Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.9
      1  1.9  thorpej /*	$NetBSD: if_bge.c,v 1.9 2002/06/28 01:10:06 thorpej Exp $	*/
      2  1.8  thorpej 
      3  1.1     fvdl /*
      4  1.1     fvdl  * Copyright (c) 2001 Wind River Systems
      5  1.1     fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6  1.1     fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  1.1     fvdl  *
      8  1.1     fvdl  * Redistribution and use in source and binary forms, with or without
      9  1.1     fvdl  * modification, are permitted provided that the following conditions
     10  1.1     fvdl  * are met:
     11  1.1     fvdl  * 1. Redistributions of source code must retain the above copyright
     12  1.1     fvdl  *    notice, this list of conditions and the following disclaimer.
     13  1.1     fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1     fvdl  *    notice, this list of conditions and the following disclaimer in the
     15  1.1     fvdl  *    documentation and/or other materials provided with the distribution.
     16  1.1     fvdl  * 3. All advertising materials mentioning features or use of this software
     17  1.1     fvdl  *    must display the following acknowledgement:
     18  1.1     fvdl  *	This product includes software developed by Bill Paul.
     19  1.1     fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20  1.1     fvdl  *    may be used to endorse or promote products derived from this software
     21  1.1     fvdl  *    without specific prior written permission.
     22  1.1     fvdl  *
     23  1.1     fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  1.1     fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.1     fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.1     fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  1.1     fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.1     fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.1     fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.1     fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.1     fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  1.1     fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  1.1     fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34  1.1     fvdl  *
     35  1.1     fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  1.1     fvdl  */
     37  1.1     fvdl 
     38  1.1     fvdl /*
     39  1.1     fvdl  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
     40  1.1     fvdl  *
     41  1.1     fvdl  * Written by Bill Paul <wpaul (at) windriver.com>
     42  1.1     fvdl  * Senior Engineer, Wind River Systems
     43  1.1     fvdl  */
     44  1.1     fvdl 
     45  1.1     fvdl /*
     46  1.1     fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     47  1.1     fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     48  1.1     fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     49  1.1     fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     50  1.1     fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     51  1.1     fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     52  1.1     fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     53  1.1     fvdl  * Other features, such as TCP segmentation, may be available as part
     54  1.1     fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     55  1.1     fvdl  * firmware images can be stored in hardware and need not be compiled
     56  1.1     fvdl  * into the driver.
     57  1.1     fvdl  *
     58  1.1     fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     59  1.1     fvdl  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
     60  1.1     fvdl  *
     61  1.1     fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     62  1.1     fvdl  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
     63  1.1     fvdl  * does not support external SSRAM.
     64  1.1     fvdl  *
     65  1.1     fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     66  1.1     fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     67  1.1     fvdl  *
     68  1.1     fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     69  1.1     fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     70  1.1     fvdl  * that these features are simply not available on the BCM5701. As a
     71  1.1     fvdl  * result, this driver does not implement any support for the mini RX
     72  1.1     fvdl  * ring.
     73  1.1     fvdl  */
     74  1.1     fvdl 
     75  1.1     fvdl #include "bpfilter.h"
     76  1.1     fvdl #include "vlan.h"
     77  1.1     fvdl 
     78  1.1     fvdl #include <sys/param.h>
     79  1.1     fvdl #include <sys/systm.h>
     80  1.1     fvdl #include <sys/callout.h>
     81  1.1     fvdl #include <sys/sockio.h>
     82  1.1     fvdl #include <sys/mbuf.h>
     83  1.1     fvdl #include <sys/malloc.h>
     84  1.1     fvdl #include <sys/kernel.h>
     85  1.1     fvdl #include <sys/device.h>
     86  1.1     fvdl #include <sys/socket.h>
     87  1.1     fvdl 
     88  1.1     fvdl #include <net/if.h>
     89  1.1     fvdl #include <net/if_dl.h>
     90  1.1     fvdl #include <net/if_media.h>
     91  1.1     fvdl #include <net/if_ether.h>
     92  1.1     fvdl 
     93  1.1     fvdl #ifdef INET
     94  1.1     fvdl #include <netinet/in.h>
     95  1.1     fvdl #include <netinet/in_systm.h>
     96  1.1     fvdl #include <netinet/in_var.h>
     97  1.1     fvdl #include <netinet/ip.h>
     98  1.1     fvdl #endif
     99  1.1     fvdl 
    100  1.1     fvdl #if NBPFILTER > 0
    101  1.1     fvdl #include <net/bpf.h>
    102  1.1     fvdl #endif
    103  1.1     fvdl 
    104  1.1     fvdl #include <dev/pci/pcireg.h>
    105  1.1     fvdl #include <dev/pci/pcivar.h>
    106  1.1     fvdl #include <dev/pci/pcidevs.h>
    107  1.1     fvdl 
    108  1.1     fvdl #include <dev/mii/mii.h>
    109  1.1     fvdl #include <dev/mii/miivar.h>
    110  1.1     fvdl #include <dev/mii/miidevs.h>
    111  1.1     fvdl #include <dev/mii/brgphyreg.h>
    112  1.1     fvdl 
    113  1.1     fvdl #include <dev/pci/if_bgereg.h>
    114  1.1     fvdl 
    115  1.1     fvdl #include <uvm/uvm_extern.h>
    116  1.1     fvdl 
    117  1.1     fvdl /* #define BGE_CHECKSUM */
    118  1.1     fvdl 
    119  1.1     fvdl int bge_probe(struct device *, struct cfdata *, void *);
    120  1.1     fvdl void bge_attach(struct device *, struct device *, void *);
    121  1.1     fvdl void bge_release_resources(struct bge_softc *);
    122  1.1     fvdl void bge_txeof(struct bge_softc *);
    123  1.1     fvdl void bge_rxeof(struct bge_softc *);
    124  1.1     fvdl 
    125  1.1     fvdl void bge_tick(void *);
    126  1.1     fvdl void bge_stats_update(struct bge_softc *);
    127  1.1     fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    128  1.1     fvdl 
    129  1.1     fvdl int bge_intr(void *);
    130  1.1     fvdl void bge_start(struct ifnet *);
    131  1.1     fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
    132  1.1     fvdl int bge_init(struct ifnet *);
    133  1.1     fvdl void bge_stop(struct bge_softc *);
    134  1.1     fvdl void bge_watchdog(struct ifnet *);
    135  1.1     fvdl void bge_shutdown(void *);
    136  1.1     fvdl int bge_ifmedia_upd(struct ifnet *);
    137  1.1     fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    138  1.1     fvdl 
    139  1.1     fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    140  1.1     fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    141  1.1     fvdl 
    142  1.1     fvdl u_int32_t bge_crc(struct bge_softc *, caddr_t);
    143  1.1     fvdl void bge_setmulti(struct bge_softc *);
    144  1.1     fvdl 
    145  1.1     fvdl void bge_handle_events(struct bge_softc *);
    146  1.1     fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
    147  1.1     fvdl void bge_free_jumbo_mem(struct bge_softc *);
    148  1.1     fvdl void *bge_jalloc(struct bge_softc *);
    149  1.1     fvdl void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
    150  1.1     fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    151  1.1     fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    152  1.1     fvdl int bge_init_rx_ring_std(struct bge_softc *);
    153  1.1     fvdl void bge_free_rx_ring_std(struct bge_softc *);
    154  1.1     fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
    155  1.1     fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
    156  1.1     fvdl void bge_free_tx_ring(struct bge_softc *);
    157  1.1     fvdl int bge_init_tx_ring(struct bge_softc *);
    158  1.1     fvdl 
    159  1.1     fvdl int bge_chipinit(struct bge_softc *);
    160  1.1     fvdl int bge_blockinit(struct bge_softc *);
    161  1.1     fvdl 
    162  1.1     fvdl #ifdef notdef
    163  1.1     fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    164  1.1     fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    165  1.1     fvdl void bge_vpd_read(struct bge_softc *);
    166  1.1     fvdl #endif
    167  1.1     fvdl 
    168  1.1     fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
    169  1.1     fvdl void bge_writemem_ind(struct bge_softc *, int, int);
    170  1.1     fvdl #ifdef notdef
    171  1.1     fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
    172  1.1     fvdl #endif
    173  1.1     fvdl void bge_writereg_ind(struct bge_softc *, int, int);
    174  1.1     fvdl 
    175  1.1     fvdl int bge_miibus_readreg(struct device *, int, int);
    176  1.1     fvdl void bge_miibus_writereg(struct device *, int, int, int);
    177  1.1     fvdl void bge_miibus_statchg(struct device *);
    178  1.1     fvdl 
    179  1.1     fvdl void bge_reset(struct bge_softc *);
    180  1.1     fvdl void bge_phy_hack(struct bge_softc *);
    181  1.1     fvdl 
    182  1.1     fvdl void bge_dump_status(struct bge_softc *);
    183  1.1     fvdl void bge_dump_rxbd(struct bge_rx_bd *);
    184  1.1     fvdl 
    185  1.1     fvdl #define BGE_DEBUG
    186  1.1     fvdl #ifdef BGE_DEBUG
    187  1.1     fvdl #define DPRINTF(x)	if (bgedebug) printf x
    188  1.1     fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    189  1.1     fvdl int	bgedebug = 0;
    190  1.1     fvdl #else
    191  1.1     fvdl #define DPRINTF(x)
    192  1.1     fvdl #define DPRINTFN(n,x)
    193  1.1     fvdl #endif
    194  1.1     fvdl 
    195  1.1     fvdl struct cfattach bge_ca = {
    196  1.1     fvdl 	sizeof(struct bge_softc), bge_probe, bge_attach
    197  1.1     fvdl };
    198  1.1     fvdl 
    199  1.1     fvdl u_int32_t
    200  1.1     fvdl bge_readmem_ind(sc, off)
    201  1.1     fvdl 	struct bge_softc *sc;
    202  1.1     fvdl 	int off;
    203  1.1     fvdl {
    204  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    205  1.1     fvdl 	pcireg_t val;
    206  1.1     fvdl 
    207  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    208  1.1     fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    209  1.1     fvdl 	return val;
    210  1.1     fvdl }
    211  1.1     fvdl 
    212  1.1     fvdl void
    213  1.1     fvdl bge_writemem_ind(sc, off, val)
    214  1.1     fvdl 	struct bge_softc *sc;
    215  1.1     fvdl 	int off, val;
    216  1.1     fvdl {
    217  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    218  1.1     fvdl 
    219  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    220  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    221  1.1     fvdl }
    222  1.1     fvdl 
    223  1.1     fvdl #ifdef notdef
    224  1.1     fvdl u_int32_t
    225  1.1     fvdl bge_readreg_ind(sc, off)
    226  1.1     fvdl 	struct bge_softc *sc;
    227  1.1     fvdl 	int off;
    228  1.1     fvdl {
    229  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    230  1.1     fvdl 
    231  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    232  1.1     fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    233  1.1     fvdl }
    234  1.1     fvdl #endif
    235  1.1     fvdl 
    236  1.1     fvdl void
    237  1.1     fvdl bge_writereg_ind(sc, off, val)
    238  1.1     fvdl 	struct bge_softc *sc;
    239  1.1     fvdl 	int off, val;
    240  1.1     fvdl {
    241  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    242  1.1     fvdl 
    243  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    244  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    245  1.1     fvdl }
    246  1.1     fvdl 
    247  1.1     fvdl #ifdef notdef
    248  1.1     fvdl u_int8_t
    249  1.1     fvdl bge_vpd_readbyte(sc, addr)
    250  1.1     fvdl 	struct bge_softc *sc;
    251  1.1     fvdl 	int addr;
    252  1.1     fvdl {
    253  1.1     fvdl 	int i;
    254  1.1     fvdl 	u_int32_t val;
    255  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    256  1.1     fvdl 
    257  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    258  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    259  1.1     fvdl 		DELAY(10);
    260  1.1     fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    261  1.1     fvdl 		    BGE_VPD_FLAG)
    262  1.1     fvdl 			break;
    263  1.1     fvdl 	}
    264  1.1     fvdl 
    265  1.1     fvdl 	if (i == BGE_TIMEOUT) {
    266  1.1     fvdl 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    267  1.1     fvdl 		return(0);
    268  1.1     fvdl 	}
    269  1.1     fvdl 
    270  1.1     fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    271  1.1     fvdl 
    272  1.1     fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    273  1.1     fvdl }
    274  1.1     fvdl 
    275  1.1     fvdl void
    276  1.1     fvdl bge_vpd_read_res(sc, res, addr)
    277  1.1     fvdl 	struct bge_softc *sc;
    278  1.1     fvdl 	struct vpd_res *res;
    279  1.1     fvdl 	int addr;
    280  1.1     fvdl {
    281  1.1     fvdl 	int i;
    282  1.1     fvdl 	u_int8_t *ptr;
    283  1.1     fvdl 
    284  1.1     fvdl 	ptr = (u_int8_t *)res;
    285  1.1     fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    286  1.1     fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    287  1.1     fvdl }
    288  1.1     fvdl 
    289  1.1     fvdl void
    290  1.1     fvdl bge_vpd_read(sc)
    291  1.1     fvdl 	struct bge_softc *sc;
    292  1.1     fvdl {
    293  1.1     fvdl 	int pos = 0, i;
    294  1.1     fvdl 	struct vpd_res res;
    295  1.1     fvdl 
    296  1.1     fvdl 	if (sc->bge_vpd_prodname != NULL)
    297  1.1     fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    298  1.1     fvdl 	if (sc->bge_vpd_readonly != NULL)
    299  1.1     fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    300  1.1     fvdl 	sc->bge_vpd_prodname = NULL;
    301  1.1     fvdl 	sc->bge_vpd_readonly = NULL;
    302  1.1     fvdl 
    303  1.1     fvdl 	bge_vpd_read_res(sc, &res, pos);
    304  1.1     fvdl 
    305  1.1     fvdl 	if (res.vr_id != VPD_RES_ID) {
    306  1.1     fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    307  1.1     fvdl 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    308  1.1     fvdl 		return;
    309  1.1     fvdl 	}
    310  1.1     fvdl 
    311  1.1     fvdl 	pos += sizeof(res);
    312  1.1     fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    313  1.1     fvdl 	if (sc->bge_vpd_prodname == NULL)
    314  1.1     fvdl 		panic("bge_vpd_read");
    315  1.1     fvdl 	for (i = 0; i < res.vr_len; i++)
    316  1.1     fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    317  1.1     fvdl 	sc->bge_vpd_prodname[i] = '\0';
    318  1.1     fvdl 	pos += i;
    319  1.1     fvdl 
    320  1.1     fvdl 	bge_vpd_read_res(sc, &res, pos);
    321  1.1     fvdl 
    322  1.1     fvdl 	if (res.vr_id != VPD_RES_READ) {
    323  1.1     fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    324  1.1     fvdl 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    325  1.1     fvdl 		return;
    326  1.1     fvdl 	}
    327  1.1     fvdl 
    328  1.1     fvdl 	pos += sizeof(res);
    329  1.1     fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    330  1.1     fvdl 	if (sc->bge_vpd_readonly == NULL)
    331  1.1     fvdl 		panic("bge_vpd_read");
    332  1.1     fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    333  1.1     fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    334  1.1     fvdl }
    335  1.1     fvdl #endif
    336  1.1     fvdl 
    337  1.1     fvdl /*
    338  1.1     fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    339  1.1     fvdl  * BCM570x supports both the traditional bitbang interface and an
    340  1.1     fvdl  * auto access interface for reading the EEPROM. We use the auto
    341  1.1     fvdl  * access method.
    342  1.1     fvdl  */
    343  1.1     fvdl u_int8_t
    344  1.1     fvdl bge_eeprom_getbyte(sc, addr, dest)
    345  1.1     fvdl 	struct bge_softc *sc;
    346  1.1     fvdl 	int addr;
    347  1.1     fvdl 	u_int8_t *dest;
    348  1.1     fvdl {
    349  1.1     fvdl 	int i;
    350  1.1     fvdl 	u_int32_t byte = 0;
    351  1.1     fvdl 
    352  1.1     fvdl 	/*
    353  1.1     fvdl 	 * Enable use of auto EEPROM access so we can avoid
    354  1.1     fvdl 	 * having to use the bitbang method.
    355  1.1     fvdl 	 */
    356  1.1     fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    357  1.1     fvdl 
    358  1.1     fvdl 	/* Reset the EEPROM, load the clock period. */
    359  1.1     fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    360  1.1     fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    361  1.1     fvdl 	DELAY(20);
    362  1.1     fvdl 
    363  1.1     fvdl 	/* Issue the read EEPROM command. */
    364  1.1     fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    365  1.1     fvdl 
    366  1.1     fvdl 	/* Wait for completion */
    367  1.1     fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    368  1.1     fvdl 		DELAY(10);
    369  1.1     fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    370  1.1     fvdl 			break;
    371  1.1     fvdl 	}
    372  1.1     fvdl 
    373  1.1     fvdl 	if (i == BGE_TIMEOUT) {
    374  1.1     fvdl 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    375  1.1     fvdl 		return(0);
    376  1.1     fvdl 	}
    377  1.1     fvdl 
    378  1.1     fvdl 	/* Get result. */
    379  1.1     fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    380  1.1     fvdl 
    381  1.1     fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    382  1.1     fvdl 
    383  1.1     fvdl 	return(0);
    384  1.1     fvdl }
    385  1.1     fvdl 
    386  1.1     fvdl /*
    387  1.1     fvdl  * Read a sequence of bytes from the EEPROM.
    388  1.1     fvdl  */
    389  1.1     fvdl int
    390  1.1     fvdl bge_read_eeprom(sc, dest, off, cnt)
    391  1.1     fvdl 	struct bge_softc *sc;
    392  1.1     fvdl 	caddr_t dest;
    393  1.1     fvdl 	int off;
    394  1.1     fvdl 	int cnt;
    395  1.1     fvdl {
    396  1.1     fvdl 	int err = 0, i;
    397  1.1     fvdl 	u_int8_t byte = 0;
    398  1.1     fvdl 
    399  1.1     fvdl 	for (i = 0; i < cnt; i++) {
    400  1.1     fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    401  1.1     fvdl 		if (err)
    402  1.1     fvdl 			break;
    403  1.1     fvdl 		*(dest + i) = byte;
    404  1.1     fvdl 	}
    405  1.1     fvdl 
    406  1.1     fvdl 	return(err ? 1 : 0);
    407  1.1     fvdl }
    408  1.1     fvdl 
    409  1.1     fvdl int
    410  1.1     fvdl bge_miibus_readreg(dev, phy, reg)
    411  1.1     fvdl 	struct device *dev;
    412  1.1     fvdl 	int phy, reg;
    413  1.1     fvdl {
    414  1.1     fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    415  1.1     fvdl 	struct ifnet *ifp;
    416  1.1     fvdl 	u_int32_t val;
    417  1.1     fvdl 	int i;
    418  1.1     fvdl 
    419  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
    420  1.1     fvdl 
    421  1.1     fvdl 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
    422  1.1     fvdl 		return(0);
    423  1.1     fvdl 
    424  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    425  1.1     fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    426  1.1     fvdl 
    427  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    428  1.1     fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    429  1.1     fvdl 		if (!(val & BGE_MICOMM_BUSY))
    430  1.1     fvdl 			break;
    431  1.9  thorpej 		delay(10);
    432  1.1     fvdl 	}
    433  1.1     fvdl 
    434  1.1     fvdl 	if (i == BGE_TIMEOUT) {
    435  1.1     fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    436  1.1     fvdl 		return(0);
    437  1.1     fvdl 	}
    438  1.1     fvdl 
    439  1.1     fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    440  1.1     fvdl 
    441  1.1     fvdl 	if (val & BGE_MICOMM_READFAIL)
    442  1.1     fvdl 		return(0);
    443  1.1     fvdl 
    444  1.1     fvdl 	return(val & 0xFFFF);
    445  1.1     fvdl }
    446  1.1     fvdl 
    447  1.1     fvdl void
    448  1.1     fvdl bge_miibus_writereg(dev, phy, reg, val)
    449  1.1     fvdl 	struct device *dev;
    450  1.1     fvdl 	int phy, reg, val;
    451  1.1     fvdl {
    452  1.1     fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    453  1.1     fvdl 	int i;
    454  1.1     fvdl 
    455  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    456  1.1     fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    457  1.1     fvdl 
    458  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    459  1.1     fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    460  1.1     fvdl 			break;
    461  1.9  thorpej 		delay(10);
    462  1.1     fvdl 	}
    463  1.1     fvdl 
    464  1.1     fvdl 	if (i == BGE_TIMEOUT) {
    465  1.1     fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    466  1.1     fvdl 	}
    467  1.1     fvdl }
    468  1.1     fvdl 
    469  1.1     fvdl void
    470  1.1     fvdl bge_miibus_statchg(dev)
    471  1.1     fvdl 	struct device *dev;
    472  1.1     fvdl {
    473  1.1     fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    474  1.1     fvdl 	struct mii_data *mii = &sc->bge_mii;
    475  1.1     fvdl 
    476  1.1     fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    477  1.1     fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    478  1.1     fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    479  1.1     fvdl 	} else {
    480  1.1     fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    481  1.1     fvdl 	}
    482  1.1     fvdl 
    483  1.1     fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    484  1.1     fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    485  1.1     fvdl 	} else {
    486  1.1     fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    487  1.1     fvdl 	}
    488  1.1     fvdl 
    489  1.1     fvdl 	bge_phy_hack(sc);
    490  1.1     fvdl }
    491  1.1     fvdl 
    492  1.1     fvdl /*
    493  1.1     fvdl  * Handle events that have triggered interrupts.
    494  1.1     fvdl  */
    495  1.1     fvdl void
    496  1.1     fvdl bge_handle_events(sc)
    497  1.1     fvdl 	struct bge_softc		*sc;
    498  1.1     fvdl {
    499  1.1     fvdl 
    500  1.1     fvdl 	return;
    501  1.1     fvdl }
    502  1.1     fvdl 
    503  1.1     fvdl /*
    504  1.1     fvdl  * Memory management for jumbo frames.
    505  1.1     fvdl  */
    506  1.1     fvdl 
    507  1.1     fvdl int
    508  1.1     fvdl bge_alloc_jumbo_mem(sc)
    509  1.1     fvdl 	struct bge_softc		*sc;
    510  1.1     fvdl {
    511  1.1     fvdl 	caddr_t			ptr, kva;
    512  1.1     fvdl 	bus_dma_segment_t	seg;
    513  1.1     fvdl 	int		i, rseg, state, error;
    514  1.1     fvdl 	struct bge_jpool_entry   *entry;
    515  1.1     fvdl 
    516  1.1     fvdl 	state = error = 0;
    517  1.1     fvdl 
    518  1.1     fvdl 	/* Grab a big chunk o' storage. */
    519  1.1     fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    520  1.1     fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    521  1.1     fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    522  1.1     fvdl 		return ENOBUFS;
    523  1.1     fvdl 	}
    524  1.1     fvdl 
    525  1.1     fvdl 	state = 1;
    526  1.1     fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    527  1.1     fvdl 	    BUS_DMA_NOWAIT)) {
    528  1.1     fvdl 		printf("%s: can't map dma buffers (%d bytes)\n",
    529  1.1     fvdl 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    530  1.1     fvdl 		error = ENOBUFS;
    531  1.1     fvdl 		goto out;
    532  1.1     fvdl 	}
    533  1.1     fvdl 
    534  1.1     fvdl 	state = 2;
    535  1.1     fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    536  1.1     fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    537  1.1     fvdl 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
    538  1.1     fvdl 		error = ENOBUFS;
    539  1.1     fvdl 		goto out;
    540  1.1     fvdl 	}
    541  1.1     fvdl 
    542  1.1     fvdl 	state = 3;
    543  1.1     fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    544  1.1     fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    545  1.1     fvdl 		printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
    546  1.1     fvdl 		error = ENOBUFS;
    547  1.1     fvdl 		goto out;
    548  1.1     fvdl 	}
    549  1.1     fvdl 
    550  1.1     fvdl 	state = 4;
    551  1.1     fvdl 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    552  1.1     fvdl 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    553  1.1     fvdl 
    554  1.1     fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    555  1.1     fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    556  1.1     fvdl 
    557  1.1     fvdl 	/*
    558  1.1     fvdl 	 * Now divide it up into 9K pieces and save the addresses
    559  1.1     fvdl 	 * in an array.
    560  1.1     fvdl 	 */
    561  1.1     fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    562  1.1     fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    563  1.1     fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    564  1.1     fvdl 		ptr += BGE_JLEN;
    565  1.1     fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    566  1.1     fvdl 		    M_DEVBUF, M_NOWAIT);
    567  1.1     fvdl 		if (entry == NULL) {
    568  1.1     fvdl 			printf("%s: no memory for jumbo buffer queue!\n",
    569  1.1     fvdl 			    sc->bge_dev.dv_xname);
    570  1.1     fvdl 			error = ENOBUFS;
    571  1.1     fvdl 			goto out;
    572  1.1     fvdl 		}
    573  1.1     fvdl 		entry->slot = i;
    574  1.1     fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    575  1.1     fvdl 				 entry, jpool_entries);
    576  1.1     fvdl 	}
    577  1.1     fvdl out:
    578  1.1     fvdl 	if (error != 0) {
    579  1.1     fvdl 		switch (state) {
    580  1.1     fvdl 		case 4:
    581  1.1     fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    582  1.1     fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    583  1.1     fvdl 		case 3:
    584  1.1     fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    585  1.1     fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    586  1.1     fvdl 		case 2:
    587  1.1     fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    588  1.1     fvdl 		case 1:
    589  1.1     fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    590  1.1     fvdl 			break;
    591  1.1     fvdl 		default:
    592  1.1     fvdl 			break;
    593  1.1     fvdl 		}
    594  1.1     fvdl 	}
    595  1.1     fvdl 
    596  1.1     fvdl 	return error;
    597  1.1     fvdl }
    598  1.1     fvdl 
    599  1.1     fvdl /*
    600  1.1     fvdl  * Allocate a jumbo buffer.
    601  1.1     fvdl  */
    602  1.1     fvdl void *
    603  1.1     fvdl bge_jalloc(sc)
    604  1.1     fvdl 	struct bge_softc		*sc;
    605  1.1     fvdl {
    606  1.1     fvdl 	struct bge_jpool_entry   *entry;
    607  1.1     fvdl 
    608  1.1     fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    609  1.1     fvdl 
    610  1.1     fvdl 	if (entry == NULL) {
    611  1.1     fvdl 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    612  1.1     fvdl 		return(NULL);
    613  1.1     fvdl 	}
    614  1.1     fvdl 
    615  1.1     fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    616  1.1     fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    617  1.1     fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    618  1.1     fvdl }
    619  1.1     fvdl 
    620  1.1     fvdl /*
    621  1.1     fvdl  * Release a jumbo buffer.
    622  1.1     fvdl  */
    623  1.1     fvdl void
    624  1.1     fvdl bge_jfree(m, buf, size, arg)
    625  1.1     fvdl 	struct mbuf	*m;
    626  1.1     fvdl 	caddr_t		buf;
    627  1.1     fvdl 	u_int		size;
    628  1.1     fvdl 	void		*arg;
    629  1.1     fvdl {
    630  1.1     fvdl 	struct bge_jpool_entry *entry;
    631  1.1     fvdl 	struct bge_softc *sc;
    632  1.1     fvdl 	int i, s;
    633  1.1     fvdl 
    634  1.1     fvdl 	/* Extract the softc struct pointer. */
    635  1.1     fvdl 	sc = (struct bge_softc *)arg;
    636  1.1     fvdl 
    637  1.1     fvdl 	if (sc == NULL)
    638  1.1     fvdl 		panic("bge_jfree: can't find softc pointer!");
    639  1.1     fvdl 
    640  1.1     fvdl 	/* calculate the slot this buffer belongs to */
    641  1.1     fvdl 
    642  1.1     fvdl 	i = ((caddr_t)buf
    643  1.1     fvdl 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    644  1.1     fvdl 
    645  1.1     fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    646  1.1     fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    647  1.1     fvdl 
    648  1.1     fvdl 	s = splvm();
    649  1.1     fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    650  1.1     fvdl 	if (entry == NULL)
    651  1.1     fvdl 		panic("bge_jfree: buffer not in use!");
    652  1.1     fvdl 	entry->slot = i;
    653  1.1     fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    654  1.1     fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    655  1.1     fvdl 
    656  1.1     fvdl 	if (__predict_true(m != NULL))
    657  1.1     fvdl   		pool_cache_put(&mbpool_cache, m);
    658  1.1     fvdl 	splx(s);
    659  1.1     fvdl }
    660  1.1     fvdl 
    661  1.1     fvdl 
    662  1.1     fvdl /*
    663  1.1     fvdl  * Intialize a standard receive ring descriptor.
    664  1.1     fvdl  */
    665  1.1     fvdl int
    666  1.1     fvdl bge_newbuf_std(sc, i, m, dmamap)
    667  1.1     fvdl 	struct bge_softc	*sc;
    668  1.1     fvdl 	int			i;
    669  1.1     fvdl 	struct mbuf		*m;
    670  1.1     fvdl 	bus_dmamap_t dmamap;
    671  1.1     fvdl {
    672  1.1     fvdl 	struct mbuf		*m_new = NULL;
    673  1.1     fvdl 	struct bge_rx_bd	*r;
    674  1.1     fvdl 	int			error;
    675  1.1     fvdl 
    676  1.1     fvdl 	if (dmamap == NULL) {
    677  1.1     fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    678  1.1     fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    679  1.1     fvdl 		if (error != 0)
    680  1.1     fvdl 			return error;
    681  1.1     fvdl 	}
    682  1.1     fvdl 
    683  1.1     fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    684  1.1     fvdl 
    685  1.1     fvdl 	if (m == NULL) {
    686  1.1     fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    687  1.1     fvdl 		if (m_new == NULL) {
    688  1.1     fvdl 			return(ENOBUFS);
    689  1.1     fvdl 		}
    690  1.1     fvdl 
    691  1.1     fvdl 		MCLGET(m_new, M_DONTWAIT);
    692  1.1     fvdl 		if (!(m_new->m_flags & M_EXT)) {
    693  1.1     fvdl 			m_freem(m_new);
    694  1.1     fvdl 			return(ENOBUFS);
    695  1.1     fvdl 		}
    696  1.1     fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    697  1.1     fvdl 
    698  1.1     fvdl 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    699  1.1     fvdl 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    700  1.1     fvdl 			return(ENOBUFS);
    701  1.1     fvdl 	} else {
    702  1.1     fvdl 		m_new = m;
    703  1.1     fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    704  1.1     fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    705  1.1     fvdl 	}
    706  1.1     fvdl 
    707  1.1     fvdl 	m_adj(m_new, ETHER_ALIGN);
    708  1.1     fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    709  1.1     fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    710  1.1     fvdl 	bge_set_hostaddr(&r->bge_addr,
    711  1.1     fvdl 	    dmamap->dm_segs[0].ds_addr + ETHER_ALIGN);
    712  1.1     fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    713  1.1     fvdl 	r->bge_len = m_new->m_len;
    714  1.1     fvdl 	r->bge_idx = i;
    715  1.1     fvdl 
    716  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    717  1.1     fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    718  1.1     fvdl 		i * sizeof (struct bge_rx_bd),
    719  1.1     fvdl 	    sizeof (struct bge_rx_bd),
    720  1.1     fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    721  1.1     fvdl 
    722  1.1     fvdl 	return(0);
    723  1.1     fvdl }
    724  1.1     fvdl 
    725  1.1     fvdl /*
    726  1.1     fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    727  1.1     fvdl  * a jumbo buffer from the pool managed internally by the driver.
    728  1.1     fvdl  */
    729  1.1     fvdl int
    730  1.1     fvdl bge_newbuf_jumbo(sc, i, m)
    731  1.1     fvdl 	struct bge_softc *sc;
    732  1.1     fvdl 	int i;
    733  1.1     fvdl 	struct mbuf *m;
    734  1.1     fvdl {
    735  1.1     fvdl 	struct mbuf *m_new = NULL;
    736  1.1     fvdl 	struct bge_rx_bd *r;
    737  1.1     fvdl 
    738  1.1     fvdl 	if (m == NULL) {
    739  1.1     fvdl 		caddr_t			*buf = NULL;
    740  1.1     fvdl 
    741  1.1     fvdl 		/* Allocate the mbuf. */
    742  1.1     fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    743  1.1     fvdl 		if (m_new == NULL) {
    744  1.1     fvdl 			return(ENOBUFS);
    745  1.1     fvdl 		}
    746  1.1     fvdl 
    747  1.1     fvdl 		/* Allocate the jumbo buffer */
    748  1.1     fvdl 		buf = bge_jalloc(sc);
    749  1.1     fvdl 		if (buf == NULL) {
    750  1.1     fvdl 			m_freem(m_new);
    751  1.1     fvdl 			printf("%s: jumbo allocation failed "
    752  1.1     fvdl 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    753  1.1     fvdl 			return(ENOBUFS);
    754  1.1     fvdl 		}
    755  1.1     fvdl 
    756  1.1     fvdl 		/* Attach the buffer to the mbuf. */
    757  1.1     fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    758  1.1     fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    759  1.1     fvdl 		    bge_jfree, sc);
    760  1.1     fvdl 	} else {
    761  1.1     fvdl 		m_new = m;
    762  1.1     fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    763  1.1     fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    764  1.1     fvdl 	}
    765  1.1     fvdl 
    766  1.1     fvdl 	m_adj(m_new, ETHER_ALIGN);
    767  1.1     fvdl 	/* Set up the descriptor. */
    768  1.1     fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    769  1.1     fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    770  1.1     fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    771  1.1     fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    772  1.1     fvdl 	r->bge_len = m_new->m_len;
    773  1.1     fvdl 	r->bge_idx = i;
    774  1.1     fvdl 
    775  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    776  1.1     fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    777  1.1     fvdl 		i * sizeof (struct bge_rx_bd),
    778  1.1     fvdl 	    sizeof (struct bge_rx_bd),
    779  1.1     fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    780  1.1     fvdl 
    781  1.1     fvdl 	return(0);
    782  1.1     fvdl }
    783  1.1     fvdl 
    784  1.1     fvdl /*
    785  1.1     fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    786  1.1     fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
    787  1.1     fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
    788  1.1     fvdl  * the NIC.
    789  1.1     fvdl  */
    790  1.1     fvdl int
    791  1.1     fvdl bge_init_rx_ring_std(sc)
    792  1.1     fvdl 	struct bge_softc *sc;
    793  1.1     fvdl {
    794  1.1     fvdl 	int i;
    795  1.1     fvdl 
    796  1.1     fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
    797  1.1     fvdl 		return 0;
    798  1.1     fvdl 
    799  1.1     fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
    800  1.1     fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    801  1.1     fvdl 			return(ENOBUFS);
    802  1.1     fvdl 	}
    803  1.1     fvdl 
    804  1.1     fvdl 	sc->bge_std = i - 1;
    805  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    806  1.1     fvdl 
    807  1.1     fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
    808  1.1     fvdl 
    809  1.1     fvdl 	return(0);
    810  1.1     fvdl }
    811  1.1     fvdl 
    812  1.1     fvdl void
    813  1.1     fvdl bge_free_rx_ring_std(sc)
    814  1.1     fvdl 	struct bge_softc *sc;
    815  1.1     fvdl {
    816  1.1     fvdl 	int i;
    817  1.1     fvdl 
    818  1.1     fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    819  1.1     fvdl 		return;
    820  1.1     fvdl 
    821  1.1     fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    822  1.1     fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    823  1.1     fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    824  1.1     fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    825  1.1     fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    826  1.1     fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
    827  1.1     fvdl 		}
    828  1.1     fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    829  1.1     fvdl 		    sizeof(struct bge_rx_bd));
    830  1.1     fvdl 	}
    831  1.1     fvdl 
    832  1.1     fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
    833  1.1     fvdl }
    834  1.1     fvdl 
    835  1.1     fvdl int
    836  1.1     fvdl bge_init_rx_ring_jumbo(sc)
    837  1.1     fvdl 	struct bge_softc *sc;
    838  1.1     fvdl {
    839  1.1     fvdl 	int i;
    840  1.1     fvdl 	struct bge_rcb *rcb;
    841  1.1     fvdl 	struct bge_rcb_opaque *rcbo;
    842  1.1     fvdl 
    843  1.1     fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    844  1.1     fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    845  1.1     fvdl 			return(ENOBUFS);
    846  1.1     fvdl 	};
    847  1.1     fvdl 
    848  1.1     fvdl 	sc->bge_jumbo = i - 1;
    849  1.1     fvdl 
    850  1.1     fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    851  1.1     fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
    852  1.1     fvdl 	rcb->bge_flags = 0;
    853  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
    854  1.1     fvdl 
    855  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    856  1.1     fvdl 
    857  1.1     fvdl 	return(0);
    858  1.1     fvdl }
    859  1.1     fvdl 
    860  1.1     fvdl void
    861  1.1     fvdl bge_free_rx_ring_jumbo(sc)
    862  1.1     fvdl 	struct bge_softc *sc;
    863  1.1     fvdl {
    864  1.1     fvdl 	int i;
    865  1.1     fvdl 
    866  1.1     fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    867  1.1     fvdl 		return;
    868  1.1     fvdl 
    869  1.1     fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    870  1.1     fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    871  1.1     fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    872  1.1     fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    873  1.1     fvdl 		}
    874  1.1     fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    875  1.1     fvdl 		    sizeof(struct bge_rx_bd));
    876  1.1     fvdl 	}
    877  1.1     fvdl 
    878  1.1     fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    879  1.1     fvdl }
    880  1.1     fvdl 
    881  1.1     fvdl void
    882  1.1     fvdl bge_free_tx_ring(sc)
    883  1.1     fvdl 	struct bge_softc *sc;
    884  1.1     fvdl {
    885  1.1     fvdl 	int i, freed;
    886  1.1     fvdl 	struct txdmamap_pool_entry *dma;
    887  1.1     fvdl 
    888  1.1     fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    889  1.1     fvdl 		return;
    890  1.1     fvdl 
    891  1.1     fvdl 	freed = 0;
    892  1.1     fvdl 
    893  1.1     fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    894  1.1     fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    895  1.1     fvdl 			freed++;
    896  1.1     fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    897  1.1     fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    898  1.1     fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    899  1.1     fvdl 					    link);
    900  1.1     fvdl 			sc->txdma[i] = 0;
    901  1.1     fvdl 		}
    902  1.1     fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    903  1.1     fvdl 		    sizeof(struct bge_tx_bd));
    904  1.1     fvdl 	}
    905  1.1     fvdl 
    906  1.1     fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    907  1.1     fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    908  1.1     fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    909  1.1     fvdl 		free(dma, M_DEVBUF);
    910  1.1     fvdl 	}
    911  1.1     fvdl 
    912  1.1     fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
    913  1.1     fvdl }
    914  1.1     fvdl 
    915  1.1     fvdl int
    916  1.1     fvdl bge_init_tx_ring(sc)
    917  1.1     fvdl 	struct bge_softc *sc;
    918  1.1     fvdl {
    919  1.1     fvdl 	int i;
    920  1.1     fvdl 	bus_dmamap_t dmamap;
    921  1.1     fvdl 	struct txdmamap_pool_entry *dma;
    922  1.1     fvdl 
    923  1.1     fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
    924  1.1     fvdl 		return 0;
    925  1.1     fvdl 
    926  1.1     fvdl 	sc->bge_txcnt = 0;
    927  1.1     fvdl 	sc->bge_tx_saved_considx = 0;
    928  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    929  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    930  1.1     fvdl 
    931  1.1     fvdl 	SLIST_INIT(&sc->txdma_list);
    932  1.1     fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
    933  1.1     fvdl 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    934  1.1     fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    935  1.1     fvdl 		    &dmamap))
    936  1.1     fvdl 			return(ENOBUFS);
    937  1.1     fvdl 		if (dmamap == NULL)
    938  1.1     fvdl 			panic("dmamap NULL in bge_init_tx_ring");
    939  1.1     fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
    940  1.1     fvdl 		if (dma == NULL) {
    941  1.1     fvdl 			printf("%s: can't alloc txdmamap_pool_entry\n",
    942  1.1     fvdl 			    sc->bge_dev.dv_xname);
    943  1.1     fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
    944  1.1     fvdl 			return (ENOMEM);
    945  1.1     fvdl 		}
    946  1.1     fvdl 		dma->dmamap = dmamap;
    947  1.1     fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
    948  1.1     fvdl 	}
    949  1.1     fvdl 
    950  1.1     fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
    951  1.1     fvdl 
    952  1.1     fvdl 	return(0);
    953  1.1     fvdl }
    954  1.1     fvdl 
    955  1.1     fvdl #define BGE_POLY	0xEDB88320
    956  1.1     fvdl 
    957  1.1     fvdl u_int32_t
    958  1.1     fvdl bge_crc(sc, addr)
    959  1.1     fvdl 	struct bge_softc *sc;
    960  1.1     fvdl 	caddr_t addr;
    961  1.1     fvdl {
    962  1.1     fvdl 	u_int32_t idx, bit, data, crc;
    963  1.1     fvdl 
    964  1.1     fvdl 	/* Compute CRC for the address value. */
    965  1.1     fvdl 	crc = 0xFFFFFFFF; /* initial value */
    966  1.1     fvdl 
    967  1.1     fvdl 	for (idx = 0; idx < 6; idx++) {
    968  1.1     fvdl 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
    969  1.1     fvdl 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
    970  1.1     fvdl 	}
    971  1.1     fvdl 
    972  1.1     fvdl 	return(crc & 0x7F);
    973  1.1     fvdl }
    974  1.1     fvdl 
    975  1.1     fvdl void
    976  1.1     fvdl bge_setmulti(sc)
    977  1.1     fvdl 	struct bge_softc *sc;
    978  1.1     fvdl {
    979  1.1     fvdl 	struct ethercom		*ac = &sc->ethercom;
    980  1.1     fvdl 	struct ifnet		*ifp = &ac->ec_if;
    981  1.1     fvdl 	struct ether_multi	*enm;
    982  1.1     fvdl 	struct ether_multistep  step;
    983  1.1     fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
    984  1.1     fvdl 	u_int32_t		h;
    985  1.1     fvdl 	int			i;
    986  1.1     fvdl 
    987  1.1     fvdl 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    988  1.1     fvdl 		for (i = 0; i < 4; i++)
    989  1.1     fvdl 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
    990  1.1     fvdl 		return;
    991  1.1     fvdl 	}
    992  1.1     fvdl 
    993  1.1     fvdl 	/* First, zot all the existing filters. */
    994  1.1     fvdl 	for (i = 0; i < 4; i++)
    995  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
    996  1.1     fvdl 
    997  1.1     fvdl 	/* Now program new ones. */
    998  1.1     fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
    999  1.1     fvdl 	while (enm != NULL) {
   1000  1.1     fvdl 		h = bge_crc(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
   1001  1.1     fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1002  1.1     fvdl 		ETHER_NEXT_MULTI(step, enm);
   1003  1.1     fvdl 	}
   1004  1.1     fvdl 
   1005  1.1     fvdl 	for (i = 0; i < 4; i++)
   1006  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1007  1.1     fvdl }
   1008  1.1     fvdl 
   1009  1.1     fvdl int bge_swapbits[] = {
   1010  1.1     fvdl 	0,
   1011  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1012  1.1     fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1013  1.1     fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1014  1.1     fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1015  1.1     fvdl 
   1016  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1017  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1018  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1019  1.1     fvdl 
   1020  1.1     fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1021  1.1     fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1022  1.1     fvdl 
   1023  1.1     fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1024  1.1     fvdl 
   1025  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1026  1.1     fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1027  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1028  1.1     fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1029  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1030  1.1     fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1031  1.1     fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1032  1.1     fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1033  1.1     fvdl 
   1034  1.1     fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1035  1.1     fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1036  1.1     fvdl };
   1037  1.1     fvdl 
   1038  1.1     fvdl int bge_swapindex = 0;
   1039  1.1     fvdl 
   1040  1.1     fvdl /*
   1041  1.1     fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1042  1.1     fvdl  * self-test results.
   1043  1.1     fvdl  */
   1044  1.1     fvdl int
   1045  1.1     fvdl bge_chipinit(sc)
   1046  1.1     fvdl 	struct bge_softc *sc;
   1047  1.1     fvdl {
   1048  1.1     fvdl 	u_int32_t		cachesize;
   1049  1.1     fvdl 	int			i;
   1050  1.1     fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1051  1.1     fvdl 
   1052  1.1     fvdl 
   1053  1.1     fvdl 	/* Set endianness before we access any non-PCI registers. */
   1054  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1055  1.1     fvdl 	    BGE_INIT);
   1056  1.1     fvdl 
   1057  1.1     fvdl 	/*
   1058  1.1     fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1059  1.1     fvdl 	 * self-tests passed.
   1060  1.1     fvdl 	 */
   1061  1.1     fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1062  1.1     fvdl 		printf("%s: RX CPU self-diagnostics failed!\n",
   1063  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1064  1.1     fvdl 		return(ENODEV);
   1065  1.1     fvdl 	}
   1066  1.1     fvdl 
   1067  1.1     fvdl 	/* Clear the MAC control register */
   1068  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1069  1.1     fvdl 
   1070  1.1     fvdl 	/*
   1071  1.1     fvdl 	 * Clear the MAC statistics block in the NIC's
   1072  1.1     fvdl 	 * internal memory.
   1073  1.1     fvdl 	 */
   1074  1.1     fvdl 	for (i = BGE_STATS_BLOCK;
   1075  1.1     fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1076  1.1     fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1077  1.1     fvdl 
   1078  1.1     fvdl 	for (i = BGE_STATUS_BLOCK;
   1079  1.1     fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1080  1.1     fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1081  1.1     fvdl 
   1082  1.1     fvdl 	/* Set up the PCI DMA control register. */
   1083  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1084  1.1     fvdl 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
   1085  1.1     fvdl 
   1086  1.1     fvdl 	/*
   1087  1.1     fvdl 	 * Set up general mode register.
   1088  1.1     fvdl 	 */
   1089  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1090  1.1     fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1091  1.1     fvdl 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
   1092  1.1     fvdl 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
   1093  1.1     fvdl 
   1094  1.1     fvdl 	/* Get cache line size. */
   1095  1.1     fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1096  1.1     fvdl 
   1097  1.1     fvdl 	/*
   1098  1.1     fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1099  1.1     fvdl 	 */
   1100  1.1     fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1101  1.1     fvdl 	    PCIM_CMD_MWIEN) {
   1102  1.1     fvdl 		switch(cachesize) {
   1103  1.1     fvdl 		case 1:
   1104  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1105  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1106  1.1     fvdl 			break;
   1107  1.1     fvdl 		case 2:
   1108  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1109  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1110  1.1     fvdl 			break;
   1111  1.1     fvdl 		case 4:
   1112  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1113  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1114  1.1     fvdl 			break;
   1115  1.1     fvdl 		case 8:
   1116  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1117  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1118  1.1     fvdl 			break;
   1119  1.1     fvdl 		case 16:
   1120  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1121  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1122  1.1     fvdl 			break;
   1123  1.1     fvdl 		case 32:
   1124  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1125  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1126  1.1     fvdl 			break;
   1127  1.1     fvdl 		case 64:
   1128  1.1     fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1129  1.1     fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1130  1.1     fvdl 			break;
   1131  1.1     fvdl 		default:
   1132  1.1     fvdl 		/* Disable PCI memory write and invalidate. */
   1133  1.1     fvdl #if 0
   1134  1.1     fvdl 			if (bootverbose)
   1135  1.1     fvdl 				printf("%s: cache line size %d not "
   1136  1.1     fvdl 				    "supported; disabling PCI MWI\n",
   1137  1.1     fvdl 				    sc->bge_dev.dv_xname, cachesize);
   1138  1.1     fvdl #endif
   1139  1.1     fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1140  1.1     fvdl 			    PCIM_CMD_MWIEN);
   1141  1.1     fvdl 			break;
   1142  1.1     fvdl 		}
   1143  1.1     fvdl 	}
   1144  1.1     fvdl 
   1145  1.1     fvdl #ifdef __brokenalpha__
   1146  1.1     fvdl 	/*
   1147  1.1     fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1148  1.1     fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1149  1.1     fvdl 	 * restriction on some ALPHA platforms with early revision
   1150  1.1     fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1151  1.1     fvdl 	 */
   1152  1.1     fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1153  1.1     fvdl #endif
   1154  1.1     fvdl 
   1155  1.1     fvdl 	/* Set the timer prescaler (always 66Mhz) */
   1156  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1157  1.1     fvdl 
   1158  1.1     fvdl 	return(0);
   1159  1.1     fvdl }
   1160  1.1     fvdl 
   1161  1.1     fvdl int
   1162  1.1     fvdl bge_blockinit(sc)
   1163  1.1     fvdl 	struct bge_softc *sc;
   1164  1.1     fvdl {
   1165  1.1     fvdl 	struct bge_rcb		*rcb;
   1166  1.1     fvdl 	struct bge_rcb_opaque	*rcbo;
   1167  1.1     fvdl 	bus_size_t		rcb_addr;
   1168  1.1     fvdl 	int			i;
   1169  1.1     fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1170  1.1     fvdl 	bge_hostaddr		taddr;
   1171  1.1     fvdl 
   1172  1.1     fvdl 	/*
   1173  1.1     fvdl 	 * Initialize the memory window pointer register so that
   1174  1.1     fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1175  1.1     fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1176  1.1     fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1177  1.1     fvdl 	 */
   1178  1.1     fvdl 
   1179  1.1     fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1180  1.1     fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1181  1.1     fvdl 
   1182  1.1     fvdl 	/* Configure mbuf memory pool */
   1183  1.1     fvdl 	if (sc->bge_extram) {
   1184  1.1     fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
   1185  1.1     fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1186  1.1     fvdl 	} else {
   1187  1.1     fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   1188  1.1     fvdl 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1189  1.1     fvdl 	}
   1190  1.1     fvdl 
   1191  1.1     fvdl 	/* Configure DMA resource pool */
   1192  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
   1193  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1194  1.1     fvdl 
   1195  1.1     fvdl 	/* Configure mbuf pool watermarks */
   1196  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1197  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1198  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1199  1.1     fvdl 
   1200  1.1     fvdl 	/* Configure DMA resource watermarks */
   1201  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1202  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1203  1.1     fvdl 
   1204  1.1     fvdl 	/* Enable buffer manager */
   1205  1.1     fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1206  1.1     fvdl 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1207  1.1     fvdl 
   1208  1.1     fvdl 	/* Poll for buffer manager start indication */
   1209  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1210  1.1     fvdl 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1211  1.1     fvdl 			break;
   1212  1.1     fvdl 		DELAY(10);
   1213  1.1     fvdl 	}
   1214  1.1     fvdl 
   1215  1.1     fvdl 	if (i == BGE_TIMEOUT) {
   1216  1.1     fvdl 		printf("%s: buffer manager failed to start\n",
   1217  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1218  1.1     fvdl 		return(ENXIO);
   1219  1.1     fvdl 	}
   1220  1.1     fvdl 
   1221  1.1     fvdl 	/* Enable flow-through queues */
   1222  1.1     fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1223  1.1     fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1224  1.1     fvdl 
   1225  1.1     fvdl 	/* Wait until queue initialization is complete */
   1226  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1227  1.1     fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1228  1.1     fvdl 			break;
   1229  1.1     fvdl 		DELAY(10);
   1230  1.1     fvdl 	}
   1231  1.1     fvdl 
   1232  1.1     fvdl 	if (i == BGE_TIMEOUT) {
   1233  1.1     fvdl 		printf("%s: flow-through queue init failed\n",
   1234  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1235  1.1     fvdl 		return(ENXIO);
   1236  1.1     fvdl 	}
   1237  1.1     fvdl 
   1238  1.1     fvdl 	/* Initialize the standard RX ring control block */
   1239  1.1     fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1240  1.1     fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1241  1.1     fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1242  1.1     fvdl 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1243  1.1     fvdl 	if (sc->bge_extram)
   1244  1.1     fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1245  1.1     fvdl 	else
   1246  1.1     fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1247  1.1     fvdl 	rcb->bge_flags = 0;
   1248  1.1     fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1249  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
   1250  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
   1251  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1252  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
   1253  1.1     fvdl 
   1254  1.1     fvdl 	/*
   1255  1.1     fvdl 	 * Initialize the jumbo RX ring control block
   1256  1.1     fvdl 	 * We set the 'ring disabled' bit in the flags
   1257  1.1     fvdl 	 * field until we're actually ready to start
   1258  1.1     fvdl 	 * using this ring (i.e. once we set the MTU
   1259  1.1     fvdl 	 * high enough to require it).
   1260  1.1     fvdl 	 */
   1261  1.1     fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1262  1.1     fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1263  1.1     fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1264  1.1     fvdl 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1265  1.1     fvdl 	if (sc->bge_extram)
   1266  1.1     fvdl 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1267  1.1     fvdl 	else
   1268  1.1     fvdl 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1269  1.1     fvdl 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1270  1.1     fvdl 
   1271  1.1     fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1272  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
   1273  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
   1274  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1275  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
   1276  1.1     fvdl 
   1277  1.1     fvdl 	/* Set up dummy disabled mini ring RCB */
   1278  1.1     fvdl 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1279  1.1     fvdl 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1280  1.1     fvdl 	rcbo = (struct bge_rcb_opaque *)rcb;
   1281  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1282  1.1     fvdl 
   1283  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1284  1.1     fvdl 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
   1285  1.1     fvdl 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1286  1.1     fvdl 
   1287  1.1     fvdl 	/*
   1288  1.1     fvdl 	 * Set the BD ring replentish thresholds. The recommended
   1289  1.1     fvdl 	 * values are 1/8th the number of descriptors allocated to
   1290  1.1     fvdl 	 * each ring.
   1291  1.1     fvdl 	 */
   1292  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1293  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1294  1.1     fvdl 
   1295  1.1     fvdl 	/*
   1296  1.1     fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1297  1.1     fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1298  1.1     fvdl 	 * These are located in NIC memory.
   1299  1.1     fvdl 	 */
   1300  1.1     fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1301  1.1     fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1302  1.1     fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1303  1.1     fvdl 			    BGE_RCB_FLAG_RING_DISABLED);
   1304  1.1     fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
   1305  1.1     fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1306  1.1     fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1307  1.1     fvdl 	}
   1308  1.1     fvdl 
   1309  1.1     fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1310  1.1     fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1311  1.1     fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1312  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1313  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1314  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1315  1.1     fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1316  1.1     fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
   1317  1.1     fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1318  1.1     fvdl 
   1319  1.1     fvdl 	/* Disable all unused RX return rings */
   1320  1.1     fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1321  1.1     fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1322  1.1     fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1323  1.1     fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1324  1.1     fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1325  1.1     fvdl 			    BGE_RCB_FLAG_RING_DISABLED);
   1326  1.1     fvdl 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1327  1.1     fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1328  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1329  1.1     fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1330  1.1     fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1331  1.1     fvdl 	}
   1332  1.1     fvdl 
   1333  1.1     fvdl 	/* Initialize RX ring indexes */
   1334  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1335  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1336  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1337  1.1     fvdl 
   1338  1.1     fvdl 	/*
   1339  1.1     fvdl 	 * Set up RX return ring 0
   1340  1.1     fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1341  1.1     fvdl 	 * The return rings live entirely within the host, so the
   1342  1.1     fvdl 	 * nicaddr field in the RCB isn't used.
   1343  1.1     fvdl 	 */
   1344  1.1     fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1345  1.1     fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1346  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1347  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1348  1.1     fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1349  1.1     fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1350  1.1     fvdl 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1351  1.1     fvdl 
   1352  1.1     fvdl 	/* Set random backoff seed for TX */
   1353  1.1     fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1354  1.1     fvdl 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1355  1.1     fvdl 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1356  1.1     fvdl 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1357  1.1     fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1358  1.1     fvdl 
   1359  1.1     fvdl 	/* Set inter-packet gap */
   1360  1.1     fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1361  1.1     fvdl 
   1362  1.1     fvdl 	/*
   1363  1.1     fvdl 	 * Specify which ring to use for packets that don't match
   1364  1.1     fvdl 	 * any RX rules.
   1365  1.1     fvdl 	 */
   1366  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1367  1.1     fvdl 
   1368  1.1     fvdl 	/*
   1369  1.1     fvdl 	 * Configure number of RX lists. One interrupt distribution
   1370  1.1     fvdl 	 * list, sixteen active lists, one bad frames class.
   1371  1.1     fvdl 	 */
   1372  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1373  1.1     fvdl 
   1374  1.1     fvdl 	/* Inialize RX list placement stats mask. */
   1375  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1376  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1377  1.1     fvdl 
   1378  1.1     fvdl 	/* Disable host coalescing until we get it set up */
   1379  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1380  1.1     fvdl 
   1381  1.1     fvdl 	/* Poll to make sure it's shut down. */
   1382  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1383  1.1     fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1384  1.1     fvdl 			break;
   1385  1.1     fvdl 		DELAY(10);
   1386  1.1     fvdl 	}
   1387  1.1     fvdl 
   1388  1.1     fvdl 	if (i == BGE_TIMEOUT) {
   1389  1.1     fvdl 		printf("%s: host coalescing engine failed to idle\n",
   1390  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1391  1.1     fvdl 		return(ENXIO);
   1392  1.1     fvdl 	}
   1393  1.1     fvdl 
   1394  1.1     fvdl 	/* Set up host coalescing defaults */
   1395  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1396  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1397  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1398  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1399  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1400  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1401  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1402  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1403  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1404  1.1     fvdl 
   1405  1.1     fvdl 	/* Set up address of statistics block */
   1406  1.1     fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1407  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1408  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1409  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1410  1.1     fvdl 
   1411  1.1     fvdl 	/* Set up address of status block */
   1412  1.1     fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1413  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1414  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1415  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1416  1.1     fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1417  1.1     fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1418  1.1     fvdl 
   1419  1.1     fvdl 	/* Turn on host coalescing state machine */
   1420  1.1     fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1421  1.1     fvdl 
   1422  1.1     fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1423  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1424  1.1     fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1425  1.1     fvdl 
   1426  1.1     fvdl 	/* Turn on RX list placement state machine */
   1427  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1428  1.1     fvdl 
   1429  1.1     fvdl 	/* Turn on RX list selector state machine. */
   1430  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1431  1.1     fvdl 
   1432  1.1     fvdl 	/* Turn on DMA, clear stats */
   1433  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1434  1.1     fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1435  1.1     fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1436  1.1     fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1437  1.1     fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1438  1.1     fvdl 
   1439  1.1     fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1440  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   1441  1.1     fvdl 
   1442  1.1     fvdl #ifdef notdef
   1443  1.1     fvdl 	/* Assert GPIO pins for PHY reset */
   1444  1.1     fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1445  1.1     fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1446  1.1     fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1447  1.1     fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1448  1.1     fvdl #endif
   1449  1.1     fvdl 
   1450  1.1     fvdl 	/* Turn on DMA completion state machine */
   1451  1.1     fvdl 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1452  1.1     fvdl 
   1453  1.1     fvdl 	/* Turn on write DMA state machine */
   1454  1.1     fvdl 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1455  1.1     fvdl 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1456  1.1     fvdl 
   1457  1.1     fvdl 	/* Turn on read DMA state machine */
   1458  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1459  1.1     fvdl 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1460  1.1     fvdl 
   1461  1.1     fvdl 	/* Turn on RX data completion state machine */
   1462  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1463  1.1     fvdl 
   1464  1.1     fvdl 	/* Turn on RX BD initiator state machine */
   1465  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1466  1.1     fvdl 
   1467  1.1     fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1468  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1469  1.1     fvdl 
   1470  1.1     fvdl 	/* Turn on Mbuf cluster free state machine */
   1471  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1472  1.1     fvdl 
   1473  1.1     fvdl 	/* Turn on send BD completion state machine */
   1474  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1475  1.1     fvdl 
   1476  1.1     fvdl 	/* Turn on send data completion state machine */
   1477  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1478  1.1     fvdl 
   1479  1.1     fvdl 	/* Turn on send data initiator state machine */
   1480  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1481  1.1     fvdl 
   1482  1.1     fvdl 	/* Turn on send BD initiator state machine */
   1483  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1484  1.1     fvdl 
   1485  1.1     fvdl 	/* Turn on send BD selector state machine */
   1486  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1487  1.1     fvdl 
   1488  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1489  1.1     fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1490  1.1     fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1491  1.1     fvdl 
   1492  1.1     fvdl 	/* init LED register */
   1493  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
   1494  1.1     fvdl 
   1495  1.1     fvdl 	/* ack/clear link change events */
   1496  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1497  1.1     fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1498  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1499  1.1     fvdl 
   1500  1.1     fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1501  1.1     fvdl 	if (sc->bge_tbi) {
   1502  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1503  1.1     fvdl  	} else {
   1504  1.1     fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1505  1.2     fvdl 		if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
   1506  1.1     fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1507  1.1     fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1508  1.1     fvdl 	}
   1509  1.1     fvdl 
   1510  1.1     fvdl 	/* Enable link state change attentions. */
   1511  1.1     fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1512  1.1     fvdl 
   1513  1.1     fvdl 	return(0);
   1514  1.1     fvdl }
   1515  1.1     fvdl 
   1516  1.7  thorpej static const struct bge_product {
   1517  1.7  thorpej 	pci_vendor_id_t		bp_vendor;
   1518  1.7  thorpej 	pci_product_id_t	bp_product;
   1519  1.7  thorpej 	const char		*bp_name;
   1520  1.7  thorpej } bge_products[] = {
   1521  1.7  thorpej 	/*
   1522  1.7  thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   1523  1.7  thorpej 	 * still has the Alteon vendor ID burned into it, though it
   1524  1.7  thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   1525  1.7  thorpej 	 * check for it anyway.
   1526  1.7  thorpej 	 */
   1527  1.7  thorpej 	{ PCI_VENDOR_ALTEON,
   1528  1.7  thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   1529  1.7  thorpej 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1530  1.7  thorpej 	{ PCI_VENDOR_ALTEON,
   1531  1.7  thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   1532  1.7  thorpej 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1533  1.7  thorpej 
   1534  1.7  thorpej 	{ PCI_VENDOR_ALTIMA,
   1535  1.7  thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   1536  1.7  thorpej 	  "Altima AC1000 Gigabit Ethernet" },
   1537  1.7  thorpej 	{ PCI_VENDOR_ALTIMA,
   1538  1.7  thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   1539  1.7  thorpej 	  "Altima AC9100 Gigabit Ethernet" },
   1540  1.7  thorpej 
   1541  1.7  thorpej 	{ PCI_VENDOR_BROADCOM,
   1542  1.7  thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1543  1.7  thorpej 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1544  1.7  thorpej 	{ PCI_VENDOR_BROADCOM,
   1545  1.7  thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1546  1.7  thorpej 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1547  1.7  thorpej 
   1548  1.7  thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1549  1.7  thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1550  1.8  thorpej 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
   1551  1.7  thorpej 
   1552  1.7  thorpej 	{ PCI_VENDOR_3COM,
   1553  1.7  thorpej 	  PCI_PRODUCT_3COM_3C996,
   1554  1.7  thorpej 	  "3Com 3c996 Gigabit Ethernet" },
   1555  1.7  thorpej 
   1556  1.7  thorpej 	{ 0,
   1557  1.7  thorpej 	  0,
   1558  1.7  thorpej 	  NULL },
   1559  1.7  thorpej };
   1560  1.7  thorpej 
   1561  1.7  thorpej static const struct bge_product *
   1562  1.7  thorpej bge_lookup(const struct pci_attach_args *pa)
   1563  1.7  thorpej {
   1564  1.7  thorpej 	const struct bge_product *bp;
   1565  1.7  thorpej 
   1566  1.7  thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1567  1.7  thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1568  1.7  thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1569  1.7  thorpej 			return (bp);
   1570  1.7  thorpej 	}
   1571  1.7  thorpej 
   1572  1.7  thorpej 	return (NULL);
   1573  1.7  thorpej }
   1574  1.7  thorpej 
   1575  1.1     fvdl /*
   1576  1.1     fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   1577  1.1     fvdl  * against our list and return its name if we find a match. Note
   1578  1.1     fvdl  * that since the Broadcom controller contains VPD support, we
   1579  1.1     fvdl  * can get the device name string from the controller itself instead
   1580  1.1     fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   1581  1.1     fvdl  * we'll always announce the right product name.
   1582  1.1     fvdl  */
   1583  1.1     fvdl int
   1584  1.1     fvdl bge_probe(parent, match, aux)
   1585  1.1     fvdl 	struct device *parent;
   1586  1.1     fvdl 	struct cfdata *match;
   1587  1.1     fvdl 	void *aux;
   1588  1.1     fvdl {
   1589  1.1     fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1590  1.1     fvdl 
   1591  1.7  thorpej 	if (bge_lookup(pa) != NULL)
   1592  1.1     fvdl 		return (1);
   1593  1.1     fvdl 
   1594  1.1     fvdl 	return (0);
   1595  1.1     fvdl }
   1596  1.1     fvdl 
   1597  1.1     fvdl void
   1598  1.1     fvdl bge_attach(parent, self, aux)
   1599  1.1     fvdl 	struct device *parent, *self;
   1600  1.1     fvdl 	void *aux;
   1601  1.1     fvdl {
   1602  1.1     fvdl 	struct bge_softc	*sc = (struct bge_softc *)self;
   1603  1.1     fvdl 	struct pci_attach_args	*pa = aux;
   1604  1.7  thorpej 	const struct bge_product *bp;
   1605  1.1     fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   1606  1.1     fvdl 	pci_intr_handle_t	ih;
   1607  1.1     fvdl 	const char		*intrstr = NULL;
   1608  1.1     fvdl 	bus_dma_segment_t	seg;
   1609  1.1     fvdl 	int			rseg;
   1610  1.1     fvdl 	u_int32_t		hwcfg = 0;
   1611  1.1     fvdl 	u_int32_t		command;
   1612  1.1     fvdl 	struct ifnet		*ifp;
   1613  1.1     fvdl 	int			unit;
   1614  1.1     fvdl 	caddr_t			kva;
   1615  1.1     fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   1616  1.1     fvdl 	pcireg_t		memtype;
   1617  1.1     fvdl 	bus_addr_t		memaddr;
   1618  1.1     fvdl 	bus_size_t		memsize;
   1619  1.1     fvdl 
   1620  1.7  thorpej 	bp = bge_lookup(pa);
   1621  1.7  thorpej 	KASSERT(bp != NULL);
   1622  1.7  thorpej 
   1623  1.1     fvdl 	sc->bge_pa = *pa;
   1624  1.1     fvdl 
   1625  1.7  thorpej 	printf(": %s, rev. 0x%02x\n", bp->bp_name, PCI_REVISION(pa->pa_class));
   1626  1.1     fvdl 
   1627  1.1     fvdl 	/*
   1628  1.1     fvdl 	 * Map control/status registers.
   1629  1.1     fvdl 	 */
   1630  1.1     fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   1631  1.1     fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1632  1.1     fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   1633  1.1     fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1634  1.1     fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1635  1.1     fvdl 
   1636  1.1     fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1637  1.1     fvdl 		printf("%s: failed to enable memory mapping!\n",
   1638  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1639  1.1     fvdl 		return;
   1640  1.1     fvdl 	}
   1641  1.1     fvdl 
   1642  1.1     fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   1643  1.1     fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   1644  1.1     fvdl  	switch (memtype) {
   1645  1.1     fvdl         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1646  1.1     fvdl         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1647  1.1     fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   1648  1.1     fvdl                     memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   1649  1.1     fvdl 		    &memaddr, &memsize) == 0)
   1650  1.1     fvdl 			break;
   1651  1.1     fvdl 	default:
   1652  1.1     fvdl 		printf("%s: can't find mem space\n",
   1653  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1654  1.1     fvdl 		return;
   1655  1.1     fvdl 	}
   1656  1.1     fvdl 
   1657  1.1     fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   1658  1.1     fvdl 	if (pci_intr_map(pa, &ih)) {
   1659  1.1     fvdl 		printf("%s: couldn't map interrupt\n",
   1660  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1661  1.1     fvdl 		return;
   1662  1.1     fvdl 	}
   1663  1.1     fvdl 
   1664  1.1     fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   1665  1.1     fvdl 	intrstr = pci_intr_string(pc, ih);
   1666  1.1     fvdl 
   1667  1.1     fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   1668  1.1     fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   1669  1.1     fvdl 
   1670  1.1     fvdl 	if (sc->bge_intrhand == NULL) {
   1671  1.1     fvdl 		printf("%s: couldn't establish interrupt",
   1672  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1673  1.1     fvdl 		if (intrstr != NULL)
   1674  1.1     fvdl 			printf(" at %s", intrstr);
   1675  1.1     fvdl 		printf("\n");
   1676  1.1     fvdl 		return;
   1677  1.1     fvdl 	}
   1678  1.1     fvdl 	printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
   1679  1.1     fvdl 
   1680  1.1     fvdl 	/* Try to reset the chip. */
   1681  1.1     fvdl 	DPRINTFN(5, ("bge_reset\n"));
   1682  1.1     fvdl 	bge_reset(sc);
   1683  1.1     fvdl 
   1684  1.1     fvdl 	if (bge_chipinit(sc)) {
   1685  1.1     fvdl 		printf("%s: chip initializatino failed\n",
   1686  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1687  1.1     fvdl 		bge_release_resources(sc);
   1688  1.1     fvdl 		return;
   1689  1.1     fvdl 	}
   1690  1.1     fvdl 
   1691  1.1     fvdl 	/*
   1692  1.1     fvdl 	 * Get station address from the EEPROM.
   1693  1.1     fvdl 	 */
   1694  1.1     fvdl 	if (bge_read_eeprom(sc, (caddr_t)eaddr,
   1695  1.1     fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1696  1.1     fvdl 		printf("bge%d: failed to read station address\n", unit);
   1697  1.1     fvdl 		bge_release_resources(sc);
   1698  1.1     fvdl 		return;
   1699  1.1     fvdl 	}
   1700  1.1     fvdl 
   1701  1.1     fvdl 	/*
   1702  1.1     fvdl 	 * A Broadcom chip was detected. Inform the world.
   1703  1.1     fvdl 	 */
   1704  1.1     fvdl 	printf("%s: Ethernet address %s\n", sc->bge_dev.dv_xname,
   1705  1.1     fvdl 	    ether_sprintf(eaddr));
   1706  1.1     fvdl 
   1707  1.1     fvdl 	/* Allocate the general information block and ring buffers. */
   1708  1.1     fvdl 	sc->bge_dmatag = pa->pa_dmat;
   1709  1.1     fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   1710  1.1     fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   1711  1.1     fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1712  1.1     fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
   1713  1.1     fvdl 		return;
   1714  1.1     fvdl 	}
   1715  1.1     fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   1716  1.1     fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   1717  1.1     fvdl 			   sizeof(struct bge_ring_data), &kva,
   1718  1.1     fvdl 			   BUS_DMA_NOWAIT)) {
   1719  1.1     fvdl 		printf("%s: can't map dma buffers (%d bytes)\n",
   1720  1.1     fvdl 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   1721  1.1     fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1722  1.1     fvdl 		return;
   1723  1.1     fvdl 	}
   1724  1.1     fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   1725  1.1     fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   1726  1.1     fvdl 	    sizeof(struct bge_ring_data), 0,
   1727  1.1     fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   1728  1.1     fvdl 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
   1729  1.1     fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   1730  1.1     fvdl 				 sizeof(struct bge_ring_data));
   1731  1.1     fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1732  1.1     fvdl 		return;
   1733  1.1     fvdl 	}
   1734  1.1     fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   1735  1.1     fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   1736  1.1     fvdl 			    sizeof(struct bge_ring_data), NULL,
   1737  1.1     fvdl 			    BUS_DMA_NOWAIT)) {
   1738  1.1     fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   1739  1.1     fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   1740  1.1     fvdl 				 sizeof(struct bge_ring_data));
   1741  1.1     fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1742  1.1     fvdl 		return;
   1743  1.1     fvdl 	}
   1744  1.1     fvdl 
   1745  1.1     fvdl 	DPRINTFN(5, ("bzero\n"));
   1746  1.1     fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   1747  1.1     fvdl 
   1748  1.1     fvdl 	memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
   1749  1.1     fvdl 
   1750  1.1     fvdl 	/* Try to allocate memory for jumbo buffers. */
   1751  1.1     fvdl 	if (bge_alloc_jumbo_mem(sc)) {
   1752  1.1     fvdl 		printf("%s: jumbo buffer allocation failed\n",
   1753  1.1     fvdl 		    sc->bge_dev.dv_xname);
   1754  1.8  thorpej 	} else
   1755  1.8  thorpej 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1756  1.1     fvdl 
   1757  1.1     fvdl 	/* Set default tuneable values. */
   1758  1.1     fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   1759  1.1     fvdl 	sc->bge_rx_coal_ticks = 150;
   1760  1.1     fvdl 	sc->bge_tx_coal_ticks = 150;
   1761  1.1     fvdl 	sc->bge_rx_max_coal_bds = 64;
   1762  1.1     fvdl 	sc->bge_tx_max_coal_bds = 128;
   1763  1.1     fvdl 
   1764  1.1     fvdl 	/* Set up ifnet structure */
   1765  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   1766  1.1     fvdl 	ifp->if_softc = sc;
   1767  1.1     fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1768  1.1     fvdl 	ifp->if_ioctl = bge_ioctl;
   1769  1.1     fvdl 	ifp->if_start = bge_start;
   1770  1.1     fvdl 	ifp->if_init = bge_init;
   1771  1.1     fvdl 	ifp->if_watchdog = bge_watchdog;
   1772  1.1     fvdl 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
   1773  1.1     fvdl 	IFQ_SET_READY(&ifp->if_snd);
   1774  1.1     fvdl 	DPRINTFN(5, ("bcopy\n"));
   1775  1.1     fvdl 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   1776  1.1     fvdl 
   1777  1.1     fvdl 	sc->ethercom.ec_if.if_capabilities |=
   1778  1.1     fvdl 	  IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1779  1.1     fvdl 	sc->ethercom.ec_capabilities |=
   1780  1.1     fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   1781  1.1     fvdl 
   1782  1.1     fvdl 	/*
   1783  1.1     fvdl 	 * Do MII setup.
   1784  1.1     fvdl 	 */
   1785  1.1     fvdl 	DPRINTFN(5, ("mii setup\n"));
   1786  1.1     fvdl 	sc->bge_mii.mii_ifp = ifp;
   1787  1.1     fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   1788  1.1     fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   1789  1.1     fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   1790  1.1     fvdl 
   1791  1.1     fvdl 	/* Save ASIC rev. */
   1792  1.1     fvdl 
   1793  1.1     fvdl 	sc->bge_asicrev =
   1794  1.1     fvdl 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   1795  1.1     fvdl 	    BGE_PCIMISCCTL_ASICREV;
   1796  1.1     fvdl 
   1797  1.1     fvdl 	/*
   1798  1.1     fvdl 	 * Figure out what sort of media we have by checking the
   1799  1.1     fvdl 	 * hardware config word in the EEPROM. Note: on some BCM5700
   1800  1.1     fvdl 	 * cards, this value appears to be unset. If that's the
   1801  1.1     fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   1802  1.1     fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   1803  1.1     fvdl 	 */
   1804  1.1     fvdl 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
   1805  1.1     fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   1806  1.1     fvdl 	if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   1807  1.1     fvdl 		sc->bge_tbi = 1;
   1808  1.1     fvdl 
   1809  1.1     fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   1810  1.1     fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   1811  1.1     fvdl 	    SK_SUBSYSID_9D41)
   1812  1.1     fvdl 		sc->bge_tbi = 1;
   1813  1.1     fvdl 
   1814  1.1     fvdl 	if (sc->bge_tbi) {
   1815  1.1     fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   1816  1.1     fvdl 		    bge_ifmedia_sts);
   1817  1.1     fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1818  1.1     fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   1819  1.1     fvdl 			    0, NULL);
   1820  1.1     fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1821  1.1     fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   1822  1.1     fvdl 	} else {
   1823  1.1     fvdl 		/*
   1824  1.1     fvdl 		 * Do transceiver setup.
   1825  1.1     fvdl 		 */
   1826  1.1     fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   1827  1.1     fvdl 			     bge_ifmedia_sts);
   1828  1.1     fvdl 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   1829  1.1     fvdl 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
   1830  1.1     fvdl 
   1831  1.1     fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   1832  1.1     fvdl 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   1833  1.1     fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   1834  1.1     fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   1835  1.1     fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   1836  1.1     fvdl 				    IFM_ETHER|IFM_MANUAL);
   1837  1.1     fvdl 		} else
   1838  1.1     fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   1839  1.1     fvdl 				    IFM_ETHER|IFM_AUTO);
   1840  1.1     fvdl 	}
   1841  1.1     fvdl 
   1842  1.1     fvdl 	/*
   1843  1.1     fvdl 	 * Call MI attach routine.
   1844  1.1     fvdl 	 */
   1845  1.1     fvdl 	DPRINTFN(5, ("if_attach\n"));
   1846  1.1     fvdl 	if_attach(ifp);
   1847  1.1     fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   1848  1.1     fvdl 	ether_ifattach(ifp, eaddr);
   1849  1.1     fvdl 	DPRINTFN(5, ("callout_init\n"));
   1850  1.1     fvdl 	callout_init(&sc->bge_timeout);
   1851  1.1     fvdl }
   1852  1.1     fvdl 
   1853  1.1     fvdl void
   1854  1.1     fvdl bge_release_resources(sc)
   1855  1.1     fvdl 	struct bge_softc *sc;
   1856  1.1     fvdl {
   1857  1.1     fvdl 	if (sc->bge_vpd_prodname != NULL)
   1858  1.1     fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   1859  1.1     fvdl 
   1860  1.1     fvdl 	if (sc->bge_vpd_readonly != NULL)
   1861  1.1     fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   1862  1.1     fvdl }
   1863  1.1     fvdl 
   1864  1.1     fvdl void
   1865  1.1     fvdl bge_reset(sc)
   1866  1.1     fvdl 	struct bge_softc *sc;
   1867  1.1     fvdl {
   1868  1.1     fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   1869  1.1     fvdl 	u_int32_t cachesize, command, pcistate;
   1870  1.1     fvdl 	int i, val = 0;
   1871  1.1     fvdl 
   1872  1.1     fvdl 	/* Save some important PCI state. */
   1873  1.1     fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1874  1.1     fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   1875  1.1     fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   1876  1.1     fvdl 
   1877  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1878  1.1     fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   1879  1.1     fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   1880  1.1     fvdl 
   1881  1.1     fvdl 	/* Issue global reset */
   1882  1.1     fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG,
   1883  1.1     fvdl 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   1884  1.1     fvdl 
   1885  1.1     fvdl 	DELAY(1000);
   1886  1.1     fvdl 
   1887  1.1     fvdl 	/* Reset some of the PCI state that got zapped by reset */
   1888  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1889  1.1     fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   1890  1.1     fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   1891  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   1892  1.1     fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   1893  1.1     fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   1894  1.1     fvdl 
   1895  1.1     fvdl 	/* Enable memory arbiter. */
   1896  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   1897  1.1     fvdl 
   1898  1.1     fvdl 	/*
   1899  1.1     fvdl 	 * Prevent PXE restart: write a magic number to the
   1900  1.1     fvdl 	 * general communications memory at 0xB50.
   1901  1.1     fvdl 	 */
   1902  1.1     fvdl 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1903  1.1     fvdl 
   1904  1.1     fvdl 	/*
   1905  1.1     fvdl 	 * Poll the value location we just wrote until
   1906  1.1     fvdl 	 * we see the 1's complement of the magic number.
   1907  1.1     fvdl 	 * This indicates that the firmware initialization
   1908  1.1     fvdl 	 * is complete.
   1909  1.1     fvdl 	 */
   1910  1.1     fvdl 	for (i = 0; i < 750; i++) {
   1911  1.1     fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1912  1.1     fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   1913  1.1     fvdl 			break;
   1914  1.1     fvdl 		DELAY(1000);
   1915  1.1     fvdl 	}
   1916  1.1     fvdl 
   1917  1.8  thorpej 	if (i == 750) {
   1918  1.1     fvdl 		printf("%s: firmware handshake timed out, val = %x\n",
   1919  1.1     fvdl 		    sc->bge_dev.dv_xname, val);
   1920  1.1     fvdl 		return;
   1921  1.1     fvdl 	}
   1922  1.1     fvdl 
   1923  1.1     fvdl 	/*
   1924  1.1     fvdl 	 * XXX Wait for the value of the PCISTATE register to
   1925  1.1     fvdl 	 * return to its original pre-reset state. This is a
   1926  1.1     fvdl 	 * fairly good indicator of reset completion. If we don't
   1927  1.1     fvdl 	 * wait for the reset to fully complete, trying to read
   1928  1.1     fvdl 	 * from the device's non-PCI registers may yield garbage
   1929  1.1     fvdl 	 * results.
   1930  1.1     fvdl 	 */
   1931  1.1     fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1932  1.1     fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   1933  1.1     fvdl 		    pcistate)
   1934  1.1     fvdl 			break;
   1935  1.1     fvdl 		DELAY(10);
   1936  1.1     fvdl 	}
   1937  1.1     fvdl 
   1938  1.1     fvdl 	/* Enable memory arbiter. */
   1939  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   1940  1.1     fvdl 
   1941  1.1     fvdl 	/* Fix up byte swapping */
   1942  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   1943  1.1     fvdl 
   1944  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1945  1.1     fvdl 
   1946  1.1     fvdl 	DELAY(10000);
   1947  1.1     fvdl }
   1948  1.1     fvdl 
   1949  1.1     fvdl /*
   1950  1.1     fvdl  * Frame reception handling. This is called if there's a frame
   1951  1.1     fvdl  * on the receive return list.
   1952  1.1     fvdl  *
   1953  1.1     fvdl  * Note: we have to be able to handle two possibilities here:
   1954  1.1     fvdl  * 1) the frame is from the jumbo recieve ring
   1955  1.1     fvdl  * 2) the frame is from the standard receive ring
   1956  1.1     fvdl  */
   1957  1.1     fvdl 
   1958  1.1     fvdl void
   1959  1.1     fvdl bge_rxeof(sc)
   1960  1.1     fvdl 	struct bge_softc *sc;
   1961  1.1     fvdl {
   1962  1.1     fvdl 	struct ifnet *ifp;
   1963  1.1     fvdl 	int stdcnt = 0, jumbocnt = 0;
   1964  1.1     fvdl 	int have_tag = 0;
   1965  1.1     fvdl 	u_int16_t vlan_tag = 0;
   1966  1.1     fvdl 	bus_dmamap_t dmamap;
   1967  1.1     fvdl 	bus_addr_t offset, toff;
   1968  1.1     fvdl 	bus_size_t tlen;
   1969  1.1     fvdl 	int tosync;
   1970  1.1     fvdl 
   1971  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   1972  1.1     fvdl 
   1973  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1974  1.1     fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   1975  1.1     fvdl 	    sizeof (struct bge_status_block),
   1976  1.1     fvdl 	    BUS_DMASYNC_POSTREAD);
   1977  1.1     fvdl 
   1978  1.1     fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   1979  1.1     fvdl 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   1980  1.1     fvdl 	    sc->bge_rx_saved_considx;
   1981  1.1     fvdl 
   1982  1.1     fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   1983  1.1     fvdl 
   1984  1.1     fvdl 	if (tosync < 0) {
   1985  1.1     fvdl 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
   1986  1.1     fvdl 		    sizeof (struct bge_rx_bd);
   1987  1.1     fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1988  1.1     fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   1989  1.1     fvdl 		tosync = -tosync;
   1990  1.1     fvdl 	}
   1991  1.1     fvdl 
   1992  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1993  1.1     fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   1994  1.1     fvdl 	    BUS_DMASYNC_POSTREAD);
   1995  1.1     fvdl 
   1996  1.1     fvdl 	while(sc->bge_rx_saved_considx !=
   1997  1.1     fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   1998  1.1     fvdl 		struct bge_rx_bd	*cur_rx;
   1999  1.1     fvdl 		u_int32_t		rxidx;
   2000  1.1     fvdl 		struct mbuf		*m = NULL;
   2001  1.1     fvdl 
   2002  1.1     fvdl 		cur_rx = &sc->bge_rdata->
   2003  1.1     fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2004  1.1     fvdl 
   2005  1.1     fvdl 		rxidx = cur_rx->bge_idx;
   2006  1.1     fvdl 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
   2007  1.1     fvdl 
   2008  1.1     fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2009  1.1     fvdl 			have_tag = 1;
   2010  1.1     fvdl 			vlan_tag = cur_rx->bge_vlan_tag;
   2011  1.1     fvdl 		}
   2012  1.1     fvdl 
   2013  1.1     fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2014  1.1     fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2015  1.1     fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2016  1.1     fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2017  1.1     fvdl 			jumbocnt++;
   2018  1.1     fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2019  1.1     fvdl 				ifp->if_ierrors++;
   2020  1.1     fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2021  1.1     fvdl 				continue;
   2022  1.1     fvdl 			}
   2023  1.1     fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2024  1.1     fvdl 					     NULL)== ENOBUFS) {
   2025  1.1     fvdl 				ifp->if_ierrors++;
   2026  1.1     fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2027  1.1     fvdl 				continue;
   2028  1.1     fvdl 			}
   2029  1.1     fvdl 		} else {
   2030  1.1     fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2031  1.1     fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2032  1.1     fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2033  1.1     fvdl 			stdcnt++;
   2034  1.1     fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2035  1.1     fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2036  1.1     fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2037  1.1     fvdl 				ifp->if_ierrors++;
   2038  1.1     fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2039  1.1     fvdl 				continue;
   2040  1.1     fvdl 			}
   2041  1.1     fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2042  1.1     fvdl 			    NULL, dmamap) == ENOBUFS) {
   2043  1.1     fvdl 				ifp->if_ierrors++;
   2044  1.1     fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2045  1.1     fvdl 				continue;
   2046  1.1     fvdl 			}
   2047  1.1     fvdl 		}
   2048  1.1     fvdl 
   2049  1.1     fvdl 		ifp->if_ipackets++;
   2050  1.1     fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
   2051  1.1     fvdl 		m->m_pkthdr.rcvif = ifp;
   2052  1.1     fvdl 
   2053  1.1     fvdl #if NBPFILTER > 0
   2054  1.1     fvdl 		/*
   2055  1.1     fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2056  1.1     fvdl 		 */
   2057  1.1     fvdl 		if (ifp->if_bpf)
   2058  1.1     fvdl 			bpf_mtap(ifp->if_bpf, m);
   2059  1.1     fvdl #endif
   2060  1.1     fvdl 
   2061  1.2     fvdl 		if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
   2062  1.2     fvdl 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2063  1.2     fvdl 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2064  1.2     fvdl 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2065  1.4     fvdl #if 0	/* XXX appears to be broken */
   2066  1.2     fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   2067  1.2     fvdl 				m->m_pkthdr.csum_data =
   2068  1.2     fvdl 				    cur_rx->bge_tcp_udp_csum;
   2069  1.2     fvdl 				m->m_pkthdr.csum_flags |=
   2070  1.2     fvdl 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
   2071  1.2     fvdl 			}
   2072  1.4     fvdl #endif
   2073  1.1     fvdl 		}
   2074  1.1     fvdl 
   2075  1.1     fvdl 		/*
   2076  1.1     fvdl 		 * If we received a packet with a vlan tag, pass it
   2077  1.1     fvdl 		 * to vlan_input() instead of ether_input().
   2078  1.1     fvdl 		 */
   2079  1.1     fvdl 		if (have_tag) {
   2080  1.1     fvdl 			struct mbuf *n;
   2081  1.1     fvdl 
   2082  1.1     fvdl 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   2083  1.1     fvdl 			if (n != NULL) {
   2084  1.1     fvdl 				*mtod(n, int *) = vlan_tag;
   2085  1.1     fvdl 				n->m_len = sizeof(int);
   2086  1.1     fvdl 				have_tag = vlan_tag = 0;
   2087  1.1     fvdl 			} else {
   2088  1.1     fvdl 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2089  1.1     fvdl 				m_freem(m);
   2090  1.1     fvdl 				have_tag = vlan_tag = 0;
   2091  1.1     fvdl 				continue;
   2092  1.1     fvdl 			}
   2093  1.1     fvdl 		}
   2094  1.1     fvdl 		(*ifp->if_input)(ifp, m);
   2095  1.1     fvdl 	}
   2096  1.1     fvdl 
   2097  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2098  1.1     fvdl 	if (stdcnt)
   2099  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2100  1.1     fvdl 	if (jumbocnt)
   2101  1.1     fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2102  1.1     fvdl }
   2103  1.1     fvdl 
   2104  1.1     fvdl void
   2105  1.1     fvdl bge_txeof(sc)
   2106  1.1     fvdl 	struct bge_softc *sc;
   2107  1.1     fvdl {
   2108  1.1     fvdl 	struct bge_tx_bd *cur_tx = NULL;
   2109  1.1     fvdl 	struct ifnet *ifp;
   2110  1.1     fvdl 	struct txdmamap_pool_entry *dma;
   2111  1.1     fvdl 	bus_addr_t offset, toff;
   2112  1.1     fvdl 	bus_size_t tlen;
   2113  1.1     fvdl 	int tosync;
   2114  1.1     fvdl 	struct mbuf *m;
   2115  1.1     fvdl 
   2116  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   2117  1.1     fvdl 
   2118  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2119  1.1     fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2120  1.1     fvdl 	    sizeof (struct bge_status_block),
   2121  1.1     fvdl 	    BUS_DMASYNC_POSTREAD);
   2122  1.1     fvdl 
   2123  1.1     fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2124  1.1     fvdl 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2125  1.1     fvdl 	    sc->bge_tx_saved_considx;
   2126  1.1     fvdl 
   2127  1.1     fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2128  1.1     fvdl 
   2129  1.1     fvdl 	if (tosync < 0) {
   2130  1.1     fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2131  1.1     fvdl 		    sizeof (struct bge_tx_bd);
   2132  1.1     fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2133  1.1     fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2134  1.1     fvdl 		tosync = -tosync;
   2135  1.1     fvdl 	}
   2136  1.1     fvdl 
   2137  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2138  1.1     fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   2139  1.1     fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2140  1.1     fvdl 
   2141  1.1     fvdl 	/*
   2142  1.1     fvdl 	 * Go through our tx ring and free mbufs for those
   2143  1.1     fvdl 	 * frames that have been sent.
   2144  1.1     fvdl 	 */
   2145  1.1     fvdl 	while (sc->bge_tx_saved_considx !=
   2146  1.1     fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2147  1.1     fvdl 		u_int32_t		idx = 0;
   2148  1.1     fvdl 
   2149  1.1     fvdl 		idx = sc->bge_tx_saved_considx;
   2150  1.1     fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2151  1.1     fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2152  1.1     fvdl 			ifp->if_opackets++;
   2153  1.1     fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   2154  1.1     fvdl 		if (m != NULL) {
   2155  1.1     fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2156  1.1     fvdl 			dma = sc->txdma[idx];
   2157  1.1     fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2158  1.1     fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2159  1.1     fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2160  1.1     fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2161  1.1     fvdl 			sc->txdma[idx] = NULL;
   2162  1.1     fvdl 
   2163  1.1     fvdl 			m_freem(m);
   2164  1.1     fvdl 		}
   2165  1.1     fvdl 		sc->bge_txcnt--;
   2166  1.1     fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2167  1.1     fvdl 		ifp->if_timer = 0;
   2168  1.1     fvdl 	}
   2169  1.1     fvdl 
   2170  1.1     fvdl 	if (cur_tx != NULL)
   2171  1.1     fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   2172  1.1     fvdl }
   2173  1.1     fvdl 
   2174  1.1     fvdl int
   2175  1.1     fvdl bge_intr(xsc)
   2176  1.1     fvdl 	void *xsc;
   2177  1.1     fvdl {
   2178  1.1     fvdl 	struct bge_softc *sc;
   2179  1.1     fvdl 	struct ifnet *ifp;
   2180  1.1     fvdl 
   2181  1.1     fvdl 	sc = xsc;
   2182  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   2183  1.1     fvdl 
   2184  1.1     fvdl #ifdef notdef
   2185  1.1     fvdl 	/* Avoid this for now -- checking this register is expensive. */
   2186  1.1     fvdl 	/* Make sure this is really our interrupt. */
   2187  1.1     fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2188  1.1     fvdl 		return (0);
   2189  1.1     fvdl #endif
   2190  1.1     fvdl 	/* Ack interrupt and stop others from occuring. */
   2191  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2192  1.1     fvdl 
   2193  1.1     fvdl 	/*
   2194  1.1     fvdl 	 * Process link state changes.
   2195  1.1     fvdl 	 * Grrr. The link status word in the status block does
   2196  1.1     fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2197  1.1     fvdl 	 * according to all avaibable information. Hence, we have
   2198  1.1     fvdl 	 * to enable MII interrupts in order to properly obtain
   2199  1.1     fvdl 	 * async link changes. Unfortunately, this also means that
   2200  1.1     fvdl 	 * we have to read the MAC status register to detect link
   2201  1.1     fvdl 	 * changes, thereby adding an additional register access to
   2202  1.1     fvdl 	 * the interrupt handler.
   2203  1.1     fvdl 	 */
   2204  1.1     fvdl 
   2205  1.2     fvdl 	if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
   2206  1.1     fvdl 		u_int32_t		status;
   2207  1.1     fvdl 
   2208  1.1     fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2209  1.1     fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2210  1.1     fvdl 			sc->bge_link = 0;
   2211  1.1     fvdl 			callout_stop(&sc->bge_timeout);
   2212  1.1     fvdl 			bge_tick(sc);
   2213  1.1     fvdl 			/* Clear the interrupt */
   2214  1.1     fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2215  1.1     fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   2216  1.1     fvdl 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2217  1.1     fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2218  1.1     fvdl 			    BRGPHY_INTRS);
   2219  1.1     fvdl 		}
   2220  1.1     fvdl 	} else {
   2221  1.1     fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   2222  1.1     fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2223  1.1     fvdl 			sc->bge_link = 0;
   2224  1.1     fvdl 			callout_stop(&sc->bge_timeout);
   2225  1.1     fvdl 			bge_tick(sc);
   2226  1.1     fvdl 			/* Clear the interrupt */
   2227  1.1     fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2228  1.1     fvdl 			    BGE_MACSTAT_CFG_CHANGED);
   2229  1.1     fvdl 		}
   2230  1.1     fvdl 	}
   2231  1.1     fvdl 
   2232  1.1     fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   2233  1.1     fvdl 		/* Check RX return ring producer/consumer */
   2234  1.1     fvdl 		bge_rxeof(sc);
   2235  1.1     fvdl 
   2236  1.1     fvdl 		/* Check TX ring producer/consumer */
   2237  1.1     fvdl 		bge_txeof(sc);
   2238  1.1     fvdl 	}
   2239  1.1     fvdl 
   2240  1.1     fvdl 	bge_handle_events(sc);
   2241  1.1     fvdl 
   2242  1.1     fvdl 	/* Re-enable interrupts. */
   2243  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2244  1.1     fvdl 
   2245  1.1     fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2246  1.1     fvdl 		bge_start(ifp);
   2247  1.1     fvdl 
   2248  1.1     fvdl 	return (1);
   2249  1.1     fvdl }
   2250  1.1     fvdl 
   2251  1.1     fvdl void
   2252  1.1     fvdl bge_tick(xsc)
   2253  1.1     fvdl 	void *xsc;
   2254  1.1     fvdl {
   2255  1.1     fvdl 	struct bge_softc *sc = xsc;
   2256  1.1     fvdl 	struct mii_data *mii = &sc->bge_mii;
   2257  1.1     fvdl 	struct ifmedia *ifm = NULL;
   2258  1.1     fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2259  1.1     fvdl 	int s;
   2260  1.1     fvdl 
   2261  1.1     fvdl 	s = splnet();
   2262  1.1     fvdl 
   2263  1.1     fvdl 	bge_stats_update(sc);
   2264  1.1     fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2265  1.1     fvdl 	if (sc->bge_link) {
   2266  1.1     fvdl 		splx(s);
   2267  1.1     fvdl 		return;
   2268  1.1     fvdl 	}
   2269  1.1     fvdl 
   2270  1.1     fvdl 	if (sc->bge_tbi) {
   2271  1.1     fvdl 		ifm = &sc->bge_ifmedia;
   2272  1.1     fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2273  1.1     fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2274  1.1     fvdl 			sc->bge_link++;
   2275  1.1     fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2276  1.1     fvdl 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2277  1.1     fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2278  1.1     fvdl 				bge_start(ifp);
   2279  1.1     fvdl 		}
   2280  1.1     fvdl 		splx(s);
   2281  1.1     fvdl 		return;
   2282  1.1     fvdl 	}
   2283  1.1     fvdl 
   2284  1.1     fvdl 	mii_tick(mii);
   2285  1.1     fvdl 
   2286  1.1     fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2287  1.1     fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2288  1.1     fvdl 		sc->bge_link++;
   2289  1.1     fvdl 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   2290  1.1     fvdl 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   2291  1.1     fvdl 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2292  1.1     fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2293  1.1     fvdl 			bge_start(ifp);
   2294  1.1     fvdl 	}
   2295  1.1     fvdl 
   2296  1.1     fvdl 	splx(s);
   2297  1.1     fvdl }
   2298  1.1     fvdl 
   2299  1.1     fvdl void
   2300  1.1     fvdl bge_stats_update(sc)
   2301  1.1     fvdl 	struct bge_softc *sc;
   2302  1.1     fvdl {
   2303  1.1     fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2304  1.1     fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2305  1.1     fvdl 
   2306  1.1     fvdl #define READ_STAT(sc, stats, stat) \
   2307  1.1     fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2308  1.1     fvdl 
   2309  1.1     fvdl 	ifp->if_collisions +=
   2310  1.1     fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2311  1.1     fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2312  1.1     fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2313  1.1     fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2314  1.1     fvdl 	  ifp->if_collisions;
   2315  1.1     fvdl 
   2316  1.1     fvdl #undef READ_STAT
   2317  1.1     fvdl 
   2318  1.1     fvdl #ifdef notdef
   2319  1.1     fvdl 	ifp->if_collisions +=
   2320  1.1     fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2321  1.1     fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2322  1.1     fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2323  1.1     fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2324  1.1     fvdl 	   ifp->if_collisions;
   2325  1.1     fvdl #endif
   2326  1.1     fvdl }
   2327  1.1     fvdl 
   2328  1.1     fvdl /*
   2329  1.1     fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2330  1.1     fvdl  * pointers to descriptors.
   2331  1.1     fvdl  */
   2332  1.1     fvdl int
   2333  1.1     fvdl bge_encap(sc, m_head, txidx)
   2334  1.1     fvdl 	struct bge_softc *sc;
   2335  1.1     fvdl 	struct mbuf *m_head;
   2336  1.1     fvdl 	u_int32_t *txidx;
   2337  1.1     fvdl {
   2338  1.1     fvdl 	struct bge_tx_bd	*f = NULL;
   2339  1.1     fvdl 	u_int32_t		frag, cur, cnt = 0;
   2340  1.1     fvdl 	u_int16_t		csum_flags = 0;
   2341  1.1     fvdl 	struct txdmamap_pool_entry *dma;
   2342  1.1     fvdl 	bus_dmamap_t dmamap;
   2343  1.1     fvdl 	int			i = 0;
   2344  1.1     fvdl 	struct mbuf		*n;
   2345  1.1     fvdl 
   2346  1.1     fvdl 	cur = frag = *txidx;
   2347  1.1     fvdl 
   2348  1.1     fvdl 	if (m_head->m_pkthdr.csum_flags) {
   2349  1.1     fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   2350  1.1     fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   2351  1.8  thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2352  1.1     fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   2353  1.1     fvdl 	}
   2354  1.1     fvdl 
   2355  1.1     fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   2356  1.1     fvdl 	if (dma == NULL)
   2357  1.1     fvdl 		return ENOBUFS;
   2358  1.1     fvdl 	dmamap = dma->dmamap;
   2359  1.1     fvdl 
   2360  1.1     fvdl 	/*
   2361  1.1     fvdl 	 * Start packing the mbufs in this chain into
   2362  1.1     fvdl 	 * the fragment pointers. Stop when we run out
   2363  1.1     fvdl 	 * of fragments or hit the end of the mbuf chain.
   2364  1.1     fvdl 	 */
   2365  1.1     fvdl 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   2366  1.1     fvdl 	    BUS_DMA_NOWAIT))
   2367  1.1     fvdl 		return(ENOBUFS);
   2368  1.1     fvdl 
   2369  1.6  thorpej 	n = sc->ethercom.ec_nvlans ?
   2370  1.6  thorpej 	    m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
   2371  1.6  thorpej 
   2372  1.1     fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2373  1.1     fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   2374  1.1     fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   2375  1.1     fvdl 			break;
   2376  1.1     fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   2377  1.1     fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   2378  1.1     fvdl 		f->bge_flags = csum_flags;
   2379  1.1     fvdl 
   2380  1.1     fvdl 		if (n != NULL) {
   2381  1.1     fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   2382  1.1     fvdl 			f->bge_vlan_tag = *mtod(n, int *);
   2383  1.1     fvdl 		} else {
   2384  1.1     fvdl 			f->bge_vlan_tag = 0;
   2385  1.1     fvdl 		}
   2386  1.1     fvdl 		/*
   2387  1.1     fvdl 		 * Sanity check: avoid coming within 16 descriptors
   2388  1.1     fvdl 		 * of the end of the ring.
   2389  1.1     fvdl 		 */
   2390  1.1     fvdl 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   2391  1.1     fvdl 			return(ENOBUFS);
   2392  1.1     fvdl 		cur = frag;
   2393  1.1     fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   2394  1.1     fvdl 		cnt++;
   2395  1.1     fvdl 	}
   2396  1.1     fvdl 
   2397  1.1     fvdl 	if (i < dmamap->dm_nsegs)
   2398  1.1     fvdl 		return ENOBUFS;
   2399  1.1     fvdl 
   2400  1.1     fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   2401  1.1     fvdl 	    BUS_DMASYNC_PREWRITE);
   2402  1.1     fvdl 
   2403  1.1     fvdl 	if (frag == sc->bge_tx_saved_considx)
   2404  1.1     fvdl 		return(ENOBUFS);
   2405  1.1     fvdl 
   2406  1.1     fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   2407  1.1     fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   2408  1.1     fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   2409  1.1     fvdl 	sc->txdma[cur] = dma;
   2410  1.1     fvdl 	sc->bge_txcnt += cnt;
   2411  1.1     fvdl 
   2412  1.1     fvdl 	*txidx = frag;
   2413  1.1     fvdl 
   2414  1.1     fvdl 	return(0);
   2415  1.1     fvdl }
   2416  1.1     fvdl 
   2417  1.1     fvdl /*
   2418  1.1     fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2419  1.1     fvdl  * to the mbuf data regions directly in the transmit descriptors.
   2420  1.1     fvdl  */
   2421  1.1     fvdl void
   2422  1.1     fvdl bge_start(ifp)
   2423  1.1     fvdl 	struct ifnet *ifp;
   2424  1.1     fvdl {
   2425  1.1     fvdl 	struct bge_softc *sc;
   2426  1.1     fvdl 	struct mbuf *m_head = NULL;
   2427  1.1     fvdl 	u_int32_t prodidx = 0;
   2428  1.1     fvdl 	int pkts = 0;
   2429  1.1     fvdl 
   2430  1.1     fvdl 	sc = ifp->if_softc;
   2431  1.1     fvdl 
   2432  1.1     fvdl 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   2433  1.1     fvdl 		return;
   2434  1.1     fvdl 
   2435  1.1     fvdl 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   2436  1.1     fvdl 
   2437  1.1     fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   2438  1.1     fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   2439  1.1     fvdl 		if (m_head == NULL)
   2440  1.1     fvdl 			break;
   2441  1.1     fvdl 
   2442  1.1     fvdl #if 0
   2443  1.1     fvdl 		/*
   2444  1.1     fvdl 		 * XXX
   2445  1.1     fvdl 		 * safety overkill.  If this is a fragmented packet chain
   2446  1.1     fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   2447  1.1     fvdl 		 * it if we have enough descriptors to handle the entire
   2448  1.1     fvdl 		 * chain at once.
   2449  1.1     fvdl 		 * (paranoia -- may not actually be needed)
   2450  1.1     fvdl 		 */
   2451  1.1     fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   2452  1.1     fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   2453  1.1     fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   2454  1.1     fvdl 			    m_head->m_pkthdr.csum_data + 16) {
   2455  1.1     fvdl 				ifp->if_flags |= IFF_OACTIVE;
   2456  1.1     fvdl 				break;
   2457  1.1     fvdl 			}
   2458  1.1     fvdl 		}
   2459  1.1     fvdl #endif
   2460  1.1     fvdl 
   2461  1.1     fvdl 		/*
   2462  1.1     fvdl 		 * Pack the data into the transmit ring. If we
   2463  1.1     fvdl 		 * don't have room, set the OACTIVE flag and wait
   2464  1.1     fvdl 		 * for the NIC to drain the ring.
   2465  1.1     fvdl 		 */
   2466  1.1     fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   2467  1.1     fvdl 			ifp->if_flags |= IFF_OACTIVE;
   2468  1.1     fvdl 			break;
   2469  1.1     fvdl 		}
   2470  1.1     fvdl 
   2471  1.1     fvdl 		/* now we are committed to transmit the packet */
   2472  1.1     fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2473  1.1     fvdl 		pkts++;
   2474  1.1     fvdl 
   2475  1.1     fvdl #if NBPFILTER > 0
   2476  1.1     fvdl 		/*
   2477  1.1     fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   2478  1.1     fvdl 		 * to him.
   2479  1.1     fvdl 		 */
   2480  1.1     fvdl 		if (ifp->if_bpf)
   2481  1.1     fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   2482  1.1     fvdl #endif
   2483  1.1     fvdl 	}
   2484  1.1     fvdl 	if (pkts == 0)
   2485  1.1     fvdl 		return;
   2486  1.1     fvdl 
   2487  1.1     fvdl 	/* Transmit */
   2488  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2489  1.1     fvdl 
   2490  1.1     fvdl 	/*
   2491  1.1     fvdl 	 * Set a timeout in case the chip goes out to lunch.
   2492  1.1     fvdl 	 */
   2493  1.1     fvdl 	ifp->if_timer = 5;
   2494  1.1     fvdl }
   2495  1.1     fvdl 
   2496  1.1     fvdl /*
   2497  1.1     fvdl  * If we have a BCM5400 or BCM5401 PHY, we need to properly
   2498  1.1     fvdl  * program its internal DSP. Failing to do this can result in
   2499  1.1     fvdl  * massive packet loss at 1Gb speeds.
   2500  1.1     fvdl  */
   2501  1.1     fvdl void
   2502  1.1     fvdl bge_phy_hack(sc)
   2503  1.1     fvdl 	struct bge_softc *sc;
   2504  1.1     fvdl {
   2505  1.1     fvdl 	struct bge_bcom_hack bhack[] = {
   2506  1.1     fvdl 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
   2507  1.1     fvdl 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
   2508  1.1     fvdl 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
   2509  1.1     fvdl 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
   2510  1.1     fvdl 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
   2511  1.1     fvdl 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
   2512  1.1     fvdl 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
   2513  1.1     fvdl 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
   2514  1.1     fvdl 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
   2515  1.1     fvdl 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
   2516  1.1     fvdl 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
   2517  1.1     fvdl 	{ 0, 0 } };
   2518  1.1     fvdl 	u_int16_t vid, did;
   2519  1.1     fvdl 	int i;
   2520  1.1     fvdl 
   2521  1.1     fvdl 	vid = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR1);
   2522  1.1     fvdl 	did = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR2);
   2523  1.1     fvdl 
   2524  1.1     fvdl 	if (MII_OUI(vid, did) == MII_OUI_BROADCOM &&
   2525  1.1     fvdl 	    (MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5400 ||
   2526  1.1     fvdl 	     MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5401)) {
   2527  1.1     fvdl 		i = 0;
   2528  1.1     fvdl 		while (bhack[i].reg) {
   2529  1.1     fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, bhack[i].reg,
   2530  1.1     fvdl 					    bhack[i].val);
   2531  1.1     fvdl 			i++;
   2532  1.1     fvdl 		}
   2533  1.1     fvdl 	}
   2534  1.1     fvdl }
   2535  1.1     fvdl 
   2536  1.1     fvdl int
   2537  1.1     fvdl bge_init(ifp)
   2538  1.1     fvdl 	struct ifnet *ifp;
   2539  1.1     fvdl {
   2540  1.1     fvdl 	struct bge_softc *sc = ifp->if_softc;
   2541  1.1     fvdl 	u_int16_t *m;
   2542  1.1     fvdl 	int s, error;
   2543  1.1     fvdl 
   2544  1.1     fvdl 	s = splnet();
   2545  1.1     fvdl 
   2546  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   2547  1.1     fvdl 
   2548  1.1     fvdl 	/* Cancel pending I/O and flush buffers. */
   2549  1.1     fvdl 	bge_stop(sc);
   2550  1.1     fvdl 	bge_reset(sc);
   2551  1.1     fvdl 	bge_chipinit(sc);
   2552  1.1     fvdl 
   2553  1.1     fvdl 	/*
   2554  1.1     fvdl 	 * Init the various state machines, ring
   2555  1.1     fvdl 	 * control blocks and firmware.
   2556  1.1     fvdl 	 */
   2557  1.1     fvdl 	error = bge_blockinit(sc);
   2558  1.1     fvdl 	if (error != 0) {
   2559  1.1     fvdl 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   2560  1.1     fvdl 		    error);
   2561  1.1     fvdl 		splx(s);
   2562  1.1     fvdl 		return error;
   2563  1.1     fvdl 	}
   2564  1.1     fvdl 
   2565  1.1     fvdl 	ifp = &sc->ethercom.ec_if;
   2566  1.1     fvdl 
   2567  1.1     fvdl 	/* Specify MTU. */
   2568  1.1     fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   2569  1.1     fvdl 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2570  1.1     fvdl 
   2571  1.1     fvdl 	/* Load our MAC address. */
   2572  1.1     fvdl 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   2573  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   2574  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   2575  1.1     fvdl 
   2576  1.1     fvdl 	/* Enable or disable promiscuous mode as needed. */
   2577  1.1     fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   2578  1.1     fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2579  1.1     fvdl 	} else {
   2580  1.1     fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2581  1.1     fvdl 	}
   2582  1.1     fvdl 
   2583  1.1     fvdl 	/* Program multicast filter. */
   2584  1.1     fvdl 	bge_setmulti(sc);
   2585  1.1     fvdl 
   2586  1.1     fvdl 	/* Init RX ring. */
   2587  1.1     fvdl 	bge_init_rx_ring_std(sc);
   2588  1.1     fvdl 
   2589  1.1     fvdl 	/* Init jumbo RX ring. */
   2590  1.1     fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2591  1.1     fvdl 		bge_init_rx_ring_jumbo(sc);
   2592  1.1     fvdl 
   2593  1.1     fvdl 	/* Init our RX return ring index */
   2594  1.1     fvdl 	sc->bge_rx_saved_considx = 0;
   2595  1.1     fvdl 
   2596  1.1     fvdl 	/* Init TX ring. */
   2597  1.1     fvdl 	bge_init_tx_ring(sc);
   2598  1.1     fvdl 
   2599  1.1     fvdl 	/* Turn on transmitter */
   2600  1.1     fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   2601  1.1     fvdl 
   2602  1.1     fvdl 	/* Turn on receiver */
   2603  1.1     fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2604  1.1     fvdl 
   2605  1.1     fvdl 	/* Tell firmware we're alive. */
   2606  1.1     fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2607  1.1     fvdl 
   2608  1.1     fvdl 	/* Enable host interrupts. */
   2609  1.1     fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   2610  1.1     fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2611  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2612  1.1     fvdl 
   2613  1.1     fvdl 	bge_ifmedia_upd(ifp);
   2614  1.1     fvdl 
   2615  1.1     fvdl 	ifp->if_flags |= IFF_RUNNING;
   2616  1.1     fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   2617  1.1     fvdl 
   2618  1.1     fvdl 	splx(s);
   2619  1.1     fvdl 
   2620  1.1     fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2621  1.1     fvdl 
   2622  1.1     fvdl 	return 0;
   2623  1.1     fvdl }
   2624  1.1     fvdl 
   2625  1.1     fvdl /*
   2626  1.1     fvdl  * Set media options.
   2627  1.1     fvdl  */
   2628  1.1     fvdl int
   2629  1.1     fvdl bge_ifmedia_upd(ifp)
   2630  1.1     fvdl 	struct ifnet *ifp;
   2631  1.1     fvdl {
   2632  1.1     fvdl 	struct bge_softc *sc = ifp->if_softc;
   2633  1.1     fvdl 	struct mii_data *mii = &sc->bge_mii;
   2634  1.1     fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   2635  1.1     fvdl 
   2636  1.1     fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   2637  1.1     fvdl 	if (sc->bge_tbi) {
   2638  1.1     fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2639  1.1     fvdl 			return(EINVAL);
   2640  1.1     fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2641  1.1     fvdl 		case IFM_AUTO:
   2642  1.1     fvdl 			break;
   2643  1.1     fvdl 		case IFM_1000_SX:
   2644  1.1     fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2645  1.1     fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   2646  1.1     fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   2647  1.1     fvdl 			} else {
   2648  1.1     fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   2649  1.1     fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   2650  1.1     fvdl 			}
   2651  1.1     fvdl 			break;
   2652  1.1     fvdl 		default:
   2653  1.1     fvdl 			return(EINVAL);
   2654  1.1     fvdl 		}
   2655  1.1     fvdl 		return(0);
   2656  1.1     fvdl 	}
   2657  1.1     fvdl 
   2658  1.1     fvdl 	sc->bge_link = 0;
   2659  1.1     fvdl 	if (mii->mii_instance) {
   2660  1.1     fvdl 		struct mii_softc *miisc;
   2661  1.1     fvdl 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
   2662  1.1     fvdl 		    miisc = LIST_NEXT(miisc, mii_list))
   2663  1.1     fvdl 			mii_phy_reset(miisc);
   2664  1.1     fvdl 	}
   2665  1.1     fvdl 	bge_phy_hack(sc);
   2666  1.1     fvdl 	mii_mediachg(mii);
   2667  1.1     fvdl 
   2668  1.1     fvdl 	return(0);
   2669  1.1     fvdl }
   2670  1.1     fvdl 
   2671  1.1     fvdl /*
   2672  1.1     fvdl  * Report current media status.
   2673  1.1     fvdl  */
   2674  1.1     fvdl void
   2675  1.1     fvdl bge_ifmedia_sts(ifp, ifmr)
   2676  1.1     fvdl 	struct ifnet *ifp;
   2677  1.1     fvdl 	struct ifmediareq *ifmr;
   2678  1.1     fvdl {
   2679  1.1     fvdl 	struct bge_softc *sc = ifp->if_softc;
   2680  1.1     fvdl 	struct mii_data *mii = &sc->bge_mii;
   2681  1.1     fvdl 
   2682  1.1     fvdl 	if (sc->bge_tbi) {
   2683  1.1     fvdl 		ifmr->ifm_status = IFM_AVALID;
   2684  1.1     fvdl 		ifmr->ifm_active = IFM_ETHER;
   2685  1.1     fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2686  1.1     fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   2687  1.1     fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   2688  1.1     fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   2689  1.1     fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   2690  1.1     fvdl 			ifmr->ifm_active |= IFM_HDX;
   2691  1.1     fvdl 		else
   2692  1.1     fvdl 			ifmr->ifm_active |= IFM_FDX;
   2693  1.1     fvdl 		return;
   2694  1.1     fvdl 	}
   2695  1.1     fvdl 
   2696  1.1     fvdl 	mii_pollstat(mii);
   2697  1.1     fvdl 	ifmr->ifm_active = mii->mii_media_active;
   2698  1.1     fvdl 	ifmr->ifm_status = mii->mii_media_status;
   2699  1.1     fvdl }
   2700  1.1     fvdl 
   2701  1.1     fvdl int
   2702  1.1     fvdl bge_ioctl(ifp, command, data)
   2703  1.1     fvdl 	struct ifnet *ifp;
   2704  1.1     fvdl 	u_long command;
   2705  1.1     fvdl 	caddr_t data;
   2706  1.1     fvdl {
   2707  1.1     fvdl 	struct bge_softc *sc = ifp->if_softc;
   2708  1.1     fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   2709  1.1     fvdl 	int s, error = 0;
   2710  1.1     fvdl 	struct mii_data *mii;
   2711  1.1     fvdl 
   2712  1.1     fvdl 	s = splnet();
   2713  1.1     fvdl 
   2714  1.1     fvdl 	switch(command) {
   2715  1.1     fvdl 	case SIOCSIFFLAGS:
   2716  1.1     fvdl 		if (ifp->if_flags & IFF_UP) {
   2717  1.1     fvdl 			/*
   2718  1.1     fvdl 			 * If only the state of the PROMISC flag changed,
   2719  1.1     fvdl 			 * then just use the 'set promisc mode' command
   2720  1.1     fvdl 			 * instead of reinitializing the entire NIC. Doing
   2721  1.1     fvdl 			 * a full re-init means reloading the firmware and
   2722  1.1     fvdl 			 * waiting for it to start up, which may take a
   2723  1.1     fvdl 			 * second or two.
   2724  1.1     fvdl 			 */
   2725  1.1     fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   2726  1.1     fvdl 			    ifp->if_flags & IFF_PROMISC &&
   2727  1.1     fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   2728  1.1     fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   2729  1.1     fvdl 				    BGE_RXMODE_RX_PROMISC);
   2730  1.1     fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   2731  1.1     fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   2732  1.1     fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   2733  1.1     fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   2734  1.1     fvdl 				    BGE_RXMODE_RX_PROMISC);
   2735  1.1     fvdl 			} else
   2736  1.1     fvdl 				bge_init(ifp);
   2737  1.1     fvdl 		} else {
   2738  1.1     fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   2739  1.1     fvdl 				bge_stop(sc);
   2740  1.1     fvdl 			}
   2741  1.1     fvdl 		}
   2742  1.1     fvdl 		sc->bge_if_flags = ifp->if_flags;
   2743  1.1     fvdl 		error = 0;
   2744  1.1     fvdl 		break;
   2745  1.1     fvdl 	case SIOCSIFMEDIA:
   2746  1.1     fvdl 	case SIOCGIFMEDIA:
   2747  1.1     fvdl 		if (sc->bge_tbi) {
   2748  1.1     fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   2749  1.1     fvdl 			    command);
   2750  1.1     fvdl 		} else {
   2751  1.1     fvdl 			mii = &sc->bge_mii;
   2752  1.1     fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   2753  1.1     fvdl 			    command);
   2754  1.1     fvdl 		}
   2755  1.1     fvdl 		error = 0;
   2756  1.1     fvdl 		break;
   2757  1.1     fvdl 	default:
   2758  1.1     fvdl 		error = ether_ioctl(ifp, command, data);
   2759  1.1     fvdl 		if (error == ENETRESET) {
   2760  1.1     fvdl 			bge_setmulti(sc);
   2761  1.1     fvdl 			error = 0;
   2762  1.1     fvdl 		}
   2763  1.1     fvdl 		break;
   2764  1.1     fvdl 	}
   2765  1.1     fvdl 
   2766  1.1     fvdl 	splx(s);
   2767  1.1     fvdl 
   2768  1.1     fvdl 	return(error);
   2769  1.1     fvdl }
   2770  1.1     fvdl 
   2771  1.1     fvdl void
   2772  1.1     fvdl bge_watchdog(ifp)
   2773  1.1     fvdl 	struct ifnet *ifp;
   2774  1.1     fvdl {
   2775  1.1     fvdl 	struct bge_softc *sc;
   2776  1.1     fvdl 
   2777  1.1     fvdl 	sc = ifp->if_softc;
   2778  1.1     fvdl 
   2779  1.1     fvdl 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   2780  1.1     fvdl 
   2781  1.1     fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   2782  1.1     fvdl 	bge_init(ifp);
   2783  1.1     fvdl 
   2784  1.1     fvdl 	ifp->if_oerrors++;
   2785  1.1     fvdl }
   2786  1.1     fvdl 
   2787  1.1     fvdl /*
   2788  1.1     fvdl  * Stop the adapter and free any mbufs allocated to the
   2789  1.1     fvdl  * RX and TX lists.
   2790  1.1     fvdl  */
   2791  1.1     fvdl void
   2792  1.1     fvdl bge_stop(sc)
   2793  1.1     fvdl 	struct bge_softc *sc;
   2794  1.1     fvdl {
   2795  1.1     fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2796  1.1     fvdl 
   2797  1.1     fvdl 	callout_stop(&sc->bge_timeout);
   2798  1.1     fvdl 
   2799  1.1     fvdl 	/*
   2800  1.1     fvdl 	 * Disable all of the receiver blocks
   2801  1.1     fvdl 	 */
   2802  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2803  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2804  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2805  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2806  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   2807  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2808  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   2809  1.1     fvdl 
   2810  1.1     fvdl 	/*
   2811  1.1     fvdl 	 * Disable all of the transmit blocks
   2812  1.1     fvdl 	 */
   2813  1.1     fvdl 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2814  1.1     fvdl 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2815  1.1     fvdl 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2816  1.1     fvdl 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   2817  1.1     fvdl 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   2818  1.1     fvdl 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2819  1.1     fvdl 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2820  1.1     fvdl 
   2821  1.1     fvdl 	/*
   2822  1.1     fvdl 	 * Shut down all of the memory managers and related
   2823  1.1     fvdl 	 * state machines.
   2824  1.1     fvdl 	 */
   2825  1.1     fvdl 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2826  1.1     fvdl 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   2827  1.1     fvdl 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2828  1.1     fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2829  1.1     fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2830  1.1     fvdl 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   2831  1.1     fvdl 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2832  1.1     fvdl 
   2833  1.1     fvdl 	/* Disable host interrupts. */
   2834  1.1     fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2835  1.1     fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2836  1.1     fvdl 
   2837  1.1     fvdl 	/*
   2838  1.1     fvdl 	 * Tell firmware we're shutting down.
   2839  1.1     fvdl 	 */
   2840  1.1     fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2841  1.1     fvdl 
   2842  1.1     fvdl 	/* Free the RX lists. */
   2843  1.1     fvdl 	bge_free_rx_ring_std(sc);
   2844  1.1     fvdl 
   2845  1.1     fvdl 	/* Free jumbo RX list. */
   2846  1.1     fvdl 	bge_free_rx_ring_jumbo(sc);
   2847  1.1     fvdl 
   2848  1.1     fvdl 	/* Free TX buffers. */
   2849  1.1     fvdl 	bge_free_tx_ring(sc);
   2850  1.1     fvdl 
   2851  1.1     fvdl 	/*
   2852  1.1     fvdl 	 * Isolate/power down the PHY.
   2853  1.1     fvdl 	 */
   2854  1.1     fvdl 	if (!sc->bge_tbi)
   2855  1.1     fvdl 		mii_down(&sc->bge_mii);
   2856  1.1     fvdl 
   2857  1.1     fvdl 	sc->bge_link = 0;
   2858  1.1     fvdl 
   2859  1.1     fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   2860  1.1     fvdl 
   2861  1.1     fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2862  1.1     fvdl }
   2863  1.1     fvdl 
   2864  1.1     fvdl /*
   2865  1.1     fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   2866  1.1     fvdl  * get confused by errant DMAs when rebooting.
   2867  1.1     fvdl  */
   2868  1.1     fvdl void
   2869  1.1     fvdl bge_shutdown(xsc)
   2870  1.1     fvdl 	void *xsc;
   2871  1.1     fvdl {
   2872  1.1     fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   2873  1.1     fvdl 
   2874  1.1     fvdl 	bge_stop(sc);
   2875  1.1     fvdl 	bge_reset(sc);
   2876  1.1     fvdl }
   2877