Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.88
      1  1.88      yamt /*	$NetBSD: if_bge.c,v 1.88 2005/05/02 15:34:32 yamt Exp $	*/
      2   1.8   thorpej 
      3   1.1      fvdl /*
      4   1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5   1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6   1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7   1.1      fvdl  *
      8   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9   1.1      fvdl  * modification, are permitted provided that the following conditions
     10   1.1      fvdl  * are met:
     11   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17   1.1      fvdl  *    must display the following acknowledgement:
     18   1.1      fvdl  *	This product includes software developed by Bill Paul.
     19   1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20   1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21   1.1      fvdl  *    without specific prior written permission.
     22   1.1      fvdl  *
     23   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33   1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34   1.1      fvdl  *
     35   1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36   1.1      fvdl  */
     37   1.1      fvdl 
     38   1.1      fvdl /*
     39  1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40   1.1      fvdl  *
     41  1.12   thorpej  * NetBSD version by:
     42  1.12   thorpej  *
     43  1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  1.12   thorpej  *
     47  1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48   1.1      fvdl  * Senior Engineer, Wind River Systems
     49   1.1      fvdl  */
     50   1.1      fvdl 
     51   1.1      fvdl /*
     52   1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53   1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54   1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55   1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56   1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57   1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58   1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59   1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60   1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61   1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62   1.1      fvdl  * into the driver.
     63   1.1      fvdl  *
     64   1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66   1.1      fvdl  *
     67   1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69   1.1      fvdl  * does not support external SSRAM.
     70   1.1      fvdl  *
     71   1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72   1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73   1.1      fvdl  *
     74   1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75   1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76   1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77   1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78   1.1      fvdl  * ring.
     79   1.1      fvdl  */
     80  1.43     lukem 
     81  1.43     lukem #include <sys/cdefs.h>
     82  1.88      yamt __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.88 2005/05/02 15:34:32 yamt Exp $");
     83   1.1      fvdl 
     84   1.1      fvdl #include "bpfilter.h"
     85   1.1      fvdl #include "vlan.h"
     86   1.1      fvdl 
     87   1.1      fvdl #include <sys/param.h>
     88   1.1      fvdl #include <sys/systm.h>
     89   1.1      fvdl #include <sys/callout.h>
     90   1.1      fvdl #include <sys/sockio.h>
     91   1.1      fvdl #include <sys/mbuf.h>
     92   1.1      fvdl #include <sys/malloc.h>
     93   1.1      fvdl #include <sys/kernel.h>
     94   1.1      fvdl #include <sys/device.h>
     95   1.1      fvdl #include <sys/socket.h>
     96  1.64  jonathan #include <sys/sysctl.h>
     97   1.1      fvdl 
     98   1.1      fvdl #include <net/if.h>
     99   1.1      fvdl #include <net/if_dl.h>
    100   1.1      fvdl #include <net/if_media.h>
    101   1.1      fvdl #include <net/if_ether.h>
    102   1.1      fvdl 
    103   1.1      fvdl #ifdef INET
    104   1.1      fvdl #include <netinet/in.h>
    105   1.1      fvdl #include <netinet/in_systm.h>
    106   1.1      fvdl #include <netinet/in_var.h>
    107   1.1      fvdl #include <netinet/ip.h>
    108   1.1      fvdl #endif
    109   1.1      fvdl 
    110   1.1      fvdl #if NBPFILTER > 0
    111   1.1      fvdl #include <net/bpf.h>
    112   1.1      fvdl #endif
    113   1.1      fvdl 
    114   1.1      fvdl #include <dev/pci/pcireg.h>
    115   1.1      fvdl #include <dev/pci/pcivar.h>
    116   1.1      fvdl #include <dev/pci/pcidevs.h>
    117   1.1      fvdl 
    118   1.1      fvdl #include <dev/mii/mii.h>
    119   1.1      fvdl #include <dev/mii/miivar.h>
    120   1.1      fvdl #include <dev/mii/miidevs.h>
    121   1.1      fvdl #include <dev/mii/brgphyreg.h>
    122   1.1      fvdl 
    123   1.1      fvdl #include <dev/pci/if_bgereg.h>
    124   1.1      fvdl 
    125   1.1      fvdl #include <uvm/uvm_extern.h>
    126   1.1      fvdl 
    127  1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    128  1.46  jonathan 
    129  1.63  jonathan 
    130  1.63  jonathan /*
    131  1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    132  1.63  jonathan  */
    133  1.63  jonathan 
    134  1.63  jonathan /*
    135  1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    136  1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    137  1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    138  1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    139  1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    140  1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    141  1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    142  1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    143  1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    144  1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    145  1.87     perry  *
    146  1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    147  1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    148  1.63  jonathan  * family), the larger values may overflow internal chip limits,
    149  1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    150  1.63  jonathan  * rates.
    151  1.63  jonathan  *
    152  1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    153  1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    154  1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    155  1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    156  1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    157  1.63  jonathan  */
    158  1.63  jonathan struct bge_load_rx_thresh {
    159  1.63  jonathan 	int rx_ticks;
    160  1.63  jonathan 	int rx_max_bds; }
    161  1.63  jonathan bge_rx_threshes[] = {
    162  1.63  jonathan 	{ 32,   2 },
    163  1.63  jonathan 	{ 50,   4 },
    164  1.63  jonathan 	{ 100,  8 },
    165  1.63  jonathan 	{ 192, 16 },
    166  1.63  jonathan 	{ 416, 32 },
    167  1.63  jonathan 	{ 598, 46 }
    168  1.63  jonathan };
    169  1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    170  1.63  jonathan 
    171  1.63  jonathan /* XXX patchable; should be sysctl'able */
    172  1.64  jonathan static int	bge_auto_thresh = 1;
    173  1.64  jonathan static int	bge_rx_thresh_lvl;
    174  1.64  jonathan 
    175  1.64  jonathan #ifdef __NetBSD__
    176  1.64  jonathan static int bge_rxthresh_nodenum;
    177  1.64  jonathan #endif /* __NetBSD__ */
    178  1.63  jonathan 
    179   1.1      fvdl int bge_probe(struct device *, struct cfdata *, void *);
    180   1.1      fvdl void bge_attach(struct device *, struct device *, void *);
    181  1.82  jmcneill void bge_powerhook(int, void *);
    182   1.1      fvdl void bge_release_resources(struct bge_softc *);
    183   1.1      fvdl void bge_txeof(struct bge_softc *);
    184   1.1      fvdl void bge_rxeof(struct bge_softc *);
    185   1.1      fvdl 
    186   1.1      fvdl void bge_tick(void *);
    187   1.1      fvdl void bge_stats_update(struct bge_softc *);
    188   1.1      fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    189  1.46  jonathan static __inline int bge_cksum_pad(struct mbuf *pkt);
    190  1.45  jonathan static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    191   1.1      fvdl 
    192   1.1      fvdl int bge_intr(void *);
    193   1.1      fvdl void bge_start(struct ifnet *);
    194   1.1      fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
    195   1.1      fvdl int bge_init(struct ifnet *);
    196   1.1      fvdl void bge_stop(struct bge_softc *);
    197   1.1      fvdl void bge_watchdog(struct ifnet *);
    198   1.1      fvdl void bge_shutdown(void *);
    199   1.1      fvdl int bge_ifmedia_upd(struct ifnet *);
    200   1.1      fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    201   1.1      fvdl 
    202   1.1      fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    203   1.1      fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    204   1.1      fvdl 
    205   1.1      fvdl void bge_setmulti(struct bge_softc *);
    206   1.1      fvdl 
    207   1.1      fvdl void bge_handle_events(struct bge_softc *);
    208   1.1      fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
    209   1.1      fvdl void bge_free_jumbo_mem(struct bge_softc *);
    210   1.1      fvdl void *bge_jalloc(struct bge_softc *);
    211  1.31   thorpej void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    212   1.1      fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    213   1.1      fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    214   1.1      fvdl int bge_init_rx_ring_std(struct bge_softc *);
    215   1.1      fvdl void bge_free_rx_ring_std(struct bge_softc *);
    216   1.1      fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
    217   1.1      fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
    218   1.1      fvdl void bge_free_tx_ring(struct bge_softc *);
    219   1.1      fvdl int bge_init_tx_ring(struct bge_softc *);
    220   1.1      fvdl 
    221   1.1      fvdl int bge_chipinit(struct bge_softc *);
    222   1.1      fvdl int bge_blockinit(struct bge_softc *);
    223  1.25  jonathan int bge_setpowerstate(struct bge_softc *, int);
    224   1.1      fvdl 
    225   1.1      fvdl #ifdef notdef
    226   1.1      fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    227   1.1      fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    228   1.1      fvdl void bge_vpd_read(struct bge_softc *);
    229   1.1      fvdl #endif
    230   1.1      fvdl 
    231   1.1      fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
    232   1.1      fvdl void bge_writemem_ind(struct bge_softc *, int, int);
    233   1.1      fvdl #ifdef notdef
    234   1.1      fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
    235   1.1      fvdl #endif
    236   1.1      fvdl void bge_writereg_ind(struct bge_softc *, int, int);
    237   1.1      fvdl 
    238   1.1      fvdl int bge_miibus_readreg(struct device *, int, int);
    239   1.1      fvdl void bge_miibus_writereg(struct device *, int, int, int);
    240   1.1      fvdl void bge_miibus_statchg(struct device *);
    241   1.1      fvdl 
    242   1.1      fvdl void bge_reset(struct bge_softc *);
    243   1.1      fvdl 
    244  1.63  jonathan void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    245  1.63  jonathan void	bge_update_all_threshes(int /*lvl*/);
    246  1.63  jonathan 
    247   1.1      fvdl void bge_dump_status(struct bge_softc *);
    248   1.1      fvdl void bge_dump_rxbd(struct bge_rx_bd *);
    249   1.1      fvdl 
    250   1.1      fvdl #define BGE_DEBUG
    251   1.1      fvdl #ifdef BGE_DEBUG
    252   1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    253   1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    254   1.1      fvdl int	bgedebug = 0;
    255   1.1      fvdl #else
    256   1.1      fvdl #define DPRINTF(x)
    257   1.1      fvdl #define DPRINTFN(n,x)
    258   1.1      fvdl #endif
    259   1.1      fvdl 
    260  1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    261  1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    262  1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    263  1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    264  1.72   thorpej #else
    265  1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    266  1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    267  1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    268  1.72   thorpej #endif
    269  1.72   thorpej 
    270  1.17   thorpej /* Various chip quirks. */
    271  1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    272  1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    273  1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    274  1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    275  1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    276  1.36  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    277  1.37  jonathan #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    278  1.44   hannken #define	BGE_QUIRK_5705_CORE		0x00000080
    279  1.54      fvdl #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    280  1.25  jonathan 
    281  1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    282  1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    283  1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    284  1.17   thorpej 
    285  1.21   thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
    286  1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    287   1.1      fvdl 
    288   1.1      fvdl u_int32_t
    289   1.1      fvdl bge_readmem_ind(sc, off)
    290   1.1      fvdl 	struct bge_softc *sc;
    291   1.1      fvdl 	int off;
    292   1.1      fvdl {
    293   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    294   1.1      fvdl 	pcireg_t val;
    295   1.1      fvdl 
    296   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    297   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    298   1.1      fvdl 	return val;
    299   1.1      fvdl }
    300   1.1      fvdl 
    301   1.1      fvdl void
    302   1.1      fvdl bge_writemem_ind(sc, off, val)
    303   1.1      fvdl 	struct bge_softc *sc;
    304   1.1      fvdl 	int off, val;
    305   1.1      fvdl {
    306   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    307   1.1      fvdl 
    308   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    309   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    310   1.1      fvdl }
    311   1.1      fvdl 
    312   1.1      fvdl #ifdef notdef
    313   1.1      fvdl u_int32_t
    314   1.1      fvdl bge_readreg_ind(sc, off)
    315   1.1      fvdl 	struct bge_softc *sc;
    316   1.1      fvdl 	int off;
    317   1.1      fvdl {
    318   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    319   1.1      fvdl 
    320   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    321   1.1      fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    322   1.1      fvdl }
    323   1.1      fvdl #endif
    324   1.1      fvdl 
    325   1.1      fvdl void
    326   1.1      fvdl bge_writereg_ind(sc, off, val)
    327   1.1      fvdl 	struct bge_softc *sc;
    328   1.1      fvdl 	int off, val;
    329   1.1      fvdl {
    330   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    331   1.1      fvdl 
    332   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    333   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    334   1.1      fvdl }
    335   1.1      fvdl 
    336   1.1      fvdl #ifdef notdef
    337   1.1      fvdl u_int8_t
    338   1.1      fvdl bge_vpd_readbyte(sc, addr)
    339   1.1      fvdl 	struct bge_softc *sc;
    340   1.1      fvdl 	int addr;
    341   1.1      fvdl {
    342   1.1      fvdl 	int i;
    343   1.1      fvdl 	u_int32_t val;
    344   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    345   1.1      fvdl 
    346   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    347   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    348   1.1      fvdl 		DELAY(10);
    349   1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    350   1.1      fvdl 		    BGE_VPD_FLAG)
    351   1.1      fvdl 			break;
    352   1.1      fvdl 	}
    353   1.1      fvdl 
    354   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    355   1.1      fvdl 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    356   1.1      fvdl 		return(0);
    357   1.1      fvdl 	}
    358   1.1      fvdl 
    359   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    360   1.1      fvdl 
    361   1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    362   1.1      fvdl }
    363   1.1      fvdl 
    364   1.1      fvdl void
    365   1.1      fvdl bge_vpd_read_res(sc, res, addr)
    366   1.1      fvdl 	struct bge_softc *sc;
    367   1.1      fvdl 	struct vpd_res *res;
    368   1.1      fvdl 	int addr;
    369   1.1      fvdl {
    370   1.1      fvdl 	int i;
    371   1.1      fvdl 	u_int8_t *ptr;
    372   1.1      fvdl 
    373   1.1      fvdl 	ptr = (u_int8_t *)res;
    374   1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    375   1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    376   1.1      fvdl }
    377   1.1      fvdl 
    378   1.1      fvdl void
    379   1.1      fvdl bge_vpd_read(sc)
    380   1.1      fvdl 	struct bge_softc *sc;
    381   1.1      fvdl {
    382   1.1      fvdl 	int pos = 0, i;
    383   1.1      fvdl 	struct vpd_res res;
    384   1.1      fvdl 
    385   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    386   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    387   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    388   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    389   1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    390   1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    391   1.1      fvdl 
    392   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    393   1.1      fvdl 
    394   1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    395   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    396   1.1      fvdl 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    397   1.1      fvdl 		return;
    398   1.1      fvdl 	}
    399   1.1      fvdl 
    400   1.1      fvdl 	pos += sizeof(res);
    401   1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    402   1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    403   1.1      fvdl 		panic("bge_vpd_read");
    404   1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    405   1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    406   1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    407   1.1      fvdl 	pos += i;
    408   1.1      fvdl 
    409   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    410   1.1      fvdl 
    411   1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    412   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    413   1.1      fvdl 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    414   1.1      fvdl 		return;
    415   1.1      fvdl 	}
    416   1.1      fvdl 
    417   1.1      fvdl 	pos += sizeof(res);
    418   1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    419   1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    420   1.1      fvdl 		panic("bge_vpd_read");
    421   1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    422   1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    423   1.1      fvdl }
    424   1.1      fvdl #endif
    425   1.1      fvdl 
    426   1.1      fvdl /*
    427   1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    428   1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    429   1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    430   1.1      fvdl  * access method.
    431   1.1      fvdl  */
    432   1.1      fvdl u_int8_t
    433   1.1      fvdl bge_eeprom_getbyte(sc, addr, dest)
    434   1.1      fvdl 	struct bge_softc *sc;
    435   1.1      fvdl 	int addr;
    436   1.1      fvdl 	u_int8_t *dest;
    437   1.1      fvdl {
    438   1.1      fvdl 	int i;
    439   1.1      fvdl 	u_int32_t byte = 0;
    440   1.1      fvdl 
    441   1.1      fvdl 	/*
    442   1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    443   1.1      fvdl 	 * having to use the bitbang method.
    444   1.1      fvdl 	 */
    445   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    446   1.1      fvdl 
    447   1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    448   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    449   1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    450   1.1      fvdl 	DELAY(20);
    451   1.1      fvdl 
    452   1.1      fvdl 	/* Issue the read EEPROM command. */
    453   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    454   1.1      fvdl 
    455   1.1      fvdl 	/* Wait for completion */
    456   1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    457   1.1      fvdl 		DELAY(10);
    458   1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    459   1.1      fvdl 			break;
    460   1.1      fvdl 	}
    461   1.1      fvdl 
    462   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    463   1.1      fvdl 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    464   1.1      fvdl 		return(0);
    465   1.1      fvdl 	}
    466   1.1      fvdl 
    467   1.1      fvdl 	/* Get result. */
    468   1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    469   1.1      fvdl 
    470   1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    471   1.1      fvdl 
    472   1.1      fvdl 	return(0);
    473   1.1      fvdl }
    474   1.1      fvdl 
    475   1.1      fvdl /*
    476   1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    477   1.1      fvdl  */
    478   1.1      fvdl int
    479   1.1      fvdl bge_read_eeprom(sc, dest, off, cnt)
    480   1.1      fvdl 	struct bge_softc *sc;
    481   1.1      fvdl 	caddr_t dest;
    482   1.1      fvdl 	int off;
    483   1.1      fvdl 	int cnt;
    484   1.1      fvdl {
    485   1.1      fvdl 	int err = 0, i;
    486   1.1      fvdl 	u_int8_t byte = 0;
    487   1.1      fvdl 
    488   1.1      fvdl 	for (i = 0; i < cnt; i++) {
    489   1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    490   1.1      fvdl 		if (err)
    491   1.1      fvdl 			break;
    492   1.1      fvdl 		*(dest + i) = byte;
    493   1.1      fvdl 	}
    494   1.1      fvdl 
    495   1.1      fvdl 	return(err ? 1 : 0);
    496   1.1      fvdl }
    497   1.1      fvdl 
    498   1.1      fvdl int
    499   1.1      fvdl bge_miibus_readreg(dev, phy, reg)
    500   1.1      fvdl 	struct device *dev;
    501   1.1      fvdl 	int phy, reg;
    502   1.1      fvdl {
    503   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    504   1.1      fvdl 	u_int32_t val;
    505  1.25  jonathan 	u_int32_t saved_autopoll;
    506   1.1      fvdl 	int i;
    507   1.1      fvdl 
    508  1.25  jonathan 	/*
    509  1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    510  1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    511  1.25  jonathan 	 */
    512  1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    513   1.1      fvdl 		return(0);
    514   1.1      fvdl 
    515  1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    516  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    517  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    518  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    519  1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    520  1.25  jonathan 		DELAY(40);
    521  1.25  jonathan 	}
    522  1.25  jonathan 
    523   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    524   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    525   1.1      fvdl 
    526   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    527   1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    528   1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    529   1.1      fvdl 			break;
    530   1.9   thorpej 		delay(10);
    531   1.1      fvdl 	}
    532   1.1      fvdl 
    533   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    534   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    535  1.29    itojun 		val = 0;
    536  1.25  jonathan 		goto done;
    537   1.1      fvdl 	}
    538   1.1      fvdl 
    539   1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    540   1.1      fvdl 
    541  1.25  jonathan done:
    542  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    543  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    544  1.25  jonathan 		DELAY(40);
    545  1.25  jonathan 	}
    546  1.29    itojun 
    547   1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    548   1.1      fvdl 		return(0);
    549   1.1      fvdl 
    550   1.1      fvdl 	return(val & 0xFFFF);
    551   1.1      fvdl }
    552   1.1      fvdl 
    553   1.1      fvdl void
    554   1.1      fvdl bge_miibus_writereg(dev, phy, reg, val)
    555   1.1      fvdl 	struct device *dev;
    556   1.1      fvdl 	int phy, reg, val;
    557   1.1      fvdl {
    558   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    559  1.29    itojun 	u_int32_t saved_autopoll;
    560  1.29    itojun 	int i;
    561   1.1      fvdl 
    562  1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    563  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    564  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    565  1.25  jonathan 		delay(40);
    566  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    567  1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    568  1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    569  1.25  jonathan 	}
    570  1.29    itojun 
    571   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    572   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    573   1.1      fvdl 
    574   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    575   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    576   1.1      fvdl 			break;
    577   1.9   thorpej 		delay(10);
    578   1.1      fvdl 	}
    579   1.1      fvdl 
    580  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    581  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    582  1.25  jonathan 		delay(40);
    583  1.25  jonathan 	}
    584  1.29    itojun 
    585   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    586   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    587   1.1      fvdl 	}
    588   1.1      fvdl }
    589   1.1      fvdl 
    590   1.1      fvdl void
    591   1.1      fvdl bge_miibus_statchg(dev)
    592   1.1      fvdl 	struct device *dev;
    593   1.1      fvdl {
    594   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    595   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    596   1.1      fvdl 
    597  1.69   thorpej 	/*
    598  1.69   thorpej 	 * Get flow control negotiation result.
    599  1.69   thorpej 	 */
    600  1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    601  1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    602  1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    603  1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    604  1.69   thorpej 	}
    605  1.69   thorpej 
    606   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    607   1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    608   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    609   1.1      fvdl 	} else {
    610   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    611   1.1      fvdl 	}
    612   1.1      fvdl 
    613   1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    614   1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    615   1.1      fvdl 	} else {
    616   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    617   1.1      fvdl 	}
    618  1.69   thorpej 
    619  1.69   thorpej 	/*
    620  1.69   thorpej 	 * 802.3x flow control
    621  1.69   thorpej 	 */
    622  1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    623  1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    624  1.69   thorpej 	} else {
    625  1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    626  1.69   thorpej 	}
    627  1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    628  1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    629  1.69   thorpej 	} else {
    630  1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    631  1.69   thorpej 	}
    632   1.1      fvdl }
    633   1.1      fvdl 
    634   1.1      fvdl /*
    635  1.63  jonathan  * Update rx threshold levels to values in a particular slot
    636  1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    637  1.63  jonathan  */
    638  1.63  jonathan void
    639  1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    640  1.63  jonathan {
    641  1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    642  1.63  jonathan 	int s;
    643  1.63  jonathan 
    644  1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    645  1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    646  1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    647  1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    648  1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    649  1.63  jonathan 	 */
    650  1.63  jonathan 	s = splnet();
    651  1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    652  1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    653  1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    654  1.63  jonathan 	splx(s);
    655  1.63  jonathan 
    656  1.63  jonathan 	 return;
    657  1.63  jonathan }
    658  1.63  jonathan 
    659  1.63  jonathan 
    660  1.63  jonathan /*
    661  1.63  jonathan  * Update Rx thresholds of all bge devices
    662  1.63  jonathan  */
    663  1.63  jonathan void
    664  1.63  jonathan bge_update_all_threshes(int lvl)
    665  1.63  jonathan {
    666  1.63  jonathan 	struct ifnet *ifp;
    667  1.63  jonathan 	const char * const namebuf = "bge";
    668  1.63  jonathan 	int namelen;
    669  1.63  jonathan 
    670  1.63  jonathan 	if (lvl < 0)
    671  1.63  jonathan 		lvl = 0;
    672  1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    673  1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    674  1.87     perry 
    675  1.63  jonathan 	namelen = strlen(namebuf);
    676  1.63  jonathan 	/*
    677  1.63  jonathan 	 * Now search all the interfaces for this name/number
    678  1.63  jonathan 	 */
    679  1.81      matt 	IFNET_FOREACH(ifp) {
    680  1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    681  1.63  jonathan 		      continue;
    682  1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    683  1.63  jonathan 		if (bge_auto_thresh)
    684  1.67  jonathan 			bge_set_thresh(ifp, lvl);
    685  1.63  jonathan 	}
    686  1.63  jonathan }
    687  1.63  jonathan 
    688  1.63  jonathan /*
    689   1.1      fvdl  * Handle events that have triggered interrupts.
    690   1.1      fvdl  */
    691   1.1      fvdl void
    692   1.1      fvdl bge_handle_events(sc)
    693   1.1      fvdl 	struct bge_softc		*sc;
    694   1.1      fvdl {
    695   1.1      fvdl 
    696   1.1      fvdl 	return;
    697   1.1      fvdl }
    698   1.1      fvdl 
    699   1.1      fvdl /*
    700   1.1      fvdl  * Memory management for jumbo frames.
    701   1.1      fvdl  */
    702   1.1      fvdl 
    703   1.1      fvdl int
    704   1.1      fvdl bge_alloc_jumbo_mem(sc)
    705   1.1      fvdl 	struct bge_softc		*sc;
    706   1.1      fvdl {
    707   1.1      fvdl 	caddr_t			ptr, kva;
    708   1.1      fvdl 	bus_dma_segment_t	seg;
    709   1.1      fvdl 	int		i, rseg, state, error;
    710   1.1      fvdl 	struct bge_jpool_entry   *entry;
    711   1.1      fvdl 
    712   1.1      fvdl 	state = error = 0;
    713   1.1      fvdl 
    714   1.1      fvdl 	/* Grab a big chunk o' storage. */
    715   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    716   1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    717   1.1      fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    718   1.1      fvdl 		return ENOBUFS;
    719   1.1      fvdl 	}
    720   1.1      fvdl 
    721   1.1      fvdl 	state = 1;
    722   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    723   1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    724  1.39       wiz 		printf("%s: can't map DMA buffers (%d bytes)\n",
    725   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    726   1.1      fvdl 		error = ENOBUFS;
    727   1.1      fvdl 		goto out;
    728   1.1      fvdl 	}
    729   1.1      fvdl 
    730   1.1      fvdl 	state = 2;
    731   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    732   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    733  1.39       wiz 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    734   1.1      fvdl 		error = ENOBUFS;
    735   1.1      fvdl 		goto out;
    736   1.1      fvdl 	}
    737   1.1      fvdl 
    738   1.1      fvdl 	state = 3;
    739   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    740   1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    741  1.39       wiz 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    742   1.1      fvdl 		error = ENOBUFS;
    743   1.1      fvdl 		goto out;
    744   1.1      fvdl 	}
    745   1.1      fvdl 
    746   1.1      fvdl 	state = 4;
    747   1.1      fvdl 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    748   1.1      fvdl 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    749   1.1      fvdl 
    750   1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    751   1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    752   1.1      fvdl 
    753   1.1      fvdl 	/*
    754   1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    755   1.1      fvdl 	 * in an array.
    756   1.1      fvdl 	 */
    757   1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    758   1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    759   1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    760   1.1      fvdl 		ptr += BGE_JLEN;
    761   1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    762   1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    763   1.1      fvdl 		if (entry == NULL) {
    764   1.1      fvdl 			printf("%s: no memory for jumbo buffer queue!\n",
    765   1.1      fvdl 			    sc->bge_dev.dv_xname);
    766   1.1      fvdl 			error = ENOBUFS;
    767   1.1      fvdl 			goto out;
    768   1.1      fvdl 		}
    769   1.1      fvdl 		entry->slot = i;
    770   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    771   1.1      fvdl 				 entry, jpool_entries);
    772   1.1      fvdl 	}
    773   1.1      fvdl out:
    774   1.1      fvdl 	if (error != 0) {
    775   1.1      fvdl 		switch (state) {
    776   1.1      fvdl 		case 4:
    777   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    778   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    779   1.1      fvdl 		case 3:
    780   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    781   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    782   1.1      fvdl 		case 2:
    783   1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    784   1.1      fvdl 		case 1:
    785   1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    786   1.1      fvdl 			break;
    787   1.1      fvdl 		default:
    788   1.1      fvdl 			break;
    789   1.1      fvdl 		}
    790   1.1      fvdl 	}
    791   1.1      fvdl 
    792   1.1      fvdl 	return error;
    793   1.1      fvdl }
    794   1.1      fvdl 
    795   1.1      fvdl /*
    796   1.1      fvdl  * Allocate a jumbo buffer.
    797   1.1      fvdl  */
    798   1.1      fvdl void *
    799   1.1      fvdl bge_jalloc(sc)
    800   1.1      fvdl 	struct bge_softc		*sc;
    801   1.1      fvdl {
    802   1.1      fvdl 	struct bge_jpool_entry   *entry;
    803   1.1      fvdl 
    804   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    805   1.1      fvdl 
    806   1.1      fvdl 	if (entry == NULL) {
    807   1.1      fvdl 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    808   1.1      fvdl 		return(NULL);
    809   1.1      fvdl 	}
    810   1.1      fvdl 
    811   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    812   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    813   1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    814   1.1      fvdl }
    815   1.1      fvdl 
    816   1.1      fvdl /*
    817   1.1      fvdl  * Release a jumbo buffer.
    818   1.1      fvdl  */
    819   1.1      fvdl void
    820   1.1      fvdl bge_jfree(m, buf, size, arg)
    821   1.1      fvdl 	struct mbuf	*m;
    822   1.1      fvdl 	caddr_t		buf;
    823  1.31   thorpej 	size_t		size;
    824   1.1      fvdl 	void		*arg;
    825   1.1      fvdl {
    826   1.1      fvdl 	struct bge_jpool_entry *entry;
    827   1.1      fvdl 	struct bge_softc *sc;
    828   1.1      fvdl 	int i, s;
    829   1.1      fvdl 
    830   1.1      fvdl 	/* Extract the softc struct pointer. */
    831   1.1      fvdl 	sc = (struct bge_softc *)arg;
    832   1.1      fvdl 
    833   1.1      fvdl 	if (sc == NULL)
    834   1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    835   1.1      fvdl 
    836   1.1      fvdl 	/* calculate the slot this buffer belongs to */
    837   1.1      fvdl 
    838   1.1      fvdl 	i = ((caddr_t)buf
    839   1.1      fvdl 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    840   1.1      fvdl 
    841   1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    842   1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    843   1.1      fvdl 
    844   1.1      fvdl 	s = splvm();
    845   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    846   1.1      fvdl 	if (entry == NULL)
    847   1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    848   1.1      fvdl 	entry->slot = i;
    849   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    850   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    851   1.1      fvdl 
    852   1.1      fvdl 	if (__predict_true(m != NULL))
    853   1.1      fvdl   		pool_cache_put(&mbpool_cache, m);
    854   1.1      fvdl 	splx(s);
    855   1.1      fvdl }
    856   1.1      fvdl 
    857   1.1      fvdl 
    858   1.1      fvdl /*
    859   1.1      fvdl  * Intialize a standard receive ring descriptor.
    860   1.1      fvdl  */
    861   1.1      fvdl int
    862   1.1      fvdl bge_newbuf_std(sc, i, m, dmamap)
    863   1.1      fvdl 	struct bge_softc	*sc;
    864   1.1      fvdl 	int			i;
    865   1.1      fvdl 	struct mbuf		*m;
    866   1.1      fvdl 	bus_dmamap_t dmamap;
    867   1.1      fvdl {
    868   1.1      fvdl 	struct mbuf		*m_new = NULL;
    869   1.1      fvdl 	struct bge_rx_bd	*r;
    870   1.1      fvdl 	int			error;
    871   1.1      fvdl 
    872   1.1      fvdl 	if (dmamap == NULL) {
    873   1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    874   1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    875   1.1      fvdl 		if (error != 0)
    876   1.1      fvdl 			return error;
    877   1.1      fvdl 	}
    878   1.1      fvdl 
    879   1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    880   1.1      fvdl 
    881   1.1      fvdl 	if (m == NULL) {
    882   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    883   1.1      fvdl 		if (m_new == NULL) {
    884   1.1      fvdl 			return(ENOBUFS);
    885   1.1      fvdl 		}
    886   1.1      fvdl 
    887   1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    888   1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    889   1.1      fvdl 			m_freem(m_new);
    890   1.1      fvdl 			return(ENOBUFS);
    891   1.1      fvdl 		}
    892   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    893  1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    894  1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    895   1.1      fvdl 
    896   1.1      fvdl 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    897   1.1      fvdl 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    898   1.1      fvdl 			return(ENOBUFS);
    899   1.1      fvdl 	} else {
    900   1.1      fvdl 		m_new = m;
    901   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    902   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    903  1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    904  1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    905   1.1      fvdl 	}
    906   1.1      fvdl 
    907   1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    908   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    909   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    910  1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    911   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    912   1.1      fvdl 	r->bge_len = m_new->m_len;
    913   1.1      fvdl 	r->bge_idx = i;
    914   1.1      fvdl 
    915   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    916   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    917   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    918   1.1      fvdl 	    sizeof (struct bge_rx_bd),
    919   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    920   1.1      fvdl 
    921   1.1      fvdl 	return(0);
    922   1.1      fvdl }
    923   1.1      fvdl 
    924   1.1      fvdl /*
    925   1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    926   1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
    927   1.1      fvdl  */
    928   1.1      fvdl int
    929   1.1      fvdl bge_newbuf_jumbo(sc, i, m)
    930   1.1      fvdl 	struct bge_softc *sc;
    931   1.1      fvdl 	int i;
    932   1.1      fvdl 	struct mbuf *m;
    933   1.1      fvdl {
    934   1.1      fvdl 	struct mbuf *m_new = NULL;
    935   1.1      fvdl 	struct bge_rx_bd *r;
    936   1.1      fvdl 
    937   1.1      fvdl 	if (m == NULL) {
    938  1.75      yamt 		caddr_t			buf = NULL;
    939   1.1      fvdl 
    940   1.1      fvdl 		/* Allocate the mbuf. */
    941   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    942   1.1      fvdl 		if (m_new == NULL) {
    943   1.1      fvdl 			return(ENOBUFS);
    944   1.1      fvdl 		}
    945   1.1      fvdl 
    946   1.1      fvdl 		/* Allocate the jumbo buffer */
    947   1.1      fvdl 		buf = bge_jalloc(sc);
    948   1.1      fvdl 		if (buf == NULL) {
    949   1.1      fvdl 			m_freem(m_new);
    950   1.1      fvdl 			printf("%s: jumbo allocation failed "
    951   1.1      fvdl 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    952   1.1      fvdl 			return(ENOBUFS);
    953   1.1      fvdl 		}
    954   1.1      fvdl 
    955   1.1      fvdl 		/* Attach the buffer to the mbuf. */
    956   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    957   1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    958   1.1      fvdl 		    bge_jfree, sc);
    959  1.74      yamt 		m_new->m_flags |= M_EXT_RW;
    960   1.1      fvdl 	} else {
    961   1.1      fvdl 		m_new = m;
    962   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    963   1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    964   1.1      fvdl 	}
    965   1.1      fvdl 
    966  1.37  jonathan 	if (!sc->bge_rx_alignment_bug)
    967  1.37  jonathan 	    m_adj(m_new, ETHER_ALIGN);
    968   1.1      fvdl 	/* Set up the descriptor. */
    969   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    970   1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    971   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    972   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    973   1.1      fvdl 	r->bge_len = m_new->m_len;
    974   1.1      fvdl 	r->bge_idx = i;
    975   1.1      fvdl 
    976   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    977   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    978   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    979   1.1      fvdl 	    sizeof (struct bge_rx_bd),
    980   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    981   1.1      fvdl 
    982   1.1      fvdl 	return(0);
    983   1.1      fvdl }
    984   1.1      fvdl 
    985   1.1      fvdl /*
    986   1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    987   1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
    988   1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
    989   1.1      fvdl  * the NIC.
    990   1.1      fvdl  */
    991   1.1      fvdl int
    992   1.1      fvdl bge_init_rx_ring_std(sc)
    993   1.1      fvdl 	struct bge_softc *sc;
    994   1.1      fvdl {
    995   1.1      fvdl 	int i;
    996   1.1      fvdl 
    997   1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
    998   1.1      fvdl 		return 0;
    999   1.1      fvdl 
   1000   1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
   1001   1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1002   1.1      fvdl 			return(ENOBUFS);
   1003   1.1      fvdl 	}
   1004   1.1      fvdl 
   1005   1.1      fvdl 	sc->bge_std = i - 1;
   1006   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1007   1.1      fvdl 
   1008   1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
   1009   1.1      fvdl 
   1010   1.1      fvdl 	return(0);
   1011   1.1      fvdl }
   1012   1.1      fvdl 
   1013   1.1      fvdl void
   1014   1.1      fvdl bge_free_rx_ring_std(sc)
   1015   1.1      fvdl 	struct bge_softc *sc;
   1016   1.1      fvdl {
   1017   1.1      fvdl 	int i;
   1018   1.1      fvdl 
   1019   1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1020   1.1      fvdl 		return;
   1021   1.1      fvdl 
   1022   1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1023   1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1024   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1025   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1026  1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
   1027   1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
   1028   1.1      fvdl 		}
   1029   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1030   1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1031   1.1      fvdl 	}
   1032   1.1      fvdl 
   1033   1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1034   1.1      fvdl }
   1035   1.1      fvdl 
   1036   1.1      fvdl int
   1037   1.1      fvdl bge_init_rx_ring_jumbo(sc)
   1038   1.1      fvdl 	struct bge_softc *sc;
   1039   1.1      fvdl {
   1040   1.1      fvdl 	int i;
   1041  1.34  jonathan 	volatile struct bge_rcb *rcb;
   1042   1.1      fvdl 
   1043  1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1044  1.59    martin 		return 0;
   1045  1.59    martin 
   1046   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1047   1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1048   1.1      fvdl 			return(ENOBUFS);
   1049   1.1      fvdl 	};
   1050   1.1      fvdl 
   1051   1.1      fvdl 	sc->bge_jumbo = i - 1;
   1052  1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1053   1.1      fvdl 
   1054   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1055  1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1056  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1057   1.1      fvdl 
   1058   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1059   1.1      fvdl 
   1060   1.1      fvdl 	return(0);
   1061   1.1      fvdl }
   1062   1.1      fvdl 
   1063   1.1      fvdl void
   1064   1.1      fvdl bge_free_rx_ring_jumbo(sc)
   1065   1.1      fvdl 	struct bge_softc *sc;
   1066   1.1      fvdl {
   1067   1.1      fvdl 	int i;
   1068   1.1      fvdl 
   1069   1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1070   1.1      fvdl 		return;
   1071   1.1      fvdl 
   1072   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1073   1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1074   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1075   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1076   1.1      fvdl 		}
   1077   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1078   1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1079   1.1      fvdl 	}
   1080   1.1      fvdl 
   1081   1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1082   1.1      fvdl }
   1083   1.1      fvdl 
   1084   1.1      fvdl void
   1085   1.1      fvdl bge_free_tx_ring(sc)
   1086   1.1      fvdl 	struct bge_softc *sc;
   1087   1.1      fvdl {
   1088   1.1      fvdl 	int i, freed;
   1089   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1090   1.1      fvdl 
   1091   1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1092   1.1      fvdl 		return;
   1093   1.1      fvdl 
   1094   1.1      fvdl 	freed = 0;
   1095   1.1      fvdl 
   1096   1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1097   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1098   1.1      fvdl 			freed++;
   1099   1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1100   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1101   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1102   1.1      fvdl 					    link);
   1103   1.1      fvdl 			sc->txdma[i] = 0;
   1104   1.1      fvdl 		}
   1105   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1106   1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1107   1.1      fvdl 	}
   1108   1.1      fvdl 
   1109   1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1110   1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1111   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1112   1.1      fvdl 		free(dma, M_DEVBUF);
   1113   1.1      fvdl 	}
   1114   1.1      fvdl 
   1115   1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1116   1.1      fvdl }
   1117   1.1      fvdl 
   1118   1.1      fvdl int
   1119   1.1      fvdl bge_init_tx_ring(sc)
   1120   1.1      fvdl 	struct bge_softc *sc;
   1121   1.1      fvdl {
   1122   1.1      fvdl 	int i;
   1123   1.1      fvdl 	bus_dmamap_t dmamap;
   1124   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1125   1.1      fvdl 
   1126   1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1127   1.1      fvdl 		return 0;
   1128   1.1      fvdl 
   1129   1.1      fvdl 	sc->bge_txcnt = 0;
   1130   1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1131   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1132  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1133  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1134  1.25  jonathan 
   1135   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1136  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1137  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1138   1.1      fvdl 
   1139   1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1140   1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1141   1.1      fvdl 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
   1142   1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1143   1.1      fvdl 		    &dmamap))
   1144   1.1      fvdl 			return(ENOBUFS);
   1145   1.1      fvdl 		if (dmamap == NULL)
   1146   1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1147   1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1148   1.1      fvdl 		if (dma == NULL) {
   1149   1.1      fvdl 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1150   1.1      fvdl 			    sc->bge_dev.dv_xname);
   1151   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1152   1.1      fvdl 			return (ENOMEM);
   1153   1.1      fvdl 		}
   1154   1.1      fvdl 		dma->dmamap = dmamap;
   1155   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1156   1.1      fvdl 	}
   1157   1.1      fvdl 
   1158   1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1159   1.1      fvdl 
   1160   1.1      fvdl 	return(0);
   1161   1.1      fvdl }
   1162   1.1      fvdl 
   1163   1.1      fvdl void
   1164   1.1      fvdl bge_setmulti(sc)
   1165   1.1      fvdl 	struct bge_softc *sc;
   1166   1.1      fvdl {
   1167   1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1168   1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1169   1.1      fvdl 	struct ether_multi	*enm;
   1170   1.1      fvdl 	struct ether_multistep  step;
   1171   1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1172   1.1      fvdl 	u_int32_t		h;
   1173   1.1      fvdl 	int			i;
   1174   1.1      fvdl 
   1175  1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1176  1.13   thorpej 		goto allmulti;
   1177   1.1      fvdl 
   1178   1.1      fvdl 	/* Now program new ones. */
   1179   1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1180   1.1      fvdl 	while (enm != NULL) {
   1181  1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1182  1.13   thorpej 			/*
   1183  1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1184  1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1185  1.13   thorpej 			 * trying to set only those filter bits needed to match
   1186  1.13   thorpej 			 * the range.  (At this time, the only use of address
   1187  1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1188  1.13   thorpej 			 * range is big enough to require all bits set.)
   1189  1.13   thorpej 			 */
   1190  1.13   thorpej 			goto allmulti;
   1191  1.13   thorpej 		}
   1192  1.13   thorpej 
   1193  1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1194  1.13   thorpej 
   1195  1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1196  1.13   thorpej 		h &= 0x7f;
   1197  1.13   thorpej 
   1198   1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1199   1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1200   1.1      fvdl 	}
   1201   1.1      fvdl 
   1202  1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1203  1.13   thorpej 	goto setit;
   1204  1.13   thorpej 
   1205  1.13   thorpej  allmulti:
   1206  1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1207  1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1208  1.13   thorpej 
   1209  1.13   thorpej  setit:
   1210   1.1      fvdl 	for (i = 0; i < 4; i++)
   1211   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1212   1.1      fvdl }
   1213   1.1      fvdl 
   1214  1.24      matt const int bge_swapbits[] = {
   1215   1.1      fvdl 	0,
   1216   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1217   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1218   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1219   1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1220   1.1      fvdl 
   1221   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1222   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1223   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1224   1.1      fvdl 
   1225   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1226   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1227   1.1      fvdl 
   1228   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1229   1.1      fvdl 
   1230   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1231   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1232   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1233   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1234   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1235   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1236   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1237   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1238   1.1      fvdl 
   1239   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1240   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1241   1.1      fvdl };
   1242   1.1      fvdl 
   1243   1.1      fvdl int bge_swapindex = 0;
   1244   1.1      fvdl 
   1245   1.1      fvdl /*
   1246   1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1247   1.1      fvdl  * self-test results.
   1248   1.1      fvdl  */
   1249   1.1      fvdl int
   1250   1.1      fvdl bge_chipinit(sc)
   1251   1.1      fvdl 	struct bge_softc *sc;
   1252   1.1      fvdl {
   1253   1.1      fvdl 	u_int32_t		cachesize;
   1254   1.1      fvdl 	int			i;
   1255  1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1256   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1257   1.1      fvdl 
   1258   1.1      fvdl 
   1259   1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1260   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1261   1.1      fvdl 	    BGE_INIT);
   1262   1.1      fvdl 
   1263  1.25  jonathan 	/* Set power state to D0. */
   1264  1.25  jonathan 	bge_setpowerstate(sc, 0);
   1265  1.87     perry 
   1266   1.1      fvdl 	/*
   1267   1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1268   1.1      fvdl 	 * self-tests passed.
   1269   1.1      fvdl 	 */
   1270   1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1271   1.1      fvdl 		printf("%s: RX CPU self-diagnostics failed!\n",
   1272   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1273   1.1      fvdl 		return(ENODEV);
   1274   1.1      fvdl 	}
   1275   1.1      fvdl 
   1276   1.1      fvdl 	/* Clear the MAC control register */
   1277   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1278   1.1      fvdl 
   1279   1.1      fvdl 	/*
   1280   1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1281   1.1      fvdl 	 * internal memory.
   1282   1.1      fvdl 	 */
   1283   1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1284   1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1285   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1286   1.1      fvdl 
   1287   1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1288   1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1289   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1290   1.1      fvdl 
   1291   1.1      fvdl 	/* Set up the PCI DMA control register. */
   1292  1.76      cube 	if (sc->bge_pcie) {
   1293  1.76      cube 		/* From FreeBSD */
   1294  1.76      cube 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1295  1.76      cube 		    sc->bge_dev.dv_xname));
   1296  1.76      cube 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1297  1.76      cube 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1298  1.76      cube 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1299  1.76      cube 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1300  1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1301  1.25  jonathan 		/* Conventional PCI bus */
   1302  1.39       wiz 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1303  1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1304  1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1305  1.44   hannken 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1306  1.44   hannken 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1307  1.44   hannken 			dma_rw_ctl |= 0x0F;
   1308  1.44   hannken 		}
   1309  1.25  jonathan 	} else {
   1310  1.39       wiz 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1311  1.25  jonathan 		/* PCI-X bus */
   1312  1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1313  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1314  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1315  1.25  jonathan 		    (0x0F);
   1316  1.25  jonathan 		/*
   1317  1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1318  1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1319  1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1320  1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1321  1.25  jonathan 		 */
   1322  1.57  jonathan 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1323  1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1324  1.25  jonathan 			  /* should be 0x1f0000 */
   1325  1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1326  1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1327  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1328  1.25  jonathan 		}
   1329  1.57  jonathan 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1330  1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1331  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1332  1.25  jonathan 		}
   1333  1.25  jonathan 	}
   1334  1.25  jonathan 
   1335  1.25  jonathan 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1336   1.1      fvdl 
   1337   1.1      fvdl 	/*
   1338   1.1      fvdl 	 * Set up general mode register.
   1339   1.1      fvdl 	 */
   1340   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1341   1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1342  1.54      fvdl 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1343   1.1      fvdl 
   1344   1.1      fvdl 	/* Get cache line size. */
   1345   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1346   1.1      fvdl 
   1347   1.1      fvdl 	/*
   1348   1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1349   1.1      fvdl 	 */
   1350   1.1      fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1351   1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1352   1.1      fvdl 		switch(cachesize) {
   1353   1.1      fvdl 		case 1:
   1354   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1355   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1356   1.1      fvdl 			break;
   1357   1.1      fvdl 		case 2:
   1358   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1359   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1360   1.1      fvdl 			break;
   1361   1.1      fvdl 		case 4:
   1362   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1363   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1364   1.1      fvdl 			break;
   1365   1.1      fvdl 		case 8:
   1366   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1367   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1368   1.1      fvdl 			break;
   1369   1.1      fvdl 		case 16:
   1370   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1371   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1372   1.1      fvdl 			break;
   1373   1.1      fvdl 		case 32:
   1374   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1375   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1376   1.1      fvdl 			break;
   1377   1.1      fvdl 		case 64:
   1378   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1379   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1380   1.1      fvdl 			break;
   1381   1.1      fvdl 		default:
   1382   1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1383   1.1      fvdl #if 0
   1384   1.1      fvdl 			if (bootverbose)
   1385   1.1      fvdl 				printf("%s: cache line size %d not "
   1386   1.1      fvdl 				    "supported; disabling PCI MWI\n",
   1387   1.1      fvdl 				    sc->bge_dev.dv_xname, cachesize);
   1388   1.1      fvdl #endif
   1389   1.1      fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1390   1.1      fvdl 			    PCIM_CMD_MWIEN);
   1391   1.1      fvdl 			break;
   1392   1.1      fvdl 		}
   1393   1.1      fvdl 	}
   1394   1.1      fvdl 
   1395  1.25  jonathan 	/*
   1396  1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1397  1.25  jonathan 	 * properly by these devices.
   1398  1.25  jonathan 	 */
   1399  1.25  jonathan 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1400  1.25  jonathan 
   1401  1.25  jonathan 
   1402   1.1      fvdl #ifdef __brokenalpha__
   1403   1.1      fvdl 	/*
   1404   1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1405   1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1406   1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1407   1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1408   1.1      fvdl 	 */
   1409   1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1410   1.1      fvdl #endif
   1411   1.1      fvdl 
   1412  1.33   tsutsui 	/* Set the timer prescaler (always 66MHz) */
   1413   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1414   1.1      fvdl 
   1415   1.1      fvdl 	return(0);
   1416   1.1      fvdl }
   1417   1.1      fvdl 
   1418   1.1      fvdl int
   1419   1.1      fvdl bge_blockinit(sc)
   1420   1.1      fvdl 	struct bge_softc *sc;
   1421   1.1      fvdl {
   1422  1.34  jonathan 	volatile struct bge_rcb		*rcb;
   1423   1.1      fvdl 	bus_size_t		rcb_addr;
   1424   1.1      fvdl 	int			i;
   1425   1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1426   1.1      fvdl 	bge_hostaddr		taddr;
   1427   1.1      fvdl 
   1428   1.1      fvdl 	/*
   1429   1.1      fvdl 	 * Initialize the memory window pointer register so that
   1430   1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1431   1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1432   1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1433   1.1      fvdl 	 */
   1434   1.1      fvdl 
   1435   1.1      fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1436   1.1      fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1437   1.1      fvdl 
   1438   1.1      fvdl 	/* Configure mbuf memory pool */
   1439  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1440  1.44   hannken 		if (sc->bge_extram) {
   1441  1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1442  1.44   hannken 			    BGE_EXT_SSRAM);
   1443  1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1444  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1445  1.54      fvdl 			else
   1446  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1447  1.44   hannken 		} else {
   1448  1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1449  1.44   hannken 			    BGE_BUFFPOOL_1);
   1450  1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1451  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1452  1.54      fvdl 			else
   1453  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1454  1.44   hannken 		}
   1455  1.44   hannken 
   1456  1.44   hannken 		/* Configure DMA resource pool */
   1457  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1458  1.44   hannken 		    BGE_DMA_DESCRIPTORS);
   1459  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1460   1.1      fvdl 	}
   1461   1.1      fvdl 
   1462   1.1      fvdl 	/* Configure mbuf pool watermarks */
   1463  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1464   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1465   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1466   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1467  1.25  jonathan #else
   1468  1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1469  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1470  1.71   thorpej 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1471  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1472  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1473  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1474  1.71   thorpej 		} else {
   1475  1.71   thorpej 			/* Values from Linux driver... */
   1476  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1477  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1478  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1479  1.71   thorpej 		}
   1480  1.44   hannken 	} else {
   1481  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1482  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1483  1.71   thorpej 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1484  1.44   hannken 	}
   1485  1.25  jonathan #endif
   1486   1.1      fvdl 
   1487   1.1      fvdl 	/* Configure DMA resource watermarks */
   1488   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1489   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1490   1.1      fvdl 
   1491   1.1      fvdl 	/* Enable buffer manager */
   1492  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1493  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1494  1.44   hannken 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1495  1.44   hannken 
   1496  1.44   hannken 		/* Poll for buffer manager start indication */
   1497  1.44   hannken 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1498  1.44   hannken 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1499  1.44   hannken 				break;
   1500  1.44   hannken 			DELAY(10);
   1501  1.44   hannken 		}
   1502   1.1      fvdl 
   1503  1.44   hannken 		if (i == BGE_TIMEOUT) {
   1504  1.44   hannken 			printf("%s: buffer manager failed to start\n",
   1505  1.44   hannken 			    sc->bge_dev.dv_xname);
   1506  1.44   hannken 			return(ENXIO);
   1507  1.44   hannken 		}
   1508   1.1      fvdl 	}
   1509   1.1      fvdl 
   1510   1.1      fvdl 	/* Enable flow-through queues */
   1511   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1512   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1513   1.1      fvdl 
   1514   1.1      fvdl 	/* Wait until queue initialization is complete */
   1515   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1516   1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1517   1.1      fvdl 			break;
   1518   1.1      fvdl 		DELAY(10);
   1519   1.1      fvdl 	}
   1520   1.1      fvdl 
   1521   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1522   1.1      fvdl 		printf("%s: flow-through queue init failed\n",
   1523   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1524   1.1      fvdl 		return(ENXIO);
   1525   1.1      fvdl 	}
   1526   1.1      fvdl 
   1527   1.1      fvdl 	/* Initialize the standard RX ring control block */
   1528   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1529   1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1530   1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1531  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1532  1.44   hannken 		rcb->bge_maxlen_flags =
   1533  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1534  1.44   hannken 	} else {
   1535  1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1536  1.44   hannken 	}
   1537   1.1      fvdl 	if (sc->bge_extram)
   1538   1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1539   1.1      fvdl 	else
   1540   1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1541  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1542  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1543  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1544  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1545   1.1      fvdl 
   1546  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1547  1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1548  1.44   hannken 	} else {
   1549  1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1550  1.44   hannken 	}
   1551  1.44   hannken 
   1552   1.1      fvdl 	/*
   1553   1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1554   1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1555   1.1      fvdl 	 * field until we're actually ready to start
   1556   1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1557   1.1      fvdl 	 * high enough to require it).
   1558   1.1      fvdl 	 */
   1559  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1560  1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1561  1.44   hannken 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1562  1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1563  1.87     perry 		rcb->bge_maxlen_flags =
   1564  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1565  1.44   hannken 			BGE_RCB_FLAG_RING_DISABLED);
   1566  1.44   hannken 		if (sc->bge_extram)
   1567  1.44   hannken 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1568  1.44   hannken 		else
   1569  1.44   hannken 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1570  1.87     perry 
   1571  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1572  1.44   hannken 		    rcb->bge_hostaddr.bge_addr_hi);
   1573  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1574  1.44   hannken 		    rcb->bge_hostaddr.bge_addr_lo);
   1575  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1576  1.44   hannken 		    rcb->bge_maxlen_flags);
   1577  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1578  1.44   hannken 
   1579  1.44   hannken 		/* Set up dummy disabled mini ring RCB */
   1580  1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1581  1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1582  1.44   hannken 		    BGE_RCB_FLAG_RING_DISABLED);
   1583  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1584  1.44   hannken 		    rcb->bge_maxlen_flags);
   1585   1.1      fvdl 
   1586  1.44   hannken 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1587  1.44   hannken 		    offsetof(struct bge_ring_data, bge_info),
   1588  1.44   hannken 		    sizeof (struct bge_gib),
   1589  1.44   hannken 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1590  1.44   hannken 	}
   1591   1.1      fvdl 
   1592   1.1      fvdl 	/*
   1593   1.1      fvdl 	 * Set the BD ring replentish thresholds. The recommended
   1594   1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1595   1.1      fvdl 	 * each ring.
   1596   1.1      fvdl 	 */
   1597   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1598   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1599   1.1      fvdl 
   1600   1.1      fvdl 	/*
   1601   1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1602   1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1603   1.1      fvdl 	 * These are located in NIC memory.
   1604   1.1      fvdl 	 */
   1605   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1606   1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1607  1.34  jonathan 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1608  1.34  jonathan 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1609   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1610   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1611   1.1      fvdl 	}
   1612   1.1      fvdl 
   1613   1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1614   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1615   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1616   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1617   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1618   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1619   1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1620  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1621  1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1622  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1623  1.44   hannken 	}
   1624   1.1      fvdl 
   1625   1.1      fvdl 	/* Disable all unused RX return rings */
   1626   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1627   1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1628   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1629   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1630  1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1631  1.44   hannken 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1632  1.34  jonathan                                      BGE_RCB_FLAG_RING_DISABLED));
   1633   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1634   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1635   1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1636   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1637   1.1      fvdl 	}
   1638   1.1      fvdl 
   1639   1.1      fvdl 	/* Initialize RX ring indexes */
   1640   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1641   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1642   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1643   1.1      fvdl 
   1644   1.1      fvdl 	/*
   1645   1.1      fvdl 	 * Set up RX return ring 0
   1646   1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1647   1.1      fvdl 	 * The return rings live entirely within the host, so the
   1648   1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1649   1.1      fvdl 	 */
   1650   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1651   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1652   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1653   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1654   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1655  1.34  jonathan 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1656  1.44   hannken 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1657   1.1      fvdl 
   1658   1.1      fvdl 	/* Set random backoff seed for TX */
   1659   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1660   1.1      fvdl 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1661   1.1      fvdl 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1662   1.1      fvdl 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1663   1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1664   1.1      fvdl 
   1665   1.1      fvdl 	/* Set inter-packet gap */
   1666   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1667   1.1      fvdl 
   1668   1.1      fvdl 	/*
   1669   1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1670   1.1      fvdl 	 * any RX rules.
   1671   1.1      fvdl 	 */
   1672   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1673   1.1      fvdl 
   1674   1.1      fvdl 	/*
   1675   1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1676   1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1677   1.1      fvdl 	 */
   1678   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1679   1.1      fvdl 
   1680   1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1681   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1682   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1683   1.1      fvdl 
   1684   1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1685   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1686   1.1      fvdl 
   1687   1.1      fvdl 	/* Poll to make sure it's shut down. */
   1688   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1689   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1690   1.1      fvdl 			break;
   1691   1.1      fvdl 		DELAY(10);
   1692   1.1      fvdl 	}
   1693   1.1      fvdl 
   1694   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1695   1.1      fvdl 		printf("%s: host coalescing engine failed to idle\n",
   1696   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1697   1.1      fvdl 		return(ENXIO);
   1698   1.1      fvdl 	}
   1699   1.1      fvdl 
   1700   1.1      fvdl 	/* Set up host coalescing defaults */
   1701   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1702   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1703   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1704   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1705  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1706  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1707  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1708  1.44   hannken 	}
   1709   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1710   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1711   1.1      fvdl 
   1712   1.1      fvdl 	/* Set up address of statistics block */
   1713  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1714  1.44   hannken 		bge_set_hostaddr(&taddr,
   1715  1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1716  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1717  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1718  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1719  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1720  1.44   hannken 	}
   1721   1.1      fvdl 
   1722   1.1      fvdl 	/* Set up address of status block */
   1723   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1724   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1725   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1726   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1727   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1728   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1729   1.1      fvdl 
   1730   1.1      fvdl 	/* Turn on host coalescing state machine */
   1731   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1732   1.1      fvdl 
   1733   1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1734   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1735   1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1736   1.1      fvdl 
   1737   1.1      fvdl 	/* Turn on RX list placement state machine */
   1738   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1739   1.1      fvdl 
   1740   1.1      fvdl 	/* Turn on RX list selector state machine. */
   1741  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1742  1.44   hannken 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1743  1.44   hannken 	}
   1744   1.1      fvdl 
   1745   1.1      fvdl 	/* Turn on DMA, clear stats */
   1746   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1747   1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1748   1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1749   1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1750   1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1751   1.1      fvdl 
   1752   1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1753  1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1754   1.1      fvdl 
   1755   1.1      fvdl #ifdef notdef
   1756   1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1757   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1758   1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1759   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1760   1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1761   1.1      fvdl #endif
   1762   1.1      fvdl 
   1763  1.25  jonathan #if defined(not_quite_yet)
   1764  1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1765  1.51      fvdl 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1766  1.87     perry 		sc->bge_local_ctrl_reg |=
   1767  1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1768  1.25  jonathan 	}
   1769  1.87     perry #endif
   1770  1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1771  1.25  jonathan 
   1772   1.1      fvdl 	/* Turn on DMA completion state machine */
   1773  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1774  1.44   hannken 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1775  1.44   hannken 	}
   1776   1.1      fvdl 
   1777   1.1      fvdl 	/* Turn on write DMA state machine */
   1778   1.1      fvdl 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1779   1.1      fvdl 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1780   1.1      fvdl 
   1781   1.1      fvdl 	/* Turn on read DMA state machine */
   1782   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1783   1.1      fvdl 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1784   1.1      fvdl 
   1785   1.1      fvdl 	/* Turn on RX data completion state machine */
   1786   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1787   1.1      fvdl 
   1788   1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1789   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1790   1.1      fvdl 
   1791   1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1792   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1793   1.1      fvdl 
   1794   1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1795  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1796  1.44   hannken 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1797  1.44   hannken 	}
   1798   1.1      fvdl 
   1799   1.1      fvdl 	/* Turn on send BD completion state machine */
   1800   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1801   1.1      fvdl 
   1802   1.1      fvdl 	/* Turn on send data completion state machine */
   1803   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1804   1.1      fvdl 
   1805   1.1      fvdl 	/* Turn on send data initiator state machine */
   1806   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1807   1.1      fvdl 
   1808   1.1      fvdl 	/* Turn on send BD initiator state machine */
   1809   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1810   1.1      fvdl 
   1811   1.1      fvdl 	/* Turn on send BD selector state machine */
   1812   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1813   1.1      fvdl 
   1814   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1815   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1816   1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1817   1.1      fvdl 
   1818   1.1      fvdl 	/* ack/clear link change events */
   1819   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1820   1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1821   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1822   1.1      fvdl 
   1823   1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1824   1.1      fvdl 	if (sc->bge_tbi) {
   1825   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1826   1.1      fvdl  	} else {
   1827   1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1828  1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1829   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1830   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1831   1.1      fvdl 	}
   1832   1.1      fvdl 
   1833   1.1      fvdl 	/* Enable link state change attentions. */
   1834   1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1835   1.1      fvdl 
   1836   1.1      fvdl 	return(0);
   1837   1.1      fvdl }
   1838   1.1      fvdl 
   1839  1.16   thorpej static const struct bge_revision {
   1840  1.51      fvdl 	uint32_t		br_chipid;
   1841  1.16   thorpej 	uint32_t		br_quirks;
   1842  1.16   thorpej 	const char		*br_name;
   1843  1.16   thorpej } bge_revisions[] = {
   1844  1.51      fvdl 	{ BGE_CHIPID_BCM5700_A0,
   1845  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1846  1.16   thorpej 	  "BCM5700 A0" },
   1847  1.16   thorpej 
   1848  1.51      fvdl 	{ BGE_CHIPID_BCM5700_A1,
   1849  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1850  1.16   thorpej 	  "BCM5700 A1" },
   1851  1.16   thorpej 
   1852  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B0,
   1853  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1854  1.16   thorpej 	  "BCM5700 B0" },
   1855  1.16   thorpej 
   1856  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B1,
   1857  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1858  1.16   thorpej 	  "BCM5700 B1" },
   1859  1.16   thorpej 
   1860  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B2,
   1861  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1862  1.16   thorpej 	  "BCM5700 B2" },
   1863  1.16   thorpej 
   1864  1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   1865  1.51      fvdl 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1866  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1867  1.16   thorpej 	  "BCM5700 Altima" },
   1868  1.16   thorpej 
   1869  1.51      fvdl 	{ BGE_CHIPID_BCM5700_C0,
   1870  1.16   thorpej 	  0,
   1871  1.16   thorpej 	  "BCM5700 C0" },
   1872  1.16   thorpej 
   1873  1.51      fvdl 	{ BGE_CHIPID_BCM5701_A0,
   1874  1.37  jonathan 	  0, /*XXX really, just not known */
   1875  1.16   thorpej 	  "BCM5701 A0" },
   1876  1.16   thorpej 
   1877  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B0,
   1878  1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1879  1.16   thorpej 	  "BCM5701 B0" },
   1880  1.16   thorpej 
   1881  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B2,
   1882  1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1883  1.16   thorpej 	  "BCM5701 B2" },
   1884  1.16   thorpej 
   1885  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B5,
   1886  1.37  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1887  1.16   thorpej 	  "BCM5701 B5" },
   1888  1.16   thorpej 
   1889  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A0,
   1890  1.16   thorpej 	  0,
   1891  1.16   thorpej 	  "BCM5703 A0" },
   1892  1.16   thorpej 
   1893  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A1,
   1894  1.16   thorpej 	  0,
   1895  1.16   thorpej 	  "BCM5703 A1" },
   1896  1.16   thorpej 
   1897  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A2,
   1898  1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1899  1.16   thorpej 	  "BCM5703 A2" },
   1900  1.16   thorpej 
   1901  1.55     pooka 	{ BGE_CHIPID_BCM5703_A3,
   1902  1.55     pooka 	  BGE_QUIRK_ONLY_PHY_1,
   1903  1.55     pooka 	  "BCM5703 A3" },
   1904  1.55     pooka 
   1905  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A0,
   1906  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1907  1.25  jonathan 	  "BCM5704 A0" },
   1908  1.40      fvdl 
   1909  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A1,
   1910  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1911  1.40      fvdl 	  "BCM5704 A1" },
   1912  1.40      fvdl 
   1913  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A2,
   1914  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1915  1.40      fvdl 	  "BCM5704 A2" },
   1916  1.49      fvdl 
   1917  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A3,
   1918  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1919  1.49      fvdl 	  "BCM5704 A3" },
   1920  1.25  jonathan 
   1921  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A0,
   1922  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1923  1.51      fvdl 	  "BCM5705 A0" },
   1924  1.51      fvdl 
   1925  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A1,
   1926  1.44   hannken 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1927  1.44   hannken 	  "BCM5705 A1" },
   1928  1.44   hannken 
   1929  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A2,
   1930  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1931  1.51      fvdl 	  "BCM5705 A2" },
   1932  1.51      fvdl 
   1933  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A3,
   1934  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1935  1.51      fvdl 	  "BCM5705 A3" },
   1936  1.51      fvdl 
   1937  1.76      cube 	{ BGE_CHIPID_BCM5750_A0,
   1938  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1939  1.76      cube 	  "BCM5750 A1" },
   1940  1.76      cube 
   1941  1.76      cube 	{ BGE_CHIPID_BCM5750_A1,
   1942  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1943  1.76      cube 	  "BCM5750 A1" },
   1944  1.76      cube 
   1945  1.16   thorpej 	{ 0, 0, NULL }
   1946  1.16   thorpej };
   1947  1.16   thorpej 
   1948  1.51      fvdl /*
   1949  1.51      fvdl  * Some defaults for major revisions, so that newer steppings
   1950  1.51      fvdl  * that we don't know about have a shot at working.
   1951  1.51      fvdl  */
   1952  1.51      fvdl static const struct bge_revision bge_majorrevs[] = {
   1953  1.51      fvdl 	{ BGE_ASICREV_BCM5700,
   1954  1.51      fvdl 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1955  1.51      fvdl 	  "unknown BCM5700" },
   1956  1.51      fvdl 
   1957  1.51      fvdl 	{ BGE_ASICREV_BCM5701,
   1958  1.51      fvdl 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1959  1.51      fvdl 	  "unknown BCM5701" },
   1960  1.51      fvdl 
   1961  1.51      fvdl 	{ BGE_ASICREV_BCM5703,
   1962  1.51      fvdl 	  0,
   1963  1.51      fvdl 	  "unknown BCM5703" },
   1964  1.51      fvdl 
   1965  1.51      fvdl 	{ BGE_ASICREV_BCM5704,
   1966  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1,
   1967  1.51      fvdl 	  "unknown BCM5704" },
   1968  1.51      fvdl 
   1969  1.51      fvdl 	{ BGE_ASICREV_BCM5705,
   1970  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1971  1.51      fvdl 	  "unknown BCM5705" },
   1972  1.51      fvdl 
   1973  1.76      cube 	{ BGE_ASICREV_BCM5750,
   1974  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1975  1.76      cube 	  "unknown BCM5750" },
   1976  1.76      cube 
   1977  1.51      fvdl 	{ 0,
   1978  1.51      fvdl 	  0,
   1979  1.51      fvdl 	  NULL }
   1980  1.51      fvdl };
   1981  1.51      fvdl 
   1982  1.51      fvdl 
   1983  1.16   thorpej static const struct bge_revision *
   1984  1.51      fvdl bge_lookup_rev(uint32_t chipid)
   1985  1.16   thorpej {
   1986  1.16   thorpej 	const struct bge_revision *br;
   1987  1.16   thorpej 
   1988  1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1989  1.51      fvdl 		if (br->br_chipid == chipid)
   1990  1.51      fvdl 			return (br);
   1991  1.51      fvdl 	}
   1992  1.51      fvdl 
   1993  1.51      fvdl 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1994  1.51      fvdl 		if (br->br_chipid == BGE_ASICREV(chipid))
   1995  1.16   thorpej 			return (br);
   1996  1.16   thorpej 	}
   1997  1.16   thorpej 
   1998  1.16   thorpej 	return (NULL);
   1999  1.16   thorpej }
   2000  1.16   thorpej 
   2001   1.7   thorpej static const struct bge_product {
   2002   1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   2003   1.7   thorpej 	pci_product_id_t	bp_product;
   2004   1.7   thorpej 	const char		*bp_name;
   2005   1.7   thorpej } bge_products[] = {
   2006   1.7   thorpej 	/*
   2007   1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   2008   1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   2009   1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   2010   1.7   thorpej 	 * check for it anyway.
   2011   1.7   thorpej 	 */
   2012   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2013   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   2014  1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2015  1.51      fvdl 	  },
   2016   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2017   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   2018  1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2019  1.51      fvdl 	  },
   2020   1.7   thorpej 
   2021   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2022   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   2023  1.51      fvdl 	  "Altima AC1000 Gigabit Ethernet",
   2024  1.51      fvdl 	  },
   2025  1.14     enami 	{ PCI_VENDOR_ALTIMA,
   2026  1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   2027  1.51      fvdl 	  "Altima AC1001 Gigabit Ethernet",
   2028  1.51      fvdl 	   },
   2029   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2030   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   2031  1.51      fvdl 	  "Altima AC9100 Gigabit Ethernet",
   2032  1.51      fvdl 	  },
   2033   1.7   thorpej 
   2034   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2035   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2036  1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2037  1.51      fvdl 	  },
   2038   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2039   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2040  1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2041  1.51      fvdl 	  },
   2042  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2043  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2044  1.51      fvdl 	  "Broadcom BCM5702 Gigabit Ethernet",
   2045  1.51      fvdl 	  },
   2046  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2047  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2048  1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2049  1.51      fvdl 
   2050  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2051  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2052  1.51      fvdl 	  "Broadcom BCM5703 Gigabit Ethernet",
   2053  1.51      fvdl 	  },
   2054  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2055  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2056  1.51      fvdl 	  "Broadcom BCM5703X Gigabit Ethernet",
   2057  1.51      fvdl 	  },
   2058  1.55     pooka 	{ PCI_VENDOR_BROADCOM,
   2059  1.55     pooka 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   2060  1.55     pooka 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2061  1.55     pooka 	  },
   2062  1.51      fvdl 
   2063  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2064  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2065  1.51      fvdl 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2066  1.51      fvdl 	  },
   2067  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2068  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2069  1.51      fvdl 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2070  1.51      fvdl 	  },
   2071  1.51      fvdl 
   2072  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2073  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2074  1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2075  1.51      fvdl 	  },
   2076  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2077  1.79      jmmv 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2078  1.78     tacha 	  "Broadcom BCM5705K Gigabit Ethernet",
   2079  1.78     tacha 	  },
   2080  1.78     tacha    	{ PCI_VENDOR_BROADCOM,
   2081  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2082  1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2083  1.51      fvdl 	  },
   2084  1.44   hannken    	{ PCI_VENDOR_BROADCOM,
   2085  1.44   hannken 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2086  1.51      fvdl 	  "Broadcom BCM5705M Gigabit Ethernet",
   2087  1.51      fvdl 	  },
   2088  1.51      fvdl 
   2089  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2090  1.80     fredb 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2091  1.80     fredb 	  "Broadcom BCM5721 Gigabit Ethernet",
   2092  1.80     fredb 	  },
   2093  1.80     fredb 
   2094  1.80     fredb 	{ PCI_VENDOR_BROADCOM,
   2095  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2096  1.76      cube 	  "Broadcom BCM5750 Gigabit Ethernet",
   2097  1.76      cube 	  },
   2098  1.76      cube 
   2099  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2100  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2101  1.76      cube 	  "Broadcom BCM5750M Gigabit Ethernet",
   2102  1.76      cube 	  },
   2103  1.76      cube 
   2104  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2105  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2106  1.76      cube 	  "Broadcom BCM5751 Gigabit Ethernet",
   2107  1.76      cube 	  },
   2108  1.76      cube 
   2109  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2110  1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2111  1.70      tron 	  "Broadcom BCM5782 Gigabit Ethernet",
   2112  1.70      tron 	  },
   2113  1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2114  1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2115  1.70      tron 	  "Broadcom BCM5788 Gigabit Ethernet",
   2116  1.70      tron 	  },
   2117  1.70      tron 
   2118  1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2119  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2120  1.51      fvdl 	  "Broadcom BCM5901 Fast Ethernet",
   2121  1.51      fvdl 	  },
   2122  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2123  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2124  1.51      fvdl 	  "Broadcom BCM5901A2 Fast Ethernet",
   2125  1.51      fvdl 	  },
   2126  1.51      fvdl 
   2127   1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2128   1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2129  1.51      fvdl 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2130  1.51      fvdl 	  },
   2131   1.7   thorpej 
   2132   1.7   thorpej 	{ PCI_VENDOR_3COM,
   2133   1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   2134  1.51      fvdl 	  "3Com 3c996 Gigabit Ethernet",
   2135  1.51      fvdl 	  },
   2136   1.7   thorpej 
   2137   1.7   thorpej 	{ 0,
   2138   1.7   thorpej 	  0,
   2139   1.7   thorpej 	  NULL },
   2140   1.7   thorpej };
   2141   1.7   thorpej 
   2142   1.7   thorpej static const struct bge_product *
   2143   1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2144   1.7   thorpej {
   2145   1.7   thorpej 	const struct bge_product *bp;
   2146   1.7   thorpej 
   2147   1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2148   1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2149   1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2150   1.7   thorpej 			return (bp);
   2151   1.7   thorpej 	}
   2152   1.7   thorpej 
   2153   1.7   thorpej 	return (NULL);
   2154   1.7   thorpej }
   2155   1.7   thorpej 
   2156  1.25  jonathan int
   2157  1.25  jonathan bge_setpowerstate(sc, powerlevel)
   2158  1.25  jonathan 	struct bge_softc *sc;
   2159  1.25  jonathan 	int powerlevel;
   2160  1.25  jonathan {
   2161  1.25  jonathan #ifdef NOTYET
   2162  1.25  jonathan 	u_int32_t pm_ctl = 0;
   2163  1.25  jonathan 
   2164  1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2165  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2166  1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2167  1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2168  1.25  jonathan 
   2169  1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2170  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2171  1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2172  1.25  jonathan 	pm_ctl |= (1 << 8);
   2173  1.25  jonathan 
   2174  1.25  jonathan 	if (powerlevel == 0) {
   2175  1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2176  1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2177  1.25  jonathan 		    pm_ctl, 2);
   2178  1.25  jonathan 		DELAY(10000);
   2179  1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2180  1.25  jonathan 		DELAY(10000);
   2181  1.25  jonathan 
   2182  1.25  jonathan #ifdef NOTYET
   2183  1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2184  1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2185  1.25  jonathan #endif
   2186  1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2187  1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2188  1.25  jonathan 		return 0;
   2189  1.25  jonathan 	}
   2190  1.25  jonathan 
   2191  1.25  jonathan 
   2192  1.25  jonathan 	/*
   2193  1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2194  1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2195  1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2196  1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2197  1.25  jonathan 	 */
   2198  1.25  jonathan 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2199  1.25  jonathan 	       sc->bge_dev.dv_xname, powerlevel);
   2200  1.25  jonathan #endif
   2201  1.25  jonathan 	return EOPNOTSUPP;
   2202  1.25  jonathan }
   2203  1.25  jonathan 
   2204  1.25  jonathan 
   2205   1.1      fvdl /*
   2206   1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2207   1.1      fvdl  * against our list and return its name if we find a match. Note
   2208   1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2209   1.1      fvdl  * can get the device name string from the controller itself instead
   2210   1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2211   1.1      fvdl  * we'll always announce the right product name.
   2212   1.1      fvdl  */
   2213   1.1      fvdl int
   2214   1.1      fvdl bge_probe(parent, match, aux)
   2215   1.1      fvdl 	struct device *parent;
   2216   1.1      fvdl 	struct cfdata *match;
   2217   1.1      fvdl 	void *aux;
   2218   1.1      fvdl {
   2219   1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2220   1.1      fvdl 
   2221   1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2222   1.1      fvdl 		return (1);
   2223   1.1      fvdl 
   2224   1.1      fvdl 	return (0);
   2225   1.1      fvdl }
   2226   1.1      fvdl 
   2227   1.1      fvdl void
   2228   1.1      fvdl bge_attach(parent, self, aux)
   2229   1.1      fvdl 	struct device *parent, *self;
   2230   1.1      fvdl 	void *aux;
   2231   1.1      fvdl {
   2232   1.1      fvdl 	struct bge_softc	*sc = (struct bge_softc *)self;
   2233   1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2234   1.7   thorpej 	const struct bge_product *bp;
   2235  1.16   thorpej 	const struct bge_revision *br;
   2236   1.1      fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   2237   1.1      fvdl 	pci_intr_handle_t	ih;
   2238   1.1      fvdl 	const char		*intrstr = NULL;
   2239   1.1      fvdl 	bus_dma_segment_t	seg;
   2240   1.1      fvdl 	int			rseg;
   2241   1.1      fvdl 	u_int32_t		hwcfg = 0;
   2242  1.24      matt 	u_int32_t		mac_addr = 0;
   2243   1.1      fvdl 	u_int32_t		command;
   2244   1.1      fvdl 	struct ifnet		*ifp;
   2245   1.1      fvdl 	caddr_t			kva;
   2246   1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2247   1.1      fvdl 	pcireg_t		memtype;
   2248   1.1      fvdl 	bus_addr_t		memaddr;
   2249   1.1      fvdl 	bus_size_t		memsize;
   2250  1.25  jonathan 	u_int32_t		pm_ctl;
   2251  1.87     perry 
   2252   1.7   thorpej 	bp = bge_lookup(pa);
   2253   1.7   thorpej 	KASSERT(bp != NULL);
   2254   1.7   thorpej 
   2255   1.1      fvdl 	sc->bge_pa = *pa;
   2256   1.1      fvdl 
   2257  1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2258  1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2259   1.1      fvdl 
   2260   1.1      fvdl 	/*
   2261   1.1      fvdl 	 * Map control/status registers.
   2262   1.1      fvdl 	 */
   2263   1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2264   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2265   1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2266   1.1      fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2267   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2268   1.1      fvdl 
   2269   1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2270  1.30   thorpej 		aprint_error("%s: failed to enable memory mapping!\n",
   2271   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2272   1.1      fvdl 		return;
   2273   1.1      fvdl 	}
   2274   1.1      fvdl 
   2275   1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2276   1.1      fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2277   1.1      fvdl  	switch (memtype) {
   2278  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2279  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2280   1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2281  1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2282   1.1      fvdl 		    &memaddr, &memsize) == 0)
   2283   1.1      fvdl 			break;
   2284   1.1      fvdl 	default:
   2285  1.30   thorpej 		aprint_error("%s: can't find mem space\n",
   2286   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2287   1.1      fvdl 		return;
   2288   1.1      fvdl 	}
   2289   1.1      fvdl 
   2290   1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2291   1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2292  1.30   thorpej 		aprint_error("%s: couldn't map interrupt\n",
   2293   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2294   1.1      fvdl 		return;
   2295   1.1      fvdl 	}
   2296   1.1      fvdl 
   2297   1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2298   1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2299   1.1      fvdl 
   2300   1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2301   1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2302   1.1      fvdl 
   2303   1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2304  1.30   thorpej 		aprint_error("%s: couldn't establish interrupt",
   2305   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2306   1.1      fvdl 		if (intrstr != NULL)
   2307  1.30   thorpej 			aprint_normal(" at %s", intrstr);
   2308  1.30   thorpej 		aprint_normal("\n");
   2309   1.1      fvdl 		return;
   2310   1.1      fvdl 	}
   2311  1.30   thorpej 	aprint_normal("%s: interrupting at %s\n",
   2312  1.30   thorpej 	    sc->bge_dev.dv_xname, intrstr);
   2313   1.1      fvdl 
   2314  1.25  jonathan 	/*
   2315  1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2316  1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2317  1.25  jonathan 	 * leaving the card in D3 powersave state.
   2318  1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2319  1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2320  1.25  jonathan 	 */
   2321  1.25  jonathan 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2322  1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2323  1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2324  1.25  jonathan 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2325  1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2326  1.25  jonathan 
   2327  1.76      cube 	/*
   2328  1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2329  1.76      cube 	 * ASIC.
   2330  1.76      cube 	 */
   2331  1.76      cube 	sc->bge_chipid =
   2332  1.76      cube 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2333  1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2334  1.76      cube 
   2335  1.76      cube 	/*
   2336  1.76      cube 	 * Detect PCI-Express devices
   2337  1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2338  1.76      cube 	 */
   2339  1.76      cube 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
   2340  1.76      cube 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2341  1.76      cube 	    NULL, NULL) != 0)
   2342  1.76      cube 		sc->bge_pcie = 1;
   2343  1.76      cube 	else
   2344  1.76      cube 		sc->bge_pcie = 0;
   2345  1.76      cube 
   2346   1.1      fvdl 	/* Try to reset the chip. */
   2347   1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2348   1.1      fvdl 	bge_reset(sc);
   2349   1.1      fvdl 
   2350   1.1      fvdl 	if (bge_chipinit(sc)) {
   2351  1.30   thorpej 		aprint_error("%s: chip initialization failed\n",
   2352   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2353   1.1      fvdl 		bge_release_resources(sc);
   2354   1.1      fvdl 		return;
   2355   1.1      fvdl 	}
   2356   1.1      fvdl 
   2357   1.1      fvdl 	/*
   2358   1.1      fvdl 	 * Get station address from the EEPROM.
   2359   1.1      fvdl 	 */
   2360  1.24      matt 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2361  1.24      matt 	if ((mac_addr >> 16) == 0x484b) {
   2362  1.24      matt 		eaddr[0] = (u_char)(mac_addr >> 8);
   2363  1.24      matt 		eaddr[1] = (u_char)(mac_addr >> 0);
   2364  1.24      matt 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2365  1.24      matt 		eaddr[2] = (u_char)(mac_addr >> 24);
   2366  1.24      matt 		eaddr[3] = (u_char)(mac_addr >> 16);
   2367  1.24      matt 		eaddr[4] = (u_char)(mac_addr >> 8);
   2368  1.24      matt 		eaddr[5] = (u_char)(mac_addr >> 0);
   2369  1.24      matt 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2370   1.1      fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2371  1.30   thorpej 		aprint_error("%s: failed to read station address\n",
   2372  1.23  kristerw 		    sc->bge_dev.dv_xname);
   2373   1.1      fvdl 		bge_release_resources(sc);
   2374   1.1      fvdl 		return;
   2375   1.1      fvdl 	}
   2376   1.1      fvdl 
   2377  1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2378  1.30   thorpej 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2379  1.51      fvdl 
   2380  1.16   thorpej 	if (br == NULL) {
   2381  1.56     pooka 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2382  1.52      fvdl 		sc->bge_quirks = 0;
   2383  1.16   thorpej 	} else {
   2384  1.56     pooka 		aprint_normal("ASIC %s (0x%04x)",
   2385  1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2386  1.51      fvdl 		sc->bge_quirks |= br->br_quirks;
   2387  1.16   thorpej 	}
   2388  1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2389   1.1      fvdl 
   2390   1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2391  1.41      fvdl 	if (pci_dma64_available(pa))
   2392  1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2393  1.41      fvdl 	else
   2394  1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2395   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2396   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2397   1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2398  1.30   thorpej 		aprint_error("%s: can't alloc rx buffers\n",
   2399  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2400   1.1      fvdl 		return;
   2401   1.1      fvdl 	}
   2402   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2403   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2404   1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2405   1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2406  1.39       wiz 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2407   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2408   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2409   1.1      fvdl 		return;
   2410   1.1      fvdl 	}
   2411   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2412   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2413   1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2414   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2415  1.39       wiz 		aprint_error("%s: can't create DMA map\n",
   2416  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2417   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2418   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2419   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2420   1.1      fvdl 		return;
   2421   1.1      fvdl 	}
   2422   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2423   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2424   1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2425   1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2426   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2427   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2428   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2429   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2430   1.1      fvdl 		return;
   2431   1.1      fvdl 	}
   2432   1.1      fvdl 
   2433   1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2434   1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2435   1.1      fvdl 
   2436  1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2437   1.1      fvdl 
   2438   1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2439  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2440  1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2441  1.44   hannken 			aprint_error("%s: jumbo buffer allocation failed\n",
   2442  1.44   hannken 			    sc->bge_dev.dv_xname);
   2443  1.44   hannken 		} else
   2444  1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2445  1.44   hannken 	}
   2446   1.1      fvdl 
   2447   1.1      fvdl 	/* Set default tuneable values. */
   2448   1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2449   1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2450  1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2451  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2452   1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2453   1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2454  1.25  jonathan #else
   2455  1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2456  1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2457  1.25  jonathan #endif
   2458   1.1      fvdl 
   2459   1.1      fvdl 	/* Set up ifnet structure */
   2460   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2461   1.1      fvdl 	ifp->if_softc = sc;
   2462   1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2463   1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2464   1.1      fvdl 	ifp->if_start = bge_start;
   2465   1.1      fvdl 	ifp->if_init = bge_init;
   2466   1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2467  1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2468   1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2469   1.1      fvdl 	DPRINTFN(5, ("bcopy\n"));
   2470   1.1      fvdl 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2471   1.1      fvdl 
   2472  1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2473  1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2474  1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2475  1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2476  1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2477  1.87     perry 	sc->ethercom.ec_capabilities |=
   2478   1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2479   1.1      fvdl 
   2480   1.1      fvdl 	/*
   2481   1.1      fvdl 	 * Do MII setup.
   2482   1.1      fvdl 	 */
   2483   1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2484   1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2485   1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2486   1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2487   1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2488   1.1      fvdl 
   2489   1.1      fvdl 	/*
   2490   1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2491  1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2492  1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2493   1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2494   1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2495   1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2496   1.1      fvdl 	 */
   2497  1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2498  1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2499  1.35  jonathan 	} else {
   2500  1.35  jonathan 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2501   1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2502  1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2503  1.35  jonathan 	}
   2504  1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2505   1.1      fvdl 		sc->bge_tbi = 1;
   2506   1.1      fvdl 
   2507   1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2508   1.1      fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2509   1.1      fvdl 	    SK_SUBSYSID_9D41)
   2510   1.1      fvdl 		sc->bge_tbi = 1;
   2511   1.1      fvdl 
   2512   1.1      fvdl 	if (sc->bge_tbi) {
   2513   1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2514   1.1      fvdl 		    bge_ifmedia_sts);
   2515   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2516   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2517   1.1      fvdl 			    0, NULL);
   2518   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2519   1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2520   1.1      fvdl 	} else {
   2521   1.1      fvdl 		/*
   2522   1.1      fvdl 		 * Do transceiver setup.
   2523   1.1      fvdl 		 */
   2524   1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2525   1.1      fvdl 			     bge_ifmedia_sts);
   2526   1.1      fvdl 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2527  1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2528  1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2529  1.87     perry 
   2530   1.1      fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2531   1.1      fvdl 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2532   1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2533   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2534   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2535   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2536   1.1      fvdl 		} else
   2537   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2538   1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2539   1.1      fvdl 	}
   2540   1.1      fvdl 
   2541   1.1      fvdl 	/*
   2542  1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2543  1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2544  1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2545  1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2546  1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2547  1.37  jonathan 	 * payloads by copying the received packets.
   2548  1.37  jonathan 	 */
   2549  1.37  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2550  1.37  jonathan 		/* If in PCI-X mode, work around the alignment bug. */
   2551  1.37  jonathan 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2552  1.37  jonathan                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2553  1.37  jonathan                          BGE_PCISTATE_PCI_BUSSPEED)
   2554  1.37  jonathan 		sc->bge_rx_alignment_bug = 1;
   2555  1.37  jonathan         }
   2556  1.37  jonathan 
   2557  1.37  jonathan 	/*
   2558   1.1      fvdl 	 * Call MI attach routine.
   2559   1.1      fvdl 	 */
   2560   1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2561   1.1      fvdl 	if_attach(ifp);
   2562   1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2563   1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2564  1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2565  1.72   thorpej 	/*
   2566  1.72   thorpej 	 * Attach event counters.
   2567  1.72   thorpej 	 */
   2568  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2569  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "intr");
   2570  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2571  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
   2572  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2573  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
   2574  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2575  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
   2576  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2577  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
   2578  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2579  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
   2580  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2581  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
   2582  1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2583   1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2584   1.1      fvdl 	callout_init(&sc->bge_timeout);
   2585  1.82  jmcneill 
   2586  1.82  jmcneill 	sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
   2587  1.82  jmcneill 	if (sc->bge_powerhook == NULL)
   2588  1.82  jmcneill 		printf("%s: WARNING: unable to establish PCI power hook\n",
   2589  1.82  jmcneill 		    sc->bge_dev.dv_xname);
   2590   1.1      fvdl }
   2591   1.1      fvdl 
   2592   1.1      fvdl void
   2593   1.1      fvdl bge_release_resources(sc)
   2594   1.1      fvdl 	struct bge_softc *sc;
   2595   1.1      fvdl {
   2596   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2597   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2598   1.1      fvdl 
   2599   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2600   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2601   1.1      fvdl }
   2602   1.1      fvdl 
   2603   1.1      fvdl void
   2604   1.1      fvdl bge_reset(sc)
   2605   1.1      fvdl 	struct bge_softc *sc;
   2606   1.1      fvdl {
   2607   1.1      fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   2608  1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2609  1.76      cube 	int i, val;
   2610   1.1      fvdl 
   2611   1.1      fvdl 	/* Save some important PCI state. */
   2612   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2613   1.1      fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2614   1.1      fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2615   1.1      fvdl 
   2616   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2617   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2618   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2619   1.1      fvdl 
   2620  1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2621  1.76      cube 	/*
   2622  1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2623  1.76      cube 	 */
   2624  1.76      cube 	if (sc->bge_pcie) {
   2625  1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2626  1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2627  1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2628  1.76      cube 			/* No idea what that actually means */
   2629  1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2630  1.76      cube 			val |= (1<<29);
   2631  1.76      cube 		}
   2632  1.76      cube 	}
   2633  1.76      cube 
   2634   1.1      fvdl 	/* Issue global reset */
   2635  1.76      cube 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2636   1.1      fvdl 
   2637   1.1      fvdl 	DELAY(1000);
   2638   1.1      fvdl 
   2639  1.76      cube 	/*
   2640  1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2641  1.76      cube 	 */
   2642  1.76      cube 	if (sc->bge_pcie) {
   2643  1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2644  1.76      cube 			pcireg_t reg;
   2645  1.76      cube 
   2646  1.76      cube 			DELAY(500000);
   2647  1.76      cube 			/* XXX: Magic Numbers */
   2648  1.76      cube 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2649  1.76      cube 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2650  1.76      cube 			    reg | (1 << 15));
   2651  1.76      cube 		}
   2652  1.76      cube 		/* XXX: Magic Numbers */
   2653  1.76      cube 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
   2654  1.76      cube 	}
   2655  1.76      cube 
   2656   1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2657   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2658   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2659   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2660   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2661   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2662   1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2663   1.1      fvdl 
   2664   1.1      fvdl 	/* Enable memory arbiter. */
   2665  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2666  1.44   hannken 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2667  1.44   hannken 	}
   2668   1.1      fvdl 
   2669   1.1      fvdl 	/*
   2670   1.1      fvdl 	 * Prevent PXE restart: write a magic number to the
   2671   1.1      fvdl 	 * general communications memory at 0xB50.
   2672   1.1      fvdl 	 */
   2673   1.1      fvdl 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2674   1.1      fvdl 
   2675   1.1      fvdl 	/*
   2676   1.1      fvdl 	 * Poll the value location we just wrote until
   2677   1.1      fvdl 	 * we see the 1's complement of the magic number.
   2678   1.1      fvdl 	 * This indicates that the firmware initialization
   2679   1.1      fvdl 	 * is complete.
   2680   1.1      fvdl 	 */
   2681   1.1      fvdl 	for (i = 0; i < 750; i++) {
   2682   1.1      fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2683   1.1      fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   2684   1.1      fvdl 			break;
   2685   1.1      fvdl 		DELAY(1000);
   2686   1.1      fvdl 	}
   2687   1.1      fvdl 
   2688   1.8   thorpej 	if (i == 750) {
   2689   1.1      fvdl 		printf("%s: firmware handshake timed out, val = %x\n",
   2690   1.1      fvdl 		    sc->bge_dev.dv_xname, val);
   2691   1.1      fvdl 		return;
   2692   1.1      fvdl 	}
   2693   1.1      fvdl 
   2694   1.1      fvdl 	/*
   2695   1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2696   1.1      fvdl 	 * return to its original pre-reset state. This is a
   2697   1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2698   1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2699   1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2700   1.1      fvdl 	 * results.
   2701   1.1      fvdl 	 */
   2702   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2703  1.61  jonathan 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2704  1.61  jonathan 		    BGE_PCI_PCISTATE);
   2705  1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2706  1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2707   1.1      fvdl 			break;
   2708   1.1      fvdl 		DELAY(10);
   2709   1.1      fvdl 	}
   2710  1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2711  1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2712  1.61  jonathan 		printf("%s: pcistate failed to revert\n",
   2713  1.61  jonathan 		    sc->bge_dev.dv_xname);
   2714  1.61  jonathan 	}
   2715   1.1      fvdl 
   2716  1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   2717  1.76      cube 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2718  1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2719  1.76      cube 
   2720   1.1      fvdl 	/* Enable memory arbiter. */
   2721  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2722  1.44   hannken 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2723  1.44   hannken 	}
   2724   1.1      fvdl 
   2725   1.1      fvdl 	/* Fix up byte swapping */
   2726   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2727   1.1      fvdl 
   2728   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2729   1.1      fvdl 
   2730   1.1      fvdl 	DELAY(10000);
   2731   1.1      fvdl }
   2732   1.1      fvdl 
   2733   1.1      fvdl /*
   2734   1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2735   1.1      fvdl  * on the receive return list.
   2736   1.1      fvdl  *
   2737   1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2738   1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2739   1.1      fvdl  * 2) the frame is from the standard receive ring
   2740   1.1      fvdl  */
   2741   1.1      fvdl 
   2742   1.1      fvdl void
   2743   1.1      fvdl bge_rxeof(sc)
   2744   1.1      fvdl 	struct bge_softc *sc;
   2745   1.1      fvdl {
   2746   1.1      fvdl 	struct ifnet *ifp;
   2747   1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2748   1.1      fvdl 	bus_dmamap_t dmamap;
   2749   1.1      fvdl 	bus_addr_t offset, toff;
   2750   1.1      fvdl 	bus_size_t tlen;
   2751   1.1      fvdl 	int tosync;
   2752   1.1      fvdl 
   2753   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2754   1.1      fvdl 
   2755   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2756   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2757   1.1      fvdl 	    sizeof (struct bge_status_block),
   2758   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2759   1.1      fvdl 
   2760   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2761  1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2762   1.1      fvdl 	    sc->bge_rx_saved_considx;
   2763   1.1      fvdl 
   2764   1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2765   1.1      fvdl 
   2766   1.1      fvdl 	if (tosync < 0) {
   2767  1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2768   1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2769   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2770   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2771   1.1      fvdl 		tosync = -tosync;
   2772   1.1      fvdl 	}
   2773   1.1      fvdl 
   2774   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2775   1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2776   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2777   1.1      fvdl 
   2778   1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   2779   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2780   1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   2781   1.1      fvdl 		u_int32_t		rxidx;
   2782   1.1      fvdl 		struct mbuf		*m = NULL;
   2783   1.1      fvdl 
   2784   1.1      fvdl 		cur_rx = &sc->bge_rdata->
   2785   1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2786   1.1      fvdl 
   2787   1.1      fvdl 		rxidx = cur_rx->bge_idx;
   2788  1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2789   1.1      fvdl 
   2790   1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2791   1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2792   1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2793   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2794   1.1      fvdl 			jumbocnt++;
   2795   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2796   1.1      fvdl 				ifp->if_ierrors++;
   2797   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2798   1.1      fvdl 				continue;
   2799   1.1      fvdl 			}
   2800   1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2801   1.1      fvdl 					     NULL)== ENOBUFS) {
   2802   1.1      fvdl 				ifp->if_ierrors++;
   2803   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2804   1.1      fvdl 				continue;
   2805   1.1      fvdl 			}
   2806   1.1      fvdl 		} else {
   2807   1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2808   1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2809   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2810   1.1      fvdl 			stdcnt++;
   2811   1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2812   1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2813   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2814   1.1      fvdl 				ifp->if_ierrors++;
   2815   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2816   1.1      fvdl 				continue;
   2817   1.1      fvdl 			}
   2818   1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2819   1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   2820   1.1      fvdl 				ifp->if_ierrors++;
   2821   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2822   1.1      fvdl 				continue;
   2823   1.1      fvdl 			}
   2824   1.1      fvdl 		}
   2825   1.1      fvdl 
   2826   1.1      fvdl 		ifp->if_ipackets++;
   2827  1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   2828  1.37  jonathan                 /*
   2829  1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2830  1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   2831  1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   2832  1.37  jonathan                  */
   2833  1.37  jonathan 		if (sc->bge_rx_alignment_bug) {
   2834  1.37  jonathan 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2835  1.37  jonathan                                 cur_rx->bge_len);
   2836  1.37  jonathan 			m->m_data += ETHER_ALIGN;
   2837  1.37  jonathan 		}
   2838  1.37  jonathan #endif
   2839  1.87     perry 
   2840  1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2841   1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   2842   1.1      fvdl 
   2843   1.1      fvdl #if NBPFILTER > 0
   2844   1.1      fvdl 		/*
   2845   1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2846   1.1      fvdl 		 */
   2847   1.1      fvdl 		if (ifp->if_bpf)
   2848   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   2849   1.1      fvdl #endif
   2850   1.1      fvdl 
   2851  1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2852  1.46  jonathan 
   2853  1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2854  1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2855  1.46  jonathan 		/*
   2856  1.46  jonathan 		 * Rx transport checksum-offload may also
   2857  1.46  jonathan 		 * have bugs with packets which, when transmitted,
   2858  1.46  jonathan 		 * were `runts' requiring padding.
   2859  1.46  jonathan 		 */
   2860  1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2861  1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2862  1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2863  1.46  jonathan 			m->m_pkthdr.csum_data =
   2864  1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   2865  1.46  jonathan 			m->m_pkthdr.csum_flags |=
   2866  1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2867  1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2868   1.1      fvdl 		}
   2869   1.1      fvdl 
   2870   1.1      fvdl 		/*
   2871   1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   2872   1.1      fvdl 		 * to vlan_input() instead of ether_input().
   2873   1.1      fvdl 		 */
   2874  1.85  jdolecek 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   2875  1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   2876   1.1      fvdl 
   2877   1.1      fvdl 		(*ifp->if_input)(ifp, m);
   2878   1.1      fvdl 	}
   2879   1.1      fvdl 
   2880   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2881   1.1      fvdl 	if (stdcnt)
   2882   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2883   1.1      fvdl 	if (jumbocnt)
   2884   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2885   1.1      fvdl }
   2886   1.1      fvdl 
   2887   1.1      fvdl void
   2888   1.1      fvdl bge_txeof(sc)
   2889   1.1      fvdl 	struct bge_softc *sc;
   2890   1.1      fvdl {
   2891   1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   2892   1.1      fvdl 	struct ifnet *ifp;
   2893   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   2894   1.1      fvdl 	bus_addr_t offset, toff;
   2895   1.1      fvdl 	bus_size_t tlen;
   2896   1.1      fvdl 	int tosync;
   2897   1.1      fvdl 	struct mbuf *m;
   2898   1.1      fvdl 
   2899   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2900   1.1      fvdl 
   2901   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2902   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2903   1.1      fvdl 	    sizeof (struct bge_status_block),
   2904   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2905   1.1      fvdl 
   2906   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2907  1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2908   1.1      fvdl 	    sc->bge_tx_saved_considx;
   2909   1.1      fvdl 
   2910   1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2911   1.1      fvdl 
   2912   1.1      fvdl 	if (tosync < 0) {
   2913   1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2914   1.1      fvdl 		    sizeof (struct bge_tx_bd);
   2915   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2916   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2917   1.1      fvdl 		tosync = -tosync;
   2918   1.1      fvdl 	}
   2919   1.1      fvdl 
   2920   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2921   1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   2922   1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2923   1.1      fvdl 
   2924   1.1      fvdl 	/*
   2925   1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   2926   1.1      fvdl 	 * frames that have been sent.
   2927   1.1      fvdl 	 */
   2928   1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   2929   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2930   1.1      fvdl 		u_int32_t		idx = 0;
   2931   1.1      fvdl 
   2932   1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   2933   1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2934   1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2935   1.1      fvdl 			ifp->if_opackets++;
   2936   1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   2937   1.1      fvdl 		if (m != NULL) {
   2938   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2939   1.1      fvdl 			dma = sc->txdma[idx];
   2940   1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2941   1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2942   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2943   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2944   1.1      fvdl 			sc->txdma[idx] = NULL;
   2945   1.1      fvdl 
   2946   1.1      fvdl 			m_freem(m);
   2947   1.1      fvdl 		}
   2948   1.1      fvdl 		sc->bge_txcnt--;
   2949   1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2950   1.1      fvdl 		ifp->if_timer = 0;
   2951   1.1      fvdl 	}
   2952   1.1      fvdl 
   2953   1.1      fvdl 	if (cur_tx != NULL)
   2954   1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   2955   1.1      fvdl }
   2956   1.1      fvdl 
   2957   1.1      fvdl int
   2958   1.1      fvdl bge_intr(xsc)
   2959   1.1      fvdl 	void *xsc;
   2960   1.1      fvdl {
   2961   1.1      fvdl 	struct bge_softc *sc;
   2962   1.1      fvdl 	struct ifnet *ifp;
   2963   1.1      fvdl 
   2964   1.1      fvdl 	sc = xsc;
   2965   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2966   1.1      fvdl 
   2967   1.1      fvdl #ifdef notdef
   2968   1.1      fvdl 	/* Avoid this for now -- checking this register is expensive. */
   2969   1.1      fvdl 	/* Make sure this is really our interrupt. */
   2970   1.1      fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2971   1.1      fvdl 		return (0);
   2972   1.1      fvdl #endif
   2973   1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   2974   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2975   1.1      fvdl 
   2976  1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   2977  1.72   thorpej 
   2978   1.1      fvdl 	/*
   2979   1.1      fvdl 	 * Process link state changes.
   2980   1.1      fvdl 	 * Grrr. The link status word in the status block does
   2981   1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2982   1.1      fvdl 	 * according to all avaibable information. Hence, we have
   2983   1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   2984   1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   2985   1.1      fvdl 	 * we have to read the MAC status register to detect link
   2986   1.1      fvdl 	 * changes, thereby adding an additional register access to
   2987   1.1      fvdl 	 * the interrupt handler.
   2988   1.1      fvdl 	 */
   2989   1.1      fvdl 
   2990  1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2991   1.1      fvdl 		u_int32_t		status;
   2992   1.1      fvdl 
   2993   1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2994   1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2995   1.1      fvdl 			sc->bge_link = 0;
   2996   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   2997   1.1      fvdl 			bge_tick(sc);
   2998   1.1      fvdl 			/* Clear the interrupt */
   2999   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3000   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3001   1.1      fvdl 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   3002   1.1      fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   3003   1.1      fvdl 			    BRGPHY_INTRS);
   3004   1.1      fvdl 		}
   3005   1.1      fvdl 	} else {
   3006   1.1      fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   3007   1.1      fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3008   1.1      fvdl 			sc->bge_link = 0;
   3009   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3010   1.1      fvdl 			bge_tick(sc);
   3011   1.1      fvdl 			/* Clear the interrupt */
   3012   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3013  1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3014  1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3015   1.1      fvdl 		}
   3016   1.1      fvdl 	}
   3017   1.1      fvdl 
   3018   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3019   1.1      fvdl 		/* Check RX return ring producer/consumer */
   3020   1.1      fvdl 		bge_rxeof(sc);
   3021   1.1      fvdl 
   3022   1.1      fvdl 		/* Check TX ring producer/consumer */
   3023   1.1      fvdl 		bge_txeof(sc);
   3024   1.1      fvdl 	}
   3025   1.1      fvdl 
   3026  1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3027  1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3028  1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3029  1.58  jonathan 		uint32_t junk;
   3030  1.58  jonathan 
   3031  1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3032  1.58  jonathan 		DELAY(10);
   3033  1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3034  1.87     perry 
   3035  1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3036  1.58  jonathan 		DELAY(10);
   3037  1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3038  1.58  jonathan 
   3039  1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3040  1.58  jonathan 	}
   3041   1.1      fvdl 	bge_handle_events(sc);
   3042   1.1      fvdl 
   3043   1.1      fvdl 	/* Re-enable interrupts. */
   3044   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3045   1.1      fvdl 
   3046   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3047   1.1      fvdl 		bge_start(ifp);
   3048   1.1      fvdl 
   3049   1.1      fvdl 	return (1);
   3050   1.1      fvdl }
   3051   1.1      fvdl 
   3052   1.1      fvdl void
   3053   1.1      fvdl bge_tick(xsc)
   3054   1.1      fvdl 	void *xsc;
   3055   1.1      fvdl {
   3056   1.1      fvdl 	struct bge_softc *sc = xsc;
   3057   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3058   1.1      fvdl 	struct ifmedia *ifm = NULL;
   3059   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3060   1.1      fvdl 	int s;
   3061   1.1      fvdl 
   3062   1.1      fvdl 	s = splnet();
   3063   1.1      fvdl 
   3064   1.1      fvdl 	bge_stats_update(sc);
   3065   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3066   1.1      fvdl 	if (sc->bge_link) {
   3067   1.1      fvdl 		splx(s);
   3068   1.1      fvdl 		return;
   3069   1.1      fvdl 	}
   3070   1.1      fvdl 
   3071   1.1      fvdl 	if (sc->bge_tbi) {
   3072   1.1      fvdl 		ifm = &sc->bge_ifmedia;
   3073   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3074   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3075   1.1      fvdl 			sc->bge_link++;
   3076   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3077   1.1      fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3078   1.1      fvdl 				bge_start(ifp);
   3079   1.1      fvdl 		}
   3080   1.1      fvdl 		splx(s);
   3081   1.1      fvdl 		return;
   3082   1.1      fvdl 	}
   3083   1.1      fvdl 
   3084   1.1      fvdl 	mii_tick(mii);
   3085   1.1      fvdl 
   3086   1.1      fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3087   1.1      fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3088   1.1      fvdl 		sc->bge_link++;
   3089   1.1      fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3090   1.1      fvdl 			bge_start(ifp);
   3091   1.1      fvdl 	}
   3092   1.1      fvdl 
   3093   1.1      fvdl 	splx(s);
   3094   1.1      fvdl }
   3095   1.1      fvdl 
   3096   1.1      fvdl void
   3097   1.1      fvdl bge_stats_update(sc)
   3098   1.1      fvdl 	struct bge_softc *sc;
   3099   1.1      fvdl {
   3100   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3101   1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3102  1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3103  1.44   hannken 
   3104  1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3105  1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3106   1.1      fvdl 
   3107  1.44   hannken 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3108  1.44   hannken 		ifp->if_collisions +=
   3109  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3110  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3111  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3112  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3113  1.72   thorpej 
   3114  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3115  1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3116  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3117  1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3118  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3119  1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3120  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3121  1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3122  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3123  1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3124  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3125  1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3126  1.44   hannken 		return;
   3127  1.44   hannken 	}
   3128  1.44   hannken 
   3129  1.44   hannken #undef READ_RSTAT
   3130   1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3131   1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3132   1.1      fvdl 
   3133   1.1      fvdl 	ifp->if_collisions +=
   3134   1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3135   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3136   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3137   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3138   1.1      fvdl 	  ifp->if_collisions;
   3139   1.1      fvdl 
   3140  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3141  1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3142  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3143  1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3144  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3145  1.72   thorpej 		      READ_STAT(sc, stats,
   3146  1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3147  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3148  1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3149  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3150  1.72   thorpej 		      READ_STAT(sc, stats,
   3151  1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3152  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3153  1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3154  1.72   thorpej 
   3155   1.1      fvdl #undef READ_STAT
   3156   1.1      fvdl 
   3157   1.1      fvdl #ifdef notdef
   3158   1.1      fvdl 	ifp->if_collisions +=
   3159   1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3160   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3161   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3162   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3163   1.1      fvdl 	   ifp->if_collisions;
   3164   1.1      fvdl #endif
   3165   1.1      fvdl }
   3166   1.1      fvdl 
   3167  1.46  jonathan /*
   3168  1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3169  1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3170  1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3171  1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3172  1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3173  1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3174  1.46  jonathan  */
   3175  1.46  jonathan static __inline int
   3176  1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3177  1.46  jonathan {
   3178  1.46  jonathan 	struct mbuf *last = NULL;
   3179  1.46  jonathan 	int padlen;
   3180  1.46  jonathan 
   3181  1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3182  1.46  jonathan 
   3183  1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3184  1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3185  1.46  jonathan 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3186  1.46  jonathan 		last = pkt;
   3187  1.46  jonathan 	} else {
   3188  1.46  jonathan 		/*
   3189  1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3190  1.87     perry 		 * pad there, or append a new mbuf and pad it
   3191  1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3192  1.46  jonathan 		 */
   3193  1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3194  1.46  jonathan 	      	       (void) 0; /* do nothing*/
   3195  1.46  jonathan 		}
   3196  1.46  jonathan 
   3197  1.46  jonathan 		/* `last' now points to last in chain. */
   3198  1.46  jonathan 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3199  1.46  jonathan 			(void) 0; /* we can pad here, in-place. */
   3200  1.46  jonathan 		} else {
   3201  1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3202  1.46  jonathan 			struct mbuf *n;
   3203  1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3204  1.46  jonathan 			n->m_len = 0;
   3205  1.46  jonathan 			last->m_next = n;
   3206  1.46  jonathan 			last = n;
   3207  1.46  jonathan 		}
   3208  1.46  jonathan 	}
   3209  1.46  jonathan 
   3210  1.46  jonathan #ifdef DEBUG
   3211  1.48   hannken 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3212  1.47      cjep 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3213  1.46  jonathan #endif
   3214  1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3215  1.46  jonathan 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3216  1.46  jonathan 	last->m_len += padlen;
   3217  1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3218  1.46  jonathan 	return 0;
   3219  1.46  jonathan }
   3220  1.45  jonathan 
   3221  1.45  jonathan /*
   3222  1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3223  1.45  jonathan  */
   3224  1.45  jonathan static __inline int
   3225  1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3226  1.45  jonathan {
   3227  1.45  jonathan 	struct mbuf	*m, *prev;
   3228  1.45  jonathan 	int 		totlen, prevlen;
   3229  1.45  jonathan 
   3230  1.45  jonathan 	prev = NULL;
   3231  1.45  jonathan 	totlen = 0;
   3232  1.45  jonathan 	prevlen = -1;
   3233  1.45  jonathan 
   3234  1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3235  1.45  jonathan 		int mlen = m->m_len;
   3236  1.45  jonathan 		int shortfall = 8 - mlen ;
   3237  1.45  jonathan 
   3238  1.45  jonathan 		totlen += mlen;
   3239  1.45  jonathan 		if (mlen == 0) {
   3240  1.45  jonathan 			continue;
   3241  1.45  jonathan 		}
   3242  1.45  jonathan 		if (mlen >= 8)
   3243  1.45  jonathan 			continue;
   3244  1.45  jonathan 
   3245  1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3246  1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3247  1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3248  1.45  jonathan 		 */
   3249  1.45  jonathan 
   3250  1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3251  1.45  jonathan 		if (prev && !M_READONLY(prev) &&
   3252  1.45  jonathan 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3253  1.45  jonathan 		  	bcopy(m->m_data,
   3254  1.45  jonathan 			      prev->m_data+prev->m_len,
   3255  1.45  jonathan 			      mlen);
   3256  1.45  jonathan 			prev->m_len += mlen;
   3257  1.45  jonathan 			m->m_len = 0;
   3258  1.45  jonathan 			/* XXX stitch chain */
   3259  1.45  jonathan 			prev->m_next = m_free(m);
   3260  1.45  jonathan 			m = prev;
   3261  1.45  jonathan 			continue;
   3262  1.45  jonathan 		}
   3263  1.45  jonathan 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3264  1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3265  1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3266  1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3267  1.45  jonathan 
   3268  1.45  jonathan 		  	bcopy(m->m_next->m_data,
   3269  1.45  jonathan 			      m->m_data+m->m_len,
   3270  1.45  jonathan 			      shortfall);
   3271  1.45  jonathan 			m->m_len += shortfall;
   3272  1.45  jonathan 			m->m_next->m_len -= shortfall;
   3273  1.45  jonathan 			m->m_next->m_data += shortfall;
   3274  1.45  jonathan 		}
   3275  1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3276  1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3277  1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3278  1.45  jonathan 			 * update its length in-place. (The original data is still
   3279  1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3280  1.45  jonathan 			 */
   3281  1.45  jonathan 
   3282  1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3283  1.45  jonathan #ifdef DEBUG
   3284  1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3285  1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3286  1.45  jonathan #endif
   3287  1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3288  1.45  jonathan 				shortfall = prev->m_len;
   3289  1.87     perry 
   3290  1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3291  1.45  jonathan 			if (!M_READONLY(m)) {
   3292  1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3293  1.45  jonathan 					void *m_dat;
   3294  1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3295  1.45  jonathan 					  m->m_pktdat : m->dat;
   3296  1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3297  1.45  jonathan 					m->m_data = m_dat;
   3298  1.45  jonathan 				    }
   3299  1.45  jonathan 			} else
   3300  1.45  jonathan #endif	/* just do the safe slow thing */
   3301  1.45  jonathan 			{
   3302  1.45  jonathan 				struct mbuf * n = NULL;
   3303  1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3304  1.45  jonathan 
   3305  1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3306  1.45  jonathan 				if (n == NULL)
   3307  1.45  jonathan 				   return ENOBUFS;
   3308  1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3309  1.45  jonathan 					/*,
   3310  1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3311  1.45  jonathan 
   3312  1.45  jonathan 				/* first copy the data we're stealing from prev */
   3313  1.45  jonathan 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3314  1.45  jonathan 
   3315  1.45  jonathan 				/* update prev->m_len accordingly */
   3316  1.45  jonathan 				prev->m_len -= shortfall;
   3317  1.45  jonathan 
   3318  1.45  jonathan 				/* copy data from runt m */
   3319  1.45  jonathan 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3320  1.45  jonathan 
   3321  1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3322  1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3323  1.45  jonathan 
   3324  1.45  jonathan 				/* stitch n into chain and free m */
   3325  1.45  jonathan 				n->m_next = m->m_next;
   3326  1.45  jonathan 				prev->m_next = n;
   3327  1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3328  1.45  jonathan 				m->m_next = NULL;
   3329  1.45  jonathan 				m_free(m);
   3330  1.45  jonathan 				m = n;	/* for continuing loop */
   3331  1.45  jonathan 			}
   3332  1.45  jonathan 		}
   3333  1.45  jonathan 		prevlen = m->m_len;
   3334  1.45  jonathan 	}
   3335  1.45  jonathan 	return 0;
   3336  1.45  jonathan }
   3337  1.45  jonathan 
   3338   1.1      fvdl /*
   3339   1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3340   1.1      fvdl  * pointers to descriptors.
   3341   1.1      fvdl  */
   3342   1.1      fvdl int
   3343   1.1      fvdl bge_encap(sc, m_head, txidx)
   3344   1.1      fvdl 	struct bge_softc *sc;
   3345   1.1      fvdl 	struct mbuf *m_head;
   3346   1.1      fvdl 	u_int32_t *txidx;
   3347   1.1      fvdl {
   3348   1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3349   1.1      fvdl 	u_int32_t		frag, cur, cnt = 0;
   3350   1.1      fvdl 	u_int16_t		csum_flags = 0;
   3351   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3352   1.1      fvdl 	bus_dmamap_t dmamap;
   3353   1.1      fvdl 	int			i = 0;
   3354  1.29    itojun 	struct m_tag		*mtag;
   3355   1.1      fvdl 
   3356   1.1      fvdl 	cur = frag = *txidx;
   3357   1.1      fvdl 
   3358   1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3359   1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3360   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3361   1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3362   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3363   1.1      fvdl 	}
   3364   1.1      fvdl 
   3365  1.87     perry 	/*
   3366  1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3367  1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3368  1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3369  1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3370  1.46  jonathan 	 * are confirmed to not require the workaround.)
   3371  1.46  jonathan 	 */
   3372  1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3373  1.46  jonathan #ifdef notyet
   3374  1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3375  1.87     perry #endif
   3376  1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3377  1.46  jonathan 		goto check_dma_bug;
   3378  1.46  jonathan 
   3379  1.46  jonathan 	if (bge_cksum_pad(m_head) != 0)
   3380  1.46  jonathan 	    return ENOBUFS;
   3381  1.46  jonathan 
   3382  1.46  jonathan check_dma_bug:
   3383  1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3384  1.29    itojun 		goto doit;
   3385  1.25  jonathan 	/*
   3386  1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3387  1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3388  1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3389  1.25  jonathan 	 */
   3390  1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3391  1.45  jonathan 		return ENOBUFS;
   3392  1.25  jonathan 
   3393  1.25  jonathan doit:
   3394   1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3395   1.1      fvdl 	if (dma == NULL)
   3396   1.1      fvdl 		return ENOBUFS;
   3397   1.1      fvdl 	dmamap = dma->dmamap;
   3398   1.1      fvdl 
   3399   1.1      fvdl 	/*
   3400   1.1      fvdl 	 * Start packing the mbufs in this chain into
   3401   1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3402   1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3403   1.1      fvdl 	 */
   3404   1.1      fvdl 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3405   1.1      fvdl 	    BUS_DMA_NOWAIT))
   3406   1.1      fvdl 		return(ENOBUFS);
   3407   1.1      fvdl 
   3408  1.85  jdolecek 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
   3409   1.6   thorpej 
   3410   1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3411   1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3412   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3413   1.1      fvdl 			break;
   3414   1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3415   1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3416   1.1      fvdl 		f->bge_flags = csum_flags;
   3417   1.1      fvdl 
   3418  1.28    itojun 		if (mtag != NULL) {
   3419   1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3420  1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3421   1.1      fvdl 		} else {
   3422   1.1      fvdl 			f->bge_vlan_tag = 0;
   3423   1.1      fvdl 		}
   3424   1.1      fvdl 		/*
   3425   1.1      fvdl 		 * Sanity check: avoid coming within 16 descriptors
   3426   1.1      fvdl 		 * of the end of the ring.
   3427   1.1      fvdl 		 */
   3428   1.1      fvdl 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3429   1.1      fvdl 			return(ENOBUFS);
   3430   1.1      fvdl 		cur = frag;
   3431   1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3432   1.1      fvdl 		cnt++;
   3433   1.1      fvdl 	}
   3434   1.1      fvdl 
   3435   1.1      fvdl 	if (i < dmamap->dm_nsegs)
   3436   1.1      fvdl 		return ENOBUFS;
   3437   1.1      fvdl 
   3438   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3439   1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3440   1.1      fvdl 
   3441   1.1      fvdl 	if (frag == sc->bge_tx_saved_considx)
   3442   1.1      fvdl 		return(ENOBUFS);
   3443   1.1      fvdl 
   3444   1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3445   1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3446   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3447   1.1      fvdl 	sc->txdma[cur] = dma;
   3448   1.1      fvdl 	sc->bge_txcnt += cnt;
   3449   1.1      fvdl 
   3450   1.1      fvdl 	*txidx = frag;
   3451   1.1      fvdl 
   3452   1.1      fvdl 	return(0);
   3453   1.1      fvdl }
   3454   1.1      fvdl 
   3455   1.1      fvdl /*
   3456   1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3457   1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3458   1.1      fvdl  */
   3459   1.1      fvdl void
   3460   1.1      fvdl bge_start(ifp)
   3461   1.1      fvdl 	struct ifnet *ifp;
   3462   1.1      fvdl {
   3463   1.1      fvdl 	struct bge_softc *sc;
   3464   1.1      fvdl 	struct mbuf *m_head = NULL;
   3465   1.1      fvdl 	u_int32_t prodidx = 0;
   3466   1.1      fvdl 	int pkts = 0;
   3467   1.1      fvdl 
   3468   1.1      fvdl 	sc = ifp->if_softc;
   3469   1.1      fvdl 
   3470   1.1      fvdl 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3471   1.1      fvdl 		return;
   3472   1.1      fvdl 
   3473   1.1      fvdl 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3474   1.1      fvdl 
   3475   1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3476   1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   3477   1.1      fvdl 		if (m_head == NULL)
   3478   1.1      fvdl 			break;
   3479   1.1      fvdl 
   3480   1.1      fvdl #if 0
   3481   1.1      fvdl 		/*
   3482   1.1      fvdl 		 * XXX
   3483   1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   3484   1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   3485   1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   3486   1.1      fvdl 		 * chain at once.
   3487   1.1      fvdl 		 * (paranoia -- may not actually be needed)
   3488   1.1      fvdl 		 */
   3489   1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   3490   1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3491   1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3492  1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3493   1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   3494   1.1      fvdl 				break;
   3495   1.1      fvdl 			}
   3496   1.1      fvdl 		}
   3497   1.1      fvdl #endif
   3498   1.1      fvdl 
   3499   1.1      fvdl 		/*
   3500   1.1      fvdl 		 * Pack the data into the transmit ring. If we
   3501   1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   3502   1.1      fvdl 		 * for the NIC to drain the ring.
   3503   1.1      fvdl 		 */
   3504   1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   3505   1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   3506   1.1      fvdl 			break;
   3507   1.1      fvdl 		}
   3508   1.1      fvdl 
   3509   1.1      fvdl 		/* now we are committed to transmit the packet */
   3510   1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3511   1.1      fvdl 		pkts++;
   3512   1.1      fvdl 
   3513   1.1      fvdl #if NBPFILTER > 0
   3514   1.1      fvdl 		/*
   3515   1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   3516   1.1      fvdl 		 * to him.
   3517   1.1      fvdl 		 */
   3518   1.1      fvdl 		if (ifp->if_bpf)
   3519   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   3520   1.1      fvdl #endif
   3521   1.1      fvdl 	}
   3522   1.1      fvdl 	if (pkts == 0)
   3523   1.1      fvdl 		return;
   3524   1.1      fvdl 
   3525   1.1      fvdl 	/* Transmit */
   3526   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3527  1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3528  1.29    itojun 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3529   1.1      fvdl 
   3530   1.1      fvdl 	/*
   3531   1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   3532   1.1      fvdl 	 */
   3533   1.1      fvdl 	ifp->if_timer = 5;
   3534   1.1      fvdl }
   3535   1.1      fvdl 
   3536   1.1      fvdl int
   3537   1.1      fvdl bge_init(ifp)
   3538   1.1      fvdl 	struct ifnet *ifp;
   3539   1.1      fvdl {
   3540   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3541   1.1      fvdl 	u_int16_t *m;
   3542   1.1      fvdl 	int s, error;
   3543   1.1      fvdl 
   3544   1.1      fvdl 	s = splnet();
   3545   1.1      fvdl 
   3546   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3547   1.1      fvdl 
   3548   1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   3549   1.1      fvdl 	bge_stop(sc);
   3550   1.1      fvdl 	bge_reset(sc);
   3551   1.1      fvdl 	bge_chipinit(sc);
   3552   1.1      fvdl 
   3553   1.1      fvdl 	/*
   3554   1.1      fvdl 	 * Init the various state machines, ring
   3555   1.1      fvdl 	 * control blocks and firmware.
   3556   1.1      fvdl 	 */
   3557   1.1      fvdl 	error = bge_blockinit(sc);
   3558   1.1      fvdl 	if (error != 0) {
   3559   1.1      fvdl 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3560   1.1      fvdl 		    error);
   3561   1.1      fvdl 		splx(s);
   3562   1.1      fvdl 		return error;
   3563   1.1      fvdl 	}
   3564   1.1      fvdl 
   3565   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3566   1.1      fvdl 
   3567   1.1      fvdl 	/* Specify MTU. */
   3568   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3569   1.1      fvdl 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3570   1.1      fvdl 
   3571   1.1      fvdl 	/* Load our MAC address. */
   3572   1.1      fvdl 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3573   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3574   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3575   1.1      fvdl 
   3576   1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   3577   1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   3578   1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3579   1.1      fvdl 	} else {
   3580   1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3581   1.1      fvdl 	}
   3582   1.1      fvdl 
   3583   1.1      fvdl 	/* Program multicast filter. */
   3584   1.1      fvdl 	bge_setmulti(sc);
   3585   1.1      fvdl 
   3586   1.1      fvdl 	/* Init RX ring. */
   3587   1.1      fvdl 	bge_init_rx_ring_std(sc);
   3588   1.1      fvdl 
   3589   1.1      fvdl 	/* Init jumbo RX ring. */
   3590   1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3591   1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   3592   1.1      fvdl 
   3593   1.1      fvdl 	/* Init our RX return ring index */
   3594   1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   3595   1.1      fvdl 
   3596   1.1      fvdl 	/* Init TX ring. */
   3597   1.1      fvdl 	bge_init_tx_ring(sc);
   3598   1.1      fvdl 
   3599   1.1      fvdl 	/* Turn on transmitter */
   3600   1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3601   1.1      fvdl 
   3602   1.1      fvdl 	/* Turn on receiver */
   3603   1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3604   1.1      fvdl 
   3605  1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3606  1.71   thorpej 
   3607   1.1      fvdl 	/* Tell firmware we're alive. */
   3608   1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3609   1.1      fvdl 
   3610   1.1      fvdl 	/* Enable host interrupts. */
   3611   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3612   1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3613   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3614   1.1      fvdl 
   3615   1.1      fvdl 	bge_ifmedia_upd(ifp);
   3616   1.1      fvdl 
   3617   1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   3618   1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   3619   1.1      fvdl 
   3620   1.1      fvdl 	splx(s);
   3621   1.1      fvdl 
   3622   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3623   1.1      fvdl 
   3624   1.1      fvdl 	return 0;
   3625   1.1      fvdl }
   3626   1.1      fvdl 
   3627   1.1      fvdl /*
   3628   1.1      fvdl  * Set media options.
   3629   1.1      fvdl  */
   3630   1.1      fvdl int
   3631   1.1      fvdl bge_ifmedia_upd(ifp)
   3632   1.1      fvdl 	struct ifnet *ifp;
   3633   1.1      fvdl {
   3634   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3635   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3636   1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3637   1.1      fvdl 
   3638   1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3639   1.1      fvdl 	if (sc->bge_tbi) {
   3640   1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3641   1.1      fvdl 			return(EINVAL);
   3642   1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3643   1.1      fvdl 		case IFM_AUTO:
   3644   1.1      fvdl 			break;
   3645   1.1      fvdl 		case IFM_1000_SX:
   3646   1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3647   1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3648   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3649   1.1      fvdl 			} else {
   3650   1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3651   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3652   1.1      fvdl 			}
   3653   1.1      fvdl 			break;
   3654   1.1      fvdl 		default:
   3655   1.1      fvdl 			return(EINVAL);
   3656   1.1      fvdl 		}
   3657  1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   3658   1.1      fvdl 		return(0);
   3659   1.1      fvdl 	}
   3660   1.1      fvdl 
   3661   1.1      fvdl 	sc->bge_link = 0;
   3662   1.1      fvdl 	mii_mediachg(mii);
   3663   1.1      fvdl 
   3664   1.1      fvdl 	return(0);
   3665   1.1      fvdl }
   3666   1.1      fvdl 
   3667   1.1      fvdl /*
   3668   1.1      fvdl  * Report current media status.
   3669   1.1      fvdl  */
   3670   1.1      fvdl void
   3671   1.1      fvdl bge_ifmedia_sts(ifp, ifmr)
   3672   1.1      fvdl 	struct ifnet *ifp;
   3673   1.1      fvdl 	struct ifmediareq *ifmr;
   3674   1.1      fvdl {
   3675   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3676   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3677   1.1      fvdl 
   3678   1.1      fvdl 	if (sc->bge_tbi) {
   3679   1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   3680   1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   3681   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3682   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3683   1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   3684   1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   3685   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3686   1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   3687   1.1      fvdl 		else
   3688   1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   3689   1.1      fvdl 		return;
   3690   1.1      fvdl 	}
   3691   1.1      fvdl 
   3692   1.1      fvdl 	mii_pollstat(mii);
   3693   1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   3694  1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   3695  1.69   thorpej 	    sc->bge_flowflags;
   3696   1.1      fvdl }
   3697   1.1      fvdl 
   3698   1.1      fvdl int
   3699   1.1      fvdl bge_ioctl(ifp, command, data)
   3700   1.1      fvdl 	struct ifnet *ifp;
   3701   1.1      fvdl 	u_long command;
   3702   1.1      fvdl 	caddr_t data;
   3703   1.1      fvdl {
   3704   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3705   1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   3706   1.1      fvdl 	int s, error = 0;
   3707   1.1      fvdl 	struct mii_data *mii;
   3708   1.1      fvdl 
   3709   1.1      fvdl 	s = splnet();
   3710   1.1      fvdl 
   3711   1.1      fvdl 	switch(command) {
   3712   1.1      fvdl 	case SIOCSIFFLAGS:
   3713   1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   3714   1.1      fvdl 			/*
   3715   1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   3716   1.1      fvdl 			 * then just use the 'set promisc mode' command
   3717   1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   3718   1.1      fvdl 			 * a full re-init means reloading the firmware and
   3719   1.1      fvdl 			 * waiting for it to start up, which may take a
   3720   1.1      fvdl 			 * second or two.
   3721   1.1      fvdl 			 */
   3722   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   3723   1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   3724   1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3725   1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   3726   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3727   1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   3728   1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   3729   1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   3730   1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3731   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   3732   1.1      fvdl 			} else
   3733   1.1      fvdl 				bge_init(ifp);
   3734   1.1      fvdl 		} else {
   3735   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   3736   1.1      fvdl 				bge_stop(sc);
   3737   1.1      fvdl 			}
   3738   1.1      fvdl 		}
   3739   1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   3740   1.1      fvdl 		error = 0;
   3741   1.1      fvdl 		break;
   3742   1.1      fvdl 	case SIOCSIFMEDIA:
   3743  1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   3744  1.69   thorpej 		if (sc->bge_tbi) {
   3745  1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   3746  1.69   thorpej 			sc->bge_flowflags = 0;
   3747  1.69   thorpej 		}
   3748  1.69   thorpej 
   3749  1.69   thorpej 		/* Flow control requires full-duplex mode. */
   3750  1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   3751  1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   3752  1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   3753  1.69   thorpej 		}
   3754  1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   3755  1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   3756  1.69   thorpej 				/* We an do both TXPAUSE and RXPAUSE. */
   3757  1.69   thorpej 				ifr->ifr_media |=
   3758  1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   3759  1.69   thorpej 			}
   3760  1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   3761  1.69   thorpej 		}
   3762  1.69   thorpej 		/* FALLTHROUGH */
   3763   1.1      fvdl 	case SIOCGIFMEDIA:
   3764   1.1      fvdl 		if (sc->bge_tbi) {
   3765   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3766   1.1      fvdl 			    command);
   3767   1.1      fvdl 		} else {
   3768   1.1      fvdl 			mii = &sc->bge_mii;
   3769   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3770   1.1      fvdl 			    command);
   3771   1.1      fvdl 		}
   3772   1.1      fvdl 		break;
   3773   1.1      fvdl 	default:
   3774   1.1      fvdl 		error = ether_ioctl(ifp, command, data);
   3775   1.1      fvdl 		if (error == ENETRESET) {
   3776  1.77   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   3777  1.77   thorpej 				bge_setmulti(sc);
   3778   1.1      fvdl 			error = 0;
   3779   1.1      fvdl 		}
   3780   1.1      fvdl 		break;
   3781   1.1      fvdl 	}
   3782   1.1      fvdl 
   3783   1.1      fvdl 	splx(s);
   3784   1.1      fvdl 
   3785   1.1      fvdl 	return(error);
   3786   1.1      fvdl }
   3787   1.1      fvdl 
   3788   1.1      fvdl void
   3789   1.1      fvdl bge_watchdog(ifp)
   3790   1.1      fvdl 	struct ifnet *ifp;
   3791   1.1      fvdl {
   3792   1.1      fvdl 	struct bge_softc *sc;
   3793   1.1      fvdl 
   3794   1.1      fvdl 	sc = ifp->if_softc;
   3795   1.1      fvdl 
   3796   1.1      fvdl 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3797   1.1      fvdl 
   3798   1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   3799   1.1      fvdl 	bge_init(ifp);
   3800   1.1      fvdl 
   3801   1.1      fvdl 	ifp->if_oerrors++;
   3802   1.1      fvdl }
   3803   1.1      fvdl 
   3804  1.11   thorpej static void
   3805  1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3806  1.11   thorpej {
   3807  1.11   thorpej 	int i;
   3808  1.11   thorpej 
   3809  1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   3810  1.11   thorpej 
   3811  1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3812  1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3813  1.11   thorpej 			return;
   3814  1.11   thorpej 		delay(100);
   3815  1.11   thorpej 	}
   3816  1.11   thorpej 
   3817  1.11   thorpej 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3818  1.11   thorpej 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3819  1.11   thorpej }
   3820  1.11   thorpej 
   3821   1.1      fvdl /*
   3822   1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   3823   1.1      fvdl  * RX and TX lists.
   3824   1.1      fvdl  */
   3825   1.1      fvdl void
   3826   1.1      fvdl bge_stop(sc)
   3827   1.1      fvdl 	struct bge_softc *sc;
   3828   1.1      fvdl {
   3829   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3830   1.1      fvdl 
   3831   1.1      fvdl 	callout_stop(&sc->bge_timeout);
   3832   1.1      fvdl 
   3833   1.1      fvdl 	/*
   3834   1.1      fvdl 	 * Disable all of the receiver blocks
   3835   1.1      fvdl 	 */
   3836  1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3837  1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3838  1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3839  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3840  1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3841  1.44   hannken 	}
   3842  1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3843  1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3844  1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3845   1.1      fvdl 
   3846   1.1      fvdl 	/*
   3847   1.1      fvdl 	 * Disable all of the transmit blocks
   3848   1.1      fvdl 	 */
   3849  1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3850  1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3851  1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3852  1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3853  1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3854  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3855  1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3856  1.44   hannken 	}
   3857  1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3858   1.1      fvdl 
   3859   1.1      fvdl 	/*
   3860   1.1      fvdl 	 * Shut down all of the memory managers and related
   3861   1.1      fvdl 	 * state machines.
   3862   1.1      fvdl 	 */
   3863  1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3864  1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3865  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3866  1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3867  1.44   hannken 	}
   3868  1.11   thorpej 
   3869   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3870   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3871  1.11   thorpej 
   3872  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3873  1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3874  1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3875  1.44   hannken 	}
   3876   1.1      fvdl 
   3877   1.1      fvdl 	/* Disable host interrupts. */
   3878   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3879   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3880   1.1      fvdl 
   3881   1.1      fvdl 	/*
   3882   1.1      fvdl 	 * Tell firmware we're shutting down.
   3883   1.1      fvdl 	 */
   3884   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3885   1.1      fvdl 
   3886   1.1      fvdl 	/* Free the RX lists. */
   3887   1.1      fvdl 	bge_free_rx_ring_std(sc);
   3888   1.1      fvdl 
   3889   1.1      fvdl 	/* Free jumbo RX list. */
   3890   1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   3891   1.1      fvdl 
   3892   1.1      fvdl 	/* Free TX buffers. */
   3893   1.1      fvdl 	bge_free_tx_ring(sc);
   3894   1.1      fvdl 
   3895   1.1      fvdl 	/*
   3896   1.1      fvdl 	 * Isolate/power down the PHY.
   3897   1.1      fvdl 	 */
   3898   1.1      fvdl 	if (!sc->bge_tbi)
   3899   1.1      fvdl 		mii_down(&sc->bge_mii);
   3900   1.1      fvdl 
   3901   1.1      fvdl 	sc->bge_link = 0;
   3902   1.1      fvdl 
   3903   1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3904   1.1      fvdl 
   3905   1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3906   1.1      fvdl }
   3907   1.1      fvdl 
   3908   1.1      fvdl /*
   3909   1.1      fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   3910   1.1      fvdl  * get confused by errant DMAs when rebooting.
   3911   1.1      fvdl  */
   3912   1.1      fvdl void
   3913   1.1      fvdl bge_shutdown(xsc)
   3914   1.1      fvdl 	void *xsc;
   3915   1.1      fvdl {
   3916   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3917   1.1      fvdl 
   3918   1.1      fvdl 	bge_stop(sc);
   3919   1.1      fvdl 	bge_reset(sc);
   3920   1.1      fvdl }
   3921  1.64  jonathan 
   3922  1.64  jonathan 
   3923  1.64  jonathan static int
   3924  1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   3925  1.64  jonathan {
   3926  1.64  jonathan 	int error, t;
   3927  1.64  jonathan 	struct sysctlnode node;
   3928  1.64  jonathan 
   3929  1.64  jonathan 	node = *rnode;
   3930  1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   3931  1.64  jonathan 	node.sysctl_data = &t;
   3932  1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3933  1.64  jonathan 	if (error || newp == NULL)
   3934  1.64  jonathan 		return (error);
   3935  1.64  jonathan 
   3936  1.64  jonathan #if 0
   3937  1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   3938  1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   3939  1.64  jonathan #endif
   3940  1.64  jonathan 
   3941  1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   3942  1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   3943  1.64  jonathan 			return (EINVAL);
   3944  1.64  jonathan 		bge_update_all_threshes(t);
   3945  1.64  jonathan 	} else
   3946  1.64  jonathan 		return (EINVAL);
   3947  1.64  jonathan 
   3948  1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   3949  1.64  jonathan 
   3950  1.64  jonathan 	return (0);
   3951  1.64  jonathan }
   3952  1.64  jonathan 
   3953  1.64  jonathan /*
   3954  1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   3955  1.64  jonathan  *
   3956  1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   3957  1.64  jonathan  */
   3958  1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   3959  1.64  jonathan {
   3960  1.66    atatat 	int rc, bge_root_num;
   3961  1.64  jonathan 	struct sysctlnode *node;
   3962  1.64  jonathan 
   3963  1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3964  1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3965  1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3966  1.64  jonathan 		goto err;
   3967  1.64  jonathan 	}
   3968  1.64  jonathan 
   3969  1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3970  1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   3971  1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   3972  1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3973  1.64  jonathan 		goto err;
   3974  1.64  jonathan 	}
   3975  1.64  jonathan 
   3976  1.66    atatat 	bge_root_num = node->sysctl_num;
   3977  1.66    atatat 
   3978  1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   3979  1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3980  1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3981  1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   3982  1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   3983  1.73    atatat 	    sysctl_bge_verify, 0,
   3984  1.64  jonathan 	    &bge_rx_thresh_lvl,
   3985  1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   3986  1.64  jonathan 	    CTL_EOL)) != 0) {
   3987  1.64  jonathan 		goto err;
   3988  1.64  jonathan 	}
   3989  1.64  jonathan 
   3990  1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   3991  1.64  jonathan 
   3992  1.64  jonathan 	return;
   3993  1.64  jonathan 
   3994  1.64  jonathan err:
   3995  1.64  jonathan 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3996  1.64  jonathan }
   3997  1.82  jmcneill 
   3998  1.82  jmcneill void
   3999  1.82  jmcneill bge_powerhook(int why, void *hdl)
   4000  1.82  jmcneill {
   4001  1.82  jmcneill 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4002  1.82  jmcneill 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4003  1.82  jmcneill 	struct pci_attach_args *pa = &(sc->bge_pa);
   4004  1.82  jmcneill 	pci_chipset_tag_t pc = pa->pa_pc;
   4005  1.82  jmcneill 	pcitag_t tag = pa->pa_tag;
   4006  1.82  jmcneill 
   4007  1.82  jmcneill 	switch (why) {
   4008  1.82  jmcneill 	case PWR_SOFTSUSPEND:
   4009  1.82  jmcneill 	case PWR_SOFTSTANDBY:
   4010  1.82  jmcneill 		bge_shutdown(sc);
   4011  1.82  jmcneill 		break;
   4012  1.82  jmcneill 	case PWR_SOFTRESUME:
   4013  1.82  jmcneill 		if (ifp->if_flags & IFF_UP) {
   4014  1.82  jmcneill 			ifp->if_flags &= ~IFF_RUNNING;
   4015  1.82  jmcneill 			bge_init(ifp);
   4016  1.82  jmcneill 		}
   4017  1.82  jmcneill 		break;
   4018  1.82  jmcneill 	case PWR_SUSPEND:
   4019  1.82  jmcneill 	case PWR_STANDBY:
   4020  1.82  jmcneill 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4021  1.83  jmcneill 		break;
   4022  1.82  jmcneill 	case PWR_RESUME:
   4023  1.82  jmcneill 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4024  1.82  jmcneill 		break;
   4025  1.82  jmcneill 	}
   4026  1.82  jmcneill 
   4027  1.82  jmcneill 	return;
   4028  1.82  jmcneill }
   4029