if_bge.c revision 1.106 1 /* $NetBSD: if_bge.c,v 1.106 2006/04/27 18:09:54 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.106 2006/04/27 18:09:54 jonathan Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 static int bge_rxthresh_nodenum;
183
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static void bge_powerhook(int, void *);
187 static void bge_release_resources(struct bge_softc *);
188 static void bge_txeof(struct bge_softc *);
189 static void bge_rxeof(struct bge_softc *);
190
191 static void bge_tick(void *);
192 static void bge_stats_update(struct bge_softc *);
193 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
194
195 static int bge_intr(void *);
196 static void bge_start(struct ifnet *);
197 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
198 static int bge_init(struct ifnet *);
199 static void bge_stop(struct bge_softc *);
200 static void bge_watchdog(struct ifnet *);
201 static void bge_shutdown(void *);
202 static int bge_ifmedia_upd(struct ifnet *);
203 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
204
205 static void bge_setmulti(struct bge_softc *);
206
207 static void bge_handle_events(struct bge_softc *);
208 static int bge_alloc_jumbo_mem(struct bge_softc *);
209 #if 0 /* XXX */
210 static void bge_free_jumbo_mem(struct bge_softc *);
211 #endif
212 static void *bge_jalloc(struct bge_softc *);
213 static void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
214 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
215 bus_dmamap_t);
216 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
217 static int bge_init_rx_ring_std(struct bge_softc *);
218 static void bge_free_rx_ring_std(struct bge_softc *);
219 static int bge_init_rx_ring_jumbo(struct bge_softc *);
220 static void bge_free_rx_ring_jumbo(struct bge_softc *);
221 static void bge_free_tx_ring(struct bge_softc *);
222 static int bge_init_tx_ring(struct bge_softc *);
223
224 static int bge_chipinit(struct bge_softc *);
225 static int bge_blockinit(struct bge_softc *);
226 static int bge_setpowerstate(struct bge_softc *, int);
227
228 static void bge_reset(struct bge_softc *);
229
230 #define BGE_DEBUG
231 #ifdef BGE_DEBUG
232 #define DPRINTF(x) if (bgedebug) printf x
233 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
234 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
235 int bgedebug = 0;
236 int bge_tso_debug = 0;
237 #else
238 #define DPRINTF(x)
239 #define DPRINTFN(n,x)
240 #define BGE_TSO_PRINTF(x)
241 #endif
242
243 #ifdef BGE_EVENT_COUNTERS
244 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
245 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
246 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
247 #else
248 #define BGE_EVCNT_INCR(ev) /* nothing */
249 #define BGE_EVCNT_ADD(ev, val) /* nothing */
250 #define BGE_EVCNT_UPD(ev, val) /* nothing */
251 #endif
252
253 /* Various chip quirks. */
254 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
255 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
256 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
257 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
258 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
259 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
260 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
261 #define BGE_QUIRK_5705_CORE 0x00000080
262 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
263
264 /*
265 * XXX: how to handle variants based on 5750 and derivatives:
266 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
267 * in general behave like a 5705, except with additional quirks.
268 * This driver's current handling of the 5721 is wrong;
269 * how we map ASIC revision to "quirks" needs more thought.
270 * (defined here until the thought is done).
271 */
272 #define BGE_IS_5714_FAMILY(sc) \
273 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 || \
274 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
275 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5715 )
276
277 #define BGE_IS_5750_OR_BEYOND(sc) \
278 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
279 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
280 BGE_IS_5714_FAMILY(sc) )
281
282 #define BGE_IS_5705_OR_BEYOND(sc) \
283 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
284 BGE_IS_5750_OR_BEYOND(sc) )
285
286
287 /* following bugs are common to bcm5700 rev B, all flavours */
288 #define BGE_QUIRK_5700_COMMON \
289 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
290
291 CFATTACH_DECL(bge, sizeof(struct bge_softc),
292 bge_probe, bge_attach, NULL, NULL);
293
294 static u_int32_t
295 bge_readmem_ind(struct bge_softc *sc, int off)
296 {
297 struct pci_attach_args *pa = &(sc->bge_pa);
298 pcireg_t val;
299
300 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
301 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
302 return val;
303 }
304
305 static void
306 bge_writemem_ind(struct bge_softc *sc, int off, int val)
307 {
308 struct pci_attach_args *pa = &(sc->bge_pa);
309
310 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
311 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
312 }
313
314 #ifdef notdef
315 static u_int32_t
316 bge_readreg_ind(struct bge_softc *sc, int off)
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 {
328 struct pci_attach_args *pa = &(sc->bge_pa);
329
330 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
331 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
332 }
333
334 #ifdef notdef
335 static u_int8_t
336 bge_vpd_readbyte(struct bge_softc *sc, int addr)
337 {
338 int i;
339 u_int32_t val;
340 struct pci_attach_args *pa = &(sc->bge_pa);
341
342 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
343 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
344 DELAY(10);
345 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
346 BGE_VPD_FLAG)
347 break;
348 }
349
350 if (i == BGE_TIMEOUT) {
351 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
352 return(0);
353 }
354
355 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
356
357 return((val >> ((addr % 4) * 8)) & 0xFF);
358 }
359
360 static void
361 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
362 {
363 int i;
364 u_int8_t *ptr;
365
366 ptr = (u_int8_t *)res;
367 for (i = 0; i < sizeof(struct vpd_res); i++)
368 ptr[i] = bge_vpd_readbyte(sc, i + addr);
369 }
370
371 static void
372 bge_vpd_read(struct bge_softc *sc)
373 {
374 int pos = 0, i;
375 struct vpd_res res;
376
377 if (sc->bge_vpd_prodname != NULL)
378 free(sc->bge_vpd_prodname, M_DEVBUF);
379 if (sc->bge_vpd_readonly != NULL)
380 free(sc->bge_vpd_readonly, M_DEVBUF);
381 sc->bge_vpd_prodname = NULL;
382 sc->bge_vpd_readonly = NULL;
383
384 bge_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_ID) {
387 printf("%s: bad VPD resource id: expected %x got %x\n",
388 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
389 return;
390 }
391
392 pos += sizeof(res);
393 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
394 if (sc->bge_vpd_prodname == NULL)
395 panic("bge_vpd_read");
396 for (i = 0; i < res.vr_len; i++)
397 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
398 sc->bge_vpd_prodname[i] = '\0';
399 pos += i;
400
401 bge_vpd_read_res(sc, &res, pos);
402
403 if (res.vr_id != VPD_RES_READ) {
404 printf("%s: bad VPD resource id: expected %x got %x\n",
405 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
406 return;
407 }
408
409 pos += sizeof(res);
410 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
411 if (sc->bge_vpd_readonly == NULL)
412 panic("bge_vpd_read");
413 for (i = 0; i < res.vr_len + 1; i++)
414 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
415 }
416 #endif
417
418 /*
419 * Read a byte of data stored in the EEPROM at address 'addr.' The
420 * BCM570x supports both the traditional bitbang interface and an
421 * auto access interface for reading the EEPROM. We use the auto
422 * access method.
423 */
424 static u_int8_t
425 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
426 {
427 int i;
428 u_int32_t byte = 0;
429
430 /*
431 * Enable use of auto EEPROM access so we can avoid
432 * having to use the bitbang method.
433 */
434 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
435
436 /* Reset the EEPROM, load the clock period. */
437 CSR_WRITE_4(sc, BGE_EE_ADDR,
438 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
439 DELAY(20);
440
441 /* Issue the read EEPROM command. */
442 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
443
444 /* Wait for completion */
445 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
446 DELAY(10);
447 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
448 break;
449 }
450
451 if (i == BGE_TIMEOUT) {
452 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
453 return(0);
454 }
455
456 /* Get result. */
457 byte = CSR_READ_4(sc, BGE_EE_DATA);
458
459 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
460
461 return(0);
462 }
463
464 /*
465 * Read a sequence of bytes from the EEPROM.
466 */
467 static int
468 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
469 {
470 int err = 0, i;
471 u_int8_t byte = 0;
472
473 for (i = 0; i < cnt; i++) {
474 err = bge_eeprom_getbyte(sc, off + i, &byte);
475 if (err)
476 break;
477 *(dest + i) = byte;
478 }
479
480 return(err ? 1 : 0);
481 }
482
483 static int
484 bge_miibus_readreg(device_t dev, int phy, int reg)
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t val;
488 u_int32_t saved_autopoll;
489 int i;
490
491 /*
492 * Several chips with builtin PHYs will incorrectly answer to
493 * other PHY instances than the builtin PHY at id 1.
494 */
495 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
496 return(0);
497
498 /* Reading with autopolling on may trigger PCI errors */
499 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
500 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
503 DELAY(40);
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg));
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 val = CSR_READ_4(sc, BGE_MI_COMM);
511 if (!(val & BGE_MICOMM_BUSY))
512 break;
513 delay(10);
514 }
515
516 if (i == BGE_TIMEOUT) {
517 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
518 val = 0;
519 goto done;
520 }
521
522 val = CSR_READ_4(sc, BGE_MI_COMM);
523
524 done:
525 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
526 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
527 DELAY(40);
528 }
529
530 if (val & BGE_MICOMM_READFAIL)
531 return(0);
532
533 return(val & 0xFFFF);
534 }
535
536 static void
537 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
538 {
539 struct bge_softc *sc = (struct bge_softc *)dev;
540 u_int32_t saved_autopoll;
541 int i;
542
543 /* Touching the PHY while autopolling is on may trigger PCI errors */
544 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
545 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
546 delay(40);
547 CSR_WRITE_4(sc, BGE_MI_MODE,
548 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
549 delay(10); /* 40 usec is supposed to be adequate */
550 }
551
552 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
553 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
554
555 for (i = 0; i < BGE_TIMEOUT; i++) {
556 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
557 break;
558 delay(10);
559 }
560
561 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
562 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
563 delay(40);
564 }
565
566 if (i == BGE_TIMEOUT) {
567 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
568 }
569 }
570
571 static void
572 bge_miibus_statchg(device_t dev)
573 {
574 struct bge_softc *sc = (struct bge_softc *)dev;
575 struct mii_data *mii = &sc->bge_mii;
576
577 /*
578 * Get flow control negotiation result.
579 */
580 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
581 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
582 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
583 mii->mii_media_active &= ~IFM_ETH_FMASK;
584 }
585
586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
587 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
589 } else {
590 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
591 }
592
593 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 } else {
596 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
597 }
598
599 /*
600 * 802.3x flow control
601 */
602 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
603 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 } else {
605 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
606 }
607 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
608 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 } else {
610 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
611 }
612 }
613
614 /*
615 * Update rx threshold levels to values in a particular slot
616 * of the interrupt-mitigation table bge_rx_threshes.
617 */
618 static void
619 bge_set_thresh(struct ifnet *ifp, int lvl)
620 {
621 struct bge_softc *sc = ifp->if_softc;
622 int s;
623
624 /* For now, just save the new Rx-intr thresholds and record
625 * that a threshold update is pending. Updating the hardware
626 * registers here (even at splhigh()) is observed to
627 * occasionaly cause glitches where Rx-interrupts are not
628 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
629 */
630 s = splnet();
631 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
632 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
633 sc->bge_pending_rxintr_change = 1;
634 splx(s);
635
636 return;
637 }
638
639
640 /*
641 * Update Rx thresholds of all bge devices
642 */
643 static void
644 bge_update_all_threshes(int lvl)
645 {
646 struct ifnet *ifp;
647 const char * const namebuf = "bge";
648 int namelen;
649
650 if (lvl < 0)
651 lvl = 0;
652 else if( lvl >= NBGE_RX_THRESH)
653 lvl = NBGE_RX_THRESH - 1;
654
655 namelen = strlen(namebuf);
656 /*
657 * Now search all the interfaces for this name/number
658 */
659 IFNET_FOREACH(ifp) {
660 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
661 continue;
662 /* We got a match: update if doing auto-threshold-tuning */
663 if (bge_auto_thresh)
664 bge_set_thresh(ifp, lvl);
665 }
666 }
667
668 /*
669 * Handle events that have triggered interrupts.
670 */
671 static void
672 bge_handle_events(struct bge_softc *sc)
673 {
674
675 return;
676 }
677
678 /*
679 * Memory management for jumbo frames.
680 */
681
682 static int
683 bge_alloc_jumbo_mem(struct bge_softc *sc)
684 {
685 caddr_t ptr, kva;
686 bus_dma_segment_t seg;
687 int i, rseg, state, error;
688 struct bge_jpool_entry *entry;
689
690 state = error = 0;
691
692 /* Grab a big chunk o' storage. */
693 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
694 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
695 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
696 return ENOBUFS;
697 }
698
699 state = 1;
700 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
701 BUS_DMA_NOWAIT)) {
702 printf("%s: can't map DMA buffers (%d bytes)\n",
703 sc->bge_dev.dv_xname, (int)BGE_JMEM);
704 error = ENOBUFS;
705 goto out;
706 }
707
708 state = 2;
709 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
710 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
711 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
712 error = ENOBUFS;
713 goto out;
714 }
715
716 state = 3;
717 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
718 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
719 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
720 error = ENOBUFS;
721 goto out;
722 }
723
724 state = 4;
725 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
726 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
727
728 SLIST_INIT(&sc->bge_jfree_listhead);
729 SLIST_INIT(&sc->bge_jinuse_listhead);
730
731 /*
732 * Now divide it up into 9K pieces and save the addresses
733 * in an array.
734 */
735 ptr = sc->bge_cdata.bge_jumbo_buf;
736 for (i = 0; i < BGE_JSLOTS; i++) {
737 sc->bge_cdata.bge_jslots[i] = ptr;
738 ptr += BGE_JLEN;
739 entry = malloc(sizeof(struct bge_jpool_entry),
740 M_DEVBUF, M_NOWAIT);
741 if (entry == NULL) {
742 printf("%s: no memory for jumbo buffer queue!\n",
743 sc->bge_dev.dv_xname);
744 error = ENOBUFS;
745 goto out;
746 }
747 entry->slot = i;
748 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
749 entry, jpool_entries);
750 }
751 out:
752 if (error != 0) {
753 switch (state) {
754 case 4:
755 bus_dmamap_unload(sc->bge_dmatag,
756 sc->bge_cdata.bge_rx_jumbo_map);
757 case 3:
758 bus_dmamap_destroy(sc->bge_dmatag,
759 sc->bge_cdata.bge_rx_jumbo_map);
760 case 2:
761 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
762 case 1:
763 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
764 break;
765 default:
766 break;
767 }
768 }
769
770 return error;
771 }
772
773 /*
774 * Allocate a jumbo buffer.
775 */
776 static void *
777 bge_jalloc(struct bge_softc *sc)
778 {
779 struct bge_jpool_entry *entry;
780
781 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
782
783 if (entry == NULL) {
784 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
785 return(NULL);
786 }
787
788 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
789 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
790 return(sc->bge_cdata.bge_jslots[entry->slot]);
791 }
792
793 /*
794 * Release a jumbo buffer.
795 */
796 static void
797 bge_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
798 {
799 struct bge_jpool_entry *entry;
800 struct bge_softc *sc;
801 int i, s;
802
803 /* Extract the softc struct pointer. */
804 sc = (struct bge_softc *)arg;
805
806 if (sc == NULL)
807 panic("bge_jfree: can't find softc pointer!");
808
809 /* calculate the slot this buffer belongs to */
810
811 i = ((caddr_t)buf
812 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
813
814 if ((i < 0) || (i >= BGE_JSLOTS))
815 panic("bge_jfree: asked to free buffer that we don't manage!");
816
817 s = splvm();
818 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
819 if (entry == NULL)
820 panic("bge_jfree: buffer not in use!");
821 entry->slot = i;
822 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
823 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
824
825 if (__predict_true(m != NULL))
826 pool_cache_put(&mbpool_cache, m);
827 splx(s);
828 }
829
830
831 /*
832 * Intialize a standard receive ring descriptor.
833 */
834 static int
835 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
836 {
837 struct mbuf *m_new = NULL;
838 struct bge_rx_bd *r;
839 int error;
840
841 if (dmamap == NULL) {
842 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
843 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
844 if (error != 0)
845 return error;
846 }
847
848 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
849
850 if (m == NULL) {
851 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
852 if (m_new == NULL) {
853 return(ENOBUFS);
854 }
855
856 MCLGET(m_new, M_DONTWAIT);
857 if (!(m_new->m_flags & M_EXT)) {
858 m_freem(m_new);
859 return(ENOBUFS);
860 }
861 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
862 if (!sc->bge_rx_alignment_bug)
863 m_adj(m_new, ETHER_ALIGN);
864
865 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
866 BUS_DMA_READ|BUS_DMA_NOWAIT))
867 return(ENOBUFS);
868 } else {
869 m_new = m;
870 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
871 m_new->m_data = m_new->m_ext.ext_buf;
872 if (!sc->bge_rx_alignment_bug)
873 m_adj(m_new, ETHER_ALIGN);
874 }
875
876 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
877 r = &sc->bge_rdata->bge_rx_std_ring[i];
878 bge_set_hostaddr(&r->bge_addr,
879 dmamap->dm_segs[0].ds_addr);
880 r->bge_flags = BGE_RXBDFLAG_END;
881 r->bge_len = m_new->m_len;
882 r->bge_idx = i;
883
884 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
885 offsetof(struct bge_ring_data, bge_rx_std_ring) +
886 i * sizeof (struct bge_rx_bd),
887 sizeof (struct bge_rx_bd),
888 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
889
890 return(0);
891 }
892
893 /*
894 * Initialize a jumbo receive ring descriptor. This allocates
895 * a jumbo buffer from the pool managed internally by the driver.
896 */
897 static int
898 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
899 {
900 struct mbuf *m_new = NULL;
901 struct bge_rx_bd *r;
902
903 if (m == NULL) {
904 caddr_t buf = NULL;
905
906 /* Allocate the mbuf. */
907 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
908 if (m_new == NULL) {
909 return(ENOBUFS);
910 }
911
912 /* Allocate the jumbo buffer */
913 buf = bge_jalloc(sc);
914 if (buf == NULL) {
915 m_freem(m_new);
916 printf("%s: jumbo allocation failed "
917 "-- packet dropped!\n", sc->bge_dev.dv_xname);
918 return(ENOBUFS);
919 }
920
921 /* Attach the buffer to the mbuf. */
922 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
923 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
924 bge_jfree, sc);
925 m_new->m_flags |= M_EXT_RW;
926 } else {
927 m_new = m;
928 m_new->m_data = m_new->m_ext.ext_buf;
929 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
930 }
931
932 if (!sc->bge_rx_alignment_bug)
933 m_adj(m_new, ETHER_ALIGN);
934 /* Set up the descriptor. */
935 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 r->bge_len = m_new->m_len;
940 r->bge_idx = i;
941
942 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 i * sizeof (struct bge_rx_bd),
945 sizeof (struct bge_rx_bd),
946 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947
948 return(0);
949 }
950
951 /*
952 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 * that's 1MB or memory, which is a lot. For now, we fill only the first
954 * 256 ring entries and hope that our CPU is fast enough to keep up with
955 * the NIC.
956 */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 static void
979 bge_free_rx_ring_std(struct bge_softc *sc)
980 {
981 int i;
982
983 if (!(sc->bge_flags & BGE_RXRING_VALID))
984 return;
985
986 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 bus_dmamap_destroy(sc->bge_dmatag,
991 sc->bge_cdata.bge_rx_std_map[i]);
992 }
993 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 sizeof(struct bge_rx_bd));
995 }
996
997 sc->bge_flags &= ~BGE_RXRING_VALID;
998 }
999
1000 static int
1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 {
1003 int i;
1004 volatile struct bge_rcb *rcb;
1005
1006 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 return 0;
1008
1009 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 };
1013
1014 sc->bge_jumbo = i - 1;
1015 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016
1017 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 rcb->bge_maxlen_flags = 0;
1019 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020
1021 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022
1023 return(0);
1024 }
1025
1026 static void
1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 {
1029 int i;
1030
1031 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 return;
1033
1034 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 }
1039 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 sizeof(struct bge_rx_bd));
1041 }
1042
1043 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 }
1045
1046 static void
1047 bge_free_tx_ring(struct bge_softc *sc)
1048 {
1049 int i, freed;
1050 struct txdmamap_pool_entry *dma;
1051
1052 if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 return;
1054
1055 freed = 0;
1056
1057 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 freed++;
1060 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 sizeof(struct bge_tx_bd));
1068 }
1069
1070 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 sc->bge_flags &= ~BGE_TXRING_VALID;
1077 }
1078
1079 static int
1080 bge_init_tx_ring(struct bge_softc *sc)
1081 {
1082 int i;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 if (sc->bge_flags & BGE_TXRING_VALID)
1087 return 0;
1088
1089 sc->bge_txcnt = 0;
1090 sc->bge_tx_saved_considx = 0;
1091
1092 /* Initialize transmit producer index for host-memory send ring. */
1093 sc->bge_tx_prodidx = 0;
1094 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097
1098 /* NIC-memory send ring not used; initialize to zero. */
1099 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1102
1103 SLIST_INIT(&sc->txdma_list);
1104 for (i = 0; i < BGE_RSLOTS; i++) {
1105 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 &dmamap))
1108 return(ENOBUFS);
1109 if (dmamap == NULL)
1110 panic("dmamap NULL in bge_init_tx_ring");
1111 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 if (dma == NULL) {
1113 printf("%s: can't alloc txdmamap_pool_entry\n",
1114 sc->bge_dev.dv_xname);
1115 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 return (ENOMEM);
1117 }
1118 dma->dmamap = dmamap;
1119 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 }
1121
1122 sc->bge_flags |= BGE_TXRING_VALID;
1123
1124 return(0);
1125 }
1126
1127 static void
1128 bge_setmulti(struct bge_softc *sc)
1129 {
1130 struct ethercom *ac = &sc->ethercom;
1131 struct ifnet *ifp = &ac->ec_if;
1132 struct ether_multi *enm;
1133 struct ether_multistep step;
1134 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 u_int32_t h;
1136 int i;
1137
1138 if (ifp->if_flags & IFF_PROMISC)
1139 goto allmulti;
1140
1141 /* Now program new ones. */
1142 ETHER_FIRST_MULTI(step, ac, enm);
1143 while (enm != NULL) {
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 /*
1146 * We must listen to a range of multicast addresses.
1147 * For now, just accept all multicasts, rather than
1148 * trying to set only those filter bits needed to match
1149 * the range. (At this time, the only use of address
1150 * ranges is for IP multicast routing, for which the
1151 * range is big enough to require all bits set.)
1152 */
1153 goto allmulti;
1154 }
1155
1156 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157
1158 /* Just want the 7 least-significant bits. */
1159 h &= 0x7f;
1160
1161 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 ETHER_NEXT_MULTI(step, enm);
1163 }
1164
1165 ifp->if_flags &= ~IFF_ALLMULTI;
1166 goto setit;
1167
1168 allmulti:
1169 ifp->if_flags |= IFF_ALLMULTI;
1170 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171
1172 setit:
1173 for (i = 0; i < 4; i++)
1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 }
1176
1177 const int bge_swapbits[] = {
1178 0,
1179 BGE_MODECTL_BYTESWAP_DATA,
1180 BGE_MODECTL_WORDSWAP_DATA,
1181 BGE_MODECTL_BYTESWAP_NONFRAME,
1182 BGE_MODECTL_WORDSWAP_NONFRAME,
1183
1184 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190
1191 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 BGE_MODECTL_BYTESWAP_NONFRAME,
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_WORDSWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 };
1205
1206 int bge_swapindex = 0;
1207
1208 /*
1209 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 * self-test results.
1211 */
1212 static int
1213 bge_chipinit(struct bge_softc *sc)
1214 {
1215 u_int32_t cachesize;
1216 int i;
1217 u_int32_t dma_rw_ctl;
1218 struct pci_attach_args *pa = &(sc->bge_pa);
1219
1220
1221 /* Set endianness before we access any non-PCI registers. */
1222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1223 BGE_INIT);
1224
1225 /* Set power state to D0. */
1226 bge_setpowerstate(sc, 0);
1227
1228 /*
1229 * Check the 'ROM failed' bit on the RX CPU to see if
1230 * self-tests passed.
1231 */
1232 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1233 printf("%s: RX CPU self-diagnostics failed!\n",
1234 sc->bge_dev.dv_xname);
1235 return(ENODEV);
1236 }
1237
1238 /* Clear the MAC control register */
1239 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1240
1241 /*
1242 * Clear the MAC statistics block in the NIC's
1243 * internal memory.
1244 */
1245 for (i = BGE_STATS_BLOCK;
1246 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1247 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1248
1249 for (i = BGE_STATUS_BLOCK;
1250 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1251 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1252
1253 /* Set up the PCI DMA control register. */
1254 if (sc->bge_pcie) {
1255 u_int32_t device_ctl;
1256
1257 /* From FreeBSD */
1258 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1259 sc->bge_dev.dv_xname));
1260 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1261 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1262 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1263
1264 /* jonathan: alternative from Linux driver */
1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1266 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1267
1268 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1269 device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
1270 BGE_PCI_CONF_DEV_CTRL);
1271 printf("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname, device_ctl);
1272
1273 if ((device_ctl & 0x00e0) && 0) {
1274 /*
1275 * XXX jonathan (at) NetBSD.org:
1276 * This clause is exactly what the Broadcom-supplied
1277 * Linux does; but given overall register programming
1278 * by if_bge(4), this larger DMA-write watermark
1279 * value causes bcm5721 chips to totally wedge.
1280 */
1281 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1282 } else {
1283 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1284 }
1285 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1286 BGE_PCISTATE_PCI_BUSMODE) {
1287 /* Conventional PCI bus */
1288 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1289 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1290 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1291 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 dma_rw_ctl |= 0x0F;
1294 }
1295 } else {
1296 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1297 /* PCI-X bus */
1298 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1299 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1300 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1301 (0x0F);
1302 /*
1303 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1304 * for hardware bugs, which means we should also clear
1305 * the low-order MINDMA bits. In addition, the 5704
1306 * uses a different encoding of read/write watermarks.
1307 */
1308 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1309 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1310 /* should be 0x1f0000 */
1311 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1312 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1313 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1314 }
1315 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1316 dma_rw_ctl &= 0xfffffff0;
1317 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1318 }
1319 else if (BGE_IS_5714_FAMILY(sc)) {
1320 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1321 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1322 /* XXX magic values, Broadcom-supplied Linux driver */
1323 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1324 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1325 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1326 else
1327 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1328 }
1329 }
1330
1331 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1332
1333 /*
1334 * Set up general mode register.
1335 */
1336 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1337 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1338 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1339
1340 /* Get cache line size. */
1341 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1342
1343 /*
1344 * Avoid violating PCI spec on certain chip revs.
1345 */
1346 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1347 PCIM_CMD_MWIEN) {
1348 switch(cachesize) {
1349 case 1:
1350 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1351 BGE_PCI_WRITE_BNDRY_16BYTES);
1352 break;
1353 case 2:
1354 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1355 BGE_PCI_WRITE_BNDRY_32BYTES);
1356 break;
1357 case 4:
1358 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_64BYTES);
1360 break;
1361 case 8:
1362 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_128BYTES);
1364 break;
1365 case 16:
1366 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_256BYTES);
1368 break;
1369 case 32:
1370 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_512BYTES);
1372 break;
1373 case 64:
1374 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1375 BGE_PCI_WRITE_BNDRY_1024BYTES);
1376 break;
1377 default:
1378 /* Disable PCI memory write and invalidate. */
1379 #if 0
1380 if (bootverbose)
1381 printf("%s: cache line size %d not "
1382 "supported; disabling PCI MWI\n",
1383 sc->bge_dev.dv_xname, cachesize);
1384 #endif
1385 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1386 PCIM_CMD_MWIEN);
1387 break;
1388 }
1389 }
1390
1391 /*
1392 * Disable memory write invalidate. Apparently it is not supported
1393 * properly by these devices.
1394 */
1395 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1396
1397
1398 #ifdef __brokenalpha__
1399 /*
1400 * Must insure that we do not cross an 8K (bytes) boundary
1401 * for DMA reads. Our highest limit is 1K bytes. This is a
1402 * restriction on some ALPHA platforms with early revision
1403 * 21174 PCI chipsets, such as the AlphaPC 164lx
1404 */
1405 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1406 #endif
1407
1408 /* Set the timer prescaler (always 66MHz) */
1409 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1410
1411 return(0);
1412 }
1413
1414 static int
1415 bge_blockinit(struct bge_softc *sc)
1416 {
1417 volatile struct bge_rcb *rcb;
1418 bus_size_t rcb_addr;
1419 int i;
1420 struct ifnet *ifp = &sc->ethercom.ec_if;
1421 bge_hostaddr taddr;
1422
1423 /*
1424 * Initialize the memory window pointer register so that
1425 * we can access the first 32K of internal NIC RAM. This will
1426 * allow us to set up the TX send ring RCBs and the RX return
1427 * ring RCBs, plus other things which live in NIC memory.
1428 */
1429
1430 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1431 BGE_PCI_MEMWIN_BASEADDR, 0);
1432
1433 /* Configure mbuf memory pool */
1434 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1435 if (sc->bge_extram) {
1436 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1437 BGE_EXT_SSRAM);
1438 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1439 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1440 else
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1442 } else {
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 BGE_BUFFPOOL_1);
1445 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 else
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 }
1450
1451 /* Configure DMA resource pool */
1452 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1453 BGE_DMA_DESCRIPTORS);
1454 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1455 }
1456
1457 /* Configure mbuf pool watermarks */
1458 #ifdef ORIG_WPAUL_VALUES
1459 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1460 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1462 #else
1463 /* new broadcom docs strongly recommend these: */
1464 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1465 if (ifp->if_mtu > ETHER_MAX_LEN) {
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1469 } else {
1470 /* Values from Linux driver... */
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1474 }
1475 } else {
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1479 }
1480 #endif
1481
1482 /* Configure DMA resource watermarks */
1483 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1484 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1485
1486 /* Enable buffer manager */
1487 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1488 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1489 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1490
1491 /* Poll for buffer manager start indication */
1492 for (i = 0; i < BGE_TIMEOUT; i++) {
1493 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1494 break;
1495 DELAY(10);
1496 }
1497
1498 if (i == BGE_TIMEOUT) {
1499 printf("%s: buffer manager failed to start\n",
1500 sc->bge_dev.dv_xname);
1501 return(ENXIO);
1502 }
1503 }
1504
1505 /* Enable flow-through queues */
1506 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1507 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1508
1509 /* Wait until queue initialization is complete */
1510 for (i = 0; i < BGE_TIMEOUT; i++) {
1511 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1512 break;
1513 DELAY(10);
1514 }
1515
1516 if (i == BGE_TIMEOUT) {
1517 printf("%s: flow-through queue init failed\n",
1518 sc->bge_dev.dv_xname);
1519 return(ENXIO);
1520 }
1521
1522 /* Initialize the standard RX ring control block */
1523 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1524 bge_set_hostaddr(&rcb->bge_hostaddr,
1525 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1526 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1527 rcb->bge_maxlen_flags =
1528 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1529 } else {
1530 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1531 }
1532 if (sc->bge_extram)
1533 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1534 else
1535 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1539 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1540
1541 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1542 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1543 } else {
1544 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1545 }
1546
1547 /*
1548 * Initialize the jumbo RX ring control block
1549 * We set the 'ring disabled' bit in the flags
1550 * field until we're actually ready to start
1551 * using this ring (i.e. once we set the MTU
1552 * high enough to require it).
1553 */
1554 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1555 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1556 bge_set_hostaddr(&rcb->bge_hostaddr,
1557 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1558 rcb->bge_maxlen_flags =
1559 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1560 BGE_RCB_FLAG_RING_DISABLED);
1561 if (sc->bge_extram)
1562 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1563 else
1564 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1565
1566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1567 rcb->bge_hostaddr.bge_addr_hi);
1568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1569 rcb->bge_hostaddr.bge_addr_lo);
1570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1571 rcb->bge_maxlen_flags);
1572 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1573
1574 /* Set up dummy disabled mini ring RCB */
1575 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1576 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1577 BGE_RCB_FLAG_RING_DISABLED);
1578 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1579 rcb->bge_maxlen_flags);
1580
1581 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1582 offsetof(struct bge_ring_data, bge_info),
1583 sizeof (struct bge_gib),
1584 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1585 }
1586
1587 /*
1588 * Set the BD ring replentish thresholds. The recommended
1589 * values are 1/8th the number of descriptors allocated to
1590 * each ring.
1591 */
1592 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1593 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1594
1595 /*
1596 * Disable all unused send rings by setting the 'ring disabled'
1597 * bit in the flags field of all the TX send ring control blocks.
1598 * These are located in NIC memory.
1599 */
1600 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1601 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1602 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1603 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1604 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1605 rcb_addr += sizeof(struct bge_rcb);
1606 }
1607
1608 /* Configure TX RCB 0 (we use only the first ring) */
1609 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1610 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1611 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1612 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1613 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1614 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1615 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1616 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1617 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1618 }
1619
1620 /* Disable all unused RX return rings */
1621 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1622 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1623 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1624 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1625 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1626 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1627 BGE_RCB_FLAG_RING_DISABLED));
1628 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1629 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1630 (i * (sizeof(u_int64_t))), 0);
1631 rcb_addr += sizeof(struct bge_rcb);
1632 }
1633
1634 /* Initialize RX ring indexes */
1635 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1636 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1637 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1638
1639 /*
1640 * Set up RX return ring 0
1641 * Note that the NIC address for RX return rings is 0x00000000.
1642 * The return rings live entirely within the host, so the
1643 * nicaddr field in the RCB isn't used.
1644 */
1645 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1646 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1648 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1649 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1650 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1651 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1652
1653 /* Set random backoff seed for TX */
1654 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1655 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1656 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1657 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1658 BGE_TX_BACKOFF_SEED_MASK);
1659
1660 /* Set inter-packet gap */
1661 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1662
1663 /*
1664 * Specify which ring to use for packets that don't match
1665 * any RX rules.
1666 */
1667 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1668
1669 /*
1670 * Configure number of RX lists. One interrupt distribution
1671 * list, sixteen active lists, one bad frames class.
1672 */
1673 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1674
1675 /* Inialize RX list placement stats mask. */
1676 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1677 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1678
1679 /* Disable host coalescing until we get it set up */
1680 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1681
1682 /* Poll to make sure it's shut down. */
1683 for (i = 0; i < BGE_TIMEOUT; i++) {
1684 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1685 break;
1686 DELAY(10);
1687 }
1688
1689 if (i == BGE_TIMEOUT) {
1690 printf("%s: host coalescing engine failed to idle\n",
1691 sc->bge_dev.dv_xname);
1692 return(ENXIO);
1693 }
1694
1695 /* Set up host coalescing defaults */
1696 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1697 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1698 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1699 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1700 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1701 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1702 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1703 }
1704 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1705 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1706
1707 /* Set up address of statistics block */
1708 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1709 bge_set_hostaddr(&taddr,
1710 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1711 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1712 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1713 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1714 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1715 }
1716
1717 /* Set up address of status block */
1718 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1719 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1720 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1721 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1722 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1723 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1724
1725 /* Turn on host coalescing state machine */
1726 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1727
1728 /* Turn on RX BD completion state machine and enable attentions */
1729 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1730 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1731
1732 /* Turn on RX list placement state machine */
1733 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1734
1735 /* Turn on RX list selector state machine. */
1736 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1737 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1738 }
1739
1740 /* Turn on DMA, clear stats */
1741 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1742 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1743 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1744 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1745 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1746
1747 /* Set misc. local control, enable interrupts on attentions */
1748 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1749
1750 #ifdef notdef
1751 /* Assert GPIO pins for PHY reset */
1752 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1753 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1754 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1755 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1756 #endif
1757
1758 #if defined(not_quite_yet)
1759 /* Linux driver enables enable gpio pin #1 on 5700s */
1760 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1761 sc->bge_local_ctrl_reg |=
1762 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1763 }
1764 #endif
1765 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1766
1767 /* Turn on DMA completion state machine */
1768 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1769 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1770 }
1771
1772 /* Turn on write DMA state machine */
1773 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1774 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1775
1776 /* Turn on read DMA state machine */
1777 {
1778 uint32_t dma_read_modebits;
1779
1780 dma_read_modebits =
1781 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1782
1783 if (sc->bge_pcie && 0) {
1784 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1785 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1786 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1787 }
1788
1789 /* XXX broadcom-supplied linux driver; undocumented */
1790 if (BGE_IS_5750_OR_BEYOND(sc)) {
1791 /*
1792 * XXX: magic values.
1793 * From Broadcom-supplied Linux driver; apparently
1794 * required to workaround a DMA bug affecting TSO
1795 * on bcm575x/bcm5721?
1796 */
1797 dma_read_modebits |= (1 << 27);
1798 }
1799 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1800 }
1801
1802 /* Turn on RX data completion state machine */
1803 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1804
1805 /* Turn on RX BD initiator state machine */
1806 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1807
1808 /* Turn on RX data and RX BD initiator state machine */
1809 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1810
1811 /* Turn on Mbuf cluster free state machine */
1812 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1813 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1814 }
1815
1816 /* Turn on send BD completion state machine */
1817 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1818
1819 /* Turn on send data completion state machine */
1820 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1821
1822 /* Turn on send data initiator state machine */
1823 if (BGE_IS_5750_OR_BEYOND(sc)) {
1824 /* XXX: magic value from Linux driver */
1825 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1826 } else {
1827 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1828 }
1829
1830 /* Turn on send BD initiator state machine */
1831 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1832
1833 /* Turn on send BD selector state machine */
1834 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1835
1836 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1837 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1838 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1839
1840 /* ack/clear link change events */
1841 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1842 BGE_MACSTAT_CFG_CHANGED);
1843 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1844
1845 /* Enable PHY auto polling (for MII/GMII only) */
1846 if (sc->bge_tbi) {
1847 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1848 } else {
1849 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1850 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1851 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1852 BGE_EVTENB_MI_INTERRUPT);
1853 }
1854
1855 /* Enable link state change attentions. */
1856 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1857
1858 return(0);
1859 }
1860
1861 static const struct bge_revision {
1862 uint32_t br_chipid;
1863 uint32_t br_quirks;
1864 const char *br_name;
1865 } bge_revisions[] = {
1866 { BGE_CHIPID_BCM5700_A0,
1867 BGE_QUIRK_LINK_STATE_BROKEN,
1868 "BCM5700 A0" },
1869
1870 { BGE_CHIPID_BCM5700_A1,
1871 BGE_QUIRK_LINK_STATE_BROKEN,
1872 "BCM5700 A1" },
1873
1874 { BGE_CHIPID_BCM5700_B0,
1875 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1876 "BCM5700 B0" },
1877
1878 { BGE_CHIPID_BCM5700_B1,
1879 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1880 "BCM5700 B1" },
1881
1882 { BGE_CHIPID_BCM5700_B2,
1883 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1884 "BCM5700 B2" },
1885
1886 /* This is treated like a BCM5700 Bx */
1887 { BGE_CHIPID_BCM5700_ALTIMA,
1888 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1889 "BCM5700 Altima" },
1890
1891 { BGE_CHIPID_BCM5700_C0,
1892 0,
1893 "BCM5700 C0" },
1894
1895 { BGE_CHIPID_BCM5701_A0,
1896 0, /*XXX really, just not known */
1897 "BCM5701 A0" },
1898
1899 { BGE_CHIPID_BCM5701_B0,
1900 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1901 "BCM5701 B0" },
1902
1903 { BGE_CHIPID_BCM5701_B2,
1904 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1905 "BCM5701 B2" },
1906
1907 { BGE_CHIPID_BCM5701_B5,
1908 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1909 "BCM5701 B5" },
1910
1911 { BGE_CHIPID_BCM5703_A0,
1912 0,
1913 "BCM5703 A0" },
1914
1915 { BGE_CHIPID_BCM5703_A1,
1916 0,
1917 "BCM5703 A1" },
1918
1919 { BGE_CHIPID_BCM5703_A2,
1920 BGE_QUIRK_ONLY_PHY_1,
1921 "BCM5703 A2" },
1922
1923 { BGE_CHIPID_BCM5703_A3,
1924 BGE_QUIRK_ONLY_PHY_1,
1925 "BCM5703 A3" },
1926
1927 { BGE_CHIPID_BCM5704_A0,
1928 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1929 "BCM5704 A0" },
1930
1931 { BGE_CHIPID_BCM5704_A1,
1932 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1933 "BCM5704 A1" },
1934
1935 { BGE_CHIPID_BCM5704_A2,
1936 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1937 "BCM5704 A2" },
1938
1939 { BGE_CHIPID_BCM5704_A3,
1940 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1941 "BCM5704 A3" },
1942
1943 { BGE_CHIPID_BCM5705_A0,
1944 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1945 "BCM5705 A0" },
1946
1947 { BGE_CHIPID_BCM5705_A1,
1948 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1949 "BCM5705 A1" },
1950
1951 { BGE_CHIPID_BCM5705_A2,
1952 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1953 "BCM5705 A2" },
1954
1955 { BGE_CHIPID_BCM5705_A3,
1956 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1957 "BCM5705 A3" },
1958
1959 { BGE_CHIPID_BCM5750_A0,
1960 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1961 "BCM5750 A1" },
1962
1963 { BGE_CHIPID_BCM5750_A1,
1964 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1965 "BCM5750 A1" },
1966
1967 { BGE_CHIPID_BCM5751_A1,
1968 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1969 "BCM5751 A1" },
1970
1971 { 0, 0, NULL }
1972 };
1973
1974 /*
1975 * Some defaults for major revisions, so that newer steppings
1976 * that we don't know about have a shot at working.
1977 */
1978 static const struct bge_revision bge_majorrevs[] = {
1979 { BGE_ASICREV_BCM5700,
1980 BGE_QUIRK_LINK_STATE_BROKEN,
1981 "unknown BCM5700" },
1982
1983 { BGE_ASICREV_BCM5701,
1984 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1985 "unknown BCM5701" },
1986
1987 { BGE_ASICREV_BCM5703,
1988 0,
1989 "unknown BCM5703" },
1990
1991 { BGE_ASICREV_BCM5704,
1992 BGE_QUIRK_ONLY_PHY_1,
1993 "unknown BCM5704" },
1994
1995 { BGE_ASICREV_BCM5705,
1996 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1997 "unknown BCM5705" },
1998
1999 { BGE_ASICREV_BCM5750,
2000 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2001 "unknown BCM575x family" },
2002
2003 { BGE_ASICREV_BCM5714,
2004 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2005 "unknown BCM5714" },
2006
2007 { BGE_ASICREV_BCM5752,
2008 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2009 "unknown BCM5752 family" },
2010
2011
2012 { BGE_ASICREV_BCM5780,
2013 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2014 "unknown BCM5780" },
2015
2016 { BGE_ASICREV_BCM5715,
2017 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2018 "unknown BCM5715" },
2019
2020 { 0,
2021 0,
2022 NULL }
2023 };
2024
2025
2026 static const struct bge_revision *
2027 bge_lookup_rev(uint32_t chipid)
2028 {
2029 const struct bge_revision *br;
2030
2031 for (br = bge_revisions; br->br_name != NULL; br++) {
2032 if (br->br_chipid == chipid)
2033 return (br);
2034 }
2035
2036 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2037 if (br->br_chipid == BGE_ASICREV(chipid))
2038 return (br);
2039 }
2040
2041 return (NULL);
2042 }
2043
2044 static const struct bge_product {
2045 pci_vendor_id_t bp_vendor;
2046 pci_product_id_t bp_product;
2047 const char *bp_name;
2048 } bge_products[] = {
2049 /*
2050 * The BCM5700 documentation seems to indicate that the hardware
2051 * still has the Alteon vendor ID burned into it, though it
2052 * should always be overridden by the value in the EEPROM. We'll
2053 * check for it anyway.
2054 */
2055 { PCI_VENDOR_ALTEON,
2056 PCI_PRODUCT_ALTEON_BCM5700,
2057 "Broadcom BCM5700 Gigabit Ethernet",
2058 },
2059 { PCI_VENDOR_ALTEON,
2060 PCI_PRODUCT_ALTEON_BCM5701,
2061 "Broadcom BCM5701 Gigabit Ethernet",
2062 },
2063
2064 { PCI_VENDOR_ALTIMA,
2065 PCI_PRODUCT_ALTIMA_AC1000,
2066 "Altima AC1000 Gigabit Ethernet",
2067 },
2068 { PCI_VENDOR_ALTIMA,
2069 PCI_PRODUCT_ALTIMA_AC1001,
2070 "Altima AC1001 Gigabit Ethernet",
2071 },
2072 { PCI_VENDOR_ALTIMA,
2073 PCI_PRODUCT_ALTIMA_AC9100,
2074 "Altima AC9100 Gigabit Ethernet",
2075 },
2076
2077 { PCI_VENDOR_BROADCOM,
2078 PCI_PRODUCT_BROADCOM_BCM5700,
2079 "Broadcom BCM5700 Gigabit Ethernet",
2080 },
2081 { PCI_VENDOR_BROADCOM,
2082 PCI_PRODUCT_BROADCOM_BCM5701,
2083 "Broadcom BCM5701 Gigabit Ethernet",
2084 },
2085 { PCI_VENDOR_BROADCOM,
2086 PCI_PRODUCT_BROADCOM_BCM5702,
2087 "Broadcom BCM5702 Gigabit Ethernet",
2088 },
2089 { PCI_VENDOR_BROADCOM,
2090 PCI_PRODUCT_BROADCOM_BCM5702X,
2091 "Broadcom BCM5702X Gigabit Ethernet" },
2092
2093 { PCI_VENDOR_BROADCOM,
2094 PCI_PRODUCT_BROADCOM_BCM5703,
2095 "Broadcom BCM5703 Gigabit Ethernet",
2096 },
2097 { PCI_VENDOR_BROADCOM,
2098 PCI_PRODUCT_BROADCOM_BCM5703X,
2099 "Broadcom BCM5703X Gigabit Ethernet",
2100 },
2101 { PCI_VENDOR_BROADCOM,
2102 PCI_PRODUCT_BROADCOM_BCM5703A3,
2103 "Broadcom BCM5703A3 Gigabit Ethernet",
2104 },
2105
2106 { PCI_VENDOR_BROADCOM,
2107 PCI_PRODUCT_BROADCOM_BCM5704C,
2108 "Broadcom BCM5704C Dual Gigabit Ethernet",
2109 },
2110 { PCI_VENDOR_BROADCOM,
2111 PCI_PRODUCT_BROADCOM_BCM5704S,
2112 "Broadcom BCM5704S Dual Gigabit Ethernet",
2113 },
2114
2115 { PCI_VENDOR_BROADCOM,
2116 PCI_PRODUCT_BROADCOM_BCM5705,
2117 "Broadcom BCM5705 Gigabit Ethernet",
2118 },
2119 { PCI_VENDOR_BROADCOM,
2120 PCI_PRODUCT_BROADCOM_BCM5705K,
2121 "Broadcom BCM5705K Gigabit Ethernet",
2122 },
2123 { PCI_VENDOR_BROADCOM,
2124 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2125 "Broadcom BCM5705 Gigabit Ethernet",
2126 },
2127 { PCI_VENDOR_BROADCOM,
2128 PCI_PRODUCT_BROADCOM_BCM5705M,
2129 "Broadcom BCM5705M Gigabit Ethernet",
2130 },
2131
2132 { PCI_VENDOR_BROADCOM,
2133 PCI_PRODUCT_BROADCOM_BCM5714,
2134 "Broadcom BCM5714/5715 Gigabit Ethernet",
2135 },
2136 { PCI_VENDOR_BROADCOM,
2137 PCI_PRODUCT_BROADCOM_BCM5789,
2138 "Broadcom BCM5789 Gigabit Ethernet",
2139 },
2140
2141 { PCI_VENDOR_BROADCOM,
2142 PCI_PRODUCT_BROADCOM_BCM5721,
2143 "Broadcom BCM5721 Gigabit Ethernet",
2144 },
2145
2146 { PCI_VENDOR_BROADCOM,
2147 PCI_PRODUCT_BROADCOM_BCM5750,
2148 "Broadcom BCM5750 Gigabit Ethernet",
2149 },
2150
2151 { PCI_VENDOR_BROADCOM,
2152 PCI_PRODUCT_BROADCOM_BCM5750M,
2153 "Broadcom BCM5750M Gigabit Ethernet",
2154 },
2155
2156 { PCI_VENDOR_BROADCOM,
2157 PCI_PRODUCT_BROADCOM_BCM5751,
2158 "Broadcom BCM5751 Gigabit Ethernet",
2159 },
2160
2161 { PCI_VENDOR_BROADCOM,
2162 PCI_PRODUCT_BROADCOM_BCM5751M,
2163 "Broadcom BCM5751M Gigabit Ethernet",
2164 },
2165
2166 { PCI_VENDOR_BROADCOM,
2167 PCI_PRODUCT_BROADCOM_BCM5752,
2168 "Broadcom BCM5752 Gigabit Ethernet",
2169 },
2170
2171 { PCI_VENDOR_BROADCOM,
2172 PCI_PRODUCT_BROADCOM_BCM5780,
2173 "Broadcom BCM5780 Gigabit Ethernet",
2174 },
2175
2176 { PCI_VENDOR_BROADCOM,
2177 PCI_PRODUCT_BROADCOM_BCM5780S,
2178 "Broadcom BCM5780S Gigabit Ethernet",
2179 },
2180
2181 { PCI_VENDOR_BROADCOM,
2182 PCI_PRODUCT_BROADCOM_BCM5782,
2183 "Broadcom BCM5782 Gigabit Ethernet",
2184 },
2185
2186 { PCI_VENDOR_BROADCOM,
2187 PCI_PRODUCT_BROADCOM_BCM5788,
2188 "Broadcom BCM5788 Gigabit Ethernet",
2189 },
2190 { PCI_VENDOR_BROADCOM,
2191 PCI_PRODUCT_BROADCOM_BCM5789,
2192 "Broadcom BCM5789 Gigabit Ethernet",
2193 },
2194
2195 { PCI_VENDOR_BROADCOM,
2196 PCI_PRODUCT_BROADCOM_BCM5901,
2197 "Broadcom BCM5901 Fast Ethernet",
2198 },
2199 { PCI_VENDOR_BROADCOM,
2200 PCI_PRODUCT_BROADCOM_BCM5901A2,
2201 "Broadcom BCM5901A2 Fast Ethernet",
2202 },
2203
2204 { PCI_VENDOR_SCHNEIDERKOCH,
2205 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2206 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2207 },
2208
2209 { PCI_VENDOR_3COM,
2210 PCI_PRODUCT_3COM_3C996,
2211 "3Com 3c996 Gigabit Ethernet",
2212 },
2213
2214 { 0,
2215 0,
2216 NULL },
2217 };
2218
2219 static const struct bge_product *
2220 bge_lookup(const struct pci_attach_args *pa)
2221 {
2222 const struct bge_product *bp;
2223
2224 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2225 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2226 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2227 return (bp);
2228 }
2229
2230 return (NULL);
2231 }
2232
2233 static int
2234 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2235 {
2236 #ifdef NOTYET
2237 u_int32_t pm_ctl = 0;
2238
2239 /* XXX FIXME: make sure indirect accesses enabled? */
2240 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2241 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2242 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2243
2244 /* clear the PME_assert bit and power state bits, enable PME */
2245 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2246 pm_ctl &= ~PCIM_PSTAT_DMASK;
2247 pm_ctl |= (1 << 8);
2248
2249 if (powerlevel == 0) {
2250 pm_ctl |= PCIM_PSTAT_D0;
2251 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2252 pm_ctl, 2);
2253 DELAY(10000);
2254 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2255 DELAY(10000);
2256
2257 #ifdef NOTYET
2258 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2259 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2260 #endif
2261 DELAY(40); DELAY(40); DELAY(40);
2262 DELAY(10000); /* above not quite adequate on 5700 */
2263 return 0;
2264 }
2265
2266
2267 /*
2268 * Entering ACPI power states D1-D3 is achieved by wiggling
2269 * GMII gpio pins. Example code assumes all hardware vendors
2270 * followed Broadom's sample pcb layout. Until we verify that
2271 * for all supported OEM cards, states D1-D3 are unsupported.
2272 */
2273 printf("%s: power state %d unimplemented; check GPIO pins\n",
2274 sc->bge_dev.dv_xname, powerlevel);
2275 #endif
2276 return EOPNOTSUPP;
2277 }
2278
2279
2280 /*
2281 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2282 * against our list and return its name if we find a match. Note
2283 * that since the Broadcom controller contains VPD support, we
2284 * can get the device name string from the controller itself instead
2285 * of the compiled-in string. This is a little slow, but it guarantees
2286 * we'll always announce the right product name.
2287 */
2288 static int
2289 bge_probe(device_t parent, cfdata_t match, void *aux)
2290 {
2291 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2292
2293 if (bge_lookup(pa) != NULL)
2294 return (1);
2295
2296 return (0);
2297 }
2298
2299 static void
2300 bge_attach(device_t parent, device_t self, void *aux)
2301 {
2302 struct bge_softc *sc = (struct bge_softc *)self;
2303 struct pci_attach_args *pa = aux;
2304 const struct bge_product *bp;
2305 const struct bge_revision *br;
2306 pci_chipset_tag_t pc = pa->pa_pc;
2307 pci_intr_handle_t ih;
2308 const char *intrstr = NULL;
2309 bus_dma_segment_t seg;
2310 int rseg;
2311 u_int32_t hwcfg = 0;
2312 u_int32_t mac_addr = 0;
2313 u_int32_t command;
2314 struct ifnet *ifp;
2315 caddr_t kva;
2316 u_char eaddr[ETHER_ADDR_LEN];
2317 pcireg_t memtype;
2318 bus_addr_t memaddr;
2319 bus_size_t memsize;
2320 u_int32_t pm_ctl;
2321
2322 bp = bge_lookup(pa);
2323 KASSERT(bp != NULL);
2324
2325 sc->bge_pa = *pa;
2326
2327 aprint_naive(": Ethernet controller\n");
2328 aprint_normal(": %s\n", bp->bp_name);
2329
2330 /*
2331 * Map control/status registers.
2332 */
2333 DPRINTFN(5, ("Map control/status regs\n"));
2334 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2335 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2336 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2337 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2338
2339 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2340 aprint_error("%s: failed to enable memory mapping!\n",
2341 sc->bge_dev.dv_xname);
2342 return;
2343 }
2344
2345 DPRINTFN(5, ("pci_mem_find\n"));
2346 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2347 switch (memtype) {
2348 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2349 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2350 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2351 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2352 &memaddr, &memsize) == 0)
2353 break;
2354 default:
2355 aprint_error("%s: can't find mem space\n",
2356 sc->bge_dev.dv_xname);
2357 return;
2358 }
2359
2360 DPRINTFN(5, ("pci_intr_map\n"));
2361 if (pci_intr_map(pa, &ih)) {
2362 aprint_error("%s: couldn't map interrupt\n",
2363 sc->bge_dev.dv_xname);
2364 return;
2365 }
2366
2367 DPRINTFN(5, ("pci_intr_string\n"));
2368 intrstr = pci_intr_string(pc, ih);
2369
2370 DPRINTFN(5, ("pci_intr_establish\n"));
2371 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2372
2373 if (sc->bge_intrhand == NULL) {
2374 aprint_error("%s: couldn't establish interrupt",
2375 sc->bge_dev.dv_xname);
2376 if (intrstr != NULL)
2377 aprint_normal(" at %s", intrstr);
2378 aprint_normal("\n");
2379 return;
2380 }
2381 aprint_normal("%s: interrupting at %s\n",
2382 sc->bge_dev.dv_xname, intrstr);
2383
2384 /*
2385 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2386 * can clobber the chip's PCI config-space power control registers,
2387 * leaving the card in D3 powersave state.
2388 * We do not have memory-mapped registers in this state,
2389 * so force device into D0 state before starting initialization.
2390 */
2391 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2392 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2393 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2394 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2395 DELAY(1000); /* 27 usec is allegedly sufficent */
2396
2397 /*
2398 * Save ASIC rev. Look up any quirks associated with this
2399 * ASIC.
2400 */
2401 sc->bge_chipid =
2402 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2403 BGE_PCIMISCCTL_ASICREV;
2404
2405 /*
2406 * Detect PCI-Express devices
2407 * XXX: guessed from Linux/FreeBSD; no documentation
2408 */
2409 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2410 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2411 NULL, NULL) != 0)
2412 sc->bge_pcie = 1;
2413 else
2414 sc->bge_pcie = 0;
2415
2416 /* Try to reset the chip. */
2417 DPRINTFN(5, ("bge_reset\n"));
2418 bge_reset(sc);
2419
2420 if (bge_chipinit(sc)) {
2421 aprint_error("%s: chip initialization failed\n",
2422 sc->bge_dev.dv_xname);
2423 bge_release_resources(sc);
2424 return;
2425 }
2426
2427 /*
2428 * Get station address from the EEPROM.
2429 */
2430 mac_addr = bge_readmem_ind(sc, 0x0c14);
2431 if ((mac_addr >> 16) == 0x484b) {
2432 eaddr[0] = (u_char)(mac_addr >> 8);
2433 eaddr[1] = (u_char)(mac_addr >> 0);
2434 mac_addr = bge_readmem_ind(sc, 0x0c18);
2435 eaddr[2] = (u_char)(mac_addr >> 24);
2436 eaddr[3] = (u_char)(mac_addr >> 16);
2437 eaddr[4] = (u_char)(mac_addr >> 8);
2438 eaddr[5] = (u_char)(mac_addr >> 0);
2439 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2440 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2441 aprint_error("%s: failed to read station address\n",
2442 sc->bge_dev.dv_xname);
2443 bge_release_resources(sc);
2444 return;
2445 }
2446
2447 br = bge_lookup_rev(sc->bge_chipid);
2448 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2449
2450 if (br == NULL) {
2451 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2452 sc->bge_quirks = 0;
2453 } else {
2454 aprint_normal("ASIC %s (0x%04x)",
2455 br->br_name, sc->bge_chipid >> 16);
2456 sc->bge_quirks |= br->br_quirks;
2457 }
2458 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2459
2460 /* Allocate the general information block and ring buffers. */
2461 if (pci_dma64_available(pa))
2462 sc->bge_dmatag = pa->pa_dmat64;
2463 else
2464 sc->bge_dmatag = pa->pa_dmat;
2465 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2466 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2467 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2468 aprint_error("%s: can't alloc rx buffers\n",
2469 sc->bge_dev.dv_xname);
2470 return;
2471 }
2472 DPRINTFN(5, ("bus_dmamem_map\n"));
2473 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2474 sizeof(struct bge_ring_data), &kva,
2475 BUS_DMA_NOWAIT)) {
2476 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2477 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2478 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2479 return;
2480 }
2481 DPRINTFN(5, ("bus_dmamem_create\n"));
2482 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2483 sizeof(struct bge_ring_data), 0,
2484 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2485 aprint_error("%s: can't create DMA map\n",
2486 sc->bge_dev.dv_xname);
2487 bus_dmamem_unmap(sc->bge_dmatag, kva,
2488 sizeof(struct bge_ring_data));
2489 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2490 return;
2491 }
2492 DPRINTFN(5, ("bus_dmamem_load\n"));
2493 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2494 sizeof(struct bge_ring_data), NULL,
2495 BUS_DMA_NOWAIT)) {
2496 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2497 bus_dmamem_unmap(sc->bge_dmatag, kva,
2498 sizeof(struct bge_ring_data));
2499 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2500 return;
2501 }
2502
2503 DPRINTFN(5, ("bzero\n"));
2504 sc->bge_rdata = (struct bge_ring_data *)kva;
2505
2506 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2507
2508 /* Try to allocate memory for jumbo buffers. */
2509 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2510 if (bge_alloc_jumbo_mem(sc)) {
2511 aprint_error("%s: jumbo buffer allocation failed\n",
2512 sc->bge_dev.dv_xname);
2513 } else
2514 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2515 }
2516
2517 /* Set default tuneable values. */
2518 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2519 sc->bge_rx_coal_ticks = 150;
2520 sc->bge_rx_max_coal_bds = 64;
2521 #ifdef ORIG_WPAUL_VALUES
2522 sc->bge_tx_coal_ticks = 150;
2523 sc->bge_tx_max_coal_bds = 128;
2524 #else
2525 sc->bge_tx_coal_ticks = 300;
2526 sc->bge_tx_max_coal_bds = 400;
2527 #endif
2528 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2529 sc->bge_tx_coal_ticks = (12 * 5);
2530 sc->bge_rx_max_coal_bds = (12 * 5);
2531 aprint_error("%s: setting short Tx thresholds\n",
2532 sc->bge_dev.dv_xname);
2533 }
2534
2535 /* Set up ifnet structure */
2536 ifp = &sc->ethercom.ec_if;
2537 ifp->if_softc = sc;
2538 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2539 ifp->if_ioctl = bge_ioctl;
2540 ifp->if_start = bge_start;
2541 ifp->if_init = bge_init;
2542 ifp->if_watchdog = bge_watchdog;
2543 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2544 IFQ_SET_READY(&ifp->if_snd);
2545 DPRINTFN(5, ("bcopy\n"));
2546 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2547
2548 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2549 sc->ethercom.ec_if.if_capabilities |=
2550 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2551 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2552 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2553 sc->ethercom.ec_capabilities |=
2554 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2555
2556 if (sc->bge_pcie)
2557 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2558
2559 /*
2560 * Do MII setup.
2561 */
2562 DPRINTFN(5, ("mii setup\n"));
2563 sc->bge_mii.mii_ifp = ifp;
2564 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2565 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2566 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2567
2568 /*
2569 * Figure out what sort of media we have by checking the
2570 * hardware config word in the first 32k of NIC internal memory,
2571 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2572 * cards, this value appears to be unset. If that's the
2573 * case, we have to rely on identifying the NIC by its PCI
2574 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2575 */
2576 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2577 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2578 } else {
2579 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2580 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2581 hwcfg = be32toh(hwcfg);
2582 }
2583 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2584 sc->bge_tbi = 1;
2585
2586 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2587 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2588 SK_SUBSYSID_9D41)
2589 sc->bge_tbi = 1;
2590
2591 if (sc->bge_tbi) {
2592 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2593 bge_ifmedia_sts);
2594 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2595 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2596 0, NULL);
2597 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2598 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2599 } else {
2600 /*
2601 * Do transceiver setup.
2602 */
2603 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2604 bge_ifmedia_sts);
2605 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2606 MII_PHY_ANY, MII_OFFSET_ANY,
2607 MIIF_FORCEANEG|MIIF_DOPAUSE);
2608
2609 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2610 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2611 ifmedia_add(&sc->bge_mii.mii_media,
2612 IFM_ETHER|IFM_MANUAL, 0, NULL);
2613 ifmedia_set(&sc->bge_mii.mii_media,
2614 IFM_ETHER|IFM_MANUAL);
2615 } else
2616 ifmedia_set(&sc->bge_mii.mii_media,
2617 IFM_ETHER|IFM_AUTO);
2618 }
2619
2620 /*
2621 * When using the BCM5701 in PCI-X mode, data corruption has
2622 * been observed in the first few bytes of some received packets.
2623 * Aligning the packet buffer in memory eliminates the corruption.
2624 * Unfortunately, this misaligns the packet payloads. On platforms
2625 * which do not support unaligned accesses, we will realign the
2626 * payloads by copying the received packets.
2627 */
2628 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2629 /* If in PCI-X mode, work around the alignment bug. */
2630 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2631 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2632 BGE_PCISTATE_PCI_BUSSPEED)
2633 sc->bge_rx_alignment_bug = 1;
2634 }
2635
2636 /*
2637 * Call MI attach routine.
2638 */
2639 DPRINTFN(5, ("if_attach\n"));
2640 if_attach(ifp);
2641 DPRINTFN(5, ("ether_ifattach\n"));
2642 ether_ifattach(ifp, eaddr);
2643 #ifdef BGE_EVENT_COUNTERS
2644 /*
2645 * Attach event counters.
2646 */
2647 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2648 NULL, sc->bge_dev.dv_xname, "intr");
2649 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2650 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2651 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2652 NULL, sc->bge_dev.dv_xname, "tx_xon");
2653 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2654 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2655 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2656 NULL, sc->bge_dev.dv_xname, "rx_xon");
2657 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2658 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2659 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2660 NULL, sc->bge_dev.dv_xname, "xoffentered");
2661 #endif /* BGE_EVENT_COUNTERS */
2662 DPRINTFN(5, ("callout_init\n"));
2663 callout_init(&sc->bge_timeout);
2664
2665 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2666 if (sc->bge_powerhook == NULL)
2667 printf("%s: WARNING: unable to establish PCI power hook\n",
2668 sc->bge_dev.dv_xname);
2669 }
2670
2671 static void
2672 bge_release_resources(struct bge_softc *sc)
2673 {
2674 if (sc->bge_vpd_prodname != NULL)
2675 free(sc->bge_vpd_prodname, M_DEVBUF);
2676
2677 if (sc->bge_vpd_readonly != NULL)
2678 free(sc->bge_vpd_readonly, M_DEVBUF);
2679 }
2680
2681 static void
2682 bge_reset(struct bge_softc *sc)
2683 {
2684 struct pci_attach_args *pa = &sc->bge_pa;
2685 u_int32_t cachesize, command, pcistate, new_pcistate;
2686 int i, val;
2687
2688 /* Save some important PCI state. */
2689 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2690 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2691 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2692
2693 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2694 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2695 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2696
2697 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2698 /*
2699 * XXX: from FreeBSD/Linux; no documentation
2700 */
2701 if (sc->bge_pcie) {
2702 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2703 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2704 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2705 /* No idea what that actually means */
2706 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2707 val |= (1<<29);
2708 }
2709 }
2710
2711 /* Issue global reset */
2712 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2713
2714 DELAY(1000);
2715
2716 /*
2717 * XXX: from FreeBSD/Linux; no documentation
2718 */
2719 if (sc->bge_pcie) {
2720 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2721 pcireg_t reg;
2722
2723 DELAY(500000);
2724 /* XXX: Magic Numbers */
2725 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2726 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2727 reg | (1 << 15));
2728 }
2729 /*
2730 * XXX: Magic Numbers.
2731 * Sets maximal PCI-e payload and clears any PCI-e errors.
2732 * Should be replaced with references to PCI config-space
2733 * capability block for PCI-Express.
2734 */
2735 pci_conf_write(pa->pa_pc, pa->pa_tag,
2736 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2737
2738 }
2739
2740 /* Reset some of the PCI state that got zapped by reset */
2741 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2742 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2743 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2744 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2745 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2746 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2747
2748 /* Enable memory arbiter. */
2749 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2750 uint32_t marbmode = 0;
2751 if (BGE_IS_5714_FAMILY(sc)) {
2752 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2753 }
2754 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2755 }
2756
2757 /*
2758 * Prevent PXE restart: write a magic number to the
2759 * general communications memory at 0xB50.
2760 */
2761 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2762
2763 /*
2764 * Poll the value location we just wrote until
2765 * we see the 1's complement of the magic number.
2766 * This indicates that the firmware initialization
2767 * is complete.
2768 */
2769 for (i = 0; i < BGE_TIMEOUT; i++) {
2770 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2771 if (val == ~BGE_MAGIC_NUMBER)
2772 break;
2773 DELAY(1000);
2774 }
2775
2776 if (i >= BGE_TIMEOUT) {
2777 printf("%s: firmware handshake timed out, val = %x\n",
2778 sc->bge_dev.dv_xname, val);
2779 /*
2780 * XXX: occasionally fired on bcm5721, but without
2781 * apparent harm. For now, keep going if we timeout
2782 * against PCI-E devices.
2783 */
2784 if (!sc->bge_pcie)
2785 return;
2786 }
2787
2788 /*
2789 * XXX Wait for the value of the PCISTATE register to
2790 * return to its original pre-reset state. This is a
2791 * fairly good indicator of reset completion. If we don't
2792 * wait for the reset to fully complete, trying to read
2793 * from the device's non-PCI registers may yield garbage
2794 * results.
2795 */
2796 for (i = 0; i < BGE_TIMEOUT; i++) {
2797 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2798 BGE_PCI_PCISTATE);
2799 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2800 (pcistate & ~BGE_PCISTATE_RESERVED))
2801 break;
2802 DELAY(10);
2803 }
2804 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2805 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2806 printf("%s: pcistate failed to revert\n",
2807 sc->bge_dev.dv_xname);
2808 }
2809
2810 /* XXX: from FreeBSD/Linux; no documentation */
2811 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2812 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2813
2814 /* Enable memory arbiter. */
2815 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2816 uint32_t marbmode = 0;
2817 if (BGE_IS_5714_FAMILY(sc)) {
2818 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2819 }
2820 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2821 }
2822
2823 /* Fix up byte swapping */
2824 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2825
2826 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2827
2828 DELAY(10000);
2829 }
2830
2831 /*
2832 * Frame reception handling. This is called if there's a frame
2833 * on the receive return list.
2834 *
2835 * Note: we have to be able to handle two possibilities here:
2836 * 1) the frame is from the jumbo recieve ring
2837 * 2) the frame is from the standard receive ring
2838 */
2839
2840 static void
2841 bge_rxeof(struct bge_softc *sc)
2842 {
2843 struct ifnet *ifp;
2844 int stdcnt = 0, jumbocnt = 0;
2845 bus_dmamap_t dmamap;
2846 bus_addr_t offset, toff;
2847 bus_size_t tlen;
2848 int tosync;
2849
2850 ifp = &sc->ethercom.ec_if;
2851
2852 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2853 offsetof(struct bge_ring_data, bge_status_block),
2854 sizeof (struct bge_status_block),
2855 BUS_DMASYNC_POSTREAD);
2856
2857 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2858 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2859 sc->bge_rx_saved_considx;
2860
2861 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2862
2863 if (tosync < 0) {
2864 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2865 sizeof (struct bge_rx_bd);
2866 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2867 toff, tlen, BUS_DMASYNC_POSTREAD);
2868 tosync = -tosync;
2869 }
2870
2871 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2872 offset, tosync * sizeof (struct bge_rx_bd),
2873 BUS_DMASYNC_POSTREAD);
2874
2875 while(sc->bge_rx_saved_considx !=
2876 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2877 struct bge_rx_bd *cur_rx;
2878 u_int32_t rxidx;
2879 struct mbuf *m = NULL;
2880
2881 cur_rx = &sc->bge_rdata->
2882 bge_rx_return_ring[sc->bge_rx_saved_considx];
2883
2884 rxidx = cur_rx->bge_idx;
2885 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2886
2887 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2888 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2889 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2890 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2891 jumbocnt++;
2892 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2893 ifp->if_ierrors++;
2894 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2895 continue;
2896 }
2897 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2898 NULL)== ENOBUFS) {
2899 ifp->if_ierrors++;
2900 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2901 continue;
2902 }
2903 } else {
2904 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2905 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2906 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2907 stdcnt++;
2908 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2909 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2910 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2911 ifp->if_ierrors++;
2912 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2913 continue;
2914 }
2915 if (bge_newbuf_std(sc, sc->bge_std,
2916 NULL, dmamap) == ENOBUFS) {
2917 ifp->if_ierrors++;
2918 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2919 continue;
2920 }
2921 }
2922
2923 ifp->if_ipackets++;
2924 #ifndef __NO_STRICT_ALIGNMENT
2925 /*
2926 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2927 * the Rx buffer has the layer-2 header unaligned.
2928 * If our CPU requires alignment, re-align by copying.
2929 */
2930 if (sc->bge_rx_alignment_bug) {
2931 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2932 cur_rx->bge_len);
2933 m->m_data += ETHER_ALIGN;
2934 }
2935 #endif
2936
2937 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2938 m->m_pkthdr.rcvif = ifp;
2939
2940 #if NBPFILTER > 0
2941 /*
2942 * Handle BPF listeners. Let the BPF user see the packet.
2943 */
2944 if (ifp->if_bpf)
2945 bpf_mtap(ifp->if_bpf, m);
2946 #endif
2947
2948 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2949
2950 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2951 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2952 /*
2953 * Rx transport checksum-offload may also
2954 * have bugs with packets which, when transmitted,
2955 * were `runts' requiring padding.
2956 */
2957 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2958 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2959 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2960 m->m_pkthdr.csum_data =
2961 cur_rx->bge_tcp_udp_csum;
2962 m->m_pkthdr.csum_flags |=
2963 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2964 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2965 }
2966
2967 /*
2968 * If we received a packet with a vlan tag, pass it
2969 * to vlan_input() instead of ether_input().
2970 */
2971 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
2972 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2973
2974 (*ifp->if_input)(ifp, m);
2975 }
2976
2977 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2978 if (stdcnt)
2979 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2980 if (jumbocnt)
2981 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2982 }
2983
2984 static void
2985 bge_txeof(struct bge_softc *sc)
2986 {
2987 struct bge_tx_bd *cur_tx = NULL;
2988 struct ifnet *ifp;
2989 struct txdmamap_pool_entry *dma;
2990 bus_addr_t offset, toff;
2991 bus_size_t tlen;
2992 int tosync;
2993 struct mbuf *m;
2994
2995 ifp = &sc->ethercom.ec_if;
2996
2997 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2998 offsetof(struct bge_ring_data, bge_status_block),
2999 sizeof (struct bge_status_block),
3000 BUS_DMASYNC_POSTREAD);
3001
3002 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3003 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3004 sc->bge_tx_saved_considx;
3005
3006 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3007
3008 if (tosync < 0) {
3009 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3010 sizeof (struct bge_tx_bd);
3011 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3012 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3013 tosync = -tosync;
3014 }
3015
3016 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3017 offset, tosync * sizeof (struct bge_tx_bd),
3018 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3019
3020 /*
3021 * Go through our tx ring and free mbufs for those
3022 * frames that have been sent.
3023 */
3024 while (sc->bge_tx_saved_considx !=
3025 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3026 u_int32_t idx = 0;
3027
3028 idx = sc->bge_tx_saved_considx;
3029 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3030 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3031 ifp->if_opackets++;
3032 m = sc->bge_cdata.bge_tx_chain[idx];
3033 if (m != NULL) {
3034 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3035 dma = sc->txdma[idx];
3036 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3037 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3038 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3039 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3040 sc->txdma[idx] = NULL;
3041
3042 m_freem(m);
3043 }
3044 sc->bge_txcnt--;
3045 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3046 ifp->if_timer = 0;
3047 }
3048
3049 if (cur_tx != NULL)
3050 ifp->if_flags &= ~IFF_OACTIVE;
3051 }
3052
3053 static int
3054 bge_intr(void *xsc)
3055 {
3056 struct bge_softc *sc;
3057 struct ifnet *ifp;
3058
3059 sc = xsc;
3060 ifp = &sc->ethercom.ec_if;
3061
3062 #ifdef notdef
3063 /* Avoid this for now -- checking this register is expensive. */
3064 /* Make sure this is really our interrupt. */
3065 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
3066 return (0);
3067 #endif
3068 /* Ack interrupt and stop others from occuring. */
3069 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3070
3071 BGE_EVCNT_INCR(sc->bge_ev_intr);
3072
3073 /*
3074 * Process link state changes.
3075 * Grrr. The link status word in the status block does
3076 * not work correctly on the BCM5700 rev AX and BX chips,
3077 * according to all available information. Hence, we have
3078 * to enable MII interrupts in order to properly obtain
3079 * async link changes. Unfortunately, this also means that
3080 * we have to read the MAC status register to detect link
3081 * changes, thereby adding an additional register access to
3082 * the interrupt handler.
3083 */
3084
3085 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3086 u_int32_t status;
3087
3088 status = CSR_READ_4(sc, BGE_MAC_STS);
3089 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3090 sc->bge_link = 0;
3091 callout_stop(&sc->bge_timeout);
3092 bge_tick(sc);
3093 /* Clear the interrupt */
3094 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3095 BGE_EVTENB_MI_INTERRUPT);
3096 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3097 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3098 BRGPHY_INTRS);
3099 }
3100 } else {
3101 if (sc->bge_rdata->bge_status_block.bge_status &
3102 BGE_STATFLAG_LINKSTATE_CHANGED) {
3103 sc->bge_link = 0;
3104 callout_stop(&sc->bge_timeout);
3105 bge_tick(sc);
3106 /* Clear the interrupt */
3107 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3108 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3109 BGE_MACSTAT_LINK_CHANGED);
3110 }
3111 }
3112
3113 if (ifp->if_flags & IFF_RUNNING) {
3114 /* Check RX return ring producer/consumer */
3115 bge_rxeof(sc);
3116
3117 /* Check TX ring producer/consumer */
3118 bge_txeof(sc);
3119 }
3120
3121 if (sc->bge_pending_rxintr_change) {
3122 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3123 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3124 uint32_t junk;
3125
3126 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3127 DELAY(10);
3128 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3129
3130 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3131 DELAY(10);
3132 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3133
3134 sc->bge_pending_rxintr_change = 0;
3135 }
3136 bge_handle_events(sc);
3137
3138 /* Re-enable interrupts. */
3139 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3140
3141 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3142 bge_start(ifp);
3143
3144 return (1);
3145 }
3146
3147 static void
3148 bge_tick(void *xsc)
3149 {
3150 struct bge_softc *sc = xsc;
3151 struct mii_data *mii = &sc->bge_mii;
3152 struct ifmedia *ifm = NULL;
3153 struct ifnet *ifp = &sc->ethercom.ec_if;
3154 int s;
3155
3156 s = splnet();
3157
3158 bge_stats_update(sc);
3159 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3160 if (sc->bge_link) {
3161 splx(s);
3162 return;
3163 }
3164
3165 if (sc->bge_tbi) {
3166 ifm = &sc->bge_ifmedia;
3167 if (CSR_READ_4(sc, BGE_MAC_STS) &
3168 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3169 sc->bge_link++;
3170 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3171 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3172 bge_start(ifp);
3173 }
3174 splx(s);
3175 return;
3176 }
3177
3178 mii_tick(mii);
3179
3180 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3181 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3182 sc->bge_link++;
3183 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3184 bge_start(ifp);
3185 }
3186
3187 splx(s);
3188 }
3189
3190 static void
3191 bge_stats_update(struct bge_softc *sc)
3192 {
3193 struct ifnet *ifp = &sc->ethercom.ec_if;
3194 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3195 bus_size_t rstats = BGE_RX_STATS;
3196
3197 #define READ_RSTAT(sc, stats, stat) \
3198 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3199
3200 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3201 ifp->if_collisions +=
3202 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3203 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3204 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3205 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3206
3207 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3208 READ_RSTAT(sc, rstats, outXoffSent));
3209 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3210 READ_RSTAT(sc, rstats, outXonSent));
3211 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3212 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3213 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3214 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3215 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3216 READ_RSTAT(sc, rstats, macControlFramesReceived));
3217 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3218 READ_RSTAT(sc, rstats, xoffStateEntered));
3219 return;
3220 }
3221
3222 #undef READ_RSTAT
3223 #define READ_STAT(sc, stats, stat) \
3224 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3225
3226 ifp->if_collisions +=
3227 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3228 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3229 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3230 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3231 ifp->if_collisions;
3232
3233 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3234 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3235 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3236 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3237 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3238 READ_STAT(sc, stats,
3239 xoffPauseFramesReceived.bge_addr_lo));
3240 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3241 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3242 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3243 READ_STAT(sc, stats,
3244 macControlFramesReceived.bge_addr_lo));
3245 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3246 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3247
3248 #undef READ_STAT
3249
3250 #ifdef notdef
3251 ifp->if_collisions +=
3252 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3253 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3254 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3255 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3256 ifp->if_collisions;
3257 #endif
3258 }
3259
3260 /*
3261 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3262 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3263 * but when such padded frames employ the bge IP/TCP checksum offload,
3264 * the hardware checksum assist gives incorrect results (possibly
3265 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3266 * If we pad such runts with zeros, the onboard checksum comes out correct.
3267 */
3268 static inline int
3269 bge_cksum_pad(struct mbuf *pkt)
3270 {
3271 struct mbuf *last = NULL;
3272 int padlen;
3273
3274 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3275
3276 /* if there's only the packet-header and we can pad there, use it. */
3277 if (pkt->m_pkthdr.len == pkt->m_len &&
3278 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3279 last = pkt;
3280 } else {
3281 /*
3282 * Walk packet chain to find last mbuf. We will either
3283 * pad there, or append a new mbuf and pad it
3284 * (thus perhaps avoiding the bcm5700 dma-min bug).
3285 */
3286 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3287 (void) 0; /* do nothing*/
3288 }
3289
3290 /* `last' now points to last in chain. */
3291 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3292 (void) 0; /* we can pad here, in-place. */
3293 } else {
3294 /* Allocate new empty mbuf, pad it. Compact later. */
3295 struct mbuf *n;
3296 MGET(n, M_DONTWAIT, MT_DATA);
3297 n->m_len = 0;
3298 last->m_next = n;
3299 last = n;
3300 }
3301 }
3302
3303 #ifdef DEBUG
3304 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3305 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3306 #endif
3307 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3308 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3309 last->m_len += padlen;
3310 pkt->m_pkthdr.len += padlen;
3311 return 0;
3312 }
3313
3314 /*
3315 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3316 */
3317 static inline int
3318 bge_compact_dma_runt(struct mbuf *pkt)
3319 {
3320 struct mbuf *m, *prev;
3321 int totlen, prevlen;
3322
3323 prev = NULL;
3324 totlen = 0;
3325 prevlen = -1;
3326
3327 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3328 int mlen = m->m_len;
3329 int shortfall = 8 - mlen ;
3330
3331 totlen += mlen;
3332 if (mlen == 0) {
3333 continue;
3334 }
3335 if (mlen >= 8)
3336 continue;
3337
3338 /* If we get here, mbuf data is too small for DMA engine.
3339 * Try to fix by shuffling data to prev or next in chain.
3340 * If that fails, do a compacting deep-copy of the whole chain.
3341 */
3342
3343 /* Internal frag. If fits in prev, copy it there. */
3344 if (prev && !M_READONLY(prev) &&
3345 M_TRAILINGSPACE(prev) >= m->m_len) {
3346 bcopy(m->m_data,
3347 prev->m_data+prev->m_len,
3348 mlen);
3349 prev->m_len += mlen;
3350 m->m_len = 0;
3351 /* XXX stitch chain */
3352 prev->m_next = m_free(m);
3353 m = prev;
3354 continue;
3355 }
3356 else if (m->m_next != NULL && !M_READONLY(m) &&
3357 M_TRAILINGSPACE(m) >= shortfall &&
3358 m->m_next->m_len >= (8 + shortfall)) {
3359 /* m is writable and have enough data in next, pull up. */
3360
3361 bcopy(m->m_next->m_data,
3362 m->m_data+m->m_len,
3363 shortfall);
3364 m->m_len += shortfall;
3365 m->m_next->m_len -= shortfall;
3366 m->m_next->m_data += shortfall;
3367 }
3368 else if (m->m_next == NULL || 1) {
3369 /* Got a runt at the very end of the packet.
3370 * borrow data from the tail of the preceding mbuf and
3371 * update its length in-place. (The original data is still
3372 * valid, so we can do this even if prev is not writable.)
3373 */
3374
3375 /* if we'd make prev a runt, just move all of its data. */
3376 #ifdef DEBUG
3377 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3378 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3379 #endif
3380 if ((prev->m_len - shortfall) < 8)
3381 shortfall = prev->m_len;
3382
3383 #ifdef notyet /* just do the safe slow thing for now */
3384 if (!M_READONLY(m)) {
3385 if (M_LEADINGSPACE(m) < shorfall) {
3386 void *m_dat;
3387 m_dat = (m->m_flags & M_PKTHDR) ?
3388 m->m_pktdat : m->dat;
3389 memmove(m_dat, mtod(m, void*), m->m_len);
3390 m->m_data = m_dat;
3391 }
3392 } else
3393 #endif /* just do the safe slow thing */
3394 {
3395 struct mbuf * n = NULL;
3396 int newprevlen = prev->m_len - shortfall;
3397
3398 MGET(n, M_NOWAIT, MT_DATA);
3399 if (n == NULL)
3400 return ENOBUFS;
3401 KASSERT(m->m_len + shortfall < MLEN
3402 /*,
3403 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3404
3405 /* first copy the data we're stealing from prev */
3406 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3407
3408 /* update prev->m_len accordingly */
3409 prev->m_len -= shortfall;
3410
3411 /* copy data from runt m */
3412 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3413
3414 /* n holds what we stole from prev, plus m */
3415 n->m_len = shortfall + m->m_len;
3416
3417 /* stitch n into chain and free m */
3418 n->m_next = m->m_next;
3419 prev->m_next = n;
3420 /* KASSERT(m->m_next == NULL); */
3421 m->m_next = NULL;
3422 m_free(m);
3423 m = n; /* for continuing loop */
3424 }
3425 }
3426 prevlen = m->m_len;
3427 }
3428 return 0;
3429 }
3430
3431 /*
3432 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3433 * pointers to descriptors.
3434 */
3435 static int
3436 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3437 {
3438 struct bge_tx_bd *f = NULL;
3439 u_int32_t frag, cur, cnt = 0;
3440 u_int16_t csum_flags = 0;
3441 u_int16_t txbd_tso_flags = 0;
3442 struct txdmamap_pool_entry *dma;
3443 bus_dmamap_t dmamap;
3444 int i = 0;
3445 struct m_tag *mtag;
3446 int use_tso, maxsegsize, error;
3447
3448 cur = frag = *txidx;
3449
3450 if (m_head->m_pkthdr.csum_flags) {
3451 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3452 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3453 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3454 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3455 }
3456
3457 /*
3458 * If we were asked to do an outboard checksum, and the NIC
3459 * has the bug where it sometimes adds in the Ethernet padding,
3460 * explicitly pad with zeros so the cksum will be correct either way.
3461 * (For now, do this for all chip versions, until newer
3462 * are confirmed to not require the workaround.)
3463 */
3464 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3465 #ifdef notyet
3466 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3467 #endif
3468 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3469 goto check_dma_bug;
3470
3471 if (bge_cksum_pad(m_head) != 0) {
3472 return ENOBUFS;
3473 }
3474
3475 check_dma_bug:
3476 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3477 goto doit;
3478 /*
3479 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3480 * less than eight bytes. If we encounter a teeny mbuf
3481 * at the end of a chain, we can pad. Otherwise, copy.
3482 */
3483 if (bge_compact_dma_runt(m_head) != 0)
3484 return ENOBUFS;
3485
3486 doit:
3487 dma = SLIST_FIRST(&sc->txdma_list);
3488 if (dma == NULL)
3489 return ENOBUFS;
3490 dmamap = dma->dmamap;
3491
3492 /*
3493 * Set up any necessary TSO state before we start packing...
3494 */
3495 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3496 if (!use_tso) {
3497 maxsegsize = 0;
3498 } else { /* TSO setup */
3499 unsigned mss;
3500 struct ether_header *eh;
3501 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3502 struct mbuf * m0 = m_head;
3503 struct ip *ip;
3504 struct tcphdr *th;
3505 int iphl, hlen;
3506
3507 /*
3508 * XXX It would be nice if the mbuf pkthdr had offset
3509 * fields for the protocol headers.
3510 */
3511
3512 eh = mtod(m0, struct ether_header *);
3513 switch (htons(eh->ether_type)) {
3514 case ETHERTYPE_IP:
3515 offset = ETHER_HDR_LEN;
3516 break;
3517
3518 case ETHERTYPE_VLAN:
3519 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3520 break;
3521
3522 default:
3523 /*
3524 * Don't support this protocol or encapsulation.
3525 */
3526 return (ENOBUFS);
3527 }
3528
3529 /*
3530 * TCP/IP headers are in the first mbuf; we can do
3531 * this the easy way.
3532 */
3533 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3534 hlen = iphl + offset;
3535 if (__predict_false(m0->m_len <
3536 (hlen + sizeof(struct tcphdr)))) {
3537
3538 printf("TSO: hard case m0->m_len == %d <"
3539 " ip/tcp hlen %zd, not handled yet\n",
3540 m0->m_len, hlen+ sizeof(struct tcphdr));
3541 #ifdef NOTYET
3542 /*
3543 * XXX jonathan (at) NetBSD.org: untested.
3544 * how to force this branch to be taken?
3545 */
3546 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3547
3548 m_copydata(m0, offset, sizeof(ip), &ip);
3549 m_copydata(m0, hlen, sizeof(th), &th);
3550
3551 ip.ip_len = 0;
3552
3553 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3554 sizeof(ip.ip_len), &ip.ip_len);
3555
3556 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3557 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3558
3559 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3560 sizeof(th.th_sum), &th.th_sum);
3561
3562 hlen += th.th_off << 2;
3563 iptcp_opt_words = hlen;
3564 #else
3565 /*
3566 * if_wm "hard" case not yet supported, can we not
3567 * mandate it out of existence?
3568 */
3569 (void) ip; (void)th; (void) ip_tcp_hlen;
3570
3571 return ENOBUFS;
3572 #endif
3573 } else {
3574 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
3575 th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
3576 ip_tcp_hlen = iphl + (th->th_off << 2);
3577
3578 /* Total IP/TCP options, in 32-bit words */
3579 iptcp_opt_words = (ip_tcp_hlen
3580 - sizeof(struct tcphdr)
3581 - sizeof(struct ip)) >> 2;
3582 }
3583 if (BGE_IS_5750_OR_BEYOND(sc)) {
3584 th->th_sum = 0;
3585 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3586 } else {
3587 /*
3588 * XXX jonathan (at) NetBSD.org: 5705 untested.
3589 * Requires TSO firmware patch for 5701/5703/5704.
3590 */
3591 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3592 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3593 }
3594
3595 mss = m_head->m_pkthdr.segsz;
3596 txbd_tso_flags |=
3597 BGE_TXBDFLAG_CPU_PRE_DMA |
3598 BGE_TXBDFLAG_CPU_POST_DMA;
3599
3600 /*
3601 * Our NIC TSO-assist assumes TSO has standard, optionless
3602 * IPv4 and TCP headers, which total 40 bytes. By default,
3603 * the NIC copies 40 bytes of IP/TCP header from the
3604 * supplied header into the IP/TCP header portion of
3605 * each post-TSO-segment. If the supplied packet has IP or
3606 * TCP options, we need to tell the NIC to copy those extra
3607 * bytes into each post-TSO header, in addition to the normal
3608 * 40-byte IP/TCP header (and to leave space accordingly).
3609 * Unfortunately, the driver encoding of option length
3610 * varies across different ASIC families.
3611 */
3612 tcp_seg_flags = 0;
3613 if (iptcp_opt_words) {
3614 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3615 tcp_seg_flags =
3616 iptcp_opt_words << 11;
3617 } else {
3618 txbd_tso_flags |=
3619 iptcp_opt_words << 12;
3620 }
3621 }
3622 maxsegsize = mss | tcp_seg_flags;
3623 ip->ip_len = htons(mss + ip_tcp_hlen);
3624
3625 } /* TSO setup */
3626
3627 /*
3628 * Start packing the mbufs in this chain into
3629 * the fragment pointers. Stop when we run out
3630 * of fragments or hit the end of the mbuf chain.
3631 */
3632 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3633 BUS_DMA_NOWAIT);
3634 if (error) {
3635 return(ENOBUFS);
3636 }
3637
3638 mtag = sc->ethercom.ec_nvlans ?
3639 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3640
3641
3642 /* Iterate over dmap-map fragments. */
3643 for (i = 0; i < dmamap->dm_nsegs; i++) {
3644 f = &sc->bge_rdata->bge_tx_ring[frag];
3645 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3646 break;
3647
3648 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3649 f->bge_len = dmamap->dm_segs[i].ds_len;
3650
3651 /*
3652 * For 5751 and follow-ons, for TSO we must turn
3653 * off checksum-assist flag in the tx-descr, and
3654 * supply the ASIC-revision-specific encoding
3655 * of TSO flags and segsize.
3656 */
3657 if (use_tso) {
3658 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3659 f->bge_rsvd = maxsegsize;
3660 f->bge_flags = csum_flags | txbd_tso_flags;
3661 } else {
3662 f->bge_rsvd = 0;
3663 f->bge_flags =
3664 (csum_flags | txbd_tso_flags) & 0x0fff;
3665 }
3666 } else {
3667 f->bge_rsvd = 0;
3668 f->bge_flags = csum_flags;
3669 }
3670
3671 if (mtag != NULL) {
3672 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3673 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3674 } else {
3675 f->bge_vlan_tag = 0;
3676 }
3677 /*
3678 * Sanity check: avoid coming within 16 descriptors
3679 * of the end of the ring.
3680 */
3681 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) {
3682 BGE_TSO_PRINTF(("%s: "
3683 " dmamap_load_mbuf too close to ring wrap\n",
3684 sc->bge_dev.dv_xname));
3685 return(ENOBUFS);
3686 }
3687 cur = frag;
3688 BGE_INC(frag, BGE_TX_RING_CNT);
3689 cnt++;
3690 }
3691
3692 if (i < dmamap->dm_nsegs) {
3693 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3694 sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
3695 return ENOBUFS;
3696 }
3697
3698 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3699 BUS_DMASYNC_PREWRITE);
3700
3701 if (frag == sc->bge_tx_saved_considx) {
3702 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3703 sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
3704
3705 return(ENOBUFS);
3706 }
3707
3708 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3709 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3710 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3711 sc->txdma[cur] = dma;
3712 sc->bge_txcnt += cnt;
3713
3714 *txidx = frag;
3715
3716 return(0);
3717 }
3718
3719 /*
3720 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3721 * to the mbuf data regions directly in the transmit descriptors.
3722 */
3723 static void
3724 bge_start(struct ifnet *ifp)
3725 {
3726 struct bge_softc *sc;
3727 struct mbuf *m_head = NULL;
3728 u_int32_t prodidx;
3729 int pkts = 0;
3730
3731 sc = ifp->if_softc;
3732
3733 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3734 return;
3735
3736 prodidx = sc->bge_tx_prodidx;
3737
3738 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3739 IFQ_POLL(&ifp->if_snd, m_head);
3740 if (m_head == NULL)
3741 break;
3742
3743 #if 0
3744 /*
3745 * XXX
3746 * safety overkill. If this is a fragmented packet chain
3747 * with delayed TCP/UDP checksums, then only encapsulate
3748 * it if we have enough descriptors to handle the entire
3749 * chain at once.
3750 * (paranoia -- may not actually be needed)
3751 */
3752 if (m_head->m_flags & M_FIRSTFRAG &&
3753 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3754 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3755 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3756 ifp->if_flags |= IFF_OACTIVE;
3757 break;
3758 }
3759 }
3760 #endif
3761
3762 /*
3763 * Pack the data into the transmit ring. If we
3764 * don't have room, set the OACTIVE flag and wait
3765 * for the NIC to drain the ring.
3766 */
3767 if (bge_encap(sc, m_head, &prodidx)) {
3768 printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
3769 ifp->if_flags |= IFF_OACTIVE;
3770 break;
3771 }
3772
3773 /* now we are committed to transmit the packet */
3774 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3775 pkts++;
3776
3777 #if NBPFILTER > 0
3778 /*
3779 * If there's a BPF listener, bounce a copy of this frame
3780 * to him.
3781 */
3782 if (ifp->if_bpf)
3783 bpf_mtap(ifp->if_bpf, m_head);
3784 #endif
3785 }
3786 if (pkts == 0)
3787 return;
3788
3789 /* Transmit */
3790 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3791 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3792 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3793
3794 sc->bge_tx_prodidx = prodidx;
3795
3796 /*
3797 * Set a timeout in case the chip goes out to lunch.
3798 */
3799 ifp->if_timer = 5;
3800 }
3801
3802 static int
3803 bge_init(struct ifnet *ifp)
3804 {
3805 struct bge_softc *sc = ifp->if_softc;
3806 u_int16_t *m;
3807 int s, error;
3808
3809 s = splnet();
3810
3811 ifp = &sc->ethercom.ec_if;
3812
3813 /* Cancel pending I/O and flush buffers. */
3814 bge_stop(sc);
3815 bge_reset(sc);
3816 bge_chipinit(sc);
3817
3818 /*
3819 * Init the various state machines, ring
3820 * control blocks and firmware.
3821 */
3822 error = bge_blockinit(sc);
3823 if (error != 0) {
3824 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3825 error);
3826 splx(s);
3827 return error;
3828 }
3829
3830 ifp = &sc->ethercom.ec_if;
3831
3832 /* Specify MTU. */
3833 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3834 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3835
3836 /* Load our MAC address. */
3837 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3838 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3839 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3840
3841 /* Enable or disable promiscuous mode as needed. */
3842 if (ifp->if_flags & IFF_PROMISC) {
3843 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3844 } else {
3845 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3846 }
3847
3848 /* Program multicast filter. */
3849 bge_setmulti(sc);
3850
3851 /* Init RX ring. */
3852 bge_init_rx_ring_std(sc);
3853
3854 /* Init jumbo RX ring. */
3855 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3856 bge_init_rx_ring_jumbo(sc);
3857
3858 /* Init our RX return ring index */
3859 sc->bge_rx_saved_considx = 0;
3860
3861 /* Init TX ring. */
3862 bge_init_tx_ring(sc);
3863
3864 /* Turn on transmitter */
3865 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3866
3867 /* Turn on receiver */
3868 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3869
3870 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3871
3872 /* Tell firmware we're alive. */
3873 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3874
3875 /* Enable host interrupts. */
3876 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3877 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3878 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3879
3880 bge_ifmedia_upd(ifp);
3881
3882 ifp->if_flags |= IFF_RUNNING;
3883 ifp->if_flags &= ~IFF_OACTIVE;
3884
3885 splx(s);
3886
3887 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3888
3889 return 0;
3890 }
3891
3892 /*
3893 * Set media options.
3894 */
3895 static int
3896 bge_ifmedia_upd(struct ifnet *ifp)
3897 {
3898 struct bge_softc *sc = ifp->if_softc;
3899 struct mii_data *mii = &sc->bge_mii;
3900 struct ifmedia *ifm = &sc->bge_ifmedia;
3901
3902 /* If this is a 1000baseX NIC, enable the TBI port. */
3903 if (sc->bge_tbi) {
3904 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3905 return(EINVAL);
3906 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3907 case IFM_AUTO:
3908 break;
3909 case IFM_1000_SX:
3910 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3911 BGE_CLRBIT(sc, BGE_MAC_MODE,
3912 BGE_MACMODE_HALF_DUPLEX);
3913 } else {
3914 BGE_SETBIT(sc, BGE_MAC_MODE,
3915 BGE_MACMODE_HALF_DUPLEX);
3916 }
3917 break;
3918 default:
3919 return(EINVAL);
3920 }
3921 /* XXX 802.3x flow control for 1000BASE-SX */
3922 return(0);
3923 }
3924
3925 sc->bge_link = 0;
3926 mii_mediachg(mii);
3927
3928 return(0);
3929 }
3930
3931 /*
3932 * Report current media status.
3933 */
3934 static void
3935 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3936 {
3937 struct bge_softc *sc = ifp->if_softc;
3938 struct mii_data *mii = &sc->bge_mii;
3939
3940 if (sc->bge_tbi) {
3941 ifmr->ifm_status = IFM_AVALID;
3942 ifmr->ifm_active = IFM_ETHER;
3943 if (CSR_READ_4(sc, BGE_MAC_STS) &
3944 BGE_MACSTAT_TBI_PCS_SYNCHED)
3945 ifmr->ifm_status |= IFM_ACTIVE;
3946 ifmr->ifm_active |= IFM_1000_SX;
3947 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3948 ifmr->ifm_active |= IFM_HDX;
3949 else
3950 ifmr->ifm_active |= IFM_FDX;
3951 return;
3952 }
3953
3954 mii_pollstat(mii);
3955 ifmr->ifm_status = mii->mii_media_status;
3956 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3957 sc->bge_flowflags;
3958 }
3959
3960 static int
3961 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3962 {
3963 struct bge_softc *sc = ifp->if_softc;
3964 struct ifreq *ifr = (struct ifreq *) data;
3965 int s, error = 0;
3966 struct mii_data *mii;
3967
3968 s = splnet();
3969
3970 switch(command) {
3971 case SIOCSIFFLAGS:
3972 if (ifp->if_flags & IFF_UP) {
3973 /*
3974 * If only the state of the PROMISC flag changed,
3975 * then just use the 'set promisc mode' command
3976 * instead of reinitializing the entire NIC. Doing
3977 * a full re-init means reloading the firmware and
3978 * waiting for it to start up, which may take a
3979 * second or two.
3980 */
3981 if (ifp->if_flags & IFF_RUNNING &&
3982 ifp->if_flags & IFF_PROMISC &&
3983 !(sc->bge_if_flags & IFF_PROMISC)) {
3984 BGE_SETBIT(sc, BGE_RX_MODE,
3985 BGE_RXMODE_RX_PROMISC);
3986 } else if (ifp->if_flags & IFF_RUNNING &&
3987 !(ifp->if_flags & IFF_PROMISC) &&
3988 sc->bge_if_flags & IFF_PROMISC) {
3989 BGE_CLRBIT(sc, BGE_RX_MODE,
3990 BGE_RXMODE_RX_PROMISC);
3991 } else if (!(sc->bge_if_flags & IFF_UP))
3992 bge_init(ifp);
3993 } else {
3994 if (ifp->if_flags & IFF_RUNNING) {
3995 bge_stop(sc);
3996 }
3997 }
3998 sc->bge_if_flags = ifp->if_flags;
3999 error = 0;
4000 break;
4001 case SIOCSIFMEDIA:
4002 /* XXX Flow control is not supported for 1000BASE-SX */
4003 if (sc->bge_tbi) {
4004 ifr->ifr_media &= ~IFM_ETH_FMASK;
4005 sc->bge_flowflags = 0;
4006 }
4007
4008 /* Flow control requires full-duplex mode. */
4009 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4010 (ifr->ifr_media & IFM_FDX) == 0) {
4011 ifr->ifr_media &= ~IFM_ETH_FMASK;
4012 }
4013 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4014 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4015 /* We an do both TXPAUSE and RXPAUSE. */
4016 ifr->ifr_media |=
4017 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4018 }
4019 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4020 }
4021 /* FALLTHROUGH */
4022 case SIOCGIFMEDIA:
4023 if (sc->bge_tbi) {
4024 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4025 command);
4026 } else {
4027 mii = &sc->bge_mii;
4028 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4029 command);
4030 }
4031 break;
4032 default:
4033 error = ether_ioctl(ifp, command, data);
4034 if (error == ENETRESET) {
4035 if (ifp->if_flags & IFF_RUNNING)
4036 bge_setmulti(sc);
4037 error = 0;
4038 }
4039 break;
4040 }
4041
4042 splx(s);
4043
4044 return(error);
4045 }
4046
4047 static void
4048 bge_watchdog(struct ifnet *ifp)
4049 {
4050 struct bge_softc *sc;
4051
4052 sc = ifp->if_softc;
4053
4054 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
4055
4056 ifp->if_flags &= ~IFF_RUNNING;
4057 bge_init(ifp);
4058
4059 ifp->if_oerrors++;
4060 }
4061
4062 static void
4063 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4064 {
4065 int i;
4066
4067 BGE_CLRBIT(sc, reg, bit);
4068
4069 for (i = 0; i < BGE_TIMEOUT; i++) {
4070 if ((CSR_READ_4(sc, reg) & bit) == 0)
4071 return;
4072 delay(100);
4073 if (sc->bge_pcie)
4074 DELAY(1000);
4075 }
4076
4077 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
4078 sc->bge_dev.dv_xname, (u_long) reg, bit);
4079 }
4080
4081 /*
4082 * Stop the adapter and free any mbufs allocated to the
4083 * RX and TX lists.
4084 */
4085 static void
4086 bge_stop(struct bge_softc *sc)
4087 {
4088 struct ifnet *ifp = &sc->ethercom.ec_if;
4089
4090 callout_stop(&sc->bge_timeout);
4091
4092 /*
4093 * Disable all of the receiver blocks
4094 */
4095 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4096 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4097 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4098 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4099 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4100 }
4101 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4102 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4103 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4104
4105 /*
4106 * Disable all of the transmit blocks
4107 */
4108 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4109 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4110 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4111 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4112 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4113 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4114 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4115 }
4116 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4117
4118 /*
4119 * Shut down all of the memory managers and related
4120 * state machines.
4121 */
4122 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4123 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4124 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4125 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4126 }
4127
4128 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4129 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4130
4131 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4132 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4133 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4134 }
4135
4136 /* Disable host interrupts. */
4137 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4138 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4139
4140 /*
4141 * Tell firmware we're shutting down.
4142 */
4143 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4144
4145 /* Free the RX lists. */
4146 bge_free_rx_ring_std(sc);
4147
4148 /* Free jumbo RX list. */
4149 bge_free_rx_ring_jumbo(sc);
4150
4151 /* Free TX buffers. */
4152 bge_free_tx_ring(sc);
4153
4154 /*
4155 * Isolate/power down the PHY.
4156 */
4157 if (!sc->bge_tbi)
4158 mii_down(&sc->bge_mii);
4159
4160 sc->bge_link = 0;
4161
4162 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4163
4164 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4165 }
4166
4167 /*
4168 * Stop all chip I/O so that the kernel's probe routines don't
4169 * get confused by errant DMAs when rebooting.
4170 */
4171 static void
4172 bge_shutdown(void *xsc)
4173 {
4174 struct bge_softc *sc = (struct bge_softc *)xsc;
4175
4176 bge_stop(sc);
4177 bge_reset(sc);
4178 }
4179
4180
4181 static int
4182 sysctl_bge_verify(SYSCTLFN_ARGS)
4183 {
4184 int error, t;
4185 struct sysctlnode node;
4186
4187 node = *rnode;
4188 t = *(int*)rnode->sysctl_data;
4189 node.sysctl_data = &t;
4190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4191 if (error || newp == NULL)
4192 return (error);
4193
4194 #if 0
4195 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4196 node.sysctl_num, rnode->sysctl_num));
4197 #endif
4198
4199 if (node.sysctl_num == bge_rxthresh_nodenum) {
4200 if (t < 0 || t >= NBGE_RX_THRESH)
4201 return (EINVAL);
4202 bge_update_all_threshes(t);
4203 } else
4204 return (EINVAL);
4205
4206 *(int*)rnode->sysctl_data = t;
4207
4208 return (0);
4209 }
4210
4211 /*
4212 * Set up sysctl(3) MIB, hw.bge.*.
4213 *
4214 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4215 */
4216 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4217 {
4218 int rc, bge_root_num;
4219 const struct sysctlnode *node;
4220
4221 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4222 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4223 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4224 goto err;
4225 }
4226
4227 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4228 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4229 SYSCTL_DESCR("BGE interface controls"),
4230 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4231 goto err;
4232 }
4233
4234 bge_root_num = node->sysctl_num;
4235
4236 /* BGE Rx interrupt mitigation level */
4237 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4239 CTLTYPE_INT, "rx_lvl",
4240 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4241 sysctl_bge_verify, 0,
4242 &bge_rx_thresh_lvl,
4243 0, CTL_HW, bge_root_num, CTL_CREATE,
4244 CTL_EOL)) != 0) {
4245 goto err;
4246 }
4247
4248 bge_rxthresh_nodenum = node->sysctl_num;
4249
4250 return;
4251
4252 err:
4253 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4254 }
4255
4256 static void
4257 bge_powerhook(int why, void *hdl)
4258 {
4259 struct bge_softc *sc = (struct bge_softc *)hdl;
4260 struct ifnet *ifp = &sc->ethercom.ec_if;
4261 struct pci_attach_args *pa = &(sc->bge_pa);
4262 pci_chipset_tag_t pc = pa->pa_pc;
4263 pcitag_t tag = pa->pa_tag;
4264
4265 switch (why) {
4266 case PWR_SOFTSUSPEND:
4267 case PWR_SOFTSTANDBY:
4268 bge_shutdown(sc);
4269 break;
4270 case PWR_SOFTRESUME:
4271 if (ifp->if_flags & IFF_UP) {
4272 ifp->if_flags &= ~IFF_RUNNING;
4273 bge_init(ifp);
4274 }
4275 break;
4276 case PWR_SUSPEND:
4277 case PWR_STANDBY:
4278 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4279 break;
4280 case PWR_RESUME:
4281 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4282 break;
4283 }
4284
4285 return;
4286 }
4287