Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.96
      1  1.96    martin /*	$NetBSD: if_bge.c,v 1.96 2005/11/24 13:47:46 martin Exp $	*/
      2   1.8   thorpej 
      3   1.1      fvdl /*
      4   1.1      fvdl  * Copyright (c) 2001 Wind River Systems
      5   1.1      fvdl  * Copyright (c) 1997, 1998, 1999, 2001
      6   1.1      fvdl  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7   1.1      fvdl  *
      8   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
      9   1.1      fvdl  * modification, are permitted provided that the following conditions
     10   1.1      fvdl  * are met:
     11   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     12   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     13   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     15   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     16   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     17   1.1      fvdl  *    must display the following acknowledgement:
     18   1.1      fvdl  *	This product includes software developed by Bill Paul.
     19   1.1      fvdl  * 4. Neither the name of the author nor the names of any co-contributors
     20   1.1      fvdl  *    may be used to endorse or promote products derived from this software
     21   1.1      fvdl  *    without specific prior written permission.
     22   1.1      fvdl  *
     23   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24   1.1      fvdl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1      fvdl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1      fvdl  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33   1.1      fvdl  * THE POSSIBILITY OF SUCH DAMAGE.
     34   1.1      fvdl  *
     35   1.1      fvdl  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36   1.1      fvdl  */
     37   1.1      fvdl 
     38   1.1      fvdl /*
     39  1.12   thorpej  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40   1.1      fvdl  *
     41  1.12   thorpej  * NetBSD version by:
     42  1.12   thorpej  *
     43  1.12   thorpej  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  1.12   thorpej  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  1.32      tron  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  1.12   thorpej  *
     47  1.12   thorpej  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48   1.1      fvdl  * Senior Engineer, Wind River Systems
     49   1.1      fvdl  */
     50   1.1      fvdl 
     51   1.1      fvdl /*
     52   1.1      fvdl  * The Broadcom BCM5700 is based on technology originally developed by
     53   1.1      fvdl  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54   1.1      fvdl  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55   1.1      fvdl  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56   1.1      fvdl  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57   1.1      fvdl  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58   1.1      fvdl  * (which, along with RX filter rules, can be used for QOS applications).
     59   1.1      fvdl  * Other features, such as TCP segmentation, may be available as part
     60   1.1      fvdl  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61   1.1      fvdl  * firmware images can be stored in hardware and need not be compiled
     62   1.1      fvdl  * into the driver.
     63   1.1      fvdl  *
     64   1.1      fvdl  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  1.33   tsutsui  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66   1.1      fvdl  *
     67   1.1      fvdl  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  1.25  jonathan  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69   1.1      fvdl  * does not support external SSRAM.
     70   1.1      fvdl  *
     71   1.1      fvdl  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72   1.1      fvdl  * brand name, which is functionally similar but lacks PCI-X support.
     73   1.1      fvdl  *
     74   1.1      fvdl  * Without external SSRAM, you can only have at most 4 TX rings,
     75   1.1      fvdl  * and the use of the mini RX ring is disabled. This seems to imply
     76   1.1      fvdl  * that these features are simply not available on the BCM5701. As a
     77   1.1      fvdl  * result, this driver does not implement any support for the mini RX
     78   1.1      fvdl  * ring.
     79   1.1      fvdl  */
     80  1.43     lukem 
     81  1.43     lukem #include <sys/cdefs.h>
     82  1.96    martin __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.96 2005/11/24 13:47:46 martin Exp $");
     83   1.1      fvdl 
     84   1.1      fvdl #include "bpfilter.h"
     85   1.1      fvdl #include "vlan.h"
     86   1.1      fvdl 
     87   1.1      fvdl #include <sys/param.h>
     88   1.1      fvdl #include <sys/systm.h>
     89   1.1      fvdl #include <sys/callout.h>
     90   1.1      fvdl #include <sys/sockio.h>
     91   1.1      fvdl #include <sys/mbuf.h>
     92   1.1      fvdl #include <sys/malloc.h>
     93   1.1      fvdl #include <sys/kernel.h>
     94   1.1      fvdl #include <sys/device.h>
     95   1.1      fvdl #include <sys/socket.h>
     96  1.64  jonathan #include <sys/sysctl.h>
     97   1.1      fvdl 
     98   1.1      fvdl #include <net/if.h>
     99   1.1      fvdl #include <net/if_dl.h>
    100   1.1      fvdl #include <net/if_media.h>
    101   1.1      fvdl #include <net/if_ether.h>
    102   1.1      fvdl 
    103   1.1      fvdl #ifdef INET
    104   1.1      fvdl #include <netinet/in.h>
    105   1.1      fvdl #include <netinet/in_systm.h>
    106   1.1      fvdl #include <netinet/in_var.h>
    107   1.1      fvdl #include <netinet/ip.h>
    108   1.1      fvdl #endif
    109   1.1      fvdl 
    110  1.95  jonathan /* Headers for TCP  Segmentation Offload (TSO) */
    111  1.95  jonathan #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112  1.95  jonathan #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113  1.95  jonathan #include <netinet/ip.h>			/* for struct ip */
    114  1.95  jonathan #include <netinet/tcp.h>		/* for struct tcphdr */
    115  1.95  jonathan 
    116  1.95  jonathan 
    117   1.1      fvdl #if NBPFILTER > 0
    118   1.1      fvdl #include <net/bpf.h>
    119   1.1      fvdl #endif
    120   1.1      fvdl 
    121   1.1      fvdl #include <dev/pci/pcireg.h>
    122   1.1      fvdl #include <dev/pci/pcivar.h>
    123   1.1      fvdl #include <dev/pci/pcidevs.h>
    124   1.1      fvdl 
    125   1.1      fvdl #include <dev/mii/mii.h>
    126   1.1      fvdl #include <dev/mii/miivar.h>
    127   1.1      fvdl #include <dev/mii/miidevs.h>
    128   1.1      fvdl #include <dev/mii/brgphyreg.h>
    129   1.1      fvdl 
    130   1.1      fvdl #include <dev/pci/if_bgereg.h>
    131   1.1      fvdl 
    132   1.1      fvdl #include <uvm/uvm_extern.h>
    133   1.1      fvdl 
    134  1.46  jonathan #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135  1.46  jonathan 
    136  1.63  jonathan 
    137  1.63  jonathan /*
    138  1.63  jonathan  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  1.63  jonathan  */
    140  1.63  jonathan 
    141  1.63  jonathan /*
    142  1.63  jonathan  * The pairs of values below were obtained from empirical measurement
    143  1.63  jonathan  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  1.63  jonathan  * interrupt for every N packets received, where N is, approximately,
    145  1.63  jonathan  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  1.63  jonathan  * such that moving from one pair to the succeeding pair was observed
    147  1.63  jonathan  * to roughly halve interrupt rate under sustained input packet load.
    148  1.63  jonathan  * The values were empirically chosen to avoid overflowing internal
    149  1.63  jonathan  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    150  1.63  jonathan  * results in internal wrapping and higher interrupt rates.
    151  1.63  jonathan  * The limit of 46 frames was chosen to match NFS workloads.
    152  1.87     perry  *
    153  1.63  jonathan  * These values also work well on bcm5701, bcm5704C, and (less
    154  1.63  jonathan  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  1.63  jonathan  * family), the larger values may overflow internal chip limits,
    156  1.63  jonathan  * leading to increasing interrupt rates rather than lower interrupt
    157  1.63  jonathan  * rates.
    158  1.63  jonathan  *
    159  1.63  jonathan  * Applications using heavy interrupt mitigation (interrupting every
    160  1.63  jonathan  * 32 or 46 frames) in both directions may need to increase the TCP
    161  1.63  jonathan  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  1.87     perry  * full link bandwidth, due to ACKs and window updates lingering
    163  1.63  jonathan  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  1.63  jonathan  */
    165  1.63  jonathan struct bge_load_rx_thresh {
    166  1.63  jonathan 	int rx_ticks;
    167  1.63  jonathan 	int rx_max_bds; }
    168  1.63  jonathan bge_rx_threshes[] = {
    169  1.63  jonathan 	{ 32,   2 },
    170  1.63  jonathan 	{ 50,   4 },
    171  1.63  jonathan 	{ 100,  8 },
    172  1.63  jonathan 	{ 192, 16 },
    173  1.63  jonathan 	{ 416, 32 },
    174  1.63  jonathan 	{ 598, 46 }
    175  1.63  jonathan };
    176  1.63  jonathan #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    177  1.63  jonathan 
    178  1.63  jonathan /* XXX patchable; should be sysctl'able */
    179  1.64  jonathan static int	bge_auto_thresh = 1;
    180  1.64  jonathan static int	bge_rx_thresh_lvl;
    181  1.64  jonathan 
    182  1.64  jonathan #ifdef __NetBSD__
    183  1.64  jonathan static int bge_rxthresh_nodenum;
    184  1.64  jonathan #endif /* __NetBSD__ */
    185  1.63  jonathan 
    186   1.1      fvdl int bge_probe(struct device *, struct cfdata *, void *);
    187   1.1      fvdl void bge_attach(struct device *, struct device *, void *);
    188  1.82  jmcneill void bge_powerhook(int, void *);
    189   1.1      fvdl void bge_release_resources(struct bge_softc *);
    190   1.1      fvdl void bge_txeof(struct bge_softc *);
    191   1.1      fvdl void bge_rxeof(struct bge_softc *);
    192   1.1      fvdl 
    193   1.1      fvdl void bge_tick(void *);
    194   1.1      fvdl void bge_stats_update(struct bge_softc *);
    195   1.1      fvdl int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    196  1.46  jonathan static __inline int bge_cksum_pad(struct mbuf *pkt);
    197  1.45  jonathan static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    198   1.1      fvdl 
    199   1.1      fvdl int bge_intr(void *);
    200   1.1      fvdl void bge_start(struct ifnet *);
    201   1.1      fvdl int bge_ioctl(struct ifnet *, u_long, caddr_t);
    202   1.1      fvdl int bge_init(struct ifnet *);
    203   1.1      fvdl void bge_stop(struct bge_softc *);
    204   1.1      fvdl void bge_watchdog(struct ifnet *);
    205   1.1      fvdl void bge_shutdown(void *);
    206   1.1      fvdl int bge_ifmedia_upd(struct ifnet *);
    207   1.1      fvdl void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    208   1.1      fvdl 
    209   1.1      fvdl u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    210   1.1      fvdl int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    211   1.1      fvdl 
    212   1.1      fvdl void bge_setmulti(struct bge_softc *);
    213   1.1      fvdl 
    214   1.1      fvdl void bge_handle_events(struct bge_softc *);
    215   1.1      fvdl int bge_alloc_jumbo_mem(struct bge_softc *);
    216   1.1      fvdl void bge_free_jumbo_mem(struct bge_softc *);
    217   1.1      fvdl void *bge_jalloc(struct bge_softc *);
    218  1.31   thorpej void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    219   1.1      fvdl int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    220   1.1      fvdl int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    221   1.1      fvdl int bge_init_rx_ring_std(struct bge_softc *);
    222   1.1      fvdl void bge_free_rx_ring_std(struct bge_softc *);
    223   1.1      fvdl int bge_init_rx_ring_jumbo(struct bge_softc *);
    224   1.1      fvdl void bge_free_rx_ring_jumbo(struct bge_softc *);
    225   1.1      fvdl void bge_free_tx_ring(struct bge_softc *);
    226   1.1      fvdl int bge_init_tx_ring(struct bge_softc *);
    227   1.1      fvdl 
    228   1.1      fvdl int bge_chipinit(struct bge_softc *);
    229   1.1      fvdl int bge_blockinit(struct bge_softc *);
    230  1.25  jonathan int bge_setpowerstate(struct bge_softc *, int);
    231   1.1      fvdl 
    232   1.1      fvdl #ifdef notdef
    233   1.1      fvdl u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    234   1.1      fvdl void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    235   1.1      fvdl void bge_vpd_read(struct bge_softc *);
    236   1.1      fvdl #endif
    237   1.1      fvdl 
    238   1.1      fvdl u_int32_t bge_readmem_ind(struct bge_softc *, int);
    239   1.1      fvdl void bge_writemem_ind(struct bge_softc *, int, int);
    240   1.1      fvdl #ifdef notdef
    241   1.1      fvdl u_int32_t bge_readreg_ind(struct bge_softc *, int);
    242   1.1      fvdl #endif
    243   1.1      fvdl void bge_writereg_ind(struct bge_softc *, int, int);
    244   1.1      fvdl 
    245   1.1      fvdl int bge_miibus_readreg(struct device *, int, int);
    246   1.1      fvdl void bge_miibus_writereg(struct device *, int, int, int);
    247   1.1      fvdl void bge_miibus_statchg(struct device *);
    248   1.1      fvdl 
    249   1.1      fvdl void bge_reset(struct bge_softc *);
    250   1.1      fvdl 
    251  1.63  jonathan void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    252  1.63  jonathan void	bge_update_all_threshes(int /*lvl*/);
    253  1.63  jonathan 
    254   1.1      fvdl void bge_dump_status(struct bge_softc *);
    255   1.1      fvdl void bge_dump_rxbd(struct bge_rx_bd *);
    256   1.1      fvdl 
    257  1.95  jonathan 
    258   1.1      fvdl #define BGE_DEBUG
    259   1.1      fvdl #ifdef BGE_DEBUG
    260   1.1      fvdl #define DPRINTF(x)	if (bgedebug) printf x
    261   1.1      fvdl #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    262  1.95  jonathan #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    263   1.1      fvdl int	bgedebug = 0;
    264  1.95  jonathan int	bge_tso_debug = 0;
    265   1.1      fvdl #else
    266   1.1      fvdl #define DPRINTF(x)
    267   1.1      fvdl #define DPRINTFN(n,x)
    268  1.95  jonathan #define BGE_TSO_PRINTF(x)
    269   1.1      fvdl #endif
    270   1.1      fvdl 
    271  1.72   thorpej #ifdef BGE_EVENT_COUNTERS
    272  1.72   thorpej #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    273  1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    274  1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    275  1.72   thorpej #else
    276  1.72   thorpej #define	BGE_EVCNT_INCR(ev)	/* nothing */
    277  1.72   thorpej #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    278  1.72   thorpej #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    279  1.72   thorpej #endif
    280  1.72   thorpej 
    281  1.17   thorpej /* Various chip quirks. */
    282  1.17   thorpej #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    283  1.18   thorpej #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    284  1.24      matt #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    285  1.25  jonathan #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    286  1.25  jonathan #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    287  1.36  jonathan #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    288  1.37  jonathan #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    289  1.44   hannken #define	BGE_QUIRK_5705_CORE		0x00000080
    290  1.54      fvdl #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    291  1.25  jonathan 
    292  1.95  jonathan /*
    293  1.95  jonathan  * XXX: how to handle variants based on 5750 and derivatives:
    294  1.95  jonathan  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    295  1.95  jonathan  * in general behave like a 5705, except with additional quirks.
    296  1.95  jonathan  * This driver's current handling of the 5721 is wrong;
    297  1.95  jonathan  * how we map ASIC revision to "quirks" needs more thought.
    298  1.95  jonathan  * (defined here until the thought is done).
    299  1.95  jonathan  */
    300  1.95  jonathan #define BGE_IS_5750_OR_BEYOND(sc)  \
    301  1.95  jonathan 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
    302  1.95  jonathan 
    303  1.95  jonathan #define BGE_IS_5705_OR_BEYOND(sc)  \
    304  1.95  jonathan 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    305  1.95  jonathan 	  BGE_IS_5750_OR_BEYOND(sc) )
    306  1.95  jonathan 
    307  1.95  jonathan 
    308  1.25  jonathan /* following bugs are common to bcm5700 rev B, all flavours */
    309  1.25  jonathan #define BGE_QUIRK_5700_COMMON \
    310  1.25  jonathan 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    311  1.17   thorpej 
    312  1.21   thorpej CFATTACH_DECL(bge, sizeof(struct bge_softc),
    313  1.22   thorpej     bge_probe, bge_attach, NULL, NULL);
    314   1.1      fvdl 
    315   1.1      fvdl u_int32_t
    316   1.1      fvdl bge_readmem_ind(sc, off)
    317   1.1      fvdl 	struct bge_softc *sc;
    318   1.1      fvdl 	int off;
    319   1.1      fvdl {
    320   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    321   1.1      fvdl 	pcireg_t val;
    322   1.1      fvdl 
    323   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    324   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    325   1.1      fvdl 	return val;
    326   1.1      fvdl }
    327   1.1      fvdl 
    328   1.1      fvdl void
    329   1.1      fvdl bge_writemem_ind(sc, off, val)
    330   1.1      fvdl 	struct bge_softc *sc;
    331   1.1      fvdl 	int off, val;
    332   1.1      fvdl {
    333   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    334   1.1      fvdl 
    335   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    336   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    337   1.1      fvdl }
    338   1.1      fvdl 
    339   1.1      fvdl #ifdef notdef
    340   1.1      fvdl u_int32_t
    341   1.1      fvdl bge_readreg_ind(sc, off)
    342   1.1      fvdl 	struct bge_softc *sc;
    343   1.1      fvdl 	int off;
    344   1.1      fvdl {
    345   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    346   1.1      fvdl 
    347   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    348   1.1      fvdl 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    349   1.1      fvdl }
    350   1.1      fvdl #endif
    351   1.1      fvdl 
    352   1.1      fvdl void
    353   1.1      fvdl bge_writereg_ind(sc, off, val)
    354   1.1      fvdl 	struct bge_softc *sc;
    355   1.1      fvdl 	int off, val;
    356   1.1      fvdl {
    357   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    358   1.1      fvdl 
    359   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    360   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    361   1.1      fvdl }
    362   1.1      fvdl 
    363   1.1      fvdl #ifdef notdef
    364   1.1      fvdl u_int8_t
    365   1.1      fvdl bge_vpd_readbyte(sc, addr)
    366   1.1      fvdl 	struct bge_softc *sc;
    367   1.1      fvdl 	int addr;
    368   1.1      fvdl {
    369   1.1      fvdl 	int i;
    370   1.1      fvdl 	u_int32_t val;
    371   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
    372   1.1      fvdl 
    373   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    374   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    375   1.1      fvdl 		DELAY(10);
    376   1.1      fvdl 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    377   1.1      fvdl 		    BGE_VPD_FLAG)
    378   1.1      fvdl 			break;
    379   1.1      fvdl 	}
    380   1.1      fvdl 
    381   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    382   1.1      fvdl 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    383   1.1      fvdl 		return(0);
    384   1.1      fvdl 	}
    385   1.1      fvdl 
    386   1.1      fvdl 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    387   1.1      fvdl 
    388   1.1      fvdl 	return((val >> ((addr % 4) * 8)) & 0xFF);
    389   1.1      fvdl }
    390   1.1      fvdl 
    391   1.1      fvdl void
    392   1.1      fvdl bge_vpd_read_res(sc, res, addr)
    393   1.1      fvdl 	struct bge_softc *sc;
    394   1.1      fvdl 	struct vpd_res *res;
    395   1.1      fvdl 	int addr;
    396   1.1      fvdl {
    397   1.1      fvdl 	int i;
    398   1.1      fvdl 	u_int8_t *ptr;
    399   1.1      fvdl 
    400   1.1      fvdl 	ptr = (u_int8_t *)res;
    401   1.1      fvdl 	for (i = 0; i < sizeof(struct vpd_res); i++)
    402   1.1      fvdl 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    403   1.1      fvdl }
    404   1.1      fvdl 
    405   1.1      fvdl void
    406   1.1      fvdl bge_vpd_read(sc)
    407   1.1      fvdl 	struct bge_softc *sc;
    408   1.1      fvdl {
    409   1.1      fvdl 	int pos = 0, i;
    410   1.1      fvdl 	struct vpd_res res;
    411   1.1      fvdl 
    412   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
    413   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
    414   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
    415   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
    416   1.1      fvdl 	sc->bge_vpd_prodname = NULL;
    417   1.1      fvdl 	sc->bge_vpd_readonly = NULL;
    418   1.1      fvdl 
    419   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    420   1.1      fvdl 
    421   1.1      fvdl 	if (res.vr_id != VPD_RES_ID) {
    422   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    423   1.1      fvdl 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    424   1.1      fvdl 		return;
    425   1.1      fvdl 	}
    426   1.1      fvdl 
    427   1.1      fvdl 	pos += sizeof(res);
    428   1.1      fvdl 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    429   1.1      fvdl 	if (sc->bge_vpd_prodname == NULL)
    430   1.1      fvdl 		panic("bge_vpd_read");
    431   1.1      fvdl 	for (i = 0; i < res.vr_len; i++)
    432   1.1      fvdl 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    433   1.1      fvdl 	sc->bge_vpd_prodname[i] = '\0';
    434   1.1      fvdl 	pos += i;
    435   1.1      fvdl 
    436   1.1      fvdl 	bge_vpd_read_res(sc, &res, pos);
    437   1.1      fvdl 
    438   1.1      fvdl 	if (res.vr_id != VPD_RES_READ) {
    439   1.1      fvdl 		printf("%s: bad VPD resource id: expected %x got %x\n",
    440   1.1      fvdl 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    441   1.1      fvdl 		return;
    442   1.1      fvdl 	}
    443   1.1      fvdl 
    444   1.1      fvdl 	pos += sizeof(res);
    445   1.1      fvdl 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    446   1.1      fvdl 	if (sc->bge_vpd_readonly == NULL)
    447   1.1      fvdl 		panic("bge_vpd_read");
    448   1.1      fvdl 	for (i = 0; i < res.vr_len + 1; i++)
    449   1.1      fvdl 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    450   1.1      fvdl }
    451   1.1      fvdl #endif
    452   1.1      fvdl 
    453   1.1      fvdl /*
    454   1.1      fvdl  * Read a byte of data stored in the EEPROM at address 'addr.' The
    455   1.1      fvdl  * BCM570x supports both the traditional bitbang interface and an
    456   1.1      fvdl  * auto access interface for reading the EEPROM. We use the auto
    457   1.1      fvdl  * access method.
    458   1.1      fvdl  */
    459   1.1      fvdl u_int8_t
    460   1.1      fvdl bge_eeprom_getbyte(sc, addr, dest)
    461   1.1      fvdl 	struct bge_softc *sc;
    462   1.1      fvdl 	int addr;
    463   1.1      fvdl 	u_int8_t *dest;
    464   1.1      fvdl {
    465   1.1      fvdl 	int i;
    466   1.1      fvdl 	u_int32_t byte = 0;
    467   1.1      fvdl 
    468   1.1      fvdl 	/*
    469   1.1      fvdl 	 * Enable use of auto EEPROM access so we can avoid
    470   1.1      fvdl 	 * having to use the bitbang method.
    471   1.1      fvdl 	 */
    472   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    473   1.1      fvdl 
    474   1.1      fvdl 	/* Reset the EEPROM, load the clock period. */
    475   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    476   1.1      fvdl 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    477   1.1      fvdl 	DELAY(20);
    478   1.1      fvdl 
    479   1.1      fvdl 	/* Issue the read EEPROM command. */
    480   1.1      fvdl 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    481   1.1      fvdl 
    482   1.1      fvdl 	/* Wait for completion */
    483   1.1      fvdl 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    484   1.1      fvdl 		DELAY(10);
    485   1.1      fvdl 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    486   1.1      fvdl 			break;
    487   1.1      fvdl 	}
    488   1.1      fvdl 
    489   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    490   1.1      fvdl 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    491   1.1      fvdl 		return(0);
    492   1.1      fvdl 	}
    493   1.1      fvdl 
    494   1.1      fvdl 	/* Get result. */
    495   1.1      fvdl 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    496   1.1      fvdl 
    497   1.1      fvdl 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    498   1.1      fvdl 
    499   1.1      fvdl 	return(0);
    500   1.1      fvdl }
    501   1.1      fvdl 
    502   1.1      fvdl /*
    503   1.1      fvdl  * Read a sequence of bytes from the EEPROM.
    504   1.1      fvdl  */
    505   1.1      fvdl int
    506   1.1      fvdl bge_read_eeprom(sc, dest, off, cnt)
    507   1.1      fvdl 	struct bge_softc *sc;
    508   1.1      fvdl 	caddr_t dest;
    509   1.1      fvdl 	int off;
    510   1.1      fvdl 	int cnt;
    511   1.1      fvdl {
    512   1.1      fvdl 	int err = 0, i;
    513   1.1      fvdl 	u_int8_t byte = 0;
    514   1.1      fvdl 
    515   1.1      fvdl 	for (i = 0; i < cnt; i++) {
    516   1.1      fvdl 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    517   1.1      fvdl 		if (err)
    518   1.1      fvdl 			break;
    519   1.1      fvdl 		*(dest + i) = byte;
    520   1.1      fvdl 	}
    521   1.1      fvdl 
    522   1.1      fvdl 	return(err ? 1 : 0);
    523   1.1      fvdl }
    524   1.1      fvdl 
    525   1.1      fvdl int
    526   1.1      fvdl bge_miibus_readreg(dev, phy, reg)
    527   1.1      fvdl 	struct device *dev;
    528   1.1      fvdl 	int phy, reg;
    529   1.1      fvdl {
    530   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    531   1.1      fvdl 	u_int32_t val;
    532  1.25  jonathan 	u_int32_t saved_autopoll;
    533   1.1      fvdl 	int i;
    534   1.1      fvdl 
    535  1.25  jonathan 	/*
    536  1.25  jonathan 	 * Several chips with builtin PHYs will incorrectly answer to
    537  1.25  jonathan 	 * other PHY instances than the builtin PHY at id 1.
    538  1.25  jonathan 	 */
    539  1.24      matt 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    540   1.1      fvdl 		return(0);
    541   1.1      fvdl 
    542  1.25  jonathan 	/* Reading with autopolling on may trigger PCI errors */
    543  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    544  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    545  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    546  1.29    itojun 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    547  1.25  jonathan 		DELAY(40);
    548  1.25  jonathan 	}
    549  1.25  jonathan 
    550   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    551   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    552   1.1      fvdl 
    553   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    554   1.1      fvdl 		val = CSR_READ_4(sc, BGE_MI_COMM);
    555   1.1      fvdl 		if (!(val & BGE_MICOMM_BUSY))
    556   1.1      fvdl 			break;
    557   1.9   thorpej 		delay(10);
    558   1.1      fvdl 	}
    559   1.1      fvdl 
    560   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    561   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    562  1.29    itojun 		val = 0;
    563  1.25  jonathan 		goto done;
    564   1.1      fvdl 	}
    565   1.1      fvdl 
    566   1.1      fvdl 	val = CSR_READ_4(sc, BGE_MI_COMM);
    567   1.1      fvdl 
    568  1.25  jonathan done:
    569  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    570  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    571  1.25  jonathan 		DELAY(40);
    572  1.25  jonathan 	}
    573  1.29    itojun 
    574   1.1      fvdl 	if (val & BGE_MICOMM_READFAIL)
    575   1.1      fvdl 		return(0);
    576   1.1      fvdl 
    577   1.1      fvdl 	return(val & 0xFFFF);
    578   1.1      fvdl }
    579   1.1      fvdl 
    580   1.1      fvdl void
    581   1.1      fvdl bge_miibus_writereg(dev, phy, reg, val)
    582   1.1      fvdl 	struct device *dev;
    583   1.1      fvdl 	int phy, reg, val;
    584   1.1      fvdl {
    585   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    586  1.29    itojun 	u_int32_t saved_autopoll;
    587  1.29    itojun 	int i;
    588   1.1      fvdl 
    589  1.29    itojun 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    590  1.25  jonathan 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    591  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    592  1.25  jonathan 		delay(40);
    593  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE,
    594  1.25  jonathan 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    595  1.25  jonathan 		delay(10); /* 40 usec is supposed to be adequate */
    596  1.25  jonathan 	}
    597  1.29    itojun 
    598   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    599   1.1      fvdl 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    600   1.1      fvdl 
    601   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
    602   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    603   1.1      fvdl 			break;
    604   1.9   thorpej 		delay(10);
    605   1.1      fvdl 	}
    606   1.1      fvdl 
    607  1.25  jonathan 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    608  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    609  1.25  jonathan 		delay(40);
    610  1.25  jonathan 	}
    611  1.29    itojun 
    612   1.1      fvdl 	if (i == BGE_TIMEOUT) {
    613   1.1      fvdl 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    614   1.1      fvdl 	}
    615   1.1      fvdl }
    616   1.1      fvdl 
    617   1.1      fvdl void
    618   1.1      fvdl bge_miibus_statchg(dev)
    619   1.1      fvdl 	struct device *dev;
    620   1.1      fvdl {
    621   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)dev;
    622   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
    623   1.1      fvdl 
    624  1.69   thorpej 	/*
    625  1.69   thorpej 	 * Get flow control negotiation result.
    626  1.69   thorpej 	 */
    627  1.69   thorpej 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    628  1.69   thorpej 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    629  1.69   thorpej 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    630  1.69   thorpej 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    631  1.69   thorpej 	}
    632  1.69   thorpej 
    633   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    634   1.1      fvdl 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    635   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    636   1.1      fvdl 	} else {
    637   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    638   1.1      fvdl 	}
    639   1.1      fvdl 
    640   1.1      fvdl 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    641   1.1      fvdl 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    642   1.1      fvdl 	} else {
    643   1.1      fvdl 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    644   1.1      fvdl 	}
    645  1.69   thorpej 
    646  1.69   thorpej 	/*
    647  1.69   thorpej 	 * 802.3x flow control
    648  1.69   thorpej 	 */
    649  1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    650  1.69   thorpej 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    651  1.69   thorpej 	} else {
    652  1.69   thorpej 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    653  1.69   thorpej 	}
    654  1.69   thorpej 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    655  1.69   thorpej 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    656  1.69   thorpej 	} else {
    657  1.69   thorpej 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    658  1.69   thorpej 	}
    659   1.1      fvdl }
    660   1.1      fvdl 
    661   1.1      fvdl /*
    662  1.63  jonathan  * Update rx threshold levels to values in a particular slot
    663  1.63  jonathan  * of the interrupt-mitigation table bge_rx_threshes.
    664  1.63  jonathan  */
    665  1.63  jonathan void
    666  1.63  jonathan bge_set_thresh(struct ifnet *ifp, int lvl)
    667  1.63  jonathan {
    668  1.63  jonathan 	struct bge_softc *sc = ifp->if_softc;
    669  1.63  jonathan 	int s;
    670  1.63  jonathan 
    671  1.63  jonathan 	/* For now, just save the new Rx-intr thresholds and record
    672  1.63  jonathan 	 * that a threshold update is pending.  Updating the hardware
    673  1.63  jonathan 	 * registers here (even at splhigh()) is observed to
    674  1.63  jonathan 	 * occasionaly cause glitches where Rx-interrupts are not
    675  1.68    keihan 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    676  1.63  jonathan 	 */
    677  1.63  jonathan 	s = splnet();
    678  1.63  jonathan 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    679  1.63  jonathan 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    680  1.63  jonathan 	sc->bge_pending_rxintr_change = 1;
    681  1.63  jonathan 	splx(s);
    682  1.63  jonathan 
    683  1.63  jonathan 	 return;
    684  1.63  jonathan }
    685  1.63  jonathan 
    686  1.63  jonathan 
    687  1.63  jonathan /*
    688  1.63  jonathan  * Update Rx thresholds of all bge devices
    689  1.63  jonathan  */
    690  1.63  jonathan void
    691  1.63  jonathan bge_update_all_threshes(int lvl)
    692  1.63  jonathan {
    693  1.63  jonathan 	struct ifnet *ifp;
    694  1.63  jonathan 	const char * const namebuf = "bge";
    695  1.63  jonathan 	int namelen;
    696  1.63  jonathan 
    697  1.63  jonathan 	if (lvl < 0)
    698  1.63  jonathan 		lvl = 0;
    699  1.63  jonathan 	else if( lvl >= NBGE_RX_THRESH)
    700  1.63  jonathan 		lvl = NBGE_RX_THRESH - 1;
    701  1.87     perry 
    702  1.63  jonathan 	namelen = strlen(namebuf);
    703  1.63  jonathan 	/*
    704  1.63  jonathan 	 * Now search all the interfaces for this name/number
    705  1.63  jonathan 	 */
    706  1.81      matt 	IFNET_FOREACH(ifp) {
    707  1.67  jonathan 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    708  1.63  jonathan 		      continue;
    709  1.63  jonathan 		/* We got a match: update if doing auto-threshold-tuning */
    710  1.63  jonathan 		if (bge_auto_thresh)
    711  1.67  jonathan 			bge_set_thresh(ifp, lvl);
    712  1.63  jonathan 	}
    713  1.63  jonathan }
    714  1.63  jonathan 
    715  1.63  jonathan /*
    716   1.1      fvdl  * Handle events that have triggered interrupts.
    717   1.1      fvdl  */
    718   1.1      fvdl void
    719   1.1      fvdl bge_handle_events(sc)
    720   1.1      fvdl 	struct bge_softc		*sc;
    721   1.1      fvdl {
    722   1.1      fvdl 
    723   1.1      fvdl 	return;
    724   1.1      fvdl }
    725   1.1      fvdl 
    726   1.1      fvdl /*
    727   1.1      fvdl  * Memory management for jumbo frames.
    728   1.1      fvdl  */
    729   1.1      fvdl 
    730   1.1      fvdl int
    731   1.1      fvdl bge_alloc_jumbo_mem(sc)
    732   1.1      fvdl 	struct bge_softc		*sc;
    733   1.1      fvdl {
    734   1.1      fvdl 	caddr_t			ptr, kva;
    735   1.1      fvdl 	bus_dma_segment_t	seg;
    736   1.1      fvdl 	int		i, rseg, state, error;
    737   1.1      fvdl 	struct bge_jpool_entry   *entry;
    738   1.1      fvdl 
    739   1.1      fvdl 	state = error = 0;
    740   1.1      fvdl 
    741   1.1      fvdl 	/* Grab a big chunk o' storage. */
    742   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    743   1.1      fvdl 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    744   1.1      fvdl 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    745   1.1      fvdl 		return ENOBUFS;
    746   1.1      fvdl 	}
    747   1.1      fvdl 
    748   1.1      fvdl 	state = 1;
    749   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    750   1.1      fvdl 	    BUS_DMA_NOWAIT)) {
    751  1.39       wiz 		printf("%s: can't map DMA buffers (%d bytes)\n",
    752   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    753   1.1      fvdl 		error = ENOBUFS;
    754   1.1      fvdl 		goto out;
    755   1.1      fvdl 	}
    756   1.1      fvdl 
    757   1.1      fvdl 	state = 2;
    758   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    759   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    760  1.39       wiz 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    761   1.1      fvdl 		error = ENOBUFS;
    762   1.1      fvdl 		goto out;
    763   1.1      fvdl 	}
    764   1.1      fvdl 
    765   1.1      fvdl 	state = 3;
    766   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    767   1.1      fvdl 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    768  1.39       wiz 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    769   1.1      fvdl 		error = ENOBUFS;
    770   1.1      fvdl 		goto out;
    771   1.1      fvdl 	}
    772   1.1      fvdl 
    773   1.1      fvdl 	state = 4;
    774   1.1      fvdl 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    775  1.89  christos 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    776   1.1      fvdl 
    777   1.1      fvdl 	SLIST_INIT(&sc->bge_jfree_listhead);
    778   1.1      fvdl 	SLIST_INIT(&sc->bge_jinuse_listhead);
    779   1.1      fvdl 
    780   1.1      fvdl 	/*
    781   1.1      fvdl 	 * Now divide it up into 9K pieces and save the addresses
    782   1.1      fvdl 	 * in an array.
    783   1.1      fvdl 	 */
    784   1.1      fvdl 	ptr = sc->bge_cdata.bge_jumbo_buf;
    785   1.1      fvdl 	for (i = 0; i < BGE_JSLOTS; i++) {
    786   1.1      fvdl 		sc->bge_cdata.bge_jslots[i] = ptr;
    787   1.1      fvdl 		ptr += BGE_JLEN;
    788   1.1      fvdl 		entry = malloc(sizeof(struct bge_jpool_entry),
    789   1.1      fvdl 		    M_DEVBUF, M_NOWAIT);
    790   1.1      fvdl 		if (entry == NULL) {
    791   1.1      fvdl 			printf("%s: no memory for jumbo buffer queue!\n",
    792   1.1      fvdl 			    sc->bge_dev.dv_xname);
    793   1.1      fvdl 			error = ENOBUFS;
    794   1.1      fvdl 			goto out;
    795   1.1      fvdl 		}
    796   1.1      fvdl 		entry->slot = i;
    797   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    798   1.1      fvdl 				 entry, jpool_entries);
    799   1.1      fvdl 	}
    800   1.1      fvdl out:
    801   1.1      fvdl 	if (error != 0) {
    802   1.1      fvdl 		switch (state) {
    803   1.1      fvdl 		case 4:
    804   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag,
    805   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    806   1.1      fvdl 		case 3:
    807   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag,
    808   1.1      fvdl 			    sc->bge_cdata.bge_rx_jumbo_map);
    809   1.1      fvdl 		case 2:
    810   1.1      fvdl 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    811   1.1      fvdl 		case 1:
    812   1.1      fvdl 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    813   1.1      fvdl 			break;
    814   1.1      fvdl 		default:
    815   1.1      fvdl 			break;
    816   1.1      fvdl 		}
    817   1.1      fvdl 	}
    818   1.1      fvdl 
    819   1.1      fvdl 	return error;
    820   1.1      fvdl }
    821   1.1      fvdl 
    822   1.1      fvdl /*
    823   1.1      fvdl  * Allocate a jumbo buffer.
    824   1.1      fvdl  */
    825   1.1      fvdl void *
    826   1.1      fvdl bge_jalloc(sc)
    827   1.1      fvdl 	struct bge_softc		*sc;
    828   1.1      fvdl {
    829   1.1      fvdl 	struct bge_jpool_entry   *entry;
    830   1.1      fvdl 
    831   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    832   1.1      fvdl 
    833   1.1      fvdl 	if (entry == NULL) {
    834   1.1      fvdl 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    835   1.1      fvdl 		return(NULL);
    836   1.1      fvdl 	}
    837   1.1      fvdl 
    838   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    839   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    840   1.1      fvdl 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    841   1.1      fvdl }
    842   1.1      fvdl 
    843   1.1      fvdl /*
    844   1.1      fvdl  * Release a jumbo buffer.
    845   1.1      fvdl  */
    846   1.1      fvdl void
    847   1.1      fvdl bge_jfree(m, buf, size, arg)
    848   1.1      fvdl 	struct mbuf	*m;
    849   1.1      fvdl 	caddr_t		buf;
    850  1.31   thorpej 	size_t		size;
    851   1.1      fvdl 	void		*arg;
    852   1.1      fvdl {
    853   1.1      fvdl 	struct bge_jpool_entry *entry;
    854   1.1      fvdl 	struct bge_softc *sc;
    855   1.1      fvdl 	int i, s;
    856   1.1      fvdl 
    857   1.1      fvdl 	/* Extract the softc struct pointer. */
    858   1.1      fvdl 	sc = (struct bge_softc *)arg;
    859   1.1      fvdl 
    860   1.1      fvdl 	if (sc == NULL)
    861   1.1      fvdl 		panic("bge_jfree: can't find softc pointer!");
    862   1.1      fvdl 
    863   1.1      fvdl 	/* calculate the slot this buffer belongs to */
    864   1.1      fvdl 
    865   1.1      fvdl 	i = ((caddr_t)buf
    866   1.1      fvdl 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    867   1.1      fvdl 
    868   1.1      fvdl 	if ((i < 0) || (i >= BGE_JSLOTS))
    869   1.1      fvdl 		panic("bge_jfree: asked to free buffer that we don't manage!");
    870   1.1      fvdl 
    871   1.1      fvdl 	s = splvm();
    872   1.1      fvdl 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    873   1.1      fvdl 	if (entry == NULL)
    874   1.1      fvdl 		panic("bge_jfree: buffer not in use!");
    875   1.1      fvdl 	entry->slot = i;
    876   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    877   1.1      fvdl 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    878   1.1      fvdl 
    879   1.1      fvdl 	if (__predict_true(m != NULL))
    880   1.1      fvdl   		pool_cache_put(&mbpool_cache, m);
    881   1.1      fvdl 	splx(s);
    882   1.1      fvdl }
    883   1.1      fvdl 
    884   1.1      fvdl 
    885   1.1      fvdl /*
    886   1.1      fvdl  * Intialize a standard receive ring descriptor.
    887   1.1      fvdl  */
    888   1.1      fvdl int
    889   1.1      fvdl bge_newbuf_std(sc, i, m, dmamap)
    890   1.1      fvdl 	struct bge_softc	*sc;
    891   1.1      fvdl 	int			i;
    892   1.1      fvdl 	struct mbuf		*m;
    893   1.1      fvdl 	bus_dmamap_t dmamap;
    894   1.1      fvdl {
    895   1.1      fvdl 	struct mbuf		*m_new = NULL;
    896   1.1      fvdl 	struct bge_rx_bd	*r;
    897   1.1      fvdl 	int			error;
    898   1.1      fvdl 
    899   1.1      fvdl 	if (dmamap == NULL) {
    900   1.1      fvdl 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    901   1.1      fvdl 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    902   1.1      fvdl 		if (error != 0)
    903   1.1      fvdl 			return error;
    904   1.1      fvdl 	}
    905   1.1      fvdl 
    906   1.1      fvdl 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    907   1.1      fvdl 
    908   1.1      fvdl 	if (m == NULL) {
    909   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    910   1.1      fvdl 		if (m_new == NULL) {
    911   1.1      fvdl 			return(ENOBUFS);
    912   1.1      fvdl 		}
    913   1.1      fvdl 
    914   1.1      fvdl 		MCLGET(m_new, M_DONTWAIT);
    915   1.1      fvdl 		if (!(m_new->m_flags & M_EXT)) {
    916   1.1      fvdl 			m_freem(m_new);
    917   1.1      fvdl 			return(ENOBUFS);
    918   1.1      fvdl 		}
    919   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    920  1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    921  1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    922   1.1      fvdl 
    923   1.1      fvdl 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    924   1.1      fvdl 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    925   1.1      fvdl 			return(ENOBUFS);
    926   1.1      fvdl 	} else {
    927   1.1      fvdl 		m_new = m;
    928   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    929   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    930  1.37  jonathan 		if (!sc->bge_rx_alignment_bug)
    931  1.37  jonathan 		    m_adj(m_new, ETHER_ALIGN);
    932   1.1      fvdl 	}
    933   1.1      fvdl 
    934   1.1      fvdl 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    935   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    936   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr,
    937  1.10      fvdl 	    dmamap->dm_segs[0].ds_addr);
    938   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END;
    939   1.1      fvdl 	r->bge_len = m_new->m_len;
    940   1.1      fvdl 	r->bge_idx = i;
    941   1.1      fvdl 
    942   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    943   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    944   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
    945   1.1      fvdl 	    sizeof (struct bge_rx_bd),
    946   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    947   1.1      fvdl 
    948   1.1      fvdl 	return(0);
    949   1.1      fvdl }
    950   1.1      fvdl 
    951   1.1      fvdl /*
    952   1.1      fvdl  * Initialize a jumbo receive ring descriptor. This allocates
    953   1.1      fvdl  * a jumbo buffer from the pool managed internally by the driver.
    954   1.1      fvdl  */
    955   1.1      fvdl int
    956   1.1      fvdl bge_newbuf_jumbo(sc, i, m)
    957   1.1      fvdl 	struct bge_softc *sc;
    958   1.1      fvdl 	int i;
    959   1.1      fvdl 	struct mbuf *m;
    960   1.1      fvdl {
    961   1.1      fvdl 	struct mbuf *m_new = NULL;
    962   1.1      fvdl 	struct bge_rx_bd *r;
    963   1.1      fvdl 
    964   1.1      fvdl 	if (m == NULL) {
    965  1.75      yamt 		caddr_t			buf = NULL;
    966   1.1      fvdl 
    967   1.1      fvdl 		/* Allocate the mbuf. */
    968   1.1      fvdl 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    969   1.1      fvdl 		if (m_new == NULL) {
    970   1.1      fvdl 			return(ENOBUFS);
    971   1.1      fvdl 		}
    972   1.1      fvdl 
    973   1.1      fvdl 		/* Allocate the jumbo buffer */
    974   1.1      fvdl 		buf = bge_jalloc(sc);
    975   1.1      fvdl 		if (buf == NULL) {
    976   1.1      fvdl 			m_freem(m_new);
    977   1.1      fvdl 			printf("%s: jumbo allocation failed "
    978   1.1      fvdl 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    979   1.1      fvdl 			return(ENOBUFS);
    980   1.1      fvdl 		}
    981   1.1      fvdl 
    982   1.1      fvdl 		/* Attach the buffer to the mbuf. */
    983   1.1      fvdl 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    984   1.1      fvdl 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    985   1.1      fvdl 		    bge_jfree, sc);
    986  1.74      yamt 		m_new->m_flags |= M_EXT_RW;
    987   1.1      fvdl 	} else {
    988   1.1      fvdl 		m_new = m;
    989   1.1      fvdl 		m_new->m_data = m_new->m_ext.ext_buf;
    990   1.1      fvdl 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    991   1.1      fvdl 	}
    992   1.1      fvdl 
    993  1.37  jonathan 	if (!sc->bge_rx_alignment_bug)
    994  1.37  jonathan 	    m_adj(m_new, ETHER_ALIGN);
    995   1.1      fvdl 	/* Set up the descriptor. */
    996   1.1      fvdl 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    997   1.1      fvdl 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    998   1.1      fvdl 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    999   1.1      fvdl 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1000   1.1      fvdl 	r->bge_len = m_new->m_len;
   1001   1.1      fvdl 	r->bge_idx = i;
   1002   1.1      fvdl 
   1003   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1004   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1005   1.1      fvdl 		i * sizeof (struct bge_rx_bd),
   1006   1.1      fvdl 	    sizeof (struct bge_rx_bd),
   1007   1.1      fvdl 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1008   1.1      fvdl 
   1009   1.1      fvdl 	return(0);
   1010   1.1      fvdl }
   1011   1.1      fvdl 
   1012   1.1      fvdl /*
   1013   1.1      fvdl  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1014   1.1      fvdl  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1015   1.1      fvdl  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1016   1.1      fvdl  * the NIC.
   1017   1.1      fvdl  */
   1018   1.1      fvdl int
   1019   1.1      fvdl bge_init_rx_ring_std(sc)
   1020   1.1      fvdl 	struct bge_softc *sc;
   1021   1.1      fvdl {
   1022   1.1      fvdl 	int i;
   1023   1.1      fvdl 
   1024   1.1      fvdl 	if (sc->bge_flags & BGE_RXRING_VALID)
   1025   1.1      fvdl 		return 0;
   1026   1.1      fvdl 
   1027   1.1      fvdl 	for (i = 0; i < BGE_SSLOTS; i++) {
   1028   1.1      fvdl 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1029   1.1      fvdl 			return(ENOBUFS);
   1030   1.1      fvdl 	}
   1031   1.1      fvdl 
   1032   1.1      fvdl 	sc->bge_std = i - 1;
   1033   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1034   1.1      fvdl 
   1035   1.1      fvdl 	sc->bge_flags |= BGE_RXRING_VALID;
   1036   1.1      fvdl 
   1037   1.1      fvdl 	return(0);
   1038   1.1      fvdl }
   1039   1.1      fvdl 
   1040   1.1      fvdl void
   1041   1.1      fvdl bge_free_rx_ring_std(sc)
   1042   1.1      fvdl 	struct bge_softc *sc;
   1043   1.1      fvdl {
   1044   1.1      fvdl 	int i;
   1045   1.1      fvdl 
   1046   1.1      fvdl 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1047   1.1      fvdl 		return;
   1048   1.1      fvdl 
   1049   1.1      fvdl 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1050   1.1      fvdl 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1051   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1052   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1053  1.87     perry 			bus_dmamap_destroy(sc->bge_dmatag,
   1054   1.1      fvdl 			    sc->bge_cdata.bge_rx_std_map[i]);
   1055   1.1      fvdl 		}
   1056   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1057   1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1058   1.1      fvdl 	}
   1059   1.1      fvdl 
   1060   1.1      fvdl 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1061   1.1      fvdl }
   1062   1.1      fvdl 
   1063   1.1      fvdl int
   1064   1.1      fvdl bge_init_rx_ring_jumbo(sc)
   1065   1.1      fvdl 	struct bge_softc *sc;
   1066   1.1      fvdl {
   1067   1.1      fvdl 	int i;
   1068  1.34  jonathan 	volatile struct bge_rcb *rcb;
   1069   1.1      fvdl 
   1070  1.59    martin 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1071  1.59    martin 		return 0;
   1072  1.59    martin 
   1073   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1074   1.1      fvdl 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1075   1.1      fvdl 			return(ENOBUFS);
   1076   1.1      fvdl 	};
   1077   1.1      fvdl 
   1078   1.1      fvdl 	sc->bge_jumbo = i - 1;
   1079  1.59    martin 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1080   1.1      fvdl 
   1081   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1082  1.34  jonathan 	rcb->bge_maxlen_flags = 0;
   1083  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1084   1.1      fvdl 
   1085   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1086   1.1      fvdl 
   1087   1.1      fvdl 	return(0);
   1088   1.1      fvdl }
   1089   1.1      fvdl 
   1090   1.1      fvdl void
   1091   1.1      fvdl bge_free_rx_ring_jumbo(sc)
   1092   1.1      fvdl 	struct bge_softc *sc;
   1093   1.1      fvdl {
   1094   1.1      fvdl 	int i;
   1095   1.1      fvdl 
   1096   1.1      fvdl 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1097   1.1      fvdl 		return;
   1098   1.1      fvdl 
   1099   1.1      fvdl 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1100   1.1      fvdl 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1101   1.1      fvdl 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1102   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1103   1.1      fvdl 		}
   1104   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1105   1.1      fvdl 		    sizeof(struct bge_rx_bd));
   1106   1.1      fvdl 	}
   1107   1.1      fvdl 
   1108   1.1      fvdl 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1109   1.1      fvdl }
   1110   1.1      fvdl 
   1111   1.1      fvdl void
   1112   1.1      fvdl bge_free_tx_ring(sc)
   1113   1.1      fvdl 	struct bge_softc *sc;
   1114   1.1      fvdl {
   1115   1.1      fvdl 	int i, freed;
   1116   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1117   1.1      fvdl 
   1118   1.1      fvdl 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1119   1.1      fvdl 		return;
   1120   1.1      fvdl 
   1121   1.1      fvdl 	freed = 0;
   1122   1.1      fvdl 
   1123   1.1      fvdl 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1124   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1125   1.1      fvdl 			freed++;
   1126   1.1      fvdl 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1127   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1128   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1129   1.1      fvdl 					    link);
   1130   1.1      fvdl 			sc->txdma[i] = 0;
   1131   1.1      fvdl 		}
   1132   1.1      fvdl 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1133   1.1      fvdl 		    sizeof(struct bge_tx_bd));
   1134   1.1      fvdl 	}
   1135   1.1      fvdl 
   1136   1.1      fvdl 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1137   1.1      fvdl 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1138   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1139   1.1      fvdl 		free(dma, M_DEVBUF);
   1140   1.1      fvdl 	}
   1141   1.1      fvdl 
   1142   1.1      fvdl 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1143   1.1      fvdl }
   1144   1.1      fvdl 
   1145   1.1      fvdl int
   1146   1.1      fvdl bge_init_tx_ring(sc)
   1147   1.1      fvdl 	struct bge_softc *sc;
   1148   1.1      fvdl {
   1149   1.1      fvdl 	int i;
   1150   1.1      fvdl 	bus_dmamap_t dmamap;
   1151   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   1152   1.1      fvdl 
   1153   1.1      fvdl 	if (sc->bge_flags & BGE_TXRING_VALID)
   1154   1.1      fvdl 		return 0;
   1155   1.1      fvdl 
   1156   1.1      fvdl 	sc->bge_txcnt = 0;
   1157   1.1      fvdl 	sc->bge_tx_saved_considx = 0;
   1158  1.94  jonathan 
   1159  1.94  jonathan 	/* Initialize transmit producer index for host-memory send ring. */
   1160  1.94  jonathan 	sc->bge_tx_prodidx = 0;
   1161  1.94  jonathan 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1162  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1163  1.94  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1164  1.25  jonathan 
   1165  1.94  jonathan 	/* NIC-memory send ring  not used; initialize to zero. */
   1166   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1167  1.25  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1168  1.25  jonathan 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1169   1.1      fvdl 
   1170   1.1      fvdl 	SLIST_INIT(&sc->txdma_list);
   1171   1.1      fvdl 	for (i = 0; i < BGE_RSLOTS; i++) {
   1172  1.95  jonathan 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1173   1.1      fvdl 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1174   1.1      fvdl 		    &dmamap))
   1175   1.1      fvdl 			return(ENOBUFS);
   1176   1.1      fvdl 		if (dmamap == NULL)
   1177   1.1      fvdl 			panic("dmamap NULL in bge_init_tx_ring");
   1178   1.1      fvdl 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1179   1.1      fvdl 		if (dma == NULL) {
   1180   1.1      fvdl 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1181   1.1      fvdl 			    sc->bge_dev.dv_xname);
   1182   1.1      fvdl 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1183   1.1      fvdl 			return (ENOMEM);
   1184   1.1      fvdl 		}
   1185   1.1      fvdl 		dma->dmamap = dmamap;
   1186   1.1      fvdl 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1187   1.1      fvdl 	}
   1188   1.1      fvdl 
   1189   1.1      fvdl 	sc->bge_flags |= BGE_TXRING_VALID;
   1190   1.1      fvdl 
   1191   1.1      fvdl 	return(0);
   1192   1.1      fvdl }
   1193   1.1      fvdl 
   1194   1.1      fvdl void
   1195   1.1      fvdl bge_setmulti(sc)
   1196   1.1      fvdl 	struct bge_softc *sc;
   1197   1.1      fvdl {
   1198   1.1      fvdl 	struct ethercom		*ac = &sc->ethercom;
   1199   1.1      fvdl 	struct ifnet		*ifp = &ac->ec_if;
   1200   1.1      fvdl 	struct ether_multi	*enm;
   1201   1.1      fvdl 	struct ether_multistep  step;
   1202   1.1      fvdl 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1203   1.1      fvdl 	u_int32_t		h;
   1204   1.1      fvdl 	int			i;
   1205   1.1      fvdl 
   1206  1.13   thorpej 	if (ifp->if_flags & IFF_PROMISC)
   1207  1.13   thorpej 		goto allmulti;
   1208   1.1      fvdl 
   1209   1.1      fvdl 	/* Now program new ones. */
   1210   1.1      fvdl 	ETHER_FIRST_MULTI(step, ac, enm);
   1211   1.1      fvdl 	while (enm != NULL) {
   1212  1.13   thorpej 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1213  1.13   thorpej 			/*
   1214  1.13   thorpej 			 * We must listen to a range of multicast addresses.
   1215  1.13   thorpej 			 * For now, just accept all multicasts, rather than
   1216  1.13   thorpej 			 * trying to set only those filter bits needed to match
   1217  1.13   thorpej 			 * the range.  (At this time, the only use of address
   1218  1.13   thorpej 			 * ranges is for IP multicast routing, for which the
   1219  1.13   thorpej 			 * range is big enough to require all bits set.)
   1220  1.13   thorpej 			 */
   1221  1.13   thorpej 			goto allmulti;
   1222  1.13   thorpej 		}
   1223  1.13   thorpej 
   1224  1.13   thorpej 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1225  1.13   thorpej 
   1226  1.13   thorpej 		/* Just want the 7 least-significant bits. */
   1227  1.13   thorpej 		h &= 0x7f;
   1228  1.13   thorpej 
   1229   1.1      fvdl 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1230   1.1      fvdl 		ETHER_NEXT_MULTI(step, enm);
   1231   1.1      fvdl 	}
   1232   1.1      fvdl 
   1233  1.13   thorpej 	ifp->if_flags &= ~IFF_ALLMULTI;
   1234  1.13   thorpej 	goto setit;
   1235  1.13   thorpej 
   1236  1.13   thorpej  allmulti:
   1237  1.13   thorpej 	ifp->if_flags |= IFF_ALLMULTI;
   1238  1.13   thorpej 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1239  1.13   thorpej 
   1240  1.13   thorpej  setit:
   1241   1.1      fvdl 	for (i = 0; i < 4; i++)
   1242   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1243   1.1      fvdl }
   1244   1.1      fvdl 
   1245  1.24      matt const int bge_swapbits[] = {
   1246   1.1      fvdl 	0,
   1247   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA,
   1248   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA,
   1249   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1250   1.1      fvdl 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1251   1.1      fvdl 
   1252   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1253   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1254   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1255   1.1      fvdl 
   1256   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1257   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1258   1.1      fvdl 
   1259   1.1      fvdl 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1260   1.1      fvdl 
   1261   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1262   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1263   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1264   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1265   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1266   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1267   1.1      fvdl 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1268   1.1      fvdl 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1269   1.1      fvdl 
   1270   1.1      fvdl 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1271   1.1      fvdl 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1272   1.1      fvdl };
   1273   1.1      fvdl 
   1274   1.1      fvdl int bge_swapindex = 0;
   1275   1.1      fvdl 
   1276   1.1      fvdl /*
   1277   1.1      fvdl  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1278   1.1      fvdl  * self-test results.
   1279   1.1      fvdl  */
   1280   1.1      fvdl int
   1281   1.1      fvdl bge_chipinit(sc)
   1282   1.1      fvdl 	struct bge_softc *sc;
   1283   1.1      fvdl {
   1284   1.1      fvdl 	u_int32_t		cachesize;
   1285   1.1      fvdl 	int			i;
   1286  1.25  jonathan 	u_int32_t		dma_rw_ctl;
   1287   1.1      fvdl 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1288   1.1      fvdl 
   1289   1.1      fvdl 
   1290   1.1      fvdl 	/* Set endianness before we access any non-PCI registers. */
   1291   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1292   1.1      fvdl 	    BGE_INIT);
   1293   1.1      fvdl 
   1294  1.25  jonathan 	/* Set power state to D0. */
   1295  1.25  jonathan 	bge_setpowerstate(sc, 0);
   1296  1.87     perry 
   1297   1.1      fvdl 	/*
   1298   1.1      fvdl 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1299   1.1      fvdl 	 * self-tests passed.
   1300   1.1      fvdl 	 */
   1301   1.1      fvdl 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1302   1.1      fvdl 		printf("%s: RX CPU self-diagnostics failed!\n",
   1303   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1304   1.1      fvdl 		return(ENODEV);
   1305   1.1      fvdl 	}
   1306   1.1      fvdl 
   1307   1.1      fvdl 	/* Clear the MAC control register */
   1308   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1309   1.1      fvdl 
   1310   1.1      fvdl 	/*
   1311   1.1      fvdl 	 * Clear the MAC statistics block in the NIC's
   1312   1.1      fvdl 	 * internal memory.
   1313   1.1      fvdl 	 */
   1314   1.1      fvdl 	for (i = BGE_STATS_BLOCK;
   1315   1.1      fvdl 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1316   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1317   1.1      fvdl 
   1318   1.1      fvdl 	for (i = BGE_STATUS_BLOCK;
   1319   1.1      fvdl 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1320   1.1      fvdl 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1321   1.1      fvdl 
   1322   1.1      fvdl 	/* Set up the PCI DMA control register. */
   1323  1.76      cube 	if (sc->bge_pcie) {
   1324  1.95  jonathan 	  u_int32_t device_ctl;
   1325  1.95  jonathan 
   1326  1.76      cube 		/* From FreeBSD */
   1327  1.76      cube 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1328  1.76      cube 		    sc->bge_dev.dv_xname));
   1329  1.76      cube 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1330  1.76      cube 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1331  1.76      cube 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1332  1.95  jonathan 
   1333  1.95  jonathan 		/* jonathan: alternative from Linux driver */
   1334  1.95  jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1335  1.95  jonathan #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1336  1.95  jonathan 
   1337  1.95  jonathan 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1338  1.95  jonathan 		device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1339  1.95  jonathan 					   BGE_PCI_CONF_DEV_CTRL);
   1340  1.95  jonathan 		printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
   1341  1.95  jonathan 
   1342  1.95  jonathan 		if ((device_ctl & 0x00e0) && 0) {
   1343  1.95  jonathan 			/*
   1344  1.95  jonathan 			 * XXX jonathan (at) NetBSD.org:
   1345  1.95  jonathan 			 * This clause is exactly what the Broadcom-supplied
   1346  1.95  jonathan 			 * Linux does; but given overall register programming
   1347  1.95  jonathan 			 * by if_bge(4), this larger DMA-write watermark
   1348  1.95  jonathan 			 * value causes bcm5721 chips to totally wedge.
   1349  1.95  jonathan 			 */
   1350  1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1351  1.95  jonathan 		} else {
   1352  1.95  jonathan 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1353  1.95  jonathan 		}
   1354  1.76      cube 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1355  1.25  jonathan 	    BGE_PCISTATE_PCI_BUSMODE) {
   1356  1.25  jonathan 		/* Conventional PCI bus */
   1357  1.39       wiz 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1358  1.25  jonathan 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1359  1.25  jonathan 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1360  1.44   hannken 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1361  1.44   hannken 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1362  1.44   hannken 			dma_rw_ctl |= 0x0F;
   1363  1.44   hannken 		}
   1364  1.25  jonathan 	} else {
   1365  1.39       wiz 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1366  1.25  jonathan 		/* PCI-X bus */
   1367  1.25  jonathan 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1368  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1369  1.25  jonathan 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1370  1.25  jonathan 		    (0x0F);
   1371  1.25  jonathan 		/*
   1372  1.25  jonathan 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1373  1.25  jonathan 		 * for hardware bugs, which means we should also clear
   1374  1.25  jonathan 		 * the low-order MINDMA bits.  In addition, the 5704
   1375  1.25  jonathan 		 * uses a different encoding of read/write watermarks.
   1376  1.25  jonathan 		 */
   1377  1.57  jonathan 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1378  1.25  jonathan 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1379  1.25  jonathan 			  /* should be 0x1f0000 */
   1380  1.25  jonathan 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1381  1.25  jonathan 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1382  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1383  1.25  jonathan 		}
   1384  1.57  jonathan 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1385  1.25  jonathan 			dma_rw_ctl &=  0xfffffff0;
   1386  1.25  jonathan 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1387  1.25  jonathan 		}
   1388  1.25  jonathan 	}
   1389  1.25  jonathan 
   1390  1.25  jonathan 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1391   1.1      fvdl 
   1392   1.1      fvdl 	/*
   1393   1.1      fvdl 	 * Set up general mode register.
   1394   1.1      fvdl 	 */
   1395   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1396   1.1      fvdl 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1397  1.54      fvdl 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1398   1.1      fvdl 
   1399   1.1      fvdl 	/* Get cache line size. */
   1400   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1401   1.1      fvdl 
   1402   1.1      fvdl 	/*
   1403   1.1      fvdl 	 * Avoid violating PCI spec on certain chip revs.
   1404   1.1      fvdl 	 */
   1405   1.1      fvdl 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1406   1.1      fvdl 	    PCIM_CMD_MWIEN) {
   1407   1.1      fvdl 		switch(cachesize) {
   1408   1.1      fvdl 		case 1:
   1409   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1410   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1411   1.1      fvdl 			break;
   1412   1.1      fvdl 		case 2:
   1413   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1414   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1415   1.1      fvdl 			break;
   1416   1.1      fvdl 		case 4:
   1417   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1418   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1419   1.1      fvdl 			break;
   1420   1.1      fvdl 		case 8:
   1421   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1422   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1423   1.1      fvdl 			break;
   1424   1.1      fvdl 		case 16:
   1425   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1426   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1427   1.1      fvdl 			break;
   1428   1.1      fvdl 		case 32:
   1429   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1430   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1431   1.1      fvdl 			break;
   1432   1.1      fvdl 		case 64:
   1433   1.1      fvdl 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1434   1.1      fvdl 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1435   1.1      fvdl 			break;
   1436   1.1      fvdl 		default:
   1437   1.1      fvdl 		/* Disable PCI memory write and invalidate. */
   1438   1.1      fvdl #if 0
   1439   1.1      fvdl 			if (bootverbose)
   1440   1.1      fvdl 				printf("%s: cache line size %d not "
   1441   1.1      fvdl 				    "supported; disabling PCI MWI\n",
   1442   1.1      fvdl 				    sc->bge_dev.dv_xname, cachesize);
   1443   1.1      fvdl #endif
   1444   1.1      fvdl 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1445   1.1      fvdl 			    PCIM_CMD_MWIEN);
   1446   1.1      fvdl 			break;
   1447   1.1      fvdl 		}
   1448   1.1      fvdl 	}
   1449   1.1      fvdl 
   1450  1.25  jonathan 	/*
   1451  1.25  jonathan 	 * Disable memory write invalidate.  Apparently it is not supported
   1452  1.25  jonathan 	 * properly by these devices.
   1453  1.25  jonathan 	 */
   1454  1.25  jonathan 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1455  1.25  jonathan 
   1456  1.25  jonathan 
   1457   1.1      fvdl #ifdef __brokenalpha__
   1458   1.1      fvdl 	/*
   1459   1.1      fvdl 	 * Must insure that we do not cross an 8K (bytes) boundary
   1460   1.1      fvdl 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1461   1.1      fvdl 	 * restriction on some ALPHA platforms with early revision
   1462   1.1      fvdl 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1463   1.1      fvdl 	 */
   1464   1.1      fvdl 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1465   1.1      fvdl #endif
   1466   1.1      fvdl 
   1467  1.33   tsutsui 	/* Set the timer prescaler (always 66MHz) */
   1468   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1469   1.1      fvdl 
   1470   1.1      fvdl 	return(0);
   1471   1.1      fvdl }
   1472   1.1      fvdl 
   1473   1.1      fvdl int
   1474   1.1      fvdl bge_blockinit(sc)
   1475   1.1      fvdl 	struct bge_softc *sc;
   1476   1.1      fvdl {
   1477  1.34  jonathan 	volatile struct bge_rcb		*rcb;
   1478   1.1      fvdl 	bus_size_t		rcb_addr;
   1479   1.1      fvdl 	int			i;
   1480   1.1      fvdl 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1481   1.1      fvdl 	bge_hostaddr		taddr;
   1482   1.1      fvdl 
   1483   1.1      fvdl 	/*
   1484   1.1      fvdl 	 * Initialize the memory window pointer register so that
   1485   1.1      fvdl 	 * we can access the first 32K of internal NIC RAM. This will
   1486   1.1      fvdl 	 * allow us to set up the TX send ring RCBs and the RX return
   1487   1.1      fvdl 	 * ring RCBs, plus other things which live in NIC memory.
   1488   1.1      fvdl 	 */
   1489   1.1      fvdl 
   1490   1.1      fvdl 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1491   1.1      fvdl 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1492   1.1      fvdl 
   1493   1.1      fvdl 	/* Configure mbuf memory pool */
   1494  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1495  1.44   hannken 		if (sc->bge_extram) {
   1496  1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1497  1.44   hannken 			    BGE_EXT_SSRAM);
   1498  1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1499  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1500  1.54      fvdl 			else
   1501  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1502  1.44   hannken 		} else {
   1503  1.44   hannken 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1504  1.44   hannken 			    BGE_BUFFPOOL_1);
   1505  1.54      fvdl 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1506  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1507  1.54      fvdl 			else
   1508  1.54      fvdl 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1509  1.44   hannken 		}
   1510  1.44   hannken 
   1511  1.44   hannken 		/* Configure DMA resource pool */
   1512  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1513  1.44   hannken 		    BGE_DMA_DESCRIPTORS);
   1514  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1515   1.1      fvdl 	}
   1516   1.1      fvdl 
   1517   1.1      fvdl 	/* Configure mbuf pool watermarks */
   1518  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   1519   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1520   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1521   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1522  1.25  jonathan #else
   1523  1.25  jonathan 	/* new broadcom docs strongly recommend these: */
   1524  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1525  1.71   thorpej 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1526  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1527  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1528  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1529  1.71   thorpej 		} else {
   1530  1.71   thorpej 			/* Values from Linux driver... */
   1531  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1532  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1533  1.71   thorpej 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1534  1.71   thorpej 		}
   1535  1.44   hannken 	} else {
   1536  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1537  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1538  1.71   thorpej 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1539  1.44   hannken 	}
   1540  1.25  jonathan #endif
   1541   1.1      fvdl 
   1542   1.1      fvdl 	/* Configure DMA resource watermarks */
   1543   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1544   1.1      fvdl 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1545   1.1      fvdl 
   1546   1.1      fvdl 	/* Enable buffer manager */
   1547  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1548  1.44   hannken 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1549  1.44   hannken 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1550  1.44   hannken 
   1551  1.44   hannken 		/* Poll for buffer manager start indication */
   1552  1.44   hannken 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1553  1.44   hannken 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1554  1.44   hannken 				break;
   1555  1.44   hannken 			DELAY(10);
   1556  1.44   hannken 		}
   1557   1.1      fvdl 
   1558  1.44   hannken 		if (i == BGE_TIMEOUT) {
   1559  1.44   hannken 			printf("%s: buffer manager failed to start\n",
   1560  1.44   hannken 			    sc->bge_dev.dv_xname);
   1561  1.44   hannken 			return(ENXIO);
   1562  1.44   hannken 		}
   1563   1.1      fvdl 	}
   1564   1.1      fvdl 
   1565   1.1      fvdl 	/* Enable flow-through queues */
   1566   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1567   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1568   1.1      fvdl 
   1569   1.1      fvdl 	/* Wait until queue initialization is complete */
   1570   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1571   1.1      fvdl 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1572   1.1      fvdl 			break;
   1573   1.1      fvdl 		DELAY(10);
   1574   1.1      fvdl 	}
   1575   1.1      fvdl 
   1576   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1577   1.1      fvdl 		printf("%s: flow-through queue init failed\n",
   1578   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1579   1.1      fvdl 		return(ENXIO);
   1580   1.1      fvdl 	}
   1581   1.1      fvdl 
   1582   1.1      fvdl 	/* Initialize the standard RX ring control block */
   1583   1.1      fvdl 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1584   1.1      fvdl 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1585   1.1      fvdl 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1586  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1587  1.44   hannken 		rcb->bge_maxlen_flags =
   1588  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1589  1.44   hannken 	} else {
   1590  1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1591  1.44   hannken 	}
   1592   1.1      fvdl 	if (sc->bge_extram)
   1593   1.1      fvdl 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1594   1.1      fvdl 	else
   1595   1.1      fvdl 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1596  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1597  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1598  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1599  1.34  jonathan 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1600   1.1      fvdl 
   1601  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1602  1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1603  1.44   hannken 	} else {
   1604  1.44   hannken 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1605  1.44   hannken 	}
   1606  1.44   hannken 
   1607   1.1      fvdl 	/*
   1608   1.1      fvdl 	 * Initialize the jumbo RX ring control block
   1609   1.1      fvdl 	 * We set the 'ring disabled' bit in the flags
   1610   1.1      fvdl 	 * field until we're actually ready to start
   1611   1.1      fvdl 	 * using this ring (i.e. once we set the MTU
   1612   1.1      fvdl 	 * high enough to require it).
   1613   1.1      fvdl 	 */
   1614  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1615  1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1616  1.44   hannken 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1617  1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1618  1.87     perry 		rcb->bge_maxlen_flags =
   1619  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1620  1.44   hannken 			BGE_RCB_FLAG_RING_DISABLED);
   1621  1.44   hannken 		if (sc->bge_extram)
   1622  1.44   hannken 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1623  1.44   hannken 		else
   1624  1.44   hannken 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1625  1.87     perry 
   1626  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1627  1.44   hannken 		    rcb->bge_hostaddr.bge_addr_hi);
   1628  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1629  1.44   hannken 		    rcb->bge_hostaddr.bge_addr_lo);
   1630  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1631  1.44   hannken 		    rcb->bge_maxlen_flags);
   1632  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1633  1.44   hannken 
   1634  1.44   hannken 		/* Set up dummy disabled mini ring RCB */
   1635  1.44   hannken 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1636  1.44   hannken 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1637  1.44   hannken 		    BGE_RCB_FLAG_RING_DISABLED);
   1638  1.44   hannken 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1639  1.44   hannken 		    rcb->bge_maxlen_flags);
   1640   1.1      fvdl 
   1641  1.44   hannken 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1642  1.44   hannken 		    offsetof(struct bge_ring_data, bge_info),
   1643  1.44   hannken 		    sizeof (struct bge_gib),
   1644  1.44   hannken 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1645  1.44   hannken 	}
   1646   1.1      fvdl 
   1647   1.1      fvdl 	/*
   1648   1.1      fvdl 	 * Set the BD ring replentish thresholds. The recommended
   1649   1.1      fvdl 	 * values are 1/8th the number of descriptors allocated to
   1650   1.1      fvdl 	 * each ring.
   1651   1.1      fvdl 	 */
   1652   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1653   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1654   1.1      fvdl 
   1655   1.1      fvdl 	/*
   1656   1.1      fvdl 	 * Disable all unused send rings by setting the 'ring disabled'
   1657   1.1      fvdl 	 * bit in the flags field of all the TX send ring control blocks.
   1658   1.1      fvdl 	 * These are located in NIC memory.
   1659   1.1      fvdl 	 */
   1660   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1661   1.1      fvdl 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1662  1.34  jonathan 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1663  1.34  jonathan 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1664   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1665   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1666   1.1      fvdl 	}
   1667   1.1      fvdl 
   1668   1.1      fvdl 	/* Configure TX RCB 0 (we use only the first ring) */
   1669   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1670   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1671   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1672   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1673   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1674   1.1      fvdl 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1675  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1676  1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1677  1.44   hannken 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1678  1.44   hannken 	}
   1679   1.1      fvdl 
   1680   1.1      fvdl 	/* Disable all unused RX return rings */
   1681   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1682   1.1      fvdl 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1683   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1684   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1685  1.87     perry 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1686  1.44   hannken 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1687  1.34  jonathan                                      BGE_RCB_FLAG_RING_DISABLED));
   1688   1.1      fvdl 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1689   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1690   1.1      fvdl 		    (i * (sizeof(u_int64_t))), 0);
   1691   1.1      fvdl 		rcb_addr += sizeof(struct bge_rcb);
   1692   1.1      fvdl 	}
   1693   1.1      fvdl 
   1694   1.1      fvdl 	/* Initialize RX ring indexes */
   1695   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1696   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1697   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1698   1.1      fvdl 
   1699   1.1      fvdl 	/*
   1700   1.1      fvdl 	 * Set up RX return ring 0
   1701   1.1      fvdl 	 * Note that the NIC address for RX return rings is 0x00000000.
   1702   1.1      fvdl 	 * The return rings live entirely within the host, so the
   1703   1.1      fvdl 	 * nicaddr field in the RCB isn't used.
   1704   1.1      fvdl 	 */
   1705   1.1      fvdl 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1706   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1707   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1708   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1709   1.1      fvdl 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1710  1.34  jonathan 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1711  1.44   hannken 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1712   1.1      fvdl 
   1713   1.1      fvdl 	/* Set random backoff seed for TX */
   1714   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1715   1.1      fvdl 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1716   1.1      fvdl 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1717   1.1      fvdl 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1718   1.1      fvdl 	    BGE_TX_BACKOFF_SEED_MASK);
   1719   1.1      fvdl 
   1720   1.1      fvdl 	/* Set inter-packet gap */
   1721   1.1      fvdl 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1722   1.1      fvdl 
   1723   1.1      fvdl 	/*
   1724   1.1      fvdl 	 * Specify which ring to use for packets that don't match
   1725   1.1      fvdl 	 * any RX rules.
   1726   1.1      fvdl 	 */
   1727   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1728   1.1      fvdl 
   1729   1.1      fvdl 	/*
   1730   1.1      fvdl 	 * Configure number of RX lists. One interrupt distribution
   1731   1.1      fvdl 	 * list, sixteen active lists, one bad frames class.
   1732   1.1      fvdl 	 */
   1733   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1734   1.1      fvdl 
   1735   1.1      fvdl 	/* Inialize RX list placement stats mask. */
   1736   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1737   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1738   1.1      fvdl 
   1739   1.1      fvdl 	/* Disable host coalescing until we get it set up */
   1740   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1741   1.1      fvdl 
   1742   1.1      fvdl 	/* Poll to make sure it's shut down. */
   1743   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1744   1.1      fvdl 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1745   1.1      fvdl 			break;
   1746   1.1      fvdl 		DELAY(10);
   1747   1.1      fvdl 	}
   1748   1.1      fvdl 
   1749   1.1      fvdl 	if (i == BGE_TIMEOUT) {
   1750   1.1      fvdl 		printf("%s: host coalescing engine failed to idle\n",
   1751   1.1      fvdl 		    sc->bge_dev.dv_xname);
   1752   1.1      fvdl 		return(ENXIO);
   1753   1.1      fvdl 	}
   1754   1.1      fvdl 
   1755   1.1      fvdl 	/* Set up host coalescing defaults */
   1756   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1757   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1758   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1759   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1760  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1761  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1762  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1763  1.44   hannken 	}
   1764   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1765   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1766   1.1      fvdl 
   1767   1.1      fvdl 	/* Set up address of statistics block */
   1768  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1769  1.44   hannken 		bge_set_hostaddr(&taddr,
   1770  1.44   hannken 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1771  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1772  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1773  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1774  1.44   hannken 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1775  1.44   hannken 	}
   1776   1.1      fvdl 
   1777   1.1      fvdl 	/* Set up address of status block */
   1778   1.1      fvdl 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1779   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1780   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1781   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1782   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1783   1.1      fvdl 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1784   1.1      fvdl 
   1785   1.1      fvdl 	/* Turn on host coalescing state machine */
   1786   1.1      fvdl 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1787   1.1      fvdl 
   1788   1.1      fvdl 	/* Turn on RX BD completion state machine and enable attentions */
   1789   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1790   1.1      fvdl 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1791   1.1      fvdl 
   1792   1.1      fvdl 	/* Turn on RX list placement state machine */
   1793   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1794   1.1      fvdl 
   1795   1.1      fvdl 	/* Turn on RX list selector state machine. */
   1796  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1797  1.44   hannken 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1798  1.44   hannken 	}
   1799   1.1      fvdl 
   1800   1.1      fvdl 	/* Turn on DMA, clear stats */
   1801   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1802   1.1      fvdl 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1803   1.1      fvdl 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1804   1.1      fvdl 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1805   1.1      fvdl 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1806   1.1      fvdl 
   1807   1.1      fvdl 	/* Set misc. local control, enable interrupts on attentions */
   1808  1.25  jonathan 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1809   1.1      fvdl 
   1810   1.1      fvdl #ifdef notdef
   1811   1.1      fvdl 	/* Assert GPIO pins for PHY reset */
   1812   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1813   1.1      fvdl 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1814   1.1      fvdl 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1815   1.1      fvdl 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1816   1.1      fvdl #endif
   1817   1.1      fvdl 
   1818  1.25  jonathan #if defined(not_quite_yet)
   1819  1.25  jonathan 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1820  1.51      fvdl 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1821  1.87     perry 		sc->bge_local_ctrl_reg |=
   1822  1.25  jonathan 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1823  1.25  jonathan 	}
   1824  1.87     perry #endif
   1825  1.25  jonathan 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1826  1.25  jonathan 
   1827   1.1      fvdl 	/* Turn on DMA completion state machine */
   1828  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1829  1.44   hannken 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1830  1.44   hannken 	}
   1831   1.1      fvdl 
   1832   1.1      fvdl 	/* Turn on write DMA state machine */
   1833   1.1      fvdl 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1834   1.1      fvdl 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1835   1.1      fvdl 
   1836   1.1      fvdl 	/* Turn on read DMA state machine */
   1837  1.95  jonathan 	{
   1838  1.95  jonathan 		uint32_t dma_read_modebits;
   1839  1.95  jonathan 
   1840  1.95  jonathan 		dma_read_modebits =
   1841  1.95  jonathan 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1842  1.95  jonathan 
   1843  1.95  jonathan 		if (sc->bge_pcie && 0) {
   1844  1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1845  1.95  jonathan 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1846  1.95  jonathan 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1847  1.95  jonathan 		}
   1848  1.95  jonathan 
   1849  1.95  jonathan 		/* XXX broadcom-supplied linux driver; undocumented */
   1850  1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1851  1.95  jonathan  			/*
   1852  1.95  jonathan 			 * XXX: magic values.
   1853  1.95  jonathan 			 * From Broadcom-supplied Linux driver;  apparently
   1854  1.95  jonathan 			 * required to workaround a DMA bug affecting TSO
   1855  1.95  jonathan 			 * on bcm575x/bcm5721?
   1856  1.95  jonathan 			 */
   1857  1.95  jonathan 			dma_read_modebits |= (1 << 27);
   1858  1.95  jonathan 		}
   1859  1.95  jonathan 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1860  1.95  jonathan 	}
   1861   1.1      fvdl 
   1862   1.1      fvdl 	/* Turn on RX data completion state machine */
   1863   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1864   1.1      fvdl 
   1865   1.1      fvdl 	/* Turn on RX BD initiator state machine */
   1866   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1867   1.1      fvdl 
   1868   1.1      fvdl 	/* Turn on RX data and RX BD initiator state machine */
   1869   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1870   1.1      fvdl 
   1871   1.1      fvdl 	/* Turn on Mbuf cluster free state machine */
   1872  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1873  1.44   hannken 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1874  1.44   hannken 	}
   1875   1.1      fvdl 
   1876   1.1      fvdl 	/* Turn on send BD completion state machine */
   1877   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1878   1.1      fvdl 
   1879   1.1      fvdl 	/* Turn on send data completion state machine */
   1880   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1881   1.1      fvdl 
   1882   1.1      fvdl 	/* Turn on send data initiator state machine */
   1883  1.95  jonathan 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1884  1.95  jonathan 		/* XXX: magic value from Linux driver */
   1885  1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1886  1.95  jonathan 	} else {
   1887  1.95  jonathan 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1888  1.95  jonathan 	}
   1889   1.1      fvdl 
   1890   1.1      fvdl 	/* Turn on send BD initiator state machine */
   1891   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1892   1.1      fvdl 
   1893   1.1      fvdl 	/* Turn on send BD selector state machine */
   1894   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1895   1.1      fvdl 
   1896   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1897   1.1      fvdl 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1898   1.1      fvdl 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1899   1.1      fvdl 
   1900   1.1      fvdl 	/* ack/clear link change events */
   1901   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1902   1.1      fvdl 	    BGE_MACSTAT_CFG_CHANGED);
   1903   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1904   1.1      fvdl 
   1905   1.1      fvdl 	/* Enable PHY auto polling (for MII/GMII only) */
   1906   1.1      fvdl 	if (sc->bge_tbi) {
   1907   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1908   1.1      fvdl  	} else {
   1909   1.1      fvdl 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1910  1.17   thorpej 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1911   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1912   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   1913   1.1      fvdl 	}
   1914   1.1      fvdl 
   1915   1.1      fvdl 	/* Enable link state change attentions. */
   1916   1.1      fvdl 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1917   1.1      fvdl 
   1918   1.1      fvdl 	return(0);
   1919   1.1      fvdl }
   1920   1.1      fvdl 
   1921  1.16   thorpej static const struct bge_revision {
   1922  1.51      fvdl 	uint32_t		br_chipid;
   1923  1.16   thorpej 	uint32_t		br_quirks;
   1924  1.16   thorpej 	const char		*br_name;
   1925  1.16   thorpej } bge_revisions[] = {
   1926  1.51      fvdl 	{ BGE_CHIPID_BCM5700_A0,
   1927  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1928  1.16   thorpej 	  "BCM5700 A0" },
   1929  1.16   thorpej 
   1930  1.51      fvdl 	{ BGE_CHIPID_BCM5700_A1,
   1931  1.17   thorpej 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1932  1.16   thorpej 	  "BCM5700 A1" },
   1933  1.16   thorpej 
   1934  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B0,
   1935  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1936  1.16   thorpej 	  "BCM5700 B0" },
   1937  1.16   thorpej 
   1938  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B1,
   1939  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1940  1.16   thorpej 	  "BCM5700 B1" },
   1941  1.16   thorpej 
   1942  1.51      fvdl 	{ BGE_CHIPID_BCM5700_B2,
   1943  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1944  1.16   thorpej 	  "BCM5700 B2" },
   1945  1.16   thorpej 
   1946  1.17   thorpej 	/* This is treated like a BCM5700 Bx */
   1947  1.51      fvdl 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1948  1.26  jonathan 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1949  1.16   thorpej 	  "BCM5700 Altima" },
   1950  1.16   thorpej 
   1951  1.51      fvdl 	{ BGE_CHIPID_BCM5700_C0,
   1952  1.16   thorpej 	  0,
   1953  1.16   thorpej 	  "BCM5700 C0" },
   1954  1.16   thorpej 
   1955  1.51      fvdl 	{ BGE_CHIPID_BCM5701_A0,
   1956  1.37  jonathan 	  0, /*XXX really, just not known */
   1957  1.16   thorpej 	  "BCM5701 A0" },
   1958  1.16   thorpej 
   1959  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B0,
   1960  1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1961  1.16   thorpej 	  "BCM5701 B0" },
   1962  1.16   thorpej 
   1963  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B2,
   1964  1.37  jonathan 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1965  1.16   thorpej 	  "BCM5701 B2" },
   1966  1.16   thorpej 
   1967  1.51      fvdl 	{ BGE_CHIPID_BCM5701_B5,
   1968  1.37  jonathan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1969  1.16   thorpej 	  "BCM5701 B5" },
   1970  1.16   thorpej 
   1971  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A0,
   1972  1.16   thorpej 	  0,
   1973  1.16   thorpej 	  "BCM5703 A0" },
   1974  1.16   thorpej 
   1975  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A1,
   1976  1.16   thorpej 	  0,
   1977  1.16   thorpej 	  "BCM5703 A1" },
   1978  1.16   thorpej 
   1979  1.51      fvdl 	{ BGE_CHIPID_BCM5703_A2,
   1980  1.24      matt 	  BGE_QUIRK_ONLY_PHY_1,
   1981  1.16   thorpej 	  "BCM5703 A2" },
   1982  1.16   thorpej 
   1983  1.55     pooka 	{ BGE_CHIPID_BCM5703_A3,
   1984  1.55     pooka 	  BGE_QUIRK_ONLY_PHY_1,
   1985  1.55     pooka 	  "BCM5703 A3" },
   1986  1.55     pooka 
   1987  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A0,
   1988  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1989  1.25  jonathan 	  "BCM5704 A0" },
   1990  1.40      fvdl 
   1991  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A1,
   1992  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1993  1.40      fvdl 	  "BCM5704 A1" },
   1994  1.40      fvdl 
   1995  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A2,
   1996  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1997  1.40      fvdl 	  "BCM5704 A2" },
   1998  1.49      fvdl 
   1999  1.51      fvdl 	{ BGE_CHIPID_BCM5704_A3,
   2000  1.54      fvdl   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2001  1.49      fvdl 	  "BCM5704 A3" },
   2002  1.25  jonathan 
   2003  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A0,
   2004  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2005  1.51      fvdl 	  "BCM5705 A0" },
   2006  1.51      fvdl 
   2007  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A1,
   2008  1.44   hannken 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2009  1.44   hannken 	  "BCM5705 A1" },
   2010  1.44   hannken 
   2011  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A2,
   2012  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2013  1.51      fvdl 	  "BCM5705 A2" },
   2014  1.51      fvdl 
   2015  1.51      fvdl 	{ BGE_CHIPID_BCM5705_A3,
   2016  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2017  1.51      fvdl 	  "BCM5705 A3" },
   2018  1.51      fvdl 
   2019  1.76      cube 	{ BGE_CHIPID_BCM5750_A0,
   2020  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2021  1.76      cube 	  "BCM5750 A1" },
   2022  1.76      cube 
   2023  1.76      cube 	{ BGE_CHIPID_BCM5750_A1,
   2024  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2025  1.76      cube 	  "BCM5750 A1" },
   2026  1.76      cube 
   2027  1.92     gavan 	{ BGE_CHIPID_BCM5751_A1,
   2028  1.92     gavan 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2029  1.92     gavan 	  "BCM5751 A1" },
   2030  1.92     gavan 
   2031  1.16   thorpej 	{ 0, 0, NULL }
   2032  1.16   thorpej };
   2033  1.16   thorpej 
   2034  1.51      fvdl /*
   2035  1.51      fvdl  * Some defaults for major revisions, so that newer steppings
   2036  1.51      fvdl  * that we don't know about have a shot at working.
   2037  1.51      fvdl  */
   2038  1.51      fvdl static const struct bge_revision bge_majorrevs[] = {
   2039  1.51      fvdl 	{ BGE_ASICREV_BCM5700,
   2040  1.51      fvdl 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2041  1.51      fvdl 	  "unknown BCM5700" },
   2042  1.51      fvdl 
   2043  1.51      fvdl 	{ BGE_ASICREV_BCM5701,
   2044  1.51      fvdl 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2045  1.51      fvdl 	  "unknown BCM5701" },
   2046  1.51      fvdl 
   2047  1.51      fvdl 	{ BGE_ASICREV_BCM5703,
   2048  1.51      fvdl 	  0,
   2049  1.51      fvdl 	  "unknown BCM5703" },
   2050  1.51      fvdl 
   2051  1.51      fvdl 	{ BGE_ASICREV_BCM5704,
   2052  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1,
   2053  1.51      fvdl 	  "unknown BCM5704" },
   2054  1.51      fvdl 
   2055  1.51      fvdl 	{ BGE_ASICREV_BCM5705,
   2056  1.51      fvdl 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2057  1.51      fvdl 	  "unknown BCM5705" },
   2058  1.51      fvdl 
   2059  1.76      cube 	{ BGE_ASICREV_BCM5750,
   2060  1.76      cube 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2061  1.76      cube 	  "unknown BCM5750" },
   2062  1.76      cube 
   2063  1.51      fvdl 	{ 0,
   2064  1.51      fvdl 	  0,
   2065  1.51      fvdl 	  NULL }
   2066  1.51      fvdl };
   2067  1.51      fvdl 
   2068  1.51      fvdl 
   2069  1.16   thorpej static const struct bge_revision *
   2070  1.51      fvdl bge_lookup_rev(uint32_t chipid)
   2071  1.16   thorpej {
   2072  1.16   thorpej 	const struct bge_revision *br;
   2073  1.16   thorpej 
   2074  1.16   thorpej 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2075  1.51      fvdl 		if (br->br_chipid == chipid)
   2076  1.51      fvdl 			return (br);
   2077  1.51      fvdl 	}
   2078  1.51      fvdl 
   2079  1.51      fvdl 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2080  1.51      fvdl 		if (br->br_chipid == BGE_ASICREV(chipid))
   2081  1.16   thorpej 			return (br);
   2082  1.16   thorpej 	}
   2083  1.16   thorpej 
   2084  1.16   thorpej 	return (NULL);
   2085  1.16   thorpej }
   2086  1.16   thorpej 
   2087   1.7   thorpej static const struct bge_product {
   2088   1.7   thorpej 	pci_vendor_id_t		bp_vendor;
   2089   1.7   thorpej 	pci_product_id_t	bp_product;
   2090   1.7   thorpej 	const char		*bp_name;
   2091   1.7   thorpej } bge_products[] = {
   2092   1.7   thorpej 	/*
   2093   1.7   thorpej 	 * The BCM5700 documentation seems to indicate that the hardware
   2094   1.7   thorpej 	 * still has the Alteon vendor ID burned into it, though it
   2095   1.7   thorpej 	 * should always be overridden by the value in the EEPROM.  We'll
   2096   1.7   thorpej 	 * check for it anyway.
   2097   1.7   thorpej 	 */
   2098   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2099   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5700,
   2100  1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2101  1.51      fvdl 	  },
   2102   1.7   thorpej 	{ PCI_VENDOR_ALTEON,
   2103   1.7   thorpej 	  PCI_PRODUCT_ALTEON_BCM5701,
   2104  1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2105  1.51      fvdl 	  },
   2106   1.7   thorpej 
   2107   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2108   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC1000,
   2109  1.51      fvdl 	  "Altima AC1000 Gigabit Ethernet",
   2110  1.51      fvdl 	  },
   2111  1.14     enami 	{ PCI_VENDOR_ALTIMA,
   2112  1.14     enami 	  PCI_PRODUCT_ALTIMA_AC1001,
   2113  1.51      fvdl 	  "Altima AC1001 Gigabit Ethernet",
   2114  1.51      fvdl 	   },
   2115   1.7   thorpej 	{ PCI_VENDOR_ALTIMA,
   2116   1.7   thorpej 	  PCI_PRODUCT_ALTIMA_AC9100,
   2117  1.51      fvdl 	  "Altima AC9100 Gigabit Ethernet",
   2118  1.51      fvdl 	  },
   2119   1.7   thorpej 
   2120   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2121   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2122  1.51      fvdl 	  "Broadcom BCM5700 Gigabit Ethernet",
   2123  1.51      fvdl 	  },
   2124   1.7   thorpej 	{ PCI_VENDOR_BROADCOM,
   2125   1.7   thorpej 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2126  1.51      fvdl 	  "Broadcom BCM5701 Gigabit Ethernet",
   2127  1.51      fvdl 	  },
   2128  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2129  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2130  1.51      fvdl 	  "Broadcom BCM5702 Gigabit Ethernet",
   2131  1.51      fvdl 	  },
   2132  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2133  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2134  1.24      matt 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2135  1.51      fvdl 
   2136  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2137  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2138  1.51      fvdl 	  "Broadcom BCM5703 Gigabit Ethernet",
   2139  1.51      fvdl 	  },
   2140  1.24      matt 	{ PCI_VENDOR_BROADCOM,
   2141  1.24      matt 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2142  1.51      fvdl 	  "Broadcom BCM5703X Gigabit Ethernet",
   2143  1.51      fvdl 	  },
   2144  1.55     pooka 	{ PCI_VENDOR_BROADCOM,
   2145  1.55     pooka 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   2146  1.55     pooka 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2147  1.55     pooka 	  },
   2148  1.51      fvdl 
   2149  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2150  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2151  1.51      fvdl 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2152  1.51      fvdl 	  },
   2153  1.25  jonathan    	{ PCI_VENDOR_BROADCOM,
   2154  1.25  jonathan 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2155  1.51      fvdl 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2156  1.51      fvdl 	  },
   2157  1.51      fvdl 
   2158  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2159  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2160  1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2161  1.51      fvdl 	  },
   2162  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2163  1.79      jmmv 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2164  1.78     tacha 	  "Broadcom BCM5705K Gigabit Ethernet",
   2165  1.78     tacha 	  },
   2166  1.78     tacha    	{ PCI_VENDOR_BROADCOM,
   2167  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2168  1.51      fvdl 	  "Broadcom BCM5705 Gigabit Ethernet",
   2169  1.51      fvdl 	  },
   2170  1.44   hannken    	{ PCI_VENDOR_BROADCOM,
   2171  1.44   hannken 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2172  1.51      fvdl 	  "Broadcom BCM5705M Gigabit Ethernet",
   2173  1.51      fvdl 	  },
   2174  1.51      fvdl 
   2175  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2176  1.80     fredb 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2177  1.80     fredb 	  "Broadcom BCM5721 Gigabit Ethernet",
   2178  1.80     fredb 	  },
   2179  1.80     fredb 
   2180  1.80     fredb 	{ PCI_VENDOR_BROADCOM,
   2181  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2182  1.76      cube 	  "Broadcom BCM5750 Gigabit Ethernet",
   2183  1.76      cube 	  },
   2184  1.76      cube 
   2185  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2186  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2187  1.76      cube 	  "Broadcom BCM5750M Gigabit Ethernet",
   2188  1.76      cube 	  },
   2189  1.76      cube 
   2190  1.76      cube 	{ PCI_VENDOR_BROADCOM,
   2191  1.76      cube 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2192  1.76      cube 	  "Broadcom BCM5751 Gigabit Ethernet",
   2193  1.76      cube 	  },
   2194  1.76      cube 
   2195  1.91     gavan 	{ PCI_VENDOR_BROADCOM,
   2196  1.91     gavan 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2197  1.91     gavan 	  "Broadcom BCM5751M Gigabit Ethernet",
   2198  1.91     gavan 	  },
   2199  1.91     gavan 
   2200  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2201  1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2202  1.70      tron 	  "Broadcom BCM5782 Gigabit Ethernet",
   2203  1.70      tron 	  },
   2204  1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2205  1.70      tron 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2206  1.70      tron 	  "Broadcom BCM5788 Gigabit Ethernet",
   2207  1.70      tron 	  },
   2208  1.70      tron 
   2209  1.70      tron    	{ PCI_VENDOR_BROADCOM,
   2210  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2211  1.51      fvdl 	  "Broadcom BCM5901 Fast Ethernet",
   2212  1.51      fvdl 	  },
   2213  1.51      fvdl    	{ PCI_VENDOR_BROADCOM,
   2214  1.51      fvdl 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2215  1.51      fvdl 	  "Broadcom BCM5901A2 Fast Ethernet",
   2216  1.51      fvdl 	  },
   2217  1.51      fvdl 
   2218   1.7   thorpej 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2219   1.7   thorpej 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2220  1.51      fvdl 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2221  1.51      fvdl 	  },
   2222   1.7   thorpej 
   2223   1.7   thorpej 	{ PCI_VENDOR_3COM,
   2224   1.7   thorpej 	  PCI_PRODUCT_3COM_3C996,
   2225  1.51      fvdl 	  "3Com 3c996 Gigabit Ethernet",
   2226  1.51      fvdl 	  },
   2227   1.7   thorpej 
   2228   1.7   thorpej 	{ 0,
   2229   1.7   thorpej 	  0,
   2230   1.7   thorpej 	  NULL },
   2231   1.7   thorpej };
   2232   1.7   thorpej 
   2233   1.7   thorpej static const struct bge_product *
   2234   1.7   thorpej bge_lookup(const struct pci_attach_args *pa)
   2235   1.7   thorpej {
   2236   1.7   thorpej 	const struct bge_product *bp;
   2237   1.7   thorpej 
   2238   1.7   thorpej 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2239   1.7   thorpej 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2240   1.7   thorpej 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2241   1.7   thorpej 			return (bp);
   2242   1.7   thorpej 	}
   2243   1.7   thorpej 
   2244   1.7   thorpej 	return (NULL);
   2245   1.7   thorpej }
   2246   1.7   thorpej 
   2247  1.25  jonathan int
   2248  1.25  jonathan bge_setpowerstate(sc, powerlevel)
   2249  1.25  jonathan 	struct bge_softc *sc;
   2250  1.25  jonathan 	int powerlevel;
   2251  1.25  jonathan {
   2252  1.25  jonathan #ifdef NOTYET
   2253  1.25  jonathan 	u_int32_t pm_ctl = 0;
   2254  1.25  jonathan 
   2255  1.25  jonathan 	/* XXX FIXME: make sure indirect accesses enabled? */
   2256  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2257  1.25  jonathan 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2258  1.25  jonathan 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2259  1.25  jonathan 
   2260  1.25  jonathan 	/* clear the PME_assert bit and power state bits, enable PME */
   2261  1.25  jonathan 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2262  1.25  jonathan 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2263  1.25  jonathan 	pm_ctl |= (1 << 8);
   2264  1.25  jonathan 
   2265  1.25  jonathan 	if (powerlevel == 0) {
   2266  1.25  jonathan 		pm_ctl |= PCIM_PSTAT_D0;
   2267  1.25  jonathan 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2268  1.25  jonathan 		    pm_ctl, 2);
   2269  1.25  jonathan 		DELAY(10000);
   2270  1.27  jonathan 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2271  1.25  jonathan 		DELAY(10000);
   2272  1.25  jonathan 
   2273  1.25  jonathan #ifdef NOTYET
   2274  1.25  jonathan 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2275  1.25  jonathan 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2276  1.25  jonathan #endif
   2277  1.25  jonathan 		DELAY(40); DELAY(40); DELAY(40);
   2278  1.25  jonathan 		DELAY(10000);	/* above not quite adequate on 5700 */
   2279  1.25  jonathan 		return 0;
   2280  1.25  jonathan 	}
   2281  1.25  jonathan 
   2282  1.25  jonathan 
   2283  1.25  jonathan 	/*
   2284  1.25  jonathan 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2285  1.25  jonathan 	 * GMII gpio pins. Example code assumes all hardware vendors
   2286  1.25  jonathan 	 * followed Broadom's sample pcb layout. Until we verify that
   2287  1.25  jonathan 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2288  1.25  jonathan 	 */
   2289  1.25  jonathan 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2290  1.25  jonathan 	       sc->bge_dev.dv_xname, powerlevel);
   2291  1.25  jonathan #endif
   2292  1.25  jonathan 	return EOPNOTSUPP;
   2293  1.25  jonathan }
   2294  1.25  jonathan 
   2295  1.25  jonathan 
   2296   1.1      fvdl /*
   2297   1.1      fvdl  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2298   1.1      fvdl  * against our list and return its name if we find a match. Note
   2299   1.1      fvdl  * that since the Broadcom controller contains VPD support, we
   2300   1.1      fvdl  * can get the device name string from the controller itself instead
   2301   1.1      fvdl  * of the compiled-in string. This is a little slow, but it guarantees
   2302   1.1      fvdl  * we'll always announce the right product name.
   2303   1.1      fvdl  */
   2304   1.1      fvdl int
   2305   1.1      fvdl bge_probe(parent, match, aux)
   2306   1.1      fvdl 	struct device *parent;
   2307   1.1      fvdl 	struct cfdata *match;
   2308   1.1      fvdl 	void *aux;
   2309   1.1      fvdl {
   2310   1.1      fvdl 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2311   1.1      fvdl 
   2312   1.7   thorpej 	if (bge_lookup(pa) != NULL)
   2313   1.1      fvdl 		return (1);
   2314   1.1      fvdl 
   2315   1.1      fvdl 	return (0);
   2316   1.1      fvdl }
   2317   1.1      fvdl 
   2318   1.1      fvdl void
   2319   1.1      fvdl bge_attach(parent, self, aux)
   2320   1.1      fvdl 	struct device *parent, *self;
   2321   1.1      fvdl 	void *aux;
   2322   1.1      fvdl {
   2323   1.1      fvdl 	struct bge_softc	*sc = (struct bge_softc *)self;
   2324   1.1      fvdl 	struct pci_attach_args	*pa = aux;
   2325   1.7   thorpej 	const struct bge_product *bp;
   2326  1.16   thorpej 	const struct bge_revision *br;
   2327   1.1      fvdl 	pci_chipset_tag_t	pc = pa->pa_pc;
   2328   1.1      fvdl 	pci_intr_handle_t	ih;
   2329   1.1      fvdl 	const char		*intrstr = NULL;
   2330   1.1      fvdl 	bus_dma_segment_t	seg;
   2331   1.1      fvdl 	int			rseg;
   2332   1.1      fvdl 	u_int32_t		hwcfg = 0;
   2333  1.24      matt 	u_int32_t		mac_addr = 0;
   2334   1.1      fvdl 	u_int32_t		command;
   2335   1.1      fvdl 	struct ifnet		*ifp;
   2336   1.1      fvdl 	caddr_t			kva;
   2337   1.1      fvdl 	u_char			eaddr[ETHER_ADDR_LEN];
   2338   1.1      fvdl 	pcireg_t		memtype;
   2339   1.1      fvdl 	bus_addr_t		memaddr;
   2340   1.1      fvdl 	bus_size_t		memsize;
   2341  1.25  jonathan 	u_int32_t		pm_ctl;
   2342  1.87     perry 
   2343   1.7   thorpej 	bp = bge_lookup(pa);
   2344   1.7   thorpej 	KASSERT(bp != NULL);
   2345   1.7   thorpej 
   2346   1.1      fvdl 	sc->bge_pa = *pa;
   2347   1.1      fvdl 
   2348  1.30   thorpej 	aprint_naive(": Ethernet controller\n");
   2349  1.30   thorpej 	aprint_normal(": %s\n", bp->bp_name);
   2350   1.1      fvdl 
   2351   1.1      fvdl 	/*
   2352   1.1      fvdl 	 * Map control/status registers.
   2353   1.1      fvdl 	 */
   2354   1.1      fvdl 	DPRINTFN(5, ("Map control/status regs\n"));
   2355   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2356   1.1      fvdl 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2357   1.1      fvdl 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2358   1.1      fvdl 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2359   1.1      fvdl 
   2360   1.1      fvdl 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2361  1.30   thorpej 		aprint_error("%s: failed to enable memory mapping!\n",
   2362   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2363   1.1      fvdl 		return;
   2364   1.1      fvdl 	}
   2365   1.1      fvdl 
   2366   1.1      fvdl 	DPRINTFN(5, ("pci_mem_find\n"));
   2367   1.1      fvdl 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2368   1.1      fvdl  	switch (memtype) {
   2369  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2370  1.29    itojun 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2371   1.1      fvdl 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2372  1.29    itojun 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2373   1.1      fvdl 		    &memaddr, &memsize) == 0)
   2374   1.1      fvdl 			break;
   2375   1.1      fvdl 	default:
   2376  1.30   thorpej 		aprint_error("%s: can't find mem space\n",
   2377   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2378   1.1      fvdl 		return;
   2379   1.1      fvdl 	}
   2380   1.1      fvdl 
   2381   1.1      fvdl 	DPRINTFN(5, ("pci_intr_map\n"));
   2382   1.1      fvdl 	if (pci_intr_map(pa, &ih)) {
   2383  1.30   thorpej 		aprint_error("%s: couldn't map interrupt\n",
   2384   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2385   1.1      fvdl 		return;
   2386   1.1      fvdl 	}
   2387   1.1      fvdl 
   2388   1.1      fvdl 	DPRINTFN(5, ("pci_intr_string\n"));
   2389   1.1      fvdl 	intrstr = pci_intr_string(pc, ih);
   2390   1.1      fvdl 
   2391   1.1      fvdl 	DPRINTFN(5, ("pci_intr_establish\n"));
   2392   1.1      fvdl 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2393   1.1      fvdl 
   2394   1.1      fvdl 	if (sc->bge_intrhand == NULL) {
   2395  1.30   thorpej 		aprint_error("%s: couldn't establish interrupt",
   2396   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2397   1.1      fvdl 		if (intrstr != NULL)
   2398  1.30   thorpej 			aprint_normal(" at %s", intrstr);
   2399  1.30   thorpej 		aprint_normal("\n");
   2400   1.1      fvdl 		return;
   2401   1.1      fvdl 	}
   2402  1.30   thorpej 	aprint_normal("%s: interrupting at %s\n",
   2403  1.30   thorpej 	    sc->bge_dev.dv_xname, intrstr);
   2404   1.1      fvdl 
   2405  1.25  jonathan 	/*
   2406  1.25  jonathan 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2407  1.25  jonathan 	 * can clobber the chip's PCI config-space power control registers,
   2408  1.25  jonathan 	 * leaving the card in D3 powersave state.
   2409  1.25  jonathan 	 * We do not have memory-mapped registers in this state,
   2410  1.25  jonathan 	 * so force device into D0 state before starting initialization.
   2411  1.25  jonathan 	 */
   2412  1.25  jonathan 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2413  1.25  jonathan 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2414  1.25  jonathan 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2415  1.25  jonathan 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2416  1.25  jonathan 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2417  1.25  jonathan 
   2418  1.76      cube 	/*
   2419  1.76      cube 	 * Save ASIC rev.  Look up any quirks associated with this
   2420  1.76      cube 	 * ASIC.
   2421  1.76      cube 	 */
   2422  1.76      cube 	sc->bge_chipid =
   2423  1.76      cube 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2424  1.76      cube 	    BGE_PCIMISCCTL_ASICREV;
   2425  1.76      cube 
   2426  1.76      cube 	/*
   2427  1.76      cube 	 * Detect PCI-Express devices
   2428  1.76      cube 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2429  1.76      cube 	 */
   2430  1.76      cube 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
   2431  1.76      cube 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2432  1.76      cube 	    NULL, NULL) != 0)
   2433  1.76      cube 		sc->bge_pcie = 1;
   2434  1.76      cube 	else
   2435  1.76      cube 		sc->bge_pcie = 0;
   2436  1.76      cube 
   2437   1.1      fvdl 	/* Try to reset the chip. */
   2438   1.1      fvdl 	DPRINTFN(5, ("bge_reset\n"));
   2439   1.1      fvdl 	bge_reset(sc);
   2440   1.1      fvdl 
   2441   1.1      fvdl 	if (bge_chipinit(sc)) {
   2442  1.30   thorpej 		aprint_error("%s: chip initialization failed\n",
   2443   1.1      fvdl 		    sc->bge_dev.dv_xname);
   2444   1.1      fvdl 		bge_release_resources(sc);
   2445   1.1      fvdl 		return;
   2446   1.1      fvdl 	}
   2447   1.1      fvdl 
   2448   1.1      fvdl 	/*
   2449   1.1      fvdl 	 * Get station address from the EEPROM.
   2450   1.1      fvdl 	 */
   2451  1.24      matt 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2452  1.24      matt 	if ((mac_addr >> 16) == 0x484b) {
   2453  1.24      matt 		eaddr[0] = (u_char)(mac_addr >> 8);
   2454  1.24      matt 		eaddr[1] = (u_char)(mac_addr >> 0);
   2455  1.24      matt 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2456  1.24      matt 		eaddr[2] = (u_char)(mac_addr >> 24);
   2457  1.24      matt 		eaddr[3] = (u_char)(mac_addr >> 16);
   2458  1.24      matt 		eaddr[4] = (u_char)(mac_addr >> 8);
   2459  1.24      matt 		eaddr[5] = (u_char)(mac_addr >> 0);
   2460  1.24      matt 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2461   1.1      fvdl 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2462  1.30   thorpej 		aprint_error("%s: failed to read station address\n",
   2463  1.23  kristerw 		    sc->bge_dev.dv_xname);
   2464   1.1      fvdl 		bge_release_resources(sc);
   2465   1.1      fvdl 		return;
   2466   1.1      fvdl 	}
   2467   1.1      fvdl 
   2468  1.51      fvdl 	br = bge_lookup_rev(sc->bge_chipid);
   2469  1.30   thorpej 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2470  1.51      fvdl 
   2471  1.16   thorpej 	if (br == NULL) {
   2472  1.56     pooka 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2473  1.52      fvdl 		sc->bge_quirks = 0;
   2474  1.16   thorpej 	} else {
   2475  1.56     pooka 		aprint_normal("ASIC %s (0x%04x)",
   2476  1.56     pooka 		    br->br_name, sc->bge_chipid >> 16);
   2477  1.51      fvdl 		sc->bge_quirks |= br->br_quirks;
   2478  1.16   thorpej 	}
   2479  1.30   thorpej 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2480   1.1      fvdl 
   2481   1.1      fvdl 	/* Allocate the general information block and ring buffers. */
   2482  1.41      fvdl 	if (pci_dma64_available(pa))
   2483  1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat64;
   2484  1.41      fvdl 	else
   2485  1.41      fvdl 		sc->bge_dmatag = pa->pa_dmat;
   2486   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2487   1.1      fvdl 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2488   1.1      fvdl 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2489  1.30   thorpej 		aprint_error("%s: can't alloc rx buffers\n",
   2490  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2491   1.1      fvdl 		return;
   2492   1.1      fvdl 	}
   2493   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2494   1.1      fvdl 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2495   1.1      fvdl 			   sizeof(struct bge_ring_data), &kva,
   2496   1.1      fvdl 			   BUS_DMA_NOWAIT)) {
   2497  1.39       wiz 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2498   1.1      fvdl 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2499   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2500   1.1      fvdl 		return;
   2501   1.1      fvdl 	}
   2502   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2503   1.1      fvdl 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2504   1.1      fvdl 	    sizeof(struct bge_ring_data), 0,
   2505   1.1      fvdl 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2506  1.39       wiz 		aprint_error("%s: can't create DMA map\n",
   2507  1.30   thorpej 		    sc->bge_dev.dv_xname);
   2508   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2509   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2510   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2511   1.1      fvdl 		return;
   2512   1.1      fvdl 	}
   2513   1.1      fvdl 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2514   1.1      fvdl 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2515   1.1      fvdl 			    sizeof(struct bge_ring_data), NULL,
   2516   1.1      fvdl 			    BUS_DMA_NOWAIT)) {
   2517   1.1      fvdl 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2518   1.1      fvdl 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2519   1.1      fvdl 				 sizeof(struct bge_ring_data));
   2520   1.1      fvdl 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2521   1.1      fvdl 		return;
   2522   1.1      fvdl 	}
   2523   1.1      fvdl 
   2524   1.1      fvdl 	DPRINTFN(5, ("bzero\n"));
   2525   1.1      fvdl 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2526   1.1      fvdl 
   2527  1.19       mjl 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2528   1.1      fvdl 
   2529   1.1      fvdl 	/* Try to allocate memory for jumbo buffers. */
   2530  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2531  1.44   hannken 		if (bge_alloc_jumbo_mem(sc)) {
   2532  1.44   hannken 			aprint_error("%s: jumbo buffer allocation failed\n",
   2533  1.44   hannken 			    sc->bge_dev.dv_xname);
   2534  1.44   hannken 		} else
   2535  1.44   hannken 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2536  1.44   hannken 	}
   2537   1.1      fvdl 
   2538   1.1      fvdl 	/* Set default tuneable values. */
   2539   1.1      fvdl 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2540   1.1      fvdl 	sc->bge_rx_coal_ticks = 150;
   2541  1.25  jonathan 	sc->bge_rx_max_coal_bds = 64;
   2542  1.25  jonathan #ifdef ORIG_WPAUL_VALUES
   2543   1.1      fvdl 	sc->bge_tx_coal_ticks = 150;
   2544   1.1      fvdl 	sc->bge_tx_max_coal_bds = 128;
   2545  1.25  jonathan #else
   2546  1.25  jonathan 	sc->bge_tx_coal_ticks = 300;
   2547  1.25  jonathan 	sc->bge_tx_max_coal_bds = 400;
   2548  1.25  jonathan #endif
   2549  1.95  jonathan 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2550  1.95  jonathan 		sc->bge_tx_coal_ticks = (12 * 5);
   2551  1.95  jonathan 		sc->bge_rx_max_coal_bds = (12 * 5);
   2552  1.95  jonathan 			aprint_error("%s: setting short Tx thresholds\n",
   2553  1.95  jonathan 			    sc->bge_dev.dv_xname);
   2554  1.95  jonathan 	}
   2555   1.1      fvdl 
   2556   1.1      fvdl 	/* Set up ifnet structure */
   2557   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2558   1.1      fvdl 	ifp->if_softc = sc;
   2559   1.1      fvdl 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2560   1.1      fvdl 	ifp->if_ioctl = bge_ioctl;
   2561   1.1      fvdl 	ifp->if_start = bge_start;
   2562   1.1      fvdl 	ifp->if_init = bge_init;
   2563   1.1      fvdl 	ifp->if_watchdog = bge_watchdog;
   2564  1.42     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2565   1.1      fvdl 	IFQ_SET_READY(&ifp->if_snd);
   2566   1.1      fvdl 	DPRINTFN(5, ("bcopy\n"));
   2567   1.1      fvdl 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2568   1.1      fvdl 
   2569  1.18   thorpej 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2570  1.18   thorpej 		sc->ethercom.ec_if.if_capabilities |=
   2571  1.88      yamt 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2572  1.88      yamt 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2573  1.88      yamt 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2574  1.87     perry 	sc->ethercom.ec_capabilities |=
   2575   1.1      fvdl 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2576   1.1      fvdl 
   2577  1.95  jonathan 	if (sc->bge_pcie)
   2578  1.95  jonathan 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2579  1.95  jonathan 
   2580   1.1      fvdl 	/*
   2581   1.1      fvdl 	 * Do MII setup.
   2582   1.1      fvdl 	 */
   2583   1.1      fvdl 	DPRINTFN(5, ("mii setup\n"));
   2584   1.1      fvdl 	sc->bge_mii.mii_ifp = ifp;
   2585   1.1      fvdl 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2586   1.1      fvdl 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2587   1.1      fvdl 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2588   1.1      fvdl 
   2589   1.1      fvdl 	/*
   2590   1.1      fvdl 	 * Figure out what sort of media we have by checking the
   2591  1.35  jonathan 	 * hardware config word in the first 32k of NIC internal memory,
   2592  1.35  jonathan 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2593   1.1      fvdl 	 * cards, this value appears to be unset. If that's the
   2594   1.1      fvdl 	 * case, we have to rely on identifying the NIC by its PCI
   2595   1.1      fvdl 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2596   1.1      fvdl 	 */
   2597  1.35  jonathan 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2598  1.35  jonathan 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2599  1.35  jonathan 	} else {
   2600  1.35  jonathan 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2601   1.1      fvdl 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2602  1.35  jonathan 		hwcfg = be32toh(hwcfg);
   2603  1.35  jonathan 	}
   2604  1.35  jonathan 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2605   1.1      fvdl 		sc->bge_tbi = 1;
   2606   1.1      fvdl 
   2607   1.1      fvdl 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2608   1.1      fvdl 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2609   1.1      fvdl 	    SK_SUBSYSID_9D41)
   2610   1.1      fvdl 		sc->bge_tbi = 1;
   2611   1.1      fvdl 
   2612   1.1      fvdl 	if (sc->bge_tbi) {
   2613   1.1      fvdl 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2614   1.1      fvdl 		    bge_ifmedia_sts);
   2615   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2616   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2617   1.1      fvdl 			    0, NULL);
   2618   1.1      fvdl 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2619   1.1      fvdl 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2620   1.1      fvdl 	} else {
   2621   1.1      fvdl 		/*
   2622   1.1      fvdl 		 * Do transceiver setup.
   2623   1.1      fvdl 		 */
   2624   1.1      fvdl 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2625   1.1      fvdl 			     bge_ifmedia_sts);
   2626   1.1      fvdl 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2627  1.69   thorpej 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2628  1.69   thorpej 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2629  1.87     perry 
   2630   1.1      fvdl 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2631   1.1      fvdl 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2632   1.1      fvdl 			ifmedia_add(&sc->bge_mii.mii_media,
   2633   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2634   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2635   1.1      fvdl 				    IFM_ETHER|IFM_MANUAL);
   2636   1.1      fvdl 		} else
   2637   1.1      fvdl 			ifmedia_set(&sc->bge_mii.mii_media,
   2638   1.1      fvdl 				    IFM_ETHER|IFM_AUTO);
   2639   1.1      fvdl 	}
   2640   1.1      fvdl 
   2641   1.1      fvdl 	/*
   2642  1.37  jonathan 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2643  1.37  jonathan 	 * been observed in the first few bytes of some received packets.
   2644  1.37  jonathan 	 * Aligning the packet buffer in memory eliminates the corruption.
   2645  1.37  jonathan 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2646  1.37  jonathan 	 * which do not support unaligned accesses, we will realign the
   2647  1.37  jonathan 	 * payloads by copying the received packets.
   2648  1.37  jonathan 	 */
   2649  1.37  jonathan 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2650  1.37  jonathan 		/* If in PCI-X mode, work around the alignment bug. */
   2651  1.37  jonathan 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2652  1.37  jonathan                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2653  1.37  jonathan                          BGE_PCISTATE_PCI_BUSSPEED)
   2654  1.37  jonathan 		sc->bge_rx_alignment_bug = 1;
   2655  1.37  jonathan         }
   2656  1.37  jonathan 
   2657  1.37  jonathan 	/*
   2658   1.1      fvdl 	 * Call MI attach routine.
   2659   1.1      fvdl 	 */
   2660   1.1      fvdl 	DPRINTFN(5, ("if_attach\n"));
   2661   1.1      fvdl 	if_attach(ifp);
   2662   1.1      fvdl 	DPRINTFN(5, ("ether_ifattach\n"));
   2663   1.1      fvdl 	ether_ifattach(ifp, eaddr);
   2664  1.72   thorpej #ifdef BGE_EVENT_COUNTERS
   2665  1.72   thorpej 	/*
   2666  1.72   thorpej 	 * Attach event counters.
   2667  1.72   thorpej 	 */
   2668  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2669  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "intr");
   2670  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2671  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
   2672  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2673  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
   2674  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2675  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
   2676  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2677  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
   2678  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2679  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
   2680  1.72   thorpej 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2681  1.72   thorpej 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
   2682  1.72   thorpej #endif /* BGE_EVENT_COUNTERS */
   2683   1.1      fvdl 	DPRINTFN(5, ("callout_init\n"));
   2684   1.1      fvdl 	callout_init(&sc->bge_timeout);
   2685  1.82  jmcneill 
   2686  1.82  jmcneill 	sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
   2687  1.82  jmcneill 	if (sc->bge_powerhook == NULL)
   2688  1.82  jmcneill 		printf("%s: WARNING: unable to establish PCI power hook\n",
   2689  1.82  jmcneill 		    sc->bge_dev.dv_xname);
   2690   1.1      fvdl }
   2691   1.1      fvdl 
   2692   1.1      fvdl void
   2693   1.1      fvdl bge_release_resources(sc)
   2694   1.1      fvdl 	struct bge_softc *sc;
   2695   1.1      fvdl {
   2696   1.1      fvdl 	if (sc->bge_vpd_prodname != NULL)
   2697   1.1      fvdl 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2698   1.1      fvdl 
   2699   1.1      fvdl 	if (sc->bge_vpd_readonly != NULL)
   2700   1.1      fvdl 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2701   1.1      fvdl }
   2702   1.1      fvdl 
   2703   1.1      fvdl void
   2704   1.1      fvdl bge_reset(sc)
   2705   1.1      fvdl 	struct bge_softc *sc;
   2706   1.1      fvdl {
   2707   1.1      fvdl 	struct pci_attach_args *pa = &sc->bge_pa;
   2708  1.61  jonathan 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2709  1.76      cube 	int i, val;
   2710   1.1      fvdl 
   2711   1.1      fvdl 	/* Save some important PCI state. */
   2712   1.1      fvdl 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2713   1.1      fvdl 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2714   1.1      fvdl 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2715   1.1      fvdl 
   2716   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2717   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2718   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2719   1.1      fvdl 
   2720  1.76      cube 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2721  1.76      cube 	/*
   2722  1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2723  1.76      cube 	 */
   2724  1.76      cube 	if (sc->bge_pcie) {
   2725  1.76      cube 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2726  1.76      cube 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2727  1.76      cube 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2728  1.76      cube 			/* No idea what that actually means */
   2729  1.76      cube 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2730  1.76      cube 			val |= (1<<29);
   2731  1.76      cube 		}
   2732  1.76      cube 	}
   2733  1.76      cube 
   2734   1.1      fvdl 	/* Issue global reset */
   2735  1.76      cube 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2736   1.1      fvdl 
   2737   1.1      fvdl 	DELAY(1000);
   2738   1.1      fvdl 
   2739  1.76      cube 	/*
   2740  1.76      cube 	 * XXX: from FreeBSD/Linux; no documentation
   2741  1.76      cube 	 */
   2742  1.76      cube 	if (sc->bge_pcie) {
   2743  1.76      cube 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2744  1.76      cube 			pcireg_t reg;
   2745  1.76      cube 
   2746  1.76      cube 			DELAY(500000);
   2747  1.76      cube 			/* XXX: Magic Numbers */
   2748  1.76      cube 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2749  1.76      cube 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2750  1.76      cube 			    reg | (1 << 15));
   2751  1.76      cube 		}
   2752  1.95  jonathan 		/*
   2753  1.95  jonathan 		 * XXX: Magic Numbers.
   2754  1.95  jonathan 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2755  1.95  jonathan 		 * Should be replaced with references to PCI config-space
   2756  1.95  jonathan 		 * capability block for PCI-Express.
   2757  1.95  jonathan 		 */
   2758  1.95  jonathan 		pci_conf_write(pa->pa_pc, pa->pa_tag,
   2759  1.95  jonathan 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2760  1.95  jonathan 
   2761  1.76      cube 	}
   2762  1.76      cube 
   2763   1.1      fvdl 	/* Reset some of the PCI state that got zapped by reset */
   2764   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2765   1.1      fvdl 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2766   1.1      fvdl 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2767   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2768   1.1      fvdl 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2769   1.1      fvdl 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2770   1.1      fvdl 
   2771   1.1      fvdl 	/* Enable memory arbiter. */
   2772  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2773  1.44   hannken 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2774  1.44   hannken 	}
   2775   1.1      fvdl 
   2776   1.1      fvdl 	/*
   2777   1.1      fvdl 	 * Prevent PXE restart: write a magic number to the
   2778   1.1      fvdl 	 * general communications memory at 0xB50.
   2779   1.1      fvdl 	 */
   2780   1.1      fvdl 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2781   1.1      fvdl 
   2782   1.1      fvdl 	/*
   2783   1.1      fvdl 	 * Poll the value location we just wrote until
   2784   1.1      fvdl 	 * we see the 1's complement of the magic number.
   2785   1.1      fvdl 	 * This indicates that the firmware initialization
   2786   1.1      fvdl 	 * is complete.
   2787   1.1      fvdl 	 */
   2788  1.95  jonathan 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2789   1.1      fvdl 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2790   1.1      fvdl 		if (val == ~BGE_MAGIC_NUMBER)
   2791   1.1      fvdl 			break;
   2792   1.1      fvdl 		DELAY(1000);
   2793   1.1      fvdl 	}
   2794   1.1      fvdl 
   2795  1.95  jonathan 	if (i >= BGE_TIMEOUT) {
   2796   1.1      fvdl 		printf("%s: firmware handshake timed out, val = %x\n",
   2797   1.1      fvdl 		    sc->bge_dev.dv_xname, val);
   2798  1.95  jonathan 		/*
   2799  1.95  jonathan 		 * XXX: occasionally fired on bcm5721, but without
   2800  1.95  jonathan 		 * apparent harm.  For now, keep going if we timeout
   2801  1.95  jonathan 		 * against PCI-E devices.
   2802  1.95  jonathan 		 */
   2803  1.95  jonathan 		 if (!sc->bge_pcie)
   2804  1.95  jonathan 		  return;
   2805   1.1      fvdl 	}
   2806   1.1      fvdl 
   2807   1.1      fvdl 	/*
   2808   1.1      fvdl 	 * XXX Wait for the value of the PCISTATE register to
   2809   1.1      fvdl 	 * return to its original pre-reset state. This is a
   2810   1.1      fvdl 	 * fairly good indicator of reset completion. If we don't
   2811   1.1      fvdl 	 * wait for the reset to fully complete, trying to read
   2812   1.1      fvdl 	 * from the device's non-PCI registers may yield garbage
   2813   1.1      fvdl 	 * results.
   2814   1.1      fvdl 	 */
   2815   1.1      fvdl 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2816  1.61  jonathan 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2817  1.61  jonathan 		    BGE_PCI_PCISTATE);
   2818  1.87     perry 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2819  1.62  jonathan 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2820   1.1      fvdl 			break;
   2821   1.1      fvdl 		DELAY(10);
   2822   1.1      fvdl 	}
   2823  1.87     perry 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2824  1.62  jonathan 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2825  1.61  jonathan 		printf("%s: pcistate failed to revert\n",
   2826  1.61  jonathan 		    sc->bge_dev.dv_xname);
   2827  1.61  jonathan 	}
   2828   1.1      fvdl 
   2829  1.76      cube 	/* XXX: from FreeBSD/Linux; no documentation */
   2830  1.76      cube 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2831  1.76      cube 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2832  1.76      cube 
   2833   1.1      fvdl 	/* Enable memory arbiter. */
   2834  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2835  1.44   hannken 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2836  1.44   hannken 	}
   2837   1.1      fvdl 
   2838   1.1      fvdl 	/* Fix up byte swapping */
   2839   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2840   1.1      fvdl 
   2841   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2842   1.1      fvdl 
   2843   1.1      fvdl 	DELAY(10000);
   2844   1.1      fvdl }
   2845   1.1      fvdl 
   2846   1.1      fvdl /*
   2847   1.1      fvdl  * Frame reception handling. This is called if there's a frame
   2848   1.1      fvdl  * on the receive return list.
   2849   1.1      fvdl  *
   2850   1.1      fvdl  * Note: we have to be able to handle two possibilities here:
   2851   1.1      fvdl  * 1) the frame is from the jumbo recieve ring
   2852   1.1      fvdl  * 2) the frame is from the standard receive ring
   2853   1.1      fvdl  */
   2854   1.1      fvdl 
   2855   1.1      fvdl void
   2856   1.1      fvdl bge_rxeof(sc)
   2857   1.1      fvdl 	struct bge_softc *sc;
   2858   1.1      fvdl {
   2859   1.1      fvdl 	struct ifnet *ifp;
   2860   1.1      fvdl 	int stdcnt = 0, jumbocnt = 0;
   2861   1.1      fvdl 	bus_dmamap_t dmamap;
   2862   1.1      fvdl 	bus_addr_t offset, toff;
   2863   1.1      fvdl 	bus_size_t tlen;
   2864   1.1      fvdl 	int tosync;
   2865   1.1      fvdl 
   2866   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   2867   1.1      fvdl 
   2868   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2869   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   2870   1.1      fvdl 	    sizeof (struct bge_status_block),
   2871   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2872   1.1      fvdl 
   2873   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2874  1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2875   1.1      fvdl 	    sc->bge_rx_saved_considx;
   2876   1.1      fvdl 
   2877   1.1      fvdl 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2878   1.1      fvdl 
   2879   1.1      fvdl 	if (tosync < 0) {
   2880  1.44   hannken 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2881   1.1      fvdl 		    sizeof (struct bge_rx_bd);
   2882   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2883   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2884   1.1      fvdl 		tosync = -tosync;
   2885   1.1      fvdl 	}
   2886   1.1      fvdl 
   2887   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2888   1.1      fvdl 	    offset, tosync * sizeof (struct bge_rx_bd),
   2889   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   2890   1.1      fvdl 
   2891   1.1      fvdl 	while(sc->bge_rx_saved_considx !=
   2892   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2893   1.1      fvdl 		struct bge_rx_bd	*cur_rx;
   2894   1.1      fvdl 		u_int32_t		rxidx;
   2895   1.1      fvdl 		struct mbuf		*m = NULL;
   2896   1.1      fvdl 
   2897   1.1      fvdl 		cur_rx = &sc->bge_rdata->
   2898   1.1      fvdl 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2899   1.1      fvdl 
   2900   1.1      fvdl 		rxidx = cur_rx->bge_idx;
   2901  1.44   hannken 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2902   1.1      fvdl 
   2903   1.1      fvdl 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2904   1.1      fvdl 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2905   1.1      fvdl 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2906   1.1      fvdl 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2907   1.1      fvdl 			jumbocnt++;
   2908   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2909   1.1      fvdl 				ifp->if_ierrors++;
   2910   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2911   1.1      fvdl 				continue;
   2912   1.1      fvdl 			}
   2913   1.1      fvdl 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2914   1.1      fvdl 					     NULL)== ENOBUFS) {
   2915   1.1      fvdl 				ifp->if_ierrors++;
   2916   1.1      fvdl 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2917   1.1      fvdl 				continue;
   2918   1.1      fvdl 			}
   2919   1.1      fvdl 		} else {
   2920   1.1      fvdl 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2921   1.1      fvdl 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2922   1.1      fvdl 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2923   1.1      fvdl 			stdcnt++;
   2924   1.1      fvdl 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2925   1.1      fvdl 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2926   1.1      fvdl 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2927   1.1      fvdl 				ifp->if_ierrors++;
   2928   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2929   1.1      fvdl 				continue;
   2930   1.1      fvdl 			}
   2931   1.1      fvdl 			if (bge_newbuf_std(sc, sc->bge_std,
   2932   1.1      fvdl 			    NULL, dmamap) == ENOBUFS) {
   2933   1.1      fvdl 				ifp->if_ierrors++;
   2934   1.1      fvdl 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2935   1.1      fvdl 				continue;
   2936   1.1      fvdl 			}
   2937   1.1      fvdl 		}
   2938   1.1      fvdl 
   2939   1.1      fvdl 		ifp->if_ipackets++;
   2940  1.37  jonathan #ifndef __NO_STRICT_ALIGNMENT
   2941  1.37  jonathan                 /*
   2942  1.37  jonathan                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2943  1.37  jonathan                  * the Rx buffer has the layer-2 header unaligned.
   2944  1.37  jonathan                  * If our CPU requires alignment, re-align by copying.
   2945  1.37  jonathan                  */
   2946  1.37  jonathan 		if (sc->bge_rx_alignment_bug) {
   2947  1.37  jonathan 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2948  1.37  jonathan                                 cur_rx->bge_len);
   2949  1.37  jonathan 			m->m_data += ETHER_ALIGN;
   2950  1.37  jonathan 		}
   2951  1.37  jonathan #endif
   2952  1.87     perry 
   2953  1.54      fvdl 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2954   1.1      fvdl 		m->m_pkthdr.rcvif = ifp;
   2955   1.1      fvdl 
   2956   1.1      fvdl #if NBPFILTER > 0
   2957   1.1      fvdl 		/*
   2958   1.1      fvdl 		 * Handle BPF listeners. Let the BPF user see the packet.
   2959   1.1      fvdl 		 */
   2960   1.1      fvdl 		if (ifp->if_bpf)
   2961   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m);
   2962   1.1      fvdl #endif
   2963   1.1      fvdl 
   2964  1.60  drochner 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2965  1.46  jonathan 
   2966  1.46  jonathan 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2967  1.46  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2968  1.46  jonathan 		/*
   2969  1.46  jonathan 		 * Rx transport checksum-offload may also
   2970  1.46  jonathan 		 * have bugs with packets which, when transmitted,
   2971  1.46  jonathan 		 * were `runts' requiring padding.
   2972  1.46  jonathan 		 */
   2973  1.46  jonathan 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2974  1.46  jonathan 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2975  1.46  jonathan 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2976  1.46  jonathan 			m->m_pkthdr.csum_data =
   2977  1.46  jonathan 			    cur_rx->bge_tcp_udp_csum;
   2978  1.46  jonathan 			m->m_pkthdr.csum_flags |=
   2979  1.46  jonathan 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2980  1.46  jonathan 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2981   1.1      fvdl 		}
   2982   1.1      fvdl 
   2983   1.1      fvdl 		/*
   2984   1.1      fvdl 		 * If we received a packet with a vlan tag, pass it
   2985   1.1      fvdl 		 * to vlan_input() instead of ether_input().
   2986   1.1      fvdl 		 */
   2987  1.85  jdolecek 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   2988  1.85  jdolecek 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   2989   1.1      fvdl 
   2990   1.1      fvdl 		(*ifp->if_input)(ifp, m);
   2991   1.1      fvdl 	}
   2992   1.1      fvdl 
   2993   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2994   1.1      fvdl 	if (stdcnt)
   2995   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2996   1.1      fvdl 	if (jumbocnt)
   2997   1.1      fvdl 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2998   1.1      fvdl }
   2999   1.1      fvdl 
   3000   1.1      fvdl void
   3001   1.1      fvdl bge_txeof(sc)
   3002   1.1      fvdl 	struct bge_softc *sc;
   3003   1.1      fvdl {
   3004   1.1      fvdl 	struct bge_tx_bd *cur_tx = NULL;
   3005   1.1      fvdl 	struct ifnet *ifp;
   3006   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3007   1.1      fvdl 	bus_addr_t offset, toff;
   3008   1.1      fvdl 	bus_size_t tlen;
   3009   1.1      fvdl 	int tosync;
   3010   1.1      fvdl 	struct mbuf *m;
   3011   1.1      fvdl 
   3012   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3013   1.1      fvdl 
   3014   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3015   1.1      fvdl 	    offsetof(struct bge_ring_data, bge_status_block),
   3016   1.1      fvdl 	    sizeof (struct bge_status_block),
   3017   1.1      fvdl 	    BUS_DMASYNC_POSTREAD);
   3018   1.1      fvdl 
   3019   1.1      fvdl 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3020  1.87     perry 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3021   1.1      fvdl 	    sc->bge_tx_saved_considx;
   3022   1.1      fvdl 
   3023   1.1      fvdl 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3024   1.1      fvdl 
   3025   1.1      fvdl 	if (tosync < 0) {
   3026   1.1      fvdl 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3027   1.1      fvdl 		    sizeof (struct bge_tx_bd);
   3028   1.1      fvdl 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3029   1.1      fvdl 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3030   1.1      fvdl 		tosync = -tosync;
   3031   1.1      fvdl 	}
   3032   1.1      fvdl 
   3033   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3034   1.1      fvdl 	    offset, tosync * sizeof (struct bge_tx_bd),
   3035   1.1      fvdl 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3036   1.1      fvdl 
   3037   1.1      fvdl 	/*
   3038   1.1      fvdl 	 * Go through our tx ring and free mbufs for those
   3039   1.1      fvdl 	 * frames that have been sent.
   3040   1.1      fvdl 	 */
   3041   1.1      fvdl 	while (sc->bge_tx_saved_considx !=
   3042   1.1      fvdl 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3043   1.1      fvdl 		u_int32_t		idx = 0;
   3044   1.1      fvdl 
   3045   1.1      fvdl 		idx = sc->bge_tx_saved_considx;
   3046   1.1      fvdl 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3047   1.1      fvdl 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3048   1.1      fvdl 			ifp->if_opackets++;
   3049   1.1      fvdl 		m = sc->bge_cdata.bge_tx_chain[idx];
   3050   1.1      fvdl 		if (m != NULL) {
   3051   1.1      fvdl 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3052   1.1      fvdl 			dma = sc->txdma[idx];
   3053   1.1      fvdl 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3054   1.1      fvdl 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3055   1.1      fvdl 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3056   1.1      fvdl 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3057   1.1      fvdl 			sc->txdma[idx] = NULL;
   3058   1.1      fvdl 
   3059   1.1      fvdl 			m_freem(m);
   3060   1.1      fvdl 		}
   3061   1.1      fvdl 		sc->bge_txcnt--;
   3062   1.1      fvdl 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3063   1.1      fvdl 		ifp->if_timer = 0;
   3064   1.1      fvdl 	}
   3065   1.1      fvdl 
   3066   1.1      fvdl 	if (cur_tx != NULL)
   3067   1.1      fvdl 		ifp->if_flags &= ~IFF_OACTIVE;
   3068   1.1      fvdl }
   3069   1.1      fvdl 
   3070   1.1      fvdl int
   3071   1.1      fvdl bge_intr(xsc)
   3072   1.1      fvdl 	void *xsc;
   3073   1.1      fvdl {
   3074   1.1      fvdl 	struct bge_softc *sc;
   3075   1.1      fvdl 	struct ifnet *ifp;
   3076   1.1      fvdl 
   3077   1.1      fvdl 	sc = xsc;
   3078   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3079   1.1      fvdl 
   3080   1.1      fvdl #ifdef notdef
   3081   1.1      fvdl 	/* Avoid this for now -- checking this register is expensive. */
   3082   1.1      fvdl 	/* Make sure this is really our interrupt. */
   3083   1.1      fvdl 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   3084   1.1      fvdl 		return (0);
   3085   1.1      fvdl #endif
   3086   1.1      fvdl 	/* Ack interrupt and stop others from occuring. */
   3087   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3088   1.1      fvdl 
   3089  1.72   thorpej 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3090  1.72   thorpej 
   3091   1.1      fvdl 	/*
   3092   1.1      fvdl 	 * Process link state changes.
   3093   1.1      fvdl 	 * Grrr. The link status word in the status block does
   3094   1.1      fvdl 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3095   1.1      fvdl 	 * according to all avaibable information. Hence, we have
   3096   1.1      fvdl 	 * to enable MII interrupts in order to properly obtain
   3097   1.1      fvdl 	 * async link changes. Unfortunately, this also means that
   3098   1.1      fvdl 	 * we have to read the MAC status register to detect link
   3099   1.1      fvdl 	 * changes, thereby adding an additional register access to
   3100   1.1      fvdl 	 * the interrupt handler.
   3101   1.1      fvdl 	 */
   3102   1.1      fvdl 
   3103  1.17   thorpej 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3104   1.1      fvdl 		u_int32_t		status;
   3105   1.1      fvdl 
   3106   1.1      fvdl 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3107   1.1      fvdl 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3108   1.1      fvdl 			sc->bge_link = 0;
   3109   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3110   1.1      fvdl 			bge_tick(sc);
   3111   1.1      fvdl 			/* Clear the interrupt */
   3112   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3113   1.1      fvdl 			    BGE_EVTENB_MI_INTERRUPT);
   3114   1.1      fvdl 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   3115   1.1      fvdl 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   3116   1.1      fvdl 			    BRGPHY_INTRS);
   3117   1.1      fvdl 		}
   3118   1.1      fvdl 	} else {
   3119   1.1      fvdl 		if (sc->bge_rdata->bge_status_block.bge_status &
   3120   1.1      fvdl 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3121   1.1      fvdl 			sc->bge_link = 0;
   3122   1.1      fvdl 			callout_stop(&sc->bge_timeout);
   3123   1.1      fvdl 			bge_tick(sc);
   3124   1.1      fvdl 			/* Clear the interrupt */
   3125   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3126  1.44   hannken 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3127  1.44   hannken 			    BGE_MACSTAT_LINK_CHANGED);
   3128   1.1      fvdl 		}
   3129   1.1      fvdl 	}
   3130   1.1      fvdl 
   3131   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING) {
   3132   1.1      fvdl 		/* Check RX return ring producer/consumer */
   3133   1.1      fvdl 		bge_rxeof(sc);
   3134   1.1      fvdl 
   3135   1.1      fvdl 		/* Check TX ring producer/consumer */
   3136   1.1      fvdl 		bge_txeof(sc);
   3137   1.1      fvdl 	}
   3138   1.1      fvdl 
   3139  1.58  jonathan 	if (sc->bge_pending_rxintr_change) {
   3140  1.58  jonathan 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3141  1.58  jonathan 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3142  1.58  jonathan 		uint32_t junk;
   3143  1.58  jonathan 
   3144  1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3145  1.58  jonathan 		DELAY(10);
   3146  1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3147  1.87     perry 
   3148  1.58  jonathan 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3149  1.58  jonathan 		DELAY(10);
   3150  1.58  jonathan 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3151  1.58  jonathan 
   3152  1.58  jonathan 		sc->bge_pending_rxintr_change = 0;
   3153  1.58  jonathan 	}
   3154   1.1      fvdl 	bge_handle_events(sc);
   3155   1.1      fvdl 
   3156   1.1      fvdl 	/* Re-enable interrupts. */
   3157   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3158   1.1      fvdl 
   3159   1.1      fvdl 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3160   1.1      fvdl 		bge_start(ifp);
   3161   1.1      fvdl 
   3162   1.1      fvdl 	return (1);
   3163   1.1      fvdl }
   3164   1.1      fvdl 
   3165   1.1      fvdl void
   3166   1.1      fvdl bge_tick(xsc)
   3167   1.1      fvdl 	void *xsc;
   3168   1.1      fvdl {
   3169   1.1      fvdl 	struct bge_softc *sc = xsc;
   3170   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3171   1.1      fvdl 	struct ifmedia *ifm = NULL;
   3172   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3173   1.1      fvdl 	int s;
   3174   1.1      fvdl 
   3175   1.1      fvdl 	s = splnet();
   3176   1.1      fvdl 
   3177   1.1      fvdl 	bge_stats_update(sc);
   3178   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3179   1.1      fvdl 	if (sc->bge_link) {
   3180   1.1      fvdl 		splx(s);
   3181   1.1      fvdl 		return;
   3182   1.1      fvdl 	}
   3183   1.1      fvdl 
   3184   1.1      fvdl 	if (sc->bge_tbi) {
   3185   1.1      fvdl 		ifm = &sc->bge_ifmedia;
   3186   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3187   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3188   1.1      fvdl 			sc->bge_link++;
   3189   1.1      fvdl 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3190   1.1      fvdl 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3191   1.1      fvdl 				bge_start(ifp);
   3192   1.1      fvdl 		}
   3193   1.1      fvdl 		splx(s);
   3194   1.1      fvdl 		return;
   3195   1.1      fvdl 	}
   3196   1.1      fvdl 
   3197   1.1      fvdl 	mii_tick(mii);
   3198   1.1      fvdl 
   3199   1.1      fvdl 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3200   1.1      fvdl 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3201   1.1      fvdl 		sc->bge_link++;
   3202   1.1      fvdl 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3203   1.1      fvdl 			bge_start(ifp);
   3204   1.1      fvdl 	}
   3205   1.1      fvdl 
   3206   1.1      fvdl 	splx(s);
   3207   1.1      fvdl }
   3208   1.1      fvdl 
   3209   1.1      fvdl void
   3210   1.1      fvdl bge_stats_update(sc)
   3211   1.1      fvdl 	struct bge_softc *sc;
   3212   1.1      fvdl {
   3213   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3214   1.1      fvdl 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3215  1.44   hannken 	bus_size_t rstats = BGE_RX_STATS;
   3216  1.44   hannken 
   3217  1.44   hannken #define READ_RSTAT(sc, stats, stat) \
   3218  1.44   hannken 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3219   1.1      fvdl 
   3220  1.44   hannken 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3221  1.44   hannken 		ifp->if_collisions +=
   3222  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3223  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3224  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3225  1.44   hannken 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3226  1.72   thorpej 
   3227  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3228  1.72   thorpej 			      READ_RSTAT(sc, rstats, outXoffSent));
   3229  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3230  1.72   thorpej 			      READ_RSTAT(sc, rstats, outXonSent));
   3231  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3232  1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3233  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3234  1.72   thorpej 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3235  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3236  1.72   thorpej 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3237  1.72   thorpej 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3238  1.72   thorpej 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3239  1.44   hannken 		return;
   3240  1.44   hannken 	}
   3241  1.44   hannken 
   3242  1.44   hannken #undef READ_RSTAT
   3243   1.1      fvdl #define READ_STAT(sc, stats, stat) \
   3244   1.1      fvdl 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3245   1.1      fvdl 
   3246   1.1      fvdl 	ifp->if_collisions +=
   3247   1.1      fvdl 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3248   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3249   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3250   1.1      fvdl 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3251   1.1      fvdl 	  ifp->if_collisions;
   3252   1.1      fvdl 
   3253  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3254  1.72   thorpej 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3255  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3256  1.72   thorpej 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3257  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3258  1.72   thorpej 		      READ_STAT(sc, stats,
   3259  1.72   thorpej 		      		xoffPauseFramesReceived.bge_addr_lo));
   3260  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3261  1.72   thorpej 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3262  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3263  1.72   thorpej 		      READ_STAT(sc, stats,
   3264  1.72   thorpej 		      		macControlFramesReceived.bge_addr_lo));
   3265  1.72   thorpej 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3266  1.72   thorpej 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3267  1.72   thorpej 
   3268   1.1      fvdl #undef READ_STAT
   3269   1.1      fvdl 
   3270   1.1      fvdl #ifdef notdef
   3271   1.1      fvdl 	ifp->if_collisions +=
   3272   1.1      fvdl 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3273   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3274   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3275   1.1      fvdl 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3276   1.1      fvdl 	   ifp->if_collisions;
   3277   1.1      fvdl #endif
   3278   1.1      fvdl }
   3279   1.1      fvdl 
   3280  1.46  jonathan /*
   3281  1.46  jonathan  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3282  1.46  jonathan  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3283  1.46  jonathan  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3284  1.46  jonathan  * the hardware checksum assist gives incorrect results (possibly
   3285  1.46  jonathan  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3286  1.46  jonathan  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3287  1.46  jonathan  */
   3288  1.46  jonathan static __inline int
   3289  1.46  jonathan bge_cksum_pad(struct mbuf *pkt)
   3290  1.46  jonathan {
   3291  1.46  jonathan 	struct mbuf *last = NULL;
   3292  1.46  jonathan 	int padlen;
   3293  1.46  jonathan 
   3294  1.46  jonathan 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3295  1.46  jonathan 
   3296  1.46  jonathan 	/* if there's only the packet-header and we can pad there, use it. */
   3297  1.46  jonathan 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3298  1.46  jonathan 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3299  1.46  jonathan 		last = pkt;
   3300  1.46  jonathan 	} else {
   3301  1.46  jonathan 		/*
   3302  1.46  jonathan 		 * Walk packet chain to find last mbuf. We will either
   3303  1.87     perry 		 * pad there, or append a new mbuf and pad it
   3304  1.46  jonathan 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3305  1.46  jonathan 		 */
   3306  1.46  jonathan 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3307  1.46  jonathan 	      	       (void) 0; /* do nothing*/
   3308  1.46  jonathan 		}
   3309  1.46  jonathan 
   3310  1.46  jonathan 		/* `last' now points to last in chain. */
   3311  1.46  jonathan 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3312  1.46  jonathan 			(void) 0; /* we can pad here, in-place. */
   3313  1.46  jonathan 		} else {
   3314  1.46  jonathan 			/* Allocate new empty mbuf, pad it. Compact later. */
   3315  1.46  jonathan 			struct mbuf *n;
   3316  1.46  jonathan 			MGET(n, M_DONTWAIT, MT_DATA);
   3317  1.46  jonathan 			n->m_len = 0;
   3318  1.46  jonathan 			last->m_next = n;
   3319  1.46  jonathan 			last = n;
   3320  1.46  jonathan 		}
   3321  1.46  jonathan 	}
   3322  1.46  jonathan 
   3323  1.46  jonathan #ifdef DEBUG
   3324  1.48   hannken 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3325  1.47      cjep 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3326  1.46  jonathan #endif
   3327  1.46  jonathan 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3328  1.46  jonathan 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3329  1.46  jonathan 	last->m_len += padlen;
   3330  1.46  jonathan 	pkt->m_pkthdr.len += padlen;
   3331  1.46  jonathan 	return 0;
   3332  1.46  jonathan }
   3333  1.45  jonathan 
   3334  1.45  jonathan /*
   3335  1.45  jonathan  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3336  1.45  jonathan  */
   3337  1.45  jonathan static __inline int
   3338  1.45  jonathan bge_compact_dma_runt(struct mbuf *pkt)
   3339  1.45  jonathan {
   3340  1.45  jonathan 	struct mbuf	*m, *prev;
   3341  1.45  jonathan 	int 		totlen, prevlen;
   3342  1.45  jonathan 
   3343  1.45  jonathan 	prev = NULL;
   3344  1.45  jonathan 	totlen = 0;
   3345  1.45  jonathan 	prevlen = -1;
   3346  1.45  jonathan 
   3347  1.45  jonathan 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3348  1.45  jonathan 		int mlen = m->m_len;
   3349  1.45  jonathan 		int shortfall = 8 - mlen ;
   3350  1.45  jonathan 
   3351  1.45  jonathan 		totlen += mlen;
   3352  1.45  jonathan 		if (mlen == 0) {
   3353  1.45  jonathan 			continue;
   3354  1.45  jonathan 		}
   3355  1.45  jonathan 		if (mlen >= 8)
   3356  1.45  jonathan 			continue;
   3357  1.45  jonathan 
   3358  1.45  jonathan 		/* If we get here, mbuf data is too small for DMA engine.
   3359  1.45  jonathan 		 * Try to fix by shuffling data to prev or next in chain.
   3360  1.45  jonathan 		 * If that fails, do a compacting deep-copy of the whole chain.
   3361  1.45  jonathan 		 */
   3362  1.45  jonathan 
   3363  1.45  jonathan 		/* Internal frag. If fits in prev, copy it there. */
   3364  1.45  jonathan 		if (prev && !M_READONLY(prev) &&
   3365  1.45  jonathan 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3366  1.45  jonathan 		  	bcopy(m->m_data,
   3367  1.45  jonathan 			      prev->m_data+prev->m_len,
   3368  1.45  jonathan 			      mlen);
   3369  1.45  jonathan 			prev->m_len += mlen;
   3370  1.45  jonathan 			m->m_len = 0;
   3371  1.45  jonathan 			/* XXX stitch chain */
   3372  1.45  jonathan 			prev->m_next = m_free(m);
   3373  1.45  jonathan 			m = prev;
   3374  1.45  jonathan 			continue;
   3375  1.45  jonathan 		}
   3376  1.45  jonathan 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3377  1.45  jonathan 			     M_TRAILINGSPACE(m) >= shortfall &&
   3378  1.45  jonathan 			     m->m_next->m_len >= (8 + shortfall)) {
   3379  1.45  jonathan 		    /* m is writable and have enough data in next, pull up. */
   3380  1.45  jonathan 
   3381  1.45  jonathan 		  	bcopy(m->m_next->m_data,
   3382  1.45  jonathan 			      m->m_data+m->m_len,
   3383  1.45  jonathan 			      shortfall);
   3384  1.45  jonathan 			m->m_len += shortfall;
   3385  1.45  jonathan 			m->m_next->m_len -= shortfall;
   3386  1.45  jonathan 			m->m_next->m_data += shortfall;
   3387  1.45  jonathan 		}
   3388  1.45  jonathan 		else if (m->m_next == NULL || 1) {
   3389  1.45  jonathan 		  	/* Got a runt at the very end of the packet.
   3390  1.45  jonathan 			 * borrow data from the tail of the preceding mbuf and
   3391  1.45  jonathan 			 * update its length in-place. (The original data is still
   3392  1.45  jonathan 			 * valid, so we can do this even if prev is not writable.)
   3393  1.45  jonathan 			 */
   3394  1.45  jonathan 
   3395  1.45  jonathan 			/* if we'd make prev a runt, just move all of its data. */
   3396  1.45  jonathan #ifdef DEBUG
   3397  1.45  jonathan 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3398  1.45  jonathan 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3399  1.45  jonathan #endif
   3400  1.45  jonathan 			if ((prev->m_len - shortfall) < 8)
   3401  1.45  jonathan 				shortfall = prev->m_len;
   3402  1.87     perry 
   3403  1.45  jonathan #ifdef notyet	/* just do the safe slow thing for now */
   3404  1.45  jonathan 			if (!M_READONLY(m)) {
   3405  1.45  jonathan 				if (M_LEADINGSPACE(m) < shorfall) {
   3406  1.45  jonathan 					void *m_dat;
   3407  1.45  jonathan 					m_dat = (m->m_flags & M_PKTHDR) ?
   3408  1.45  jonathan 					  m->m_pktdat : m->dat;
   3409  1.45  jonathan 					memmove(m_dat, mtod(m, void*), m->m_len);
   3410  1.45  jonathan 					m->m_data = m_dat;
   3411  1.45  jonathan 				    }
   3412  1.45  jonathan 			} else
   3413  1.45  jonathan #endif	/* just do the safe slow thing */
   3414  1.45  jonathan 			{
   3415  1.45  jonathan 				struct mbuf * n = NULL;
   3416  1.45  jonathan 				int newprevlen = prev->m_len - shortfall;
   3417  1.45  jonathan 
   3418  1.45  jonathan 				MGET(n, M_NOWAIT, MT_DATA);
   3419  1.45  jonathan 				if (n == NULL)
   3420  1.45  jonathan 				   return ENOBUFS;
   3421  1.45  jonathan 				KASSERT(m->m_len + shortfall < MLEN
   3422  1.45  jonathan 					/*,
   3423  1.45  jonathan 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3424  1.45  jonathan 
   3425  1.45  jonathan 				/* first copy the data we're stealing from prev */
   3426  1.45  jonathan 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3427  1.45  jonathan 
   3428  1.45  jonathan 				/* update prev->m_len accordingly */
   3429  1.45  jonathan 				prev->m_len -= shortfall;
   3430  1.45  jonathan 
   3431  1.45  jonathan 				/* copy data from runt m */
   3432  1.45  jonathan 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3433  1.45  jonathan 
   3434  1.45  jonathan 				/* n holds what we stole from prev, plus m */
   3435  1.45  jonathan 				n->m_len = shortfall + m->m_len;
   3436  1.45  jonathan 
   3437  1.45  jonathan 				/* stitch n into chain and free m */
   3438  1.45  jonathan 				n->m_next = m->m_next;
   3439  1.45  jonathan 				prev->m_next = n;
   3440  1.45  jonathan 				/* KASSERT(m->m_next == NULL); */
   3441  1.45  jonathan 				m->m_next = NULL;
   3442  1.45  jonathan 				m_free(m);
   3443  1.45  jonathan 				m = n;	/* for continuing loop */
   3444  1.45  jonathan 			}
   3445  1.45  jonathan 		}
   3446  1.45  jonathan 		prevlen = m->m_len;
   3447  1.45  jonathan 	}
   3448  1.45  jonathan 	return 0;
   3449  1.45  jonathan }
   3450  1.45  jonathan 
   3451   1.1      fvdl /*
   3452   1.1      fvdl  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3453   1.1      fvdl  * pointers to descriptors.
   3454   1.1      fvdl  */
   3455   1.1      fvdl int
   3456   1.1      fvdl bge_encap(sc, m_head, txidx)
   3457   1.1      fvdl 	struct bge_softc *sc;
   3458   1.1      fvdl 	struct mbuf *m_head;
   3459   1.1      fvdl 	u_int32_t *txidx;
   3460   1.1      fvdl {
   3461   1.1      fvdl 	struct bge_tx_bd	*f = NULL;
   3462   1.1      fvdl 	u_int32_t		frag, cur, cnt = 0;
   3463   1.1      fvdl 	u_int16_t		csum_flags = 0;
   3464  1.95  jonathan 	u_int16_t		txbd_tso_flags = 0;
   3465   1.1      fvdl 	struct txdmamap_pool_entry *dma;
   3466   1.1      fvdl 	bus_dmamap_t dmamap;
   3467   1.1      fvdl 	int			i = 0;
   3468  1.29    itojun 	struct m_tag		*mtag;
   3469  1.95  jonathan 	int			use_tso, maxsegsize, error;
   3470  1.95  jonathan 
   3471   1.1      fvdl 	cur = frag = *txidx;
   3472   1.1      fvdl 
   3473   1.1      fvdl 	if (m_head->m_pkthdr.csum_flags) {
   3474   1.1      fvdl 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3475   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3476   1.8   thorpej 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3477   1.1      fvdl 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3478   1.1      fvdl 	}
   3479   1.1      fvdl 
   3480  1.87     perry 	/*
   3481  1.46  jonathan 	 * If we were asked to do an outboard checksum, and the NIC
   3482  1.46  jonathan 	 * has the bug where it sometimes adds in the Ethernet padding,
   3483  1.46  jonathan 	 * explicitly pad with zeros so the cksum will be correct either way.
   3484  1.46  jonathan 	 * (For now, do this for all chip versions, until newer
   3485  1.46  jonathan 	 * are confirmed to not require the workaround.)
   3486  1.46  jonathan 	 */
   3487  1.46  jonathan 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3488  1.46  jonathan #ifdef notyet
   3489  1.46  jonathan 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3490  1.87     perry #endif
   3491  1.46  jonathan 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3492  1.46  jonathan 		goto check_dma_bug;
   3493  1.46  jonathan 
   3494  1.95  jonathan 	if (bge_cksum_pad(m_head) != 0) {
   3495  1.46  jonathan 	    return ENOBUFS;
   3496  1.95  jonathan 	}
   3497  1.46  jonathan 
   3498  1.46  jonathan check_dma_bug:
   3499  1.25  jonathan 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3500  1.29    itojun 		goto doit;
   3501  1.25  jonathan 	/*
   3502  1.25  jonathan 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3503  1.87     perry 	 * less than eight bytes.  If we encounter a teeny mbuf
   3504  1.25  jonathan 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3505  1.25  jonathan 	 */
   3506  1.45  jonathan 	if (bge_compact_dma_runt(m_head) != 0)
   3507  1.45  jonathan 		return ENOBUFS;
   3508  1.25  jonathan 
   3509  1.25  jonathan doit:
   3510   1.1      fvdl 	dma = SLIST_FIRST(&sc->txdma_list);
   3511   1.1      fvdl 	if (dma == NULL)
   3512   1.1      fvdl 		return ENOBUFS;
   3513   1.1      fvdl 	dmamap = dma->dmamap;
   3514   1.1      fvdl 
   3515   1.1      fvdl 	/*
   3516  1.95  jonathan 	 * Set up any necessary TSO state before we start packing...
   3517  1.95  jonathan 	 */
   3518  1.95  jonathan 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3519  1.95  jonathan 	if (!use_tso) {
   3520  1.95  jonathan 		maxsegsize = 0;
   3521  1.95  jonathan 	} else {	/* TSO setup */
   3522  1.95  jonathan 		unsigned  mss;
   3523  1.95  jonathan 		struct ether_header *eh;
   3524  1.95  jonathan 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3525  1.95  jonathan 		struct mbuf * m0 = m_head;
   3526  1.95  jonathan 		struct ip *ip;
   3527  1.95  jonathan 		struct tcphdr *th;
   3528  1.95  jonathan 		int iphl, hlen;
   3529  1.95  jonathan 
   3530  1.95  jonathan 		/*
   3531  1.95  jonathan 		 * XXX It would be nice if the mbuf pkthdr had offset
   3532  1.95  jonathan 		 * fields for the protocol headers.
   3533  1.95  jonathan 		 */
   3534  1.95  jonathan 
   3535  1.95  jonathan 		eh = mtod(m0, struct ether_header *);
   3536  1.95  jonathan 		switch (htons(eh->ether_type)) {
   3537  1.95  jonathan 		case ETHERTYPE_IP:
   3538  1.95  jonathan 			offset = ETHER_HDR_LEN;
   3539  1.95  jonathan 			break;
   3540  1.95  jonathan 
   3541  1.95  jonathan 		case ETHERTYPE_VLAN:
   3542  1.95  jonathan 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3543  1.95  jonathan 			break;
   3544  1.95  jonathan 
   3545  1.95  jonathan 		default:
   3546  1.95  jonathan 			/*
   3547  1.95  jonathan 			 * Don't support this protocol or encapsulation.
   3548  1.95  jonathan 			 */
   3549  1.95  jonathan 			return (ENOBUFS);
   3550  1.95  jonathan 		}
   3551  1.95  jonathan 
   3552  1.95  jonathan 		/*
   3553  1.95  jonathan 		 * TCP/IP headers are in the first mbuf; we can do
   3554  1.95  jonathan 		 * this the easy way.
   3555  1.95  jonathan 		 */
   3556  1.95  jonathan 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3557  1.95  jonathan 		hlen = iphl + offset;
   3558  1.95  jonathan 		if (__predict_false(m0->m_len <
   3559  1.95  jonathan 				    (hlen + sizeof(struct tcphdr)))) {
   3560  1.95  jonathan 
   3561  1.95  jonathan 			  printf("TSO: hard case m0->m_len == %d <"
   3562  1.96    martin 				 " ip/tcp hlen %zd, not handled yet\n",
   3563  1.95  jonathan 				 m0->m_len, hlen+ sizeof(struct tcphdr));
   3564  1.95  jonathan #ifdef NOTYET
   3565  1.95  jonathan 			/*
   3566  1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: untested.
   3567  1.95  jonathan 			 * how to force  this branch to be taken?
   3568  1.95  jonathan 			 */
   3569  1.95  jonathan 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3570  1.95  jonathan 
   3571  1.95  jonathan 			m_copydata(m0, offset, sizeof(ip), &ip);
   3572  1.95  jonathan 			m_copydata(m0, hlen, sizeof(th), &th);
   3573  1.95  jonathan 
   3574  1.95  jonathan 			ip.ip_len = 0;
   3575  1.95  jonathan 
   3576  1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3577  1.95  jonathan 			    sizeof(ip.ip_len), &ip.ip_len);
   3578  1.95  jonathan 
   3579  1.95  jonathan 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3580  1.95  jonathan 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3581  1.95  jonathan 
   3582  1.95  jonathan 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3583  1.95  jonathan 			    sizeof(th.th_sum), &th.th_sum);
   3584  1.95  jonathan 
   3585  1.95  jonathan 			hlen += th.th_off << 2;
   3586  1.95  jonathan 			iptcp_opt_words	= hlen;
   3587  1.95  jonathan #else
   3588  1.95  jonathan 			/*
   3589  1.95  jonathan 			 * if_wm "hard" case not yet supported, can we not
   3590  1.95  jonathan 			 * mandate it out of existence?
   3591  1.95  jonathan 			 */
   3592  1.95  jonathan 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3593  1.95  jonathan 
   3594  1.95  jonathan 			return ENOBUFS;
   3595  1.95  jonathan #endif
   3596  1.95  jonathan 		} else {
   3597  1.95  jonathan 			ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   3598  1.95  jonathan 			th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   3599  1.95  jonathan 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3600  1.95  jonathan 
   3601  1.95  jonathan 			/* Total IP/TCP options, in 32-bit words */
   3602  1.95  jonathan 			iptcp_opt_words = (ip_tcp_hlen
   3603  1.95  jonathan 					   - sizeof(struct tcphdr)
   3604  1.95  jonathan 					   - sizeof(struct ip)) >> 2;
   3605  1.95  jonathan 		}
   3606  1.95  jonathan 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3607  1.95  jonathan 			th->th_sum = 0;
   3608  1.95  jonathan 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3609  1.95  jonathan 		} else {
   3610  1.95  jonathan 			/*
   3611  1.95  jonathan 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3612  1.95  jonathan 			 * Requires TSO firmware patch for 5701/5703/5704.
   3613  1.95  jonathan 			 */
   3614  1.95  jonathan 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3615  1.95  jonathan 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3616  1.95  jonathan 		}
   3617  1.95  jonathan 
   3618  1.95  jonathan 		mss = m_head->m_pkthdr.segsz;
   3619  1.95  jonathan 		txbd_tso_flags |=
   3620  1.95  jonathan 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3621  1.95  jonathan 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3622  1.95  jonathan 
   3623  1.95  jonathan 		/*
   3624  1.95  jonathan 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3625  1.95  jonathan 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3626  1.95  jonathan 		 * the NIC copies 40 bytes of IP/TCP header from the
   3627  1.95  jonathan 		 * supplied header into the IP/TCP header portion of
   3628  1.95  jonathan 		 * each post-TSO-segment. If the supplied packet has IP or
   3629  1.95  jonathan 		 * TCP options, we need to tell the NIC to copy those extra
   3630  1.95  jonathan 		 * bytes into each  post-TSO header, in addition to the normal
   3631  1.95  jonathan 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3632  1.95  jonathan 		 * Unfortunately, the driver encoding of option length
   3633  1.95  jonathan 		 * varies across different ASIC families.
   3634  1.95  jonathan 		 */
   3635  1.95  jonathan 		tcp_seg_flags = 0;
   3636  1.95  jonathan 		if (iptcp_opt_words) {
   3637  1.95  jonathan 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3638  1.95  jonathan 				tcp_seg_flags =
   3639  1.95  jonathan 					iptcp_opt_words << 11;
   3640  1.95  jonathan 			} else {
   3641  1.95  jonathan 				txbd_tso_flags |=
   3642  1.95  jonathan 					iptcp_opt_words << 12;
   3643  1.95  jonathan 			}
   3644  1.95  jonathan 		}
   3645  1.95  jonathan 		maxsegsize = mss | tcp_seg_flags;
   3646  1.95  jonathan 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3647  1.95  jonathan 
   3648  1.95  jonathan 	}	/* TSO setup */
   3649  1.95  jonathan 
   3650  1.95  jonathan 	/*
   3651   1.1      fvdl 	 * Start packing the mbufs in this chain into
   3652   1.1      fvdl 	 * the fragment pointers. Stop when we run out
   3653   1.1      fvdl 	 * of fragments or hit the end of the mbuf chain.
   3654   1.1      fvdl 	 */
   3655  1.95  jonathan 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3656  1.95  jonathan 	    BUS_DMA_NOWAIT);
   3657  1.95  jonathan 	if (error) {
   3658   1.1      fvdl 		return(ENOBUFS);
   3659  1.95  jonathan 	}
   3660  1.95  jonathan 
   3661  1.95  jonathan 	mtag = sc->ethercom.ec_nvlans ?
   3662  1.95  jonathan 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3663   1.1      fvdl 
   3664   1.6   thorpej 
   3665  1.95  jonathan 	/* Iterate over dmap-map fragments. */
   3666   1.1      fvdl 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3667   1.1      fvdl 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3668   1.1      fvdl 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3669   1.1      fvdl 			break;
   3670  1.95  jonathan 
   3671   1.1      fvdl 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3672   1.1      fvdl 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3673  1.95  jonathan 
   3674  1.95  jonathan 		/*
   3675  1.95  jonathan 		 * For 5751 and follow-ons, for TSO we must turn
   3676  1.95  jonathan 		 * off checksum-assist flag in the tx-descr, and
   3677  1.95  jonathan 		 * supply the ASIC-revision-specific encoding
   3678  1.95  jonathan 		 * of TSO flags and segsize.
   3679  1.95  jonathan 		 */
   3680  1.95  jonathan 		if (use_tso) {
   3681  1.95  jonathan 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3682  1.95  jonathan 				f->bge_rsvd = maxsegsize;
   3683  1.95  jonathan 				f->bge_flags = csum_flags | txbd_tso_flags;
   3684  1.95  jonathan 			} else {
   3685  1.95  jonathan 				f->bge_rsvd = 0;
   3686  1.95  jonathan 				f->bge_flags =
   3687  1.95  jonathan 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3688  1.95  jonathan 			}
   3689  1.95  jonathan 		} else {
   3690  1.95  jonathan 			f->bge_rsvd = 0;
   3691  1.95  jonathan 			f->bge_flags = csum_flags;
   3692  1.95  jonathan 		}
   3693   1.1      fvdl 
   3694  1.28    itojun 		if (mtag != NULL) {
   3695   1.1      fvdl 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3696  1.85  jdolecek 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3697   1.1      fvdl 		} else {
   3698   1.1      fvdl 			f->bge_vlan_tag = 0;
   3699   1.1      fvdl 		}
   3700   1.1      fvdl 		/*
   3701   1.1      fvdl 		 * Sanity check: avoid coming within 16 descriptors
   3702   1.1      fvdl 		 * of the end of the ring.
   3703   1.1      fvdl 		 */
   3704  1.95  jonathan 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
   3705  1.95  jonathan 			BGE_TSO_PRINTF(("%s: "
   3706  1.95  jonathan 			    " dmamap_load_mbuf too close to ring wrap\n",
   3707  1.95  jonathan 			    sc->bge_dev.dv_xname));
   3708   1.1      fvdl 			return(ENOBUFS);
   3709  1.95  jonathan 		}
   3710   1.1      fvdl 		cur = frag;
   3711   1.1      fvdl 		BGE_INC(frag, BGE_TX_RING_CNT);
   3712   1.1      fvdl 		cnt++;
   3713   1.1      fvdl 	}
   3714   1.1      fvdl 
   3715  1.95  jonathan 	if (i < dmamap->dm_nsegs) {
   3716  1.95  jonathan 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3717  1.95  jonathan 		    sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
   3718   1.1      fvdl 		return ENOBUFS;
   3719  1.95  jonathan 	}
   3720   1.1      fvdl 
   3721   1.1      fvdl 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3722   1.1      fvdl 	    BUS_DMASYNC_PREWRITE);
   3723   1.1      fvdl 
   3724  1.95  jonathan 	if (frag == sc->bge_tx_saved_considx) {
   3725  1.95  jonathan 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3726  1.95  jonathan 		    sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
   3727  1.95  jonathan 
   3728   1.1      fvdl 		return(ENOBUFS);
   3729  1.95  jonathan 	}
   3730   1.1      fvdl 
   3731   1.1      fvdl 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3732   1.1      fvdl 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3733   1.1      fvdl 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3734   1.1      fvdl 	sc->txdma[cur] = dma;
   3735   1.1      fvdl 	sc->bge_txcnt += cnt;
   3736   1.1      fvdl 
   3737   1.1      fvdl 	*txidx = frag;
   3738   1.1      fvdl 
   3739   1.1      fvdl 	return(0);
   3740   1.1      fvdl }
   3741   1.1      fvdl 
   3742   1.1      fvdl /*
   3743   1.1      fvdl  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3744   1.1      fvdl  * to the mbuf data regions directly in the transmit descriptors.
   3745   1.1      fvdl  */
   3746   1.1      fvdl void
   3747   1.1      fvdl bge_start(ifp)
   3748   1.1      fvdl 	struct ifnet *ifp;
   3749   1.1      fvdl {
   3750   1.1      fvdl 	struct bge_softc *sc;
   3751   1.1      fvdl 	struct mbuf *m_head = NULL;
   3752  1.94  jonathan 	u_int32_t prodidx;
   3753   1.1      fvdl 	int pkts = 0;
   3754   1.1      fvdl 
   3755   1.1      fvdl 	sc = ifp->if_softc;
   3756   1.1      fvdl 
   3757   1.1      fvdl 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3758   1.1      fvdl 		return;
   3759   1.1      fvdl 
   3760  1.94  jonathan 	prodidx = sc->bge_tx_prodidx;
   3761   1.1      fvdl 
   3762   1.1      fvdl 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3763   1.1      fvdl 		IFQ_POLL(&ifp->if_snd, m_head);
   3764   1.1      fvdl 		if (m_head == NULL)
   3765   1.1      fvdl 			break;
   3766   1.1      fvdl 
   3767   1.1      fvdl #if 0
   3768   1.1      fvdl 		/*
   3769   1.1      fvdl 		 * XXX
   3770   1.1      fvdl 		 * safety overkill.  If this is a fragmented packet chain
   3771   1.1      fvdl 		 * with delayed TCP/UDP checksums, then only encapsulate
   3772   1.1      fvdl 		 * it if we have enough descriptors to handle the entire
   3773   1.1      fvdl 		 * chain at once.
   3774   1.1      fvdl 		 * (paranoia -- may not actually be needed)
   3775   1.1      fvdl 		 */
   3776   1.1      fvdl 		if (m_head->m_flags & M_FIRSTFRAG &&
   3777   1.1      fvdl 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3778   1.1      fvdl 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3779  1.86   thorpej 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3780   1.1      fvdl 				ifp->if_flags |= IFF_OACTIVE;
   3781   1.1      fvdl 				break;
   3782   1.1      fvdl 			}
   3783   1.1      fvdl 		}
   3784   1.1      fvdl #endif
   3785   1.1      fvdl 
   3786   1.1      fvdl 		/*
   3787   1.1      fvdl 		 * Pack the data into the transmit ring. If we
   3788   1.1      fvdl 		 * don't have room, set the OACTIVE flag and wait
   3789   1.1      fvdl 		 * for the NIC to drain the ring.
   3790   1.1      fvdl 		 */
   3791   1.1      fvdl 		if (bge_encap(sc, m_head, &prodidx)) {
   3792  1.95  jonathan 			printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
   3793   1.1      fvdl 			ifp->if_flags |= IFF_OACTIVE;
   3794   1.1      fvdl 			break;
   3795   1.1      fvdl 		}
   3796   1.1      fvdl 
   3797   1.1      fvdl 		/* now we are committed to transmit the packet */
   3798   1.1      fvdl 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3799   1.1      fvdl 		pkts++;
   3800   1.1      fvdl 
   3801   1.1      fvdl #if NBPFILTER > 0
   3802   1.1      fvdl 		/*
   3803   1.1      fvdl 		 * If there's a BPF listener, bounce a copy of this frame
   3804   1.1      fvdl 		 * to him.
   3805   1.1      fvdl 		 */
   3806   1.1      fvdl 		if (ifp->if_bpf)
   3807   1.1      fvdl 			bpf_mtap(ifp->if_bpf, m_head);
   3808   1.1      fvdl #endif
   3809   1.1      fvdl 	}
   3810   1.1      fvdl 	if (pkts == 0)
   3811   1.1      fvdl 		return;
   3812   1.1      fvdl 
   3813   1.1      fvdl 	/* Transmit */
   3814   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3815  1.29    itojun 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3816  1.29    itojun 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3817   1.1      fvdl 
   3818  1.94  jonathan 	sc->bge_tx_prodidx = prodidx;
   3819  1.94  jonathan 
   3820   1.1      fvdl 	/*
   3821   1.1      fvdl 	 * Set a timeout in case the chip goes out to lunch.
   3822   1.1      fvdl 	 */
   3823   1.1      fvdl 	ifp->if_timer = 5;
   3824   1.1      fvdl }
   3825   1.1      fvdl 
   3826   1.1      fvdl int
   3827   1.1      fvdl bge_init(ifp)
   3828   1.1      fvdl 	struct ifnet *ifp;
   3829   1.1      fvdl {
   3830   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3831   1.1      fvdl 	u_int16_t *m;
   3832   1.1      fvdl 	int s, error;
   3833   1.1      fvdl 
   3834   1.1      fvdl 	s = splnet();
   3835   1.1      fvdl 
   3836   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3837   1.1      fvdl 
   3838   1.1      fvdl 	/* Cancel pending I/O and flush buffers. */
   3839   1.1      fvdl 	bge_stop(sc);
   3840   1.1      fvdl 	bge_reset(sc);
   3841   1.1      fvdl 	bge_chipinit(sc);
   3842   1.1      fvdl 
   3843   1.1      fvdl 	/*
   3844   1.1      fvdl 	 * Init the various state machines, ring
   3845   1.1      fvdl 	 * control blocks and firmware.
   3846   1.1      fvdl 	 */
   3847   1.1      fvdl 	error = bge_blockinit(sc);
   3848   1.1      fvdl 	if (error != 0) {
   3849   1.1      fvdl 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3850   1.1      fvdl 		    error);
   3851   1.1      fvdl 		splx(s);
   3852   1.1      fvdl 		return error;
   3853   1.1      fvdl 	}
   3854   1.1      fvdl 
   3855   1.1      fvdl 	ifp = &sc->ethercom.ec_if;
   3856   1.1      fvdl 
   3857   1.1      fvdl 	/* Specify MTU. */
   3858   1.1      fvdl 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3859  1.93    tsarna 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3860   1.1      fvdl 
   3861   1.1      fvdl 	/* Load our MAC address. */
   3862   1.1      fvdl 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3863   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3864   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3865   1.1      fvdl 
   3866   1.1      fvdl 	/* Enable or disable promiscuous mode as needed. */
   3867   1.1      fvdl 	if (ifp->if_flags & IFF_PROMISC) {
   3868   1.1      fvdl 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3869   1.1      fvdl 	} else {
   3870   1.1      fvdl 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3871   1.1      fvdl 	}
   3872   1.1      fvdl 
   3873   1.1      fvdl 	/* Program multicast filter. */
   3874   1.1      fvdl 	bge_setmulti(sc);
   3875   1.1      fvdl 
   3876   1.1      fvdl 	/* Init RX ring. */
   3877   1.1      fvdl 	bge_init_rx_ring_std(sc);
   3878   1.1      fvdl 
   3879   1.1      fvdl 	/* Init jumbo RX ring. */
   3880   1.1      fvdl 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3881   1.1      fvdl 		bge_init_rx_ring_jumbo(sc);
   3882   1.1      fvdl 
   3883   1.1      fvdl 	/* Init our RX return ring index */
   3884   1.1      fvdl 	sc->bge_rx_saved_considx = 0;
   3885   1.1      fvdl 
   3886   1.1      fvdl 	/* Init TX ring. */
   3887   1.1      fvdl 	bge_init_tx_ring(sc);
   3888   1.1      fvdl 
   3889   1.1      fvdl 	/* Turn on transmitter */
   3890   1.1      fvdl 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3891   1.1      fvdl 
   3892   1.1      fvdl 	/* Turn on receiver */
   3893   1.1      fvdl 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3894   1.1      fvdl 
   3895  1.71   thorpej 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3896  1.71   thorpej 
   3897   1.1      fvdl 	/* Tell firmware we're alive. */
   3898   1.1      fvdl 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3899   1.1      fvdl 
   3900   1.1      fvdl 	/* Enable host interrupts. */
   3901   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3902   1.1      fvdl 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3903   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3904   1.1      fvdl 
   3905   1.1      fvdl 	bge_ifmedia_upd(ifp);
   3906   1.1      fvdl 
   3907   1.1      fvdl 	ifp->if_flags |= IFF_RUNNING;
   3908   1.1      fvdl 	ifp->if_flags &= ~IFF_OACTIVE;
   3909   1.1      fvdl 
   3910   1.1      fvdl 	splx(s);
   3911   1.1      fvdl 
   3912   1.1      fvdl 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3913   1.1      fvdl 
   3914   1.1      fvdl 	return 0;
   3915   1.1      fvdl }
   3916   1.1      fvdl 
   3917   1.1      fvdl /*
   3918   1.1      fvdl  * Set media options.
   3919   1.1      fvdl  */
   3920   1.1      fvdl int
   3921   1.1      fvdl bge_ifmedia_upd(ifp)
   3922   1.1      fvdl 	struct ifnet *ifp;
   3923   1.1      fvdl {
   3924   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3925   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3926   1.1      fvdl 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3927   1.1      fvdl 
   3928   1.1      fvdl 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3929   1.1      fvdl 	if (sc->bge_tbi) {
   3930   1.1      fvdl 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3931   1.1      fvdl 			return(EINVAL);
   3932   1.1      fvdl 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3933   1.1      fvdl 		case IFM_AUTO:
   3934   1.1      fvdl 			break;
   3935   1.1      fvdl 		case IFM_1000_SX:
   3936   1.1      fvdl 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3937   1.1      fvdl 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3938   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3939   1.1      fvdl 			} else {
   3940   1.1      fvdl 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3941   1.1      fvdl 				    BGE_MACMODE_HALF_DUPLEX);
   3942   1.1      fvdl 			}
   3943   1.1      fvdl 			break;
   3944   1.1      fvdl 		default:
   3945   1.1      fvdl 			return(EINVAL);
   3946   1.1      fvdl 		}
   3947  1.69   thorpej 		/* XXX 802.3x flow control for 1000BASE-SX */
   3948   1.1      fvdl 		return(0);
   3949   1.1      fvdl 	}
   3950   1.1      fvdl 
   3951   1.1      fvdl 	sc->bge_link = 0;
   3952   1.1      fvdl 	mii_mediachg(mii);
   3953   1.1      fvdl 
   3954   1.1      fvdl 	return(0);
   3955   1.1      fvdl }
   3956   1.1      fvdl 
   3957   1.1      fvdl /*
   3958   1.1      fvdl  * Report current media status.
   3959   1.1      fvdl  */
   3960   1.1      fvdl void
   3961   1.1      fvdl bge_ifmedia_sts(ifp, ifmr)
   3962   1.1      fvdl 	struct ifnet *ifp;
   3963   1.1      fvdl 	struct ifmediareq *ifmr;
   3964   1.1      fvdl {
   3965   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3966   1.1      fvdl 	struct mii_data *mii = &sc->bge_mii;
   3967   1.1      fvdl 
   3968   1.1      fvdl 	if (sc->bge_tbi) {
   3969   1.1      fvdl 		ifmr->ifm_status = IFM_AVALID;
   3970   1.1      fvdl 		ifmr->ifm_active = IFM_ETHER;
   3971   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3972   1.1      fvdl 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3973   1.1      fvdl 			ifmr->ifm_status |= IFM_ACTIVE;
   3974   1.1      fvdl 		ifmr->ifm_active |= IFM_1000_SX;
   3975   1.1      fvdl 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3976   1.1      fvdl 			ifmr->ifm_active |= IFM_HDX;
   3977   1.1      fvdl 		else
   3978   1.1      fvdl 			ifmr->ifm_active |= IFM_FDX;
   3979   1.1      fvdl 		return;
   3980   1.1      fvdl 	}
   3981   1.1      fvdl 
   3982   1.1      fvdl 	mii_pollstat(mii);
   3983   1.1      fvdl 	ifmr->ifm_status = mii->mii_media_status;
   3984  1.69   thorpej 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   3985  1.69   thorpej 	    sc->bge_flowflags;
   3986   1.1      fvdl }
   3987   1.1      fvdl 
   3988   1.1      fvdl int
   3989   1.1      fvdl bge_ioctl(ifp, command, data)
   3990   1.1      fvdl 	struct ifnet *ifp;
   3991   1.1      fvdl 	u_long command;
   3992   1.1      fvdl 	caddr_t data;
   3993   1.1      fvdl {
   3994   1.1      fvdl 	struct bge_softc *sc = ifp->if_softc;
   3995   1.1      fvdl 	struct ifreq *ifr = (struct ifreq *) data;
   3996   1.1      fvdl 	int s, error = 0;
   3997   1.1      fvdl 	struct mii_data *mii;
   3998   1.1      fvdl 
   3999   1.1      fvdl 	s = splnet();
   4000   1.1      fvdl 
   4001   1.1      fvdl 	switch(command) {
   4002   1.1      fvdl 	case SIOCSIFFLAGS:
   4003   1.1      fvdl 		if (ifp->if_flags & IFF_UP) {
   4004   1.1      fvdl 			/*
   4005   1.1      fvdl 			 * If only the state of the PROMISC flag changed,
   4006   1.1      fvdl 			 * then just use the 'set promisc mode' command
   4007   1.1      fvdl 			 * instead of reinitializing the entire NIC. Doing
   4008   1.1      fvdl 			 * a full re-init means reloading the firmware and
   4009   1.1      fvdl 			 * waiting for it to start up, which may take a
   4010   1.1      fvdl 			 * second or two.
   4011   1.1      fvdl 			 */
   4012   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING &&
   4013   1.1      fvdl 			    ifp->if_flags & IFF_PROMISC &&
   4014   1.1      fvdl 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4015   1.1      fvdl 				BGE_SETBIT(sc, BGE_RX_MODE,
   4016   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4017   1.1      fvdl 			} else if (ifp->if_flags & IFF_RUNNING &&
   4018   1.1      fvdl 			    !(ifp->if_flags & IFF_PROMISC) &&
   4019   1.1      fvdl 			    sc->bge_if_flags & IFF_PROMISC) {
   4020   1.1      fvdl 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4021   1.1      fvdl 				    BGE_RXMODE_RX_PROMISC);
   4022   1.1      fvdl 			} else
   4023   1.1      fvdl 				bge_init(ifp);
   4024   1.1      fvdl 		} else {
   4025   1.1      fvdl 			if (ifp->if_flags & IFF_RUNNING) {
   4026   1.1      fvdl 				bge_stop(sc);
   4027   1.1      fvdl 			}
   4028   1.1      fvdl 		}
   4029   1.1      fvdl 		sc->bge_if_flags = ifp->if_flags;
   4030   1.1      fvdl 		error = 0;
   4031   1.1      fvdl 		break;
   4032   1.1      fvdl 	case SIOCSIFMEDIA:
   4033  1.69   thorpej 		/* XXX Flow control is not supported for 1000BASE-SX */
   4034  1.69   thorpej 		if (sc->bge_tbi) {
   4035  1.69   thorpej 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4036  1.69   thorpej 			sc->bge_flowflags = 0;
   4037  1.69   thorpej 		}
   4038  1.69   thorpej 
   4039  1.69   thorpej 		/* Flow control requires full-duplex mode. */
   4040  1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4041  1.69   thorpej 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4042  1.69   thorpej 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4043  1.69   thorpej 		}
   4044  1.69   thorpej 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4045  1.69   thorpej 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4046  1.69   thorpej 				/* We an do both TXPAUSE and RXPAUSE. */
   4047  1.69   thorpej 				ifr->ifr_media |=
   4048  1.69   thorpej 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4049  1.69   thorpej 			}
   4050  1.69   thorpej 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4051  1.69   thorpej 		}
   4052  1.69   thorpej 		/* FALLTHROUGH */
   4053   1.1      fvdl 	case SIOCGIFMEDIA:
   4054   1.1      fvdl 		if (sc->bge_tbi) {
   4055   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4056   1.1      fvdl 			    command);
   4057   1.1      fvdl 		} else {
   4058   1.1      fvdl 			mii = &sc->bge_mii;
   4059   1.1      fvdl 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4060   1.1      fvdl 			    command);
   4061   1.1      fvdl 		}
   4062   1.1      fvdl 		break;
   4063   1.1      fvdl 	default:
   4064   1.1      fvdl 		error = ether_ioctl(ifp, command, data);
   4065   1.1      fvdl 		if (error == ENETRESET) {
   4066  1.77   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   4067  1.77   thorpej 				bge_setmulti(sc);
   4068   1.1      fvdl 			error = 0;
   4069   1.1      fvdl 		}
   4070   1.1      fvdl 		break;
   4071   1.1      fvdl 	}
   4072   1.1      fvdl 
   4073   1.1      fvdl 	splx(s);
   4074   1.1      fvdl 
   4075   1.1      fvdl 	return(error);
   4076   1.1      fvdl }
   4077   1.1      fvdl 
   4078   1.1      fvdl void
   4079   1.1      fvdl bge_watchdog(ifp)
   4080   1.1      fvdl 	struct ifnet *ifp;
   4081   1.1      fvdl {
   4082   1.1      fvdl 	struct bge_softc *sc;
   4083   1.1      fvdl 
   4084   1.1      fvdl 	sc = ifp->if_softc;
   4085   1.1      fvdl 
   4086   1.1      fvdl 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   4087   1.1      fvdl 
   4088   1.1      fvdl 	ifp->if_flags &= ~IFF_RUNNING;
   4089   1.1      fvdl 	bge_init(ifp);
   4090   1.1      fvdl 
   4091   1.1      fvdl 	ifp->if_oerrors++;
   4092   1.1      fvdl }
   4093   1.1      fvdl 
   4094  1.11   thorpej static void
   4095  1.11   thorpej bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4096  1.11   thorpej {
   4097  1.11   thorpej 	int i;
   4098  1.11   thorpej 
   4099  1.11   thorpej 	BGE_CLRBIT(sc, reg, bit);
   4100  1.11   thorpej 
   4101  1.11   thorpej 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4102  1.11   thorpej 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4103  1.11   thorpej 			return;
   4104  1.11   thorpej 		delay(100);
   4105  1.95  jonathan 		if (sc->bge_pcie)
   4106  1.95  jonathan 		  DELAY(1000);
   4107  1.11   thorpej 	}
   4108  1.11   thorpej 
   4109  1.11   thorpej 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4110  1.11   thorpej 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   4111  1.11   thorpej }
   4112  1.11   thorpej 
   4113   1.1      fvdl /*
   4114   1.1      fvdl  * Stop the adapter and free any mbufs allocated to the
   4115   1.1      fvdl  * RX and TX lists.
   4116   1.1      fvdl  */
   4117   1.1      fvdl void
   4118   1.1      fvdl bge_stop(sc)
   4119   1.1      fvdl 	struct bge_softc *sc;
   4120   1.1      fvdl {
   4121   1.1      fvdl 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4122   1.1      fvdl 
   4123   1.1      fvdl 	callout_stop(&sc->bge_timeout);
   4124   1.1      fvdl 
   4125   1.1      fvdl 	/*
   4126   1.1      fvdl 	 * Disable all of the receiver blocks
   4127   1.1      fvdl 	 */
   4128  1.11   thorpej 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4129  1.11   thorpej 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4130  1.11   thorpej 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4131  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4132  1.44   hannken 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4133  1.44   hannken 	}
   4134  1.11   thorpej 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4135  1.11   thorpej 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4136  1.11   thorpej 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4137   1.1      fvdl 
   4138   1.1      fvdl 	/*
   4139   1.1      fvdl 	 * Disable all of the transmit blocks
   4140   1.1      fvdl 	 */
   4141  1.11   thorpej 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4142  1.11   thorpej 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4143  1.11   thorpej 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4144  1.11   thorpej 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4145  1.11   thorpej 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4146  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4147  1.44   hannken 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4148  1.44   hannken 	}
   4149  1.11   thorpej 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4150   1.1      fvdl 
   4151   1.1      fvdl 	/*
   4152   1.1      fvdl 	 * Shut down all of the memory managers and related
   4153   1.1      fvdl 	 * state machines.
   4154   1.1      fvdl 	 */
   4155  1.11   thorpej 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4156  1.11   thorpej 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4157  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4158  1.44   hannken 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4159  1.44   hannken 	}
   4160  1.11   thorpej 
   4161   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4162   1.1      fvdl 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4163  1.11   thorpej 
   4164  1.44   hannken 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4165  1.44   hannken 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4166  1.44   hannken 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4167  1.44   hannken 	}
   4168   1.1      fvdl 
   4169   1.1      fvdl 	/* Disable host interrupts. */
   4170   1.1      fvdl 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4171   1.1      fvdl 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4172   1.1      fvdl 
   4173   1.1      fvdl 	/*
   4174   1.1      fvdl 	 * Tell firmware we're shutting down.
   4175   1.1      fvdl 	 */
   4176   1.1      fvdl 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4177   1.1      fvdl 
   4178   1.1      fvdl 	/* Free the RX lists. */
   4179   1.1      fvdl 	bge_free_rx_ring_std(sc);
   4180   1.1      fvdl 
   4181   1.1      fvdl 	/* Free jumbo RX list. */
   4182   1.1      fvdl 	bge_free_rx_ring_jumbo(sc);
   4183   1.1      fvdl 
   4184   1.1      fvdl 	/* Free TX buffers. */
   4185   1.1      fvdl 	bge_free_tx_ring(sc);
   4186   1.1      fvdl 
   4187   1.1      fvdl 	/*
   4188   1.1      fvdl 	 * Isolate/power down the PHY.
   4189   1.1      fvdl 	 */
   4190   1.1      fvdl 	if (!sc->bge_tbi)
   4191   1.1      fvdl 		mii_down(&sc->bge_mii);
   4192   1.1      fvdl 
   4193   1.1      fvdl 	sc->bge_link = 0;
   4194   1.1      fvdl 
   4195   1.1      fvdl 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4196   1.1      fvdl 
   4197   1.1      fvdl 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4198   1.1      fvdl }
   4199   1.1      fvdl 
   4200   1.1      fvdl /*
   4201   1.1      fvdl  * Stop all chip I/O so that the kernel's probe routines don't
   4202   1.1      fvdl  * get confused by errant DMAs when rebooting.
   4203   1.1      fvdl  */
   4204   1.1      fvdl void
   4205   1.1      fvdl bge_shutdown(xsc)
   4206   1.1      fvdl 	void *xsc;
   4207   1.1      fvdl {
   4208   1.1      fvdl 	struct bge_softc *sc = (struct bge_softc *)xsc;
   4209   1.1      fvdl 
   4210   1.1      fvdl 	bge_stop(sc);
   4211   1.1      fvdl 	bge_reset(sc);
   4212   1.1      fvdl }
   4213  1.64  jonathan 
   4214  1.64  jonathan 
   4215  1.64  jonathan static int
   4216  1.64  jonathan sysctl_bge_verify(SYSCTLFN_ARGS)
   4217  1.64  jonathan {
   4218  1.64  jonathan 	int error, t;
   4219  1.64  jonathan 	struct sysctlnode node;
   4220  1.64  jonathan 
   4221  1.64  jonathan 	node = *rnode;
   4222  1.64  jonathan 	t = *(int*)rnode->sysctl_data;
   4223  1.64  jonathan 	node.sysctl_data = &t;
   4224  1.64  jonathan 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4225  1.64  jonathan 	if (error || newp == NULL)
   4226  1.64  jonathan 		return (error);
   4227  1.64  jonathan 
   4228  1.64  jonathan #if 0
   4229  1.64  jonathan 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4230  1.64  jonathan 	    node.sysctl_num, rnode->sysctl_num));
   4231  1.64  jonathan #endif
   4232  1.64  jonathan 
   4233  1.64  jonathan 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4234  1.64  jonathan 		if (t < 0 || t >= NBGE_RX_THRESH)
   4235  1.64  jonathan 			return (EINVAL);
   4236  1.64  jonathan 		bge_update_all_threshes(t);
   4237  1.64  jonathan 	} else
   4238  1.64  jonathan 		return (EINVAL);
   4239  1.64  jonathan 
   4240  1.64  jonathan 	*(int*)rnode->sysctl_data = t;
   4241  1.64  jonathan 
   4242  1.64  jonathan 	return (0);
   4243  1.64  jonathan }
   4244  1.64  jonathan 
   4245  1.64  jonathan /*
   4246  1.65    atatat  * Set up sysctl(3) MIB, hw.bge.*.
   4247  1.64  jonathan  *
   4248  1.64  jonathan  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4249  1.64  jonathan  */
   4250  1.64  jonathan SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4251  1.64  jonathan {
   4252  1.66    atatat 	int rc, bge_root_num;
   4253  1.90    atatat 	const struct sysctlnode *node;
   4254  1.64  jonathan 
   4255  1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4256  1.64  jonathan 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4257  1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4258  1.64  jonathan 		goto err;
   4259  1.64  jonathan 	}
   4260  1.64  jonathan 
   4261  1.64  jonathan 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4262  1.73    atatat 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4263  1.73    atatat 	    SYSCTL_DESCR("BGE interface controls"),
   4264  1.64  jonathan 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4265  1.64  jonathan 		goto err;
   4266  1.64  jonathan 	}
   4267  1.64  jonathan 
   4268  1.66    atatat 	bge_root_num = node->sysctl_num;
   4269  1.66    atatat 
   4270  1.64  jonathan 	/* BGE Rx interrupt mitigation level */
   4271  1.87     perry 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4272  1.64  jonathan 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4273  1.73    atatat 	    CTLTYPE_INT, "rx_lvl",
   4274  1.73    atatat 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4275  1.73    atatat 	    sysctl_bge_verify, 0,
   4276  1.64  jonathan 	    &bge_rx_thresh_lvl,
   4277  1.66    atatat 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4278  1.64  jonathan 	    CTL_EOL)) != 0) {
   4279  1.64  jonathan 		goto err;
   4280  1.64  jonathan 	}
   4281  1.64  jonathan 
   4282  1.64  jonathan 	bge_rxthresh_nodenum = node->sysctl_num;
   4283  1.64  jonathan 
   4284  1.64  jonathan 	return;
   4285  1.64  jonathan 
   4286  1.64  jonathan err:
   4287  1.64  jonathan 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4288  1.64  jonathan }
   4289  1.82  jmcneill 
   4290  1.82  jmcneill void
   4291  1.82  jmcneill bge_powerhook(int why, void *hdl)
   4292  1.82  jmcneill {
   4293  1.82  jmcneill 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4294  1.82  jmcneill 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4295  1.82  jmcneill 	struct pci_attach_args *pa = &(sc->bge_pa);
   4296  1.82  jmcneill 	pci_chipset_tag_t pc = pa->pa_pc;
   4297  1.82  jmcneill 	pcitag_t tag = pa->pa_tag;
   4298  1.82  jmcneill 
   4299  1.82  jmcneill 	switch (why) {
   4300  1.82  jmcneill 	case PWR_SOFTSUSPEND:
   4301  1.82  jmcneill 	case PWR_SOFTSTANDBY:
   4302  1.82  jmcneill 		bge_shutdown(sc);
   4303  1.82  jmcneill 		break;
   4304  1.82  jmcneill 	case PWR_SOFTRESUME:
   4305  1.82  jmcneill 		if (ifp->if_flags & IFF_UP) {
   4306  1.82  jmcneill 			ifp->if_flags &= ~IFF_RUNNING;
   4307  1.82  jmcneill 			bge_init(ifp);
   4308  1.82  jmcneill 		}
   4309  1.82  jmcneill 		break;
   4310  1.82  jmcneill 	case PWR_SUSPEND:
   4311  1.82  jmcneill 	case PWR_STANDBY:
   4312  1.82  jmcneill 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4313  1.83  jmcneill 		break;
   4314  1.82  jmcneill 	case PWR_RESUME:
   4315  1.82  jmcneill 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4316  1.82  jmcneill 		break;
   4317  1.82  jmcneill 	}
   4318  1.82  jmcneill 
   4319  1.82  jmcneill 	return;
   4320  1.82  jmcneill }
   4321