if_bge.c revision 1.44 1 1.44 hannken /* $NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.44 hannken __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.1 fvdl
87 1.1 fvdl #include <sys/param.h>
88 1.1 fvdl #include <sys/systm.h>
89 1.1 fvdl #include <sys/callout.h>
90 1.1 fvdl #include <sys/sockio.h>
91 1.1 fvdl #include <sys/mbuf.h>
92 1.1 fvdl #include <sys/malloc.h>
93 1.1 fvdl #include <sys/kernel.h>
94 1.1 fvdl #include <sys/device.h>
95 1.1 fvdl #include <sys/socket.h>
96 1.1 fvdl
97 1.1 fvdl #include <net/if.h>
98 1.1 fvdl #include <net/if_dl.h>
99 1.1 fvdl #include <net/if_media.h>
100 1.1 fvdl #include <net/if_ether.h>
101 1.1 fvdl
102 1.1 fvdl #ifdef INET
103 1.1 fvdl #include <netinet/in.h>
104 1.1 fvdl #include <netinet/in_systm.h>
105 1.1 fvdl #include <netinet/in_var.h>
106 1.1 fvdl #include <netinet/ip.h>
107 1.1 fvdl #endif
108 1.1 fvdl
109 1.1 fvdl #if NBPFILTER > 0
110 1.1 fvdl #include <net/bpf.h>
111 1.1 fvdl #endif
112 1.1 fvdl
113 1.1 fvdl #include <dev/pci/pcireg.h>
114 1.1 fvdl #include <dev/pci/pcivar.h>
115 1.1 fvdl #include <dev/pci/pcidevs.h>
116 1.1 fvdl
117 1.1 fvdl #include <dev/mii/mii.h>
118 1.1 fvdl #include <dev/mii/miivar.h>
119 1.1 fvdl #include <dev/mii/miidevs.h>
120 1.1 fvdl #include <dev/mii/brgphyreg.h>
121 1.1 fvdl
122 1.1 fvdl #include <dev/pci/if_bgereg.h>
123 1.1 fvdl
124 1.1 fvdl #include <uvm/uvm_extern.h>
125 1.1 fvdl
126 1.1 fvdl int bge_probe(struct device *, struct cfdata *, void *);
127 1.1 fvdl void bge_attach(struct device *, struct device *, void *);
128 1.1 fvdl void bge_release_resources(struct bge_softc *);
129 1.1 fvdl void bge_txeof(struct bge_softc *);
130 1.1 fvdl void bge_rxeof(struct bge_softc *);
131 1.1 fvdl
132 1.1 fvdl void bge_tick(void *);
133 1.1 fvdl void bge_stats_update(struct bge_softc *);
134 1.1 fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
135 1.1 fvdl
136 1.1 fvdl int bge_intr(void *);
137 1.1 fvdl void bge_start(struct ifnet *);
138 1.1 fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
139 1.1 fvdl int bge_init(struct ifnet *);
140 1.1 fvdl void bge_stop(struct bge_softc *);
141 1.1 fvdl void bge_watchdog(struct ifnet *);
142 1.1 fvdl void bge_shutdown(void *);
143 1.1 fvdl int bge_ifmedia_upd(struct ifnet *);
144 1.1 fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 1.1 fvdl
146 1.1 fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
147 1.1 fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
148 1.1 fvdl
149 1.1 fvdl void bge_setmulti(struct bge_softc *);
150 1.1 fvdl
151 1.1 fvdl void bge_handle_events(struct bge_softc *);
152 1.1 fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
153 1.1 fvdl void bge_free_jumbo_mem(struct bge_softc *);
154 1.1 fvdl void *bge_jalloc(struct bge_softc *);
155 1.31 thorpej void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
156 1.1 fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
157 1.1 fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
158 1.1 fvdl int bge_init_rx_ring_std(struct bge_softc *);
159 1.1 fvdl void bge_free_rx_ring_std(struct bge_softc *);
160 1.1 fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
161 1.1 fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
162 1.1 fvdl void bge_free_tx_ring(struct bge_softc *);
163 1.1 fvdl int bge_init_tx_ring(struct bge_softc *);
164 1.1 fvdl
165 1.1 fvdl int bge_chipinit(struct bge_softc *);
166 1.1 fvdl int bge_blockinit(struct bge_softc *);
167 1.25 jonathan int bge_setpowerstate(struct bge_softc *, int);
168 1.1 fvdl
169 1.1 fvdl #ifdef notdef
170 1.1 fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
171 1.1 fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
172 1.1 fvdl void bge_vpd_read(struct bge_softc *);
173 1.1 fvdl #endif
174 1.1 fvdl
175 1.1 fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
176 1.1 fvdl void bge_writemem_ind(struct bge_softc *, int, int);
177 1.1 fvdl #ifdef notdef
178 1.1 fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
179 1.1 fvdl #endif
180 1.1 fvdl void bge_writereg_ind(struct bge_softc *, int, int);
181 1.1 fvdl
182 1.1 fvdl int bge_miibus_readreg(struct device *, int, int);
183 1.1 fvdl void bge_miibus_writereg(struct device *, int, int, int);
184 1.1 fvdl void bge_miibus_statchg(struct device *);
185 1.1 fvdl
186 1.1 fvdl void bge_reset(struct bge_softc *);
187 1.1 fvdl
188 1.1 fvdl void bge_dump_status(struct bge_softc *);
189 1.1 fvdl void bge_dump_rxbd(struct bge_rx_bd *);
190 1.1 fvdl
191 1.1 fvdl #define BGE_DEBUG
192 1.1 fvdl #ifdef BGE_DEBUG
193 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
194 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
195 1.1 fvdl int bgedebug = 0;
196 1.1 fvdl #else
197 1.1 fvdl #define DPRINTF(x)
198 1.1 fvdl #define DPRINTFN(n,x)
199 1.1 fvdl #endif
200 1.1 fvdl
201 1.17 thorpej /* Various chip quirks. */
202 1.17 thorpej #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
203 1.18 thorpej #define BGE_QUIRK_CSUM_BROKEN 0x00000002
204 1.24 matt #define BGE_QUIRK_ONLY_PHY_1 0x00000004
205 1.25 jonathan #define BGE_QUIRK_5700_SMALLDMA 0x00000008
206 1.25 jonathan #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
207 1.36 jonathan #define BGE_QUIRK_PRODUCER_BUG 0x00000020
208 1.37 jonathan #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
209 1.44 hannken #define BGE_QUIRK_5705_CORE 0x00000080
210 1.25 jonathan
211 1.25 jonathan /* following bugs are common to bcm5700 rev B, all flavours */
212 1.25 jonathan #define BGE_QUIRK_5700_COMMON \
213 1.25 jonathan (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
214 1.17 thorpej
215 1.21 thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
216 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
217 1.1 fvdl
218 1.1 fvdl u_int32_t
219 1.1 fvdl bge_readmem_ind(sc, off)
220 1.1 fvdl struct bge_softc *sc;
221 1.1 fvdl int off;
222 1.1 fvdl {
223 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
224 1.1 fvdl pcireg_t val;
225 1.1 fvdl
226 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
227 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
228 1.1 fvdl return val;
229 1.1 fvdl }
230 1.1 fvdl
231 1.1 fvdl void
232 1.1 fvdl bge_writemem_ind(sc, off, val)
233 1.1 fvdl struct bge_softc *sc;
234 1.1 fvdl int off, val;
235 1.1 fvdl {
236 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
237 1.1 fvdl
238 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
239 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
240 1.1 fvdl }
241 1.1 fvdl
242 1.1 fvdl #ifdef notdef
243 1.1 fvdl u_int32_t
244 1.1 fvdl bge_readreg_ind(sc, off)
245 1.1 fvdl struct bge_softc *sc;
246 1.1 fvdl int off;
247 1.1 fvdl {
248 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
249 1.1 fvdl
250 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
251 1.1 fvdl return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
252 1.1 fvdl }
253 1.1 fvdl #endif
254 1.1 fvdl
255 1.1 fvdl void
256 1.1 fvdl bge_writereg_ind(sc, off, val)
257 1.1 fvdl struct bge_softc *sc;
258 1.1 fvdl int off, val;
259 1.1 fvdl {
260 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
261 1.1 fvdl
262 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
263 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
264 1.1 fvdl }
265 1.1 fvdl
266 1.1 fvdl #ifdef notdef
267 1.1 fvdl u_int8_t
268 1.1 fvdl bge_vpd_readbyte(sc, addr)
269 1.1 fvdl struct bge_softc *sc;
270 1.1 fvdl int addr;
271 1.1 fvdl {
272 1.1 fvdl int i;
273 1.1 fvdl u_int32_t val;
274 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
275 1.1 fvdl
276 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
277 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
278 1.1 fvdl DELAY(10);
279 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
280 1.1 fvdl BGE_VPD_FLAG)
281 1.1 fvdl break;
282 1.1 fvdl }
283 1.1 fvdl
284 1.1 fvdl if (i == BGE_TIMEOUT) {
285 1.1 fvdl printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
286 1.1 fvdl return(0);
287 1.1 fvdl }
288 1.1 fvdl
289 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
290 1.1 fvdl
291 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
292 1.1 fvdl }
293 1.1 fvdl
294 1.1 fvdl void
295 1.1 fvdl bge_vpd_read_res(sc, res, addr)
296 1.1 fvdl struct bge_softc *sc;
297 1.1 fvdl struct vpd_res *res;
298 1.1 fvdl int addr;
299 1.1 fvdl {
300 1.1 fvdl int i;
301 1.1 fvdl u_int8_t *ptr;
302 1.1 fvdl
303 1.1 fvdl ptr = (u_int8_t *)res;
304 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
305 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
306 1.1 fvdl }
307 1.1 fvdl
308 1.1 fvdl void
309 1.1 fvdl bge_vpd_read(sc)
310 1.1 fvdl struct bge_softc *sc;
311 1.1 fvdl {
312 1.1 fvdl int pos = 0, i;
313 1.1 fvdl struct vpd_res res;
314 1.1 fvdl
315 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
316 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
317 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
318 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
319 1.1 fvdl sc->bge_vpd_prodname = NULL;
320 1.1 fvdl sc->bge_vpd_readonly = NULL;
321 1.1 fvdl
322 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
323 1.1 fvdl
324 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
325 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
326 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
327 1.1 fvdl return;
328 1.1 fvdl }
329 1.1 fvdl
330 1.1 fvdl pos += sizeof(res);
331 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
332 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
333 1.1 fvdl panic("bge_vpd_read");
334 1.1 fvdl for (i = 0; i < res.vr_len; i++)
335 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
336 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
337 1.1 fvdl pos += i;
338 1.1 fvdl
339 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
340 1.1 fvdl
341 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
342 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
343 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
344 1.1 fvdl return;
345 1.1 fvdl }
346 1.1 fvdl
347 1.1 fvdl pos += sizeof(res);
348 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
349 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
350 1.1 fvdl panic("bge_vpd_read");
351 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
352 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
353 1.1 fvdl }
354 1.1 fvdl #endif
355 1.1 fvdl
356 1.1 fvdl /*
357 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
358 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
359 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
360 1.1 fvdl * access method.
361 1.1 fvdl */
362 1.1 fvdl u_int8_t
363 1.1 fvdl bge_eeprom_getbyte(sc, addr, dest)
364 1.1 fvdl struct bge_softc *sc;
365 1.1 fvdl int addr;
366 1.1 fvdl u_int8_t *dest;
367 1.1 fvdl {
368 1.1 fvdl int i;
369 1.1 fvdl u_int32_t byte = 0;
370 1.1 fvdl
371 1.1 fvdl /*
372 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
373 1.1 fvdl * having to use the bitbang method.
374 1.1 fvdl */
375 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
376 1.1 fvdl
377 1.1 fvdl /* Reset the EEPROM, load the clock period. */
378 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
379 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
380 1.1 fvdl DELAY(20);
381 1.1 fvdl
382 1.1 fvdl /* Issue the read EEPROM command. */
383 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
384 1.1 fvdl
385 1.1 fvdl /* Wait for completion */
386 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
387 1.1 fvdl DELAY(10);
388 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
389 1.1 fvdl break;
390 1.1 fvdl }
391 1.1 fvdl
392 1.1 fvdl if (i == BGE_TIMEOUT) {
393 1.1 fvdl printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
394 1.1 fvdl return(0);
395 1.1 fvdl }
396 1.1 fvdl
397 1.1 fvdl /* Get result. */
398 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
399 1.1 fvdl
400 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
401 1.1 fvdl
402 1.1 fvdl return(0);
403 1.1 fvdl }
404 1.1 fvdl
405 1.1 fvdl /*
406 1.1 fvdl * Read a sequence of bytes from the EEPROM.
407 1.1 fvdl */
408 1.1 fvdl int
409 1.1 fvdl bge_read_eeprom(sc, dest, off, cnt)
410 1.1 fvdl struct bge_softc *sc;
411 1.1 fvdl caddr_t dest;
412 1.1 fvdl int off;
413 1.1 fvdl int cnt;
414 1.1 fvdl {
415 1.1 fvdl int err = 0, i;
416 1.1 fvdl u_int8_t byte = 0;
417 1.1 fvdl
418 1.1 fvdl for (i = 0; i < cnt; i++) {
419 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
420 1.1 fvdl if (err)
421 1.1 fvdl break;
422 1.1 fvdl *(dest + i) = byte;
423 1.1 fvdl }
424 1.1 fvdl
425 1.1 fvdl return(err ? 1 : 0);
426 1.1 fvdl }
427 1.1 fvdl
428 1.1 fvdl int
429 1.1 fvdl bge_miibus_readreg(dev, phy, reg)
430 1.1 fvdl struct device *dev;
431 1.1 fvdl int phy, reg;
432 1.1 fvdl {
433 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
434 1.1 fvdl struct ifnet *ifp;
435 1.1 fvdl u_int32_t val;
436 1.25 jonathan u_int32_t saved_autopoll;
437 1.1 fvdl int i;
438 1.1 fvdl
439 1.1 fvdl ifp = &sc->ethercom.ec_if;
440 1.1 fvdl
441 1.25 jonathan /*
442 1.25 jonathan * Several chips with builtin PHYs will incorrectly answer to
443 1.25 jonathan * other PHY instances than the builtin PHY at id 1.
444 1.25 jonathan */
445 1.24 matt if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
446 1.1 fvdl return(0);
447 1.1 fvdl
448 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
449 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
450 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
451 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
452 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
453 1.25 jonathan DELAY(40);
454 1.25 jonathan }
455 1.25 jonathan
456 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
457 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
458 1.1 fvdl
459 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
460 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
461 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
462 1.1 fvdl break;
463 1.9 thorpej delay(10);
464 1.1 fvdl }
465 1.1 fvdl
466 1.1 fvdl if (i == BGE_TIMEOUT) {
467 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
468 1.29 itojun val = 0;
469 1.25 jonathan goto done;
470 1.1 fvdl }
471 1.1 fvdl
472 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
473 1.1 fvdl
474 1.25 jonathan done:
475 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
476 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
477 1.25 jonathan DELAY(40);
478 1.25 jonathan }
479 1.29 itojun
480 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
481 1.1 fvdl return(0);
482 1.1 fvdl
483 1.1 fvdl return(val & 0xFFFF);
484 1.1 fvdl }
485 1.1 fvdl
486 1.1 fvdl void
487 1.1 fvdl bge_miibus_writereg(dev, phy, reg, val)
488 1.1 fvdl struct device *dev;
489 1.1 fvdl int phy, reg, val;
490 1.1 fvdl {
491 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
492 1.29 itojun u_int32_t saved_autopoll;
493 1.29 itojun int i;
494 1.1 fvdl
495 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
496 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
497 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
498 1.25 jonathan delay(40);
499 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
500 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
501 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
502 1.25 jonathan }
503 1.29 itojun
504 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
505 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
506 1.1 fvdl
507 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
508 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
509 1.1 fvdl break;
510 1.9 thorpej delay(10);
511 1.1 fvdl }
512 1.1 fvdl
513 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
514 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
515 1.25 jonathan delay(40);
516 1.25 jonathan }
517 1.29 itojun
518 1.1 fvdl if (i == BGE_TIMEOUT) {
519 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
520 1.1 fvdl }
521 1.1 fvdl }
522 1.1 fvdl
523 1.1 fvdl void
524 1.1 fvdl bge_miibus_statchg(dev)
525 1.1 fvdl struct device *dev;
526 1.1 fvdl {
527 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
528 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
529 1.1 fvdl
530 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
531 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
532 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
533 1.1 fvdl } else {
534 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
535 1.1 fvdl }
536 1.1 fvdl
537 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
538 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
539 1.1 fvdl } else {
540 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 1.1 fvdl }
542 1.1 fvdl }
543 1.1 fvdl
544 1.1 fvdl /*
545 1.1 fvdl * Handle events that have triggered interrupts.
546 1.1 fvdl */
547 1.1 fvdl void
548 1.1 fvdl bge_handle_events(sc)
549 1.1 fvdl struct bge_softc *sc;
550 1.1 fvdl {
551 1.1 fvdl
552 1.1 fvdl return;
553 1.1 fvdl }
554 1.1 fvdl
555 1.1 fvdl /*
556 1.1 fvdl * Memory management for jumbo frames.
557 1.1 fvdl */
558 1.1 fvdl
559 1.1 fvdl int
560 1.1 fvdl bge_alloc_jumbo_mem(sc)
561 1.1 fvdl struct bge_softc *sc;
562 1.1 fvdl {
563 1.1 fvdl caddr_t ptr, kva;
564 1.1 fvdl bus_dma_segment_t seg;
565 1.1 fvdl int i, rseg, state, error;
566 1.1 fvdl struct bge_jpool_entry *entry;
567 1.1 fvdl
568 1.1 fvdl state = error = 0;
569 1.1 fvdl
570 1.1 fvdl /* Grab a big chunk o' storage. */
571 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
572 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
573 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
574 1.1 fvdl return ENOBUFS;
575 1.1 fvdl }
576 1.1 fvdl
577 1.1 fvdl state = 1;
578 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
579 1.1 fvdl BUS_DMA_NOWAIT)) {
580 1.39 wiz printf("%s: can't map DMA buffers (%d bytes)\n",
581 1.1 fvdl sc->bge_dev.dv_xname, (int)BGE_JMEM);
582 1.1 fvdl error = ENOBUFS;
583 1.1 fvdl goto out;
584 1.1 fvdl }
585 1.1 fvdl
586 1.1 fvdl state = 2;
587 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
588 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
589 1.39 wiz printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
590 1.1 fvdl error = ENOBUFS;
591 1.1 fvdl goto out;
592 1.1 fvdl }
593 1.1 fvdl
594 1.1 fvdl state = 3;
595 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
596 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
597 1.39 wiz printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
598 1.1 fvdl error = ENOBUFS;
599 1.1 fvdl goto out;
600 1.1 fvdl }
601 1.1 fvdl
602 1.1 fvdl state = 4;
603 1.1 fvdl sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
604 1.1 fvdl DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
605 1.1 fvdl
606 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
607 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
608 1.1 fvdl
609 1.1 fvdl /*
610 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
611 1.1 fvdl * in an array.
612 1.1 fvdl */
613 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
614 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
615 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
616 1.1 fvdl ptr += BGE_JLEN;
617 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
618 1.1 fvdl M_DEVBUF, M_NOWAIT);
619 1.1 fvdl if (entry == NULL) {
620 1.1 fvdl printf("%s: no memory for jumbo buffer queue!\n",
621 1.1 fvdl sc->bge_dev.dv_xname);
622 1.1 fvdl error = ENOBUFS;
623 1.1 fvdl goto out;
624 1.1 fvdl }
625 1.1 fvdl entry->slot = i;
626 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
627 1.1 fvdl entry, jpool_entries);
628 1.1 fvdl }
629 1.1 fvdl out:
630 1.1 fvdl if (error != 0) {
631 1.1 fvdl switch (state) {
632 1.1 fvdl case 4:
633 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
634 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
635 1.1 fvdl case 3:
636 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
637 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
638 1.1 fvdl case 2:
639 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
640 1.1 fvdl case 1:
641 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
642 1.1 fvdl break;
643 1.1 fvdl default:
644 1.1 fvdl break;
645 1.1 fvdl }
646 1.1 fvdl }
647 1.1 fvdl
648 1.1 fvdl return error;
649 1.1 fvdl }
650 1.1 fvdl
651 1.1 fvdl /*
652 1.1 fvdl * Allocate a jumbo buffer.
653 1.1 fvdl */
654 1.1 fvdl void *
655 1.1 fvdl bge_jalloc(sc)
656 1.1 fvdl struct bge_softc *sc;
657 1.1 fvdl {
658 1.1 fvdl struct bge_jpool_entry *entry;
659 1.1 fvdl
660 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
661 1.1 fvdl
662 1.1 fvdl if (entry == NULL) {
663 1.1 fvdl printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
664 1.1 fvdl return(NULL);
665 1.1 fvdl }
666 1.1 fvdl
667 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
668 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
669 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
670 1.1 fvdl }
671 1.1 fvdl
672 1.1 fvdl /*
673 1.1 fvdl * Release a jumbo buffer.
674 1.1 fvdl */
675 1.1 fvdl void
676 1.1 fvdl bge_jfree(m, buf, size, arg)
677 1.1 fvdl struct mbuf *m;
678 1.1 fvdl caddr_t buf;
679 1.31 thorpej size_t size;
680 1.1 fvdl void *arg;
681 1.1 fvdl {
682 1.1 fvdl struct bge_jpool_entry *entry;
683 1.1 fvdl struct bge_softc *sc;
684 1.1 fvdl int i, s;
685 1.1 fvdl
686 1.1 fvdl /* Extract the softc struct pointer. */
687 1.1 fvdl sc = (struct bge_softc *)arg;
688 1.1 fvdl
689 1.1 fvdl if (sc == NULL)
690 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
691 1.1 fvdl
692 1.1 fvdl /* calculate the slot this buffer belongs to */
693 1.1 fvdl
694 1.1 fvdl i = ((caddr_t)buf
695 1.1 fvdl - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
696 1.1 fvdl
697 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
698 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
699 1.1 fvdl
700 1.1 fvdl s = splvm();
701 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
702 1.1 fvdl if (entry == NULL)
703 1.1 fvdl panic("bge_jfree: buffer not in use!");
704 1.1 fvdl entry->slot = i;
705 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
706 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
707 1.1 fvdl
708 1.1 fvdl if (__predict_true(m != NULL))
709 1.1 fvdl pool_cache_put(&mbpool_cache, m);
710 1.1 fvdl splx(s);
711 1.1 fvdl }
712 1.1 fvdl
713 1.1 fvdl
714 1.1 fvdl /*
715 1.1 fvdl * Intialize a standard receive ring descriptor.
716 1.1 fvdl */
717 1.1 fvdl int
718 1.1 fvdl bge_newbuf_std(sc, i, m, dmamap)
719 1.1 fvdl struct bge_softc *sc;
720 1.1 fvdl int i;
721 1.1 fvdl struct mbuf *m;
722 1.1 fvdl bus_dmamap_t dmamap;
723 1.1 fvdl {
724 1.1 fvdl struct mbuf *m_new = NULL;
725 1.1 fvdl struct bge_rx_bd *r;
726 1.1 fvdl int error;
727 1.1 fvdl
728 1.1 fvdl if (dmamap == NULL) {
729 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
730 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
731 1.1 fvdl if (error != 0)
732 1.1 fvdl return error;
733 1.1 fvdl }
734 1.1 fvdl
735 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
736 1.1 fvdl
737 1.1 fvdl if (m == NULL) {
738 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
739 1.1 fvdl if (m_new == NULL) {
740 1.1 fvdl return(ENOBUFS);
741 1.1 fvdl }
742 1.1 fvdl
743 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
744 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
745 1.1 fvdl m_freem(m_new);
746 1.1 fvdl return(ENOBUFS);
747 1.1 fvdl }
748 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
749 1.37 jonathan if (!sc->bge_rx_alignment_bug)
750 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
751 1.1 fvdl
752 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
753 1.1 fvdl BUS_DMA_READ|BUS_DMA_NOWAIT))
754 1.1 fvdl return(ENOBUFS);
755 1.1 fvdl } else {
756 1.1 fvdl m_new = m;
757 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
758 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
759 1.37 jonathan if (!sc->bge_rx_alignment_bug)
760 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
761 1.1 fvdl }
762 1.1 fvdl
763 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
764 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
765 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
766 1.10 fvdl dmamap->dm_segs[0].ds_addr);
767 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
768 1.1 fvdl r->bge_len = m_new->m_len;
769 1.1 fvdl r->bge_idx = i;
770 1.1 fvdl
771 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
772 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
773 1.1 fvdl i * sizeof (struct bge_rx_bd),
774 1.1 fvdl sizeof (struct bge_rx_bd),
775 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
776 1.1 fvdl
777 1.1 fvdl return(0);
778 1.1 fvdl }
779 1.1 fvdl
780 1.1 fvdl /*
781 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
782 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
783 1.1 fvdl */
784 1.1 fvdl int
785 1.1 fvdl bge_newbuf_jumbo(sc, i, m)
786 1.1 fvdl struct bge_softc *sc;
787 1.1 fvdl int i;
788 1.1 fvdl struct mbuf *m;
789 1.1 fvdl {
790 1.1 fvdl struct mbuf *m_new = NULL;
791 1.1 fvdl struct bge_rx_bd *r;
792 1.1 fvdl
793 1.1 fvdl if (m == NULL) {
794 1.1 fvdl caddr_t *buf = NULL;
795 1.1 fvdl
796 1.1 fvdl /* Allocate the mbuf. */
797 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
798 1.1 fvdl if (m_new == NULL) {
799 1.1 fvdl return(ENOBUFS);
800 1.1 fvdl }
801 1.1 fvdl
802 1.1 fvdl /* Allocate the jumbo buffer */
803 1.1 fvdl buf = bge_jalloc(sc);
804 1.1 fvdl if (buf == NULL) {
805 1.1 fvdl m_freem(m_new);
806 1.1 fvdl printf("%s: jumbo allocation failed "
807 1.1 fvdl "-- packet dropped!\n", sc->bge_dev.dv_xname);
808 1.1 fvdl return(ENOBUFS);
809 1.1 fvdl }
810 1.1 fvdl
811 1.1 fvdl /* Attach the buffer to the mbuf. */
812 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
813 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
814 1.1 fvdl bge_jfree, sc);
815 1.1 fvdl } else {
816 1.1 fvdl m_new = m;
817 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
818 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
819 1.1 fvdl }
820 1.1 fvdl
821 1.37 jonathan if (!sc->bge_rx_alignment_bug)
822 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
823 1.1 fvdl /* Set up the descriptor. */
824 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
825 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
826 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
827 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
828 1.1 fvdl r->bge_len = m_new->m_len;
829 1.1 fvdl r->bge_idx = i;
830 1.1 fvdl
831 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
832 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
833 1.1 fvdl i * sizeof (struct bge_rx_bd),
834 1.1 fvdl sizeof (struct bge_rx_bd),
835 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
836 1.1 fvdl
837 1.1 fvdl return(0);
838 1.1 fvdl }
839 1.1 fvdl
840 1.1 fvdl /*
841 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
843 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
844 1.1 fvdl * the NIC.
845 1.1 fvdl */
846 1.1 fvdl int
847 1.1 fvdl bge_init_rx_ring_std(sc)
848 1.1 fvdl struct bge_softc *sc;
849 1.1 fvdl {
850 1.1 fvdl int i;
851 1.1 fvdl
852 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
853 1.1 fvdl return 0;
854 1.1 fvdl
855 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
856 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
857 1.1 fvdl return(ENOBUFS);
858 1.1 fvdl }
859 1.1 fvdl
860 1.1 fvdl sc->bge_std = i - 1;
861 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
862 1.1 fvdl
863 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
864 1.1 fvdl
865 1.1 fvdl return(0);
866 1.1 fvdl }
867 1.1 fvdl
868 1.1 fvdl void
869 1.1 fvdl bge_free_rx_ring_std(sc)
870 1.1 fvdl struct bge_softc *sc;
871 1.1 fvdl {
872 1.1 fvdl int i;
873 1.1 fvdl
874 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
875 1.1 fvdl return;
876 1.1 fvdl
877 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
878 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
879 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
880 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
881 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
882 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
883 1.1 fvdl }
884 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
885 1.1 fvdl sizeof(struct bge_rx_bd));
886 1.1 fvdl }
887 1.1 fvdl
888 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
889 1.1 fvdl }
890 1.1 fvdl
891 1.1 fvdl int
892 1.1 fvdl bge_init_rx_ring_jumbo(sc)
893 1.1 fvdl struct bge_softc *sc;
894 1.1 fvdl {
895 1.1 fvdl int i;
896 1.34 jonathan volatile struct bge_rcb *rcb;
897 1.1 fvdl
898 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
899 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
900 1.1 fvdl return(ENOBUFS);
901 1.1 fvdl };
902 1.1 fvdl
903 1.1 fvdl sc->bge_jumbo = i - 1;
904 1.1 fvdl
905 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
906 1.34 jonathan rcb->bge_maxlen_flags = 0;
907 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
908 1.1 fvdl
909 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
910 1.1 fvdl
911 1.1 fvdl return(0);
912 1.1 fvdl }
913 1.1 fvdl
914 1.1 fvdl void
915 1.1 fvdl bge_free_rx_ring_jumbo(sc)
916 1.1 fvdl struct bge_softc *sc;
917 1.1 fvdl {
918 1.1 fvdl int i;
919 1.1 fvdl
920 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
921 1.1 fvdl return;
922 1.1 fvdl
923 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
924 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
925 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
926 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
927 1.1 fvdl }
928 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
929 1.1 fvdl sizeof(struct bge_rx_bd));
930 1.1 fvdl }
931 1.1 fvdl
932 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
933 1.1 fvdl }
934 1.1 fvdl
935 1.1 fvdl void
936 1.1 fvdl bge_free_tx_ring(sc)
937 1.1 fvdl struct bge_softc *sc;
938 1.1 fvdl {
939 1.1 fvdl int i, freed;
940 1.1 fvdl struct txdmamap_pool_entry *dma;
941 1.1 fvdl
942 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
943 1.1 fvdl return;
944 1.1 fvdl
945 1.1 fvdl freed = 0;
946 1.1 fvdl
947 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
948 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
949 1.1 fvdl freed++;
950 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
951 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
952 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
953 1.1 fvdl link);
954 1.1 fvdl sc->txdma[i] = 0;
955 1.1 fvdl }
956 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
957 1.1 fvdl sizeof(struct bge_tx_bd));
958 1.1 fvdl }
959 1.1 fvdl
960 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
961 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
962 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
963 1.1 fvdl free(dma, M_DEVBUF);
964 1.1 fvdl }
965 1.1 fvdl
966 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
967 1.1 fvdl }
968 1.1 fvdl
969 1.1 fvdl int
970 1.1 fvdl bge_init_tx_ring(sc)
971 1.1 fvdl struct bge_softc *sc;
972 1.1 fvdl {
973 1.1 fvdl int i;
974 1.1 fvdl bus_dmamap_t dmamap;
975 1.1 fvdl struct txdmamap_pool_entry *dma;
976 1.1 fvdl
977 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
978 1.1 fvdl return 0;
979 1.1 fvdl
980 1.1 fvdl sc->bge_txcnt = 0;
981 1.1 fvdl sc->bge_tx_saved_considx = 0;
982 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
984 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 1.25 jonathan
986 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
987 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
988 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
989 1.1 fvdl
990 1.1 fvdl SLIST_INIT(&sc->txdma_list);
991 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
992 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
993 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
994 1.1 fvdl &dmamap))
995 1.1 fvdl return(ENOBUFS);
996 1.1 fvdl if (dmamap == NULL)
997 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
998 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
999 1.1 fvdl if (dma == NULL) {
1000 1.1 fvdl printf("%s: can't alloc txdmamap_pool_entry\n",
1001 1.1 fvdl sc->bge_dev.dv_xname);
1002 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1003 1.1 fvdl return (ENOMEM);
1004 1.1 fvdl }
1005 1.1 fvdl dma->dmamap = dmamap;
1006 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1007 1.1 fvdl }
1008 1.1 fvdl
1009 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1010 1.1 fvdl
1011 1.1 fvdl return(0);
1012 1.1 fvdl }
1013 1.1 fvdl
1014 1.1 fvdl void
1015 1.1 fvdl bge_setmulti(sc)
1016 1.1 fvdl struct bge_softc *sc;
1017 1.1 fvdl {
1018 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1019 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1020 1.1 fvdl struct ether_multi *enm;
1021 1.1 fvdl struct ether_multistep step;
1022 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1023 1.1 fvdl u_int32_t h;
1024 1.1 fvdl int i;
1025 1.1 fvdl
1026 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1027 1.13 thorpej goto allmulti;
1028 1.1 fvdl
1029 1.1 fvdl /* Now program new ones. */
1030 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1031 1.1 fvdl while (enm != NULL) {
1032 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1033 1.13 thorpej /*
1034 1.13 thorpej * We must listen to a range of multicast addresses.
1035 1.13 thorpej * For now, just accept all multicasts, rather than
1036 1.13 thorpej * trying to set only those filter bits needed to match
1037 1.13 thorpej * the range. (At this time, the only use of address
1038 1.13 thorpej * ranges is for IP multicast routing, for which the
1039 1.13 thorpej * range is big enough to require all bits set.)
1040 1.13 thorpej */
1041 1.13 thorpej goto allmulti;
1042 1.13 thorpej }
1043 1.13 thorpej
1044 1.13 thorpej h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1045 1.13 thorpej
1046 1.13 thorpej /* Just want the 7 least-significant bits. */
1047 1.13 thorpej h &= 0x7f;
1048 1.13 thorpej
1049 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1050 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1051 1.1 fvdl }
1052 1.1 fvdl
1053 1.13 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
1054 1.13 thorpej goto setit;
1055 1.13 thorpej
1056 1.13 thorpej allmulti:
1057 1.13 thorpej ifp->if_flags |= IFF_ALLMULTI;
1058 1.13 thorpej hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1059 1.13 thorpej
1060 1.13 thorpej setit:
1061 1.1 fvdl for (i = 0; i < 4; i++)
1062 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1063 1.1 fvdl }
1064 1.1 fvdl
1065 1.24 matt const int bge_swapbits[] = {
1066 1.1 fvdl 0,
1067 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1068 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1069 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1070 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1071 1.1 fvdl
1072 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1073 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1074 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1075 1.1 fvdl
1076 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1077 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1078 1.1 fvdl
1079 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1080 1.1 fvdl
1081 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1082 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1083 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1085 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1086 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1087 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1089 1.1 fvdl
1090 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1091 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1092 1.1 fvdl };
1093 1.1 fvdl
1094 1.1 fvdl int bge_swapindex = 0;
1095 1.1 fvdl
1096 1.1 fvdl /*
1097 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1098 1.1 fvdl * self-test results.
1099 1.1 fvdl */
1100 1.1 fvdl int
1101 1.1 fvdl bge_chipinit(sc)
1102 1.1 fvdl struct bge_softc *sc;
1103 1.1 fvdl {
1104 1.1 fvdl u_int32_t cachesize;
1105 1.1 fvdl int i;
1106 1.25 jonathan u_int32_t dma_rw_ctl;
1107 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
1108 1.1 fvdl
1109 1.1 fvdl
1110 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1111 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1112 1.1 fvdl BGE_INIT);
1113 1.1 fvdl
1114 1.25 jonathan /* Set power state to D0. */
1115 1.25 jonathan bge_setpowerstate(sc, 0);
1116 1.25 jonathan
1117 1.1 fvdl /*
1118 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1119 1.1 fvdl * self-tests passed.
1120 1.1 fvdl */
1121 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1122 1.1 fvdl printf("%s: RX CPU self-diagnostics failed!\n",
1123 1.1 fvdl sc->bge_dev.dv_xname);
1124 1.1 fvdl return(ENODEV);
1125 1.1 fvdl }
1126 1.1 fvdl
1127 1.1 fvdl /* Clear the MAC control register */
1128 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1129 1.1 fvdl
1130 1.1 fvdl /*
1131 1.1 fvdl * Clear the MAC statistics block in the NIC's
1132 1.1 fvdl * internal memory.
1133 1.1 fvdl */
1134 1.1 fvdl for (i = BGE_STATS_BLOCK;
1135 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137 1.1 fvdl
1138 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1139 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1140 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1141 1.1 fvdl
1142 1.1 fvdl /* Set up the PCI DMA control register. */
1143 1.25 jonathan if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1144 1.25 jonathan BGE_PCISTATE_PCI_BUSMODE) {
1145 1.25 jonathan /* Conventional PCI bus */
1146 1.39 wiz DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1147 1.25 jonathan dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1148 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1149 1.44 hannken (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1150 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1151 1.44 hannken dma_rw_ctl |= 0x0F;
1152 1.44 hannken }
1153 1.25 jonathan } else {
1154 1.39 wiz DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1155 1.25 jonathan /* PCI-X bus */
1156 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159 1.25 jonathan (0x0F);
1160 1.25 jonathan /*
1161 1.25 jonathan * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1162 1.25 jonathan * for hardware bugs, which means we should also clear
1163 1.25 jonathan * the low-order MINDMA bits. In addition, the 5704
1164 1.25 jonathan * uses a different encoding of read/write watermarks.
1165 1.25 jonathan */
1166 1.40 fvdl if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1167 1.40 fvdl sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1168 1.40 fvdl sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
1169 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 1.25 jonathan /* should be 0x1f0000 */
1171 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1172 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1173 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1174 1.25 jonathan }
1175 1.25 jonathan else if ((sc->bge_asicrev >> 28) ==
1176 1.25 jonathan (BGE_ASICREV_BCM5703_A0 >> 28)) {
1177 1.25 jonathan dma_rw_ctl &= 0xfffffff0;
1178 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1179 1.25 jonathan }
1180 1.25 jonathan }
1181 1.25 jonathan
1182 1.25 jonathan pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1183 1.1 fvdl
1184 1.1 fvdl /*
1185 1.1 fvdl * Set up general mode register.
1186 1.1 fvdl */
1187 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1188 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1189 1.1 fvdl BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1190 1.1 fvdl BGE_MODECTL_RX_NO_PHDR_CSUM);
1191 1.1 fvdl
1192 1.1 fvdl /* Get cache line size. */
1193 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1194 1.1 fvdl
1195 1.1 fvdl /*
1196 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1197 1.1 fvdl */
1198 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1199 1.1 fvdl PCIM_CMD_MWIEN) {
1200 1.1 fvdl switch(cachesize) {
1201 1.1 fvdl case 1:
1202 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1204 1.1 fvdl break;
1205 1.1 fvdl case 2:
1206 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1208 1.1 fvdl break;
1209 1.1 fvdl case 4:
1210 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1212 1.1 fvdl break;
1213 1.1 fvdl case 8:
1214 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1216 1.1 fvdl break;
1217 1.1 fvdl case 16:
1218 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1219 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1220 1.1 fvdl break;
1221 1.1 fvdl case 32:
1222 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1223 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1224 1.1 fvdl break;
1225 1.1 fvdl case 64:
1226 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1227 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1228 1.1 fvdl break;
1229 1.1 fvdl default:
1230 1.1 fvdl /* Disable PCI memory write and invalidate. */
1231 1.1 fvdl #if 0
1232 1.1 fvdl if (bootverbose)
1233 1.1 fvdl printf("%s: cache line size %d not "
1234 1.1 fvdl "supported; disabling PCI MWI\n",
1235 1.1 fvdl sc->bge_dev.dv_xname, cachesize);
1236 1.1 fvdl #endif
1237 1.1 fvdl PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1238 1.1 fvdl PCIM_CMD_MWIEN);
1239 1.1 fvdl break;
1240 1.1 fvdl }
1241 1.1 fvdl }
1242 1.1 fvdl
1243 1.25 jonathan /*
1244 1.25 jonathan * Disable memory write invalidate. Apparently it is not supported
1245 1.25 jonathan * properly by these devices.
1246 1.25 jonathan */
1247 1.25 jonathan PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1248 1.25 jonathan
1249 1.25 jonathan
1250 1.1 fvdl #ifdef __brokenalpha__
1251 1.1 fvdl /*
1252 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1253 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1254 1.1 fvdl * restriction on some ALPHA platforms with early revision
1255 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1256 1.1 fvdl */
1257 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1258 1.1 fvdl #endif
1259 1.1 fvdl
1260 1.33 tsutsui /* Set the timer prescaler (always 66MHz) */
1261 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1262 1.1 fvdl
1263 1.1 fvdl return(0);
1264 1.1 fvdl }
1265 1.1 fvdl
1266 1.1 fvdl int
1267 1.1 fvdl bge_blockinit(sc)
1268 1.1 fvdl struct bge_softc *sc;
1269 1.1 fvdl {
1270 1.34 jonathan volatile struct bge_rcb *rcb;
1271 1.1 fvdl bus_size_t rcb_addr;
1272 1.1 fvdl int i;
1273 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1274 1.1 fvdl bge_hostaddr taddr;
1275 1.1 fvdl
1276 1.1 fvdl /*
1277 1.1 fvdl * Initialize the memory window pointer register so that
1278 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1279 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1280 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1281 1.1 fvdl */
1282 1.1 fvdl
1283 1.1 fvdl pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1284 1.1 fvdl BGE_PCI_MEMWIN_BASEADDR, 0);
1285 1.1 fvdl
1286 1.1 fvdl /* Configure mbuf memory pool */
1287 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1288 1.44 hannken if (sc->bge_extram) {
1289 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1290 1.44 hannken BGE_EXT_SSRAM);
1291 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1292 1.44 hannken } else {
1293 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1294 1.44 hannken BGE_BUFFPOOL_1);
1295 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1296 1.44 hannken }
1297 1.44 hannken
1298 1.44 hannken /* Configure DMA resource pool */
1299 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1300 1.44 hannken BGE_DMA_DESCRIPTORS);
1301 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1302 1.1 fvdl }
1303 1.1 fvdl
1304 1.1 fvdl /* Configure mbuf pool watermarks */
1305 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
1306 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1307 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1308 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1309 1.25 jonathan #else
1310 1.25 jonathan /* new broadcom docs strongly recommend these: */
1311 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1312 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1313 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1314 1.44 hannken } else {
1315 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1316 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1317 1.44 hannken }
1318 1.25 jonathan CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1319 1.25 jonathan #endif
1320 1.1 fvdl
1321 1.1 fvdl /* Configure DMA resource watermarks */
1322 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1323 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1324 1.1 fvdl
1325 1.1 fvdl /* Enable buffer manager */
1326 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1327 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MODE,
1328 1.44 hannken BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1329 1.44 hannken
1330 1.44 hannken /* Poll for buffer manager start indication */
1331 1.44 hannken for (i = 0; i < BGE_TIMEOUT; i++) {
1332 1.44 hannken if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1333 1.44 hannken break;
1334 1.44 hannken DELAY(10);
1335 1.44 hannken }
1336 1.1 fvdl
1337 1.44 hannken if (i == BGE_TIMEOUT) {
1338 1.44 hannken printf("%s: buffer manager failed to start\n",
1339 1.44 hannken sc->bge_dev.dv_xname);
1340 1.44 hannken return(ENXIO);
1341 1.44 hannken }
1342 1.1 fvdl }
1343 1.1 fvdl
1344 1.1 fvdl /* Enable flow-through queues */
1345 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1346 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1347 1.1 fvdl
1348 1.1 fvdl /* Wait until queue initialization is complete */
1349 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1350 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1351 1.1 fvdl break;
1352 1.1 fvdl DELAY(10);
1353 1.1 fvdl }
1354 1.1 fvdl
1355 1.1 fvdl if (i == BGE_TIMEOUT) {
1356 1.1 fvdl printf("%s: flow-through queue init failed\n",
1357 1.1 fvdl sc->bge_dev.dv_xname);
1358 1.1 fvdl return(ENXIO);
1359 1.1 fvdl }
1360 1.1 fvdl
1361 1.1 fvdl /* Initialize the standard RX ring control block */
1362 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1363 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1364 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1365 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1366 1.44 hannken rcb->bge_maxlen_flags =
1367 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1368 1.44 hannken } else {
1369 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1370 1.44 hannken }
1371 1.1 fvdl if (sc->bge_extram)
1372 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1373 1.1 fvdl else
1374 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1375 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1376 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1377 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1378 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1379 1.1 fvdl
1380 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1381 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1382 1.44 hannken } else {
1383 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1384 1.44 hannken }
1385 1.44 hannken
1386 1.1 fvdl /*
1387 1.1 fvdl * Initialize the jumbo RX ring control block
1388 1.1 fvdl * We set the 'ring disabled' bit in the flags
1389 1.1 fvdl * field until we're actually ready to start
1390 1.1 fvdl * using this ring (i.e. once we set the MTU
1391 1.1 fvdl * high enough to require it).
1392 1.1 fvdl */
1393 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1394 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1395 1.44 hannken bge_set_hostaddr(&rcb->bge_hostaddr,
1396 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1397 1.44 hannken rcb->bge_maxlen_flags =
1398 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1399 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1400 1.44 hannken if (sc->bge_extram)
1401 1.44 hannken rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1402 1.44 hannken else
1403 1.44 hannken rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1404 1.44 hannken
1405 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1406 1.44 hannken rcb->bge_hostaddr.bge_addr_hi);
1407 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1408 1.44 hannken rcb->bge_hostaddr.bge_addr_lo);
1409 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1410 1.44 hannken rcb->bge_maxlen_flags);
1411 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1412 1.44 hannken
1413 1.44 hannken /* Set up dummy disabled mini ring RCB */
1414 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1415 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1416 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1417 1.44 hannken CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1418 1.44 hannken rcb->bge_maxlen_flags);
1419 1.1 fvdl
1420 1.44 hannken bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1421 1.44 hannken offsetof(struct bge_ring_data, bge_info),
1422 1.44 hannken sizeof (struct bge_gib),
1423 1.44 hannken BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1424 1.44 hannken }
1425 1.1 fvdl
1426 1.1 fvdl /*
1427 1.1 fvdl * Set the BD ring replentish thresholds. The recommended
1428 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1429 1.1 fvdl * each ring.
1430 1.1 fvdl */
1431 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1432 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1433 1.1 fvdl
1434 1.1 fvdl /*
1435 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1436 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1437 1.1 fvdl * These are located in NIC memory.
1438 1.1 fvdl */
1439 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1440 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1441 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1442 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1443 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1444 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1445 1.1 fvdl }
1446 1.1 fvdl
1447 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1448 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1449 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1450 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1451 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1452 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1453 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1454 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1455 1.44 hannken RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1456 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1457 1.44 hannken }
1458 1.1 fvdl
1459 1.1 fvdl /* Disable all unused RX return rings */
1460 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1461 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1462 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1463 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1464 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1465 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1466 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED));
1467 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1468 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1469 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1470 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1471 1.1 fvdl }
1472 1.1 fvdl
1473 1.1 fvdl /* Initialize RX ring indexes */
1474 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1475 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1476 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1477 1.1 fvdl
1478 1.1 fvdl /*
1479 1.1 fvdl * Set up RX return ring 0
1480 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1481 1.1 fvdl * The return rings live entirely within the host, so the
1482 1.1 fvdl * nicaddr field in the RCB isn't used.
1483 1.1 fvdl */
1484 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1485 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1486 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1487 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1488 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1489 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1490 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1491 1.1 fvdl
1492 1.1 fvdl /* Set random backoff seed for TX */
1493 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1494 1.1 fvdl LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1495 1.1 fvdl LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1496 1.1 fvdl LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1497 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1498 1.1 fvdl
1499 1.1 fvdl /* Set inter-packet gap */
1500 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1501 1.1 fvdl
1502 1.1 fvdl /*
1503 1.1 fvdl * Specify which ring to use for packets that don't match
1504 1.1 fvdl * any RX rules.
1505 1.1 fvdl */
1506 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1507 1.1 fvdl
1508 1.1 fvdl /*
1509 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1510 1.1 fvdl * list, sixteen active lists, one bad frames class.
1511 1.1 fvdl */
1512 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1513 1.1 fvdl
1514 1.1 fvdl /* Inialize RX list placement stats mask. */
1515 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1516 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1517 1.1 fvdl
1518 1.1 fvdl /* Disable host coalescing until we get it set up */
1519 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1520 1.1 fvdl
1521 1.1 fvdl /* Poll to make sure it's shut down. */
1522 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1523 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1524 1.1 fvdl break;
1525 1.1 fvdl DELAY(10);
1526 1.1 fvdl }
1527 1.1 fvdl
1528 1.1 fvdl if (i == BGE_TIMEOUT) {
1529 1.1 fvdl printf("%s: host coalescing engine failed to idle\n",
1530 1.1 fvdl sc->bge_dev.dv_xname);
1531 1.1 fvdl return(ENXIO);
1532 1.1 fvdl }
1533 1.1 fvdl
1534 1.1 fvdl /* Set up host coalescing defaults */
1535 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1536 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1537 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1538 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1539 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1541 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1542 1.44 hannken }
1543 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1544 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1545 1.1 fvdl
1546 1.1 fvdl /* Set up address of statistics block */
1547 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 1.44 hannken bge_set_hostaddr(&taddr,
1549 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1550 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1551 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1552 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1553 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1554 1.44 hannken }
1555 1.1 fvdl
1556 1.1 fvdl /* Set up address of status block */
1557 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1558 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1559 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1560 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1561 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1562 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1563 1.1 fvdl
1564 1.1 fvdl /* Turn on host coalescing state machine */
1565 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1566 1.1 fvdl
1567 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1568 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1569 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1570 1.1 fvdl
1571 1.1 fvdl /* Turn on RX list placement state machine */
1572 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1573 1.1 fvdl
1574 1.1 fvdl /* Turn on RX list selector state machine. */
1575 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1576 1.44 hannken CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1577 1.44 hannken }
1578 1.1 fvdl
1579 1.1 fvdl /* Turn on DMA, clear stats */
1580 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1581 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1582 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1583 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1584 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1585 1.1 fvdl
1586 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1587 1.25 jonathan sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1588 1.1 fvdl
1589 1.1 fvdl #ifdef notdef
1590 1.1 fvdl /* Assert GPIO pins for PHY reset */
1591 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1592 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1593 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1594 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1595 1.1 fvdl #endif
1596 1.1 fvdl
1597 1.25 jonathan #if defined(not_quite_yet)
1598 1.25 jonathan /* Linux driver enables enable gpio pin #1 on 5700s */
1599 1.25 jonathan if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1600 1.25 jonathan sc->bge_local_ctrl_reg |=
1601 1.25 jonathan (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1602 1.25 jonathan }
1603 1.25 jonathan #endif
1604 1.25 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1605 1.25 jonathan
1606 1.1 fvdl /* Turn on DMA completion state machine */
1607 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1608 1.44 hannken CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1609 1.44 hannken }
1610 1.1 fvdl
1611 1.1 fvdl /* Turn on write DMA state machine */
1612 1.1 fvdl CSR_WRITE_4(sc, BGE_WDMA_MODE,
1613 1.1 fvdl BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1614 1.1 fvdl
1615 1.1 fvdl /* Turn on read DMA state machine */
1616 1.1 fvdl CSR_WRITE_4(sc, BGE_RDMA_MODE,
1617 1.1 fvdl BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1618 1.1 fvdl
1619 1.1 fvdl /* Turn on RX data completion state machine */
1620 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1621 1.1 fvdl
1622 1.1 fvdl /* Turn on RX BD initiator state machine */
1623 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1624 1.1 fvdl
1625 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1626 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1627 1.1 fvdl
1628 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1629 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1630 1.44 hannken CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1631 1.44 hannken }
1632 1.1 fvdl
1633 1.1 fvdl /* Turn on send BD completion state machine */
1634 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1635 1.1 fvdl
1636 1.1 fvdl /* Turn on send data completion state machine */
1637 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1638 1.1 fvdl
1639 1.1 fvdl /* Turn on send data initiator state machine */
1640 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1641 1.1 fvdl
1642 1.1 fvdl /* Turn on send BD initiator state machine */
1643 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1644 1.1 fvdl
1645 1.1 fvdl /* Turn on send BD selector state machine */
1646 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1647 1.1 fvdl
1648 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1649 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1650 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1651 1.1 fvdl
1652 1.1 fvdl /* init LED register */
1653 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1654 1.1 fvdl
1655 1.1 fvdl /* ack/clear link change events */
1656 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1657 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1658 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1659 1.1 fvdl
1660 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1661 1.1 fvdl if (sc->bge_tbi) {
1662 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1663 1.1 fvdl } else {
1664 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1665 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1666 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1667 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1668 1.1 fvdl }
1669 1.1 fvdl
1670 1.1 fvdl /* Enable link state change attentions. */
1671 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1672 1.1 fvdl
1673 1.1 fvdl return(0);
1674 1.1 fvdl }
1675 1.1 fvdl
1676 1.16 thorpej static const struct bge_revision {
1677 1.16 thorpej uint32_t br_asicrev;
1678 1.16 thorpej uint32_t br_quirks;
1679 1.16 thorpej const char *br_name;
1680 1.16 thorpej } bge_revisions[] = {
1681 1.16 thorpej { BGE_ASICREV_BCM5700_A0,
1682 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1683 1.16 thorpej "BCM5700 A0" },
1684 1.16 thorpej
1685 1.16 thorpej { BGE_ASICREV_BCM5700_A1,
1686 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1687 1.16 thorpej "BCM5700 A1" },
1688 1.16 thorpej
1689 1.16 thorpej { BGE_ASICREV_BCM5700_B0,
1690 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1691 1.16 thorpej "BCM5700 B0" },
1692 1.16 thorpej
1693 1.16 thorpej { BGE_ASICREV_BCM5700_B1,
1694 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1695 1.16 thorpej "BCM5700 B1" },
1696 1.16 thorpej
1697 1.16 thorpej { BGE_ASICREV_BCM5700_B2,
1698 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1699 1.16 thorpej "BCM5700 B2" },
1700 1.16 thorpej
1701 1.17 thorpej /* This is treated like a BCM5700 Bx */
1702 1.16 thorpej { BGE_ASICREV_BCM5700_ALTIMA,
1703 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 1.16 thorpej "BCM5700 Altima" },
1705 1.16 thorpej
1706 1.16 thorpej { BGE_ASICREV_BCM5700_C0,
1707 1.16 thorpej 0,
1708 1.16 thorpej "BCM5700 C0" },
1709 1.16 thorpej
1710 1.16 thorpej { BGE_ASICREV_BCM5701_A0,
1711 1.37 jonathan 0, /*XXX really, just not known */
1712 1.16 thorpej "BCM5701 A0" },
1713 1.16 thorpej
1714 1.16 thorpej { BGE_ASICREV_BCM5701_B0,
1715 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1716 1.16 thorpej "BCM5701 B0" },
1717 1.16 thorpej
1718 1.16 thorpej { BGE_ASICREV_BCM5701_B2,
1719 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1720 1.16 thorpej "BCM5701 B2" },
1721 1.16 thorpej
1722 1.16 thorpej { BGE_ASICREV_BCM5701_B5,
1723 1.37 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1724 1.16 thorpej "BCM5701 B5" },
1725 1.16 thorpej
1726 1.16 thorpej { BGE_ASICREV_BCM5703_A0,
1727 1.16 thorpej 0,
1728 1.16 thorpej "BCM5703 A0" },
1729 1.16 thorpej
1730 1.16 thorpej { BGE_ASICREV_BCM5703_A1,
1731 1.16 thorpej 0,
1732 1.16 thorpej "BCM5703 A1" },
1733 1.16 thorpej
1734 1.16 thorpej { BGE_ASICREV_BCM5703_A2,
1735 1.24 matt BGE_QUIRK_ONLY_PHY_1,
1736 1.16 thorpej "BCM5703 A2" },
1737 1.16 thorpej
1738 1.25 jonathan { BGE_ASICREV_BCM5704_A0,
1739 1.25 jonathan BGE_QUIRK_ONLY_PHY_1,
1740 1.25 jonathan "BCM5704 A0" },
1741 1.40 fvdl
1742 1.40 fvdl { BGE_ASICREV_BCM5704_A1,
1743 1.40 fvdl BGE_QUIRK_ONLY_PHY_1,
1744 1.40 fvdl "BCM5704 A1" },
1745 1.40 fvdl
1746 1.40 fvdl { BGE_ASICREV_BCM5704_A2,
1747 1.40 fvdl BGE_QUIRK_ONLY_PHY_1,
1748 1.40 fvdl "BCM5704 A2" },
1749 1.25 jonathan
1750 1.44 hannken { BGE_ASICREV_BCM5705_A1,
1751 1.44 hannken BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1752 1.44 hannken "BCM5705 A1" },
1753 1.44 hannken
1754 1.16 thorpej { 0, 0, NULL }
1755 1.16 thorpej };
1756 1.16 thorpej
1757 1.16 thorpej static const struct bge_revision *
1758 1.16 thorpej bge_lookup_rev(uint32_t asicrev)
1759 1.16 thorpej {
1760 1.16 thorpej const struct bge_revision *br;
1761 1.16 thorpej
1762 1.16 thorpej for (br = bge_revisions; br->br_name != NULL; br++) {
1763 1.16 thorpej if (br->br_asicrev == asicrev)
1764 1.16 thorpej return (br);
1765 1.16 thorpej }
1766 1.16 thorpej
1767 1.16 thorpej return (NULL);
1768 1.16 thorpej }
1769 1.16 thorpej
1770 1.7 thorpej static const struct bge_product {
1771 1.7 thorpej pci_vendor_id_t bp_vendor;
1772 1.7 thorpej pci_product_id_t bp_product;
1773 1.7 thorpej const char *bp_name;
1774 1.7 thorpej } bge_products[] = {
1775 1.7 thorpej /*
1776 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
1777 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
1778 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
1779 1.7 thorpej * check for it anyway.
1780 1.7 thorpej */
1781 1.7 thorpej { PCI_VENDOR_ALTEON,
1782 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
1783 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1784 1.7 thorpej { PCI_VENDOR_ALTEON,
1785 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
1786 1.7 thorpej "Broadcom BCM5701 Gigabit Ethernet" },
1787 1.7 thorpej
1788 1.7 thorpej { PCI_VENDOR_ALTIMA,
1789 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
1790 1.7 thorpej "Altima AC1000 Gigabit Ethernet" },
1791 1.14 enami { PCI_VENDOR_ALTIMA,
1792 1.14 enami PCI_PRODUCT_ALTIMA_AC1001,
1793 1.14 enami "Altima AC1001 Gigabit Ethernet" },
1794 1.7 thorpej { PCI_VENDOR_ALTIMA,
1795 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
1796 1.7 thorpej "Altima AC9100 Gigabit Ethernet" },
1797 1.7 thorpej
1798 1.7 thorpej { PCI_VENDOR_BROADCOM,
1799 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
1800 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1801 1.7 thorpej { PCI_VENDOR_BROADCOM,
1802 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
1803 1.24 matt "Broadcom BCM5701 Gigabit Ethernet" },
1804 1.24 matt { PCI_VENDOR_BROADCOM,
1805 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702,
1806 1.24 matt "Broadcom BCM5702 Gigabit Ethernet" },
1807 1.24 matt { PCI_VENDOR_BROADCOM,
1808 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702X,
1809 1.24 matt "Broadcom BCM5702X Gigabit Ethernet" },
1810 1.24 matt { PCI_VENDOR_BROADCOM,
1811 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703,
1812 1.24 matt "Broadcom BCM5703 Gigabit Ethernet" },
1813 1.24 matt { PCI_VENDOR_BROADCOM,
1814 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703X,
1815 1.24 matt "Broadcom BCM5703X Gigabit Ethernet" },
1816 1.25 jonathan { PCI_VENDOR_BROADCOM,
1817 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704C,
1818 1.25 jonathan "Broadcom BCM5704C Dual Gigabit Ethernet" },
1819 1.25 jonathan { PCI_VENDOR_BROADCOM,
1820 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704S,
1821 1.25 jonathan "Broadcom BCM5704S Dual Gigabit Ethernet" },
1822 1.44 hannken { PCI_VENDOR_BROADCOM,
1823 1.44 hannken PCI_PRODUCT_BROADCOM_BCM5705M,
1824 1.44 hannken "Broadcom BCM5705M Gigabit Ethernet" },
1825 1.7 thorpej
1826 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
1827 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1828 1.8 thorpej "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1829 1.7 thorpej
1830 1.7 thorpej { PCI_VENDOR_3COM,
1831 1.7 thorpej PCI_PRODUCT_3COM_3C996,
1832 1.7 thorpej "3Com 3c996 Gigabit Ethernet" },
1833 1.7 thorpej
1834 1.7 thorpej { 0,
1835 1.7 thorpej 0,
1836 1.7 thorpej NULL },
1837 1.7 thorpej };
1838 1.7 thorpej
1839 1.7 thorpej static const struct bge_product *
1840 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
1841 1.7 thorpej {
1842 1.7 thorpej const struct bge_product *bp;
1843 1.7 thorpej
1844 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
1845 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1846 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1847 1.7 thorpej return (bp);
1848 1.7 thorpej }
1849 1.7 thorpej
1850 1.7 thorpej return (NULL);
1851 1.7 thorpej }
1852 1.7 thorpej
1853 1.25 jonathan int
1854 1.25 jonathan bge_setpowerstate(sc, powerlevel)
1855 1.25 jonathan struct bge_softc *sc;
1856 1.25 jonathan int powerlevel;
1857 1.25 jonathan {
1858 1.25 jonathan #ifdef NOTYET
1859 1.25 jonathan u_int32_t pm_ctl = 0;
1860 1.25 jonathan
1861 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
1862 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1863 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1864 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1865 1.25 jonathan
1866 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
1867 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1868 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
1869 1.25 jonathan pm_ctl |= (1 << 8);
1870 1.25 jonathan
1871 1.25 jonathan if (powerlevel == 0) {
1872 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
1873 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1874 1.25 jonathan pm_ctl, 2);
1875 1.25 jonathan DELAY(10000);
1876 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1877 1.25 jonathan DELAY(10000);
1878 1.25 jonathan
1879 1.25 jonathan #ifdef NOTYET
1880 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1881 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1882 1.25 jonathan #endif
1883 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
1884 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
1885 1.25 jonathan return 0;
1886 1.25 jonathan }
1887 1.25 jonathan
1888 1.25 jonathan
1889 1.25 jonathan /*
1890 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
1891 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
1892 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
1893 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
1894 1.25 jonathan */
1895 1.25 jonathan printf("%s: power state %d unimplemented; check GPIO pins\n",
1896 1.25 jonathan sc->bge_dev.dv_xname, powerlevel);
1897 1.25 jonathan #endif
1898 1.25 jonathan return EOPNOTSUPP;
1899 1.25 jonathan }
1900 1.25 jonathan
1901 1.25 jonathan
1902 1.1 fvdl /*
1903 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1904 1.1 fvdl * against our list and return its name if we find a match. Note
1905 1.1 fvdl * that since the Broadcom controller contains VPD support, we
1906 1.1 fvdl * can get the device name string from the controller itself instead
1907 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
1908 1.1 fvdl * we'll always announce the right product name.
1909 1.1 fvdl */
1910 1.1 fvdl int
1911 1.1 fvdl bge_probe(parent, match, aux)
1912 1.1 fvdl struct device *parent;
1913 1.1 fvdl struct cfdata *match;
1914 1.1 fvdl void *aux;
1915 1.1 fvdl {
1916 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1917 1.1 fvdl
1918 1.7 thorpej if (bge_lookup(pa) != NULL)
1919 1.1 fvdl return (1);
1920 1.1 fvdl
1921 1.1 fvdl return (0);
1922 1.1 fvdl }
1923 1.1 fvdl
1924 1.1 fvdl void
1925 1.1 fvdl bge_attach(parent, self, aux)
1926 1.1 fvdl struct device *parent, *self;
1927 1.1 fvdl void *aux;
1928 1.1 fvdl {
1929 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)self;
1930 1.1 fvdl struct pci_attach_args *pa = aux;
1931 1.7 thorpej const struct bge_product *bp;
1932 1.16 thorpej const struct bge_revision *br;
1933 1.1 fvdl pci_chipset_tag_t pc = pa->pa_pc;
1934 1.1 fvdl pci_intr_handle_t ih;
1935 1.1 fvdl const char *intrstr = NULL;
1936 1.1 fvdl bus_dma_segment_t seg;
1937 1.1 fvdl int rseg;
1938 1.1 fvdl u_int32_t hwcfg = 0;
1939 1.24 matt u_int32_t mac_addr = 0;
1940 1.1 fvdl u_int32_t command;
1941 1.1 fvdl struct ifnet *ifp;
1942 1.1 fvdl caddr_t kva;
1943 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
1944 1.1 fvdl pcireg_t memtype;
1945 1.1 fvdl bus_addr_t memaddr;
1946 1.1 fvdl bus_size_t memsize;
1947 1.25 jonathan u_int32_t pm_ctl;
1948 1.25 jonathan
1949 1.7 thorpej bp = bge_lookup(pa);
1950 1.7 thorpej KASSERT(bp != NULL);
1951 1.7 thorpej
1952 1.1 fvdl sc->bge_pa = *pa;
1953 1.1 fvdl
1954 1.30 thorpej aprint_naive(": Ethernet controller\n");
1955 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
1956 1.1 fvdl
1957 1.1 fvdl /*
1958 1.1 fvdl * Map control/status registers.
1959 1.1 fvdl */
1960 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
1961 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1962 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1963 1.1 fvdl pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1964 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1965 1.1 fvdl
1966 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1967 1.30 thorpej aprint_error("%s: failed to enable memory mapping!\n",
1968 1.1 fvdl sc->bge_dev.dv_xname);
1969 1.1 fvdl return;
1970 1.1 fvdl }
1971 1.1 fvdl
1972 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
1973 1.1 fvdl memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1974 1.1 fvdl switch (memtype) {
1975 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1976 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1977 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1978 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1979 1.1 fvdl &memaddr, &memsize) == 0)
1980 1.1 fvdl break;
1981 1.1 fvdl default:
1982 1.30 thorpej aprint_error("%s: can't find mem space\n",
1983 1.1 fvdl sc->bge_dev.dv_xname);
1984 1.1 fvdl return;
1985 1.1 fvdl }
1986 1.1 fvdl
1987 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
1988 1.1 fvdl if (pci_intr_map(pa, &ih)) {
1989 1.30 thorpej aprint_error("%s: couldn't map interrupt\n",
1990 1.1 fvdl sc->bge_dev.dv_xname);
1991 1.1 fvdl return;
1992 1.1 fvdl }
1993 1.1 fvdl
1994 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
1995 1.1 fvdl intrstr = pci_intr_string(pc, ih);
1996 1.1 fvdl
1997 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
1998 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1999 1.1 fvdl
2000 1.1 fvdl if (sc->bge_intrhand == NULL) {
2001 1.30 thorpej aprint_error("%s: couldn't establish interrupt",
2002 1.1 fvdl sc->bge_dev.dv_xname);
2003 1.1 fvdl if (intrstr != NULL)
2004 1.30 thorpej aprint_normal(" at %s", intrstr);
2005 1.30 thorpej aprint_normal("\n");
2006 1.1 fvdl return;
2007 1.1 fvdl }
2008 1.30 thorpej aprint_normal("%s: interrupting at %s\n",
2009 1.30 thorpej sc->bge_dev.dv_xname, intrstr);
2010 1.1 fvdl
2011 1.25 jonathan /*
2012 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2013 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2014 1.25 jonathan * leaving the card in D3 powersave state.
2015 1.25 jonathan * We do not have memory-mapped registers in this state,
2016 1.25 jonathan * so force device into D0 state before starting initialization.
2017 1.25 jonathan */
2018 1.25 jonathan pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2019 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2020 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2021 1.25 jonathan pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2022 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2023 1.25 jonathan
2024 1.1 fvdl /* Try to reset the chip. */
2025 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2026 1.1 fvdl bge_reset(sc);
2027 1.1 fvdl
2028 1.1 fvdl if (bge_chipinit(sc)) {
2029 1.30 thorpej aprint_error("%s: chip initialization failed\n",
2030 1.1 fvdl sc->bge_dev.dv_xname);
2031 1.1 fvdl bge_release_resources(sc);
2032 1.1 fvdl return;
2033 1.1 fvdl }
2034 1.1 fvdl
2035 1.1 fvdl /*
2036 1.1 fvdl * Get station address from the EEPROM.
2037 1.1 fvdl */
2038 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c14);
2039 1.24 matt if ((mac_addr >> 16) == 0x484b) {
2040 1.24 matt eaddr[0] = (u_char)(mac_addr >> 8);
2041 1.24 matt eaddr[1] = (u_char)(mac_addr >> 0);
2042 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c18);
2043 1.24 matt eaddr[2] = (u_char)(mac_addr >> 24);
2044 1.24 matt eaddr[3] = (u_char)(mac_addr >> 16);
2045 1.24 matt eaddr[4] = (u_char)(mac_addr >> 8);
2046 1.24 matt eaddr[5] = (u_char)(mac_addr >> 0);
2047 1.24 matt } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2048 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2049 1.30 thorpej aprint_error("%s: failed to read station address\n",
2050 1.23 kristerw sc->bge_dev.dv_xname);
2051 1.1 fvdl bge_release_resources(sc);
2052 1.1 fvdl return;
2053 1.1 fvdl }
2054 1.1 fvdl
2055 1.1 fvdl /*
2056 1.16 thorpej * Save ASIC rev. Look up any quirks associated with this
2057 1.16 thorpej * ASIC.
2058 1.1 fvdl */
2059 1.16 thorpej sc->bge_asicrev =
2060 1.16 thorpej pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2061 1.16 thorpej BGE_PCIMISCCTL_ASICREV;
2062 1.16 thorpej br = bge_lookup_rev(sc->bge_asicrev);
2063 1.16 thorpej
2064 1.30 thorpej aprint_normal("%s: ", sc->bge_dev.dv_xname);
2065 1.16 thorpej if (br == NULL) {
2066 1.30 thorpej aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2067 1.16 thorpej sc->bge_quirks = 0;
2068 1.16 thorpej } else {
2069 1.30 thorpej aprint_normal("ASIC %s", br->br_name);
2070 1.16 thorpej sc->bge_quirks = br->br_quirks;
2071 1.16 thorpej }
2072 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2073 1.1 fvdl
2074 1.1 fvdl /* Allocate the general information block and ring buffers. */
2075 1.41 fvdl if (pci_dma64_available(pa))
2076 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2077 1.41 fvdl else
2078 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2079 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2080 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2081 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2082 1.30 thorpej aprint_error("%s: can't alloc rx buffers\n",
2083 1.30 thorpej sc->bge_dev.dv_xname);
2084 1.1 fvdl return;
2085 1.1 fvdl }
2086 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2087 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2088 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2089 1.1 fvdl BUS_DMA_NOWAIT)) {
2090 1.39 wiz aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2091 1.1 fvdl sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2092 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2093 1.1 fvdl return;
2094 1.1 fvdl }
2095 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2096 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2097 1.1 fvdl sizeof(struct bge_ring_data), 0,
2098 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2099 1.39 wiz aprint_error("%s: can't create DMA map\n",
2100 1.30 thorpej sc->bge_dev.dv_xname);
2101 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2102 1.1 fvdl sizeof(struct bge_ring_data));
2103 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2104 1.1 fvdl return;
2105 1.1 fvdl }
2106 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2107 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2108 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2109 1.1 fvdl BUS_DMA_NOWAIT)) {
2110 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2111 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2112 1.1 fvdl sizeof(struct bge_ring_data));
2113 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2114 1.1 fvdl return;
2115 1.1 fvdl }
2116 1.1 fvdl
2117 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2118 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2119 1.1 fvdl
2120 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2121 1.1 fvdl
2122 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2123 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2124 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2125 1.44 hannken aprint_error("%s: jumbo buffer allocation failed\n",
2126 1.44 hannken sc->bge_dev.dv_xname);
2127 1.44 hannken } else
2128 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2129 1.44 hannken }
2130 1.1 fvdl
2131 1.1 fvdl /* Set default tuneable values. */
2132 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2133 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2134 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2135 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2136 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2137 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2138 1.25 jonathan #else
2139 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2140 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2141 1.25 jonathan #endif
2142 1.1 fvdl
2143 1.1 fvdl /* Set up ifnet structure */
2144 1.1 fvdl ifp = &sc->ethercom.ec_if;
2145 1.1 fvdl ifp->if_softc = sc;
2146 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2147 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2148 1.1 fvdl ifp->if_start = bge_start;
2149 1.1 fvdl ifp->if_init = bge_init;
2150 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2151 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2152 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2153 1.1 fvdl DPRINTFN(5, ("bcopy\n"));
2154 1.1 fvdl strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2155 1.1 fvdl
2156 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2157 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2158 1.18 thorpej IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2159 1.1 fvdl sc->ethercom.ec_capabilities |=
2160 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2161 1.1 fvdl
2162 1.1 fvdl /*
2163 1.1 fvdl * Do MII setup.
2164 1.1 fvdl */
2165 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2166 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2167 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2168 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2169 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2170 1.1 fvdl
2171 1.1 fvdl /*
2172 1.1 fvdl * Figure out what sort of media we have by checking the
2173 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2174 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2175 1.1 fvdl * cards, this value appears to be unset. If that's the
2176 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2177 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2178 1.1 fvdl */
2179 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2180 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2181 1.35 jonathan } else {
2182 1.35 jonathan bge_read_eeprom(sc, (caddr_t)&hwcfg,
2183 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2184 1.35 jonathan hwcfg = be32toh(hwcfg);
2185 1.35 jonathan }
2186 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2187 1.1 fvdl sc->bge_tbi = 1;
2188 1.1 fvdl
2189 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2190 1.1 fvdl if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2191 1.1 fvdl SK_SUBSYSID_9D41)
2192 1.1 fvdl sc->bge_tbi = 1;
2193 1.1 fvdl
2194 1.1 fvdl if (sc->bge_tbi) {
2195 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2196 1.1 fvdl bge_ifmedia_sts);
2197 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2198 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2199 1.1 fvdl 0, NULL);
2200 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2201 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2202 1.1 fvdl } else {
2203 1.1 fvdl /*
2204 1.1 fvdl * Do transceiver setup.
2205 1.1 fvdl */
2206 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2207 1.1 fvdl bge_ifmedia_sts);
2208 1.1 fvdl mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2209 1.1 fvdl MII_PHY_ANY, MII_OFFSET_ANY, 0);
2210 1.1 fvdl
2211 1.1 fvdl if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2212 1.1 fvdl printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2213 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2214 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2215 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2216 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2217 1.1 fvdl } else
2218 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2219 1.1 fvdl IFM_ETHER|IFM_AUTO);
2220 1.1 fvdl }
2221 1.1 fvdl
2222 1.1 fvdl /*
2223 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2224 1.37 jonathan * been observed in the first few bytes of some received packets.
2225 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2226 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2227 1.37 jonathan * which do not support unaligned accesses, we will realign the
2228 1.37 jonathan * payloads by copying the received packets.
2229 1.37 jonathan */
2230 1.37 jonathan if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2231 1.37 jonathan /* If in PCI-X mode, work around the alignment bug. */
2232 1.37 jonathan if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2233 1.37 jonathan (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2234 1.37 jonathan BGE_PCISTATE_PCI_BUSSPEED)
2235 1.37 jonathan sc->bge_rx_alignment_bug = 1;
2236 1.37 jonathan }
2237 1.37 jonathan
2238 1.37 jonathan /*
2239 1.1 fvdl * Call MI attach routine.
2240 1.1 fvdl */
2241 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2242 1.1 fvdl if_attach(ifp);
2243 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2244 1.1 fvdl ether_ifattach(ifp, eaddr);
2245 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2246 1.1 fvdl callout_init(&sc->bge_timeout);
2247 1.1 fvdl }
2248 1.1 fvdl
2249 1.1 fvdl void
2250 1.1 fvdl bge_release_resources(sc)
2251 1.1 fvdl struct bge_softc *sc;
2252 1.1 fvdl {
2253 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2254 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2255 1.1 fvdl
2256 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2257 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2258 1.1 fvdl }
2259 1.1 fvdl
2260 1.1 fvdl void
2261 1.1 fvdl bge_reset(sc)
2262 1.1 fvdl struct bge_softc *sc;
2263 1.1 fvdl {
2264 1.1 fvdl struct pci_attach_args *pa = &sc->bge_pa;
2265 1.1 fvdl u_int32_t cachesize, command, pcistate;
2266 1.1 fvdl int i, val = 0;
2267 1.1 fvdl
2268 1.1 fvdl /* Save some important PCI state. */
2269 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2270 1.1 fvdl command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2271 1.1 fvdl pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2272 1.1 fvdl
2273 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2274 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2275 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2276 1.1 fvdl
2277 1.1 fvdl /* Issue global reset */
2278 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG,
2279 1.1 fvdl BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2280 1.1 fvdl
2281 1.1 fvdl DELAY(1000);
2282 1.1 fvdl
2283 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2284 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2285 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2286 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2287 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2288 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2289 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2290 1.1 fvdl
2291 1.1 fvdl /* Enable memory arbiter. */
2292 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2293 1.44 hannken CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2294 1.44 hannken }
2295 1.1 fvdl
2296 1.1 fvdl /*
2297 1.1 fvdl * Prevent PXE restart: write a magic number to the
2298 1.1 fvdl * general communications memory at 0xB50.
2299 1.1 fvdl */
2300 1.1 fvdl bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2301 1.1 fvdl
2302 1.1 fvdl /*
2303 1.1 fvdl * Poll the value location we just wrote until
2304 1.1 fvdl * we see the 1's complement of the magic number.
2305 1.1 fvdl * This indicates that the firmware initialization
2306 1.1 fvdl * is complete.
2307 1.1 fvdl */
2308 1.1 fvdl for (i = 0; i < 750; i++) {
2309 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2310 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
2311 1.1 fvdl break;
2312 1.1 fvdl DELAY(1000);
2313 1.1 fvdl }
2314 1.1 fvdl
2315 1.8 thorpej if (i == 750) {
2316 1.1 fvdl printf("%s: firmware handshake timed out, val = %x\n",
2317 1.1 fvdl sc->bge_dev.dv_xname, val);
2318 1.1 fvdl return;
2319 1.1 fvdl }
2320 1.1 fvdl
2321 1.1 fvdl /*
2322 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2323 1.1 fvdl * return to its original pre-reset state. This is a
2324 1.1 fvdl * fairly good indicator of reset completion. If we don't
2325 1.1 fvdl * wait for the reset to fully complete, trying to read
2326 1.1 fvdl * from the device's non-PCI registers may yield garbage
2327 1.1 fvdl * results.
2328 1.1 fvdl */
2329 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
2330 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2331 1.1 fvdl pcistate)
2332 1.1 fvdl break;
2333 1.1 fvdl DELAY(10);
2334 1.1 fvdl }
2335 1.1 fvdl
2336 1.1 fvdl /* Enable memory arbiter. */
2337 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2338 1.44 hannken CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2339 1.44 hannken }
2340 1.1 fvdl
2341 1.1 fvdl /* Fix up byte swapping */
2342 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2343 1.1 fvdl
2344 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2345 1.1 fvdl
2346 1.1 fvdl DELAY(10000);
2347 1.1 fvdl }
2348 1.1 fvdl
2349 1.1 fvdl /*
2350 1.1 fvdl * Frame reception handling. This is called if there's a frame
2351 1.1 fvdl * on the receive return list.
2352 1.1 fvdl *
2353 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2354 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2355 1.1 fvdl * 2) the frame is from the standard receive ring
2356 1.1 fvdl */
2357 1.1 fvdl
2358 1.1 fvdl void
2359 1.1 fvdl bge_rxeof(sc)
2360 1.1 fvdl struct bge_softc *sc;
2361 1.1 fvdl {
2362 1.1 fvdl struct ifnet *ifp;
2363 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2364 1.1 fvdl int have_tag = 0;
2365 1.1 fvdl u_int16_t vlan_tag = 0;
2366 1.1 fvdl bus_dmamap_t dmamap;
2367 1.1 fvdl bus_addr_t offset, toff;
2368 1.1 fvdl bus_size_t tlen;
2369 1.1 fvdl int tosync;
2370 1.1 fvdl
2371 1.1 fvdl ifp = &sc->ethercom.ec_if;
2372 1.1 fvdl
2373 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2374 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2375 1.1 fvdl sizeof (struct bge_status_block),
2376 1.1 fvdl BUS_DMASYNC_POSTREAD);
2377 1.1 fvdl
2378 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2379 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2380 1.1 fvdl sc->bge_rx_saved_considx;
2381 1.1 fvdl
2382 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2383 1.1 fvdl
2384 1.1 fvdl if (tosync < 0) {
2385 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2386 1.1 fvdl sizeof (struct bge_rx_bd);
2387 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2388 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2389 1.1 fvdl tosync = -tosync;
2390 1.1 fvdl }
2391 1.1 fvdl
2392 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2393 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
2394 1.1 fvdl BUS_DMASYNC_POSTREAD);
2395 1.1 fvdl
2396 1.1 fvdl while(sc->bge_rx_saved_considx !=
2397 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2398 1.1 fvdl struct bge_rx_bd *cur_rx;
2399 1.1 fvdl u_int32_t rxidx;
2400 1.1 fvdl struct mbuf *m = NULL;
2401 1.1 fvdl
2402 1.1 fvdl cur_rx = &sc->bge_rdata->
2403 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2404 1.1 fvdl
2405 1.1 fvdl rxidx = cur_rx->bge_idx;
2406 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2407 1.1 fvdl
2408 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2409 1.1 fvdl have_tag = 1;
2410 1.1 fvdl vlan_tag = cur_rx->bge_vlan_tag;
2411 1.1 fvdl }
2412 1.1 fvdl
2413 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2414 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2415 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2416 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2417 1.1 fvdl jumbocnt++;
2418 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2419 1.1 fvdl ifp->if_ierrors++;
2420 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2421 1.1 fvdl continue;
2422 1.1 fvdl }
2423 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2424 1.1 fvdl NULL)== ENOBUFS) {
2425 1.1 fvdl ifp->if_ierrors++;
2426 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2427 1.1 fvdl continue;
2428 1.1 fvdl }
2429 1.1 fvdl } else {
2430 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2431 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2432 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2433 1.1 fvdl stdcnt++;
2434 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2435 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2436 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2437 1.1 fvdl ifp->if_ierrors++;
2438 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2439 1.1 fvdl continue;
2440 1.1 fvdl }
2441 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2442 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2443 1.1 fvdl ifp->if_ierrors++;
2444 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2445 1.1 fvdl continue;
2446 1.1 fvdl }
2447 1.1 fvdl }
2448 1.1 fvdl
2449 1.1 fvdl ifp->if_ipackets++;
2450 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
2451 1.37 jonathan /*
2452 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2453 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
2454 1.37 jonathan * If our CPU requires alignment, re-align by copying.
2455 1.37 jonathan */
2456 1.37 jonathan if (sc->bge_rx_alignment_bug) {
2457 1.37 jonathan memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2458 1.37 jonathan cur_rx->bge_len);
2459 1.37 jonathan m->m_data += ETHER_ALIGN;
2460 1.37 jonathan }
2461 1.37 jonathan #endif
2462 1.37 jonathan
2463 1.1 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2464 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2465 1.1 fvdl
2466 1.1 fvdl #if NBPFILTER > 0
2467 1.1 fvdl /*
2468 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2469 1.1 fvdl */
2470 1.1 fvdl if (ifp->if_bpf)
2471 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2472 1.1 fvdl #endif
2473 1.1 fvdl
2474 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2475 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2476 1.2 fvdl if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2477 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2478 1.4 fvdl #if 0 /* XXX appears to be broken */
2479 1.2 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2480 1.2 fvdl m->m_pkthdr.csum_data =
2481 1.2 fvdl cur_rx->bge_tcp_udp_csum;
2482 1.2 fvdl m->m_pkthdr.csum_flags |=
2483 1.2 fvdl (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2484 1.2 fvdl }
2485 1.4 fvdl #endif
2486 1.1 fvdl }
2487 1.1 fvdl
2488 1.1 fvdl /*
2489 1.1 fvdl * If we received a packet with a vlan tag, pass it
2490 1.1 fvdl * to vlan_input() instead of ether_input().
2491 1.1 fvdl */
2492 1.1 fvdl if (have_tag) {
2493 1.28 itojun struct m_tag *mtag;
2494 1.1 fvdl
2495 1.28 itojun mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2496 1.28 itojun M_NOWAIT);
2497 1.28 itojun if (mtag != NULL) {
2498 1.28 itojun *(u_int *)(mtag + 1) = vlan_tag;
2499 1.28 itojun m_tag_prepend(m, mtag);
2500 1.1 fvdl have_tag = vlan_tag = 0;
2501 1.1 fvdl } else {
2502 1.1 fvdl printf("%s: no mbuf for tag\n", ifp->if_xname);
2503 1.1 fvdl m_freem(m);
2504 1.1 fvdl have_tag = vlan_tag = 0;
2505 1.1 fvdl continue;
2506 1.1 fvdl }
2507 1.1 fvdl }
2508 1.1 fvdl (*ifp->if_input)(ifp, m);
2509 1.1 fvdl }
2510 1.1 fvdl
2511 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2512 1.1 fvdl if (stdcnt)
2513 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2514 1.1 fvdl if (jumbocnt)
2515 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2516 1.1 fvdl }
2517 1.1 fvdl
2518 1.1 fvdl void
2519 1.1 fvdl bge_txeof(sc)
2520 1.1 fvdl struct bge_softc *sc;
2521 1.1 fvdl {
2522 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
2523 1.1 fvdl struct ifnet *ifp;
2524 1.1 fvdl struct txdmamap_pool_entry *dma;
2525 1.1 fvdl bus_addr_t offset, toff;
2526 1.1 fvdl bus_size_t tlen;
2527 1.1 fvdl int tosync;
2528 1.1 fvdl struct mbuf *m;
2529 1.1 fvdl
2530 1.1 fvdl ifp = &sc->ethercom.ec_if;
2531 1.1 fvdl
2532 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2533 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2534 1.1 fvdl sizeof (struct bge_status_block),
2535 1.1 fvdl BUS_DMASYNC_POSTREAD);
2536 1.1 fvdl
2537 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
2538 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2539 1.1 fvdl sc->bge_tx_saved_considx;
2540 1.1 fvdl
2541 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2542 1.1 fvdl
2543 1.1 fvdl if (tosync < 0) {
2544 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2545 1.1 fvdl sizeof (struct bge_tx_bd);
2546 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2547 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2548 1.1 fvdl tosync = -tosync;
2549 1.1 fvdl }
2550 1.1 fvdl
2551 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2552 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
2553 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2554 1.1 fvdl
2555 1.1 fvdl /*
2556 1.1 fvdl * Go through our tx ring and free mbufs for those
2557 1.1 fvdl * frames that have been sent.
2558 1.1 fvdl */
2559 1.1 fvdl while (sc->bge_tx_saved_considx !=
2560 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2561 1.1 fvdl u_int32_t idx = 0;
2562 1.1 fvdl
2563 1.1 fvdl idx = sc->bge_tx_saved_considx;
2564 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2565 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2566 1.1 fvdl ifp->if_opackets++;
2567 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
2568 1.1 fvdl if (m != NULL) {
2569 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
2570 1.1 fvdl dma = sc->txdma[idx];
2571 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2572 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2573 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2574 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2575 1.1 fvdl sc->txdma[idx] = NULL;
2576 1.1 fvdl
2577 1.1 fvdl m_freem(m);
2578 1.1 fvdl }
2579 1.1 fvdl sc->bge_txcnt--;
2580 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2581 1.1 fvdl ifp->if_timer = 0;
2582 1.1 fvdl }
2583 1.1 fvdl
2584 1.1 fvdl if (cur_tx != NULL)
2585 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2586 1.1 fvdl }
2587 1.1 fvdl
2588 1.1 fvdl int
2589 1.1 fvdl bge_intr(xsc)
2590 1.1 fvdl void *xsc;
2591 1.1 fvdl {
2592 1.1 fvdl struct bge_softc *sc;
2593 1.1 fvdl struct ifnet *ifp;
2594 1.1 fvdl
2595 1.1 fvdl sc = xsc;
2596 1.1 fvdl ifp = &sc->ethercom.ec_if;
2597 1.1 fvdl
2598 1.1 fvdl #ifdef notdef
2599 1.1 fvdl /* Avoid this for now -- checking this register is expensive. */
2600 1.1 fvdl /* Make sure this is really our interrupt. */
2601 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2602 1.1 fvdl return (0);
2603 1.1 fvdl #endif
2604 1.1 fvdl /* Ack interrupt and stop others from occuring. */
2605 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2606 1.1 fvdl
2607 1.1 fvdl /*
2608 1.1 fvdl * Process link state changes.
2609 1.1 fvdl * Grrr. The link status word in the status block does
2610 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
2611 1.1 fvdl * according to all avaibable information. Hence, we have
2612 1.1 fvdl * to enable MII interrupts in order to properly obtain
2613 1.1 fvdl * async link changes. Unfortunately, this also means that
2614 1.1 fvdl * we have to read the MAC status register to detect link
2615 1.1 fvdl * changes, thereby adding an additional register access to
2616 1.1 fvdl * the interrupt handler.
2617 1.1 fvdl */
2618 1.1 fvdl
2619 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2620 1.1 fvdl u_int32_t status;
2621 1.1 fvdl
2622 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
2623 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
2624 1.1 fvdl sc->bge_link = 0;
2625 1.1 fvdl callout_stop(&sc->bge_timeout);
2626 1.1 fvdl bge_tick(sc);
2627 1.1 fvdl /* Clear the interrupt */
2628 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2629 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
2630 1.1 fvdl bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2631 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2632 1.1 fvdl BRGPHY_INTRS);
2633 1.1 fvdl }
2634 1.1 fvdl } else {
2635 1.1 fvdl if (sc->bge_rdata->bge_status_block.bge_status &
2636 1.1 fvdl BGE_STATFLAG_LINKSTATE_CHANGED) {
2637 1.1 fvdl sc->bge_link = 0;
2638 1.1 fvdl callout_stop(&sc->bge_timeout);
2639 1.1 fvdl bge_tick(sc);
2640 1.1 fvdl /* Clear the interrupt */
2641 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2642 1.44 hannken BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2643 1.44 hannken BGE_MACSTAT_LINK_CHANGED);
2644 1.1 fvdl }
2645 1.1 fvdl }
2646 1.1 fvdl
2647 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2648 1.1 fvdl /* Check RX return ring producer/consumer */
2649 1.1 fvdl bge_rxeof(sc);
2650 1.1 fvdl
2651 1.1 fvdl /* Check TX ring producer/consumer */
2652 1.1 fvdl bge_txeof(sc);
2653 1.1 fvdl }
2654 1.1 fvdl
2655 1.1 fvdl bge_handle_events(sc);
2656 1.1 fvdl
2657 1.1 fvdl /* Re-enable interrupts. */
2658 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2659 1.1 fvdl
2660 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2661 1.1 fvdl bge_start(ifp);
2662 1.1 fvdl
2663 1.1 fvdl return (1);
2664 1.1 fvdl }
2665 1.1 fvdl
2666 1.1 fvdl void
2667 1.1 fvdl bge_tick(xsc)
2668 1.1 fvdl void *xsc;
2669 1.1 fvdl {
2670 1.1 fvdl struct bge_softc *sc = xsc;
2671 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2672 1.1 fvdl struct ifmedia *ifm = NULL;
2673 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2674 1.1 fvdl int s;
2675 1.1 fvdl
2676 1.1 fvdl s = splnet();
2677 1.1 fvdl
2678 1.1 fvdl bge_stats_update(sc);
2679 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2680 1.1 fvdl if (sc->bge_link) {
2681 1.1 fvdl splx(s);
2682 1.1 fvdl return;
2683 1.1 fvdl }
2684 1.1 fvdl
2685 1.1 fvdl if (sc->bge_tbi) {
2686 1.1 fvdl ifm = &sc->bge_ifmedia;
2687 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2688 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
2689 1.1 fvdl sc->bge_link++;
2690 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2691 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2692 1.1 fvdl bge_start(ifp);
2693 1.1 fvdl }
2694 1.1 fvdl splx(s);
2695 1.1 fvdl return;
2696 1.1 fvdl }
2697 1.1 fvdl
2698 1.1 fvdl mii_tick(mii);
2699 1.1 fvdl
2700 1.1 fvdl if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2701 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2702 1.1 fvdl sc->bge_link++;
2703 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2704 1.1 fvdl bge_start(ifp);
2705 1.1 fvdl }
2706 1.1 fvdl
2707 1.1 fvdl splx(s);
2708 1.1 fvdl }
2709 1.1 fvdl
2710 1.1 fvdl void
2711 1.1 fvdl bge_stats_update(sc)
2712 1.1 fvdl struct bge_softc *sc;
2713 1.1 fvdl {
2714 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2715 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2716 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
2717 1.44 hannken
2718 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
2719 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2720 1.1 fvdl
2721 1.44 hannken if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2722 1.44 hannken ifp->if_collisions +=
2723 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2724 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2725 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2726 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2727 1.44 hannken return;
2728 1.44 hannken }
2729 1.44 hannken
2730 1.44 hannken #undef READ_RSTAT
2731 1.1 fvdl #define READ_STAT(sc, stats, stat) \
2732 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2733 1.1 fvdl
2734 1.1 fvdl ifp->if_collisions +=
2735 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2736 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2737 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2738 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2739 1.1 fvdl ifp->if_collisions;
2740 1.1 fvdl
2741 1.1 fvdl #undef READ_STAT
2742 1.1 fvdl
2743 1.1 fvdl #ifdef notdef
2744 1.1 fvdl ifp->if_collisions +=
2745 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2746 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2747 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2748 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2749 1.1 fvdl ifp->if_collisions;
2750 1.1 fvdl #endif
2751 1.1 fvdl }
2752 1.1 fvdl
2753 1.1 fvdl /*
2754 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2755 1.1 fvdl * pointers to descriptors.
2756 1.1 fvdl */
2757 1.1 fvdl int
2758 1.1 fvdl bge_encap(sc, m_head, txidx)
2759 1.1 fvdl struct bge_softc *sc;
2760 1.1 fvdl struct mbuf *m_head;
2761 1.1 fvdl u_int32_t *txidx;
2762 1.1 fvdl {
2763 1.1 fvdl struct bge_tx_bd *f = NULL;
2764 1.1 fvdl u_int32_t frag, cur, cnt = 0;
2765 1.1 fvdl u_int16_t csum_flags = 0;
2766 1.1 fvdl struct txdmamap_pool_entry *dma;
2767 1.1 fvdl bus_dmamap_t dmamap;
2768 1.1 fvdl int i = 0;
2769 1.29 itojun struct m_tag *mtag;
2770 1.29 itojun struct mbuf *prev, *m;
2771 1.29 itojun int totlen, prevlen;
2772 1.1 fvdl
2773 1.1 fvdl cur = frag = *txidx;
2774 1.1 fvdl
2775 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
2776 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2777 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2778 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2779 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2780 1.1 fvdl }
2781 1.1 fvdl
2782 1.25 jonathan if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2783 1.29 itojun goto doit;
2784 1.25 jonathan /*
2785 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
2786 1.25 jonathan * less than eight bytes. If we encounter a teeny mbuf
2787 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
2788 1.25 jonathan */
2789 1.25 jonathan prev = NULL;
2790 1.25 jonathan totlen = 0;
2791 1.25 jonathan for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2792 1.25 jonathan int mlen = m->m_len;
2793 1.25 jonathan
2794 1.25 jonathan totlen += mlen;
2795 1.25 jonathan if (mlen == 0) {
2796 1.25 jonathan /* print a warning? */
2797 1.25 jonathan continue;
2798 1.25 jonathan }
2799 1.25 jonathan if (mlen >= 8)
2800 1.25 jonathan continue;
2801 1.25 jonathan
2802 1.25 jonathan /* If we get here, mbuf data is too small for DMA engine. */
2803 1.25 jonathan if (m->m_next != 0) {
2804 1.25 jonathan /* Internal frag. If fits in prev, copy it there. */
2805 1.25 jonathan if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2806 1.29 itojun !M_READONLY(prev)) {
2807 1.25 jonathan bcopy(m->m_data,
2808 1.25 jonathan prev->m_data+prev->m_len,
2809 1.25 jonathan mlen);
2810 1.25 jonathan prev->m_len += mlen;
2811 1.25 jonathan m->m_len = 0;
2812 1.25 jonathan MFREE(m, prev->m_next); /* XXX stitch chain */
2813 1.25 jonathan m = prev;
2814 1.25 jonathan continue;
2815 1.25 jonathan } else {
2816 1.25 jonathan struct mbuf *n;
2817 1.25 jonathan /* slow copy */
2818 1.25 jonathan slowcopy:
2819 1.25 jonathan n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2820 1.25 jonathan m_freem(m_head);
2821 1.25 jonathan if (n == 0)
2822 1.25 jonathan return 0;
2823 1.25 jonathan m_head = n;
2824 1.25 jonathan goto doit;
2825 1.25 jonathan }
2826 1.25 jonathan } else if ((totlen -mlen +8) >= 1500) {
2827 1.25 jonathan goto slowcopy;
2828 1.25 jonathan }
2829 1.25 jonathan prevlen = m->m_len;
2830 1.25 jonathan }
2831 1.25 jonathan
2832 1.25 jonathan doit:
2833 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
2834 1.1 fvdl if (dma == NULL)
2835 1.1 fvdl return ENOBUFS;
2836 1.1 fvdl dmamap = dma->dmamap;
2837 1.1 fvdl
2838 1.1 fvdl /*
2839 1.1 fvdl * Start packing the mbufs in this chain into
2840 1.1 fvdl * the fragment pointers. Stop when we run out
2841 1.1 fvdl * of fragments or hit the end of the mbuf chain.
2842 1.1 fvdl */
2843 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2844 1.1 fvdl BUS_DMA_NOWAIT))
2845 1.1 fvdl return(ENOBUFS);
2846 1.1 fvdl
2847 1.28 itojun mtag = sc->ethercom.ec_nvlans ?
2848 1.28 itojun m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2849 1.6 thorpej
2850 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
2851 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
2852 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2853 1.1 fvdl break;
2854 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2855 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
2856 1.1 fvdl f->bge_flags = csum_flags;
2857 1.1 fvdl
2858 1.28 itojun if (mtag != NULL) {
2859 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2860 1.28 itojun f->bge_vlan_tag = *(u_int *)(mtag + 1);
2861 1.1 fvdl } else {
2862 1.1 fvdl f->bge_vlan_tag = 0;
2863 1.1 fvdl }
2864 1.1 fvdl /*
2865 1.1 fvdl * Sanity check: avoid coming within 16 descriptors
2866 1.1 fvdl * of the end of the ring.
2867 1.1 fvdl */
2868 1.1 fvdl if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2869 1.1 fvdl return(ENOBUFS);
2870 1.1 fvdl cur = frag;
2871 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
2872 1.1 fvdl cnt++;
2873 1.1 fvdl }
2874 1.1 fvdl
2875 1.1 fvdl if (i < dmamap->dm_nsegs)
2876 1.1 fvdl return ENOBUFS;
2877 1.1 fvdl
2878 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2879 1.1 fvdl BUS_DMASYNC_PREWRITE);
2880 1.1 fvdl
2881 1.1 fvdl if (frag == sc->bge_tx_saved_considx)
2882 1.1 fvdl return(ENOBUFS);
2883 1.1 fvdl
2884 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2885 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
2886 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2887 1.1 fvdl sc->txdma[cur] = dma;
2888 1.1 fvdl sc->bge_txcnt += cnt;
2889 1.1 fvdl
2890 1.1 fvdl *txidx = frag;
2891 1.1 fvdl
2892 1.1 fvdl return(0);
2893 1.1 fvdl }
2894 1.1 fvdl
2895 1.1 fvdl /*
2896 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2897 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
2898 1.1 fvdl */
2899 1.1 fvdl void
2900 1.1 fvdl bge_start(ifp)
2901 1.1 fvdl struct ifnet *ifp;
2902 1.1 fvdl {
2903 1.1 fvdl struct bge_softc *sc;
2904 1.1 fvdl struct mbuf *m_head = NULL;
2905 1.1 fvdl u_int32_t prodidx = 0;
2906 1.1 fvdl int pkts = 0;
2907 1.1 fvdl
2908 1.1 fvdl sc = ifp->if_softc;
2909 1.1 fvdl
2910 1.1 fvdl if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2911 1.1 fvdl return;
2912 1.1 fvdl
2913 1.1 fvdl prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2914 1.1 fvdl
2915 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2916 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
2917 1.1 fvdl if (m_head == NULL)
2918 1.1 fvdl break;
2919 1.1 fvdl
2920 1.1 fvdl #if 0
2921 1.1 fvdl /*
2922 1.1 fvdl * XXX
2923 1.1 fvdl * safety overkill. If this is a fragmented packet chain
2924 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
2925 1.1 fvdl * it if we have enough descriptors to handle the entire
2926 1.1 fvdl * chain at once.
2927 1.1 fvdl * (paranoia -- may not actually be needed)
2928 1.1 fvdl */
2929 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
2930 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2931 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2932 1.1 fvdl m_head->m_pkthdr.csum_data + 16) {
2933 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2934 1.1 fvdl break;
2935 1.1 fvdl }
2936 1.1 fvdl }
2937 1.1 fvdl #endif
2938 1.1 fvdl
2939 1.1 fvdl /*
2940 1.1 fvdl * Pack the data into the transmit ring. If we
2941 1.1 fvdl * don't have room, set the OACTIVE flag and wait
2942 1.1 fvdl * for the NIC to drain the ring.
2943 1.1 fvdl */
2944 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
2945 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2946 1.1 fvdl break;
2947 1.1 fvdl }
2948 1.1 fvdl
2949 1.1 fvdl /* now we are committed to transmit the packet */
2950 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
2951 1.1 fvdl pkts++;
2952 1.1 fvdl
2953 1.1 fvdl #if NBPFILTER > 0
2954 1.1 fvdl /*
2955 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
2956 1.1 fvdl * to him.
2957 1.1 fvdl */
2958 1.1 fvdl if (ifp->if_bpf)
2959 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
2960 1.1 fvdl #endif
2961 1.1 fvdl }
2962 1.1 fvdl if (pkts == 0)
2963 1.1 fvdl return;
2964 1.1 fvdl
2965 1.1 fvdl /* Transmit */
2966 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2967 1.29 itojun if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2968 1.29 itojun CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2969 1.1 fvdl
2970 1.1 fvdl /*
2971 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
2972 1.1 fvdl */
2973 1.1 fvdl ifp->if_timer = 5;
2974 1.1 fvdl }
2975 1.1 fvdl
2976 1.1 fvdl int
2977 1.1 fvdl bge_init(ifp)
2978 1.1 fvdl struct ifnet *ifp;
2979 1.1 fvdl {
2980 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2981 1.1 fvdl u_int16_t *m;
2982 1.1 fvdl int s, error;
2983 1.1 fvdl
2984 1.1 fvdl s = splnet();
2985 1.1 fvdl
2986 1.1 fvdl ifp = &sc->ethercom.ec_if;
2987 1.1 fvdl
2988 1.1 fvdl /* Cancel pending I/O and flush buffers. */
2989 1.1 fvdl bge_stop(sc);
2990 1.1 fvdl bge_reset(sc);
2991 1.1 fvdl bge_chipinit(sc);
2992 1.1 fvdl
2993 1.1 fvdl /*
2994 1.1 fvdl * Init the various state machines, ring
2995 1.1 fvdl * control blocks and firmware.
2996 1.1 fvdl */
2997 1.1 fvdl error = bge_blockinit(sc);
2998 1.1 fvdl if (error != 0) {
2999 1.1 fvdl printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3000 1.1 fvdl error);
3001 1.1 fvdl splx(s);
3002 1.1 fvdl return error;
3003 1.1 fvdl }
3004 1.1 fvdl
3005 1.1 fvdl ifp = &sc->ethercom.ec_if;
3006 1.1 fvdl
3007 1.1 fvdl /* Specify MTU. */
3008 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3009 1.1 fvdl ETHER_HDR_LEN + ETHER_CRC_LEN);
3010 1.1 fvdl
3011 1.1 fvdl /* Load our MAC address. */
3012 1.1 fvdl m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3013 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3014 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3015 1.1 fvdl
3016 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
3017 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
3018 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3019 1.1 fvdl } else {
3020 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3021 1.1 fvdl }
3022 1.1 fvdl
3023 1.1 fvdl /* Program multicast filter. */
3024 1.1 fvdl bge_setmulti(sc);
3025 1.1 fvdl
3026 1.1 fvdl /* Init RX ring. */
3027 1.1 fvdl bge_init_rx_ring_std(sc);
3028 1.1 fvdl
3029 1.1 fvdl /* Init jumbo RX ring. */
3030 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3031 1.1 fvdl bge_init_rx_ring_jumbo(sc);
3032 1.1 fvdl
3033 1.1 fvdl /* Init our RX return ring index */
3034 1.1 fvdl sc->bge_rx_saved_considx = 0;
3035 1.1 fvdl
3036 1.1 fvdl /* Init TX ring. */
3037 1.1 fvdl bge_init_tx_ring(sc);
3038 1.1 fvdl
3039 1.1 fvdl /* Turn on transmitter */
3040 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3041 1.1 fvdl
3042 1.1 fvdl /* Turn on receiver */
3043 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3044 1.1 fvdl
3045 1.1 fvdl /* Tell firmware we're alive. */
3046 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3047 1.1 fvdl
3048 1.1 fvdl /* Enable host interrupts. */
3049 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3050 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3051 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3052 1.1 fvdl
3053 1.1 fvdl bge_ifmedia_upd(ifp);
3054 1.1 fvdl
3055 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
3056 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3057 1.1 fvdl
3058 1.1 fvdl splx(s);
3059 1.1 fvdl
3060 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3061 1.1 fvdl
3062 1.1 fvdl return 0;
3063 1.1 fvdl }
3064 1.1 fvdl
3065 1.1 fvdl /*
3066 1.1 fvdl * Set media options.
3067 1.1 fvdl */
3068 1.1 fvdl int
3069 1.1 fvdl bge_ifmedia_upd(ifp)
3070 1.1 fvdl struct ifnet *ifp;
3071 1.1 fvdl {
3072 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3073 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3074 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
3075 1.1 fvdl
3076 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
3077 1.1 fvdl if (sc->bge_tbi) {
3078 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3079 1.1 fvdl return(EINVAL);
3080 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
3081 1.1 fvdl case IFM_AUTO:
3082 1.1 fvdl break;
3083 1.1 fvdl case IFM_1000_SX:
3084 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3085 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
3086 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3087 1.1 fvdl } else {
3088 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
3089 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3090 1.1 fvdl }
3091 1.1 fvdl break;
3092 1.1 fvdl default:
3093 1.1 fvdl return(EINVAL);
3094 1.1 fvdl }
3095 1.1 fvdl return(0);
3096 1.1 fvdl }
3097 1.1 fvdl
3098 1.1 fvdl sc->bge_link = 0;
3099 1.1 fvdl mii_mediachg(mii);
3100 1.1 fvdl
3101 1.1 fvdl return(0);
3102 1.1 fvdl }
3103 1.1 fvdl
3104 1.1 fvdl /*
3105 1.1 fvdl * Report current media status.
3106 1.1 fvdl */
3107 1.1 fvdl void
3108 1.1 fvdl bge_ifmedia_sts(ifp, ifmr)
3109 1.1 fvdl struct ifnet *ifp;
3110 1.1 fvdl struct ifmediareq *ifmr;
3111 1.1 fvdl {
3112 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3113 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3114 1.1 fvdl
3115 1.1 fvdl if (sc->bge_tbi) {
3116 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
3117 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
3118 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3119 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
3120 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
3121 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
3122 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3123 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
3124 1.1 fvdl else
3125 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
3126 1.1 fvdl return;
3127 1.1 fvdl }
3128 1.1 fvdl
3129 1.1 fvdl mii_pollstat(mii);
3130 1.1 fvdl ifmr->ifm_active = mii->mii_media_active;
3131 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
3132 1.1 fvdl }
3133 1.1 fvdl
3134 1.1 fvdl int
3135 1.1 fvdl bge_ioctl(ifp, command, data)
3136 1.1 fvdl struct ifnet *ifp;
3137 1.1 fvdl u_long command;
3138 1.1 fvdl caddr_t data;
3139 1.1 fvdl {
3140 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3141 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
3142 1.1 fvdl int s, error = 0;
3143 1.1 fvdl struct mii_data *mii;
3144 1.1 fvdl
3145 1.1 fvdl s = splnet();
3146 1.1 fvdl
3147 1.1 fvdl switch(command) {
3148 1.1 fvdl case SIOCSIFFLAGS:
3149 1.1 fvdl if (ifp->if_flags & IFF_UP) {
3150 1.1 fvdl /*
3151 1.1 fvdl * If only the state of the PROMISC flag changed,
3152 1.1 fvdl * then just use the 'set promisc mode' command
3153 1.1 fvdl * instead of reinitializing the entire NIC. Doing
3154 1.1 fvdl * a full re-init means reloading the firmware and
3155 1.1 fvdl * waiting for it to start up, which may take a
3156 1.1 fvdl * second or two.
3157 1.1 fvdl */
3158 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
3159 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
3160 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
3161 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
3162 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3163 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
3164 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
3165 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
3166 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
3167 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3168 1.1 fvdl } else
3169 1.1 fvdl bge_init(ifp);
3170 1.1 fvdl } else {
3171 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3172 1.1 fvdl bge_stop(sc);
3173 1.1 fvdl }
3174 1.1 fvdl }
3175 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
3176 1.1 fvdl error = 0;
3177 1.1 fvdl break;
3178 1.1 fvdl case SIOCSIFMEDIA:
3179 1.1 fvdl case SIOCGIFMEDIA:
3180 1.1 fvdl if (sc->bge_tbi) {
3181 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3182 1.1 fvdl command);
3183 1.1 fvdl } else {
3184 1.1 fvdl mii = &sc->bge_mii;
3185 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3186 1.1 fvdl command);
3187 1.1 fvdl }
3188 1.1 fvdl error = 0;
3189 1.1 fvdl break;
3190 1.1 fvdl default:
3191 1.1 fvdl error = ether_ioctl(ifp, command, data);
3192 1.1 fvdl if (error == ENETRESET) {
3193 1.1 fvdl bge_setmulti(sc);
3194 1.1 fvdl error = 0;
3195 1.1 fvdl }
3196 1.1 fvdl break;
3197 1.1 fvdl }
3198 1.1 fvdl
3199 1.1 fvdl splx(s);
3200 1.1 fvdl
3201 1.1 fvdl return(error);
3202 1.1 fvdl }
3203 1.1 fvdl
3204 1.1 fvdl void
3205 1.1 fvdl bge_watchdog(ifp)
3206 1.1 fvdl struct ifnet *ifp;
3207 1.1 fvdl {
3208 1.1 fvdl struct bge_softc *sc;
3209 1.1 fvdl
3210 1.1 fvdl sc = ifp->if_softc;
3211 1.1 fvdl
3212 1.1 fvdl printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3213 1.1 fvdl
3214 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
3215 1.1 fvdl bge_init(ifp);
3216 1.1 fvdl
3217 1.1 fvdl ifp->if_oerrors++;
3218 1.1 fvdl }
3219 1.1 fvdl
3220 1.11 thorpej static void
3221 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3222 1.11 thorpej {
3223 1.11 thorpej int i;
3224 1.11 thorpej
3225 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
3226 1.11 thorpej
3227 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
3228 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
3229 1.11 thorpej return;
3230 1.11 thorpej delay(100);
3231 1.11 thorpej }
3232 1.11 thorpej
3233 1.11 thorpej printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3234 1.11 thorpej sc->bge_dev.dv_xname, (u_long) reg, bit);
3235 1.11 thorpej }
3236 1.11 thorpej
3237 1.1 fvdl /*
3238 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
3239 1.1 fvdl * RX and TX lists.
3240 1.1 fvdl */
3241 1.1 fvdl void
3242 1.1 fvdl bge_stop(sc)
3243 1.1 fvdl struct bge_softc *sc;
3244 1.1 fvdl {
3245 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3246 1.1 fvdl
3247 1.1 fvdl callout_stop(&sc->bge_timeout);
3248 1.1 fvdl
3249 1.1 fvdl /*
3250 1.1 fvdl * Disable all of the receiver blocks
3251 1.1 fvdl */
3252 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3253 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3254 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3255 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3256 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3257 1.44 hannken }
3258 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3259 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3260 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3261 1.1 fvdl
3262 1.1 fvdl /*
3263 1.1 fvdl * Disable all of the transmit blocks
3264 1.1 fvdl */
3265 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3266 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3267 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3268 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3269 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3270 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3271 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3272 1.44 hannken }
3273 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3274 1.1 fvdl
3275 1.1 fvdl /*
3276 1.1 fvdl * Shut down all of the memory managers and related
3277 1.1 fvdl * state machines.
3278 1.1 fvdl */
3279 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3280 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3281 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3282 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3283 1.44 hannken }
3284 1.11 thorpej
3285 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3286 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3287 1.11 thorpej
3288 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3289 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3290 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3291 1.44 hannken }
3292 1.1 fvdl
3293 1.1 fvdl /* Disable host interrupts. */
3294 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3295 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3296 1.1 fvdl
3297 1.1 fvdl /*
3298 1.1 fvdl * Tell firmware we're shutting down.
3299 1.1 fvdl */
3300 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3301 1.1 fvdl
3302 1.1 fvdl /* Free the RX lists. */
3303 1.1 fvdl bge_free_rx_ring_std(sc);
3304 1.1 fvdl
3305 1.1 fvdl /* Free jumbo RX list. */
3306 1.1 fvdl bge_free_rx_ring_jumbo(sc);
3307 1.1 fvdl
3308 1.1 fvdl /* Free TX buffers. */
3309 1.1 fvdl bge_free_tx_ring(sc);
3310 1.1 fvdl
3311 1.1 fvdl /*
3312 1.1 fvdl * Isolate/power down the PHY.
3313 1.1 fvdl */
3314 1.1 fvdl if (!sc->bge_tbi)
3315 1.1 fvdl mii_down(&sc->bge_mii);
3316 1.1 fvdl
3317 1.1 fvdl sc->bge_link = 0;
3318 1.1 fvdl
3319 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3320 1.1 fvdl
3321 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3322 1.1 fvdl }
3323 1.1 fvdl
3324 1.1 fvdl /*
3325 1.1 fvdl * Stop all chip I/O so that the kernel's probe routines don't
3326 1.1 fvdl * get confused by errant DMAs when rebooting.
3327 1.1 fvdl */
3328 1.1 fvdl void
3329 1.1 fvdl bge_shutdown(xsc)
3330 1.1 fvdl void *xsc;
3331 1.1 fvdl {
3332 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)xsc;
3333 1.1 fvdl
3334 1.1 fvdl bge_stop(sc);
3335 1.1 fvdl bge_reset(sc);
3336 1.1 fvdl }
3337