if_bge.c revision 1.123 1 /* $NetBSD: if_bge.c,v 1.123 2007/02/09 21:55:27 ad Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.123 2007/02/09 21:55:27 ad Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 static int bge_rxthresh_nodenum;
183
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static void bge_powerhook(int, void *);
187 static void bge_release_resources(struct bge_softc *);
188 static void bge_txeof(struct bge_softc *);
189 static void bge_rxeof(struct bge_softc *);
190
191 static void bge_tick(void *);
192 static void bge_stats_update(struct bge_softc *);
193 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
194
195 static int bge_intr(void *);
196 static void bge_start(struct ifnet *);
197 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
198 static int bge_init(struct ifnet *);
199 static void bge_stop(struct bge_softc *);
200 static void bge_watchdog(struct ifnet *);
201 static void bge_shutdown(void *);
202 static int bge_ifmedia_upd(struct ifnet *);
203 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
204
205 static void bge_setmulti(struct bge_softc *);
206
207 static void bge_handle_events(struct bge_softc *);
208 static int bge_alloc_jumbo_mem(struct bge_softc *);
209 #if 0 /* XXX */
210 static void bge_free_jumbo_mem(struct bge_softc *);
211 #endif
212 static void *bge_jalloc(struct bge_softc *);
213 static void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
214 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
215 bus_dmamap_t);
216 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
217 static int bge_init_rx_ring_std(struct bge_softc *);
218 static void bge_free_rx_ring_std(struct bge_softc *);
219 static int bge_init_rx_ring_jumbo(struct bge_softc *);
220 static void bge_free_rx_ring_jumbo(struct bge_softc *);
221 static void bge_free_tx_ring(struct bge_softc *);
222 static int bge_init_tx_ring(struct bge_softc *);
223
224 static int bge_chipinit(struct bge_softc *);
225 static int bge_blockinit(struct bge_softc *);
226 static int bge_setpowerstate(struct bge_softc *, int);
227
228 static void bge_reset(struct bge_softc *);
229
230 #define BGE_DEBUG
231 #ifdef BGE_DEBUG
232 #define DPRINTF(x) if (bgedebug) printf x
233 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
234 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
235 int bgedebug = 0;
236 int bge_tso_debug = 0;
237 #else
238 #define DPRINTF(x)
239 #define DPRINTFN(n,x)
240 #define BGE_TSO_PRINTF(x)
241 #endif
242
243 #ifdef BGE_EVENT_COUNTERS
244 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
245 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
246 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
247 #else
248 #define BGE_EVCNT_INCR(ev) /* nothing */
249 #define BGE_EVCNT_ADD(ev, val) /* nothing */
250 #define BGE_EVCNT_UPD(ev, val) /* nothing */
251 #endif
252
253 /* Various chip quirks. */
254 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
255 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
256 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
257 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
258 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
259 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
260 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
261 #define BGE_QUIRK_5705_CORE 0x00000080
262 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
263
264 /*
265 * XXX: how to handle variants based on 5750 and derivatives:
266 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
267 * in general behave like a 5705, except with additional quirks.
268 * This driver's current handling of the 5721 is wrong;
269 * how we map ASIC revision to "quirks" needs more thought.
270 * (defined here until the thought is done).
271 */
272 #define BGE_IS_5714_FAMILY(sc) \
273 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
274 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
275 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
276
277 #define BGE_IS_5750_OR_BEYOND(sc) \
278 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
279 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
280 BGE_IS_5714_FAMILY(sc) )
281
282 #define BGE_IS_5705_OR_BEYOND(sc) \
283 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
284 BGE_IS_5750_OR_BEYOND(sc) )
285
286
287 /* following bugs are common to bcm5700 rev B, all flavours */
288 #define BGE_QUIRK_5700_COMMON \
289 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
290
291 CFATTACH_DECL(bge, sizeof(struct bge_softc),
292 bge_probe, bge_attach, NULL, NULL);
293
294 static u_int32_t
295 bge_readmem_ind(struct bge_softc *sc, int off)
296 {
297 struct pci_attach_args *pa = &(sc->bge_pa);
298 pcireg_t val;
299
300 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
301 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
302 return val;
303 }
304
305 static void
306 bge_writemem_ind(struct bge_softc *sc, int off, int val)
307 {
308 struct pci_attach_args *pa = &(sc->bge_pa);
309
310 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
311 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
312 }
313
314 #ifdef notdef
315 static u_int32_t
316 bge_readreg_ind(struct bge_softc *sc, int off)
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 {
328 struct pci_attach_args *pa = &(sc->bge_pa);
329
330 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
331 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
332 }
333
334 #ifdef notdef
335 static u_int8_t
336 bge_vpd_readbyte(struct bge_softc *sc, int addr)
337 {
338 int i;
339 u_int32_t val;
340 struct pci_attach_args *pa = &(sc->bge_pa);
341
342 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
343 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
344 DELAY(10);
345 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
346 BGE_VPD_FLAG)
347 break;
348 }
349
350 if (i == BGE_TIMEOUT) {
351 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
352 return(0);
353 }
354
355 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
356
357 return((val >> ((addr % 4) * 8)) & 0xFF);
358 }
359
360 static void
361 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
362 {
363 int i;
364 u_int8_t *ptr;
365
366 ptr = (u_int8_t *)res;
367 for (i = 0; i < sizeof(struct vpd_res); i++)
368 ptr[i] = bge_vpd_readbyte(sc, i + addr);
369 }
370
371 static void
372 bge_vpd_read(struct bge_softc *sc)
373 {
374 int pos = 0, i;
375 struct vpd_res res;
376
377 if (sc->bge_vpd_prodname != NULL)
378 free(sc->bge_vpd_prodname, M_DEVBUF);
379 if (sc->bge_vpd_readonly != NULL)
380 free(sc->bge_vpd_readonly, M_DEVBUF);
381 sc->bge_vpd_prodname = NULL;
382 sc->bge_vpd_readonly = NULL;
383
384 bge_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_ID) {
387 printf("%s: bad VPD resource id: expected %x got %x\n",
388 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
389 return;
390 }
391
392 pos += sizeof(res);
393 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
394 if (sc->bge_vpd_prodname == NULL)
395 panic("bge_vpd_read");
396 for (i = 0; i < res.vr_len; i++)
397 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
398 sc->bge_vpd_prodname[i] = '\0';
399 pos += i;
400
401 bge_vpd_read_res(sc, &res, pos);
402
403 if (res.vr_id != VPD_RES_READ) {
404 printf("%s: bad VPD resource id: expected %x got %x\n",
405 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
406 return;
407 }
408
409 pos += sizeof(res);
410 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
411 if (sc->bge_vpd_readonly == NULL)
412 panic("bge_vpd_read");
413 for (i = 0; i < res.vr_len + 1; i++)
414 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
415 }
416 #endif
417
418 /*
419 * Read a byte of data stored in the EEPROM at address 'addr.' The
420 * BCM570x supports both the traditional bitbang interface and an
421 * auto access interface for reading the EEPROM. We use the auto
422 * access method.
423 */
424 static u_int8_t
425 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
426 {
427 int i;
428 u_int32_t byte = 0;
429
430 /*
431 * Enable use of auto EEPROM access so we can avoid
432 * having to use the bitbang method.
433 */
434 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
435
436 /* Reset the EEPROM, load the clock period. */
437 CSR_WRITE_4(sc, BGE_EE_ADDR,
438 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
439 DELAY(20);
440
441 /* Issue the read EEPROM command. */
442 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
443
444 /* Wait for completion */
445 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
446 DELAY(10);
447 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
448 break;
449 }
450
451 if (i == BGE_TIMEOUT) {
452 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
453 return(0);
454 }
455
456 /* Get result. */
457 byte = CSR_READ_4(sc, BGE_EE_DATA);
458
459 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
460
461 return(0);
462 }
463
464 /*
465 * Read a sequence of bytes from the EEPROM.
466 */
467 static int
468 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
469 {
470 int err = 0, i;
471 u_int8_t byte = 0;
472
473 for (i = 0; i < cnt; i++) {
474 err = bge_eeprom_getbyte(sc, off + i, &byte);
475 if (err)
476 break;
477 *(dest + i) = byte;
478 }
479
480 return(err ? 1 : 0);
481 }
482
483 static int
484 bge_miibus_readreg(device_t dev, int phy, int reg)
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t val;
488 u_int32_t saved_autopoll;
489 int i;
490
491 /*
492 * Several chips with builtin PHYs will incorrectly answer to
493 * other PHY instances than the builtin PHY at id 1.
494 */
495 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
496 return(0);
497
498 /* Reading with autopolling on may trigger PCI errors */
499 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
500 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
503 DELAY(40);
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg));
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 val = CSR_READ_4(sc, BGE_MI_COMM);
511 if (!(val & BGE_MICOMM_BUSY))
512 break;
513 delay(10);
514 }
515
516 if (i == BGE_TIMEOUT) {
517 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
518 val = 0;
519 goto done;
520 }
521
522 val = CSR_READ_4(sc, BGE_MI_COMM);
523
524 done:
525 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
526 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
527 DELAY(40);
528 }
529
530 if (val & BGE_MICOMM_READFAIL)
531 return(0);
532
533 return(val & 0xFFFF);
534 }
535
536 static void
537 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
538 {
539 struct bge_softc *sc = (struct bge_softc *)dev;
540 u_int32_t saved_autopoll;
541 int i;
542
543 /* Touching the PHY while autopolling is on may trigger PCI errors */
544 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
545 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
546 delay(40);
547 CSR_WRITE_4(sc, BGE_MI_MODE,
548 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
549 delay(10); /* 40 usec is supposed to be adequate */
550 }
551
552 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
553 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
554
555 for (i = 0; i < BGE_TIMEOUT; i++) {
556 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
557 break;
558 delay(10);
559 }
560
561 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
562 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
563 delay(40);
564 }
565
566 if (i == BGE_TIMEOUT) {
567 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
568 }
569 }
570
571 static void
572 bge_miibus_statchg(device_t dev)
573 {
574 struct bge_softc *sc = (struct bge_softc *)dev;
575 struct mii_data *mii = &sc->bge_mii;
576
577 /*
578 * Get flow control negotiation result.
579 */
580 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
581 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
582 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
583 mii->mii_media_active &= ~IFM_ETH_FMASK;
584 }
585
586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
587 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
589 } else {
590 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
591 }
592
593 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 } else {
596 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
597 }
598
599 /*
600 * 802.3x flow control
601 */
602 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
603 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 } else {
605 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
606 }
607 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
608 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 } else {
610 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
611 }
612 }
613
614 /*
615 * Update rx threshold levels to values in a particular slot
616 * of the interrupt-mitigation table bge_rx_threshes.
617 */
618 static void
619 bge_set_thresh(struct ifnet *ifp, int lvl)
620 {
621 struct bge_softc *sc = ifp->if_softc;
622 int s;
623
624 /* For now, just save the new Rx-intr thresholds and record
625 * that a threshold update is pending. Updating the hardware
626 * registers here (even at splhigh()) is observed to
627 * occasionaly cause glitches where Rx-interrupts are not
628 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
629 */
630 s = splnet();
631 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
632 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
633 sc->bge_pending_rxintr_change = 1;
634 splx(s);
635
636 return;
637 }
638
639
640 /*
641 * Update Rx thresholds of all bge devices
642 */
643 static void
644 bge_update_all_threshes(int lvl)
645 {
646 struct ifnet *ifp;
647 const char * const namebuf = "bge";
648 int namelen;
649
650 if (lvl < 0)
651 lvl = 0;
652 else if( lvl >= NBGE_RX_THRESH)
653 lvl = NBGE_RX_THRESH - 1;
654
655 namelen = strlen(namebuf);
656 /*
657 * Now search all the interfaces for this name/number
658 */
659 IFNET_FOREACH(ifp) {
660 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
661 continue;
662 /* We got a match: update if doing auto-threshold-tuning */
663 if (bge_auto_thresh)
664 bge_set_thresh(ifp, lvl);
665 }
666 }
667
668 /*
669 * Handle events that have triggered interrupts.
670 */
671 static void
672 bge_handle_events(struct bge_softc *sc)
673 {
674
675 return;
676 }
677
678 /*
679 * Memory management for jumbo frames.
680 */
681
682 static int
683 bge_alloc_jumbo_mem(struct bge_softc *sc)
684 {
685 caddr_t ptr, kva;
686 bus_dma_segment_t seg;
687 int i, rseg, state, error;
688 struct bge_jpool_entry *entry;
689
690 state = error = 0;
691
692 /* Grab a big chunk o' storage. */
693 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
694 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
695 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
696 return ENOBUFS;
697 }
698
699 state = 1;
700 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
701 BUS_DMA_NOWAIT)) {
702 printf("%s: can't map DMA buffers (%d bytes)\n",
703 sc->bge_dev.dv_xname, (int)BGE_JMEM);
704 error = ENOBUFS;
705 goto out;
706 }
707
708 state = 2;
709 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
710 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
711 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
712 error = ENOBUFS;
713 goto out;
714 }
715
716 state = 3;
717 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
718 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
719 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
720 error = ENOBUFS;
721 goto out;
722 }
723
724 state = 4;
725 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
726 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
727
728 SLIST_INIT(&sc->bge_jfree_listhead);
729 SLIST_INIT(&sc->bge_jinuse_listhead);
730
731 /*
732 * Now divide it up into 9K pieces and save the addresses
733 * in an array.
734 */
735 ptr = sc->bge_cdata.bge_jumbo_buf;
736 for (i = 0; i < BGE_JSLOTS; i++) {
737 sc->bge_cdata.bge_jslots[i] = ptr;
738 ptr += BGE_JLEN;
739 entry = malloc(sizeof(struct bge_jpool_entry),
740 M_DEVBUF, M_NOWAIT);
741 if (entry == NULL) {
742 printf("%s: no memory for jumbo buffer queue!\n",
743 sc->bge_dev.dv_xname);
744 error = ENOBUFS;
745 goto out;
746 }
747 entry->slot = i;
748 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
749 entry, jpool_entries);
750 }
751 out:
752 if (error != 0) {
753 switch (state) {
754 case 4:
755 bus_dmamap_unload(sc->bge_dmatag,
756 sc->bge_cdata.bge_rx_jumbo_map);
757 case 3:
758 bus_dmamap_destroy(sc->bge_dmatag,
759 sc->bge_cdata.bge_rx_jumbo_map);
760 case 2:
761 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
762 case 1:
763 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
764 break;
765 default:
766 break;
767 }
768 }
769
770 return error;
771 }
772
773 /*
774 * Allocate a jumbo buffer.
775 */
776 static void *
777 bge_jalloc(struct bge_softc *sc)
778 {
779 struct bge_jpool_entry *entry;
780
781 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
782
783 if (entry == NULL) {
784 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
785 return(NULL);
786 }
787
788 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
789 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
790 return(sc->bge_cdata.bge_jslots[entry->slot]);
791 }
792
793 /*
794 * Release a jumbo buffer.
795 */
796 static void
797 bge_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
798 {
799 struct bge_jpool_entry *entry;
800 struct bge_softc *sc;
801 int i, s;
802
803 /* Extract the softc struct pointer. */
804 sc = (struct bge_softc *)arg;
805
806 if (sc == NULL)
807 panic("bge_jfree: can't find softc pointer!");
808
809 /* calculate the slot this buffer belongs to */
810
811 i = ((caddr_t)buf
812 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
813
814 if ((i < 0) || (i >= BGE_JSLOTS))
815 panic("bge_jfree: asked to free buffer that we don't manage!");
816
817 s = splvm();
818 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
819 if (entry == NULL)
820 panic("bge_jfree: buffer not in use!");
821 entry->slot = i;
822 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
823 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
824
825 if (__predict_true(m != NULL))
826 pool_cache_put(&mbpool_cache, m);
827 splx(s);
828 }
829
830
831 /*
832 * Intialize a standard receive ring descriptor.
833 */
834 static int
835 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
836 {
837 struct mbuf *m_new = NULL;
838 struct bge_rx_bd *r;
839 int error;
840
841 if (dmamap == NULL) {
842 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
843 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
844 if (error != 0)
845 return error;
846 }
847
848 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
849
850 if (m == NULL) {
851 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
852 if (m_new == NULL) {
853 return(ENOBUFS);
854 }
855
856 MCLGET(m_new, M_DONTWAIT);
857 if (!(m_new->m_flags & M_EXT)) {
858 m_freem(m_new);
859 return(ENOBUFS);
860 }
861 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
862 if (!sc->bge_rx_alignment_bug)
863 m_adj(m_new, ETHER_ALIGN);
864
865 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
866 BUS_DMA_READ|BUS_DMA_NOWAIT))
867 return(ENOBUFS);
868 } else {
869 m_new = m;
870 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
871 m_new->m_data = m_new->m_ext.ext_buf;
872 if (!sc->bge_rx_alignment_bug)
873 m_adj(m_new, ETHER_ALIGN);
874 }
875
876 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
877 r = &sc->bge_rdata->bge_rx_std_ring[i];
878 bge_set_hostaddr(&r->bge_addr,
879 dmamap->dm_segs[0].ds_addr);
880 r->bge_flags = BGE_RXBDFLAG_END;
881 r->bge_len = m_new->m_len;
882 r->bge_idx = i;
883
884 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
885 offsetof(struct bge_ring_data, bge_rx_std_ring) +
886 i * sizeof (struct bge_rx_bd),
887 sizeof (struct bge_rx_bd),
888 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
889
890 return(0);
891 }
892
893 /*
894 * Initialize a jumbo receive ring descriptor. This allocates
895 * a jumbo buffer from the pool managed internally by the driver.
896 */
897 static int
898 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
899 {
900 struct mbuf *m_new = NULL;
901 struct bge_rx_bd *r;
902
903 if (m == NULL) {
904 caddr_t buf = NULL;
905
906 /* Allocate the mbuf. */
907 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
908 if (m_new == NULL) {
909 return(ENOBUFS);
910 }
911
912 /* Allocate the jumbo buffer */
913 buf = bge_jalloc(sc);
914 if (buf == NULL) {
915 m_freem(m_new);
916 printf("%s: jumbo allocation failed "
917 "-- packet dropped!\n", sc->bge_dev.dv_xname);
918 return(ENOBUFS);
919 }
920
921 /* Attach the buffer to the mbuf. */
922 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
923 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
924 bge_jfree, sc);
925 m_new->m_flags |= M_EXT_RW;
926 } else {
927 m_new = m;
928 m_new->m_data = m_new->m_ext.ext_buf;
929 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
930 }
931
932 if (!sc->bge_rx_alignment_bug)
933 m_adj(m_new, ETHER_ALIGN);
934 /* Set up the descriptor. */
935 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 r->bge_len = m_new->m_len;
940 r->bge_idx = i;
941
942 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 i * sizeof (struct bge_rx_bd),
945 sizeof (struct bge_rx_bd),
946 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947
948 return(0);
949 }
950
951 /*
952 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 * that's 1MB or memory, which is a lot. For now, we fill only the first
954 * 256 ring entries and hope that our CPU is fast enough to keep up with
955 * the NIC.
956 */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 static void
979 bge_free_rx_ring_std(struct bge_softc *sc)
980 {
981 int i;
982
983 if (!(sc->bge_flags & BGE_RXRING_VALID))
984 return;
985
986 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 bus_dmamap_destroy(sc->bge_dmatag,
991 sc->bge_cdata.bge_rx_std_map[i]);
992 }
993 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 sizeof(struct bge_rx_bd));
995 }
996
997 sc->bge_flags &= ~BGE_RXRING_VALID;
998 }
999
1000 static int
1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 {
1003 int i;
1004 volatile struct bge_rcb *rcb;
1005
1006 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 return 0;
1008
1009 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 };
1013
1014 sc->bge_jumbo = i - 1;
1015 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016
1017 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 rcb->bge_maxlen_flags = 0;
1019 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020
1021 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022
1023 return(0);
1024 }
1025
1026 static void
1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 {
1029 int i;
1030
1031 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 return;
1033
1034 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 }
1039 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 sizeof(struct bge_rx_bd));
1041 }
1042
1043 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 }
1045
1046 static void
1047 bge_free_tx_ring(struct bge_softc *sc)
1048 {
1049 int i, freed;
1050 struct txdmamap_pool_entry *dma;
1051
1052 if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 return;
1054
1055 freed = 0;
1056
1057 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 freed++;
1060 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 sizeof(struct bge_tx_bd));
1068 }
1069
1070 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 sc->bge_flags &= ~BGE_TXRING_VALID;
1077 }
1078
1079 static int
1080 bge_init_tx_ring(struct bge_softc *sc)
1081 {
1082 int i;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 if (sc->bge_flags & BGE_TXRING_VALID)
1087 return 0;
1088
1089 sc->bge_txcnt = 0;
1090 sc->bge_tx_saved_considx = 0;
1091
1092 /* Initialize transmit producer index for host-memory send ring. */
1093 sc->bge_tx_prodidx = 0;
1094 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097
1098 /* NIC-memory send ring not used; initialize to zero. */
1099 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1102
1103 SLIST_INIT(&sc->txdma_list);
1104 for (i = 0; i < BGE_RSLOTS; i++) {
1105 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 &dmamap))
1108 return(ENOBUFS);
1109 if (dmamap == NULL)
1110 panic("dmamap NULL in bge_init_tx_ring");
1111 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 if (dma == NULL) {
1113 printf("%s: can't alloc txdmamap_pool_entry\n",
1114 sc->bge_dev.dv_xname);
1115 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 return (ENOMEM);
1117 }
1118 dma->dmamap = dmamap;
1119 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 }
1121
1122 sc->bge_flags |= BGE_TXRING_VALID;
1123
1124 return(0);
1125 }
1126
1127 static void
1128 bge_setmulti(struct bge_softc *sc)
1129 {
1130 struct ethercom *ac = &sc->ethercom;
1131 struct ifnet *ifp = &ac->ec_if;
1132 struct ether_multi *enm;
1133 struct ether_multistep step;
1134 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 u_int32_t h;
1136 int i;
1137
1138 if (ifp->if_flags & IFF_PROMISC)
1139 goto allmulti;
1140
1141 /* Now program new ones. */
1142 ETHER_FIRST_MULTI(step, ac, enm);
1143 while (enm != NULL) {
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 /*
1146 * We must listen to a range of multicast addresses.
1147 * For now, just accept all multicasts, rather than
1148 * trying to set only those filter bits needed to match
1149 * the range. (At this time, the only use of address
1150 * ranges is for IP multicast routing, for which the
1151 * range is big enough to require all bits set.)
1152 */
1153 goto allmulti;
1154 }
1155
1156 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157
1158 /* Just want the 7 least-significant bits. */
1159 h &= 0x7f;
1160
1161 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 ETHER_NEXT_MULTI(step, enm);
1163 }
1164
1165 ifp->if_flags &= ~IFF_ALLMULTI;
1166 goto setit;
1167
1168 allmulti:
1169 ifp->if_flags |= IFF_ALLMULTI;
1170 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171
1172 setit:
1173 for (i = 0; i < 4; i++)
1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 }
1176
1177 const int bge_swapbits[] = {
1178 0,
1179 BGE_MODECTL_BYTESWAP_DATA,
1180 BGE_MODECTL_WORDSWAP_DATA,
1181 BGE_MODECTL_BYTESWAP_NONFRAME,
1182 BGE_MODECTL_WORDSWAP_NONFRAME,
1183
1184 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190
1191 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 BGE_MODECTL_BYTESWAP_NONFRAME,
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_WORDSWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 };
1205
1206 int bge_swapindex = 0;
1207
1208 /*
1209 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 * self-test results.
1211 */
1212 static int
1213 bge_chipinit(struct bge_softc *sc)
1214 {
1215 u_int32_t cachesize;
1216 int i;
1217 u_int32_t dma_rw_ctl;
1218 struct pci_attach_args *pa = &(sc->bge_pa);
1219
1220
1221 /* Set endianness before we access any non-PCI registers. */
1222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1223 BGE_INIT);
1224
1225 /* Set power state to D0. */
1226 bge_setpowerstate(sc, 0);
1227
1228 /*
1229 * Check the 'ROM failed' bit on the RX CPU to see if
1230 * self-tests passed.
1231 */
1232 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1233 printf("%s: RX CPU self-diagnostics failed!\n",
1234 sc->bge_dev.dv_xname);
1235 return(ENODEV);
1236 }
1237
1238 /* Clear the MAC control register */
1239 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1240
1241 /*
1242 * Clear the MAC statistics block in the NIC's
1243 * internal memory.
1244 */
1245 for (i = BGE_STATS_BLOCK;
1246 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1247 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1248
1249 for (i = BGE_STATUS_BLOCK;
1250 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1251 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1252
1253 /* Set up the PCI DMA control register. */
1254 if (sc->bge_pcie) {
1255 u_int32_t device_ctl;
1256
1257 /* From FreeBSD */
1258 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1259 sc->bge_dev.dv_xname));
1260 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1261 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1262 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1263
1264 /* jonathan: alternative from Linux driver */
1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1266 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1267
1268 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1269 device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
1270 BGE_PCI_CONF_DEV_CTRL);
1271 aprint_debug("%s: pcie mode=0x%x\n", sc->bge_dev.dv_xname,
1272 device_ctl);
1273
1274 if ((device_ctl & 0x00e0) && 0) {
1275 /*
1276 * XXX jonathan (at) NetBSD.org:
1277 * This clause is exactly what the Broadcom-supplied
1278 * Linux does; but given overall register programming
1279 * by if_bge(4), this larger DMA-write watermark
1280 * value causes bcm5721 chips to totally wedge.
1281 */
1282 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1283 } else {
1284 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1285 }
1286 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1287 BGE_PCISTATE_PCI_BUSMODE) {
1288 /* Conventional PCI bus */
1289 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1290 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1291 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1292 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1293 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1294 dma_rw_ctl |= 0x0F;
1295 }
1296 } else {
1297 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1298 /* PCI-X bus */
1299 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1300 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1301 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1302 (0x0F);
1303 /*
1304 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1305 * for hardware bugs, which means we should also clear
1306 * the low-order MINDMA bits. In addition, the 5704
1307 * uses a different encoding of read/write watermarks.
1308 */
1309 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1310 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1311 /* should be 0x1f0000 */
1312 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1314 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1315 }
1316 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1317 dma_rw_ctl &= 0xfffffff0;
1318 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1319 }
1320 else if (BGE_IS_5714_FAMILY(sc)) {
1321 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1322 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1323 /* XXX magic values, Broadcom-supplied Linux driver */
1324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1325 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1326 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 else
1328 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1329 }
1330 }
1331
1332 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1333
1334 /*
1335 * Set up general mode register.
1336 */
1337 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1338 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1339 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1340
1341 /* Get cache line size. */
1342 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1343
1344 /*
1345 * Avoid violating PCI spec on certain chip revs.
1346 */
1347 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1348 PCIM_CMD_MWIEN) {
1349 switch(cachesize) {
1350 case 1:
1351 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1352 BGE_PCI_WRITE_BNDRY_16BYTES);
1353 break;
1354 case 2:
1355 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1356 BGE_PCI_WRITE_BNDRY_32BYTES);
1357 break;
1358 case 4:
1359 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1360 BGE_PCI_WRITE_BNDRY_64BYTES);
1361 break;
1362 case 8:
1363 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1364 BGE_PCI_WRITE_BNDRY_128BYTES);
1365 break;
1366 case 16:
1367 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1368 BGE_PCI_WRITE_BNDRY_256BYTES);
1369 break;
1370 case 32:
1371 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1372 BGE_PCI_WRITE_BNDRY_512BYTES);
1373 break;
1374 case 64:
1375 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1376 BGE_PCI_WRITE_BNDRY_1024BYTES);
1377 break;
1378 default:
1379 /* Disable PCI memory write and invalidate. */
1380 #if 0
1381 if (bootverbose)
1382 printf("%s: cache line size %d not "
1383 "supported; disabling PCI MWI\n",
1384 sc->bge_dev.dv_xname, cachesize);
1385 #endif
1386 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1387 PCIM_CMD_MWIEN);
1388 break;
1389 }
1390 }
1391
1392 /*
1393 * Disable memory write invalidate. Apparently it is not supported
1394 * properly by these devices.
1395 */
1396 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1397
1398
1399 #ifdef __brokenalpha__
1400 /*
1401 * Must insure that we do not cross an 8K (bytes) boundary
1402 * for DMA reads. Our highest limit is 1K bytes. This is a
1403 * restriction on some ALPHA platforms with early revision
1404 * 21174 PCI chipsets, such as the AlphaPC 164lx
1405 */
1406 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1407 #endif
1408
1409 /* Set the timer prescaler (always 66MHz) */
1410 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1411
1412 return(0);
1413 }
1414
1415 static int
1416 bge_blockinit(struct bge_softc *sc)
1417 {
1418 volatile struct bge_rcb *rcb;
1419 bus_size_t rcb_addr;
1420 int i;
1421 struct ifnet *ifp = &sc->ethercom.ec_if;
1422 bge_hostaddr taddr;
1423
1424 /*
1425 * Initialize the memory window pointer register so that
1426 * we can access the first 32K of internal NIC RAM. This will
1427 * allow us to set up the TX send ring RCBs and the RX return
1428 * ring RCBs, plus other things which live in NIC memory.
1429 */
1430
1431 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1432 BGE_PCI_MEMWIN_BASEADDR, 0);
1433
1434 /* Configure mbuf memory pool */
1435 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1436 if (sc->bge_extram) {
1437 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1438 BGE_EXT_SSRAM);
1439 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1440 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1441 else
1442 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1443 } else {
1444 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1445 BGE_BUFFPOOL_1);
1446 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1447 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1448 else
1449 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1450 }
1451
1452 /* Configure DMA resource pool */
1453 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1454 BGE_DMA_DESCRIPTORS);
1455 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1456 }
1457
1458 /* Configure mbuf pool watermarks */
1459 #ifdef ORIG_WPAUL_VALUES
1460 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1462 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1463 #else
1464 /* new broadcom docs strongly recommend these: */
1465 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1466 if (ifp->if_mtu > ETHER_MAX_LEN) {
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1469 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1470 } else {
1471 /* Values from Linux driver... */
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1474 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1475 }
1476 } else {
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1479 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1480 }
1481 #endif
1482
1483 /* Configure DMA resource watermarks */
1484 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1485 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1486
1487 /* Enable buffer manager */
1488 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1489 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1490
1491 /* Poll for buffer manager start indication */
1492 for (i = 0; i < BGE_TIMEOUT; i++) {
1493 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1494 break;
1495 DELAY(10);
1496 }
1497
1498 if (i == BGE_TIMEOUT) {
1499 printf("%s: buffer manager failed to start\n",
1500 sc->bge_dev.dv_xname);
1501 return(ENXIO);
1502 }
1503
1504 /* Enable flow-through queues */
1505 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1506 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1507
1508 /* Wait until queue initialization is complete */
1509 for (i = 0; i < BGE_TIMEOUT; i++) {
1510 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1511 break;
1512 DELAY(10);
1513 }
1514
1515 if (i == BGE_TIMEOUT) {
1516 printf("%s: flow-through queue init failed\n",
1517 sc->bge_dev.dv_xname);
1518 return(ENXIO);
1519 }
1520
1521 /* Initialize the standard RX ring control block */
1522 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1523 bge_set_hostaddr(&rcb->bge_hostaddr,
1524 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1525 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1526 rcb->bge_maxlen_flags =
1527 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1528 } else {
1529 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1530 }
1531 if (sc->bge_extram)
1532 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1533 else
1534 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1535 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1539
1540 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1541 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1542 } else {
1543 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1544 }
1545
1546 /*
1547 * Initialize the jumbo RX ring control block
1548 * We set the 'ring disabled' bit in the flags
1549 * field until we're actually ready to start
1550 * using this ring (i.e. once we set the MTU
1551 * high enough to require it).
1552 */
1553 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1554 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1555 bge_set_hostaddr(&rcb->bge_hostaddr,
1556 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1557 rcb->bge_maxlen_flags =
1558 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1559 BGE_RCB_FLAG_RING_DISABLED);
1560 if (sc->bge_extram)
1561 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1562 else
1563 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1564
1565 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1566 rcb->bge_hostaddr.bge_addr_hi);
1567 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1568 rcb->bge_hostaddr.bge_addr_lo);
1569 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1570 rcb->bge_maxlen_flags);
1571 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1572
1573 /* Set up dummy disabled mini ring RCB */
1574 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1575 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1576 BGE_RCB_FLAG_RING_DISABLED);
1577 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1578 rcb->bge_maxlen_flags);
1579
1580 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1581 offsetof(struct bge_ring_data, bge_info),
1582 sizeof (struct bge_gib),
1583 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1584 }
1585
1586 /*
1587 * Set the BD ring replentish thresholds. The recommended
1588 * values are 1/8th the number of descriptors allocated to
1589 * each ring.
1590 */
1591 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1592 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1593
1594 /*
1595 * Disable all unused send rings by setting the 'ring disabled'
1596 * bit in the flags field of all the TX send ring control blocks.
1597 * These are located in NIC memory.
1598 */
1599 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1600 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1601 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1602 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1603 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1604 rcb_addr += sizeof(struct bge_rcb);
1605 }
1606
1607 /* Configure TX RCB 0 (we use only the first ring) */
1608 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1609 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1610 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1611 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1612 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1613 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1614 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1615 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1616 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1617 }
1618
1619 /* Disable all unused RX return rings */
1620 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1621 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1622 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1623 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1624 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1625 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1626 BGE_RCB_FLAG_RING_DISABLED));
1627 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1628 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1629 (i * (sizeof(u_int64_t))), 0);
1630 rcb_addr += sizeof(struct bge_rcb);
1631 }
1632
1633 /* Initialize RX ring indexes */
1634 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1635 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1636 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1637
1638 /*
1639 * Set up RX return ring 0
1640 * Note that the NIC address for RX return rings is 0x00000000.
1641 * The return rings live entirely within the host, so the
1642 * nicaddr field in the RCB isn't used.
1643 */
1644 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1645 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1646 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1648 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1649 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1650 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1651
1652 /* Set random backoff seed for TX */
1653 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1654 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1655 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1656 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1657 BGE_TX_BACKOFF_SEED_MASK);
1658
1659 /* Set inter-packet gap */
1660 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1661
1662 /*
1663 * Specify which ring to use for packets that don't match
1664 * any RX rules.
1665 */
1666 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1667
1668 /*
1669 * Configure number of RX lists. One interrupt distribution
1670 * list, sixteen active lists, one bad frames class.
1671 */
1672 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1673
1674 /* Inialize RX list placement stats mask. */
1675 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1676 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1677
1678 /* Disable host coalescing until we get it set up */
1679 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1680
1681 /* Poll to make sure it's shut down. */
1682 for (i = 0; i < BGE_TIMEOUT; i++) {
1683 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1684 break;
1685 DELAY(10);
1686 }
1687
1688 if (i == BGE_TIMEOUT) {
1689 printf("%s: host coalescing engine failed to idle\n",
1690 sc->bge_dev.dv_xname);
1691 return(ENXIO);
1692 }
1693
1694 /* Set up host coalescing defaults */
1695 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1696 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1697 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1698 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1699 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1700 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1701 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1702 }
1703 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1704 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1705
1706 /* Set up address of statistics block */
1707 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1708 bge_set_hostaddr(&taddr,
1709 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1710 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1711 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1712 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1713 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1714 }
1715
1716 /* Set up address of status block */
1717 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1718 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1719 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1720 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1721 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1722 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1723
1724 /* Turn on host coalescing state machine */
1725 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1726
1727 /* Turn on RX BD completion state machine and enable attentions */
1728 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1729 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1730
1731 /* Turn on RX list placement state machine */
1732 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1733
1734 /* Turn on RX list selector state machine. */
1735 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1736 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1737 }
1738
1739 /* Turn on DMA, clear stats */
1740 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1741 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1742 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1743 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1744 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1745
1746 /* Set misc. local control, enable interrupts on attentions */
1747 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1748
1749 #ifdef notdef
1750 /* Assert GPIO pins for PHY reset */
1751 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1752 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1753 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1754 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1755 #endif
1756
1757 #if defined(not_quite_yet)
1758 /* Linux driver enables enable gpio pin #1 on 5700s */
1759 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1760 sc->bge_local_ctrl_reg |=
1761 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1762 }
1763 #endif
1764 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1765
1766 /* Turn on DMA completion state machine */
1767 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1768 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1769 }
1770
1771 /* Turn on write DMA state machine */
1772 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1773 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1774
1775 /* Turn on read DMA state machine */
1776 {
1777 uint32_t dma_read_modebits;
1778
1779 dma_read_modebits =
1780 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1781
1782 if (sc->bge_pcie && 0) {
1783 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1784 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1785 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1786 }
1787
1788 /* XXX broadcom-supplied linux driver; undocumented */
1789 if (BGE_IS_5750_OR_BEYOND(sc)) {
1790 /*
1791 * XXX: magic values.
1792 * From Broadcom-supplied Linux driver; apparently
1793 * required to workaround a DMA bug affecting TSO
1794 * on bcm575x/bcm5721?
1795 */
1796 dma_read_modebits |= (1 << 27);
1797 }
1798 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1799 }
1800
1801 /* Turn on RX data completion state machine */
1802 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1803
1804 /* Turn on RX BD initiator state machine */
1805 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1806
1807 /* Turn on RX data and RX BD initiator state machine */
1808 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1809
1810 /* Turn on Mbuf cluster free state machine */
1811 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1812 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1813 }
1814
1815 /* Turn on send BD completion state machine */
1816 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1817
1818 /* Turn on send data completion state machine */
1819 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1820
1821 /* Turn on send data initiator state machine */
1822 if (BGE_IS_5750_OR_BEYOND(sc)) {
1823 /* XXX: magic value from Linux driver */
1824 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1825 } else {
1826 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1827 }
1828
1829 /* Turn on send BD initiator state machine */
1830 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1831
1832 /* Turn on send BD selector state machine */
1833 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1834
1835 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1836 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1837 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1838
1839 /* ack/clear link change events */
1840 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1841 BGE_MACSTAT_CFG_CHANGED);
1842 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1843
1844 /* Enable PHY auto polling (for MII/GMII only) */
1845 if (sc->bge_tbi) {
1846 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1847 } else {
1848 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1849 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1850 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1851 BGE_EVTENB_MI_INTERRUPT);
1852 }
1853
1854 /* Enable link state change attentions. */
1855 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1856
1857 return(0);
1858 }
1859
1860 static const struct bge_revision {
1861 uint32_t br_chipid;
1862 uint32_t br_quirks;
1863 const char *br_name;
1864 } bge_revisions[] = {
1865 { BGE_CHIPID_BCM5700_A0,
1866 BGE_QUIRK_LINK_STATE_BROKEN,
1867 "BCM5700 A0" },
1868
1869 { BGE_CHIPID_BCM5700_A1,
1870 BGE_QUIRK_LINK_STATE_BROKEN,
1871 "BCM5700 A1" },
1872
1873 { BGE_CHIPID_BCM5700_B0,
1874 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1875 "BCM5700 B0" },
1876
1877 { BGE_CHIPID_BCM5700_B1,
1878 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1879 "BCM5700 B1" },
1880
1881 { BGE_CHIPID_BCM5700_B2,
1882 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1883 "BCM5700 B2" },
1884
1885 { BGE_CHIPID_BCM5700_B3,
1886 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1887 "BCM5700 B3" },
1888
1889 /* This is treated like a BCM5700 Bx */
1890 { BGE_CHIPID_BCM5700_ALTIMA,
1891 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1892 "BCM5700 Altima" },
1893
1894 { BGE_CHIPID_BCM5700_C0,
1895 0,
1896 "BCM5700 C0" },
1897
1898 { BGE_CHIPID_BCM5701_A0,
1899 0, /*XXX really, just not known */
1900 "BCM5701 A0" },
1901
1902 { BGE_CHIPID_BCM5701_B0,
1903 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1904 "BCM5701 B0" },
1905
1906 { BGE_CHIPID_BCM5701_B2,
1907 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1908 "BCM5701 B2" },
1909
1910 { BGE_CHIPID_BCM5701_B5,
1911 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1912 "BCM5701 B5" },
1913
1914 { BGE_CHIPID_BCM5703_A0,
1915 0,
1916 "BCM5703 A0" },
1917
1918 { BGE_CHIPID_BCM5703_A1,
1919 0,
1920 "BCM5703 A1" },
1921
1922 { BGE_CHIPID_BCM5703_A2,
1923 BGE_QUIRK_ONLY_PHY_1,
1924 "BCM5703 A2" },
1925
1926 { BGE_CHIPID_BCM5703_A3,
1927 BGE_QUIRK_ONLY_PHY_1,
1928 "BCM5703 A3" },
1929
1930 { BGE_CHIPID_BCM5703_B0,
1931 BGE_QUIRK_ONLY_PHY_1,
1932 "BCM5703 B0" },
1933
1934 { BGE_CHIPID_BCM5704_A0,
1935 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1936 "BCM5704 A0" },
1937
1938 { BGE_CHIPID_BCM5704_A1,
1939 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1940 "BCM5704 A1" },
1941
1942 { BGE_CHIPID_BCM5704_A2,
1943 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1944 "BCM5704 A2" },
1945
1946 { BGE_CHIPID_BCM5704_A3,
1947 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1948 "BCM5704 A3" },
1949
1950 { BGE_CHIPID_BCM5705_A0,
1951 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1952 "BCM5705 A0" },
1953
1954 { BGE_CHIPID_BCM5705_A1,
1955 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1956 "BCM5705 A1" },
1957
1958 { BGE_CHIPID_BCM5705_A2,
1959 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1960 "BCM5705 A2" },
1961
1962 { BGE_CHIPID_BCM5705_A3,
1963 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1964 "BCM5705 A3" },
1965
1966 { BGE_CHIPID_BCM5750_A0,
1967 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1968 "BCM5750 A0" },
1969
1970 { BGE_CHIPID_BCM5750_A1,
1971 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1972 "BCM5750 A1" },
1973
1974 { BGE_CHIPID_BCM5751_A1,
1975 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1976 "BCM5751 A1" },
1977
1978 { BGE_CHIPID_BCM5752_A0,
1979 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1980 "BCM5752 A0" },
1981
1982 { BGE_CHIPID_BCM5752_A1,
1983 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1984 "BCM5752 A1" },
1985
1986 { BGE_CHIPID_BCM5752_A2,
1987 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1988 "BCM5752 A2" },
1989
1990 { 0, 0, NULL }
1991 };
1992
1993 /*
1994 * Some defaults for major revisions, so that newer steppings
1995 * that we don't know about have a shot at working.
1996 */
1997 static const struct bge_revision bge_majorrevs[] = {
1998 { BGE_ASICREV_BCM5700,
1999 BGE_QUIRK_LINK_STATE_BROKEN,
2000 "unknown BCM5700" },
2001
2002 { BGE_ASICREV_BCM5701,
2003 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2004 "unknown BCM5701" },
2005
2006 { BGE_ASICREV_BCM5703,
2007 0,
2008 "unknown BCM5703" },
2009
2010 { BGE_ASICREV_BCM5704,
2011 BGE_QUIRK_ONLY_PHY_1,
2012 "unknown BCM5704" },
2013
2014 { BGE_ASICREV_BCM5705,
2015 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2016 "unknown BCM5705" },
2017
2018 { BGE_ASICREV_BCM5750,
2019 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2020 "unknown BCM575x family" },
2021
2022 { BGE_ASICREV_BCM5714_A0,
2023 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2024 "unknown BCM5714" },
2025
2026 { BGE_ASICREV_BCM5714,
2027 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2028 "unknown BCM5714" },
2029
2030 { BGE_ASICREV_BCM5752,
2031 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2032 "unknown BCM5752 family" },
2033
2034
2035 { BGE_ASICREV_BCM5780,
2036 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2037 "unknown BCM5780" },
2038
2039 { 0,
2040 0,
2041 NULL }
2042 };
2043
2044
2045 static const struct bge_revision *
2046 bge_lookup_rev(uint32_t chipid)
2047 {
2048 const struct bge_revision *br;
2049
2050 for (br = bge_revisions; br->br_name != NULL; br++) {
2051 if (br->br_chipid == chipid)
2052 return (br);
2053 }
2054
2055 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2056 if (br->br_chipid == BGE_ASICREV(chipid))
2057 return (br);
2058 }
2059
2060 return (NULL);
2061 }
2062
2063 static const struct bge_product {
2064 pci_vendor_id_t bp_vendor;
2065 pci_product_id_t bp_product;
2066 const char *bp_name;
2067 } bge_products[] = {
2068 /*
2069 * The BCM5700 documentation seems to indicate that the hardware
2070 * still has the Alteon vendor ID burned into it, though it
2071 * should always be overridden by the value in the EEPROM. We'll
2072 * check for it anyway.
2073 */
2074 { PCI_VENDOR_ALTEON,
2075 PCI_PRODUCT_ALTEON_BCM5700,
2076 "Broadcom BCM5700 Gigabit Ethernet",
2077 },
2078 { PCI_VENDOR_ALTEON,
2079 PCI_PRODUCT_ALTEON_BCM5701,
2080 "Broadcom BCM5701 Gigabit Ethernet",
2081 },
2082
2083 { PCI_VENDOR_ALTIMA,
2084 PCI_PRODUCT_ALTIMA_AC1000,
2085 "Altima AC1000 Gigabit Ethernet",
2086 },
2087 { PCI_VENDOR_ALTIMA,
2088 PCI_PRODUCT_ALTIMA_AC1001,
2089 "Altima AC1001 Gigabit Ethernet",
2090 },
2091 { PCI_VENDOR_ALTIMA,
2092 PCI_PRODUCT_ALTIMA_AC9100,
2093 "Altima AC9100 Gigabit Ethernet",
2094 },
2095
2096 { PCI_VENDOR_BROADCOM,
2097 PCI_PRODUCT_BROADCOM_BCM5700,
2098 "Broadcom BCM5700 Gigabit Ethernet",
2099 },
2100 { PCI_VENDOR_BROADCOM,
2101 PCI_PRODUCT_BROADCOM_BCM5701,
2102 "Broadcom BCM5701 Gigabit Ethernet",
2103 },
2104 { PCI_VENDOR_BROADCOM,
2105 PCI_PRODUCT_BROADCOM_BCM5702,
2106 "Broadcom BCM5702 Gigabit Ethernet",
2107 },
2108 { PCI_VENDOR_BROADCOM,
2109 PCI_PRODUCT_BROADCOM_BCM5702X,
2110 "Broadcom BCM5702X Gigabit Ethernet" },
2111
2112 { PCI_VENDOR_BROADCOM,
2113 PCI_PRODUCT_BROADCOM_BCM5703,
2114 "Broadcom BCM5703 Gigabit Ethernet",
2115 },
2116 { PCI_VENDOR_BROADCOM,
2117 PCI_PRODUCT_BROADCOM_BCM5703X,
2118 "Broadcom BCM5703X Gigabit Ethernet",
2119 },
2120 { PCI_VENDOR_BROADCOM,
2121 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2122 "Broadcom BCM5703 Gigabit Ethernet",
2123 },
2124
2125 { PCI_VENDOR_BROADCOM,
2126 PCI_PRODUCT_BROADCOM_BCM5704C,
2127 "Broadcom BCM5704C Dual Gigabit Ethernet",
2128 },
2129 { PCI_VENDOR_BROADCOM,
2130 PCI_PRODUCT_BROADCOM_BCM5704S,
2131 "Broadcom BCM5704S Dual Gigabit Ethernet",
2132 },
2133
2134 { PCI_VENDOR_BROADCOM,
2135 PCI_PRODUCT_BROADCOM_BCM5705,
2136 "Broadcom BCM5705 Gigabit Ethernet",
2137 },
2138 { PCI_VENDOR_BROADCOM,
2139 PCI_PRODUCT_BROADCOM_BCM5705K,
2140 "Broadcom BCM5705K Gigabit Ethernet",
2141 },
2142 { PCI_VENDOR_BROADCOM,
2143 PCI_PRODUCT_BROADCOM_BCM5705M,
2144 "Broadcom BCM5705M Gigabit Ethernet",
2145 },
2146 { PCI_VENDOR_BROADCOM,
2147 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2148 "Broadcom BCM5705M Gigabit Ethernet",
2149 },
2150
2151 { PCI_VENDOR_BROADCOM,
2152 PCI_PRODUCT_BROADCOM_BCM5714,
2153 "Broadcom BCM5714/5715 Gigabit Ethernet",
2154 },
2155 { PCI_VENDOR_BROADCOM,
2156 PCI_PRODUCT_BROADCOM_BCM5789,
2157 "Broadcom BCM5789 Gigabit Ethernet",
2158 },
2159
2160 { PCI_VENDOR_BROADCOM,
2161 PCI_PRODUCT_BROADCOM_BCM5721,
2162 "Broadcom BCM5721 Gigabit Ethernet",
2163 },
2164
2165 { PCI_VENDOR_BROADCOM,
2166 PCI_PRODUCT_BROADCOM_BCM5750,
2167 "Broadcom BCM5750 Gigabit Ethernet",
2168 },
2169
2170 { PCI_VENDOR_BROADCOM,
2171 PCI_PRODUCT_BROADCOM_BCM5750M,
2172 "Broadcom BCM5750M Gigabit Ethernet",
2173 },
2174
2175 { PCI_VENDOR_BROADCOM,
2176 PCI_PRODUCT_BROADCOM_BCM5751,
2177 "Broadcom BCM5751 Gigabit Ethernet",
2178 },
2179
2180 { PCI_VENDOR_BROADCOM,
2181 PCI_PRODUCT_BROADCOM_BCM5751M,
2182 "Broadcom BCM5751M Gigabit Ethernet",
2183 },
2184
2185 { PCI_VENDOR_BROADCOM,
2186 PCI_PRODUCT_BROADCOM_BCM5752,
2187 "Broadcom BCM5752 Gigabit Ethernet",
2188 },
2189
2190 { PCI_VENDOR_BROADCOM,
2191 PCI_PRODUCT_BROADCOM_BCM5752M,
2192 "Broadcom BCM5752M Gigabit Ethernet",
2193 },
2194
2195 { PCI_VENDOR_BROADCOM,
2196 PCI_PRODUCT_BROADCOM_BCM5780,
2197 "Broadcom BCM5780 Gigabit Ethernet",
2198 },
2199
2200 { PCI_VENDOR_BROADCOM,
2201 PCI_PRODUCT_BROADCOM_BCM5780S,
2202 "Broadcom BCM5780S Gigabit Ethernet",
2203 },
2204
2205 { PCI_VENDOR_BROADCOM,
2206 PCI_PRODUCT_BROADCOM_BCM5782,
2207 "Broadcom BCM5782 Gigabit Ethernet",
2208 },
2209
2210 { PCI_VENDOR_BROADCOM,
2211 PCI_PRODUCT_BROADCOM_BCM5788,
2212 "Broadcom BCM5788 Gigabit Ethernet",
2213 },
2214 { PCI_VENDOR_BROADCOM,
2215 PCI_PRODUCT_BROADCOM_BCM5789,
2216 "Broadcom BCM5789 Gigabit Ethernet",
2217 },
2218
2219 { PCI_VENDOR_BROADCOM,
2220 PCI_PRODUCT_BROADCOM_BCM5901,
2221 "Broadcom BCM5901 Fast Ethernet",
2222 },
2223 { PCI_VENDOR_BROADCOM,
2224 PCI_PRODUCT_BROADCOM_BCM5901A2,
2225 "Broadcom BCM5901A2 Fast Ethernet",
2226 },
2227
2228 { PCI_VENDOR_SCHNEIDERKOCH,
2229 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2230 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2231 },
2232
2233 { PCI_VENDOR_3COM,
2234 PCI_PRODUCT_3COM_3C996,
2235 "3Com 3c996 Gigabit Ethernet",
2236 },
2237
2238 { 0,
2239 0,
2240 NULL },
2241 };
2242
2243 static const struct bge_product *
2244 bge_lookup(const struct pci_attach_args *pa)
2245 {
2246 const struct bge_product *bp;
2247
2248 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2249 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2250 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2251 return (bp);
2252 }
2253
2254 return (NULL);
2255 }
2256
2257 static int
2258 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2259 {
2260 #ifdef NOTYET
2261 u_int32_t pm_ctl = 0;
2262
2263 /* XXX FIXME: make sure indirect accesses enabled? */
2264 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2265 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2266 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2267
2268 /* clear the PME_assert bit and power state bits, enable PME */
2269 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2270 pm_ctl &= ~PCIM_PSTAT_DMASK;
2271 pm_ctl |= (1 << 8);
2272
2273 if (powerlevel == 0) {
2274 pm_ctl |= PCIM_PSTAT_D0;
2275 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2276 pm_ctl, 2);
2277 DELAY(10000);
2278 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2279 DELAY(10000);
2280
2281 #ifdef NOTYET
2282 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2283 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2284 #endif
2285 DELAY(40); DELAY(40); DELAY(40);
2286 DELAY(10000); /* above not quite adequate on 5700 */
2287 return 0;
2288 }
2289
2290
2291 /*
2292 * Entering ACPI power states D1-D3 is achieved by wiggling
2293 * GMII gpio pins. Example code assumes all hardware vendors
2294 * followed Broadom's sample pcb layout. Until we verify that
2295 * for all supported OEM cards, states D1-D3 are unsupported.
2296 */
2297 printf("%s: power state %d unimplemented; check GPIO pins\n",
2298 sc->bge_dev.dv_xname, powerlevel);
2299 #endif
2300 return EOPNOTSUPP;
2301 }
2302
2303
2304 /*
2305 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2306 * against our list and return its name if we find a match. Note
2307 * that since the Broadcom controller contains VPD support, we
2308 * can get the device name string from the controller itself instead
2309 * of the compiled-in string. This is a little slow, but it guarantees
2310 * we'll always announce the right product name.
2311 */
2312 static int
2313 bge_probe(device_t parent, cfdata_t match, void *aux)
2314 {
2315 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2316
2317 if (bge_lookup(pa) != NULL)
2318 return (1);
2319
2320 return (0);
2321 }
2322
2323 static void
2324 bge_attach(device_t parent, device_t self, void *aux)
2325 {
2326 struct bge_softc *sc = (struct bge_softc *)self;
2327 struct pci_attach_args *pa = aux;
2328 const struct bge_product *bp;
2329 const struct bge_revision *br;
2330 pci_chipset_tag_t pc = pa->pa_pc;
2331 pci_intr_handle_t ih;
2332 const char *intrstr = NULL;
2333 bus_dma_segment_t seg;
2334 int rseg;
2335 u_int32_t hwcfg = 0;
2336 u_int32_t mac_addr = 0;
2337 u_int32_t command;
2338 struct ifnet *ifp;
2339 caddr_t kva;
2340 u_char eaddr[ETHER_ADDR_LEN];
2341 pcireg_t memtype;
2342 bus_addr_t memaddr;
2343 bus_size_t memsize;
2344 u_int32_t pm_ctl;
2345
2346 bp = bge_lookup(pa);
2347 KASSERT(bp != NULL);
2348
2349 sc->bge_pa = *pa;
2350
2351 aprint_naive(": Ethernet controller\n");
2352 aprint_normal(": %s\n", bp->bp_name);
2353
2354 /*
2355 * Map control/status registers.
2356 */
2357 DPRINTFN(5, ("Map control/status regs\n"));
2358 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2359 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2360 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2361 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2362
2363 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2364 aprint_error("%s: failed to enable memory mapping!\n",
2365 sc->bge_dev.dv_xname);
2366 return;
2367 }
2368
2369 DPRINTFN(5, ("pci_mem_find\n"));
2370 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2371 switch (memtype) {
2372 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2373 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2374 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2375 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2376 &memaddr, &memsize) == 0)
2377 break;
2378 default:
2379 aprint_error("%s: can't find mem space\n",
2380 sc->bge_dev.dv_xname);
2381 return;
2382 }
2383
2384 DPRINTFN(5, ("pci_intr_map\n"));
2385 if (pci_intr_map(pa, &ih)) {
2386 aprint_error("%s: couldn't map interrupt\n",
2387 sc->bge_dev.dv_xname);
2388 return;
2389 }
2390
2391 DPRINTFN(5, ("pci_intr_string\n"));
2392 intrstr = pci_intr_string(pc, ih);
2393
2394 DPRINTFN(5, ("pci_intr_establish\n"));
2395 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2396
2397 if (sc->bge_intrhand == NULL) {
2398 aprint_error("%s: couldn't establish interrupt",
2399 sc->bge_dev.dv_xname);
2400 if (intrstr != NULL)
2401 aprint_normal(" at %s", intrstr);
2402 aprint_normal("\n");
2403 return;
2404 }
2405 aprint_normal("%s: interrupting at %s\n",
2406 sc->bge_dev.dv_xname, intrstr);
2407
2408 /*
2409 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2410 * can clobber the chip's PCI config-space power control registers,
2411 * leaving the card in D3 powersave state.
2412 * We do not have memory-mapped registers in this state,
2413 * so force device into D0 state before starting initialization.
2414 */
2415 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2416 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2417 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2418 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2419 DELAY(1000); /* 27 usec is allegedly sufficent */
2420
2421 /*
2422 * Save ASIC rev. Look up any quirks associated with this
2423 * ASIC.
2424 */
2425 sc->bge_chipid =
2426 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2427 BGE_PCIMISCCTL_ASICREV;
2428
2429 /*
2430 * Detect PCI-Express devices
2431 * XXX: guessed from Linux/FreeBSD; no documentation
2432 */
2433 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2434 NULL, NULL) != 0)
2435 sc->bge_pcie = 1;
2436 else
2437 sc->bge_pcie = 0;
2438
2439 /* Try to reset the chip. */
2440 DPRINTFN(5, ("bge_reset\n"));
2441 bge_reset(sc);
2442
2443 if (bge_chipinit(sc)) {
2444 aprint_error("%s: chip initialization failed\n",
2445 sc->bge_dev.dv_xname);
2446 bge_release_resources(sc);
2447 return;
2448 }
2449
2450 /*
2451 * Get station address from the EEPROM.
2452 */
2453 mac_addr = bge_readmem_ind(sc, 0x0c14);
2454 if ((mac_addr >> 16) == 0x484b) {
2455 eaddr[0] = (u_char)(mac_addr >> 8);
2456 eaddr[1] = (u_char)(mac_addr >> 0);
2457 mac_addr = bge_readmem_ind(sc, 0x0c18);
2458 eaddr[2] = (u_char)(mac_addr >> 24);
2459 eaddr[3] = (u_char)(mac_addr >> 16);
2460 eaddr[4] = (u_char)(mac_addr >> 8);
2461 eaddr[5] = (u_char)(mac_addr >> 0);
2462 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2463 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2464 aprint_error("%s: failed to read station address\n",
2465 sc->bge_dev.dv_xname);
2466 bge_release_resources(sc);
2467 return;
2468 }
2469
2470 br = bge_lookup_rev(sc->bge_chipid);
2471 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2472
2473 if (br == NULL) {
2474 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2475 sc->bge_quirks = 0;
2476 } else {
2477 aprint_normal("ASIC %s (0x%04x)",
2478 br->br_name, sc->bge_chipid >> 16);
2479 sc->bge_quirks |= br->br_quirks;
2480 }
2481 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2482
2483 /* Allocate the general information block and ring buffers. */
2484 if (pci_dma64_available(pa))
2485 sc->bge_dmatag = pa->pa_dmat64;
2486 else
2487 sc->bge_dmatag = pa->pa_dmat;
2488 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2489 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2490 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2491 aprint_error("%s: can't alloc rx buffers\n",
2492 sc->bge_dev.dv_xname);
2493 return;
2494 }
2495 DPRINTFN(5, ("bus_dmamem_map\n"));
2496 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2497 sizeof(struct bge_ring_data), &kva,
2498 BUS_DMA_NOWAIT)) {
2499 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2500 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2501 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2502 return;
2503 }
2504 DPRINTFN(5, ("bus_dmamem_create\n"));
2505 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2506 sizeof(struct bge_ring_data), 0,
2507 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2508 aprint_error("%s: can't create DMA map\n",
2509 sc->bge_dev.dv_xname);
2510 bus_dmamem_unmap(sc->bge_dmatag, kva,
2511 sizeof(struct bge_ring_data));
2512 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2513 return;
2514 }
2515 DPRINTFN(5, ("bus_dmamem_load\n"));
2516 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2517 sizeof(struct bge_ring_data), NULL,
2518 BUS_DMA_NOWAIT)) {
2519 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2520 bus_dmamem_unmap(sc->bge_dmatag, kva,
2521 sizeof(struct bge_ring_data));
2522 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2523 return;
2524 }
2525
2526 DPRINTFN(5, ("bzero\n"));
2527 sc->bge_rdata = (struct bge_ring_data *)kva;
2528
2529 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2530
2531 /* Try to allocate memory for jumbo buffers. */
2532 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2533 if (bge_alloc_jumbo_mem(sc)) {
2534 aprint_error("%s: jumbo buffer allocation failed\n",
2535 sc->bge_dev.dv_xname);
2536 } else
2537 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2538 }
2539
2540 /* Set default tuneable values. */
2541 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2542 sc->bge_rx_coal_ticks = 150;
2543 sc->bge_rx_max_coal_bds = 64;
2544 #ifdef ORIG_WPAUL_VALUES
2545 sc->bge_tx_coal_ticks = 150;
2546 sc->bge_tx_max_coal_bds = 128;
2547 #else
2548 sc->bge_tx_coal_ticks = 300;
2549 sc->bge_tx_max_coal_bds = 400;
2550 #endif
2551 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2552 sc->bge_tx_coal_ticks = (12 * 5);
2553 sc->bge_rx_max_coal_bds = (12 * 5);
2554 aprint_verbose("%s: setting short Tx thresholds\n",
2555 sc->bge_dev.dv_xname);
2556 }
2557
2558 /* Set up ifnet structure */
2559 ifp = &sc->ethercom.ec_if;
2560 ifp->if_softc = sc;
2561 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2562 ifp->if_ioctl = bge_ioctl;
2563 ifp->if_start = bge_start;
2564 ifp->if_init = bge_init;
2565 ifp->if_watchdog = bge_watchdog;
2566 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2567 IFQ_SET_READY(&ifp->if_snd);
2568 DPRINTFN(5, ("strcpy if_xname\n"));
2569 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2570
2571 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2572 sc->ethercom.ec_if.if_capabilities |=
2573 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2574 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2575 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2576 sc->ethercom.ec_capabilities |=
2577 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2578
2579 if (sc->bge_pcie)
2580 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2581
2582 /*
2583 * Do MII setup.
2584 */
2585 DPRINTFN(5, ("mii setup\n"));
2586 sc->bge_mii.mii_ifp = ifp;
2587 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2588 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2589 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2590
2591 /*
2592 * Figure out what sort of media we have by checking the
2593 * hardware config word in the first 32k of NIC internal memory,
2594 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2595 * cards, this value appears to be unset. If that's the
2596 * case, we have to rely on identifying the NIC by its PCI
2597 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2598 */
2599 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2600 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2601 } else {
2602 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2603 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2604 hwcfg = be32toh(hwcfg);
2605 }
2606 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2607 sc->bge_tbi = 1;
2608
2609 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2610 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2611 SK_SUBSYSID_9D41)
2612 sc->bge_tbi = 1;
2613
2614 if (sc->bge_tbi) {
2615 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2616 bge_ifmedia_sts);
2617 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2618 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2619 0, NULL);
2620 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2621 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2622 } else {
2623 /*
2624 * Do transceiver setup.
2625 */
2626 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2627 bge_ifmedia_sts);
2628 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2629 MII_PHY_ANY, MII_OFFSET_ANY,
2630 MIIF_FORCEANEG|MIIF_DOPAUSE);
2631
2632 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2633 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2634 ifmedia_add(&sc->bge_mii.mii_media,
2635 IFM_ETHER|IFM_MANUAL, 0, NULL);
2636 ifmedia_set(&sc->bge_mii.mii_media,
2637 IFM_ETHER|IFM_MANUAL);
2638 } else
2639 ifmedia_set(&sc->bge_mii.mii_media,
2640 IFM_ETHER|IFM_AUTO);
2641 }
2642
2643 /*
2644 * When using the BCM5701 in PCI-X mode, data corruption has
2645 * been observed in the first few bytes of some received packets.
2646 * Aligning the packet buffer in memory eliminates the corruption.
2647 * Unfortunately, this misaligns the packet payloads. On platforms
2648 * which do not support unaligned accesses, we will realign the
2649 * payloads by copying the received packets.
2650 */
2651 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2652 /* If in PCI-X mode, work around the alignment bug. */
2653 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2654 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2655 BGE_PCISTATE_PCI_BUSSPEED)
2656 sc->bge_rx_alignment_bug = 1;
2657 }
2658
2659 /*
2660 * Call MI attach routine.
2661 */
2662 DPRINTFN(5, ("if_attach\n"));
2663 if_attach(ifp);
2664 DPRINTFN(5, ("ether_ifattach\n"));
2665 ether_ifattach(ifp, eaddr);
2666 #ifdef BGE_EVENT_COUNTERS
2667 /*
2668 * Attach event counters.
2669 */
2670 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2671 NULL, sc->bge_dev.dv_xname, "intr");
2672 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2673 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2674 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2675 NULL, sc->bge_dev.dv_xname, "tx_xon");
2676 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2677 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2678 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2679 NULL, sc->bge_dev.dv_xname, "rx_xon");
2680 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2681 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2682 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2683 NULL, sc->bge_dev.dv_xname, "xoffentered");
2684 #endif /* BGE_EVENT_COUNTERS */
2685 DPRINTFN(5, ("callout_init\n"));
2686 callout_init(&sc->bge_timeout);
2687
2688 sc->bge_powerhook = powerhook_establish(sc->bge_dev.dv_xname,
2689 bge_powerhook, sc);
2690 if (sc->bge_powerhook == NULL)
2691 printf("%s: WARNING: unable to establish PCI power hook\n",
2692 sc->bge_dev.dv_xname);
2693 }
2694
2695 static void
2696 bge_release_resources(struct bge_softc *sc)
2697 {
2698 if (sc->bge_vpd_prodname != NULL)
2699 free(sc->bge_vpd_prodname, M_DEVBUF);
2700
2701 if (sc->bge_vpd_readonly != NULL)
2702 free(sc->bge_vpd_readonly, M_DEVBUF);
2703 }
2704
2705 static void
2706 bge_reset(struct bge_softc *sc)
2707 {
2708 struct pci_attach_args *pa = &sc->bge_pa;
2709 u_int32_t cachesize, command, pcistate, new_pcistate;
2710 int i, val;
2711
2712 /* Save some important PCI state. */
2713 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2714 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2715 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2716
2717 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2718 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2719 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2720
2721 /*
2722 * Disable the firmware fastboot feature on 5752 ASIC
2723 * to avoid firmware timeout.
2724 */
2725 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752)
2726 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2727
2728 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2729 /*
2730 * XXX: from FreeBSD/Linux; no documentation
2731 */
2732 if (sc->bge_pcie) {
2733 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2734 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2735 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2736 /* No idea what that actually means */
2737 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2738 val |= (1<<29);
2739 }
2740 }
2741
2742 /* Issue global reset */
2743 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2744
2745 DELAY(1000);
2746
2747 /*
2748 * XXX: from FreeBSD/Linux; no documentation
2749 */
2750 if (sc->bge_pcie) {
2751 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2752 pcireg_t reg;
2753
2754 DELAY(500000);
2755 /* XXX: Magic Numbers */
2756 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2757 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2758 reg | (1 << 15));
2759 }
2760 /*
2761 * XXX: Magic Numbers.
2762 * Sets maximal PCI-e payload and clears any PCI-e errors.
2763 * Should be replaced with references to PCI config-space
2764 * capability block for PCI-Express.
2765 */
2766 pci_conf_write(pa->pa_pc, pa->pa_tag,
2767 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2768
2769 }
2770
2771 /* Reset some of the PCI state that got zapped by reset */
2772 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2773 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2774 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2775 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2776 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2777 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2778
2779 /* Enable memory arbiter. */
2780 {
2781 uint32_t marbmode = 0;
2782 if (BGE_IS_5714_FAMILY(sc)) {
2783 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2784 }
2785 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2786 }
2787
2788 /*
2789 * Prevent PXE restart: write a magic number to the
2790 * general communications memory at 0xB50.
2791 */
2792 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2793
2794 /*
2795 * Poll the value location we just wrote until
2796 * we see the 1's complement of the magic number.
2797 * This indicates that the firmware initialization
2798 * is complete.
2799 */
2800 for (i = 0; i < BGE_TIMEOUT; i++) {
2801 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2802 if (val == ~BGE_MAGIC_NUMBER)
2803 break;
2804 DELAY(1000);
2805 }
2806
2807 if (i >= BGE_TIMEOUT) {
2808 printf("%s: firmware handshake timed out, val = %x\n",
2809 sc->bge_dev.dv_xname, val);
2810 /*
2811 * XXX: occasionally fired on bcm5721, but without
2812 * apparent harm. For now, keep going if we timeout
2813 * against PCI-E devices.
2814 */
2815 if (!sc->bge_pcie)
2816 return;
2817 }
2818
2819 /*
2820 * XXX Wait for the value of the PCISTATE register to
2821 * return to its original pre-reset state. This is a
2822 * fairly good indicator of reset completion. If we don't
2823 * wait for the reset to fully complete, trying to read
2824 * from the device's non-PCI registers may yield garbage
2825 * results.
2826 */
2827 for (i = 0; i < BGE_TIMEOUT; i++) {
2828 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2829 BGE_PCI_PCISTATE);
2830 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2831 (pcistate & ~BGE_PCISTATE_RESERVED))
2832 break;
2833 DELAY(10);
2834 }
2835 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2836 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2837 printf("%s: pcistate failed to revert\n",
2838 sc->bge_dev.dv_xname);
2839 }
2840
2841 /* XXX: from FreeBSD/Linux; no documentation */
2842 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2843 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2844
2845 /* Enable memory arbiter. */
2846 /* XXX why do this twice? */
2847 {
2848 uint32_t marbmode = 0;
2849 if (BGE_IS_5714_FAMILY(sc)) {
2850 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2851 }
2852 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2853 }
2854
2855 /* Fix up byte swapping */
2856 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2857
2858 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2859
2860 DELAY(10000);
2861 }
2862
2863 /*
2864 * Frame reception handling. This is called if there's a frame
2865 * on the receive return list.
2866 *
2867 * Note: we have to be able to handle two possibilities here:
2868 * 1) the frame is from the jumbo recieve ring
2869 * 2) the frame is from the standard receive ring
2870 */
2871
2872 static void
2873 bge_rxeof(struct bge_softc *sc)
2874 {
2875 struct ifnet *ifp;
2876 int stdcnt = 0, jumbocnt = 0;
2877 bus_dmamap_t dmamap;
2878 bus_addr_t offset, toff;
2879 bus_size_t tlen;
2880 int tosync;
2881
2882 ifp = &sc->ethercom.ec_if;
2883
2884 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2885 offsetof(struct bge_ring_data, bge_status_block),
2886 sizeof (struct bge_status_block),
2887 BUS_DMASYNC_POSTREAD);
2888
2889 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2890 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2891 sc->bge_rx_saved_considx;
2892
2893 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2894
2895 if (tosync < 0) {
2896 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2897 sizeof (struct bge_rx_bd);
2898 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2899 toff, tlen, BUS_DMASYNC_POSTREAD);
2900 tosync = -tosync;
2901 }
2902
2903 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2904 offset, tosync * sizeof (struct bge_rx_bd),
2905 BUS_DMASYNC_POSTREAD);
2906
2907 while(sc->bge_rx_saved_considx !=
2908 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2909 struct bge_rx_bd *cur_rx;
2910 u_int32_t rxidx;
2911 struct mbuf *m = NULL;
2912
2913 cur_rx = &sc->bge_rdata->
2914 bge_rx_return_ring[sc->bge_rx_saved_considx];
2915
2916 rxidx = cur_rx->bge_idx;
2917 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2918
2919 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2920 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2921 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2922 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2923 jumbocnt++;
2924 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2925 ifp->if_ierrors++;
2926 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2927 continue;
2928 }
2929 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2930 NULL)== ENOBUFS) {
2931 ifp->if_ierrors++;
2932 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2933 continue;
2934 }
2935 } else {
2936 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2937 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2938 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2939 stdcnt++;
2940 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2941 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2942 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2943 ifp->if_ierrors++;
2944 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2945 continue;
2946 }
2947 if (bge_newbuf_std(sc, sc->bge_std,
2948 NULL, dmamap) == ENOBUFS) {
2949 ifp->if_ierrors++;
2950 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2951 continue;
2952 }
2953 }
2954
2955 ifp->if_ipackets++;
2956 #ifndef __NO_STRICT_ALIGNMENT
2957 /*
2958 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2959 * the Rx buffer has the layer-2 header unaligned.
2960 * If our CPU requires alignment, re-align by copying.
2961 */
2962 if (sc->bge_rx_alignment_bug) {
2963 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2964 cur_rx->bge_len);
2965 m->m_data += ETHER_ALIGN;
2966 }
2967 #endif
2968
2969 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2970 m->m_pkthdr.rcvif = ifp;
2971
2972 #if NBPFILTER > 0
2973 /*
2974 * Handle BPF listeners. Let the BPF user see the packet.
2975 */
2976 if (ifp->if_bpf)
2977 bpf_mtap(ifp->if_bpf, m);
2978 #endif
2979
2980 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2981
2982 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2983 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2984 /*
2985 * Rx transport checksum-offload may also
2986 * have bugs with packets which, when transmitted,
2987 * were `runts' requiring padding.
2988 */
2989 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2990 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2991 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2992 m->m_pkthdr.csum_data =
2993 cur_rx->bge_tcp_udp_csum;
2994 m->m_pkthdr.csum_flags |=
2995 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2996 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2997 }
2998
2999 /*
3000 * If we received a packet with a vlan tag, pass it
3001 * to vlan_input() instead of ether_input().
3002 */
3003 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3004 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3005
3006 (*ifp->if_input)(ifp, m);
3007 }
3008
3009 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3010 if (stdcnt)
3011 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3012 if (jumbocnt)
3013 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3014 }
3015
3016 static void
3017 bge_txeof(struct bge_softc *sc)
3018 {
3019 struct bge_tx_bd *cur_tx = NULL;
3020 struct ifnet *ifp;
3021 struct txdmamap_pool_entry *dma;
3022 bus_addr_t offset, toff;
3023 bus_size_t tlen;
3024 int tosync;
3025 struct mbuf *m;
3026
3027 ifp = &sc->ethercom.ec_if;
3028
3029 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3030 offsetof(struct bge_ring_data, bge_status_block),
3031 sizeof (struct bge_status_block),
3032 BUS_DMASYNC_POSTREAD);
3033
3034 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3035 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3036 sc->bge_tx_saved_considx;
3037
3038 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3039
3040 if (tosync < 0) {
3041 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3042 sizeof (struct bge_tx_bd);
3043 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3044 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3045 tosync = -tosync;
3046 }
3047
3048 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3049 offset, tosync * sizeof (struct bge_tx_bd),
3050 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3051
3052 /*
3053 * Go through our tx ring and free mbufs for those
3054 * frames that have been sent.
3055 */
3056 while (sc->bge_tx_saved_considx !=
3057 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3058 u_int32_t idx = 0;
3059
3060 idx = sc->bge_tx_saved_considx;
3061 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3062 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3063 ifp->if_opackets++;
3064 m = sc->bge_cdata.bge_tx_chain[idx];
3065 if (m != NULL) {
3066 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3067 dma = sc->txdma[idx];
3068 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3069 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3070 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3071 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3072 sc->txdma[idx] = NULL;
3073
3074 m_freem(m);
3075 }
3076 sc->bge_txcnt--;
3077 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3078 ifp->if_timer = 0;
3079 }
3080
3081 if (cur_tx != NULL)
3082 ifp->if_flags &= ~IFF_OACTIVE;
3083 }
3084
3085 static int
3086 bge_intr(void *xsc)
3087 {
3088 struct bge_softc *sc;
3089 struct ifnet *ifp;
3090
3091 sc = xsc;
3092 ifp = &sc->ethercom.ec_if;
3093
3094 #ifdef notdef
3095 /* Avoid this for now -- checking this register is expensive. */
3096 /* Make sure this is really our interrupt. */
3097 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
3098 return (0);
3099 #endif
3100 /* Ack interrupt and stop others from occuring. */
3101 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3102
3103 BGE_EVCNT_INCR(sc->bge_ev_intr);
3104
3105 /*
3106 * Process link state changes.
3107 * Grrr. The link status word in the status block does
3108 * not work correctly on the BCM5700 rev AX and BX chips,
3109 * according to all available information. Hence, we have
3110 * to enable MII interrupts in order to properly obtain
3111 * async link changes. Unfortunately, this also means that
3112 * we have to read the MAC status register to detect link
3113 * changes, thereby adding an additional register access to
3114 * the interrupt handler.
3115 */
3116
3117 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3118 u_int32_t status;
3119
3120 status = CSR_READ_4(sc, BGE_MAC_STS);
3121 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3122 sc->bge_link = 0;
3123 callout_stop(&sc->bge_timeout);
3124 bge_tick(sc);
3125 /* Clear the interrupt */
3126 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3127 BGE_EVTENB_MI_INTERRUPT);
3128 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3129 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3130 BRGPHY_INTRS);
3131 }
3132 } else {
3133 if (sc->bge_rdata->bge_status_block.bge_status &
3134 BGE_STATFLAG_LINKSTATE_CHANGED) {
3135 sc->bge_link = 0;
3136 callout_stop(&sc->bge_timeout);
3137 bge_tick(sc);
3138 /* Clear the interrupt */
3139 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3140 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3141 BGE_MACSTAT_LINK_CHANGED);
3142 }
3143 }
3144
3145 if (ifp->if_flags & IFF_RUNNING) {
3146 /* Check RX return ring producer/consumer */
3147 bge_rxeof(sc);
3148
3149 /* Check TX ring producer/consumer */
3150 bge_txeof(sc);
3151 }
3152
3153 if (sc->bge_pending_rxintr_change) {
3154 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3155 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3156 uint32_t junk;
3157
3158 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3159 DELAY(10);
3160 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3161
3162 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3163 DELAY(10);
3164 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3165
3166 sc->bge_pending_rxintr_change = 0;
3167 }
3168 bge_handle_events(sc);
3169
3170 /* Re-enable interrupts. */
3171 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3172
3173 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3174 bge_start(ifp);
3175
3176 return (1);
3177 }
3178
3179 static void
3180 bge_tick(void *xsc)
3181 {
3182 struct bge_softc *sc = xsc;
3183 struct mii_data *mii = &sc->bge_mii;
3184 struct ifmedia *ifm = NULL;
3185 struct ifnet *ifp = &sc->ethercom.ec_if;
3186 int s;
3187
3188 s = splnet();
3189
3190 bge_stats_update(sc);
3191 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3192 if (sc->bge_link) {
3193 splx(s);
3194 return;
3195 }
3196
3197 if (sc->bge_tbi) {
3198 ifm = &sc->bge_ifmedia;
3199 if (CSR_READ_4(sc, BGE_MAC_STS) &
3200 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3201 sc->bge_link++;
3202 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3203 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3204 bge_start(ifp);
3205 }
3206 splx(s);
3207 return;
3208 }
3209
3210 mii_tick(mii);
3211
3212 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3213 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3214 sc->bge_link++;
3215 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3216 bge_start(ifp);
3217 }
3218
3219 splx(s);
3220 }
3221
3222 static void
3223 bge_stats_update(struct bge_softc *sc)
3224 {
3225 struct ifnet *ifp = &sc->ethercom.ec_if;
3226 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3227 bus_size_t rstats = BGE_RX_STATS;
3228
3229 #define READ_RSTAT(sc, stats, stat) \
3230 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3231
3232 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3233 ifp->if_collisions +=
3234 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3235 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3236 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3237 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3238
3239 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3240 READ_RSTAT(sc, rstats, outXoffSent));
3241 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3242 READ_RSTAT(sc, rstats, outXonSent));
3243 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3244 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3245 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3246 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3247 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3248 READ_RSTAT(sc, rstats, macControlFramesReceived));
3249 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3250 READ_RSTAT(sc, rstats, xoffStateEntered));
3251 return;
3252 }
3253
3254 #undef READ_RSTAT
3255 #define READ_STAT(sc, stats, stat) \
3256 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3257
3258 ifp->if_collisions +=
3259 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3260 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3261 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3262 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3263 ifp->if_collisions;
3264
3265 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3266 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3267 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3268 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3269 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3270 READ_STAT(sc, stats,
3271 xoffPauseFramesReceived.bge_addr_lo));
3272 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3273 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3274 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3275 READ_STAT(sc, stats,
3276 macControlFramesReceived.bge_addr_lo));
3277 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3278 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3279
3280 #undef READ_STAT
3281
3282 #ifdef notdef
3283 ifp->if_collisions +=
3284 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3285 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3286 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3287 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3288 ifp->if_collisions;
3289 #endif
3290 }
3291
3292 /*
3293 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3294 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3295 * but when such padded frames employ the bge IP/TCP checksum offload,
3296 * the hardware checksum assist gives incorrect results (possibly
3297 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3298 * If we pad such runts with zeros, the onboard checksum comes out correct.
3299 */
3300 static inline int
3301 bge_cksum_pad(struct mbuf *pkt)
3302 {
3303 struct mbuf *last = NULL;
3304 int padlen;
3305
3306 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3307
3308 /* if there's only the packet-header and we can pad there, use it. */
3309 if (pkt->m_pkthdr.len == pkt->m_len &&
3310 M_TRAILINGSPACE(pkt) >= padlen) {
3311 last = pkt;
3312 } else {
3313 /*
3314 * Walk packet chain to find last mbuf. We will either
3315 * pad there, or append a new mbuf and pad it
3316 * (thus perhaps avoiding the bcm5700 dma-min bug).
3317 */
3318 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3319 continue; /* do nothing */
3320 }
3321
3322 /* `last' now points to last in chain. */
3323 if (M_TRAILINGSPACE(last) < padlen) {
3324 /* Allocate new empty mbuf, pad it. Compact later. */
3325 struct mbuf *n;
3326 MGET(n, M_DONTWAIT, MT_DATA);
3327 n->m_len = 0;
3328 last->m_next = n;
3329 last = n;
3330 }
3331 }
3332
3333 KDASSERT(!M_READONLY(last));
3334 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3335
3336 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3337 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3338 last->m_len += padlen;
3339 pkt->m_pkthdr.len += padlen;
3340 return 0;
3341 }
3342
3343 /*
3344 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3345 */
3346 static inline int
3347 bge_compact_dma_runt(struct mbuf *pkt)
3348 {
3349 struct mbuf *m, *prev;
3350 int totlen, prevlen;
3351
3352 prev = NULL;
3353 totlen = 0;
3354 prevlen = -1;
3355
3356 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3357 int mlen = m->m_len;
3358 int shortfall = 8 - mlen ;
3359
3360 totlen += mlen;
3361 if (mlen == 0) {
3362 continue;
3363 }
3364 if (mlen >= 8)
3365 continue;
3366
3367 /* If we get here, mbuf data is too small for DMA engine.
3368 * Try to fix by shuffling data to prev or next in chain.
3369 * If that fails, do a compacting deep-copy of the whole chain.
3370 */
3371
3372 /* Internal frag. If fits in prev, copy it there. */
3373 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3374 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3375 prev->m_len += mlen;
3376 m->m_len = 0;
3377 /* XXX stitch chain */
3378 prev->m_next = m_free(m);
3379 m = prev;
3380 continue;
3381 }
3382 else if (m->m_next != NULL &&
3383 M_TRAILINGSPACE(m) >= shortfall &&
3384 m->m_next->m_len >= (8 + shortfall)) {
3385 /* m is writable and have enough data in next, pull up. */
3386
3387 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3388 shortfall);
3389 m->m_len += shortfall;
3390 m->m_next->m_len -= shortfall;
3391 m->m_next->m_data += shortfall;
3392 }
3393 else if (m->m_next == NULL || 1) {
3394 /* Got a runt at the very end of the packet.
3395 * borrow data from the tail of the preceding mbuf and
3396 * update its length in-place. (The original data is still
3397 * valid, so we can do this even if prev is not writable.)
3398 */
3399
3400 /* if we'd make prev a runt, just move all of its data. */
3401 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3402 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3403
3404 if ((prev->m_len - shortfall) < 8)
3405 shortfall = prev->m_len;
3406
3407 #ifdef notyet /* just do the safe slow thing for now */
3408 if (!M_READONLY(m)) {
3409 if (M_LEADINGSPACE(m) < shorfall) {
3410 void *m_dat;
3411 m_dat = (m->m_flags & M_PKTHDR) ?
3412 m->m_pktdat : m->dat;
3413 memmove(m_dat, mtod(m, void*), m->m_len);
3414 m->m_data = m_dat;
3415 }
3416 } else
3417 #endif /* just do the safe slow thing */
3418 {
3419 struct mbuf * n = NULL;
3420 int newprevlen = prev->m_len - shortfall;
3421
3422 MGET(n, M_NOWAIT, MT_DATA);
3423 if (n == NULL)
3424 return ENOBUFS;
3425 KASSERT(m->m_len + shortfall < MLEN
3426 /*,
3427 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3428
3429 /* first copy the data we're stealing from prev */
3430 memcpy(n->m_data, prev->m_data + newprevlen,
3431 shortfall);
3432
3433 /* update prev->m_len accordingly */
3434 prev->m_len -= shortfall;
3435
3436 /* copy data from runt m */
3437 memcpy(n->m_data + shortfall, m->m_data,
3438 m->m_len);
3439
3440 /* n holds what we stole from prev, plus m */
3441 n->m_len = shortfall + m->m_len;
3442
3443 /* stitch n into chain and free m */
3444 n->m_next = m->m_next;
3445 prev->m_next = n;
3446 /* KASSERT(m->m_next == NULL); */
3447 m->m_next = NULL;
3448 m_free(m);
3449 m = n; /* for continuing loop */
3450 }
3451 }
3452 prevlen = m->m_len;
3453 }
3454 return 0;
3455 }
3456
3457 /*
3458 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3459 * pointers to descriptors.
3460 */
3461 static int
3462 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3463 {
3464 struct bge_tx_bd *f = NULL;
3465 u_int32_t frag, cur;
3466 u_int16_t csum_flags = 0;
3467 u_int16_t txbd_tso_flags = 0;
3468 struct txdmamap_pool_entry *dma;
3469 bus_dmamap_t dmamap;
3470 int i = 0;
3471 struct m_tag *mtag;
3472 int use_tso, maxsegsize, error;
3473
3474 cur = frag = *txidx;
3475
3476 if (m_head->m_pkthdr.csum_flags) {
3477 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3478 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3479 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3480 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3481 }
3482
3483 /*
3484 * If we were asked to do an outboard checksum, and the NIC
3485 * has the bug where it sometimes adds in the Ethernet padding,
3486 * explicitly pad with zeros so the cksum will be correct either way.
3487 * (For now, do this for all chip versions, until newer
3488 * are confirmed to not require the workaround.)
3489 */
3490 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3491 #ifdef notyet
3492 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3493 #endif
3494 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3495 goto check_dma_bug;
3496
3497 if (bge_cksum_pad(m_head) != 0) {
3498 return ENOBUFS;
3499 }
3500
3501 check_dma_bug:
3502 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3503 goto doit;
3504 /*
3505 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3506 * less than eight bytes. If we encounter a teeny mbuf
3507 * at the end of a chain, we can pad. Otherwise, copy.
3508 */
3509 if (bge_compact_dma_runt(m_head) != 0)
3510 return ENOBUFS;
3511
3512 doit:
3513 dma = SLIST_FIRST(&sc->txdma_list);
3514 if (dma == NULL)
3515 return ENOBUFS;
3516 dmamap = dma->dmamap;
3517
3518 /*
3519 * Set up any necessary TSO state before we start packing...
3520 */
3521 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3522 if (!use_tso) {
3523 maxsegsize = 0;
3524 } else { /* TSO setup */
3525 unsigned mss;
3526 struct ether_header *eh;
3527 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3528 struct mbuf * m0 = m_head;
3529 struct ip *ip;
3530 struct tcphdr *th;
3531 int iphl, hlen;
3532
3533 /*
3534 * XXX It would be nice if the mbuf pkthdr had offset
3535 * fields for the protocol headers.
3536 */
3537
3538 eh = mtod(m0, struct ether_header *);
3539 switch (htons(eh->ether_type)) {
3540 case ETHERTYPE_IP:
3541 offset = ETHER_HDR_LEN;
3542 break;
3543
3544 case ETHERTYPE_VLAN:
3545 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3546 break;
3547
3548 default:
3549 /*
3550 * Don't support this protocol or encapsulation.
3551 */
3552 return (ENOBUFS);
3553 }
3554
3555 /*
3556 * TCP/IP headers are in the first mbuf; we can do
3557 * this the easy way.
3558 */
3559 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3560 hlen = iphl + offset;
3561 if (__predict_false(m0->m_len <
3562 (hlen + sizeof(struct tcphdr)))) {
3563
3564 printf("TSO: hard case m0->m_len == %d <"
3565 " ip/tcp hlen %zd, not handled yet\n",
3566 m0->m_len, hlen+ sizeof(struct tcphdr));
3567 #ifdef NOTYET
3568 /*
3569 * XXX jonathan (at) NetBSD.org: untested.
3570 * how to force this branch to be taken?
3571 */
3572 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3573
3574 m_copydata(m0, offset, sizeof(ip), &ip);
3575 m_copydata(m0, hlen, sizeof(th), &th);
3576
3577 ip.ip_len = 0;
3578
3579 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3580 sizeof(ip.ip_len), &ip.ip_len);
3581
3582 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3583 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3584
3585 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3586 sizeof(th.th_sum), &th.th_sum);
3587
3588 hlen += th.th_off << 2;
3589 iptcp_opt_words = hlen;
3590 #else
3591 /*
3592 * if_wm "hard" case not yet supported, can we not
3593 * mandate it out of existence?
3594 */
3595 (void) ip; (void)th; (void) ip_tcp_hlen;
3596
3597 return ENOBUFS;
3598 #endif
3599 } else {
3600 ip = (struct ip *) (mtod(m0, caddr_t) + offset);
3601 th = (struct tcphdr *) (mtod(m0, caddr_t) + hlen);
3602 ip_tcp_hlen = iphl + (th->th_off << 2);
3603
3604 /* Total IP/TCP options, in 32-bit words */
3605 iptcp_opt_words = (ip_tcp_hlen
3606 - sizeof(struct tcphdr)
3607 - sizeof(struct ip)) >> 2;
3608 }
3609 if (BGE_IS_5750_OR_BEYOND(sc)) {
3610 th->th_sum = 0;
3611 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3612 } else {
3613 /*
3614 * XXX jonathan (at) NetBSD.org: 5705 untested.
3615 * Requires TSO firmware patch for 5701/5703/5704.
3616 */
3617 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3618 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3619 }
3620
3621 mss = m_head->m_pkthdr.segsz;
3622 txbd_tso_flags |=
3623 BGE_TXBDFLAG_CPU_PRE_DMA |
3624 BGE_TXBDFLAG_CPU_POST_DMA;
3625
3626 /*
3627 * Our NIC TSO-assist assumes TSO has standard, optionless
3628 * IPv4 and TCP headers, which total 40 bytes. By default,
3629 * the NIC copies 40 bytes of IP/TCP header from the
3630 * supplied header into the IP/TCP header portion of
3631 * each post-TSO-segment. If the supplied packet has IP or
3632 * TCP options, we need to tell the NIC to copy those extra
3633 * bytes into each post-TSO header, in addition to the normal
3634 * 40-byte IP/TCP header (and to leave space accordingly).
3635 * Unfortunately, the driver encoding of option length
3636 * varies across different ASIC families.
3637 */
3638 tcp_seg_flags = 0;
3639 if (iptcp_opt_words) {
3640 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3641 tcp_seg_flags =
3642 iptcp_opt_words << 11;
3643 } else {
3644 txbd_tso_flags |=
3645 iptcp_opt_words << 12;
3646 }
3647 }
3648 maxsegsize = mss | tcp_seg_flags;
3649 ip->ip_len = htons(mss + ip_tcp_hlen);
3650
3651 } /* TSO setup */
3652
3653 /*
3654 * Start packing the mbufs in this chain into
3655 * the fragment pointers. Stop when we run out
3656 * of fragments or hit the end of the mbuf chain.
3657 */
3658 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3659 BUS_DMA_NOWAIT);
3660 if (error) {
3661 return(ENOBUFS);
3662 }
3663 /*
3664 * Sanity check: avoid coming within 16 descriptors
3665 * of the end of the ring.
3666 */
3667 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3668 BGE_TSO_PRINTF(("%s: "
3669 " dmamap_load_mbuf too close to ring wrap\n",
3670 sc->bge_dev.dv_xname));
3671 goto fail_unload;
3672 }
3673
3674 mtag = sc->ethercom.ec_nvlans ?
3675 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3676
3677
3678 /* Iterate over dmap-map fragments. */
3679 for (i = 0; i < dmamap->dm_nsegs; i++) {
3680 f = &sc->bge_rdata->bge_tx_ring[frag];
3681 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3682 break;
3683
3684 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3685 f->bge_len = dmamap->dm_segs[i].ds_len;
3686
3687 /*
3688 * For 5751 and follow-ons, for TSO we must turn
3689 * off checksum-assist flag in the tx-descr, and
3690 * supply the ASIC-revision-specific encoding
3691 * of TSO flags and segsize.
3692 */
3693 if (use_tso) {
3694 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3695 f->bge_rsvd = maxsegsize;
3696 f->bge_flags = csum_flags | txbd_tso_flags;
3697 } else {
3698 f->bge_rsvd = 0;
3699 f->bge_flags =
3700 (csum_flags | txbd_tso_flags) & 0x0fff;
3701 }
3702 } else {
3703 f->bge_rsvd = 0;
3704 f->bge_flags = csum_flags;
3705 }
3706
3707 if (mtag != NULL) {
3708 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3709 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3710 } else {
3711 f->bge_vlan_tag = 0;
3712 }
3713 cur = frag;
3714 BGE_INC(frag, BGE_TX_RING_CNT);
3715 }
3716
3717 if (i < dmamap->dm_nsegs) {
3718 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3719 sc->bge_dev.dv_xname, i, dmamap->dm_nsegs));
3720 goto fail_unload;
3721 }
3722
3723 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3724 BUS_DMASYNC_PREWRITE);
3725
3726 if (frag == sc->bge_tx_saved_considx) {
3727 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3728 sc->bge_dev.dv_xname, frag, sc->bge_tx_saved_considx));
3729
3730 goto fail_unload;
3731 }
3732
3733 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3734 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3735 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3736 sc->txdma[cur] = dma;
3737 sc->bge_txcnt += dmamap->dm_nsegs;
3738
3739 *txidx = frag;
3740
3741 return(0);
3742
3743 fail_unload:
3744 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3745
3746 return ENOBUFS;
3747 }
3748
3749 /*
3750 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3751 * to the mbuf data regions directly in the transmit descriptors.
3752 */
3753 static void
3754 bge_start(struct ifnet *ifp)
3755 {
3756 struct bge_softc *sc;
3757 struct mbuf *m_head = NULL;
3758 u_int32_t prodidx;
3759 int pkts = 0;
3760
3761 sc = ifp->if_softc;
3762
3763 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3764 return;
3765
3766 prodidx = sc->bge_tx_prodidx;
3767
3768 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3769 IFQ_POLL(&ifp->if_snd, m_head);
3770 if (m_head == NULL)
3771 break;
3772
3773 #if 0
3774 /*
3775 * XXX
3776 * safety overkill. If this is a fragmented packet chain
3777 * with delayed TCP/UDP checksums, then only encapsulate
3778 * it if we have enough descriptors to handle the entire
3779 * chain at once.
3780 * (paranoia -- may not actually be needed)
3781 */
3782 if (m_head->m_flags & M_FIRSTFRAG &&
3783 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3784 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3785 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3786 ifp->if_flags |= IFF_OACTIVE;
3787 break;
3788 }
3789 }
3790 #endif
3791
3792 /*
3793 * Pack the data into the transmit ring. If we
3794 * don't have room, set the OACTIVE flag and wait
3795 * for the NIC to drain the ring.
3796 */
3797 if (bge_encap(sc, m_head, &prodidx)) {
3798 printf("bge: failed on len %d?\n", m_head->m_pkthdr.len);
3799 ifp->if_flags |= IFF_OACTIVE;
3800 break;
3801 }
3802
3803 /* now we are committed to transmit the packet */
3804 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3805 pkts++;
3806
3807 #if NBPFILTER > 0
3808 /*
3809 * If there's a BPF listener, bounce a copy of this frame
3810 * to him.
3811 */
3812 if (ifp->if_bpf)
3813 bpf_mtap(ifp->if_bpf, m_head);
3814 #endif
3815 }
3816 if (pkts == 0)
3817 return;
3818
3819 /* Transmit */
3820 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3821 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3822 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3823
3824 sc->bge_tx_prodidx = prodidx;
3825
3826 /*
3827 * Set a timeout in case the chip goes out to lunch.
3828 */
3829 ifp->if_timer = 5;
3830 }
3831
3832 static int
3833 bge_init(struct ifnet *ifp)
3834 {
3835 struct bge_softc *sc = ifp->if_softc;
3836 u_int16_t *m;
3837 int s, error;
3838
3839 s = splnet();
3840
3841 ifp = &sc->ethercom.ec_if;
3842
3843 /* Cancel pending I/O and flush buffers. */
3844 bge_stop(sc);
3845 bge_reset(sc);
3846 bge_chipinit(sc);
3847
3848 /*
3849 * Init the various state machines, ring
3850 * control blocks and firmware.
3851 */
3852 error = bge_blockinit(sc);
3853 if (error != 0) {
3854 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3855 error);
3856 splx(s);
3857 return error;
3858 }
3859
3860 ifp = &sc->ethercom.ec_if;
3861
3862 /* Specify MTU. */
3863 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3864 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3865
3866 /* Load our MAC address. */
3867 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3868 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3869 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3870
3871 /* Enable or disable promiscuous mode as needed. */
3872 if (ifp->if_flags & IFF_PROMISC) {
3873 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3874 } else {
3875 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3876 }
3877
3878 /* Program multicast filter. */
3879 bge_setmulti(sc);
3880
3881 /* Init RX ring. */
3882 bge_init_rx_ring_std(sc);
3883
3884 /* Init jumbo RX ring. */
3885 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3886 bge_init_rx_ring_jumbo(sc);
3887
3888 /* Init our RX return ring index */
3889 sc->bge_rx_saved_considx = 0;
3890
3891 /* Init TX ring. */
3892 bge_init_tx_ring(sc);
3893
3894 /* Turn on transmitter */
3895 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3896
3897 /* Turn on receiver */
3898 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3899
3900 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3901
3902 /* Tell firmware we're alive. */
3903 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3904
3905 /* Enable host interrupts. */
3906 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3907 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3908 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3909
3910 bge_ifmedia_upd(ifp);
3911
3912 ifp->if_flags |= IFF_RUNNING;
3913 ifp->if_flags &= ~IFF_OACTIVE;
3914
3915 splx(s);
3916
3917 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3918
3919 return 0;
3920 }
3921
3922 /*
3923 * Set media options.
3924 */
3925 static int
3926 bge_ifmedia_upd(struct ifnet *ifp)
3927 {
3928 struct bge_softc *sc = ifp->if_softc;
3929 struct mii_data *mii = &sc->bge_mii;
3930 struct ifmedia *ifm = &sc->bge_ifmedia;
3931
3932 /* If this is a 1000baseX NIC, enable the TBI port. */
3933 if (sc->bge_tbi) {
3934 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3935 return(EINVAL);
3936 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3937 case IFM_AUTO:
3938 break;
3939 case IFM_1000_SX:
3940 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3941 BGE_CLRBIT(sc, BGE_MAC_MODE,
3942 BGE_MACMODE_HALF_DUPLEX);
3943 } else {
3944 BGE_SETBIT(sc, BGE_MAC_MODE,
3945 BGE_MACMODE_HALF_DUPLEX);
3946 }
3947 break;
3948 default:
3949 return(EINVAL);
3950 }
3951 /* XXX 802.3x flow control for 1000BASE-SX */
3952 return(0);
3953 }
3954
3955 sc->bge_link = 0;
3956 mii_mediachg(mii);
3957
3958 return(0);
3959 }
3960
3961 /*
3962 * Report current media status.
3963 */
3964 static void
3965 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3966 {
3967 struct bge_softc *sc = ifp->if_softc;
3968 struct mii_data *mii = &sc->bge_mii;
3969
3970 if (sc->bge_tbi) {
3971 ifmr->ifm_status = IFM_AVALID;
3972 ifmr->ifm_active = IFM_ETHER;
3973 if (CSR_READ_4(sc, BGE_MAC_STS) &
3974 BGE_MACSTAT_TBI_PCS_SYNCHED)
3975 ifmr->ifm_status |= IFM_ACTIVE;
3976 ifmr->ifm_active |= IFM_1000_SX;
3977 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3978 ifmr->ifm_active |= IFM_HDX;
3979 else
3980 ifmr->ifm_active |= IFM_FDX;
3981 return;
3982 }
3983
3984 mii_pollstat(mii);
3985 ifmr->ifm_status = mii->mii_media_status;
3986 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3987 sc->bge_flowflags;
3988 }
3989
3990 static int
3991 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3992 {
3993 struct bge_softc *sc = ifp->if_softc;
3994 struct ifreq *ifr = (struct ifreq *) data;
3995 int s, error = 0;
3996 struct mii_data *mii;
3997
3998 s = splnet();
3999
4000 switch(command) {
4001 case SIOCSIFFLAGS:
4002 if (ifp->if_flags & IFF_UP) {
4003 /*
4004 * If only the state of the PROMISC flag changed,
4005 * then just use the 'set promisc mode' command
4006 * instead of reinitializing the entire NIC. Doing
4007 * a full re-init means reloading the firmware and
4008 * waiting for it to start up, which may take a
4009 * second or two.
4010 */
4011 if (ifp->if_flags & IFF_RUNNING &&
4012 ifp->if_flags & IFF_PROMISC &&
4013 !(sc->bge_if_flags & IFF_PROMISC)) {
4014 BGE_SETBIT(sc, BGE_RX_MODE,
4015 BGE_RXMODE_RX_PROMISC);
4016 } else if (ifp->if_flags & IFF_RUNNING &&
4017 !(ifp->if_flags & IFF_PROMISC) &&
4018 sc->bge_if_flags & IFF_PROMISC) {
4019 BGE_CLRBIT(sc, BGE_RX_MODE,
4020 BGE_RXMODE_RX_PROMISC);
4021 } else if (!(sc->bge_if_flags & IFF_UP))
4022 bge_init(ifp);
4023 } else {
4024 if (ifp->if_flags & IFF_RUNNING) {
4025 bge_stop(sc);
4026 }
4027 }
4028 sc->bge_if_flags = ifp->if_flags;
4029 error = 0;
4030 break;
4031 case SIOCSIFMEDIA:
4032 /* XXX Flow control is not supported for 1000BASE-SX */
4033 if (sc->bge_tbi) {
4034 ifr->ifr_media &= ~IFM_ETH_FMASK;
4035 sc->bge_flowflags = 0;
4036 }
4037
4038 /* Flow control requires full-duplex mode. */
4039 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4040 (ifr->ifr_media & IFM_FDX) == 0) {
4041 ifr->ifr_media &= ~IFM_ETH_FMASK;
4042 }
4043 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4044 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4045 /* We an do both TXPAUSE and RXPAUSE. */
4046 ifr->ifr_media |=
4047 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4048 }
4049 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4050 }
4051 /* FALLTHROUGH */
4052 case SIOCGIFMEDIA:
4053 if (sc->bge_tbi) {
4054 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4055 command);
4056 } else {
4057 mii = &sc->bge_mii;
4058 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4059 command);
4060 }
4061 break;
4062 default:
4063 error = ether_ioctl(ifp, command, data);
4064 if (error == ENETRESET) {
4065 if (ifp->if_flags & IFF_RUNNING)
4066 bge_setmulti(sc);
4067 error = 0;
4068 }
4069 break;
4070 }
4071
4072 splx(s);
4073
4074 return(error);
4075 }
4076
4077 static void
4078 bge_watchdog(struct ifnet *ifp)
4079 {
4080 struct bge_softc *sc;
4081
4082 sc = ifp->if_softc;
4083
4084 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
4085
4086 ifp->if_flags &= ~IFF_RUNNING;
4087 bge_init(ifp);
4088
4089 ifp->if_oerrors++;
4090 }
4091
4092 static void
4093 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4094 {
4095 int i;
4096
4097 BGE_CLRBIT(sc, reg, bit);
4098
4099 for (i = 0; i < BGE_TIMEOUT; i++) {
4100 if ((CSR_READ_4(sc, reg) & bit) == 0)
4101 return;
4102 delay(100);
4103 if (sc->bge_pcie)
4104 DELAY(1000);
4105 }
4106
4107 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
4108 sc->bge_dev.dv_xname, (u_long) reg, bit);
4109 }
4110
4111 /*
4112 * Stop the adapter and free any mbufs allocated to the
4113 * RX and TX lists.
4114 */
4115 static void
4116 bge_stop(struct bge_softc *sc)
4117 {
4118 struct ifnet *ifp = &sc->ethercom.ec_if;
4119
4120 callout_stop(&sc->bge_timeout);
4121
4122 /*
4123 * Disable all of the receiver blocks
4124 */
4125 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4126 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4127 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4128 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4129 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4130 }
4131 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4132 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4133 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4134
4135 /*
4136 * Disable all of the transmit blocks
4137 */
4138 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4139 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4140 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4141 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4142 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4143 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4144 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4145 }
4146 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4147
4148 /*
4149 * Shut down all of the memory managers and related
4150 * state machines.
4151 */
4152 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4153 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4154 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4155 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4156 }
4157
4158 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4159 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4160
4161 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4162 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4163 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4164 }
4165
4166 /* Disable host interrupts. */
4167 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4168 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4169
4170 /*
4171 * Tell firmware we're shutting down.
4172 */
4173 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4174
4175 /* Free the RX lists. */
4176 bge_free_rx_ring_std(sc);
4177
4178 /* Free jumbo RX list. */
4179 bge_free_rx_ring_jumbo(sc);
4180
4181 /* Free TX buffers. */
4182 bge_free_tx_ring(sc);
4183
4184 /*
4185 * Isolate/power down the PHY.
4186 */
4187 if (!sc->bge_tbi)
4188 mii_down(&sc->bge_mii);
4189
4190 sc->bge_link = 0;
4191
4192 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4193
4194 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4195 }
4196
4197 /*
4198 * Stop all chip I/O so that the kernel's probe routines don't
4199 * get confused by errant DMAs when rebooting.
4200 */
4201 static void
4202 bge_shutdown(void *xsc)
4203 {
4204 struct bge_softc *sc = (struct bge_softc *)xsc;
4205
4206 bge_stop(sc);
4207 bge_reset(sc);
4208 }
4209
4210
4211 static int
4212 sysctl_bge_verify(SYSCTLFN_ARGS)
4213 {
4214 int error, t;
4215 struct sysctlnode node;
4216
4217 node = *rnode;
4218 t = *(int*)rnode->sysctl_data;
4219 node.sysctl_data = &t;
4220 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4221 if (error || newp == NULL)
4222 return (error);
4223
4224 #if 0
4225 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4226 node.sysctl_num, rnode->sysctl_num));
4227 #endif
4228
4229 if (node.sysctl_num == bge_rxthresh_nodenum) {
4230 if (t < 0 || t >= NBGE_RX_THRESH)
4231 return (EINVAL);
4232 bge_update_all_threshes(t);
4233 } else
4234 return (EINVAL);
4235
4236 *(int*)rnode->sysctl_data = t;
4237
4238 return (0);
4239 }
4240
4241 /*
4242 * Set up sysctl(3) MIB, hw.bge.*.
4243 *
4244 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4245 */
4246 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4247 {
4248 int rc, bge_root_num;
4249 const struct sysctlnode *node;
4250
4251 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4252 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4253 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4254 goto err;
4255 }
4256
4257 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4258 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4259 SYSCTL_DESCR("BGE interface controls"),
4260 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4261 goto err;
4262 }
4263
4264 bge_root_num = node->sysctl_num;
4265
4266 /* BGE Rx interrupt mitigation level */
4267 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4268 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4269 CTLTYPE_INT, "rx_lvl",
4270 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4271 sysctl_bge_verify, 0,
4272 &bge_rx_thresh_lvl,
4273 0, CTL_HW, bge_root_num, CTL_CREATE,
4274 CTL_EOL)) != 0) {
4275 goto err;
4276 }
4277
4278 bge_rxthresh_nodenum = node->sysctl_num;
4279
4280 return;
4281
4282 err:
4283 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4284 }
4285
4286 static void
4287 bge_powerhook(int why, void *hdl)
4288 {
4289 struct bge_softc *sc = (struct bge_softc *)hdl;
4290 struct ifnet *ifp = &sc->ethercom.ec_if;
4291 struct pci_attach_args *pa = &(sc->bge_pa);
4292 pci_chipset_tag_t pc = pa->pa_pc;
4293 pcitag_t tag = pa->pa_tag;
4294
4295 switch (why) {
4296 case PWR_SOFTSUSPEND:
4297 case PWR_SOFTSTANDBY:
4298 bge_shutdown(sc);
4299 break;
4300 case PWR_SOFTRESUME:
4301 if (ifp->if_flags & IFF_UP) {
4302 ifp->if_flags &= ~IFF_RUNNING;
4303 bge_init(ifp);
4304 }
4305 break;
4306 case PWR_SUSPEND:
4307 case PWR_STANDBY:
4308 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4309 break;
4310 case PWR_RESUME:
4311 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4312 break;
4313 }
4314
4315 return;
4316 }
4317