if_bge.c revision 1.101 1 /* $NetBSD: if_bge.c,v 1.101 2005/12/19 12:35:19 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.101 2005/12/19 12:35:19 skrll Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 #ifdef __NetBSD__
183 static int bge_rxthresh_nodenum;
184 #endif /* __NetBSD__ */
185
186 int bge_probe(struct device *, struct cfdata *, void *);
187 void bge_attach(struct device *, struct device *, void *);
188 void bge_powerhook(int, void *);
189 void bge_release_resources(struct bge_softc *);
190 void bge_txeof(struct bge_softc *);
191 void bge_rxeof(struct bge_softc *);
192
193 void bge_tick(void *);
194 void bge_stats_update(struct bge_softc *);
195 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
196 static __inline int bge_cksum_pad(struct mbuf *pkt);
197 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
198
199 int bge_intr(void *);
200 void bge_start(struct ifnet *);
201 int bge_ioctl(struct ifnet *, u_long, caddr_t);
202 int bge_init(struct ifnet *);
203 void bge_stop(struct bge_softc *);
204 void bge_watchdog(struct ifnet *);
205 void bge_shutdown(void *);
206 int bge_ifmedia_upd(struct ifnet *);
207 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
208
209 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
210 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
211
212 void bge_setmulti(struct bge_softc *);
213
214 void bge_handle_events(struct bge_softc *);
215 int bge_alloc_jumbo_mem(struct bge_softc *);
216 void bge_free_jumbo_mem(struct bge_softc *);
217 void *bge_jalloc(struct bge_softc *);
218 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
219 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
220 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
221 int bge_init_rx_ring_std(struct bge_softc *);
222 void bge_free_rx_ring_std(struct bge_softc *);
223 int bge_init_rx_ring_jumbo(struct bge_softc *);
224 void bge_free_rx_ring_jumbo(struct bge_softc *);
225 void bge_free_tx_ring(struct bge_softc *);
226 int bge_init_tx_ring(struct bge_softc *);
227
228 int bge_chipinit(struct bge_softc *);
229 int bge_blockinit(struct bge_softc *);
230 int bge_setpowerstate(struct bge_softc *, int);
231
232 #ifdef notdef
233 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
234 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
235 void bge_vpd_read(struct bge_softc *);
236 #endif
237
238 u_int32_t bge_readmem_ind(struct bge_softc *, int);
239 void bge_writemem_ind(struct bge_softc *, int, int);
240 #ifdef notdef
241 u_int32_t bge_readreg_ind(struct bge_softc *, int);
242 #endif
243 void bge_writereg_ind(struct bge_softc *, int, int);
244
245 int bge_miibus_readreg(struct device *, int, int);
246 void bge_miibus_writereg(struct device *, int, int, int);
247 void bge_miibus_statchg(struct device *);
248
249 void bge_reset(struct bge_softc *);
250
251 void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
252 void bge_update_all_threshes(int /*lvl*/);
253
254 void bge_dump_status(struct bge_softc *);
255 void bge_dump_rxbd(struct bge_rx_bd *);
256
257
258 #define BGE_DEBUG
259 #ifdef BGE_DEBUG
260 #define DPRINTF(x) if (bgedebug) printf x
261 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
262 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
263 int bgedebug = 0;
264 int bge_tso_debug = 0;
265 #else
266 #define DPRINTF(x)
267 #define DPRINTFN(n,x)
268 #define BGE_TSO_PRINTF(x)
269 #endif
270
271 #ifdef BGE_EVENT_COUNTERS
272 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
273 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
274 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
275 #else
276 #define BGE_EVCNT_INCR(ev) /* nothing */
277 #define BGE_EVCNT_ADD(ev, val) /* nothing */
278 #define BGE_EVCNT_UPD(ev, val) /* nothing */
279 #endif
280
281 /* Various chip quirks. */
282 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
283 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
284 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
285 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
286 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
287 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
288 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
289 #define BGE_QUIRK_5705_CORE 0x00000080
290 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
291
292 /*
293 * XXX: how to handle variants based on 5750 and derivatives:
294 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
295 * in general behave like a 5705, except with additional quirks.
296 * This driver's current handling of the 5721 is wrong;
297 * how we map ASIC revision to "quirks" needs more thought.
298 * (defined here until the thought is done).
299 */
300 #define BGE_IS_5714_FAMILY(sc) \
301 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 || \
302 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
303 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5715 )
304
305 #define BGE_IS_5750_OR_BEYOND(sc) \
306 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
307 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
308 BGE_IS_5714_FAMILY(sc) )
309
310 #define BGE_IS_5705_OR_BEYOND(sc) \
311 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
312 BGE_IS_5750_OR_BEYOND(sc) )
313
314
315 /* following bugs are common to bcm5700 rev B, all flavours */
316 #define BGE_QUIRK_5700_COMMON \
317 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
318
319 CFATTACH_DECL(bge, sizeof(struct bge_softc),
320 bge_probe, bge_attach, NULL, NULL);
321
322 u_int32_t
323 bge_readmem_ind(sc, off)
324 struct bge_softc *sc;
325 int off;
326 {
327 struct pci_attach_args *pa = &(sc->bge_pa);
328 pcireg_t val;
329
330 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
331 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
332 return val;
333 }
334
335 void
336 bge_writemem_ind(sc, off, val)
337 struct bge_softc *sc;
338 int off, val;
339 {
340 struct pci_attach_args *pa = &(sc->bge_pa);
341
342 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
343 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
344 }
345
346 #ifdef notdef
347 u_int32_t
348 bge_readreg_ind(sc, off)
349 struct bge_softc *sc;
350 int off;
351 {
352 struct pci_attach_args *pa = &(sc->bge_pa);
353
354 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
355 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
356 }
357 #endif
358
359 void
360 bge_writereg_ind(sc, off, val)
361 struct bge_softc *sc;
362 int off, val;
363 {
364 struct pci_attach_args *pa = &(sc->bge_pa);
365
366 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
367 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
368 }
369
370 #ifdef notdef
371 u_int8_t
372 bge_vpd_readbyte(sc, addr)
373 struct bge_softc *sc;
374 int addr;
375 {
376 int i;
377 u_int32_t val;
378 struct pci_attach_args *pa = &(sc->bge_pa);
379
380 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
381 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
382 DELAY(10);
383 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
384 BGE_VPD_FLAG)
385 break;
386 }
387
388 if (i == BGE_TIMEOUT) {
389 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
390 return(0);
391 }
392
393 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
394
395 return((val >> ((addr % 4) * 8)) & 0xFF);
396 }
397
398 void
399 bge_vpd_read_res(sc, res, addr)
400 struct bge_softc *sc;
401 struct vpd_res *res;
402 int addr;
403 {
404 int i;
405 u_int8_t *ptr;
406
407 ptr = (u_int8_t *)res;
408 for (i = 0; i < sizeof(struct vpd_res); i++)
409 ptr[i] = bge_vpd_readbyte(sc, i + addr);
410 }
411
412 void
413 bge_vpd_read(sc)
414 struct bge_softc *sc;
415 {
416 int pos = 0, i;
417 struct vpd_res res;
418
419 if (sc->bge_vpd_prodname != NULL)
420 free(sc->bge_vpd_prodname, M_DEVBUF);
421 if (sc->bge_vpd_readonly != NULL)
422 free(sc->bge_vpd_readonly, M_DEVBUF);
423 sc->bge_vpd_prodname = NULL;
424 sc->bge_vpd_readonly = NULL;
425
426 bge_vpd_read_res(sc, &res, pos);
427
428 if (res.vr_id != VPD_RES_ID) {
429 printf("%s: bad VPD resource id: expected %x got %x\n",
430 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
431 return;
432 }
433
434 pos += sizeof(res);
435 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
436 if (sc->bge_vpd_prodname == NULL)
437 panic("bge_vpd_read");
438 for (i = 0; i < res.vr_len; i++)
439 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
440 sc->bge_vpd_prodname[i] = '\0';
441 pos += i;
442
443 bge_vpd_read_res(sc, &res, pos);
444
445 if (res.vr_id != VPD_RES_READ) {
446 printf("%s: bad VPD resource id: expected %x got %x\n",
447 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
448 return;
449 }
450
451 pos += sizeof(res);
452 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
453 if (sc->bge_vpd_readonly == NULL)
454 panic("bge_vpd_read");
455 for (i = 0; i < res.vr_len + 1; i++)
456 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
457 }
458 #endif
459
460 /*
461 * Read a byte of data stored in the EEPROM at address 'addr.' The
462 * BCM570x supports both the traditional bitbang interface and an
463 * auto access interface for reading the EEPROM. We use the auto
464 * access method.
465 */
466 u_int8_t
467 bge_eeprom_getbyte(sc, addr, dest)
468 struct bge_softc *sc;
469 int addr;
470 u_int8_t *dest;
471 {
472 int i;
473 u_int32_t byte = 0;
474
475 /*
476 * Enable use of auto EEPROM access so we can avoid
477 * having to use the bitbang method.
478 */
479 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
480
481 /* Reset the EEPROM, load the clock period. */
482 CSR_WRITE_4(sc, BGE_EE_ADDR,
483 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
484 DELAY(20);
485
486 /* Issue the read EEPROM command. */
487 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
488
489 /* Wait for completion */
490 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
491 DELAY(10);
492 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
493 break;
494 }
495
496 if (i == BGE_TIMEOUT) {
497 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
498 return(0);
499 }
500
501 /* Get result. */
502 byte = CSR_READ_4(sc, BGE_EE_DATA);
503
504 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
505
506 return(0);
507 }
508
509 /*
510 * Read a sequence of bytes from the EEPROM.
511 */
512 int
513 bge_read_eeprom(sc, dest, off, cnt)
514 struct bge_softc *sc;
515 caddr_t dest;
516 int off;
517 int cnt;
518 {
519 int err = 0, i;
520 u_int8_t byte = 0;
521
522 for (i = 0; i < cnt; i++) {
523 err = bge_eeprom_getbyte(sc, off + i, &byte);
524 if (err)
525 break;
526 *(dest + i) = byte;
527 }
528
529 return(err ? 1 : 0);
530 }
531
532 int
533 bge_miibus_readreg(dev, phy, reg)
534 struct device *dev;
535 int phy, reg;
536 {
537 struct bge_softc *sc = (struct bge_softc *)dev;
538 u_int32_t val;
539 u_int32_t saved_autopoll;
540 int i;
541
542 /*
543 * Several chips with builtin PHYs will incorrectly answer to
544 * other PHY instances than the builtin PHY at id 1.
545 */
546 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
547 return(0);
548
549 /* Reading with autopolling on may trigger PCI errors */
550 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
551 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
552 CSR_WRITE_4(sc, BGE_MI_MODE,
553 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
554 DELAY(40);
555 }
556
557 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
558 BGE_MIPHY(phy)|BGE_MIREG(reg));
559
560 for (i = 0; i < BGE_TIMEOUT; i++) {
561 val = CSR_READ_4(sc, BGE_MI_COMM);
562 if (!(val & BGE_MICOMM_BUSY))
563 break;
564 delay(10);
565 }
566
567 if (i == BGE_TIMEOUT) {
568 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
569 val = 0;
570 goto done;
571 }
572
573 val = CSR_READ_4(sc, BGE_MI_COMM);
574
575 done:
576 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
577 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
578 DELAY(40);
579 }
580
581 if (val & BGE_MICOMM_READFAIL)
582 return(0);
583
584 return(val & 0xFFFF);
585 }
586
587 void
588 bge_miibus_writereg(dev, phy, reg, val)
589 struct device *dev;
590 int phy, reg, val;
591 {
592 struct bge_softc *sc = (struct bge_softc *)dev;
593 u_int32_t saved_autopoll;
594 int i;
595
596 /* Touching the PHY while autopolling is on may trigger PCI errors */
597 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
598 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
599 delay(40);
600 CSR_WRITE_4(sc, BGE_MI_MODE,
601 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
602 delay(10); /* 40 usec is supposed to be adequate */
603 }
604
605 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
606 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
607
608 for (i = 0; i < BGE_TIMEOUT; i++) {
609 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
610 break;
611 delay(10);
612 }
613
614 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
615 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
616 delay(40);
617 }
618
619 if (i == BGE_TIMEOUT) {
620 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
621 }
622 }
623
624 void
625 bge_miibus_statchg(dev)
626 struct device *dev;
627 {
628 struct bge_softc *sc = (struct bge_softc *)dev;
629 struct mii_data *mii = &sc->bge_mii;
630
631 /*
632 * Get flow control negotiation result.
633 */
634 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
635 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
636 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
637 mii->mii_media_active &= ~IFM_ETH_FMASK;
638 }
639
640 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
641 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
642 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
643 } else {
644 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
645 }
646
647 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
648 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
649 } else {
650 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
651 }
652
653 /*
654 * 802.3x flow control
655 */
656 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
657 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
658 } else {
659 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
660 }
661 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
662 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
663 } else {
664 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
665 }
666 }
667
668 /*
669 * Update rx threshold levels to values in a particular slot
670 * of the interrupt-mitigation table bge_rx_threshes.
671 */
672 void
673 bge_set_thresh(struct ifnet *ifp, int lvl)
674 {
675 struct bge_softc *sc = ifp->if_softc;
676 int s;
677
678 /* For now, just save the new Rx-intr thresholds and record
679 * that a threshold update is pending. Updating the hardware
680 * registers here (even at splhigh()) is observed to
681 * occasionaly cause glitches where Rx-interrupts are not
682 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
683 */
684 s = splnet();
685 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
686 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
687 sc->bge_pending_rxintr_change = 1;
688 splx(s);
689
690 return;
691 }
692
693
694 /*
695 * Update Rx thresholds of all bge devices
696 */
697 void
698 bge_update_all_threshes(int lvl)
699 {
700 struct ifnet *ifp;
701 const char * const namebuf = "bge";
702 int namelen;
703
704 if (lvl < 0)
705 lvl = 0;
706 else if( lvl >= NBGE_RX_THRESH)
707 lvl = NBGE_RX_THRESH - 1;
708
709 namelen = strlen(namebuf);
710 /*
711 * Now search all the interfaces for this name/number
712 */
713 IFNET_FOREACH(ifp) {
714 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
715 continue;
716 /* We got a match: update if doing auto-threshold-tuning */
717 if (bge_auto_thresh)
718 bge_set_thresh(ifp, lvl);
719 }
720 }
721
722 /*
723 * Handle events that have triggered interrupts.
724 */
725 void
726 bge_handle_events(sc)
727 struct bge_softc *sc;
728 {
729
730 return;
731 }
732
733 /*
734 * Memory management for jumbo frames.
735 */
736
737 int
738 bge_alloc_jumbo_mem(sc)
739 struct bge_softc *sc;
740 {
741 caddr_t ptr, kva;
742 bus_dma_segment_t seg;
743 int i, rseg, state, error;
744 struct bge_jpool_entry *entry;
745
746 state = error = 0;
747
748 /* Grab a big chunk o' storage. */
749 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
750 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
751 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
752 return ENOBUFS;
753 }
754
755 state = 1;
756 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
757 BUS_DMA_NOWAIT)) {
758 printf("%s: can't map DMA buffers (%d bytes)\n",
759 sc->bge_dev.dv_xname, (int)BGE_JMEM);
760 error = ENOBUFS;
761 goto out;
762 }
763
764 state = 2;
765 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
766 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
767 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
768 error = ENOBUFS;
769 goto out;
770 }
771
772 state = 3;
773 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
774 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
775 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
776 error = ENOBUFS;
777 goto out;
778 }
779
780 state = 4;
781 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
782 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
783
784 SLIST_INIT(&sc->bge_jfree_listhead);
785 SLIST_INIT(&sc->bge_jinuse_listhead);
786
787 /*
788 * Now divide it up into 9K pieces and save the addresses
789 * in an array.
790 */
791 ptr = sc->bge_cdata.bge_jumbo_buf;
792 for (i = 0; i < BGE_JSLOTS; i++) {
793 sc->bge_cdata.bge_jslots[i] = ptr;
794 ptr += BGE_JLEN;
795 entry = malloc(sizeof(struct bge_jpool_entry),
796 M_DEVBUF, M_NOWAIT);
797 if (entry == NULL) {
798 printf("%s: no memory for jumbo buffer queue!\n",
799 sc->bge_dev.dv_xname);
800 error = ENOBUFS;
801 goto out;
802 }
803 entry->slot = i;
804 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
805 entry, jpool_entries);
806 }
807 out:
808 if (error != 0) {
809 switch (state) {
810 case 4:
811 bus_dmamap_unload(sc->bge_dmatag,
812 sc->bge_cdata.bge_rx_jumbo_map);
813 case 3:
814 bus_dmamap_destroy(sc->bge_dmatag,
815 sc->bge_cdata.bge_rx_jumbo_map);
816 case 2:
817 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
818 case 1:
819 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
820 break;
821 default:
822 break;
823 }
824 }
825
826 return error;
827 }
828
829 /*
830 * Allocate a jumbo buffer.
831 */
832 void *
833 bge_jalloc(sc)
834 struct bge_softc *sc;
835 {
836 struct bge_jpool_entry *entry;
837
838 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
839
840 if (entry == NULL) {
841 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
842 return(NULL);
843 }
844
845 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
846 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
847 return(sc->bge_cdata.bge_jslots[entry->slot]);
848 }
849
850 /*
851 * Release a jumbo buffer.
852 */
853 void
854 bge_jfree(m, buf, size, arg)
855 struct mbuf *m;
856 caddr_t buf;
857 size_t size;
858 void *arg;
859 {
860 struct bge_jpool_entry *entry;
861 struct bge_softc *sc;
862 int i, s;
863
864 /* Extract the softc struct pointer. */
865 sc = (struct bge_softc *)arg;
866
867 if (sc == NULL)
868 panic("bge_jfree: can't find softc pointer!");
869
870 /* calculate the slot this buffer belongs to */
871
872 i = ((caddr_t)buf
873 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
874
875 if ((i < 0) || (i >= BGE_JSLOTS))
876 panic("bge_jfree: asked to free buffer that we don't manage!");
877
878 s = splvm();
879 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
880 if (entry == NULL)
881 panic("bge_jfree: buffer not in use!");
882 entry->slot = i;
883 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
884 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
885
886 if (__predict_true(m != NULL))
887 pool_cache_put(&mbpool_cache, m);
888 splx(s);
889 }
890
891
892 /*
893 * Intialize a standard receive ring descriptor.
894 */
895 int
896 bge_newbuf_std(sc, i, m, dmamap)
897 struct bge_softc *sc;
898 int i;
899 struct mbuf *m;
900 bus_dmamap_t dmamap;
901 {
902 struct mbuf *m_new = NULL;
903 struct bge_rx_bd *r;
904 int error;
905
906 if (dmamap == NULL) {
907 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
908 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
909 if (error != 0)
910 return error;
911 }
912
913 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
914
915 if (m == NULL) {
916 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
917 if (m_new == NULL) {
918 return(ENOBUFS);
919 }
920
921 MCLGET(m_new, M_DONTWAIT);
922 if (!(m_new->m_flags & M_EXT)) {
923 m_freem(m_new);
924 return(ENOBUFS);
925 }
926 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
927 if (!sc->bge_rx_alignment_bug)
928 m_adj(m_new, ETHER_ALIGN);
929
930 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
931 BUS_DMA_READ|BUS_DMA_NOWAIT))
932 return(ENOBUFS);
933 } else {
934 m_new = m;
935 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
936 m_new->m_data = m_new->m_ext.ext_buf;
937 if (!sc->bge_rx_alignment_bug)
938 m_adj(m_new, ETHER_ALIGN);
939 }
940
941 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
942 r = &sc->bge_rdata->bge_rx_std_ring[i];
943 bge_set_hostaddr(&r->bge_addr,
944 dmamap->dm_segs[0].ds_addr);
945 r->bge_flags = BGE_RXBDFLAG_END;
946 r->bge_len = m_new->m_len;
947 r->bge_idx = i;
948
949 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
950 offsetof(struct bge_ring_data, bge_rx_std_ring) +
951 i * sizeof (struct bge_rx_bd),
952 sizeof (struct bge_rx_bd),
953 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
954
955 return(0);
956 }
957
958 /*
959 * Initialize a jumbo receive ring descriptor. This allocates
960 * a jumbo buffer from the pool managed internally by the driver.
961 */
962 int
963 bge_newbuf_jumbo(sc, i, m)
964 struct bge_softc *sc;
965 int i;
966 struct mbuf *m;
967 {
968 struct mbuf *m_new = NULL;
969 struct bge_rx_bd *r;
970
971 if (m == NULL) {
972 caddr_t buf = NULL;
973
974 /* Allocate the mbuf. */
975 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
976 if (m_new == NULL) {
977 return(ENOBUFS);
978 }
979
980 /* Allocate the jumbo buffer */
981 buf = bge_jalloc(sc);
982 if (buf == NULL) {
983 m_freem(m_new);
984 printf("%s: jumbo allocation failed "
985 "-- packet dropped!\n", sc->bge_dev.dv_xname);
986 return(ENOBUFS);
987 }
988
989 /* Attach the buffer to the mbuf. */
990 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
991 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
992 bge_jfree, sc);
993 m_new->m_flags |= M_EXT_RW;
994 } else {
995 m_new = m;
996 m_new->m_data = m_new->m_ext.ext_buf;
997 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
998 }
999
1000 if (!sc->bge_rx_alignment_bug)
1001 m_adj(m_new, ETHER_ALIGN);
1002 /* Set up the descriptor. */
1003 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1004 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1005 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1006 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1007 r->bge_len = m_new->m_len;
1008 r->bge_idx = i;
1009
1010 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1011 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1012 i * sizeof (struct bge_rx_bd),
1013 sizeof (struct bge_rx_bd),
1014 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1015
1016 return(0);
1017 }
1018
1019 /*
1020 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1021 * that's 1MB or memory, which is a lot. For now, we fill only the first
1022 * 256 ring entries and hope that our CPU is fast enough to keep up with
1023 * the NIC.
1024 */
1025 int
1026 bge_init_rx_ring_std(sc)
1027 struct bge_softc *sc;
1028 {
1029 int i;
1030
1031 if (sc->bge_flags & BGE_RXRING_VALID)
1032 return 0;
1033
1034 for (i = 0; i < BGE_SSLOTS; i++) {
1035 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1036 return(ENOBUFS);
1037 }
1038
1039 sc->bge_std = i - 1;
1040 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1041
1042 sc->bge_flags |= BGE_RXRING_VALID;
1043
1044 return(0);
1045 }
1046
1047 void
1048 bge_free_rx_ring_std(sc)
1049 struct bge_softc *sc;
1050 {
1051 int i;
1052
1053 if (!(sc->bge_flags & BGE_RXRING_VALID))
1054 return;
1055
1056 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1057 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1058 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1059 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1060 bus_dmamap_destroy(sc->bge_dmatag,
1061 sc->bge_cdata.bge_rx_std_map[i]);
1062 }
1063 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1064 sizeof(struct bge_rx_bd));
1065 }
1066
1067 sc->bge_flags &= ~BGE_RXRING_VALID;
1068 }
1069
1070 int
1071 bge_init_rx_ring_jumbo(sc)
1072 struct bge_softc *sc;
1073 {
1074 int i;
1075 volatile struct bge_rcb *rcb;
1076
1077 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1078 return 0;
1079
1080 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1081 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1082 return(ENOBUFS);
1083 };
1084
1085 sc->bge_jumbo = i - 1;
1086 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1087
1088 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1089 rcb->bge_maxlen_flags = 0;
1090 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1091
1092 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1093
1094 return(0);
1095 }
1096
1097 void
1098 bge_free_rx_ring_jumbo(sc)
1099 struct bge_softc *sc;
1100 {
1101 int i;
1102
1103 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1104 return;
1105
1106 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1107 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1108 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1109 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1110 }
1111 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1112 sizeof(struct bge_rx_bd));
1113 }
1114
1115 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1116 }
1117
1118 void
1119 bge_free_tx_ring(sc)
1120 struct bge_softc *sc;
1121 {
1122 int i, freed;
1123 struct txdmamap_pool_entry *dma;
1124
1125 if (!(sc->bge_flags & BGE_TXRING_VALID))
1126 return;
1127
1128 freed = 0;
1129
1130 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1131 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1132 freed++;
1133 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1134 sc->bge_cdata.bge_tx_chain[i] = NULL;
1135 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1136 link);
1137 sc->txdma[i] = 0;
1138 }
1139 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1140 sizeof(struct bge_tx_bd));
1141 }
1142
1143 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1144 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1145 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1146 free(dma, M_DEVBUF);
1147 }
1148
1149 sc->bge_flags &= ~BGE_TXRING_VALID;
1150 }
1151
1152 int
1153 bge_init_tx_ring(sc)
1154 struct bge_softc *sc;
1155 {
1156 int i;
1157 bus_dmamap_t dmamap;
1158 struct txdmamap_pool_entry *dma;
1159
1160 if (sc->bge_flags & BGE_TXRING_VALID)
1161 return 0;
1162
1163 sc->bge_txcnt = 0;
1164 sc->bge_tx_saved_considx = 0;
1165
1166 /* Initialize transmit producer index for host-memory send ring. */
1167 sc->bge_tx_prodidx = 0;
1168 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1169 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1170 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1171
1172 /* NIC-memory send ring not used; initialize to zero. */
1173 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1174 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1175 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1176
1177 SLIST_INIT(&sc->txdma_list);
1178 for (i = 0; i < BGE_RSLOTS; i++) {
1179 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1180 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1181 &dmamap))
1182 return(ENOBUFS);
1183 if (dmamap == NULL)
1184 panic("dmamap NULL in bge_init_tx_ring");
1185 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1186 if (dma == NULL) {
1187 printf("%s: can't alloc txdmamap_pool_entry\n",
1188 sc->bge_dev.dv_xname);
1189 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1190 return (ENOMEM);
1191 }
1192 dma->dmamap = dmamap;
1193 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1194 }
1195
1196 sc->bge_flags |= BGE_TXRING_VALID;
1197
1198 return(0);
1199 }
1200
1201 void
1202 bge_setmulti(sc)
1203 struct bge_softc *sc;
1204 {
1205 struct ethercom *ac = &sc->ethercom;
1206 struct ifnet *ifp = &ac->ec_if;
1207 struct ether_multi *enm;
1208 struct ether_multistep step;
1209 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1210 u_int32_t h;
1211 int i;
1212
1213 if (ifp->if_flags & IFF_PROMISC)
1214 goto allmulti;
1215
1216 /* Now program new ones. */
1217 ETHER_FIRST_MULTI(step, ac, enm);
1218 while (enm != NULL) {
1219 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1220 /*
1221 * We must listen to a range of multicast addresses.
1222 * For now, just accept all multicasts, rather than
1223 * trying to set only those filter bits needed to match
1224 * the range. (At this time, the only use of address
1225 * ranges is for IP multicast routing, for which the
1226 * range is big enough to require all bits set.)
1227 */
1228 goto allmulti;
1229 }
1230
1231 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1232
1233 /* Just want the 7 least-significant bits. */
1234 h &= 0x7f;
1235
1236 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1237 ETHER_NEXT_MULTI(step, enm);
1238 }
1239
1240 ifp->if_flags &= ~IFF_ALLMULTI;
1241 goto setit;
1242
1243 allmulti:
1244 ifp->if_flags |= IFF_ALLMULTI;
1245 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1246
1247 setit:
1248 for (i = 0; i < 4; i++)
1249 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1250 }
1251
1252 const int bge_swapbits[] = {
1253 0,
1254 BGE_MODECTL_BYTESWAP_DATA,
1255 BGE_MODECTL_WORDSWAP_DATA,
1256 BGE_MODECTL_BYTESWAP_NONFRAME,
1257 BGE_MODECTL_WORDSWAP_NONFRAME,
1258
1259 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1260 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1261 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1262
1263 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1264 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1265
1266 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1267
1268 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1269 BGE_MODECTL_BYTESWAP_NONFRAME,
1270 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1271 BGE_MODECTL_WORDSWAP_NONFRAME,
1272 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1273 BGE_MODECTL_WORDSWAP_NONFRAME,
1274 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1275 BGE_MODECTL_WORDSWAP_NONFRAME,
1276
1277 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1278 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1279 };
1280
1281 int bge_swapindex = 0;
1282
1283 /*
1284 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1285 * self-test results.
1286 */
1287 int
1288 bge_chipinit(sc)
1289 struct bge_softc *sc;
1290 {
1291 u_int32_t cachesize;
1292 int i;
1293 u_int32_t dma_rw_ctl;
1294 struct pci_attach_args *pa = &(sc->bge_pa);
1295
1296
1297 /* Set endianness before we access any non-PCI registers. */
1298 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1299 BGE_INIT);
1300
1301 /* Set power state to D0. */
1302 bge_setpowerstate(sc, 0);
1303
1304 /*
1305 * Check the 'ROM failed' bit on the RX CPU to see if
1306 * self-tests passed.
1307 */
1308 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1309 printf("%s: RX CPU self-diagnostics failed!\n",
1310 sc->bge_dev.dv_xname);
1311 return(ENODEV);
1312 }
1313
1314 /* Clear the MAC control register */
1315 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1316
1317 /*
1318 * Clear the MAC statistics block in the NIC's
1319 * internal memory.
1320 */
1321 for (i = BGE_STATS_BLOCK;
1322 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1323 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1324
1325 for (i = BGE_STATUS_BLOCK;
1326 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1327 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1328
1329 /* Set up the PCI DMA control register. */
1330 if (sc->bge_pcie) {
1331 u_int32_t device_ctl;
1332
1333 /* From FreeBSD */
1334 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1335 sc->bge_dev.dv_xname));
1336 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1337 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1338 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1339
1340 /* jonathan: alternative from Linux driver */
1341 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1342 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1343
1344 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1345 device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
1346 BGE_PCI_CONF_DEV_CTRL);
1347 printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
1348
1349 if ((device_ctl & 0x00e0) && 0) {
1350 /*
1351 * XXX jonathan (at) NetBSD.org:
1352 * This clause is exactly what the Broadcom-supplied
1353 * Linux does; but given overall register programming
1354 * by if_bge(4), this larger DMA-write watermark
1355 * value causes bcm5721 chips to totally wedge.
1356 */
1357 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1358 } else {
1359 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1360 }
1361 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1362 BGE_PCISTATE_PCI_BUSMODE) {
1363 /* Conventional PCI bus */
1364 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1365 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1366 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1367 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1368 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1369 dma_rw_ctl |= 0x0F;
1370 }
1371 } else {
1372 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1373 /* PCI-X bus */
1374 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1375 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1376 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1377 (0x0F);
1378 /*
1379 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1380 * for hardware bugs, which means we should also clear
1381 * the low-order MINDMA bits. In addition, the 5704
1382 * uses a different encoding of read/write watermarks.
1383 */
1384 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1385 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1386 /* should be 0x1f0000 */
1387 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1388 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1389 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1390 }
1391 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1392 dma_rw_ctl &= 0xfffffff0;
1393 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1394 }
1395 else if (BGE_IS_5714_FAMILY(sc)) {
1396 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1397 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1398 /* XXX magic values, Broadcom-supplied Linux driver */
1399 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1400 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1401 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1402 else
1403 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1404 }
1405 }
1406
1407 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1408
1409 /*
1410 * Set up general mode register.
1411 */
1412 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1413 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1414 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1415
1416 /* Get cache line size. */
1417 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1418
1419 /*
1420 * Avoid violating PCI spec on certain chip revs.
1421 */
1422 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1423 PCIM_CMD_MWIEN) {
1424 switch(cachesize) {
1425 case 1:
1426 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1427 BGE_PCI_WRITE_BNDRY_16BYTES);
1428 break;
1429 case 2:
1430 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1431 BGE_PCI_WRITE_BNDRY_32BYTES);
1432 break;
1433 case 4:
1434 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1435 BGE_PCI_WRITE_BNDRY_64BYTES);
1436 break;
1437 case 8:
1438 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1439 BGE_PCI_WRITE_BNDRY_128BYTES);
1440 break;
1441 case 16:
1442 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1443 BGE_PCI_WRITE_BNDRY_256BYTES);
1444 break;
1445 case 32:
1446 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1447 BGE_PCI_WRITE_BNDRY_512BYTES);
1448 break;
1449 case 64:
1450 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1451 BGE_PCI_WRITE_BNDRY_1024BYTES);
1452 break;
1453 default:
1454 /* Disable PCI memory write and invalidate. */
1455 #if 0
1456 if (bootverbose)
1457 printf("%s: cache line size %d not "
1458 "supported; disabling PCI MWI\n",
1459 sc->bge_dev.dv_xname, cachesize);
1460 #endif
1461 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1462 PCIM_CMD_MWIEN);
1463 break;
1464 }
1465 }
1466
1467 /*
1468 * Disable memory write invalidate. Apparently it is not supported
1469 * properly by these devices.
1470 */
1471 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1472
1473
1474 #ifdef __brokenalpha__
1475 /*
1476 * Must insure that we do not cross an 8K (bytes) boundary
1477 * for DMA reads. Our highest limit is 1K bytes. This is a
1478 * restriction on some ALPHA platforms with early revision
1479 * 21174 PCI chipsets, such as the AlphaPC 164lx
1480 */
1481 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1482 #endif
1483
1484 /* Set the timer prescaler (always 66MHz) */
1485 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1486
1487 return(0);
1488 }
1489
1490 int
1491 bge_blockinit(sc)
1492 struct bge_softc *sc;
1493 {
1494 volatile struct bge_rcb *rcb;
1495 bus_size_t rcb_addr;
1496 int i;
1497 struct ifnet *ifp = &sc->ethercom.ec_if;
1498 bge_hostaddr taddr;
1499
1500 /*
1501 * Initialize the memory window pointer register so that
1502 * we can access the first 32K of internal NIC RAM. This will
1503 * allow us to set up the TX send ring RCBs and the RX return
1504 * ring RCBs, plus other things which live in NIC memory.
1505 */
1506
1507 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1508 BGE_PCI_MEMWIN_BASEADDR, 0);
1509
1510 /* Configure mbuf memory pool */
1511 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1512 if (sc->bge_extram) {
1513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1514 BGE_EXT_SSRAM);
1515 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1516 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1517 else
1518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1519 } else {
1520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1521 BGE_BUFFPOOL_1);
1522 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1524 else
1525 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1526 }
1527
1528 /* Configure DMA resource pool */
1529 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1530 BGE_DMA_DESCRIPTORS);
1531 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1532 }
1533
1534 /* Configure mbuf pool watermarks */
1535 #ifdef ORIG_WPAUL_VALUES
1536 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1537 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1538 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1539 #else
1540 /* new broadcom docs strongly recommend these: */
1541 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1542 if (ifp->if_mtu > ETHER_MAX_LEN) {
1543 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1544 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1545 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1546 } else {
1547 /* Values from Linux driver... */
1548 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1551 }
1552 } else {
1553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1556 }
1557 #endif
1558
1559 /* Configure DMA resource watermarks */
1560 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1561 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1562
1563 /* Enable buffer manager */
1564 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1565 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1566 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1567
1568 /* Poll for buffer manager start indication */
1569 for (i = 0; i < BGE_TIMEOUT; i++) {
1570 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1571 break;
1572 DELAY(10);
1573 }
1574
1575 if (i == BGE_TIMEOUT) {
1576 printf("%s: buffer manager failed to start\n",
1577 sc->bge_dev.dv_xname);
1578 return(ENXIO);
1579 }
1580 }
1581
1582 /* Enable flow-through queues */
1583 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1584 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1585
1586 /* Wait until queue initialization is complete */
1587 for (i = 0; i < BGE_TIMEOUT; i++) {
1588 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1589 break;
1590 DELAY(10);
1591 }
1592
1593 if (i == BGE_TIMEOUT) {
1594 printf("%s: flow-through queue init failed\n",
1595 sc->bge_dev.dv_xname);
1596 return(ENXIO);
1597 }
1598
1599 /* Initialize the standard RX ring control block */
1600 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1601 bge_set_hostaddr(&rcb->bge_hostaddr,
1602 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1603 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1604 rcb->bge_maxlen_flags =
1605 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1606 } else {
1607 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1608 }
1609 if (sc->bge_extram)
1610 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1611 else
1612 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1613 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1614 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1615 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1616 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1617
1618 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1619 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1620 } else {
1621 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1622 }
1623
1624 /*
1625 * Initialize the jumbo RX ring control block
1626 * We set the 'ring disabled' bit in the flags
1627 * field until we're actually ready to start
1628 * using this ring (i.e. once we set the MTU
1629 * high enough to require it).
1630 */
1631 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1632 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1633 bge_set_hostaddr(&rcb->bge_hostaddr,
1634 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1635 rcb->bge_maxlen_flags =
1636 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1637 BGE_RCB_FLAG_RING_DISABLED);
1638 if (sc->bge_extram)
1639 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1640 else
1641 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1642
1643 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1644 rcb->bge_hostaddr.bge_addr_hi);
1645 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1646 rcb->bge_hostaddr.bge_addr_lo);
1647 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1648 rcb->bge_maxlen_flags);
1649 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1650
1651 /* Set up dummy disabled mini ring RCB */
1652 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1653 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1654 BGE_RCB_FLAG_RING_DISABLED);
1655 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1656 rcb->bge_maxlen_flags);
1657
1658 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1659 offsetof(struct bge_ring_data, bge_info),
1660 sizeof (struct bge_gib),
1661 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1662 }
1663
1664 /*
1665 * Set the BD ring replentish thresholds. The recommended
1666 * values are 1/8th the number of descriptors allocated to
1667 * each ring.
1668 */
1669 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1670 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1671
1672 /*
1673 * Disable all unused send rings by setting the 'ring disabled'
1674 * bit in the flags field of all the TX send ring control blocks.
1675 * These are located in NIC memory.
1676 */
1677 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1678 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1679 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1680 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1681 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1682 rcb_addr += sizeof(struct bge_rcb);
1683 }
1684
1685 /* Configure TX RCB 0 (we use only the first ring) */
1686 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1687 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1688 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1689 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1690 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1691 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1692 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1693 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1694 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1695 }
1696
1697 /* Disable all unused RX return rings */
1698 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1699 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1700 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1701 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1702 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1703 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1704 BGE_RCB_FLAG_RING_DISABLED));
1705 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1706 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1707 (i * (sizeof(u_int64_t))), 0);
1708 rcb_addr += sizeof(struct bge_rcb);
1709 }
1710
1711 /* Initialize RX ring indexes */
1712 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1713 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1714 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1715
1716 /*
1717 * Set up RX return ring 0
1718 * Note that the NIC address for RX return rings is 0x00000000.
1719 * The return rings live entirely within the host, so the
1720 * nicaddr field in the RCB isn't used.
1721 */
1722 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1723 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1724 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1725 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1726 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1727 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1728 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1729
1730 /* Set random backoff seed for TX */
1731 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1732 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1733 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1734 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1735 BGE_TX_BACKOFF_SEED_MASK);
1736
1737 /* Set inter-packet gap */
1738 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1739
1740 /*
1741 * Specify which ring to use for packets that don't match
1742 * any RX rules.
1743 */
1744 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1745
1746 /*
1747 * Configure number of RX lists. One interrupt distribution
1748 * list, sixteen active lists, one bad frames class.
1749 */
1750 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1751
1752 /* Inialize RX list placement stats mask. */
1753 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1754 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1755
1756 /* Disable host coalescing until we get it set up */
1757 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1758
1759 /* Poll to make sure it's shut down. */
1760 for (i = 0; i < BGE_TIMEOUT; i++) {
1761 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1762 break;
1763 DELAY(10);
1764 }
1765
1766 if (i == BGE_TIMEOUT) {
1767 printf("%s: host coalescing engine failed to idle\n",
1768 sc->bge_dev.dv_xname);
1769 return(ENXIO);
1770 }
1771
1772 /* Set up host coalescing defaults */
1773 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1774 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1775 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1776 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1777 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1778 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1779 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1780 }
1781 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1782 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1783
1784 /* Set up address of statistics block */
1785 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1786 bge_set_hostaddr(&taddr,
1787 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1788 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1789 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1790 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1791 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1792 }
1793
1794 /* Set up address of status block */
1795 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1796 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1797 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1798 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1799 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1800 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1801
1802 /* Turn on host coalescing state machine */
1803 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1804
1805 /* Turn on RX BD completion state machine and enable attentions */
1806 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1807 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1808
1809 /* Turn on RX list placement state machine */
1810 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1811
1812 /* Turn on RX list selector state machine. */
1813 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1814 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1815 }
1816
1817 /* Turn on DMA, clear stats */
1818 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1819 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1820 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1821 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1822 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1823
1824 /* Set misc. local control, enable interrupts on attentions */
1825 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1826
1827 #ifdef notdef
1828 /* Assert GPIO pins for PHY reset */
1829 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1830 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1831 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1832 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1833 #endif
1834
1835 #if defined(not_quite_yet)
1836 /* Linux driver enables enable gpio pin #1 on 5700s */
1837 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1838 sc->bge_local_ctrl_reg |=
1839 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1840 }
1841 #endif
1842 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1843
1844 /* Turn on DMA completion state machine */
1845 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1846 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1847 }
1848
1849 /* Turn on write DMA state machine */
1850 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1851 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1852
1853 /* Turn on read DMA state machine */
1854 {
1855 uint32_t dma_read_modebits;
1856
1857 dma_read_modebits =
1858 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1859
1860 if (sc->bge_pcie && 0) {
1861 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1862 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1863 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1864 }
1865
1866 /* XXX broadcom-supplied linux driver; undocumented */
1867 if (BGE_IS_5750_OR_BEYOND(sc)) {
1868 /*
1869 * XXX: magic values.
1870 * From Broadcom-supplied Linux driver; apparently
1871 * required to workaround a DMA bug affecting TSO
1872 * on bcm575x/bcm5721?
1873 */
1874 dma_read_modebits |= (1 << 27);
1875 }
1876 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1877 }
1878
1879 /* Turn on RX data completion state machine */
1880 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1881
1882 /* Turn on RX BD initiator state machine */
1883 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1884
1885 /* Turn on RX data and RX BD initiator state machine */
1886 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1887
1888 /* Turn on Mbuf cluster free state machine */
1889 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1890 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1891 }
1892
1893 /* Turn on send BD completion state machine */
1894 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1895
1896 /* Turn on send data completion state machine */
1897 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1898
1899 /* Turn on send data initiator state machine */
1900 if (BGE_IS_5750_OR_BEYOND(sc)) {
1901 /* XXX: magic value from Linux driver */
1902 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1903 } else {
1904 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1905 }
1906
1907 /* Turn on send BD initiator state machine */
1908 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1909
1910 /* Turn on send BD selector state machine */
1911 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1912
1913 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1914 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1915 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1916
1917 /* ack/clear link change events */
1918 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1919 BGE_MACSTAT_CFG_CHANGED);
1920 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1921
1922 /* Enable PHY auto polling (for MII/GMII only) */
1923 if (sc->bge_tbi) {
1924 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1925 } else {
1926 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1927 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1928 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1929 BGE_EVTENB_MI_INTERRUPT);
1930 }
1931
1932 /* Enable link state change attentions. */
1933 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1934
1935 return(0);
1936 }
1937
1938 static const struct bge_revision {
1939 uint32_t br_chipid;
1940 uint32_t br_quirks;
1941 const char *br_name;
1942 } bge_revisions[] = {
1943 { BGE_CHIPID_BCM5700_A0,
1944 BGE_QUIRK_LINK_STATE_BROKEN,
1945 "BCM5700 A0" },
1946
1947 { BGE_CHIPID_BCM5700_A1,
1948 BGE_QUIRK_LINK_STATE_BROKEN,
1949 "BCM5700 A1" },
1950
1951 { BGE_CHIPID_BCM5700_B0,
1952 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1953 "BCM5700 B0" },
1954
1955 { BGE_CHIPID_BCM5700_B1,
1956 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1957 "BCM5700 B1" },
1958
1959 { BGE_CHIPID_BCM5700_B2,
1960 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1961 "BCM5700 B2" },
1962
1963 /* This is treated like a BCM5700 Bx */
1964 { BGE_CHIPID_BCM5700_ALTIMA,
1965 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1966 "BCM5700 Altima" },
1967
1968 { BGE_CHIPID_BCM5700_C0,
1969 0,
1970 "BCM5700 C0" },
1971
1972 { BGE_CHIPID_BCM5701_A0,
1973 0, /*XXX really, just not known */
1974 "BCM5701 A0" },
1975
1976 { BGE_CHIPID_BCM5701_B0,
1977 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1978 "BCM5701 B0" },
1979
1980 { BGE_CHIPID_BCM5701_B2,
1981 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1982 "BCM5701 B2" },
1983
1984 { BGE_CHIPID_BCM5701_B5,
1985 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1986 "BCM5701 B5" },
1987
1988 { BGE_CHIPID_BCM5703_A0,
1989 0,
1990 "BCM5703 A0" },
1991
1992 { BGE_CHIPID_BCM5703_A1,
1993 0,
1994 "BCM5703 A1" },
1995
1996 { BGE_CHIPID_BCM5703_A2,
1997 BGE_QUIRK_ONLY_PHY_1,
1998 "BCM5703 A2" },
1999
2000 { BGE_CHIPID_BCM5703_A3,
2001 BGE_QUIRK_ONLY_PHY_1,
2002 "BCM5703 A3" },
2003
2004 { BGE_CHIPID_BCM5704_A0,
2005 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2006 "BCM5704 A0" },
2007
2008 { BGE_CHIPID_BCM5704_A1,
2009 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2010 "BCM5704 A1" },
2011
2012 { BGE_CHIPID_BCM5704_A2,
2013 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2014 "BCM5704 A2" },
2015
2016 { BGE_CHIPID_BCM5704_A3,
2017 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2018 "BCM5704 A3" },
2019
2020 { BGE_CHIPID_BCM5705_A0,
2021 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2022 "BCM5705 A0" },
2023
2024 { BGE_CHIPID_BCM5705_A1,
2025 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2026 "BCM5705 A1" },
2027
2028 { BGE_CHIPID_BCM5705_A2,
2029 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2030 "BCM5705 A2" },
2031
2032 { BGE_CHIPID_BCM5705_A3,
2033 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2034 "BCM5705 A3" },
2035
2036 { BGE_CHIPID_BCM5750_A0,
2037 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2038 "BCM5750 A1" },
2039
2040 { BGE_CHIPID_BCM5750_A1,
2041 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2042 "BCM5750 A1" },
2043
2044 { BGE_CHIPID_BCM5751_A1,
2045 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2046 "BCM5751 A1" },
2047
2048 { 0, 0, NULL }
2049 };
2050
2051 /*
2052 * Some defaults for major revisions, so that newer steppings
2053 * that we don't know about have a shot at working.
2054 */
2055 static const struct bge_revision bge_majorrevs[] = {
2056 { BGE_ASICREV_BCM5700,
2057 BGE_QUIRK_LINK_STATE_BROKEN,
2058 "unknown BCM5700" },
2059
2060 { BGE_ASICREV_BCM5701,
2061 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2062 "unknown BCM5701" },
2063
2064 { BGE_ASICREV_BCM5703,
2065 0,
2066 "unknown BCM5703" },
2067
2068 { BGE_ASICREV_BCM5704,
2069 BGE_QUIRK_ONLY_PHY_1,
2070 "unknown BCM5704" },
2071
2072 { BGE_ASICREV_BCM5705,
2073 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2074 "unknown BCM5705" },
2075
2076 { BGE_ASICREV_BCM5750,
2077 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2078 "unknown BCM575x family" },
2079
2080 { BGE_ASICREV_BCM5714,
2081 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2082 "unknown BCM5714" },
2083
2084 { BGE_ASICREV_BCM5752,
2085 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2086 "unknown BCM5752 family" },
2087
2088
2089 { BGE_ASICREV_BCM5715,
2090 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2091 "unknown BCM5715" },
2092
2093 { 0,
2094 0,
2095 NULL }
2096 };
2097
2098
2099 static const struct bge_revision *
2100 bge_lookup_rev(uint32_t chipid)
2101 {
2102 const struct bge_revision *br;
2103
2104 for (br = bge_revisions; br->br_name != NULL; br++) {
2105 if (br->br_chipid == chipid)
2106 return (br);
2107 }
2108
2109 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2110 if (br->br_chipid == BGE_ASICREV(chipid))
2111 return (br);
2112 }
2113
2114 return (NULL);
2115 }
2116
2117 static const struct bge_product {
2118 pci_vendor_id_t bp_vendor;
2119 pci_product_id_t bp_product;
2120 const char *bp_name;
2121 } bge_products[] = {
2122 /*
2123 * The BCM5700 documentation seems to indicate that the hardware
2124 * still has the Alteon vendor ID burned into it, though it
2125 * should always be overridden by the value in the EEPROM. We'll
2126 * check for it anyway.
2127 */
2128 { PCI_VENDOR_ALTEON,
2129 PCI_PRODUCT_ALTEON_BCM5700,
2130 "Broadcom BCM5700 Gigabit Ethernet",
2131 },
2132 { PCI_VENDOR_ALTEON,
2133 PCI_PRODUCT_ALTEON_BCM5701,
2134 "Broadcom BCM5701 Gigabit Ethernet",
2135 },
2136
2137 { PCI_VENDOR_ALTIMA,
2138 PCI_PRODUCT_ALTIMA_AC1000,
2139 "Altima AC1000 Gigabit Ethernet",
2140 },
2141 { PCI_VENDOR_ALTIMA,
2142 PCI_PRODUCT_ALTIMA_AC1001,
2143 "Altima AC1001 Gigabit Ethernet",
2144 },
2145 { PCI_VENDOR_ALTIMA,
2146 PCI_PRODUCT_ALTIMA_AC9100,
2147 "Altima AC9100 Gigabit Ethernet",
2148 },
2149
2150 { PCI_VENDOR_BROADCOM,
2151 PCI_PRODUCT_BROADCOM_BCM5700,
2152 "Broadcom BCM5700 Gigabit Ethernet",
2153 },
2154 { PCI_VENDOR_BROADCOM,
2155 PCI_PRODUCT_BROADCOM_BCM5701,
2156 "Broadcom BCM5701 Gigabit Ethernet",
2157 },
2158 { PCI_VENDOR_BROADCOM,
2159 PCI_PRODUCT_BROADCOM_BCM5702,
2160 "Broadcom BCM5702 Gigabit Ethernet",
2161 },
2162 { PCI_VENDOR_BROADCOM,
2163 PCI_PRODUCT_BROADCOM_BCM5702X,
2164 "Broadcom BCM5702X Gigabit Ethernet" },
2165
2166 { PCI_VENDOR_BROADCOM,
2167 PCI_PRODUCT_BROADCOM_BCM5703,
2168 "Broadcom BCM5703 Gigabit Ethernet",
2169 },
2170 { PCI_VENDOR_BROADCOM,
2171 PCI_PRODUCT_BROADCOM_BCM5703X,
2172 "Broadcom BCM5703X Gigabit Ethernet",
2173 },
2174 { PCI_VENDOR_BROADCOM,
2175 PCI_PRODUCT_BROADCOM_BCM5703A3,
2176 "Broadcom BCM5703A3 Gigabit Ethernet",
2177 },
2178
2179 { PCI_VENDOR_BROADCOM,
2180 PCI_PRODUCT_BROADCOM_BCM5704C,
2181 "Broadcom BCM5704C Dual Gigabit Ethernet",
2182 },
2183 { PCI_VENDOR_BROADCOM,
2184 PCI_PRODUCT_BROADCOM_BCM5704S,
2185 "Broadcom BCM5704S Dual Gigabit Ethernet",
2186 },
2187
2188 { PCI_VENDOR_BROADCOM,
2189 PCI_PRODUCT_BROADCOM_BCM5705,
2190 "Broadcom BCM5705 Gigabit Ethernet",
2191 },
2192 { PCI_VENDOR_BROADCOM,
2193 PCI_PRODUCT_BROADCOM_BCM5705K,
2194 "Broadcom BCM5705K Gigabit Ethernet",
2195 },
2196 { PCI_VENDOR_BROADCOM,
2197 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2198 "Broadcom BCM5705 Gigabit Ethernet",
2199 },
2200 { PCI_VENDOR_BROADCOM,
2201 PCI_PRODUCT_BROADCOM_BCM5705M,
2202 "Broadcom BCM5705M Gigabit Ethernet",
2203 },
2204
2205 { PCI_VENDOR_BROADCOM,
2206 PCI_PRODUCT_BROADCOM_BCM5714,
2207 "Broadcom BCM5714/5715 Gigabit Ethernet",
2208 },
2209
2210 { PCI_VENDOR_BROADCOM,
2211 PCI_PRODUCT_BROADCOM_BCM5721,
2212 "Broadcom BCM5721 Gigabit Ethernet",
2213 },
2214
2215 { PCI_VENDOR_BROADCOM,
2216 PCI_PRODUCT_BROADCOM_BCM5750,
2217 "Broadcom BCM5750 Gigabit Ethernet",
2218 },
2219
2220 { PCI_VENDOR_BROADCOM,
2221 PCI_PRODUCT_BROADCOM_BCM5750M,
2222 "Broadcom BCM5750M Gigabit Ethernet",
2223 },
2224
2225 { PCI_VENDOR_BROADCOM,
2226 PCI_PRODUCT_BROADCOM_BCM5751,
2227 "Broadcom BCM5751 Gigabit Ethernet",
2228 },
2229
2230 { PCI_VENDOR_BROADCOM,
2231 PCI_PRODUCT_BROADCOM_BCM5751M,
2232 "Broadcom BCM5751M Gigabit Ethernet",
2233 },
2234
2235 { PCI_VENDOR_BROADCOM,
2236 PCI_PRODUCT_BROADCOM_BCM5752,
2237 "Broadcom BCM5752 Gigabit Ethernet",
2238 },
2239
2240 { PCI_VENDOR_BROADCOM,
2241 PCI_PRODUCT_BROADCOM_BCM5782,
2242 "Broadcom BCM5782 Gigabit Ethernet",
2243 },
2244 { PCI_VENDOR_BROADCOM,
2245 PCI_PRODUCT_BROADCOM_BCM5788,
2246 "Broadcom BCM5788 Gigabit Ethernet",
2247 },
2248 { PCI_VENDOR_BROADCOM,
2249 PCI_PRODUCT_BROADCOM_BCM5789,
2250 "Broadcom BCM5789 Gigabit Ethernet",
2251 },
2252
2253 { PCI_VENDOR_BROADCOM,
2254 PCI_PRODUCT_BROADCOM_BCM5901,
2255 "Broadcom BCM5901 Fast Ethernet",
2256 },
2257 { PCI_VENDOR_BROADCOM,
2258 PCI_PRODUCT_BROADCOM_BCM5901A2,
2259 "Broadcom BCM5901A2 Fast Ethernet",
2260 },
2261
2262 { PCI_VENDOR_SCHNEIDERKOCH,
2263 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2264 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2265 },
2266
2267 { PCI_VENDOR_3COM,
2268 PCI_PRODUCT_3COM_3C996,
2269 "3Com 3c996 Gigabit Ethernet",
2270 },
2271
2272 { 0,
2273 0,
2274 NULL },
2275 };
2276
2277 static const struct bge_product *
2278 bge_lookup(const struct pci_attach_args *pa)
2279 {
2280 const struct bge_product *bp;
2281
2282 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2283 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2284 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2285 return (bp);
2286 }
2287
2288 return (NULL);
2289 }
2290
2291 int
2292 bge_setpowerstate(sc, powerlevel)
2293 struct bge_softc *sc;
2294 int powerlevel;
2295 {
2296 #ifdef NOTYET
2297 u_int32_t pm_ctl = 0;
2298
2299 /* XXX FIXME: make sure indirect accesses enabled? */
2300 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2301 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2302 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2303
2304 /* clear the PME_assert bit and power state bits, enable PME */
2305 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2306 pm_ctl &= ~PCIM_PSTAT_DMASK;
2307 pm_ctl |= (1 << 8);
2308
2309 if (powerlevel == 0) {
2310 pm_ctl |= PCIM_PSTAT_D0;
2311 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2312 pm_ctl, 2);
2313 DELAY(10000);
2314 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2315 DELAY(10000);
2316
2317 #ifdef NOTYET
2318 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2319 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2320 #endif
2321 DELAY(40); DELAY(40); DELAY(40);
2322 DELAY(10000); /* above not quite adequate on 5700 */
2323 return 0;
2324 }
2325
2326
2327 /*
2328 * Entering ACPI power states D1-D3 is achieved by wiggling
2329 * GMII gpio pins. Example code assumes all hardware vendors
2330 * followed Broadom's sample pcb layout. Until we verify that
2331 * for all supported OEM cards, states D1-D3 are unsupported.
2332 */
2333 printf("%s: power state %d unimplemented; check GPIO pins\n",
2334 sc->bge_dev.dv_xname, powerlevel);
2335 #endif
2336 return EOPNOTSUPP;
2337 }
2338
2339
2340 /*
2341 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2342 * against our list and return its name if we find a match. Note
2343 * that since the Broadcom controller contains VPD support, we
2344 * can get the device name string from the controller itself instead
2345 * of the compiled-in string. This is a little slow, but it guarantees
2346 * we'll always announce the right product name.
2347 */
2348 int
2349 bge_probe(parent, match, aux)
2350 struct device *parent;
2351 struct cfdata *match;
2352 void *aux;
2353 {
2354 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2355
2356 if (bge_lookup(pa) != NULL)
2357 return (1);
2358
2359 return (0);
2360 }
2361
2362 void
2363 bge_attach(parent, self, aux)
2364 struct device *parent, *self;
2365 void *aux;
2366 {
2367 struct bge_softc *sc = (struct bge_softc *)self;
2368 struct pci_attach_args *pa = aux;
2369 const struct bge_product *bp;
2370 const struct bge_revision *br;
2371 pci_chipset_tag_t pc = pa->pa_pc;
2372 pci_intr_handle_t ih;
2373 const char *intrstr = NULL;
2374 bus_dma_segment_t seg;
2375 int rseg;
2376 u_int32_t hwcfg = 0;
2377 u_int32_t mac_addr = 0;
2378 u_int32_t command;
2379 struct ifnet *ifp;
2380 caddr_t kva;
2381 u_char eaddr[ETHER_ADDR_LEN];
2382 pcireg_t memtype;
2383 bus_addr_t memaddr;
2384 bus_size_t memsize;
2385 u_int32_t pm_ctl;
2386
2387 bp = bge_lookup(pa);
2388 KASSERT(bp != NULL);
2389
2390 sc->bge_pa = *pa;
2391
2392 aprint_naive(": Ethernet controller\n");
2393 aprint_normal(": %s\n", bp->bp_name);
2394
2395 /*
2396 * Map control/status registers.
2397 */
2398 DPRINTFN(5, ("Map control/status regs\n"));
2399 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2400 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2401 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2402 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2403
2404 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2405 aprint_error("%s: failed to enable memory mapping!\n",
2406 sc->bge_dev.dv_xname);
2407 return;
2408 }
2409
2410 DPRINTFN(5, ("pci_mem_find\n"));
2411 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2412 switch (memtype) {
2413 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2414 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2415 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2416 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2417 &memaddr, &memsize) == 0)
2418 break;
2419 default:
2420 aprint_error("%s: can't find mem space\n",
2421 sc->bge_dev.dv_xname);
2422 return;
2423 }
2424
2425 DPRINTFN(5, ("pci_intr_map\n"));
2426 if (pci_intr_map(pa, &ih)) {
2427 aprint_error("%s: couldn't map interrupt\n",
2428 sc->bge_dev.dv_xname);
2429 return;
2430 }
2431
2432 DPRINTFN(5, ("pci_intr_string\n"));
2433 intrstr = pci_intr_string(pc, ih);
2434
2435 DPRINTFN(5, ("pci_intr_establish\n"));
2436 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2437
2438 if (sc->bge_intrhand == NULL) {
2439 aprint_error("%s: couldn't establish interrupt",
2440 sc->bge_dev.dv_xname);
2441 if (intrstr != NULL)
2442 aprint_normal(" at %s", intrstr);
2443 aprint_normal("\n");
2444 return;
2445 }
2446 aprint_normal("%s: interrupting at %s\n",
2447 sc->bge_dev.dv_xname, intrstr);
2448
2449 /*
2450 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2451 * can clobber the chip's PCI config-space power control registers,
2452 * leaving the card in D3 powersave state.
2453 * We do not have memory-mapped registers in this state,
2454 * so force device into D0 state before starting initialization.
2455 */
2456 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2457 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2458 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2459 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2460 DELAY(1000); /* 27 usec is allegedly sufficent */
2461
2462 /*
2463 * Save ASIC rev. Look up any quirks associated with this
2464 * ASIC.
2465 */
2466 sc->bge_chipid =
2467 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2468 BGE_PCIMISCCTL_ASICREV;
2469
2470 /*
2471 * Detect PCI-Express devices
2472 * XXX: guessed from Linux/FreeBSD; no documentation
2473 */
2474 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2475 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2476 NULL, NULL) != 0)
2477 sc->bge_pcie = 1;
2478 else
2479 sc->bge_pcie = 0;
2480
2481 /* Try to reset the chip. */
2482 DPRINTFN(5, ("bge_reset\n"));
2483 bge_reset(sc);
2484
2485 if (bge_chipinit(sc)) {
2486 aprint_error("%s: chip initialization failed\n",
2487 sc->bge_dev.dv_xname);
2488 bge_release_resources(sc);
2489 return;
2490 }
2491
2492 /*
2493 * Get station address from the EEPROM.
2494 */
2495 mac_addr = bge_readmem_ind(sc, 0x0c14);
2496 if ((mac_addr >> 16) == 0x484b) {
2497 eaddr[0] = (u_char)(mac_addr >> 8);
2498 eaddr[1] = (u_char)(mac_addr >> 0);
2499 mac_addr = bge_readmem_ind(sc, 0x0c18);
2500 eaddr[2] = (u_char)(mac_addr >> 24);
2501 eaddr[3] = (u_char)(mac_addr >> 16);
2502 eaddr[4] = (u_char)(mac_addr >> 8);
2503 eaddr[5] = (u_char)(mac_addr >> 0);
2504 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2505 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2506 aprint_error("%s: failed to read station address\n",
2507 sc->bge_dev.dv_xname);
2508 bge_release_resources(sc);
2509 return;
2510 }
2511
2512 br = bge_lookup_rev(sc->bge_chipid);
2513 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2514
2515 if (br == NULL) {
2516 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2517 sc->bge_quirks = 0;
2518 } else {
2519 aprint_normal("ASIC %s (0x%04x)",
2520 br->br_name, sc->bge_chipid >> 16);
2521 sc->bge_quirks |= br->br_quirks;
2522 }
2523 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2524
2525 /* Allocate the general information block and ring buffers. */
2526 if (pci_dma64_available(pa))
2527 sc->bge_dmatag = pa->pa_dmat64;
2528 else
2529 sc->bge_dmatag = pa->pa_dmat;
2530 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2531 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2532 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2533 aprint_error("%s: can't alloc rx buffers\n",
2534 sc->bge_dev.dv_xname);
2535 return;
2536 }
2537 DPRINTFN(5, ("bus_dmamem_map\n"));
2538 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2539 sizeof(struct bge_ring_data), &kva,
2540 BUS_DMA_NOWAIT)) {
2541 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2542 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2543 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2544 return;
2545 }
2546 DPRINTFN(5, ("bus_dmamem_create\n"));
2547 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2548 sizeof(struct bge_ring_data), 0,
2549 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2550 aprint_error("%s: can't create DMA map\n",
2551 sc->bge_dev.dv_xname);
2552 bus_dmamem_unmap(sc->bge_dmatag, kva,
2553 sizeof(struct bge_ring_data));
2554 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2555 return;
2556 }
2557 DPRINTFN(5, ("bus_dmamem_load\n"));
2558 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2559 sizeof(struct bge_ring_data), NULL,
2560 BUS_DMA_NOWAIT)) {
2561 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2562 bus_dmamem_unmap(sc->bge_dmatag, kva,
2563 sizeof(struct bge_ring_data));
2564 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2565 return;
2566 }
2567
2568 DPRINTFN(5, ("bzero\n"));
2569 sc->bge_rdata = (struct bge_ring_data *)kva;
2570
2571 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2572
2573 /* Try to allocate memory for jumbo buffers. */
2574 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2575 if (bge_alloc_jumbo_mem(sc)) {
2576 aprint_error("%s: jumbo buffer allocation failed\n",
2577 sc->bge_dev.dv_xname);
2578 } else
2579 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2580 }
2581
2582 /* Set default tuneable values. */
2583 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2584 sc->bge_rx_coal_ticks = 150;
2585 sc->bge_rx_max_coal_bds = 64;
2586 #ifdef ORIG_WPAUL_VALUES
2587 sc->bge_tx_coal_ticks = 150;
2588 sc->bge_tx_max_coal_bds = 128;
2589 #else
2590 sc->bge_tx_coal_ticks = 300;
2591 sc->bge_tx_max_coal_bds = 400;
2592 #endif
2593 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2594 sc->bge_tx_coal_ticks = (12 * 5);
2595 sc->bge_rx_max_coal_bds = (12 * 5);
2596 aprint_error("%s: setting short Tx thresholds\n",
2597 sc->bge_dev.dv_xname);
2598 }
2599
2600 /* Set up ifnet structure */
2601 ifp = &sc->ethercom.ec_if;
2602 ifp->if_softc = sc;
2603 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2604 ifp->if_ioctl = bge_ioctl;
2605 ifp->if_start = bge_start;
2606 ifp->if_init = bge_init;
2607 ifp->if_watchdog = bge_watchdog;
2608 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2609 IFQ_SET_READY(&ifp->if_snd);
2610 DPRINTFN(5, ("bcopy\n"));
2611 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2612
2613 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2614 sc->ethercom.ec_if.if_capabilities |=
2615 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2616 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2617 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2618 sc->ethercom.ec_capabilities |=
2619 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2620
2621 if (sc->bge_pcie)
2622 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2623
2624 /*
2625 * Do MII setup.
2626 */
2627 DPRINTFN(5, ("mii setup\n"));
2628 sc->bge_mii.mii_ifp = ifp;
2629 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2630 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2631 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2632
2633 /*
2634 * Figure out what sort of media we have by checking the
2635 * hardware config word in the first 32k of NIC internal memory,
2636 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2637 * cards, this value appears to be unset. If that's the
2638 * case, we have to rely on identifying the NIC by its PCI
2639 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2640 */
2641 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2642 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2643 } else {
2644 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2645 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2646 hwcfg = be32toh(hwcfg);
2647 }
2648 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2649 sc->bge_tbi = 1;
2650
2651 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2652 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2653 SK_SUBSYSID_9D41)
2654 sc->bge_tbi = 1;
2655
2656 if (sc->bge_tbi) {
2657 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2658 bge_ifmedia_sts);
2659 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2660 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2661 0, NULL);
2662 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2663 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2664 } else {
2665 /*
2666 * Do transceiver setup.
2667 */
2668 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2669 bge_ifmedia_sts);
2670 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2671 MII_PHY_ANY, MII_OFFSET_ANY,
2672 MIIF_FORCEANEG|MIIF_DOPAUSE);
2673
2674 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2675 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2676 ifmedia_add(&sc->bge_mii.mii_media,
2677 IFM_ETHER|IFM_MANUAL, 0, NULL);
2678 ifmedia_set(&sc->bge_mii.mii_media,
2679 IFM_ETHER|IFM_MANUAL);
2680 } else
2681 ifmedia_set(&sc->bge_mii.mii_media,
2682 IFM_ETHER|IFM_AUTO);
2683 }
2684
2685 /*
2686 * When using the BCM5701 in PCI-X mode, data corruption has
2687 * been observed in the first few bytes of some received packets.
2688 * Aligning the packet buffer in memory eliminates the corruption.
2689 * Unfortunately, this misaligns the packet payloads. On platforms
2690 * which do not support unaligned accesses, we will realign the
2691 * payloads by copying the received packets.
2692 */
2693 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2694 /* If in PCI-X mode, work around the alignment bug. */
2695 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2696 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2697 BGE_PCISTATE_PCI_BUSSPEED)
2698 sc->bge_rx_alignment_bug = 1;
2699 }
2700
2701 /*
2702 * Call MI attach routine.
2703 */
2704 DPRINTFN(5, ("if_attach\n"));
2705 if_attach(ifp);
2706 DPRINTFN(5, ("ether_ifattach\n"));
2707 ether_ifattach(ifp, eaddr);
2708 #ifdef BGE_EVENT_COUNTERS
2709 /*
2710 * Attach event counters.
2711 */
2712 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2713 NULL, sc->bge_dev.dv_xname, "intr");
2714 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2715 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2716 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2717 NULL, sc->bge_dev.dv_xname, "tx_xon");
2718 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2719 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2720 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2721 NULL, sc->bge_dev.dv_xname, "rx_xon");
2722 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2723 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2724 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2725 NULL, sc->bge_dev.dv_xname, "xoffentered");
2726 #endif /* BGE_EVENT_COUNTERS */
2727 DPRINTFN(5, ("callout_init\n"));
2728 callout_init(&sc->bge_timeout);
2729
2730 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2731 if (sc->bge_powerhook == NULL)
2732 printf("%s: WARNING: unable to establish PCI power hook\n",
2733 sc->bge_dev.dv_xname);
2734 }
2735
2736 void
2737 bge_release_resources(sc)
2738 struct bge_softc *sc;
2739 {
2740 if (sc->bge_vpd_prodname != NULL)
2741 free(sc->bge_vpd_prodname, M_DEVBUF);
2742
2743 if (sc->bge_vpd_readonly != NULL)
2744 free(sc->bge_vpd_readonly, M_DEVBUF);
2745 }
2746
2747 void
2748 bge_reset(sc)
2749 struct bge_softc *sc;
2750 {
2751 struct pci_attach_args *pa = &sc->bge_pa;
2752 u_int32_t cachesize, command, pcistate, new_pcistate;
2753 int i, val;
2754
2755 /* Save some important PCI state. */
2756 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2757 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2758 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2759
2760 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2761 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2762 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2763
2764 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2765 /*
2766 * XXX: from FreeBSD/Linux; no documentation
2767 */
2768 if (sc->bge_pcie) {
2769 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2770 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2771 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2772 /* No idea what that actually means */
2773 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2774 val |= (1<<29);
2775 }
2776 }
2777
2778 /* Issue global reset */
2779 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2780
2781 DELAY(1000);
2782
2783 /*
2784 * XXX: from FreeBSD/Linux; no documentation
2785 */
2786 if (sc->bge_pcie) {
2787 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2788 pcireg_t reg;
2789
2790 DELAY(500000);
2791 /* XXX: Magic Numbers */
2792 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2793 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2794 reg | (1 << 15));
2795 }
2796 /*
2797 * XXX: Magic Numbers.
2798 * Sets maximal PCI-e payload and clears any PCI-e errors.
2799 * Should be replaced with references to PCI config-space
2800 * capability block for PCI-Express.
2801 */
2802 pci_conf_write(pa->pa_pc, pa->pa_tag,
2803 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2804
2805 }
2806
2807 /* Reset some of the PCI state that got zapped by reset */
2808 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2809 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2810 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2811 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2812 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2813 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2814
2815 /* Enable memory arbiter. */
2816 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2817 uint32_t marbmode = 0;
2818 if (BGE_IS_5714_FAMILY(sc)) {
2819 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2820 }
2821 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2822 }
2823
2824 /*
2825 * Prevent PXE restart: write a magic number to the
2826 * general communications memory at 0xB50.
2827 */
2828 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2829
2830 /*
2831 * Poll the value location we just wrote until
2832 * we see the 1's complement of the magic number.
2833 * This indicates that the firmware initialization
2834 * is complete.
2835 */
2836 for (i = 0; i < BGE_TIMEOUT; i++) {
2837 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2838 if (val == ~BGE_MAGIC_NUMBER)
2839 break;
2840 DELAY(1000);
2841 }
2842
2843 if (i >= BGE_TIMEOUT) {
2844 printf("%s: firmware handshake timed out, val = %x\n",
2845 sc->bge_dev.dv_xname, val);
2846 /*
2847 * XXX: occasionally fired on bcm5721, but without
2848 * apparent harm. For now, keep going if we timeout
2849 * against PCI-E devices.
2850 */
2851 if (!sc->bge_pcie)
2852 return;
2853 }
2854
2855 /*
2856 * XXX Wait for the value of the PCISTATE register to
2857 * return to its original pre-reset state. This is a
2858 * fairly good indicator of reset completion. If we don't
2859 * wait for the reset to fully complete, trying to read
2860 * from the device's non-PCI registers may yield garbage
2861 * results.
2862 */
2863 for (i = 0; i < BGE_TIMEOUT; i++) {
2864 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2865 BGE_PCI_PCISTATE);
2866 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2867 (pcistate & ~BGE_PCISTATE_RESERVED))
2868 break;
2869 DELAY(10);
2870 }
2871 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2872 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2873 printf("%s: pcistate failed to revert\n",
2874 sc->bge_dev.dv_xname);
2875 }
2876
2877 /* XXX: from FreeBSD/Linux; no documentation */
2878 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2879 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2880
2881 /* Enable memory arbiter. */
2882 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2883 uint32_t marbmode = 0;
2884 if (BGE_IS_5714_FAMILY(sc)) {
2885 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2886 }
2887 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2888 }
2889
2890 /* Fix up byte swapping */
2891 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2892
2893 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2894
2895 DELAY(10000);
2896 }
2897
2898 /*
2899 * Frame reception handling. This is called if there's a frame
2900 * on the receive return list.
2901 *
2902 * Note: we have to be able to handle two possibilities here:
2903 * 1) the frame is from the jumbo recieve ring
2904 * 2) the frame is from the standard receive ring
2905 */
2906
2907 void
2908 bge_rxeof(sc)
2909 struct bge_softc *sc;
2910 {
2911 struct ifnet *ifp;
2912 int stdcnt = 0, jumbocnt = 0;
2913 bus_dmamap_t dmamap;
2914 bus_addr_t offset, toff;
2915 bus_size_t tlen;
2916 int tosync;
2917
2918 ifp = &sc->ethercom.ec_if;
2919
2920 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2921 offsetof(struct bge_ring_data, bge_status_block),
2922 sizeof (struct bge_status_block),
2923 BUS_DMASYNC_POSTREAD);
2924
2925 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2926 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2927 sc->bge_rx_saved_considx;
2928
2929 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2930
2931 if (tosync < 0) {
2932 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2933 sizeof (struct bge_rx_bd);
2934 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2935 toff, tlen, BUS_DMASYNC_POSTREAD);
2936 tosync = -tosync;
2937 }
2938
2939 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2940 offset, tosync * sizeof (struct bge_rx_bd),
2941 BUS_DMASYNC_POSTREAD);
2942
2943 while(sc->bge_rx_saved_considx !=
2944 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2945 struct bge_rx_bd *cur_rx;
2946 u_int32_t rxidx;
2947 struct mbuf *m = NULL;
2948
2949 cur_rx = &sc->bge_rdata->
2950 bge_rx_return_ring[sc->bge_rx_saved_considx];
2951
2952 rxidx = cur_rx->bge_idx;
2953 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2954
2955 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2956 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2957 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2958 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2959 jumbocnt++;
2960 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2961 ifp->if_ierrors++;
2962 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2963 continue;
2964 }
2965 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2966 NULL)== ENOBUFS) {
2967 ifp->if_ierrors++;
2968 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2969 continue;
2970 }
2971 } else {
2972 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2973 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2974 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2975 stdcnt++;
2976 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2977 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2978 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2979 ifp->if_ierrors++;
2980 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2981 continue;
2982 }
2983 if (bge_newbuf_std(sc, sc->bge_std,
2984 NULL, dmamap) == ENOBUFS) {
2985 ifp->if_ierrors++;
2986 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2987 continue;
2988 }
2989 }
2990
2991 ifp->if_ipackets++;
2992 #ifndef __NO_STRICT_ALIGNMENT
2993 /*
2994 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2995 * the Rx buffer has the layer-2 header unaligned.
2996 * If our CPU requires alignment, re-align by copying.
2997 */
2998 if (sc->bge_rx_alignment_bug) {
2999 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
3000 cur_rx->bge_len);
3001 m->m_data += ETHER_ALIGN;
3002 }
3003 #endif
3004
3005 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3006 m->m_pkthdr.rcvif = ifp;
3007
3008 #if NBPFILTER > 0
3009 /*
3010 * Handle BPF listeners. Let the BPF user see the packet.
3011 */
3012 if (ifp->if_bpf)
3013 bpf_mtap(ifp->if_bpf, m);
3014 #endif
3015
3016 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3017
3018 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3019 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3020 /*
3021 * Rx transport checksum-offload may also
3022 * have bugs with packets which, when transmitted,
3023 * were `runts' requiring padding.
3024 */
3025 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3026 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3027 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3028 m->m_pkthdr.csum_data =
3029 cur_rx->bge_tcp_udp_csum;
3030 m->m_pkthdr.csum_flags |=
3031 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3032 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3033 }
3034
3035 /*
3036 * If we received a packet with a vlan tag, pass it
3037 * to vlan_input() instead of ether_input().
3038 */
3039 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3040 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3041
3042 (*ifp->if_input)(ifp, m);
3043 }
3044
3045 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3046 if (stdcnt)
3047 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3048 if (jumbocnt)
3049 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3050 }
3051
3052 void
3053 bge_txeof(sc)
3054 struct bge_softc *sc;
3055 {
3056 struct bge_tx_bd *cur_tx = NULL;
3057 struct ifnet *ifp;
3058 struct txdmamap_pool_entry *dma;
3059 bus_addr_t offset, toff;
3060 bus_size_t tlen;
3061 int tosync;
3062 struct mbuf *m;
3063
3064 ifp = &sc->ethercom.ec_if;
3065
3066 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3067 offsetof(struct bge_ring_data, bge_status_block),
3068 sizeof (struct bge_status_block),
3069 BUS_DMASYNC_POSTREAD);
3070
3071 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3072 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3073 sc->bge_tx_saved_considx;
3074
3075 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3076
3077 if (tosync < 0) {
3078 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3079 sizeof (struct bge_tx_bd);
3080 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3081 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3082 tosync = -tosync;
3083 }
3084
3085 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3086 offset, tosync * sizeof (struct bge_tx_bd),
3087 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3088
3089 /*
3090 * Go through our tx ring and free mbufs for those
3091 * frames that have been sent.
3092 */
3093 while (sc->bge_tx_saved_considx !=
3094 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3095 u_int32_t idx = 0;
3096
3097 idx = sc->bge_tx_saved_considx;
3098 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3099 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3100 ifp->if_opackets++;
3101 m = sc->bge_cdata.bge_tx_chain[idx];
3102 if (m != NULL) {
3103 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3104 dma = sc->txdma[idx];
3105 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3106 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3107 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3108 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3109 sc->txdma[idx] = NULL;
3110
3111 m_freem(m);
3112 }
3113 sc->bge_txcnt--;
3114 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3115 ifp->if_timer = 0;
3116 }
3117
3118 if (cur_tx != NULL)
3119 ifp->if_flags &= ~IFF_OACTIVE;
3120 }
3121
3122 int
3123 bge_intr(xsc)
3124 void *xsc;
3125 {
3126 struct bge_softc *sc;
3127 struct ifnet *ifp;
3128
3129 sc = xsc;
3130 ifp = &sc->ethercom.ec_if;
3131
3132 #ifdef notdef
3133 /* Avoid this for now -- checking this register is expensive. */
3134 /* Make sure this is really our interrupt. */
3135 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
3136 return (0);
3137 #endif
3138 /* Ack interrupt and stop others from occuring. */
3139 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3140
3141 BGE_EVCNT_INCR(sc->bge_ev_intr);
3142
3143 /*
3144 * Process link state changes.
3145 * Grrr. The link status word in the status block does
3146 * not work correctly on the BCM5700 rev AX and BX chips,
3147 * according to all available information. Hence, we have
3148 * to enable MII interrupts in order to properly obtain
3149 * async link changes. Unfortunately, this also means that
3150 * we have to read the MAC status register to detect link
3151 * changes, thereby adding an additional register access to
3152 * the interrupt handler.
3153 */
3154
3155 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3156 u_int32_t status;
3157
3158 status = CSR_READ_4(sc, BGE_MAC_STS);
3159 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3160 sc->bge_link = 0;
3161 callout_stop(&sc->bge_timeout);
3162 bge_tick(sc);
3163 /* Clear the interrupt */
3164 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3165 BGE_EVTENB_MI_INTERRUPT);
3166 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3167 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3168 BRGPHY_INTRS);
3169 }
3170 } else {
3171 if (sc->bge_rdata->bge_status_block.bge_status &
3172 BGE_STATFLAG_LINKSTATE_CHANGED) {
3173 sc->bge_link = 0;
3174 callout_stop(&sc->bge_timeout);
3175 bge_tick(sc);
3176 /* Clear the interrupt */
3177 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3178 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3179 BGE_MACSTAT_LINK_CHANGED);
3180 }
3181 }
3182
3183 if (ifp->if_flags & IFF_RUNNING) {
3184 /* Check RX return ring producer/consumer */
3185 bge_rxeof(sc);
3186
3187 /* Check TX ring producer/consumer */
3188 bge_txeof(sc);
3189 }
3190
3191 if (sc->bge_pending_rxintr_change) {
3192 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3193 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3194 uint32_t junk;
3195
3196 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3197 DELAY(10);
3198 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3199
3200 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3201 DELAY(10);
3202 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3203
3204 sc->bge_pending_rxintr_change = 0;
3205 }
3206 bge_handle_events(sc);
3207
3208 /* Re-enable interrupts. */
3209 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3210
3211 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3212 bge_start(ifp);
3213
3214 return (1);
3215 }
3216
3217 void
3218 bge_tick(xsc)
3219 void *xsc;
3220 {
3221 struct bge_softc *sc = xsc;
3222 struct mii_data *mii = &sc->bge_mii;
3223 struct ifmedia *ifm = NULL;
3224 struct ifnet *ifp = &sc->ethercom.ec_if;
3225 int s;
3226
3227 s = splnet();
3228
3229 bge_stats_update(sc);
3230 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3231 if (sc->bge_link) {
3232 splx(s);
3233 return;
3234 }
3235
3236 if (sc->bge_tbi) {
3237 ifm = &sc->bge_ifmedia;
3238 if (CSR_READ_4(sc, BGE_MAC_STS) &
3239 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3240 sc->bge_link++;
3241 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3242 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3243 bge_start(ifp);
3244 }
3245 splx(s);
3246 return;
3247 }
3248
3249 mii_tick(mii);
3250
3251 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3252 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3253 sc->bge_link++;
3254 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3255 bge_start(ifp);
3256 }
3257
3258 splx(s);
3259 }
3260
3261 void
3262 bge_stats_update(sc)
3263 struct bge_softc *sc;
3264 {
3265 struct ifnet *ifp = &sc->ethercom.ec_if;
3266 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3267 bus_size_t rstats = BGE_RX_STATS;
3268
3269 #define READ_RSTAT(sc, stats, stat) \
3270 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3271
3272 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3273 ifp->if_collisions +=
3274 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3275 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3276 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3277 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3278
3279 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3280 READ_RSTAT(sc, rstats, outXoffSent));
3281 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3282 READ_RSTAT(sc, rstats, outXonSent));
3283 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3284 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3285 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3286 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3287 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3288 READ_RSTAT(sc, rstats, macControlFramesReceived));
3289 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3290 READ_RSTAT(sc, rstats, xoffStateEntered));
3291 return;
3292 }
3293
3294 #undef READ_RSTAT
3295 #define READ_STAT(sc, stats, stat) \
3296 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3297
3298 ifp->if_collisions +=
3299 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3300 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3301 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3302 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3303 ifp->if_collisions;
3304
3305 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3306 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3307 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3308 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3309 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3310 READ_STAT(sc, stats,
3311 xoffPauseFramesReceived.bge_addr_lo));
3312 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3313 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3314 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3315 READ_STAT(sc, stats,
3316 macControlFramesReceived.bge_addr_lo));
3317 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3318 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3319
3320 #undef READ_STAT
3321
3322 #ifdef notdef
3323 ifp->if_collisions +=
3324 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3325 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3326 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3327 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3328 ifp->if_collisions;
3329 #endif
3330 }
3331
3332 /*
3333 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3334 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3335 * but when such padded frames employ the bge IP/TCP checksum offload,
3336 * the hardware checksum assist gives incorrect results (possibly
3337 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3338 * If we pad such runts with zeros, the onboard checksum comes out correct.
3339 */
3340 static __inline int
3341 bge_cksum_pad(struct mbuf *pkt)
3342 {
3343 struct mbuf *last = NULL;
3344 int padlen;
3345
3346 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3347
3348 /* if there's only the packet-header and we can pad there, use it. */
3349 if (pkt->m_pkthdr.len == pkt->m_len &&
3350 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3351 last = pkt;
3352 } else {
3353 /*
3354 * Walk packet chain to find last mbuf. We will either
3355 * pad there, or append a new mbuf and pad it
3356 * (thus perhaps avoiding the bcm5700 dma-min bug).
3357 */
3358 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3359 (void) 0; /* do nothing*/
3360 }
3361
3362 /* `last' now points to last in chain. */
3363 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3364 (void) 0; /* we can pad here, in-place. */
3365 } else {
3366 /* Allocate new empty mbuf, pad it. Compact later. */
3367 struct mbuf *n;
3368 MGET(n, M_DONTWAIT, MT_DATA);
3369 n->m_len = 0;
3370 last->m_next = n;
3371 last = n;
3372 }
3373 }
3374
3375 #ifdef DEBUG
3376 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3377 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3378 #endif
3379 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3380 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3381 last->m_len += padlen;
3382 pkt->m_pkthdr.len += padlen;
3383 return 0;
3384 }
3385
3386 /*
3387 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3388 */
3389 static __inline int
3390 bge_compact_dma_runt(struct mbuf *pkt)
3391 {
3392 struct mbuf *m, *prev;
3393 int totlen, prevlen;
3394
3395 prev = NULL;
3396 totlen = 0;
3397 prevlen = -1;
3398
3399 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3400 int mlen = m->m_len;
3401 int shortfall = 8 - mlen ;
3402
3403 totlen += mlen;
3404 if (mlen == 0) {
3405 continue;
3406 }
3407 if (mlen >= 8)
3408 continue;
3409
3410 /* If we get here, mbuf data is too small for DMA engine.
3411 * Try to fix by shuffling data to prev or next in chain.
3412 * If that fails, do a compacting deep-copy of the whole chain.
3413 */
3414
3415 /* Internal frag. If fits in prev, copy it there. */
3416 if (prev && !M_READONLY(prev) &&
3417 M_TRAILINGSPACE(prev) >= m->m_len) {
3418 bcopy(m->m_data,
3419 prev->m_data+prev->m_len,
3420 mlen);
3421 prev->m_len += mlen;
3422 m->m_len = 0;
3423 /* XXX stitch chain */
3424 prev->m_next = m_free(m);
3425 m = prev;
3426 continue;
3427 }
3428 else if (m->m_next != NULL && !M_READONLY(m) &&
3429 M_TRAILINGSPACE(m) >= shortfall &&
3430 m->m_next->m_len >= (8 + shortfall)) {
3431 /* m is writable and have enough data in next, pull up. */
3432
3433 bcopy(m->m_next->m_data,
3434 m->m_data+m->m_len,
3435 shortfall);
3436 m->m_len += shortfall;
3437 m->m_next->m_len -= shortfall;
3438 m->m_next->m_data += shortfall;
3439 }
3440 else if (m->m_next == NULL || 1) {
3441 /* Got a runt at the very end of the packet.
3442 * borrow data from the tail of the preceding mbuf and
3443 * update its length in-place. (The original data is still
3444 * valid, so we can do this even if prev is not writable.)
3445 */
3446
3447 /* if we'd make prev a runt, just move all of its data. */
3448 #ifdef DEBUG
3449 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3450 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3451 #endif
3452 if ((prev->m_len - shortfall) < 8)
3453 shortfall = prev->m_len;
3454
3455 #ifdef notyet /* just do the safe slow thing for now */
3456 if (!M_READONLY(m)) {
3457 if (M_LEADINGSPACE(m) < shorfall) {
3458 void *m_dat;
3459 m_dat = (m->m_flags & M_PKTHDR) ?
3460 m->m_pktdat : m->dat;
3461 memmove(m_dat, mtod(m, void*), m->m_len);
3462 m->m_data = m_dat;
3463 }
3464 } else
3465 #endif /* just do the safe slow thing */
3466 {
3467 struct mbuf * n = NULL;
3468 int newprevlen = prev->m_len - shortfall;
3469
3470 MGET(n, M_NOWAIT, MT_DATA);
3471 if (n == NULL)
3472 return ENOBUFS;
3473 KASSERT(m->m_len + shortfall < MLEN
3474 /*,
3475 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3476
3477 /* first copy the data we're stealing from prev */
3478 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3479
3480 /* update prev->m_len accordingly */
3481 prev->m_len -= shortfall;
3482
3483 /* copy data from runt m */
3484 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3485
3486 /* n holds what we stole from prev, plus m */
3487 n->m_len = shortfall + m->m_len;
3488
3489 /* stitch n into chain and free m */
3490 n->m_next = m->m_next;
3491 prev->m_next = n;
3492 /* KASSERT(m->m_next == NULL); */
3493 m->m_next = NULL;
3494 m_free(m);
3495 m = n; /* for continuing loop */
3496 }
3497 }
3498 prevlen = m->m_len;
3499 }
3500 return 0;
3501 }
3502
3503 /*
3504 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3505 * pointers to descriptors.
3506 */
3507 int
3508 bge_encap(sc, m_head, txidx)
3509 struct bge_softc *sc;
3510 struct mbuf *m_head;
3511 u_int32_t *txidx;
3512 {
3513 struct bge_tx_bd *f = NULL;
3514 u_int32_t frag, cur, cnt = 0;
3515 u_int16_t csum_flags = 0;
3516 u_int16_t txbd_tso_flags = 0;
3517 struct txdmamap_pool_entry *dma;
3518 bus_dmamap_t dmamap;
3519 int i = 0;
3520 struct m_tag *mtag;
3521 int use_tso, maxsegsize, error;
3522
3523 cur = frag = *txidx;
3524
3525 if (m_head->m_pkthdr.csum_flags) {
3526 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3527 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3528 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3529 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3530 }
3531
3532 /*
3533 * If we were asked to do an outboard checksum, and the NIC
3534 * has the bug where it sometimes adds in the Ethernet padding,
3535 * explicitly pad with zeros so the cksum will be correct either way.
3536 * (For now, do this for all chip versions, until newer
3537 * are confirmed to not require the workaround.)
3538 */
3539 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3540 #ifdef notyet
3541 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3542 #endif
3543 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3544 goto check_dma_bug;
3545
3546 if (bge_cksum_pad(m_head) != 0) {
3547 return ENOBUFS;
3548 }
3549
3550 check_dma_bug:
3551 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3552 goto doit;
3553 /*
3554 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3555 * less than eight bytes. If we encounter a teeny mbuf
3556 * at the end of a chain, we can pad. Otherwise, copy.
3557 */
3558 if (bge_compact_dma_runt(m_head) != 0)
3559 return ENOBUFS;
3560
3561 doit:
3562 dma = SLIST_FIRST(&sc->txdma_list);
3563 if (dma == NULL)
3564 return ENOBUFS;
3565 dmamap = dma->dmamap;
3566
3567 /*
3568 * Set up any necessary TSO state before we start packing...
3569 */
3570 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3571 if (!use_tso) {
3572 maxsegsize = 0;
3573 } else { /* TSO setup */
3574 unsigned mss;
3575 struct ether_header *eh;
3576 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3577 struct mbuf * m0 = m_head;
3578 struct ip *ip;
3579 struct tcphdr *th;
3580 int iphl, hlen;
3581
3582 /*
3583 * XXX It would be nice if the mbuf pkthdr had offset
3584 * fields for the protocol headers.
3585 */
3586
3587 eh = mtod(m0, struct ether_header *);
3588 switch (htons(eh->ether_type)) {
3589 case ETHERTYPE_IP:
3590 offset = ETHER_HDR_LEN;
3591 break;
3592
3593 case ETHERTYPE_VLAN:
3594 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3595 break;
3596
3597 default:
3598 /*
3599 * Don't support this protocol or encapsulation.
3600 */
3601 return (ENOBUFS);
3602 }
3603
3604 /*
3605 * TCP/IP headers are in the first mbuf; we can do
3606 * this the easy way.
3607 */
3608 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3609 hlen = iphl + offset;
3610 if (__predict_false(m0->m_len <
3611 (hlen + sizeof(struct tcphdr)))) {
3612
3613 printf("TSO: hard case m0->m_len == %d <"
3614 " ip/tcp hlen %zd, not handled yet\n",
3615 m0->m_len, hlen+ sizeof(struct tcphdr));
3616 #ifdef NOTYET
3617 /*
3618 * XXX jonathan (at) NetBSD.org: untested.
3619 * how to force this branch to be taken?
3620 */
3621 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3622
3623 m_copydata(m0, offset, sizeof(ip), &ip);
3624 m_copydata(m0, hlen, sizeof(th), &th);
3625
3626 ip.ip_len = 0;
3627
3628 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3629 sizeof(ip.ip_len), &ip.ip_len);
3630
3631 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3632 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3633
3634 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3635 sizeof(th.th_sum), &th.th_sum);
3636
3637 hlen += th.th_off << 2;
3638 iptcp_opt_words = hlen;
3639 #else
3640 /*
3641 * if_wm "hard" case not yet supported, can we not
3642 * mandate it out of existence?
3643 */
3644 (void) ip; (void)th; (void) ip_tcp_hlen;
3645
3646 return ENOBUFS;
3647 #endif
3648 } else {
3649 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
3650 th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
3651 ip_tcp_hlen = iphl + (th->th_off << 2);
3652
3653 /* Total IP/TCP options, in 32-bit words */
3654 iptcp_opt_words = (ip_tcp_hlen
3655 - sizeof(struct tcphdr)
3656 - sizeof(struct ip)) >> 2;
3657 }
3658 if (BGE_IS_5750_OR_BEYOND(sc)) {
3659 th->th_sum = 0;
3660 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3661 } else {
3662 /*
3663 * XXX jonathan (at) NetBSD.org: 5705 untested.
3664 * Requires TSO firmware patch for 5701/5703/5704.
3665 */
3666 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3667 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3668 }
3669
3670 mss = m_head->m_pkthdr.segsz;
3671 txbd_tso_flags |=
3672 BGE_TXBDFLAG_CPU_PRE_DMA |
3673 BGE_TXBDFLAG_CPU_POST_DMA;
3674
3675 /*
3676 * Our NIC TSO-assist assumes TSO has standard, optionless
3677 * IPv4 and TCP headers, which total 40 bytes. By default,
3678 * the NIC copies 40 bytes of IP/TCP header from the
3679 * supplied header into the IP/TCP header portion of
3680 * each post-TSO-segment. If the supplied packet has IP or
3681 * TCP options, we need to tell the NIC to copy those extra
3682 * bytes into each post-TSO header, in addition to the normal
3683 * 40-byte IP/TCP header (and to leave space accordingly).
3684 * Unfortunately, the driver encoding of option length
3685 * varies across different ASIC families.
3686 */
3687 tcp_seg_flags = 0;
3688 if (iptcp_opt_words) {
3689 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3690 tcp_seg_flags =
3691 iptcp_opt_words << 11;
3692 } else {
3693 txbd_tso_flags |=
3694 iptcp_opt_words << 12;
3695 }
3696 }
3697 maxsegsize = mss | tcp_seg_flags;
3698 ip->ip_len = htons(mss + ip_tcp_hlen);
3699
3700 } /* TSO setup */
3701
3702 /*
3703 * Start packing the mbufs in this chain into
3704 * the fragment pointers. Stop when we run out
3705 * of fragments or hit the end of the mbuf chain.
3706 */
3707 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3708 BUS_DMA_NOWAIT);
3709 if (error) {
3710 return(ENOBUFS);
3711 }
3712
3713 mtag = sc->ethercom.ec_nvlans ?
3714 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3715
3716
3717 /* Iterate over dmap-map fragments. */
3718 for (i = 0; i < dmamap->dm_nsegs; i++) {
3719 f = &sc->bge_rdata->bge_tx_ring[frag];
3720 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3721 break;
3722
3723 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3724 f->bge_len = dmamap->dm_segs[i].ds_len;
3725
3726 /*
3727 * For 5751 and follow-ons, for TSO we must turn
3728 * off checksum-assist flag in the tx-descr, and
3729 * supply the ASIC-revision-specific encoding
3730 * of TSO flags and segsize.
3731 */
3732 if (use_tso) {
3733 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3734 f->bge_rsvd = maxsegsize;
3735 f->bge_flags = csum_flags | txbd_tso_flags;
3736 } else {
3737 f->bge_rsvd = 0;
3738 f->bge_flags =
3739 (csum_flags | txbd_tso_flags) & 0x0fff;
3740 }
3741 } else {
3742 f->bge_rsvd = 0;
3743 f->bge_flags = csum_flags;
3744 }
3745
3746 if (mtag != NULL) {
3747 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3748 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3749 } else {
3750 f->bge_vlan_tag = 0;
3751 }
3752 /*
3753 * Sanity check: avoid coming within 16 descriptors
3754 * of the end of the ring.
3755 */
3756 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
3757 BGE_TSO_PRINTF(("%s: "
3758 " dmamap_load_mbuf too close to ring wrap\n",
3759 sc->bge_dev.dv_xname));
3760 return(ENOBUFS);
3761 }
3762 cur = frag;
3763 BGE_INC(frag, BGE_TX_RING_CNT);
3764 cnt++;
3765 }
3766
3767 if (i < dmamap->dm_nsegs) {
3768 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3769 sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
3770 return ENOBUFS;
3771 }
3772
3773 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3774 BUS_DMASYNC_PREWRITE);
3775
3776 if (frag == sc->bge_tx_saved_considx) {
3777 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3778 sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
3779
3780 return(ENOBUFS);
3781 }
3782
3783 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3784 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3785 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3786 sc->txdma[cur] = dma;
3787 sc->bge_txcnt += cnt;
3788
3789 *txidx = frag;
3790
3791 return(0);
3792 }
3793
3794 /*
3795 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3796 * to the mbuf data regions directly in the transmit descriptors.
3797 */
3798 void
3799 bge_start(ifp)
3800 struct ifnet *ifp;
3801 {
3802 struct bge_softc *sc;
3803 struct mbuf *m_head = NULL;
3804 u_int32_t prodidx;
3805 int pkts = 0;
3806
3807 sc = ifp->if_softc;
3808
3809 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3810 return;
3811
3812 prodidx = sc->bge_tx_prodidx;
3813
3814 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3815 IFQ_POLL(&ifp->if_snd, m_head);
3816 if (m_head == NULL)
3817 break;
3818
3819 #if 0
3820 /*
3821 * XXX
3822 * safety overkill. If this is a fragmented packet chain
3823 * with delayed TCP/UDP checksums, then only encapsulate
3824 * it if we have enough descriptors to handle the entire
3825 * chain at once.
3826 * (paranoia -- may not actually be needed)
3827 */
3828 if (m_head->m_flags & M_FIRSTFRAG &&
3829 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3830 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3831 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3832 ifp->if_flags |= IFF_OACTIVE;
3833 break;
3834 }
3835 }
3836 #endif
3837
3838 /*
3839 * Pack the data into the transmit ring. If we
3840 * don't have room, set the OACTIVE flag and wait
3841 * for the NIC to drain the ring.
3842 */
3843 if (bge_encap(sc, m_head, &prodidx)) {
3844 printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
3845 ifp->if_flags |= IFF_OACTIVE;
3846 break;
3847 }
3848
3849 /* now we are committed to transmit the packet */
3850 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3851 pkts++;
3852
3853 #if NBPFILTER > 0
3854 /*
3855 * If there's a BPF listener, bounce a copy of this frame
3856 * to him.
3857 */
3858 if (ifp->if_bpf)
3859 bpf_mtap(ifp->if_bpf, m_head);
3860 #endif
3861 }
3862 if (pkts == 0)
3863 return;
3864
3865 /* Transmit */
3866 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3867 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3868 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3869
3870 sc->bge_tx_prodidx = prodidx;
3871
3872 /*
3873 * Set a timeout in case the chip goes out to lunch.
3874 */
3875 ifp->if_timer = 5;
3876 }
3877
3878 int
3879 bge_init(ifp)
3880 struct ifnet *ifp;
3881 {
3882 struct bge_softc *sc = ifp->if_softc;
3883 u_int16_t *m;
3884 int s, error;
3885
3886 s = splnet();
3887
3888 ifp = &sc->ethercom.ec_if;
3889
3890 /* Cancel pending I/O and flush buffers. */
3891 bge_stop(sc);
3892 bge_reset(sc);
3893 bge_chipinit(sc);
3894
3895 /*
3896 * Init the various state machines, ring
3897 * control blocks and firmware.
3898 */
3899 error = bge_blockinit(sc);
3900 if (error != 0) {
3901 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3902 error);
3903 splx(s);
3904 return error;
3905 }
3906
3907 ifp = &sc->ethercom.ec_if;
3908
3909 /* Specify MTU. */
3910 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3911 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3912
3913 /* Load our MAC address. */
3914 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3915 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3916 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3917
3918 /* Enable or disable promiscuous mode as needed. */
3919 if (ifp->if_flags & IFF_PROMISC) {
3920 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3921 } else {
3922 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3923 }
3924
3925 /* Program multicast filter. */
3926 bge_setmulti(sc);
3927
3928 /* Init RX ring. */
3929 bge_init_rx_ring_std(sc);
3930
3931 /* Init jumbo RX ring. */
3932 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3933 bge_init_rx_ring_jumbo(sc);
3934
3935 /* Init our RX return ring index */
3936 sc->bge_rx_saved_considx = 0;
3937
3938 /* Init TX ring. */
3939 bge_init_tx_ring(sc);
3940
3941 /* Turn on transmitter */
3942 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3943
3944 /* Turn on receiver */
3945 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3946
3947 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3948
3949 /* Tell firmware we're alive. */
3950 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3951
3952 /* Enable host interrupts. */
3953 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3954 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3955 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3956
3957 bge_ifmedia_upd(ifp);
3958
3959 ifp->if_flags |= IFF_RUNNING;
3960 ifp->if_flags &= ~IFF_OACTIVE;
3961
3962 splx(s);
3963
3964 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3965
3966 return 0;
3967 }
3968
3969 /*
3970 * Set media options.
3971 */
3972 int
3973 bge_ifmedia_upd(ifp)
3974 struct ifnet *ifp;
3975 {
3976 struct bge_softc *sc = ifp->if_softc;
3977 struct mii_data *mii = &sc->bge_mii;
3978 struct ifmedia *ifm = &sc->bge_ifmedia;
3979
3980 /* If this is a 1000baseX NIC, enable the TBI port. */
3981 if (sc->bge_tbi) {
3982 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3983 return(EINVAL);
3984 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3985 case IFM_AUTO:
3986 break;
3987 case IFM_1000_SX:
3988 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3989 BGE_CLRBIT(sc, BGE_MAC_MODE,
3990 BGE_MACMODE_HALF_DUPLEX);
3991 } else {
3992 BGE_SETBIT(sc, BGE_MAC_MODE,
3993 BGE_MACMODE_HALF_DUPLEX);
3994 }
3995 break;
3996 default:
3997 return(EINVAL);
3998 }
3999 /* XXX 802.3x flow control for 1000BASE-SX */
4000 return(0);
4001 }
4002
4003 sc->bge_link = 0;
4004 mii_mediachg(mii);
4005
4006 return(0);
4007 }
4008
4009 /*
4010 * Report current media status.
4011 */
4012 void
4013 bge_ifmedia_sts(ifp, ifmr)
4014 struct ifnet *ifp;
4015 struct ifmediareq *ifmr;
4016 {
4017 struct bge_softc *sc = ifp->if_softc;
4018 struct mii_data *mii = &sc->bge_mii;
4019
4020 if (sc->bge_tbi) {
4021 ifmr->ifm_status = IFM_AVALID;
4022 ifmr->ifm_active = IFM_ETHER;
4023 if (CSR_READ_4(sc, BGE_MAC_STS) &
4024 BGE_MACSTAT_TBI_PCS_SYNCHED)
4025 ifmr->ifm_status |= IFM_ACTIVE;
4026 ifmr->ifm_active |= IFM_1000_SX;
4027 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4028 ifmr->ifm_active |= IFM_HDX;
4029 else
4030 ifmr->ifm_active |= IFM_FDX;
4031 return;
4032 }
4033
4034 mii_pollstat(mii);
4035 ifmr->ifm_status = mii->mii_media_status;
4036 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4037 sc->bge_flowflags;
4038 }
4039
4040 int
4041 bge_ioctl(ifp, command, data)
4042 struct ifnet *ifp;
4043 u_long command;
4044 caddr_t data;
4045 {
4046 struct bge_softc *sc = ifp->if_softc;
4047 struct ifreq *ifr = (struct ifreq *) data;
4048 int s, error = 0;
4049 struct mii_data *mii;
4050
4051 s = splnet();
4052
4053 switch(command) {
4054 case SIOCSIFFLAGS:
4055 if (ifp->if_flags & IFF_UP) {
4056 /*
4057 * If only the state of the PROMISC flag changed,
4058 * then just use the 'set promisc mode' command
4059 * instead of reinitializing the entire NIC. Doing
4060 * a full re-init means reloading the firmware and
4061 * waiting for it to start up, which may take a
4062 * second or two.
4063 */
4064 if (ifp->if_flags & IFF_RUNNING &&
4065 ifp->if_flags & IFF_PROMISC &&
4066 !(sc->bge_if_flags & IFF_PROMISC)) {
4067 BGE_SETBIT(sc, BGE_RX_MODE,
4068 BGE_RXMODE_RX_PROMISC);
4069 } else if (ifp->if_flags & IFF_RUNNING &&
4070 !(ifp->if_flags & IFF_PROMISC) &&
4071 sc->bge_if_flags & IFF_PROMISC) {
4072 BGE_CLRBIT(sc, BGE_RX_MODE,
4073 BGE_RXMODE_RX_PROMISC);
4074 } else
4075 bge_init(ifp);
4076 } else {
4077 if (ifp->if_flags & IFF_RUNNING) {
4078 bge_stop(sc);
4079 }
4080 }
4081 sc->bge_if_flags = ifp->if_flags;
4082 error = 0;
4083 break;
4084 case SIOCSIFMEDIA:
4085 /* XXX Flow control is not supported for 1000BASE-SX */
4086 if (sc->bge_tbi) {
4087 ifr->ifr_media &= ~IFM_ETH_FMASK;
4088 sc->bge_flowflags = 0;
4089 }
4090
4091 /* Flow control requires full-duplex mode. */
4092 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4093 (ifr->ifr_media & IFM_FDX) == 0) {
4094 ifr->ifr_media &= ~IFM_ETH_FMASK;
4095 }
4096 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4097 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4098 /* We an do both TXPAUSE and RXPAUSE. */
4099 ifr->ifr_media |=
4100 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4101 }
4102 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4103 }
4104 /* FALLTHROUGH */
4105 case SIOCGIFMEDIA:
4106 if (sc->bge_tbi) {
4107 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4108 command);
4109 } else {
4110 mii = &sc->bge_mii;
4111 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4112 command);
4113 }
4114 break;
4115 default:
4116 error = ether_ioctl(ifp, command, data);
4117 if (error == ENETRESET) {
4118 if (ifp->if_flags & IFF_RUNNING)
4119 bge_setmulti(sc);
4120 error = 0;
4121 }
4122 break;
4123 }
4124
4125 splx(s);
4126
4127 return(error);
4128 }
4129
4130 void
4131 bge_watchdog(ifp)
4132 struct ifnet *ifp;
4133 {
4134 struct bge_softc *sc;
4135
4136 sc = ifp->if_softc;
4137
4138 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
4139
4140 ifp->if_flags &= ~IFF_RUNNING;
4141 bge_init(ifp);
4142
4143 ifp->if_oerrors++;
4144 }
4145
4146 static void
4147 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4148 {
4149 int i;
4150
4151 BGE_CLRBIT(sc, reg, bit);
4152
4153 for (i = 0; i < BGE_TIMEOUT; i++) {
4154 if ((CSR_READ_4(sc, reg) & bit) == 0)
4155 return;
4156 delay(100);
4157 if (sc->bge_pcie)
4158 DELAY(1000);
4159 }
4160
4161 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
4162 sc->bge_dev.dv_xname, (u_long) reg, bit);
4163 }
4164
4165 /*
4166 * Stop the adapter and free any mbufs allocated to the
4167 * RX and TX lists.
4168 */
4169 void
4170 bge_stop(sc)
4171 struct bge_softc *sc;
4172 {
4173 struct ifnet *ifp = &sc->ethercom.ec_if;
4174
4175 callout_stop(&sc->bge_timeout);
4176
4177 /*
4178 * Disable all of the receiver blocks
4179 */
4180 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4181 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4182 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4183 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4184 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4185 }
4186 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4187 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4188 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4189
4190 /*
4191 * Disable all of the transmit blocks
4192 */
4193 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4194 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4195 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4196 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4197 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4198 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4199 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4200 }
4201 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4202
4203 /*
4204 * Shut down all of the memory managers and related
4205 * state machines.
4206 */
4207 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4208 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4209 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4210 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4211 }
4212
4213 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4214 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4215
4216 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4217 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4218 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4219 }
4220
4221 /* Disable host interrupts. */
4222 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4223 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4224
4225 /*
4226 * Tell firmware we're shutting down.
4227 */
4228 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4229
4230 /* Free the RX lists. */
4231 bge_free_rx_ring_std(sc);
4232
4233 /* Free jumbo RX list. */
4234 bge_free_rx_ring_jumbo(sc);
4235
4236 /* Free TX buffers. */
4237 bge_free_tx_ring(sc);
4238
4239 /*
4240 * Isolate/power down the PHY.
4241 */
4242 if (!sc->bge_tbi)
4243 mii_down(&sc->bge_mii);
4244
4245 sc->bge_link = 0;
4246
4247 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4248
4249 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4250 }
4251
4252 /*
4253 * Stop all chip I/O so that the kernel's probe routines don't
4254 * get confused by errant DMAs when rebooting.
4255 */
4256 void
4257 bge_shutdown(xsc)
4258 void *xsc;
4259 {
4260 struct bge_softc *sc = (struct bge_softc *)xsc;
4261
4262 bge_stop(sc);
4263 bge_reset(sc);
4264 }
4265
4266
4267 static int
4268 sysctl_bge_verify(SYSCTLFN_ARGS)
4269 {
4270 int error, t;
4271 struct sysctlnode node;
4272
4273 node = *rnode;
4274 t = *(int*)rnode->sysctl_data;
4275 node.sysctl_data = &t;
4276 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4277 if (error || newp == NULL)
4278 return (error);
4279
4280 #if 0
4281 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4282 node.sysctl_num, rnode->sysctl_num));
4283 #endif
4284
4285 if (node.sysctl_num == bge_rxthresh_nodenum) {
4286 if (t < 0 || t >= NBGE_RX_THRESH)
4287 return (EINVAL);
4288 bge_update_all_threshes(t);
4289 } else
4290 return (EINVAL);
4291
4292 *(int*)rnode->sysctl_data = t;
4293
4294 return (0);
4295 }
4296
4297 /*
4298 * Set up sysctl(3) MIB, hw.bge.*.
4299 *
4300 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4301 */
4302 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4303 {
4304 int rc, bge_root_num;
4305 const struct sysctlnode *node;
4306
4307 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4308 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4309 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4310 goto err;
4311 }
4312
4313 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4314 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4315 SYSCTL_DESCR("BGE interface controls"),
4316 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4317 goto err;
4318 }
4319
4320 bge_root_num = node->sysctl_num;
4321
4322 /* BGE Rx interrupt mitigation level */
4323 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4324 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4325 CTLTYPE_INT, "rx_lvl",
4326 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4327 sysctl_bge_verify, 0,
4328 &bge_rx_thresh_lvl,
4329 0, CTL_HW, bge_root_num, CTL_CREATE,
4330 CTL_EOL)) != 0) {
4331 goto err;
4332 }
4333
4334 bge_rxthresh_nodenum = node->sysctl_num;
4335
4336 return;
4337
4338 err:
4339 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4340 }
4341
4342 void
4343 bge_powerhook(int why, void *hdl)
4344 {
4345 struct bge_softc *sc = (struct bge_softc *)hdl;
4346 struct ifnet *ifp = &sc->ethercom.ec_if;
4347 struct pci_attach_args *pa = &(sc->bge_pa);
4348 pci_chipset_tag_t pc = pa->pa_pc;
4349 pcitag_t tag = pa->pa_tag;
4350
4351 switch (why) {
4352 case PWR_SOFTSUSPEND:
4353 case PWR_SOFTSTANDBY:
4354 bge_shutdown(sc);
4355 break;
4356 case PWR_SOFTRESUME:
4357 if (ifp->if_flags & IFF_UP) {
4358 ifp->if_flags &= ~IFF_RUNNING;
4359 bge_init(ifp);
4360 }
4361 break;
4362 case PWR_SUSPEND:
4363 case PWR_STANDBY:
4364 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4365 break;
4366 case PWR_RESUME:
4367 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4368 break;
4369 }
4370
4371 return;
4372 }
4373