 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1901 1.30 thorpej aprint_error("%s: failed to enable memory mapping!\n",
1902 1.1 fvdl sc->bge_dev.dv_xname);
1903 1.1 fvdl return;
1904 1.1 fvdl }
1905 1.1 fvdl
1906 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
1907 1.1 fvdl memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1908 1.1 fvdl switch (memtype) {
1909 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1910 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1911 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1912 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1913 1.1 fvdl &memaddr, &memsize) == 0)
1914 1.1 fvdl break;
1915 1.1 fvdl default:
1916 1.30 thorpej aprint_error("%s: can't find mem space\n",
1917 1.1 fvdl sc->bge_dev.dv_xname);
1918 1.1 fvdl return;
1919 1.1 fvdl }
1920 1.1 fvdl
1921 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
1922 1.1 fvdl if (pci_intr_map(pa, &ih)) {
1923 1.30 thorpej aprint_error("%s: couldn't map interrupt\n",
1924 1.1 fvdl sc->bge_dev.dv_xname);
1925 1.1 fvdl return;
1926 1.1 fvdl }
1927 1.1 fvdl
1928 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
1929 1.1 fvdl intrstr = pci_intr_string(pc, ih);
1930 1.1 fvdl
1931 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
1932 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1933 1.1 fvdl
1934 1.1 fvdl if (sc->bge_intrhand == NULL) {
1935 1.30 thorpej aprint_error("%s: couldn't establish interrupt",
1936 1.1 fvdl sc->bge_dev.dv_xname);
1937 1.1 fvdl if (intrstr != NULL)
1938 1.30 thorpej aprint_normal(" at %s", intrstr);
1939 1.30 thorpej aprint_normal("\n");
1940 1.1 fvdl return;
1941 1.1 fvdl }
1942 1.30 thorpej aprint_normal("%s: interrupting at %s\n",
1943 1.30 thorpej sc->bge_dev.dv_xname, intrstr);
1944 1.1 fvdl
1945 1.25 jonathan /*
1946 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1947 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
1948 1.25 jonathan * leaving the card in D3 powersave state.
1949 1.25 jonathan * We do not have memory-mapped registers in this state,
1950 1.25 jonathan * so force device into D0 state before starting initialization.
1951 1.25 jonathan */
1952 1.25 jonathan pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1953 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1954 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1955 1.25 jonathan pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1956 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
1957 1.25 jonathan
1958 1.1 fvdl /* Try to reset the chip. */
1959 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
1960 1.1 fvdl bge_reset(sc);
1961 1.1 fvdl
1962 1.1 fvdl if (bge_chipinit(sc)) {
1963 1.30 thorpej aprint_error("%s: chip initialization failed\n",
1964 1.1 fvdl sc->bge_dev.dv_xname);
1965 1.1 fvdl bge_release_resources(sc);
1966 1.1 fvdl return;
1967 1.1 fvdl }
1968 1.1 fvdl
1969 1.1 fvdl /*
1970 1.1 fvdl * Get station address from the EEPROM.
1971 1.1 fvdl */
1972 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c14);
1973 1.24 matt if ((mac_addr >> 16) == 0x484b) {
1974 1.24 matt eaddr[0] = (u_char)(mac_addr >> 8);
1975 1.24 matt eaddr[1] = (u_char)(mac_addr >> 0);
1976 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c18);
1977 1.24 matt eaddr[2] = (u_char)(mac_addr >> 24);
1978 1.24 matt eaddr[3] = (u_char)(mac_addr >> 16);
1979 1.24 matt eaddr[4] = (u_char)(mac_addr >> 8);
1980 1.24 matt eaddr[5] = (u_char)(mac_addr >> 0);
1981 1.24 matt } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1982 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1983 1.30 thorpej aprint_error("%s: failed to read station address\n",
1984 1.23 kristerw sc->bge_dev.dv_xname);
1985 1.1 fvdl bge_release_resources(sc);
1986 1.1 fvdl return;
1987 1.1 fvdl }
1988 1.1 fvdl
1989 1.1 fvdl /*
1990 1.16 thorpej * Save ASIC rev. Look up any quirks associated with this
1991 1.16 thorpej * ASIC.
1992 1.1 fvdl */
1993 1.16 thorpej sc->bge_asicrev =
1994 1.16 thorpej pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1995 1.16 thorpej BGE_PCIMISCCTL_ASICREV;
1996 1.16 thorpej br = bge_lookup_rev(sc->bge_asicrev);
1997 1.16 thorpej
1998 1.30 thorpej aprint_normal("%s: ", sc->bge_dev.dv_xname);
1999 1.16 thorpej if (br == NULL) {
2000 1.30 thorpej aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2001 1.16 thorpej sc->bge_quirks = 0;
2002 1.16 thorpej } else {
2003 1.30 thorpej aprint_normal("ASIC %s", br->br_name);
2004 1.16 thorpej sc->bge_quirks = br->br_quirks;
2005 1.16 thorpej }
2006 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2007 1.1 fvdl
2008 1.1 fvdl /* Allocate the general information block and ring buffers. */
2009 1.1 fvdl sc->bge_dmatag = pa->pa_dmat;
2010 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2011 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2012 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2013 1.30 thorpej aprint_error("%s: can't alloc rx buffers\n",
2014 1.30 thorpej sc->bge_dev.dv_xname);
2015 1.1 fvdl return;
2016 1.1 fvdl }
2017 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2018 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2019 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2020 1.1 fvdl BUS_DMA_NOWAIT)) {
2021 1.30 thorpej aprint_error("%s: can't map dma buffers (%d bytes)\n",
2022 1.1 fvdl sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2023 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2024 1.1 fvdl return;
2025 1.1 fvdl }
2026 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2027 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2028 1.1 fvdl sizeof(struct bge_ring_data), 0,
2029 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2030 1.30 thorpej aprint_error("%s: can't create dma map\n",
2031 1.30 thorpej sc->bge_dev.dv_xname);
2032 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2033 1.1 fvdl sizeof(struct bge_ring_data));
2034 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2035 1.1 fvdl return;
2036 1.1 fvdl }
2037 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2038 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2039 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2040 1.1 fvdl BUS_DMA_NOWAIT)) {
2041 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2042 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2043 1.1 fvdl sizeof(struct bge_ring_data));
2044 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2045 1.1 fvdl return;
2046 1.1 fvdl }
2047 1.1 fvdl
2048 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2049 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2050 1.1 fvdl
2051 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2052 1.1 fvdl
2053 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2054 1.1 fvdl if (bge_alloc_jumbo_mem(sc)) {
2055 1.30 thorpej aprint_error("%s: jumbo buffer allocation failed\n",
2056 1.1 fvdl sc->bge_dev.dv_xname);
2057 1.8 thorpej } else
2058 1.8 thorpej sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2059 1.1 fvdl
2060 1.1 fvdl /* Set default tuneable values. */
2061 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2062 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2063 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2064 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2065 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2066 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2067 1.25 jonathan #else
2068 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2069 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2070 1.25 jonathan #endif
2071 1.1 fvdl
2072 1.1 fvdl /* Set up ifnet structure */
2073 1.1 fvdl ifp = &sc->ethercom.ec_if;
2074 1.1 fvdl ifp->if_softc = sc;
2075 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2076 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2077 1.1 fvdl ifp->if_start = bge_start;
2078 1.1 fvdl ifp->if_init = bge_init;
2079 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2080 1.1 fvdl IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2081 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2082 1.1 fvdl DPRINTFN(5, ("bcopy\n"));
2083 1.1 fvdl strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2084 1.1 fvdl
2085 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2086 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2087 1.18 thorpej IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2088 1.1 fvdl sc->ethercom.ec_capabilities |=
2089 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2090 1.1 fvdl
2091 1.1 fvdl /*
2092 1.1 fvdl * Do MII setup.
2093 1.1 fvdl */
2094 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2095 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2096 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2097 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2098 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2099 1.1 fvdl
2100 1.1 fvdl /*
2101 1.1 fvdl * Figure out what sort of media we have by checking the
2102 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2103 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2104 1.1 fvdl * cards, this value appears to be unset. If that's the
2105 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2106 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2107 1.1 fvdl */
2108 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2109 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2110 1.35 jonathan } else {
2111 1.35 jonathan bge_read_eeprom(sc, (caddr_t)&hwcfg,
2112 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2113 1.35 jonathan hwcfg = be32toh(hwcfg);
2114 1.35 jonathan }
2115 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2116 1.1 fvdl sc->bge_tbi = 1;
2117 1.1 fvdl
2118 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2119 1.1 fvdl if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2120 1.1 fvdl SK_SUBSYSID_9D41)
2121 1.1 fvdl sc->bge_tbi = 1;
2122 1.1 fvdl
2123 1.1 fvdl if (sc->bge_tbi) {
2124 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2125 1.1 fvdl bge_ifmedia_sts);
2126 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2127 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2128 1.1 fvdl 0, NULL);
2129 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2130 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2131 1.1 fvdl } else {
2132 1.1 fvdl /*
2133 1.1 fvdl * Do transceiver setup.
2134 1.1 fvdl */
2135 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2136 1.1 fvdl bge_ifmedia_sts);
2137 1.1 fvdl mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2138 1.1 fvdl MII_PHY_ANY, MII_OFFSET_ANY, 0);
2139 1.1 fvdl
2140 1.1 fvdl if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2141 1.1 fvdl printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2142 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2143 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2144 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2145 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2146 1.1 fvdl } else
2147 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2148 1.1 fvdl IFM_ETHER|IFM_AUTO);
2149 1.1 fvdl }
2150 1.1 fvdl
2151 1.1 fvdl /*
2152 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2153 1.37 jonathan * been observed in the first few bytes of some received packets.
2154 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2155 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2156 1.37 jonathan * which do not support unaligned accesses, we will realign the
2157 1.37 jonathan * payloads by copying the received packets.
2158 1.37 jonathan */
2159 1.37 jonathan if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2160 1.37 jonathan /* If in PCI-X mode, work around the alignment bug. */
2161 1.37 jonathan if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2162 1.37 jonathan (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2163 1.37 jonathan BGE_PCISTATE_PCI_BUSSPEED)
2164 1.37 jonathan sc->bge_rx_alignment_bug = 1;
2165 1.37 jonathan }
2166 1.37 jonathan
2167 1.37 jonathan /*
2168 1.1 fvdl * Call MI attach routine.
2169 1.1 fvdl */
2170 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2171 1.1 fvdl if_attach(ifp);
2172 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2173 1.1 fvdl ether_ifattach(ifp, eaddr);
2174 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2175 1.1 fvdl callout_init(&sc->bge_timeout);
2176 1.1 fvdl }
2177 1.1 fvdl
2178 1.1 fvdl void
2179 1.1 fvdl bge_release_resources(sc)
2180 1.1 fvdl struct bge_softc *sc;
2181 1.1 fvdl {
2182 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2183 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2184 1.1 fvdl
2185 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2186 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2187 1.1 fvdl }
2188 1.1 fvdl
2189 1.1 fvdl void
2190 1.1 fvdl bge_reset(sc)
2191 1.1 fvdl struct bge_softc *sc;
2192 1.1 fvdl {
2193 1.1 fvdl struct pci_attach_args *pa = &sc->bge_pa;
2194 1.1 fvdl u_int32_t cachesize, command, pcistate;
2195 1.1 fvdl int i, val = 0;
2196 1.1 fvdl
2197 1.1 fvdl /* Save some important PCI state. */
2198 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2199 1.1 fvdl command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2200 1.1 fvdl pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2201 1.1 fvdl
2202 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2203 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2204 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2205 1.1 fvdl
2206 1.1 fvdl /* Issue global reset */
2207 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG,
2208 1.1 fvdl BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2209 1.1 fvdl
2210 1.1 fvdl DELAY(1000);
2211 1.1 fvdl
2212 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2213 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2214 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2215 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2216 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2217 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2218 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2219 1.1 fvdl
2220 1.1 fvdl /* Enable memory arbiter. */
2221 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2222 1.1 fvdl
2223 1.1 fvdl /*
2224 1.1 fvdl * Prevent PXE restart: write a magic number to the
2225 1.1 fvdl * general communications memory at 0xB50.
2226 1.1 fvdl */
2227 1.1 fvdl bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2228 1.1 fvdl
2229 1.1 fvdl /*
2230 1.1 fvdl * Poll the value location we just wrote until
2231 1.1 fvdl * we see the 1's complement of the magic number.
2232 1.1 fvdl * This indicates that the firmware initialization
2233 1.1 fvdl * is complete.
2234 1.1 fvdl */
2235 1.1 fvdl for (i = 0; i < 750; i++) {
2236 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2237 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
2238 1.1 fvdl break;
2239 1.1 fvdl DELAY(1000);
2240 1.1 fvdl }
2241 1.1 fvdl
2242 1.8 thorpej if (i == 750) {
2243 1.1 fvdl printf("%s: firmware handshake timed out, val = %x\n",
2244 1.1 fvdl sc->bge_dev.dv_xname, val);
2245 1.1 fvdl return;
2246 1.1 fvdl }
2247 1.1 fvdl
2248 1.1 fvdl /*
2249 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2250 1.1 fvdl * return to its original pre-reset state. This is a
2251 1.1 fvdl * fairly good indicator of reset completion. If we don't
2252 1.1 fvdl * wait for the reset to fully complete, trying to read
2253 1.1 fvdl * from the device's non-PCI registers may yield garbage
2254 1.1 fvdl * results.
2255 1.1 fvdl */
2256 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
2257 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2258 1.1 fvdl pcistate)
2259 1.1 fvdl break;
2260 1.1 fvdl DELAY(10);
2261 1.1 fvdl }
2262 1.1 fvdl
2263 1.1 fvdl /* Enable memory arbiter. */
2264 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2265 1.1 fvdl
2266 1.1 fvdl /* Fix up byte swapping */
2267 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2268 1.1 fvdl
2269 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2270 1.1 fvdl
2271 1.1 fvdl DELAY(10000);
2272 1.1 fvdl }
2273 1.1 fvdl
2274 1.1 fvdl /*
2275 1.1 fvdl * Frame reception handling. This is called if there's a frame
2276 1.1 fvdl * on the receive return list.
2277 1.1 fvdl *
2278 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2279 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2280 1.1 fvdl * 2) the frame is from the standard receive ring
2281 1.1 fvdl */
2282 1.1 fvdl
2283 1.1 fvdl void
2284 1.1 fvdl bge_rxeof(sc)
2285 1.1 fvdl struct bge_softc *sc;
2286 1.1 fvdl {
2287 1.1 fvdl struct ifnet *ifp;
2288 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2289 1.1 fvdl int have_tag = 0;
2290 1.1 fvdl u_int16_t vlan_tag = 0;
2291 1.1 fvdl bus_dmamap_t dmamap;
2292 1.1 fvdl bus_addr_t offset, toff;
2293 1.1 fvdl bus_size_t tlen;
2294 1.1 fvdl int tosync;
2295 1.1 fvdl
2296 1.1 fvdl ifp = &sc->ethercom.ec_if;
2297 1.1 fvdl
2298 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2299 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2300 1.1 fvdl sizeof (struct bge_status_block),
2301 1.1 fvdl BUS_DMASYNC_POSTREAD);
2302 1.1 fvdl
2303 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2304 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2305 1.1 fvdl sc->bge_rx_saved_considx;
2306 1.1 fvdl
2307 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2308 1.1 fvdl
2309 1.1 fvdl if (tosync < 0) {
2310 1.1 fvdl tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2311 1.1 fvdl sizeof (struct bge_rx_bd);
2312 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2313 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2314 1.1 fvdl tosync = -tosync;
2315 1.1 fvdl }
2316 1.1 fvdl
2317 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2318 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
2319 1.1 fvdl BUS_DMASYNC_POSTREAD);
2320 1.1 fvdl
2321 1.1 fvdl while(sc->bge_rx_saved_considx !=
2322 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2323 1.1 fvdl struct bge_rx_bd *cur_rx;
2324 1.1 fvdl u_int32_t rxidx;
2325 1.1 fvdl struct mbuf *m = NULL;
2326 1.1 fvdl
2327 1.1 fvdl cur_rx = &sc->bge_rdata->
2328 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2329 1.1 fvdl
2330 1.1 fvdl rxidx = cur_rx->bge_idx;
2331 1.1 fvdl BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2332 1.1 fvdl
2333 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2334 1.1 fvdl have_tag = 1;
2335 1.1 fvdl vlan_tag = cur_rx->bge_vlan_tag;
2336 1.1 fvdl }
2337 1.1 fvdl
2338 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2339 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2340 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2341 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2342 1.1 fvdl jumbocnt++;
2343 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2344 1.1 fvdl ifp->if_ierrors++;
2345 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2346 1.1 fvdl continue;
2347 1.1 fvdl }
2348 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2349 1.1 fvdl NULL)== ENOBUFS) {
2350 1.1 fvdl ifp->if_ierrors++;
2351 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2352 1.1 fvdl continue;
2353 1.1 fvdl }
2354 1.1 fvdl } else {
2355 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2356 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2357 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2358 1.1 fvdl stdcnt++;
2359 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2360 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2361 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2362 1.1 fvdl ifp->if_ierrors++;
2363 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2364 1.1 fvdl continue;
2365 1.1 fvdl }
2366 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2367 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2368 1.1 fvdl ifp->if_ierrors++;
2369 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2370 1.1 fvdl continue;
2371 1.1 fvdl }
2372 1.1 fvdl }
2373 1.1 fvdl
2374 1.1 fvdl ifp->if_ipackets++;
2375 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
2376 1.37 jonathan /*
2377 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2378 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
2379 1.37 jonathan * If our CPU requires alignment, re-align by copying.
2380 1.37 jonathan */
2381 1.37 jonathan if (sc->bge_rx_alignment_bug) {
2382 1.37 jonathan memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2383 1.37 jonathan cur_rx->bge_len);
2384 1.37 jonathan m->m_data += ETHER_ALIGN;
2385 1.37 jonathan }
2386 1.37 jonathan #endif
2387 1.37 jonathan
2388 1.1 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2389 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2390 1.1 fvdl
2391 1.1 fvdl #if NBPFILTER > 0
2392 1.1 fvdl /*
2393 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2394 1.1 fvdl */
2395 1.1 fvdl if (ifp->if_bpf)
2396 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2397 1.1 fvdl #endif
2398 1.1 fvdl
2399 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2400 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2401 1.2 fvdl if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2402 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2403 1.4 fvdl #if 0 /* XXX appears to be broken */
2404 1.2 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2405 1.2 fvdl m->m_pkthdr.csum_data =
2406 1.2 fvdl cur_rx->bge_tcp_udp_csum;
2407 1.2 fvdl m->m_pkthdr.csum_flags |=
2408 1.2 fvdl (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2409 1.2 fvdl }
2410 1.4 fvdl #endif
2411 1.1 fvdl }
2412 1.1 fvdl
2413 1.1 fvdl /*
2414 1.1 fvdl * If we received a packet with a vlan tag, pass it
2415 1.1 fvdl * to vlan_input() instead of ether_input().
2416 1.1 fvdl */
2417 1.1 fvdl if (have_tag) {
2418 1.28 itojun struct m_tag *mtag;
2419 1.1 fvdl
2420 1.28 itojun mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2421 1.28 itojun M_NOWAIT);
2422 1.28 itojun if (mtag != NULL) {
2423 1.28 itojun *(u_int *)(mtag + 1) = vlan_tag;
2424 1.28 itojun m_tag_prepend(m, mtag);
2425 1.1 fvdl have_tag = vlan_tag = 0;
2426 1.1 fvdl } else {
2427 1.1 fvdl printf("%s: no mbuf for tag\n", ifp->if_xname);
2428 1.1 fvdl m_freem(m);
2429 1.1 fvdl have_tag = vlan_tag = 0;
2430 1.1 fvdl continue;
2431 1.1 fvdl }
2432 1.1 fvdl }
2433 1.1 fvdl (*ifp->if_input)(ifp, m);
2434 1.1 fvdl }
2435 1.1 fvdl
2436 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2437 1.1 fvdl if (stdcnt)
2438 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2439 1.1 fvdl if (jumbocnt)
2440 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2441 1.1 fvdl }
2442 1.1 fvdl
2443 1.1 fvdl void
2444 1.1 fvdl bge_txeof(sc)
2445 1.1 fvdl struct bge_softc *sc;
2446 1.1 fvdl {
2447 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
2448 1.1 fvdl struct ifnet *ifp;
2449 1.1 fvdl struct txdmamap_pool_entry *dma;
2450 1.1 fvdl bus_addr_t offset, toff;
2451 1.1 fvdl bus_size_t tlen;
2452 1.1 fvdl int tosync;
2453 1.1 fvdl struct mbuf *m;
2454 1.1 fvdl
2455 1.1 fvdl ifp = &sc->ethercom.ec_if;
2456 1.1 fvdl
2457 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2458 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2459 1.1 fvdl sizeof (struct bge_status_block),
2460 1.1 fvdl BUS_DMASYNC_POSTREAD);
2461 1.1 fvdl
2462 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
2463 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2464 1.1 fvdl sc->bge_tx_saved_considx;
2465 1.1 fvdl
2466 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2467 1.1 fvdl
2468 1.1 fvdl if (tosync < 0) {
2469 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2470 1.1 fvdl sizeof (struct bge_tx_bd);
2471 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2472 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2473 1.1 fvdl tosync = -tosync;
2474 1.1 fvdl }
2475 1.1 fvdl
2476 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2477 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
2478 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2479 1.1 fvdl
2480 1.1 fvdl /*
2481 1.1 fvdl * Go through our tx ring and free mbufs for those
2482 1.1 fvdl * frames that have been sent.
2483 1.1 fvdl */
2484 1.1 fvdl while (sc->bge_tx_saved_considx !=
2485 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2486 1.1 fvdl u_int32_t idx = 0;
2487 1.1 fvdl
2488 1.1 fvdl idx = sc->bge_tx_saved_considx;
2489 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2490 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2491 1.1 fvdl ifp->if_opackets++;
2492 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
2493 1.1 fvdl if (m != NULL) {
2494 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
2495 1.1 fvdl dma = sc->txdma[idx];
2496 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2497 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2498 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2499 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2500 1.1 fvdl sc->txdma[idx] = NULL;
2501 1.1 fvdl
2502 1.1 fvdl m_freem(m);
2503 1.1 fvdl }
2504 1.1 fvdl sc->bge_txcnt--;
2505 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2506 1.1 fvdl ifp->if_timer = 0;
2507 1.1 fvdl }
2508 1.1 fvdl
2509 1.1 fvdl if (cur_tx != NULL)
2510 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2511 1.1 fvdl }
2512 1.1 fvdl
2513 1.1 fvdl int
2514 1.1 fvdl bge_intr(xsc)
2515 1.1 fvdl void *xsc;
2516 1.1 fvdl {
2517 1.1 fvdl struct bge_softc *sc;
2518 1.1 fvdl struct ifnet *ifp;
2519 1.1 fvdl
2520 1.1 fvdl sc = xsc;
2521 1.1 fvdl ifp = &sc->ethercom.ec_if;
2522 1.1 fvdl
2523 1.1 fvdl #ifdef notdef
2524 1.1 fvdl /* Avoid this for now -- checking this register is expensive. */
2525 1.1 fvdl /* Make sure this is really our interrupt. */
2526 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2527 1.1 fvdl return (0);
2528 1.1 fvdl #endif
2529 1.1 fvdl /* Ack interrupt and stop others from occuring. */
2530 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2531 1.1 fvdl
2532 1.1 fvdl /*
2533 1.1 fvdl * Process link state changes.
2534 1.1 fvdl * Grrr. The link status word in the status block does
2535 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
2536 1.1 fvdl * according to all avaibable information. Hence, we have
2537 1.1 fvdl * to enable MII interrupts in order to properly obtain
2538 1.1 fvdl * async link changes. Unfortunately, this also means that
2539 1.1 fvdl * we have to read the MAC status register to detect link
2540 1.1 fvdl * changes, thereby adding an additional register access to
2541 1.1 fvdl * the interrupt handler.
2542 1.1 fvdl */
2543 1.1 fvdl
2544 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2545 1.1 fvdl u_int32_t status;
2546 1.1 fvdl
2547 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
2548 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
2549 1.1 fvdl sc->bge_link = 0;
2550 1.1 fvdl callout_stop(&sc->bge_timeout);
2551 1.1 fvdl bge_tick(sc);
2552 1.1 fvdl /* Clear the interrupt */
2553 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2554 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
2555 1.1 fvdl bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2556 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2557 1.1 fvdl BRGPHY_INTRS);
2558 1.1 fvdl }
2559 1.1 fvdl } else {
2560 1.1 fvdl if (sc->bge_rdata->bge_status_block.bge_status &
2561 1.1 fvdl BGE_STATFLAG_LINKSTATE_CHANGED) {
2562 1.1 fvdl sc->bge_link = 0;
2563 1.1 fvdl callout_stop(&sc->bge_timeout);
2564 1.1 fvdl bge_tick(sc);
2565 1.1 fvdl /* Clear the interrupt */
2566 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2567 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
2568 1.1 fvdl }
2569 1.1 fvdl }
2570 1.1 fvdl
2571 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2572 1.1 fvdl /* Check RX return ring producer/consumer */
2573 1.1 fvdl bge_rxeof(sc);
2574 1.1 fvdl
2575 1.1 fvdl /* Check TX ring producer/consumer */
2576 1.1 fvdl bge_txeof(sc);
2577 1.1 fvdl }
2578 1.1 fvdl
2579 1.1 fvdl bge_handle_events(sc);
2580 1.1 fvdl
2581 1.1 fvdl /* Re-enable interrupts. */
2582 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2583 1.1 fvdl
2584 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2585 1.1 fvdl bge_start(ifp);
2586 1.1 fvdl
2587 1.1 fvdl return (1);
2588 1.1 fvdl }
2589 1.1 fvdl
2590 1.1 fvdl void
2591 1.1 fvdl bge_tick(xsc)
2592 1.1 fvdl void *xsc;
2593 1.1 fvdl {
2594 1.1 fvdl struct bge_softc *sc = xsc;
2595 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2596 1.1 fvdl struct ifmedia *ifm = NULL;
2597 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2598 1.1 fvdl int s;
2599 1.1 fvdl
2600 1.1 fvdl s = splnet();
2601 1.1 fvdl
2602 1.1 fvdl bge_stats_update(sc);
2603 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2604 1.1 fvdl if (sc->bge_link) {
2605 1.1 fvdl splx(s);
2606 1.1 fvdl return;
2607 1.1 fvdl }
2608 1.1 fvdl
2609 1.1 fvdl if (sc->bge_tbi) {
2610 1.1 fvdl ifm = &sc->bge_ifmedia;
2611 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2612 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
2613 1.1 fvdl sc->bge_link++;
2614 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2615 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2616 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2617 1.1 fvdl bge_start(ifp);
2618 1.1 fvdl }
2619 1.1 fvdl splx(s);
2620 1.1 fvdl return;
2621 1.1 fvdl }
2622 1.1 fvdl
2623 1.1 fvdl mii_tick(mii);
2624 1.1 fvdl
2625 1.1 fvdl if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2626 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2627 1.1 fvdl sc->bge_link++;
2628 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2629 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2630 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2631 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2632 1.1 fvdl bge_start(ifp);
2633 1.1 fvdl }
2634 1.1 fvdl
2635 1.1 fvdl splx(s);
2636 1.1 fvdl }
2637 1.1 fvdl
2638 1.1 fvdl void
2639 1.1 fvdl bge_stats_update(sc)
2640 1.1 fvdl struct bge_softc *sc;
2641 1.1 fvdl {
2642 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2643 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2644 1.1 fvdl
2645 1.1 fvdl #define READ_STAT(sc, stats, stat) \
2646 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2647 1.1 fvdl
2648 1.1 fvdl ifp->if_collisions +=
2649 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2650 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2651 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2652 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2653 1.1 fvdl ifp->if_collisions;
2654 1.1 fvdl
2655 1.1 fvdl #undef READ_STAT
2656 1.1 fvdl
2657 1.1 fvdl #ifdef notdef
2658 1.1 fvdl ifp->if_collisions +=
2659 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2660 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2661 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2662 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2663 1.1 fvdl ifp->if_collisions;
2664 1.1 fvdl #endif
2665 1.1 fvdl }
2666 1.1 fvdl
2667 1.1 fvdl /*
2668 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2669 1.1 fvdl * pointers to descriptors.
2670 1.1 fvdl */
2671 1.1 fvdl int
2672 1.1 fvdl bge_encap(sc, m_head, txidx)
2673 1.1 fvdl struct bge_softc *sc;
2674 1.1 fvdl struct mbuf *m_head;
2675 1.1 fvdl u_int32_t *txidx;
2676 1.1 fvdl {
2677 1.1 fvdl struct bge_tx_bd *f = NULL;
2678 1.1 fvdl u_int32_t frag, cur, cnt = 0;
2679 1.1 fvdl u_int16_t csum_flags = 0;
2680 1.1 fvdl struct txdmamap_pool_entry *dma;
2681 1.1 fvdl bus_dmamap_t dmamap;
2682 1.1 fvdl int i = 0;
2683 1.29 itojun struct m_tag *mtag;
2684 1.29 itojun struct mbuf *prev, *m;
2685 1.29 itojun int totlen, prevlen;
2686 1.1 fvdl
2687 1.1 fvdl cur = frag = *txidx;
2688 1.1 fvdl
2689 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
2690 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2691 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2692 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2693 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2694 1.1 fvdl }
2695 1.1 fvdl
2696 1.25 jonathan if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2697 1.29 itojun goto doit;
2698 1.25 jonathan /*
2699 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
2700 1.25 jonathan * less than eight bytes. If we encounter a teeny mbuf
2701 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
2702 1.25 jonathan */
2703 1.25 jonathan prev = NULL;
2704 1.25 jonathan totlen = 0;
2705 1.25 jonathan for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2706 1.25 jonathan int mlen = m->m_len;
2707 1.25 jonathan
2708 1.25 jonathan totlen += mlen;
2709 1.25 jonathan if (mlen == 0) {
2710 1.25 jonathan /* print a warning? */
2711 1.25 jonathan continue;
2712 1.25 jonathan }
2713 1.25 jonathan if (mlen >= 8)
2714 1.25 jonathan continue;
2715 1.25 jonathan
2716 1.25 jonathan /* If we get here, mbuf data is too small for DMA engine. */
2717 1.25 jonathan if (m->m_next != 0) {
2718 1.25 jonathan /* Internal frag. If fits in prev, copy it there. */
2719 1.25 jonathan if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2720 1.29 itojun !M_READONLY(prev)) {
2721 1.25 jonathan bcopy(m->m_data,
2722 1.25 jonathan prev->m_data+prev->m_len,
2723 1.25 jonathan mlen);
2724 1.25 jonathan prev->m_len += mlen;
2725 1.25 jonathan m->m_len = 0;
2726 1.25 jonathan MFREE(m, prev->m_next); /* XXX stitch chain */
2727 1.25 jonathan m = prev;
2728 1.25 jonathan continue;
2729 1.25 jonathan } else {
2730 1.25 jonathan struct mbuf *n;
2731 1.25 jonathan /* slow copy */
2732 1.25 jonathan slowcopy:
2733 1.25 jonathan n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2734 1.25 jonathan m_freem(m_head);
2735 1.25 jonathan if (n == 0)
2736 1.25 jonathan return 0;
2737 1.25 jonathan m_head = n;
2738 1.25 jonathan goto doit;
2739 1.25 jonathan }
2740 1.25 jonathan } else if ((totlen -mlen +8) >= 1500) {
2741 1.25 jonathan goto slowcopy;
2742 1.25 jonathan }
2743 1.25 jonathan prevlen = m->m_len;
2744 1.25 jonathan }
2745 1.25 jonathan
2746 1.25 jonathan doit:
2747 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
2748 1.1 fvdl if (dma == NULL)
2749 1.1 fvdl return ENOBUFS;
2750 1.1 fvdl dmamap = dma->dmamap;
2751 1.1 fvdl
2752 1.1 fvdl /*
2753 1.1 fvdl * Start packing the mbufs in this chain into
2754 1.1 fvdl * the fragment pointers. Stop when we run out
2755 1.1 fvdl * of fragments or hit the end of the mbuf chain.
2756 1.1 fvdl */
2757 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2758 1.1 fvdl BUS_DMA_NOWAIT))
2759 1.1 fvdl return(ENOBUFS);
2760 1.1 fvdl
2761 1.28 itojun mtag = sc->ethercom.ec_nvlans ?
2762 1.28 itojun m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2763 1.6 thorpej
2764 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
2765 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
2766 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2767 1.1 fvdl break;
2768 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2769 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
2770 1.1 fvdl f->bge_flags = csum_flags;
2771 1.1 fvdl
2772 1.28 itojun if (mtag != NULL) {
2773 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2774 1.28 itojun f->bge_vlan_tag = *(u_int *)(mtag + 1);
2775 1.1 fvdl } else {
2776 1.1 fvdl f->bge_vlan_tag = 0;
2777 1.1 fvdl }
2778 1.1 fvdl /*
2779 1.1 fvdl * Sanity check: avoid coming within 16 descriptors
2780 1.1 fvdl * of the end of the ring.
2781 1.1 fvdl */
2782 1.1 fvdl if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2783 1.1 fvdl return(ENOBUFS);
2784 1.1 fvdl cur = frag;
2785 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
2786 1.1 fvdl cnt++;
2787 1.1 fvdl }
2788 1.1 fvdl
2789 1.1 fvdl if (i < dmamap->dm_nsegs)
2790 1.1 fvdl return ENOBUFS;
2791 1.1 fvdl
2792 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2793 1.1 fvdl BUS_DMASYNC_PREWRITE);
2794 1.1 fvdl
2795 1.1 fvdl if (frag == sc->bge_tx_saved_considx)
2796 1.1 fvdl return(ENOBUFS);
2797 1.1 fvdl
2798 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2799 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
2800 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2801 1.1 fvdl sc->txdma[cur] = dma;
2802 1.1 fvdl sc->bge_txcnt += cnt;
2803 1.1 fvdl
2804 1.1 fvdl *txidx = frag;
2805 1.1 fvdl
2806 1.1 fvdl return(0);
2807 1.1 fvdl }
2808 1.1 fvdl
2809 1.1 fvdl /*
2810 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2811 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
2812 1.1 fvdl */
2813 1.1 fvdl void
2814 1.1 fvdl bge_start(ifp)
2815 1.1 fvdl struct ifnet *ifp;
2816 1.1 fvdl {
2817 1.1 fvdl struct bge_softc *sc;
2818 1.1 fvdl struct mbuf *m_head = NULL;
2819 1.1 fvdl u_int32_t prodidx = 0;
2820 1.1 fvdl int pkts = 0;
2821 1.1 fvdl
2822 1.1 fvdl sc = ifp->if_softc;
2823 1.1 fvdl
2824 1.1 fvdl if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2825 1.1 fvdl return;
2826 1.1 fvdl
2827 1.1 fvdl prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2828 1.1 fvdl
2829 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2830 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
2831 1.1 fvdl if (m_head == NULL)
2832 1.1 fvdl break;
2833 1.1 fvdl
2834 1.1 fvdl #if 0
2835 1.1 fvdl /*
2836 1.1 fvdl * XXX
2837 1.1 fvdl * safety overkill. If this is a fragmented packet chain
2838 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
2839 1.1 fvdl * it if we have enough descriptors to handle the entire
2840 1.1 fvdl * chain at once.
2841 1.1 fvdl * (paranoia -- may not actually be needed)
2842 1.1 fvdl */
2843 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
2844 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2845 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2846 1.1 fvdl m_head->m_pkthdr.csum_data + 16) {
2847 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2848 1.1 fvdl break;
2849 1.1 fvdl }
2850 1.1 fvdl }
2851 1.1 fvdl #endif
2852 1.1 fvdl
2853 1.1 fvdl /*
2854 1.1 fvdl * Pack the data into the transmit ring. If we
2855 1.1 fvdl * don't have room, set the OACTIVE flag and wait
2856 1.1 fvdl * for the NIC to drain the ring.
2857 1.1 fvdl */
2858 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
2859 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2860 1.1 fvdl break;
2861 1.1 fvdl }
2862 1.1 fvdl
2863 1.1 fvdl /* now we are committed to transmit the packet */
2864 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
2865 1.1 fvdl pkts++;
2866 1.1 fvdl
2867 1.1 fvdl #if NBPFILTER > 0
2868 1.1 fvdl /*
2869 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
2870 1.1 fvdl * to him.
2871 1.1 fvdl */
2872 1.1 fvdl if (ifp->if_bpf)
2873 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
2874 1.1 fvdl #endif
2875 1.1 fvdl }
2876 1.1 fvdl if (pkts == 0)
2877 1.1 fvdl return;
2878 1.1 fvdl
2879 1.1 fvdl /* Transmit */
2880 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2881 1.29 itojun if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2882 1.29 itojun CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2883 1.1 fvdl
2884 1.1 fvdl /*
2885 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
2886 1.1 fvdl */
2887 1.1 fvdl ifp->if_timer = 5;
2888 1.1 fvdl }
2889 1.1 fvdl
2890 1.1 fvdl int
2891 1.1 fvdl bge_init(ifp)
2892 1.1 fvdl struct ifnet *ifp;
2893 1.1 fvdl {
2894 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2895 1.1 fvdl u_int16_t *m;
2896 1.1 fvdl int s, error;
2897 1.1 fvdl
2898 1.1 fvdl s = splnet();
2899 1.1 fvdl
2900 1.1 fvdl ifp = &sc->ethercom.ec_if;
2901 1.1 fvdl
2902 1.1 fvdl /* Cancel pending I/O and flush buffers. */
2903 1.1 fvdl bge_stop(sc);
2904 1.1 fvdl bge_reset(sc);
2905 1.1 fvdl bge_chipinit(sc);
2906 1.1 fvdl
2907 1.1 fvdl /*
2908 1.1 fvdl * Init the various state machines, ring
2909 1.1 fvdl * control blocks and firmware.
2910 1.1 fvdl */
2911 1.1 fvdl error = bge_blockinit(sc);
2912 1.1 fvdl if (error != 0) {
2913 1.1 fvdl printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2914 1.1 fvdl error);
2915 1.1 fvdl splx(s);
2916 1.1 fvdl return error;
2917 1.1 fvdl }
2918 1.1 fvdl
2919 1.1 fvdl ifp = &sc->ethercom.ec_if;
2920 1.1 fvdl
2921 1.1 fvdl /* Specify MTU. */
2922 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2923 1.1 fvdl ETHER_HDR_LEN + ETHER_CRC_LEN);
2924 1.1 fvdl
2925 1.1 fvdl /* Load our MAC address. */
2926 1.1 fvdl m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2927 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2928 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2929 1.1 fvdl
2930 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
2931 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
2932 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2933 1.1 fvdl } else {
2934 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2935 1.1 fvdl }
2936 1.1 fvdl
2937 1.1 fvdl /* Program multicast filter. */
2938 1.1 fvdl bge_setmulti(sc);
2939 1.1 fvdl
2940 1.1 fvdl /* Init RX ring. */
2941 1.1 fvdl bge_init_rx_ring_std(sc);
2942 1.1 fvdl
2943 1.1 fvdl /* Init jumbo RX ring. */
2944 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2945 1.1 fvdl bge_init_rx_ring_jumbo(sc);
2946 1.1 fvdl
2947 1.1 fvdl /* Init our RX return ring index */
2948 1.1 fvdl sc->bge_rx_saved_considx = 0;
2949 1.1 fvdl
2950 1.1 fvdl /* Init TX ring. */
2951 1.1 fvdl bge_init_tx_ring(sc);
2952 1.1 fvdl
2953 1.1 fvdl /* Turn on transmitter */
2954 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2955 1.1 fvdl
2956 1.1 fvdl /* Turn on receiver */
2957 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2958 1.1 fvdl
2959 1.1 fvdl /* Tell firmware we're alive. */
2960 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2961 1.1 fvdl
2962 1.1 fvdl /* Enable host interrupts. */
2963 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2964 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2965 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2966 1.1 fvdl
2967 1.1 fvdl bge_ifmedia_upd(ifp);
2968 1.1 fvdl
2969 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
2970 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2971 1.1 fvdl
2972 1.1 fvdl splx(s);
2973 1.1 fvdl
2974 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2975 1.1 fvdl
2976 1.1 fvdl return 0;
2977 1.1 fvdl }
2978 1.1 fvdl
2979 1.1 fvdl /*
2980 1.1 fvdl * Set media options.
2981 1.1 fvdl */
2982 1.1 fvdl int
2983 1.1 fvdl bge_ifmedia_upd(ifp)
2984 1.1 fvdl struct ifnet *ifp;
2985 1.1 fvdl {
2986 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2987 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2988 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
2989 1.1 fvdl
2990 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
2991 1.1 fvdl if (sc->bge_tbi) {
2992 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2993 1.1 fvdl return(EINVAL);
2994 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
2995 1.1 fvdl case IFM_AUTO:
2996 1.1 fvdl break;
2997 1.1 fvdl case IFM_1000_SX:
2998 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2999 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
3000 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3001 1.1 fvdl } else {
3002 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
3003 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3004 1.1 fvdl }
3005 1.1 fvdl break;
3006 1.1 fvdl default:
3007 1.1 fvdl return(EINVAL);
3008 1.1 fvdl }
3009 1.1 fvdl return(0);
3010 1.1 fvdl }
3011 1.1 fvdl
3012 1.1 fvdl sc->bge_link = 0;
3013 1.1 fvdl mii_mediachg(mii);
3014 1.1 fvdl
3015 1.1 fvdl return(0);
3016 1.1 fvdl }
3017 1.1 fvdl
3018 1.1 fvdl /*
3019 1.1 fvdl * Report current media status.
3020 1.1 fvdl */
3021 1.1 fvdl void
3022 1.1 fvdl bge_ifmedia_sts(ifp, ifmr)
3023 1.1 fvdl struct ifnet *ifp;
3024 1.1 fvdl struct ifmediareq *ifmr;
3025 1.1 fvdl {
3026 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3027 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3028 1.1 fvdl
3029 1.1 fvdl if (sc->bge_tbi) {
3030 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
3031 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
3032 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3033 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
3034 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
3035 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
3036 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3037 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
3038 1.1 fvdl else
3039 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
3040 1.1 fvdl return;
3041 1.1 fvdl }
3042 1.1 fvdl
3043 1.1 fvdl mii_pollstat(mii);
3044 1.1 fvdl ifmr->ifm_active = mii->mii_media_active;
3045 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
3046 1.1 fvdl }
3047 1.1 fvdl
3048 1.1 fvdl int
3049 1.1 fvdl bge_ioctl(ifp, command, data)
3050 1.1 fvdl struct ifnet *ifp;
3051 1.1 fvdl u_long command;
3052 1.1 fvdl caddr_t data;
3053 1.1 fvdl {
3054 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3055 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
3056 1.1 fvdl int s, error = 0;
3057 1.1 fvdl struct mii_data *mii;
3058 1.1 fvdl
3059 1.1 fvdl s = splnet();
3060 1.1 fvdl
3061 1.1 fvdl switch(command) {
3062 1.1 fvdl case SIOCSIFFLAGS:
3063 1.1 fvdl if (ifp->if_flags & IFF_UP) {
3064 1.1 fvdl /*
3065 1.1 fvdl * If only the state of the PROMISC flag changed,
3066 1.1 fvdl * then just use the 'set promisc mode' command
3067 1.1 fvdl * instead of reinitializing the entire NIC. Doing
3068 1.1 fvdl * a full re-init means reloading the firmware and
3069 1.1 fvdl * waiting for it to start up, which may take a
3070 1.1 fvdl * second or two.
3071 1.1 fvdl */
3072 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
3073 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
3074 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
3075 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
3076 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3077 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
3078 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
3079 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
3080 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
3081 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3082 1.1 fvdl } else
3083 1.1 fvdl bge_init(ifp);
3084 1.1 fvdl } else {
3085 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3086 1.1 fvdl bge_stop(sc);
3087 1.1 fvdl }
3088 1.1 fvdl }
3089 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
3090 1.1 fvdl error = 0;
3091 1.1 fvdl break;
3092 1.1 fvdl case SIOCSIFMEDIA:
3093 1.1 fvdl case SIOCGIFMEDIA:
3094 1.1 fvdl if (sc->bge_tbi) {
3095 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3096 1.1 fvdl command);
3097 1.1 fvdl } else {
3098 1.1 fvdl mii = &sc->bge_mii;
3099 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3100 1.1 fvdl command);
3101 1.1 fvdl }
3102 1.1 fvdl error = 0;
3103 1.1 fvdl break;
3104 1.1 fvdl default:
3105 1.1 fvdl error = ether_ioctl(ifp, command, data);
3106 1.1 fvdl if (error == ENETRESET) {
3107 1.1 fvdl bge_setmulti(sc);
3108 1.1 fvdl error = 0;
3109 1.1 fvdl }
3110 1.1 fvdl break;
3111 1.1 fvdl }
3112 1.1 fvdl
3113 1.1 fvdl splx(s);
3114 1.1 fvdl
3115 1.1 fvdl return(error);
3116 1.1 fvdl }
3117 1.1 fvdl
3118 1.1 fvdl void
3119 1.1 fvdl bge_watchdog(ifp)
3120 1.1 fvdl struct ifnet *ifp;
3121 1.1 fvdl {
3122 1.1 fvdl struct bge_softc *sc;
3123 1.1 fvdl
3124 1.1 fvdl sc = ifp->if_softc;
3125 1.1 fvdl
3126 1.1 fvdl printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3127 1.1 fvdl
3128 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
3129 1.1 fvdl bge_init(ifp);
3130 1.1 fvdl
3131 1.1 fvdl ifp->if_oerrors++;
3132 1.1 fvdl }
3133 1.1 fvdl
3134 1.11 thorpej static void
3135 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3136 1.11 thorpej {
3137 1.11 thorpej int i;
3138 1.11 thorpej
3139 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
3140 1.11 thorpej
3141 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
3142 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
3143 1.11 thorpej return;
3144 1.11 thorpej delay(100);
3145 1.11 thorpej }
3146 1.11 thorpej
3147 1.11 thorpej printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3148 1.11 thorpej sc->bge_dev.dv_xname, (u_long) reg, bit);
3149 1.11 thorpej }
3150 1.11 thorpej
3151 1.1 fvdl /*
3152 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
3153 1.1 fvdl * RX and TX lists.
3154 1.1 fvdl */
3155 1.1 fvdl void
3156 1.1 fvdl bge_stop(sc)
3157 1.1 fvdl struct bge_softc *sc;
3158 1.1 fvdl {
3159 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3160 1.1 fvdl
3161 1.1 fvdl callout_stop(&sc->bge_timeout);
3162 1.1 fvdl
3163 1.1 fvdl /*
3164 1.1 fvdl * Disable all of the receiver blocks
3165 1.1 fvdl */
3166 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3167 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3168 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3169 1.11 thorpej bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3170 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3171 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3172 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3173 1.1 fvdl
3174 1.1 fvdl /*
3175 1.1 fvdl * Disable all of the transmit blocks
3176 1.1 fvdl */
3177 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3178 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3179 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3180 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3181 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3182 1.11 thorpej bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3183 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3184 1.1 fvdl
3185 1.1 fvdl /*
3186 1.1 fvdl * Shut down all of the memory managers and related
3187 1.1 fvdl * state machines.
3188 1.1 fvdl */
3189 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3190 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3191 1.11 thorpej bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3192 1.11 thorpej
3193 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3194 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3195 1.11 thorpej
3196 1.11 thorpej bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3197 1.11 thorpej bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3198 1.1 fvdl
3199 1.1 fvdl /* Disable host interrupts. */
3200 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3201 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3202 1.1 fvdl
3203 1.1 fvdl /*
3204 1.1 fvdl * Tell firmware we're shutting down.
3205 1.1 fvdl */
3206 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3207 1.1 fvdl
3208 1.1 fvdl /* Free the RX lists. */
3209 1.1 fvdl bge_free_rx_ring_std(sc);
3210 1.1 fvdl
3211 1.1 fvdl /* Free jumbo RX list. */
3212 1.1 fvdl bge_free_rx_ring_jumbo(sc);
3213 1.1 fvdl
3214 1.1 fvdl /* Free TX buffers. */
3215 1.1 fvdl bge_free_tx_ring(sc);
3216 1.1 fvdl
3217 1.1 fvdl /*
3218 1.1 fvdl * Isolate/power down the PHY.
3219 1.1 fvdl */
3220 1.1 fvdl if (!sc->bge_tbi)
3221 1.1 fvdl mii_down(&sc->bge_mii);
3222 1.1 fvdl
3223 1.1 fvdl sc->bge_link = 0;
3224 1.1 fvdl
3225 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3226 1.1 fvdl
3227 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3228 1.1 fvdl }
3229 1.1 fvdl
3230 1.1 fvdl /*
3231 1.1 fvdl * Stop all chip I/O so that the kernel's probe routines don't
3232 1.1 fvdl * get confused by errant DMAs when rebooting.
3233 1.1 fvdl */
3234 1.1 fvdl void
3235 1.1 fvdl bge_shutdown(xsc)
3236 1.1 fvdl void *xsc;
3237 1.1 fvdl {
3238 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)xsc;
3239 1.1 fvdl
3240 1.1 fvdl bge_stop(sc);
3241 1.1 fvdl bge_reset(sc);
3242 1.1 fvdl }
3243