if_bge.c revision 1.9 1 1.9 thorpej /* $NetBSD: if_bge.c,v 1.9 2002/06/28 01:10:06 thorpej Exp $ */
2 1.8 thorpej
3 1.1 fvdl /*
4 1.1 fvdl * Copyright (c) 2001 Wind River Systems
5 1.1 fvdl * Copyright (c) 1997, 1998, 1999, 2001
6 1.1 fvdl * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 1.1 fvdl *
8 1.1 fvdl * Redistribution and use in source and binary forms, with or without
9 1.1 fvdl * modification, are permitted provided that the following conditions
10 1.1 fvdl * are met:
11 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
12 1.1 fvdl * notice, this list of conditions and the following disclaimer.
13 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
15 1.1 fvdl * documentation and/or other materials provided with the distribution.
16 1.1 fvdl * 3. All advertising materials mentioning features or use of this software
17 1.1 fvdl * must display the following acknowledgement:
18 1.1 fvdl * This product includes software developed by Bill Paul.
19 1.1 fvdl * 4. Neither the name of the author nor the names of any co-contributors
20 1.1 fvdl * may be used to endorse or promote products derived from this software
21 1.1 fvdl * without specific prior written permission.
22 1.1 fvdl *
23 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.1 fvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 fvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 fvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 fvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 fvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 fvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.1 fvdl * THE POSSIBILITY OF SUCH DAMAGE.
34 1.1 fvdl *
35 1.1 fvdl * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /*
39 1.1 fvdl * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40 1.1 fvdl *
41 1.1 fvdl * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 fvdl * Senior Engineer, Wind River Systems
43 1.1 fvdl */
44 1.1 fvdl
45 1.1 fvdl /*
46 1.1 fvdl * The Broadcom BCM5700 is based on technology originally developed by
47 1.1 fvdl * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 1.1 fvdl * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 1.1 fvdl * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 1.1 fvdl * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 1.1 fvdl * frames, highly configurable RX filtering, and 16 RX and TX queues
52 1.1 fvdl * (which, along with RX filter rules, can be used for QOS applications).
53 1.1 fvdl * Other features, such as TCP segmentation, may be available as part
54 1.1 fvdl * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 1.1 fvdl * firmware images can be stored in hardware and need not be compiled
56 1.1 fvdl * into the driver.
57 1.1 fvdl *
58 1.1 fvdl * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 1.1 fvdl * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60 1.1 fvdl *
61 1.1 fvdl * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 1.1 fvdl * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
63 1.1 fvdl * does not support external SSRAM.
64 1.1 fvdl *
65 1.1 fvdl * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 1.1 fvdl * brand name, which is functionally similar but lacks PCI-X support.
67 1.1 fvdl *
68 1.1 fvdl * Without external SSRAM, you can only have at most 4 TX rings,
69 1.1 fvdl * and the use of the mini RX ring is disabled. This seems to imply
70 1.1 fvdl * that these features are simply not available on the BCM5701. As a
71 1.1 fvdl * result, this driver does not implement any support for the mini RX
72 1.1 fvdl * ring.
73 1.1 fvdl */
74 1.1 fvdl
75 1.1 fvdl #include "bpfilter.h"
76 1.1 fvdl #include "vlan.h"
77 1.1 fvdl
78 1.1 fvdl #include <sys/param.h>
79 1.1 fvdl #include <sys/systm.h>
80 1.1 fvdl #include <sys/callout.h>
81 1.1 fvdl #include <sys/sockio.h>
82 1.1 fvdl #include <sys/mbuf.h>
83 1.1 fvdl #include <sys/malloc.h>
84 1.1 fvdl #include <sys/kernel.h>
85 1.1 fvdl #include <sys/device.h>
86 1.1 fvdl #include <sys/socket.h>
87 1.1 fvdl
88 1.1 fvdl #include <net/if.h>
89 1.1 fvdl #include <net/if_dl.h>
90 1.1 fvdl #include <net/if_media.h>
91 1.1 fvdl #include <net/if_ether.h>
92 1.1 fvdl
93 1.1 fvdl #ifdef INET
94 1.1 fvdl #include <netinet/in.h>
95 1.1 fvdl #include <netinet/in_systm.h>
96 1.1 fvdl #include <netinet/in_var.h>
97 1.1 fvdl #include <netinet/ip.h>
98 1.1 fvdl #endif
99 1.1 fvdl
100 1.1 fvdl #if NBPFILTER > 0
101 1.1 fvdl #include <net/bpf.h>
102 1.1 fvdl #endif
103 1.1 fvdl
104 1.1 fvdl #include <dev/pci/pcireg.h>
105 1.1 fvdl #include <dev/pci/pcivar.h>
106 1.1 fvdl #include <dev/pci/pcidevs.h>
107 1.1 fvdl
108 1.1 fvdl #include <dev/mii/mii.h>
109 1.1 fvdl #include <dev/mii/miivar.h>
110 1.1 fvdl #include <dev/mii/miidevs.h>
111 1.1 fvdl #include <dev/mii/brgphyreg.h>
112 1.1 fvdl
113 1.1 fvdl #include <dev/pci/if_bgereg.h>
114 1.1 fvdl
115 1.1 fvdl #include <uvm/uvm_extern.h>
116 1.1 fvdl
117 1.1 fvdl /* #define BGE_CHECKSUM */
118 1.1 fvdl
119 1.1 fvdl int bge_probe(struct device *, struct cfdata *, void *);
120 1.1 fvdl void bge_attach(struct device *, struct device *, void *);
121 1.1 fvdl void bge_release_resources(struct bge_softc *);
122 1.1 fvdl void bge_txeof(struct bge_softc *);
123 1.1 fvdl void bge_rxeof(struct bge_softc *);
124 1.1 fvdl
125 1.1 fvdl void bge_tick(void *);
126 1.1 fvdl void bge_stats_update(struct bge_softc *);
127 1.1 fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
128 1.1 fvdl
129 1.1 fvdl int bge_intr(void *);
130 1.1 fvdl void bge_start(struct ifnet *);
131 1.1 fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
132 1.1 fvdl int bge_init(struct ifnet *);
133 1.1 fvdl void bge_stop(struct bge_softc *);
134 1.1 fvdl void bge_watchdog(struct ifnet *);
135 1.1 fvdl void bge_shutdown(void *);
136 1.1 fvdl int bge_ifmedia_upd(struct ifnet *);
137 1.1 fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 1.1 fvdl
139 1.1 fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
140 1.1 fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
141 1.1 fvdl
142 1.1 fvdl u_int32_t bge_crc(struct bge_softc *, caddr_t);
143 1.1 fvdl void bge_setmulti(struct bge_softc *);
144 1.1 fvdl
145 1.1 fvdl void bge_handle_events(struct bge_softc *);
146 1.1 fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
147 1.1 fvdl void bge_free_jumbo_mem(struct bge_softc *);
148 1.1 fvdl void *bge_jalloc(struct bge_softc *);
149 1.1 fvdl void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
150 1.1 fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
151 1.1 fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
152 1.1 fvdl int bge_init_rx_ring_std(struct bge_softc *);
153 1.1 fvdl void bge_free_rx_ring_std(struct bge_softc *);
154 1.1 fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
155 1.1 fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
156 1.1 fvdl void bge_free_tx_ring(struct bge_softc *);
157 1.1 fvdl int bge_init_tx_ring(struct bge_softc *);
158 1.1 fvdl
159 1.1 fvdl int bge_chipinit(struct bge_softc *);
160 1.1 fvdl int bge_blockinit(struct bge_softc *);
161 1.1 fvdl
162 1.1 fvdl #ifdef notdef
163 1.1 fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
164 1.1 fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
165 1.1 fvdl void bge_vpd_read(struct bge_softc *);
166 1.1 fvdl #endif
167 1.1 fvdl
168 1.1 fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
169 1.1 fvdl void bge_writemem_ind(struct bge_softc *, int, int);
170 1.1 fvdl #ifdef notdef
171 1.1 fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
172 1.1 fvdl #endif
173 1.1 fvdl void bge_writereg_ind(struct bge_softc *, int, int);
174 1.1 fvdl
175 1.1 fvdl int bge_miibus_readreg(struct device *, int, int);
176 1.1 fvdl void bge_miibus_writereg(struct device *, int, int, int);
177 1.1 fvdl void bge_miibus_statchg(struct device *);
178 1.1 fvdl
179 1.1 fvdl void bge_reset(struct bge_softc *);
180 1.1 fvdl void bge_phy_hack(struct bge_softc *);
181 1.1 fvdl
182 1.1 fvdl void bge_dump_status(struct bge_softc *);
183 1.1 fvdl void bge_dump_rxbd(struct bge_rx_bd *);
184 1.1 fvdl
185 1.1 fvdl #define BGE_DEBUG
186 1.1 fvdl #ifdef BGE_DEBUG
187 1.1 fvdl #define DPRINTF(x) if (bgedebug) printf x
188 1.1 fvdl #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
189 1.1 fvdl int bgedebug = 0;
190 1.1 fvdl #else
191 1.1 fvdl #define DPRINTF(x)
192 1.1 fvdl #define DPRINTFN(n,x)
193 1.1 fvdl #endif
194 1.1 fvdl
195 1.1 fvdl struct cfattach bge_ca = {
196 1.1 fvdl sizeof(struct bge_softc), bge_probe, bge_attach
197 1.1 fvdl };
198 1.1 fvdl
199 1.1 fvdl u_int32_t
200 1.1 fvdl bge_readmem_ind(sc, off)
201 1.1 fvdl struct bge_softc *sc;
202 1.1 fvdl int off;
203 1.1 fvdl {
204 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
205 1.1 fvdl pcireg_t val;
206 1.1 fvdl
207 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
208 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
209 1.1 fvdl return val;
210 1.1 fvdl }
211 1.1 fvdl
212 1.1 fvdl void
213 1.1 fvdl bge_writemem_ind(sc, off, val)
214 1.1 fvdl struct bge_softc *sc;
215 1.1 fvdl int off, val;
216 1.1 fvdl {
217 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
218 1.1 fvdl
219 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
220 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
221 1.1 fvdl }
222 1.1 fvdl
223 1.1 fvdl #ifdef notdef
224 1.1 fvdl u_int32_t
225 1.1 fvdl bge_readreg_ind(sc, off)
226 1.1 fvdl struct bge_softc *sc;
227 1.1 fvdl int off;
228 1.1 fvdl {
229 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
230 1.1 fvdl
231 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
232 1.1 fvdl return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
233 1.1 fvdl }
234 1.1 fvdl #endif
235 1.1 fvdl
236 1.1 fvdl void
237 1.1 fvdl bge_writereg_ind(sc, off, val)
238 1.1 fvdl struct bge_softc *sc;
239 1.1 fvdl int off, val;
240 1.1 fvdl {
241 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
242 1.1 fvdl
243 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
244 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
245 1.1 fvdl }
246 1.1 fvdl
247 1.1 fvdl #ifdef notdef
248 1.1 fvdl u_int8_t
249 1.1 fvdl bge_vpd_readbyte(sc, addr)
250 1.1 fvdl struct bge_softc *sc;
251 1.1 fvdl int addr;
252 1.1 fvdl {
253 1.1 fvdl int i;
254 1.1 fvdl u_int32_t val;
255 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
256 1.1 fvdl
257 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
258 1.1 fvdl for (i = 0; i < BGE_TIMEOUT * 10; i++) {
259 1.1 fvdl DELAY(10);
260 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
261 1.1 fvdl BGE_VPD_FLAG)
262 1.1 fvdl break;
263 1.1 fvdl }
264 1.1 fvdl
265 1.1 fvdl if (i == BGE_TIMEOUT) {
266 1.1 fvdl printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
267 1.1 fvdl return(0);
268 1.1 fvdl }
269 1.1 fvdl
270 1.1 fvdl val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
271 1.1 fvdl
272 1.1 fvdl return((val >> ((addr % 4) * 8)) & 0xFF);
273 1.1 fvdl }
274 1.1 fvdl
275 1.1 fvdl void
276 1.1 fvdl bge_vpd_read_res(sc, res, addr)
277 1.1 fvdl struct bge_softc *sc;
278 1.1 fvdl struct vpd_res *res;
279 1.1 fvdl int addr;
280 1.1 fvdl {
281 1.1 fvdl int i;
282 1.1 fvdl u_int8_t *ptr;
283 1.1 fvdl
284 1.1 fvdl ptr = (u_int8_t *)res;
285 1.1 fvdl for (i = 0; i < sizeof(struct vpd_res); i++)
286 1.1 fvdl ptr[i] = bge_vpd_readbyte(sc, i + addr);
287 1.1 fvdl }
288 1.1 fvdl
289 1.1 fvdl void
290 1.1 fvdl bge_vpd_read(sc)
291 1.1 fvdl struct bge_softc *sc;
292 1.1 fvdl {
293 1.1 fvdl int pos = 0, i;
294 1.1 fvdl struct vpd_res res;
295 1.1 fvdl
296 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
297 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
298 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
299 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
300 1.1 fvdl sc->bge_vpd_prodname = NULL;
301 1.1 fvdl sc->bge_vpd_readonly = NULL;
302 1.1 fvdl
303 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
304 1.1 fvdl
305 1.1 fvdl if (res.vr_id != VPD_RES_ID) {
306 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
307 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
308 1.1 fvdl return;
309 1.1 fvdl }
310 1.1 fvdl
311 1.1 fvdl pos += sizeof(res);
312 1.1 fvdl sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
313 1.1 fvdl if (sc->bge_vpd_prodname == NULL)
314 1.1 fvdl panic("bge_vpd_read");
315 1.1 fvdl for (i = 0; i < res.vr_len; i++)
316 1.1 fvdl sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
317 1.1 fvdl sc->bge_vpd_prodname[i] = '\0';
318 1.1 fvdl pos += i;
319 1.1 fvdl
320 1.1 fvdl bge_vpd_read_res(sc, &res, pos);
321 1.1 fvdl
322 1.1 fvdl if (res.vr_id != VPD_RES_READ) {
323 1.1 fvdl printf("%s: bad VPD resource id: expected %x got %x\n",
324 1.1 fvdl sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
325 1.1 fvdl return;
326 1.1 fvdl }
327 1.1 fvdl
328 1.1 fvdl pos += sizeof(res);
329 1.1 fvdl sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
330 1.1 fvdl if (sc->bge_vpd_readonly == NULL)
331 1.1 fvdl panic("bge_vpd_read");
332 1.1 fvdl for (i = 0; i < res.vr_len + 1; i++)
333 1.1 fvdl sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
334 1.1 fvdl }
335 1.1 fvdl #endif
336 1.1 fvdl
337 1.1 fvdl /*
338 1.1 fvdl * Read a byte of data stored in the EEPROM at address 'addr.' The
339 1.1 fvdl * BCM570x supports both the traditional bitbang interface and an
340 1.1 fvdl * auto access interface for reading the EEPROM. We use the auto
341 1.1 fvdl * access method.
342 1.1 fvdl */
343 1.1 fvdl u_int8_t
344 1.1 fvdl bge_eeprom_getbyte(sc, addr, dest)
345 1.1 fvdl struct bge_softc *sc;
346 1.1 fvdl int addr;
347 1.1 fvdl u_int8_t *dest;
348 1.1 fvdl {
349 1.1 fvdl int i;
350 1.1 fvdl u_int32_t byte = 0;
351 1.1 fvdl
352 1.1 fvdl /*
353 1.1 fvdl * Enable use of auto EEPROM access so we can avoid
354 1.1 fvdl * having to use the bitbang method.
355 1.1 fvdl */
356 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
357 1.1 fvdl
358 1.1 fvdl /* Reset the EEPROM, load the clock period. */
359 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR,
360 1.1 fvdl BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
361 1.1 fvdl DELAY(20);
362 1.1 fvdl
363 1.1 fvdl /* Issue the read EEPROM command. */
364 1.1 fvdl CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
365 1.1 fvdl
366 1.1 fvdl /* Wait for completion */
367 1.1 fvdl for(i = 0; i < BGE_TIMEOUT * 10; i++) {
368 1.1 fvdl DELAY(10);
369 1.1 fvdl if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
370 1.1 fvdl break;
371 1.1 fvdl }
372 1.1 fvdl
373 1.1 fvdl if (i == BGE_TIMEOUT) {
374 1.1 fvdl printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
375 1.1 fvdl return(0);
376 1.1 fvdl }
377 1.1 fvdl
378 1.1 fvdl /* Get result. */
379 1.1 fvdl byte = CSR_READ_4(sc, BGE_EE_DATA);
380 1.1 fvdl
381 1.1 fvdl *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
382 1.1 fvdl
383 1.1 fvdl return(0);
384 1.1 fvdl }
385 1.1 fvdl
386 1.1 fvdl /*
387 1.1 fvdl * Read a sequence of bytes from the EEPROM.
388 1.1 fvdl */
389 1.1 fvdl int
390 1.1 fvdl bge_read_eeprom(sc, dest, off, cnt)
391 1.1 fvdl struct bge_softc *sc;
392 1.1 fvdl caddr_t dest;
393 1.1 fvdl int off;
394 1.1 fvdl int cnt;
395 1.1 fvdl {
396 1.1 fvdl int err = 0, i;
397 1.1 fvdl u_int8_t byte = 0;
398 1.1 fvdl
399 1.1 fvdl for (i = 0; i < cnt; i++) {
400 1.1 fvdl err = bge_eeprom_getbyte(sc, off + i, &byte);
401 1.1 fvdl if (err)
402 1.1 fvdl break;
403 1.1 fvdl *(dest + i) = byte;
404 1.1 fvdl }
405 1.1 fvdl
406 1.1 fvdl return(err ? 1 : 0);
407 1.1 fvdl }
408 1.1 fvdl
409 1.1 fvdl int
410 1.1 fvdl bge_miibus_readreg(dev, phy, reg)
411 1.1 fvdl struct device *dev;
412 1.1 fvdl int phy, reg;
413 1.1 fvdl {
414 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
415 1.1 fvdl struct ifnet *ifp;
416 1.1 fvdl u_int32_t val;
417 1.1 fvdl int i;
418 1.1 fvdl
419 1.1 fvdl ifp = &sc->ethercom.ec_if;
420 1.1 fvdl
421 1.1 fvdl if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
422 1.1 fvdl return(0);
423 1.1 fvdl
424 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
425 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg));
426 1.1 fvdl
427 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
428 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
429 1.1 fvdl if (!(val & BGE_MICOMM_BUSY))
430 1.1 fvdl break;
431 1.9 thorpej delay(10);
432 1.1 fvdl }
433 1.1 fvdl
434 1.1 fvdl if (i == BGE_TIMEOUT) {
435 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
436 1.1 fvdl return(0);
437 1.1 fvdl }
438 1.1 fvdl
439 1.1 fvdl val = CSR_READ_4(sc, BGE_MI_COMM);
440 1.1 fvdl
441 1.1 fvdl if (val & BGE_MICOMM_READFAIL)
442 1.1 fvdl return(0);
443 1.1 fvdl
444 1.1 fvdl return(val & 0xFFFF);
445 1.1 fvdl }
446 1.1 fvdl
447 1.1 fvdl void
448 1.1 fvdl bge_miibus_writereg(dev, phy, reg, val)
449 1.1 fvdl struct device *dev;
450 1.1 fvdl int phy, reg, val;
451 1.1 fvdl {
452 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
453 1.1 fvdl int i;
454 1.1 fvdl
455 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
456 1.1 fvdl BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
457 1.1 fvdl
458 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
459 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
460 1.1 fvdl break;
461 1.9 thorpej delay(10);
462 1.1 fvdl }
463 1.1 fvdl
464 1.1 fvdl if (i == BGE_TIMEOUT) {
465 1.1 fvdl printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
466 1.1 fvdl }
467 1.1 fvdl }
468 1.1 fvdl
469 1.1 fvdl void
470 1.1 fvdl bge_miibus_statchg(dev)
471 1.1 fvdl struct device *dev;
472 1.1 fvdl {
473 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)dev;
474 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
475 1.1 fvdl
476 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
477 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
478 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
479 1.1 fvdl } else {
480 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
481 1.1 fvdl }
482 1.1 fvdl
483 1.1 fvdl if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
484 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
485 1.1 fvdl } else {
486 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
487 1.1 fvdl }
488 1.1 fvdl
489 1.1 fvdl bge_phy_hack(sc);
490 1.1 fvdl }
491 1.1 fvdl
492 1.1 fvdl /*
493 1.1 fvdl * Handle events that have triggered interrupts.
494 1.1 fvdl */
495 1.1 fvdl void
496 1.1 fvdl bge_handle_events(sc)
497 1.1 fvdl struct bge_softc *sc;
498 1.1 fvdl {
499 1.1 fvdl
500 1.1 fvdl return;
501 1.1 fvdl }
502 1.1 fvdl
503 1.1 fvdl /*
504 1.1 fvdl * Memory management for jumbo frames.
505 1.1 fvdl */
506 1.1 fvdl
507 1.1 fvdl int
508 1.1 fvdl bge_alloc_jumbo_mem(sc)
509 1.1 fvdl struct bge_softc *sc;
510 1.1 fvdl {
511 1.1 fvdl caddr_t ptr, kva;
512 1.1 fvdl bus_dma_segment_t seg;
513 1.1 fvdl int i, rseg, state, error;
514 1.1 fvdl struct bge_jpool_entry *entry;
515 1.1 fvdl
516 1.1 fvdl state = error = 0;
517 1.1 fvdl
518 1.1 fvdl /* Grab a big chunk o' storage. */
519 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
520 1.1 fvdl &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
521 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
522 1.1 fvdl return ENOBUFS;
523 1.1 fvdl }
524 1.1 fvdl
525 1.1 fvdl state = 1;
526 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
527 1.1 fvdl BUS_DMA_NOWAIT)) {
528 1.1 fvdl printf("%s: can't map dma buffers (%d bytes)\n",
529 1.1 fvdl sc->bge_dev.dv_xname, (int)BGE_JMEM);
530 1.1 fvdl error = ENOBUFS;
531 1.1 fvdl goto out;
532 1.1 fvdl }
533 1.1 fvdl
534 1.1 fvdl state = 2;
535 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
536 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
537 1.1 fvdl printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
538 1.1 fvdl error = ENOBUFS;
539 1.1 fvdl goto out;
540 1.1 fvdl }
541 1.1 fvdl
542 1.1 fvdl state = 3;
543 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
544 1.1 fvdl kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
545 1.1 fvdl printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
546 1.1 fvdl error = ENOBUFS;
547 1.1 fvdl goto out;
548 1.1 fvdl }
549 1.1 fvdl
550 1.1 fvdl state = 4;
551 1.1 fvdl sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
552 1.1 fvdl DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
553 1.1 fvdl
554 1.1 fvdl SLIST_INIT(&sc->bge_jfree_listhead);
555 1.1 fvdl SLIST_INIT(&sc->bge_jinuse_listhead);
556 1.1 fvdl
557 1.1 fvdl /*
558 1.1 fvdl * Now divide it up into 9K pieces and save the addresses
559 1.1 fvdl * in an array.
560 1.1 fvdl */
561 1.1 fvdl ptr = sc->bge_cdata.bge_jumbo_buf;
562 1.1 fvdl for (i = 0; i < BGE_JSLOTS; i++) {
563 1.1 fvdl sc->bge_cdata.bge_jslots[i] = ptr;
564 1.1 fvdl ptr += BGE_JLEN;
565 1.1 fvdl entry = malloc(sizeof(struct bge_jpool_entry),
566 1.1 fvdl M_DEVBUF, M_NOWAIT);
567 1.1 fvdl if (entry == NULL) {
568 1.1 fvdl printf("%s: no memory for jumbo buffer queue!\n",
569 1.1 fvdl sc->bge_dev.dv_xname);
570 1.1 fvdl error = ENOBUFS;
571 1.1 fvdl goto out;
572 1.1 fvdl }
573 1.1 fvdl entry->slot = i;
574 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
575 1.1 fvdl entry, jpool_entries);
576 1.1 fvdl }
577 1.1 fvdl out:
578 1.1 fvdl if (error != 0) {
579 1.1 fvdl switch (state) {
580 1.1 fvdl case 4:
581 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag,
582 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
583 1.1 fvdl case 3:
584 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
585 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_map);
586 1.1 fvdl case 2:
587 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
588 1.1 fvdl case 1:
589 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
590 1.1 fvdl break;
591 1.1 fvdl default:
592 1.1 fvdl break;
593 1.1 fvdl }
594 1.1 fvdl }
595 1.1 fvdl
596 1.1 fvdl return error;
597 1.1 fvdl }
598 1.1 fvdl
599 1.1 fvdl /*
600 1.1 fvdl * Allocate a jumbo buffer.
601 1.1 fvdl */
602 1.1 fvdl void *
603 1.1 fvdl bge_jalloc(sc)
604 1.1 fvdl struct bge_softc *sc;
605 1.1 fvdl {
606 1.1 fvdl struct bge_jpool_entry *entry;
607 1.1 fvdl
608 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jfree_listhead);
609 1.1 fvdl
610 1.1 fvdl if (entry == NULL) {
611 1.1 fvdl printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
612 1.1 fvdl return(NULL);
613 1.1 fvdl }
614 1.1 fvdl
615 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
616 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
617 1.1 fvdl return(sc->bge_cdata.bge_jslots[entry->slot]);
618 1.1 fvdl }
619 1.1 fvdl
620 1.1 fvdl /*
621 1.1 fvdl * Release a jumbo buffer.
622 1.1 fvdl */
623 1.1 fvdl void
624 1.1 fvdl bge_jfree(m, buf, size, arg)
625 1.1 fvdl struct mbuf *m;
626 1.1 fvdl caddr_t buf;
627 1.1 fvdl u_int size;
628 1.1 fvdl void *arg;
629 1.1 fvdl {
630 1.1 fvdl struct bge_jpool_entry *entry;
631 1.1 fvdl struct bge_softc *sc;
632 1.1 fvdl int i, s;
633 1.1 fvdl
634 1.1 fvdl /* Extract the softc struct pointer. */
635 1.1 fvdl sc = (struct bge_softc *)arg;
636 1.1 fvdl
637 1.1 fvdl if (sc == NULL)
638 1.1 fvdl panic("bge_jfree: can't find softc pointer!");
639 1.1 fvdl
640 1.1 fvdl /* calculate the slot this buffer belongs to */
641 1.1 fvdl
642 1.1 fvdl i = ((caddr_t)buf
643 1.1 fvdl - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
644 1.1 fvdl
645 1.1 fvdl if ((i < 0) || (i >= BGE_JSLOTS))
646 1.1 fvdl panic("bge_jfree: asked to free buffer that we don't manage!");
647 1.1 fvdl
648 1.1 fvdl s = splvm();
649 1.1 fvdl entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
650 1.1 fvdl if (entry == NULL)
651 1.1 fvdl panic("bge_jfree: buffer not in use!");
652 1.1 fvdl entry->slot = i;
653 1.1 fvdl SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
654 1.1 fvdl SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
655 1.1 fvdl
656 1.1 fvdl if (__predict_true(m != NULL))
657 1.1 fvdl pool_cache_put(&mbpool_cache, m);
658 1.1 fvdl splx(s);
659 1.1 fvdl }
660 1.1 fvdl
661 1.1 fvdl
662 1.1 fvdl /*
663 1.1 fvdl * Intialize a standard receive ring descriptor.
664 1.1 fvdl */
665 1.1 fvdl int
666 1.1 fvdl bge_newbuf_std(sc, i, m, dmamap)
667 1.1 fvdl struct bge_softc *sc;
668 1.1 fvdl int i;
669 1.1 fvdl struct mbuf *m;
670 1.1 fvdl bus_dmamap_t dmamap;
671 1.1 fvdl {
672 1.1 fvdl struct mbuf *m_new = NULL;
673 1.1 fvdl struct bge_rx_bd *r;
674 1.1 fvdl int error;
675 1.1 fvdl
676 1.1 fvdl if (dmamap == NULL) {
677 1.1 fvdl error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
678 1.1 fvdl MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
679 1.1 fvdl if (error != 0)
680 1.1 fvdl return error;
681 1.1 fvdl }
682 1.1 fvdl
683 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i] = dmamap;
684 1.1 fvdl
685 1.1 fvdl if (m == NULL) {
686 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
687 1.1 fvdl if (m_new == NULL) {
688 1.1 fvdl return(ENOBUFS);
689 1.1 fvdl }
690 1.1 fvdl
691 1.1 fvdl MCLGET(m_new, M_DONTWAIT);
692 1.1 fvdl if (!(m_new->m_flags & M_EXT)) {
693 1.1 fvdl m_freem(m_new);
694 1.1 fvdl return(ENOBUFS);
695 1.1 fvdl }
696 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
697 1.1 fvdl
698 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
699 1.1 fvdl BUS_DMA_READ|BUS_DMA_NOWAIT))
700 1.1 fvdl return(ENOBUFS);
701 1.1 fvdl } else {
702 1.1 fvdl m_new = m;
703 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
704 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
705 1.1 fvdl }
706 1.1 fvdl
707 1.1 fvdl m_adj(m_new, ETHER_ALIGN);
708 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = m_new;
709 1.1 fvdl r = &sc->bge_rdata->bge_rx_std_ring[i];
710 1.1 fvdl bge_set_hostaddr(&r->bge_addr,
711 1.1 fvdl dmamap->dm_segs[0].ds_addr + ETHER_ALIGN);
712 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END;
713 1.1 fvdl r->bge_len = m_new->m_len;
714 1.1 fvdl r->bge_idx = i;
715 1.1 fvdl
716 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
717 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_std_ring) +
718 1.1 fvdl i * sizeof (struct bge_rx_bd),
719 1.1 fvdl sizeof (struct bge_rx_bd),
720 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
721 1.1 fvdl
722 1.1 fvdl return(0);
723 1.1 fvdl }
724 1.1 fvdl
725 1.1 fvdl /*
726 1.1 fvdl * Initialize a jumbo receive ring descriptor. This allocates
727 1.1 fvdl * a jumbo buffer from the pool managed internally by the driver.
728 1.1 fvdl */
729 1.1 fvdl int
730 1.1 fvdl bge_newbuf_jumbo(sc, i, m)
731 1.1 fvdl struct bge_softc *sc;
732 1.1 fvdl int i;
733 1.1 fvdl struct mbuf *m;
734 1.1 fvdl {
735 1.1 fvdl struct mbuf *m_new = NULL;
736 1.1 fvdl struct bge_rx_bd *r;
737 1.1 fvdl
738 1.1 fvdl if (m == NULL) {
739 1.1 fvdl caddr_t *buf = NULL;
740 1.1 fvdl
741 1.1 fvdl /* Allocate the mbuf. */
742 1.1 fvdl MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 1.1 fvdl if (m_new == NULL) {
744 1.1 fvdl return(ENOBUFS);
745 1.1 fvdl }
746 1.1 fvdl
747 1.1 fvdl /* Allocate the jumbo buffer */
748 1.1 fvdl buf = bge_jalloc(sc);
749 1.1 fvdl if (buf == NULL) {
750 1.1 fvdl m_freem(m_new);
751 1.1 fvdl printf("%s: jumbo allocation failed "
752 1.1 fvdl "-- packet dropped!\n", sc->bge_dev.dv_xname);
753 1.1 fvdl return(ENOBUFS);
754 1.1 fvdl }
755 1.1 fvdl
756 1.1 fvdl /* Attach the buffer to the mbuf. */
757 1.1 fvdl m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
758 1.1 fvdl MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
759 1.1 fvdl bge_jfree, sc);
760 1.1 fvdl } else {
761 1.1 fvdl m_new = m;
762 1.1 fvdl m_new->m_data = m_new->m_ext.ext_buf;
763 1.1 fvdl m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
764 1.1 fvdl }
765 1.1 fvdl
766 1.1 fvdl m_adj(m_new, ETHER_ALIGN);
767 1.1 fvdl /* Set up the descriptor. */
768 1.1 fvdl r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
769 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
770 1.1 fvdl bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
771 1.1 fvdl r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
772 1.1 fvdl r->bge_len = m_new->m_len;
773 1.1 fvdl r->bge_idx = i;
774 1.1 fvdl
775 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
776 1.1 fvdl offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
777 1.1 fvdl i * sizeof (struct bge_rx_bd),
778 1.1 fvdl sizeof (struct bge_rx_bd),
779 1.1 fvdl BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
780 1.1 fvdl
781 1.1 fvdl return(0);
782 1.1 fvdl }
783 1.1 fvdl
784 1.1 fvdl /*
785 1.1 fvdl * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
786 1.1 fvdl * that's 1MB or memory, which is a lot. For now, we fill only the first
787 1.1 fvdl * 256 ring entries and hope that our CPU is fast enough to keep up with
788 1.1 fvdl * the NIC.
789 1.1 fvdl */
790 1.1 fvdl int
791 1.1 fvdl bge_init_rx_ring_std(sc)
792 1.1 fvdl struct bge_softc *sc;
793 1.1 fvdl {
794 1.1 fvdl int i;
795 1.1 fvdl
796 1.1 fvdl if (sc->bge_flags & BGE_RXRING_VALID)
797 1.1 fvdl return 0;
798 1.1 fvdl
799 1.1 fvdl for (i = 0; i < BGE_SSLOTS; i++) {
800 1.1 fvdl if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
801 1.1 fvdl return(ENOBUFS);
802 1.1 fvdl }
803 1.1 fvdl
804 1.1 fvdl sc->bge_std = i - 1;
805 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
806 1.1 fvdl
807 1.1 fvdl sc->bge_flags |= BGE_RXRING_VALID;
808 1.1 fvdl
809 1.1 fvdl return(0);
810 1.1 fvdl }
811 1.1 fvdl
812 1.1 fvdl void
813 1.1 fvdl bge_free_rx_ring_std(sc)
814 1.1 fvdl struct bge_softc *sc;
815 1.1 fvdl {
816 1.1 fvdl int i;
817 1.1 fvdl
818 1.1 fvdl if (!(sc->bge_flags & BGE_RXRING_VALID))
819 1.1 fvdl return;
820 1.1 fvdl
821 1.1 fvdl for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
822 1.1 fvdl if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
823 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
824 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[i] = NULL;
825 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag,
826 1.1 fvdl sc->bge_cdata.bge_rx_std_map[i]);
827 1.1 fvdl }
828 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
829 1.1 fvdl sizeof(struct bge_rx_bd));
830 1.1 fvdl }
831 1.1 fvdl
832 1.1 fvdl sc->bge_flags &= ~BGE_RXRING_VALID;
833 1.1 fvdl }
834 1.1 fvdl
835 1.1 fvdl int
836 1.1 fvdl bge_init_rx_ring_jumbo(sc)
837 1.1 fvdl struct bge_softc *sc;
838 1.1 fvdl {
839 1.1 fvdl int i;
840 1.1 fvdl struct bge_rcb *rcb;
841 1.1 fvdl struct bge_rcb_opaque *rcbo;
842 1.1 fvdl
843 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
844 1.1 fvdl if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
845 1.1 fvdl return(ENOBUFS);
846 1.1 fvdl };
847 1.1 fvdl
848 1.1 fvdl sc->bge_jumbo = i - 1;
849 1.1 fvdl
850 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
851 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
852 1.1 fvdl rcb->bge_flags = 0;
853 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
854 1.1 fvdl
855 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
856 1.1 fvdl
857 1.1 fvdl return(0);
858 1.1 fvdl }
859 1.1 fvdl
860 1.1 fvdl void
861 1.1 fvdl bge_free_rx_ring_jumbo(sc)
862 1.1 fvdl struct bge_softc *sc;
863 1.1 fvdl {
864 1.1 fvdl int i;
865 1.1 fvdl
866 1.1 fvdl if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
867 1.1 fvdl return;
868 1.1 fvdl
869 1.1 fvdl for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
870 1.1 fvdl if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
871 1.1 fvdl m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
872 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
873 1.1 fvdl }
874 1.1 fvdl memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
875 1.1 fvdl sizeof(struct bge_rx_bd));
876 1.1 fvdl }
877 1.1 fvdl
878 1.1 fvdl sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
879 1.1 fvdl }
880 1.1 fvdl
881 1.1 fvdl void
882 1.1 fvdl bge_free_tx_ring(sc)
883 1.1 fvdl struct bge_softc *sc;
884 1.1 fvdl {
885 1.1 fvdl int i, freed;
886 1.1 fvdl struct txdmamap_pool_entry *dma;
887 1.1 fvdl
888 1.1 fvdl if (!(sc->bge_flags & BGE_TXRING_VALID))
889 1.1 fvdl return;
890 1.1 fvdl
891 1.1 fvdl freed = 0;
892 1.1 fvdl
893 1.1 fvdl for (i = 0; i < BGE_TX_RING_CNT; i++) {
894 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
895 1.1 fvdl freed++;
896 1.1 fvdl m_freem(sc->bge_cdata.bge_tx_chain[i]);
897 1.1 fvdl sc->bge_cdata.bge_tx_chain[i] = NULL;
898 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
899 1.1 fvdl link);
900 1.1 fvdl sc->txdma[i] = 0;
901 1.1 fvdl }
902 1.1 fvdl memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
903 1.1 fvdl sizeof(struct bge_tx_bd));
904 1.1 fvdl }
905 1.1 fvdl
906 1.1 fvdl while ((dma = SLIST_FIRST(&sc->txdma_list))) {
907 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
908 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
909 1.1 fvdl free(dma, M_DEVBUF);
910 1.1 fvdl }
911 1.1 fvdl
912 1.1 fvdl sc->bge_flags &= ~BGE_TXRING_VALID;
913 1.1 fvdl }
914 1.1 fvdl
915 1.1 fvdl int
916 1.1 fvdl bge_init_tx_ring(sc)
917 1.1 fvdl struct bge_softc *sc;
918 1.1 fvdl {
919 1.1 fvdl int i;
920 1.1 fvdl bus_dmamap_t dmamap;
921 1.1 fvdl struct txdmamap_pool_entry *dma;
922 1.1 fvdl
923 1.1 fvdl if (sc->bge_flags & BGE_TXRING_VALID)
924 1.1 fvdl return 0;
925 1.1 fvdl
926 1.1 fvdl sc->bge_txcnt = 0;
927 1.1 fvdl sc->bge_tx_saved_considx = 0;
928 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
929 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
930 1.1 fvdl
931 1.1 fvdl SLIST_INIT(&sc->txdma_list);
932 1.1 fvdl for (i = 0; i < BGE_RSLOTS; i++) {
933 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
934 1.1 fvdl BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
935 1.1 fvdl &dmamap))
936 1.1 fvdl return(ENOBUFS);
937 1.1 fvdl if (dmamap == NULL)
938 1.1 fvdl panic("dmamap NULL in bge_init_tx_ring");
939 1.1 fvdl dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
940 1.1 fvdl if (dma == NULL) {
941 1.1 fvdl printf("%s: can't alloc txdmamap_pool_entry\n",
942 1.1 fvdl sc->bge_dev.dv_xname);
943 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, dmamap);
944 1.1 fvdl return (ENOMEM);
945 1.1 fvdl }
946 1.1 fvdl dma->dmamap = dmamap;
947 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
948 1.1 fvdl }
949 1.1 fvdl
950 1.1 fvdl sc->bge_flags |= BGE_TXRING_VALID;
951 1.1 fvdl
952 1.1 fvdl return(0);
953 1.1 fvdl }
954 1.1 fvdl
955 1.1 fvdl #define BGE_POLY 0xEDB88320
956 1.1 fvdl
957 1.1 fvdl u_int32_t
958 1.1 fvdl bge_crc(sc, addr)
959 1.1 fvdl struct bge_softc *sc;
960 1.1 fvdl caddr_t addr;
961 1.1 fvdl {
962 1.1 fvdl u_int32_t idx, bit, data, crc;
963 1.1 fvdl
964 1.1 fvdl /* Compute CRC for the address value. */
965 1.1 fvdl crc = 0xFFFFFFFF; /* initial value */
966 1.1 fvdl
967 1.1 fvdl for (idx = 0; idx < 6; idx++) {
968 1.1 fvdl for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
969 1.1 fvdl crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
970 1.1 fvdl }
971 1.1 fvdl
972 1.1 fvdl return(crc & 0x7F);
973 1.1 fvdl }
974 1.1 fvdl
975 1.1 fvdl void
976 1.1 fvdl bge_setmulti(sc)
977 1.1 fvdl struct bge_softc *sc;
978 1.1 fvdl {
979 1.1 fvdl struct ethercom *ac = &sc->ethercom;
980 1.1 fvdl struct ifnet *ifp = &ac->ec_if;
981 1.1 fvdl struct ether_multi *enm;
982 1.1 fvdl struct ether_multistep step;
983 1.1 fvdl u_int32_t hashes[4] = { 0, 0, 0, 0 };
984 1.1 fvdl u_int32_t h;
985 1.1 fvdl int i;
986 1.1 fvdl
987 1.1 fvdl if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
988 1.1 fvdl for (i = 0; i < 4; i++)
989 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
990 1.1 fvdl return;
991 1.1 fvdl }
992 1.1 fvdl
993 1.1 fvdl /* First, zot all the existing filters. */
994 1.1 fvdl for (i = 0; i < 4; i++)
995 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
996 1.1 fvdl
997 1.1 fvdl /* Now program new ones. */
998 1.1 fvdl ETHER_FIRST_MULTI(step, ac, enm);
999 1.1 fvdl while (enm != NULL) {
1000 1.1 fvdl h = bge_crc(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
1001 1.1 fvdl hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1002 1.1 fvdl ETHER_NEXT_MULTI(step, enm);
1003 1.1 fvdl }
1004 1.1 fvdl
1005 1.1 fvdl for (i = 0; i < 4; i++)
1006 1.1 fvdl CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1007 1.1 fvdl }
1008 1.1 fvdl
1009 1.1 fvdl int bge_swapbits[] = {
1010 1.1 fvdl 0,
1011 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA,
1012 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA,
1013 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1014 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1015 1.1 fvdl
1016 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1017 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1018 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1019 1.1 fvdl
1020 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1021 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1022 1.1 fvdl
1023 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1024 1.1 fvdl
1025 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1026 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME,
1027 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1028 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1029 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1030 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1031 1.1 fvdl BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1032 1.1 fvdl BGE_MODECTL_WORDSWAP_NONFRAME,
1033 1.1 fvdl
1034 1.1 fvdl BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1035 1.1 fvdl BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1036 1.1 fvdl };
1037 1.1 fvdl
1038 1.1 fvdl int bge_swapindex = 0;
1039 1.1 fvdl
1040 1.1 fvdl /*
1041 1.1 fvdl * Do endian, PCI and DMA initialization. Also check the on-board ROM
1042 1.1 fvdl * self-test results.
1043 1.1 fvdl */
1044 1.1 fvdl int
1045 1.1 fvdl bge_chipinit(sc)
1046 1.1 fvdl struct bge_softc *sc;
1047 1.1 fvdl {
1048 1.1 fvdl u_int32_t cachesize;
1049 1.1 fvdl int i;
1050 1.1 fvdl struct pci_attach_args *pa = &(sc->bge_pa);
1051 1.1 fvdl
1052 1.1 fvdl
1053 1.1 fvdl /* Set endianness before we access any non-PCI registers. */
1054 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1055 1.1 fvdl BGE_INIT);
1056 1.1 fvdl
1057 1.1 fvdl /*
1058 1.1 fvdl * Check the 'ROM failed' bit on the RX CPU to see if
1059 1.1 fvdl * self-tests passed.
1060 1.1 fvdl */
1061 1.1 fvdl if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1062 1.1 fvdl printf("%s: RX CPU self-diagnostics failed!\n",
1063 1.1 fvdl sc->bge_dev.dv_xname);
1064 1.1 fvdl return(ENODEV);
1065 1.1 fvdl }
1066 1.1 fvdl
1067 1.1 fvdl /* Clear the MAC control register */
1068 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1069 1.1 fvdl
1070 1.1 fvdl /*
1071 1.1 fvdl * Clear the MAC statistics block in the NIC's
1072 1.1 fvdl * internal memory.
1073 1.1 fvdl */
1074 1.1 fvdl for (i = BGE_STATS_BLOCK;
1075 1.1 fvdl i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1076 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1077 1.1 fvdl
1078 1.1 fvdl for (i = BGE_STATUS_BLOCK;
1079 1.1 fvdl i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1080 1.1 fvdl BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1081 1.1 fvdl
1082 1.1 fvdl /* Set up the PCI DMA control register. */
1083 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1084 1.1 fvdl BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1085 1.1 fvdl
1086 1.1 fvdl /*
1087 1.1 fvdl * Set up general mode register.
1088 1.1 fvdl */
1089 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1090 1.1 fvdl BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1091 1.1 fvdl BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1092 1.1 fvdl BGE_MODECTL_RX_NO_PHDR_CSUM);
1093 1.1 fvdl
1094 1.1 fvdl /* Get cache line size. */
1095 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1096 1.1 fvdl
1097 1.1 fvdl /*
1098 1.1 fvdl * Avoid violating PCI spec on certain chip revs.
1099 1.1 fvdl */
1100 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1101 1.1 fvdl PCIM_CMD_MWIEN) {
1102 1.1 fvdl switch(cachesize) {
1103 1.1 fvdl case 1:
1104 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1105 1.1 fvdl BGE_PCI_WRITE_BNDRY_16BYTES);
1106 1.1 fvdl break;
1107 1.1 fvdl case 2:
1108 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1109 1.1 fvdl BGE_PCI_WRITE_BNDRY_32BYTES);
1110 1.1 fvdl break;
1111 1.1 fvdl case 4:
1112 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1113 1.1 fvdl BGE_PCI_WRITE_BNDRY_64BYTES);
1114 1.1 fvdl break;
1115 1.1 fvdl case 8:
1116 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1117 1.1 fvdl BGE_PCI_WRITE_BNDRY_128BYTES);
1118 1.1 fvdl break;
1119 1.1 fvdl case 16:
1120 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1121 1.1 fvdl BGE_PCI_WRITE_BNDRY_256BYTES);
1122 1.1 fvdl break;
1123 1.1 fvdl case 32:
1124 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1125 1.1 fvdl BGE_PCI_WRITE_BNDRY_512BYTES);
1126 1.1 fvdl break;
1127 1.1 fvdl case 64:
1128 1.1 fvdl PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1129 1.1 fvdl BGE_PCI_WRITE_BNDRY_1024BYTES);
1130 1.1 fvdl break;
1131 1.1 fvdl default:
1132 1.1 fvdl /* Disable PCI memory write and invalidate. */
1133 1.1 fvdl #if 0
1134 1.1 fvdl if (bootverbose)
1135 1.1 fvdl printf("%s: cache line size %d not "
1136 1.1 fvdl "supported; disabling PCI MWI\n",
1137 1.1 fvdl sc->bge_dev.dv_xname, cachesize);
1138 1.1 fvdl #endif
1139 1.1 fvdl PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1140 1.1 fvdl PCIM_CMD_MWIEN);
1141 1.1 fvdl break;
1142 1.1 fvdl }
1143 1.1 fvdl }
1144 1.1 fvdl
1145 1.1 fvdl #ifdef __brokenalpha__
1146 1.1 fvdl /*
1147 1.1 fvdl * Must insure that we do not cross an 8K (bytes) boundary
1148 1.1 fvdl * for DMA reads. Our highest limit is 1K bytes. This is a
1149 1.1 fvdl * restriction on some ALPHA platforms with early revision
1150 1.1 fvdl * 21174 PCI chipsets, such as the AlphaPC 164lx
1151 1.1 fvdl */
1152 1.1 fvdl PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1153 1.1 fvdl #endif
1154 1.1 fvdl
1155 1.1 fvdl /* Set the timer prescaler (always 66Mhz) */
1156 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1157 1.1 fvdl
1158 1.1 fvdl return(0);
1159 1.1 fvdl }
1160 1.1 fvdl
1161 1.1 fvdl int
1162 1.1 fvdl bge_blockinit(sc)
1163 1.1 fvdl struct bge_softc *sc;
1164 1.1 fvdl {
1165 1.1 fvdl struct bge_rcb *rcb;
1166 1.1 fvdl struct bge_rcb_opaque *rcbo;
1167 1.1 fvdl bus_size_t rcb_addr;
1168 1.1 fvdl int i;
1169 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
1170 1.1 fvdl bge_hostaddr taddr;
1171 1.1 fvdl
1172 1.1 fvdl /*
1173 1.1 fvdl * Initialize the memory window pointer register so that
1174 1.1 fvdl * we can access the first 32K of internal NIC RAM. This will
1175 1.1 fvdl * allow us to set up the TX send ring RCBs and the RX return
1176 1.1 fvdl * ring RCBs, plus other things which live in NIC memory.
1177 1.1 fvdl */
1178 1.1 fvdl
1179 1.1 fvdl pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1180 1.1 fvdl BGE_PCI_MEMWIN_BASEADDR, 0);
1181 1.1 fvdl
1182 1.1 fvdl /* Configure mbuf memory pool */
1183 1.1 fvdl if (sc->bge_extram) {
1184 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1185 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1186 1.1 fvdl } else {
1187 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1188 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1189 1.1 fvdl }
1190 1.1 fvdl
1191 1.1 fvdl /* Configure DMA resource pool */
1192 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1193 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1194 1.1 fvdl
1195 1.1 fvdl /* Configure mbuf pool watermarks */
1196 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1197 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1198 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1199 1.1 fvdl
1200 1.1 fvdl /* Configure DMA resource watermarks */
1201 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1202 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1203 1.1 fvdl
1204 1.1 fvdl /* Enable buffer manager */
1205 1.1 fvdl CSR_WRITE_4(sc, BGE_BMAN_MODE,
1206 1.1 fvdl BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1207 1.1 fvdl
1208 1.1 fvdl /* Poll for buffer manager start indication */
1209 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1210 1.1 fvdl if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1211 1.1 fvdl break;
1212 1.1 fvdl DELAY(10);
1213 1.1 fvdl }
1214 1.1 fvdl
1215 1.1 fvdl if (i == BGE_TIMEOUT) {
1216 1.1 fvdl printf("%s: buffer manager failed to start\n",
1217 1.1 fvdl sc->bge_dev.dv_xname);
1218 1.1 fvdl return(ENXIO);
1219 1.1 fvdl }
1220 1.1 fvdl
1221 1.1 fvdl /* Enable flow-through queues */
1222 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1223 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1224 1.1 fvdl
1225 1.1 fvdl /* Wait until queue initialization is complete */
1226 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1227 1.1 fvdl if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1228 1.1 fvdl break;
1229 1.1 fvdl DELAY(10);
1230 1.1 fvdl }
1231 1.1 fvdl
1232 1.1 fvdl if (i == BGE_TIMEOUT) {
1233 1.1 fvdl printf("%s: flow-through queue init failed\n",
1234 1.1 fvdl sc->bge_dev.dv_xname);
1235 1.1 fvdl return(ENXIO);
1236 1.1 fvdl }
1237 1.1 fvdl
1238 1.1 fvdl /* Initialize the standard RX ring control block */
1239 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1240 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1241 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1242 1.1 fvdl rcb->bge_max_len = BGE_MAX_FRAMELEN;
1243 1.1 fvdl if (sc->bge_extram)
1244 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1245 1.1 fvdl else
1246 1.1 fvdl rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1247 1.1 fvdl rcb->bge_flags = 0;
1248 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1249 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1250 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1251 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1252 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1253 1.1 fvdl
1254 1.1 fvdl /*
1255 1.1 fvdl * Initialize the jumbo RX ring control block
1256 1.1 fvdl * We set the 'ring disabled' bit in the flags
1257 1.1 fvdl * field until we're actually ready to start
1258 1.1 fvdl * using this ring (i.e. once we set the MTU
1259 1.1 fvdl * high enough to require it).
1260 1.1 fvdl */
1261 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1262 1.1 fvdl bge_set_hostaddr(&rcb->bge_hostaddr,
1263 1.1 fvdl BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1264 1.1 fvdl rcb->bge_max_len = BGE_MAX_FRAMELEN;
1265 1.1 fvdl if (sc->bge_extram)
1266 1.1 fvdl rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1267 1.1 fvdl else
1268 1.1 fvdl rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1269 1.1 fvdl rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1270 1.1 fvdl
1271 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1272 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1273 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1274 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1275 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1276 1.1 fvdl
1277 1.1 fvdl /* Set up dummy disabled mini ring RCB */
1278 1.1 fvdl rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1279 1.1 fvdl rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1280 1.1 fvdl rcbo = (struct bge_rcb_opaque *)rcb;
1281 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1282 1.1 fvdl
1283 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1284 1.1 fvdl offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1285 1.1 fvdl BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1286 1.1 fvdl
1287 1.1 fvdl /*
1288 1.1 fvdl * Set the BD ring replentish thresholds. The recommended
1289 1.1 fvdl * values are 1/8th the number of descriptors allocated to
1290 1.1 fvdl * each ring.
1291 1.1 fvdl */
1292 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1293 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1294 1.1 fvdl
1295 1.1 fvdl /*
1296 1.1 fvdl * Disable all unused send rings by setting the 'ring disabled'
1297 1.1 fvdl * bit in the flags field of all the TX send ring control blocks.
1298 1.1 fvdl * These are located in NIC memory.
1299 1.1 fvdl */
1300 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1301 1.1 fvdl for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1302 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags,
1303 1.1 fvdl BGE_RCB_FLAG_RING_DISABLED);
1304 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1305 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1306 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1307 1.1 fvdl }
1308 1.1 fvdl
1309 1.1 fvdl /* Configure TX RCB 0 (we use only the first ring) */
1310 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1311 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1312 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1313 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1314 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1315 1.1 fvdl BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1316 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1317 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1318 1.1 fvdl
1319 1.1 fvdl /* Disable all unused RX return rings */
1320 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1321 1.1 fvdl for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1322 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1323 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1324 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags,
1325 1.1 fvdl BGE_RCB_FLAG_RING_DISABLED);
1326 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1327 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1328 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1329 1.1 fvdl (i * (sizeof(u_int64_t))), 0);
1330 1.1 fvdl rcb_addr += sizeof(struct bge_rcb);
1331 1.1 fvdl }
1332 1.1 fvdl
1333 1.1 fvdl /* Initialize RX ring indexes */
1334 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1335 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1336 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1337 1.1 fvdl
1338 1.1 fvdl /*
1339 1.1 fvdl * Set up RX return ring 0
1340 1.1 fvdl * Note that the NIC address for RX return rings is 0x00000000.
1341 1.1 fvdl * The return rings live entirely within the host, so the
1342 1.1 fvdl * nicaddr field in the RCB isn't used.
1343 1.1 fvdl */
1344 1.1 fvdl rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1345 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1346 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1347 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1348 1.1 fvdl RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1349 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1350 1.1 fvdl RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1351 1.1 fvdl
1352 1.1 fvdl /* Set random backoff seed for TX */
1353 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1354 1.1 fvdl LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1355 1.1 fvdl LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1356 1.1 fvdl LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1357 1.1 fvdl BGE_TX_BACKOFF_SEED_MASK);
1358 1.1 fvdl
1359 1.1 fvdl /* Set inter-packet gap */
1360 1.1 fvdl CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1361 1.1 fvdl
1362 1.1 fvdl /*
1363 1.1 fvdl * Specify which ring to use for packets that don't match
1364 1.1 fvdl * any RX rules.
1365 1.1 fvdl */
1366 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1367 1.1 fvdl
1368 1.1 fvdl /*
1369 1.1 fvdl * Configure number of RX lists. One interrupt distribution
1370 1.1 fvdl * list, sixteen active lists, one bad frames class.
1371 1.1 fvdl */
1372 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1373 1.1 fvdl
1374 1.1 fvdl /* Inialize RX list placement stats mask. */
1375 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1376 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1377 1.1 fvdl
1378 1.1 fvdl /* Disable host coalescing until we get it set up */
1379 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1380 1.1 fvdl
1381 1.1 fvdl /* Poll to make sure it's shut down. */
1382 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1383 1.1 fvdl if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1384 1.1 fvdl break;
1385 1.1 fvdl DELAY(10);
1386 1.1 fvdl }
1387 1.1 fvdl
1388 1.1 fvdl if (i == BGE_TIMEOUT) {
1389 1.1 fvdl printf("%s: host coalescing engine failed to idle\n",
1390 1.1 fvdl sc->bge_dev.dv_xname);
1391 1.1 fvdl return(ENXIO);
1392 1.1 fvdl }
1393 1.1 fvdl
1394 1.1 fvdl /* Set up host coalescing defaults */
1395 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1396 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1397 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1398 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1399 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1400 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1401 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1402 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1403 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1404 1.1 fvdl
1405 1.1 fvdl /* Set up address of statistics block */
1406 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1407 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1408 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1409 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1410 1.1 fvdl
1411 1.1 fvdl /* Set up address of status block */
1412 1.1 fvdl bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1413 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1414 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1415 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1416 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1417 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1418 1.1 fvdl
1419 1.1 fvdl /* Turn on host coalescing state machine */
1420 1.1 fvdl CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1421 1.1 fvdl
1422 1.1 fvdl /* Turn on RX BD completion state machine and enable attentions */
1423 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDC_MODE,
1424 1.1 fvdl BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1425 1.1 fvdl
1426 1.1 fvdl /* Turn on RX list placement state machine */
1427 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1428 1.1 fvdl
1429 1.1 fvdl /* Turn on RX list selector state machine. */
1430 1.1 fvdl CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1431 1.1 fvdl
1432 1.1 fvdl /* Turn on DMA, clear stats */
1433 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1434 1.1 fvdl BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1435 1.1 fvdl BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1436 1.1 fvdl BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1437 1.1 fvdl (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1438 1.1 fvdl
1439 1.1 fvdl /* Set misc. local control, enable interrupts on attentions */
1440 1.1 fvdl CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1441 1.1 fvdl
1442 1.1 fvdl #ifdef notdef
1443 1.1 fvdl /* Assert GPIO pins for PHY reset */
1444 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1445 1.1 fvdl BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1446 1.1 fvdl BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1447 1.1 fvdl BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1448 1.1 fvdl #endif
1449 1.1 fvdl
1450 1.1 fvdl /* Turn on DMA completion state machine */
1451 1.1 fvdl CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1452 1.1 fvdl
1453 1.1 fvdl /* Turn on write DMA state machine */
1454 1.1 fvdl CSR_WRITE_4(sc, BGE_WDMA_MODE,
1455 1.1 fvdl BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1456 1.1 fvdl
1457 1.1 fvdl /* Turn on read DMA state machine */
1458 1.1 fvdl CSR_WRITE_4(sc, BGE_RDMA_MODE,
1459 1.1 fvdl BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1460 1.1 fvdl
1461 1.1 fvdl /* Turn on RX data completion state machine */
1462 1.1 fvdl CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1463 1.1 fvdl
1464 1.1 fvdl /* Turn on RX BD initiator state machine */
1465 1.1 fvdl CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1466 1.1 fvdl
1467 1.1 fvdl /* Turn on RX data and RX BD initiator state machine */
1468 1.1 fvdl CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1469 1.1 fvdl
1470 1.1 fvdl /* Turn on Mbuf cluster free state machine */
1471 1.1 fvdl CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1472 1.1 fvdl
1473 1.1 fvdl /* Turn on send BD completion state machine */
1474 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1475 1.1 fvdl
1476 1.1 fvdl /* Turn on send data completion state machine */
1477 1.1 fvdl CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1478 1.1 fvdl
1479 1.1 fvdl /* Turn on send data initiator state machine */
1480 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1481 1.1 fvdl
1482 1.1 fvdl /* Turn on send BD initiator state machine */
1483 1.1 fvdl CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1484 1.1 fvdl
1485 1.1 fvdl /* Turn on send BD selector state machine */
1486 1.1 fvdl CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1487 1.1 fvdl
1488 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1489 1.1 fvdl CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1490 1.1 fvdl BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1491 1.1 fvdl
1492 1.1 fvdl /* init LED register */
1493 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1494 1.1 fvdl
1495 1.1 fvdl /* ack/clear link change events */
1496 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1497 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
1498 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, 0);
1499 1.1 fvdl
1500 1.1 fvdl /* Enable PHY auto polling (for MII/GMII only) */
1501 1.1 fvdl if (sc->bge_tbi) {
1502 1.1 fvdl CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1503 1.1 fvdl } else {
1504 1.1 fvdl BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1505 1.2 fvdl if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
1506 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1507 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
1508 1.1 fvdl }
1509 1.1 fvdl
1510 1.1 fvdl /* Enable link state change attentions. */
1511 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1512 1.1 fvdl
1513 1.1 fvdl return(0);
1514 1.1 fvdl }
1515 1.1 fvdl
1516 1.7 thorpej static const struct bge_product {
1517 1.7 thorpej pci_vendor_id_t bp_vendor;
1518 1.7 thorpej pci_product_id_t bp_product;
1519 1.7 thorpej const char *bp_name;
1520 1.7 thorpej } bge_products[] = {
1521 1.7 thorpej /*
1522 1.7 thorpej * The BCM5700 documentation seems to indicate that the hardware
1523 1.7 thorpej * still has the Alteon vendor ID burned into it, though it
1524 1.7 thorpej * should always be overridden by the value in the EEPROM. We'll
1525 1.7 thorpej * check for it anyway.
1526 1.7 thorpej */
1527 1.7 thorpej { PCI_VENDOR_ALTEON,
1528 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5700,
1529 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1530 1.7 thorpej { PCI_VENDOR_ALTEON,
1531 1.7 thorpej PCI_PRODUCT_ALTEON_BCM5701,
1532 1.7 thorpej "Broadcom BCM5701 Gigabit Ethernet" },
1533 1.7 thorpej
1534 1.7 thorpej { PCI_VENDOR_ALTIMA,
1535 1.7 thorpej PCI_PRODUCT_ALTIMA_AC1000,
1536 1.7 thorpej "Altima AC1000 Gigabit Ethernet" },
1537 1.7 thorpej { PCI_VENDOR_ALTIMA,
1538 1.7 thorpej PCI_PRODUCT_ALTIMA_AC9100,
1539 1.7 thorpej "Altima AC9100 Gigabit Ethernet" },
1540 1.7 thorpej
1541 1.7 thorpej { PCI_VENDOR_BROADCOM,
1542 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5700,
1543 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1544 1.7 thorpej { PCI_VENDOR_BROADCOM,
1545 1.7 thorpej PCI_PRODUCT_BROADCOM_BCM5701,
1546 1.7 thorpej "Broadcom BCM5700 Gigabit Ethernet" },
1547 1.7 thorpej
1548 1.7 thorpej { PCI_VENDOR_SCHNEIDERKOCH,
1549 1.7 thorpej PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1550 1.8 thorpej "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1551 1.7 thorpej
1552 1.7 thorpej { PCI_VENDOR_3COM,
1553 1.7 thorpej PCI_PRODUCT_3COM_3C996,
1554 1.7 thorpej "3Com 3c996 Gigabit Ethernet" },
1555 1.7 thorpej
1556 1.7 thorpej { 0,
1557 1.7 thorpej 0,
1558 1.7 thorpej NULL },
1559 1.7 thorpej };
1560 1.7 thorpej
1561 1.7 thorpej static const struct bge_product *
1562 1.7 thorpej bge_lookup(const struct pci_attach_args *pa)
1563 1.7 thorpej {
1564 1.7 thorpej const struct bge_product *bp;
1565 1.7 thorpej
1566 1.7 thorpej for (bp = bge_products; bp->bp_name != NULL; bp++) {
1567 1.7 thorpej if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1568 1.7 thorpej PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1569 1.7 thorpej return (bp);
1570 1.7 thorpej }
1571 1.7 thorpej
1572 1.7 thorpej return (NULL);
1573 1.7 thorpej }
1574 1.7 thorpej
1575 1.1 fvdl /*
1576 1.1 fvdl * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1577 1.1 fvdl * against our list and return its name if we find a match. Note
1578 1.1 fvdl * that since the Broadcom controller contains VPD support, we
1579 1.1 fvdl * can get the device name string from the controller itself instead
1580 1.1 fvdl * of the compiled-in string. This is a little slow, but it guarantees
1581 1.1 fvdl * we'll always announce the right product name.
1582 1.1 fvdl */
1583 1.1 fvdl int
1584 1.1 fvdl bge_probe(parent, match, aux)
1585 1.1 fvdl struct device *parent;
1586 1.1 fvdl struct cfdata *match;
1587 1.1 fvdl void *aux;
1588 1.1 fvdl {
1589 1.1 fvdl struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1590 1.1 fvdl
1591 1.7 thorpej if (bge_lookup(pa) != NULL)
1592 1.1 fvdl return (1);
1593 1.1 fvdl
1594 1.1 fvdl return (0);
1595 1.1 fvdl }
1596 1.1 fvdl
1597 1.1 fvdl void
1598 1.1 fvdl bge_attach(parent, self, aux)
1599 1.1 fvdl struct device *parent, *self;
1600 1.1 fvdl void *aux;
1601 1.1 fvdl {
1602 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)self;
1603 1.1 fvdl struct pci_attach_args *pa = aux;
1604 1.7 thorpej const struct bge_product *bp;
1605 1.1 fvdl pci_chipset_tag_t pc = pa->pa_pc;
1606 1.1 fvdl pci_intr_handle_t ih;
1607 1.1 fvdl const char *intrstr = NULL;
1608 1.1 fvdl bus_dma_segment_t seg;
1609 1.1 fvdl int rseg;
1610 1.1 fvdl u_int32_t hwcfg = 0;
1611 1.1 fvdl u_int32_t command;
1612 1.1 fvdl struct ifnet *ifp;
1613 1.1 fvdl int unit;
1614 1.1 fvdl caddr_t kva;
1615 1.1 fvdl u_char eaddr[ETHER_ADDR_LEN];
1616 1.1 fvdl pcireg_t memtype;
1617 1.1 fvdl bus_addr_t memaddr;
1618 1.1 fvdl bus_size_t memsize;
1619 1.1 fvdl
1620 1.7 thorpej bp = bge_lookup(pa);
1621 1.7 thorpej KASSERT(bp != NULL);
1622 1.7 thorpej
1623 1.1 fvdl sc->bge_pa = *pa;
1624 1.1 fvdl
1625 1.7 thorpej printf(": %s, rev. 0x%02x\n", bp->bp_name, PCI_REVISION(pa->pa_class));
1626 1.1 fvdl
1627 1.1 fvdl /*
1628 1.1 fvdl * Map control/status registers.
1629 1.1 fvdl */
1630 1.1 fvdl DPRINTFN(5, ("Map control/status regs\n"));
1631 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1632 1.1 fvdl command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1633 1.1 fvdl pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1634 1.1 fvdl command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1635 1.1 fvdl
1636 1.1 fvdl if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1637 1.1 fvdl printf("%s: failed to enable memory mapping!\n",
1638 1.1 fvdl sc->bge_dev.dv_xname);
1639 1.1 fvdl return;
1640 1.1 fvdl }
1641 1.1 fvdl
1642 1.1 fvdl DPRINTFN(5, ("pci_mem_find\n"));
1643 1.1 fvdl memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1644 1.1 fvdl switch (memtype) {
1645 1.1 fvdl case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1646 1.1 fvdl case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1647 1.1 fvdl if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1648 1.1 fvdl memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1649 1.1 fvdl &memaddr, &memsize) == 0)
1650 1.1 fvdl break;
1651 1.1 fvdl default:
1652 1.1 fvdl printf("%s: can't find mem space\n",
1653 1.1 fvdl sc->bge_dev.dv_xname);
1654 1.1 fvdl return;
1655 1.1 fvdl }
1656 1.1 fvdl
1657 1.1 fvdl DPRINTFN(5, ("pci_intr_map\n"));
1658 1.1 fvdl if (pci_intr_map(pa, &ih)) {
1659 1.1 fvdl printf("%s: couldn't map interrupt\n",
1660 1.1 fvdl sc->bge_dev.dv_xname);
1661 1.1 fvdl return;
1662 1.1 fvdl }
1663 1.1 fvdl
1664 1.1 fvdl DPRINTFN(5, ("pci_intr_string\n"));
1665 1.1 fvdl intrstr = pci_intr_string(pc, ih);
1666 1.1 fvdl
1667 1.1 fvdl DPRINTFN(5, ("pci_intr_establish\n"));
1668 1.1 fvdl sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1669 1.1 fvdl
1670 1.1 fvdl if (sc->bge_intrhand == NULL) {
1671 1.1 fvdl printf("%s: couldn't establish interrupt",
1672 1.1 fvdl sc->bge_dev.dv_xname);
1673 1.1 fvdl if (intrstr != NULL)
1674 1.1 fvdl printf(" at %s", intrstr);
1675 1.1 fvdl printf("\n");
1676 1.1 fvdl return;
1677 1.1 fvdl }
1678 1.1 fvdl printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1679 1.1 fvdl
1680 1.1 fvdl /* Try to reset the chip. */
1681 1.1 fvdl DPRINTFN(5, ("bge_reset\n"));
1682 1.1 fvdl bge_reset(sc);
1683 1.1 fvdl
1684 1.1 fvdl if (bge_chipinit(sc)) {
1685 1.1 fvdl printf("%s: chip initializatino failed\n",
1686 1.1 fvdl sc->bge_dev.dv_xname);
1687 1.1 fvdl bge_release_resources(sc);
1688 1.1 fvdl return;
1689 1.1 fvdl }
1690 1.1 fvdl
1691 1.1 fvdl /*
1692 1.1 fvdl * Get station address from the EEPROM.
1693 1.1 fvdl */
1694 1.1 fvdl if (bge_read_eeprom(sc, (caddr_t)eaddr,
1695 1.1 fvdl BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1696 1.1 fvdl printf("bge%d: failed to read station address\n", unit);
1697 1.1 fvdl bge_release_resources(sc);
1698 1.1 fvdl return;
1699 1.1 fvdl }
1700 1.1 fvdl
1701 1.1 fvdl /*
1702 1.1 fvdl * A Broadcom chip was detected. Inform the world.
1703 1.1 fvdl */
1704 1.1 fvdl printf("%s: Ethernet address %s\n", sc->bge_dev.dv_xname,
1705 1.1 fvdl ether_sprintf(eaddr));
1706 1.1 fvdl
1707 1.1 fvdl /* Allocate the general information block and ring buffers. */
1708 1.1 fvdl sc->bge_dmatag = pa->pa_dmat;
1709 1.1 fvdl DPRINTFN(5, ("bus_dmamem_alloc\n"));
1710 1.1 fvdl if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1711 1.1 fvdl PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1712 1.1 fvdl printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1713 1.1 fvdl return;
1714 1.1 fvdl }
1715 1.1 fvdl DPRINTFN(5, ("bus_dmamem_map\n"));
1716 1.1 fvdl if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1717 1.1 fvdl sizeof(struct bge_ring_data), &kva,
1718 1.1 fvdl BUS_DMA_NOWAIT)) {
1719 1.1 fvdl printf("%s: can't map dma buffers (%d bytes)\n",
1720 1.1 fvdl sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1721 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1722 1.1 fvdl return;
1723 1.1 fvdl }
1724 1.1 fvdl DPRINTFN(5, ("bus_dmamem_create\n"));
1725 1.1 fvdl if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1726 1.1 fvdl sizeof(struct bge_ring_data), 0,
1727 1.1 fvdl BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1728 1.1 fvdl printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1729 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
1730 1.1 fvdl sizeof(struct bge_ring_data));
1731 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1732 1.1 fvdl return;
1733 1.1 fvdl }
1734 1.1 fvdl DPRINTFN(5, ("bus_dmamem_load\n"));
1735 1.1 fvdl if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1736 1.1 fvdl sizeof(struct bge_ring_data), NULL,
1737 1.1 fvdl BUS_DMA_NOWAIT)) {
1738 1.1 fvdl bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1739 1.1 fvdl bus_dmamem_unmap(sc->bge_dmatag, kva,
1740 1.1 fvdl sizeof(struct bge_ring_data));
1741 1.1 fvdl bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1742 1.1 fvdl return;
1743 1.1 fvdl }
1744 1.1 fvdl
1745 1.1 fvdl DPRINTFN(5, ("bzero\n"));
1746 1.1 fvdl sc->bge_rdata = (struct bge_ring_data *)kva;
1747 1.1 fvdl
1748 1.1 fvdl memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
1749 1.1 fvdl
1750 1.1 fvdl /* Try to allocate memory for jumbo buffers. */
1751 1.1 fvdl if (bge_alloc_jumbo_mem(sc)) {
1752 1.1 fvdl printf("%s: jumbo buffer allocation failed\n",
1753 1.1 fvdl sc->bge_dev.dv_xname);
1754 1.8 thorpej } else
1755 1.8 thorpej sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1756 1.1 fvdl
1757 1.1 fvdl /* Set default tuneable values. */
1758 1.1 fvdl sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1759 1.1 fvdl sc->bge_rx_coal_ticks = 150;
1760 1.1 fvdl sc->bge_tx_coal_ticks = 150;
1761 1.1 fvdl sc->bge_rx_max_coal_bds = 64;
1762 1.1 fvdl sc->bge_tx_max_coal_bds = 128;
1763 1.1 fvdl
1764 1.1 fvdl /* Set up ifnet structure */
1765 1.1 fvdl ifp = &sc->ethercom.ec_if;
1766 1.1 fvdl ifp->if_softc = sc;
1767 1.1 fvdl ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1768 1.1 fvdl ifp->if_ioctl = bge_ioctl;
1769 1.1 fvdl ifp->if_start = bge_start;
1770 1.1 fvdl ifp->if_init = bge_init;
1771 1.1 fvdl ifp->if_watchdog = bge_watchdog;
1772 1.1 fvdl IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1773 1.1 fvdl IFQ_SET_READY(&ifp->if_snd);
1774 1.1 fvdl DPRINTFN(5, ("bcopy\n"));
1775 1.1 fvdl strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1776 1.1 fvdl
1777 1.1 fvdl sc->ethercom.ec_if.if_capabilities |=
1778 1.1 fvdl IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1779 1.1 fvdl sc->ethercom.ec_capabilities |=
1780 1.1 fvdl ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1781 1.1 fvdl
1782 1.1 fvdl /*
1783 1.1 fvdl * Do MII setup.
1784 1.1 fvdl */
1785 1.1 fvdl DPRINTFN(5, ("mii setup\n"));
1786 1.1 fvdl sc->bge_mii.mii_ifp = ifp;
1787 1.1 fvdl sc->bge_mii.mii_readreg = bge_miibus_readreg;
1788 1.1 fvdl sc->bge_mii.mii_writereg = bge_miibus_writereg;
1789 1.1 fvdl sc->bge_mii.mii_statchg = bge_miibus_statchg;
1790 1.1 fvdl
1791 1.1 fvdl /* Save ASIC rev. */
1792 1.1 fvdl
1793 1.1 fvdl sc->bge_asicrev =
1794 1.1 fvdl pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1795 1.1 fvdl BGE_PCIMISCCTL_ASICREV;
1796 1.1 fvdl
1797 1.1 fvdl /*
1798 1.1 fvdl * Figure out what sort of media we have by checking the
1799 1.1 fvdl * hardware config word in the EEPROM. Note: on some BCM5700
1800 1.1 fvdl * cards, this value appears to be unset. If that's the
1801 1.1 fvdl * case, we have to rely on identifying the NIC by its PCI
1802 1.1 fvdl * subsystem ID, as we do below for the SysKonnect SK-9D41.
1803 1.1 fvdl */
1804 1.1 fvdl bge_read_eeprom(sc, (caddr_t)&hwcfg,
1805 1.1 fvdl BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1806 1.1 fvdl if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1807 1.1 fvdl sc->bge_tbi = 1;
1808 1.1 fvdl
1809 1.1 fvdl /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1810 1.1 fvdl if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1811 1.1 fvdl SK_SUBSYSID_9D41)
1812 1.1 fvdl sc->bge_tbi = 1;
1813 1.1 fvdl
1814 1.1 fvdl if (sc->bge_tbi) {
1815 1.1 fvdl ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1816 1.1 fvdl bge_ifmedia_sts);
1817 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1818 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1819 1.1 fvdl 0, NULL);
1820 1.1 fvdl ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1821 1.1 fvdl ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1822 1.1 fvdl } else {
1823 1.1 fvdl /*
1824 1.1 fvdl * Do transceiver setup.
1825 1.1 fvdl */
1826 1.1 fvdl ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1827 1.1 fvdl bge_ifmedia_sts);
1828 1.1 fvdl mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1829 1.1 fvdl MII_PHY_ANY, MII_OFFSET_ANY, 0);
1830 1.1 fvdl
1831 1.1 fvdl if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1832 1.1 fvdl printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1833 1.1 fvdl ifmedia_add(&sc->bge_mii.mii_media,
1834 1.1 fvdl IFM_ETHER|IFM_MANUAL, 0, NULL);
1835 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
1836 1.1 fvdl IFM_ETHER|IFM_MANUAL);
1837 1.1 fvdl } else
1838 1.1 fvdl ifmedia_set(&sc->bge_mii.mii_media,
1839 1.1 fvdl IFM_ETHER|IFM_AUTO);
1840 1.1 fvdl }
1841 1.1 fvdl
1842 1.1 fvdl /*
1843 1.1 fvdl * Call MI attach routine.
1844 1.1 fvdl */
1845 1.1 fvdl DPRINTFN(5, ("if_attach\n"));
1846 1.1 fvdl if_attach(ifp);
1847 1.1 fvdl DPRINTFN(5, ("ether_ifattach\n"));
1848 1.1 fvdl ether_ifattach(ifp, eaddr);
1849 1.1 fvdl DPRINTFN(5, ("callout_init\n"));
1850 1.1 fvdl callout_init(&sc->bge_timeout);
1851 1.1 fvdl }
1852 1.1 fvdl
1853 1.1 fvdl void
1854 1.1 fvdl bge_release_resources(sc)
1855 1.1 fvdl struct bge_softc *sc;
1856 1.1 fvdl {
1857 1.1 fvdl if (sc->bge_vpd_prodname != NULL)
1858 1.1 fvdl free(sc->bge_vpd_prodname, M_DEVBUF);
1859 1.1 fvdl
1860 1.1 fvdl if (sc->bge_vpd_readonly != NULL)
1861 1.1 fvdl free(sc->bge_vpd_readonly, M_DEVBUF);
1862 1.1 fvdl }
1863 1.1 fvdl
1864 1.1 fvdl void
1865 1.1 fvdl bge_reset(sc)
1866 1.1 fvdl struct bge_softc *sc;
1867 1.1 fvdl {
1868 1.1 fvdl struct pci_attach_args *pa = &sc->bge_pa;
1869 1.1 fvdl u_int32_t cachesize, command, pcistate;
1870 1.1 fvdl int i, val = 0;
1871 1.1 fvdl
1872 1.1 fvdl /* Save some important PCI state. */
1873 1.1 fvdl cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1874 1.1 fvdl command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1875 1.1 fvdl pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1876 1.1 fvdl
1877 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1878 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1879 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1880 1.1 fvdl
1881 1.1 fvdl /* Issue global reset */
1882 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG,
1883 1.1 fvdl BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1884 1.1 fvdl
1885 1.1 fvdl DELAY(1000);
1886 1.1 fvdl
1887 1.1 fvdl /* Reset some of the PCI state that got zapped by reset */
1888 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1889 1.1 fvdl BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1890 1.1 fvdl BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1891 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1892 1.1 fvdl pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1893 1.1 fvdl bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1894 1.1 fvdl
1895 1.1 fvdl /* Enable memory arbiter. */
1896 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1897 1.1 fvdl
1898 1.1 fvdl /*
1899 1.1 fvdl * Prevent PXE restart: write a magic number to the
1900 1.1 fvdl * general communications memory at 0xB50.
1901 1.1 fvdl */
1902 1.1 fvdl bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1903 1.1 fvdl
1904 1.1 fvdl /*
1905 1.1 fvdl * Poll the value location we just wrote until
1906 1.1 fvdl * we see the 1's complement of the magic number.
1907 1.1 fvdl * This indicates that the firmware initialization
1908 1.1 fvdl * is complete.
1909 1.1 fvdl */
1910 1.1 fvdl for (i = 0; i < 750; i++) {
1911 1.1 fvdl val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1912 1.1 fvdl if (val == ~BGE_MAGIC_NUMBER)
1913 1.1 fvdl break;
1914 1.1 fvdl DELAY(1000);
1915 1.1 fvdl }
1916 1.1 fvdl
1917 1.8 thorpej if (i == 750) {
1918 1.1 fvdl printf("%s: firmware handshake timed out, val = %x\n",
1919 1.1 fvdl sc->bge_dev.dv_xname, val);
1920 1.1 fvdl return;
1921 1.1 fvdl }
1922 1.1 fvdl
1923 1.1 fvdl /*
1924 1.1 fvdl * XXX Wait for the value of the PCISTATE register to
1925 1.1 fvdl * return to its original pre-reset state. This is a
1926 1.1 fvdl * fairly good indicator of reset completion. If we don't
1927 1.1 fvdl * wait for the reset to fully complete, trying to read
1928 1.1 fvdl * from the device's non-PCI registers may yield garbage
1929 1.1 fvdl * results.
1930 1.1 fvdl */
1931 1.1 fvdl for (i = 0; i < BGE_TIMEOUT; i++) {
1932 1.1 fvdl if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
1933 1.1 fvdl pcistate)
1934 1.1 fvdl break;
1935 1.1 fvdl DELAY(10);
1936 1.1 fvdl }
1937 1.1 fvdl
1938 1.1 fvdl /* Enable memory arbiter. */
1939 1.1 fvdl CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1940 1.1 fvdl
1941 1.1 fvdl /* Fix up byte swapping */
1942 1.1 fvdl CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
1943 1.1 fvdl
1944 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1945 1.1 fvdl
1946 1.1 fvdl DELAY(10000);
1947 1.1 fvdl }
1948 1.1 fvdl
1949 1.1 fvdl /*
1950 1.1 fvdl * Frame reception handling. This is called if there's a frame
1951 1.1 fvdl * on the receive return list.
1952 1.1 fvdl *
1953 1.1 fvdl * Note: we have to be able to handle two possibilities here:
1954 1.1 fvdl * 1) the frame is from the jumbo recieve ring
1955 1.1 fvdl * 2) the frame is from the standard receive ring
1956 1.1 fvdl */
1957 1.1 fvdl
1958 1.1 fvdl void
1959 1.1 fvdl bge_rxeof(sc)
1960 1.1 fvdl struct bge_softc *sc;
1961 1.1 fvdl {
1962 1.1 fvdl struct ifnet *ifp;
1963 1.1 fvdl int stdcnt = 0, jumbocnt = 0;
1964 1.1 fvdl int have_tag = 0;
1965 1.1 fvdl u_int16_t vlan_tag = 0;
1966 1.1 fvdl bus_dmamap_t dmamap;
1967 1.1 fvdl bus_addr_t offset, toff;
1968 1.1 fvdl bus_size_t tlen;
1969 1.1 fvdl int tosync;
1970 1.1 fvdl
1971 1.1 fvdl ifp = &sc->ethercom.ec_if;
1972 1.1 fvdl
1973 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1974 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
1975 1.1 fvdl sizeof (struct bge_status_block),
1976 1.1 fvdl BUS_DMASYNC_POSTREAD);
1977 1.1 fvdl
1978 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
1979 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
1980 1.1 fvdl sc->bge_rx_saved_considx;
1981 1.1 fvdl
1982 1.1 fvdl toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
1983 1.1 fvdl
1984 1.1 fvdl if (tosync < 0) {
1985 1.1 fvdl tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
1986 1.1 fvdl sizeof (struct bge_rx_bd);
1987 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1988 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD);
1989 1.1 fvdl tosync = -tosync;
1990 1.1 fvdl }
1991 1.1 fvdl
1992 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1993 1.1 fvdl offset, tosync * sizeof (struct bge_rx_bd),
1994 1.1 fvdl BUS_DMASYNC_POSTREAD);
1995 1.1 fvdl
1996 1.1 fvdl while(sc->bge_rx_saved_considx !=
1997 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1998 1.1 fvdl struct bge_rx_bd *cur_rx;
1999 1.1 fvdl u_int32_t rxidx;
2000 1.1 fvdl struct mbuf *m = NULL;
2001 1.1 fvdl
2002 1.1 fvdl cur_rx = &sc->bge_rdata->
2003 1.1 fvdl bge_rx_return_ring[sc->bge_rx_saved_considx];
2004 1.1 fvdl
2005 1.1 fvdl rxidx = cur_rx->bge_idx;
2006 1.1 fvdl BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2007 1.1 fvdl
2008 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2009 1.1 fvdl have_tag = 1;
2010 1.1 fvdl vlan_tag = cur_rx->bge_vlan_tag;
2011 1.1 fvdl }
2012 1.1 fvdl
2013 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2014 1.1 fvdl BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2015 1.1 fvdl m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2016 1.1 fvdl sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2017 1.1 fvdl jumbocnt++;
2018 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2019 1.1 fvdl ifp->if_ierrors++;
2020 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2021 1.1 fvdl continue;
2022 1.1 fvdl }
2023 1.1 fvdl if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2024 1.1 fvdl NULL)== ENOBUFS) {
2025 1.1 fvdl ifp->if_ierrors++;
2026 1.1 fvdl bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2027 1.1 fvdl continue;
2028 1.1 fvdl }
2029 1.1 fvdl } else {
2030 1.1 fvdl BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2031 1.1 fvdl m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2032 1.1 fvdl sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2033 1.1 fvdl stdcnt++;
2034 1.1 fvdl dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2035 1.1 fvdl sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2036 1.1 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2037 1.1 fvdl ifp->if_ierrors++;
2038 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2039 1.1 fvdl continue;
2040 1.1 fvdl }
2041 1.1 fvdl if (bge_newbuf_std(sc, sc->bge_std,
2042 1.1 fvdl NULL, dmamap) == ENOBUFS) {
2043 1.1 fvdl ifp->if_ierrors++;
2044 1.1 fvdl bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2045 1.1 fvdl continue;
2046 1.1 fvdl }
2047 1.1 fvdl }
2048 1.1 fvdl
2049 1.1 fvdl ifp->if_ipackets++;
2050 1.1 fvdl m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2051 1.1 fvdl m->m_pkthdr.rcvif = ifp;
2052 1.1 fvdl
2053 1.1 fvdl #if NBPFILTER > 0
2054 1.1 fvdl /*
2055 1.1 fvdl * Handle BPF listeners. Let the BPF user see the packet.
2056 1.1 fvdl */
2057 1.1 fvdl if (ifp->if_bpf)
2058 1.1 fvdl bpf_mtap(ifp->if_bpf, m);
2059 1.1 fvdl #endif
2060 1.1 fvdl
2061 1.2 fvdl if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
2062 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2063 1.2 fvdl if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2064 1.2 fvdl m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2065 1.4 fvdl #if 0 /* XXX appears to be broken */
2066 1.2 fvdl if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2067 1.2 fvdl m->m_pkthdr.csum_data =
2068 1.2 fvdl cur_rx->bge_tcp_udp_csum;
2069 1.2 fvdl m->m_pkthdr.csum_flags |=
2070 1.2 fvdl (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2071 1.2 fvdl }
2072 1.4 fvdl #endif
2073 1.1 fvdl }
2074 1.1 fvdl
2075 1.1 fvdl /*
2076 1.1 fvdl * If we received a packet with a vlan tag, pass it
2077 1.1 fvdl * to vlan_input() instead of ether_input().
2078 1.1 fvdl */
2079 1.1 fvdl if (have_tag) {
2080 1.1 fvdl struct mbuf *n;
2081 1.1 fvdl
2082 1.1 fvdl n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2083 1.1 fvdl if (n != NULL) {
2084 1.1 fvdl *mtod(n, int *) = vlan_tag;
2085 1.1 fvdl n->m_len = sizeof(int);
2086 1.1 fvdl have_tag = vlan_tag = 0;
2087 1.1 fvdl } else {
2088 1.1 fvdl printf("%s: no mbuf for tag\n", ifp->if_xname);
2089 1.1 fvdl m_freem(m);
2090 1.1 fvdl have_tag = vlan_tag = 0;
2091 1.1 fvdl continue;
2092 1.1 fvdl }
2093 1.1 fvdl }
2094 1.1 fvdl (*ifp->if_input)(ifp, m);
2095 1.1 fvdl }
2096 1.1 fvdl
2097 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2098 1.1 fvdl if (stdcnt)
2099 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2100 1.1 fvdl if (jumbocnt)
2101 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2102 1.1 fvdl }
2103 1.1 fvdl
2104 1.1 fvdl void
2105 1.1 fvdl bge_txeof(sc)
2106 1.1 fvdl struct bge_softc *sc;
2107 1.1 fvdl {
2108 1.1 fvdl struct bge_tx_bd *cur_tx = NULL;
2109 1.1 fvdl struct ifnet *ifp;
2110 1.1 fvdl struct txdmamap_pool_entry *dma;
2111 1.1 fvdl bus_addr_t offset, toff;
2112 1.1 fvdl bus_size_t tlen;
2113 1.1 fvdl int tosync;
2114 1.1 fvdl struct mbuf *m;
2115 1.1 fvdl
2116 1.1 fvdl ifp = &sc->ethercom.ec_if;
2117 1.1 fvdl
2118 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2119 1.1 fvdl offsetof(struct bge_ring_data, bge_status_block),
2120 1.1 fvdl sizeof (struct bge_status_block),
2121 1.1 fvdl BUS_DMASYNC_POSTREAD);
2122 1.1 fvdl
2123 1.1 fvdl offset = offsetof(struct bge_ring_data, bge_tx_ring);
2124 1.1 fvdl tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2125 1.1 fvdl sc->bge_tx_saved_considx;
2126 1.1 fvdl
2127 1.1 fvdl toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2128 1.1 fvdl
2129 1.1 fvdl if (tosync < 0) {
2130 1.1 fvdl tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2131 1.1 fvdl sizeof (struct bge_tx_bd);
2132 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2133 1.1 fvdl toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2134 1.1 fvdl tosync = -tosync;
2135 1.1 fvdl }
2136 1.1 fvdl
2137 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2138 1.1 fvdl offset, tosync * sizeof (struct bge_tx_bd),
2139 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2140 1.1 fvdl
2141 1.1 fvdl /*
2142 1.1 fvdl * Go through our tx ring and free mbufs for those
2143 1.1 fvdl * frames that have been sent.
2144 1.1 fvdl */
2145 1.1 fvdl while (sc->bge_tx_saved_considx !=
2146 1.1 fvdl sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2147 1.1 fvdl u_int32_t idx = 0;
2148 1.1 fvdl
2149 1.1 fvdl idx = sc->bge_tx_saved_considx;
2150 1.1 fvdl cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2151 1.1 fvdl if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2152 1.1 fvdl ifp->if_opackets++;
2153 1.1 fvdl m = sc->bge_cdata.bge_tx_chain[idx];
2154 1.1 fvdl if (m != NULL) {
2155 1.1 fvdl sc->bge_cdata.bge_tx_chain[idx] = NULL;
2156 1.1 fvdl dma = sc->txdma[idx];
2157 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2158 1.1 fvdl dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2159 1.1 fvdl bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2160 1.1 fvdl SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2161 1.1 fvdl sc->txdma[idx] = NULL;
2162 1.1 fvdl
2163 1.1 fvdl m_freem(m);
2164 1.1 fvdl }
2165 1.1 fvdl sc->bge_txcnt--;
2166 1.1 fvdl BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2167 1.1 fvdl ifp->if_timer = 0;
2168 1.1 fvdl }
2169 1.1 fvdl
2170 1.1 fvdl if (cur_tx != NULL)
2171 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2172 1.1 fvdl }
2173 1.1 fvdl
2174 1.1 fvdl int
2175 1.1 fvdl bge_intr(xsc)
2176 1.1 fvdl void *xsc;
2177 1.1 fvdl {
2178 1.1 fvdl struct bge_softc *sc;
2179 1.1 fvdl struct ifnet *ifp;
2180 1.1 fvdl
2181 1.1 fvdl sc = xsc;
2182 1.1 fvdl ifp = &sc->ethercom.ec_if;
2183 1.1 fvdl
2184 1.1 fvdl #ifdef notdef
2185 1.1 fvdl /* Avoid this for now -- checking this register is expensive. */
2186 1.1 fvdl /* Make sure this is really our interrupt. */
2187 1.1 fvdl if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2188 1.1 fvdl return (0);
2189 1.1 fvdl #endif
2190 1.1 fvdl /* Ack interrupt and stop others from occuring. */
2191 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2192 1.1 fvdl
2193 1.1 fvdl /*
2194 1.1 fvdl * Process link state changes.
2195 1.1 fvdl * Grrr. The link status word in the status block does
2196 1.1 fvdl * not work correctly on the BCM5700 rev AX and BX chips,
2197 1.1 fvdl * according to all avaibable information. Hence, we have
2198 1.1 fvdl * to enable MII interrupts in order to properly obtain
2199 1.1 fvdl * async link changes. Unfortunately, this also means that
2200 1.1 fvdl * we have to read the MAC status register to detect link
2201 1.1 fvdl * changes, thereby adding an additional register access to
2202 1.1 fvdl * the interrupt handler.
2203 1.1 fvdl */
2204 1.1 fvdl
2205 1.2 fvdl if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
2206 1.1 fvdl u_int32_t status;
2207 1.1 fvdl
2208 1.1 fvdl status = CSR_READ_4(sc, BGE_MAC_STS);
2209 1.1 fvdl if (status & BGE_MACSTAT_MI_INTERRUPT) {
2210 1.1 fvdl sc->bge_link = 0;
2211 1.1 fvdl callout_stop(&sc->bge_timeout);
2212 1.1 fvdl bge_tick(sc);
2213 1.1 fvdl /* Clear the interrupt */
2214 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2215 1.1 fvdl BGE_EVTENB_MI_INTERRUPT);
2216 1.1 fvdl bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2217 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2218 1.1 fvdl BRGPHY_INTRS);
2219 1.1 fvdl }
2220 1.1 fvdl } else {
2221 1.1 fvdl if (sc->bge_rdata->bge_status_block.bge_status &
2222 1.1 fvdl BGE_STATFLAG_LINKSTATE_CHANGED) {
2223 1.1 fvdl sc->bge_link = 0;
2224 1.1 fvdl callout_stop(&sc->bge_timeout);
2225 1.1 fvdl bge_tick(sc);
2226 1.1 fvdl /* Clear the interrupt */
2227 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2228 1.1 fvdl BGE_MACSTAT_CFG_CHANGED);
2229 1.1 fvdl }
2230 1.1 fvdl }
2231 1.1 fvdl
2232 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2233 1.1 fvdl /* Check RX return ring producer/consumer */
2234 1.1 fvdl bge_rxeof(sc);
2235 1.1 fvdl
2236 1.1 fvdl /* Check TX ring producer/consumer */
2237 1.1 fvdl bge_txeof(sc);
2238 1.1 fvdl }
2239 1.1 fvdl
2240 1.1 fvdl bge_handle_events(sc);
2241 1.1 fvdl
2242 1.1 fvdl /* Re-enable interrupts. */
2243 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2244 1.1 fvdl
2245 1.1 fvdl if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2246 1.1 fvdl bge_start(ifp);
2247 1.1 fvdl
2248 1.1 fvdl return (1);
2249 1.1 fvdl }
2250 1.1 fvdl
2251 1.1 fvdl void
2252 1.1 fvdl bge_tick(xsc)
2253 1.1 fvdl void *xsc;
2254 1.1 fvdl {
2255 1.1 fvdl struct bge_softc *sc = xsc;
2256 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2257 1.1 fvdl struct ifmedia *ifm = NULL;
2258 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2259 1.1 fvdl int s;
2260 1.1 fvdl
2261 1.1 fvdl s = splnet();
2262 1.1 fvdl
2263 1.1 fvdl bge_stats_update(sc);
2264 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2265 1.1 fvdl if (sc->bge_link) {
2266 1.1 fvdl splx(s);
2267 1.1 fvdl return;
2268 1.1 fvdl }
2269 1.1 fvdl
2270 1.1 fvdl if (sc->bge_tbi) {
2271 1.1 fvdl ifm = &sc->bge_ifmedia;
2272 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2273 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED) {
2274 1.1 fvdl sc->bge_link++;
2275 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2276 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2277 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2278 1.1 fvdl bge_start(ifp);
2279 1.1 fvdl }
2280 1.1 fvdl splx(s);
2281 1.1 fvdl return;
2282 1.1 fvdl }
2283 1.1 fvdl
2284 1.1 fvdl mii_tick(mii);
2285 1.1 fvdl
2286 1.1 fvdl if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2287 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2288 1.1 fvdl sc->bge_link++;
2289 1.1 fvdl if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2290 1.1 fvdl IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2291 1.1 fvdl printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2292 1.1 fvdl if (!IFQ_IS_EMPTY(&ifp->if_snd))
2293 1.1 fvdl bge_start(ifp);
2294 1.1 fvdl }
2295 1.1 fvdl
2296 1.1 fvdl splx(s);
2297 1.1 fvdl }
2298 1.1 fvdl
2299 1.1 fvdl void
2300 1.1 fvdl bge_stats_update(sc)
2301 1.1 fvdl struct bge_softc *sc;
2302 1.1 fvdl {
2303 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2304 1.1 fvdl bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2305 1.1 fvdl
2306 1.1 fvdl #define READ_STAT(sc, stats, stat) \
2307 1.1 fvdl CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2308 1.1 fvdl
2309 1.1 fvdl ifp->if_collisions +=
2310 1.1 fvdl (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2311 1.1 fvdl READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2312 1.1 fvdl READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2313 1.1 fvdl READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2314 1.1 fvdl ifp->if_collisions;
2315 1.1 fvdl
2316 1.1 fvdl #undef READ_STAT
2317 1.1 fvdl
2318 1.1 fvdl #ifdef notdef
2319 1.1 fvdl ifp->if_collisions +=
2320 1.1 fvdl (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2321 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2322 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2323 1.1 fvdl sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2324 1.1 fvdl ifp->if_collisions;
2325 1.1 fvdl #endif
2326 1.1 fvdl }
2327 1.1 fvdl
2328 1.1 fvdl /*
2329 1.1 fvdl * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2330 1.1 fvdl * pointers to descriptors.
2331 1.1 fvdl */
2332 1.1 fvdl int
2333 1.1 fvdl bge_encap(sc, m_head, txidx)
2334 1.1 fvdl struct bge_softc *sc;
2335 1.1 fvdl struct mbuf *m_head;
2336 1.1 fvdl u_int32_t *txidx;
2337 1.1 fvdl {
2338 1.1 fvdl struct bge_tx_bd *f = NULL;
2339 1.1 fvdl u_int32_t frag, cur, cnt = 0;
2340 1.1 fvdl u_int16_t csum_flags = 0;
2341 1.1 fvdl struct txdmamap_pool_entry *dma;
2342 1.1 fvdl bus_dmamap_t dmamap;
2343 1.1 fvdl int i = 0;
2344 1.1 fvdl struct mbuf *n;
2345 1.1 fvdl
2346 1.1 fvdl cur = frag = *txidx;
2347 1.1 fvdl
2348 1.1 fvdl if (m_head->m_pkthdr.csum_flags) {
2349 1.1 fvdl if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2350 1.1 fvdl csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2351 1.8 thorpej if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2352 1.1 fvdl csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2353 1.1 fvdl }
2354 1.1 fvdl
2355 1.1 fvdl dma = SLIST_FIRST(&sc->txdma_list);
2356 1.1 fvdl if (dma == NULL)
2357 1.1 fvdl return ENOBUFS;
2358 1.1 fvdl dmamap = dma->dmamap;
2359 1.1 fvdl
2360 1.1 fvdl /*
2361 1.1 fvdl * Start packing the mbufs in this chain into
2362 1.1 fvdl * the fragment pointers. Stop when we run out
2363 1.1 fvdl * of fragments or hit the end of the mbuf chain.
2364 1.1 fvdl */
2365 1.1 fvdl if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2366 1.1 fvdl BUS_DMA_NOWAIT))
2367 1.1 fvdl return(ENOBUFS);
2368 1.1 fvdl
2369 1.6 thorpej n = sc->ethercom.ec_nvlans ?
2370 1.6 thorpej m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2371 1.6 thorpej
2372 1.1 fvdl for (i = 0; i < dmamap->dm_nsegs; i++) {
2373 1.1 fvdl f = &sc->bge_rdata->bge_tx_ring[frag];
2374 1.1 fvdl if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2375 1.1 fvdl break;
2376 1.1 fvdl bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2377 1.1 fvdl f->bge_len = dmamap->dm_segs[i].ds_len;
2378 1.1 fvdl f->bge_flags = csum_flags;
2379 1.1 fvdl
2380 1.1 fvdl if (n != NULL) {
2381 1.1 fvdl f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2382 1.1 fvdl f->bge_vlan_tag = *mtod(n, int *);
2383 1.1 fvdl } else {
2384 1.1 fvdl f->bge_vlan_tag = 0;
2385 1.1 fvdl }
2386 1.1 fvdl /*
2387 1.1 fvdl * Sanity check: avoid coming within 16 descriptors
2388 1.1 fvdl * of the end of the ring.
2389 1.1 fvdl */
2390 1.1 fvdl if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2391 1.1 fvdl return(ENOBUFS);
2392 1.1 fvdl cur = frag;
2393 1.1 fvdl BGE_INC(frag, BGE_TX_RING_CNT);
2394 1.1 fvdl cnt++;
2395 1.1 fvdl }
2396 1.1 fvdl
2397 1.1 fvdl if (i < dmamap->dm_nsegs)
2398 1.1 fvdl return ENOBUFS;
2399 1.1 fvdl
2400 1.1 fvdl bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2401 1.1 fvdl BUS_DMASYNC_PREWRITE);
2402 1.1 fvdl
2403 1.1 fvdl if (frag == sc->bge_tx_saved_considx)
2404 1.1 fvdl return(ENOBUFS);
2405 1.1 fvdl
2406 1.1 fvdl sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2407 1.1 fvdl sc->bge_cdata.bge_tx_chain[cur] = m_head;
2408 1.1 fvdl SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2409 1.1 fvdl sc->txdma[cur] = dma;
2410 1.1 fvdl sc->bge_txcnt += cnt;
2411 1.1 fvdl
2412 1.1 fvdl *txidx = frag;
2413 1.1 fvdl
2414 1.1 fvdl return(0);
2415 1.1 fvdl }
2416 1.1 fvdl
2417 1.1 fvdl /*
2418 1.1 fvdl * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2419 1.1 fvdl * to the mbuf data regions directly in the transmit descriptors.
2420 1.1 fvdl */
2421 1.1 fvdl void
2422 1.1 fvdl bge_start(ifp)
2423 1.1 fvdl struct ifnet *ifp;
2424 1.1 fvdl {
2425 1.1 fvdl struct bge_softc *sc;
2426 1.1 fvdl struct mbuf *m_head = NULL;
2427 1.1 fvdl u_int32_t prodidx = 0;
2428 1.1 fvdl int pkts = 0;
2429 1.1 fvdl
2430 1.1 fvdl sc = ifp->if_softc;
2431 1.1 fvdl
2432 1.1 fvdl if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2433 1.1 fvdl return;
2434 1.1 fvdl
2435 1.1 fvdl prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2436 1.1 fvdl
2437 1.1 fvdl while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2438 1.1 fvdl IFQ_POLL(&ifp->if_snd, m_head);
2439 1.1 fvdl if (m_head == NULL)
2440 1.1 fvdl break;
2441 1.1 fvdl
2442 1.1 fvdl #if 0
2443 1.1 fvdl /*
2444 1.1 fvdl * XXX
2445 1.1 fvdl * safety overkill. If this is a fragmented packet chain
2446 1.1 fvdl * with delayed TCP/UDP checksums, then only encapsulate
2447 1.1 fvdl * it if we have enough descriptors to handle the entire
2448 1.1 fvdl * chain at once.
2449 1.1 fvdl * (paranoia -- may not actually be needed)
2450 1.1 fvdl */
2451 1.1 fvdl if (m_head->m_flags & M_FIRSTFRAG &&
2452 1.1 fvdl m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2453 1.1 fvdl if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2454 1.1 fvdl m_head->m_pkthdr.csum_data + 16) {
2455 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2456 1.1 fvdl break;
2457 1.1 fvdl }
2458 1.1 fvdl }
2459 1.1 fvdl #endif
2460 1.1 fvdl
2461 1.1 fvdl /*
2462 1.1 fvdl * Pack the data into the transmit ring. If we
2463 1.1 fvdl * don't have room, set the OACTIVE flag and wait
2464 1.1 fvdl * for the NIC to drain the ring.
2465 1.1 fvdl */
2466 1.1 fvdl if (bge_encap(sc, m_head, &prodidx)) {
2467 1.1 fvdl ifp->if_flags |= IFF_OACTIVE;
2468 1.1 fvdl break;
2469 1.1 fvdl }
2470 1.1 fvdl
2471 1.1 fvdl /* now we are committed to transmit the packet */
2472 1.1 fvdl IFQ_DEQUEUE(&ifp->if_snd, m_head);
2473 1.1 fvdl pkts++;
2474 1.1 fvdl
2475 1.1 fvdl #if NBPFILTER > 0
2476 1.1 fvdl /*
2477 1.1 fvdl * If there's a BPF listener, bounce a copy of this frame
2478 1.1 fvdl * to him.
2479 1.1 fvdl */
2480 1.1 fvdl if (ifp->if_bpf)
2481 1.1 fvdl bpf_mtap(ifp->if_bpf, m_head);
2482 1.1 fvdl #endif
2483 1.1 fvdl }
2484 1.1 fvdl if (pkts == 0)
2485 1.1 fvdl return;
2486 1.1 fvdl
2487 1.1 fvdl /* Transmit */
2488 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2489 1.1 fvdl
2490 1.1 fvdl /*
2491 1.1 fvdl * Set a timeout in case the chip goes out to lunch.
2492 1.1 fvdl */
2493 1.1 fvdl ifp->if_timer = 5;
2494 1.1 fvdl }
2495 1.1 fvdl
2496 1.1 fvdl /*
2497 1.1 fvdl * If we have a BCM5400 or BCM5401 PHY, we need to properly
2498 1.1 fvdl * program its internal DSP. Failing to do this can result in
2499 1.1 fvdl * massive packet loss at 1Gb speeds.
2500 1.1 fvdl */
2501 1.1 fvdl void
2502 1.1 fvdl bge_phy_hack(sc)
2503 1.1 fvdl struct bge_softc *sc;
2504 1.1 fvdl {
2505 1.1 fvdl struct bge_bcom_hack bhack[] = {
2506 1.1 fvdl { BRGPHY_MII_AUXCTL, 0x4C20 },
2507 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2508 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2509 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2510 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2511 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2512 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2513 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2514 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2515 1.1 fvdl { BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2516 1.1 fvdl { BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2517 1.1 fvdl { 0, 0 } };
2518 1.1 fvdl u_int16_t vid, did;
2519 1.1 fvdl int i;
2520 1.1 fvdl
2521 1.1 fvdl vid = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR1);
2522 1.1 fvdl did = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR2);
2523 1.1 fvdl
2524 1.1 fvdl if (MII_OUI(vid, did) == MII_OUI_BROADCOM &&
2525 1.1 fvdl (MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5400 ||
2526 1.1 fvdl MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5401)) {
2527 1.1 fvdl i = 0;
2528 1.1 fvdl while (bhack[i].reg) {
2529 1.1 fvdl bge_miibus_writereg(&sc->bge_dev, 1, bhack[i].reg,
2530 1.1 fvdl bhack[i].val);
2531 1.1 fvdl i++;
2532 1.1 fvdl }
2533 1.1 fvdl }
2534 1.1 fvdl }
2535 1.1 fvdl
2536 1.1 fvdl int
2537 1.1 fvdl bge_init(ifp)
2538 1.1 fvdl struct ifnet *ifp;
2539 1.1 fvdl {
2540 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2541 1.1 fvdl u_int16_t *m;
2542 1.1 fvdl int s, error;
2543 1.1 fvdl
2544 1.1 fvdl s = splnet();
2545 1.1 fvdl
2546 1.1 fvdl ifp = &sc->ethercom.ec_if;
2547 1.1 fvdl
2548 1.1 fvdl /* Cancel pending I/O and flush buffers. */
2549 1.1 fvdl bge_stop(sc);
2550 1.1 fvdl bge_reset(sc);
2551 1.1 fvdl bge_chipinit(sc);
2552 1.1 fvdl
2553 1.1 fvdl /*
2554 1.1 fvdl * Init the various state machines, ring
2555 1.1 fvdl * control blocks and firmware.
2556 1.1 fvdl */
2557 1.1 fvdl error = bge_blockinit(sc);
2558 1.1 fvdl if (error != 0) {
2559 1.1 fvdl printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2560 1.1 fvdl error);
2561 1.1 fvdl splx(s);
2562 1.1 fvdl return error;
2563 1.1 fvdl }
2564 1.1 fvdl
2565 1.1 fvdl ifp = &sc->ethercom.ec_if;
2566 1.1 fvdl
2567 1.1 fvdl /* Specify MTU. */
2568 1.1 fvdl CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2569 1.1 fvdl ETHER_HDR_LEN + ETHER_CRC_LEN);
2570 1.1 fvdl
2571 1.1 fvdl /* Load our MAC address. */
2572 1.1 fvdl m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2573 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2574 1.1 fvdl CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2575 1.1 fvdl
2576 1.1 fvdl /* Enable or disable promiscuous mode as needed. */
2577 1.1 fvdl if (ifp->if_flags & IFF_PROMISC) {
2578 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2579 1.1 fvdl } else {
2580 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2581 1.1 fvdl }
2582 1.1 fvdl
2583 1.1 fvdl /* Program multicast filter. */
2584 1.1 fvdl bge_setmulti(sc);
2585 1.1 fvdl
2586 1.1 fvdl /* Init RX ring. */
2587 1.1 fvdl bge_init_rx_ring_std(sc);
2588 1.1 fvdl
2589 1.1 fvdl /* Init jumbo RX ring. */
2590 1.1 fvdl if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2591 1.1 fvdl bge_init_rx_ring_jumbo(sc);
2592 1.1 fvdl
2593 1.1 fvdl /* Init our RX return ring index */
2594 1.1 fvdl sc->bge_rx_saved_considx = 0;
2595 1.1 fvdl
2596 1.1 fvdl /* Init TX ring. */
2597 1.1 fvdl bge_init_tx_ring(sc);
2598 1.1 fvdl
2599 1.1 fvdl /* Turn on transmitter */
2600 1.1 fvdl BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2601 1.1 fvdl
2602 1.1 fvdl /* Turn on receiver */
2603 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2604 1.1 fvdl
2605 1.1 fvdl /* Tell firmware we're alive. */
2606 1.1 fvdl BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2607 1.1 fvdl
2608 1.1 fvdl /* Enable host interrupts. */
2609 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2610 1.1 fvdl BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2611 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2612 1.1 fvdl
2613 1.1 fvdl bge_ifmedia_upd(ifp);
2614 1.1 fvdl
2615 1.1 fvdl ifp->if_flags |= IFF_RUNNING;
2616 1.1 fvdl ifp->if_flags &= ~IFF_OACTIVE;
2617 1.1 fvdl
2618 1.1 fvdl splx(s);
2619 1.1 fvdl
2620 1.1 fvdl callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2621 1.1 fvdl
2622 1.1 fvdl return 0;
2623 1.1 fvdl }
2624 1.1 fvdl
2625 1.1 fvdl /*
2626 1.1 fvdl * Set media options.
2627 1.1 fvdl */
2628 1.1 fvdl int
2629 1.1 fvdl bge_ifmedia_upd(ifp)
2630 1.1 fvdl struct ifnet *ifp;
2631 1.1 fvdl {
2632 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2633 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2634 1.1 fvdl struct ifmedia *ifm = &sc->bge_ifmedia;
2635 1.1 fvdl
2636 1.1 fvdl /* If this is a 1000baseX NIC, enable the TBI port. */
2637 1.1 fvdl if (sc->bge_tbi) {
2638 1.1 fvdl if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2639 1.1 fvdl return(EINVAL);
2640 1.1 fvdl switch(IFM_SUBTYPE(ifm->ifm_media)) {
2641 1.1 fvdl case IFM_AUTO:
2642 1.1 fvdl break;
2643 1.1 fvdl case IFM_1000_SX:
2644 1.1 fvdl if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2645 1.1 fvdl BGE_CLRBIT(sc, BGE_MAC_MODE,
2646 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
2647 1.1 fvdl } else {
2648 1.1 fvdl BGE_SETBIT(sc, BGE_MAC_MODE,
2649 1.1 fvdl BGE_MACMODE_HALF_DUPLEX);
2650 1.1 fvdl }
2651 1.1 fvdl break;
2652 1.1 fvdl default:
2653 1.1 fvdl return(EINVAL);
2654 1.1 fvdl }
2655 1.1 fvdl return(0);
2656 1.1 fvdl }
2657 1.1 fvdl
2658 1.1 fvdl sc->bge_link = 0;
2659 1.1 fvdl if (mii->mii_instance) {
2660 1.1 fvdl struct mii_softc *miisc;
2661 1.1 fvdl for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2662 1.1 fvdl miisc = LIST_NEXT(miisc, mii_list))
2663 1.1 fvdl mii_phy_reset(miisc);
2664 1.1 fvdl }
2665 1.1 fvdl bge_phy_hack(sc);
2666 1.1 fvdl mii_mediachg(mii);
2667 1.1 fvdl
2668 1.1 fvdl return(0);
2669 1.1 fvdl }
2670 1.1 fvdl
2671 1.1 fvdl /*
2672 1.1 fvdl * Report current media status.
2673 1.1 fvdl */
2674 1.1 fvdl void
2675 1.1 fvdl bge_ifmedia_sts(ifp, ifmr)
2676 1.1 fvdl struct ifnet *ifp;
2677 1.1 fvdl struct ifmediareq *ifmr;
2678 1.1 fvdl {
2679 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2680 1.1 fvdl struct mii_data *mii = &sc->bge_mii;
2681 1.1 fvdl
2682 1.1 fvdl if (sc->bge_tbi) {
2683 1.1 fvdl ifmr->ifm_status = IFM_AVALID;
2684 1.1 fvdl ifmr->ifm_active = IFM_ETHER;
2685 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_STS) &
2686 1.1 fvdl BGE_MACSTAT_TBI_PCS_SYNCHED)
2687 1.1 fvdl ifmr->ifm_status |= IFM_ACTIVE;
2688 1.1 fvdl ifmr->ifm_active |= IFM_1000_SX;
2689 1.1 fvdl if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2690 1.1 fvdl ifmr->ifm_active |= IFM_HDX;
2691 1.1 fvdl else
2692 1.1 fvdl ifmr->ifm_active |= IFM_FDX;
2693 1.1 fvdl return;
2694 1.1 fvdl }
2695 1.1 fvdl
2696 1.1 fvdl mii_pollstat(mii);
2697 1.1 fvdl ifmr->ifm_active = mii->mii_media_active;
2698 1.1 fvdl ifmr->ifm_status = mii->mii_media_status;
2699 1.1 fvdl }
2700 1.1 fvdl
2701 1.1 fvdl int
2702 1.1 fvdl bge_ioctl(ifp, command, data)
2703 1.1 fvdl struct ifnet *ifp;
2704 1.1 fvdl u_long command;
2705 1.1 fvdl caddr_t data;
2706 1.1 fvdl {
2707 1.1 fvdl struct bge_softc *sc = ifp->if_softc;
2708 1.1 fvdl struct ifreq *ifr = (struct ifreq *) data;
2709 1.1 fvdl int s, error = 0;
2710 1.1 fvdl struct mii_data *mii;
2711 1.1 fvdl
2712 1.1 fvdl s = splnet();
2713 1.1 fvdl
2714 1.1 fvdl switch(command) {
2715 1.1 fvdl case SIOCSIFFLAGS:
2716 1.1 fvdl if (ifp->if_flags & IFF_UP) {
2717 1.1 fvdl /*
2718 1.1 fvdl * If only the state of the PROMISC flag changed,
2719 1.1 fvdl * then just use the 'set promisc mode' command
2720 1.1 fvdl * instead of reinitializing the entire NIC. Doing
2721 1.1 fvdl * a full re-init means reloading the firmware and
2722 1.1 fvdl * waiting for it to start up, which may take a
2723 1.1 fvdl * second or two.
2724 1.1 fvdl */
2725 1.1 fvdl if (ifp->if_flags & IFF_RUNNING &&
2726 1.1 fvdl ifp->if_flags & IFF_PROMISC &&
2727 1.1 fvdl !(sc->bge_if_flags & IFF_PROMISC)) {
2728 1.1 fvdl BGE_SETBIT(sc, BGE_RX_MODE,
2729 1.1 fvdl BGE_RXMODE_RX_PROMISC);
2730 1.1 fvdl } else if (ifp->if_flags & IFF_RUNNING &&
2731 1.1 fvdl !(ifp->if_flags & IFF_PROMISC) &&
2732 1.1 fvdl sc->bge_if_flags & IFF_PROMISC) {
2733 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE,
2734 1.1 fvdl BGE_RXMODE_RX_PROMISC);
2735 1.1 fvdl } else
2736 1.1 fvdl bge_init(ifp);
2737 1.1 fvdl } else {
2738 1.1 fvdl if (ifp->if_flags & IFF_RUNNING) {
2739 1.1 fvdl bge_stop(sc);
2740 1.1 fvdl }
2741 1.1 fvdl }
2742 1.1 fvdl sc->bge_if_flags = ifp->if_flags;
2743 1.1 fvdl error = 0;
2744 1.1 fvdl break;
2745 1.1 fvdl case SIOCSIFMEDIA:
2746 1.1 fvdl case SIOCGIFMEDIA:
2747 1.1 fvdl if (sc->bge_tbi) {
2748 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2749 1.1 fvdl command);
2750 1.1 fvdl } else {
2751 1.1 fvdl mii = &sc->bge_mii;
2752 1.1 fvdl error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2753 1.1 fvdl command);
2754 1.1 fvdl }
2755 1.1 fvdl error = 0;
2756 1.1 fvdl break;
2757 1.1 fvdl default:
2758 1.1 fvdl error = ether_ioctl(ifp, command, data);
2759 1.1 fvdl if (error == ENETRESET) {
2760 1.1 fvdl bge_setmulti(sc);
2761 1.1 fvdl error = 0;
2762 1.1 fvdl }
2763 1.1 fvdl break;
2764 1.1 fvdl }
2765 1.1 fvdl
2766 1.1 fvdl splx(s);
2767 1.1 fvdl
2768 1.1 fvdl return(error);
2769 1.1 fvdl }
2770 1.1 fvdl
2771 1.1 fvdl void
2772 1.1 fvdl bge_watchdog(ifp)
2773 1.1 fvdl struct ifnet *ifp;
2774 1.1 fvdl {
2775 1.1 fvdl struct bge_softc *sc;
2776 1.1 fvdl
2777 1.1 fvdl sc = ifp->if_softc;
2778 1.1 fvdl
2779 1.1 fvdl printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2780 1.1 fvdl
2781 1.1 fvdl ifp->if_flags &= ~IFF_RUNNING;
2782 1.1 fvdl bge_init(ifp);
2783 1.1 fvdl
2784 1.1 fvdl ifp->if_oerrors++;
2785 1.1 fvdl }
2786 1.1 fvdl
2787 1.1 fvdl /*
2788 1.1 fvdl * Stop the adapter and free any mbufs allocated to the
2789 1.1 fvdl * RX and TX lists.
2790 1.1 fvdl */
2791 1.1 fvdl void
2792 1.1 fvdl bge_stop(sc)
2793 1.1 fvdl struct bge_softc *sc;
2794 1.1 fvdl {
2795 1.1 fvdl struct ifnet *ifp = &sc->ethercom.ec_if;
2796 1.1 fvdl
2797 1.1 fvdl callout_stop(&sc->bge_timeout);
2798 1.1 fvdl
2799 1.1 fvdl /*
2800 1.1 fvdl * Disable all of the receiver blocks
2801 1.1 fvdl */
2802 1.1 fvdl BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2803 1.1 fvdl BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2804 1.1 fvdl BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2805 1.1 fvdl BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2806 1.1 fvdl BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2807 1.1 fvdl BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2808 1.1 fvdl BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2809 1.1 fvdl
2810 1.1 fvdl /*
2811 1.1 fvdl * Disable all of the transmit blocks
2812 1.1 fvdl */
2813 1.1 fvdl BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2814 1.1 fvdl BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2815 1.1 fvdl BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2816 1.1 fvdl BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2817 1.1 fvdl BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2818 1.1 fvdl BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2819 1.1 fvdl BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2820 1.1 fvdl
2821 1.1 fvdl /*
2822 1.1 fvdl * Shut down all of the memory managers and related
2823 1.1 fvdl * state machines.
2824 1.1 fvdl */
2825 1.1 fvdl BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2826 1.1 fvdl BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2827 1.1 fvdl BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2828 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2829 1.1 fvdl CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2830 1.1 fvdl BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2831 1.1 fvdl BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2832 1.1 fvdl
2833 1.1 fvdl /* Disable host interrupts. */
2834 1.1 fvdl BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2835 1.1 fvdl CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2836 1.1 fvdl
2837 1.1 fvdl /*
2838 1.1 fvdl * Tell firmware we're shutting down.
2839 1.1 fvdl */
2840 1.1 fvdl BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2841 1.1 fvdl
2842 1.1 fvdl /* Free the RX lists. */
2843 1.1 fvdl bge_free_rx_ring_std(sc);
2844 1.1 fvdl
2845 1.1 fvdl /* Free jumbo RX list. */
2846 1.1 fvdl bge_free_rx_ring_jumbo(sc);
2847 1.1 fvdl
2848 1.1 fvdl /* Free TX buffers. */
2849 1.1 fvdl bge_free_tx_ring(sc);
2850 1.1 fvdl
2851 1.1 fvdl /*
2852 1.1 fvdl * Isolate/power down the PHY.
2853 1.1 fvdl */
2854 1.1 fvdl if (!sc->bge_tbi)
2855 1.1 fvdl mii_down(&sc->bge_mii);
2856 1.1 fvdl
2857 1.1 fvdl sc->bge_link = 0;
2858 1.1 fvdl
2859 1.1 fvdl sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2860 1.1 fvdl
2861 1.1 fvdl ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2862 1.1 fvdl }
2863 1.1 fvdl
2864 1.1 fvdl /*
2865 1.1 fvdl * Stop all chip I/O so that the kernel's probe routines don't
2866 1.1 fvdl * get confused by errant DMAs when rebooting.
2867 1.1 fvdl */
2868 1.1 fvdl void
2869 1.1 fvdl bge_shutdown(xsc)
2870 1.1 fvdl void *xsc;
2871 1.1 fvdl {
2872 1.1 fvdl struct bge_softc *sc = (struct bge_softc *)xsc;
2873 1.1 fvdl
2874 1.1 fvdl bge_stop(sc);
2875 1.1 fvdl bge_reset(sc);
2876 1.1 fvdl }
2877