if_bge.c revision 1.4 1 1.4 fvdl /* $NetBSD: if_bge.c,v 1.4 2002/06/27 22:10:11 fvdl Exp $ */
2 1.1 fvdl /*
3 1.1 fvdl * Copyright (c) 2001 Wind River Systems
4 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
5 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 fvdl *
7 1.1 fvdl * Redistribution and use in source and binary forms, with or without
8 1.1 fvdl * modification, are permitted provided that the following conditions
9 1.1 fvdl * are met:
10 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.1 fvdl * notice, this list of conditions and the following disclaimer.
12 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.1 fvdl * documentation and/or other materials provided with the distribution.
15 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
16 1.1 fvdl * must display the following acknowledgement:
17 1.1 fvdl * This product includes software developed by Bill Paul.
18 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 fvdl * may be used to endorse or promote products derived from this software
20 1.1 fvdl * without specific prior written permission.
21 1.1 fvdl *
22 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 fvdl *
34 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
35 1.1 fvdl */
36 1.1 fvdl
37 1.1 fvdl /*
38 1.1 fvdl * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39 1.1 fvdl *
40 1.1 fvdl * Written by Bill Paul <wpaul (at) windriver.com>
41 1.1 fvdl * Senior Engineer, Wind River Systems
42 1.1 fvdl */
43 1.1 fvdl
44 1.1 fvdl /*
45 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
46 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
47 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
48 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
49 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
50 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
51 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
52 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
53 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
54 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
55 1.1 fvdl * into the driver.
56 1.1 fvdl *
57 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
58 1.1 fvdl * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
59 1.1 fvdl *
60 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
61 1.1 fvdl * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
62 1.1 fvdl * does not support external SSRAM.
63 1.1 fvdl *
64 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
65 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
66 1.1 fvdl *
67 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
68 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
69 1.1 fvdl * that these features are simply not available on the BCM5701. As a
70 1.1 fvdl * result, this driver does not implement any support for the mini RX
71 1.1 fvdl * ring.
72 1.1 fvdl */
73 1.1 fvdl
74 1.1 fvdl #include "bpfilter.h"
75 1.1 fvdl #include "vlan.h"
76 1.1 fvdl
77 1.1 fvdl #include <sys/param.h>
78 1.1 fvdl #include <sys/systm.h>
79 1.1 fvdl #include <sys/callout.h>
80 1.1 fvdl #include <sys/sockio.h>
81 1.1 fvdl #include <sys/mbuf.h>
82 1.1 fvdl #include <sys/malloc.h>
83 1.1 fvdl #include <sys/kernel.h>
84 1.1 fvdl #include <sys/device.h>
85 1.1 fvdl #include <sys/socket.h>
86 1.1 fvdl
87 1.1 fvdl #include <net/if.h>
88 1.1 fvdl #include <net/if_dl.h>
89 1.1 fvdl #include <net/if_media.h>
90 1.1 fvdl #include <net/if_ether.h>
91 1.1 fvdl
92 1.1 fvdl #ifdef INET
93 1.1 fvdl #include <netinet/in.h>
94 1.1 fvdl #include <netinet/in_systm.h>
95 1.1 fvdl #include <netinet/in_var.h>
96 1.1 fvdl #include <netinet/ip.h>
97 1.1 fvdl #endif
98 1.1 fvdl
99 1.1 fvdl #if NBPFILTER > 0
100 1.1 fvdl #include <net/bpf.h>
101 1.1 fvdl #endif
102 1.1 fvdl
103 1.1 fvdl #include <dev/pci/pcireg.h>
104 1.1 fvdl #include <dev/pci/pcivar.h>
105 1.1 fvdl #include <dev/pci/pcidevs.h>
106 1.1 fvdl
107 1.1 fvdl #include <dev/mii/mii.h>
108 1.1 fvdl #include <dev/mii/miivar.h>
109 1.1 fvdl #include <dev/mii/miidevs.h>
110 1.1 fvdl #include <dev/mii/brgphyreg.h>
111 1.1 fvdl
112 1.1 fvdl #include <dev/pci/if_bgereg.h>
113 1.1 fvdl
114 1.1 fvdl #include <uvm/uvm_extern.h>
115 1.1 fvdl
116 1.1 fvdl /* #define BGE_CHECKSUM */
117 1.1 fvdl
118 1.1 fvdl int bge_probe(struct device *, struct cfdata *, void *);
119 1.1 fvdl void bge_attach(struct device *, struct device *, void *);
120 1.1 fvdl void bge_release_resources(struct bge_softc *);
121 1.1 fvdl void bge_txeof(struct bge_softc *);
122 1.1 fvdl void bge_rxeof(struct bge_softc *);
123 1.1 fvdl
124 1.1 fvdl void bge_tick(void *);
125 1.1 fvdl void bge_stats_update(struct bge_softc *);
126 1.1 fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
127 1.1 fvdl
128 1.1 fvdl int bge_intr(void *);
129 1.1 fvdl void bge_start(struct ifnet *);
130 1.1 fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
131 1.1 fvdl int bge_init(struct ifnet *);
132 1.1 fvdl void bge_stop(struct bge_softc *);
133 1.1 fvdl void bge_watchdog(struct ifnet *);
134 1.1 fvdl void bge_shutdown(void *);
135 1.1 fvdl int bge_ifmedia_upd(struct ifnet *);
136 1.1 fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
137 1.1 fvdl
138 1.1 fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
139 1.1 fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
140 1.1 fvdl
141 1.1 fvdl u_int32_t bge_crc(struct bge_softc *, caddr_t);
142 1.1 fvdl void bge_setmulti(struct bge_softc *);
143 1.1 fvdl
144 1.1 fvdl void bge_handle_events(struct bge_softc *);
145 1.1 fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
146 1.1 fvdl void bge_free_jumbo_mem(struct bge_softc *);
147 1.1 fvdl void *bge_jalloc(struct bge_softc *);
148 1.1 fvdl void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
149 1.1 fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
150 1.1 fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
151 1.1 fvdl int bge_init_rx_ring_std(struct bge_softc *);
152 1.1 fvdl void bge_free_rx_ring_std(struct bge_softc *);
153 1.1 fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
154 1.1 fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
155 1.1 fvdl void bge_free_tx_ring(struct bge_softc *);
156 1.1 fvdl int bge_init_tx_ring(struct bge_softc *);
157 1.1 fvdl
158 1.1 fvdl int bge_chipinit(struct bge_softc *);
159 1.1 fvdl int bge_blockinit(struct bge_softc *);
160 1.1 fvdl
161 1.1 fvdl #ifdef notdef
162 1.1 fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
163 1.1 fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
164 1.1 fvdl void bge_vpd_read(struct bge_softc *);
165 1.1 fvdl #endif
166 1.1 fvdl
167 1.1 fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
168 1.1 fvdl void bge_writemem_ind(struct bge_softc *, int, int);
169 1.1 fvdl #ifdef notdef
170 1.1 fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
171 1.1 fvdl #endif
172 1.1 fvdl void bge_writereg_ind(struct bge_softc *, int, int);
173 1.1 fvdl
174 1.1 fvdl int bge_miibus_readreg(struct device *, int, int);
175 1.1 fvdl void bge_miibus_writereg(struct device *, int, int, int);
176 1.1 fvdl void bge_miibus_statchg(struct device *);
177 1.1 fvdl
178 1.1 fvdl void bge_reset(struct bge_softc *);
179 1.1 fvdl void bge_phy_hack(struct bge_softc *);
180 1.1 fvdl
181 1.1 fvdl void bge_dump_status(struct bge_softc *);
182 1.1 fvdl void bge_dump_rxbd(struct bge_rx_bd *);
183 1.1 fvdl
184 1.1 fvdl #define BGE_DEBUG
185 1.1 fvdl #ifdef BGE_DEBUG
186 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
187 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
188 1.1 fvdl int bgedebug = 0;
189 1.1 fvdl #else
190 1.1 fvdl #define DPRINTF(x)
191 1.1 fvdl #define DPRINTFN(n,x)
192 1.1 fvdl #endif
193 1.1 fvdl
194 1.1 fvdl struct cfattach bge_ca = {
195 1.1 fvdl sizeof(struct bge_softc), bge_probe, bge_attach
196 1.1 fvdl };
197 1.1 fvdl
198 1.1 fvdl u_int32_t
199 1.1 fvdl bge_readmem_ind(sc, off)
200 1.1 fvdl struct bge_softc *sc;
201 1.1 fvdl int off;
202 1.1 fvdl {
203 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
204 1.1 fvdl pcireg_t val;
205 1.1 fvdl
206 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
207 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
208 1.1 fvdl return val;
209 1.1 fvdl }
210 1.1 fvdl
211 1.1 fvdl void
212 1.1 fvdl bge_writemem_ind(sc, off, val)
213 1.1 fvdl struct bge_softc *sc;
214 1.1 fvdl int off, val;
215 1.1 fvdl {
216 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
217 1.1 fvdl
218 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
219 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
220 1.1 fvdl }
221 1.1 fvdl
222 1.1 fvdl #ifdef notdef
223 1.1 fvdl u_int32_t
224 1.1 fvdl bge_readreg_ind(sc, off)
225 1.1 fvdl struct bge_softc *sc;
226 1.1 fvdl int off;
227 1.1 fvdl {
228 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
229 1.1 fvdl
230 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
231 1.1 fvdl return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
232 1.1 fvdl }
233 1.1 fvdl #endif
234 1.1 fvdl
235 1.1 fvdl void
236 1.1 fvdl bge_writereg_ind(sc, off, val)
237 1.1 fvdl struct bge_softc *sc;
238 1.1 fvdl int off, val;
239 1.1 fvdl {
240 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
241 1.1 fvdl
242 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
243 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
244 1.1 fvdl }
245 1.1 fvdl
246 1.1 fvdl #ifdef notdef
247 1.1 fvdl u_int8_t
248 1.1 fvdl bge_vpd_readbyte(sc, addr)
249 1.1 fvdl struct bge_softc *sc;
250 1.1 fvdl int addr;
251 1.1 fvdl {
252 1.1 fvdl int i;
253 1.1 fvdl u_int32_t val;
254 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
255 1.1 fvdl
256 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
257 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
258 1.1 fvdl DELAY(10);
259 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
260 1.1 fvdl BGE_VPD_FLAG)
261 1.1 fvdl break;
262 1.1 fvdl }
263 1.1 fvdl
264 1.1 fvdl if (i == BGE_TIMEOUT) {
265 1.1 fvdl printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
266 1.1 fvdl return(0);
267 1.1 fvdl }
268 1.1 fvdl
269 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
270 1.1 fvdl
271 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
272 1.1 fvdl }
273 1.1 fvdl
274 1.1 fvdl void
275 1.1 fvdl bge_vpd_read_res(sc, res, addr)
276 1.1 fvdl struct bge_softc *sc;
277 1.1 fvdl struct vpd_res *res;
278 1.1 fvdl int addr;
279 1.1 fvdl {
280 1.1 fvdl int i;
281 1.1 fvdl u_int8_t *ptr;
282 1.1 fvdl
283 1.1 fvdl ptr = (u_int8_t *)res;
284 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
285 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
286 1.1 fvdl }
287 1.1 fvdl
288 1.1 fvdl void
289 1.1 fvdl bge_vpd_read(sc)
290 1.1 fvdl struct bge_softc *sc;
291 1.1 fvdl {
292 1.1 fvdl int pos = 0, i;
293 1.1 fvdl struct vpd_res res;
294 1.1 fvdl
295 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
296 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
297 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
298 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
299 1.1 fvdl sc->bge_vpd_prodname = NULL;
300 1.1 fvdl sc->bge_vpd_readonly = NULL;
301 1.1 fvdl
302 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
303 1.1 fvdl
304 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
305 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
306 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
307 1.1 fvdl return;
308 1.1 fvdl }
309 1.1 fvdl
310 1.1 fvdl pos += sizeof(res);
311 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
312 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
313 1.1 fvdl panic("bge_vpd_read");
314 1.1 fvdl for (i = 0; i < res.vr_len; i++)
315 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
316 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
317 1.1 fvdl pos += i;
318 1.1 fvdl
319 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
320 1.1 fvdl
321 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
322 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
323 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
324 1.1 fvdl return;
325 1.1 fvdl }
326 1.1 fvdl
327 1.1 fvdl pos += sizeof(res);
328 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
329 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
330 1.1 fvdl panic("bge_vpd_read");
331 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
332 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
333 1.1 fvdl }
334 1.1 fvdl #endif
335 1.1 fvdl
336 1.1 fvdl /*
337 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
338 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
339 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
340 1.1 fvdl * access method.
341 1.1 fvdl */
342 1.1 fvdl u_int8_t
343 1.1 fvdl bge_eeprom_getbyte(sc, addr, dest)
344 1.1 fvdl struct bge_softc *sc;
345 1.1 fvdl int addr;
346 1.1 fvdl u_int8_t *dest;
347 1.1 fvdl {
348 1.1 fvdl int i;
349 1.1 fvdl u_int32_t byte = 0;
350 1.1 fvdl
351 1.1 fvdl /*
352 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
353 1.1 fvdl * having to use the bitbang method.
354 1.1 fvdl */
355 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
356 1.1 fvdl
357 1.1 fvdl /* Reset the EEPROM, load the clock period. */
358 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
359 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
360 1.1 fvdl DELAY(20);
361 1.1 fvdl
362 1.1 fvdl /* Issue the read EEPROM command. */
363 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
364 1.1 fvdl
365 1.1 fvdl /* Wait for completion */
366 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
367 1.1 fvdl DELAY(10);
368 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
369 1.1 fvdl break;
370 1.1 fvdl }
371 1.1 fvdl
372 1.1 fvdl if (i == BGE_TIMEOUT) {
373 1.1 fvdl printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
374 1.1 fvdl return(0);
375 1.1 fvdl }
376 1.1 fvdl
377 1.1 fvdl /* Get result. */
378 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
379 1.1 fvdl
380 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
381 1.1 fvdl
382 1.1 fvdl return(0);
383 1.1 fvdl }
384 1.1 fvdl
385 1.1 fvdl /*
386 1.1 fvdl * Read a sequence of bytes from the EEPROM.
387 1.1 fvdl */
388 1.1 fvdl int
389 1.1 fvdl bge_read_eeprom(sc, dest, off, cnt)
390 1.1 fvdl struct bge_softc *sc;
391 1.1 fvdl caddr_t dest;
392 1.1 fvdl int off;
393 1.1 fvdl int cnt;
394 1.1 fvdl {
395 1.1 fvdl int err = 0, i;
396 1.1 fvdl u_int8_t byte = 0;
397 1.1 fvdl
398 1.1 fvdl for (i = 0; i < cnt; i++) {
399 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
400 1.1 fvdl if (err)
401 1.1 fvdl break;
402 1.1 fvdl *(dest + i) = byte;
403 1.1 fvdl }
404 1.1 fvdl
405 1.1 fvdl return(err ? 1 : 0);
406 1.1 fvdl }
407 1.1 fvdl
408 1.1 fvdl int
409 1.1 fvdl bge_miibus_readreg(dev, phy, reg)
410 1.1 fvdl struct device *dev;
411 1.1 fvdl int phy, reg;
412 1.1 fvdl {
413 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
414 1.1 fvdl struct ifnet *ifp;
415 1.1 fvdl u_int32_t val;
416 1.1 fvdl int i;
417 1.1 fvdl
418 1.1 fvdl ifp = &sc->ethercom.ec_if;
419 1.1 fvdl
420 1.1 fvdl if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
421 1.1 fvdl return(0);
422 1.1 fvdl
423 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
424 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
425 1.1 fvdl
426 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
427 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
428 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
429 1.1 fvdl break;
430 1.1 fvdl }
431 1.1 fvdl
432 1.1 fvdl if (i == BGE_TIMEOUT) {
433 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
434 1.1 fvdl return(0);
435 1.1 fvdl }
436 1.1 fvdl
437 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
438 1.1 fvdl
439 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
440 1.1 fvdl return(0);
441 1.1 fvdl
442 1.1 fvdl return(val & 0xFFFF);
443 1.1 fvdl }
444 1.1 fvdl
445 1.1 fvdl void
446 1.1 fvdl bge_miibus_writereg(dev, phy, reg, val)
447 1.1 fvdl struct device *dev;
448 1.1 fvdl int phy, reg, val;
449 1.1 fvdl {
450 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
451 1.1 fvdl int i;
452 1.1 fvdl
453 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
454 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
455 1.1 fvdl
456 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
457 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
458 1.1 fvdl break;
459 1.1 fvdl }
460 1.1 fvdl
461 1.1 fvdl if (i == BGE_TIMEOUT) {
462 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 1.1 fvdl }
464 1.1 fvdl }
465 1.1 fvdl
466 1.1 fvdl void
467 1.1 fvdl bge_miibus_statchg(dev)
468 1.1 fvdl struct device *dev;
469 1.1 fvdl {
470 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
471 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
472 1.1 fvdl
473 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
474 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
475 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
476 1.1 fvdl } else {
477 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
478 1.1 fvdl }
479 1.1 fvdl
480 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
481 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
482 1.1 fvdl } else {
483 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
484 1.1 fvdl }
485 1.1 fvdl
486 1.1 fvdl bge_phy_hack(sc);
487 1.1 fvdl }
488 1.1 fvdl
489 1.1 fvdl /*
490 1.1 fvdl * Handle events that have triggered interrupts.
491 1.1 fvdl */
492 1.1 fvdl void
493 1.1 fvdl bge_handle_events(sc)
494 1.1 fvdl struct bge_softc *sc;
495 1.1 fvdl {
496 1.1 fvdl
497 1.1 fvdl return;
498 1.1 fvdl }
499 1.1 fvdl
500 1.1 fvdl /*
501 1.1 fvdl * Memory management for jumbo frames.
502 1.1 fvdl */
503 1.1 fvdl
504 1.1 fvdl int
505 1.1 fvdl bge_alloc_jumbo_mem(sc)
506 1.1 fvdl struct bge_softc *sc;
507 1.1 fvdl {
508 1.1 fvdl caddr_t ptr, kva;
509 1.1 fvdl bus_dma_segment_t seg;
510 1.1 fvdl int i, rseg, state, error;
511 1.1 fvdl struct bge_jpool_entry *entry;
512 1.1 fvdl
513 1.1 fvdl state = error = 0;
514 1.1 fvdl
515 1.1 fvdl /* Grab a big chunk o' storage. */
516 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
517 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
518 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
519 1.1 fvdl return ENOBUFS;
520 1.1 fvdl }
521 1.1 fvdl
522 1.1 fvdl state = 1;
523 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
524 1.1 fvdl BUS_DMA_NOWAIT)) {
525 1.1 fvdl printf("%s: can't map dma buffers (%d bytes)\n",
526 1.1 fvdl sc->bge_dev.dv_xname, (int)BGE_JMEM);
527 1.1 fvdl error = ENOBUFS;
528 1.1 fvdl goto out;
529 1.1 fvdl }
530 1.1 fvdl
531 1.1 fvdl state = 2;
532 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
533 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
534 1.1 fvdl printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
535 1.1 fvdl error = ENOBUFS;
536 1.1 fvdl goto out;
537 1.1 fvdl }
538 1.1 fvdl
539 1.1 fvdl state = 3;
540 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
541 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
542 1.1 fvdl printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
543 1.1 fvdl error = ENOBUFS;
544 1.1 fvdl goto out;
545 1.1 fvdl }
546 1.1 fvdl
547 1.1 fvdl state = 4;
548 1.1 fvdl sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
549 1.1 fvdl DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
550 1.1 fvdl
551 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
552 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
553 1.1 fvdl
554 1.1 fvdl /*
555 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
556 1.1 fvdl * in an array.
557 1.1 fvdl */
558 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
559 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
560 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
561 1.1 fvdl ptr += BGE_JLEN;
562 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
563 1.1 fvdl M_DEVBUF, M_NOWAIT);
564 1.1 fvdl if (entry == NULL) {
565 1.1 fvdl printf("%s: no memory for jumbo buffer queue!\n",
566 1.1 fvdl sc->bge_dev.dv_xname);
567 1.1 fvdl error = ENOBUFS;
568 1.1 fvdl goto out;
569 1.1 fvdl }
570 1.1 fvdl entry->slot = i;
571 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
572 1.1 fvdl entry, jpool_entries);
573 1.1 fvdl }
574 1.1 fvdl out:
575 1.1 fvdl if (error != 0) {
576 1.1 fvdl switch (state) {
577 1.1 fvdl case 4:
578 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
579 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
580 1.1 fvdl case 3:
581 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
582 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
583 1.1 fvdl case 2:
584 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
585 1.1 fvdl case 1:
586 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
587 1.1 fvdl break;
588 1.1 fvdl default:
589 1.1 fvdl break;
590 1.1 fvdl }
591 1.1 fvdl }
592 1.1 fvdl
593 1.1 fvdl return error;
594 1.1 fvdl }
595 1.1 fvdl
596 1.1 fvdl /*
597 1.1 fvdl * Allocate a jumbo buffer.
598 1.1 fvdl */
599 1.1 fvdl void *
600 1.1 fvdl bge_jalloc(sc)
601 1.1 fvdl struct bge_softc *sc;
602 1.1 fvdl {
603 1.1 fvdl struct bge_jpool_entry *entry;
604 1.1 fvdl
605 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
606 1.1 fvdl
607 1.1 fvdl if (entry == NULL) {
608 1.1 fvdl printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
609 1.1 fvdl return(NULL);
610 1.1 fvdl }
611 1.1 fvdl
612 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
613 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
614 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
615 1.1 fvdl }
616 1.1 fvdl
617 1.1 fvdl /*
618 1.1 fvdl * Release a jumbo buffer.
619 1.1 fvdl */
620 1.1 fvdl void
621 1.1 fvdl bge_jfree(m, buf, size, arg)
622 1.1 fvdl struct mbuf *m;
623 1.1 fvdl caddr_t buf;
624 1.1 fvdl u_int size;
625 1.1 fvdl void *arg;
626 1.1 fvdl {
627 1.1 fvdl struct bge_jpool_entry *entry;
628 1.1 fvdl struct bge_softc *sc;
629 1.1 fvdl int i, s;
630 1.1 fvdl
631 1.1 fvdl /* Extract the softc struct pointer. */
632 1.1 fvdl sc = (struct bge_softc *)arg;
633 1.1 fvdl
634 1.1 fvdl if (sc == NULL)
635 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
636 1.1 fvdl
637 1.1 fvdl /* calculate the slot this buffer belongs to */
638 1.1 fvdl
639 1.1 fvdl i = ((caddr_t)buf
640 1.1 fvdl - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
641 1.1 fvdl
642 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
643 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
644 1.1 fvdl
645 1.1 fvdl s = splvm();
646 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
647 1.1 fvdl if (entry == NULL)
648 1.1 fvdl panic("bge_jfree: buffer not in use!");
649 1.1 fvdl entry->slot = i;
650 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
651 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
652 1.1 fvdl
653 1.1 fvdl if (__predict_true(m != NULL))
654 1.1 fvdl pool_cache_put(&mbpool_cache, m);
655 1.1 fvdl splx(s);
656 1.1 fvdl }
657 1.1 fvdl
658 1.1 fvdl
659 1.1 fvdl /*
660 1.1 fvdl * Intialize a standard receive ring descriptor.
661 1.1 fvdl */
662 1.1 fvdl int
663 1.1 fvdl bge_newbuf_std(sc, i, m, dmamap)
664 1.1 fvdl struct bge_softc *sc;
665 1.1 fvdl int i;
666 1.1 fvdl struct mbuf *m;
667 1.1 fvdl bus_dmamap_t dmamap;
668 1.1 fvdl {
669 1.1 fvdl struct mbuf *m_new = NULL;
670 1.1 fvdl struct bge_rx_bd *r;
671 1.1 fvdl int error;
672 1.1 fvdl
673 1.1 fvdl if (dmamap == NULL) {
674 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
675 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
676 1.1 fvdl if (error != 0)
677 1.1 fvdl return error;
678 1.1 fvdl }
679 1.1 fvdl
680 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
681 1.1 fvdl
682 1.1 fvdl if (m == NULL) {
683 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
684 1.1 fvdl if (m_new == NULL) {
685 1.1 fvdl return(ENOBUFS);
686 1.1 fvdl }
687 1.1 fvdl
688 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
689 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
690 1.1 fvdl m_freem(m_new);
691 1.1 fvdl return(ENOBUFS);
692 1.1 fvdl }
693 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
694 1.1 fvdl
695 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
696 1.1 fvdl BUS_DMA_READ|BUS_DMA_NOWAIT))
697 1.1 fvdl return(ENOBUFS);
698 1.1 fvdl } else {
699 1.1 fvdl m_new = m;
700 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
701 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
702 1.1 fvdl }
703 1.1 fvdl
704 1.1 fvdl m_adj(m_new, ETHER_ALIGN);
705 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
706 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
707 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
708 1.1 fvdl dmamap->dm_segs[0].ds_addr + ETHER_ALIGN);
709 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
710 1.1 fvdl r->bge_len = m_new->m_len;
711 1.1 fvdl r->bge_idx = i;
712 1.1 fvdl
713 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
714 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
715 1.1 fvdl i * sizeof (struct bge_rx_bd),
716 1.1 fvdl sizeof (struct bge_rx_bd),
717 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
718 1.1 fvdl
719 1.1 fvdl return(0);
720 1.1 fvdl }
721 1.1 fvdl
722 1.1 fvdl /*
723 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
724 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
725 1.1 fvdl */
726 1.1 fvdl int
727 1.1 fvdl bge_newbuf_jumbo(sc, i, m)
728 1.1 fvdl struct bge_softc *sc;
729 1.1 fvdl int i;
730 1.1 fvdl struct mbuf *m;
731 1.1 fvdl {
732 1.1 fvdl struct mbuf *m_new = NULL;
733 1.1 fvdl struct bge_rx_bd *r;
734 1.1 fvdl
735 1.1 fvdl if (m == NULL) {
736 1.1 fvdl caddr_t *buf = NULL;
737 1.1 fvdl
738 1.1 fvdl /* Allocate the mbuf. */
739 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
740 1.1 fvdl if (m_new == NULL) {
741 1.1 fvdl return(ENOBUFS);
742 1.1 fvdl }
743 1.1 fvdl
744 1.1 fvdl /* Allocate the jumbo buffer */
745 1.1 fvdl buf = bge_jalloc(sc);
746 1.1 fvdl if (buf == NULL) {
747 1.1 fvdl m_freem(m_new);
748 1.1 fvdl printf("%s: jumbo allocation failed "
749 1.1 fvdl "-- packet dropped!\n", sc->bge_dev.dv_xname);
750 1.1 fvdl return(ENOBUFS);
751 1.1 fvdl }
752 1.1 fvdl
753 1.1 fvdl /* Attach the buffer to the mbuf. */
754 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
755 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
756 1.1 fvdl bge_jfree, sc);
757 1.1 fvdl } else {
758 1.1 fvdl m_new = m;
759 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
760 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
761 1.1 fvdl }
762 1.1 fvdl
763 1.1 fvdl m_adj(m_new, ETHER_ALIGN);
764 1.1 fvdl /* Set up the descriptor. */
765 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
766 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
767 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
768 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
769 1.1 fvdl r->bge_len = m_new->m_len;
770 1.1 fvdl r->bge_idx = i;
771 1.1 fvdl
772 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
773 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
774 1.1 fvdl i * sizeof (struct bge_rx_bd),
775 1.1 fvdl sizeof (struct bge_rx_bd),
776 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
777 1.1 fvdl
778 1.1 fvdl return(0);
779 1.1 fvdl }
780 1.1 fvdl
781 1.1 fvdl /*
782 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
783 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
784 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
785 1.1 fvdl * the NIC.
786 1.1 fvdl */
787 1.1 fvdl int
788 1.1 fvdl bge_init_rx_ring_std(sc)
789 1.1 fvdl struct bge_softc *sc;
790 1.1 fvdl {
791 1.1 fvdl int i;
792 1.1 fvdl
793 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
794 1.1 fvdl return 0;
795 1.1 fvdl
796 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
797 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
798 1.1 fvdl return(ENOBUFS);
799 1.1 fvdl }
800 1.1 fvdl
801 1.1 fvdl sc->bge_std = i - 1;
802 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
803 1.1 fvdl
804 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
805 1.1 fvdl
806 1.1 fvdl return(0);
807 1.1 fvdl }
808 1.1 fvdl
809 1.1 fvdl void
810 1.1 fvdl bge_free_rx_ring_std(sc)
811 1.1 fvdl struct bge_softc *sc;
812 1.1 fvdl {
813 1.1 fvdl int i;
814 1.1 fvdl
815 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
816 1.1 fvdl return;
817 1.1 fvdl
818 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
819 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
820 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
821 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
822 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
823 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
824 1.1 fvdl }
825 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
826 1.1 fvdl sizeof(struct bge_rx_bd));
827 1.1 fvdl }
828 1.1 fvdl
829 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
830 1.1 fvdl }
831 1.1 fvdl
832 1.1 fvdl int
833 1.1 fvdl bge_init_rx_ring_jumbo(sc)
834 1.1 fvdl struct bge_softc *sc;
835 1.1 fvdl {
836 1.1 fvdl int i;
837 1.1 fvdl struct bge_rcb *rcb;
838 1.1 fvdl struct bge_rcb_opaque *rcbo;
839 1.1 fvdl
840 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
841 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
842 1.1 fvdl return(ENOBUFS);
843 1.1 fvdl };
844 1.1 fvdl
845 1.1 fvdl sc->bge_jumbo = i - 1;
846 1.1 fvdl
847 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
848 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
849 1.1 fvdl rcb->bge_flags = 0;
850 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
851 1.1 fvdl
852 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
853 1.1 fvdl
854 1.1 fvdl return(0);
855 1.1 fvdl }
856 1.1 fvdl
857 1.1 fvdl void
858 1.1 fvdl bge_free_rx_ring_jumbo(sc)
859 1.1 fvdl struct bge_softc *sc;
860 1.1 fvdl {
861 1.1 fvdl int i;
862 1.1 fvdl
863 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
864 1.1 fvdl return;
865 1.1 fvdl
866 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
867 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
868 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
869 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
870 1.1 fvdl }
871 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
872 1.1 fvdl sizeof(struct bge_rx_bd));
873 1.1 fvdl }
874 1.1 fvdl
875 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
876 1.1 fvdl }
877 1.1 fvdl
878 1.1 fvdl void
879 1.1 fvdl bge_free_tx_ring(sc)
880 1.1 fvdl struct bge_softc *sc;
881 1.1 fvdl {
882 1.1 fvdl int i, freed;
883 1.1 fvdl struct txdmamap_pool_entry *dma;
884 1.1 fvdl
885 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
886 1.1 fvdl return;
887 1.1 fvdl
888 1.1 fvdl freed = 0;
889 1.1 fvdl
890 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
891 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
892 1.1 fvdl freed++;
893 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
894 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
895 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
896 1.1 fvdl link);
897 1.1 fvdl sc->txdma[i] = 0;
898 1.1 fvdl }
899 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
900 1.1 fvdl sizeof(struct bge_tx_bd));
901 1.1 fvdl }
902 1.1 fvdl
903 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
904 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
905 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
906 1.1 fvdl free(dma, M_DEVBUF);
907 1.1 fvdl }
908 1.1 fvdl
909 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
910 1.1 fvdl }
911 1.1 fvdl
912 1.1 fvdl int
913 1.1 fvdl bge_init_tx_ring(sc)
914 1.1 fvdl struct bge_softc *sc;
915 1.1 fvdl {
916 1.1 fvdl int i;
917 1.1 fvdl bus_dmamap_t dmamap;
918 1.1 fvdl struct txdmamap_pool_entry *dma;
919 1.1 fvdl
920 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
921 1.1 fvdl return 0;
922 1.1 fvdl
923 1.1 fvdl sc->bge_txcnt = 0;
924 1.1 fvdl sc->bge_tx_saved_considx = 0;
925 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
926 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
927 1.1 fvdl
928 1.1 fvdl SLIST_INIT(&sc->txdma_list);
929 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
930 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
931 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
932 1.1 fvdl &dmamap))
933 1.1 fvdl return(ENOBUFS);
934 1.1 fvdl if (dmamap == NULL)
935 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
936 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
937 1.1 fvdl if (dma == NULL) {
938 1.1 fvdl printf("%s: can't alloc txdmamap_pool_entry\n",
939 1.1 fvdl sc->bge_dev.dv_xname);
940 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
941 1.1 fvdl return (ENOMEM);
942 1.1 fvdl }
943 1.1 fvdl dma->dmamap = dmamap;
944 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
945 1.1 fvdl }
946 1.1 fvdl
947 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
948 1.1 fvdl
949 1.1 fvdl return(0);
950 1.1 fvdl }
951 1.1 fvdl
952 1.1 fvdl #define BGE_POLY 0xEDB88320
953 1.1 fvdl
954 1.1 fvdl u_int32_t
955 1.1 fvdl bge_crc(sc, addr)
956 1.1 fvdl struct bge_softc *sc;
957 1.1 fvdl caddr_t addr;
958 1.1 fvdl {
959 1.1 fvdl u_int32_t idx, bit, data, crc;
960 1.1 fvdl
961 1.1 fvdl /* Compute CRC for the address value. */
962 1.1 fvdl crc = 0xFFFFFFFF; /* initial value */
963 1.1 fvdl
964 1.1 fvdl for (idx = 0; idx < 6; idx++) {
965 1.1 fvdl for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
966 1.1 fvdl crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
967 1.1 fvdl }
968 1.1 fvdl
969 1.1 fvdl return(crc & 0x7F);
970 1.1 fvdl }
971 1.1 fvdl
972 1.1 fvdl void
973 1.1 fvdl bge_setmulti(sc)
974 1.1 fvdl struct bge_softc *sc;
975 1.1 fvdl {
976 1.1 fvdl struct ethercom *ac = &sc->ethercom;
977 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
978 1.1 fvdl struct ether_multi *enm;
979 1.1 fvdl struct ether_multistep step;
980 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
981 1.1 fvdl u_int32_t h;
982 1.1 fvdl int i;
983 1.1 fvdl
984 1.1 fvdl if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
985 1.1 fvdl for (i = 0; i < 4; i++)
986 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
987 1.1 fvdl return;
988 1.1 fvdl }
989 1.1 fvdl
990 1.1 fvdl /* First, zot all the existing filters. */
991 1.1 fvdl for (i = 0; i < 4; i++)
992 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
993 1.1 fvdl
994 1.1 fvdl /* Now program new ones. */
995 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
996 1.1 fvdl while (enm != NULL) {
997 1.1 fvdl h = bge_crc(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
998 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
999 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1000 1.1 fvdl }
1001 1.1 fvdl
1002 1.1 fvdl for (i = 0; i < 4; i++)
1003 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1004 1.1 fvdl }
1005 1.1 fvdl
1006 1.1 fvdl int bge_swapbits[] = {
1007 1.1 fvdl 0,
1008 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1009 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1010 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1011 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1012 1.1 fvdl
1013 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1014 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1015 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1016 1.1 fvdl
1017 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1018 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1019 1.1 fvdl
1020 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1021 1.1 fvdl
1022 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1023 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1024 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1025 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1026 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1027 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1028 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1029 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1030 1.1 fvdl
1031 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1032 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1033 1.1 fvdl };
1034 1.1 fvdl
1035 1.1 fvdl int bge_swapindex = 0;
1036 1.1 fvdl
1037 1.1 fvdl /*
1038 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1039 1.1 fvdl * self-test results.
1040 1.1 fvdl */
1041 1.1 fvdl int
1042 1.1 fvdl bge_chipinit(sc)
1043 1.1 fvdl struct bge_softc *sc;
1044 1.1 fvdl {
1045 1.1 fvdl u_int32_t cachesize;
1046 1.1 fvdl int i;
1047 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
1048 1.1 fvdl
1049 1.1 fvdl
1050 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1051 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1052 1.1 fvdl BGE_INIT);
1053 1.1 fvdl
1054 1.1 fvdl /*
1055 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1056 1.1 fvdl * self-tests passed.
1057 1.1 fvdl */
1058 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1059 1.1 fvdl printf("%s: RX CPU self-diagnostics failed!\n",
1060 1.1 fvdl sc->bge_dev.dv_xname);
1061 1.1 fvdl return(ENODEV);
1062 1.1 fvdl }
1063 1.1 fvdl
1064 1.1 fvdl /* Clear the MAC control register */
1065 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1066 1.1 fvdl
1067 1.1 fvdl /*
1068 1.1 fvdl * Clear the MAC statistics block in the NIC's
1069 1.1 fvdl * internal memory.
1070 1.1 fvdl */
1071 1.1 fvdl for (i = BGE_STATS_BLOCK;
1072 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1073 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1074 1.1 fvdl
1075 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1076 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1077 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1078 1.1 fvdl
1079 1.1 fvdl /* Set up the PCI DMA control register. */
1080 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1081 1.1 fvdl BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1082 1.1 fvdl
1083 1.1 fvdl /*
1084 1.1 fvdl * Set up general mode register.
1085 1.1 fvdl */
1086 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1087 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1088 1.1 fvdl BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1089 1.1 fvdl BGE_MODECTL_RX_NO_PHDR_CSUM);
1090 1.1 fvdl
1091 1.1 fvdl /* Get cache line size. */
1092 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1093 1.1 fvdl
1094 1.1 fvdl /*
1095 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1096 1.1 fvdl */
1097 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1098 1.1 fvdl PCIM_CMD_MWIEN) {
1099 1.1 fvdl switch(cachesize) {
1100 1.1 fvdl case 1:
1101 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1102 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1103 1.1 fvdl break;
1104 1.1 fvdl case 2:
1105 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1106 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1107 1.1 fvdl break;
1108 1.1 fvdl case 4:
1109 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1110 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1111 1.1 fvdl break;
1112 1.1 fvdl case 8:
1113 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1114 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1115 1.1 fvdl break;
1116 1.1 fvdl case 16:
1117 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1118 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1119 1.1 fvdl break;
1120 1.1 fvdl case 32:
1121 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1122 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1123 1.1 fvdl break;
1124 1.1 fvdl case 64:
1125 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1126 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1127 1.1 fvdl break;
1128 1.1 fvdl default:
1129 1.1 fvdl /* Disable PCI memory write and invalidate. */
1130 1.1 fvdl #if 0
1131 1.1 fvdl if (bootverbose)
1132 1.1 fvdl printf("%s: cache line size %d not "
1133 1.1 fvdl "supported; disabling PCI MWI\n",
1134 1.1 fvdl sc->bge_dev.dv_xname, cachesize);
1135 1.1 fvdl #endif
1136 1.1 fvdl PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1137 1.1 fvdl PCIM_CMD_MWIEN);
1138 1.1 fvdl break;
1139 1.1 fvdl }
1140 1.1 fvdl }
1141 1.1 fvdl
1142 1.1 fvdl #ifdef __brokenalpha__
1143 1.1 fvdl /*
1144 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1145 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1146 1.1 fvdl * restriction on some ALPHA platforms with early revision
1147 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1148 1.1 fvdl */
1149 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1150 1.1 fvdl #endif
1151 1.1 fvdl
1152 1.1 fvdl /* Set the timer prescaler (always 66Mhz) */
1153 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1154 1.1 fvdl
1155 1.1 fvdl return(0);
1156 1.1 fvdl }
1157 1.1 fvdl
1158 1.1 fvdl int
1159 1.1 fvdl bge_blockinit(sc)
1160 1.1 fvdl struct bge_softc *sc;
1161 1.1 fvdl {
1162 1.1 fvdl struct bge_rcb *rcb;
1163 1.1 fvdl struct bge_rcb_opaque *rcbo;
1164 1.1 fvdl bus_size_t rcb_addr;
1165 1.1 fvdl int i;
1166 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1167 1.1 fvdl bge_hostaddr taddr;
1168 1.1 fvdl
1169 1.1 fvdl /*
1170 1.1 fvdl * Initialize the memory window pointer register so that
1171 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1172 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1173 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1174 1.1 fvdl */
1175 1.1 fvdl
1176 1.1 fvdl pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1177 1.1 fvdl BGE_PCI_MEMWIN_BASEADDR, 0);
1178 1.1 fvdl
1179 1.1 fvdl /* Configure mbuf memory pool */
1180 1.1 fvdl if (sc->bge_extram) {
1181 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1182 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1183 1.1 fvdl } else {
1184 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1185 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1186 1.1 fvdl }
1187 1.1 fvdl
1188 1.1 fvdl /* Configure DMA resource pool */
1189 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1190 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1191 1.1 fvdl
1192 1.1 fvdl /* Configure mbuf pool watermarks */
1193 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1194 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1195 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1196 1.1 fvdl
1197 1.1 fvdl /* Configure DMA resource watermarks */
1198 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1199 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1200 1.1 fvdl
1201 1.1 fvdl /* Enable buffer manager */
1202 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MODE,
1203 1.1 fvdl BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1204 1.1 fvdl
1205 1.1 fvdl /* Poll for buffer manager start indication */
1206 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1207 1.1 fvdl if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1208 1.1 fvdl break;
1209 1.1 fvdl DELAY(10);
1210 1.1 fvdl }
1211 1.1 fvdl
1212 1.1 fvdl if (i == BGE_TIMEOUT) {
1213 1.1 fvdl printf("%s: buffer manager failed to start\n",
1214 1.1 fvdl sc->bge_dev.dv_xname);
1215 1.1 fvdl return(ENXIO);
1216 1.1 fvdl }
1217 1.1 fvdl
1218 1.1 fvdl /* Enable flow-through queues */
1219 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1220 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1221 1.1 fvdl
1222 1.1 fvdl /* Wait until queue initialization is complete */
1223 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1224 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1225 1.1 fvdl break;
1226 1.1 fvdl DELAY(10);
1227 1.1 fvdl }
1228 1.1 fvdl
1229 1.1 fvdl if (i == BGE_TIMEOUT) {
1230 1.1 fvdl printf("%s: flow-through queue init failed\n",
1231 1.1 fvdl sc->bge_dev.dv_xname);
1232 1.1 fvdl return(ENXIO);
1233 1.1 fvdl }
1234 1.1 fvdl
1235 1.1 fvdl /* Initialize the standard RX ring control block */
1236 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1237 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1238 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1239 1.1 fvdl rcb->bge_max_len = BGE_MAX_FRAMELEN;
1240 1.1 fvdl if (sc->bge_extram)
1241 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1242 1.1 fvdl else
1243 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1244 1.1 fvdl rcb->bge_flags = 0;
1245 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1246 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1247 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1248 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1249 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1250 1.1 fvdl
1251 1.1 fvdl /*
1252 1.1 fvdl * Initialize the jumbo RX ring control block
1253 1.1 fvdl * We set the 'ring disabled' bit in the flags
1254 1.1 fvdl * field until we're actually ready to start
1255 1.1 fvdl * using this ring (i.e. once we set the MTU
1256 1.1 fvdl * high enough to require it).
1257 1.1 fvdl */
1258 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1259 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1260 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1261 1.1 fvdl rcb->bge_max_len = BGE_MAX_FRAMELEN;
1262 1.1 fvdl if (sc->bge_extram)
1263 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1264 1.1 fvdl else
1265 1.1 fvdl rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1266 1.1 fvdl rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1267 1.1 fvdl
1268 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1269 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1270 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1271 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1272 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1273 1.1 fvdl
1274 1.1 fvdl /* Set up dummy disabled mini ring RCB */
1275 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1276 1.1 fvdl rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1277 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1278 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1279 1.1 fvdl
1280 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1281 1.1 fvdl offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1282 1.1 fvdl BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1283 1.1 fvdl
1284 1.1 fvdl /*
1285 1.1 fvdl * Set the BD ring replentish thresholds. The recommended
1286 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1287 1.1 fvdl * each ring.
1288 1.1 fvdl */
1289 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1290 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1291 1.1 fvdl
1292 1.1 fvdl /*
1293 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1294 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1295 1.1 fvdl * These are located in NIC memory.
1296 1.1 fvdl */
1297 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1298 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1299 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags,
1300 1.1 fvdl BGE_RCB_FLAG_RING_DISABLED);
1301 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1302 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1303 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1304 1.1 fvdl }
1305 1.1 fvdl
1306 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1307 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1308 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1309 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1310 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1311 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1312 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1313 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1314 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1315 1.1 fvdl
1316 1.1 fvdl /* Disable all unused RX return rings */
1317 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1318 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1319 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1320 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1321 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags,
1322 1.1 fvdl BGE_RCB_FLAG_RING_DISABLED);
1323 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1324 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1325 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1326 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1327 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1328 1.1 fvdl }
1329 1.1 fvdl
1330 1.1 fvdl /* Initialize RX ring indexes */
1331 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1332 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1333 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1334 1.1 fvdl
1335 1.1 fvdl /*
1336 1.1 fvdl * Set up RX return ring 0
1337 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1338 1.1 fvdl * The return rings live entirely within the host, so the
1339 1.1 fvdl * nicaddr field in the RCB isn't used.
1340 1.1 fvdl */
1341 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1342 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1343 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1344 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1345 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1346 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1347 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1348 1.1 fvdl
1349 1.1 fvdl /* Set random backoff seed for TX */
1350 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1351 1.1 fvdl LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1352 1.1 fvdl LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1353 1.1 fvdl LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1354 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1355 1.1 fvdl
1356 1.1 fvdl /* Set inter-packet gap */
1357 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1358 1.1 fvdl
1359 1.1 fvdl /*
1360 1.1 fvdl * Specify which ring to use for packets that don't match
1361 1.1 fvdl * any RX rules.
1362 1.1 fvdl */
1363 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1364 1.1 fvdl
1365 1.1 fvdl /*
1366 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1367 1.1 fvdl * list, sixteen active lists, one bad frames class.
1368 1.1 fvdl */
1369 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1370 1.1 fvdl
1371 1.1 fvdl /* Inialize RX list placement stats mask. */
1372 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1373 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1374 1.1 fvdl
1375 1.1 fvdl /* Disable host coalescing until we get it set up */
1376 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1377 1.1 fvdl
1378 1.1 fvdl /* Poll to make sure it's shut down. */
1379 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1380 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1381 1.1 fvdl break;
1382 1.1 fvdl DELAY(10);
1383 1.1 fvdl }
1384 1.1 fvdl
1385 1.1 fvdl if (i == BGE_TIMEOUT) {
1386 1.1 fvdl printf("%s: host coalescing engine failed to idle\n",
1387 1.1 fvdl sc->bge_dev.dv_xname);
1388 1.1 fvdl return(ENXIO);
1389 1.1 fvdl }
1390 1.1 fvdl
1391 1.1 fvdl /* Set up host coalescing defaults */
1392 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1393 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1394 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1395 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1396 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1397 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1398 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1399 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1400 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1401 1.1 fvdl
1402 1.1 fvdl /* Set up address of statistics block */
1403 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1404 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1405 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1406 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1407 1.1 fvdl
1408 1.1 fvdl /* Set up address of status block */
1409 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1410 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1411 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1412 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1413 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1414 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1415 1.1 fvdl
1416 1.1 fvdl /* Turn on host coalescing state machine */
1417 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1418 1.1 fvdl
1419 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1420 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1421 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1422 1.1 fvdl
1423 1.1 fvdl /* Turn on RX list placement state machine */
1424 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1425 1.1 fvdl
1426 1.1 fvdl /* Turn on RX list selector state machine. */
1427 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1428 1.1 fvdl
1429 1.1 fvdl /* Turn on DMA, clear stats */
1430 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1431 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1432 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1433 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1434 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1435 1.1 fvdl
1436 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1437 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1438 1.1 fvdl
1439 1.1 fvdl #ifdef notdef
1440 1.1 fvdl /* Assert GPIO pins for PHY reset */
1441 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1442 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1443 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1444 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1445 1.1 fvdl #endif
1446 1.1 fvdl
1447 1.1 fvdl /* Turn on DMA completion state machine */
1448 1.1 fvdl CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1449 1.1 fvdl
1450 1.1 fvdl /* Turn on write DMA state machine */
1451 1.1 fvdl CSR_WRITE_4(sc, BGE_WDMA_MODE,
1452 1.1 fvdl BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1453 1.1 fvdl
1454 1.1 fvdl /* Turn on read DMA state machine */
1455 1.1 fvdl CSR_WRITE_4(sc, BGE_RDMA_MODE,
1456 1.1 fvdl BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1457 1.1 fvdl
1458 1.1 fvdl /* Turn on RX data completion state machine */
1459 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1460 1.1 fvdl
1461 1.1 fvdl /* Turn on RX BD initiator state machine */
1462 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1463 1.1 fvdl
1464 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1465 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1466 1.1 fvdl
1467 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1468 1.1 fvdl CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1469 1.1 fvdl
1470 1.1 fvdl /* Turn on send BD completion state machine */
1471 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1472 1.1 fvdl
1473 1.1 fvdl /* Turn on send data completion state machine */
1474 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1475 1.1 fvdl
1476 1.1 fvdl /* Turn on send data initiator state machine */
1477 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1478 1.1 fvdl
1479 1.1 fvdl /* Turn on send BD initiator state machine */
1480 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1481 1.1 fvdl
1482 1.1 fvdl /* Turn on send BD selector state machine */
1483 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1484 1.1 fvdl
1485 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1486 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1487 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1488 1.1 fvdl
1489 1.1 fvdl /* init LED register */
1490 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1491 1.1 fvdl
1492 1.1 fvdl /* ack/clear link change events */
1493 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1494 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1495 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1496 1.1 fvdl
1497 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1498 1.1 fvdl if (sc->bge_tbi) {
1499 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1500 1.1 fvdl } else {
1501 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1502 1.2 fvdl if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
1503 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1504 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1505 1.1 fvdl }
1506 1.1 fvdl
1507 1.1 fvdl /* Enable link state change attentions. */
1508 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1509 1.1 fvdl
1510 1.1 fvdl return(0);
1511 1.1 fvdl }
1512 1.1 fvdl
1513 1.1 fvdl /*
1514 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1515 1.1 fvdl * against our list and return its name if we find a match. Note
1516 1.1 fvdl * that since the Broadcom controller contains VPD support, we
1517 1.1 fvdl * can get the device name string from the controller itself instead
1518 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
1519 1.1 fvdl * we'll always announce the right product name.
1520 1.1 fvdl */
1521 1.1 fvdl int
1522 1.1 fvdl bge_probe(parent, match, aux)
1523 1.1 fvdl struct device *parent;
1524 1.1 fvdl struct cfdata *match;
1525 1.1 fvdl void *aux;
1526 1.1 fvdl {
1527 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1528 1.1 fvdl
1529 1.1 fvdl /*
1530 1.1 fvdl * Various supported device vendors/types and their
1531 1.1 fvdl * names. Note: the spec seems to indicate that the hardware
1532 1.1 fvdl * still has Alteon's vendor ID burned into it, though it will
1533 1.1 fvdl * always be overriden by the vendor ID in the EEPROM. Just to
1534 1.1 fvdl * be safe, we cover all possibilities.
1535 1.1 fvdl */
1536 1.1 fvdl
1537 1.1 fvdl if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1538 1.1 fvdl (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_BCM5700 ||
1539 1.1 fvdl PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_BCM5701))
1540 1.1 fvdl return (1);
1541 1.1 fvdl
1542 1.1 fvdl if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTIMA &&
1543 1.3 cjs ((PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTIMA_AC1000) ||
1544 1.3 cjs PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTIMA_AC9100))
1545 1.1 fvdl return (1);
1546 1.1 fvdl
1547 1.1 fvdl if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
1548 1.1 fvdl (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5700 ||
1549 1.1 fvdl PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5701))
1550 1.1 fvdl return (1);
1551 1.1 fvdl
1552 1.1 fvdl if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SCHNEIDERKOCH &&
1553 1.1 fvdl PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1)
1554 1.1 fvdl return (1);
1555 1.1 fvdl
1556 1.1 fvdl if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3COM &&
1557 1.1 fvdl PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3COM_3C996)
1558 1.1 fvdl return (1);
1559 1.1 fvdl
1560 1.1 fvdl return (0);
1561 1.1 fvdl }
1562 1.1 fvdl
1563 1.1 fvdl void
1564 1.1 fvdl bge_attach(parent, self, aux)
1565 1.1 fvdl struct device *parent, *self;
1566 1.1 fvdl void *aux;
1567 1.1 fvdl {
1568 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)self;
1569 1.1 fvdl struct pci_attach_args *pa = aux;
1570 1.1 fvdl pci_chipset_tag_t pc = pa->pa_pc;
1571 1.1 fvdl pci_intr_handle_t ih;
1572 1.1 fvdl const char *intrstr = NULL;
1573 1.1 fvdl bus_dma_segment_t seg;
1574 1.1 fvdl int rseg;
1575 1.1 fvdl u_int32_t hwcfg = 0;
1576 1.1 fvdl u_int32_t command;
1577 1.1 fvdl struct ifnet *ifp;
1578 1.1 fvdl int unit;
1579 1.1 fvdl caddr_t kva;
1580 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
1581 1.1 fvdl pcireg_t memtype;
1582 1.1 fvdl char devinfo[256];
1583 1.1 fvdl bus_addr_t memaddr;
1584 1.1 fvdl bus_size_t memsize;
1585 1.1 fvdl
1586 1.1 fvdl sc->bge_pa = *pa;
1587 1.1 fvdl
1588 1.1 fvdl pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
1589 1.1 fvdl printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
1590 1.1 fvdl
1591 1.1 fvdl /*
1592 1.1 fvdl * Map control/status registers.
1593 1.1 fvdl */
1594 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
1595 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1596 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1597 1.1 fvdl pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1598 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1599 1.1 fvdl
1600 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1601 1.1 fvdl printf("%s: failed to enable memory mapping!\n",
1602 1.1 fvdl sc->bge_dev.dv_xname);
1603 1.1 fvdl return;
1604 1.1 fvdl }
1605 1.1 fvdl
1606 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
1607 1.1 fvdl memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1608 1.1 fvdl switch (memtype) {
1609 1.1 fvdl case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1610 1.1 fvdl case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1611 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1612 1.1 fvdl memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1613 1.1 fvdl &memaddr, &memsize) == 0)
1614 1.1 fvdl break;
1615 1.1 fvdl default:
1616 1.1 fvdl printf("%s: can't find mem space\n",
1617 1.1 fvdl sc->bge_dev.dv_xname);
1618 1.1 fvdl return;
1619 1.1 fvdl }
1620 1.1 fvdl
1621 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
1622 1.1 fvdl if (pci_intr_map(pa, &ih)) {
1623 1.1 fvdl printf("%s: couldn't map interrupt\n",
1624 1.1 fvdl sc->bge_dev.dv_xname);
1625 1.1 fvdl return;
1626 1.1 fvdl }
1627 1.1 fvdl
1628 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
1629 1.1 fvdl intrstr = pci_intr_string(pc, ih);
1630 1.1 fvdl
1631 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
1632 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1633 1.1 fvdl
1634 1.1 fvdl if (sc->bge_intrhand == NULL) {
1635 1.1 fvdl printf("%s: couldn't establish interrupt",
1636 1.1 fvdl sc->bge_dev.dv_xname);
1637 1.1 fvdl if (intrstr != NULL)
1638 1.1 fvdl printf(" at %s", intrstr);
1639 1.1 fvdl printf("\n");
1640 1.1 fvdl return;
1641 1.1 fvdl }
1642 1.1 fvdl printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1643 1.1 fvdl
1644 1.1 fvdl /* Try to reset the chip. */
1645 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
1646 1.1 fvdl bge_reset(sc);
1647 1.1 fvdl
1648 1.1 fvdl if (bge_chipinit(sc)) {
1649 1.1 fvdl printf("%s: chip initializatino failed\n",
1650 1.1 fvdl sc->bge_dev.dv_xname);
1651 1.1 fvdl bge_release_resources(sc);
1652 1.1 fvdl return;
1653 1.1 fvdl }
1654 1.1 fvdl
1655 1.1 fvdl /*
1656 1.1 fvdl * Get station address from the EEPROM.
1657 1.1 fvdl */
1658 1.1 fvdl if (bge_read_eeprom(sc, (caddr_t)eaddr,
1659 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1660 1.1 fvdl printf("bge%d: failed to read station address\n", unit);
1661 1.1 fvdl bge_release_resources(sc);
1662 1.1 fvdl return;
1663 1.1 fvdl }
1664 1.1 fvdl
1665 1.1 fvdl /*
1666 1.1 fvdl * A Broadcom chip was detected. Inform the world.
1667 1.1 fvdl */
1668 1.1 fvdl printf("%s: Ethernet address %s\n", sc->bge_dev.dv_xname,
1669 1.1 fvdl ether_sprintf(eaddr));
1670 1.1 fvdl
1671 1.1 fvdl /* Allocate the general information block and ring buffers. */
1672 1.1 fvdl sc->bge_dmatag = pa->pa_dmat;
1673 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
1674 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1675 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1676 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1677 1.1 fvdl return;
1678 1.1 fvdl }
1679 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
1680 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1681 1.1 fvdl sizeof(struct bge_ring_data), &kva,
1682 1.1 fvdl BUS_DMA_NOWAIT)) {
1683 1.1 fvdl printf("%s: can't map dma buffers (%d bytes)\n",
1684 1.1 fvdl sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1685 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1686 1.1 fvdl return;
1687 1.1 fvdl }
1688 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
1689 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1690 1.1 fvdl sizeof(struct bge_ring_data), 0,
1691 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1692 1.1 fvdl printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1693 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
1694 1.1 fvdl sizeof(struct bge_ring_data));
1695 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1696 1.1 fvdl return;
1697 1.1 fvdl }
1698 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
1699 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1700 1.1 fvdl sizeof(struct bge_ring_data), NULL,
1701 1.1 fvdl BUS_DMA_NOWAIT)) {
1702 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1703 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
1704 1.1 fvdl sizeof(struct bge_ring_data));
1705 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1706 1.1 fvdl return;
1707 1.1 fvdl }
1708 1.1 fvdl
1709 1.1 fvdl DPRINTFN(5, ("bzero\n"));
1710 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
1711 1.1 fvdl
1712 1.1 fvdl memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
1713 1.1 fvdl
1714 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
1715 1.1 fvdl if (bge_alloc_jumbo_mem(sc)) {
1716 1.1 fvdl printf("%s: jumbo buffer allocation failed\n",
1717 1.1 fvdl sc->bge_dev.dv_xname);
1718 1.1 fvdl }
1719 1.1 fvdl
1720 1.1 fvdl /* Set default tuneable values. */
1721 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1722 1.1 fvdl sc->bge_rx_coal_ticks = 150;
1723 1.1 fvdl sc->bge_tx_coal_ticks = 150;
1724 1.1 fvdl sc->bge_rx_max_coal_bds = 64;
1725 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
1726 1.1 fvdl
1727 1.1 fvdl /* Set up ifnet structure */
1728 1.1 fvdl ifp = &sc->ethercom.ec_if;
1729 1.1 fvdl ifp->if_softc = sc;
1730 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1731 1.1 fvdl ifp->if_ioctl = bge_ioctl;
1732 1.1 fvdl ifp->if_start = bge_start;
1733 1.1 fvdl ifp->if_init = bge_init;
1734 1.1 fvdl ifp->if_watchdog = bge_watchdog;
1735 1.1 fvdl IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1736 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
1737 1.1 fvdl DPRINTFN(5, ("bcopy\n"));
1738 1.1 fvdl strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1739 1.1 fvdl
1740 1.1 fvdl sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1741 1.1 fvdl
1742 1.1 fvdl sc->ethercom.ec_if.if_capabilities |=
1743 1.1 fvdl IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1744 1.1 fvdl sc->ethercom.ec_capabilities |=
1745 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1746 1.1 fvdl
1747 1.1 fvdl /*
1748 1.1 fvdl * Do MII setup.
1749 1.1 fvdl */
1750 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
1751 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
1752 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
1753 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
1754 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
1755 1.1 fvdl
1756 1.1 fvdl /* Save ASIC rev. */
1757 1.1 fvdl
1758 1.1 fvdl sc->bge_asicrev =
1759 1.1 fvdl pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1760 1.1 fvdl BGE_PCIMISCCTL_ASICREV;
1761 1.1 fvdl
1762 1.1 fvdl /*
1763 1.1 fvdl * Figure out what sort of media we have by checking the
1764 1.1 fvdl * hardware config word in the EEPROM. Note: on some BCM5700
1765 1.1 fvdl * cards, this value appears to be unset. If that's the
1766 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
1767 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
1768 1.1 fvdl */
1769 1.1 fvdl bge_read_eeprom(sc, (caddr_t)&hwcfg,
1770 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1771 1.1 fvdl if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1772 1.1 fvdl sc->bge_tbi = 1;
1773 1.1 fvdl
1774 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1775 1.1 fvdl if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1776 1.1 fvdl SK_SUBSYSID_9D41)
1777 1.1 fvdl sc->bge_tbi = 1;
1778 1.1 fvdl
1779 1.1 fvdl if (sc->bge_tbi) {
1780 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1781 1.1 fvdl bge_ifmedia_sts);
1782 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1783 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1784 1.1 fvdl 0, NULL);
1785 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1786 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1787 1.1 fvdl } else {
1788 1.1 fvdl /*
1789 1.1 fvdl * Do transceiver setup.
1790 1.1 fvdl */
1791 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1792 1.1 fvdl bge_ifmedia_sts);
1793 1.1 fvdl mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1794 1.1 fvdl MII_PHY_ANY, MII_OFFSET_ANY, 0);
1795 1.1 fvdl
1796 1.1 fvdl if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1797 1.1 fvdl printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1798 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
1799 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
1800 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
1801 1.1 fvdl IFM_ETHER|IFM_MANUAL);
1802 1.1 fvdl } else
1803 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
1804 1.1 fvdl IFM_ETHER|IFM_AUTO);
1805 1.1 fvdl }
1806 1.1 fvdl
1807 1.1 fvdl /*
1808 1.1 fvdl * Call MI attach routine.
1809 1.1 fvdl */
1810 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
1811 1.1 fvdl if_attach(ifp);
1812 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
1813 1.1 fvdl ether_ifattach(ifp, eaddr);
1814 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
1815 1.1 fvdl callout_init(&sc->bge_timeout);
1816 1.1 fvdl }
1817 1.1 fvdl
1818 1.1 fvdl void
1819 1.1 fvdl bge_release_resources(sc)
1820 1.1 fvdl struct bge_softc *sc;
1821 1.1 fvdl {
1822 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
1823 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
1824 1.1 fvdl
1825 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
1826 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
1827 1.1 fvdl
1828 1.1 fvdl #ifdef fake
1829 1.1 fvdl if (sc->bge_intrhand != NULL)
1830 1.1 fvdl bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1831 1.1 fvdl
1832 1.1 fvdl if (sc->bge_irq != NULL)
1833 1.1 fvdl bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1834 1.1 fvdl
1835 1.1 fvdl if (sc->bge_res != NULL)
1836 1.1 fvdl bus_release_resource(dev, SYS_RES_MEMORY,
1837 1.1 fvdl BGE_PCI_BAR0, sc->bge_res);
1838 1.1 fvdl
1839 1.1 fvdl if (sc->bge_rdata != NULL)
1840 1.1 fvdl contigfree(sc->bge_rdata,
1841 1.1 fvdl sizeof(struct bge_ring_data), M_DEVBUF);
1842 1.1 fvdl #endif
1843 1.1 fvdl }
1844 1.1 fvdl
1845 1.1 fvdl void
1846 1.1 fvdl bge_reset(sc)
1847 1.1 fvdl struct bge_softc *sc;
1848 1.1 fvdl {
1849 1.1 fvdl struct pci_attach_args *pa = &sc->bge_pa;
1850 1.1 fvdl u_int32_t cachesize, command, pcistate;
1851 1.1 fvdl int i, val = 0;
1852 1.1 fvdl
1853 1.1 fvdl /* Save some important PCI state. */
1854 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1855 1.1 fvdl command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1856 1.1 fvdl pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1857 1.1 fvdl
1858 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1859 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1860 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1861 1.1 fvdl
1862 1.1 fvdl /* Issue global reset */
1863 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG,
1864 1.1 fvdl BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1865 1.1 fvdl
1866 1.1 fvdl DELAY(1000);
1867 1.1 fvdl
1868 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
1869 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1870 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1871 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1872 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1873 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1874 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1875 1.1 fvdl
1876 1.1 fvdl /* Enable memory arbiter. */
1877 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1878 1.1 fvdl
1879 1.1 fvdl /*
1880 1.1 fvdl * Prevent PXE restart: write a magic number to the
1881 1.1 fvdl * general communications memory at 0xB50.
1882 1.1 fvdl */
1883 1.1 fvdl bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1884 1.1 fvdl
1885 1.1 fvdl /*
1886 1.1 fvdl * Poll the value location we just wrote until
1887 1.1 fvdl * we see the 1's complement of the magic number.
1888 1.1 fvdl * This indicates that the firmware initialization
1889 1.1 fvdl * is complete.
1890 1.1 fvdl */
1891 1.1 fvdl for (i = 0; i < 750; i++) {
1892 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1893 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
1894 1.1 fvdl break;
1895 1.1 fvdl DELAY(1000);
1896 1.1 fvdl }
1897 1.1 fvdl
1898 1.1 fvdl if (i == BGE_TIMEOUT) {
1899 1.1 fvdl printf("%s: firmware handshake timed out, val = %x\n",
1900 1.1 fvdl sc->bge_dev.dv_xname, val);
1901 1.1 fvdl return;
1902 1.1 fvdl }
1903 1.1 fvdl
1904 1.1 fvdl /*
1905 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
1906 1.1 fvdl * return to its original pre-reset state. This is a
1907 1.1 fvdl * fairly good indicator of reset completion. If we don't
1908 1.1 fvdl * wait for the reset to fully complete, trying to read
1909 1.1 fvdl * from the device's non-PCI registers may yield garbage
1910 1.1 fvdl * results.
1911 1.1 fvdl */
1912 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1913 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
1914 1.1 fvdl pcistate)
1915 1.1 fvdl break;
1916 1.1 fvdl DELAY(10);
1917 1.1 fvdl }
1918 1.1 fvdl
1919 1.1 fvdl /* Enable memory arbiter. */
1920 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1921 1.1 fvdl
1922 1.1 fvdl /* Fix up byte swapping */
1923 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
1924 1.1 fvdl
1925 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1926 1.1 fvdl
1927 1.1 fvdl DELAY(10000);
1928 1.1 fvdl }
1929 1.1 fvdl
1930 1.1 fvdl /*
1931 1.1 fvdl * Frame reception handling. This is called if there's a frame
1932 1.1 fvdl * on the receive return list.
1933 1.1 fvdl *
1934 1.1 fvdl * Note: we have to be able to handle two possibilities here:
1935 1.1 fvdl * 1) the frame is from the jumbo recieve ring
1936 1.1 fvdl * 2) the frame is from the standard receive ring
1937 1.1 fvdl */
1938 1.1 fvdl
1939 1.1 fvdl void
1940 1.1 fvdl bge_rxeof(sc)
1941 1.1 fvdl struct bge_softc *sc;
1942 1.1 fvdl {
1943 1.1 fvdl struct ifnet *ifp;
1944 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
1945 1.1 fvdl int have_tag = 0;
1946 1.1 fvdl u_int16_t vlan_tag = 0;
1947 1.1 fvdl bus_dmamap_t dmamap;
1948 1.1 fvdl bus_addr_t offset, toff;
1949 1.1 fvdl bus_size_t tlen;
1950 1.1 fvdl int tosync;
1951 1.1 fvdl
1952 1.1 fvdl ifp = &sc->ethercom.ec_if;
1953 1.1 fvdl
1954 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1955 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
1956 1.1 fvdl sizeof (struct bge_status_block),
1957 1.1 fvdl BUS_DMASYNC_POSTREAD);
1958 1.1 fvdl
1959 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
1960 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
1961 1.1 fvdl sc->bge_rx_saved_considx;
1962 1.1 fvdl
1963 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
1964 1.1 fvdl
1965 1.1 fvdl if (tosync < 0) {
1966 1.1 fvdl tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
1967 1.1 fvdl sizeof (struct bge_rx_bd);
1968 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1969 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
1970 1.1 fvdl tosync = -tosync;
1971 1.1 fvdl }
1972 1.1 fvdl
1973 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1974 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
1975 1.1 fvdl BUS_DMASYNC_POSTREAD);
1976 1.1 fvdl
1977 1.1 fvdl while(sc->bge_rx_saved_considx !=
1978 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1979 1.1 fvdl struct bge_rx_bd *cur_rx;
1980 1.1 fvdl u_int32_t rxidx;
1981 1.1 fvdl struct mbuf *m = NULL;
1982 1.1 fvdl
1983 1.1 fvdl cur_rx = &sc->bge_rdata->
1984 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
1985 1.1 fvdl
1986 1.1 fvdl rxidx = cur_rx->bge_idx;
1987 1.1 fvdl BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1988 1.1 fvdl
1989 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1990 1.1 fvdl have_tag = 1;
1991 1.1 fvdl vlan_tag = cur_rx->bge_vlan_tag;
1992 1.1 fvdl }
1993 1.1 fvdl
1994 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1995 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1996 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1997 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1998 1.1 fvdl jumbocnt++;
1999 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2000 1.1 fvdl ifp->if_ierrors++;
2001 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2002 1.1 fvdl continue;
2003 1.1 fvdl }
2004 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2005 1.1 fvdl NULL)== ENOBUFS) {
2006 1.1 fvdl ifp->if_ierrors++;
2007 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2008 1.1 fvdl continue;
2009 1.1 fvdl }
2010 1.1 fvdl } else {
2011 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2012 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2013 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2014 1.1 fvdl stdcnt++;
2015 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2016 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2017 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2018 1.1 fvdl ifp->if_ierrors++;
2019 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2020 1.1 fvdl continue;
2021 1.1 fvdl }
2022 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2023 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2024 1.1 fvdl ifp->if_ierrors++;
2025 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2026 1.1 fvdl continue;
2027 1.1 fvdl }
2028 1.1 fvdl }
2029 1.1 fvdl
2030 1.1 fvdl ifp->if_ipackets++;
2031 1.1 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2032 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2033 1.1 fvdl
2034 1.1 fvdl #if NBPFILTER > 0
2035 1.1 fvdl /*
2036 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2037 1.1 fvdl */
2038 1.1 fvdl if (ifp->if_bpf)
2039 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2040 1.1 fvdl #endif
2041 1.1 fvdl
2042 1.2 fvdl if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
2043 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2044 1.2 fvdl if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2045 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2046 1.4 fvdl #if 0 /* XXX appears to be broken */
2047 1.2 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2048 1.2 fvdl m->m_pkthdr.csum_data =
2049 1.2 fvdl cur_rx->bge_tcp_udp_csum;
2050 1.2 fvdl m->m_pkthdr.csum_flags |=
2051 1.2 fvdl (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2052 1.2 fvdl }
2053 1.4 fvdl #endif
2054 1.1 fvdl }
2055 1.1 fvdl
2056 1.1 fvdl /*
2057 1.1 fvdl * If we received a packet with a vlan tag, pass it
2058 1.1 fvdl * to vlan_input() instead of ether_input().
2059 1.1 fvdl */
2060 1.1 fvdl if (have_tag) {
2061 1.1 fvdl struct mbuf *n;
2062 1.1 fvdl
2063 1.1 fvdl n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2064 1.1 fvdl if (n != NULL) {
2065 1.1 fvdl *mtod(n, int *) = vlan_tag;
2066 1.1 fvdl n->m_len = sizeof(int);
2067 1.1 fvdl have_tag = vlan_tag = 0;
2068 1.1 fvdl } else {
2069 1.1 fvdl printf("%s: no mbuf for tag\n", ifp->if_xname);
2070 1.1 fvdl m_freem(m);
2071 1.1 fvdl have_tag = vlan_tag = 0;
2072 1.1 fvdl continue;
2073 1.1 fvdl }
2074 1.1 fvdl }
2075 1.1 fvdl (*ifp->if_input)(ifp, m);
2076 1.1 fvdl }
2077 1.1 fvdl
2078 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2079 1.1 fvdl if (stdcnt)
2080 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2081 1.1 fvdl if (jumbocnt)
2082 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2083 1.1 fvdl }
2084 1.1 fvdl
2085 1.1 fvdl void
2086 1.1 fvdl bge_txeof(sc)
2087 1.1 fvdl struct bge_softc *sc;
2088 1.1 fvdl {
2089 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
2090 1.1 fvdl struct ifnet *ifp;
2091 1.1 fvdl struct txdmamap_pool_entry *dma;
2092 1.1 fvdl bus_addr_t offset, toff;
2093 1.1 fvdl bus_size_t tlen;
2094 1.1 fvdl int tosync;
2095 1.1 fvdl struct mbuf *m;
2096 1.1 fvdl
2097 1.1 fvdl ifp = &sc->ethercom.ec_if;
2098 1.1 fvdl
2099 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2100 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2101 1.1 fvdl sizeof (struct bge_status_block),
2102 1.1 fvdl BUS_DMASYNC_POSTREAD);
2103 1.1 fvdl
2104 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
2105 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2106 1.1 fvdl sc->bge_tx_saved_considx;
2107 1.1 fvdl
2108 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2109 1.1 fvdl
2110 1.1 fvdl if (tosync < 0) {
2111 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2112 1.1 fvdl sizeof (struct bge_tx_bd);
2113 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2114 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2115 1.1 fvdl tosync = -tosync;
2116 1.1 fvdl }
2117 1.1 fvdl
2118 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2119 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
2120 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2121 1.1 fvdl
2122 1.1 fvdl /*
2123 1.1 fvdl * Go through our tx ring and free mbufs for those
2124 1.1 fvdl * frames that have been sent.
2125 1.1 fvdl */
2126 1.1 fvdl while (sc->bge_tx_saved_considx !=
2127 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2128 1.1 fvdl u_int32_t idx = 0;
2129 1.1 fvdl
2130 1.1 fvdl idx = sc->bge_tx_saved_considx;
2131 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2132 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2133 1.1 fvdl ifp->if_opackets++;
2134 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
2135 1.1 fvdl if (m != NULL) {
2136 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
2137 1.1 fvdl dma = sc->txdma[idx];
2138 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2139 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2141 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2142 1.1 fvdl sc->txdma[idx] = NULL;
2143 1.1 fvdl
2144 1.1 fvdl m_freem(m);
2145 1.1 fvdl }
2146 1.1 fvdl sc->bge_txcnt--;
2147 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2148 1.1 fvdl ifp->if_timer = 0;
2149 1.1 fvdl }
2150 1.1 fvdl
2151 1.1 fvdl if (cur_tx != NULL)
2152 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2153 1.1 fvdl }
2154 1.1 fvdl
2155 1.1 fvdl int
2156 1.1 fvdl bge_intr(xsc)
2157 1.1 fvdl void *xsc;
2158 1.1 fvdl {
2159 1.1 fvdl struct bge_softc *sc;
2160 1.1 fvdl struct ifnet *ifp;
2161 1.1 fvdl
2162 1.1 fvdl sc = xsc;
2163 1.1 fvdl ifp = &sc->ethercom.ec_if;
2164 1.1 fvdl
2165 1.1 fvdl #ifdef notdef
2166 1.1 fvdl /* Avoid this for now -- checking this register is expensive. */
2167 1.1 fvdl /* Make sure this is really our interrupt. */
2168 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2169 1.1 fvdl return (0);
2170 1.1 fvdl #endif
2171 1.1 fvdl /* Ack interrupt and stop others from occuring. */
2172 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2173 1.1 fvdl
2174 1.1 fvdl /*
2175 1.1 fvdl * Process link state changes.
2176 1.1 fvdl * Grrr. The link status word in the status block does
2177 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
2178 1.1 fvdl * according to all avaibable information. Hence, we have
2179 1.1 fvdl * to enable MII interrupts in order to properly obtain
2180 1.1 fvdl * async link changes. Unfortunately, this also means that
2181 1.1 fvdl * we have to read the MAC status register to detect link
2182 1.1 fvdl * changes, thereby adding an additional register access to
2183 1.1 fvdl * the interrupt handler.
2184 1.1 fvdl */
2185 1.1 fvdl
2186 1.2 fvdl if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
2187 1.1 fvdl u_int32_t status;
2188 1.1 fvdl
2189 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
2190 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
2191 1.1 fvdl sc->bge_link = 0;
2192 1.1 fvdl callout_stop(&sc->bge_timeout);
2193 1.1 fvdl bge_tick(sc);
2194 1.1 fvdl /* Clear the interrupt */
2195 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2196 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
2197 1.1 fvdl bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2198 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2199 1.1 fvdl BRGPHY_INTRS);
2200 1.1 fvdl }
2201 1.1 fvdl } else {
2202 1.1 fvdl if (sc->bge_rdata->bge_status_block.bge_status &
2203 1.1 fvdl BGE_STATFLAG_LINKSTATE_CHANGED) {
2204 1.1 fvdl sc->bge_link = 0;
2205 1.1 fvdl callout_stop(&sc->bge_timeout);
2206 1.1 fvdl bge_tick(sc);
2207 1.1 fvdl /* Clear the interrupt */
2208 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2209 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
2210 1.1 fvdl }
2211 1.1 fvdl }
2212 1.1 fvdl
2213 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2214 1.1 fvdl /* Check RX return ring producer/consumer */
2215 1.1 fvdl bge_rxeof(sc);
2216 1.1 fvdl
2217 1.1 fvdl /* Check TX ring producer/consumer */
2218 1.1 fvdl bge_txeof(sc);
2219 1.1 fvdl }
2220 1.1 fvdl
2221 1.1 fvdl bge_handle_events(sc);
2222 1.1 fvdl
2223 1.1 fvdl /* Re-enable interrupts. */
2224 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2225 1.1 fvdl
2226 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2227 1.1 fvdl bge_start(ifp);
2228 1.1 fvdl
2229 1.1 fvdl return (1);
2230 1.1 fvdl }
2231 1.1 fvdl
2232 1.1 fvdl void
2233 1.1 fvdl bge_tick(xsc)
2234 1.1 fvdl void *xsc;
2235 1.1 fvdl {
2236 1.1 fvdl struct bge_softc *sc = xsc;
2237 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2238 1.1 fvdl struct ifmedia *ifm = NULL;
2239 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2240 1.1 fvdl int s;
2241 1.1 fvdl
2242 1.1 fvdl s = splnet();
2243 1.1 fvdl
2244 1.1 fvdl bge_stats_update(sc);
2245 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2246 1.1 fvdl if (sc->bge_link) {
2247 1.1 fvdl splx(s);
2248 1.1 fvdl return;
2249 1.1 fvdl }
2250 1.1 fvdl
2251 1.1 fvdl if (sc->bge_tbi) {
2252 1.1 fvdl ifm = &sc->bge_ifmedia;
2253 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2254 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
2255 1.1 fvdl sc->bge_link++;
2256 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2257 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2258 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2259 1.1 fvdl bge_start(ifp);
2260 1.1 fvdl }
2261 1.1 fvdl splx(s);
2262 1.1 fvdl return;
2263 1.1 fvdl }
2264 1.1 fvdl
2265 1.1 fvdl mii_tick(mii);
2266 1.1 fvdl
2267 1.1 fvdl if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2268 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2269 1.1 fvdl sc->bge_link++;
2270 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2271 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2272 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2273 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2274 1.1 fvdl bge_start(ifp);
2275 1.1 fvdl }
2276 1.1 fvdl
2277 1.1 fvdl splx(s);
2278 1.1 fvdl }
2279 1.1 fvdl
2280 1.1 fvdl void
2281 1.1 fvdl bge_stats_update(sc)
2282 1.1 fvdl struct bge_softc *sc;
2283 1.1 fvdl {
2284 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2285 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2286 1.1 fvdl
2287 1.1 fvdl #define READ_STAT(sc, stats, stat) \
2288 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2289 1.1 fvdl
2290 1.1 fvdl ifp->if_collisions +=
2291 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2292 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2293 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2294 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2295 1.1 fvdl ifp->if_collisions;
2296 1.1 fvdl
2297 1.1 fvdl #undef READ_STAT
2298 1.1 fvdl
2299 1.1 fvdl #ifdef notdef
2300 1.1 fvdl ifp->if_collisions +=
2301 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2302 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2303 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2304 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2305 1.1 fvdl ifp->if_collisions;
2306 1.1 fvdl #endif
2307 1.1 fvdl }
2308 1.1 fvdl
2309 1.1 fvdl /*
2310 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2311 1.1 fvdl * pointers to descriptors.
2312 1.1 fvdl */
2313 1.1 fvdl int
2314 1.1 fvdl bge_encap(sc, m_head, txidx)
2315 1.1 fvdl struct bge_softc *sc;
2316 1.1 fvdl struct mbuf *m_head;
2317 1.1 fvdl u_int32_t *txidx;
2318 1.1 fvdl {
2319 1.1 fvdl struct bge_tx_bd *f = NULL;
2320 1.1 fvdl u_int32_t frag, cur, cnt = 0;
2321 1.1 fvdl u_int16_t csum_flags = 0;
2322 1.1 fvdl struct txdmamap_pool_entry *dma;
2323 1.1 fvdl bus_dmamap_t dmamap;
2324 1.1 fvdl int i = 0;
2325 1.1 fvdl struct mbuf *n;
2326 1.1 fvdl
2327 1.1 fvdl cur = frag = *txidx;
2328 1.1 fvdl
2329 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
2330 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2331 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2332 1.1 fvdl if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4| M_CSUM_UDPv4))
2333 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2334 1.1 fvdl }
2335 1.1 fvdl
2336 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
2337 1.1 fvdl if (dma == NULL)
2338 1.1 fvdl return ENOBUFS;
2339 1.1 fvdl dmamap = dma->dmamap;
2340 1.1 fvdl
2341 1.1 fvdl /*
2342 1.1 fvdl * Start packing the mbufs in this chain into
2343 1.1 fvdl * the fragment pointers. Stop when we run out
2344 1.1 fvdl * of fragments or hit the end of the mbuf chain.
2345 1.1 fvdl */
2346 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2347 1.1 fvdl BUS_DMA_NOWAIT))
2348 1.1 fvdl return(ENOBUFS);
2349 1.1 fvdl
2350 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
2351 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
2352 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2353 1.1 fvdl break;
2354 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2355 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
2356 1.1 fvdl f->bge_flags = csum_flags;
2357 1.1 fvdl
2358 1.1 fvdl n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2359 1.1 fvdl if (n != NULL) {
2360 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2361 1.1 fvdl f->bge_vlan_tag = *mtod(n, int *);
2362 1.1 fvdl } else {
2363 1.1 fvdl f->bge_vlan_tag = 0;
2364 1.1 fvdl }
2365 1.1 fvdl /*
2366 1.1 fvdl * Sanity check: avoid coming within 16 descriptors
2367 1.1 fvdl * of the end of the ring.
2368 1.1 fvdl */
2369 1.1 fvdl if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2370 1.1 fvdl return(ENOBUFS);
2371 1.1 fvdl cur = frag;
2372 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
2373 1.1 fvdl cnt++;
2374 1.1 fvdl }
2375 1.1 fvdl
2376 1.1 fvdl if (i < dmamap->dm_nsegs)
2377 1.1 fvdl return ENOBUFS;
2378 1.1 fvdl
2379 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2380 1.1 fvdl BUS_DMASYNC_PREWRITE);
2381 1.1 fvdl
2382 1.1 fvdl if (frag == sc->bge_tx_saved_considx)
2383 1.1 fvdl return(ENOBUFS);
2384 1.1 fvdl
2385 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2386 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
2387 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2388 1.1 fvdl sc->txdma[cur] = dma;
2389 1.1 fvdl sc->bge_txcnt += cnt;
2390 1.1 fvdl
2391 1.1 fvdl *txidx = frag;
2392 1.1 fvdl
2393 1.1 fvdl return(0);
2394 1.1 fvdl }
2395 1.1 fvdl
2396 1.1 fvdl /*
2397 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2398 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
2399 1.1 fvdl */
2400 1.1 fvdl void
2401 1.1 fvdl bge_start(ifp)
2402 1.1 fvdl struct ifnet *ifp;
2403 1.1 fvdl {
2404 1.1 fvdl struct bge_softc *sc;
2405 1.1 fvdl struct mbuf *m_head = NULL;
2406 1.1 fvdl u_int32_t prodidx = 0;
2407 1.1 fvdl int pkts = 0;
2408 1.1 fvdl
2409 1.1 fvdl sc = ifp->if_softc;
2410 1.1 fvdl
2411 1.1 fvdl if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2412 1.1 fvdl return;
2413 1.1 fvdl
2414 1.1 fvdl prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2415 1.1 fvdl
2416 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2417 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
2418 1.1 fvdl if (m_head == NULL)
2419 1.1 fvdl break;
2420 1.1 fvdl
2421 1.1 fvdl #if 0
2422 1.1 fvdl /*
2423 1.1 fvdl * XXX
2424 1.1 fvdl * safety overkill. If this is a fragmented packet chain
2425 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
2426 1.1 fvdl * it if we have enough descriptors to handle the entire
2427 1.1 fvdl * chain at once.
2428 1.1 fvdl * (paranoia -- may not actually be needed)
2429 1.1 fvdl */
2430 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
2431 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2432 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2433 1.1 fvdl m_head->m_pkthdr.csum_data + 16) {
2434 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2435 1.1 fvdl break;
2436 1.1 fvdl }
2437 1.1 fvdl }
2438 1.1 fvdl #endif
2439 1.1 fvdl
2440 1.1 fvdl /*
2441 1.1 fvdl * Pack the data into the transmit ring. If we
2442 1.1 fvdl * don't have room, set the OACTIVE flag and wait
2443 1.1 fvdl * for the NIC to drain the ring.
2444 1.1 fvdl */
2445 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
2446 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2447 1.1 fvdl break;
2448 1.1 fvdl }
2449 1.1 fvdl
2450 1.1 fvdl /* now we are committed to transmit the packet */
2451 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
2452 1.1 fvdl pkts++;
2453 1.1 fvdl
2454 1.1 fvdl #if NBPFILTER > 0
2455 1.1 fvdl /*
2456 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
2457 1.1 fvdl * to him.
2458 1.1 fvdl */
2459 1.1 fvdl if (ifp->if_bpf)
2460 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
2461 1.1 fvdl #endif
2462 1.1 fvdl }
2463 1.1 fvdl if (pkts == 0)
2464 1.1 fvdl return;
2465 1.1 fvdl
2466 1.1 fvdl /* Transmit */
2467 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2468 1.1 fvdl
2469 1.1 fvdl /*
2470 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
2471 1.1 fvdl */
2472 1.1 fvdl ifp->if_timer = 5;
2473 1.1 fvdl }
2474 1.1 fvdl
2475 1.1 fvdl /*
2476 1.1 fvdl * If we have a BCM5400 or BCM5401 PHY, we need to properly
2477 1.1 fvdl * program its internal DSP. Failing to do this can result in
2478 1.1 fvdl * massive packet loss at 1Gb speeds.
2479 1.1 fvdl */
2480 1.1 fvdl void
2481 1.1 fvdl bge_phy_hack(sc)
2482 1.1 fvdl struct bge_softc *sc;
2483 1.1 fvdl {
2484 1.1 fvdl struct bge_bcom_hack bhack[] = {
2485 1.1 fvdl { BRGPHY_MII_AUXCTL, 0x4C20 },
2486 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2487 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2488 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2489 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2490 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2491 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2492 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2493 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2494 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2495 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2496 1.1 fvdl { 0, 0 } };
2497 1.1 fvdl u_int16_t vid, did;
2498 1.1 fvdl int i;
2499 1.1 fvdl
2500 1.1 fvdl vid = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR1);
2501 1.1 fvdl did = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR2);
2502 1.1 fvdl
2503 1.1 fvdl if (MII_OUI(vid, did) == MII_OUI_BROADCOM &&
2504 1.1 fvdl (MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5400 ||
2505 1.1 fvdl MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5401)) {
2506 1.1 fvdl i = 0;
2507 1.1 fvdl while (bhack[i].reg) {
2508 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, bhack[i].reg,
2509 1.1 fvdl bhack[i].val);
2510 1.1 fvdl i++;
2511 1.1 fvdl }
2512 1.1 fvdl }
2513 1.1 fvdl }
2514 1.1 fvdl
2515 1.1 fvdl int
2516 1.1 fvdl bge_init(ifp)
2517 1.1 fvdl struct ifnet *ifp;
2518 1.1 fvdl {
2519 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2520 1.1 fvdl u_int16_t *m;
2521 1.1 fvdl int s, error;
2522 1.1 fvdl
2523 1.1 fvdl s = splnet();
2524 1.1 fvdl
2525 1.1 fvdl ifp = &sc->ethercom.ec_if;
2526 1.1 fvdl
2527 1.1 fvdl /* Cancel pending I/O and flush buffers. */
2528 1.1 fvdl bge_stop(sc);
2529 1.1 fvdl bge_reset(sc);
2530 1.1 fvdl bge_chipinit(sc);
2531 1.1 fvdl
2532 1.1 fvdl /*
2533 1.1 fvdl * Init the various state machines, ring
2534 1.1 fvdl * control blocks and firmware.
2535 1.1 fvdl */
2536 1.1 fvdl error = bge_blockinit(sc);
2537 1.1 fvdl if (error != 0) {
2538 1.1 fvdl printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2539 1.1 fvdl error);
2540 1.1 fvdl splx(s);
2541 1.1 fvdl return error;
2542 1.1 fvdl }
2543 1.1 fvdl
2544 1.1 fvdl ifp = &sc->ethercom.ec_if;
2545 1.1 fvdl
2546 1.1 fvdl /* Specify MTU. */
2547 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2548 1.1 fvdl ETHER_HDR_LEN + ETHER_CRC_LEN);
2549 1.1 fvdl
2550 1.1 fvdl /* Load our MAC address. */
2551 1.1 fvdl m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2552 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2553 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2554 1.1 fvdl
2555 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
2556 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
2557 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2558 1.1 fvdl } else {
2559 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2560 1.1 fvdl }
2561 1.1 fvdl
2562 1.1 fvdl /* Program multicast filter. */
2563 1.1 fvdl bge_setmulti(sc);
2564 1.1 fvdl
2565 1.1 fvdl /* Init RX ring. */
2566 1.1 fvdl bge_init_rx_ring_std(sc);
2567 1.1 fvdl
2568 1.1 fvdl /* Init jumbo RX ring. */
2569 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2570 1.1 fvdl bge_init_rx_ring_jumbo(sc);
2571 1.1 fvdl
2572 1.1 fvdl /* Init our RX return ring index */
2573 1.1 fvdl sc->bge_rx_saved_considx = 0;
2574 1.1 fvdl
2575 1.1 fvdl /* Init TX ring. */
2576 1.1 fvdl bge_init_tx_ring(sc);
2577 1.1 fvdl
2578 1.1 fvdl /* Turn on transmitter */
2579 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2580 1.1 fvdl
2581 1.1 fvdl /* Turn on receiver */
2582 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2583 1.1 fvdl
2584 1.1 fvdl /* Tell firmware we're alive. */
2585 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2586 1.1 fvdl
2587 1.1 fvdl /* Enable host interrupts. */
2588 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2589 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2590 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2591 1.1 fvdl
2592 1.1 fvdl bge_ifmedia_upd(ifp);
2593 1.1 fvdl
2594 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
2595 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2596 1.1 fvdl
2597 1.1 fvdl splx(s);
2598 1.1 fvdl
2599 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2600 1.1 fvdl
2601 1.1 fvdl return 0;
2602 1.1 fvdl }
2603 1.1 fvdl
2604 1.1 fvdl /*
2605 1.1 fvdl * Set media options.
2606 1.1 fvdl */
2607 1.1 fvdl int
2608 1.1 fvdl bge_ifmedia_upd(ifp)
2609 1.1 fvdl struct ifnet *ifp;
2610 1.1 fvdl {
2611 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2612 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2613 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
2614 1.1 fvdl
2615 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
2616 1.1 fvdl if (sc->bge_tbi) {
2617 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2618 1.1 fvdl return(EINVAL);
2619 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
2620 1.1 fvdl case IFM_AUTO:
2621 1.1 fvdl break;
2622 1.1 fvdl case IFM_1000_SX:
2623 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2624 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
2625 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
2626 1.1 fvdl } else {
2627 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
2628 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
2629 1.1 fvdl }
2630 1.1 fvdl break;
2631 1.1 fvdl default:
2632 1.1 fvdl return(EINVAL);
2633 1.1 fvdl }
2634 1.1 fvdl return(0);
2635 1.1 fvdl }
2636 1.1 fvdl
2637 1.1 fvdl sc->bge_link = 0;
2638 1.1 fvdl if (mii->mii_instance) {
2639 1.1 fvdl struct mii_softc *miisc;
2640 1.1 fvdl for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2641 1.1 fvdl miisc = LIST_NEXT(miisc, mii_list))
2642 1.1 fvdl mii_phy_reset(miisc);
2643 1.1 fvdl }
2644 1.1 fvdl bge_phy_hack(sc);
2645 1.1 fvdl mii_mediachg(mii);
2646 1.1 fvdl
2647 1.1 fvdl return(0);
2648 1.1 fvdl }
2649 1.1 fvdl
2650 1.1 fvdl /*
2651 1.1 fvdl * Report current media status.
2652 1.1 fvdl */
2653 1.1 fvdl void
2654 1.1 fvdl bge_ifmedia_sts(ifp, ifmr)
2655 1.1 fvdl struct ifnet *ifp;
2656 1.1 fvdl struct ifmediareq *ifmr;
2657 1.1 fvdl {
2658 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2659 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2660 1.1 fvdl
2661 1.1 fvdl if (sc->bge_tbi) {
2662 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
2663 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
2664 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2665 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
2666 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
2667 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
2668 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2669 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
2670 1.1 fvdl else
2671 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
2672 1.1 fvdl return;
2673 1.1 fvdl }
2674 1.1 fvdl
2675 1.1 fvdl mii_pollstat(mii);
2676 1.1 fvdl ifmr->ifm_active = mii->mii_media_active;
2677 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
2678 1.1 fvdl }
2679 1.1 fvdl
2680 1.1 fvdl int
2681 1.1 fvdl bge_ioctl(ifp, command, data)
2682 1.1 fvdl struct ifnet *ifp;
2683 1.1 fvdl u_long command;
2684 1.1 fvdl caddr_t data;
2685 1.1 fvdl {
2686 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2687 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
2688 1.1 fvdl int s, error = 0;
2689 1.1 fvdl struct mii_data *mii;
2690 1.1 fvdl
2691 1.1 fvdl s = splnet();
2692 1.1 fvdl
2693 1.1 fvdl switch(command) {
2694 1.1 fvdl case SIOCSIFFLAGS:
2695 1.1 fvdl if (ifp->if_flags & IFF_UP) {
2696 1.1 fvdl /*
2697 1.1 fvdl * If only the state of the PROMISC flag changed,
2698 1.1 fvdl * then just use the 'set promisc mode' command
2699 1.1 fvdl * instead of reinitializing the entire NIC. Doing
2700 1.1 fvdl * a full re-init means reloading the firmware and
2701 1.1 fvdl * waiting for it to start up, which may take a
2702 1.1 fvdl * second or two.
2703 1.1 fvdl */
2704 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
2705 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
2706 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
2707 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
2708 1.1 fvdl BGE_RXMODE_RX_PROMISC);
2709 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
2710 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
2711 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
2712 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
2713 1.1 fvdl BGE_RXMODE_RX_PROMISC);
2714 1.1 fvdl } else
2715 1.1 fvdl bge_init(ifp);
2716 1.1 fvdl } else {
2717 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2718 1.1 fvdl bge_stop(sc);
2719 1.1 fvdl }
2720 1.1 fvdl }
2721 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
2722 1.1 fvdl error = 0;
2723 1.1 fvdl break;
2724 1.1 fvdl case SIOCSIFMEDIA:
2725 1.1 fvdl case SIOCGIFMEDIA:
2726 1.1 fvdl if (sc->bge_tbi) {
2727 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2728 1.1 fvdl command);
2729 1.1 fvdl } else {
2730 1.1 fvdl mii = &sc->bge_mii;
2731 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2732 1.1 fvdl command);
2733 1.1 fvdl }
2734 1.1 fvdl error = 0;
2735 1.1 fvdl break;
2736 1.1 fvdl default:
2737 1.1 fvdl error = ether_ioctl(ifp, command, data);
2738 1.1 fvdl if (error == ENETRESET) {
2739 1.1 fvdl bge_setmulti(sc);
2740 1.1 fvdl error = 0;
2741 1.1 fvdl }
2742 1.1 fvdl break;
2743 1.1 fvdl }
2744 1.1 fvdl
2745 1.1 fvdl splx(s);
2746 1.1 fvdl
2747 1.1 fvdl return(error);
2748 1.1 fvdl }
2749 1.1 fvdl
2750 1.1 fvdl void
2751 1.1 fvdl bge_watchdog(ifp)
2752 1.1 fvdl struct ifnet *ifp;
2753 1.1 fvdl {
2754 1.1 fvdl struct bge_softc *sc;
2755 1.1 fvdl
2756 1.1 fvdl sc = ifp->if_softc;
2757 1.1 fvdl
2758 1.1 fvdl printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2759 1.1 fvdl
2760 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
2761 1.1 fvdl bge_init(ifp);
2762 1.1 fvdl
2763 1.1 fvdl ifp->if_oerrors++;
2764 1.1 fvdl }
2765 1.1 fvdl
2766 1.1 fvdl /*
2767 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
2768 1.1 fvdl * RX and TX lists.
2769 1.1 fvdl */
2770 1.1 fvdl void
2771 1.1 fvdl bge_stop(sc)
2772 1.1 fvdl struct bge_softc *sc;
2773 1.1 fvdl {
2774 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2775 1.1 fvdl
2776 1.1 fvdl callout_stop(&sc->bge_timeout);
2777 1.1 fvdl
2778 1.1 fvdl /*
2779 1.1 fvdl * Disable all of the receiver blocks
2780 1.1 fvdl */
2781 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2782 1.1 fvdl BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2783 1.1 fvdl BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2784 1.1 fvdl BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2785 1.1 fvdl BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2786 1.1 fvdl BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2787 1.1 fvdl BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2788 1.1 fvdl
2789 1.1 fvdl /*
2790 1.1 fvdl * Disable all of the transmit blocks
2791 1.1 fvdl */
2792 1.1 fvdl BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2793 1.1 fvdl BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2794 1.1 fvdl BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2795 1.1 fvdl BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2796 1.1 fvdl BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2797 1.1 fvdl BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2798 1.1 fvdl BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2799 1.1 fvdl
2800 1.1 fvdl /*
2801 1.1 fvdl * Shut down all of the memory managers and related
2802 1.1 fvdl * state machines.
2803 1.1 fvdl */
2804 1.1 fvdl BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2805 1.1 fvdl BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2806 1.1 fvdl BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2807 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2808 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2809 1.1 fvdl BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2810 1.1 fvdl BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2811 1.1 fvdl
2812 1.1 fvdl /* Disable host interrupts. */
2813 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2814 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2815 1.1 fvdl
2816 1.1 fvdl /*
2817 1.1 fvdl * Tell firmware we're shutting down.
2818 1.1 fvdl */
2819 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2820 1.1 fvdl
2821 1.1 fvdl /* Free the RX lists. */
2822 1.1 fvdl bge_free_rx_ring_std(sc);
2823 1.1 fvdl
2824 1.1 fvdl /* Free jumbo RX list. */
2825 1.1 fvdl bge_free_rx_ring_jumbo(sc);
2826 1.1 fvdl
2827 1.1 fvdl /* Free TX buffers. */
2828 1.1 fvdl bge_free_tx_ring(sc);
2829 1.1 fvdl
2830 1.1 fvdl /*
2831 1.1 fvdl * Isolate/power down the PHY.
2832 1.1 fvdl */
2833 1.1 fvdl if (!sc->bge_tbi)
2834 1.1 fvdl mii_down(&sc->bge_mii);
2835 1.1 fvdl
2836 1.1 fvdl sc->bge_link = 0;
2837 1.1 fvdl
2838 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2839 1.1 fvdl
2840 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2841 1.1 fvdl }
2842 1.1 fvdl
2843 1.1 fvdl /*
2844 1.1 fvdl * Stop all chip I/O so that the kernel's probe routines don't
2845 1.1 fvdl * get confused by errant DMAs when rebooting.
2846 1.1 fvdl */
2847 1.1 fvdl void
2848 1.1 fvdl bge_shutdown(xsc)
2849 1.1 fvdl void *xsc;
2850 1.1 fvdl {
2851 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)xsc;
2852 1.1 fvdl
2853 1.1 fvdl bge_stop(sc);
2854 1.1 fvdl bge_reset(sc);
2855 1.1 fvdl }
2856