if_bge.c revision 1.105 1 /* $NetBSD: if_bge.c,v 1.105 2006/04/18 14:53:43 christos Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.105 2006/04/18 14:53:43 christos Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 static int bge_rxthresh_nodenum;
183
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static void bge_powerhook(int, void *);
187 static void bge_release_resources(struct bge_softc *);
188 static void bge_txeof(struct bge_softc *);
189 static void bge_rxeof(struct bge_softc *);
190
191 static void bge_tick(void *);
192 static void bge_stats_update(struct bge_softc *);
193 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
194
195 static int bge_intr(void *);
196 static void bge_start(struct ifnet *);
197 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
198 static int bge_init(struct ifnet *);
199 static void bge_stop(struct bge_softc *);
200 static void bge_watchdog(struct ifnet *);
201 static void bge_shutdown(void *);
202 static int bge_ifmedia_upd(struct ifnet *);
203 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
204
205 static void bge_setmulti(struct bge_softc *);
206
207 static void bge_handle_events(struct bge_softc *);
208 static int bge_alloc_jumbo_mem(struct bge_softc *);
209 #if 0 /* XXX */
210 static void bge_free_jumbo_mem(struct bge_softc *);
211 #endif
212 static void *bge_jalloc(struct bge_softc *);
213 static void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
214 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
215 bus_dmamap_t);
216 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
217 static int bge_init_rx_ring_std(struct bge_softc *);
218 static void bge_free_rx_ring_std(struct bge_softc *);
219 static int bge_init_rx_ring_jumbo(struct bge_softc *);
220 static void bge_free_rx_ring_jumbo(struct bge_softc *);
221 static void bge_free_tx_ring(struct bge_softc *);
222 static int bge_init_tx_ring(struct bge_softc *);
223
224 static int bge_chipinit(struct bge_softc *);
225 static int bge_blockinit(struct bge_softc *);
226 static int bge_setpowerstate(struct bge_softc *, int);
227
228 static void bge_reset(struct bge_softc *);
229
230 #define BGE_DEBUG
231 #ifdef BGE_DEBUG
232 #define DPRINTF(x) if (bgedebug) printf x
233 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
234 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
235 int bgedebug = 0;
236 int bge_tso_debug = 0;
237 #else
238 #define DPRINTF(x)
239 #define DPRINTFN(n,x)
240 #define BGE_TSO_PRINTF(x)
241 #endif
242
243 #ifdef BGE_EVENT_COUNTERS
244 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
245 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
246 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
247 #else
248 #define BGE_EVCNT_INCR(ev) /* nothing */
249 #define BGE_EVCNT_ADD(ev, val) /* nothing */
250 #define BGE_EVCNT_UPD(ev, val) /* nothing */
251 #endif
252
253 /* Various chip quirks. */
254 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
255 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
256 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
257 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
258 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
259 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
260 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
261 #define BGE_QUIRK_5705_CORE 0x00000080
262 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
263
264 /*
265 * XXX: how to handle variants based on 5750 and derivatives:
266 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
267 * in general behave like a 5705, except with additional quirks.
268 * This driver's current handling of the 5721 is wrong;
269 * how we map ASIC revision to "quirks" needs more thought.
270 * (defined here until the thought is done).
271 */
272 #define BGE_IS_5714_FAMILY(sc) \
273 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 || \
274 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
275 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5715 )
276
277 #define BGE_IS_5750_OR_BEYOND(sc) \
278 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
279 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
280 BGE_IS_5714_FAMILY(sc) )
281
282 #define BGE_IS_5705_OR_BEYOND(sc) \
283 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
284 BGE_IS_5750_OR_BEYOND(sc) )
285
286
287 /* following bugs are common to bcm5700 rev B, all flavours */
288 #define BGE_QUIRK_5700_COMMON \
289 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
290
291 CFATTACH_DECL(bge, sizeof(struct bge_softc),
292 bge_probe, bge_attach, NULL, NULL);
293
294 static u_int32_t
295 bge_readmem_ind(struct bge_softc *sc, int off)
296 {
297 struct pci_attach_args *pa = &(sc->bge_pa);
298 pcireg_t val;
299
300 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
301 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
302 return val;
303 }
304
305 static void
306 bge_writemem_ind(struct bge_softc *sc, int off, int val)
307 {
308 struct pci_attach_args *pa = &(sc->bge_pa);
309
310 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
311 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
312 }
313
314 #ifdef notdef
315 static u_int32_t
316 bge_readreg_ind(struct bge_softc *sc, int off)
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 {
328 struct pci_attach_args *pa = &(sc->bge_pa);
329
330 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
331 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
332 }
333
334 #ifdef notdef
335 static u_int8_t
336 bge_vpd_readbyte(struct bge_softc *sc, int addr)
337 {
338 int i;
339 u_int32_t val;
340 struct pci_attach_args *pa = &(sc->bge_pa);
341
342 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
343 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
344 DELAY(10);
345 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
346 BGE_VPD_FLAG)
347 break;
348 }
349
350 if (i == BGE_TIMEOUT) {
351 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
352 return(0);
353 }
354
355 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
356
357 return((val >> ((addr % 4) * 8)) & 0xFF);
358 }
359
360 static void
361 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
362 {
363 int i;
364 u_int8_t *ptr;
365
366 ptr = (u_int8_t *)res;
367 for (i = 0; i < sizeof(struct vpd_res); i++)
368 ptr[i] = bge_vpd_readbyte(sc, i + addr);
369 }
370
371 static void
372 bge_vpd_read(struct bge_softc *sc)
373 {
374 int pos = 0, i;
375 struct vpd_res res;
376
377 if (sc->bge_vpd_prodname != NULL)
378 free(sc->bge_vpd_prodname, M_DEVBUF);
379 if (sc->bge_vpd_readonly != NULL)
380 free(sc->bge_vpd_readonly, M_DEVBUF);
381 sc->bge_vpd_prodname = NULL;
382 sc->bge_vpd_readonly = NULL;
383
384 bge_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_ID) {
387 printf("%s: bad VPD resource id: expected %x got %x\n",
388 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
389 return;
390 }
391
392 pos += sizeof(res);
393 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
394 if (sc->bge_vpd_prodname == NULL)
395 panic("bge_vpd_read");
396 for (i = 0; i < res.vr_len; i++)
397 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
398 sc->bge_vpd_prodname[i] = '\0';
399 pos += i;
400
401 bge_vpd_read_res(sc, &res, pos);
402
403 if (res.vr_id != VPD_RES_READ) {
404 printf("%s: bad VPD resource id: expected %x got %x\n",
405 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
406 return;
407 }
408
409 pos += sizeof(res);
410 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
411 if (sc->bge_vpd_readonly == NULL)
412 panic("bge_vpd_read");
413 for (i = 0; i < res.vr_len + 1; i++)
414 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
415 }
416 #endif
417
418 /*
419 * Read a byte of data stored in the EEPROM at address 'addr.' The
420 * BCM570x supports both the traditional bitbang interface and an
421 * auto access interface for reading the EEPROM. We use the auto
422 * access method.
423 */
424 static u_int8_t
425 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
426 {
427 int i;
428 u_int32_t byte = 0;
429
430 /*
431 * Enable use of auto EEPROM access so we can avoid
432 * having to use the bitbang method.
433 */
434 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
435
436 /* Reset the EEPROM, load the clock period. */
437 CSR_WRITE_4(sc, BGE_EE_ADDR,
438 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
439 DELAY(20);
440
441 /* Issue the read EEPROM command. */
442 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
443
444 /* Wait for completion */
445 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
446 DELAY(10);
447 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
448 break;
449 }
450
451 if (i == BGE_TIMEOUT) {
452 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
453 return(0);
454 }
455
456 /* Get result. */
457 byte = CSR_READ_4(sc, BGE_EE_DATA);
458
459 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
460
461 return(0);
462 }
463
464 /*
465 * Read a sequence of bytes from the EEPROM.
466 */
467 static int
468 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
469 {
470 int err = 0, i;
471 u_int8_t byte = 0;
472
473 for (i = 0; i < cnt; i++) {
474 err = bge_eeprom_getbyte(sc, off + i, &byte);
475 if (err)
476 break;
477 *(dest + i) = byte;
478 }
479
480 return(err ? 1 : 0);
481 }
482
483 static int
484 bge_miibus_readreg(device_t dev, int phy, int reg)
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t val;
488 u_int32_t saved_autopoll;
489 int i;
490
491 /*
492 * Several chips with builtin PHYs will incorrectly answer to
493 * other PHY instances than the builtin PHY at id 1.
494 */
495 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
496 return(0);
497
498 /* Reading with autopolling on may trigger PCI errors */
499 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
500 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
503 DELAY(40);
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg));
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 val = CSR_READ_4(sc, BGE_MI_COMM);
511 if (!(val & BGE_MICOMM_BUSY))
512 break;
513 delay(10);
514 }
515
516 if (i == BGE_TIMEOUT) {
517 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
518 val = 0;
519 goto done;
520 }
521
522 val = CSR_READ_4(sc, BGE_MI_COMM);
523
524 done:
525 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
526 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
527 DELAY(40);
528 }
529
530 if (val & BGE_MICOMM_READFAIL)
531 return(0);
532
533 return(val & 0xFFFF);
534 }
535
536 static void
537 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
538 {
539 struct bge_softc *sc = (struct bge_softc *)dev;
540 u_int32_t saved_autopoll;
541 int i;
542
543 /* Touching the PHY while autopolling is on may trigger PCI errors */
544 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
545 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
546 delay(40);
547 CSR_WRITE_4(sc, BGE_MI_MODE,
548 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
549 delay(10); /* 40 usec is supposed to be adequate */
550 }
551
552 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
553 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
554
555 for (i = 0; i < BGE_TIMEOUT; i++) {
556 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
557 break;
558 delay(10);
559 }
560
561 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
562 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
563 delay(40);
564 }
565
566 if (i == BGE_TIMEOUT) {
567 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
568 }
569 }
570
571 static void
572 bge_miibus_statchg(device_t dev)
573 {
574 struct bge_softc *sc = (struct bge_softc *)dev;
575 struct mii_data *mii = &sc->bge_mii;
576
577 /*
578 * Get flow control negotiation result.
579 */
580 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
581 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
582 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
583 mii->mii_media_active &= ~IFM_ETH_FMASK;
584 }
585
586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
587 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
589 } else {
590 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
591 }
592
593 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 } else {
596 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
597 }
598
599 /*
600 * 802.3x flow control
601 */
602 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
603 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 } else {
605 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
606 }
607 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
608 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 } else {
610 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
611 }
612 }
613
614 /*
615 * Update rx threshold levels to values in a particular slot
616 * of the interrupt-mitigation table bge_rx_threshes.
617 */
618 static void
619 bge_set_thresh(struct ifnet *ifp, int lvl)
620 {
621 struct bge_softc *sc = ifp->if_softc;
622 int s;
623
624 /* For now, just save the new Rx-intr thresholds and record
625 * that a threshold update is pending. Updating the hardware
626 * registers here (even at splhigh()) is observed to
627 * occasionaly cause glitches where Rx-interrupts are not
628 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
629 */
630 s = splnet();
631 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
632 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
633 sc->bge_pending_rxintr_change = 1;
634 splx(s);
635
636 return;
637 }
638
639
640 /*
641 * Update Rx thresholds of all bge devices
642 */
643 static void
644 bge_update_all_threshes(int lvl)
645 {
646 struct ifnet *ifp;
647 const char * const namebuf = "bge";
648 int namelen;
649
650 if (lvl < 0)
651 lvl = 0;
652 else if( lvl >= NBGE_RX_THRESH)
653 lvl = NBGE_RX_THRESH - 1;
654
655 namelen = strlen(namebuf);
656 /*
657 * Now search all the interfaces for this name/number
658 */
659 IFNET_FOREACH(ifp) {
660 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
661 continue;
662 /* We got a match: update if doing auto-threshold-tuning */
663 if (bge_auto_thresh)
664 bge_set_thresh(ifp, lvl);
665 }
666 }
667
668 /*
669 * Handle events that have triggered interrupts.
670 */
671 static void
672 bge_handle_events(struct bge_softc *sc)
673 {
674
675 return;
676 }
677
678 /*
679 * Memory management for jumbo frames.
680 */
681
682 static int
683 bge_alloc_jumbo_mem(struct bge_softc *sc)
684 {
685 caddr_t ptr, kva;
686 bus_dma_segment_t seg;
687 int i, rseg, state, error;
688 struct bge_jpool_entry *entry;
689
690 state = error = 0;
691
692 /* Grab a big chunk o' storage. */
693 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
694 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
695 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
696 return ENOBUFS;
697 }
698
699 state = 1;
700 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
701 BUS_DMA_NOWAIT)) {
702 printf("%s: can't map DMA buffers (%d bytes)\n",
703 sc->bge_dev.dv_xname, (int)BGE_JMEM);
704 error = ENOBUFS;
705 goto out;
706 }
707
708 state = 2;
709 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
710 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
711 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
712 error = ENOBUFS;
713 goto out;
714 }
715
716 state = 3;
717 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
718 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
719 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
720 error = ENOBUFS;
721 goto out;
722 }
723
724 state = 4;
725 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
726 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
727
728 SLIST_INIT(&sc->bge_jfree_listhead);
729 SLIST_INIT(&sc->bge_jinuse_listhead);
730
731 /*
732 * Now divide it up into 9K pieces and save the addresses
733 * in an array.
734 */
735 ptr = sc->bge_cdata.bge_jumbo_buf;
736 for (i = 0; i < BGE_JSLOTS; i++) {
737 sc->bge_cdata.bge_jslots[i] = ptr;
738 ptr += BGE_JLEN;
739 entry = malloc(sizeof(struct bge_jpool_entry),
740 M_DEVBUF, M_NOWAIT);
741 if (entry == NULL) {
742 printf("%s: no memory for jumbo buffer queue!\n",
743 sc->bge_dev.dv_xname);
744 error = ENOBUFS;
745 goto out;
746 }
747 entry->slot = i;
748 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
749 entry, jpool_entries);
750 }
751 out:
752 if (error != 0) {
753 switch (state) {
754 case 4:
755 bus_dmamap_unload(sc->bge_dmatag,
756 sc->bge_cdata.bge_rx_jumbo_map);
757 case 3:
758 bus_dmamap_destroy(sc->bge_dmatag,
759 sc->bge_cdata.bge_rx_jumbo_map);
760 case 2:
761 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
762 case 1:
763 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
764 break;
765 default:
766 break;
767 }
768 }
769
770 return error;
771 }
772
773 /*
774 * Allocate a jumbo buffer.
775 */
776 static void *
777 bge_jalloc(struct bge_softc *sc)
778 {
779 struct bge_jpool_entry *entry;
780
781 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
782
783 if (entry == NULL) {
784 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
785 return(NULL);
786 }
787
788 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
789 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
790 return(sc->bge_cdata.bge_jslots[entry->slot]);
791 }
792
793 /*
794 * Release a jumbo buffer.
795 */
796 static void
797 bge_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
798 {
799 struct bge_jpool_entry *entry;
800 struct bge_softc *sc;
801 int i, s;
802
803 /* Extract the softc struct pointer. */
804 sc = (struct bge_softc *)arg;
805
806 if (sc == NULL)
807 panic("bge_jfree: can't find softc pointer!");
808
809 /* calculate the slot this buffer belongs to */
810
811 i = ((caddr_t)buf
812 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
813
814 if ((i < 0) || (i >= BGE_JSLOTS))
815 panic("bge_jfree: asked to free buffer that we don't manage!");
816
817 s = splvm();
818 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
819 if (entry == NULL)
820 panic("bge_jfree: buffer not in use!");
821 entry->slot = i;
822 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
823 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
824
825 if (__predict_true(m != NULL))
826 pool_cache_put(&mbpool_cache, m);
827 splx(s);
828 }
829
830
831 /*
832 * Intialize a standard receive ring descriptor.
833 */
834 static int
835 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
836 {
837 struct mbuf *m_new = NULL;
838 struct bge_rx_bd *r;
839 int error;
840
841 if (dmamap == NULL) {
842 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
843 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
844 if (error != 0)
845 return error;
846 }
847
848 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
849
850 if (m == NULL) {
851 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
852 if (m_new == NULL) {
853 return(ENOBUFS);
854 }
855
856 MCLGET(m_new, M_DONTWAIT);
857 if (!(m_new->m_flags & M_EXT)) {
858 m_freem(m_new);
859 return(ENOBUFS);
860 }
861 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
862 if (!sc->bge_rx_alignment_bug)
863 m_adj(m_new, ETHER_ALIGN);
864
865 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
866 BUS_DMA_READ|BUS_DMA_NOWAIT))
867 return(ENOBUFS);
868 } else {
869 m_new = m;
870 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
871 m_new->m_data = m_new->m_ext.ext_buf;
872 if (!sc->bge_rx_alignment_bug)
873 m_adj(m_new, ETHER_ALIGN);
874 }
875
876 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
877 r = &sc->bge_rdata->bge_rx_std_ring[i];
878 bge_set_hostaddr(&r->bge_addr,
879 dmamap->dm_segs[0].ds_addr);
880 r->bge_flags = BGE_RXBDFLAG_END;
881 r->bge_len = m_new->m_len;
882 r->bge_idx = i;
883
884 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
885 offsetof(struct bge_ring_data, bge_rx_std_ring) +
886 i * sizeof (struct bge_rx_bd),
887 sizeof (struct bge_rx_bd),
888 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
889
890 return(0);
891 }
892
893 /*
894 * Initialize a jumbo receive ring descriptor. This allocates
895 * a jumbo buffer from the pool managed internally by the driver.
896 */
897 static int
898 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
899 {
900 struct mbuf *m_new = NULL;
901 struct bge_rx_bd *r;
902
903 if (m == NULL) {
904 caddr_t buf = NULL;
905
906 /* Allocate the mbuf. */
907 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
908 if (m_new == NULL) {
909 return(ENOBUFS);
910 }
911
912 /* Allocate the jumbo buffer */
913 buf = bge_jalloc(sc);
914 if (buf == NULL) {
915 m_freem(m_new);
916 printf("%s: jumbo allocation failed "
917 "-- packet dropped!\n", sc->bge_dev.dv_xname);
918 return(ENOBUFS);
919 }
920
921 /* Attach the buffer to the mbuf. */
922 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
923 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
924 bge_jfree, sc);
925 m_new->m_flags |= M_EXT_RW;
926 } else {
927 m_new = m;
928 m_new->m_data = m_new->m_ext.ext_buf;
929 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
930 }
931
932 if (!sc->bge_rx_alignment_bug)
933 m_adj(m_new, ETHER_ALIGN);
934 /* Set up the descriptor. */
935 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 r->bge_len = m_new->m_len;
940 r->bge_idx = i;
941
942 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 i * sizeof (struct bge_rx_bd),
945 sizeof (struct bge_rx_bd),
946 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947
948 return(0);
949 }
950
951 /*
952 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 * that's 1MB or memory, which is a lot. For now, we fill only the first
954 * 256 ring entries and hope that our CPU is fast enough to keep up with
955 * the NIC.
956 */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 static void
979 bge_free_rx_ring_std(struct bge_softc *sc)
980 {
981 int i;
982
983 if (!(sc->bge_flags & BGE_RXRING_VALID))
984 return;
985
986 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 bus_dmamap_destroy(sc->bge_dmatag,
991 sc->bge_cdata.bge_rx_std_map[i]);
992 }
993 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 sizeof(struct bge_rx_bd));
995 }
996
997 sc->bge_flags &= ~BGE_RXRING_VALID;
998 }
999
1000 static int
1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 {
1003 int i;
1004 volatile struct bge_rcb *rcb;
1005
1006 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 return 0;
1008
1009 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 };
1013
1014 sc->bge_jumbo = i - 1;
1015 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016
1017 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 rcb->bge_maxlen_flags = 0;
1019 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020
1021 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022
1023 return(0);
1024 }
1025
1026 static void
1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 {
1029 int i;
1030
1031 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 return;
1033
1034 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 }
1039 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 sizeof(struct bge_rx_bd));
1041 }
1042
1043 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 }
1045
1046 static void
1047 bge_free_tx_ring(struct bge_softc *sc)
1048 {
1049 int i, freed;
1050 struct txdmamap_pool_entry *dma;
1051
1052 if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 return;
1054
1055 freed = 0;
1056
1057 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 freed++;
1060 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 sizeof(struct bge_tx_bd));
1068 }
1069
1070 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 sc->bge_flags &= ~BGE_TXRING_VALID;
1077 }
1078
1079 static int
1080 bge_init_tx_ring(struct bge_softc *sc)
1081 {
1082 int i;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 if (sc->bge_flags & BGE_TXRING_VALID)
1087 return 0;
1088
1089 sc->bge_txcnt = 0;
1090 sc->bge_tx_saved_considx = 0;
1091
1092 /* Initialize transmit producer index for host-memory send ring. */
1093 sc->bge_tx_prodidx = 0;
1094 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097
1098 /* NIC-memory send ring not used; initialize to zero. */
1099 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1102
1103 SLIST_INIT(&sc->txdma_list);
1104 for (i = 0; i < BGE_RSLOTS; i++) {
1105 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 &dmamap))
1108 return(ENOBUFS);
1109 if (dmamap == NULL)
1110 panic("dmamap NULL in bge_init_tx_ring");
1111 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 if (dma == NULL) {
1113 printf("%s: can't alloc txdmamap_pool_entry\n",
1114 sc->bge_dev.dv_xname);
1115 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 return (ENOMEM);
1117 }
1118 dma->dmamap = dmamap;
1119 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 }
1121
1122 sc->bge_flags |= BGE_TXRING_VALID;
1123
1124 return(0);
1125 }
1126
1127 static void
1128 bge_setmulti(struct bge_softc *sc)
1129 {
1130 struct ethercom *ac = &sc->ethercom;
1131 struct ifnet *ifp = &ac->ec_if;
1132 struct ether_multi *enm;
1133 struct ether_multistep step;
1134 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 u_int32_t h;
1136 int i;
1137
1138 if (ifp->if_flags & IFF_PROMISC)
1139 goto allmulti;
1140
1141 /* Now program new ones. */
1142 ETHER_FIRST_MULTI(step, ac, enm);
1143 while (enm != NULL) {
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 /*
1146 * We must listen to a range of multicast addresses.
1147 * For now, just accept all multicasts, rather than
1148 * trying to set only those filter bits needed to match
1149 * the range. (At this time, the only use of address
1150 * ranges is for IP multicast routing, for which the
1151 * range is big enough to require all bits set.)
1152 */
1153 goto allmulti;
1154 }
1155
1156 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157
1158 /* Just want the 7 least-significant bits. */
1159 h &= 0x7f;
1160
1161 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 ETHER_NEXT_MULTI(step, enm);
1163 }
1164
1165 ifp->if_flags &= ~IFF_ALLMULTI;
1166 goto setit;
1167
1168 allmulti:
1169 ifp->if_flags |= IFF_ALLMULTI;
1170 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171
1172 setit:
1173 for (i = 0; i < 4; i++)
1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 }
1176
1177 const int bge_swapbits[] = {
1178 0,
1179 BGE_MODECTL_BYTESWAP_DATA,
1180 BGE_MODECTL_WORDSWAP_DATA,
1181 BGE_MODECTL_BYTESWAP_NONFRAME,
1182 BGE_MODECTL_WORDSWAP_NONFRAME,
1183
1184 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190
1191 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 BGE_MODECTL_BYTESWAP_NONFRAME,
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_WORDSWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 };
1205
1206 int bge_swapindex = 0;
1207
1208 /*
1209 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 * self-test results.
1211 */
1212 static int
1213 bge_chipinit(struct bge_softc *sc)
1214 {
1215 u_int32_t cachesize;
1216 int i;
1217 u_int32_t dma_rw_ctl;
1218 struct pci_attach_args *pa = &(sc->bge_pa);
1219
1220
1221 /* Set endianness before we access any non-PCI registers. */
1222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1223 BGE_INIT);
1224
1225 /* Set power state to D0. */
1226 bge_setpowerstate(sc, 0);
1227
1228 /*
1229 * Check the 'ROM failed' bit on the RX CPU to see if
1230 * self-tests passed.
1231 */
1232 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1233 printf("%s: RX CPU self-diagnostics failed!\n",
1234 sc->bge_dev.dv_xname);
1235 return(ENODEV);
1236 }
1237
1238 /* Clear the MAC control register */
1239 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1240
1241 /*
1242 * Clear the MAC statistics block in the NIC's
1243 * internal memory.
1244 */
1245 for (i = BGE_STATS_BLOCK;
1246 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1247 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1248
1249 for (i = BGE_STATUS_BLOCK;
1250 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1251 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1252
1253 /* Set up the PCI DMA control register. */
1254 if (sc->bge_pcie) {
1255 u_int32_t device_ctl;
1256
1257 /* From FreeBSD */
1258 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1259 sc->bge_dev.dv_xname));
1260 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1261 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1262 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1263
1264 /* jonathan: alternative from Linux driver */
1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1266 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1267
1268 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1269 device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
1270 BGE_PCI_CONF_DEV_CTRL);
1271 printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
1272
1273 if ((device_ctl & 0x00e0) && 0) {
1274 /*
1275 * XXX jonathan (at) NetBSD.org:
1276 * This clause is exactly what the Broadcom-supplied
1277 * Linux does; but given overall register programming
1278 * by if_bge(4), this larger DMA-write watermark
1279 * value causes bcm5721 chips to totally wedge.
1280 */
1281 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1282 } else {
1283 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1284 }
1285 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1286 BGE_PCISTATE_PCI_BUSMODE) {
1287 /* Conventional PCI bus */
1288 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1289 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1290 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1291 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 dma_rw_ctl |= 0x0F;
1294 }
1295 } else {
1296 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1297 /* PCI-X bus */
1298 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1299 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1300 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1301 (0x0F);
1302 /*
1303 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1304 * for hardware bugs, which means we should also clear
1305 * the low-order MINDMA bits. In addition, the 5704
1306 * uses a different encoding of read/write watermarks.
1307 */
1308 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1309 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1310 /* should be 0x1f0000 */
1311 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1312 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1313 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1314 }
1315 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1316 dma_rw_ctl &= 0xfffffff0;
1317 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1318 }
1319 else if (BGE_IS_5714_FAMILY(sc)) {
1320 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1321 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1322 /* XXX magic values, Broadcom-supplied Linux driver */
1323 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1324 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1325 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1326 else
1327 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1328 }
1329 }
1330
1331 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1332
1333 /*
1334 * Set up general mode register.
1335 */
1336 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1337 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1338 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1339
1340 /* Get cache line size. */
1341 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1342
1343 /*
1344 * Avoid violating PCI spec on certain chip revs.
1345 */
1346 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1347 PCIM_CMD_MWIEN) {
1348 switch(cachesize) {
1349 case 1:
1350 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1351 BGE_PCI_WRITE_BNDRY_16BYTES);
1352 break;
1353 case 2:
1354 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1355 BGE_PCI_WRITE_BNDRY_32BYTES);
1356 break;
1357 case 4:
1358 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_64BYTES);
1360 break;
1361 case 8:
1362 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_128BYTES);
1364 break;
1365 case 16:
1366 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_256BYTES);
1368 break;
1369 case 32:
1370 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_512BYTES);
1372 break;
1373 case 64:
1374 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1375 BGE_PCI_WRITE_BNDRY_1024BYTES);
1376 break;
1377 default:
1378 /* Disable PCI memory write and invalidate. */
1379 #if 0
1380 if (bootverbose)
1381 printf("%s: cache line size %d not "
1382 "supported; disabling PCI MWI\n",
1383 sc->bge_dev.dv_xname, cachesize);
1384 #endif
1385 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1386 PCIM_CMD_MWIEN);
1387 break;
1388 }
1389 }
1390
1391 /*
1392 * Disable memory write invalidate. Apparently it is not supported
1393 * properly by these devices.
1394 */
1395 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1396
1397
1398 #ifdef __brokenalpha__
1399 /*
1400 * Must insure that we do not cross an 8K (bytes) boundary
1401 * for DMA reads. Our highest limit is 1K bytes. This is a
1402 * restriction on some ALPHA platforms with early revision
1403 * 21174 PCI chipsets, such as the AlphaPC 164lx
1404 */
1405 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1406 #endif
1407
1408 /* Set the timer prescaler (always 66MHz) */
1409 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1410
1411 return(0);
1412 }
1413
1414 static int
1415 bge_blockinit(struct bge_softc *sc)
1416 {
1417 volatile struct bge_rcb *rcb;
1418 bus_size_t rcb_addr;
1419 int i;
1420 struct ifnet *ifp = &sc->ethercom.ec_if;
1421 bge_hostaddr taddr;
1422
1423 /*
1424 * Initialize the memory window pointer register so that
1425 * we can access the first 32K of internal NIC RAM. This will
1426 * allow us to set up the TX send ring RCBs and the RX return
1427 * ring RCBs, plus other things which live in NIC memory.
1428 */
1429
1430 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1431 BGE_PCI_MEMWIN_BASEADDR, 0);
1432
1433 /* Configure mbuf memory pool */
1434 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1435 if (sc->bge_extram) {
1436 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1437 BGE_EXT_SSRAM);
1438 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1439 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1440 else
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1442 } else {
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 BGE_BUFFPOOL_1);
1445 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 else
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 }
1450
1451 /* Configure DMA resource pool */
1452 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1453 BGE_DMA_DESCRIPTORS);
1454 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1455 }
1456
1457 /* Configure mbuf pool watermarks */
1458 #ifdef ORIG_WPAUL_VALUES
1459 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1460 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1462 #else
1463 /* new broadcom docs strongly recommend these: */
1464 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1465 if (ifp->if_mtu > ETHER_MAX_LEN) {
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1469 } else {
1470 /* Values from Linux driver... */
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1474 }
1475 } else {
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1479 }
1480 #endif
1481
1482 /* Configure DMA resource watermarks */
1483 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1484 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1485
1486 /* Enable buffer manager */
1487 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1488 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1489 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1490
1491 /* Poll for buffer manager start indication */
1492 for (i = 0; i < BGE_TIMEOUT; i++) {
1493 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1494 break;
1495 DELAY(10);
1496 }
1497
1498 if (i == BGE_TIMEOUT) {
1499 printf("%s: buffer manager failed to start\n",
1500 sc->bge_dev.dv_xname);
1501 return(ENXIO);
1502 }
1503 }
1504
1505 /* Enable flow-through queues */
1506 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1507 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1508
1509 /* Wait until queue initialization is complete */
1510 for (i = 0; i < BGE_TIMEOUT; i++) {
1511 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1512 break;
1513 DELAY(10);
1514 }
1515
1516 if (i == BGE_TIMEOUT) {
1517 printf("%s: flow-through queue init failed\n",
1518 sc->bge_dev.dv_xname);
1519 return(ENXIO);
1520 }
1521
1522 /* Initialize the standard RX ring control block */
1523 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1524 bge_set_hostaddr(&rcb->bge_hostaddr,
1525 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1526 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1527 rcb->bge_maxlen_flags =
1528 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1529 } else {
1530 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1531 }
1532 if (sc->bge_extram)
1533 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1534 else
1535 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1539 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1540
1541 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1542 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1543 } else {
1544 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1545 }
1546
1547 /*
1548 * Initialize the jumbo RX ring control block
1549 * We set the 'ring disabled' bit in the flags
1550 * field until we're actually ready to start
1551 * using this ring (i.e. once we set the MTU
1552 * high enough to require it).
1553 */
1554 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1555 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1556 bge_set_hostaddr(&rcb->bge_hostaddr,
1557 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1558 rcb->bge_maxlen_flags =
1559 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1560 BGE_RCB_FLAG_RING_DISABLED);
1561 if (sc->bge_extram)
1562 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1563 else
1564 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1565
1566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1567 rcb->bge_hostaddr.bge_addr_hi);
1568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1569 rcb->bge_hostaddr.bge_addr_lo);
1570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1571 rcb->bge_maxlen_flags);
1572 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1573
1574 /* Set up dummy disabled mini ring RCB */
1575 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1576 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1577 BGE_RCB_FLAG_RING_DISABLED);
1578 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1579 rcb->bge_maxlen_flags);
1580
1581 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1582 offsetof(struct bge_ring_data, bge_info),
1583 sizeof (struct bge_gib),
1584 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1585 }
1586
1587 /*
1588 * Set the BD ring replentish thresholds. The recommended
1589 * values are 1/8th the number of descriptors allocated to
1590 * each ring.
1591 */
1592 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1593 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1594
1595 /*
1596 * Disable all unused send rings by setting the 'ring disabled'
1597 * bit in the flags field of all the TX send ring control blocks.
1598 * These are located in NIC memory.
1599 */
1600 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1601 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1602 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1603 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1604 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1605 rcb_addr += sizeof(struct bge_rcb);
1606 }
1607
1608 /* Configure TX RCB 0 (we use only the first ring) */
1609 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1610 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1611 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1612 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1613 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1614 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1615 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1616 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1617 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1618 }
1619
1620 /* Disable all unused RX return rings */
1621 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1622 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1623 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1624 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1625 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1626 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1627 BGE_RCB_FLAG_RING_DISABLED));
1628 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1629 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1630 (i * (sizeof(u_int64_t))), 0);
1631 rcb_addr += sizeof(struct bge_rcb);
1632 }
1633
1634 /* Initialize RX ring indexes */
1635 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1636 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1637 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1638
1639 /*
1640 * Set up RX return ring 0
1641 * Note that the NIC address for RX return rings is 0x00000000.
1642 * The return rings live entirely within the host, so the
1643 * nicaddr field in the RCB isn't used.
1644 */
1645 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1646 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1648 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1649 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1650 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1651 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1652
1653 /* Set random backoff seed for TX */
1654 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1655 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1656 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1657 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1658 BGE_TX_BACKOFF_SEED_MASK);
1659
1660 /* Set inter-packet gap */
1661 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1662
1663 /*
1664 * Specify which ring to use for packets that don't match
1665 * any RX rules.
1666 */
1667 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1668
1669 /*
1670 * Configure number of RX lists. One interrupt distribution
1671 * list, sixteen active lists, one bad frames class.
1672 */
1673 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1674
1675 /* Inialize RX list placement stats mask. */
1676 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1677 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1678
1679 /* Disable host coalescing until we get it set up */
1680 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1681
1682 /* Poll to make sure it's shut down. */
1683 for (i = 0; i < BGE_TIMEOUT; i++) {
1684 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1685 break;
1686 DELAY(10);
1687 }
1688
1689 if (i == BGE_TIMEOUT) {
1690 printf("%s: host coalescing engine failed to idle\n",
1691 sc->bge_dev.dv_xname);
1692 return(ENXIO);
1693 }
1694
1695 /* Set up host coalescing defaults */
1696 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1697 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1698 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1699 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1700 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1701 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1702 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1703 }
1704 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1705 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1706
1707 /* Set up address of statistics block */
1708 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1709 bge_set_hostaddr(&taddr,
1710 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1711 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1712 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1713 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1714 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1715 }
1716
1717 /* Set up address of status block */
1718 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1719 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1720 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1721 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1722 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1723 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1724
1725 /* Turn on host coalescing state machine */
1726 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1727
1728 /* Turn on RX BD completion state machine and enable attentions */
1729 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1730 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1731
1732 /* Turn on RX list placement state machine */
1733 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1734
1735 /* Turn on RX list selector state machine. */
1736 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1737 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1738 }
1739
1740 /* Turn on DMA, clear stats */
1741 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1742 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1743 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1744 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1745 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1746
1747 /* Set misc. local control, enable interrupts on attentions */
1748 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1749
1750 #ifdef notdef
1751 /* Assert GPIO pins for PHY reset */
1752 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1753 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1754 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1755 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1756 #endif
1757
1758 #if defined(not_quite_yet)
1759 /* Linux driver enables enable gpio pin #1 on 5700s */
1760 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1761 sc->bge_local_ctrl_reg |=
1762 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1763 }
1764 #endif
1765 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1766
1767 /* Turn on DMA completion state machine */
1768 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1769 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1770 }
1771
1772 /* Turn on write DMA state machine */
1773 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1774 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1775
1776 /* Turn on read DMA state machine */
1777 {
1778 uint32_t dma_read_modebits;
1779
1780 dma_read_modebits =
1781 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1782
1783 if (sc->bge_pcie && 0) {
1784 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1785 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1786 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1787 }
1788
1789 /* XXX broadcom-supplied linux driver; undocumented */
1790 if (BGE_IS_5750_OR_BEYOND(sc)) {
1791 /*
1792 * XXX: magic values.
1793 * From Broadcom-supplied Linux driver; apparently
1794 * required to workaround a DMA bug affecting TSO
1795 * on bcm575x/bcm5721?
1796 */
1797 dma_read_modebits |= (1 << 27);
1798 }
1799 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1800 }
1801
1802 /* Turn on RX data completion state machine */
1803 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1804
1805 /* Turn on RX BD initiator state machine */
1806 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1807
1808 /* Turn on RX data and RX BD initiator state machine */
1809 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1810
1811 /* Turn on Mbuf cluster free state machine */
1812 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1813 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1814 }
1815
1816 /* Turn on send BD completion state machine */
1817 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1818
1819 /* Turn on send data completion state machine */
1820 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1821
1822 /* Turn on send data initiator state machine */
1823 if (BGE_IS_5750_OR_BEYOND(sc)) {
1824 /* XXX: magic value from Linux driver */
1825 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1826 } else {
1827 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1828 }
1829
1830 /* Turn on send BD initiator state machine */
1831 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1832
1833 /* Turn on send BD selector state machine */
1834 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1835
1836 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1837 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1838 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1839
1840 /* ack/clear link change events */
1841 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1842 BGE_MACSTAT_CFG_CHANGED);
1843 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1844
1845 /* Enable PHY auto polling (for MII/GMII only) */
1846 if (sc->bge_tbi) {
1847 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1848 } else {
1849 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1850 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1851 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1852 BGE_EVTENB_MI_INTERRUPT);
1853 }
1854
1855 /* Enable link state change attentions. */
1856 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1857
1858 return(0);
1859 }
1860
1861 static const struct bge_revision {
1862 uint32_t br_chipid;
1863 uint32_t br_quirks;
1864 const char *br_name;
1865 } bge_revisions[] = {
1866 { BGE_CHIPID_BCM5700_A0,
1867 BGE_QUIRK_LINK_STATE_BROKEN,
1868 "BCM5700 A0" },
1869
1870 { BGE_CHIPID_BCM5700_A1,
1871 BGE_QUIRK_LINK_STATE_BROKEN,
1872 "BCM5700 A1" },
1873
1874 { BGE_CHIPID_BCM5700_B0,
1875 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1876 "BCM5700 B0" },
1877
1878 { BGE_CHIPID_BCM5700_B1,
1879 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1880 "BCM5700 B1" },
1881
1882 { BGE_CHIPID_BCM5700_B2,
1883 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1884 "BCM5700 B2" },
1885
1886 /* This is treated like a BCM5700 Bx */
1887 { BGE_CHIPID_BCM5700_ALTIMA,
1888 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1889 "BCM5700 Altima" },
1890
1891 { BGE_CHIPID_BCM5700_C0,
1892 0,
1893 "BCM5700 C0" },
1894
1895 { BGE_CHIPID_BCM5701_A0,
1896 0, /*XXX really, just not known */
1897 "BCM5701 A0" },
1898
1899 { BGE_CHIPID_BCM5701_B0,
1900 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1901 "BCM5701 B0" },
1902
1903 { BGE_CHIPID_BCM5701_B2,
1904 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1905 "BCM5701 B2" },
1906
1907 { BGE_CHIPID_BCM5701_B5,
1908 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1909 "BCM5701 B5" },
1910
1911 { BGE_CHIPID_BCM5703_A0,
1912 0,
1913 "BCM5703 A0" },
1914
1915 { BGE_CHIPID_BCM5703_A1,
1916 0,
1917 "BCM5703 A1" },
1918
1919 { BGE_CHIPID_BCM5703_A2,
1920 BGE_QUIRK_ONLY_PHY_1,
1921 "BCM5703 A2" },
1922
1923 { BGE_CHIPID_BCM5703_A3,
1924 BGE_QUIRK_ONLY_PHY_1,
1925 "BCM5703 A3" },
1926
1927 { BGE_CHIPID_BCM5704_A0,
1928 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1929 "BCM5704 A0" },
1930
1931 { BGE_CHIPID_BCM5704_A1,
1932 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1933 "BCM5704 A1" },
1934
1935 { BGE_CHIPID_BCM5704_A2,
1936 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1937 "BCM5704 A2" },
1938
1939 { BGE_CHIPID_BCM5704_A3,
1940 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1941 "BCM5704 A3" },
1942
1943 { BGE_CHIPID_BCM5705_A0,
1944 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1945 "BCM5705 A0" },
1946
1947 { BGE_CHIPID_BCM5705_A1,
1948 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1949 "BCM5705 A1" },
1950
1951 { BGE_CHIPID_BCM5705_A2,
1952 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1953 "BCM5705 A2" },
1954
1955 { BGE_CHIPID_BCM5705_A3,
1956 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1957 "BCM5705 A3" },
1958
1959 { BGE_CHIPID_BCM5750_A0,
1960 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1961 "BCM5750 A1" },
1962
1963 { BGE_CHIPID_BCM5750_A1,
1964 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1965 "BCM5750 A1" },
1966
1967 { BGE_CHIPID_BCM5751_A1,
1968 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1969 "BCM5751 A1" },
1970
1971 { 0, 0, NULL }
1972 };
1973
1974 /*
1975 * Some defaults for major revisions, so that newer steppings
1976 * that we don't know about have a shot at working.
1977 */
1978 static const struct bge_revision bge_majorrevs[] = {
1979 { BGE_ASICREV_BCM5700,
1980 BGE_QUIRK_LINK_STATE_BROKEN,
1981 "unknown BCM5700" },
1982
1983 { BGE_ASICREV_BCM5701,
1984 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1985 "unknown BCM5701" },
1986
1987 { BGE_ASICREV_BCM5703,
1988 0,
1989 "unknown BCM5703" },
1990
1991 { BGE_ASICREV_BCM5704,
1992 BGE_QUIRK_ONLY_PHY_1,
1993 "unknown BCM5704" },
1994
1995 { BGE_ASICREV_BCM5705,
1996 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1997 "unknown BCM5705" },
1998
1999 { BGE_ASICREV_BCM5750,
2000 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2001 "unknown BCM575x family" },
2002
2003 { BGE_ASICREV_BCM5714,
2004 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2005 "unknown BCM5714" },
2006
2007 { BGE_ASICREV_BCM5752,
2008 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2009 "unknown BCM5752 family" },
2010
2011
2012 { BGE_ASICREV_BCM5715,
2013 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2014 "unknown BCM5715" },
2015
2016 { 0,
2017 0,
2018 NULL }
2019 };
2020
2021
2022 static const struct bge_revision *
2023 bge_lookup_rev(uint32_t chipid)
2024 {
2025 const struct bge_revision *br;
2026
2027 for (br = bge_revisions; br->br_name != NULL; br++) {
2028 if (br->br_chipid == chipid)
2029 return (br);
2030 }
2031
2032 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2033 if (br->br_chipid == BGE_ASICREV(chipid))
2034 return (br);
2035 }
2036
2037 return (NULL);
2038 }
2039
2040 static const struct bge_product {
2041 pci_vendor_id_t bp_vendor;
2042 pci_product_id_t bp_product;
2043 const char *bp_name;
2044 } bge_products[] = {
2045 /*
2046 * The BCM5700 documentation seems to indicate that the hardware
2047 * still has the Alteon vendor ID burned into it, though it
2048 * should always be overridden by the value in the EEPROM. We'll
2049 * check for it anyway.
2050 */
2051 { PCI_VENDOR_ALTEON,
2052 PCI_PRODUCT_ALTEON_BCM5700,
2053 "Broadcom BCM5700 Gigabit Ethernet",
2054 },
2055 { PCI_VENDOR_ALTEON,
2056 PCI_PRODUCT_ALTEON_BCM5701,
2057 "Broadcom BCM5701 Gigabit Ethernet",
2058 },
2059
2060 { PCI_VENDOR_ALTIMA,
2061 PCI_PRODUCT_ALTIMA_AC1000,
2062 "Altima AC1000 Gigabit Ethernet",
2063 },
2064 { PCI_VENDOR_ALTIMA,
2065 PCI_PRODUCT_ALTIMA_AC1001,
2066 "Altima AC1001 Gigabit Ethernet",
2067 },
2068 { PCI_VENDOR_ALTIMA,
2069 PCI_PRODUCT_ALTIMA_AC9100,
2070 "Altima AC9100 Gigabit Ethernet",
2071 },
2072
2073 { PCI_VENDOR_BROADCOM,
2074 PCI_PRODUCT_BROADCOM_BCM5700,
2075 "Broadcom BCM5700 Gigabit Ethernet",
2076 },
2077 { PCI_VENDOR_BROADCOM,
2078 PCI_PRODUCT_BROADCOM_BCM5701,
2079 "Broadcom BCM5701 Gigabit Ethernet",
2080 },
2081 { PCI_VENDOR_BROADCOM,
2082 PCI_PRODUCT_BROADCOM_BCM5702,
2083 "Broadcom BCM5702 Gigabit Ethernet",
2084 },
2085 { PCI_VENDOR_BROADCOM,
2086 PCI_PRODUCT_BROADCOM_BCM5702X,
2087 "Broadcom BCM5702X Gigabit Ethernet" },
2088
2089 { PCI_VENDOR_BROADCOM,
2090 PCI_PRODUCT_BROADCOM_BCM5703,
2091 "Broadcom BCM5703 Gigabit Ethernet",
2092 },
2093 { PCI_VENDOR_BROADCOM,
2094 PCI_PRODUCT_BROADCOM_BCM5703X,
2095 "Broadcom BCM5703X Gigabit Ethernet",
2096 },
2097 { PCI_VENDOR_BROADCOM,
2098 PCI_PRODUCT_BROADCOM_BCM5703A3,
2099 "Broadcom BCM5703A3 Gigabit Ethernet",
2100 },
2101
2102 { PCI_VENDOR_BROADCOM,
2103 PCI_PRODUCT_BROADCOM_BCM5704C,
2104 "Broadcom BCM5704C Dual Gigabit Ethernet",
2105 },
2106 { PCI_VENDOR_BROADCOM,
2107 PCI_PRODUCT_BROADCOM_BCM5704S,
2108 "Broadcom BCM5704S Dual Gigabit Ethernet",
2109 },
2110
2111 { PCI_VENDOR_BROADCOM,
2112 PCI_PRODUCT_BROADCOM_BCM5705,
2113 "Broadcom BCM5705 Gigabit Ethernet",
2114 },
2115 { PCI_VENDOR_BROADCOM,
2116 PCI_PRODUCT_BROADCOM_BCM5705K,
2117 "Broadcom BCM5705K Gigabit Ethernet",
2118 },
2119 { PCI_VENDOR_BROADCOM,
2120 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2121 "Broadcom BCM5705 Gigabit Ethernet",
2122 },
2123 { PCI_VENDOR_BROADCOM,
2124 PCI_PRODUCT_BROADCOM_BCM5705M,
2125 "Broadcom BCM5705M Gigabit Ethernet",
2126 },
2127
2128 { PCI_VENDOR_BROADCOM,
2129 PCI_PRODUCT_BROADCOM_BCM5714,
2130 "Broadcom BCM5714/5715 Gigabit Ethernet",
2131 },
2132 { PCI_VENDOR_BROADCOM,
2133 PCI_PRODUCT_BROADCOM_BCM5789,
2134 "Broadcom BCM5789 Gigabit Ethernet",
2135 },
2136
2137 { PCI_VENDOR_BROADCOM,
2138 PCI_PRODUCT_BROADCOM_BCM5721,
2139 "Broadcom BCM5721 Gigabit Ethernet",
2140 },
2141
2142 { PCI_VENDOR_BROADCOM,
2143 PCI_PRODUCT_BROADCOM_BCM5750,
2144 "Broadcom BCM5750 Gigabit Ethernet",
2145 },
2146
2147 { PCI_VENDOR_BROADCOM,
2148 PCI_PRODUCT_BROADCOM_BCM5750M,
2149 "Broadcom BCM5750M Gigabit Ethernet",
2150 },
2151
2152 { PCI_VENDOR_BROADCOM,
2153 PCI_PRODUCT_BROADCOM_BCM5751,
2154 "Broadcom BCM5751 Gigabit Ethernet",
2155 },
2156
2157 { PCI_VENDOR_BROADCOM,
2158 PCI_PRODUCT_BROADCOM_BCM5751M,
2159 "Broadcom BCM5751M Gigabit Ethernet",
2160 },
2161
2162 { PCI_VENDOR_BROADCOM,
2163 PCI_PRODUCT_BROADCOM_BCM5752,
2164 "Broadcom BCM5752 Gigabit Ethernet",
2165 },
2166
2167 { PCI_VENDOR_BROADCOM,
2168 PCI_PRODUCT_BROADCOM_BCM5782,
2169 "Broadcom BCM5782 Gigabit Ethernet",
2170 },
2171 { PCI_VENDOR_BROADCOM,
2172 PCI_PRODUCT_BROADCOM_BCM5788,
2173 "Broadcom BCM5788 Gigabit Ethernet",
2174 },
2175 { PCI_VENDOR_BROADCOM,
2176 PCI_PRODUCT_BROADCOM_BCM5789,
2177 "Broadcom BCM5789 Gigabit Ethernet",
2178 },
2179
2180 { PCI_VENDOR_BROADCOM,
2181 PCI_PRODUCT_BROADCOM_BCM5901,
2182 "Broadcom BCM5901 Fast Ethernet",
2183 },
2184 { PCI_VENDOR_BROADCOM,
2185 PCI_PRODUCT_BROADCOM_BCM5901A2,
2186 "Broadcom BCM5901A2 Fast Ethernet",
2187 },
2188
2189 { PCI_VENDOR_SCHNEIDERKOCH,
2190 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2191 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2192 },
2193
2194 { PCI_VENDOR_3COM,
2195 PCI_PRODUCT_3COM_3C996,
2196 "3Com 3c996 Gigabit Ethernet",
2197 },
2198
2199 { 0,
2200 0,
2201 NULL },
2202 };
2203
2204 static const struct bge_product *
2205 bge_lookup(const struct pci_attach_args *pa)
2206 {
2207 const struct bge_product *bp;
2208
2209 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2210 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2211 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2212 return (bp);
2213 }
2214
2215 return (NULL);
2216 }
2217
2218 static int
2219 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2220 {
2221 #ifdef NOTYET
2222 u_int32_t pm_ctl = 0;
2223
2224 /* XXX FIXME: make sure indirect accesses enabled? */
2225 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2226 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2227 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2228
2229 /* clear the PME_assert bit and power state bits, enable PME */
2230 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2231 pm_ctl &= ~PCIM_PSTAT_DMASK;
2232 pm_ctl |= (1 << 8);
2233
2234 if (powerlevel == 0) {
2235 pm_ctl |= PCIM_PSTAT_D0;
2236 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2237 pm_ctl, 2);
2238 DELAY(10000);
2239 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2240 DELAY(10000);
2241
2242 #ifdef NOTYET
2243 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2244 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2245 #endif
2246 DELAY(40); DELAY(40); DELAY(40);
2247 DELAY(10000); /* above not quite adequate on 5700 */
2248 return 0;
2249 }
2250
2251
2252 /*
2253 * Entering ACPI power states D1-D3 is achieved by wiggling
2254 * GMII gpio pins. Example code assumes all hardware vendors
2255 * followed Broadom's sample pcb layout. Until we verify that
2256 * for all supported OEM cards, states D1-D3 are unsupported.
2257 */
2258 printf("%s: power state %d unimplemented; check GPIO pins\n",
2259 sc->bge_dev.dv_xname, powerlevel);
2260 #endif
2261 return EOPNOTSUPP;
2262 }
2263
2264
2265 /*
2266 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2267 * against our list and return its name if we find a match. Note
2268 * that since the Broadcom controller contains VPD support, we
2269 * can get the device name string from the controller itself instead
2270 * of the compiled-in string. This is a little slow, but it guarantees
2271 * we'll always announce the right product name.
2272 */
2273 static int
2274 bge_probe(device_t parent, cfdata_t match, void *aux)
2275 {
2276 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2277
2278 if (bge_lookup(pa) != NULL)
2279 return (1);
2280
2281 return (0);
2282 }
2283
2284 static void
2285 bge_attach(device_t parent, device_t self, void *aux)
2286 {
2287 struct bge_softc *sc = (struct bge_softc *)self;
2288 struct pci_attach_args *pa = aux;
2289 const struct bge_product *bp;
2290 const struct bge_revision *br;
2291 pci_chipset_tag_t pc = pa->pa_pc;
2292 pci_intr_handle_t ih;
2293 const char *intrstr = NULL;
2294 bus_dma_segment_t seg;
2295 int rseg;
2296 u_int32_t hwcfg = 0;
2297 u_int32_t mac_addr = 0;
2298 u_int32_t command;
2299 struct ifnet *ifp;
2300 caddr_t kva;
2301 u_char eaddr[ETHER_ADDR_LEN];
2302 pcireg_t memtype;
2303 bus_addr_t memaddr;
2304 bus_size_t memsize;
2305 u_int32_t pm_ctl;
2306
2307 bp = bge_lookup(pa);
2308 KASSERT(bp != NULL);
2309
2310 sc->bge_pa = *pa;
2311
2312 aprint_naive(": Ethernet controller\n");
2313 aprint_normal(": %s\n", bp->bp_name);
2314
2315 /*
2316 * Map control/status registers.
2317 */
2318 DPRINTFN(5, ("Map control/status regs\n"));
2319 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2320 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2321 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2322 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2323
2324 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2325 aprint_error("%s: failed to enable memory mapping!\n",
2326 sc->bge_dev.dv_xname);
2327 return;
2328 }
2329
2330 DPRINTFN(5, ("pci_mem_find\n"));
2331 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2332 switch (memtype) {
2333 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2334 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2335 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2336 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2337 &memaddr, &memsize) == 0)
2338 break;
2339 default:
2340 aprint_error("%s: can't find mem space\n",
2341 sc->bge_dev.dv_xname);
2342 return;
2343 }
2344
2345 DPRINTFN(5, ("pci_intr_map\n"));
2346 if (pci_intr_map(pa, &ih)) {
2347 aprint_error("%s: couldn't map interrupt\n",
2348 sc->bge_dev.dv_xname);
2349 return;
2350 }
2351
2352 DPRINTFN(5, ("pci_intr_string\n"));
2353 intrstr = pci_intr_string(pc, ih);
2354
2355 DPRINTFN(5, ("pci_intr_establish\n"));
2356 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2357
2358 if (sc->bge_intrhand == NULL) {
2359 aprint_error("%s: couldn't establish interrupt",
2360 sc->bge_dev.dv_xname);
2361 if (intrstr != NULL)
2362 aprint_normal(" at %s", intrstr);
2363 aprint_normal("\n");
2364 return;
2365 }
2366 aprint_normal("%s: interrupting at %s\n",
2367 sc->bge_dev.dv_xname, intrstr);
2368
2369 /*
2370 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2371 * can clobber the chip's PCI config-space power control registers,
2372 * leaving the card in D3 powersave state.
2373 * We do not have memory-mapped registers in this state,
2374 * so force device into D0 state before starting initialization.
2375 */
2376 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2377 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2378 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2379 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2380 DELAY(1000); /* 27 usec is allegedly sufficent */
2381
2382 /*
2383 * Save ASIC rev. Look up any quirks associated with this
2384 * ASIC.
2385 */
2386 sc->bge_chipid =
2387 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2388 BGE_PCIMISCCTL_ASICREV;
2389
2390 /*
2391 * Detect PCI-Express devices
2392 * XXX: guessed from Linux/FreeBSD; no documentation
2393 */
2394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2395 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2396 NULL, NULL) != 0)
2397 sc->bge_pcie = 1;
2398 else
2399 sc->bge_pcie = 0;
2400
2401 /* Try to reset the chip. */
2402 DPRINTFN(5, ("bge_reset\n"));
2403 bge_reset(sc);
2404
2405 if (bge_chipinit(sc)) {
2406 aprint_error("%s: chip initialization failed\n",
2407 sc->bge_dev.dv_xname);
2408 bge_release_resources(sc);
2409 return;
2410 }
2411
2412 /*
2413 * Get station address from the EEPROM.
2414 */
2415 mac_addr = bge_readmem_ind(sc, 0x0c14);
2416 if ((mac_addr >> 16) == 0x484b) {
2417 eaddr[0] = (u_char)(mac_addr >> 8);
2418 eaddr[1] = (u_char)(mac_addr >> 0);
2419 mac_addr = bge_readmem_ind(sc, 0x0c18);
2420 eaddr[2] = (u_char)(mac_addr >> 24);
2421 eaddr[3] = (u_char)(mac_addr >> 16);
2422 eaddr[4] = (u_char)(mac_addr >> 8);
2423 eaddr[5] = (u_char)(mac_addr >> 0);
2424 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2425 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2426 aprint_error("%s: failed to read station address\n",
2427 sc->bge_dev.dv_xname);
2428 bge_release_resources(sc);
2429 return;
2430 }
2431
2432 br = bge_lookup_rev(sc->bge_chipid);
2433 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2434
2435 if (br == NULL) {
2436 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2437 sc->bge_quirks = 0;
2438 } else {
2439 aprint_normal("ASIC %s (0x%04x)",
2440 br->br_name, sc->bge_chipid >> 16);
2441 sc->bge_quirks |= br->br_quirks;
2442 }
2443 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2444
2445 /* Allocate the general information block and ring buffers. */
2446 if (pci_dma64_available(pa))
2447 sc->bge_dmatag = pa->pa_dmat64;
2448 else
2449 sc->bge_dmatag = pa->pa_dmat;
2450 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2451 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2452 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2453 aprint_error("%s: can't alloc rx buffers\n",
2454 sc->bge_dev.dv_xname);
2455 return;
2456 }
2457 DPRINTFN(5, ("bus_dmamem_map\n"));
2458 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2459 sizeof(struct bge_ring_data), &kva,
2460 BUS_DMA_NOWAIT)) {
2461 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2462 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2463 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2464 return;
2465 }
2466 DPRINTFN(5, ("bus_dmamem_create\n"));
2467 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2468 sizeof(struct bge_ring_data), 0,
2469 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2470 aprint_error("%s: can't create DMA map\n",
2471 sc->bge_dev.dv_xname);
2472 bus_dmamem_unmap(sc->bge_dmatag, kva,
2473 sizeof(struct bge_ring_data));
2474 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2475 return;
2476 }
2477 DPRINTFN(5, ("bus_dmamem_load\n"));
2478 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2479 sizeof(struct bge_ring_data), NULL,
2480 BUS_DMA_NOWAIT)) {
2481 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2482 bus_dmamem_unmap(sc->bge_dmatag, kva,
2483 sizeof(struct bge_ring_data));
2484 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2485 return;
2486 }
2487
2488 DPRINTFN(5, ("bzero\n"));
2489 sc->bge_rdata = (struct bge_ring_data *)kva;
2490
2491 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2492
2493 /* Try to allocate memory for jumbo buffers. */
2494 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2495 if (bge_alloc_jumbo_mem(sc)) {
2496 aprint_error("%s: jumbo buffer allocation failed\n",
2497 sc->bge_dev.dv_xname);
2498 } else
2499 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2500 }
2501
2502 /* Set default tuneable values. */
2503 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2504 sc->bge_rx_coal_ticks = 150;
2505 sc->bge_rx_max_coal_bds = 64;
2506 #ifdef ORIG_WPAUL_VALUES
2507 sc->bge_tx_coal_ticks = 150;
2508 sc->bge_tx_max_coal_bds = 128;
2509 #else
2510 sc->bge_tx_coal_ticks = 300;
2511 sc->bge_tx_max_coal_bds = 400;
2512 #endif
2513 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2514 sc->bge_tx_coal_ticks = (12 * 5);
2515 sc->bge_rx_max_coal_bds = (12 * 5);
2516 aprint_error("%s: setting short Tx thresholds\n",
2517 sc->bge_dev.dv_xname);
2518 }
2519
2520 /* Set up ifnet structure */
2521 ifp = &sc->ethercom.ec_if;
2522 ifp->if_softc = sc;
2523 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2524 ifp->if_ioctl = bge_ioctl;
2525 ifp->if_start = bge_start;
2526 ifp->if_init = bge_init;
2527 ifp->if_watchdog = bge_watchdog;
2528 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2529 IFQ_SET_READY(&ifp->if_snd);
2530 DPRINTFN(5, ("bcopy\n"));
2531 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2532
2533 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2534 sc->ethercom.ec_if.if_capabilities |=
2535 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2536 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2537 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2538 sc->ethercom.ec_capabilities |=
2539 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2540
2541 if (sc->bge_pcie)
2542 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2543
2544 /*
2545 * Do MII setup.
2546 */
2547 DPRINTFN(5, ("mii setup\n"));
2548 sc->bge_mii.mii_ifp = ifp;
2549 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2550 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2551 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2552
2553 /*
2554 * Figure out what sort of media we have by checking the
2555 * hardware config word in the first 32k of NIC internal memory,
2556 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2557 * cards, this value appears to be unset. If that's the
2558 * case, we have to rely on identifying the NIC by its PCI
2559 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2560 */
2561 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2562 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2563 } else {
2564 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2565 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2566 hwcfg = be32toh(hwcfg);
2567 }
2568 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2569 sc->bge_tbi = 1;
2570
2571 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2572 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2573 SK_SUBSYSID_9D41)
2574 sc->bge_tbi = 1;
2575
2576 if (sc->bge_tbi) {
2577 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2578 bge_ifmedia_sts);
2579 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2580 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2581 0, NULL);
2582 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2583 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2584 } else {
2585 /*
2586 * Do transceiver setup.
2587 */
2588 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2589 bge_ifmedia_sts);
2590 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2591 MII_PHY_ANY, MII_OFFSET_ANY,
2592 MIIF_FORCEANEG|MIIF_DOPAUSE);
2593
2594 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2595 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2596 ifmedia_add(&sc->bge_mii.mii_media,
2597 IFM_ETHER|IFM_MANUAL, 0, NULL);
2598 ifmedia_set(&sc->bge_mii.mii_media,
2599 IFM_ETHER|IFM_MANUAL);
2600 } else
2601 ifmedia_set(&sc->bge_mii.mii_media,
2602 IFM_ETHER|IFM_AUTO);
2603 }
2604
2605 /*
2606 * When using the BCM5701 in PCI-X mode, data corruption has
2607 * been observed in the first few bytes of some received packets.
2608 * Aligning the packet buffer in memory eliminates the corruption.
2609 * Unfortunately, this misaligns the packet payloads. On platforms
2610 * which do not support unaligned accesses, we will realign the
2611 * payloads by copying the received packets.
2612 */
2613 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2614 /* If in PCI-X mode, work around the alignment bug. */
2615 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2616 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2617 BGE_PCISTATE_PCI_BUSSPEED)
2618 sc->bge_rx_alignment_bug = 1;
2619 }
2620
2621 /*
2622 * Call MI attach routine.
2623 */
2624 DPRINTFN(5, ("if_attach\n"));
2625 if_attach(ifp);
2626 DPRINTFN(5, ("ether_ifattach\n"));
2627 ether_ifattach(ifp, eaddr);
2628 #ifdef BGE_EVENT_COUNTERS
2629 /*
2630 * Attach event counters.
2631 */
2632 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2633 NULL, sc->bge_dev.dv_xname, "intr");
2634 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2635 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2636 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2637 NULL, sc->bge_dev.dv_xname, "tx_xon");
2638 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2639 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2640 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2641 NULL, sc->bge_dev.dv_xname, "rx_xon");
2642 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2643 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2644 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2645 NULL, sc->bge_dev.dv_xname, "xoffentered");
2646 #endif /* BGE_EVENT_COUNTERS */
2647 DPRINTFN(5, ("callout_init\n"));
2648 callout_init(&sc->bge_timeout);
2649
2650 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2651 if (sc->bge_powerhook == NULL)
2652 printf("%s: WARNING: unable to establish PCI power hook\n",
2653 sc->bge_dev.dv_xname);
2654 }
2655
2656 static void
2657 bge_release_resources(struct bge_softc *sc)
2658 {
2659 if (sc->bge_vpd_prodname != NULL)
2660 free(sc->bge_vpd_prodname, M_DEVBUF);
2661
2662 if (sc->bge_vpd_readonly != NULL)
2663 free(sc->bge_vpd_readonly, M_DEVBUF);
2664 }
2665
2666 static void
2667 bge_reset(struct bge_softc *sc)
2668 {
2669 struct pci_attach_args *pa = &sc->bge_pa;
2670 u_int32_t cachesize, command, pcistate, new_pcistate;
2671 int i, val;
2672
2673 /* Save some important PCI state. */
2674 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2675 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2676 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2677
2678 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2679 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2680 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2681
2682 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2683 /*
2684 * XXX: from FreeBSD/Linux; no documentation
2685 */
2686 if (sc->bge_pcie) {
2687 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2688 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2689 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2690 /* No idea what that actually means */
2691 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2692 val |= (1<<29);
2693 }
2694 }
2695
2696 /* Issue global reset */
2697 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2698
2699 DELAY(1000);
2700
2701 /*
2702 * XXX: from FreeBSD/Linux; no documentation
2703 */
2704 if (sc->bge_pcie) {
2705 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2706 pcireg_t reg;
2707
2708 DELAY(500000);
2709 /* XXX: Magic Numbers */
2710 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2711 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2712 reg | (1 << 15));
2713 }
2714 /*
2715 * XXX: Magic Numbers.
2716 * Sets maximal PCI-e payload and clears any PCI-e errors.
2717 * Should be replaced with references to PCI config-space
2718 * capability block for PCI-Express.
2719 */
2720 pci_conf_write(pa->pa_pc, pa->pa_tag,
2721 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2722
2723 }
2724
2725 /* Reset some of the PCI state that got zapped by reset */
2726 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2727 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2728 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2729 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2730 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2731 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2732
2733 /* Enable memory arbiter. */
2734 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2735 uint32_t marbmode = 0;
2736 if (BGE_IS_5714_FAMILY(sc)) {
2737 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2738 }
2739 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2740 }
2741
2742 /*
2743 * Prevent PXE restart: write a magic number to the
2744 * general communications memory at 0xB50.
2745 */
2746 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2747
2748 /*
2749 * Poll the value location we just wrote until
2750 * we see the 1's complement of the magic number.
2751 * This indicates that the firmware initialization
2752 * is complete.
2753 */
2754 for (i = 0; i < BGE_TIMEOUT; i++) {
2755 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2756 if (val == ~BGE_MAGIC_NUMBER)
2757 break;
2758 DELAY(1000);
2759 }
2760
2761 if (i >= BGE_TIMEOUT) {
2762 printf("%s: firmware handshake timed out, val = %x\n",
2763 sc->bge_dev.dv_xname, val);
2764 /*
2765 * XXX: occasionally fired on bcm5721, but without
2766 * apparent harm. For now, keep going if we timeout
2767 * against PCI-E devices.
2768 */
2769 if (!sc->bge_pcie)
2770 return;
2771 }
2772
2773 /*
2774 * XXX Wait for the value of the PCISTATE register to
2775 * return to its original pre-reset state. This is a
2776 * fairly good indicator of reset completion. If we don't
2777 * wait for the reset to fully complete, trying to read
2778 * from the device's non-PCI registers may yield garbage
2779 * results.
2780 */
2781 for (i = 0; i < BGE_TIMEOUT; i++) {
2782 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2783 BGE_PCI_PCISTATE);
2784 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2785 (pcistate & ~BGE_PCISTATE_RESERVED))
2786 break;
2787 DELAY(10);
2788 }
2789 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2790 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2791 printf("%s: pcistate failed to revert\n",
2792 sc->bge_dev.dv_xname);
2793 }
2794
2795 /* XXX: from FreeBSD/Linux; no documentation */
2796 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2797 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2798
2799 /* Enable memory arbiter. */
2800 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2801 uint32_t marbmode = 0;
2802 if (BGE_IS_5714_FAMILY(sc)) {
2803 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2804 }
2805 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2806 }
2807
2808 /* Fix up byte swapping */
2809 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2810
2811 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2812
2813 DELAY(10000);
2814 }
2815
2816 /*
2817 * Frame reception handling. This is called if there's a frame
2818 * on the receive return list.
2819 *
2820 * Note: we have to be able to handle two possibilities here:
2821 * 1) the frame is from the jumbo recieve ring
2822 * 2) the frame is from the standard receive ring
2823 */
2824
2825 static void
2826 bge_rxeof(struct bge_softc *sc)
2827 {
2828 struct ifnet *ifp;
2829 int stdcnt = 0, jumbocnt = 0;
2830 bus_dmamap_t dmamap;
2831 bus_addr_t offset, toff;
2832 bus_size_t tlen;
2833 int tosync;
2834
2835 ifp = &sc->ethercom.ec_if;
2836
2837 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2838 offsetof(struct bge_ring_data, bge_status_block),
2839 sizeof (struct bge_status_block),
2840 BUS_DMASYNC_POSTREAD);
2841
2842 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2843 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2844 sc->bge_rx_saved_considx;
2845
2846 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2847
2848 if (tosync < 0) {
2849 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2850 sizeof (struct bge_rx_bd);
2851 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2852 toff, tlen, BUS_DMASYNC_POSTREAD);
2853 tosync = -tosync;
2854 }
2855
2856 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2857 offset, tosync * sizeof (struct bge_rx_bd),
2858 BUS_DMASYNC_POSTREAD);
2859
2860 while(sc->bge_rx_saved_considx !=
2861 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2862 struct bge_rx_bd *cur_rx;
2863 u_int32_t rxidx;
2864 struct mbuf *m = NULL;
2865
2866 cur_rx = &sc->bge_rdata->
2867 bge_rx_return_ring[sc->bge_rx_saved_considx];
2868
2869 rxidx = cur_rx->bge_idx;
2870 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2871
2872 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2873 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2874 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2875 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2876 jumbocnt++;
2877 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2878 ifp->if_ierrors++;
2879 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2880 continue;
2881 }
2882 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2883 NULL)== ENOBUFS) {
2884 ifp->if_ierrors++;
2885 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2886 continue;
2887 }
2888 } else {
2889 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2890 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2891 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2892 stdcnt++;
2893 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2894 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2895 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2896 ifp->if_ierrors++;
2897 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2898 continue;
2899 }
2900 if (bge_newbuf_std(sc, sc->bge_std,
2901 NULL, dmamap) == ENOBUFS) {
2902 ifp->if_ierrors++;
2903 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2904 continue;
2905 }
2906 }
2907
2908 ifp->if_ipackets++;
2909 #ifndef __NO_STRICT_ALIGNMENT
2910 /*
2911 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2912 * the Rx buffer has the layer-2 header unaligned.
2913 * If our CPU requires alignment, re-align by copying.
2914 */
2915 if (sc->bge_rx_alignment_bug) {
2916 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2917 cur_rx->bge_len);
2918 m->m_data += ETHER_ALIGN;
2919 }
2920 #endif
2921
2922 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2923 m->m_pkthdr.rcvif = ifp;
2924
2925 #if NBPFILTER > 0
2926 /*
2927 * Handle BPF listeners. Let the BPF user see the packet.
2928 */
2929 if (ifp->if_bpf)
2930 bpf_mtap(ifp->if_bpf, m);
2931 #endif
2932
2933 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2934
2935 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2936 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2937 /*
2938 * Rx transport checksum-offload may also
2939 * have bugs with packets which, when transmitted,
2940 * were `runts' requiring padding.
2941 */
2942 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2943 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2944 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2945 m->m_pkthdr.csum_data =
2946 cur_rx->bge_tcp_udp_csum;
2947 m->m_pkthdr.csum_flags |=
2948 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2949 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2950 }
2951
2952 /*
2953 * If we received a packet with a vlan tag, pass it
2954 * to vlan_input() instead of ether_input().
2955 */
2956 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
2957 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2958
2959 (*ifp->if_input)(ifp, m);
2960 }
2961
2962 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2963 if (stdcnt)
2964 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2965 if (jumbocnt)
2966 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2967 }
2968
2969 static void
2970 bge_txeof(struct bge_softc *sc)
2971 {
2972 struct bge_tx_bd *cur_tx = NULL;
2973 struct ifnet *ifp;
2974 struct txdmamap_pool_entry *dma;
2975 bus_addr_t offset, toff;
2976 bus_size_t tlen;
2977 int tosync;
2978 struct mbuf *m;
2979
2980 ifp = &sc->ethercom.ec_if;
2981
2982 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2983 offsetof(struct bge_ring_data, bge_status_block),
2984 sizeof (struct bge_status_block),
2985 BUS_DMASYNC_POSTREAD);
2986
2987 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2988 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2989 sc->bge_tx_saved_considx;
2990
2991 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2992
2993 if (tosync < 0) {
2994 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2995 sizeof (struct bge_tx_bd);
2996 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2997 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2998 tosync = -tosync;
2999 }
3000
3001 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3002 offset, tosync * sizeof (struct bge_tx_bd),
3003 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3004
3005 /*
3006 * Go through our tx ring and free mbufs for those
3007 * frames that have been sent.
3008 */
3009 while (sc->bge_tx_saved_considx !=
3010 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3011 u_int32_t idx = 0;
3012
3013 idx = sc->bge_tx_saved_considx;
3014 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3015 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3016 ifp->if_opackets++;
3017 m = sc->bge_cdata.bge_tx_chain[idx];
3018 if (m != NULL) {
3019 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3020 dma = sc->txdma[idx];
3021 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3022 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3023 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3024 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3025 sc->txdma[idx] = NULL;
3026
3027 m_freem(m);
3028 }
3029 sc->bge_txcnt--;
3030 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3031 ifp->if_timer = 0;
3032 }
3033
3034 if (cur_tx != NULL)
3035 ifp->if_flags &= ~IFF_OACTIVE;
3036 }
3037
3038 static int
3039 bge_intr(void *xsc)
3040 {
3041 struct bge_softc *sc;
3042 struct ifnet *ifp;
3043
3044 sc = xsc;
3045 ifp = &sc->ethercom.ec_if;
3046
3047 #ifdef notdef
3048 /* Avoid this for now -- checking this register is expensive. */
3049 /* Make sure this is really our interrupt. */
3050 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
3051 return (0);
3052 #endif
3053 /* Ack interrupt and stop others from occuring. */
3054 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3055
3056 BGE_EVCNT_INCR(sc->bge_ev_intr);
3057
3058 /*
3059 * Process link state changes.
3060 * Grrr. The link status word in the status block does
3061 * not work correctly on the BCM5700 rev AX and BX chips,
3062 * according to all available information. Hence, we have
3063 * to enable MII interrupts in order to properly obtain
3064 * async link changes. Unfortunately, this also means that
3065 * we have to read the MAC status register to detect link
3066 * changes, thereby adding an additional register access to
3067 * the interrupt handler.
3068 */
3069
3070 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3071 u_int32_t status;
3072
3073 status = CSR_READ_4(sc, BGE_MAC_STS);
3074 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3075 sc->bge_link = 0;
3076 callout_stop(&sc->bge_timeout);
3077 bge_tick(sc);
3078 /* Clear the interrupt */
3079 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3080 BGE_EVTENB_MI_INTERRUPT);
3081 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3082 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3083 BRGPHY_INTRS);
3084 }
3085 } else {
3086 if (sc->bge_rdata->bge_status_block.bge_status &
3087 BGE_STATFLAG_LINKSTATE_CHANGED) {
3088 sc->bge_link = 0;
3089 callout_stop(&sc->bge_timeout);
3090 bge_tick(sc);
3091 /* Clear the interrupt */
3092 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3093 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3094 BGE_MACSTAT_LINK_CHANGED);
3095 }
3096 }
3097
3098 if (ifp->if_flags & IFF_RUNNING) {
3099 /* Check RX return ring producer/consumer */
3100 bge_rxeof(sc);
3101
3102 /* Check TX ring producer/consumer */
3103 bge_txeof(sc);
3104 }
3105
3106 if (sc->bge_pending_rxintr_change) {
3107 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3108 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3109 uint32_t junk;
3110
3111 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3112 DELAY(10);
3113 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3114
3115 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3116 DELAY(10);
3117 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3118
3119 sc->bge_pending_rxintr_change = 0;
3120 }
3121 bge_handle_events(sc);
3122
3123 /* Re-enable interrupts. */
3124 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3125
3126 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3127 bge_start(ifp);
3128
3129 return (1);
3130 }
3131
3132 static void
3133 bge_tick(void *xsc)
3134 {
3135 struct bge_softc *sc = xsc;
3136 struct mii_data *mii = &sc->bge_mii;
3137 struct ifmedia *ifm = NULL;
3138 struct ifnet *ifp = &sc->ethercom.ec_if;
3139 int s;
3140
3141 s = splnet();
3142
3143 bge_stats_update(sc);
3144 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3145 if (sc->bge_link) {
3146 splx(s);
3147 return;
3148 }
3149
3150 if (sc->bge_tbi) {
3151 ifm = &sc->bge_ifmedia;
3152 if (CSR_READ_4(sc, BGE_MAC_STS) &
3153 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3154 sc->bge_link++;
3155 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3156 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3157 bge_start(ifp);
3158 }
3159 splx(s);
3160 return;
3161 }
3162
3163 mii_tick(mii);
3164
3165 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3166 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3167 sc->bge_link++;
3168 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3169 bge_start(ifp);
3170 }
3171
3172 splx(s);
3173 }
3174
3175 static void
3176 bge_stats_update(struct bge_softc *sc)
3177 {
3178 struct ifnet *ifp = &sc->ethercom.ec_if;
3179 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3180 bus_size_t rstats = BGE_RX_STATS;
3181
3182 #define READ_RSTAT(sc, stats, stat) \
3183 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3184
3185 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3186 ifp->if_collisions +=
3187 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3188 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3189 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3190 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3191
3192 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3193 READ_RSTAT(sc, rstats, outXoffSent));
3194 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3195 READ_RSTAT(sc, rstats, outXonSent));
3196 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3197 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3198 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3199 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3200 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3201 READ_RSTAT(sc, rstats, macControlFramesReceived));
3202 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3203 READ_RSTAT(sc, rstats, xoffStateEntered));
3204 return;
3205 }
3206
3207 #undef READ_RSTAT
3208 #define READ_STAT(sc, stats, stat) \
3209 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3210
3211 ifp->if_collisions +=
3212 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3213 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3214 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3215 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3216 ifp->if_collisions;
3217
3218 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3219 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3220 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3221 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3222 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3223 READ_STAT(sc, stats,
3224 xoffPauseFramesReceived.bge_addr_lo));
3225 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3226 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3227 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3228 READ_STAT(sc, stats,
3229 macControlFramesReceived.bge_addr_lo));
3230 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3231 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3232
3233 #undef READ_STAT
3234
3235 #ifdef notdef
3236 ifp->if_collisions +=
3237 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3238 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3239 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3240 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3241 ifp->if_collisions;
3242 #endif
3243 }
3244
3245 /*
3246 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3247 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3248 * but when such padded frames employ the bge IP/TCP checksum offload,
3249 * the hardware checksum assist gives incorrect results (possibly
3250 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3251 * If we pad such runts with zeros, the onboard checksum comes out correct.
3252 */
3253 static inline int
3254 bge_cksum_pad(struct mbuf *pkt)
3255 {
3256 struct mbuf *last = NULL;
3257 int padlen;
3258
3259 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3260
3261 /* if there's only the packet-header and we can pad there, use it. */
3262 if (pkt->m_pkthdr.len == pkt->m_len &&
3263 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3264 last = pkt;
3265 } else {
3266 /*
3267 * Walk packet chain to find last mbuf. We will either
3268 * pad there, or append a new mbuf and pad it
3269 * (thus perhaps avoiding the bcm5700 dma-min bug).
3270 */
3271 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3272 (void) 0; /* do nothing*/
3273 }
3274
3275 /* `last' now points to last in chain. */
3276 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3277 (void) 0; /* we can pad here, in-place. */
3278 } else {
3279 /* Allocate new empty mbuf, pad it. Compact later. */
3280 struct mbuf *n;
3281 MGET(n, M_DONTWAIT, MT_DATA);
3282 n->m_len = 0;
3283 last->m_next = n;
3284 last = n;
3285 }
3286 }
3287
3288 #ifdef DEBUG
3289 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3290 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3291 #endif
3292 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3293 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3294 last->m_len += padlen;
3295 pkt->m_pkthdr.len += padlen;
3296 return 0;
3297 }
3298
3299 /*
3300 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3301 */
3302 static inline int
3303 bge_compact_dma_runt(struct mbuf *pkt)
3304 {
3305 struct mbuf *m, *prev;
3306 int totlen, prevlen;
3307
3308 prev = NULL;
3309 totlen = 0;
3310 prevlen = -1;
3311
3312 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3313 int mlen = m->m_len;
3314 int shortfall = 8 - mlen ;
3315
3316 totlen += mlen;
3317 if (mlen == 0) {
3318 continue;
3319 }
3320 if (mlen >= 8)
3321 continue;
3322
3323 /* If we get here, mbuf data is too small for DMA engine.
3324 * Try to fix by shuffling data to prev or next in chain.
3325 * If that fails, do a compacting deep-copy of the whole chain.
3326 */
3327
3328 /* Internal frag. If fits in prev, copy it there. */
3329 if (prev && !M_READONLY(prev) &&
3330 M_TRAILINGSPACE(prev) >= m->m_len) {
3331 bcopy(m->m_data,
3332 prev->m_data+prev->m_len,
3333 mlen);
3334 prev->m_len += mlen;
3335 m->m_len = 0;
3336 /* XXX stitch chain */
3337 prev->m_next = m_free(m);
3338 m = prev;
3339 continue;
3340 }
3341 else if (m->m_next != NULL && !M_READONLY(m) &&
3342 M_TRAILINGSPACE(m) >= shortfall &&
3343 m->m_next->m_len >= (8 + shortfall)) {
3344 /* m is writable and have enough data in next, pull up. */
3345
3346 bcopy(m->m_next->m_data,
3347 m->m_data+m->m_len,
3348 shortfall);
3349 m->m_len += shortfall;
3350 m->m_next->m_len -= shortfall;
3351 m->m_next->m_data += shortfall;
3352 }
3353 else if (m->m_next == NULL || 1) {
3354 /* Got a runt at the very end of the packet.
3355 * borrow data from the tail of the preceding mbuf and
3356 * update its length in-place. (The original data is still
3357 * valid, so we can do this even if prev is not writable.)
3358 */
3359
3360 /* if we'd make prev a runt, just move all of its data. */
3361 #ifdef DEBUG
3362 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3363 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3364 #endif
3365 if ((prev->m_len - shortfall) < 8)
3366 shortfall = prev->m_len;
3367
3368 #ifdef notyet /* just do the safe slow thing for now */
3369 if (!M_READONLY(m)) {
3370 if (M_LEADINGSPACE(m) < shorfall) {
3371 void *m_dat;
3372 m_dat = (m->m_flags & M_PKTHDR) ?
3373 m->m_pktdat : m->dat;
3374 memmove(m_dat, mtod(m, void*), m->m_len);
3375 m->m_data = m_dat;
3376 }
3377 } else
3378 #endif /* just do the safe slow thing */
3379 {
3380 struct mbuf * n = NULL;
3381 int newprevlen = prev->m_len - shortfall;
3382
3383 MGET(n, M_NOWAIT, MT_DATA);
3384 if (n == NULL)
3385 return ENOBUFS;
3386 KASSERT(m->m_len + shortfall < MLEN
3387 /*,
3388 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3389
3390 /* first copy the data we're stealing from prev */
3391 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3392
3393 /* update prev->m_len accordingly */
3394 prev->m_len -= shortfall;
3395
3396 /* copy data from runt m */
3397 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3398
3399 /* n holds what we stole from prev, plus m */
3400 n->m_len = shortfall + m->m_len;
3401
3402 /* stitch n into chain and free m */
3403 n->m_next = m->m_next;
3404 prev->m_next = n;
3405 /* KASSERT(m->m_next == NULL); */
3406 m->m_next = NULL;
3407 m_free(m);
3408 m = n; /* for continuing loop */
3409 }
3410 }
3411 prevlen = m->m_len;
3412 }
3413 return 0;
3414 }
3415
3416 /*
3417 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3418 * pointers to descriptors.
3419 */
3420 static int
3421 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3422 {
3423 struct bge_tx_bd *f = NULL;
3424 u_int32_t frag, cur, cnt = 0;
3425 u_int16_t csum_flags = 0;
3426 u_int16_t txbd_tso_flags = 0;
3427 struct txdmamap_pool_entry *dma;
3428 bus_dmamap_t dmamap;
3429 int i = 0;
3430 struct m_tag *mtag;
3431 int use_tso, maxsegsize, error;
3432
3433 cur = frag = *txidx;
3434
3435 if (m_head->m_pkthdr.csum_flags) {
3436 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3437 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3438 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3439 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3440 }
3441
3442 /*
3443 * If we were asked to do an outboard checksum, and the NIC
3444 * has the bug where it sometimes adds in the Ethernet padding,
3445 * explicitly pad with zeros so the cksum will be correct either way.
3446 * (For now, do this for all chip versions, until newer
3447 * are confirmed to not require the workaround.)
3448 */
3449 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3450 #ifdef notyet
3451 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3452 #endif
3453 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3454 goto check_dma_bug;
3455
3456 if (bge_cksum_pad(m_head) != 0) {
3457 return ENOBUFS;
3458 }
3459
3460 check_dma_bug:
3461 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3462 goto doit;
3463 /*
3464 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3465 * less than eight bytes. If we encounter a teeny mbuf
3466 * at the end of a chain, we can pad. Otherwise, copy.
3467 */
3468 if (bge_compact_dma_runt(m_head) != 0)
3469 return ENOBUFS;
3470
3471 doit:
3472 dma = SLIST_FIRST(&sc->txdma_list);
3473 if (dma == NULL)
3474 return ENOBUFS;
3475 dmamap = dma->dmamap;
3476
3477 /*
3478 * Set up any necessary TSO state before we start packing...
3479 */
3480 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3481 if (!use_tso) {
3482 maxsegsize = 0;
3483 } else { /* TSO setup */
3484 unsigned mss;
3485 struct ether_header *eh;
3486 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3487 struct mbuf * m0 = m_head;
3488 struct ip *ip;
3489 struct tcphdr *th;
3490 int iphl, hlen;
3491
3492 /*
3493 * XXX It would be nice if the mbuf pkthdr had offset
3494 * fields for the protocol headers.
3495 */
3496
3497 eh = mtod(m0, struct ether_header *);
3498 switch (htons(eh->ether_type)) {
3499 case ETHERTYPE_IP:
3500 offset = ETHER_HDR_LEN;
3501 break;
3502
3503 case ETHERTYPE_VLAN:
3504 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3505 break;
3506
3507 default:
3508 /*
3509 * Don't support this protocol or encapsulation.
3510 */
3511 return (ENOBUFS);
3512 }
3513
3514 /*
3515 * TCP/IP headers are in the first mbuf; we can do
3516 * this the easy way.
3517 */
3518 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3519 hlen = iphl + offset;
3520 if (__predict_false(m0->m_len <
3521 (hlen + sizeof(struct tcphdr)))) {
3522
3523 printf("TSO: hard case m0->m_len == %d <"
3524 " ip/tcp hlen %zd, not handled yet\n",
3525 m0->m_len, hlen+ sizeof(struct tcphdr));
3526 #ifdef NOTYET
3527 /*
3528 * XXX jonathan (at) NetBSD.org: untested.
3529 * how to force this branch to be taken?
3530 */
3531 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3532
3533 m_copydata(m0, offset, sizeof(ip), &ip);
3534 m_copydata(m0, hlen, sizeof(th), &th);
3535
3536 ip.ip_len = 0;
3537
3538 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3539 sizeof(ip.ip_len), &ip.ip_len);
3540
3541 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3542 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3543
3544 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3545 sizeof(th.th_sum), &th.th_sum);
3546
3547 hlen += th.th_off << 2;
3548 iptcp_opt_words = hlen;
3549 #else
3550 /*
3551 * if_wm "hard" case not yet supported, can we not
3552 * mandate it out of existence?
3553 */
3554 (void) ip; (void)th; (void) ip_tcp_hlen;
3555
3556 return ENOBUFS;
3557 #endif
3558 } else {
3559 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
3560 th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
3561 ip_tcp_hlen = iphl + (th->th_off << 2);
3562
3563 /* Total IP/TCP options, in 32-bit words */
3564 iptcp_opt_words = (ip_tcp_hlen
3565 - sizeof(struct tcphdr)
3566 - sizeof(struct ip)) >> 2;
3567 }
3568 if (BGE_IS_5750_OR_BEYOND(sc)) {
3569 th->th_sum = 0;
3570 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3571 } else {
3572 /*
3573 * XXX jonathan (at) NetBSD.org: 5705 untested.
3574 * Requires TSO firmware patch for 5701/5703/5704.
3575 */
3576 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3577 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3578 }
3579
3580 mss = m_head->m_pkthdr.segsz;
3581 txbd_tso_flags |=
3582 BGE_TXBDFLAG_CPU_PRE_DMA |
3583 BGE_TXBDFLAG_CPU_POST_DMA;
3584
3585 /*
3586 * Our NIC TSO-assist assumes TSO has standard, optionless
3587 * IPv4 and TCP headers, which total 40 bytes. By default,
3588 * the NIC copies 40 bytes of IP/TCP header from the
3589 * supplied header into the IP/TCP header portion of
3590 * each post-TSO-segment. If the supplied packet has IP or
3591 * TCP options, we need to tell the NIC to copy those extra
3592 * bytes into each post-TSO header, in addition to the normal
3593 * 40-byte IP/TCP header (and to leave space accordingly).
3594 * Unfortunately, the driver encoding of option length
3595 * varies across different ASIC families.
3596 */
3597 tcp_seg_flags = 0;
3598 if (iptcp_opt_words) {
3599 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3600 tcp_seg_flags =
3601 iptcp_opt_words << 11;
3602 } else {
3603 txbd_tso_flags |=
3604 iptcp_opt_words << 12;
3605 }
3606 }
3607 maxsegsize = mss | tcp_seg_flags;
3608 ip->ip_len = htons(mss + ip_tcp_hlen);
3609
3610 } /* TSO setup */
3611
3612 /*
3613 * Start packing the mbufs in this chain into
3614 * the fragment pointers. Stop when we run out
3615 * of fragments or hit the end of the mbuf chain.
3616 */
3617 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3618 BUS_DMA_NOWAIT);
3619 if (error) {
3620 return(ENOBUFS);
3621 }
3622
3623 mtag = sc->ethercom.ec_nvlans ?
3624 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3625
3626
3627 /* Iterate over dmap-map fragments. */
3628 for (i = 0; i < dmamap->dm_nsegs; i++) {
3629 f = &sc->bge_rdata->bge_tx_ring[frag];
3630 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3631 break;
3632
3633 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3634 f->bge_len = dmamap->dm_segs[i].ds_len;
3635
3636 /*
3637 * For 5751 and follow-ons, for TSO we must turn
3638 * off checksum-assist flag in the tx-descr, and
3639 * supply the ASIC-revision-specific encoding
3640 * of TSO flags and segsize.
3641 */
3642 if (use_tso) {
3643 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3644 f->bge_rsvd = maxsegsize;
3645 f->bge_flags = csum_flags | txbd_tso_flags;
3646 } else {
3647 f->bge_rsvd = 0;
3648 f->bge_flags =
3649 (csum_flags | txbd_tso_flags) & 0x0fff;
3650 }
3651 } else {
3652 f->bge_rsvd = 0;
3653 f->bge_flags = csum_flags;
3654 }
3655
3656 if (mtag != NULL) {
3657 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3658 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3659 } else {
3660 f->bge_vlan_tag = 0;
3661 }
3662 /*
3663 * Sanity check: avoid coming within 16 descriptors
3664 * of the end of the ring.
3665 */
3666 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
3667 BGE_TSO_PRINTF(("%s: "
3668 " dmamap_load_mbuf too close to ring wrap\n",
3669 sc->bge_dev.dv_xname));
3670 return(ENOBUFS);
3671 }
3672 cur = frag;
3673 BGE_INC(frag, BGE_TX_RING_CNT);
3674 cnt++;
3675 }
3676
3677 if (i < dmamap->dm_nsegs) {
3678 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3679 sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
3680 return ENOBUFS;
3681 }
3682
3683 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3684 BUS_DMASYNC_PREWRITE);
3685
3686 if (frag == sc->bge_tx_saved_considx) {
3687 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3688 sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
3689
3690 return(ENOBUFS);
3691 }
3692
3693 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3694 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3695 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3696 sc->txdma[cur] = dma;
3697 sc->bge_txcnt += cnt;
3698
3699 *txidx = frag;
3700
3701 return(0);
3702 }
3703
3704 /*
3705 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3706 * to the mbuf data regions directly in the transmit descriptors.
3707 */
3708 static void
3709 bge_start(struct ifnet *ifp)
3710 {
3711 struct bge_softc *sc;
3712 struct mbuf *m_head = NULL;
3713 u_int32_t prodidx;
3714 int pkts = 0;
3715
3716 sc = ifp->if_softc;
3717
3718 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3719 return;
3720
3721 prodidx = sc->bge_tx_prodidx;
3722
3723 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3724 IFQ_POLL(&ifp->if_snd, m_head);
3725 if (m_head == NULL)
3726 break;
3727
3728 #if 0
3729 /*
3730 * XXX
3731 * safety overkill. If this is a fragmented packet chain
3732 * with delayed TCP/UDP checksums, then only encapsulate
3733 * it if we have enough descriptors to handle the entire
3734 * chain at once.
3735 * (paranoia -- may not actually be needed)
3736 */
3737 if (m_head->m_flags & M_FIRSTFRAG &&
3738 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3739 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3740 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3741 ifp->if_flags |= IFF_OACTIVE;
3742 break;
3743 }
3744 }
3745 #endif
3746
3747 /*
3748 * Pack the data into the transmit ring. If we
3749 * don't have room, set the OACTIVE flag and wait
3750 * for the NIC to drain the ring.
3751 */
3752 if (bge_encap(sc, m_head, &prodidx)) {
3753 printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
3754 ifp->if_flags |= IFF_OACTIVE;
3755 break;
3756 }
3757
3758 /* now we are committed to transmit the packet */
3759 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3760 pkts++;
3761
3762 #if NBPFILTER > 0
3763 /*
3764 * If there's a BPF listener, bounce a copy of this frame
3765 * to him.
3766 */
3767 if (ifp->if_bpf)
3768 bpf_mtap(ifp->if_bpf, m_head);
3769 #endif
3770 }
3771 if (pkts == 0)
3772 return;
3773
3774 /* Transmit */
3775 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3776 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3777 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3778
3779 sc->bge_tx_prodidx = prodidx;
3780
3781 /*
3782 * Set a timeout in case the chip goes out to lunch.
3783 */
3784 ifp->if_timer = 5;
3785 }
3786
3787 static int
3788 bge_init(struct ifnet *ifp)
3789 {
3790 struct bge_softc *sc = ifp->if_softc;
3791 u_int16_t *m;
3792 int s, error;
3793
3794 s = splnet();
3795
3796 ifp = &sc->ethercom.ec_if;
3797
3798 /* Cancel pending I/O and flush buffers. */
3799 bge_stop(sc);
3800 bge_reset(sc);
3801 bge_chipinit(sc);
3802
3803 /*
3804 * Init the various state machines, ring
3805 * control blocks and firmware.
3806 */
3807 error = bge_blockinit(sc);
3808 if (error != 0) {
3809 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3810 error);
3811 splx(s);
3812 return error;
3813 }
3814
3815 ifp = &sc->ethercom.ec_if;
3816
3817 /* Specify MTU. */
3818 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3819 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3820
3821 /* Load our MAC address. */
3822 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3823 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3824 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3825
3826 /* Enable or disable promiscuous mode as needed. */
3827 if (ifp->if_flags & IFF_PROMISC) {
3828 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3829 } else {
3830 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3831 }
3832
3833 /* Program multicast filter. */
3834 bge_setmulti(sc);
3835
3836 /* Init RX ring. */
3837 bge_init_rx_ring_std(sc);
3838
3839 /* Init jumbo RX ring. */
3840 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3841 bge_init_rx_ring_jumbo(sc);
3842
3843 /* Init our RX return ring index */
3844 sc->bge_rx_saved_considx = 0;
3845
3846 /* Init TX ring. */
3847 bge_init_tx_ring(sc);
3848
3849 /* Turn on transmitter */
3850 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3851
3852 /* Turn on receiver */
3853 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3854
3855 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3856
3857 /* Tell firmware we're alive. */
3858 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3859
3860 /* Enable host interrupts. */
3861 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3862 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3863 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3864
3865 bge_ifmedia_upd(ifp);
3866
3867 ifp->if_flags |= IFF_RUNNING;
3868 ifp->if_flags &= ~IFF_OACTIVE;
3869
3870 splx(s);
3871
3872 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3873
3874 return 0;
3875 }
3876
3877 /*
3878 * Set media options.
3879 */
3880 static int
3881 bge_ifmedia_upd(struct ifnet *ifp)
3882 {
3883 struct bge_softc *sc = ifp->if_softc;
3884 struct mii_data *mii = &sc->bge_mii;
3885 struct ifmedia *ifm = &sc->bge_ifmedia;
3886
3887 /* If this is a 1000baseX NIC, enable the TBI port. */
3888 if (sc->bge_tbi) {
3889 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3890 return(EINVAL);
3891 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3892 case IFM_AUTO:
3893 break;
3894 case IFM_1000_SX:
3895 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3896 BGE_CLRBIT(sc, BGE_MAC_MODE,
3897 BGE_MACMODE_HALF_DUPLEX);
3898 } else {
3899 BGE_SETBIT(sc, BGE_MAC_MODE,
3900 BGE_MACMODE_HALF_DUPLEX);
3901 }
3902 break;
3903 default:
3904 return(EINVAL);
3905 }
3906 /* XXX 802.3x flow control for 1000BASE-SX */
3907 return(0);
3908 }
3909
3910 sc->bge_link = 0;
3911 mii_mediachg(mii);
3912
3913 return(0);
3914 }
3915
3916 /*
3917 * Report current media status.
3918 */
3919 static void
3920 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3921 {
3922 struct bge_softc *sc = ifp->if_softc;
3923 struct mii_data *mii = &sc->bge_mii;
3924
3925 if (sc->bge_tbi) {
3926 ifmr->ifm_status = IFM_AVALID;
3927 ifmr->ifm_active = IFM_ETHER;
3928 if (CSR_READ_4(sc, BGE_MAC_STS) &
3929 BGE_MACSTAT_TBI_PCS_SYNCHED)
3930 ifmr->ifm_status |= IFM_ACTIVE;
3931 ifmr->ifm_active |= IFM_1000_SX;
3932 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3933 ifmr->ifm_active |= IFM_HDX;
3934 else
3935 ifmr->ifm_active |= IFM_FDX;
3936 return;
3937 }
3938
3939 mii_pollstat(mii);
3940 ifmr->ifm_status = mii->mii_media_status;
3941 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3942 sc->bge_flowflags;
3943 }
3944
3945 static int
3946 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3947 {
3948 struct bge_softc *sc = ifp->if_softc;
3949 struct ifreq *ifr = (struct ifreq *) data;
3950 int s, error = 0;
3951 struct mii_data *mii;
3952
3953 s = splnet();
3954
3955 switch(command) {
3956 case SIOCSIFFLAGS:
3957 if (ifp->if_flags & IFF_UP) {
3958 /*
3959 * If only the state of the PROMISC flag changed,
3960 * then just use the 'set promisc mode' command
3961 * instead of reinitializing the entire NIC. Doing
3962 * a full re-init means reloading the firmware and
3963 * waiting for it to start up, which may take a
3964 * second or two.
3965 */
3966 if (ifp->if_flags & IFF_RUNNING &&
3967 ifp->if_flags & IFF_PROMISC &&
3968 !(sc->bge_if_flags & IFF_PROMISC)) {
3969 BGE_SETBIT(sc, BGE_RX_MODE,
3970 BGE_RXMODE_RX_PROMISC);
3971 } else if (ifp->if_flags & IFF_RUNNING &&
3972 !(ifp->if_flags & IFF_PROMISC) &&
3973 sc->bge_if_flags & IFF_PROMISC) {
3974 BGE_CLRBIT(sc, BGE_RX_MODE,
3975 BGE_RXMODE_RX_PROMISC);
3976 } else if (!(sc->bge_if_flags & IFF_UP))
3977 bge_init(ifp);
3978 } else {
3979 if (ifp->if_flags & IFF_RUNNING) {
3980 bge_stop(sc);
3981 }
3982 }
3983 sc->bge_if_flags = ifp->if_flags;
3984 error = 0;
3985 break;
3986 case SIOCSIFMEDIA:
3987 /* XXX Flow control is not supported for 1000BASE-SX */
3988 if (sc->bge_tbi) {
3989 ifr->ifr_media &= ~IFM_ETH_FMASK;
3990 sc->bge_flowflags = 0;
3991 }
3992
3993 /* Flow control requires full-duplex mode. */
3994 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3995 (ifr->ifr_media & IFM_FDX) == 0) {
3996 ifr->ifr_media &= ~IFM_ETH_FMASK;
3997 }
3998 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3999 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4000 /* We an do both TXPAUSE and RXPAUSE. */
4001 ifr->ifr_media |=
4002 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4003 }
4004 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4005 }
4006 /* FALLTHROUGH */
4007 case SIOCGIFMEDIA:
4008 if (sc->bge_tbi) {
4009 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4010 command);
4011 } else {
4012 mii = &sc->bge_mii;
4013 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4014 command);
4015 }
4016 break;
4017 default:
4018 error = ether_ioctl(ifp, command, data);
4019 if (error == ENETRESET) {
4020 if (ifp->if_flags & IFF_RUNNING)
4021 bge_setmulti(sc);
4022 error = 0;
4023 }
4024 break;
4025 }
4026
4027 splx(s);
4028
4029 return(error);
4030 }
4031
4032 static void
4033 bge_watchdog(struct ifnet *ifp)
4034 {
4035 struct bge_softc *sc;
4036
4037 sc = ifp->if_softc;
4038
4039 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
4040
4041 ifp->if_flags &= ~IFF_RUNNING;
4042 bge_init(ifp);
4043
4044 ifp->if_oerrors++;
4045 }
4046
4047 static void
4048 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4049 {
4050 int i;
4051
4052 BGE_CLRBIT(sc, reg, bit);
4053
4054 for (i = 0; i < BGE_TIMEOUT; i++) {
4055 if ((CSR_READ_4(sc, reg) & bit) == 0)
4056 return;
4057 delay(100);
4058 if (sc->bge_pcie)
4059 DELAY(1000);
4060 }
4061
4062 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
4063 sc->bge_dev.dv_xname, (u_long) reg, bit);
4064 }
4065
4066 /*
4067 * Stop the adapter and free any mbufs allocated to the
4068 * RX and TX lists.
4069 */
4070 static void
4071 bge_stop(struct bge_softc *sc)
4072 {
4073 struct ifnet *ifp = &sc->ethercom.ec_if;
4074
4075 callout_stop(&sc->bge_timeout);
4076
4077 /*
4078 * Disable all of the receiver blocks
4079 */
4080 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4081 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4082 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4083 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4084 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4085 }
4086 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4087 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4088 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4089
4090 /*
4091 * Disable all of the transmit blocks
4092 */
4093 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4094 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4095 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4096 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4097 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4098 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4099 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4100 }
4101 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4102
4103 /*
4104 * Shut down all of the memory managers and related
4105 * state machines.
4106 */
4107 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4108 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4109 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4110 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4111 }
4112
4113 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4114 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4115
4116 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4117 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4118 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4119 }
4120
4121 /* Disable host interrupts. */
4122 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4123 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4124
4125 /*
4126 * Tell firmware we're shutting down.
4127 */
4128 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4129
4130 /* Free the RX lists. */
4131 bge_free_rx_ring_std(sc);
4132
4133 /* Free jumbo RX list. */
4134 bge_free_rx_ring_jumbo(sc);
4135
4136 /* Free TX buffers. */
4137 bge_free_tx_ring(sc);
4138
4139 /*
4140 * Isolate/power down the PHY.
4141 */
4142 if (!sc->bge_tbi)
4143 mii_down(&sc->bge_mii);
4144
4145 sc->bge_link = 0;
4146
4147 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4148
4149 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4150 }
4151
4152 /*
4153 * Stop all chip I/O so that the kernel's probe routines don't
4154 * get confused by errant DMAs when rebooting.
4155 */
4156 static void
4157 bge_shutdown(void *xsc)
4158 {
4159 struct bge_softc *sc = (struct bge_softc *)xsc;
4160
4161 bge_stop(sc);
4162 bge_reset(sc);
4163 }
4164
4165
4166 static int
4167 sysctl_bge_verify(SYSCTLFN_ARGS)
4168 {
4169 int error, t;
4170 struct sysctlnode node;
4171
4172 node = *rnode;
4173 t = *(int*)rnode->sysctl_data;
4174 node.sysctl_data = &t;
4175 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4176 if (error || newp == NULL)
4177 return (error);
4178
4179 #if 0
4180 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4181 node.sysctl_num, rnode->sysctl_num));
4182 #endif
4183
4184 if (node.sysctl_num == bge_rxthresh_nodenum) {
4185 if (t < 0 || t >= NBGE_RX_THRESH)
4186 return (EINVAL);
4187 bge_update_all_threshes(t);
4188 } else
4189 return (EINVAL);
4190
4191 *(int*)rnode->sysctl_data = t;
4192
4193 return (0);
4194 }
4195
4196 /*
4197 * Set up sysctl(3) MIB, hw.bge.*.
4198 *
4199 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4200 */
4201 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4202 {
4203 int rc, bge_root_num;
4204 const struct sysctlnode *node;
4205
4206 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4207 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4208 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4209 goto err;
4210 }
4211
4212 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4213 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4214 SYSCTL_DESCR("BGE interface controls"),
4215 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4216 goto err;
4217 }
4218
4219 bge_root_num = node->sysctl_num;
4220
4221 /* BGE Rx interrupt mitigation level */
4222 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4224 CTLTYPE_INT, "rx_lvl",
4225 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4226 sysctl_bge_verify, 0,
4227 &bge_rx_thresh_lvl,
4228 0, CTL_HW, bge_root_num, CTL_CREATE,
4229 CTL_EOL)) != 0) {
4230 goto err;
4231 }
4232
4233 bge_rxthresh_nodenum = node->sysctl_num;
4234
4235 return;
4236
4237 err:
4238 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4239 }
4240
4241 static void
4242 bge_powerhook(int why, void *hdl)
4243 {
4244 struct bge_softc *sc = (struct bge_softc *)hdl;
4245 struct ifnet *ifp = &sc->ethercom.ec_if;
4246 struct pci_attach_args *pa = &(sc->bge_pa);
4247 pci_chipset_tag_t pc = pa->pa_pc;
4248 pcitag_t tag = pa->pa_tag;
4249
4250 switch (why) {
4251 case PWR_SOFTSUSPEND:
4252 case PWR_SOFTSTANDBY:
4253 bge_shutdown(sc);
4254 break;
4255 case PWR_SOFTRESUME:
4256 if (ifp->if_flags & IFF_UP) {
4257 ifp->if_flags &= ~IFF_RUNNING;
4258 bge_init(ifp);
4259 }
4260 break;
4261 case PWR_SUSPEND:
4262 case PWR_STANDBY:
4263 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4264 break;
4265 case PWR_RESUME:
4266 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4267 break;
4268 }
4269
4270 return;
4271 }
4272