if_bge.c revision 1.14 1 /* $NetBSD: if_bge.c,v 1.14 2002/07/12 22:29:14 enami Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 *
46 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
47 * Senior Engineer, Wind River Systems
48 */
49
50 /*
51 * The Broadcom BCM5700 is based on technology originally developed by
52 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
53 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
54 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
55 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
56 * frames, highly configurable RX filtering, and 16 RX and TX queues
57 * (which, along with RX filter rules, can be used for QOS applications).
58 * Other features, such as TCP segmentation, may be available as part
59 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
60 * firmware images can be stored in hardware and need not be compiled
61 * into the driver.
62 *
63 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
64 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
65 *
66 * The BCM5701 is a single-chip solution incorporating both the BCM5700
67 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
68 * does not support external SSRAM.
69 *
70 * Broadcom also produces a variation of the BCM5700 under the "Altima"
71 * brand name, which is functionally similar but lacks PCI-X support.
72 *
73 * Without external SSRAM, you can only have at most 4 TX rings,
74 * and the use of the mini RX ring is disabled. This seems to imply
75 * that these features are simply not available on the BCM5701. As a
76 * result, this driver does not implement any support for the mini RX
77 * ring.
78 */
79
80 #include "bpfilter.h"
81 #include "vlan.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/device.h>
91 #include <sys/socket.h>
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97
98 #ifdef INET
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/in_var.h>
102 #include <netinet/ip.h>
103 #endif
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #include <dev/mii/miidevs.h>
116 #include <dev/mii/brgphyreg.h>
117
118 #include <dev/pci/if_bgereg.h>
119
120 #include <uvm/uvm_extern.h>
121
122 /* #define BGE_CHECKSUM */
123
124 int bge_probe(struct device *, struct cfdata *, void *);
125 void bge_attach(struct device *, struct device *, void *);
126 void bge_release_resources(struct bge_softc *);
127 void bge_txeof(struct bge_softc *);
128 void bge_rxeof(struct bge_softc *);
129
130 void bge_tick(void *);
131 void bge_stats_update(struct bge_softc *);
132 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
133
134 int bge_intr(void *);
135 void bge_start(struct ifnet *);
136 int bge_ioctl(struct ifnet *, u_long, caddr_t);
137 int bge_init(struct ifnet *);
138 void bge_stop(struct bge_softc *);
139 void bge_watchdog(struct ifnet *);
140 void bge_shutdown(void *);
141 int bge_ifmedia_upd(struct ifnet *);
142 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143
144 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
145 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
146
147 void bge_setmulti(struct bge_softc *);
148
149 void bge_handle_events(struct bge_softc *);
150 int bge_alloc_jumbo_mem(struct bge_softc *);
151 void bge_free_jumbo_mem(struct bge_softc *);
152 void *bge_jalloc(struct bge_softc *);
153 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
154 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
155 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
156 int bge_init_rx_ring_std(struct bge_softc *);
157 void bge_free_rx_ring_std(struct bge_softc *);
158 int bge_init_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_rx_ring_jumbo(struct bge_softc *);
160 void bge_free_tx_ring(struct bge_softc *);
161 int bge_init_tx_ring(struct bge_softc *);
162
163 int bge_chipinit(struct bge_softc *);
164 int bge_blockinit(struct bge_softc *);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184 void bge_phy_hack(struct bge_softc *);
185
186 void bge_dump_status(struct bge_softc *);
187 void bge_dump_rxbd(struct bge_rx_bd *);
188
189 #define BGE_DEBUG
190 #ifdef BGE_DEBUG
191 #define DPRINTF(x) if (bgedebug) printf x
192 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
193 int bgedebug = 0;
194 #else
195 #define DPRINTF(x)
196 #define DPRINTFN(n,x)
197 #endif
198
199 struct cfattach bge_ca = {
200 sizeof(struct bge_softc), bge_probe, bge_attach
201 };
202
203 u_int32_t
204 bge_readmem_ind(sc, off)
205 struct bge_softc *sc;
206 int off;
207 {
208 struct pci_attach_args *pa = &(sc->bge_pa);
209 pcireg_t val;
210
211 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
212 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
213 return val;
214 }
215
216 void
217 bge_writemem_ind(sc, off, val)
218 struct bge_softc *sc;
219 int off, val;
220 {
221 struct pci_attach_args *pa = &(sc->bge_pa);
222
223 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
224 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
225 }
226
227 #ifdef notdef
228 u_int32_t
229 bge_readreg_ind(sc, off)
230 struct bge_softc *sc;
231 int off;
232 {
233 struct pci_attach_args *pa = &(sc->bge_pa);
234
235 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
236 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
237 }
238 #endif
239
240 void
241 bge_writereg_ind(sc, off, val)
242 struct bge_softc *sc;
243 int off, val;
244 {
245 struct pci_attach_args *pa = &(sc->bge_pa);
246
247 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
248 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
249 }
250
251 #ifdef notdef
252 u_int8_t
253 bge_vpd_readbyte(sc, addr)
254 struct bge_softc *sc;
255 int addr;
256 {
257 int i;
258 u_int32_t val;
259 struct pci_attach_args *pa = &(sc->bge_pa);
260
261 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
262 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
263 DELAY(10);
264 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
265 BGE_VPD_FLAG)
266 break;
267 }
268
269 if (i == BGE_TIMEOUT) {
270 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
271 return(0);
272 }
273
274 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
275
276 return((val >> ((addr % 4) * 8)) & 0xFF);
277 }
278
279 void
280 bge_vpd_read_res(sc, res, addr)
281 struct bge_softc *sc;
282 struct vpd_res *res;
283 int addr;
284 {
285 int i;
286 u_int8_t *ptr;
287
288 ptr = (u_int8_t *)res;
289 for (i = 0; i < sizeof(struct vpd_res); i++)
290 ptr[i] = bge_vpd_readbyte(sc, i + addr);
291 }
292
293 void
294 bge_vpd_read(sc)
295 struct bge_softc *sc;
296 {
297 int pos = 0, i;
298 struct vpd_res res;
299
300 if (sc->bge_vpd_prodname != NULL)
301 free(sc->bge_vpd_prodname, M_DEVBUF);
302 if (sc->bge_vpd_readonly != NULL)
303 free(sc->bge_vpd_readonly, M_DEVBUF);
304 sc->bge_vpd_prodname = NULL;
305 sc->bge_vpd_readonly = NULL;
306
307 bge_vpd_read_res(sc, &res, pos);
308
309 if (res.vr_id != VPD_RES_ID) {
310 printf("%s: bad VPD resource id: expected %x got %x\n",
311 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
312 return;
313 }
314
315 pos += sizeof(res);
316 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
317 if (sc->bge_vpd_prodname == NULL)
318 panic("bge_vpd_read");
319 for (i = 0; i < res.vr_len; i++)
320 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
321 sc->bge_vpd_prodname[i] = '\0';
322 pos += i;
323
324 bge_vpd_read_res(sc, &res, pos);
325
326 if (res.vr_id != VPD_RES_READ) {
327 printf("%s: bad VPD resource id: expected %x got %x\n",
328 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
329 return;
330 }
331
332 pos += sizeof(res);
333 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
334 if (sc->bge_vpd_readonly == NULL)
335 panic("bge_vpd_read");
336 for (i = 0; i < res.vr_len + 1; i++)
337 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
338 }
339 #endif
340
341 /*
342 * Read a byte of data stored in the EEPROM at address 'addr.' The
343 * BCM570x supports both the traditional bitbang interface and an
344 * auto access interface for reading the EEPROM. We use the auto
345 * access method.
346 */
347 u_int8_t
348 bge_eeprom_getbyte(sc, addr, dest)
349 struct bge_softc *sc;
350 int addr;
351 u_int8_t *dest;
352 {
353 int i;
354 u_int32_t byte = 0;
355
356 /*
357 * Enable use of auto EEPROM access so we can avoid
358 * having to use the bitbang method.
359 */
360 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
361
362 /* Reset the EEPROM, load the clock period. */
363 CSR_WRITE_4(sc, BGE_EE_ADDR,
364 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
365 DELAY(20);
366
367 /* Issue the read EEPROM command. */
368 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
369
370 /* Wait for completion */
371 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
372 DELAY(10);
373 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
374 break;
375 }
376
377 if (i == BGE_TIMEOUT) {
378 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
379 return(0);
380 }
381
382 /* Get result. */
383 byte = CSR_READ_4(sc, BGE_EE_DATA);
384
385 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
386
387 return(0);
388 }
389
390 /*
391 * Read a sequence of bytes from the EEPROM.
392 */
393 int
394 bge_read_eeprom(sc, dest, off, cnt)
395 struct bge_softc *sc;
396 caddr_t dest;
397 int off;
398 int cnt;
399 {
400 int err = 0, i;
401 u_int8_t byte = 0;
402
403 for (i = 0; i < cnt; i++) {
404 err = bge_eeprom_getbyte(sc, off + i, &byte);
405 if (err)
406 break;
407 *(dest + i) = byte;
408 }
409
410 return(err ? 1 : 0);
411 }
412
413 int
414 bge_miibus_readreg(dev, phy, reg)
415 struct device *dev;
416 int phy, reg;
417 {
418 struct bge_softc *sc = (struct bge_softc *)dev;
419 struct ifnet *ifp;
420 u_int32_t val;
421 int i;
422
423 ifp = &sc->ethercom.ec_if;
424
425 if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
426 return(0);
427
428 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
429 BGE_MIPHY(phy)|BGE_MIREG(reg));
430
431 for (i = 0; i < BGE_TIMEOUT; i++) {
432 val = CSR_READ_4(sc, BGE_MI_COMM);
433 if (!(val & BGE_MICOMM_BUSY))
434 break;
435 delay(10);
436 }
437
438 if (i == BGE_TIMEOUT) {
439 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
440 return(0);
441 }
442
443 val = CSR_READ_4(sc, BGE_MI_COMM);
444
445 if (val & BGE_MICOMM_READFAIL)
446 return(0);
447
448 return(val & 0xFFFF);
449 }
450
451 void
452 bge_miibus_writereg(dev, phy, reg, val)
453 struct device *dev;
454 int phy, reg, val;
455 {
456 struct bge_softc *sc = (struct bge_softc *)dev;
457 int i;
458
459 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
460 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
461
462 for (i = 0; i < BGE_TIMEOUT; i++) {
463 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
464 break;
465 delay(10);
466 }
467
468 if (i == BGE_TIMEOUT) {
469 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 }
471 }
472
473 void
474 bge_miibus_statchg(dev)
475 struct device *dev;
476 {
477 struct bge_softc *sc = (struct bge_softc *)dev;
478 struct mii_data *mii = &sc->bge_mii;
479
480 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
481 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
482 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
483 } else {
484 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
485 }
486
487 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
488 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
489 } else {
490 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
491 }
492
493 bge_phy_hack(sc);
494 }
495
496 /*
497 * Handle events that have triggered interrupts.
498 */
499 void
500 bge_handle_events(sc)
501 struct bge_softc *sc;
502 {
503
504 return;
505 }
506
507 /*
508 * Memory management for jumbo frames.
509 */
510
511 int
512 bge_alloc_jumbo_mem(sc)
513 struct bge_softc *sc;
514 {
515 caddr_t ptr, kva;
516 bus_dma_segment_t seg;
517 int i, rseg, state, error;
518 struct bge_jpool_entry *entry;
519
520 state = error = 0;
521
522 /* Grab a big chunk o' storage. */
523 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
524 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
525 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
526 return ENOBUFS;
527 }
528
529 state = 1;
530 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
531 BUS_DMA_NOWAIT)) {
532 printf("%s: can't map dma buffers (%d bytes)\n",
533 sc->bge_dev.dv_xname, (int)BGE_JMEM);
534 error = ENOBUFS;
535 goto out;
536 }
537
538 state = 2;
539 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
540 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
541 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
542 error = ENOBUFS;
543 goto out;
544 }
545
546 state = 3;
547 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
548 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
549 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
550 error = ENOBUFS;
551 goto out;
552 }
553
554 state = 4;
555 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
556 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
557
558 SLIST_INIT(&sc->bge_jfree_listhead);
559 SLIST_INIT(&sc->bge_jinuse_listhead);
560
561 /*
562 * Now divide it up into 9K pieces and save the addresses
563 * in an array.
564 */
565 ptr = sc->bge_cdata.bge_jumbo_buf;
566 for (i = 0; i < BGE_JSLOTS; i++) {
567 sc->bge_cdata.bge_jslots[i] = ptr;
568 ptr += BGE_JLEN;
569 entry = malloc(sizeof(struct bge_jpool_entry),
570 M_DEVBUF, M_NOWAIT);
571 if (entry == NULL) {
572 printf("%s: no memory for jumbo buffer queue!\n",
573 sc->bge_dev.dv_xname);
574 error = ENOBUFS;
575 goto out;
576 }
577 entry->slot = i;
578 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
579 entry, jpool_entries);
580 }
581 out:
582 if (error != 0) {
583 switch (state) {
584 case 4:
585 bus_dmamap_unload(sc->bge_dmatag,
586 sc->bge_cdata.bge_rx_jumbo_map);
587 case 3:
588 bus_dmamap_destroy(sc->bge_dmatag,
589 sc->bge_cdata.bge_rx_jumbo_map);
590 case 2:
591 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
592 case 1:
593 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
594 break;
595 default:
596 break;
597 }
598 }
599
600 return error;
601 }
602
603 /*
604 * Allocate a jumbo buffer.
605 */
606 void *
607 bge_jalloc(sc)
608 struct bge_softc *sc;
609 {
610 struct bge_jpool_entry *entry;
611
612 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
613
614 if (entry == NULL) {
615 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
616 return(NULL);
617 }
618
619 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
620 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
621 return(sc->bge_cdata.bge_jslots[entry->slot]);
622 }
623
624 /*
625 * Release a jumbo buffer.
626 */
627 void
628 bge_jfree(m, buf, size, arg)
629 struct mbuf *m;
630 caddr_t buf;
631 u_int size;
632 void *arg;
633 {
634 struct bge_jpool_entry *entry;
635 struct bge_softc *sc;
636 int i, s;
637
638 /* Extract the softc struct pointer. */
639 sc = (struct bge_softc *)arg;
640
641 if (sc == NULL)
642 panic("bge_jfree: can't find softc pointer!");
643
644 /* calculate the slot this buffer belongs to */
645
646 i = ((caddr_t)buf
647 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
648
649 if ((i < 0) || (i >= BGE_JSLOTS))
650 panic("bge_jfree: asked to free buffer that we don't manage!");
651
652 s = splvm();
653 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
654 if (entry == NULL)
655 panic("bge_jfree: buffer not in use!");
656 entry->slot = i;
657 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
658 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
659
660 if (__predict_true(m != NULL))
661 pool_cache_put(&mbpool_cache, m);
662 splx(s);
663 }
664
665
666 /*
667 * Intialize a standard receive ring descriptor.
668 */
669 int
670 bge_newbuf_std(sc, i, m, dmamap)
671 struct bge_softc *sc;
672 int i;
673 struct mbuf *m;
674 bus_dmamap_t dmamap;
675 {
676 struct mbuf *m_new = NULL;
677 struct bge_rx_bd *r;
678 int error;
679
680 if (dmamap == NULL) {
681 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
682 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
683 if (error != 0)
684 return error;
685 }
686
687 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
688
689 if (m == NULL) {
690 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
691 if (m_new == NULL) {
692 return(ENOBUFS);
693 }
694
695 MCLGET(m_new, M_DONTWAIT);
696 if (!(m_new->m_flags & M_EXT)) {
697 m_freem(m_new);
698 return(ENOBUFS);
699 }
700 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
701 m_adj(m_new, ETHER_ALIGN);
702
703 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
704 BUS_DMA_READ|BUS_DMA_NOWAIT))
705 return(ENOBUFS);
706 } else {
707 m_new = m;
708 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
709 m_new->m_data = m_new->m_ext.ext_buf;
710 m_adj(m_new, ETHER_ALIGN);
711 }
712
713 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
714 r = &sc->bge_rdata->bge_rx_std_ring[i];
715 bge_set_hostaddr(&r->bge_addr,
716 dmamap->dm_segs[0].ds_addr);
717 r->bge_flags = BGE_RXBDFLAG_END;
718 r->bge_len = m_new->m_len;
719 r->bge_idx = i;
720
721 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
722 offsetof(struct bge_ring_data, bge_rx_std_ring) +
723 i * sizeof (struct bge_rx_bd),
724 sizeof (struct bge_rx_bd),
725 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
726
727 return(0);
728 }
729
730 /*
731 * Initialize a jumbo receive ring descriptor. This allocates
732 * a jumbo buffer from the pool managed internally by the driver.
733 */
734 int
735 bge_newbuf_jumbo(sc, i, m)
736 struct bge_softc *sc;
737 int i;
738 struct mbuf *m;
739 {
740 struct mbuf *m_new = NULL;
741 struct bge_rx_bd *r;
742
743 if (m == NULL) {
744 caddr_t *buf = NULL;
745
746 /* Allocate the mbuf. */
747 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
748 if (m_new == NULL) {
749 return(ENOBUFS);
750 }
751
752 /* Allocate the jumbo buffer */
753 buf = bge_jalloc(sc);
754 if (buf == NULL) {
755 m_freem(m_new);
756 printf("%s: jumbo allocation failed "
757 "-- packet dropped!\n", sc->bge_dev.dv_xname);
758 return(ENOBUFS);
759 }
760
761 /* Attach the buffer to the mbuf. */
762 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
763 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
764 bge_jfree, sc);
765 } else {
766 m_new = m;
767 m_new->m_data = m_new->m_ext.ext_buf;
768 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
769 }
770
771 m_adj(m_new, ETHER_ALIGN);
772 /* Set up the descriptor. */
773 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
774 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
775 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
776 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
777 r->bge_len = m_new->m_len;
778 r->bge_idx = i;
779
780 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
781 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
782 i * sizeof (struct bge_rx_bd),
783 sizeof (struct bge_rx_bd),
784 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
785
786 return(0);
787 }
788
789 /*
790 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
791 * that's 1MB or memory, which is a lot. For now, we fill only the first
792 * 256 ring entries and hope that our CPU is fast enough to keep up with
793 * the NIC.
794 */
795 int
796 bge_init_rx_ring_std(sc)
797 struct bge_softc *sc;
798 {
799 int i;
800
801 if (sc->bge_flags & BGE_RXRING_VALID)
802 return 0;
803
804 for (i = 0; i < BGE_SSLOTS; i++) {
805 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
806 return(ENOBUFS);
807 }
808
809 sc->bge_std = i - 1;
810 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
811
812 sc->bge_flags |= BGE_RXRING_VALID;
813
814 return(0);
815 }
816
817 void
818 bge_free_rx_ring_std(sc)
819 struct bge_softc *sc;
820 {
821 int i;
822
823 if (!(sc->bge_flags & BGE_RXRING_VALID))
824 return;
825
826 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
827 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
828 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
829 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
830 bus_dmamap_destroy(sc->bge_dmatag,
831 sc->bge_cdata.bge_rx_std_map[i]);
832 }
833 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
834 sizeof(struct bge_rx_bd));
835 }
836
837 sc->bge_flags &= ~BGE_RXRING_VALID;
838 }
839
840 int
841 bge_init_rx_ring_jumbo(sc)
842 struct bge_softc *sc;
843 {
844 int i;
845 struct bge_rcb *rcb;
846 struct bge_rcb_opaque *rcbo;
847
848 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
849 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
850 return(ENOBUFS);
851 };
852
853 sc->bge_jumbo = i - 1;
854
855 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
856 rcbo = (struct bge_rcb_opaque *)rcb;
857 rcb->bge_flags = 0;
858 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
859
860 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
861
862 return(0);
863 }
864
865 void
866 bge_free_rx_ring_jumbo(sc)
867 struct bge_softc *sc;
868 {
869 int i;
870
871 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
872 return;
873
874 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
875 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
876 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
877 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
878 }
879 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
880 sizeof(struct bge_rx_bd));
881 }
882
883 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
884 }
885
886 void
887 bge_free_tx_ring(sc)
888 struct bge_softc *sc;
889 {
890 int i, freed;
891 struct txdmamap_pool_entry *dma;
892
893 if (!(sc->bge_flags & BGE_TXRING_VALID))
894 return;
895
896 freed = 0;
897
898 for (i = 0; i < BGE_TX_RING_CNT; i++) {
899 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
900 freed++;
901 m_freem(sc->bge_cdata.bge_tx_chain[i]);
902 sc->bge_cdata.bge_tx_chain[i] = NULL;
903 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
904 link);
905 sc->txdma[i] = 0;
906 }
907 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
908 sizeof(struct bge_tx_bd));
909 }
910
911 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
912 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
913 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
914 free(dma, M_DEVBUF);
915 }
916
917 sc->bge_flags &= ~BGE_TXRING_VALID;
918 }
919
920 int
921 bge_init_tx_ring(sc)
922 struct bge_softc *sc;
923 {
924 int i;
925 bus_dmamap_t dmamap;
926 struct txdmamap_pool_entry *dma;
927
928 if (sc->bge_flags & BGE_TXRING_VALID)
929 return 0;
930
931 sc->bge_txcnt = 0;
932 sc->bge_tx_saved_considx = 0;
933 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
934 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
935
936 SLIST_INIT(&sc->txdma_list);
937 for (i = 0; i < BGE_RSLOTS; i++) {
938 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
939 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
940 &dmamap))
941 return(ENOBUFS);
942 if (dmamap == NULL)
943 panic("dmamap NULL in bge_init_tx_ring");
944 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
945 if (dma == NULL) {
946 printf("%s: can't alloc txdmamap_pool_entry\n",
947 sc->bge_dev.dv_xname);
948 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
949 return (ENOMEM);
950 }
951 dma->dmamap = dmamap;
952 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
953 }
954
955 sc->bge_flags |= BGE_TXRING_VALID;
956
957 return(0);
958 }
959
960 void
961 bge_setmulti(sc)
962 struct bge_softc *sc;
963 {
964 struct ethercom *ac = &sc->ethercom;
965 struct ifnet *ifp = &ac->ec_if;
966 struct ether_multi *enm;
967 struct ether_multistep step;
968 u_int32_t hashes[4] = { 0, 0, 0, 0 };
969 u_int32_t h;
970 int i;
971
972 if (ifp->if_flags & IFF_PROMISC)
973 goto allmulti;
974
975 /* Now program new ones. */
976 ETHER_FIRST_MULTI(step, ac, enm);
977 while (enm != NULL) {
978 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
979 /*
980 * We must listen to a range of multicast addresses.
981 * For now, just accept all multicasts, rather than
982 * trying to set only those filter bits needed to match
983 * the range. (At this time, the only use of address
984 * ranges is for IP multicast routing, for which the
985 * range is big enough to require all bits set.)
986 */
987 goto allmulti;
988 }
989
990 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
991
992 /* Just want the 7 least-significant bits. */
993 h &= 0x7f;
994
995 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
996 ETHER_NEXT_MULTI(step, enm);
997 }
998
999 ifp->if_flags &= ~IFF_ALLMULTI;
1000 goto setit;
1001
1002 allmulti:
1003 ifp->if_flags |= IFF_ALLMULTI;
1004 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1005
1006 setit:
1007 for (i = 0; i < 4; i++)
1008 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1009 }
1010
1011 int bge_swapbits[] = {
1012 0,
1013 BGE_MODECTL_BYTESWAP_DATA,
1014 BGE_MODECTL_WORDSWAP_DATA,
1015 BGE_MODECTL_BYTESWAP_NONFRAME,
1016 BGE_MODECTL_WORDSWAP_NONFRAME,
1017
1018 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1019 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1020 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1021
1022 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1023 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1024
1025 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1026
1027 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1028 BGE_MODECTL_BYTESWAP_NONFRAME,
1029 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1030 BGE_MODECTL_WORDSWAP_NONFRAME,
1031 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1032 BGE_MODECTL_WORDSWAP_NONFRAME,
1033 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1034 BGE_MODECTL_WORDSWAP_NONFRAME,
1035
1036 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1037 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1038 };
1039
1040 int bge_swapindex = 0;
1041
1042 /*
1043 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1044 * self-test results.
1045 */
1046 int
1047 bge_chipinit(sc)
1048 struct bge_softc *sc;
1049 {
1050 u_int32_t cachesize;
1051 int i;
1052 struct pci_attach_args *pa = &(sc->bge_pa);
1053
1054
1055 /* Set endianness before we access any non-PCI registers. */
1056 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1057 BGE_INIT);
1058
1059 /*
1060 * Check the 'ROM failed' bit on the RX CPU to see if
1061 * self-tests passed.
1062 */
1063 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1064 printf("%s: RX CPU self-diagnostics failed!\n",
1065 sc->bge_dev.dv_xname);
1066 return(ENODEV);
1067 }
1068
1069 /* Clear the MAC control register */
1070 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1071
1072 /*
1073 * Clear the MAC statistics block in the NIC's
1074 * internal memory.
1075 */
1076 for (i = BGE_STATS_BLOCK;
1077 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1078 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1079
1080 for (i = BGE_STATUS_BLOCK;
1081 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1082 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1083
1084 /* Set up the PCI DMA control register. */
1085 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1086 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1087
1088 /*
1089 * Set up general mode register.
1090 */
1091 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1092 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1093 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1094 BGE_MODECTL_RX_NO_PHDR_CSUM);
1095
1096 /* Get cache line size. */
1097 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1098
1099 /*
1100 * Avoid violating PCI spec on certain chip revs.
1101 */
1102 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1103 PCIM_CMD_MWIEN) {
1104 switch(cachesize) {
1105 case 1:
1106 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1107 BGE_PCI_WRITE_BNDRY_16BYTES);
1108 break;
1109 case 2:
1110 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1111 BGE_PCI_WRITE_BNDRY_32BYTES);
1112 break;
1113 case 4:
1114 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1115 BGE_PCI_WRITE_BNDRY_64BYTES);
1116 break;
1117 case 8:
1118 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1119 BGE_PCI_WRITE_BNDRY_128BYTES);
1120 break;
1121 case 16:
1122 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1123 BGE_PCI_WRITE_BNDRY_256BYTES);
1124 break;
1125 case 32:
1126 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1127 BGE_PCI_WRITE_BNDRY_512BYTES);
1128 break;
1129 case 64:
1130 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1131 BGE_PCI_WRITE_BNDRY_1024BYTES);
1132 break;
1133 default:
1134 /* Disable PCI memory write and invalidate. */
1135 #if 0
1136 if (bootverbose)
1137 printf("%s: cache line size %d not "
1138 "supported; disabling PCI MWI\n",
1139 sc->bge_dev.dv_xname, cachesize);
1140 #endif
1141 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1142 PCIM_CMD_MWIEN);
1143 break;
1144 }
1145 }
1146
1147 #ifdef __brokenalpha__
1148 /*
1149 * Must insure that we do not cross an 8K (bytes) boundary
1150 * for DMA reads. Our highest limit is 1K bytes. This is a
1151 * restriction on some ALPHA platforms with early revision
1152 * 21174 PCI chipsets, such as the AlphaPC 164lx
1153 */
1154 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1155 #endif
1156
1157 /* Set the timer prescaler (always 66Mhz) */
1158 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1159
1160 return(0);
1161 }
1162
1163 int
1164 bge_blockinit(sc)
1165 struct bge_softc *sc;
1166 {
1167 struct bge_rcb *rcb;
1168 struct bge_rcb_opaque *rcbo;
1169 bus_size_t rcb_addr;
1170 int i;
1171 struct ifnet *ifp = &sc->ethercom.ec_if;
1172 bge_hostaddr taddr;
1173
1174 /*
1175 * Initialize the memory window pointer register so that
1176 * we can access the first 32K of internal NIC RAM. This will
1177 * allow us to set up the TX send ring RCBs and the RX return
1178 * ring RCBs, plus other things which live in NIC memory.
1179 */
1180
1181 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1182 BGE_PCI_MEMWIN_BASEADDR, 0);
1183
1184 /* Configure mbuf memory pool */
1185 if (sc->bge_extram) {
1186 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1187 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1188 } else {
1189 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1190 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1191 }
1192
1193 /* Configure DMA resource pool */
1194 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1195 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1196
1197 /* Configure mbuf pool watermarks */
1198 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1199 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1200 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1201
1202 /* Configure DMA resource watermarks */
1203 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1204 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1205
1206 /* Enable buffer manager */
1207 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1208 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1209
1210 /* Poll for buffer manager start indication */
1211 for (i = 0; i < BGE_TIMEOUT; i++) {
1212 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1213 break;
1214 DELAY(10);
1215 }
1216
1217 if (i == BGE_TIMEOUT) {
1218 printf("%s: buffer manager failed to start\n",
1219 sc->bge_dev.dv_xname);
1220 return(ENXIO);
1221 }
1222
1223 /* Enable flow-through queues */
1224 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1225 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1226
1227 /* Wait until queue initialization is complete */
1228 for (i = 0; i < BGE_TIMEOUT; i++) {
1229 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1230 break;
1231 DELAY(10);
1232 }
1233
1234 if (i == BGE_TIMEOUT) {
1235 printf("%s: flow-through queue init failed\n",
1236 sc->bge_dev.dv_xname);
1237 return(ENXIO);
1238 }
1239
1240 /* Initialize the standard RX ring control block */
1241 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1242 bge_set_hostaddr(&rcb->bge_hostaddr,
1243 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1244 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1245 if (sc->bge_extram)
1246 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1247 else
1248 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1249 rcb->bge_flags = 0;
1250 rcbo = (struct bge_rcb_opaque *)rcb;
1251 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1252 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1253 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1254 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1255
1256 /*
1257 * Initialize the jumbo RX ring control block
1258 * We set the 'ring disabled' bit in the flags
1259 * field until we're actually ready to start
1260 * using this ring (i.e. once we set the MTU
1261 * high enough to require it).
1262 */
1263 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1264 bge_set_hostaddr(&rcb->bge_hostaddr,
1265 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1266 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1267 if (sc->bge_extram)
1268 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1269 else
1270 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1271 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1272
1273 rcbo = (struct bge_rcb_opaque *)rcb;
1274 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1275 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1276 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1277 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1278
1279 /* Set up dummy disabled mini ring RCB */
1280 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1281 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1282 rcbo = (struct bge_rcb_opaque *)rcb;
1283 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1284
1285 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1286 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1287 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1288
1289 /*
1290 * Set the BD ring replentish thresholds. The recommended
1291 * values are 1/8th the number of descriptors allocated to
1292 * each ring.
1293 */
1294 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1295 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1296
1297 /*
1298 * Disable all unused send rings by setting the 'ring disabled'
1299 * bit in the flags field of all the TX send ring control blocks.
1300 * These are located in NIC memory.
1301 */
1302 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1303 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1304 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1305 BGE_RCB_FLAG_RING_DISABLED);
1306 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1307 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1308 rcb_addr += sizeof(struct bge_rcb);
1309 }
1310
1311 /* Configure TX RCB 0 (we use only the first ring) */
1312 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1313 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1314 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1315 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1316 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1317 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1318 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1319 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1320
1321 /* Disable all unused RX return rings */
1322 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1323 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1324 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1325 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1326 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1327 BGE_RCB_FLAG_RING_DISABLED);
1328 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1329 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1330 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1331 (i * (sizeof(u_int64_t))), 0);
1332 rcb_addr += sizeof(struct bge_rcb);
1333 }
1334
1335 /* Initialize RX ring indexes */
1336 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1337 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1338 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1339
1340 /*
1341 * Set up RX return ring 0
1342 * Note that the NIC address for RX return rings is 0x00000000.
1343 * The return rings live entirely within the host, so the
1344 * nicaddr field in the RCB isn't used.
1345 */
1346 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1347 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1348 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1349 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1350 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1351 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1352 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1353
1354 /* Set random backoff seed for TX */
1355 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1356 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1357 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1358 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1359 BGE_TX_BACKOFF_SEED_MASK);
1360
1361 /* Set inter-packet gap */
1362 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1363
1364 /*
1365 * Specify which ring to use for packets that don't match
1366 * any RX rules.
1367 */
1368 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1369
1370 /*
1371 * Configure number of RX lists. One interrupt distribution
1372 * list, sixteen active lists, one bad frames class.
1373 */
1374 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1375
1376 /* Inialize RX list placement stats mask. */
1377 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1378 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1379
1380 /* Disable host coalescing until we get it set up */
1381 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1382
1383 /* Poll to make sure it's shut down. */
1384 for (i = 0; i < BGE_TIMEOUT; i++) {
1385 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1386 break;
1387 DELAY(10);
1388 }
1389
1390 if (i == BGE_TIMEOUT) {
1391 printf("%s: host coalescing engine failed to idle\n",
1392 sc->bge_dev.dv_xname);
1393 return(ENXIO);
1394 }
1395
1396 /* Set up host coalescing defaults */
1397 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1398 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1399 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1400 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1401 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1402 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1403 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1404 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1405 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1406
1407 /* Set up address of statistics block */
1408 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1409 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1410 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1411 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1412
1413 /* Set up address of status block */
1414 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1415 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1416 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1417 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1418 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1419 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1420
1421 /* Turn on host coalescing state machine */
1422 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1423
1424 /* Turn on RX BD completion state machine and enable attentions */
1425 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1426 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1427
1428 /* Turn on RX list placement state machine */
1429 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1430
1431 /* Turn on RX list selector state machine. */
1432 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1433
1434 /* Turn on DMA, clear stats */
1435 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1436 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1437 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1438 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1439 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1440
1441 /* Set misc. local control, enable interrupts on attentions */
1442 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1443
1444 #ifdef notdef
1445 /* Assert GPIO pins for PHY reset */
1446 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1447 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1448 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1449 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1450 #endif
1451
1452 /* Turn on DMA completion state machine */
1453 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1454
1455 /* Turn on write DMA state machine */
1456 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1457 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1458
1459 /* Turn on read DMA state machine */
1460 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1461 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1462
1463 /* Turn on RX data completion state machine */
1464 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1465
1466 /* Turn on RX BD initiator state machine */
1467 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1468
1469 /* Turn on RX data and RX BD initiator state machine */
1470 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1471
1472 /* Turn on Mbuf cluster free state machine */
1473 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1474
1475 /* Turn on send BD completion state machine */
1476 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1477
1478 /* Turn on send data completion state machine */
1479 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1480
1481 /* Turn on send data initiator state machine */
1482 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1483
1484 /* Turn on send BD initiator state machine */
1485 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1486
1487 /* Turn on send BD selector state machine */
1488 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1489
1490 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1491 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1492 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1493
1494 /* init LED register */
1495 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1496
1497 /* ack/clear link change events */
1498 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1499 BGE_MACSTAT_CFG_CHANGED);
1500 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1501
1502 /* Enable PHY auto polling (for MII/GMII only) */
1503 if (sc->bge_tbi) {
1504 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1505 } else {
1506 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1507 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
1508 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1509 BGE_EVTENB_MI_INTERRUPT);
1510 }
1511
1512 /* Enable link state change attentions. */
1513 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1514
1515 return(0);
1516 }
1517
1518 static const struct bge_product {
1519 pci_vendor_id_t bp_vendor;
1520 pci_product_id_t bp_product;
1521 const char *bp_name;
1522 } bge_products[] = {
1523 /*
1524 * The BCM5700 documentation seems to indicate that the hardware
1525 * still has the Alteon vendor ID burned into it, though it
1526 * should always be overridden by the value in the EEPROM. We'll
1527 * check for it anyway.
1528 */
1529 { PCI_VENDOR_ALTEON,
1530 PCI_PRODUCT_ALTEON_BCM5700,
1531 "Broadcom BCM5700 Gigabit Ethernet" },
1532 { PCI_VENDOR_ALTEON,
1533 PCI_PRODUCT_ALTEON_BCM5701,
1534 "Broadcom BCM5701 Gigabit Ethernet" },
1535
1536 { PCI_VENDOR_ALTIMA,
1537 PCI_PRODUCT_ALTIMA_AC1000,
1538 "Altima AC1000 Gigabit Ethernet" },
1539 { PCI_VENDOR_ALTIMA,
1540 PCI_PRODUCT_ALTIMA_AC1001,
1541 "Altima AC1001 Gigabit Ethernet" },
1542 { PCI_VENDOR_ALTIMA,
1543 PCI_PRODUCT_ALTIMA_AC9100,
1544 "Altima AC9100 Gigabit Ethernet" },
1545
1546 { PCI_VENDOR_BROADCOM,
1547 PCI_PRODUCT_BROADCOM_BCM5700,
1548 "Broadcom BCM5700 Gigabit Ethernet" },
1549 { PCI_VENDOR_BROADCOM,
1550 PCI_PRODUCT_BROADCOM_BCM5701,
1551 "Broadcom BCM5700 Gigabit Ethernet" },
1552
1553 { PCI_VENDOR_SCHNEIDERKOCH,
1554 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1555 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1556
1557 { PCI_VENDOR_3COM,
1558 PCI_PRODUCT_3COM_3C996,
1559 "3Com 3c996 Gigabit Ethernet" },
1560
1561 { 0,
1562 0,
1563 NULL },
1564 };
1565
1566 static const struct bge_product *
1567 bge_lookup(const struct pci_attach_args *pa)
1568 {
1569 const struct bge_product *bp;
1570
1571 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1572 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1573 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1574 return (bp);
1575 }
1576
1577 return (NULL);
1578 }
1579
1580 /*
1581 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1582 * against our list and return its name if we find a match. Note
1583 * that since the Broadcom controller contains VPD support, we
1584 * can get the device name string from the controller itself instead
1585 * of the compiled-in string. This is a little slow, but it guarantees
1586 * we'll always announce the right product name.
1587 */
1588 int
1589 bge_probe(parent, match, aux)
1590 struct device *parent;
1591 struct cfdata *match;
1592 void *aux;
1593 {
1594 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1595
1596 if (bge_lookup(pa) != NULL)
1597 return (1);
1598
1599 return (0);
1600 }
1601
1602 void
1603 bge_attach(parent, self, aux)
1604 struct device *parent, *self;
1605 void *aux;
1606 {
1607 struct bge_softc *sc = (struct bge_softc *)self;
1608 struct pci_attach_args *pa = aux;
1609 const struct bge_product *bp;
1610 pci_chipset_tag_t pc = pa->pa_pc;
1611 pci_intr_handle_t ih;
1612 const char *intrstr = NULL;
1613 bus_dma_segment_t seg;
1614 int rseg;
1615 u_int32_t hwcfg = 0;
1616 u_int32_t command;
1617 struct ifnet *ifp;
1618 int unit;
1619 caddr_t kva;
1620 u_char eaddr[ETHER_ADDR_LEN];
1621 pcireg_t memtype;
1622 bus_addr_t memaddr;
1623 bus_size_t memsize;
1624
1625 bp = bge_lookup(pa);
1626 KASSERT(bp != NULL);
1627
1628 sc->bge_pa = *pa;
1629
1630 printf(": %s, rev. 0x%02x\n", bp->bp_name, PCI_REVISION(pa->pa_class));
1631
1632 /*
1633 * Map control/status registers.
1634 */
1635 DPRINTFN(5, ("Map control/status regs\n"));
1636 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1637 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1638 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1639 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1640
1641 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1642 printf("%s: failed to enable memory mapping!\n",
1643 sc->bge_dev.dv_xname);
1644 return;
1645 }
1646
1647 DPRINTFN(5, ("pci_mem_find\n"));
1648 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1649 switch (memtype) {
1650 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1651 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1652 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1653 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1654 &memaddr, &memsize) == 0)
1655 break;
1656 default:
1657 printf("%s: can't find mem space\n",
1658 sc->bge_dev.dv_xname);
1659 return;
1660 }
1661
1662 DPRINTFN(5, ("pci_intr_map\n"));
1663 if (pci_intr_map(pa, &ih)) {
1664 printf("%s: couldn't map interrupt\n",
1665 sc->bge_dev.dv_xname);
1666 return;
1667 }
1668
1669 DPRINTFN(5, ("pci_intr_string\n"));
1670 intrstr = pci_intr_string(pc, ih);
1671
1672 DPRINTFN(5, ("pci_intr_establish\n"));
1673 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1674
1675 if (sc->bge_intrhand == NULL) {
1676 printf("%s: couldn't establish interrupt",
1677 sc->bge_dev.dv_xname);
1678 if (intrstr != NULL)
1679 printf(" at %s", intrstr);
1680 printf("\n");
1681 return;
1682 }
1683 printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1684
1685 /* Try to reset the chip. */
1686 DPRINTFN(5, ("bge_reset\n"));
1687 bge_reset(sc);
1688
1689 if (bge_chipinit(sc)) {
1690 printf("%s: chip initializatino failed\n",
1691 sc->bge_dev.dv_xname);
1692 bge_release_resources(sc);
1693 return;
1694 }
1695
1696 /*
1697 * Get station address from the EEPROM.
1698 */
1699 if (bge_read_eeprom(sc, (caddr_t)eaddr,
1700 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1701 printf("bge%d: failed to read station address\n", unit);
1702 bge_release_resources(sc);
1703 return;
1704 }
1705
1706 /*
1707 * A Broadcom chip was detected. Inform the world.
1708 */
1709 printf("%s: Ethernet address %s\n", sc->bge_dev.dv_xname,
1710 ether_sprintf(eaddr));
1711
1712 /* Allocate the general information block and ring buffers. */
1713 sc->bge_dmatag = pa->pa_dmat;
1714 DPRINTFN(5, ("bus_dmamem_alloc\n"));
1715 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1716 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1717 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1718 return;
1719 }
1720 DPRINTFN(5, ("bus_dmamem_map\n"));
1721 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1722 sizeof(struct bge_ring_data), &kva,
1723 BUS_DMA_NOWAIT)) {
1724 printf("%s: can't map dma buffers (%d bytes)\n",
1725 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1726 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1727 return;
1728 }
1729 DPRINTFN(5, ("bus_dmamem_create\n"));
1730 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1731 sizeof(struct bge_ring_data), 0,
1732 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1733 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1734 bus_dmamem_unmap(sc->bge_dmatag, kva,
1735 sizeof(struct bge_ring_data));
1736 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1737 return;
1738 }
1739 DPRINTFN(5, ("bus_dmamem_load\n"));
1740 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1741 sizeof(struct bge_ring_data), NULL,
1742 BUS_DMA_NOWAIT)) {
1743 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1744 bus_dmamem_unmap(sc->bge_dmatag, kva,
1745 sizeof(struct bge_ring_data));
1746 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1747 return;
1748 }
1749
1750 DPRINTFN(5, ("bzero\n"));
1751 sc->bge_rdata = (struct bge_ring_data *)kva;
1752
1753 memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
1754
1755 /* Try to allocate memory for jumbo buffers. */
1756 if (bge_alloc_jumbo_mem(sc)) {
1757 printf("%s: jumbo buffer allocation failed\n",
1758 sc->bge_dev.dv_xname);
1759 } else
1760 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1761
1762 /* Set default tuneable values. */
1763 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1764 sc->bge_rx_coal_ticks = 150;
1765 sc->bge_tx_coal_ticks = 150;
1766 sc->bge_rx_max_coal_bds = 64;
1767 sc->bge_tx_max_coal_bds = 128;
1768
1769 /* Set up ifnet structure */
1770 ifp = &sc->ethercom.ec_if;
1771 ifp->if_softc = sc;
1772 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1773 ifp->if_ioctl = bge_ioctl;
1774 ifp->if_start = bge_start;
1775 ifp->if_init = bge_init;
1776 ifp->if_watchdog = bge_watchdog;
1777 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1778 IFQ_SET_READY(&ifp->if_snd);
1779 DPRINTFN(5, ("bcopy\n"));
1780 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1781
1782 sc->ethercom.ec_if.if_capabilities |=
1783 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1784 sc->ethercom.ec_capabilities |=
1785 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1786
1787 /*
1788 * Do MII setup.
1789 */
1790 DPRINTFN(5, ("mii setup\n"));
1791 sc->bge_mii.mii_ifp = ifp;
1792 sc->bge_mii.mii_readreg = bge_miibus_readreg;
1793 sc->bge_mii.mii_writereg = bge_miibus_writereg;
1794 sc->bge_mii.mii_statchg = bge_miibus_statchg;
1795
1796 /* Save ASIC rev. */
1797
1798 sc->bge_asicrev =
1799 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1800 BGE_PCIMISCCTL_ASICREV;
1801
1802 /*
1803 * Figure out what sort of media we have by checking the
1804 * hardware config word in the EEPROM. Note: on some BCM5700
1805 * cards, this value appears to be unset. If that's the
1806 * case, we have to rely on identifying the NIC by its PCI
1807 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1808 */
1809 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1810 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1811 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1812 sc->bge_tbi = 1;
1813
1814 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1815 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1816 SK_SUBSYSID_9D41)
1817 sc->bge_tbi = 1;
1818
1819 if (sc->bge_tbi) {
1820 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1821 bge_ifmedia_sts);
1822 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1823 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1824 0, NULL);
1825 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1826 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1827 } else {
1828 /*
1829 * Do transceiver setup.
1830 */
1831 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1832 bge_ifmedia_sts);
1833 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1834 MII_PHY_ANY, MII_OFFSET_ANY, 0);
1835
1836 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1837 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1838 ifmedia_add(&sc->bge_mii.mii_media,
1839 IFM_ETHER|IFM_MANUAL, 0, NULL);
1840 ifmedia_set(&sc->bge_mii.mii_media,
1841 IFM_ETHER|IFM_MANUAL);
1842 } else
1843 ifmedia_set(&sc->bge_mii.mii_media,
1844 IFM_ETHER|IFM_AUTO);
1845 }
1846
1847 /*
1848 * Call MI attach routine.
1849 */
1850 DPRINTFN(5, ("if_attach\n"));
1851 if_attach(ifp);
1852 DPRINTFN(5, ("ether_ifattach\n"));
1853 ether_ifattach(ifp, eaddr);
1854 DPRINTFN(5, ("callout_init\n"));
1855 callout_init(&sc->bge_timeout);
1856 }
1857
1858 void
1859 bge_release_resources(sc)
1860 struct bge_softc *sc;
1861 {
1862 if (sc->bge_vpd_prodname != NULL)
1863 free(sc->bge_vpd_prodname, M_DEVBUF);
1864
1865 if (sc->bge_vpd_readonly != NULL)
1866 free(sc->bge_vpd_readonly, M_DEVBUF);
1867 }
1868
1869 void
1870 bge_reset(sc)
1871 struct bge_softc *sc;
1872 {
1873 struct pci_attach_args *pa = &sc->bge_pa;
1874 u_int32_t cachesize, command, pcistate;
1875 int i, val = 0;
1876
1877 /* Save some important PCI state. */
1878 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1879 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1880 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1881
1882 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1883 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1884 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1885
1886 /* Issue global reset */
1887 bge_writereg_ind(sc, BGE_MISC_CFG,
1888 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1889
1890 DELAY(1000);
1891
1892 /* Reset some of the PCI state that got zapped by reset */
1893 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1894 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1895 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1896 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1897 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1898 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1899
1900 /* Enable memory arbiter. */
1901 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1902
1903 /*
1904 * Prevent PXE restart: write a magic number to the
1905 * general communications memory at 0xB50.
1906 */
1907 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1908
1909 /*
1910 * Poll the value location we just wrote until
1911 * we see the 1's complement of the magic number.
1912 * This indicates that the firmware initialization
1913 * is complete.
1914 */
1915 for (i = 0; i < 750; i++) {
1916 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1917 if (val == ~BGE_MAGIC_NUMBER)
1918 break;
1919 DELAY(1000);
1920 }
1921
1922 if (i == 750) {
1923 printf("%s: firmware handshake timed out, val = %x\n",
1924 sc->bge_dev.dv_xname, val);
1925 return;
1926 }
1927
1928 /*
1929 * XXX Wait for the value of the PCISTATE register to
1930 * return to its original pre-reset state. This is a
1931 * fairly good indicator of reset completion. If we don't
1932 * wait for the reset to fully complete, trying to read
1933 * from the device's non-PCI registers may yield garbage
1934 * results.
1935 */
1936 for (i = 0; i < BGE_TIMEOUT; i++) {
1937 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
1938 pcistate)
1939 break;
1940 DELAY(10);
1941 }
1942
1943 /* Enable memory arbiter. */
1944 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1945
1946 /* Fix up byte swapping */
1947 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
1948
1949 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1950
1951 DELAY(10000);
1952 }
1953
1954 /*
1955 * Frame reception handling. This is called if there's a frame
1956 * on the receive return list.
1957 *
1958 * Note: we have to be able to handle two possibilities here:
1959 * 1) the frame is from the jumbo recieve ring
1960 * 2) the frame is from the standard receive ring
1961 */
1962
1963 void
1964 bge_rxeof(sc)
1965 struct bge_softc *sc;
1966 {
1967 struct ifnet *ifp;
1968 int stdcnt = 0, jumbocnt = 0;
1969 int have_tag = 0;
1970 u_int16_t vlan_tag = 0;
1971 bus_dmamap_t dmamap;
1972 bus_addr_t offset, toff;
1973 bus_size_t tlen;
1974 int tosync;
1975
1976 ifp = &sc->ethercom.ec_if;
1977
1978 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1979 offsetof(struct bge_ring_data, bge_status_block),
1980 sizeof (struct bge_status_block),
1981 BUS_DMASYNC_POSTREAD);
1982
1983 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
1984 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
1985 sc->bge_rx_saved_considx;
1986
1987 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
1988
1989 if (tosync < 0) {
1990 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
1991 sizeof (struct bge_rx_bd);
1992 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1993 toff, tlen, BUS_DMASYNC_POSTREAD);
1994 tosync = -tosync;
1995 }
1996
1997 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1998 offset, tosync * sizeof (struct bge_rx_bd),
1999 BUS_DMASYNC_POSTREAD);
2000
2001 while(sc->bge_rx_saved_considx !=
2002 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2003 struct bge_rx_bd *cur_rx;
2004 u_int32_t rxidx;
2005 struct mbuf *m = NULL;
2006
2007 cur_rx = &sc->bge_rdata->
2008 bge_rx_return_ring[sc->bge_rx_saved_considx];
2009
2010 rxidx = cur_rx->bge_idx;
2011 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2012
2013 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2014 have_tag = 1;
2015 vlan_tag = cur_rx->bge_vlan_tag;
2016 }
2017
2018 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2019 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2020 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2021 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2022 jumbocnt++;
2023 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2024 ifp->if_ierrors++;
2025 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2026 continue;
2027 }
2028 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2029 NULL)== ENOBUFS) {
2030 ifp->if_ierrors++;
2031 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2032 continue;
2033 }
2034 } else {
2035 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2036 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2037 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2038 stdcnt++;
2039 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2040 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2041 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2042 ifp->if_ierrors++;
2043 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2044 continue;
2045 }
2046 if (bge_newbuf_std(sc, sc->bge_std,
2047 NULL, dmamap) == ENOBUFS) {
2048 ifp->if_ierrors++;
2049 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2050 continue;
2051 }
2052 }
2053
2054 ifp->if_ipackets++;
2055 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2056 m->m_pkthdr.rcvif = ifp;
2057
2058 #if NBPFILTER > 0
2059 /*
2060 * Handle BPF listeners. Let the BPF user see the packet.
2061 */
2062 if (ifp->if_bpf)
2063 bpf_mtap(ifp->if_bpf, m);
2064 #endif
2065
2066 if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
2067 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2068 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2069 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2070 #if 0 /* XXX appears to be broken */
2071 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2072 m->m_pkthdr.csum_data =
2073 cur_rx->bge_tcp_udp_csum;
2074 m->m_pkthdr.csum_flags |=
2075 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2076 }
2077 #endif
2078 }
2079
2080 /*
2081 * If we received a packet with a vlan tag, pass it
2082 * to vlan_input() instead of ether_input().
2083 */
2084 if (have_tag) {
2085 struct mbuf *n;
2086
2087 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2088 if (n != NULL) {
2089 *mtod(n, int *) = vlan_tag;
2090 n->m_len = sizeof(int);
2091 have_tag = vlan_tag = 0;
2092 } else {
2093 printf("%s: no mbuf for tag\n", ifp->if_xname);
2094 m_freem(m);
2095 have_tag = vlan_tag = 0;
2096 continue;
2097 }
2098 }
2099 (*ifp->if_input)(ifp, m);
2100 }
2101
2102 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2103 if (stdcnt)
2104 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2105 if (jumbocnt)
2106 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2107 }
2108
2109 void
2110 bge_txeof(sc)
2111 struct bge_softc *sc;
2112 {
2113 struct bge_tx_bd *cur_tx = NULL;
2114 struct ifnet *ifp;
2115 struct txdmamap_pool_entry *dma;
2116 bus_addr_t offset, toff;
2117 bus_size_t tlen;
2118 int tosync;
2119 struct mbuf *m;
2120
2121 ifp = &sc->ethercom.ec_if;
2122
2123 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2124 offsetof(struct bge_ring_data, bge_status_block),
2125 sizeof (struct bge_status_block),
2126 BUS_DMASYNC_POSTREAD);
2127
2128 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2129 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2130 sc->bge_tx_saved_considx;
2131
2132 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2133
2134 if (tosync < 0) {
2135 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2136 sizeof (struct bge_tx_bd);
2137 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2138 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139 tosync = -tosync;
2140 }
2141
2142 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2143 offset, tosync * sizeof (struct bge_tx_bd),
2144 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2145
2146 /*
2147 * Go through our tx ring and free mbufs for those
2148 * frames that have been sent.
2149 */
2150 while (sc->bge_tx_saved_considx !=
2151 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2152 u_int32_t idx = 0;
2153
2154 idx = sc->bge_tx_saved_considx;
2155 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2156 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2157 ifp->if_opackets++;
2158 m = sc->bge_cdata.bge_tx_chain[idx];
2159 if (m != NULL) {
2160 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2161 dma = sc->txdma[idx];
2162 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2163 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2164 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2165 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2166 sc->txdma[idx] = NULL;
2167
2168 m_freem(m);
2169 }
2170 sc->bge_txcnt--;
2171 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2172 ifp->if_timer = 0;
2173 }
2174
2175 if (cur_tx != NULL)
2176 ifp->if_flags &= ~IFF_OACTIVE;
2177 }
2178
2179 int
2180 bge_intr(xsc)
2181 void *xsc;
2182 {
2183 struct bge_softc *sc;
2184 struct ifnet *ifp;
2185
2186 sc = xsc;
2187 ifp = &sc->ethercom.ec_if;
2188
2189 #ifdef notdef
2190 /* Avoid this for now -- checking this register is expensive. */
2191 /* Make sure this is really our interrupt. */
2192 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2193 return (0);
2194 #endif
2195 /* Ack interrupt and stop others from occuring. */
2196 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2197
2198 /*
2199 * Process link state changes.
2200 * Grrr. The link status word in the status block does
2201 * not work correctly on the BCM5700 rev AX and BX chips,
2202 * according to all avaibable information. Hence, we have
2203 * to enable MII interrupts in order to properly obtain
2204 * async link changes. Unfortunately, this also means that
2205 * we have to read the MAC status register to detect link
2206 * changes, thereby adding an additional register access to
2207 * the interrupt handler.
2208 */
2209
2210 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
2211 u_int32_t status;
2212
2213 status = CSR_READ_4(sc, BGE_MAC_STS);
2214 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2215 sc->bge_link = 0;
2216 callout_stop(&sc->bge_timeout);
2217 bge_tick(sc);
2218 /* Clear the interrupt */
2219 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2220 BGE_EVTENB_MI_INTERRUPT);
2221 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2222 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2223 BRGPHY_INTRS);
2224 }
2225 } else {
2226 if (sc->bge_rdata->bge_status_block.bge_status &
2227 BGE_STATFLAG_LINKSTATE_CHANGED) {
2228 sc->bge_link = 0;
2229 callout_stop(&sc->bge_timeout);
2230 bge_tick(sc);
2231 /* Clear the interrupt */
2232 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2233 BGE_MACSTAT_CFG_CHANGED);
2234 }
2235 }
2236
2237 if (ifp->if_flags & IFF_RUNNING) {
2238 /* Check RX return ring producer/consumer */
2239 bge_rxeof(sc);
2240
2241 /* Check TX ring producer/consumer */
2242 bge_txeof(sc);
2243 }
2244
2245 bge_handle_events(sc);
2246
2247 /* Re-enable interrupts. */
2248 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2249
2250 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2251 bge_start(ifp);
2252
2253 return (1);
2254 }
2255
2256 void
2257 bge_tick(xsc)
2258 void *xsc;
2259 {
2260 struct bge_softc *sc = xsc;
2261 struct mii_data *mii = &sc->bge_mii;
2262 struct ifmedia *ifm = NULL;
2263 struct ifnet *ifp = &sc->ethercom.ec_if;
2264 int s;
2265
2266 s = splnet();
2267
2268 bge_stats_update(sc);
2269 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2270 if (sc->bge_link) {
2271 splx(s);
2272 return;
2273 }
2274
2275 if (sc->bge_tbi) {
2276 ifm = &sc->bge_ifmedia;
2277 if (CSR_READ_4(sc, BGE_MAC_STS) &
2278 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2279 sc->bge_link++;
2280 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2281 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2282 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2283 bge_start(ifp);
2284 }
2285 splx(s);
2286 return;
2287 }
2288
2289 mii_tick(mii);
2290
2291 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2292 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2293 sc->bge_link++;
2294 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2295 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2296 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2297 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2298 bge_start(ifp);
2299 }
2300
2301 splx(s);
2302 }
2303
2304 void
2305 bge_stats_update(sc)
2306 struct bge_softc *sc;
2307 {
2308 struct ifnet *ifp = &sc->ethercom.ec_if;
2309 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2310
2311 #define READ_STAT(sc, stats, stat) \
2312 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2313
2314 ifp->if_collisions +=
2315 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2316 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2317 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2318 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2319 ifp->if_collisions;
2320
2321 #undef READ_STAT
2322
2323 #ifdef notdef
2324 ifp->if_collisions +=
2325 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2326 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2327 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2328 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2329 ifp->if_collisions;
2330 #endif
2331 }
2332
2333 /*
2334 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2335 * pointers to descriptors.
2336 */
2337 int
2338 bge_encap(sc, m_head, txidx)
2339 struct bge_softc *sc;
2340 struct mbuf *m_head;
2341 u_int32_t *txidx;
2342 {
2343 struct bge_tx_bd *f = NULL;
2344 u_int32_t frag, cur, cnt = 0;
2345 u_int16_t csum_flags = 0;
2346 struct txdmamap_pool_entry *dma;
2347 bus_dmamap_t dmamap;
2348 int i = 0;
2349 struct mbuf *n;
2350
2351 cur = frag = *txidx;
2352
2353 if (m_head->m_pkthdr.csum_flags) {
2354 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2355 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2356 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2357 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2358 }
2359
2360 dma = SLIST_FIRST(&sc->txdma_list);
2361 if (dma == NULL)
2362 return ENOBUFS;
2363 dmamap = dma->dmamap;
2364
2365 /*
2366 * Start packing the mbufs in this chain into
2367 * the fragment pointers. Stop when we run out
2368 * of fragments or hit the end of the mbuf chain.
2369 */
2370 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2371 BUS_DMA_NOWAIT))
2372 return(ENOBUFS);
2373
2374 n = sc->ethercom.ec_nvlans ?
2375 m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2376
2377 for (i = 0; i < dmamap->dm_nsegs; i++) {
2378 f = &sc->bge_rdata->bge_tx_ring[frag];
2379 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2380 break;
2381 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2382 f->bge_len = dmamap->dm_segs[i].ds_len;
2383 f->bge_flags = csum_flags;
2384
2385 if (n != NULL) {
2386 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2387 f->bge_vlan_tag = *mtod(n, int *);
2388 } else {
2389 f->bge_vlan_tag = 0;
2390 }
2391 /*
2392 * Sanity check: avoid coming within 16 descriptors
2393 * of the end of the ring.
2394 */
2395 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2396 return(ENOBUFS);
2397 cur = frag;
2398 BGE_INC(frag, BGE_TX_RING_CNT);
2399 cnt++;
2400 }
2401
2402 if (i < dmamap->dm_nsegs)
2403 return ENOBUFS;
2404
2405 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2406 BUS_DMASYNC_PREWRITE);
2407
2408 if (frag == sc->bge_tx_saved_considx)
2409 return(ENOBUFS);
2410
2411 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2412 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2413 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2414 sc->txdma[cur] = dma;
2415 sc->bge_txcnt += cnt;
2416
2417 *txidx = frag;
2418
2419 return(0);
2420 }
2421
2422 /*
2423 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2424 * to the mbuf data regions directly in the transmit descriptors.
2425 */
2426 void
2427 bge_start(ifp)
2428 struct ifnet *ifp;
2429 {
2430 struct bge_softc *sc;
2431 struct mbuf *m_head = NULL;
2432 u_int32_t prodidx = 0;
2433 int pkts = 0;
2434
2435 sc = ifp->if_softc;
2436
2437 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2438 return;
2439
2440 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2441
2442 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2443 IFQ_POLL(&ifp->if_snd, m_head);
2444 if (m_head == NULL)
2445 break;
2446
2447 #if 0
2448 /*
2449 * XXX
2450 * safety overkill. If this is a fragmented packet chain
2451 * with delayed TCP/UDP checksums, then only encapsulate
2452 * it if we have enough descriptors to handle the entire
2453 * chain at once.
2454 * (paranoia -- may not actually be needed)
2455 */
2456 if (m_head->m_flags & M_FIRSTFRAG &&
2457 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2458 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2459 m_head->m_pkthdr.csum_data + 16) {
2460 ifp->if_flags |= IFF_OACTIVE;
2461 break;
2462 }
2463 }
2464 #endif
2465
2466 /*
2467 * Pack the data into the transmit ring. If we
2468 * don't have room, set the OACTIVE flag and wait
2469 * for the NIC to drain the ring.
2470 */
2471 if (bge_encap(sc, m_head, &prodidx)) {
2472 ifp->if_flags |= IFF_OACTIVE;
2473 break;
2474 }
2475
2476 /* now we are committed to transmit the packet */
2477 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2478 pkts++;
2479
2480 #if NBPFILTER > 0
2481 /*
2482 * If there's a BPF listener, bounce a copy of this frame
2483 * to him.
2484 */
2485 if (ifp->if_bpf)
2486 bpf_mtap(ifp->if_bpf, m_head);
2487 #endif
2488 }
2489 if (pkts == 0)
2490 return;
2491
2492 /* Transmit */
2493 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2494
2495 /*
2496 * Set a timeout in case the chip goes out to lunch.
2497 */
2498 ifp->if_timer = 5;
2499 }
2500
2501 /*
2502 * If we have a BCM5400 or BCM5401 PHY, we need to properly
2503 * program its internal DSP. Failing to do this can result in
2504 * massive packet loss at 1Gb speeds.
2505 */
2506 void
2507 bge_phy_hack(sc)
2508 struct bge_softc *sc;
2509 {
2510 struct bge_bcom_hack bhack[] = {
2511 { BRGPHY_MII_AUXCTL, 0x4C20 },
2512 { BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2513 { BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2514 { BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2515 { BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2516 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2517 { BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2518 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2519 { BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2520 { BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2521 { BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2522 { 0, 0 } };
2523 u_int16_t vid, did;
2524 int i;
2525
2526 vid = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR1);
2527 did = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR2);
2528
2529 if (MII_OUI(vid, did) == MII_OUI_BROADCOM &&
2530 (MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5400 ||
2531 MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5401)) {
2532 i = 0;
2533 while (bhack[i].reg) {
2534 bge_miibus_writereg(&sc->bge_dev, 1, bhack[i].reg,
2535 bhack[i].val);
2536 i++;
2537 }
2538 }
2539 }
2540
2541 int
2542 bge_init(ifp)
2543 struct ifnet *ifp;
2544 {
2545 struct bge_softc *sc = ifp->if_softc;
2546 u_int16_t *m;
2547 int s, error;
2548
2549 s = splnet();
2550
2551 ifp = &sc->ethercom.ec_if;
2552
2553 /* Cancel pending I/O and flush buffers. */
2554 bge_stop(sc);
2555 bge_reset(sc);
2556 bge_chipinit(sc);
2557
2558 /*
2559 * Init the various state machines, ring
2560 * control blocks and firmware.
2561 */
2562 error = bge_blockinit(sc);
2563 if (error != 0) {
2564 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2565 error);
2566 splx(s);
2567 return error;
2568 }
2569
2570 ifp = &sc->ethercom.ec_if;
2571
2572 /* Specify MTU. */
2573 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2574 ETHER_HDR_LEN + ETHER_CRC_LEN);
2575
2576 /* Load our MAC address. */
2577 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2578 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2579 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2580
2581 /* Enable or disable promiscuous mode as needed. */
2582 if (ifp->if_flags & IFF_PROMISC) {
2583 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2584 } else {
2585 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2586 }
2587
2588 /* Program multicast filter. */
2589 bge_setmulti(sc);
2590
2591 /* Init RX ring. */
2592 bge_init_rx_ring_std(sc);
2593
2594 /* Init jumbo RX ring. */
2595 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2596 bge_init_rx_ring_jumbo(sc);
2597
2598 /* Init our RX return ring index */
2599 sc->bge_rx_saved_considx = 0;
2600
2601 /* Init TX ring. */
2602 bge_init_tx_ring(sc);
2603
2604 /* Turn on transmitter */
2605 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2606
2607 /* Turn on receiver */
2608 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2609
2610 /* Tell firmware we're alive. */
2611 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2612
2613 /* Enable host interrupts. */
2614 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2615 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2616 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2617
2618 bge_ifmedia_upd(ifp);
2619
2620 ifp->if_flags |= IFF_RUNNING;
2621 ifp->if_flags &= ~IFF_OACTIVE;
2622
2623 splx(s);
2624
2625 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2626
2627 return 0;
2628 }
2629
2630 /*
2631 * Set media options.
2632 */
2633 int
2634 bge_ifmedia_upd(ifp)
2635 struct ifnet *ifp;
2636 {
2637 struct bge_softc *sc = ifp->if_softc;
2638 struct mii_data *mii = &sc->bge_mii;
2639 struct ifmedia *ifm = &sc->bge_ifmedia;
2640
2641 /* If this is a 1000baseX NIC, enable the TBI port. */
2642 if (sc->bge_tbi) {
2643 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2644 return(EINVAL);
2645 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2646 case IFM_AUTO:
2647 break;
2648 case IFM_1000_SX:
2649 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2650 BGE_CLRBIT(sc, BGE_MAC_MODE,
2651 BGE_MACMODE_HALF_DUPLEX);
2652 } else {
2653 BGE_SETBIT(sc, BGE_MAC_MODE,
2654 BGE_MACMODE_HALF_DUPLEX);
2655 }
2656 break;
2657 default:
2658 return(EINVAL);
2659 }
2660 return(0);
2661 }
2662
2663 sc->bge_link = 0;
2664 if (mii->mii_instance) {
2665 struct mii_softc *miisc;
2666 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2667 miisc = LIST_NEXT(miisc, mii_list))
2668 mii_phy_reset(miisc);
2669 }
2670 bge_phy_hack(sc);
2671 mii_mediachg(mii);
2672
2673 return(0);
2674 }
2675
2676 /*
2677 * Report current media status.
2678 */
2679 void
2680 bge_ifmedia_sts(ifp, ifmr)
2681 struct ifnet *ifp;
2682 struct ifmediareq *ifmr;
2683 {
2684 struct bge_softc *sc = ifp->if_softc;
2685 struct mii_data *mii = &sc->bge_mii;
2686
2687 if (sc->bge_tbi) {
2688 ifmr->ifm_status = IFM_AVALID;
2689 ifmr->ifm_active = IFM_ETHER;
2690 if (CSR_READ_4(sc, BGE_MAC_STS) &
2691 BGE_MACSTAT_TBI_PCS_SYNCHED)
2692 ifmr->ifm_status |= IFM_ACTIVE;
2693 ifmr->ifm_active |= IFM_1000_SX;
2694 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2695 ifmr->ifm_active |= IFM_HDX;
2696 else
2697 ifmr->ifm_active |= IFM_FDX;
2698 return;
2699 }
2700
2701 mii_pollstat(mii);
2702 ifmr->ifm_active = mii->mii_media_active;
2703 ifmr->ifm_status = mii->mii_media_status;
2704 }
2705
2706 int
2707 bge_ioctl(ifp, command, data)
2708 struct ifnet *ifp;
2709 u_long command;
2710 caddr_t data;
2711 {
2712 struct bge_softc *sc = ifp->if_softc;
2713 struct ifreq *ifr = (struct ifreq *) data;
2714 int s, error = 0;
2715 struct mii_data *mii;
2716
2717 s = splnet();
2718
2719 switch(command) {
2720 case SIOCSIFFLAGS:
2721 if (ifp->if_flags & IFF_UP) {
2722 /*
2723 * If only the state of the PROMISC flag changed,
2724 * then just use the 'set promisc mode' command
2725 * instead of reinitializing the entire NIC. Doing
2726 * a full re-init means reloading the firmware and
2727 * waiting for it to start up, which may take a
2728 * second or two.
2729 */
2730 if (ifp->if_flags & IFF_RUNNING &&
2731 ifp->if_flags & IFF_PROMISC &&
2732 !(sc->bge_if_flags & IFF_PROMISC)) {
2733 BGE_SETBIT(sc, BGE_RX_MODE,
2734 BGE_RXMODE_RX_PROMISC);
2735 } else if (ifp->if_flags & IFF_RUNNING &&
2736 !(ifp->if_flags & IFF_PROMISC) &&
2737 sc->bge_if_flags & IFF_PROMISC) {
2738 BGE_CLRBIT(sc, BGE_RX_MODE,
2739 BGE_RXMODE_RX_PROMISC);
2740 } else
2741 bge_init(ifp);
2742 } else {
2743 if (ifp->if_flags & IFF_RUNNING) {
2744 bge_stop(sc);
2745 }
2746 }
2747 sc->bge_if_flags = ifp->if_flags;
2748 error = 0;
2749 break;
2750 case SIOCSIFMEDIA:
2751 case SIOCGIFMEDIA:
2752 if (sc->bge_tbi) {
2753 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2754 command);
2755 } else {
2756 mii = &sc->bge_mii;
2757 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2758 command);
2759 }
2760 error = 0;
2761 break;
2762 default:
2763 error = ether_ioctl(ifp, command, data);
2764 if (error == ENETRESET) {
2765 bge_setmulti(sc);
2766 error = 0;
2767 }
2768 break;
2769 }
2770
2771 splx(s);
2772
2773 return(error);
2774 }
2775
2776 void
2777 bge_watchdog(ifp)
2778 struct ifnet *ifp;
2779 {
2780 struct bge_softc *sc;
2781
2782 sc = ifp->if_softc;
2783
2784 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2785
2786 ifp->if_flags &= ~IFF_RUNNING;
2787 bge_init(ifp);
2788
2789 ifp->if_oerrors++;
2790 }
2791
2792 static void
2793 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
2794 {
2795 int i;
2796
2797 BGE_CLRBIT(sc, reg, bit);
2798
2799 for (i = 0; i < BGE_TIMEOUT; i++) {
2800 if ((CSR_READ_4(sc, reg) & bit) == 0)
2801 return;
2802 delay(100);
2803 }
2804
2805 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
2806 sc->bge_dev.dv_xname, (u_long) reg, bit);
2807 }
2808
2809 /*
2810 * Stop the adapter and free any mbufs allocated to the
2811 * RX and TX lists.
2812 */
2813 void
2814 bge_stop(sc)
2815 struct bge_softc *sc;
2816 {
2817 struct ifnet *ifp = &sc->ethercom.ec_if;
2818
2819 callout_stop(&sc->bge_timeout);
2820
2821 /*
2822 * Disable all of the receiver blocks
2823 */
2824 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2825 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2826 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2827 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2828 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2829 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2830 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2831
2832 /*
2833 * Disable all of the transmit blocks
2834 */
2835 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2836 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2837 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2838 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2839 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2840 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2841 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2842
2843 /*
2844 * Shut down all of the memory managers and related
2845 * state machines.
2846 */
2847 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2848 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2849 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2850
2851 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2852 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2853
2854 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2855 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2856
2857 /* Disable host interrupts. */
2858 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2859 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2860
2861 /*
2862 * Tell firmware we're shutting down.
2863 */
2864 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2865
2866 /* Free the RX lists. */
2867 bge_free_rx_ring_std(sc);
2868
2869 /* Free jumbo RX list. */
2870 bge_free_rx_ring_jumbo(sc);
2871
2872 /* Free TX buffers. */
2873 bge_free_tx_ring(sc);
2874
2875 /*
2876 * Isolate/power down the PHY.
2877 */
2878 if (!sc->bge_tbi)
2879 mii_down(&sc->bge_mii);
2880
2881 sc->bge_link = 0;
2882
2883 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2884
2885 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2886 }
2887
2888 /*
2889 * Stop all chip I/O so that the kernel's probe routines don't
2890 * get confused by errant DMAs when rebooting.
2891 */
2892 void
2893 bge_shutdown(xsc)
2894 void *xsc;
2895 {
2896 struct bge_softc *sc = (struct bge_softc *)xsc;
2897
2898 bge_stop(sc);
2899 bge_reset(sc);
2900 }
2901