Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.101
      1 /*	$NetBSD: if_bge.c,v 1.101 2005/12/19 12:35:19 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.101 2005/12/19 12:35:19 skrll Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #ifdef INET
    104 #include <netinet/in.h>
    105 #include <netinet/in_systm.h>
    106 #include <netinet/in_var.h>
    107 #include <netinet/ip.h>
    108 #endif
    109 
    110 /* Headers for TCP  Segmentation Offload (TSO) */
    111 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113 #include <netinet/ip.h>			/* for struct ip */
    114 #include <netinet/tcp.h>		/* for struct tcphdr */
    115 
    116 
    117 #if NBPFILTER > 0
    118 #include <net/bpf.h>
    119 #endif
    120 
    121 #include <dev/pci/pcireg.h>
    122 #include <dev/pci/pcivar.h>
    123 #include <dev/pci/pcidevs.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/miidevs.h>
    128 #include <dev/mii/brgphyreg.h>
    129 
    130 #include <dev/pci/if_bgereg.h>
    131 
    132 #include <uvm/uvm_extern.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 32,   2 },
    170 	{ 50,   4 },
    171 	{ 100,  8 },
    172 	{ 192, 16 },
    173 	{ 416, 32 },
    174 	{ 598, 46 }
    175 };
    176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    177 
    178 /* XXX patchable; should be sysctl'able */
    179 static int	bge_auto_thresh = 1;
    180 static int	bge_rx_thresh_lvl;
    181 
    182 #ifdef __NetBSD__
    183 static int bge_rxthresh_nodenum;
    184 #endif /* __NetBSD__ */
    185 
    186 int bge_probe(struct device *, struct cfdata *, void *);
    187 void bge_attach(struct device *, struct device *, void *);
    188 void bge_powerhook(int, void *);
    189 void bge_release_resources(struct bge_softc *);
    190 void bge_txeof(struct bge_softc *);
    191 void bge_rxeof(struct bge_softc *);
    192 
    193 void bge_tick(void *);
    194 void bge_stats_update(struct bge_softc *);
    195 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    196 static __inline int bge_cksum_pad(struct mbuf *pkt);
    197 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    198 
    199 int bge_intr(void *);
    200 void bge_start(struct ifnet *);
    201 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    202 int bge_init(struct ifnet *);
    203 void bge_stop(struct bge_softc *);
    204 void bge_watchdog(struct ifnet *);
    205 void bge_shutdown(void *);
    206 int bge_ifmedia_upd(struct ifnet *);
    207 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    208 
    209 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    210 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    211 
    212 void bge_setmulti(struct bge_softc *);
    213 
    214 void bge_handle_events(struct bge_softc *);
    215 int bge_alloc_jumbo_mem(struct bge_softc *);
    216 void bge_free_jumbo_mem(struct bge_softc *);
    217 void *bge_jalloc(struct bge_softc *);
    218 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    219 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    220 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    221 int bge_init_rx_ring_std(struct bge_softc *);
    222 void bge_free_rx_ring_std(struct bge_softc *);
    223 int bge_init_rx_ring_jumbo(struct bge_softc *);
    224 void bge_free_rx_ring_jumbo(struct bge_softc *);
    225 void bge_free_tx_ring(struct bge_softc *);
    226 int bge_init_tx_ring(struct bge_softc *);
    227 
    228 int bge_chipinit(struct bge_softc *);
    229 int bge_blockinit(struct bge_softc *);
    230 int bge_setpowerstate(struct bge_softc *, int);
    231 
    232 #ifdef notdef
    233 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    234 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    235 void bge_vpd_read(struct bge_softc *);
    236 #endif
    237 
    238 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    239 void bge_writemem_ind(struct bge_softc *, int, int);
    240 #ifdef notdef
    241 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    242 #endif
    243 void bge_writereg_ind(struct bge_softc *, int, int);
    244 
    245 int bge_miibus_readreg(struct device *, int, int);
    246 void bge_miibus_writereg(struct device *, int, int, int);
    247 void bge_miibus_statchg(struct device *);
    248 
    249 void bge_reset(struct bge_softc *);
    250 
    251 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    252 void	bge_update_all_threshes(int /*lvl*/);
    253 
    254 void bge_dump_status(struct bge_softc *);
    255 void bge_dump_rxbd(struct bge_rx_bd *);
    256 
    257 
    258 #define BGE_DEBUG
    259 #ifdef BGE_DEBUG
    260 #define DPRINTF(x)	if (bgedebug) printf x
    261 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    262 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    263 int	bgedebug = 0;
    264 int	bge_tso_debug = 0;
    265 #else
    266 #define DPRINTF(x)
    267 #define DPRINTFN(n,x)
    268 #define BGE_TSO_PRINTF(x)
    269 #endif
    270 
    271 #ifdef BGE_EVENT_COUNTERS
    272 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    273 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    274 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    275 #else
    276 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    277 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    278 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    279 #endif
    280 
    281 /* Various chip quirks. */
    282 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    283 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    284 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    285 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    286 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    287 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    288 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    289 #define	BGE_QUIRK_5705_CORE		0x00000080
    290 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    291 
    292 /*
    293  * XXX: how to handle variants based on 5750 and derivatives:
    294  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    295  * in general behave like a 5705, except with additional quirks.
    296  * This driver's current handling of the 5721 is wrong;
    297  * how we map ASIC revision to "quirks" needs more thought.
    298  * (defined here until the thought is done).
    299  */
    300 #define BGE_IS_5714_FAMILY(sc) \
    301 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 ||	\
    302 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    303 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5715 )
    304 
    305 #define BGE_IS_5750_OR_BEYOND(sc)  \
    306 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    307 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    308 	 BGE_IS_5714_FAMILY(sc) )
    309 
    310 #define BGE_IS_5705_OR_BEYOND(sc)  \
    311 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    312 	  BGE_IS_5750_OR_BEYOND(sc) )
    313 
    314 
    315 /* following bugs are common to bcm5700 rev B, all flavours */
    316 #define BGE_QUIRK_5700_COMMON \
    317 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    318 
    319 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    320     bge_probe, bge_attach, NULL, NULL);
    321 
    322 u_int32_t
    323 bge_readmem_ind(sc, off)
    324 	struct bge_softc *sc;
    325 	int off;
    326 {
    327 	struct pci_attach_args	*pa = &(sc->bge_pa);
    328 	pcireg_t val;
    329 
    330 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    331 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    332 	return val;
    333 }
    334 
    335 void
    336 bge_writemem_ind(sc, off, val)
    337 	struct bge_softc *sc;
    338 	int off, val;
    339 {
    340 	struct pci_attach_args	*pa = &(sc->bge_pa);
    341 
    342 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    343 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    344 }
    345 
    346 #ifdef notdef
    347 u_int32_t
    348 bge_readreg_ind(sc, off)
    349 	struct bge_softc *sc;
    350 	int off;
    351 {
    352 	struct pci_attach_args	*pa = &(sc->bge_pa);
    353 
    354 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    355 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    356 }
    357 #endif
    358 
    359 void
    360 bge_writereg_ind(sc, off, val)
    361 	struct bge_softc *sc;
    362 	int off, val;
    363 {
    364 	struct pci_attach_args	*pa = &(sc->bge_pa);
    365 
    366 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    367 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    368 }
    369 
    370 #ifdef notdef
    371 u_int8_t
    372 bge_vpd_readbyte(sc, addr)
    373 	struct bge_softc *sc;
    374 	int addr;
    375 {
    376 	int i;
    377 	u_int32_t val;
    378 	struct pci_attach_args	*pa = &(sc->bge_pa);
    379 
    380 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    381 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    382 		DELAY(10);
    383 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    384 		    BGE_VPD_FLAG)
    385 			break;
    386 	}
    387 
    388 	if (i == BGE_TIMEOUT) {
    389 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    390 		return(0);
    391 	}
    392 
    393 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    394 
    395 	return((val >> ((addr % 4) * 8)) & 0xFF);
    396 }
    397 
    398 void
    399 bge_vpd_read_res(sc, res, addr)
    400 	struct bge_softc *sc;
    401 	struct vpd_res *res;
    402 	int addr;
    403 {
    404 	int i;
    405 	u_int8_t *ptr;
    406 
    407 	ptr = (u_int8_t *)res;
    408 	for (i = 0; i < sizeof(struct vpd_res); i++)
    409 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    410 }
    411 
    412 void
    413 bge_vpd_read(sc)
    414 	struct bge_softc *sc;
    415 {
    416 	int pos = 0, i;
    417 	struct vpd_res res;
    418 
    419 	if (sc->bge_vpd_prodname != NULL)
    420 		free(sc->bge_vpd_prodname, M_DEVBUF);
    421 	if (sc->bge_vpd_readonly != NULL)
    422 		free(sc->bge_vpd_readonly, M_DEVBUF);
    423 	sc->bge_vpd_prodname = NULL;
    424 	sc->bge_vpd_readonly = NULL;
    425 
    426 	bge_vpd_read_res(sc, &res, pos);
    427 
    428 	if (res.vr_id != VPD_RES_ID) {
    429 		printf("%s: bad VPD resource id: expected %x got %x\n",
    430 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    431 		return;
    432 	}
    433 
    434 	pos += sizeof(res);
    435 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    436 	if (sc->bge_vpd_prodname == NULL)
    437 		panic("bge_vpd_read");
    438 	for (i = 0; i < res.vr_len; i++)
    439 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    440 	sc->bge_vpd_prodname[i] = '\0';
    441 	pos += i;
    442 
    443 	bge_vpd_read_res(sc, &res, pos);
    444 
    445 	if (res.vr_id != VPD_RES_READ) {
    446 		printf("%s: bad VPD resource id: expected %x got %x\n",
    447 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    448 		return;
    449 	}
    450 
    451 	pos += sizeof(res);
    452 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    453 	if (sc->bge_vpd_readonly == NULL)
    454 		panic("bge_vpd_read");
    455 	for (i = 0; i < res.vr_len + 1; i++)
    456 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    457 }
    458 #endif
    459 
    460 /*
    461  * Read a byte of data stored in the EEPROM at address 'addr.' The
    462  * BCM570x supports both the traditional bitbang interface and an
    463  * auto access interface for reading the EEPROM. We use the auto
    464  * access method.
    465  */
    466 u_int8_t
    467 bge_eeprom_getbyte(sc, addr, dest)
    468 	struct bge_softc *sc;
    469 	int addr;
    470 	u_int8_t *dest;
    471 {
    472 	int i;
    473 	u_int32_t byte = 0;
    474 
    475 	/*
    476 	 * Enable use of auto EEPROM access so we can avoid
    477 	 * having to use the bitbang method.
    478 	 */
    479 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    480 
    481 	/* Reset the EEPROM, load the clock period. */
    482 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    483 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    484 	DELAY(20);
    485 
    486 	/* Issue the read EEPROM command. */
    487 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    488 
    489 	/* Wait for completion */
    490 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    491 		DELAY(10);
    492 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    493 			break;
    494 	}
    495 
    496 	if (i == BGE_TIMEOUT) {
    497 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    498 		return(0);
    499 	}
    500 
    501 	/* Get result. */
    502 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    503 
    504 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    505 
    506 	return(0);
    507 }
    508 
    509 /*
    510  * Read a sequence of bytes from the EEPROM.
    511  */
    512 int
    513 bge_read_eeprom(sc, dest, off, cnt)
    514 	struct bge_softc *sc;
    515 	caddr_t dest;
    516 	int off;
    517 	int cnt;
    518 {
    519 	int err = 0, i;
    520 	u_int8_t byte = 0;
    521 
    522 	for (i = 0; i < cnt; i++) {
    523 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    524 		if (err)
    525 			break;
    526 		*(dest + i) = byte;
    527 	}
    528 
    529 	return(err ? 1 : 0);
    530 }
    531 
    532 int
    533 bge_miibus_readreg(dev, phy, reg)
    534 	struct device *dev;
    535 	int phy, reg;
    536 {
    537 	struct bge_softc *sc = (struct bge_softc *)dev;
    538 	u_int32_t val;
    539 	u_int32_t saved_autopoll;
    540 	int i;
    541 
    542 	/*
    543 	 * Several chips with builtin PHYs will incorrectly answer to
    544 	 * other PHY instances than the builtin PHY at id 1.
    545 	 */
    546 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    547 		return(0);
    548 
    549 	/* Reading with autopolling on may trigger PCI errors */
    550 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    551 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    552 		CSR_WRITE_4(sc, BGE_MI_MODE,
    553 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    554 		DELAY(40);
    555 	}
    556 
    557 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    558 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    559 
    560 	for (i = 0; i < BGE_TIMEOUT; i++) {
    561 		val = CSR_READ_4(sc, BGE_MI_COMM);
    562 		if (!(val & BGE_MICOMM_BUSY))
    563 			break;
    564 		delay(10);
    565 	}
    566 
    567 	if (i == BGE_TIMEOUT) {
    568 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    569 		val = 0;
    570 		goto done;
    571 	}
    572 
    573 	val = CSR_READ_4(sc, BGE_MI_COMM);
    574 
    575 done:
    576 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    577 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    578 		DELAY(40);
    579 	}
    580 
    581 	if (val & BGE_MICOMM_READFAIL)
    582 		return(0);
    583 
    584 	return(val & 0xFFFF);
    585 }
    586 
    587 void
    588 bge_miibus_writereg(dev, phy, reg, val)
    589 	struct device *dev;
    590 	int phy, reg, val;
    591 {
    592 	struct bge_softc *sc = (struct bge_softc *)dev;
    593 	u_int32_t saved_autopoll;
    594 	int i;
    595 
    596 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    597 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    598 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    599 		delay(40);
    600 		CSR_WRITE_4(sc, BGE_MI_MODE,
    601 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    602 		delay(10); /* 40 usec is supposed to be adequate */
    603 	}
    604 
    605 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    606 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    607 
    608 	for (i = 0; i < BGE_TIMEOUT; i++) {
    609 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    610 			break;
    611 		delay(10);
    612 	}
    613 
    614 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    615 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    616 		delay(40);
    617 	}
    618 
    619 	if (i == BGE_TIMEOUT) {
    620 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    621 	}
    622 }
    623 
    624 void
    625 bge_miibus_statchg(dev)
    626 	struct device *dev;
    627 {
    628 	struct bge_softc *sc = (struct bge_softc *)dev;
    629 	struct mii_data *mii = &sc->bge_mii;
    630 
    631 	/*
    632 	 * Get flow control negotiation result.
    633 	 */
    634 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    635 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    636 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    637 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    638 	}
    639 
    640 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    641 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    642 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    643 	} else {
    644 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    645 	}
    646 
    647 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    648 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    649 	} else {
    650 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    651 	}
    652 
    653 	/*
    654 	 * 802.3x flow control
    655 	 */
    656 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    657 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    658 	} else {
    659 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    660 	}
    661 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    662 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    663 	} else {
    664 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    665 	}
    666 }
    667 
    668 /*
    669  * Update rx threshold levels to values in a particular slot
    670  * of the interrupt-mitigation table bge_rx_threshes.
    671  */
    672 void
    673 bge_set_thresh(struct ifnet *ifp, int lvl)
    674 {
    675 	struct bge_softc *sc = ifp->if_softc;
    676 	int s;
    677 
    678 	/* For now, just save the new Rx-intr thresholds and record
    679 	 * that a threshold update is pending.  Updating the hardware
    680 	 * registers here (even at splhigh()) is observed to
    681 	 * occasionaly cause glitches where Rx-interrupts are not
    682 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    683 	 */
    684 	s = splnet();
    685 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    686 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    687 	sc->bge_pending_rxintr_change = 1;
    688 	splx(s);
    689 
    690 	 return;
    691 }
    692 
    693 
    694 /*
    695  * Update Rx thresholds of all bge devices
    696  */
    697 void
    698 bge_update_all_threshes(int lvl)
    699 {
    700 	struct ifnet *ifp;
    701 	const char * const namebuf = "bge";
    702 	int namelen;
    703 
    704 	if (lvl < 0)
    705 		lvl = 0;
    706 	else if( lvl >= NBGE_RX_THRESH)
    707 		lvl = NBGE_RX_THRESH - 1;
    708 
    709 	namelen = strlen(namebuf);
    710 	/*
    711 	 * Now search all the interfaces for this name/number
    712 	 */
    713 	IFNET_FOREACH(ifp) {
    714 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    715 		      continue;
    716 		/* We got a match: update if doing auto-threshold-tuning */
    717 		if (bge_auto_thresh)
    718 			bge_set_thresh(ifp, lvl);
    719 	}
    720 }
    721 
    722 /*
    723  * Handle events that have triggered interrupts.
    724  */
    725 void
    726 bge_handle_events(sc)
    727 	struct bge_softc		*sc;
    728 {
    729 
    730 	return;
    731 }
    732 
    733 /*
    734  * Memory management for jumbo frames.
    735  */
    736 
    737 int
    738 bge_alloc_jumbo_mem(sc)
    739 	struct bge_softc		*sc;
    740 {
    741 	caddr_t			ptr, kva;
    742 	bus_dma_segment_t	seg;
    743 	int		i, rseg, state, error;
    744 	struct bge_jpool_entry   *entry;
    745 
    746 	state = error = 0;
    747 
    748 	/* Grab a big chunk o' storage. */
    749 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    750 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    751 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    752 		return ENOBUFS;
    753 	}
    754 
    755 	state = 1;
    756 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    757 	    BUS_DMA_NOWAIT)) {
    758 		printf("%s: can't map DMA buffers (%d bytes)\n",
    759 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    760 		error = ENOBUFS;
    761 		goto out;
    762 	}
    763 
    764 	state = 2;
    765 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    766 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    767 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    768 		error = ENOBUFS;
    769 		goto out;
    770 	}
    771 
    772 	state = 3;
    773 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    774 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    775 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    776 		error = ENOBUFS;
    777 		goto out;
    778 	}
    779 
    780 	state = 4;
    781 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    782 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    783 
    784 	SLIST_INIT(&sc->bge_jfree_listhead);
    785 	SLIST_INIT(&sc->bge_jinuse_listhead);
    786 
    787 	/*
    788 	 * Now divide it up into 9K pieces and save the addresses
    789 	 * in an array.
    790 	 */
    791 	ptr = sc->bge_cdata.bge_jumbo_buf;
    792 	for (i = 0; i < BGE_JSLOTS; i++) {
    793 		sc->bge_cdata.bge_jslots[i] = ptr;
    794 		ptr += BGE_JLEN;
    795 		entry = malloc(sizeof(struct bge_jpool_entry),
    796 		    M_DEVBUF, M_NOWAIT);
    797 		if (entry == NULL) {
    798 			printf("%s: no memory for jumbo buffer queue!\n",
    799 			    sc->bge_dev.dv_xname);
    800 			error = ENOBUFS;
    801 			goto out;
    802 		}
    803 		entry->slot = i;
    804 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    805 				 entry, jpool_entries);
    806 	}
    807 out:
    808 	if (error != 0) {
    809 		switch (state) {
    810 		case 4:
    811 			bus_dmamap_unload(sc->bge_dmatag,
    812 			    sc->bge_cdata.bge_rx_jumbo_map);
    813 		case 3:
    814 			bus_dmamap_destroy(sc->bge_dmatag,
    815 			    sc->bge_cdata.bge_rx_jumbo_map);
    816 		case 2:
    817 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    818 		case 1:
    819 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    820 			break;
    821 		default:
    822 			break;
    823 		}
    824 	}
    825 
    826 	return error;
    827 }
    828 
    829 /*
    830  * Allocate a jumbo buffer.
    831  */
    832 void *
    833 bge_jalloc(sc)
    834 	struct bge_softc		*sc;
    835 {
    836 	struct bge_jpool_entry   *entry;
    837 
    838 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    839 
    840 	if (entry == NULL) {
    841 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    842 		return(NULL);
    843 	}
    844 
    845 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    846 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    847 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    848 }
    849 
    850 /*
    851  * Release a jumbo buffer.
    852  */
    853 void
    854 bge_jfree(m, buf, size, arg)
    855 	struct mbuf	*m;
    856 	caddr_t		buf;
    857 	size_t		size;
    858 	void		*arg;
    859 {
    860 	struct bge_jpool_entry *entry;
    861 	struct bge_softc *sc;
    862 	int i, s;
    863 
    864 	/* Extract the softc struct pointer. */
    865 	sc = (struct bge_softc *)arg;
    866 
    867 	if (sc == NULL)
    868 		panic("bge_jfree: can't find softc pointer!");
    869 
    870 	/* calculate the slot this buffer belongs to */
    871 
    872 	i = ((caddr_t)buf
    873 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    874 
    875 	if ((i < 0) || (i >= BGE_JSLOTS))
    876 		panic("bge_jfree: asked to free buffer that we don't manage!");
    877 
    878 	s = splvm();
    879 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    880 	if (entry == NULL)
    881 		panic("bge_jfree: buffer not in use!");
    882 	entry->slot = i;
    883 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    884 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    885 
    886 	if (__predict_true(m != NULL))
    887   		pool_cache_put(&mbpool_cache, m);
    888 	splx(s);
    889 }
    890 
    891 
    892 /*
    893  * Intialize a standard receive ring descriptor.
    894  */
    895 int
    896 bge_newbuf_std(sc, i, m, dmamap)
    897 	struct bge_softc	*sc;
    898 	int			i;
    899 	struct mbuf		*m;
    900 	bus_dmamap_t dmamap;
    901 {
    902 	struct mbuf		*m_new = NULL;
    903 	struct bge_rx_bd	*r;
    904 	int			error;
    905 
    906 	if (dmamap == NULL) {
    907 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    908 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    909 		if (error != 0)
    910 			return error;
    911 	}
    912 
    913 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    914 
    915 	if (m == NULL) {
    916 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    917 		if (m_new == NULL) {
    918 			return(ENOBUFS);
    919 		}
    920 
    921 		MCLGET(m_new, M_DONTWAIT);
    922 		if (!(m_new->m_flags & M_EXT)) {
    923 			m_freem(m_new);
    924 			return(ENOBUFS);
    925 		}
    926 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    927 		if (!sc->bge_rx_alignment_bug)
    928 		    m_adj(m_new, ETHER_ALIGN);
    929 
    930 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    931 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    932 			return(ENOBUFS);
    933 	} else {
    934 		m_new = m;
    935 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    936 		m_new->m_data = m_new->m_ext.ext_buf;
    937 		if (!sc->bge_rx_alignment_bug)
    938 		    m_adj(m_new, ETHER_ALIGN);
    939 	}
    940 
    941 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    942 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    943 	bge_set_hostaddr(&r->bge_addr,
    944 	    dmamap->dm_segs[0].ds_addr);
    945 	r->bge_flags = BGE_RXBDFLAG_END;
    946 	r->bge_len = m_new->m_len;
    947 	r->bge_idx = i;
    948 
    949 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    950 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    951 		i * sizeof (struct bge_rx_bd),
    952 	    sizeof (struct bge_rx_bd),
    953 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    954 
    955 	return(0);
    956 }
    957 
    958 /*
    959  * Initialize a jumbo receive ring descriptor. This allocates
    960  * a jumbo buffer from the pool managed internally by the driver.
    961  */
    962 int
    963 bge_newbuf_jumbo(sc, i, m)
    964 	struct bge_softc *sc;
    965 	int i;
    966 	struct mbuf *m;
    967 {
    968 	struct mbuf *m_new = NULL;
    969 	struct bge_rx_bd *r;
    970 
    971 	if (m == NULL) {
    972 		caddr_t			buf = NULL;
    973 
    974 		/* Allocate the mbuf. */
    975 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    976 		if (m_new == NULL) {
    977 			return(ENOBUFS);
    978 		}
    979 
    980 		/* Allocate the jumbo buffer */
    981 		buf = bge_jalloc(sc);
    982 		if (buf == NULL) {
    983 			m_freem(m_new);
    984 			printf("%s: jumbo allocation failed "
    985 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    986 			return(ENOBUFS);
    987 		}
    988 
    989 		/* Attach the buffer to the mbuf. */
    990 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    991 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    992 		    bge_jfree, sc);
    993 		m_new->m_flags |= M_EXT_RW;
    994 	} else {
    995 		m_new = m;
    996 		m_new->m_data = m_new->m_ext.ext_buf;
    997 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    998 	}
    999 
   1000 	if (!sc->bge_rx_alignment_bug)
   1001 	    m_adj(m_new, ETHER_ALIGN);
   1002 	/* Set up the descriptor. */
   1003 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1004 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1005 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1006 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1007 	r->bge_len = m_new->m_len;
   1008 	r->bge_idx = i;
   1009 
   1010 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1011 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1012 		i * sizeof (struct bge_rx_bd),
   1013 	    sizeof (struct bge_rx_bd),
   1014 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1015 
   1016 	return(0);
   1017 }
   1018 
   1019 /*
   1020  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1021  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1022  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1023  * the NIC.
   1024  */
   1025 int
   1026 bge_init_rx_ring_std(sc)
   1027 	struct bge_softc *sc;
   1028 {
   1029 	int i;
   1030 
   1031 	if (sc->bge_flags & BGE_RXRING_VALID)
   1032 		return 0;
   1033 
   1034 	for (i = 0; i < BGE_SSLOTS; i++) {
   1035 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1036 			return(ENOBUFS);
   1037 	}
   1038 
   1039 	sc->bge_std = i - 1;
   1040 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1041 
   1042 	sc->bge_flags |= BGE_RXRING_VALID;
   1043 
   1044 	return(0);
   1045 }
   1046 
   1047 void
   1048 bge_free_rx_ring_std(sc)
   1049 	struct bge_softc *sc;
   1050 {
   1051 	int i;
   1052 
   1053 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1054 		return;
   1055 
   1056 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1057 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1058 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1059 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1060 			bus_dmamap_destroy(sc->bge_dmatag,
   1061 			    sc->bge_cdata.bge_rx_std_map[i]);
   1062 		}
   1063 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1064 		    sizeof(struct bge_rx_bd));
   1065 	}
   1066 
   1067 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1068 }
   1069 
   1070 int
   1071 bge_init_rx_ring_jumbo(sc)
   1072 	struct bge_softc *sc;
   1073 {
   1074 	int i;
   1075 	volatile struct bge_rcb *rcb;
   1076 
   1077 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1078 		return 0;
   1079 
   1080 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1081 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1082 			return(ENOBUFS);
   1083 	};
   1084 
   1085 	sc->bge_jumbo = i - 1;
   1086 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1087 
   1088 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1089 	rcb->bge_maxlen_flags = 0;
   1090 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1091 
   1092 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1093 
   1094 	return(0);
   1095 }
   1096 
   1097 void
   1098 bge_free_rx_ring_jumbo(sc)
   1099 	struct bge_softc *sc;
   1100 {
   1101 	int i;
   1102 
   1103 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1104 		return;
   1105 
   1106 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1107 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1108 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1109 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1110 		}
   1111 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1112 		    sizeof(struct bge_rx_bd));
   1113 	}
   1114 
   1115 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1116 }
   1117 
   1118 void
   1119 bge_free_tx_ring(sc)
   1120 	struct bge_softc *sc;
   1121 {
   1122 	int i, freed;
   1123 	struct txdmamap_pool_entry *dma;
   1124 
   1125 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1126 		return;
   1127 
   1128 	freed = 0;
   1129 
   1130 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1131 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1132 			freed++;
   1133 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1134 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1135 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1136 					    link);
   1137 			sc->txdma[i] = 0;
   1138 		}
   1139 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1140 		    sizeof(struct bge_tx_bd));
   1141 	}
   1142 
   1143 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1144 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1145 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1146 		free(dma, M_DEVBUF);
   1147 	}
   1148 
   1149 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1150 }
   1151 
   1152 int
   1153 bge_init_tx_ring(sc)
   1154 	struct bge_softc *sc;
   1155 {
   1156 	int i;
   1157 	bus_dmamap_t dmamap;
   1158 	struct txdmamap_pool_entry *dma;
   1159 
   1160 	if (sc->bge_flags & BGE_TXRING_VALID)
   1161 		return 0;
   1162 
   1163 	sc->bge_txcnt = 0;
   1164 	sc->bge_tx_saved_considx = 0;
   1165 
   1166 	/* Initialize transmit producer index for host-memory send ring. */
   1167 	sc->bge_tx_prodidx = 0;
   1168 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1169 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1170 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1171 
   1172 	/* NIC-memory send ring  not used; initialize to zero. */
   1173 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1174 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1175 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1176 
   1177 	SLIST_INIT(&sc->txdma_list);
   1178 	for (i = 0; i < BGE_RSLOTS; i++) {
   1179 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1180 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1181 		    &dmamap))
   1182 			return(ENOBUFS);
   1183 		if (dmamap == NULL)
   1184 			panic("dmamap NULL in bge_init_tx_ring");
   1185 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1186 		if (dma == NULL) {
   1187 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1188 			    sc->bge_dev.dv_xname);
   1189 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1190 			return (ENOMEM);
   1191 		}
   1192 		dma->dmamap = dmamap;
   1193 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1194 	}
   1195 
   1196 	sc->bge_flags |= BGE_TXRING_VALID;
   1197 
   1198 	return(0);
   1199 }
   1200 
   1201 void
   1202 bge_setmulti(sc)
   1203 	struct bge_softc *sc;
   1204 {
   1205 	struct ethercom		*ac = &sc->ethercom;
   1206 	struct ifnet		*ifp = &ac->ec_if;
   1207 	struct ether_multi	*enm;
   1208 	struct ether_multistep  step;
   1209 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1210 	u_int32_t		h;
   1211 	int			i;
   1212 
   1213 	if (ifp->if_flags & IFF_PROMISC)
   1214 		goto allmulti;
   1215 
   1216 	/* Now program new ones. */
   1217 	ETHER_FIRST_MULTI(step, ac, enm);
   1218 	while (enm != NULL) {
   1219 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1220 			/*
   1221 			 * We must listen to a range of multicast addresses.
   1222 			 * For now, just accept all multicasts, rather than
   1223 			 * trying to set only those filter bits needed to match
   1224 			 * the range.  (At this time, the only use of address
   1225 			 * ranges is for IP multicast routing, for which the
   1226 			 * range is big enough to require all bits set.)
   1227 			 */
   1228 			goto allmulti;
   1229 		}
   1230 
   1231 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1232 
   1233 		/* Just want the 7 least-significant bits. */
   1234 		h &= 0x7f;
   1235 
   1236 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1237 		ETHER_NEXT_MULTI(step, enm);
   1238 	}
   1239 
   1240 	ifp->if_flags &= ~IFF_ALLMULTI;
   1241 	goto setit;
   1242 
   1243  allmulti:
   1244 	ifp->if_flags |= IFF_ALLMULTI;
   1245 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1246 
   1247  setit:
   1248 	for (i = 0; i < 4; i++)
   1249 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1250 }
   1251 
   1252 const int bge_swapbits[] = {
   1253 	0,
   1254 	BGE_MODECTL_BYTESWAP_DATA,
   1255 	BGE_MODECTL_WORDSWAP_DATA,
   1256 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1257 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1258 
   1259 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1260 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1261 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1262 
   1263 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1264 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1265 
   1266 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1267 
   1268 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1269 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1270 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1271 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1272 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1273 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1274 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1275 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1276 
   1277 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1278 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1279 };
   1280 
   1281 int bge_swapindex = 0;
   1282 
   1283 /*
   1284  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1285  * self-test results.
   1286  */
   1287 int
   1288 bge_chipinit(sc)
   1289 	struct bge_softc *sc;
   1290 {
   1291 	u_int32_t		cachesize;
   1292 	int			i;
   1293 	u_int32_t		dma_rw_ctl;
   1294 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1295 
   1296 
   1297 	/* Set endianness before we access any non-PCI registers. */
   1298 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1299 	    BGE_INIT);
   1300 
   1301 	/* Set power state to D0. */
   1302 	bge_setpowerstate(sc, 0);
   1303 
   1304 	/*
   1305 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1306 	 * self-tests passed.
   1307 	 */
   1308 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1309 		printf("%s: RX CPU self-diagnostics failed!\n",
   1310 		    sc->bge_dev.dv_xname);
   1311 		return(ENODEV);
   1312 	}
   1313 
   1314 	/* Clear the MAC control register */
   1315 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1316 
   1317 	/*
   1318 	 * Clear the MAC statistics block in the NIC's
   1319 	 * internal memory.
   1320 	 */
   1321 	for (i = BGE_STATS_BLOCK;
   1322 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1323 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1324 
   1325 	for (i = BGE_STATUS_BLOCK;
   1326 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1327 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1328 
   1329 	/* Set up the PCI DMA control register. */
   1330 	if (sc->bge_pcie) {
   1331 	  u_int32_t device_ctl;
   1332 
   1333 		/* From FreeBSD */
   1334 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1335 		    sc->bge_dev.dv_xname));
   1336 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1337 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1338 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1339 
   1340 		/* jonathan: alternative from Linux driver */
   1341 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1342 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1343 
   1344 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1345 		device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1346 					   BGE_PCI_CONF_DEV_CTRL);
   1347 		printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
   1348 
   1349 		if ((device_ctl & 0x00e0) && 0) {
   1350 			/*
   1351 			 * XXX jonathan (at) NetBSD.org:
   1352 			 * This clause is exactly what the Broadcom-supplied
   1353 			 * Linux does; but given overall register programming
   1354 			 * by if_bge(4), this larger DMA-write watermark
   1355 			 * value causes bcm5721 chips to totally wedge.
   1356 			 */
   1357 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1358 		} else {
   1359 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1360 		}
   1361 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1362 	    BGE_PCISTATE_PCI_BUSMODE) {
   1363 		/* Conventional PCI bus */
   1364 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1365 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1366 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1367 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1368 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1369 			dma_rw_ctl |= 0x0F;
   1370 		}
   1371 	} else {
   1372 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1373 		/* PCI-X bus */
   1374 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1375 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1376 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1377 		    (0x0F);
   1378 		/*
   1379 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1380 		 * for hardware bugs, which means we should also clear
   1381 		 * the low-order MINDMA bits.  In addition, the 5704
   1382 		 * uses a different encoding of read/write watermarks.
   1383 		 */
   1384 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1385 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1386 			  /* should be 0x1f0000 */
   1387 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1388 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1389 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1390 		}
   1391 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1392 			dma_rw_ctl &=  0xfffffff0;
   1393 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1394 		}
   1395 		else if (BGE_IS_5714_FAMILY(sc)) {
   1396 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1397 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1398 			/* XXX magic values, Broadcom-supplied Linux driver */
   1399 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1400 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1401 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1402 			else
   1403 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1404 		}
   1405 	}
   1406 
   1407 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1408 
   1409 	/*
   1410 	 * Set up general mode register.
   1411 	 */
   1412 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1413 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1414 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1415 
   1416 	/* Get cache line size. */
   1417 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1418 
   1419 	/*
   1420 	 * Avoid violating PCI spec on certain chip revs.
   1421 	 */
   1422 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1423 	    PCIM_CMD_MWIEN) {
   1424 		switch(cachesize) {
   1425 		case 1:
   1426 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1427 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1428 			break;
   1429 		case 2:
   1430 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1431 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1432 			break;
   1433 		case 4:
   1434 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1435 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1436 			break;
   1437 		case 8:
   1438 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1439 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1440 			break;
   1441 		case 16:
   1442 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1443 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1444 			break;
   1445 		case 32:
   1446 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1447 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1448 			break;
   1449 		case 64:
   1450 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1451 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1452 			break;
   1453 		default:
   1454 		/* Disable PCI memory write and invalidate. */
   1455 #if 0
   1456 			if (bootverbose)
   1457 				printf("%s: cache line size %d not "
   1458 				    "supported; disabling PCI MWI\n",
   1459 				    sc->bge_dev.dv_xname, cachesize);
   1460 #endif
   1461 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1462 			    PCIM_CMD_MWIEN);
   1463 			break;
   1464 		}
   1465 	}
   1466 
   1467 	/*
   1468 	 * Disable memory write invalidate.  Apparently it is not supported
   1469 	 * properly by these devices.
   1470 	 */
   1471 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1472 
   1473 
   1474 #ifdef __brokenalpha__
   1475 	/*
   1476 	 * Must insure that we do not cross an 8K (bytes) boundary
   1477 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1478 	 * restriction on some ALPHA platforms with early revision
   1479 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1480 	 */
   1481 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1482 #endif
   1483 
   1484 	/* Set the timer prescaler (always 66MHz) */
   1485 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1486 
   1487 	return(0);
   1488 }
   1489 
   1490 int
   1491 bge_blockinit(sc)
   1492 	struct bge_softc *sc;
   1493 {
   1494 	volatile struct bge_rcb		*rcb;
   1495 	bus_size_t		rcb_addr;
   1496 	int			i;
   1497 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1498 	bge_hostaddr		taddr;
   1499 
   1500 	/*
   1501 	 * Initialize the memory window pointer register so that
   1502 	 * we can access the first 32K of internal NIC RAM. This will
   1503 	 * allow us to set up the TX send ring RCBs and the RX return
   1504 	 * ring RCBs, plus other things which live in NIC memory.
   1505 	 */
   1506 
   1507 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1508 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1509 
   1510 	/* Configure mbuf memory pool */
   1511 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1512 		if (sc->bge_extram) {
   1513 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1514 			    BGE_EXT_SSRAM);
   1515 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1516 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1517 			else
   1518 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1519 		} else {
   1520 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1521 			    BGE_BUFFPOOL_1);
   1522 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1523 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1524 			else
   1525 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1526 		}
   1527 
   1528 		/* Configure DMA resource pool */
   1529 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1530 		    BGE_DMA_DESCRIPTORS);
   1531 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1532 	}
   1533 
   1534 	/* Configure mbuf pool watermarks */
   1535 #ifdef ORIG_WPAUL_VALUES
   1536 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1537 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1538 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1539 #else
   1540 	/* new broadcom docs strongly recommend these: */
   1541 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1542 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1543 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1544 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1545 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1546 		} else {
   1547 			/* Values from Linux driver... */
   1548 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1549 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1550 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1551 		}
   1552 	} else {
   1553 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1554 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1555 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1556 	}
   1557 #endif
   1558 
   1559 	/* Configure DMA resource watermarks */
   1560 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1561 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1562 
   1563 	/* Enable buffer manager */
   1564 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1565 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1566 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1567 
   1568 		/* Poll for buffer manager start indication */
   1569 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1570 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1571 				break;
   1572 			DELAY(10);
   1573 		}
   1574 
   1575 		if (i == BGE_TIMEOUT) {
   1576 			printf("%s: buffer manager failed to start\n",
   1577 			    sc->bge_dev.dv_xname);
   1578 			return(ENXIO);
   1579 		}
   1580 	}
   1581 
   1582 	/* Enable flow-through queues */
   1583 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1584 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1585 
   1586 	/* Wait until queue initialization is complete */
   1587 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1588 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1589 			break;
   1590 		DELAY(10);
   1591 	}
   1592 
   1593 	if (i == BGE_TIMEOUT) {
   1594 		printf("%s: flow-through queue init failed\n",
   1595 		    sc->bge_dev.dv_xname);
   1596 		return(ENXIO);
   1597 	}
   1598 
   1599 	/* Initialize the standard RX ring control block */
   1600 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1601 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1602 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1603 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1604 		rcb->bge_maxlen_flags =
   1605 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1606 	} else {
   1607 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1608 	}
   1609 	if (sc->bge_extram)
   1610 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1611 	else
   1612 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1613 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1614 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1615 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1616 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1617 
   1618 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1619 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1620 	} else {
   1621 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1622 	}
   1623 
   1624 	/*
   1625 	 * Initialize the jumbo RX ring control block
   1626 	 * We set the 'ring disabled' bit in the flags
   1627 	 * field until we're actually ready to start
   1628 	 * using this ring (i.e. once we set the MTU
   1629 	 * high enough to require it).
   1630 	 */
   1631 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1632 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1633 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1634 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1635 		rcb->bge_maxlen_flags =
   1636 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1637 			BGE_RCB_FLAG_RING_DISABLED);
   1638 		if (sc->bge_extram)
   1639 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1640 		else
   1641 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1642 
   1643 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1644 		    rcb->bge_hostaddr.bge_addr_hi);
   1645 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1646 		    rcb->bge_hostaddr.bge_addr_lo);
   1647 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1648 		    rcb->bge_maxlen_flags);
   1649 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1650 
   1651 		/* Set up dummy disabled mini ring RCB */
   1652 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1653 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1654 		    BGE_RCB_FLAG_RING_DISABLED);
   1655 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1656 		    rcb->bge_maxlen_flags);
   1657 
   1658 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1659 		    offsetof(struct bge_ring_data, bge_info),
   1660 		    sizeof (struct bge_gib),
   1661 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1662 	}
   1663 
   1664 	/*
   1665 	 * Set the BD ring replentish thresholds. The recommended
   1666 	 * values are 1/8th the number of descriptors allocated to
   1667 	 * each ring.
   1668 	 */
   1669 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1670 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1671 
   1672 	/*
   1673 	 * Disable all unused send rings by setting the 'ring disabled'
   1674 	 * bit in the flags field of all the TX send ring control blocks.
   1675 	 * These are located in NIC memory.
   1676 	 */
   1677 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1678 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1679 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1680 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1681 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1682 		rcb_addr += sizeof(struct bge_rcb);
   1683 	}
   1684 
   1685 	/* Configure TX RCB 0 (we use only the first ring) */
   1686 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1687 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1688 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1689 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1690 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1691 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1692 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1693 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1694 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1695 	}
   1696 
   1697 	/* Disable all unused RX return rings */
   1698 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1699 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1700 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1701 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1702 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1703 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1704                                      BGE_RCB_FLAG_RING_DISABLED));
   1705 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1706 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1707 		    (i * (sizeof(u_int64_t))), 0);
   1708 		rcb_addr += sizeof(struct bge_rcb);
   1709 	}
   1710 
   1711 	/* Initialize RX ring indexes */
   1712 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1713 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1714 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1715 
   1716 	/*
   1717 	 * Set up RX return ring 0
   1718 	 * Note that the NIC address for RX return rings is 0x00000000.
   1719 	 * The return rings live entirely within the host, so the
   1720 	 * nicaddr field in the RCB isn't used.
   1721 	 */
   1722 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1723 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1724 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1725 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1726 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1727 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1728 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1729 
   1730 	/* Set random backoff seed for TX */
   1731 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1732 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1733 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1734 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1735 	    BGE_TX_BACKOFF_SEED_MASK);
   1736 
   1737 	/* Set inter-packet gap */
   1738 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1739 
   1740 	/*
   1741 	 * Specify which ring to use for packets that don't match
   1742 	 * any RX rules.
   1743 	 */
   1744 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1745 
   1746 	/*
   1747 	 * Configure number of RX lists. One interrupt distribution
   1748 	 * list, sixteen active lists, one bad frames class.
   1749 	 */
   1750 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1751 
   1752 	/* Inialize RX list placement stats mask. */
   1753 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1754 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1755 
   1756 	/* Disable host coalescing until we get it set up */
   1757 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1758 
   1759 	/* Poll to make sure it's shut down. */
   1760 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1761 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1762 			break;
   1763 		DELAY(10);
   1764 	}
   1765 
   1766 	if (i == BGE_TIMEOUT) {
   1767 		printf("%s: host coalescing engine failed to idle\n",
   1768 		    sc->bge_dev.dv_xname);
   1769 		return(ENXIO);
   1770 	}
   1771 
   1772 	/* Set up host coalescing defaults */
   1773 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1774 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1775 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1776 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1777 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1778 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1779 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1780 	}
   1781 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1782 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1783 
   1784 	/* Set up address of statistics block */
   1785 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1786 		bge_set_hostaddr(&taddr,
   1787 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1788 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1789 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1790 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1791 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1792 	}
   1793 
   1794 	/* Set up address of status block */
   1795 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1796 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1797 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1798 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1799 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1800 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1801 
   1802 	/* Turn on host coalescing state machine */
   1803 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1804 
   1805 	/* Turn on RX BD completion state machine and enable attentions */
   1806 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1807 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1808 
   1809 	/* Turn on RX list placement state machine */
   1810 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1811 
   1812 	/* Turn on RX list selector state machine. */
   1813 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1814 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1815 	}
   1816 
   1817 	/* Turn on DMA, clear stats */
   1818 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1819 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1820 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1821 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1822 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1823 
   1824 	/* Set misc. local control, enable interrupts on attentions */
   1825 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1826 
   1827 #ifdef notdef
   1828 	/* Assert GPIO pins for PHY reset */
   1829 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1830 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1831 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1832 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1833 #endif
   1834 
   1835 #if defined(not_quite_yet)
   1836 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1837 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1838 		sc->bge_local_ctrl_reg |=
   1839 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1840 	}
   1841 #endif
   1842 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1843 
   1844 	/* Turn on DMA completion state machine */
   1845 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1846 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1847 	}
   1848 
   1849 	/* Turn on write DMA state machine */
   1850 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1851 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1852 
   1853 	/* Turn on read DMA state machine */
   1854 	{
   1855 		uint32_t dma_read_modebits;
   1856 
   1857 		dma_read_modebits =
   1858 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1859 
   1860 		if (sc->bge_pcie && 0) {
   1861 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1862 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1863 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1864 		}
   1865 
   1866 		/* XXX broadcom-supplied linux driver; undocumented */
   1867 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1868  			/*
   1869 			 * XXX: magic values.
   1870 			 * From Broadcom-supplied Linux driver;  apparently
   1871 			 * required to workaround a DMA bug affecting TSO
   1872 			 * on bcm575x/bcm5721?
   1873 			 */
   1874 			dma_read_modebits |= (1 << 27);
   1875 		}
   1876 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1877 	}
   1878 
   1879 	/* Turn on RX data completion state machine */
   1880 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1881 
   1882 	/* Turn on RX BD initiator state machine */
   1883 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1884 
   1885 	/* Turn on RX data and RX BD initiator state machine */
   1886 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1887 
   1888 	/* Turn on Mbuf cluster free state machine */
   1889 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1890 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1891 	}
   1892 
   1893 	/* Turn on send BD completion state machine */
   1894 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1895 
   1896 	/* Turn on send data completion state machine */
   1897 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1898 
   1899 	/* Turn on send data initiator state machine */
   1900 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1901 		/* XXX: magic value from Linux driver */
   1902 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1903 	} else {
   1904 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1905 	}
   1906 
   1907 	/* Turn on send BD initiator state machine */
   1908 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1909 
   1910 	/* Turn on send BD selector state machine */
   1911 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1912 
   1913 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1914 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1915 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1916 
   1917 	/* ack/clear link change events */
   1918 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1919 	    BGE_MACSTAT_CFG_CHANGED);
   1920 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1921 
   1922 	/* Enable PHY auto polling (for MII/GMII only) */
   1923 	if (sc->bge_tbi) {
   1924 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1925  	} else {
   1926 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1927 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1928 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1929 			    BGE_EVTENB_MI_INTERRUPT);
   1930 	}
   1931 
   1932 	/* Enable link state change attentions. */
   1933 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1934 
   1935 	return(0);
   1936 }
   1937 
   1938 static const struct bge_revision {
   1939 	uint32_t		br_chipid;
   1940 	uint32_t		br_quirks;
   1941 	const char		*br_name;
   1942 } bge_revisions[] = {
   1943 	{ BGE_CHIPID_BCM5700_A0,
   1944 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1945 	  "BCM5700 A0" },
   1946 
   1947 	{ BGE_CHIPID_BCM5700_A1,
   1948 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1949 	  "BCM5700 A1" },
   1950 
   1951 	{ BGE_CHIPID_BCM5700_B0,
   1952 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1953 	  "BCM5700 B0" },
   1954 
   1955 	{ BGE_CHIPID_BCM5700_B1,
   1956 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1957 	  "BCM5700 B1" },
   1958 
   1959 	{ BGE_CHIPID_BCM5700_B2,
   1960 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1961 	  "BCM5700 B2" },
   1962 
   1963 	/* This is treated like a BCM5700 Bx */
   1964 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1965 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1966 	  "BCM5700 Altima" },
   1967 
   1968 	{ BGE_CHIPID_BCM5700_C0,
   1969 	  0,
   1970 	  "BCM5700 C0" },
   1971 
   1972 	{ BGE_CHIPID_BCM5701_A0,
   1973 	  0, /*XXX really, just not known */
   1974 	  "BCM5701 A0" },
   1975 
   1976 	{ BGE_CHIPID_BCM5701_B0,
   1977 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1978 	  "BCM5701 B0" },
   1979 
   1980 	{ BGE_CHIPID_BCM5701_B2,
   1981 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1982 	  "BCM5701 B2" },
   1983 
   1984 	{ BGE_CHIPID_BCM5701_B5,
   1985 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1986 	  "BCM5701 B5" },
   1987 
   1988 	{ BGE_CHIPID_BCM5703_A0,
   1989 	  0,
   1990 	  "BCM5703 A0" },
   1991 
   1992 	{ BGE_CHIPID_BCM5703_A1,
   1993 	  0,
   1994 	  "BCM5703 A1" },
   1995 
   1996 	{ BGE_CHIPID_BCM5703_A2,
   1997 	  BGE_QUIRK_ONLY_PHY_1,
   1998 	  "BCM5703 A2" },
   1999 
   2000 	{ BGE_CHIPID_BCM5703_A3,
   2001 	  BGE_QUIRK_ONLY_PHY_1,
   2002 	  "BCM5703 A3" },
   2003 
   2004 	{ BGE_CHIPID_BCM5704_A0,
   2005   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2006 	  "BCM5704 A0" },
   2007 
   2008 	{ BGE_CHIPID_BCM5704_A1,
   2009   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2010 	  "BCM5704 A1" },
   2011 
   2012 	{ BGE_CHIPID_BCM5704_A2,
   2013   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2014 	  "BCM5704 A2" },
   2015 
   2016 	{ BGE_CHIPID_BCM5704_A3,
   2017   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2018 	  "BCM5704 A3" },
   2019 
   2020 	{ BGE_CHIPID_BCM5705_A0,
   2021 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2022 	  "BCM5705 A0" },
   2023 
   2024 	{ BGE_CHIPID_BCM5705_A1,
   2025 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2026 	  "BCM5705 A1" },
   2027 
   2028 	{ BGE_CHIPID_BCM5705_A2,
   2029 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2030 	  "BCM5705 A2" },
   2031 
   2032 	{ BGE_CHIPID_BCM5705_A3,
   2033 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2034 	  "BCM5705 A3" },
   2035 
   2036 	{ BGE_CHIPID_BCM5750_A0,
   2037 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2038 	  "BCM5750 A1" },
   2039 
   2040 	{ BGE_CHIPID_BCM5750_A1,
   2041 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2042 	  "BCM5750 A1" },
   2043 
   2044 	{ BGE_CHIPID_BCM5751_A1,
   2045 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2046 	  "BCM5751 A1" },
   2047 
   2048 	{ 0, 0, NULL }
   2049 };
   2050 
   2051 /*
   2052  * Some defaults for major revisions, so that newer steppings
   2053  * that we don't know about have a shot at working.
   2054  */
   2055 static const struct bge_revision bge_majorrevs[] = {
   2056 	{ BGE_ASICREV_BCM5700,
   2057 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2058 	  "unknown BCM5700" },
   2059 
   2060 	{ BGE_ASICREV_BCM5701,
   2061 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2062 	  "unknown BCM5701" },
   2063 
   2064 	{ BGE_ASICREV_BCM5703,
   2065 	  0,
   2066 	  "unknown BCM5703" },
   2067 
   2068 	{ BGE_ASICREV_BCM5704,
   2069 	  BGE_QUIRK_ONLY_PHY_1,
   2070 	  "unknown BCM5704" },
   2071 
   2072 	{ BGE_ASICREV_BCM5705,
   2073 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2074 	  "unknown BCM5705" },
   2075 
   2076 	{ BGE_ASICREV_BCM5750,
   2077 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2078 	  "unknown BCM575x family" },
   2079 
   2080 	{ BGE_ASICREV_BCM5714,
   2081 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2082 	  "unknown BCM5714" },
   2083 
   2084 	{ BGE_ASICREV_BCM5752,
   2085 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2086 	  "unknown BCM5752 family" },
   2087 
   2088 
   2089 	{ BGE_ASICREV_BCM5715,
   2090 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2091 	  "unknown BCM5715" },
   2092 
   2093 	{ 0,
   2094 	  0,
   2095 	  NULL }
   2096 };
   2097 
   2098 
   2099 static const struct bge_revision *
   2100 bge_lookup_rev(uint32_t chipid)
   2101 {
   2102 	const struct bge_revision *br;
   2103 
   2104 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2105 		if (br->br_chipid == chipid)
   2106 			return (br);
   2107 	}
   2108 
   2109 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2110 		if (br->br_chipid == BGE_ASICREV(chipid))
   2111 			return (br);
   2112 	}
   2113 
   2114 	return (NULL);
   2115 }
   2116 
   2117 static const struct bge_product {
   2118 	pci_vendor_id_t		bp_vendor;
   2119 	pci_product_id_t	bp_product;
   2120 	const char		*bp_name;
   2121 } bge_products[] = {
   2122 	/*
   2123 	 * The BCM5700 documentation seems to indicate that the hardware
   2124 	 * still has the Alteon vendor ID burned into it, though it
   2125 	 * should always be overridden by the value in the EEPROM.  We'll
   2126 	 * check for it anyway.
   2127 	 */
   2128 	{ PCI_VENDOR_ALTEON,
   2129 	  PCI_PRODUCT_ALTEON_BCM5700,
   2130 	  "Broadcom BCM5700 Gigabit Ethernet",
   2131 	  },
   2132 	{ PCI_VENDOR_ALTEON,
   2133 	  PCI_PRODUCT_ALTEON_BCM5701,
   2134 	  "Broadcom BCM5701 Gigabit Ethernet",
   2135 	  },
   2136 
   2137 	{ PCI_VENDOR_ALTIMA,
   2138 	  PCI_PRODUCT_ALTIMA_AC1000,
   2139 	  "Altima AC1000 Gigabit Ethernet",
   2140 	  },
   2141 	{ PCI_VENDOR_ALTIMA,
   2142 	  PCI_PRODUCT_ALTIMA_AC1001,
   2143 	  "Altima AC1001 Gigabit Ethernet",
   2144 	   },
   2145 	{ PCI_VENDOR_ALTIMA,
   2146 	  PCI_PRODUCT_ALTIMA_AC9100,
   2147 	  "Altima AC9100 Gigabit Ethernet",
   2148 	  },
   2149 
   2150 	{ PCI_VENDOR_BROADCOM,
   2151 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2152 	  "Broadcom BCM5700 Gigabit Ethernet",
   2153 	  },
   2154 	{ PCI_VENDOR_BROADCOM,
   2155 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2156 	  "Broadcom BCM5701 Gigabit Ethernet",
   2157 	  },
   2158 	{ PCI_VENDOR_BROADCOM,
   2159 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2160 	  "Broadcom BCM5702 Gigabit Ethernet",
   2161 	  },
   2162 	{ PCI_VENDOR_BROADCOM,
   2163 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2164 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2165 
   2166 	{ PCI_VENDOR_BROADCOM,
   2167 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2168 	  "Broadcom BCM5703 Gigabit Ethernet",
   2169 	  },
   2170 	{ PCI_VENDOR_BROADCOM,
   2171 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2172 	  "Broadcom BCM5703X Gigabit Ethernet",
   2173 	  },
   2174 	{ PCI_VENDOR_BROADCOM,
   2175 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   2176 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2177 	  },
   2178 
   2179    	{ PCI_VENDOR_BROADCOM,
   2180 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2181 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2182 	  },
   2183    	{ PCI_VENDOR_BROADCOM,
   2184 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2185 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2186 	  },
   2187 
   2188    	{ PCI_VENDOR_BROADCOM,
   2189 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2190 	  "Broadcom BCM5705 Gigabit Ethernet",
   2191 	  },
   2192    	{ PCI_VENDOR_BROADCOM,
   2193 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2194 	  "Broadcom BCM5705K Gigabit Ethernet",
   2195 	  },
   2196    	{ PCI_VENDOR_BROADCOM,
   2197 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2198 	  "Broadcom BCM5705 Gigabit Ethernet",
   2199 	  },
   2200    	{ PCI_VENDOR_BROADCOM,
   2201 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2202 	  "Broadcom BCM5705M Gigabit Ethernet",
   2203 	  },
   2204 
   2205 	{ PCI_VENDOR_BROADCOM,
   2206 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2207 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2208 	  },
   2209 
   2210 	{ PCI_VENDOR_BROADCOM,
   2211 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2212 	  "Broadcom BCM5721 Gigabit Ethernet",
   2213 	  },
   2214 
   2215 	{ PCI_VENDOR_BROADCOM,
   2216 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2217 	  "Broadcom BCM5750 Gigabit Ethernet",
   2218 	  },
   2219 
   2220 	{ PCI_VENDOR_BROADCOM,
   2221 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2222 	  "Broadcom BCM5750M Gigabit Ethernet",
   2223 	  },
   2224 
   2225 	{ PCI_VENDOR_BROADCOM,
   2226 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2227 	  "Broadcom BCM5751 Gigabit Ethernet",
   2228 	  },
   2229 
   2230 	{ PCI_VENDOR_BROADCOM,
   2231 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2232 	  "Broadcom BCM5751M Gigabit Ethernet",
   2233 	  },
   2234 
   2235 	{ PCI_VENDOR_BROADCOM,
   2236 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2237 	  "Broadcom BCM5752 Gigabit Ethernet",
   2238 	  },
   2239 
   2240    	{ PCI_VENDOR_BROADCOM,
   2241 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2242 	  "Broadcom BCM5782 Gigabit Ethernet",
   2243 	  },
   2244    	{ PCI_VENDOR_BROADCOM,
   2245 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2246 	  "Broadcom BCM5788 Gigabit Ethernet",
   2247 	  },
   2248    	{ PCI_VENDOR_BROADCOM,
   2249 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2250 	  "Broadcom BCM5789 Gigabit Ethernet",
   2251 	  },
   2252 
   2253    	{ PCI_VENDOR_BROADCOM,
   2254 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2255 	  "Broadcom BCM5901 Fast Ethernet",
   2256 	  },
   2257    	{ PCI_VENDOR_BROADCOM,
   2258 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2259 	  "Broadcom BCM5901A2 Fast Ethernet",
   2260 	  },
   2261 
   2262 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2263 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2264 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2265 	  },
   2266 
   2267 	{ PCI_VENDOR_3COM,
   2268 	  PCI_PRODUCT_3COM_3C996,
   2269 	  "3Com 3c996 Gigabit Ethernet",
   2270 	  },
   2271 
   2272 	{ 0,
   2273 	  0,
   2274 	  NULL },
   2275 };
   2276 
   2277 static const struct bge_product *
   2278 bge_lookup(const struct pci_attach_args *pa)
   2279 {
   2280 	const struct bge_product *bp;
   2281 
   2282 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2283 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2284 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2285 			return (bp);
   2286 	}
   2287 
   2288 	return (NULL);
   2289 }
   2290 
   2291 int
   2292 bge_setpowerstate(sc, powerlevel)
   2293 	struct bge_softc *sc;
   2294 	int powerlevel;
   2295 {
   2296 #ifdef NOTYET
   2297 	u_int32_t pm_ctl = 0;
   2298 
   2299 	/* XXX FIXME: make sure indirect accesses enabled? */
   2300 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2301 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2302 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2303 
   2304 	/* clear the PME_assert bit and power state bits, enable PME */
   2305 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2306 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2307 	pm_ctl |= (1 << 8);
   2308 
   2309 	if (powerlevel == 0) {
   2310 		pm_ctl |= PCIM_PSTAT_D0;
   2311 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2312 		    pm_ctl, 2);
   2313 		DELAY(10000);
   2314 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2315 		DELAY(10000);
   2316 
   2317 #ifdef NOTYET
   2318 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2319 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2320 #endif
   2321 		DELAY(40); DELAY(40); DELAY(40);
   2322 		DELAY(10000);	/* above not quite adequate on 5700 */
   2323 		return 0;
   2324 	}
   2325 
   2326 
   2327 	/*
   2328 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2329 	 * GMII gpio pins. Example code assumes all hardware vendors
   2330 	 * followed Broadom's sample pcb layout. Until we verify that
   2331 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2332 	 */
   2333 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2334 	       sc->bge_dev.dv_xname, powerlevel);
   2335 #endif
   2336 	return EOPNOTSUPP;
   2337 }
   2338 
   2339 
   2340 /*
   2341  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2342  * against our list and return its name if we find a match. Note
   2343  * that since the Broadcom controller contains VPD support, we
   2344  * can get the device name string from the controller itself instead
   2345  * of the compiled-in string. This is a little slow, but it guarantees
   2346  * we'll always announce the right product name.
   2347  */
   2348 int
   2349 bge_probe(parent, match, aux)
   2350 	struct device *parent;
   2351 	struct cfdata *match;
   2352 	void *aux;
   2353 {
   2354 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2355 
   2356 	if (bge_lookup(pa) != NULL)
   2357 		return (1);
   2358 
   2359 	return (0);
   2360 }
   2361 
   2362 void
   2363 bge_attach(parent, self, aux)
   2364 	struct device *parent, *self;
   2365 	void *aux;
   2366 {
   2367 	struct bge_softc	*sc = (struct bge_softc *)self;
   2368 	struct pci_attach_args	*pa = aux;
   2369 	const struct bge_product *bp;
   2370 	const struct bge_revision *br;
   2371 	pci_chipset_tag_t	pc = pa->pa_pc;
   2372 	pci_intr_handle_t	ih;
   2373 	const char		*intrstr = NULL;
   2374 	bus_dma_segment_t	seg;
   2375 	int			rseg;
   2376 	u_int32_t		hwcfg = 0;
   2377 	u_int32_t		mac_addr = 0;
   2378 	u_int32_t		command;
   2379 	struct ifnet		*ifp;
   2380 	caddr_t			kva;
   2381 	u_char			eaddr[ETHER_ADDR_LEN];
   2382 	pcireg_t		memtype;
   2383 	bus_addr_t		memaddr;
   2384 	bus_size_t		memsize;
   2385 	u_int32_t		pm_ctl;
   2386 
   2387 	bp = bge_lookup(pa);
   2388 	KASSERT(bp != NULL);
   2389 
   2390 	sc->bge_pa = *pa;
   2391 
   2392 	aprint_naive(": Ethernet controller\n");
   2393 	aprint_normal(": %s\n", bp->bp_name);
   2394 
   2395 	/*
   2396 	 * Map control/status registers.
   2397 	 */
   2398 	DPRINTFN(5, ("Map control/status regs\n"));
   2399 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2400 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2401 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2402 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2403 
   2404 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2405 		aprint_error("%s: failed to enable memory mapping!\n",
   2406 		    sc->bge_dev.dv_xname);
   2407 		return;
   2408 	}
   2409 
   2410 	DPRINTFN(5, ("pci_mem_find\n"));
   2411 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2412  	switch (memtype) {
   2413 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2414 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2415 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2416 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2417 		    &memaddr, &memsize) == 0)
   2418 			break;
   2419 	default:
   2420 		aprint_error("%s: can't find mem space\n",
   2421 		    sc->bge_dev.dv_xname);
   2422 		return;
   2423 	}
   2424 
   2425 	DPRINTFN(5, ("pci_intr_map\n"));
   2426 	if (pci_intr_map(pa, &ih)) {
   2427 		aprint_error("%s: couldn't map interrupt\n",
   2428 		    sc->bge_dev.dv_xname);
   2429 		return;
   2430 	}
   2431 
   2432 	DPRINTFN(5, ("pci_intr_string\n"));
   2433 	intrstr = pci_intr_string(pc, ih);
   2434 
   2435 	DPRINTFN(5, ("pci_intr_establish\n"));
   2436 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2437 
   2438 	if (sc->bge_intrhand == NULL) {
   2439 		aprint_error("%s: couldn't establish interrupt",
   2440 		    sc->bge_dev.dv_xname);
   2441 		if (intrstr != NULL)
   2442 			aprint_normal(" at %s", intrstr);
   2443 		aprint_normal("\n");
   2444 		return;
   2445 	}
   2446 	aprint_normal("%s: interrupting at %s\n",
   2447 	    sc->bge_dev.dv_xname, intrstr);
   2448 
   2449 	/*
   2450 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2451 	 * can clobber the chip's PCI config-space power control registers,
   2452 	 * leaving the card in D3 powersave state.
   2453 	 * We do not have memory-mapped registers in this state,
   2454 	 * so force device into D0 state before starting initialization.
   2455 	 */
   2456 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2457 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2458 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2459 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2460 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2461 
   2462 	/*
   2463 	 * Save ASIC rev.  Look up any quirks associated with this
   2464 	 * ASIC.
   2465 	 */
   2466 	sc->bge_chipid =
   2467 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2468 	    BGE_PCIMISCCTL_ASICREV;
   2469 
   2470 	/*
   2471 	 * Detect PCI-Express devices
   2472 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2473 	 */
   2474 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
   2475 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2476 	    NULL, NULL) != 0)
   2477 		sc->bge_pcie = 1;
   2478 	else
   2479 		sc->bge_pcie = 0;
   2480 
   2481 	/* Try to reset the chip. */
   2482 	DPRINTFN(5, ("bge_reset\n"));
   2483 	bge_reset(sc);
   2484 
   2485 	if (bge_chipinit(sc)) {
   2486 		aprint_error("%s: chip initialization failed\n",
   2487 		    sc->bge_dev.dv_xname);
   2488 		bge_release_resources(sc);
   2489 		return;
   2490 	}
   2491 
   2492 	/*
   2493 	 * Get station address from the EEPROM.
   2494 	 */
   2495 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2496 	if ((mac_addr >> 16) == 0x484b) {
   2497 		eaddr[0] = (u_char)(mac_addr >> 8);
   2498 		eaddr[1] = (u_char)(mac_addr >> 0);
   2499 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2500 		eaddr[2] = (u_char)(mac_addr >> 24);
   2501 		eaddr[3] = (u_char)(mac_addr >> 16);
   2502 		eaddr[4] = (u_char)(mac_addr >> 8);
   2503 		eaddr[5] = (u_char)(mac_addr >> 0);
   2504 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2505 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2506 		aprint_error("%s: failed to read station address\n",
   2507 		    sc->bge_dev.dv_xname);
   2508 		bge_release_resources(sc);
   2509 		return;
   2510 	}
   2511 
   2512 	br = bge_lookup_rev(sc->bge_chipid);
   2513 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2514 
   2515 	if (br == NULL) {
   2516 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2517 		sc->bge_quirks = 0;
   2518 	} else {
   2519 		aprint_normal("ASIC %s (0x%04x)",
   2520 		    br->br_name, sc->bge_chipid >> 16);
   2521 		sc->bge_quirks |= br->br_quirks;
   2522 	}
   2523 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2524 
   2525 	/* Allocate the general information block and ring buffers. */
   2526 	if (pci_dma64_available(pa))
   2527 		sc->bge_dmatag = pa->pa_dmat64;
   2528 	else
   2529 		sc->bge_dmatag = pa->pa_dmat;
   2530 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2531 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2532 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2533 		aprint_error("%s: can't alloc rx buffers\n",
   2534 		    sc->bge_dev.dv_xname);
   2535 		return;
   2536 	}
   2537 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2538 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2539 			   sizeof(struct bge_ring_data), &kva,
   2540 			   BUS_DMA_NOWAIT)) {
   2541 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2542 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2543 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2544 		return;
   2545 	}
   2546 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2547 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2548 	    sizeof(struct bge_ring_data), 0,
   2549 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2550 		aprint_error("%s: can't create DMA map\n",
   2551 		    sc->bge_dev.dv_xname);
   2552 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2553 				 sizeof(struct bge_ring_data));
   2554 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2555 		return;
   2556 	}
   2557 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2558 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2559 			    sizeof(struct bge_ring_data), NULL,
   2560 			    BUS_DMA_NOWAIT)) {
   2561 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2562 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2563 				 sizeof(struct bge_ring_data));
   2564 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2565 		return;
   2566 	}
   2567 
   2568 	DPRINTFN(5, ("bzero\n"));
   2569 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2570 
   2571 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2572 
   2573 	/* Try to allocate memory for jumbo buffers. */
   2574 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2575 		if (bge_alloc_jumbo_mem(sc)) {
   2576 			aprint_error("%s: jumbo buffer allocation failed\n",
   2577 			    sc->bge_dev.dv_xname);
   2578 		} else
   2579 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2580 	}
   2581 
   2582 	/* Set default tuneable values. */
   2583 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2584 	sc->bge_rx_coal_ticks = 150;
   2585 	sc->bge_rx_max_coal_bds = 64;
   2586 #ifdef ORIG_WPAUL_VALUES
   2587 	sc->bge_tx_coal_ticks = 150;
   2588 	sc->bge_tx_max_coal_bds = 128;
   2589 #else
   2590 	sc->bge_tx_coal_ticks = 300;
   2591 	sc->bge_tx_max_coal_bds = 400;
   2592 #endif
   2593 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2594 		sc->bge_tx_coal_ticks = (12 * 5);
   2595 		sc->bge_rx_max_coal_bds = (12 * 5);
   2596 			aprint_error("%s: setting short Tx thresholds\n",
   2597 			    sc->bge_dev.dv_xname);
   2598 	}
   2599 
   2600 	/* Set up ifnet structure */
   2601 	ifp = &sc->ethercom.ec_if;
   2602 	ifp->if_softc = sc;
   2603 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2604 	ifp->if_ioctl = bge_ioctl;
   2605 	ifp->if_start = bge_start;
   2606 	ifp->if_init = bge_init;
   2607 	ifp->if_watchdog = bge_watchdog;
   2608 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2609 	IFQ_SET_READY(&ifp->if_snd);
   2610 	DPRINTFN(5, ("bcopy\n"));
   2611 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2612 
   2613 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2614 		sc->ethercom.ec_if.if_capabilities |=
   2615 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2616 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2617 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2618 	sc->ethercom.ec_capabilities |=
   2619 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2620 
   2621 	if (sc->bge_pcie)
   2622 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2623 
   2624 	/*
   2625 	 * Do MII setup.
   2626 	 */
   2627 	DPRINTFN(5, ("mii setup\n"));
   2628 	sc->bge_mii.mii_ifp = ifp;
   2629 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2630 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2631 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2632 
   2633 	/*
   2634 	 * Figure out what sort of media we have by checking the
   2635 	 * hardware config word in the first 32k of NIC internal memory,
   2636 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2637 	 * cards, this value appears to be unset. If that's the
   2638 	 * case, we have to rely on identifying the NIC by its PCI
   2639 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2640 	 */
   2641 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2642 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2643 	} else {
   2644 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2645 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2646 		hwcfg = be32toh(hwcfg);
   2647 	}
   2648 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2649 		sc->bge_tbi = 1;
   2650 
   2651 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2652 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2653 	    SK_SUBSYSID_9D41)
   2654 		sc->bge_tbi = 1;
   2655 
   2656 	if (sc->bge_tbi) {
   2657 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2658 		    bge_ifmedia_sts);
   2659 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2660 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2661 			    0, NULL);
   2662 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2663 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2664 	} else {
   2665 		/*
   2666 		 * Do transceiver setup.
   2667 		 */
   2668 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2669 			     bge_ifmedia_sts);
   2670 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2671 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2672 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2673 
   2674 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2675 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2676 			ifmedia_add(&sc->bge_mii.mii_media,
   2677 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2678 			ifmedia_set(&sc->bge_mii.mii_media,
   2679 				    IFM_ETHER|IFM_MANUAL);
   2680 		} else
   2681 			ifmedia_set(&sc->bge_mii.mii_media,
   2682 				    IFM_ETHER|IFM_AUTO);
   2683 	}
   2684 
   2685 	/*
   2686 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2687 	 * been observed in the first few bytes of some received packets.
   2688 	 * Aligning the packet buffer in memory eliminates the corruption.
   2689 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2690 	 * which do not support unaligned accesses, we will realign the
   2691 	 * payloads by copying the received packets.
   2692 	 */
   2693 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2694 		/* If in PCI-X mode, work around the alignment bug. */
   2695 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2696                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2697                          BGE_PCISTATE_PCI_BUSSPEED)
   2698 		sc->bge_rx_alignment_bug = 1;
   2699         }
   2700 
   2701 	/*
   2702 	 * Call MI attach routine.
   2703 	 */
   2704 	DPRINTFN(5, ("if_attach\n"));
   2705 	if_attach(ifp);
   2706 	DPRINTFN(5, ("ether_ifattach\n"));
   2707 	ether_ifattach(ifp, eaddr);
   2708 #ifdef BGE_EVENT_COUNTERS
   2709 	/*
   2710 	 * Attach event counters.
   2711 	 */
   2712 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2713 	    NULL, sc->bge_dev.dv_xname, "intr");
   2714 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2715 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
   2716 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2717 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
   2718 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2719 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
   2720 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2721 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
   2722 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2723 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
   2724 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2725 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
   2726 #endif /* BGE_EVENT_COUNTERS */
   2727 	DPRINTFN(5, ("callout_init\n"));
   2728 	callout_init(&sc->bge_timeout);
   2729 
   2730 	sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
   2731 	if (sc->bge_powerhook == NULL)
   2732 		printf("%s: WARNING: unable to establish PCI power hook\n",
   2733 		    sc->bge_dev.dv_xname);
   2734 }
   2735 
   2736 void
   2737 bge_release_resources(sc)
   2738 	struct bge_softc *sc;
   2739 {
   2740 	if (sc->bge_vpd_prodname != NULL)
   2741 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2742 
   2743 	if (sc->bge_vpd_readonly != NULL)
   2744 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2745 }
   2746 
   2747 void
   2748 bge_reset(sc)
   2749 	struct bge_softc *sc;
   2750 {
   2751 	struct pci_attach_args *pa = &sc->bge_pa;
   2752 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2753 	int i, val;
   2754 
   2755 	/* Save some important PCI state. */
   2756 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2757 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2758 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2759 
   2760 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2761 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2762 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2763 
   2764 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2765 	/*
   2766 	 * XXX: from FreeBSD/Linux; no documentation
   2767 	 */
   2768 	if (sc->bge_pcie) {
   2769 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2770 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2771 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2772 			/* No idea what that actually means */
   2773 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2774 			val |= (1<<29);
   2775 		}
   2776 	}
   2777 
   2778 	/* Issue global reset */
   2779 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2780 
   2781 	DELAY(1000);
   2782 
   2783 	/*
   2784 	 * XXX: from FreeBSD/Linux; no documentation
   2785 	 */
   2786 	if (sc->bge_pcie) {
   2787 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2788 			pcireg_t reg;
   2789 
   2790 			DELAY(500000);
   2791 			/* XXX: Magic Numbers */
   2792 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2793 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2794 			    reg | (1 << 15));
   2795 		}
   2796 		/*
   2797 		 * XXX: Magic Numbers.
   2798 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2799 		 * Should be replaced with references to PCI config-space
   2800 		 * capability block for PCI-Express.
   2801 		 */
   2802 		pci_conf_write(pa->pa_pc, pa->pa_tag,
   2803 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2804 
   2805 	}
   2806 
   2807 	/* Reset some of the PCI state that got zapped by reset */
   2808 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2809 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2810 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2811 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2812 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2813 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2814 
   2815 	/* Enable memory arbiter. */
   2816 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2817 		uint32_t marbmode = 0;
   2818 		if (BGE_IS_5714_FAMILY(sc)) {
   2819 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2820 		}
   2821  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2822 	}
   2823 
   2824 	/*
   2825 	 * Prevent PXE restart: write a magic number to the
   2826 	 * general communications memory at 0xB50.
   2827 	 */
   2828 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2829 
   2830 	/*
   2831 	 * Poll the value location we just wrote until
   2832 	 * we see the 1's complement of the magic number.
   2833 	 * This indicates that the firmware initialization
   2834 	 * is complete.
   2835 	 */
   2836 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2837 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2838 		if (val == ~BGE_MAGIC_NUMBER)
   2839 			break;
   2840 		DELAY(1000);
   2841 	}
   2842 
   2843 	if (i >= BGE_TIMEOUT) {
   2844 		printf("%s: firmware handshake timed out, val = %x\n",
   2845 		    sc->bge_dev.dv_xname, val);
   2846 		/*
   2847 		 * XXX: occasionally fired on bcm5721, but without
   2848 		 * apparent harm.  For now, keep going if we timeout
   2849 		 * against PCI-E devices.
   2850 		 */
   2851 		 if (!sc->bge_pcie)
   2852 		  return;
   2853 	}
   2854 
   2855 	/*
   2856 	 * XXX Wait for the value of the PCISTATE register to
   2857 	 * return to its original pre-reset state. This is a
   2858 	 * fairly good indicator of reset completion. If we don't
   2859 	 * wait for the reset to fully complete, trying to read
   2860 	 * from the device's non-PCI registers may yield garbage
   2861 	 * results.
   2862 	 */
   2863 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2864 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2865 		    BGE_PCI_PCISTATE);
   2866 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2867 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2868 			break;
   2869 		DELAY(10);
   2870 	}
   2871 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2872 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2873 		printf("%s: pcistate failed to revert\n",
   2874 		    sc->bge_dev.dv_xname);
   2875 	}
   2876 
   2877 	/* XXX: from FreeBSD/Linux; no documentation */
   2878 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2879 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2880 
   2881 	/* Enable memory arbiter. */
   2882 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2883 		uint32_t marbmode = 0;
   2884 		if (BGE_IS_5714_FAMILY(sc)) {
   2885 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2886 		}
   2887  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2888 	}
   2889 
   2890 	/* Fix up byte swapping */
   2891 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2892 
   2893 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2894 
   2895 	DELAY(10000);
   2896 }
   2897 
   2898 /*
   2899  * Frame reception handling. This is called if there's a frame
   2900  * on the receive return list.
   2901  *
   2902  * Note: we have to be able to handle two possibilities here:
   2903  * 1) the frame is from the jumbo recieve ring
   2904  * 2) the frame is from the standard receive ring
   2905  */
   2906 
   2907 void
   2908 bge_rxeof(sc)
   2909 	struct bge_softc *sc;
   2910 {
   2911 	struct ifnet *ifp;
   2912 	int stdcnt = 0, jumbocnt = 0;
   2913 	bus_dmamap_t dmamap;
   2914 	bus_addr_t offset, toff;
   2915 	bus_size_t tlen;
   2916 	int tosync;
   2917 
   2918 	ifp = &sc->ethercom.ec_if;
   2919 
   2920 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2921 	    offsetof(struct bge_ring_data, bge_status_block),
   2922 	    sizeof (struct bge_status_block),
   2923 	    BUS_DMASYNC_POSTREAD);
   2924 
   2925 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2926 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2927 	    sc->bge_rx_saved_considx;
   2928 
   2929 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2930 
   2931 	if (tosync < 0) {
   2932 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2933 		    sizeof (struct bge_rx_bd);
   2934 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2935 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2936 		tosync = -tosync;
   2937 	}
   2938 
   2939 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2940 	    offset, tosync * sizeof (struct bge_rx_bd),
   2941 	    BUS_DMASYNC_POSTREAD);
   2942 
   2943 	while(sc->bge_rx_saved_considx !=
   2944 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2945 		struct bge_rx_bd	*cur_rx;
   2946 		u_int32_t		rxidx;
   2947 		struct mbuf		*m = NULL;
   2948 
   2949 		cur_rx = &sc->bge_rdata->
   2950 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2951 
   2952 		rxidx = cur_rx->bge_idx;
   2953 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2954 
   2955 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2956 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2957 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2958 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2959 			jumbocnt++;
   2960 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2961 				ifp->if_ierrors++;
   2962 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2963 				continue;
   2964 			}
   2965 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2966 					     NULL)== ENOBUFS) {
   2967 				ifp->if_ierrors++;
   2968 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2969 				continue;
   2970 			}
   2971 		} else {
   2972 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2973 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2974 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2975 			stdcnt++;
   2976 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2977 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2978 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2979 				ifp->if_ierrors++;
   2980 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2981 				continue;
   2982 			}
   2983 			if (bge_newbuf_std(sc, sc->bge_std,
   2984 			    NULL, dmamap) == ENOBUFS) {
   2985 				ifp->if_ierrors++;
   2986 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2987 				continue;
   2988 			}
   2989 		}
   2990 
   2991 		ifp->if_ipackets++;
   2992 #ifndef __NO_STRICT_ALIGNMENT
   2993                 /*
   2994                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2995                  * the Rx buffer has the layer-2 header unaligned.
   2996                  * If our CPU requires alignment, re-align by copying.
   2997                  */
   2998 		if (sc->bge_rx_alignment_bug) {
   2999 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   3000                                 cur_rx->bge_len);
   3001 			m->m_data += ETHER_ALIGN;
   3002 		}
   3003 #endif
   3004 
   3005 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3006 		m->m_pkthdr.rcvif = ifp;
   3007 
   3008 #if NBPFILTER > 0
   3009 		/*
   3010 		 * Handle BPF listeners. Let the BPF user see the packet.
   3011 		 */
   3012 		if (ifp->if_bpf)
   3013 			bpf_mtap(ifp->if_bpf, m);
   3014 #endif
   3015 
   3016 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3017 
   3018 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3019 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3020 		/*
   3021 		 * Rx transport checksum-offload may also
   3022 		 * have bugs with packets which, when transmitted,
   3023 		 * were `runts' requiring padding.
   3024 		 */
   3025 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3026 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3027 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3028 			m->m_pkthdr.csum_data =
   3029 			    cur_rx->bge_tcp_udp_csum;
   3030 			m->m_pkthdr.csum_flags |=
   3031 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3032 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3033 		}
   3034 
   3035 		/*
   3036 		 * If we received a packet with a vlan tag, pass it
   3037 		 * to vlan_input() instead of ether_input().
   3038 		 */
   3039 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   3040 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3041 
   3042 		(*ifp->if_input)(ifp, m);
   3043 	}
   3044 
   3045 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3046 	if (stdcnt)
   3047 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3048 	if (jumbocnt)
   3049 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3050 }
   3051 
   3052 void
   3053 bge_txeof(sc)
   3054 	struct bge_softc *sc;
   3055 {
   3056 	struct bge_tx_bd *cur_tx = NULL;
   3057 	struct ifnet *ifp;
   3058 	struct txdmamap_pool_entry *dma;
   3059 	bus_addr_t offset, toff;
   3060 	bus_size_t tlen;
   3061 	int tosync;
   3062 	struct mbuf *m;
   3063 
   3064 	ifp = &sc->ethercom.ec_if;
   3065 
   3066 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3067 	    offsetof(struct bge_ring_data, bge_status_block),
   3068 	    sizeof (struct bge_status_block),
   3069 	    BUS_DMASYNC_POSTREAD);
   3070 
   3071 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3072 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3073 	    sc->bge_tx_saved_considx;
   3074 
   3075 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3076 
   3077 	if (tosync < 0) {
   3078 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3079 		    sizeof (struct bge_tx_bd);
   3080 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3081 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3082 		tosync = -tosync;
   3083 	}
   3084 
   3085 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3086 	    offset, tosync * sizeof (struct bge_tx_bd),
   3087 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3088 
   3089 	/*
   3090 	 * Go through our tx ring and free mbufs for those
   3091 	 * frames that have been sent.
   3092 	 */
   3093 	while (sc->bge_tx_saved_considx !=
   3094 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3095 		u_int32_t		idx = 0;
   3096 
   3097 		idx = sc->bge_tx_saved_considx;
   3098 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3099 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3100 			ifp->if_opackets++;
   3101 		m = sc->bge_cdata.bge_tx_chain[idx];
   3102 		if (m != NULL) {
   3103 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3104 			dma = sc->txdma[idx];
   3105 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3106 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3107 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3108 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3109 			sc->txdma[idx] = NULL;
   3110 
   3111 			m_freem(m);
   3112 		}
   3113 		sc->bge_txcnt--;
   3114 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3115 		ifp->if_timer = 0;
   3116 	}
   3117 
   3118 	if (cur_tx != NULL)
   3119 		ifp->if_flags &= ~IFF_OACTIVE;
   3120 }
   3121 
   3122 int
   3123 bge_intr(xsc)
   3124 	void *xsc;
   3125 {
   3126 	struct bge_softc *sc;
   3127 	struct ifnet *ifp;
   3128 
   3129 	sc = xsc;
   3130 	ifp = &sc->ethercom.ec_if;
   3131 
   3132 #ifdef notdef
   3133 	/* Avoid this for now -- checking this register is expensive. */
   3134 	/* Make sure this is really our interrupt. */
   3135 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   3136 		return (0);
   3137 #endif
   3138 	/* Ack interrupt and stop others from occuring. */
   3139 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3140 
   3141 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3142 
   3143 	/*
   3144 	 * Process link state changes.
   3145 	 * Grrr. The link status word in the status block does
   3146 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3147 	 * according to all available information. Hence, we have
   3148 	 * to enable MII interrupts in order to properly obtain
   3149 	 * async link changes. Unfortunately, this also means that
   3150 	 * we have to read the MAC status register to detect link
   3151 	 * changes, thereby adding an additional register access to
   3152 	 * the interrupt handler.
   3153 	 */
   3154 
   3155 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3156 		u_int32_t		status;
   3157 
   3158 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3159 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3160 			sc->bge_link = 0;
   3161 			callout_stop(&sc->bge_timeout);
   3162 			bge_tick(sc);
   3163 			/* Clear the interrupt */
   3164 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3165 			    BGE_EVTENB_MI_INTERRUPT);
   3166 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   3167 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   3168 			    BRGPHY_INTRS);
   3169 		}
   3170 	} else {
   3171 		if (sc->bge_rdata->bge_status_block.bge_status &
   3172 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3173 			sc->bge_link = 0;
   3174 			callout_stop(&sc->bge_timeout);
   3175 			bge_tick(sc);
   3176 			/* Clear the interrupt */
   3177 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3178 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3179 			    BGE_MACSTAT_LINK_CHANGED);
   3180 		}
   3181 	}
   3182 
   3183 	if (ifp->if_flags & IFF_RUNNING) {
   3184 		/* Check RX return ring producer/consumer */
   3185 		bge_rxeof(sc);
   3186 
   3187 		/* Check TX ring producer/consumer */
   3188 		bge_txeof(sc);
   3189 	}
   3190 
   3191 	if (sc->bge_pending_rxintr_change) {
   3192 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3193 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3194 		uint32_t junk;
   3195 
   3196 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3197 		DELAY(10);
   3198 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3199 
   3200 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3201 		DELAY(10);
   3202 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3203 
   3204 		sc->bge_pending_rxintr_change = 0;
   3205 	}
   3206 	bge_handle_events(sc);
   3207 
   3208 	/* Re-enable interrupts. */
   3209 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3210 
   3211 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3212 		bge_start(ifp);
   3213 
   3214 	return (1);
   3215 }
   3216 
   3217 void
   3218 bge_tick(xsc)
   3219 	void *xsc;
   3220 {
   3221 	struct bge_softc *sc = xsc;
   3222 	struct mii_data *mii = &sc->bge_mii;
   3223 	struct ifmedia *ifm = NULL;
   3224 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3225 	int s;
   3226 
   3227 	s = splnet();
   3228 
   3229 	bge_stats_update(sc);
   3230 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3231 	if (sc->bge_link) {
   3232 		splx(s);
   3233 		return;
   3234 	}
   3235 
   3236 	if (sc->bge_tbi) {
   3237 		ifm = &sc->bge_ifmedia;
   3238 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3239 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3240 			sc->bge_link++;
   3241 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3242 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3243 				bge_start(ifp);
   3244 		}
   3245 		splx(s);
   3246 		return;
   3247 	}
   3248 
   3249 	mii_tick(mii);
   3250 
   3251 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3252 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3253 		sc->bge_link++;
   3254 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3255 			bge_start(ifp);
   3256 	}
   3257 
   3258 	splx(s);
   3259 }
   3260 
   3261 void
   3262 bge_stats_update(sc)
   3263 	struct bge_softc *sc;
   3264 {
   3265 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3266 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3267 	bus_size_t rstats = BGE_RX_STATS;
   3268 
   3269 #define READ_RSTAT(sc, stats, stat) \
   3270 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3271 
   3272 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3273 		ifp->if_collisions +=
   3274 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3275 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3276 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3277 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3278 
   3279 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3280 			      READ_RSTAT(sc, rstats, outXoffSent));
   3281 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3282 			      READ_RSTAT(sc, rstats, outXonSent));
   3283 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3284 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3285 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3286 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3287 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3288 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3289 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3290 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3291 		return;
   3292 	}
   3293 
   3294 #undef READ_RSTAT
   3295 #define READ_STAT(sc, stats, stat) \
   3296 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3297 
   3298 	ifp->if_collisions +=
   3299 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3300 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3301 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3302 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3303 	  ifp->if_collisions;
   3304 
   3305 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3306 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3307 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3308 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3309 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3310 		      READ_STAT(sc, stats,
   3311 		      		xoffPauseFramesReceived.bge_addr_lo));
   3312 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3313 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3314 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3315 		      READ_STAT(sc, stats,
   3316 		      		macControlFramesReceived.bge_addr_lo));
   3317 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3318 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3319 
   3320 #undef READ_STAT
   3321 
   3322 #ifdef notdef
   3323 	ifp->if_collisions +=
   3324 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3325 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3326 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3327 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3328 	   ifp->if_collisions;
   3329 #endif
   3330 }
   3331 
   3332 /*
   3333  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3334  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3335  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3336  * the hardware checksum assist gives incorrect results (possibly
   3337  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3338  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3339  */
   3340 static __inline int
   3341 bge_cksum_pad(struct mbuf *pkt)
   3342 {
   3343 	struct mbuf *last = NULL;
   3344 	int padlen;
   3345 
   3346 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3347 
   3348 	/* if there's only the packet-header and we can pad there, use it. */
   3349 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3350 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3351 		last = pkt;
   3352 	} else {
   3353 		/*
   3354 		 * Walk packet chain to find last mbuf. We will either
   3355 		 * pad there, or append a new mbuf and pad it
   3356 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3357 		 */
   3358 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3359 	      	       (void) 0; /* do nothing*/
   3360 		}
   3361 
   3362 		/* `last' now points to last in chain. */
   3363 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3364 			(void) 0; /* we can pad here, in-place. */
   3365 		} else {
   3366 			/* Allocate new empty mbuf, pad it. Compact later. */
   3367 			struct mbuf *n;
   3368 			MGET(n, M_DONTWAIT, MT_DATA);
   3369 			n->m_len = 0;
   3370 			last->m_next = n;
   3371 			last = n;
   3372 		}
   3373 	}
   3374 
   3375 #ifdef DEBUG
   3376 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3377 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3378 #endif
   3379 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3380 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3381 	last->m_len += padlen;
   3382 	pkt->m_pkthdr.len += padlen;
   3383 	return 0;
   3384 }
   3385 
   3386 /*
   3387  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3388  */
   3389 static __inline int
   3390 bge_compact_dma_runt(struct mbuf *pkt)
   3391 {
   3392 	struct mbuf	*m, *prev;
   3393 	int 		totlen, prevlen;
   3394 
   3395 	prev = NULL;
   3396 	totlen = 0;
   3397 	prevlen = -1;
   3398 
   3399 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3400 		int mlen = m->m_len;
   3401 		int shortfall = 8 - mlen ;
   3402 
   3403 		totlen += mlen;
   3404 		if (mlen == 0) {
   3405 			continue;
   3406 		}
   3407 		if (mlen >= 8)
   3408 			continue;
   3409 
   3410 		/* If we get here, mbuf data is too small for DMA engine.
   3411 		 * Try to fix by shuffling data to prev or next in chain.
   3412 		 * If that fails, do a compacting deep-copy of the whole chain.
   3413 		 */
   3414 
   3415 		/* Internal frag. If fits in prev, copy it there. */
   3416 		if (prev && !M_READONLY(prev) &&
   3417 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3418 		  	bcopy(m->m_data,
   3419 			      prev->m_data+prev->m_len,
   3420 			      mlen);
   3421 			prev->m_len += mlen;
   3422 			m->m_len = 0;
   3423 			/* XXX stitch chain */
   3424 			prev->m_next = m_free(m);
   3425 			m = prev;
   3426 			continue;
   3427 		}
   3428 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3429 			     M_TRAILINGSPACE(m) >= shortfall &&
   3430 			     m->m_next->m_len >= (8 + shortfall)) {
   3431 		    /* m is writable and have enough data in next, pull up. */
   3432 
   3433 		  	bcopy(m->m_next->m_data,
   3434 			      m->m_data+m->m_len,
   3435 			      shortfall);
   3436 			m->m_len += shortfall;
   3437 			m->m_next->m_len -= shortfall;
   3438 			m->m_next->m_data += shortfall;
   3439 		}
   3440 		else if (m->m_next == NULL || 1) {
   3441 		  	/* Got a runt at the very end of the packet.
   3442 			 * borrow data from the tail of the preceding mbuf and
   3443 			 * update its length in-place. (The original data is still
   3444 			 * valid, so we can do this even if prev is not writable.)
   3445 			 */
   3446 
   3447 			/* if we'd make prev a runt, just move all of its data. */
   3448 #ifdef DEBUG
   3449 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3450 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3451 #endif
   3452 			if ((prev->m_len - shortfall) < 8)
   3453 				shortfall = prev->m_len;
   3454 
   3455 #ifdef notyet	/* just do the safe slow thing for now */
   3456 			if (!M_READONLY(m)) {
   3457 				if (M_LEADINGSPACE(m) < shorfall) {
   3458 					void *m_dat;
   3459 					m_dat = (m->m_flags & M_PKTHDR) ?
   3460 					  m->m_pktdat : m->dat;
   3461 					memmove(m_dat, mtod(m, void*), m->m_len);
   3462 					m->m_data = m_dat;
   3463 				    }
   3464 			} else
   3465 #endif	/* just do the safe slow thing */
   3466 			{
   3467 				struct mbuf * n = NULL;
   3468 				int newprevlen = prev->m_len - shortfall;
   3469 
   3470 				MGET(n, M_NOWAIT, MT_DATA);
   3471 				if (n == NULL)
   3472 				   return ENOBUFS;
   3473 				KASSERT(m->m_len + shortfall < MLEN
   3474 					/*,
   3475 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3476 
   3477 				/* first copy the data we're stealing from prev */
   3478 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3479 
   3480 				/* update prev->m_len accordingly */
   3481 				prev->m_len -= shortfall;
   3482 
   3483 				/* copy data from runt m */
   3484 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3485 
   3486 				/* n holds what we stole from prev, plus m */
   3487 				n->m_len = shortfall + m->m_len;
   3488 
   3489 				/* stitch n into chain and free m */
   3490 				n->m_next = m->m_next;
   3491 				prev->m_next = n;
   3492 				/* KASSERT(m->m_next == NULL); */
   3493 				m->m_next = NULL;
   3494 				m_free(m);
   3495 				m = n;	/* for continuing loop */
   3496 			}
   3497 		}
   3498 		prevlen = m->m_len;
   3499 	}
   3500 	return 0;
   3501 }
   3502 
   3503 /*
   3504  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3505  * pointers to descriptors.
   3506  */
   3507 int
   3508 bge_encap(sc, m_head, txidx)
   3509 	struct bge_softc *sc;
   3510 	struct mbuf *m_head;
   3511 	u_int32_t *txidx;
   3512 {
   3513 	struct bge_tx_bd	*f = NULL;
   3514 	u_int32_t		frag, cur, cnt = 0;
   3515 	u_int16_t		csum_flags = 0;
   3516 	u_int16_t		txbd_tso_flags = 0;
   3517 	struct txdmamap_pool_entry *dma;
   3518 	bus_dmamap_t dmamap;
   3519 	int			i = 0;
   3520 	struct m_tag		*mtag;
   3521 	int			use_tso, maxsegsize, error;
   3522 
   3523 	cur = frag = *txidx;
   3524 
   3525 	if (m_head->m_pkthdr.csum_flags) {
   3526 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3527 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3528 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3529 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3530 	}
   3531 
   3532 	/*
   3533 	 * If we were asked to do an outboard checksum, and the NIC
   3534 	 * has the bug where it sometimes adds in the Ethernet padding,
   3535 	 * explicitly pad with zeros so the cksum will be correct either way.
   3536 	 * (For now, do this for all chip versions, until newer
   3537 	 * are confirmed to not require the workaround.)
   3538 	 */
   3539 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3540 #ifdef notyet
   3541 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3542 #endif
   3543 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3544 		goto check_dma_bug;
   3545 
   3546 	if (bge_cksum_pad(m_head) != 0) {
   3547 	    return ENOBUFS;
   3548 	}
   3549 
   3550 check_dma_bug:
   3551 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3552 		goto doit;
   3553 	/*
   3554 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3555 	 * less than eight bytes.  If we encounter a teeny mbuf
   3556 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3557 	 */
   3558 	if (bge_compact_dma_runt(m_head) != 0)
   3559 		return ENOBUFS;
   3560 
   3561 doit:
   3562 	dma = SLIST_FIRST(&sc->txdma_list);
   3563 	if (dma == NULL)
   3564 		return ENOBUFS;
   3565 	dmamap = dma->dmamap;
   3566 
   3567 	/*
   3568 	 * Set up any necessary TSO state before we start packing...
   3569 	 */
   3570 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3571 	if (!use_tso) {
   3572 		maxsegsize = 0;
   3573 	} else {	/* TSO setup */
   3574 		unsigned  mss;
   3575 		struct ether_header *eh;
   3576 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3577 		struct mbuf * m0 = m_head;
   3578 		struct ip *ip;
   3579 		struct tcphdr *th;
   3580 		int iphl, hlen;
   3581 
   3582 		/*
   3583 		 * XXX It would be nice if the mbuf pkthdr had offset
   3584 		 * fields for the protocol headers.
   3585 		 */
   3586 
   3587 		eh = mtod(m0, struct ether_header *);
   3588 		switch (htons(eh->ether_type)) {
   3589 		case ETHERTYPE_IP:
   3590 			offset = ETHER_HDR_LEN;
   3591 			break;
   3592 
   3593 		case ETHERTYPE_VLAN:
   3594 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3595 			break;
   3596 
   3597 		default:
   3598 			/*
   3599 			 * Don't support this protocol or encapsulation.
   3600 			 */
   3601 			return (ENOBUFS);
   3602 		}
   3603 
   3604 		/*
   3605 		 * TCP/IP headers are in the first mbuf; we can do
   3606 		 * this the easy way.
   3607 		 */
   3608 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3609 		hlen = iphl + offset;
   3610 		if (__predict_false(m0->m_len <
   3611 				    (hlen + sizeof(struct tcphdr)))) {
   3612 
   3613 			  printf("TSO: hard case m0->m_len == %d <"
   3614 				 " ip/tcp hlen %zd, not handled yet\n",
   3615 				 m0->m_len, hlen+ sizeof(struct tcphdr));
   3616 #ifdef NOTYET
   3617 			/*
   3618 			 * XXX jonathan (at) NetBSD.org: untested.
   3619 			 * how to force  this branch to be taken?
   3620 			 */
   3621 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3622 
   3623 			m_copydata(m0, offset, sizeof(ip), &ip);
   3624 			m_copydata(m0, hlen, sizeof(th), &th);
   3625 
   3626 			ip.ip_len = 0;
   3627 
   3628 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3629 			    sizeof(ip.ip_len), &ip.ip_len);
   3630 
   3631 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3632 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3633 
   3634 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3635 			    sizeof(th.th_sum), &th.th_sum);
   3636 
   3637 			hlen += th.th_off << 2;
   3638 			iptcp_opt_words	= hlen;
   3639 #else
   3640 			/*
   3641 			 * if_wm "hard" case not yet supported, can we not
   3642 			 * mandate it out of existence?
   3643 			 */
   3644 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3645 
   3646 			return ENOBUFS;
   3647 #endif
   3648 		} else {
   3649 			ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   3650 			th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
   3651 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3652 
   3653 			/* Total IP/TCP options, in 32-bit words */
   3654 			iptcp_opt_words = (ip_tcp_hlen
   3655 					   - sizeof(struct tcphdr)
   3656 					   - sizeof(struct ip)) >> 2;
   3657 		}
   3658 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3659 			th->th_sum = 0;
   3660 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3661 		} else {
   3662 			/*
   3663 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3664 			 * Requires TSO firmware patch for 5701/5703/5704.
   3665 			 */
   3666 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3667 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3668 		}
   3669 
   3670 		mss = m_head->m_pkthdr.segsz;
   3671 		txbd_tso_flags |=
   3672 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3673 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3674 
   3675 		/*
   3676 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3677 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3678 		 * the NIC copies 40 bytes of IP/TCP header from the
   3679 		 * supplied header into the IP/TCP header portion of
   3680 		 * each post-TSO-segment. If the supplied packet has IP or
   3681 		 * TCP options, we need to tell the NIC to copy those extra
   3682 		 * bytes into each  post-TSO header, in addition to the normal
   3683 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3684 		 * Unfortunately, the driver encoding of option length
   3685 		 * varies across different ASIC families.
   3686 		 */
   3687 		tcp_seg_flags = 0;
   3688 		if (iptcp_opt_words) {
   3689 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3690 				tcp_seg_flags =
   3691 					iptcp_opt_words << 11;
   3692 			} else {
   3693 				txbd_tso_flags |=
   3694 					iptcp_opt_words << 12;
   3695 			}
   3696 		}
   3697 		maxsegsize = mss | tcp_seg_flags;
   3698 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3699 
   3700 	}	/* TSO setup */
   3701 
   3702 	/*
   3703 	 * Start packing the mbufs in this chain into
   3704 	 * the fragment pointers. Stop when we run out
   3705 	 * of fragments or hit the end of the mbuf chain.
   3706 	 */
   3707 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3708 	    BUS_DMA_NOWAIT);
   3709 	if (error) {
   3710 		return(ENOBUFS);
   3711 	}
   3712 
   3713 	mtag = sc->ethercom.ec_nvlans ?
   3714 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3715 
   3716 
   3717 	/* Iterate over dmap-map fragments. */
   3718 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3719 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3720 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3721 			break;
   3722 
   3723 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3724 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3725 
   3726 		/*
   3727 		 * For 5751 and follow-ons, for TSO we must turn
   3728 		 * off checksum-assist flag in the tx-descr, and
   3729 		 * supply the ASIC-revision-specific encoding
   3730 		 * of TSO flags and segsize.
   3731 		 */
   3732 		if (use_tso) {
   3733 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3734 				f->bge_rsvd = maxsegsize;
   3735 				f->bge_flags = csum_flags | txbd_tso_flags;
   3736 			} else {
   3737 				f->bge_rsvd = 0;
   3738 				f->bge_flags =
   3739 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3740 			}
   3741 		} else {
   3742 			f->bge_rsvd = 0;
   3743 			f->bge_flags = csum_flags;
   3744 		}
   3745 
   3746 		if (mtag != NULL) {
   3747 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3748 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3749 		} else {
   3750 			f->bge_vlan_tag = 0;
   3751 		}
   3752 		/*
   3753 		 * Sanity check: avoid coming within 16 descriptors
   3754 		 * of the end of the ring.
   3755 		 */
   3756 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
   3757 			BGE_TSO_PRINTF(("%s: "
   3758 			    " dmamap_load_mbuf too close to ring wrap\n",
   3759 			    sc->bge_dev.dv_xname));
   3760 			return(ENOBUFS);
   3761 		}
   3762 		cur = frag;
   3763 		BGE_INC(frag, BGE_TX_RING_CNT);
   3764 		cnt++;
   3765 	}
   3766 
   3767 	if (i < dmamap->dm_nsegs) {
   3768 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3769 		    sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
   3770 		return ENOBUFS;
   3771 	}
   3772 
   3773 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3774 	    BUS_DMASYNC_PREWRITE);
   3775 
   3776 	if (frag == sc->bge_tx_saved_considx) {
   3777 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3778 		    sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
   3779 
   3780 		return(ENOBUFS);
   3781 	}
   3782 
   3783 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3784 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3785 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3786 	sc->txdma[cur] = dma;
   3787 	sc->bge_txcnt += cnt;
   3788 
   3789 	*txidx = frag;
   3790 
   3791 	return(0);
   3792 }
   3793 
   3794 /*
   3795  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3796  * to the mbuf data regions directly in the transmit descriptors.
   3797  */
   3798 void
   3799 bge_start(ifp)
   3800 	struct ifnet *ifp;
   3801 {
   3802 	struct bge_softc *sc;
   3803 	struct mbuf *m_head = NULL;
   3804 	u_int32_t prodidx;
   3805 	int pkts = 0;
   3806 
   3807 	sc = ifp->if_softc;
   3808 
   3809 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3810 		return;
   3811 
   3812 	prodidx = sc->bge_tx_prodidx;
   3813 
   3814 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3815 		IFQ_POLL(&ifp->if_snd, m_head);
   3816 		if (m_head == NULL)
   3817 			break;
   3818 
   3819 #if 0
   3820 		/*
   3821 		 * XXX
   3822 		 * safety overkill.  If this is a fragmented packet chain
   3823 		 * with delayed TCP/UDP checksums, then only encapsulate
   3824 		 * it if we have enough descriptors to handle the entire
   3825 		 * chain at once.
   3826 		 * (paranoia -- may not actually be needed)
   3827 		 */
   3828 		if (m_head->m_flags & M_FIRSTFRAG &&
   3829 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3830 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3831 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3832 				ifp->if_flags |= IFF_OACTIVE;
   3833 				break;
   3834 			}
   3835 		}
   3836 #endif
   3837 
   3838 		/*
   3839 		 * Pack the data into the transmit ring. If we
   3840 		 * don't have room, set the OACTIVE flag and wait
   3841 		 * for the NIC to drain the ring.
   3842 		 */
   3843 		if (bge_encap(sc, m_head, &prodidx)) {
   3844 			printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
   3845 			ifp->if_flags |= IFF_OACTIVE;
   3846 			break;
   3847 		}
   3848 
   3849 		/* now we are committed to transmit the packet */
   3850 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3851 		pkts++;
   3852 
   3853 #if NBPFILTER > 0
   3854 		/*
   3855 		 * If there's a BPF listener, bounce a copy of this frame
   3856 		 * to him.
   3857 		 */
   3858 		if (ifp->if_bpf)
   3859 			bpf_mtap(ifp->if_bpf, m_head);
   3860 #endif
   3861 	}
   3862 	if (pkts == 0)
   3863 		return;
   3864 
   3865 	/* Transmit */
   3866 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3867 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3868 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3869 
   3870 	sc->bge_tx_prodidx = prodidx;
   3871 
   3872 	/*
   3873 	 * Set a timeout in case the chip goes out to lunch.
   3874 	 */
   3875 	ifp->if_timer = 5;
   3876 }
   3877 
   3878 int
   3879 bge_init(ifp)
   3880 	struct ifnet *ifp;
   3881 {
   3882 	struct bge_softc *sc = ifp->if_softc;
   3883 	u_int16_t *m;
   3884 	int s, error;
   3885 
   3886 	s = splnet();
   3887 
   3888 	ifp = &sc->ethercom.ec_if;
   3889 
   3890 	/* Cancel pending I/O and flush buffers. */
   3891 	bge_stop(sc);
   3892 	bge_reset(sc);
   3893 	bge_chipinit(sc);
   3894 
   3895 	/*
   3896 	 * Init the various state machines, ring
   3897 	 * control blocks and firmware.
   3898 	 */
   3899 	error = bge_blockinit(sc);
   3900 	if (error != 0) {
   3901 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3902 		    error);
   3903 		splx(s);
   3904 		return error;
   3905 	}
   3906 
   3907 	ifp = &sc->ethercom.ec_if;
   3908 
   3909 	/* Specify MTU. */
   3910 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3911 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3912 
   3913 	/* Load our MAC address. */
   3914 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3915 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3916 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3917 
   3918 	/* Enable or disable promiscuous mode as needed. */
   3919 	if (ifp->if_flags & IFF_PROMISC) {
   3920 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3921 	} else {
   3922 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3923 	}
   3924 
   3925 	/* Program multicast filter. */
   3926 	bge_setmulti(sc);
   3927 
   3928 	/* Init RX ring. */
   3929 	bge_init_rx_ring_std(sc);
   3930 
   3931 	/* Init jumbo RX ring. */
   3932 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3933 		bge_init_rx_ring_jumbo(sc);
   3934 
   3935 	/* Init our RX return ring index */
   3936 	sc->bge_rx_saved_considx = 0;
   3937 
   3938 	/* Init TX ring. */
   3939 	bge_init_tx_ring(sc);
   3940 
   3941 	/* Turn on transmitter */
   3942 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3943 
   3944 	/* Turn on receiver */
   3945 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3946 
   3947 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3948 
   3949 	/* Tell firmware we're alive. */
   3950 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3951 
   3952 	/* Enable host interrupts. */
   3953 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3954 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3955 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3956 
   3957 	bge_ifmedia_upd(ifp);
   3958 
   3959 	ifp->if_flags |= IFF_RUNNING;
   3960 	ifp->if_flags &= ~IFF_OACTIVE;
   3961 
   3962 	splx(s);
   3963 
   3964 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3965 
   3966 	return 0;
   3967 }
   3968 
   3969 /*
   3970  * Set media options.
   3971  */
   3972 int
   3973 bge_ifmedia_upd(ifp)
   3974 	struct ifnet *ifp;
   3975 {
   3976 	struct bge_softc *sc = ifp->if_softc;
   3977 	struct mii_data *mii = &sc->bge_mii;
   3978 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3979 
   3980 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3981 	if (sc->bge_tbi) {
   3982 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3983 			return(EINVAL);
   3984 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3985 		case IFM_AUTO:
   3986 			break;
   3987 		case IFM_1000_SX:
   3988 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3989 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3990 				    BGE_MACMODE_HALF_DUPLEX);
   3991 			} else {
   3992 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3993 				    BGE_MACMODE_HALF_DUPLEX);
   3994 			}
   3995 			break;
   3996 		default:
   3997 			return(EINVAL);
   3998 		}
   3999 		/* XXX 802.3x flow control for 1000BASE-SX */
   4000 		return(0);
   4001 	}
   4002 
   4003 	sc->bge_link = 0;
   4004 	mii_mediachg(mii);
   4005 
   4006 	return(0);
   4007 }
   4008 
   4009 /*
   4010  * Report current media status.
   4011  */
   4012 void
   4013 bge_ifmedia_sts(ifp, ifmr)
   4014 	struct ifnet *ifp;
   4015 	struct ifmediareq *ifmr;
   4016 {
   4017 	struct bge_softc *sc = ifp->if_softc;
   4018 	struct mii_data *mii = &sc->bge_mii;
   4019 
   4020 	if (sc->bge_tbi) {
   4021 		ifmr->ifm_status = IFM_AVALID;
   4022 		ifmr->ifm_active = IFM_ETHER;
   4023 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4024 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4025 			ifmr->ifm_status |= IFM_ACTIVE;
   4026 		ifmr->ifm_active |= IFM_1000_SX;
   4027 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4028 			ifmr->ifm_active |= IFM_HDX;
   4029 		else
   4030 			ifmr->ifm_active |= IFM_FDX;
   4031 		return;
   4032 	}
   4033 
   4034 	mii_pollstat(mii);
   4035 	ifmr->ifm_status = mii->mii_media_status;
   4036 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4037 	    sc->bge_flowflags;
   4038 }
   4039 
   4040 int
   4041 bge_ioctl(ifp, command, data)
   4042 	struct ifnet *ifp;
   4043 	u_long command;
   4044 	caddr_t data;
   4045 {
   4046 	struct bge_softc *sc = ifp->if_softc;
   4047 	struct ifreq *ifr = (struct ifreq *) data;
   4048 	int s, error = 0;
   4049 	struct mii_data *mii;
   4050 
   4051 	s = splnet();
   4052 
   4053 	switch(command) {
   4054 	case SIOCSIFFLAGS:
   4055 		if (ifp->if_flags & IFF_UP) {
   4056 			/*
   4057 			 * If only the state of the PROMISC flag changed,
   4058 			 * then just use the 'set promisc mode' command
   4059 			 * instead of reinitializing the entire NIC. Doing
   4060 			 * a full re-init means reloading the firmware and
   4061 			 * waiting for it to start up, which may take a
   4062 			 * second or two.
   4063 			 */
   4064 			if (ifp->if_flags & IFF_RUNNING &&
   4065 			    ifp->if_flags & IFF_PROMISC &&
   4066 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4067 				BGE_SETBIT(sc, BGE_RX_MODE,
   4068 				    BGE_RXMODE_RX_PROMISC);
   4069 			} else if (ifp->if_flags & IFF_RUNNING &&
   4070 			    !(ifp->if_flags & IFF_PROMISC) &&
   4071 			    sc->bge_if_flags & IFF_PROMISC) {
   4072 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4073 				    BGE_RXMODE_RX_PROMISC);
   4074 			} else
   4075 				bge_init(ifp);
   4076 		} else {
   4077 			if (ifp->if_flags & IFF_RUNNING) {
   4078 				bge_stop(sc);
   4079 			}
   4080 		}
   4081 		sc->bge_if_flags = ifp->if_flags;
   4082 		error = 0;
   4083 		break;
   4084 	case SIOCSIFMEDIA:
   4085 		/* XXX Flow control is not supported for 1000BASE-SX */
   4086 		if (sc->bge_tbi) {
   4087 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4088 			sc->bge_flowflags = 0;
   4089 		}
   4090 
   4091 		/* Flow control requires full-duplex mode. */
   4092 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4093 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4094 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4095 		}
   4096 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4097 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4098 				/* We an do both TXPAUSE and RXPAUSE. */
   4099 				ifr->ifr_media |=
   4100 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4101 			}
   4102 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4103 		}
   4104 		/* FALLTHROUGH */
   4105 	case SIOCGIFMEDIA:
   4106 		if (sc->bge_tbi) {
   4107 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4108 			    command);
   4109 		} else {
   4110 			mii = &sc->bge_mii;
   4111 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4112 			    command);
   4113 		}
   4114 		break;
   4115 	default:
   4116 		error = ether_ioctl(ifp, command, data);
   4117 		if (error == ENETRESET) {
   4118 			if (ifp->if_flags & IFF_RUNNING)
   4119 				bge_setmulti(sc);
   4120 			error = 0;
   4121 		}
   4122 		break;
   4123 	}
   4124 
   4125 	splx(s);
   4126 
   4127 	return(error);
   4128 }
   4129 
   4130 void
   4131 bge_watchdog(ifp)
   4132 	struct ifnet *ifp;
   4133 {
   4134 	struct bge_softc *sc;
   4135 
   4136 	sc = ifp->if_softc;
   4137 
   4138 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   4139 
   4140 	ifp->if_flags &= ~IFF_RUNNING;
   4141 	bge_init(ifp);
   4142 
   4143 	ifp->if_oerrors++;
   4144 }
   4145 
   4146 static void
   4147 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4148 {
   4149 	int i;
   4150 
   4151 	BGE_CLRBIT(sc, reg, bit);
   4152 
   4153 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4154 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4155 			return;
   4156 		delay(100);
   4157 		if (sc->bge_pcie)
   4158 		  DELAY(1000);
   4159 	}
   4160 
   4161 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4162 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   4163 }
   4164 
   4165 /*
   4166  * Stop the adapter and free any mbufs allocated to the
   4167  * RX and TX lists.
   4168  */
   4169 void
   4170 bge_stop(sc)
   4171 	struct bge_softc *sc;
   4172 {
   4173 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4174 
   4175 	callout_stop(&sc->bge_timeout);
   4176 
   4177 	/*
   4178 	 * Disable all of the receiver blocks
   4179 	 */
   4180 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4181 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4182 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4183 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4184 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4185 	}
   4186 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4187 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4188 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4189 
   4190 	/*
   4191 	 * Disable all of the transmit blocks
   4192 	 */
   4193 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4194 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4195 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4196 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4197 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4198 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4199 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4200 	}
   4201 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4202 
   4203 	/*
   4204 	 * Shut down all of the memory managers and related
   4205 	 * state machines.
   4206 	 */
   4207 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4208 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4209 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4210 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4211 	}
   4212 
   4213 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4214 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4215 
   4216 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4217 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4218 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4219 	}
   4220 
   4221 	/* Disable host interrupts. */
   4222 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4223 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4224 
   4225 	/*
   4226 	 * Tell firmware we're shutting down.
   4227 	 */
   4228 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4229 
   4230 	/* Free the RX lists. */
   4231 	bge_free_rx_ring_std(sc);
   4232 
   4233 	/* Free jumbo RX list. */
   4234 	bge_free_rx_ring_jumbo(sc);
   4235 
   4236 	/* Free TX buffers. */
   4237 	bge_free_tx_ring(sc);
   4238 
   4239 	/*
   4240 	 * Isolate/power down the PHY.
   4241 	 */
   4242 	if (!sc->bge_tbi)
   4243 		mii_down(&sc->bge_mii);
   4244 
   4245 	sc->bge_link = 0;
   4246 
   4247 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4248 
   4249 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4250 }
   4251 
   4252 /*
   4253  * Stop all chip I/O so that the kernel's probe routines don't
   4254  * get confused by errant DMAs when rebooting.
   4255  */
   4256 void
   4257 bge_shutdown(xsc)
   4258 	void *xsc;
   4259 {
   4260 	struct bge_softc *sc = (struct bge_softc *)xsc;
   4261 
   4262 	bge_stop(sc);
   4263 	bge_reset(sc);
   4264 }
   4265 
   4266 
   4267 static int
   4268 sysctl_bge_verify(SYSCTLFN_ARGS)
   4269 {
   4270 	int error, t;
   4271 	struct sysctlnode node;
   4272 
   4273 	node = *rnode;
   4274 	t = *(int*)rnode->sysctl_data;
   4275 	node.sysctl_data = &t;
   4276 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4277 	if (error || newp == NULL)
   4278 		return (error);
   4279 
   4280 #if 0
   4281 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4282 	    node.sysctl_num, rnode->sysctl_num));
   4283 #endif
   4284 
   4285 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4286 		if (t < 0 || t >= NBGE_RX_THRESH)
   4287 			return (EINVAL);
   4288 		bge_update_all_threshes(t);
   4289 	} else
   4290 		return (EINVAL);
   4291 
   4292 	*(int*)rnode->sysctl_data = t;
   4293 
   4294 	return (0);
   4295 }
   4296 
   4297 /*
   4298  * Set up sysctl(3) MIB, hw.bge.*.
   4299  *
   4300  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4301  */
   4302 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4303 {
   4304 	int rc, bge_root_num;
   4305 	const struct sysctlnode *node;
   4306 
   4307 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4308 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4309 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4310 		goto err;
   4311 	}
   4312 
   4313 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4314 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4315 	    SYSCTL_DESCR("BGE interface controls"),
   4316 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4317 		goto err;
   4318 	}
   4319 
   4320 	bge_root_num = node->sysctl_num;
   4321 
   4322 	/* BGE Rx interrupt mitigation level */
   4323 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4324 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4325 	    CTLTYPE_INT, "rx_lvl",
   4326 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4327 	    sysctl_bge_verify, 0,
   4328 	    &bge_rx_thresh_lvl,
   4329 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4330 	    CTL_EOL)) != 0) {
   4331 		goto err;
   4332 	}
   4333 
   4334 	bge_rxthresh_nodenum = node->sysctl_num;
   4335 
   4336 	return;
   4337 
   4338 err:
   4339 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4340 }
   4341 
   4342 void
   4343 bge_powerhook(int why, void *hdl)
   4344 {
   4345 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4346 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4347 	struct pci_attach_args *pa = &(sc->bge_pa);
   4348 	pci_chipset_tag_t pc = pa->pa_pc;
   4349 	pcitag_t tag = pa->pa_tag;
   4350 
   4351 	switch (why) {
   4352 	case PWR_SOFTSUSPEND:
   4353 	case PWR_SOFTSTANDBY:
   4354 		bge_shutdown(sc);
   4355 		break;
   4356 	case PWR_SOFTRESUME:
   4357 		if (ifp->if_flags & IFF_UP) {
   4358 			ifp->if_flags &= ~IFF_RUNNING;
   4359 			bge_init(ifp);
   4360 		}
   4361 		break;
   4362 	case PWR_SUSPEND:
   4363 	case PWR_STANDBY:
   4364 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4365 		break;
   4366 	case PWR_RESUME:
   4367 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4368 		break;
   4369 	}
   4370 
   4371 	return;
   4372 }
   4373