if_bge.c revision 1.57 1 1.57 jonathan /* $NetBSD: if_bge.c,v 1.57 2003/12/14 03:08:12 jonathan Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.12 thorpej * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 1.1 fvdl *
41 1.12 thorpej * NetBSD version by:
42 1.12 thorpej *
43 1.12 thorpej * Frank van der Linden <fvdl (at) wasabisystems.com>
44 1.12 thorpej * Jason Thorpe <thorpej (at) wasabisystems.com>
45 1.32 tron * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 1.12 thorpej *
47 1.12 thorpej * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 1.1 fvdl * Senior Engineer, Wind River Systems
49 1.1 fvdl */
50 1.1 fvdl
51 1.1 fvdl /*
52 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
53 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
58 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
59 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
60 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
62 1.1 fvdl * into the driver.
63 1.1 fvdl *
64 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 1.33 tsutsui * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 1.1 fvdl *
67 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 1.25 jonathan * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 1.1 fvdl * does not support external SSRAM.
70 1.1 fvdl *
71 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
73 1.1 fvdl *
74 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
75 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
76 1.1 fvdl * that these features are simply not available on the BCM5701. As a
77 1.1 fvdl * result, this driver does not implement any support for the mini RX
78 1.1 fvdl * ring.
79 1.1 fvdl */
80 1.43 lukem
81 1.43 lukem #include <sys/cdefs.h>
82 1.57 jonathan __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.57 2003/12/14 03:08:12 jonathan Exp $");
83 1.1 fvdl
84 1.1 fvdl #include "bpfilter.h"
85 1.1 fvdl #include "vlan.h"
86 1.1 fvdl
87 1.1 fvdl #include <sys/param.h>
88 1.1 fvdl #include <sys/systm.h>
89 1.1 fvdl #include <sys/callout.h>
90 1.1 fvdl #include <sys/sockio.h>
91 1.1 fvdl #include <sys/mbuf.h>
92 1.1 fvdl #include <sys/malloc.h>
93 1.1 fvdl #include <sys/kernel.h>
94 1.1 fvdl #include <sys/device.h>
95 1.1 fvdl #include <sys/socket.h>
96 1.1 fvdl
97 1.1 fvdl #include <net/if.h>
98 1.1 fvdl #include <net/if_dl.h>
99 1.1 fvdl #include <net/if_media.h>
100 1.1 fvdl #include <net/if_ether.h>
101 1.1 fvdl
102 1.1 fvdl #ifdef INET
103 1.1 fvdl #include <netinet/in.h>
104 1.1 fvdl #include <netinet/in_systm.h>
105 1.1 fvdl #include <netinet/in_var.h>
106 1.1 fvdl #include <netinet/ip.h>
107 1.1 fvdl #endif
108 1.1 fvdl
109 1.1 fvdl #if NBPFILTER > 0
110 1.1 fvdl #include <net/bpf.h>
111 1.1 fvdl #endif
112 1.1 fvdl
113 1.1 fvdl #include <dev/pci/pcireg.h>
114 1.1 fvdl #include <dev/pci/pcivar.h>
115 1.1 fvdl #include <dev/pci/pcidevs.h>
116 1.1 fvdl
117 1.1 fvdl #include <dev/mii/mii.h>
118 1.1 fvdl #include <dev/mii/miivar.h>
119 1.1 fvdl #include <dev/mii/miidevs.h>
120 1.1 fvdl #include <dev/mii/brgphyreg.h>
121 1.1 fvdl
122 1.1 fvdl #include <dev/pci/if_bgereg.h>
123 1.1 fvdl
124 1.1 fvdl #include <uvm/uvm_extern.h>
125 1.1 fvdl
126 1.46 jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127 1.46 jonathan
128 1.1 fvdl int bge_probe(struct device *, struct cfdata *, void *);
129 1.1 fvdl void bge_attach(struct device *, struct device *, void *);
130 1.1 fvdl void bge_release_resources(struct bge_softc *);
131 1.1 fvdl void bge_txeof(struct bge_softc *);
132 1.1 fvdl void bge_rxeof(struct bge_softc *);
133 1.1 fvdl
134 1.1 fvdl void bge_tick(void *);
135 1.1 fvdl void bge_stats_update(struct bge_softc *);
136 1.1 fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 1.46 jonathan static __inline int bge_cksum_pad(struct mbuf *pkt);
138 1.45 jonathan static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139 1.1 fvdl
140 1.1 fvdl int bge_intr(void *);
141 1.1 fvdl void bge_start(struct ifnet *);
142 1.1 fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 1.1 fvdl int bge_init(struct ifnet *);
144 1.1 fvdl void bge_stop(struct bge_softc *);
145 1.1 fvdl void bge_watchdog(struct ifnet *);
146 1.1 fvdl void bge_shutdown(void *);
147 1.1 fvdl int bge_ifmedia_upd(struct ifnet *);
148 1.1 fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149 1.1 fvdl
150 1.1 fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 1.1 fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152 1.1 fvdl
153 1.1 fvdl void bge_setmulti(struct bge_softc *);
154 1.1 fvdl
155 1.1 fvdl void bge_handle_events(struct bge_softc *);
156 1.1 fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
157 1.1 fvdl void bge_free_jumbo_mem(struct bge_softc *);
158 1.1 fvdl void *bge_jalloc(struct bge_softc *);
159 1.31 thorpej void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 1.1 fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 1.1 fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 1.1 fvdl int bge_init_rx_ring_std(struct bge_softc *);
163 1.1 fvdl void bge_free_rx_ring_std(struct bge_softc *);
164 1.1 fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
165 1.1 fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
166 1.1 fvdl void bge_free_tx_ring(struct bge_softc *);
167 1.1 fvdl int bge_init_tx_ring(struct bge_softc *);
168 1.1 fvdl
169 1.1 fvdl int bge_chipinit(struct bge_softc *);
170 1.1 fvdl int bge_blockinit(struct bge_softc *);
171 1.25 jonathan int bge_setpowerstate(struct bge_softc *, int);
172 1.1 fvdl
173 1.1 fvdl #ifdef notdef
174 1.1 fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 1.1 fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 1.1 fvdl void bge_vpd_read(struct bge_softc *);
177 1.1 fvdl #endif
178 1.1 fvdl
179 1.1 fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 1.1 fvdl void bge_writemem_ind(struct bge_softc *, int, int);
181 1.1 fvdl #ifdef notdef
182 1.1 fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 1.1 fvdl #endif
184 1.1 fvdl void bge_writereg_ind(struct bge_softc *, int, int);
185 1.1 fvdl
186 1.1 fvdl int bge_miibus_readreg(struct device *, int, int);
187 1.1 fvdl void bge_miibus_writereg(struct device *, int, int, int);
188 1.1 fvdl void bge_miibus_statchg(struct device *);
189 1.1 fvdl
190 1.1 fvdl void bge_reset(struct bge_softc *);
191 1.1 fvdl
192 1.1 fvdl void bge_dump_status(struct bge_softc *);
193 1.1 fvdl void bge_dump_rxbd(struct bge_rx_bd *);
194 1.1 fvdl
195 1.1 fvdl #define BGE_DEBUG
196 1.1 fvdl #ifdef BGE_DEBUG
197 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
198 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 1.1 fvdl int bgedebug = 0;
200 1.1 fvdl #else
201 1.1 fvdl #define DPRINTF(x)
202 1.1 fvdl #define DPRINTFN(n,x)
203 1.1 fvdl #endif
204 1.1 fvdl
205 1.17 thorpej /* Various chip quirks. */
206 1.17 thorpej #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 1.18 thorpej #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 1.24 matt #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 1.25 jonathan #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 1.25 jonathan #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 1.36 jonathan #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 1.37 jonathan #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 1.44 hannken #define BGE_QUIRK_5705_CORE 0x00000080
214 1.54 fvdl #define BGE_QUIRK_FEWER_MBUFS 0x00000100
215 1.25 jonathan
216 1.25 jonathan /* following bugs are common to bcm5700 rev B, all flavours */
217 1.25 jonathan #define BGE_QUIRK_5700_COMMON \
218 1.25 jonathan (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
219 1.17 thorpej
220 1.21 thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
221 1.22 thorpej bge_probe, bge_attach, NULL, NULL);
222 1.1 fvdl
223 1.1 fvdl u_int32_t
224 1.1 fvdl bge_readmem_ind(sc, off)
225 1.1 fvdl struct bge_softc *sc;
226 1.1 fvdl int off;
227 1.1 fvdl {
228 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
229 1.1 fvdl pcireg_t val;
230 1.1 fvdl
231 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
232 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
233 1.1 fvdl return val;
234 1.1 fvdl }
235 1.1 fvdl
236 1.1 fvdl void
237 1.1 fvdl bge_writemem_ind(sc, off, val)
238 1.1 fvdl struct bge_softc *sc;
239 1.1 fvdl int off, val;
240 1.1 fvdl {
241 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
242 1.1 fvdl
243 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
244 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
245 1.1 fvdl }
246 1.1 fvdl
247 1.1 fvdl #ifdef notdef
248 1.1 fvdl u_int32_t
249 1.1 fvdl bge_readreg_ind(sc, off)
250 1.1 fvdl struct bge_softc *sc;
251 1.1 fvdl int off;
252 1.1 fvdl {
253 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
254 1.1 fvdl
255 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
256 1.1 fvdl return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
257 1.1 fvdl }
258 1.1 fvdl #endif
259 1.1 fvdl
260 1.1 fvdl void
261 1.1 fvdl bge_writereg_ind(sc, off, val)
262 1.1 fvdl struct bge_softc *sc;
263 1.1 fvdl int off, val;
264 1.1 fvdl {
265 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
266 1.1 fvdl
267 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
268 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
269 1.1 fvdl }
270 1.1 fvdl
271 1.1 fvdl #ifdef notdef
272 1.1 fvdl u_int8_t
273 1.1 fvdl bge_vpd_readbyte(sc, addr)
274 1.1 fvdl struct bge_softc *sc;
275 1.1 fvdl int addr;
276 1.1 fvdl {
277 1.1 fvdl int i;
278 1.1 fvdl u_int32_t val;
279 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
280 1.1 fvdl
281 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
282 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
283 1.1 fvdl DELAY(10);
284 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
285 1.1 fvdl BGE_VPD_FLAG)
286 1.1 fvdl break;
287 1.1 fvdl }
288 1.1 fvdl
289 1.1 fvdl if (i == BGE_TIMEOUT) {
290 1.1 fvdl printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
291 1.1 fvdl return(0);
292 1.1 fvdl }
293 1.1 fvdl
294 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
295 1.1 fvdl
296 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
297 1.1 fvdl }
298 1.1 fvdl
299 1.1 fvdl void
300 1.1 fvdl bge_vpd_read_res(sc, res, addr)
301 1.1 fvdl struct bge_softc *sc;
302 1.1 fvdl struct vpd_res *res;
303 1.1 fvdl int addr;
304 1.1 fvdl {
305 1.1 fvdl int i;
306 1.1 fvdl u_int8_t *ptr;
307 1.1 fvdl
308 1.1 fvdl ptr = (u_int8_t *)res;
309 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
310 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
311 1.1 fvdl }
312 1.1 fvdl
313 1.1 fvdl void
314 1.1 fvdl bge_vpd_read(sc)
315 1.1 fvdl struct bge_softc *sc;
316 1.1 fvdl {
317 1.1 fvdl int pos = 0, i;
318 1.1 fvdl struct vpd_res res;
319 1.1 fvdl
320 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
321 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
322 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
323 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
324 1.1 fvdl sc->bge_vpd_prodname = NULL;
325 1.1 fvdl sc->bge_vpd_readonly = NULL;
326 1.1 fvdl
327 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
328 1.1 fvdl
329 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
330 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
331 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
332 1.1 fvdl return;
333 1.1 fvdl }
334 1.1 fvdl
335 1.1 fvdl pos += sizeof(res);
336 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
337 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
338 1.1 fvdl panic("bge_vpd_read");
339 1.1 fvdl for (i = 0; i < res.vr_len; i++)
340 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
341 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
342 1.1 fvdl pos += i;
343 1.1 fvdl
344 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
345 1.1 fvdl
346 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
347 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
348 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
349 1.1 fvdl return;
350 1.1 fvdl }
351 1.1 fvdl
352 1.1 fvdl pos += sizeof(res);
353 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
354 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
355 1.1 fvdl panic("bge_vpd_read");
356 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
357 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
358 1.1 fvdl }
359 1.1 fvdl #endif
360 1.1 fvdl
361 1.1 fvdl /*
362 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
363 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
364 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
365 1.1 fvdl * access method.
366 1.1 fvdl */
367 1.1 fvdl u_int8_t
368 1.1 fvdl bge_eeprom_getbyte(sc, addr, dest)
369 1.1 fvdl struct bge_softc *sc;
370 1.1 fvdl int addr;
371 1.1 fvdl u_int8_t *dest;
372 1.1 fvdl {
373 1.1 fvdl int i;
374 1.1 fvdl u_int32_t byte = 0;
375 1.1 fvdl
376 1.1 fvdl /*
377 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
378 1.1 fvdl * having to use the bitbang method.
379 1.1 fvdl */
380 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
381 1.1 fvdl
382 1.1 fvdl /* Reset the EEPROM, load the clock period. */
383 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
384 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
385 1.1 fvdl DELAY(20);
386 1.1 fvdl
387 1.1 fvdl /* Issue the read EEPROM command. */
388 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
389 1.1 fvdl
390 1.1 fvdl /* Wait for completion */
391 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
392 1.1 fvdl DELAY(10);
393 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
394 1.1 fvdl break;
395 1.1 fvdl }
396 1.1 fvdl
397 1.1 fvdl if (i == BGE_TIMEOUT) {
398 1.1 fvdl printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
399 1.1 fvdl return(0);
400 1.1 fvdl }
401 1.1 fvdl
402 1.1 fvdl /* Get result. */
403 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
404 1.1 fvdl
405 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
406 1.1 fvdl
407 1.1 fvdl return(0);
408 1.1 fvdl }
409 1.1 fvdl
410 1.1 fvdl /*
411 1.1 fvdl * Read a sequence of bytes from the EEPROM.
412 1.1 fvdl */
413 1.1 fvdl int
414 1.1 fvdl bge_read_eeprom(sc, dest, off, cnt)
415 1.1 fvdl struct bge_softc *sc;
416 1.1 fvdl caddr_t dest;
417 1.1 fvdl int off;
418 1.1 fvdl int cnt;
419 1.1 fvdl {
420 1.1 fvdl int err = 0, i;
421 1.1 fvdl u_int8_t byte = 0;
422 1.1 fvdl
423 1.1 fvdl for (i = 0; i < cnt; i++) {
424 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
425 1.1 fvdl if (err)
426 1.1 fvdl break;
427 1.1 fvdl *(dest + i) = byte;
428 1.1 fvdl }
429 1.1 fvdl
430 1.1 fvdl return(err ? 1 : 0);
431 1.1 fvdl }
432 1.1 fvdl
433 1.1 fvdl int
434 1.1 fvdl bge_miibus_readreg(dev, phy, reg)
435 1.1 fvdl struct device *dev;
436 1.1 fvdl int phy, reg;
437 1.1 fvdl {
438 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
439 1.1 fvdl u_int32_t val;
440 1.25 jonathan u_int32_t saved_autopoll;
441 1.1 fvdl int i;
442 1.1 fvdl
443 1.25 jonathan /*
444 1.25 jonathan * Several chips with builtin PHYs will incorrectly answer to
445 1.25 jonathan * other PHY instances than the builtin PHY at id 1.
446 1.25 jonathan */
447 1.24 matt if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
448 1.1 fvdl return(0);
449 1.1 fvdl
450 1.25 jonathan /* Reading with autopolling on may trigger PCI errors */
451 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
452 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
453 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
454 1.29 itojun saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
455 1.25 jonathan DELAY(40);
456 1.25 jonathan }
457 1.25 jonathan
458 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
459 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
460 1.1 fvdl
461 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
462 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
463 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
464 1.1 fvdl break;
465 1.9 thorpej delay(10);
466 1.1 fvdl }
467 1.1 fvdl
468 1.1 fvdl if (i == BGE_TIMEOUT) {
469 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 1.29 itojun val = 0;
471 1.25 jonathan goto done;
472 1.1 fvdl }
473 1.1 fvdl
474 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
475 1.1 fvdl
476 1.25 jonathan done:
477 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
478 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
479 1.25 jonathan DELAY(40);
480 1.25 jonathan }
481 1.29 itojun
482 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
483 1.1 fvdl return(0);
484 1.1 fvdl
485 1.1 fvdl return(val & 0xFFFF);
486 1.1 fvdl }
487 1.1 fvdl
488 1.1 fvdl void
489 1.1 fvdl bge_miibus_writereg(dev, phy, reg, val)
490 1.1 fvdl struct device *dev;
491 1.1 fvdl int phy, reg, val;
492 1.1 fvdl {
493 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
494 1.29 itojun u_int32_t saved_autopoll;
495 1.29 itojun int i;
496 1.1 fvdl
497 1.29 itojun /* Touching the PHY while autopolling is on may trigger PCI errors */
498 1.25 jonathan saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 1.25 jonathan delay(40);
501 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE,
502 1.25 jonathan saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
503 1.25 jonathan delay(10); /* 40 usec is supposed to be adequate */
504 1.25 jonathan }
505 1.29 itojun
506 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
507 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
508 1.1 fvdl
509 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
510 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
511 1.1 fvdl break;
512 1.9 thorpej delay(10);
513 1.1 fvdl }
514 1.1 fvdl
515 1.25 jonathan if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
516 1.25 jonathan CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
517 1.25 jonathan delay(40);
518 1.25 jonathan }
519 1.29 itojun
520 1.1 fvdl if (i == BGE_TIMEOUT) {
521 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
522 1.1 fvdl }
523 1.1 fvdl }
524 1.1 fvdl
525 1.1 fvdl void
526 1.1 fvdl bge_miibus_statchg(dev)
527 1.1 fvdl struct device *dev;
528 1.1 fvdl {
529 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
530 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
531 1.1 fvdl
532 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
533 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
534 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
535 1.1 fvdl } else {
536 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
537 1.1 fvdl }
538 1.1 fvdl
539 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
540 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 1.1 fvdl } else {
542 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 1.1 fvdl }
544 1.1 fvdl }
545 1.1 fvdl
546 1.1 fvdl /*
547 1.1 fvdl * Handle events that have triggered interrupts.
548 1.1 fvdl */
549 1.1 fvdl void
550 1.1 fvdl bge_handle_events(sc)
551 1.1 fvdl struct bge_softc *sc;
552 1.1 fvdl {
553 1.1 fvdl
554 1.1 fvdl return;
555 1.1 fvdl }
556 1.1 fvdl
557 1.1 fvdl /*
558 1.1 fvdl * Memory management for jumbo frames.
559 1.1 fvdl */
560 1.1 fvdl
561 1.1 fvdl int
562 1.1 fvdl bge_alloc_jumbo_mem(sc)
563 1.1 fvdl struct bge_softc *sc;
564 1.1 fvdl {
565 1.1 fvdl caddr_t ptr, kva;
566 1.1 fvdl bus_dma_segment_t seg;
567 1.1 fvdl int i, rseg, state, error;
568 1.1 fvdl struct bge_jpool_entry *entry;
569 1.1 fvdl
570 1.1 fvdl state = error = 0;
571 1.1 fvdl
572 1.1 fvdl /* Grab a big chunk o' storage. */
573 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
574 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
575 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
576 1.1 fvdl return ENOBUFS;
577 1.1 fvdl }
578 1.1 fvdl
579 1.1 fvdl state = 1;
580 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
581 1.1 fvdl BUS_DMA_NOWAIT)) {
582 1.39 wiz printf("%s: can't map DMA buffers (%d bytes)\n",
583 1.1 fvdl sc->bge_dev.dv_xname, (int)BGE_JMEM);
584 1.1 fvdl error = ENOBUFS;
585 1.1 fvdl goto out;
586 1.1 fvdl }
587 1.1 fvdl
588 1.1 fvdl state = 2;
589 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
590 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
591 1.39 wiz printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
592 1.1 fvdl error = ENOBUFS;
593 1.1 fvdl goto out;
594 1.1 fvdl }
595 1.1 fvdl
596 1.1 fvdl state = 3;
597 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
598 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
599 1.39 wiz printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
600 1.1 fvdl error = ENOBUFS;
601 1.1 fvdl goto out;
602 1.1 fvdl }
603 1.1 fvdl
604 1.1 fvdl state = 4;
605 1.1 fvdl sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
606 1.1 fvdl DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
607 1.1 fvdl
608 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
609 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
610 1.1 fvdl
611 1.1 fvdl /*
612 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
613 1.1 fvdl * in an array.
614 1.1 fvdl */
615 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
616 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
617 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
618 1.1 fvdl ptr += BGE_JLEN;
619 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
620 1.1 fvdl M_DEVBUF, M_NOWAIT);
621 1.1 fvdl if (entry == NULL) {
622 1.1 fvdl printf("%s: no memory for jumbo buffer queue!\n",
623 1.1 fvdl sc->bge_dev.dv_xname);
624 1.1 fvdl error = ENOBUFS;
625 1.1 fvdl goto out;
626 1.1 fvdl }
627 1.1 fvdl entry->slot = i;
628 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
629 1.1 fvdl entry, jpool_entries);
630 1.1 fvdl }
631 1.1 fvdl out:
632 1.1 fvdl if (error != 0) {
633 1.1 fvdl switch (state) {
634 1.1 fvdl case 4:
635 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
636 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
637 1.1 fvdl case 3:
638 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
639 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
640 1.1 fvdl case 2:
641 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
642 1.1 fvdl case 1:
643 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
644 1.1 fvdl break;
645 1.1 fvdl default:
646 1.1 fvdl break;
647 1.1 fvdl }
648 1.1 fvdl }
649 1.1 fvdl
650 1.1 fvdl return error;
651 1.1 fvdl }
652 1.1 fvdl
653 1.1 fvdl /*
654 1.1 fvdl * Allocate a jumbo buffer.
655 1.1 fvdl */
656 1.1 fvdl void *
657 1.1 fvdl bge_jalloc(sc)
658 1.1 fvdl struct bge_softc *sc;
659 1.1 fvdl {
660 1.1 fvdl struct bge_jpool_entry *entry;
661 1.1 fvdl
662 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
663 1.1 fvdl
664 1.1 fvdl if (entry == NULL) {
665 1.1 fvdl printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
666 1.1 fvdl return(NULL);
667 1.1 fvdl }
668 1.1 fvdl
669 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
670 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
671 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
672 1.1 fvdl }
673 1.1 fvdl
674 1.1 fvdl /*
675 1.1 fvdl * Release a jumbo buffer.
676 1.1 fvdl */
677 1.1 fvdl void
678 1.1 fvdl bge_jfree(m, buf, size, arg)
679 1.1 fvdl struct mbuf *m;
680 1.1 fvdl caddr_t buf;
681 1.31 thorpej size_t size;
682 1.1 fvdl void *arg;
683 1.1 fvdl {
684 1.1 fvdl struct bge_jpool_entry *entry;
685 1.1 fvdl struct bge_softc *sc;
686 1.1 fvdl int i, s;
687 1.1 fvdl
688 1.1 fvdl /* Extract the softc struct pointer. */
689 1.1 fvdl sc = (struct bge_softc *)arg;
690 1.1 fvdl
691 1.1 fvdl if (sc == NULL)
692 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
693 1.1 fvdl
694 1.1 fvdl /* calculate the slot this buffer belongs to */
695 1.1 fvdl
696 1.1 fvdl i = ((caddr_t)buf
697 1.1 fvdl - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
698 1.1 fvdl
699 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
700 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
701 1.1 fvdl
702 1.1 fvdl s = splvm();
703 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
704 1.1 fvdl if (entry == NULL)
705 1.1 fvdl panic("bge_jfree: buffer not in use!");
706 1.1 fvdl entry->slot = i;
707 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
708 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
709 1.1 fvdl
710 1.1 fvdl if (__predict_true(m != NULL))
711 1.1 fvdl pool_cache_put(&mbpool_cache, m);
712 1.1 fvdl splx(s);
713 1.1 fvdl }
714 1.1 fvdl
715 1.1 fvdl
716 1.1 fvdl /*
717 1.1 fvdl * Intialize a standard receive ring descriptor.
718 1.1 fvdl */
719 1.1 fvdl int
720 1.1 fvdl bge_newbuf_std(sc, i, m, dmamap)
721 1.1 fvdl struct bge_softc *sc;
722 1.1 fvdl int i;
723 1.1 fvdl struct mbuf *m;
724 1.1 fvdl bus_dmamap_t dmamap;
725 1.1 fvdl {
726 1.1 fvdl struct mbuf *m_new = NULL;
727 1.1 fvdl struct bge_rx_bd *r;
728 1.1 fvdl int error;
729 1.1 fvdl
730 1.1 fvdl if (dmamap == NULL) {
731 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
732 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
733 1.1 fvdl if (error != 0)
734 1.1 fvdl return error;
735 1.1 fvdl }
736 1.1 fvdl
737 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
738 1.1 fvdl
739 1.1 fvdl if (m == NULL) {
740 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
741 1.1 fvdl if (m_new == NULL) {
742 1.1 fvdl return(ENOBUFS);
743 1.1 fvdl }
744 1.1 fvdl
745 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
746 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
747 1.1 fvdl m_freem(m_new);
748 1.1 fvdl return(ENOBUFS);
749 1.1 fvdl }
750 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751 1.37 jonathan if (!sc->bge_rx_alignment_bug)
752 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
753 1.1 fvdl
754 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
755 1.1 fvdl BUS_DMA_READ|BUS_DMA_NOWAIT))
756 1.1 fvdl return(ENOBUFS);
757 1.1 fvdl } else {
758 1.1 fvdl m_new = m;
759 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
760 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
761 1.37 jonathan if (!sc->bge_rx_alignment_bug)
762 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
763 1.1 fvdl }
764 1.1 fvdl
765 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
766 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
767 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
768 1.10 fvdl dmamap->dm_segs[0].ds_addr);
769 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
770 1.1 fvdl r->bge_len = m_new->m_len;
771 1.1 fvdl r->bge_idx = i;
772 1.1 fvdl
773 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
774 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
775 1.1 fvdl i * sizeof (struct bge_rx_bd),
776 1.1 fvdl sizeof (struct bge_rx_bd),
777 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
778 1.1 fvdl
779 1.1 fvdl return(0);
780 1.1 fvdl }
781 1.1 fvdl
782 1.1 fvdl /*
783 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
784 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
785 1.1 fvdl */
786 1.1 fvdl int
787 1.1 fvdl bge_newbuf_jumbo(sc, i, m)
788 1.1 fvdl struct bge_softc *sc;
789 1.1 fvdl int i;
790 1.1 fvdl struct mbuf *m;
791 1.1 fvdl {
792 1.1 fvdl struct mbuf *m_new = NULL;
793 1.1 fvdl struct bge_rx_bd *r;
794 1.1 fvdl
795 1.1 fvdl if (m == NULL) {
796 1.1 fvdl caddr_t *buf = NULL;
797 1.1 fvdl
798 1.1 fvdl /* Allocate the mbuf. */
799 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
800 1.1 fvdl if (m_new == NULL) {
801 1.1 fvdl return(ENOBUFS);
802 1.1 fvdl }
803 1.1 fvdl
804 1.1 fvdl /* Allocate the jumbo buffer */
805 1.1 fvdl buf = bge_jalloc(sc);
806 1.1 fvdl if (buf == NULL) {
807 1.1 fvdl m_freem(m_new);
808 1.1 fvdl printf("%s: jumbo allocation failed "
809 1.1 fvdl "-- packet dropped!\n", sc->bge_dev.dv_xname);
810 1.1 fvdl return(ENOBUFS);
811 1.1 fvdl }
812 1.1 fvdl
813 1.1 fvdl /* Attach the buffer to the mbuf. */
814 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
815 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
816 1.1 fvdl bge_jfree, sc);
817 1.1 fvdl } else {
818 1.1 fvdl m_new = m;
819 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
820 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
821 1.1 fvdl }
822 1.1 fvdl
823 1.37 jonathan if (!sc->bge_rx_alignment_bug)
824 1.37 jonathan m_adj(m_new, ETHER_ALIGN);
825 1.1 fvdl /* Set up the descriptor. */
826 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
827 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
828 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
829 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
830 1.1 fvdl r->bge_len = m_new->m_len;
831 1.1 fvdl r->bge_idx = i;
832 1.1 fvdl
833 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
834 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
835 1.1 fvdl i * sizeof (struct bge_rx_bd),
836 1.1 fvdl sizeof (struct bge_rx_bd),
837 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
838 1.1 fvdl
839 1.1 fvdl return(0);
840 1.1 fvdl }
841 1.1 fvdl
842 1.1 fvdl /*
843 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
844 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
845 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
846 1.1 fvdl * the NIC.
847 1.1 fvdl */
848 1.1 fvdl int
849 1.1 fvdl bge_init_rx_ring_std(sc)
850 1.1 fvdl struct bge_softc *sc;
851 1.1 fvdl {
852 1.1 fvdl int i;
853 1.1 fvdl
854 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
855 1.1 fvdl return 0;
856 1.1 fvdl
857 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
858 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
859 1.1 fvdl return(ENOBUFS);
860 1.1 fvdl }
861 1.1 fvdl
862 1.1 fvdl sc->bge_std = i - 1;
863 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
864 1.1 fvdl
865 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
866 1.1 fvdl
867 1.1 fvdl return(0);
868 1.1 fvdl }
869 1.1 fvdl
870 1.1 fvdl void
871 1.1 fvdl bge_free_rx_ring_std(sc)
872 1.1 fvdl struct bge_softc *sc;
873 1.1 fvdl {
874 1.1 fvdl int i;
875 1.1 fvdl
876 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
877 1.1 fvdl return;
878 1.1 fvdl
879 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
880 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
881 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
882 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
883 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
884 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
885 1.1 fvdl }
886 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
887 1.1 fvdl sizeof(struct bge_rx_bd));
888 1.1 fvdl }
889 1.1 fvdl
890 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
891 1.1 fvdl }
892 1.1 fvdl
893 1.1 fvdl int
894 1.1 fvdl bge_init_rx_ring_jumbo(sc)
895 1.1 fvdl struct bge_softc *sc;
896 1.1 fvdl {
897 1.1 fvdl int i;
898 1.34 jonathan volatile struct bge_rcb *rcb;
899 1.1 fvdl
900 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
901 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
902 1.1 fvdl return(ENOBUFS);
903 1.1 fvdl };
904 1.1 fvdl
905 1.1 fvdl sc->bge_jumbo = i - 1;
906 1.1 fvdl
907 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
908 1.34 jonathan rcb->bge_maxlen_flags = 0;
909 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
910 1.1 fvdl
911 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
912 1.1 fvdl
913 1.1 fvdl return(0);
914 1.1 fvdl }
915 1.1 fvdl
916 1.1 fvdl void
917 1.1 fvdl bge_free_rx_ring_jumbo(sc)
918 1.1 fvdl struct bge_softc *sc;
919 1.1 fvdl {
920 1.1 fvdl int i;
921 1.1 fvdl
922 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
923 1.1 fvdl return;
924 1.1 fvdl
925 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
926 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
927 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
928 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
929 1.1 fvdl }
930 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
931 1.1 fvdl sizeof(struct bge_rx_bd));
932 1.1 fvdl }
933 1.1 fvdl
934 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
935 1.1 fvdl }
936 1.1 fvdl
937 1.1 fvdl void
938 1.1 fvdl bge_free_tx_ring(sc)
939 1.1 fvdl struct bge_softc *sc;
940 1.1 fvdl {
941 1.1 fvdl int i, freed;
942 1.1 fvdl struct txdmamap_pool_entry *dma;
943 1.1 fvdl
944 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
945 1.1 fvdl return;
946 1.1 fvdl
947 1.1 fvdl freed = 0;
948 1.1 fvdl
949 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
950 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
951 1.1 fvdl freed++;
952 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
953 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
954 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
955 1.1 fvdl link);
956 1.1 fvdl sc->txdma[i] = 0;
957 1.1 fvdl }
958 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
959 1.1 fvdl sizeof(struct bge_tx_bd));
960 1.1 fvdl }
961 1.1 fvdl
962 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
963 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
964 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
965 1.1 fvdl free(dma, M_DEVBUF);
966 1.1 fvdl }
967 1.1 fvdl
968 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
969 1.1 fvdl }
970 1.1 fvdl
971 1.1 fvdl int
972 1.1 fvdl bge_init_tx_ring(sc)
973 1.1 fvdl struct bge_softc *sc;
974 1.1 fvdl {
975 1.1 fvdl int i;
976 1.1 fvdl bus_dmamap_t dmamap;
977 1.1 fvdl struct txdmamap_pool_entry *dma;
978 1.1 fvdl
979 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
980 1.1 fvdl return 0;
981 1.1 fvdl
982 1.1 fvdl sc->bge_txcnt = 0;
983 1.1 fvdl sc->bge_tx_saved_considx = 0;
984 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
986 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987 1.25 jonathan
988 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
989 1.25 jonathan if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
990 1.25 jonathan CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
991 1.1 fvdl
992 1.1 fvdl SLIST_INIT(&sc->txdma_list);
993 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
994 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
995 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
996 1.1 fvdl &dmamap))
997 1.1 fvdl return(ENOBUFS);
998 1.1 fvdl if (dmamap == NULL)
999 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
1000 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1001 1.1 fvdl if (dma == NULL) {
1002 1.1 fvdl printf("%s: can't alloc txdmamap_pool_entry\n",
1003 1.1 fvdl sc->bge_dev.dv_xname);
1004 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1005 1.1 fvdl return (ENOMEM);
1006 1.1 fvdl }
1007 1.1 fvdl dma->dmamap = dmamap;
1008 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1009 1.1 fvdl }
1010 1.1 fvdl
1011 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
1012 1.1 fvdl
1013 1.1 fvdl return(0);
1014 1.1 fvdl }
1015 1.1 fvdl
1016 1.1 fvdl void
1017 1.1 fvdl bge_setmulti(sc)
1018 1.1 fvdl struct bge_softc *sc;
1019 1.1 fvdl {
1020 1.1 fvdl struct ethercom *ac = &sc->ethercom;
1021 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
1022 1.1 fvdl struct ether_multi *enm;
1023 1.1 fvdl struct ether_multistep step;
1024 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
1025 1.1 fvdl u_int32_t h;
1026 1.1 fvdl int i;
1027 1.1 fvdl
1028 1.13 thorpej if (ifp->if_flags & IFF_PROMISC)
1029 1.13 thorpej goto allmulti;
1030 1.1 fvdl
1031 1.1 fvdl /* Now program new ones. */
1032 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
1033 1.1 fvdl while (enm != NULL) {
1034 1.13 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1035 1.13 thorpej /*
1036 1.13 thorpej * We must listen to a range of multicast addresses.
1037 1.13 thorpej * For now, just accept all multicasts, rather than
1038 1.13 thorpej * trying to set only those filter bits needed to match
1039 1.13 thorpej * the range. (At this time, the only use of address
1040 1.13 thorpej * ranges is for IP multicast routing, for which the
1041 1.13 thorpej * range is big enough to require all bits set.)
1042 1.13 thorpej */
1043 1.13 thorpej goto allmulti;
1044 1.13 thorpej }
1045 1.13 thorpej
1046 1.13 thorpej h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1047 1.13 thorpej
1048 1.13 thorpej /* Just want the 7 least-significant bits. */
1049 1.13 thorpej h &= 0x7f;
1050 1.13 thorpej
1051 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1052 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1053 1.1 fvdl }
1054 1.1 fvdl
1055 1.13 thorpej ifp->if_flags &= ~IFF_ALLMULTI;
1056 1.13 thorpej goto setit;
1057 1.13 thorpej
1058 1.13 thorpej allmulti:
1059 1.13 thorpej ifp->if_flags |= IFF_ALLMULTI;
1060 1.13 thorpej hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1061 1.13 thorpej
1062 1.13 thorpej setit:
1063 1.1 fvdl for (i = 0; i < 4; i++)
1064 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1065 1.1 fvdl }
1066 1.1 fvdl
1067 1.24 matt const int bge_swapbits[] = {
1068 1.1 fvdl 0,
1069 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1070 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1071 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1072 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1073 1.1 fvdl
1074 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1075 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1076 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1077 1.1 fvdl
1078 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1079 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1080 1.1 fvdl
1081 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1082 1.1 fvdl
1083 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1085 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1087 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1089 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1091 1.1 fvdl
1092 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1093 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1094 1.1 fvdl };
1095 1.1 fvdl
1096 1.1 fvdl int bge_swapindex = 0;
1097 1.1 fvdl
1098 1.1 fvdl /*
1099 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1100 1.1 fvdl * self-test results.
1101 1.1 fvdl */
1102 1.1 fvdl int
1103 1.1 fvdl bge_chipinit(sc)
1104 1.1 fvdl struct bge_softc *sc;
1105 1.1 fvdl {
1106 1.1 fvdl u_int32_t cachesize;
1107 1.1 fvdl int i;
1108 1.25 jonathan u_int32_t dma_rw_ctl;
1109 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
1110 1.1 fvdl
1111 1.1 fvdl
1112 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1113 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1114 1.1 fvdl BGE_INIT);
1115 1.1 fvdl
1116 1.25 jonathan /* Set power state to D0. */
1117 1.25 jonathan bge_setpowerstate(sc, 0);
1118 1.25 jonathan
1119 1.1 fvdl /*
1120 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1121 1.1 fvdl * self-tests passed.
1122 1.1 fvdl */
1123 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1124 1.1 fvdl printf("%s: RX CPU self-diagnostics failed!\n",
1125 1.1 fvdl sc->bge_dev.dv_xname);
1126 1.1 fvdl return(ENODEV);
1127 1.1 fvdl }
1128 1.1 fvdl
1129 1.1 fvdl /* Clear the MAC control register */
1130 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1131 1.1 fvdl
1132 1.1 fvdl /*
1133 1.1 fvdl * Clear the MAC statistics block in the NIC's
1134 1.1 fvdl * internal memory.
1135 1.1 fvdl */
1136 1.1 fvdl for (i = BGE_STATS_BLOCK;
1137 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1139 1.1 fvdl
1140 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1141 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1142 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1143 1.1 fvdl
1144 1.1 fvdl /* Set up the PCI DMA control register. */
1145 1.25 jonathan if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1146 1.25 jonathan BGE_PCISTATE_PCI_BUSMODE) {
1147 1.25 jonathan /* Conventional PCI bus */
1148 1.39 wiz DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1149 1.25 jonathan dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1150 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151 1.44 hannken (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1152 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1153 1.44 hannken dma_rw_ctl |= 0x0F;
1154 1.44 hannken }
1155 1.25 jonathan } else {
1156 1.39 wiz DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1157 1.25 jonathan /* PCI-X bus */
1158 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1159 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1161 1.25 jonathan (0x0F);
1162 1.25 jonathan /*
1163 1.25 jonathan * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1164 1.25 jonathan * for hardware bugs, which means we should also clear
1165 1.25 jonathan * the low-order MINDMA bits. In addition, the 5704
1166 1.25 jonathan * uses a different encoding of read/write watermarks.
1167 1.25 jonathan */
1168 1.57 jonathan if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1169 1.25 jonathan dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 1.25 jonathan /* should be 0x1f0000 */
1171 1.25 jonathan (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1172 1.25 jonathan (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1173 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1174 1.25 jonathan }
1175 1.57 jonathan else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1176 1.25 jonathan dma_rw_ctl &= 0xfffffff0;
1177 1.25 jonathan dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1178 1.25 jonathan }
1179 1.25 jonathan }
1180 1.25 jonathan
1181 1.25 jonathan pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1182 1.1 fvdl
1183 1.1 fvdl /*
1184 1.1 fvdl * Set up general mode register.
1185 1.1 fvdl */
1186 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1187 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1188 1.54 fvdl BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1189 1.1 fvdl
1190 1.1 fvdl /* Get cache line size. */
1191 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1192 1.1 fvdl
1193 1.1 fvdl /*
1194 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1195 1.1 fvdl */
1196 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1197 1.1 fvdl PCIM_CMD_MWIEN) {
1198 1.1 fvdl switch(cachesize) {
1199 1.1 fvdl case 1:
1200 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1202 1.1 fvdl break;
1203 1.1 fvdl case 2:
1204 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1206 1.1 fvdl break;
1207 1.1 fvdl case 4:
1208 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1210 1.1 fvdl break;
1211 1.1 fvdl case 8:
1212 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1214 1.1 fvdl break;
1215 1.1 fvdl case 16:
1216 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1218 1.1 fvdl break;
1219 1.1 fvdl case 32:
1220 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1222 1.1 fvdl break;
1223 1.1 fvdl case 64:
1224 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1225 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1226 1.1 fvdl break;
1227 1.1 fvdl default:
1228 1.1 fvdl /* Disable PCI memory write and invalidate. */
1229 1.1 fvdl #if 0
1230 1.1 fvdl if (bootverbose)
1231 1.1 fvdl printf("%s: cache line size %d not "
1232 1.1 fvdl "supported; disabling PCI MWI\n",
1233 1.1 fvdl sc->bge_dev.dv_xname, cachesize);
1234 1.1 fvdl #endif
1235 1.1 fvdl PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1236 1.1 fvdl PCIM_CMD_MWIEN);
1237 1.1 fvdl break;
1238 1.1 fvdl }
1239 1.1 fvdl }
1240 1.1 fvdl
1241 1.25 jonathan /*
1242 1.25 jonathan * Disable memory write invalidate. Apparently it is not supported
1243 1.25 jonathan * properly by these devices.
1244 1.25 jonathan */
1245 1.25 jonathan PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1246 1.25 jonathan
1247 1.25 jonathan
1248 1.1 fvdl #ifdef __brokenalpha__
1249 1.1 fvdl /*
1250 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1251 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1252 1.1 fvdl * restriction on some ALPHA platforms with early revision
1253 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1254 1.1 fvdl */
1255 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1256 1.1 fvdl #endif
1257 1.1 fvdl
1258 1.33 tsutsui /* Set the timer prescaler (always 66MHz) */
1259 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1260 1.1 fvdl
1261 1.1 fvdl return(0);
1262 1.1 fvdl }
1263 1.1 fvdl
1264 1.1 fvdl int
1265 1.1 fvdl bge_blockinit(sc)
1266 1.1 fvdl struct bge_softc *sc;
1267 1.1 fvdl {
1268 1.34 jonathan volatile struct bge_rcb *rcb;
1269 1.1 fvdl bus_size_t rcb_addr;
1270 1.1 fvdl int i;
1271 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1272 1.1 fvdl bge_hostaddr taddr;
1273 1.1 fvdl
1274 1.1 fvdl /*
1275 1.1 fvdl * Initialize the memory window pointer register so that
1276 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1277 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1278 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1279 1.1 fvdl */
1280 1.1 fvdl
1281 1.1 fvdl pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1282 1.1 fvdl BGE_PCI_MEMWIN_BASEADDR, 0);
1283 1.1 fvdl
1284 1.1 fvdl /* Configure mbuf memory pool */
1285 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1286 1.44 hannken if (sc->bge_extram) {
1287 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1288 1.44 hannken BGE_EXT_SSRAM);
1289 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1290 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1291 1.54 fvdl else
1292 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1293 1.44 hannken } else {
1294 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1295 1.44 hannken BGE_BUFFPOOL_1);
1296 1.54 fvdl if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1297 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1298 1.54 fvdl else
1299 1.54 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1300 1.44 hannken }
1301 1.44 hannken
1302 1.44 hannken /* Configure DMA resource pool */
1303 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1304 1.44 hannken BGE_DMA_DESCRIPTORS);
1305 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1306 1.1 fvdl }
1307 1.1 fvdl
1308 1.1 fvdl /* Configure mbuf pool watermarks */
1309 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
1310 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1311 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1312 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1313 1.25 jonathan #else
1314 1.25 jonathan /* new broadcom docs strongly recommend these: */
1315 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1316 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1317 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1318 1.44 hannken } else {
1319 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1320 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1321 1.44 hannken }
1322 1.25 jonathan CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1323 1.25 jonathan #endif
1324 1.1 fvdl
1325 1.1 fvdl /* Configure DMA resource watermarks */
1326 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1327 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1328 1.1 fvdl
1329 1.1 fvdl /* Enable buffer manager */
1330 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1331 1.44 hannken CSR_WRITE_4(sc, BGE_BMAN_MODE,
1332 1.44 hannken BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1333 1.44 hannken
1334 1.44 hannken /* Poll for buffer manager start indication */
1335 1.44 hannken for (i = 0; i < BGE_TIMEOUT; i++) {
1336 1.44 hannken if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1337 1.44 hannken break;
1338 1.44 hannken DELAY(10);
1339 1.44 hannken }
1340 1.1 fvdl
1341 1.44 hannken if (i == BGE_TIMEOUT) {
1342 1.44 hannken printf("%s: buffer manager failed to start\n",
1343 1.44 hannken sc->bge_dev.dv_xname);
1344 1.44 hannken return(ENXIO);
1345 1.44 hannken }
1346 1.1 fvdl }
1347 1.1 fvdl
1348 1.1 fvdl /* Enable flow-through queues */
1349 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1350 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1351 1.1 fvdl
1352 1.1 fvdl /* Wait until queue initialization is complete */
1353 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1354 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1355 1.1 fvdl break;
1356 1.1 fvdl DELAY(10);
1357 1.1 fvdl }
1358 1.1 fvdl
1359 1.1 fvdl if (i == BGE_TIMEOUT) {
1360 1.1 fvdl printf("%s: flow-through queue init failed\n",
1361 1.1 fvdl sc->bge_dev.dv_xname);
1362 1.1 fvdl return(ENXIO);
1363 1.1 fvdl }
1364 1.1 fvdl
1365 1.1 fvdl /* Initialize the standard RX ring control block */
1366 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1367 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1368 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1369 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1370 1.44 hannken rcb->bge_maxlen_flags =
1371 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1372 1.44 hannken } else {
1373 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1374 1.44 hannken }
1375 1.1 fvdl if (sc->bge_extram)
1376 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1377 1.1 fvdl else
1378 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1379 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1380 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1381 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1382 1.34 jonathan CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1383 1.1 fvdl
1384 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1385 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1386 1.44 hannken } else {
1387 1.44 hannken sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1388 1.44 hannken }
1389 1.44 hannken
1390 1.1 fvdl /*
1391 1.1 fvdl * Initialize the jumbo RX ring control block
1392 1.1 fvdl * We set the 'ring disabled' bit in the flags
1393 1.1 fvdl * field until we're actually ready to start
1394 1.1 fvdl * using this ring (i.e. once we set the MTU
1395 1.1 fvdl * high enough to require it).
1396 1.1 fvdl */
1397 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1398 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1399 1.44 hannken bge_set_hostaddr(&rcb->bge_hostaddr,
1400 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1401 1.44 hannken rcb->bge_maxlen_flags =
1402 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1403 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1404 1.44 hannken if (sc->bge_extram)
1405 1.44 hannken rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1406 1.44 hannken else
1407 1.44 hannken rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1408 1.44 hannken
1409 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1410 1.44 hannken rcb->bge_hostaddr.bge_addr_hi);
1411 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1412 1.44 hannken rcb->bge_hostaddr.bge_addr_lo);
1413 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1414 1.44 hannken rcb->bge_maxlen_flags);
1415 1.44 hannken CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1416 1.44 hannken
1417 1.44 hannken /* Set up dummy disabled mini ring RCB */
1418 1.44 hannken rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1419 1.44 hannken rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1420 1.44 hannken BGE_RCB_FLAG_RING_DISABLED);
1421 1.44 hannken CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1422 1.44 hannken rcb->bge_maxlen_flags);
1423 1.1 fvdl
1424 1.44 hannken bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1425 1.44 hannken offsetof(struct bge_ring_data, bge_info),
1426 1.44 hannken sizeof (struct bge_gib),
1427 1.44 hannken BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1428 1.44 hannken }
1429 1.1 fvdl
1430 1.1 fvdl /*
1431 1.1 fvdl * Set the BD ring replentish thresholds. The recommended
1432 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1433 1.1 fvdl * each ring.
1434 1.1 fvdl */
1435 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1436 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1437 1.1 fvdl
1438 1.1 fvdl /*
1439 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1440 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1441 1.1 fvdl * These are located in NIC memory.
1442 1.1 fvdl */
1443 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1444 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1445 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1446 1.34 jonathan BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1447 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1448 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1449 1.1 fvdl }
1450 1.1 fvdl
1451 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1452 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1453 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1454 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1455 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1456 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1457 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1458 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1459 1.44 hannken RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1460 1.44 hannken BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1461 1.44 hannken }
1462 1.1 fvdl
1463 1.1 fvdl /* Disable all unused RX return rings */
1464 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1465 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1466 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1467 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1468 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1469 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1470 1.34 jonathan BGE_RCB_FLAG_RING_DISABLED));
1471 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1472 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1473 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1474 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1475 1.1 fvdl }
1476 1.1 fvdl
1477 1.1 fvdl /* Initialize RX ring indexes */
1478 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1479 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1480 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1481 1.1 fvdl
1482 1.1 fvdl /*
1483 1.1 fvdl * Set up RX return ring 0
1484 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1485 1.1 fvdl * The return rings live entirely within the host, so the
1486 1.1 fvdl * nicaddr field in the RCB isn't used.
1487 1.1 fvdl */
1488 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1489 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1490 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1491 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1492 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1493 1.34 jonathan RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1494 1.44 hannken BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1495 1.1 fvdl
1496 1.1 fvdl /* Set random backoff seed for TX */
1497 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1498 1.1 fvdl LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1499 1.1 fvdl LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1500 1.1 fvdl LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1501 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1502 1.1 fvdl
1503 1.1 fvdl /* Set inter-packet gap */
1504 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1505 1.1 fvdl
1506 1.1 fvdl /*
1507 1.1 fvdl * Specify which ring to use for packets that don't match
1508 1.1 fvdl * any RX rules.
1509 1.1 fvdl */
1510 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1511 1.1 fvdl
1512 1.1 fvdl /*
1513 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1514 1.1 fvdl * list, sixteen active lists, one bad frames class.
1515 1.1 fvdl */
1516 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1517 1.1 fvdl
1518 1.1 fvdl /* Inialize RX list placement stats mask. */
1519 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1520 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1521 1.1 fvdl
1522 1.1 fvdl /* Disable host coalescing until we get it set up */
1523 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1524 1.1 fvdl
1525 1.1 fvdl /* Poll to make sure it's shut down. */
1526 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1527 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1528 1.1 fvdl break;
1529 1.1 fvdl DELAY(10);
1530 1.1 fvdl }
1531 1.1 fvdl
1532 1.1 fvdl if (i == BGE_TIMEOUT) {
1533 1.1 fvdl printf("%s: host coalescing engine failed to idle\n",
1534 1.1 fvdl sc->bge_dev.dv_xname);
1535 1.1 fvdl return(ENXIO);
1536 1.1 fvdl }
1537 1.1 fvdl
1538 1.1 fvdl /* Set up host coalescing defaults */
1539 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1540 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1541 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1542 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1543 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1544 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1545 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1546 1.44 hannken }
1547 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1548 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1549 1.1 fvdl
1550 1.1 fvdl /* Set up address of statistics block */
1551 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1552 1.44 hannken bge_set_hostaddr(&taddr,
1553 1.44 hannken BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1554 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1555 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1556 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1557 1.44 hannken CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1558 1.44 hannken }
1559 1.1 fvdl
1560 1.1 fvdl /* Set up address of status block */
1561 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1562 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1563 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1564 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1565 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1566 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1567 1.1 fvdl
1568 1.1 fvdl /* Turn on host coalescing state machine */
1569 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1570 1.1 fvdl
1571 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1572 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1573 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1574 1.1 fvdl
1575 1.1 fvdl /* Turn on RX list placement state machine */
1576 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1577 1.1 fvdl
1578 1.1 fvdl /* Turn on RX list selector state machine. */
1579 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1580 1.44 hannken CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1581 1.44 hannken }
1582 1.1 fvdl
1583 1.1 fvdl /* Turn on DMA, clear stats */
1584 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1585 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1586 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1587 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1588 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1589 1.1 fvdl
1590 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1591 1.25 jonathan sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1592 1.1 fvdl
1593 1.1 fvdl #ifdef notdef
1594 1.1 fvdl /* Assert GPIO pins for PHY reset */
1595 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1596 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1597 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1598 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1599 1.1 fvdl #endif
1600 1.1 fvdl
1601 1.25 jonathan #if defined(not_quite_yet)
1602 1.25 jonathan /* Linux driver enables enable gpio pin #1 on 5700s */
1603 1.51 fvdl if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1604 1.25 jonathan sc->bge_local_ctrl_reg |=
1605 1.25 jonathan (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1606 1.25 jonathan }
1607 1.25 jonathan #endif
1608 1.25 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1609 1.25 jonathan
1610 1.1 fvdl /* Turn on DMA completion state machine */
1611 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1612 1.44 hannken CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1613 1.44 hannken }
1614 1.1 fvdl
1615 1.1 fvdl /* Turn on write DMA state machine */
1616 1.1 fvdl CSR_WRITE_4(sc, BGE_WDMA_MODE,
1617 1.1 fvdl BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1618 1.1 fvdl
1619 1.1 fvdl /* Turn on read DMA state machine */
1620 1.1 fvdl CSR_WRITE_4(sc, BGE_RDMA_MODE,
1621 1.1 fvdl BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1622 1.1 fvdl
1623 1.1 fvdl /* Turn on RX data completion state machine */
1624 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1625 1.1 fvdl
1626 1.1 fvdl /* Turn on RX BD initiator state machine */
1627 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1628 1.1 fvdl
1629 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1630 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1631 1.1 fvdl
1632 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1633 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1634 1.44 hannken CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1635 1.44 hannken }
1636 1.1 fvdl
1637 1.1 fvdl /* Turn on send BD completion state machine */
1638 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1639 1.1 fvdl
1640 1.1 fvdl /* Turn on send data completion state machine */
1641 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1642 1.1 fvdl
1643 1.1 fvdl /* Turn on send data initiator state machine */
1644 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1645 1.1 fvdl
1646 1.1 fvdl /* Turn on send BD initiator state machine */
1647 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1648 1.1 fvdl
1649 1.1 fvdl /* Turn on send BD selector state machine */
1650 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1651 1.1 fvdl
1652 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1653 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1654 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1655 1.1 fvdl
1656 1.1 fvdl /* ack/clear link change events */
1657 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1658 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1659 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1660 1.1 fvdl
1661 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1662 1.1 fvdl if (sc->bge_tbi) {
1663 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1664 1.1 fvdl } else {
1665 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1666 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1667 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1668 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1669 1.1 fvdl }
1670 1.1 fvdl
1671 1.1 fvdl /* Enable link state change attentions. */
1672 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1673 1.1 fvdl
1674 1.1 fvdl return(0);
1675 1.1 fvdl }
1676 1.1 fvdl
1677 1.16 thorpej static const struct bge_revision {
1678 1.51 fvdl uint32_t br_chipid;
1679 1.16 thorpej uint32_t br_quirks;
1680 1.16 thorpej const char *br_name;
1681 1.16 thorpej } bge_revisions[] = {
1682 1.51 fvdl { BGE_CHIPID_BCM5700_A0,
1683 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1684 1.16 thorpej "BCM5700 A0" },
1685 1.16 thorpej
1686 1.51 fvdl { BGE_CHIPID_BCM5700_A1,
1687 1.17 thorpej BGE_QUIRK_LINK_STATE_BROKEN,
1688 1.16 thorpej "BCM5700 A1" },
1689 1.16 thorpej
1690 1.51 fvdl { BGE_CHIPID_BCM5700_B0,
1691 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1692 1.16 thorpej "BCM5700 B0" },
1693 1.16 thorpej
1694 1.51 fvdl { BGE_CHIPID_BCM5700_B1,
1695 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1696 1.16 thorpej "BCM5700 B1" },
1697 1.16 thorpej
1698 1.51 fvdl { BGE_CHIPID_BCM5700_B2,
1699 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1700 1.16 thorpej "BCM5700 B2" },
1701 1.16 thorpej
1702 1.17 thorpej /* This is treated like a BCM5700 Bx */
1703 1.51 fvdl { BGE_CHIPID_BCM5700_ALTIMA,
1704 1.26 jonathan BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1705 1.16 thorpej "BCM5700 Altima" },
1706 1.16 thorpej
1707 1.51 fvdl { BGE_CHIPID_BCM5700_C0,
1708 1.16 thorpej 0,
1709 1.16 thorpej "BCM5700 C0" },
1710 1.16 thorpej
1711 1.51 fvdl { BGE_CHIPID_BCM5701_A0,
1712 1.37 jonathan 0, /*XXX really, just not known */
1713 1.16 thorpej "BCM5701 A0" },
1714 1.16 thorpej
1715 1.51 fvdl { BGE_CHIPID_BCM5701_B0,
1716 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1717 1.16 thorpej "BCM5701 B0" },
1718 1.16 thorpej
1719 1.51 fvdl { BGE_CHIPID_BCM5701_B2,
1720 1.37 jonathan BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1721 1.16 thorpej "BCM5701 B2" },
1722 1.16 thorpej
1723 1.51 fvdl { BGE_CHIPID_BCM5701_B5,
1724 1.37 jonathan BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1725 1.16 thorpej "BCM5701 B5" },
1726 1.16 thorpej
1727 1.51 fvdl { BGE_CHIPID_BCM5703_A0,
1728 1.16 thorpej 0,
1729 1.16 thorpej "BCM5703 A0" },
1730 1.16 thorpej
1731 1.51 fvdl { BGE_CHIPID_BCM5703_A1,
1732 1.16 thorpej 0,
1733 1.16 thorpej "BCM5703 A1" },
1734 1.16 thorpej
1735 1.51 fvdl { BGE_CHIPID_BCM5703_A2,
1736 1.24 matt BGE_QUIRK_ONLY_PHY_1,
1737 1.16 thorpej "BCM5703 A2" },
1738 1.16 thorpej
1739 1.55 pooka { BGE_CHIPID_BCM5703_A3,
1740 1.55 pooka BGE_QUIRK_ONLY_PHY_1,
1741 1.55 pooka "BCM5703 A3" },
1742 1.55 pooka
1743 1.51 fvdl { BGE_CHIPID_BCM5704_A0,
1744 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1745 1.25 jonathan "BCM5704 A0" },
1746 1.40 fvdl
1747 1.51 fvdl { BGE_CHIPID_BCM5704_A1,
1748 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1749 1.40 fvdl "BCM5704 A1" },
1750 1.40 fvdl
1751 1.51 fvdl { BGE_CHIPID_BCM5704_A2,
1752 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1753 1.40 fvdl "BCM5704 A2" },
1754 1.49 fvdl
1755 1.51 fvdl { BGE_CHIPID_BCM5704_A3,
1756 1.54 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1757 1.49 fvdl "BCM5704 A3" },
1758 1.25 jonathan
1759 1.51 fvdl { BGE_CHIPID_BCM5705_A0,
1760 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1761 1.51 fvdl "BCM5705 A0" },
1762 1.51 fvdl
1763 1.51 fvdl { BGE_CHIPID_BCM5705_A1,
1764 1.44 hannken BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1765 1.44 hannken "BCM5705 A1" },
1766 1.44 hannken
1767 1.51 fvdl { BGE_CHIPID_BCM5705_A2,
1768 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1769 1.51 fvdl "BCM5705 A2" },
1770 1.51 fvdl
1771 1.51 fvdl { BGE_CHIPID_BCM5705_A3,
1772 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1773 1.51 fvdl "BCM5705 A3" },
1774 1.51 fvdl
1775 1.16 thorpej { 0, 0, NULL }
1776 1.16 thorpej };
1777 1.16 thorpej
1778 1.51 fvdl /*
1779 1.51 fvdl * Some defaults for major revisions, so that newer steppings
1780 1.51 fvdl * that we don't know about have a shot at working.
1781 1.51 fvdl */
1782 1.51 fvdl static const struct bge_revision bge_majorrevs[] = {
1783 1.51 fvdl { BGE_ASICREV_BCM5700,
1784 1.51 fvdl BGE_QUIRK_LINK_STATE_BROKEN,
1785 1.51 fvdl "unknown BCM5700" },
1786 1.51 fvdl
1787 1.51 fvdl { BGE_ASICREV_BCM5701,
1788 1.51 fvdl BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1789 1.51 fvdl "unknown BCM5701" },
1790 1.51 fvdl
1791 1.51 fvdl { BGE_ASICREV_BCM5703,
1792 1.51 fvdl 0,
1793 1.51 fvdl "unknown BCM5703" },
1794 1.51 fvdl
1795 1.51 fvdl { BGE_ASICREV_BCM5704,
1796 1.51 fvdl BGE_QUIRK_ONLY_PHY_1,
1797 1.51 fvdl "unknown BCM5704" },
1798 1.51 fvdl
1799 1.51 fvdl { BGE_ASICREV_BCM5705,
1800 1.51 fvdl BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1801 1.51 fvdl "unknown BCM5705" },
1802 1.51 fvdl
1803 1.51 fvdl { 0,
1804 1.51 fvdl 0,
1805 1.51 fvdl NULL }
1806 1.51 fvdl };
1807 1.51 fvdl
1808 1.51 fvdl
1809 1.16 thorpej static const struct bge_revision *
1810 1.51 fvdl bge_lookup_rev(uint32_t chipid)
1811 1.16 thorpej {
1812 1.16 thorpej const struct bge_revision *br;
1813 1.16 thorpej
1814 1.16 thorpej for (br = bge_revisions; br->br_name != NULL; br++) {
1815 1.51 fvdl if (br->br_chipid == chipid)
1816 1.51 fvdl return (br);
1817 1.51 fvdl }
1818 1.51 fvdl
1819 1.51 fvdl for (br = bge_majorrevs; br->br_name != NULL; br++) {
1820 1.51 fvdl if (br->br_chipid == BGE_ASICREV(chipid))
1821 1.16 thorpej return (br);
1822 1.16 thorpej }
1823 1.16 thorpej
1824 1.16 thorpej return (NULL);
1825 1.16 thorpej }
1826 1.16 thorpej
1827 1.7 thorpej static const struct bge_product {
1828 1.7 thorpej pci_vendor_id_t bp_vendor;
1829 1.7 thorpej pci_product_id_t bp_product;
1830 1.7 thorpej const char *bp_name;
1831 1.7 thorpej } bge_products[] = {
1832 1.7 thorpej /*
1833 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
1834 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
1835 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
1836 1.7 thorpej * check for it anyway.
1837 1.7 thorpej */
1838 1.7 thorpej { PCI_VENDOR_ALTEON,
1839 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
1840 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
1841 1.51 fvdl },
1842 1.7 thorpej { PCI_VENDOR_ALTEON,
1843 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
1844 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
1845 1.51 fvdl },
1846 1.7 thorpej
1847 1.7 thorpej { PCI_VENDOR_ALTIMA,
1848 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
1849 1.51 fvdl "Altima AC1000 Gigabit Ethernet",
1850 1.51 fvdl },
1851 1.14 enami { PCI_VENDOR_ALTIMA,
1852 1.14 enami PCI_PRODUCT_ALTIMA_AC1001,
1853 1.51 fvdl "Altima AC1001 Gigabit Ethernet",
1854 1.51 fvdl },
1855 1.7 thorpej { PCI_VENDOR_ALTIMA,
1856 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
1857 1.51 fvdl "Altima AC9100 Gigabit Ethernet",
1858 1.51 fvdl },
1859 1.7 thorpej
1860 1.7 thorpej { PCI_VENDOR_BROADCOM,
1861 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
1862 1.51 fvdl "Broadcom BCM5700 Gigabit Ethernet",
1863 1.51 fvdl },
1864 1.7 thorpej { PCI_VENDOR_BROADCOM,
1865 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
1866 1.51 fvdl "Broadcom BCM5701 Gigabit Ethernet",
1867 1.51 fvdl },
1868 1.24 matt { PCI_VENDOR_BROADCOM,
1869 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702,
1870 1.51 fvdl "Broadcom BCM5702 Gigabit Ethernet",
1871 1.51 fvdl },
1872 1.24 matt { PCI_VENDOR_BROADCOM,
1873 1.24 matt PCI_PRODUCT_BROADCOM_BCM5702X,
1874 1.24 matt "Broadcom BCM5702X Gigabit Ethernet" },
1875 1.51 fvdl
1876 1.24 matt { PCI_VENDOR_BROADCOM,
1877 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703,
1878 1.51 fvdl "Broadcom BCM5703 Gigabit Ethernet",
1879 1.51 fvdl },
1880 1.24 matt { PCI_VENDOR_BROADCOM,
1881 1.24 matt PCI_PRODUCT_BROADCOM_BCM5703X,
1882 1.51 fvdl "Broadcom BCM5703X Gigabit Ethernet",
1883 1.51 fvdl },
1884 1.55 pooka { PCI_VENDOR_BROADCOM,
1885 1.55 pooka PCI_PRODUCT_BROADCOM_BCM5703A3,
1886 1.55 pooka "Broadcom BCM5703A3 Gigabit Ethernet",
1887 1.55 pooka },
1888 1.51 fvdl
1889 1.25 jonathan { PCI_VENDOR_BROADCOM,
1890 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704C,
1891 1.51 fvdl "Broadcom BCM5704C Dual Gigabit Ethernet",
1892 1.51 fvdl },
1893 1.25 jonathan { PCI_VENDOR_BROADCOM,
1894 1.25 jonathan PCI_PRODUCT_BROADCOM_BCM5704S,
1895 1.51 fvdl "Broadcom BCM5704S Dual Gigabit Ethernet",
1896 1.51 fvdl },
1897 1.51 fvdl
1898 1.51 fvdl { PCI_VENDOR_BROADCOM,
1899 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5705,
1900 1.51 fvdl "Broadcom BCM5705 Gigabit Ethernet",
1901 1.51 fvdl },
1902 1.51 fvdl { PCI_VENDOR_BROADCOM,
1903 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5705_ALT,
1904 1.51 fvdl "Broadcom BCM5705 Gigabit Ethernet",
1905 1.51 fvdl },
1906 1.44 hannken { PCI_VENDOR_BROADCOM,
1907 1.44 hannken PCI_PRODUCT_BROADCOM_BCM5705M,
1908 1.51 fvdl "Broadcom BCM5705M Gigabit Ethernet",
1909 1.51 fvdl },
1910 1.51 fvdl
1911 1.51 fvdl { PCI_VENDOR_BROADCOM,
1912 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901,
1913 1.51 fvdl "Broadcom BCM5901 Fast Ethernet",
1914 1.51 fvdl },
1915 1.51 fvdl { PCI_VENDOR_BROADCOM,
1916 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5901A2,
1917 1.51 fvdl "Broadcom BCM5901A2 Fast Ethernet",
1918 1.51 fvdl },
1919 1.51 fvdl
1920 1.51 fvdl { PCI_VENDOR_BROADCOM,
1921 1.51 fvdl PCI_PRODUCT_BROADCOM_BCM5782,
1922 1.51 fvdl "Broadcom BCM5782 Gigabit Ethernet",
1923 1.51 fvdl },
1924 1.7 thorpej
1925 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
1926 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1927 1.51 fvdl "SysKonnect SK-9Dx1 Gigabit Ethernet",
1928 1.51 fvdl },
1929 1.7 thorpej
1930 1.7 thorpej { PCI_VENDOR_3COM,
1931 1.7 thorpej PCI_PRODUCT_3COM_3C996,
1932 1.51 fvdl "3Com 3c996 Gigabit Ethernet",
1933 1.51 fvdl },
1934 1.7 thorpej
1935 1.7 thorpej { 0,
1936 1.7 thorpej 0,
1937 1.7 thorpej NULL },
1938 1.7 thorpej };
1939 1.7 thorpej
1940 1.7 thorpej static const struct bge_product *
1941 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
1942 1.7 thorpej {
1943 1.7 thorpej const struct bge_product *bp;
1944 1.7 thorpej
1945 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
1946 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1947 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1948 1.7 thorpej return (bp);
1949 1.7 thorpej }
1950 1.7 thorpej
1951 1.7 thorpej return (NULL);
1952 1.7 thorpej }
1953 1.7 thorpej
1954 1.25 jonathan int
1955 1.25 jonathan bge_setpowerstate(sc, powerlevel)
1956 1.25 jonathan struct bge_softc *sc;
1957 1.25 jonathan int powerlevel;
1958 1.25 jonathan {
1959 1.25 jonathan #ifdef NOTYET
1960 1.25 jonathan u_int32_t pm_ctl = 0;
1961 1.25 jonathan
1962 1.25 jonathan /* XXX FIXME: make sure indirect accesses enabled? */
1963 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1964 1.25 jonathan pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1965 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1966 1.25 jonathan
1967 1.25 jonathan /* clear the PME_assert bit and power state bits, enable PME */
1968 1.25 jonathan pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1969 1.25 jonathan pm_ctl &= ~PCIM_PSTAT_DMASK;
1970 1.25 jonathan pm_ctl |= (1 << 8);
1971 1.25 jonathan
1972 1.25 jonathan if (powerlevel == 0) {
1973 1.25 jonathan pm_ctl |= PCIM_PSTAT_D0;
1974 1.25 jonathan pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1975 1.25 jonathan pm_ctl, 2);
1976 1.25 jonathan DELAY(10000);
1977 1.27 jonathan CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1978 1.25 jonathan DELAY(10000);
1979 1.25 jonathan
1980 1.25 jonathan #ifdef NOTYET
1981 1.25 jonathan /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1982 1.25 jonathan bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1983 1.25 jonathan #endif
1984 1.25 jonathan DELAY(40); DELAY(40); DELAY(40);
1985 1.25 jonathan DELAY(10000); /* above not quite adequate on 5700 */
1986 1.25 jonathan return 0;
1987 1.25 jonathan }
1988 1.25 jonathan
1989 1.25 jonathan
1990 1.25 jonathan /*
1991 1.25 jonathan * Entering ACPI power states D1-D3 is achieved by wiggling
1992 1.25 jonathan * GMII gpio pins. Example code assumes all hardware vendors
1993 1.25 jonathan * followed Broadom's sample pcb layout. Until we verify that
1994 1.25 jonathan * for all supported OEM cards, states D1-D3 are unsupported.
1995 1.25 jonathan */
1996 1.25 jonathan printf("%s: power state %d unimplemented; check GPIO pins\n",
1997 1.25 jonathan sc->bge_dev.dv_xname, powerlevel);
1998 1.25 jonathan #endif
1999 1.25 jonathan return EOPNOTSUPP;
2000 1.25 jonathan }
2001 1.25 jonathan
2002 1.25 jonathan
2003 1.1 fvdl /*
2004 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2005 1.1 fvdl * against our list and return its name if we find a match. Note
2006 1.1 fvdl * that since the Broadcom controller contains VPD support, we
2007 1.1 fvdl * can get the device name string from the controller itself instead
2008 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
2009 1.1 fvdl * we'll always announce the right product name.
2010 1.1 fvdl */
2011 1.1 fvdl int
2012 1.1 fvdl bge_probe(parent, match, aux)
2013 1.1 fvdl struct device *parent;
2014 1.1 fvdl struct cfdata *match;
2015 1.1 fvdl void *aux;
2016 1.1 fvdl {
2017 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2018 1.1 fvdl
2019 1.7 thorpej if (bge_lookup(pa) != NULL)
2020 1.1 fvdl return (1);
2021 1.1 fvdl
2022 1.1 fvdl return (0);
2023 1.1 fvdl }
2024 1.1 fvdl
2025 1.1 fvdl void
2026 1.1 fvdl bge_attach(parent, self, aux)
2027 1.1 fvdl struct device *parent, *self;
2028 1.1 fvdl void *aux;
2029 1.1 fvdl {
2030 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)self;
2031 1.1 fvdl struct pci_attach_args *pa = aux;
2032 1.7 thorpej const struct bge_product *bp;
2033 1.16 thorpej const struct bge_revision *br;
2034 1.1 fvdl pci_chipset_tag_t pc = pa->pa_pc;
2035 1.1 fvdl pci_intr_handle_t ih;
2036 1.1 fvdl const char *intrstr = NULL;
2037 1.1 fvdl bus_dma_segment_t seg;
2038 1.1 fvdl int rseg;
2039 1.1 fvdl u_int32_t hwcfg = 0;
2040 1.24 matt u_int32_t mac_addr = 0;
2041 1.1 fvdl u_int32_t command;
2042 1.1 fvdl struct ifnet *ifp;
2043 1.1 fvdl caddr_t kva;
2044 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
2045 1.1 fvdl pcireg_t memtype;
2046 1.1 fvdl bus_addr_t memaddr;
2047 1.1 fvdl bus_size_t memsize;
2048 1.25 jonathan u_int32_t pm_ctl;
2049 1.25 jonathan
2050 1.7 thorpej bp = bge_lookup(pa);
2051 1.7 thorpej KASSERT(bp != NULL);
2052 1.7 thorpej
2053 1.1 fvdl sc->bge_pa = *pa;
2054 1.1 fvdl
2055 1.30 thorpej aprint_naive(": Ethernet controller\n");
2056 1.30 thorpej aprint_normal(": %s\n", bp->bp_name);
2057 1.1 fvdl
2058 1.1 fvdl /*
2059 1.1 fvdl * Map control/status registers.
2060 1.1 fvdl */
2061 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
2062 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2063 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2064 1.1 fvdl pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2065 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2066 1.1 fvdl
2067 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2068 1.30 thorpej aprint_error("%s: failed to enable memory mapping!\n",
2069 1.1 fvdl sc->bge_dev.dv_xname);
2070 1.1 fvdl return;
2071 1.1 fvdl }
2072 1.1 fvdl
2073 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
2074 1.1 fvdl memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2075 1.1 fvdl switch (memtype) {
2076 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2077 1.29 itojun case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2078 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2079 1.29 itojun memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2080 1.1 fvdl &memaddr, &memsize) == 0)
2081 1.1 fvdl break;
2082 1.1 fvdl default:
2083 1.30 thorpej aprint_error("%s: can't find mem space\n",
2084 1.1 fvdl sc->bge_dev.dv_xname);
2085 1.1 fvdl return;
2086 1.1 fvdl }
2087 1.1 fvdl
2088 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
2089 1.1 fvdl if (pci_intr_map(pa, &ih)) {
2090 1.30 thorpej aprint_error("%s: couldn't map interrupt\n",
2091 1.1 fvdl sc->bge_dev.dv_xname);
2092 1.1 fvdl return;
2093 1.1 fvdl }
2094 1.1 fvdl
2095 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
2096 1.1 fvdl intrstr = pci_intr_string(pc, ih);
2097 1.1 fvdl
2098 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
2099 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2100 1.1 fvdl
2101 1.1 fvdl if (sc->bge_intrhand == NULL) {
2102 1.30 thorpej aprint_error("%s: couldn't establish interrupt",
2103 1.1 fvdl sc->bge_dev.dv_xname);
2104 1.1 fvdl if (intrstr != NULL)
2105 1.30 thorpej aprint_normal(" at %s", intrstr);
2106 1.30 thorpej aprint_normal("\n");
2107 1.1 fvdl return;
2108 1.1 fvdl }
2109 1.30 thorpej aprint_normal("%s: interrupting at %s\n",
2110 1.30 thorpej sc->bge_dev.dv_xname, intrstr);
2111 1.1 fvdl
2112 1.25 jonathan /*
2113 1.25 jonathan * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2114 1.25 jonathan * can clobber the chip's PCI config-space power control registers,
2115 1.25 jonathan * leaving the card in D3 powersave state.
2116 1.25 jonathan * We do not have memory-mapped registers in this state,
2117 1.25 jonathan * so force device into D0 state before starting initialization.
2118 1.25 jonathan */
2119 1.25 jonathan pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2120 1.25 jonathan pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2121 1.25 jonathan pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2122 1.25 jonathan pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2123 1.25 jonathan DELAY(1000); /* 27 usec is allegedly sufficent */
2124 1.25 jonathan
2125 1.1 fvdl /* Try to reset the chip. */
2126 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
2127 1.1 fvdl bge_reset(sc);
2128 1.1 fvdl
2129 1.1 fvdl if (bge_chipinit(sc)) {
2130 1.30 thorpej aprint_error("%s: chip initialization failed\n",
2131 1.1 fvdl sc->bge_dev.dv_xname);
2132 1.1 fvdl bge_release_resources(sc);
2133 1.1 fvdl return;
2134 1.1 fvdl }
2135 1.1 fvdl
2136 1.1 fvdl /*
2137 1.1 fvdl * Get station address from the EEPROM.
2138 1.1 fvdl */
2139 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c14);
2140 1.24 matt if ((mac_addr >> 16) == 0x484b) {
2141 1.24 matt eaddr[0] = (u_char)(mac_addr >> 8);
2142 1.24 matt eaddr[1] = (u_char)(mac_addr >> 0);
2143 1.24 matt mac_addr = bge_readmem_ind(sc, 0x0c18);
2144 1.24 matt eaddr[2] = (u_char)(mac_addr >> 24);
2145 1.24 matt eaddr[3] = (u_char)(mac_addr >> 16);
2146 1.24 matt eaddr[4] = (u_char)(mac_addr >> 8);
2147 1.24 matt eaddr[5] = (u_char)(mac_addr >> 0);
2148 1.24 matt } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2149 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2150 1.30 thorpej aprint_error("%s: failed to read station address\n",
2151 1.23 kristerw sc->bge_dev.dv_xname);
2152 1.1 fvdl bge_release_resources(sc);
2153 1.1 fvdl return;
2154 1.1 fvdl }
2155 1.1 fvdl
2156 1.1 fvdl /*
2157 1.16 thorpej * Save ASIC rev. Look up any quirks associated with this
2158 1.16 thorpej * ASIC.
2159 1.1 fvdl */
2160 1.51 fvdl sc->bge_chipid =
2161 1.16 thorpej pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2162 1.16 thorpej BGE_PCIMISCCTL_ASICREV;
2163 1.51 fvdl br = bge_lookup_rev(sc->bge_chipid);
2164 1.16 thorpej
2165 1.30 thorpej aprint_normal("%s: ", sc->bge_dev.dv_xname);
2166 1.51 fvdl
2167 1.16 thorpej if (br == NULL) {
2168 1.56 pooka aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2169 1.52 fvdl sc->bge_quirks = 0;
2170 1.16 thorpej } else {
2171 1.56 pooka aprint_normal("ASIC %s (0x%04x)",
2172 1.56 pooka br->br_name, sc->bge_chipid >> 16);
2173 1.51 fvdl sc->bge_quirks |= br->br_quirks;
2174 1.16 thorpej }
2175 1.30 thorpej aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2176 1.1 fvdl
2177 1.1 fvdl /* Allocate the general information block and ring buffers. */
2178 1.41 fvdl if (pci_dma64_available(pa))
2179 1.41 fvdl sc->bge_dmatag = pa->pa_dmat64;
2180 1.41 fvdl else
2181 1.41 fvdl sc->bge_dmatag = pa->pa_dmat;
2182 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
2183 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2184 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2185 1.30 thorpej aprint_error("%s: can't alloc rx buffers\n",
2186 1.30 thorpej sc->bge_dev.dv_xname);
2187 1.1 fvdl return;
2188 1.1 fvdl }
2189 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
2190 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2191 1.1 fvdl sizeof(struct bge_ring_data), &kva,
2192 1.1 fvdl BUS_DMA_NOWAIT)) {
2193 1.39 wiz aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2194 1.1 fvdl sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2195 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2196 1.1 fvdl return;
2197 1.1 fvdl }
2198 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
2199 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2200 1.1 fvdl sizeof(struct bge_ring_data), 0,
2201 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2202 1.39 wiz aprint_error("%s: can't create DMA map\n",
2203 1.30 thorpej sc->bge_dev.dv_xname);
2204 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2205 1.1 fvdl sizeof(struct bge_ring_data));
2206 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2207 1.1 fvdl return;
2208 1.1 fvdl }
2209 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
2210 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2211 1.1 fvdl sizeof(struct bge_ring_data), NULL,
2212 1.1 fvdl BUS_DMA_NOWAIT)) {
2213 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2214 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
2215 1.1 fvdl sizeof(struct bge_ring_data));
2216 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2217 1.1 fvdl return;
2218 1.1 fvdl }
2219 1.1 fvdl
2220 1.1 fvdl DPRINTFN(5, ("bzero\n"));
2221 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
2222 1.1 fvdl
2223 1.19 mjl memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2224 1.1 fvdl
2225 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
2226 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2227 1.44 hannken if (bge_alloc_jumbo_mem(sc)) {
2228 1.44 hannken aprint_error("%s: jumbo buffer allocation failed\n",
2229 1.44 hannken sc->bge_dev.dv_xname);
2230 1.44 hannken } else
2231 1.44 hannken sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2232 1.44 hannken }
2233 1.1 fvdl
2234 1.1 fvdl /* Set default tuneable values. */
2235 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2236 1.1 fvdl sc->bge_rx_coal_ticks = 150;
2237 1.25 jonathan sc->bge_rx_max_coal_bds = 64;
2238 1.25 jonathan #ifdef ORIG_WPAUL_VALUES
2239 1.1 fvdl sc->bge_tx_coal_ticks = 150;
2240 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
2241 1.25 jonathan #else
2242 1.25 jonathan sc->bge_tx_coal_ticks = 300;
2243 1.25 jonathan sc->bge_tx_max_coal_bds = 400;
2244 1.25 jonathan #endif
2245 1.1 fvdl
2246 1.1 fvdl /* Set up ifnet structure */
2247 1.1 fvdl ifp = &sc->ethercom.ec_if;
2248 1.1 fvdl ifp->if_softc = sc;
2249 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2250 1.1 fvdl ifp->if_ioctl = bge_ioctl;
2251 1.1 fvdl ifp->if_start = bge_start;
2252 1.1 fvdl ifp->if_init = bge_init;
2253 1.1 fvdl ifp->if_watchdog = bge_watchdog;
2254 1.42 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2255 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
2256 1.1 fvdl DPRINTFN(5, ("bcopy\n"));
2257 1.1 fvdl strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2258 1.1 fvdl
2259 1.18 thorpej if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2260 1.18 thorpej sc->ethercom.ec_if.if_capabilities |=
2261 1.18 thorpej IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2262 1.1 fvdl sc->ethercom.ec_capabilities |=
2263 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2264 1.1 fvdl
2265 1.1 fvdl /*
2266 1.1 fvdl * Do MII setup.
2267 1.1 fvdl */
2268 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
2269 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
2270 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
2271 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
2272 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
2273 1.1 fvdl
2274 1.1 fvdl /*
2275 1.1 fvdl * Figure out what sort of media we have by checking the
2276 1.35 jonathan * hardware config word in the first 32k of NIC internal memory,
2277 1.35 jonathan * or fall back to the config word in the EEPROM. Note: on some BCM5700
2278 1.1 fvdl * cards, this value appears to be unset. If that's the
2279 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
2280 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
2281 1.1 fvdl */
2282 1.35 jonathan if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2283 1.35 jonathan hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2284 1.35 jonathan } else {
2285 1.35 jonathan bge_read_eeprom(sc, (caddr_t)&hwcfg,
2286 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2287 1.35 jonathan hwcfg = be32toh(hwcfg);
2288 1.35 jonathan }
2289 1.35 jonathan if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2290 1.1 fvdl sc->bge_tbi = 1;
2291 1.1 fvdl
2292 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2293 1.1 fvdl if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2294 1.1 fvdl SK_SUBSYSID_9D41)
2295 1.1 fvdl sc->bge_tbi = 1;
2296 1.1 fvdl
2297 1.1 fvdl if (sc->bge_tbi) {
2298 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2299 1.1 fvdl bge_ifmedia_sts);
2300 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2301 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2302 1.1 fvdl 0, NULL);
2303 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2304 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2305 1.1 fvdl } else {
2306 1.1 fvdl /*
2307 1.1 fvdl * Do transceiver setup.
2308 1.1 fvdl */
2309 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2310 1.1 fvdl bge_ifmedia_sts);
2311 1.1 fvdl mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2312 1.54 fvdl MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
2313 1.1 fvdl
2314 1.1 fvdl if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2315 1.1 fvdl printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2316 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
2317 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
2318 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2319 1.1 fvdl IFM_ETHER|IFM_MANUAL);
2320 1.1 fvdl } else
2321 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
2322 1.1 fvdl IFM_ETHER|IFM_AUTO);
2323 1.1 fvdl }
2324 1.1 fvdl
2325 1.1 fvdl /*
2326 1.37 jonathan * When using the BCM5701 in PCI-X mode, data corruption has
2327 1.37 jonathan * been observed in the first few bytes of some received packets.
2328 1.37 jonathan * Aligning the packet buffer in memory eliminates the corruption.
2329 1.37 jonathan * Unfortunately, this misaligns the packet payloads. On platforms
2330 1.37 jonathan * which do not support unaligned accesses, we will realign the
2331 1.37 jonathan * payloads by copying the received packets.
2332 1.37 jonathan */
2333 1.37 jonathan if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2334 1.37 jonathan /* If in PCI-X mode, work around the alignment bug. */
2335 1.37 jonathan if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2336 1.37 jonathan (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2337 1.37 jonathan BGE_PCISTATE_PCI_BUSSPEED)
2338 1.37 jonathan sc->bge_rx_alignment_bug = 1;
2339 1.37 jonathan }
2340 1.37 jonathan
2341 1.37 jonathan /*
2342 1.1 fvdl * Call MI attach routine.
2343 1.1 fvdl */
2344 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
2345 1.1 fvdl if_attach(ifp);
2346 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
2347 1.1 fvdl ether_ifattach(ifp, eaddr);
2348 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
2349 1.1 fvdl callout_init(&sc->bge_timeout);
2350 1.1 fvdl }
2351 1.1 fvdl
2352 1.1 fvdl void
2353 1.1 fvdl bge_release_resources(sc)
2354 1.1 fvdl struct bge_softc *sc;
2355 1.1 fvdl {
2356 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
2357 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
2358 1.1 fvdl
2359 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
2360 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
2361 1.1 fvdl }
2362 1.1 fvdl
2363 1.1 fvdl void
2364 1.1 fvdl bge_reset(sc)
2365 1.1 fvdl struct bge_softc *sc;
2366 1.1 fvdl {
2367 1.1 fvdl struct pci_attach_args *pa = &sc->bge_pa;
2368 1.1 fvdl u_int32_t cachesize, command, pcistate;
2369 1.1 fvdl int i, val = 0;
2370 1.1 fvdl
2371 1.1 fvdl /* Save some important PCI state. */
2372 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2373 1.1 fvdl command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2374 1.1 fvdl pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2375 1.1 fvdl
2376 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2377 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2378 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2379 1.1 fvdl
2380 1.1 fvdl /* Issue global reset */
2381 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG,
2382 1.1 fvdl BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2383 1.1 fvdl
2384 1.1 fvdl DELAY(1000);
2385 1.1 fvdl
2386 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
2387 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2388 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2389 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2390 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2391 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2392 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2393 1.1 fvdl
2394 1.1 fvdl /* Enable memory arbiter. */
2395 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2396 1.44 hannken CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2397 1.44 hannken }
2398 1.1 fvdl
2399 1.1 fvdl /*
2400 1.1 fvdl * Prevent PXE restart: write a magic number to the
2401 1.1 fvdl * general communications memory at 0xB50.
2402 1.1 fvdl */
2403 1.1 fvdl bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2404 1.1 fvdl
2405 1.1 fvdl /*
2406 1.1 fvdl * Poll the value location we just wrote until
2407 1.1 fvdl * we see the 1's complement of the magic number.
2408 1.1 fvdl * This indicates that the firmware initialization
2409 1.1 fvdl * is complete.
2410 1.1 fvdl */
2411 1.1 fvdl for (i = 0; i < 750; i++) {
2412 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2413 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
2414 1.1 fvdl break;
2415 1.1 fvdl DELAY(1000);
2416 1.1 fvdl }
2417 1.1 fvdl
2418 1.8 thorpej if (i == 750) {
2419 1.1 fvdl printf("%s: firmware handshake timed out, val = %x\n",
2420 1.1 fvdl sc->bge_dev.dv_xname, val);
2421 1.1 fvdl return;
2422 1.1 fvdl }
2423 1.1 fvdl
2424 1.1 fvdl /*
2425 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
2426 1.1 fvdl * return to its original pre-reset state. This is a
2427 1.1 fvdl * fairly good indicator of reset completion. If we don't
2428 1.1 fvdl * wait for the reset to fully complete, trying to read
2429 1.1 fvdl * from the device's non-PCI registers may yield garbage
2430 1.1 fvdl * results.
2431 1.1 fvdl */
2432 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
2433 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2434 1.1 fvdl pcistate)
2435 1.1 fvdl break;
2436 1.1 fvdl DELAY(10);
2437 1.1 fvdl }
2438 1.1 fvdl
2439 1.1 fvdl /* Enable memory arbiter. */
2440 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2441 1.44 hannken CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2442 1.44 hannken }
2443 1.1 fvdl
2444 1.1 fvdl /* Fix up byte swapping */
2445 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2446 1.1 fvdl
2447 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2448 1.1 fvdl
2449 1.1 fvdl DELAY(10000);
2450 1.1 fvdl }
2451 1.1 fvdl
2452 1.1 fvdl /*
2453 1.1 fvdl * Frame reception handling. This is called if there's a frame
2454 1.1 fvdl * on the receive return list.
2455 1.1 fvdl *
2456 1.1 fvdl * Note: we have to be able to handle two possibilities here:
2457 1.1 fvdl * 1) the frame is from the jumbo recieve ring
2458 1.1 fvdl * 2) the frame is from the standard receive ring
2459 1.1 fvdl */
2460 1.1 fvdl
2461 1.1 fvdl void
2462 1.1 fvdl bge_rxeof(sc)
2463 1.1 fvdl struct bge_softc *sc;
2464 1.1 fvdl {
2465 1.1 fvdl struct ifnet *ifp;
2466 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
2467 1.1 fvdl int have_tag = 0;
2468 1.1 fvdl u_int16_t vlan_tag = 0;
2469 1.1 fvdl bus_dmamap_t dmamap;
2470 1.1 fvdl bus_addr_t offset, toff;
2471 1.1 fvdl bus_size_t tlen;
2472 1.1 fvdl int tosync;
2473 1.1 fvdl
2474 1.1 fvdl ifp = &sc->ethercom.ec_if;
2475 1.1 fvdl
2476 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2477 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2478 1.1 fvdl sizeof (struct bge_status_block),
2479 1.1 fvdl BUS_DMASYNC_POSTREAD);
2480 1.1 fvdl
2481 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2482 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2483 1.1 fvdl sc->bge_rx_saved_considx;
2484 1.1 fvdl
2485 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2486 1.1 fvdl
2487 1.1 fvdl if (tosync < 0) {
2488 1.44 hannken tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2489 1.1 fvdl sizeof (struct bge_rx_bd);
2490 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2491 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
2492 1.1 fvdl tosync = -tosync;
2493 1.1 fvdl }
2494 1.1 fvdl
2495 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2496 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
2497 1.1 fvdl BUS_DMASYNC_POSTREAD);
2498 1.1 fvdl
2499 1.1 fvdl while(sc->bge_rx_saved_considx !=
2500 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2501 1.1 fvdl struct bge_rx_bd *cur_rx;
2502 1.1 fvdl u_int32_t rxidx;
2503 1.1 fvdl struct mbuf *m = NULL;
2504 1.1 fvdl
2505 1.1 fvdl cur_rx = &sc->bge_rdata->
2506 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2507 1.1 fvdl
2508 1.1 fvdl rxidx = cur_rx->bge_idx;
2509 1.44 hannken BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2510 1.1 fvdl
2511 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2512 1.1 fvdl have_tag = 1;
2513 1.1 fvdl vlan_tag = cur_rx->bge_vlan_tag;
2514 1.1 fvdl }
2515 1.1 fvdl
2516 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2517 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2518 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2519 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2520 1.1 fvdl jumbocnt++;
2521 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2522 1.1 fvdl ifp->if_ierrors++;
2523 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2524 1.1 fvdl continue;
2525 1.1 fvdl }
2526 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2527 1.1 fvdl NULL)== ENOBUFS) {
2528 1.1 fvdl ifp->if_ierrors++;
2529 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2530 1.1 fvdl continue;
2531 1.1 fvdl }
2532 1.1 fvdl } else {
2533 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2534 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2535 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2536 1.1 fvdl stdcnt++;
2537 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2538 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2539 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2540 1.1 fvdl ifp->if_ierrors++;
2541 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2542 1.1 fvdl continue;
2543 1.1 fvdl }
2544 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2545 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2546 1.1 fvdl ifp->if_ierrors++;
2547 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2548 1.1 fvdl continue;
2549 1.1 fvdl }
2550 1.1 fvdl }
2551 1.1 fvdl
2552 1.1 fvdl ifp->if_ipackets++;
2553 1.37 jonathan #ifndef __NO_STRICT_ALIGNMENT
2554 1.37 jonathan /*
2555 1.37 jonathan * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2556 1.37 jonathan * the Rx buffer has the layer-2 header unaligned.
2557 1.37 jonathan * If our CPU requires alignment, re-align by copying.
2558 1.37 jonathan */
2559 1.37 jonathan if (sc->bge_rx_alignment_bug) {
2560 1.37 jonathan memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2561 1.37 jonathan cur_rx->bge_len);
2562 1.37 jonathan m->m_data += ETHER_ALIGN;
2563 1.37 jonathan }
2564 1.37 jonathan #endif
2565 1.37 jonathan
2566 1.54 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2567 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2568 1.1 fvdl
2569 1.1 fvdl #if NBPFILTER > 0
2570 1.1 fvdl /*
2571 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2572 1.1 fvdl */
2573 1.1 fvdl if (ifp->if_bpf)
2574 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2575 1.1 fvdl #endif
2576 1.1 fvdl
2577 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2578 1.46 jonathan
2579 1.46 jonathan if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2580 1.46 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2581 1.46 jonathan /*
2582 1.46 jonathan * Rx transport checksum-offload may also
2583 1.46 jonathan * have bugs with packets which, when transmitted,
2584 1.46 jonathan * were `runts' requiring padding.
2585 1.46 jonathan */
2586 1.46 jonathan if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2587 1.46 jonathan (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2588 1.46 jonathan m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2589 1.46 jonathan m->m_pkthdr.csum_data =
2590 1.46 jonathan cur_rx->bge_tcp_udp_csum;
2591 1.46 jonathan m->m_pkthdr.csum_flags |=
2592 1.46 jonathan (M_CSUM_TCPv4|M_CSUM_UDPv4|
2593 1.46 jonathan M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2594 1.1 fvdl }
2595 1.1 fvdl
2596 1.1 fvdl /*
2597 1.1 fvdl * If we received a packet with a vlan tag, pass it
2598 1.1 fvdl * to vlan_input() instead of ether_input().
2599 1.1 fvdl */
2600 1.1 fvdl if (have_tag) {
2601 1.28 itojun struct m_tag *mtag;
2602 1.1 fvdl
2603 1.28 itojun mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2604 1.28 itojun M_NOWAIT);
2605 1.28 itojun if (mtag != NULL) {
2606 1.28 itojun *(u_int *)(mtag + 1) = vlan_tag;
2607 1.28 itojun m_tag_prepend(m, mtag);
2608 1.1 fvdl have_tag = vlan_tag = 0;
2609 1.1 fvdl } else {
2610 1.1 fvdl printf("%s: no mbuf for tag\n", ifp->if_xname);
2611 1.1 fvdl m_freem(m);
2612 1.1 fvdl have_tag = vlan_tag = 0;
2613 1.1 fvdl continue;
2614 1.1 fvdl }
2615 1.1 fvdl }
2616 1.1 fvdl (*ifp->if_input)(ifp, m);
2617 1.1 fvdl }
2618 1.1 fvdl
2619 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2620 1.1 fvdl if (stdcnt)
2621 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2622 1.1 fvdl if (jumbocnt)
2623 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2624 1.1 fvdl }
2625 1.1 fvdl
2626 1.1 fvdl void
2627 1.1 fvdl bge_txeof(sc)
2628 1.1 fvdl struct bge_softc *sc;
2629 1.1 fvdl {
2630 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
2631 1.1 fvdl struct ifnet *ifp;
2632 1.1 fvdl struct txdmamap_pool_entry *dma;
2633 1.1 fvdl bus_addr_t offset, toff;
2634 1.1 fvdl bus_size_t tlen;
2635 1.1 fvdl int tosync;
2636 1.1 fvdl struct mbuf *m;
2637 1.1 fvdl
2638 1.1 fvdl ifp = &sc->ethercom.ec_if;
2639 1.1 fvdl
2640 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2641 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2642 1.1 fvdl sizeof (struct bge_status_block),
2643 1.1 fvdl BUS_DMASYNC_POSTREAD);
2644 1.1 fvdl
2645 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
2646 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2647 1.1 fvdl sc->bge_tx_saved_considx;
2648 1.1 fvdl
2649 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2650 1.1 fvdl
2651 1.1 fvdl if (tosync < 0) {
2652 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2653 1.1 fvdl sizeof (struct bge_tx_bd);
2654 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2655 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2656 1.1 fvdl tosync = -tosync;
2657 1.1 fvdl }
2658 1.1 fvdl
2659 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2660 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
2661 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2662 1.1 fvdl
2663 1.1 fvdl /*
2664 1.1 fvdl * Go through our tx ring and free mbufs for those
2665 1.1 fvdl * frames that have been sent.
2666 1.1 fvdl */
2667 1.1 fvdl while (sc->bge_tx_saved_considx !=
2668 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2669 1.1 fvdl u_int32_t idx = 0;
2670 1.1 fvdl
2671 1.1 fvdl idx = sc->bge_tx_saved_considx;
2672 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2673 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2674 1.1 fvdl ifp->if_opackets++;
2675 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
2676 1.1 fvdl if (m != NULL) {
2677 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
2678 1.1 fvdl dma = sc->txdma[idx];
2679 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2680 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2681 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2682 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2683 1.1 fvdl sc->txdma[idx] = NULL;
2684 1.1 fvdl
2685 1.1 fvdl m_freem(m);
2686 1.1 fvdl }
2687 1.1 fvdl sc->bge_txcnt--;
2688 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2689 1.1 fvdl ifp->if_timer = 0;
2690 1.1 fvdl }
2691 1.1 fvdl
2692 1.1 fvdl if (cur_tx != NULL)
2693 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2694 1.1 fvdl }
2695 1.1 fvdl
2696 1.1 fvdl int
2697 1.1 fvdl bge_intr(xsc)
2698 1.1 fvdl void *xsc;
2699 1.1 fvdl {
2700 1.1 fvdl struct bge_softc *sc;
2701 1.1 fvdl struct ifnet *ifp;
2702 1.1 fvdl
2703 1.1 fvdl sc = xsc;
2704 1.1 fvdl ifp = &sc->ethercom.ec_if;
2705 1.1 fvdl
2706 1.1 fvdl #ifdef notdef
2707 1.1 fvdl /* Avoid this for now -- checking this register is expensive. */
2708 1.1 fvdl /* Make sure this is really our interrupt. */
2709 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2710 1.1 fvdl return (0);
2711 1.1 fvdl #endif
2712 1.1 fvdl /* Ack interrupt and stop others from occuring. */
2713 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2714 1.1 fvdl
2715 1.1 fvdl /*
2716 1.1 fvdl * Process link state changes.
2717 1.1 fvdl * Grrr. The link status word in the status block does
2718 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
2719 1.1 fvdl * according to all avaibable information. Hence, we have
2720 1.1 fvdl * to enable MII interrupts in order to properly obtain
2721 1.1 fvdl * async link changes. Unfortunately, this also means that
2722 1.1 fvdl * we have to read the MAC status register to detect link
2723 1.1 fvdl * changes, thereby adding an additional register access to
2724 1.1 fvdl * the interrupt handler.
2725 1.1 fvdl */
2726 1.1 fvdl
2727 1.17 thorpej if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2728 1.1 fvdl u_int32_t status;
2729 1.1 fvdl
2730 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
2731 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
2732 1.1 fvdl sc->bge_link = 0;
2733 1.1 fvdl callout_stop(&sc->bge_timeout);
2734 1.1 fvdl bge_tick(sc);
2735 1.1 fvdl /* Clear the interrupt */
2736 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2737 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
2738 1.1 fvdl bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2739 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2740 1.1 fvdl BRGPHY_INTRS);
2741 1.1 fvdl }
2742 1.1 fvdl } else {
2743 1.1 fvdl if (sc->bge_rdata->bge_status_block.bge_status &
2744 1.1 fvdl BGE_STATFLAG_LINKSTATE_CHANGED) {
2745 1.1 fvdl sc->bge_link = 0;
2746 1.1 fvdl callout_stop(&sc->bge_timeout);
2747 1.1 fvdl bge_tick(sc);
2748 1.1 fvdl /* Clear the interrupt */
2749 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2750 1.44 hannken BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2751 1.44 hannken BGE_MACSTAT_LINK_CHANGED);
2752 1.1 fvdl }
2753 1.1 fvdl }
2754 1.1 fvdl
2755 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2756 1.1 fvdl /* Check RX return ring producer/consumer */
2757 1.1 fvdl bge_rxeof(sc);
2758 1.1 fvdl
2759 1.1 fvdl /* Check TX ring producer/consumer */
2760 1.1 fvdl bge_txeof(sc);
2761 1.1 fvdl }
2762 1.1 fvdl
2763 1.1 fvdl bge_handle_events(sc);
2764 1.1 fvdl
2765 1.1 fvdl /* Re-enable interrupts. */
2766 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2767 1.1 fvdl
2768 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2769 1.1 fvdl bge_start(ifp);
2770 1.1 fvdl
2771 1.1 fvdl return (1);
2772 1.1 fvdl }
2773 1.1 fvdl
2774 1.1 fvdl void
2775 1.1 fvdl bge_tick(xsc)
2776 1.1 fvdl void *xsc;
2777 1.1 fvdl {
2778 1.1 fvdl struct bge_softc *sc = xsc;
2779 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2780 1.1 fvdl struct ifmedia *ifm = NULL;
2781 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2782 1.1 fvdl int s;
2783 1.1 fvdl
2784 1.1 fvdl s = splnet();
2785 1.1 fvdl
2786 1.1 fvdl bge_stats_update(sc);
2787 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2788 1.1 fvdl if (sc->bge_link) {
2789 1.1 fvdl splx(s);
2790 1.1 fvdl return;
2791 1.1 fvdl }
2792 1.1 fvdl
2793 1.1 fvdl if (sc->bge_tbi) {
2794 1.1 fvdl ifm = &sc->bge_ifmedia;
2795 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2796 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
2797 1.1 fvdl sc->bge_link++;
2798 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2799 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2800 1.1 fvdl bge_start(ifp);
2801 1.1 fvdl }
2802 1.1 fvdl splx(s);
2803 1.1 fvdl return;
2804 1.1 fvdl }
2805 1.1 fvdl
2806 1.1 fvdl mii_tick(mii);
2807 1.1 fvdl
2808 1.1 fvdl if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2809 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2810 1.1 fvdl sc->bge_link++;
2811 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2812 1.1 fvdl bge_start(ifp);
2813 1.1 fvdl }
2814 1.1 fvdl
2815 1.1 fvdl splx(s);
2816 1.1 fvdl }
2817 1.1 fvdl
2818 1.1 fvdl void
2819 1.1 fvdl bge_stats_update(sc)
2820 1.1 fvdl struct bge_softc *sc;
2821 1.1 fvdl {
2822 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2823 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2824 1.44 hannken bus_size_t rstats = BGE_RX_STATS;
2825 1.44 hannken
2826 1.44 hannken #define READ_RSTAT(sc, stats, stat) \
2827 1.44 hannken CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2828 1.1 fvdl
2829 1.44 hannken if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2830 1.44 hannken ifp->if_collisions +=
2831 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2832 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2833 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2834 1.44 hannken READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2835 1.44 hannken return;
2836 1.44 hannken }
2837 1.44 hannken
2838 1.44 hannken #undef READ_RSTAT
2839 1.1 fvdl #define READ_STAT(sc, stats, stat) \
2840 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2841 1.1 fvdl
2842 1.1 fvdl ifp->if_collisions +=
2843 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2844 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2845 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2846 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2847 1.1 fvdl ifp->if_collisions;
2848 1.1 fvdl
2849 1.1 fvdl #undef READ_STAT
2850 1.1 fvdl
2851 1.1 fvdl #ifdef notdef
2852 1.1 fvdl ifp->if_collisions +=
2853 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2854 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2855 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2856 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2857 1.1 fvdl ifp->if_collisions;
2858 1.1 fvdl #endif
2859 1.1 fvdl }
2860 1.1 fvdl
2861 1.46 jonathan /*
2862 1.46 jonathan * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2863 1.46 jonathan * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2864 1.46 jonathan * but when such padded frames employ the bge IP/TCP checksum offload,
2865 1.46 jonathan * the hardware checksum assist gives incorrect results (possibly
2866 1.46 jonathan * from incorporating its own padding into the UDP/TCP checksum; who knows).
2867 1.46 jonathan * If we pad such runts with zeros, the onboard checksum comes out correct.
2868 1.46 jonathan */
2869 1.46 jonathan static __inline int
2870 1.46 jonathan bge_cksum_pad(struct mbuf *pkt)
2871 1.46 jonathan {
2872 1.46 jonathan struct mbuf *last = NULL;
2873 1.46 jonathan int padlen;
2874 1.46 jonathan
2875 1.46 jonathan padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2876 1.46 jonathan
2877 1.46 jonathan /* if there's only the packet-header and we can pad there, use it. */
2878 1.46 jonathan if (pkt->m_pkthdr.len == pkt->m_len &&
2879 1.46 jonathan !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2880 1.46 jonathan last = pkt;
2881 1.46 jonathan } else {
2882 1.46 jonathan /*
2883 1.46 jonathan * Walk packet chain to find last mbuf. We will either
2884 1.46 jonathan * pad there, or append a new mbuf and pad it
2885 1.46 jonathan * (thus perhaps avoiding the bcm5700 dma-min bug).
2886 1.46 jonathan */
2887 1.46 jonathan for (last = pkt; last->m_next != NULL; last = last->m_next) {
2888 1.46 jonathan (void) 0; /* do nothing*/
2889 1.46 jonathan }
2890 1.46 jonathan
2891 1.46 jonathan /* `last' now points to last in chain. */
2892 1.46 jonathan if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2893 1.46 jonathan (void) 0; /* we can pad here, in-place. */
2894 1.46 jonathan } else {
2895 1.46 jonathan /* Allocate new empty mbuf, pad it. Compact later. */
2896 1.46 jonathan struct mbuf *n;
2897 1.46 jonathan MGET(n, M_DONTWAIT, MT_DATA);
2898 1.46 jonathan n->m_len = 0;
2899 1.46 jonathan last->m_next = n;
2900 1.46 jonathan last = n;
2901 1.46 jonathan }
2902 1.46 jonathan }
2903 1.46 jonathan
2904 1.46 jonathan #ifdef DEBUG
2905 1.48 hannken /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2906 1.47 cjep KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2907 1.46 jonathan #endif
2908 1.46 jonathan /* Now zero the pad area, to avoid the bge cksum-assist bug */
2909 1.46 jonathan memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2910 1.46 jonathan last->m_len += padlen;
2911 1.46 jonathan pkt->m_pkthdr.len += padlen;
2912 1.46 jonathan return 0;
2913 1.46 jonathan }
2914 1.45 jonathan
2915 1.45 jonathan /*
2916 1.45 jonathan * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2917 1.45 jonathan */
2918 1.45 jonathan static __inline int
2919 1.45 jonathan bge_compact_dma_runt(struct mbuf *pkt)
2920 1.45 jonathan {
2921 1.45 jonathan struct mbuf *m, *prev;
2922 1.45 jonathan int totlen, prevlen;
2923 1.45 jonathan
2924 1.45 jonathan prev = NULL;
2925 1.45 jonathan totlen = 0;
2926 1.45 jonathan prevlen = -1;
2927 1.45 jonathan
2928 1.45 jonathan for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2929 1.45 jonathan int mlen = m->m_len;
2930 1.45 jonathan int shortfall = 8 - mlen ;
2931 1.45 jonathan
2932 1.45 jonathan totlen += mlen;
2933 1.45 jonathan if (mlen == 0) {
2934 1.45 jonathan continue;
2935 1.45 jonathan }
2936 1.45 jonathan if (mlen >= 8)
2937 1.45 jonathan continue;
2938 1.45 jonathan
2939 1.45 jonathan /* If we get here, mbuf data is too small for DMA engine.
2940 1.45 jonathan * Try to fix by shuffling data to prev or next in chain.
2941 1.45 jonathan * If that fails, do a compacting deep-copy of the whole chain.
2942 1.45 jonathan */
2943 1.45 jonathan
2944 1.45 jonathan /* Internal frag. If fits in prev, copy it there. */
2945 1.45 jonathan if (prev && !M_READONLY(prev) &&
2946 1.45 jonathan M_TRAILINGSPACE(prev) >= m->m_len) {
2947 1.45 jonathan bcopy(m->m_data,
2948 1.45 jonathan prev->m_data+prev->m_len,
2949 1.45 jonathan mlen);
2950 1.45 jonathan prev->m_len += mlen;
2951 1.45 jonathan m->m_len = 0;
2952 1.45 jonathan /* XXX stitch chain */
2953 1.45 jonathan prev->m_next = m_free(m);
2954 1.45 jonathan m = prev;
2955 1.45 jonathan continue;
2956 1.45 jonathan }
2957 1.45 jonathan else if (m->m_next != NULL && !M_READONLY(m) &&
2958 1.45 jonathan M_TRAILINGSPACE(m) >= shortfall &&
2959 1.45 jonathan m->m_next->m_len >= (8 + shortfall)) {
2960 1.45 jonathan /* m is writable and have enough data in next, pull up. */
2961 1.45 jonathan
2962 1.45 jonathan bcopy(m->m_next->m_data,
2963 1.45 jonathan m->m_data+m->m_len,
2964 1.45 jonathan shortfall);
2965 1.45 jonathan m->m_len += shortfall;
2966 1.45 jonathan m->m_next->m_len -= shortfall;
2967 1.45 jonathan m->m_next->m_data += shortfall;
2968 1.45 jonathan }
2969 1.45 jonathan else if (m->m_next == NULL || 1) {
2970 1.45 jonathan /* Got a runt at the very end of the packet.
2971 1.45 jonathan * borrow data from the tail of the preceding mbuf and
2972 1.45 jonathan * update its length in-place. (The original data is still
2973 1.45 jonathan * valid, so we can do this even if prev is not writable.)
2974 1.45 jonathan */
2975 1.45 jonathan
2976 1.45 jonathan /* if we'd make prev a runt, just move all of its data. */
2977 1.45 jonathan #ifdef DEBUG
2978 1.45 jonathan KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2979 1.45 jonathan KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2980 1.45 jonathan #endif
2981 1.45 jonathan if ((prev->m_len - shortfall) < 8)
2982 1.45 jonathan shortfall = prev->m_len;
2983 1.45 jonathan
2984 1.45 jonathan #ifdef notyet /* just do the safe slow thing for now */
2985 1.45 jonathan if (!M_READONLY(m)) {
2986 1.45 jonathan if (M_LEADINGSPACE(m) < shorfall) {
2987 1.45 jonathan void *m_dat;
2988 1.45 jonathan m_dat = (m->m_flags & M_PKTHDR) ?
2989 1.45 jonathan m->m_pktdat : m->dat;
2990 1.45 jonathan memmove(m_dat, mtod(m, void*), m->m_len);
2991 1.45 jonathan m->m_data = m_dat;
2992 1.45 jonathan }
2993 1.45 jonathan } else
2994 1.45 jonathan #endif /* just do the safe slow thing */
2995 1.45 jonathan {
2996 1.45 jonathan struct mbuf * n = NULL;
2997 1.45 jonathan int newprevlen = prev->m_len - shortfall;
2998 1.45 jonathan
2999 1.45 jonathan MGET(n, M_NOWAIT, MT_DATA);
3000 1.45 jonathan if (n == NULL)
3001 1.45 jonathan return ENOBUFS;
3002 1.45 jonathan KASSERT(m->m_len + shortfall < MLEN
3003 1.45 jonathan /*,
3004 1.45 jonathan ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3005 1.45 jonathan
3006 1.45 jonathan /* first copy the data we're stealing from prev */
3007 1.45 jonathan bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3008 1.45 jonathan
3009 1.45 jonathan /* update prev->m_len accordingly */
3010 1.45 jonathan prev->m_len -= shortfall;
3011 1.45 jonathan
3012 1.45 jonathan /* copy data from runt m */
3013 1.45 jonathan bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3014 1.45 jonathan
3015 1.45 jonathan /* n holds what we stole from prev, plus m */
3016 1.45 jonathan n->m_len = shortfall + m->m_len;
3017 1.45 jonathan
3018 1.45 jonathan /* stitch n into chain and free m */
3019 1.45 jonathan n->m_next = m->m_next;
3020 1.45 jonathan prev->m_next = n;
3021 1.45 jonathan /* KASSERT(m->m_next == NULL); */
3022 1.45 jonathan m->m_next = NULL;
3023 1.45 jonathan m_free(m);
3024 1.45 jonathan m = n; /* for continuing loop */
3025 1.45 jonathan }
3026 1.45 jonathan }
3027 1.45 jonathan prevlen = m->m_len;
3028 1.45 jonathan }
3029 1.45 jonathan return 0;
3030 1.45 jonathan }
3031 1.45 jonathan
3032 1.1 fvdl /*
3033 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3034 1.1 fvdl * pointers to descriptors.
3035 1.1 fvdl */
3036 1.1 fvdl int
3037 1.1 fvdl bge_encap(sc, m_head, txidx)
3038 1.1 fvdl struct bge_softc *sc;
3039 1.1 fvdl struct mbuf *m_head;
3040 1.1 fvdl u_int32_t *txidx;
3041 1.1 fvdl {
3042 1.1 fvdl struct bge_tx_bd *f = NULL;
3043 1.1 fvdl u_int32_t frag, cur, cnt = 0;
3044 1.1 fvdl u_int16_t csum_flags = 0;
3045 1.1 fvdl struct txdmamap_pool_entry *dma;
3046 1.1 fvdl bus_dmamap_t dmamap;
3047 1.1 fvdl int i = 0;
3048 1.29 itojun struct m_tag *mtag;
3049 1.1 fvdl
3050 1.1 fvdl cur = frag = *txidx;
3051 1.1 fvdl
3052 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
3053 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3054 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3055 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3056 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3057 1.1 fvdl }
3058 1.1 fvdl
3059 1.46 jonathan /*
3060 1.46 jonathan * If we were asked to do an outboard checksum, and the NIC
3061 1.46 jonathan * has the bug where it sometimes adds in the Ethernet padding,
3062 1.46 jonathan * explicitly pad with zeros so the cksum will be correct either way.
3063 1.46 jonathan * (For now, do this for all chip versions, until newer
3064 1.46 jonathan * are confirmed to not require the workaround.)
3065 1.46 jonathan */
3066 1.46 jonathan if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3067 1.46 jonathan #ifdef notyet
3068 1.46 jonathan (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3069 1.46 jonathan #endif
3070 1.46 jonathan m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3071 1.46 jonathan goto check_dma_bug;
3072 1.46 jonathan
3073 1.46 jonathan if (bge_cksum_pad(m_head) != 0)
3074 1.46 jonathan return ENOBUFS;
3075 1.46 jonathan
3076 1.46 jonathan check_dma_bug:
3077 1.25 jonathan if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3078 1.29 itojun goto doit;
3079 1.25 jonathan /*
3080 1.25 jonathan * bcm5700 Revision B silicon cannot handle DMA descriptors with
3081 1.25 jonathan * less than eight bytes. If we encounter a teeny mbuf
3082 1.25 jonathan * at the end of a chain, we can pad. Otherwise, copy.
3083 1.25 jonathan */
3084 1.45 jonathan if (bge_compact_dma_runt(m_head) != 0)
3085 1.45 jonathan return ENOBUFS;
3086 1.25 jonathan
3087 1.25 jonathan doit:
3088 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
3089 1.1 fvdl if (dma == NULL)
3090 1.1 fvdl return ENOBUFS;
3091 1.1 fvdl dmamap = dma->dmamap;
3092 1.1 fvdl
3093 1.1 fvdl /*
3094 1.1 fvdl * Start packing the mbufs in this chain into
3095 1.1 fvdl * the fragment pointers. Stop when we run out
3096 1.1 fvdl * of fragments or hit the end of the mbuf chain.
3097 1.1 fvdl */
3098 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3099 1.1 fvdl BUS_DMA_NOWAIT))
3100 1.1 fvdl return(ENOBUFS);
3101 1.1 fvdl
3102 1.28 itojun mtag = sc->ethercom.ec_nvlans ?
3103 1.28 itojun m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3104 1.6 thorpej
3105 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
3106 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
3107 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3108 1.1 fvdl break;
3109 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3110 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
3111 1.1 fvdl f->bge_flags = csum_flags;
3112 1.1 fvdl
3113 1.28 itojun if (mtag != NULL) {
3114 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3115 1.28 itojun f->bge_vlan_tag = *(u_int *)(mtag + 1);
3116 1.1 fvdl } else {
3117 1.1 fvdl f->bge_vlan_tag = 0;
3118 1.1 fvdl }
3119 1.1 fvdl /*
3120 1.1 fvdl * Sanity check: avoid coming within 16 descriptors
3121 1.1 fvdl * of the end of the ring.
3122 1.1 fvdl */
3123 1.1 fvdl if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3124 1.1 fvdl return(ENOBUFS);
3125 1.1 fvdl cur = frag;
3126 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
3127 1.1 fvdl cnt++;
3128 1.1 fvdl }
3129 1.1 fvdl
3130 1.1 fvdl if (i < dmamap->dm_nsegs)
3131 1.1 fvdl return ENOBUFS;
3132 1.1 fvdl
3133 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3134 1.1 fvdl BUS_DMASYNC_PREWRITE);
3135 1.1 fvdl
3136 1.1 fvdl if (frag == sc->bge_tx_saved_considx)
3137 1.1 fvdl return(ENOBUFS);
3138 1.1 fvdl
3139 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3140 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
3141 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3142 1.1 fvdl sc->txdma[cur] = dma;
3143 1.1 fvdl sc->bge_txcnt += cnt;
3144 1.1 fvdl
3145 1.1 fvdl *txidx = frag;
3146 1.1 fvdl
3147 1.1 fvdl return(0);
3148 1.1 fvdl }
3149 1.1 fvdl
3150 1.1 fvdl /*
3151 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3152 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
3153 1.1 fvdl */
3154 1.1 fvdl void
3155 1.1 fvdl bge_start(ifp)
3156 1.1 fvdl struct ifnet *ifp;
3157 1.1 fvdl {
3158 1.1 fvdl struct bge_softc *sc;
3159 1.1 fvdl struct mbuf *m_head = NULL;
3160 1.1 fvdl u_int32_t prodidx = 0;
3161 1.1 fvdl int pkts = 0;
3162 1.1 fvdl
3163 1.1 fvdl sc = ifp->if_softc;
3164 1.1 fvdl
3165 1.1 fvdl if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3166 1.1 fvdl return;
3167 1.1 fvdl
3168 1.1 fvdl prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3169 1.1 fvdl
3170 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3171 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
3172 1.1 fvdl if (m_head == NULL)
3173 1.1 fvdl break;
3174 1.1 fvdl
3175 1.1 fvdl #if 0
3176 1.1 fvdl /*
3177 1.1 fvdl * XXX
3178 1.1 fvdl * safety overkill. If this is a fragmented packet chain
3179 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
3180 1.1 fvdl * it if we have enough descriptors to handle the entire
3181 1.1 fvdl * chain at once.
3182 1.1 fvdl * (paranoia -- may not actually be needed)
3183 1.1 fvdl */
3184 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
3185 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3186 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3187 1.1 fvdl m_head->m_pkthdr.csum_data + 16) {
3188 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3189 1.1 fvdl break;
3190 1.1 fvdl }
3191 1.1 fvdl }
3192 1.1 fvdl #endif
3193 1.1 fvdl
3194 1.1 fvdl /*
3195 1.1 fvdl * Pack the data into the transmit ring. If we
3196 1.1 fvdl * don't have room, set the OACTIVE flag and wait
3197 1.1 fvdl * for the NIC to drain the ring.
3198 1.1 fvdl */
3199 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
3200 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
3201 1.1 fvdl break;
3202 1.1 fvdl }
3203 1.1 fvdl
3204 1.1 fvdl /* now we are committed to transmit the packet */
3205 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
3206 1.1 fvdl pkts++;
3207 1.1 fvdl
3208 1.1 fvdl #if NBPFILTER > 0
3209 1.1 fvdl /*
3210 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
3211 1.1 fvdl * to him.
3212 1.1 fvdl */
3213 1.1 fvdl if (ifp->if_bpf)
3214 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
3215 1.1 fvdl #endif
3216 1.1 fvdl }
3217 1.1 fvdl if (pkts == 0)
3218 1.1 fvdl return;
3219 1.1 fvdl
3220 1.1 fvdl /* Transmit */
3221 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3222 1.29 itojun if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3223 1.29 itojun CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3224 1.1 fvdl
3225 1.1 fvdl /*
3226 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
3227 1.1 fvdl */
3228 1.1 fvdl ifp->if_timer = 5;
3229 1.1 fvdl }
3230 1.1 fvdl
3231 1.1 fvdl int
3232 1.1 fvdl bge_init(ifp)
3233 1.1 fvdl struct ifnet *ifp;
3234 1.1 fvdl {
3235 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3236 1.1 fvdl u_int16_t *m;
3237 1.1 fvdl int s, error;
3238 1.1 fvdl
3239 1.1 fvdl s = splnet();
3240 1.1 fvdl
3241 1.1 fvdl ifp = &sc->ethercom.ec_if;
3242 1.1 fvdl
3243 1.1 fvdl /* Cancel pending I/O and flush buffers. */
3244 1.1 fvdl bge_stop(sc);
3245 1.1 fvdl bge_reset(sc);
3246 1.1 fvdl bge_chipinit(sc);
3247 1.1 fvdl
3248 1.1 fvdl /*
3249 1.1 fvdl * Init the various state machines, ring
3250 1.1 fvdl * control blocks and firmware.
3251 1.1 fvdl */
3252 1.1 fvdl error = bge_blockinit(sc);
3253 1.1 fvdl if (error != 0) {
3254 1.1 fvdl printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3255 1.1 fvdl error);
3256 1.1 fvdl splx(s);
3257 1.1 fvdl return error;
3258 1.1 fvdl }
3259 1.1 fvdl
3260 1.1 fvdl ifp = &sc->ethercom.ec_if;
3261 1.1 fvdl
3262 1.1 fvdl /* Specify MTU. */
3263 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3264 1.1 fvdl ETHER_HDR_LEN + ETHER_CRC_LEN);
3265 1.1 fvdl
3266 1.1 fvdl /* Load our MAC address. */
3267 1.1 fvdl m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3268 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3269 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3270 1.1 fvdl
3271 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
3272 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
3273 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3274 1.1 fvdl } else {
3275 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3276 1.1 fvdl }
3277 1.1 fvdl
3278 1.1 fvdl /* Program multicast filter. */
3279 1.1 fvdl bge_setmulti(sc);
3280 1.1 fvdl
3281 1.1 fvdl /* Init RX ring. */
3282 1.1 fvdl bge_init_rx_ring_std(sc);
3283 1.1 fvdl
3284 1.1 fvdl /* Init jumbo RX ring. */
3285 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3286 1.1 fvdl bge_init_rx_ring_jumbo(sc);
3287 1.1 fvdl
3288 1.1 fvdl /* Init our RX return ring index */
3289 1.1 fvdl sc->bge_rx_saved_considx = 0;
3290 1.1 fvdl
3291 1.1 fvdl /* Init TX ring. */
3292 1.1 fvdl bge_init_tx_ring(sc);
3293 1.1 fvdl
3294 1.1 fvdl /* Turn on transmitter */
3295 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3296 1.1 fvdl
3297 1.1 fvdl /* Turn on receiver */
3298 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3299 1.1 fvdl
3300 1.1 fvdl /* Tell firmware we're alive. */
3301 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3302 1.1 fvdl
3303 1.1 fvdl /* Enable host interrupts. */
3304 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3305 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3306 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3307 1.1 fvdl
3308 1.1 fvdl bge_ifmedia_upd(ifp);
3309 1.1 fvdl
3310 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
3311 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
3312 1.1 fvdl
3313 1.1 fvdl splx(s);
3314 1.1 fvdl
3315 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3316 1.1 fvdl
3317 1.1 fvdl return 0;
3318 1.1 fvdl }
3319 1.1 fvdl
3320 1.1 fvdl /*
3321 1.1 fvdl * Set media options.
3322 1.1 fvdl */
3323 1.1 fvdl int
3324 1.1 fvdl bge_ifmedia_upd(ifp)
3325 1.1 fvdl struct ifnet *ifp;
3326 1.1 fvdl {
3327 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3328 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3329 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
3330 1.1 fvdl
3331 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
3332 1.1 fvdl if (sc->bge_tbi) {
3333 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3334 1.1 fvdl return(EINVAL);
3335 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
3336 1.1 fvdl case IFM_AUTO:
3337 1.1 fvdl break;
3338 1.1 fvdl case IFM_1000_SX:
3339 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3340 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
3341 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3342 1.1 fvdl } else {
3343 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
3344 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
3345 1.1 fvdl }
3346 1.1 fvdl break;
3347 1.1 fvdl default:
3348 1.1 fvdl return(EINVAL);
3349 1.1 fvdl }
3350 1.1 fvdl return(0);
3351 1.1 fvdl }
3352 1.1 fvdl
3353 1.1 fvdl sc->bge_link = 0;
3354 1.1 fvdl mii_mediachg(mii);
3355 1.1 fvdl
3356 1.1 fvdl return(0);
3357 1.1 fvdl }
3358 1.1 fvdl
3359 1.1 fvdl /*
3360 1.1 fvdl * Report current media status.
3361 1.1 fvdl */
3362 1.1 fvdl void
3363 1.1 fvdl bge_ifmedia_sts(ifp, ifmr)
3364 1.1 fvdl struct ifnet *ifp;
3365 1.1 fvdl struct ifmediareq *ifmr;
3366 1.1 fvdl {
3367 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3368 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
3369 1.1 fvdl
3370 1.1 fvdl if (sc->bge_tbi) {
3371 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
3372 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
3373 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
3374 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
3375 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
3376 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
3377 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3378 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
3379 1.1 fvdl else
3380 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
3381 1.1 fvdl return;
3382 1.1 fvdl }
3383 1.1 fvdl
3384 1.1 fvdl mii_pollstat(mii);
3385 1.1 fvdl ifmr->ifm_active = mii->mii_media_active;
3386 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
3387 1.1 fvdl }
3388 1.1 fvdl
3389 1.1 fvdl int
3390 1.1 fvdl bge_ioctl(ifp, command, data)
3391 1.1 fvdl struct ifnet *ifp;
3392 1.1 fvdl u_long command;
3393 1.1 fvdl caddr_t data;
3394 1.1 fvdl {
3395 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
3396 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
3397 1.1 fvdl int s, error = 0;
3398 1.1 fvdl struct mii_data *mii;
3399 1.1 fvdl
3400 1.1 fvdl s = splnet();
3401 1.1 fvdl
3402 1.1 fvdl switch(command) {
3403 1.1 fvdl case SIOCSIFFLAGS:
3404 1.1 fvdl if (ifp->if_flags & IFF_UP) {
3405 1.1 fvdl /*
3406 1.1 fvdl * If only the state of the PROMISC flag changed,
3407 1.1 fvdl * then just use the 'set promisc mode' command
3408 1.1 fvdl * instead of reinitializing the entire NIC. Doing
3409 1.1 fvdl * a full re-init means reloading the firmware and
3410 1.1 fvdl * waiting for it to start up, which may take a
3411 1.1 fvdl * second or two.
3412 1.1 fvdl */
3413 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
3414 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
3415 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
3416 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
3417 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3418 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
3419 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
3420 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
3421 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
3422 1.1 fvdl BGE_RXMODE_RX_PROMISC);
3423 1.1 fvdl } else
3424 1.1 fvdl bge_init(ifp);
3425 1.1 fvdl } else {
3426 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
3427 1.1 fvdl bge_stop(sc);
3428 1.1 fvdl }
3429 1.1 fvdl }
3430 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
3431 1.1 fvdl error = 0;
3432 1.1 fvdl break;
3433 1.1 fvdl case SIOCSIFMEDIA:
3434 1.1 fvdl case SIOCGIFMEDIA:
3435 1.1 fvdl if (sc->bge_tbi) {
3436 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3437 1.1 fvdl command);
3438 1.1 fvdl } else {
3439 1.1 fvdl mii = &sc->bge_mii;
3440 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3441 1.1 fvdl command);
3442 1.1 fvdl }
3443 1.1 fvdl error = 0;
3444 1.1 fvdl break;
3445 1.1 fvdl default:
3446 1.1 fvdl error = ether_ioctl(ifp, command, data);
3447 1.1 fvdl if (error == ENETRESET) {
3448 1.1 fvdl bge_setmulti(sc);
3449 1.1 fvdl error = 0;
3450 1.1 fvdl }
3451 1.1 fvdl break;
3452 1.1 fvdl }
3453 1.1 fvdl
3454 1.1 fvdl splx(s);
3455 1.1 fvdl
3456 1.1 fvdl return(error);
3457 1.1 fvdl }
3458 1.1 fvdl
3459 1.1 fvdl void
3460 1.1 fvdl bge_watchdog(ifp)
3461 1.1 fvdl struct ifnet *ifp;
3462 1.1 fvdl {
3463 1.1 fvdl struct bge_softc *sc;
3464 1.1 fvdl
3465 1.1 fvdl sc = ifp->if_softc;
3466 1.1 fvdl
3467 1.1 fvdl printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3468 1.1 fvdl
3469 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
3470 1.1 fvdl bge_init(ifp);
3471 1.1 fvdl
3472 1.1 fvdl ifp->if_oerrors++;
3473 1.1 fvdl }
3474 1.1 fvdl
3475 1.11 thorpej static void
3476 1.11 thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3477 1.11 thorpej {
3478 1.11 thorpej int i;
3479 1.11 thorpej
3480 1.11 thorpej BGE_CLRBIT(sc, reg, bit);
3481 1.11 thorpej
3482 1.11 thorpej for (i = 0; i < BGE_TIMEOUT; i++) {
3483 1.11 thorpej if ((CSR_READ_4(sc, reg) & bit) == 0)
3484 1.11 thorpej return;
3485 1.11 thorpej delay(100);
3486 1.11 thorpej }
3487 1.11 thorpej
3488 1.11 thorpej printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3489 1.11 thorpej sc->bge_dev.dv_xname, (u_long) reg, bit);
3490 1.11 thorpej }
3491 1.11 thorpej
3492 1.1 fvdl /*
3493 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
3494 1.1 fvdl * RX and TX lists.
3495 1.1 fvdl */
3496 1.1 fvdl void
3497 1.1 fvdl bge_stop(sc)
3498 1.1 fvdl struct bge_softc *sc;
3499 1.1 fvdl {
3500 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
3501 1.1 fvdl
3502 1.1 fvdl callout_stop(&sc->bge_timeout);
3503 1.1 fvdl
3504 1.1 fvdl /*
3505 1.1 fvdl * Disable all of the receiver blocks
3506 1.1 fvdl */
3507 1.11 thorpej bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3508 1.11 thorpej bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3509 1.11 thorpej bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3510 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3511 1.44 hannken bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3512 1.44 hannken }
3513 1.11 thorpej bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3514 1.11 thorpej bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3515 1.11 thorpej bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3516 1.1 fvdl
3517 1.1 fvdl /*
3518 1.1 fvdl * Disable all of the transmit blocks
3519 1.1 fvdl */
3520 1.11 thorpej bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3521 1.11 thorpej bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3522 1.11 thorpej bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3523 1.11 thorpej bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3524 1.11 thorpej bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3525 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3526 1.44 hannken bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3527 1.44 hannken }
3528 1.11 thorpej bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3529 1.1 fvdl
3530 1.1 fvdl /*
3531 1.1 fvdl * Shut down all of the memory managers and related
3532 1.1 fvdl * state machines.
3533 1.1 fvdl */
3534 1.11 thorpej bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3535 1.11 thorpej bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3536 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3537 1.44 hannken bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3538 1.44 hannken }
3539 1.11 thorpej
3540 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3541 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3542 1.11 thorpej
3543 1.44 hannken if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3544 1.44 hannken bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3545 1.44 hannken bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3546 1.44 hannken }
3547 1.1 fvdl
3548 1.1 fvdl /* Disable host interrupts. */
3549 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3550 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3551 1.1 fvdl
3552 1.1 fvdl /*
3553 1.1 fvdl * Tell firmware we're shutting down.
3554 1.1 fvdl */
3555 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3556 1.1 fvdl
3557 1.1 fvdl /* Free the RX lists. */
3558 1.1 fvdl bge_free_rx_ring_std(sc);
3559 1.1 fvdl
3560 1.1 fvdl /* Free jumbo RX list. */
3561 1.1 fvdl bge_free_rx_ring_jumbo(sc);
3562 1.1 fvdl
3563 1.1 fvdl /* Free TX buffers. */
3564 1.1 fvdl bge_free_tx_ring(sc);
3565 1.1 fvdl
3566 1.1 fvdl /*
3567 1.1 fvdl * Isolate/power down the PHY.
3568 1.1 fvdl */
3569 1.1 fvdl if (!sc->bge_tbi)
3570 1.1 fvdl mii_down(&sc->bge_mii);
3571 1.1 fvdl
3572 1.1 fvdl sc->bge_link = 0;
3573 1.1 fvdl
3574 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3575 1.1 fvdl
3576 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3577 1.1 fvdl }
3578 1.1 fvdl
3579 1.1 fvdl /*
3580 1.1 fvdl * Stop all chip I/O so that the kernel's probe routines don't
3581 1.1 fvdl * get confused by errant DMAs when rebooting.
3582 1.1 fvdl */
3583 1.1 fvdl void
3584 1.1 fvdl bge_shutdown(xsc)
3585 1.1 fvdl void *xsc;
3586 1.1 fvdl {
3587 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)xsc;
3588 1.1 fvdl
3589 1.1 fvdl bge_stop(sc);
3590 1.1 fvdl bge_reset(sc);
3591 1.1 fvdl }
3592