if_bge.c revision 1.140 1 /* $NetBSD: if_bge.c,v 1.140 2007/11/07 00:23:18 ad Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.140 2007/11/07 00:23:18 ad Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 static int bge_rxthresh_nodenum;
183
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static void bge_powerhook(int, void *);
187 static void bge_release_resources(struct bge_softc *);
188 static void bge_txeof(struct bge_softc *);
189 static void bge_rxeof(struct bge_softc *);
190
191 static void bge_tick(void *);
192 static void bge_stats_update(struct bge_softc *);
193 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
194
195 static int bge_intr(void *);
196 static void bge_start(struct ifnet *);
197 static int bge_ioctl(struct ifnet *, u_long, void *);
198 static int bge_init(struct ifnet *);
199 static void bge_stop(struct bge_softc *);
200 static void bge_watchdog(struct ifnet *);
201 static void bge_shutdown(void *);
202 static int bge_ifmedia_upd(struct ifnet *);
203 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
204
205 static void bge_setmulti(struct bge_softc *);
206
207 static void bge_handle_events(struct bge_softc *);
208 static int bge_alloc_jumbo_mem(struct bge_softc *);
209 #if 0 /* XXX */
210 static void bge_free_jumbo_mem(struct bge_softc *);
211 #endif
212 static void *bge_jalloc(struct bge_softc *);
213 static void bge_jfree(struct mbuf *, void *, size_t, void *);
214 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
215 bus_dmamap_t);
216 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
217 static int bge_init_rx_ring_std(struct bge_softc *);
218 static void bge_free_rx_ring_std(struct bge_softc *);
219 static int bge_init_rx_ring_jumbo(struct bge_softc *);
220 static void bge_free_rx_ring_jumbo(struct bge_softc *);
221 static void bge_free_tx_ring(struct bge_softc *);
222 static int bge_init_tx_ring(struct bge_softc *);
223
224 static int bge_chipinit(struct bge_softc *);
225 static int bge_blockinit(struct bge_softc *);
226 static int bge_setpowerstate(struct bge_softc *, int);
227
228 static void bge_reset(struct bge_softc *);
229
230 #define BGE_DEBUG
231 #ifdef BGE_DEBUG
232 #define DPRINTF(x) if (bgedebug) printf x
233 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
234 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
235 int bgedebug = 0;
236 int bge_tso_debug = 0;
237 #else
238 #define DPRINTF(x)
239 #define DPRINTFN(n,x)
240 #define BGE_TSO_PRINTF(x)
241 #endif
242
243 #ifdef BGE_EVENT_COUNTERS
244 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
245 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
246 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
247 #else
248 #define BGE_EVCNT_INCR(ev) /* nothing */
249 #define BGE_EVCNT_ADD(ev, val) /* nothing */
250 #define BGE_EVCNT_UPD(ev, val) /* nothing */
251 #endif
252
253 /* Various chip quirks. */
254 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
255 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
256 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
257 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
258 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
259 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
260 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
261 #define BGE_QUIRK_5705_CORE 0x00000080
262 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
263
264 /*
265 * XXX: how to handle variants based on 5750 and derivatives:
266 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
267 * in general behave like a 5705, except with additional quirks.
268 * This driver's current handling of the 5721 is wrong;
269 * how we map ASIC revision to "quirks" needs more thought.
270 * (defined here until the thought is done).
271 */
272 #define BGE_IS_5714_FAMILY(sc) \
273 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
274 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
275 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
276
277 #define BGE_IS_5750_OR_BEYOND(sc) \
278 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
279 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
280 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
281 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
282 BGE_IS_5714_FAMILY(sc) )
283
284 #define BGE_IS_5705_OR_BEYOND(sc) \
285 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
286 BGE_IS_5750_OR_BEYOND(sc) )
287
288
289 /* following bugs are common to bcm5700 rev B, all flavours */
290 #define BGE_QUIRK_5700_COMMON \
291 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
292
293 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
294 bge_probe, bge_attach, NULL, NULL);
295
296 static u_int32_t
297 bge_readmem_ind(struct bge_softc *sc, int off)
298 {
299 struct pci_attach_args *pa = &(sc->bge_pa);
300 pcireg_t val;
301
302 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
303 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
304 return val;
305 }
306
307 static void
308 bge_writemem_ind(struct bge_softc *sc, int off, int val)
309 {
310 struct pci_attach_args *pa = &(sc->bge_pa);
311
312 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
313 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
314 }
315
316 #ifdef notdef
317 static u_int32_t
318 bge_readreg_ind(struct bge_softc *sc, int off)
319 {
320 struct pci_attach_args *pa = &(sc->bge_pa);
321
322 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
323 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
324 }
325 #endif
326
327 static void
328 bge_writereg_ind(struct bge_softc *sc, int off, int val)
329 {
330 struct pci_attach_args *pa = &(sc->bge_pa);
331
332 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
333 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
334 }
335
336 #ifdef notdef
337 static u_int8_t
338 bge_vpd_readbyte(struct bge_softc *sc, int addr)
339 {
340 int i;
341 u_int32_t val;
342 struct pci_attach_args *pa = &(sc->bge_pa);
343
344 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
345 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
346 DELAY(10);
347 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
348 BGE_VPD_FLAG)
349 break;
350 }
351
352 if (i == BGE_TIMEOUT) {
353 aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
354 return(0);
355 }
356
357 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
358
359 return((val >> ((addr % 4) * 8)) & 0xFF);
360 }
361
362 static void
363 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
364 {
365 int i;
366 u_int8_t *ptr;
367
368 ptr = (u_int8_t *)res;
369 for (i = 0; i < sizeof(struct vpd_res); i++)
370 ptr[i] = bge_vpd_readbyte(sc, i + addr);
371 }
372
373 static void
374 bge_vpd_read(struct bge_softc *sc)
375 {
376 int pos = 0, i;
377 struct vpd_res res;
378
379 if (sc->bge_vpd_prodname != NULL)
380 free(sc->bge_vpd_prodname, M_DEVBUF);
381 if (sc->bge_vpd_readonly != NULL)
382 free(sc->bge_vpd_readonly, M_DEVBUF);
383 sc->bge_vpd_prodname = NULL;
384 sc->bge_vpd_readonly = NULL;
385
386 bge_vpd_read_res(sc, &res, pos);
387
388 if (res.vr_id != VPD_RES_ID) {
389 aprint_error_dev("bad VPD resource id: expected %x got %x\n",
390 VPD_RES_ID, res.vr_id);
391 return;
392 }
393
394 pos += sizeof(res);
395 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
396 if (sc->bge_vpd_prodname == NULL)
397 panic("bge_vpd_read");
398 for (i = 0; i < res.vr_len; i++)
399 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
400 sc->bge_vpd_prodname[i] = '\0';
401 pos += i;
402
403 bge_vpd_read_res(sc, &res, pos);
404
405 if (res.vr_id != VPD_RES_READ) {
406 aprint_error_dev(sc->bge_dev,
407 "bad VPD resource id: expected %x got %x\n",
408 VPD_RES_READ, res.vr_id);
409 return;
410 }
411
412 pos += sizeof(res);
413 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
414 if (sc->bge_vpd_readonly == NULL)
415 panic("bge_vpd_read");
416 for (i = 0; i < res.vr_len + 1; i++)
417 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
418 }
419 #endif
420
421 /*
422 * Read a byte of data stored in the EEPROM at address 'addr.' The
423 * BCM570x supports both the traditional bitbang interface and an
424 * auto access interface for reading the EEPROM. We use the auto
425 * access method.
426 */
427 static u_int8_t
428 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
429 {
430 int i;
431 u_int32_t byte = 0;
432
433 /*
434 * Enable use of auto EEPROM access so we can avoid
435 * having to use the bitbang method.
436 */
437 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
438
439 /* Reset the EEPROM, load the clock period. */
440 CSR_WRITE_4(sc, BGE_EE_ADDR,
441 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
442 DELAY(20);
443
444 /* Issue the read EEPROM command. */
445 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
446
447 /* Wait for completion */
448 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
449 DELAY(10);
450 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
451 break;
452 }
453
454 if (i == BGE_TIMEOUT) {
455 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
456 return(0);
457 }
458
459 /* Get result. */
460 byte = CSR_READ_4(sc, BGE_EE_DATA);
461
462 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
463
464 return(0);
465 }
466
467 /*
468 * Read a sequence of bytes from the EEPROM.
469 */
470 static int
471 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
472 {
473 int err = 0, i;
474 u_int8_t byte = 0;
475 char *dest = destv;
476
477 for (i = 0; i < cnt; i++) {
478 err = bge_eeprom_getbyte(sc, off + i, &byte);
479 if (err)
480 break;
481 *(dest + i) = byte;
482 }
483
484 return(err ? 1 : 0);
485 }
486
487 static int
488 bge_miibus_readreg(device_t dev, int phy, int reg)
489 {
490 struct bge_softc *sc = device_private(dev);
491 u_int32_t val;
492 u_int32_t saved_autopoll;
493 int i;
494
495 /*
496 * Several chips with builtin PHYs will incorrectly answer to
497 * other PHY instances than the builtin PHY at id 1.
498 */
499 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
500 return(0);
501
502 /* Reading with autopolling on may trigger PCI errors */
503 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
504 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
505 CSR_WRITE_4(sc, BGE_MI_MODE,
506 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
507 DELAY(40);
508 }
509
510 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
511 BGE_MIPHY(phy)|BGE_MIREG(reg));
512
513 for (i = 0; i < BGE_TIMEOUT; i++) {
514 val = CSR_READ_4(sc, BGE_MI_COMM);
515 if (!(val & BGE_MICOMM_BUSY))
516 break;
517 delay(10);
518 }
519
520 if (i == BGE_TIMEOUT) {
521 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
522 val = 0;
523 goto done;
524 }
525
526 val = CSR_READ_4(sc, BGE_MI_COMM);
527
528 done:
529 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
530 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
531 DELAY(40);
532 }
533
534 if (val & BGE_MICOMM_READFAIL)
535 return(0);
536
537 return(val & 0xFFFF);
538 }
539
540 static void
541 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
542 {
543 struct bge_softc *sc = device_private(dev);
544 u_int32_t saved_autopoll;
545 int i;
546
547 /* Touching the PHY while autopolling is on may trigger PCI errors */
548 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
549 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
550 delay(40);
551 CSR_WRITE_4(sc, BGE_MI_MODE,
552 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
553 delay(10); /* 40 usec is supposed to be adequate */
554 }
555
556 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
557 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
558
559 for (i = 0; i < BGE_TIMEOUT; i++) {
560 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
561 break;
562 delay(10);
563 }
564
565 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
566 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
567 delay(40);
568 }
569
570 if (i == BGE_TIMEOUT)
571 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
572 }
573
574 static void
575 bge_miibus_statchg(device_t dev)
576 {
577 struct bge_softc *sc = device_private(dev);
578 struct mii_data *mii = &sc->bge_mii;
579
580 /*
581 * Get flow control negotiation result.
582 */
583 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
584 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
585 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
586 mii->mii_media_active &= ~IFM_ETH_FMASK;
587 }
588
589 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
590 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
591 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
592 } else {
593 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
594 }
595
596 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
597 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
598 } else {
599 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
600 }
601
602 /*
603 * 802.3x flow control
604 */
605 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
606 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
607 } else {
608 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
609 }
610 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
611 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
612 } else {
613 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
614 }
615 }
616
617 /*
618 * Update rx threshold levels to values in a particular slot
619 * of the interrupt-mitigation table bge_rx_threshes.
620 */
621 static void
622 bge_set_thresh(struct ifnet *ifp, int lvl)
623 {
624 struct bge_softc *sc = ifp->if_softc;
625 int s;
626
627 /* For now, just save the new Rx-intr thresholds and record
628 * that a threshold update is pending. Updating the hardware
629 * registers here (even at splhigh()) is observed to
630 * occasionaly cause glitches where Rx-interrupts are not
631 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
632 */
633 s = splnet();
634 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
635 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
636 sc->bge_pending_rxintr_change = 1;
637 splx(s);
638
639 return;
640 }
641
642
643 /*
644 * Update Rx thresholds of all bge devices
645 */
646 static void
647 bge_update_all_threshes(int lvl)
648 {
649 struct ifnet *ifp;
650 const char * const namebuf = "bge";
651 int namelen;
652
653 if (lvl < 0)
654 lvl = 0;
655 else if( lvl >= NBGE_RX_THRESH)
656 lvl = NBGE_RX_THRESH - 1;
657
658 namelen = strlen(namebuf);
659 /*
660 * Now search all the interfaces for this name/number
661 */
662 IFNET_FOREACH(ifp) {
663 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
664 continue;
665 /* We got a match: update if doing auto-threshold-tuning */
666 if (bge_auto_thresh)
667 bge_set_thresh(ifp, lvl);
668 }
669 }
670
671 /*
672 * Handle events that have triggered interrupts.
673 */
674 static void
675 bge_handle_events(struct bge_softc *sc)
676 {
677
678 return;
679 }
680
681 /*
682 * Memory management for jumbo frames.
683 */
684
685 static int
686 bge_alloc_jumbo_mem(struct bge_softc *sc)
687 {
688 char *ptr, *kva;
689 bus_dma_segment_t seg;
690 int i, rseg, state, error;
691 struct bge_jpool_entry *entry;
692
693 state = error = 0;
694
695 /* Grab a big chunk o' storage. */
696 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
697 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
698 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
699 return ENOBUFS;
700 }
701
702 state = 1;
703 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
704 BUS_DMA_NOWAIT)) {
705 aprint_error_dev(sc->bge_dev,
706 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
707 error = ENOBUFS;
708 goto out;
709 }
710
711 state = 2;
712 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
713 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
714 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
715 error = ENOBUFS;
716 goto out;
717 }
718
719 state = 3;
720 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
721 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
722 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
723 error = ENOBUFS;
724 goto out;
725 }
726
727 state = 4;
728 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
729 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
730
731 SLIST_INIT(&sc->bge_jfree_listhead);
732 SLIST_INIT(&sc->bge_jinuse_listhead);
733
734 /*
735 * Now divide it up into 9K pieces and save the addresses
736 * in an array.
737 */
738 ptr = sc->bge_cdata.bge_jumbo_buf;
739 for (i = 0; i < BGE_JSLOTS; i++) {
740 sc->bge_cdata.bge_jslots[i] = ptr;
741 ptr += BGE_JLEN;
742 entry = malloc(sizeof(struct bge_jpool_entry),
743 M_DEVBUF, M_NOWAIT);
744 if (entry == NULL) {
745 aprint_error_dev(sc->bge_dev,
746 "no memory for jumbo buffer queue!\n");
747 error = ENOBUFS;
748 goto out;
749 }
750 entry->slot = i;
751 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
752 entry, jpool_entries);
753 }
754 out:
755 if (error != 0) {
756 switch (state) {
757 case 4:
758 bus_dmamap_unload(sc->bge_dmatag,
759 sc->bge_cdata.bge_rx_jumbo_map);
760 case 3:
761 bus_dmamap_destroy(sc->bge_dmatag,
762 sc->bge_cdata.bge_rx_jumbo_map);
763 case 2:
764 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
765 case 1:
766 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
767 break;
768 default:
769 break;
770 }
771 }
772
773 return error;
774 }
775
776 /*
777 * Allocate a jumbo buffer.
778 */
779 static void *
780 bge_jalloc(struct bge_softc *sc)
781 {
782 struct bge_jpool_entry *entry;
783
784 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
785
786 if (entry == NULL) {
787 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
788 return(NULL);
789 }
790
791 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
792 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
793 return(sc->bge_cdata.bge_jslots[entry->slot]);
794 }
795
796 /*
797 * Release a jumbo buffer.
798 */
799 static void
800 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
801 {
802 struct bge_jpool_entry *entry;
803 struct bge_softc *sc;
804 int i, s;
805
806 /* Extract the softc struct pointer. */
807 sc = (struct bge_softc *)arg;
808
809 if (sc == NULL)
810 panic("bge_jfree: can't find softc pointer!");
811
812 /* calculate the slot this buffer belongs to */
813
814 i = ((char *)buf
815 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
816
817 if ((i < 0) || (i >= BGE_JSLOTS))
818 panic("bge_jfree: asked to free buffer that we don't manage!");
819
820 s = splvm();
821 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
822 if (entry == NULL)
823 panic("bge_jfree: buffer not in use!");
824 entry->slot = i;
825 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
826 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
827
828 if (__predict_true(m != NULL))
829 pool_cache_put(mb_cache, m);
830 splx(s);
831 }
832
833
834 /*
835 * Intialize a standard receive ring descriptor.
836 */
837 static int
838 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
839 {
840 struct mbuf *m_new = NULL;
841 struct bge_rx_bd *r;
842 int error;
843
844 if (dmamap == NULL) {
845 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
846 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
847 if (error != 0)
848 return error;
849 }
850
851 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
852
853 if (m == NULL) {
854 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
855 if (m_new == NULL) {
856 return(ENOBUFS);
857 }
858
859 MCLGET(m_new, M_DONTWAIT);
860 if (!(m_new->m_flags & M_EXT)) {
861 m_freem(m_new);
862 return(ENOBUFS);
863 }
864 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
865
866 } else {
867 m_new = m;
868 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
869 m_new->m_data = m_new->m_ext.ext_buf;
870 }
871 if (!sc->bge_rx_alignment_bug)
872 m_adj(m_new, ETHER_ALIGN);
873 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
874 BUS_DMA_READ|BUS_DMA_NOWAIT))
875 return(ENOBUFS);
876 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
877 BUS_DMASYNC_PREREAD);
878
879 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
880 r = &sc->bge_rdata->bge_rx_std_ring[i];
881 bge_set_hostaddr(&r->bge_addr,
882 dmamap->dm_segs[0].ds_addr);
883 r->bge_flags = BGE_RXBDFLAG_END;
884 r->bge_len = m_new->m_len;
885 r->bge_idx = i;
886
887 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
888 offsetof(struct bge_ring_data, bge_rx_std_ring) +
889 i * sizeof (struct bge_rx_bd),
890 sizeof (struct bge_rx_bd),
891 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
892
893 return(0);
894 }
895
896 /*
897 * Initialize a jumbo receive ring descriptor. This allocates
898 * a jumbo buffer from the pool managed internally by the driver.
899 */
900 static int
901 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
902 {
903 struct mbuf *m_new = NULL;
904 struct bge_rx_bd *r;
905 void *buf = NULL;
906
907 if (m == NULL) {
908
909 /* Allocate the mbuf. */
910 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
911 if (m_new == NULL) {
912 return(ENOBUFS);
913 }
914
915 /* Allocate the jumbo buffer */
916 buf = bge_jalloc(sc);
917 if (buf == NULL) {
918 m_freem(m_new);
919 aprint_error_dev(sc->bge_dev,
920 "jumbo allocation failed -- packet dropped!\n");
921 return(ENOBUFS);
922 }
923
924 /* Attach the buffer to the mbuf. */
925 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
926 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
927 bge_jfree, sc);
928 m_new->m_flags |= M_EXT_RW;
929 } else {
930 m_new = m;
931 buf = m_new->m_data = m_new->m_ext.ext_buf;
932 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
933 }
934 if (!sc->bge_rx_alignment_bug)
935 m_adj(m_new, ETHER_ALIGN);
936 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
937 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
938 BUS_DMASYNC_PREREAD);
939 /* Set up the descriptor. */
940 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
941 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
942 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
943 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
944 r->bge_len = m_new->m_len;
945 r->bge_idx = i;
946
947 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
948 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
949 i * sizeof (struct bge_rx_bd),
950 sizeof (struct bge_rx_bd),
951 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
952
953 return(0);
954 }
955
956 /*
957 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
958 * that's 1MB or memory, which is a lot. For now, we fill only the first
959 * 256 ring entries and hope that our CPU is fast enough to keep up with
960 * the NIC.
961 */
962 static int
963 bge_init_rx_ring_std(struct bge_softc *sc)
964 {
965 int i;
966
967 if (sc->bge_flags & BGE_RXRING_VALID)
968 return 0;
969
970 for (i = 0; i < BGE_SSLOTS; i++) {
971 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
972 return(ENOBUFS);
973 }
974
975 sc->bge_std = i - 1;
976 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
977
978 sc->bge_flags |= BGE_RXRING_VALID;
979
980 return(0);
981 }
982
983 static void
984 bge_free_rx_ring_std(struct bge_softc *sc)
985 {
986 int i;
987
988 if (!(sc->bge_flags & BGE_RXRING_VALID))
989 return;
990
991 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
992 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
993 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
994 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
995 bus_dmamap_destroy(sc->bge_dmatag,
996 sc->bge_cdata.bge_rx_std_map[i]);
997 }
998 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
999 sizeof(struct bge_rx_bd));
1000 }
1001
1002 sc->bge_flags &= ~BGE_RXRING_VALID;
1003 }
1004
1005 static int
1006 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1007 {
1008 int i;
1009 volatile struct bge_rcb *rcb;
1010
1011 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1012 return 0;
1013
1014 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1015 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1016 return(ENOBUFS);
1017 };
1018
1019 sc->bge_jumbo = i - 1;
1020 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1021
1022 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1023 rcb->bge_maxlen_flags = 0;
1024 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1025
1026 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1027
1028 return(0);
1029 }
1030
1031 static void
1032 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1033 {
1034 int i;
1035
1036 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1037 return;
1038
1039 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1040 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1041 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1042 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1043 }
1044 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1045 sizeof(struct bge_rx_bd));
1046 }
1047
1048 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1049 }
1050
1051 static void
1052 bge_free_tx_ring(struct bge_softc *sc)
1053 {
1054 int i, freed;
1055 struct txdmamap_pool_entry *dma;
1056
1057 if (!(sc->bge_flags & BGE_TXRING_VALID))
1058 return;
1059
1060 freed = 0;
1061
1062 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1063 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1064 freed++;
1065 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1066 sc->bge_cdata.bge_tx_chain[i] = NULL;
1067 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1068 link);
1069 sc->txdma[i] = 0;
1070 }
1071 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1072 sizeof(struct bge_tx_bd));
1073 }
1074
1075 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1076 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1077 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1078 free(dma, M_DEVBUF);
1079 }
1080
1081 sc->bge_flags &= ~BGE_TXRING_VALID;
1082 }
1083
1084 static int
1085 bge_init_tx_ring(struct bge_softc *sc)
1086 {
1087 int i;
1088 bus_dmamap_t dmamap;
1089 struct txdmamap_pool_entry *dma;
1090
1091 if (sc->bge_flags & BGE_TXRING_VALID)
1092 return 0;
1093
1094 sc->bge_txcnt = 0;
1095 sc->bge_tx_saved_considx = 0;
1096
1097 /* Initialize transmit producer index for host-memory send ring. */
1098 sc->bge_tx_prodidx = 0;
1099 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1102
1103 /* NIC-memory send ring not used; initialize to zero. */
1104 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1105 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1106 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1107
1108 SLIST_INIT(&sc->txdma_list);
1109 for (i = 0; i < BGE_RSLOTS; i++) {
1110 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1111 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1112 &dmamap))
1113 return(ENOBUFS);
1114 if (dmamap == NULL)
1115 panic("dmamap NULL in bge_init_tx_ring");
1116 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1117 if (dma == NULL) {
1118 aprint_error_dev(sc->bge_dev,
1119 "can't alloc txdmamap_pool_entry\n");
1120 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1121 return (ENOMEM);
1122 }
1123 dma->dmamap = dmamap;
1124 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1125 }
1126
1127 sc->bge_flags |= BGE_TXRING_VALID;
1128
1129 return(0);
1130 }
1131
1132 static void
1133 bge_setmulti(struct bge_softc *sc)
1134 {
1135 struct ethercom *ac = &sc->ethercom;
1136 struct ifnet *ifp = &ac->ec_if;
1137 struct ether_multi *enm;
1138 struct ether_multistep step;
1139 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1140 u_int32_t h;
1141 int i;
1142
1143 if (ifp->if_flags & IFF_PROMISC)
1144 goto allmulti;
1145
1146 /* Now program new ones. */
1147 ETHER_FIRST_MULTI(step, ac, enm);
1148 while (enm != NULL) {
1149 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1150 /*
1151 * We must listen to a range of multicast addresses.
1152 * For now, just accept all multicasts, rather than
1153 * trying to set only those filter bits needed to match
1154 * the range. (At this time, the only use of address
1155 * ranges is for IP multicast routing, for which the
1156 * range is big enough to require all bits set.)
1157 */
1158 goto allmulti;
1159 }
1160
1161 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1162
1163 /* Just want the 7 least-significant bits. */
1164 h &= 0x7f;
1165
1166 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1167 ETHER_NEXT_MULTI(step, enm);
1168 }
1169
1170 ifp->if_flags &= ~IFF_ALLMULTI;
1171 goto setit;
1172
1173 allmulti:
1174 ifp->if_flags |= IFF_ALLMULTI;
1175 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1176
1177 setit:
1178 for (i = 0; i < 4; i++)
1179 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1180 }
1181
1182 const int bge_swapbits[] = {
1183 0,
1184 BGE_MODECTL_BYTESWAP_DATA,
1185 BGE_MODECTL_WORDSWAP_DATA,
1186 BGE_MODECTL_BYTESWAP_NONFRAME,
1187 BGE_MODECTL_WORDSWAP_NONFRAME,
1188
1189 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1190 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1191 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1194 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1195
1196 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1197
1198 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1199 BGE_MODECTL_BYTESWAP_NONFRAME,
1200 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1201 BGE_MODECTL_WORDSWAP_NONFRAME,
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1203 BGE_MODECTL_WORDSWAP_NONFRAME,
1204 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1205 BGE_MODECTL_WORDSWAP_NONFRAME,
1206
1207 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1208 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1209 };
1210
1211 int bge_swapindex = 0;
1212
1213 /*
1214 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1215 * self-test results.
1216 */
1217 static int
1218 bge_chipinit(struct bge_softc *sc)
1219 {
1220 u_int32_t cachesize;
1221 int i;
1222 u_int32_t dma_rw_ctl;
1223 struct pci_attach_args *pa = &(sc->bge_pa);
1224
1225
1226 /* Set endianness before we access any non-PCI registers. */
1227 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1228 BGE_INIT);
1229
1230 /* Set power state to D0. */
1231 bge_setpowerstate(sc, 0);
1232
1233 /*
1234 * Check the 'ROM failed' bit on the RX CPU to see if
1235 * self-tests passed.
1236 */
1237 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1238 aprint_error_dev(sc->bge_dev,
1239 "RX CPU self-diagnostics failed!\n");
1240 return(ENODEV);
1241 }
1242
1243 /* Clear the MAC control register */
1244 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1245
1246 /*
1247 * Clear the MAC statistics block in the NIC's
1248 * internal memory.
1249 */
1250 for (i = BGE_STATS_BLOCK;
1251 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1252 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1253
1254 for (i = BGE_STATUS_BLOCK;
1255 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1256 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1257
1258 /* Set up the PCI DMA control register. */
1259 if (sc->bge_pcie) {
1260 u_int32_t device_ctl;
1261
1262 /* From FreeBSD */
1263 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1264 device_xname(sc->bge_dev)));
1265 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1266 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1267 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1268
1269 /* jonathan: alternative from Linux driver */
1270 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1271 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1272
1273 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1274 device_ctl = pci_conf_read(pa->pa_pc, pa->pa_tag,
1275 BGE_PCI_CONF_DEV_CTRL);
1276 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1277
1278 if ((device_ctl & 0x00e0) && 0) {
1279 /*
1280 * XXX jonathan (at) NetBSD.org:
1281 * This clause is exactly what the Broadcom-supplied
1282 * Linux does; but given overall register programming
1283 * by if_bge(4), this larger DMA-write watermark
1284 * value causes bcm5721 chips to totally wedge.
1285 */
1286 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1287 } else {
1288 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1289 }
1290 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1291 BGE_PCISTATE_PCI_BUSMODE) {
1292 /* Conventional PCI bus */
1293 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1294 device_xname(sc->bge_dev)));
1295 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1296 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1297 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1298 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1299 dma_rw_ctl |= 0x0F;
1300 }
1301 } else {
1302 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1303 device_xname(sc->bge_dev)));
1304 /* PCI-X bus */
1305 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1306 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1307 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1308 (0x0F);
1309 /*
1310 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1311 * for hardware bugs, which means we should also clear
1312 * the low-order MINDMA bits. In addition, the 5704
1313 * uses a different encoding of read/write watermarks.
1314 */
1315 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1316 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1317 /* should be 0x1f0000 */
1318 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1321 }
1322 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1323 dma_rw_ctl &= 0xfffffff0;
1324 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1325 }
1326 else if (BGE_IS_5714_FAMILY(sc)) {
1327 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1328 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1329 /* XXX magic values, Broadcom-supplied Linux driver */
1330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1331 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1332 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1333 else
1334 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1335 }
1336 }
1337
1338 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1339
1340 /*
1341 * Set up general mode register.
1342 */
1343 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1344 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1345 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1346
1347 /* Get cache line size. */
1348 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1349
1350 /*
1351 * Avoid violating PCI spec on certain chip revs.
1352 */
1353 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1354 PCIM_CMD_MWIEN) {
1355 switch(cachesize) {
1356 case 1:
1357 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1358 BGE_PCI_WRITE_BNDRY_16BYTES);
1359 break;
1360 case 2:
1361 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1362 BGE_PCI_WRITE_BNDRY_32BYTES);
1363 break;
1364 case 4:
1365 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1366 BGE_PCI_WRITE_BNDRY_64BYTES);
1367 break;
1368 case 8:
1369 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1370 BGE_PCI_WRITE_BNDRY_128BYTES);
1371 break;
1372 case 16:
1373 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1374 BGE_PCI_WRITE_BNDRY_256BYTES);
1375 break;
1376 case 32:
1377 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1378 BGE_PCI_WRITE_BNDRY_512BYTES);
1379 break;
1380 case 64:
1381 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1382 BGE_PCI_WRITE_BNDRY_1024BYTES);
1383 break;
1384 default:
1385 /* Disable PCI memory write and invalidate. */
1386 #if 0
1387 if (bootverbose)
1388 aprint_error_dev(sc->bge_dev,
1389 "cache line size %d not supported "
1390 "disabling PCI MWI\n",
1391 #endif
1392 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1393 PCIM_CMD_MWIEN);
1394 break;
1395 }
1396 }
1397
1398 /*
1399 * Disable memory write invalidate. Apparently it is not supported
1400 * properly by these devices.
1401 */
1402 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1403
1404
1405 #ifdef __brokenalpha__
1406 /*
1407 * Must insure that we do not cross an 8K (bytes) boundary
1408 * for DMA reads. Our highest limit is 1K bytes. This is a
1409 * restriction on some ALPHA platforms with early revision
1410 * 21174 PCI chipsets, such as the AlphaPC 164lx
1411 */
1412 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1413 #endif
1414
1415 /* Set the timer prescaler (always 66MHz) */
1416 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1417
1418 return(0);
1419 }
1420
1421 static int
1422 bge_blockinit(struct bge_softc *sc)
1423 {
1424 volatile struct bge_rcb *rcb;
1425 bus_size_t rcb_addr;
1426 int i;
1427 struct ifnet *ifp = &sc->ethercom.ec_if;
1428 bge_hostaddr taddr;
1429
1430 /*
1431 * Initialize the memory window pointer register so that
1432 * we can access the first 32K of internal NIC RAM. This will
1433 * allow us to set up the TX send ring RCBs and the RX return
1434 * ring RCBs, plus other things which live in NIC memory.
1435 */
1436
1437 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1438 BGE_PCI_MEMWIN_BASEADDR, 0);
1439
1440 /* Configure mbuf memory pool */
1441 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1442 if (sc->bge_extram) {
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 BGE_EXT_SSRAM);
1445 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 else
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 } else {
1450 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1451 BGE_BUFFPOOL_1);
1452 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1453 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1454 else
1455 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1456 }
1457
1458 /* Configure DMA resource pool */
1459 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1460 BGE_DMA_DESCRIPTORS);
1461 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1462 }
1463
1464 /* Configure mbuf pool watermarks */
1465 #ifdef ORIG_WPAUL_VALUES
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1469 #else
1470 /* new broadcom docs strongly recommend these: */
1471 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1472 if (ifp->if_mtu > ETHER_MAX_LEN) {
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1474 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1475 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1476 } else {
1477 /* Values from Linux driver... */
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1479 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1480 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1481 }
1482 } else {
1483 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1484 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1485 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1486 }
1487 #endif
1488
1489 /* Configure DMA resource watermarks */
1490 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1491 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1492
1493 /* Enable buffer manager */
1494 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1495 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1496
1497 /* Poll for buffer manager start indication */
1498 for (i = 0; i < BGE_TIMEOUT; i++) {
1499 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1500 break;
1501 DELAY(10);
1502 }
1503
1504 if (i == BGE_TIMEOUT) {
1505 aprint_error_dev(sc->bge_dev,
1506 "buffer manager failed to start\n");
1507 return(ENXIO);
1508 }
1509
1510 /* Enable flow-through queues */
1511 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1512 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1513
1514 /* Wait until queue initialization is complete */
1515 for (i = 0; i < BGE_TIMEOUT; i++) {
1516 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1517 break;
1518 DELAY(10);
1519 }
1520
1521 if (i == BGE_TIMEOUT) {
1522 aprint_error_dev(sc->bge_dev,
1523 "flow-through queue init failed\n");
1524 return(ENXIO);
1525 }
1526
1527 /* Initialize the standard RX ring control block */
1528 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1529 bge_set_hostaddr(&rcb->bge_hostaddr,
1530 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1531 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1532 rcb->bge_maxlen_flags =
1533 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1534 } else {
1535 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1536 }
1537 if (sc->bge_extram)
1538 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1539 else
1540 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1541 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1542 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1543 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1544 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1545
1546 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1547 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1548 } else {
1549 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1550 }
1551
1552 /*
1553 * Initialize the jumbo RX ring control block
1554 * We set the 'ring disabled' bit in the flags
1555 * field until we're actually ready to start
1556 * using this ring (i.e. once we set the MTU
1557 * high enough to require it).
1558 */
1559 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1560 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1561 bge_set_hostaddr(&rcb->bge_hostaddr,
1562 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1563 rcb->bge_maxlen_flags =
1564 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1565 BGE_RCB_FLAG_RING_DISABLED);
1566 if (sc->bge_extram)
1567 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1568 else
1569 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1570
1571 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1572 rcb->bge_hostaddr.bge_addr_hi);
1573 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1574 rcb->bge_hostaddr.bge_addr_lo);
1575 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1576 rcb->bge_maxlen_flags);
1577 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1578
1579 /* Set up dummy disabled mini ring RCB */
1580 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1581 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1582 BGE_RCB_FLAG_RING_DISABLED);
1583 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1584 rcb->bge_maxlen_flags);
1585
1586 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1587 offsetof(struct bge_ring_data, bge_info),
1588 sizeof (struct bge_gib),
1589 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590 }
1591
1592 /*
1593 * Set the BD ring replenish thresholds. The recommended
1594 * values are 1/8th the number of descriptors allocated to
1595 * each ring.
1596 */
1597 i = BGE_STD_RX_RING_CNT / 8;
1598
1599 /*
1600 * Use a value of 8 for the following chips to workaround HW errata.
1601 * Some of these chips have been added based on empirical
1602 * evidence (they don't work unless this is done).
1603 */
1604 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1605 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1606 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1607 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1608 i = 8;
1609
1610 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1611 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1612
1613 /*
1614 * Disable all unused send rings by setting the 'ring disabled'
1615 * bit in the flags field of all the TX send ring control blocks.
1616 * These are located in NIC memory.
1617 */
1618 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1619 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1620 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1621 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1622 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1623 rcb_addr += sizeof(struct bge_rcb);
1624 }
1625
1626 /* Configure TX RCB 0 (we use only the first ring) */
1627 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1628 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1629 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1630 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1631 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1632 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1633 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1634 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1635 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1636 }
1637
1638 /* Disable all unused RX return rings */
1639 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1640 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1641 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1642 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1643 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1644 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1645 BGE_RCB_FLAG_RING_DISABLED));
1646 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1647 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1648 (i * (sizeof(u_int64_t))), 0);
1649 rcb_addr += sizeof(struct bge_rcb);
1650 }
1651
1652 /* Initialize RX ring indexes */
1653 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1654 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1655 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1656
1657 /*
1658 * Set up RX return ring 0
1659 * Note that the NIC address for RX return rings is 0x00000000.
1660 * The return rings live entirely within the host, so the
1661 * nicaddr field in the RCB isn't used.
1662 */
1663 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1664 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1665 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1666 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1667 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1668 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1669 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1670
1671 /* Set random backoff seed for TX */
1672 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1673 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1674 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1675 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1676 BGE_TX_BACKOFF_SEED_MASK);
1677
1678 /* Set inter-packet gap */
1679 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1680
1681 /*
1682 * Specify which ring to use for packets that don't match
1683 * any RX rules.
1684 */
1685 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1686
1687 /*
1688 * Configure number of RX lists. One interrupt distribution
1689 * list, sixteen active lists, one bad frames class.
1690 */
1691 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1692
1693 /* Inialize RX list placement stats mask. */
1694 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1695 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1696
1697 /* Disable host coalescing until we get it set up */
1698 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1699
1700 /* Poll to make sure it's shut down. */
1701 for (i = 0; i < BGE_TIMEOUT; i++) {
1702 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1703 break;
1704 DELAY(10);
1705 }
1706
1707 if (i == BGE_TIMEOUT) {
1708 aprint_error_dev(sc->bge_dev,
1709 "host coalescing engine failed to idle\n");
1710 return(ENXIO);
1711 }
1712
1713 /* Set up host coalescing defaults */
1714 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1715 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1716 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1717 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1718 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1719 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1720 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1721 }
1722 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1723 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1724
1725 /* Set up address of statistics block */
1726 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1727 bge_set_hostaddr(&taddr,
1728 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1729 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1730 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1731 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1732 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1733 }
1734
1735 /* Set up address of status block */
1736 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1737 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1738 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1739 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1740 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1741 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1742
1743 /* Turn on host coalescing state machine */
1744 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1745
1746 /* Turn on RX BD completion state machine and enable attentions */
1747 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1748 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1749
1750 /* Turn on RX list placement state machine */
1751 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1752
1753 /* Turn on RX list selector state machine. */
1754 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1755 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1756 }
1757
1758 /* Turn on DMA, clear stats */
1759 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1760 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1761 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1762 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1763 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1764
1765 /* Set misc. local control, enable interrupts on attentions */
1766 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1767
1768 #ifdef notdef
1769 /* Assert GPIO pins for PHY reset */
1770 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1771 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1772 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1773 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1774 #endif
1775
1776 #if defined(not_quite_yet)
1777 /* Linux driver enables enable gpio pin #1 on 5700s */
1778 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1779 sc->bge_local_ctrl_reg |=
1780 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1781 }
1782 #endif
1783 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1784
1785 /* Turn on DMA completion state machine */
1786 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1787 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1788 }
1789
1790 /* Turn on write DMA state machine */
1791 {
1792 uint32_t bge_wdma_mode =
1793 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1794
1795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1796 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1797 /* Enable host coalescing bug fix; see Linux tg3.c */
1798 bge_wdma_mode |= (1 << 29);
1799
1800 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1801 }
1802
1803 /* Turn on read DMA state machine */
1804 {
1805 uint32_t dma_read_modebits;
1806
1807 dma_read_modebits =
1808 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1809
1810 if (sc->bge_pcie && 0) {
1811 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1812 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1813 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1814 }
1815
1816 /* XXX broadcom-supplied linux driver; undocumented */
1817 if (BGE_IS_5750_OR_BEYOND(sc)) {
1818 /*
1819 * XXX: magic values.
1820 * From Broadcom-supplied Linux driver; apparently
1821 * required to workaround a DMA bug affecting TSO
1822 * on bcm575x/bcm5721?
1823 */
1824 dma_read_modebits |= (1 << 27);
1825 }
1826 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1827 }
1828
1829 /* Turn on RX data completion state machine */
1830 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1831
1832 /* Turn on RX BD initiator state machine */
1833 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1834
1835 /* Turn on RX data and RX BD initiator state machine */
1836 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1837
1838 /* Turn on Mbuf cluster free state machine */
1839 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1840 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1841 }
1842
1843 /* Turn on send BD completion state machine */
1844 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1845
1846 /* Turn on send data completion state machine */
1847 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1848
1849 /* Turn on send data initiator state machine */
1850 if (BGE_IS_5750_OR_BEYOND(sc)) {
1851 /* XXX: magic value from Linux driver */
1852 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1853 } else {
1854 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1855 }
1856
1857 /* Turn on send BD initiator state machine */
1858 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1859
1860 /* Turn on send BD selector state machine */
1861 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1862
1863 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1864 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1865 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1866
1867 /* ack/clear link change events */
1868 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1869 BGE_MACSTAT_CFG_CHANGED);
1870 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1871
1872 /* Enable PHY auto polling (for MII/GMII only) */
1873 if (sc->bge_tbi) {
1874 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1875 } else {
1876 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1877 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1878 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1879 BGE_EVTENB_MI_INTERRUPT);
1880 }
1881
1882 /* Enable link state change attentions. */
1883 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1884
1885 return(0);
1886 }
1887
1888 static const struct bge_revision {
1889 uint32_t br_chipid;
1890 uint32_t br_quirks;
1891 const char *br_name;
1892 } bge_revisions[] = {
1893 { BGE_CHIPID_BCM5700_A0,
1894 BGE_QUIRK_LINK_STATE_BROKEN,
1895 "BCM5700 A0" },
1896
1897 { BGE_CHIPID_BCM5700_A1,
1898 BGE_QUIRK_LINK_STATE_BROKEN,
1899 "BCM5700 A1" },
1900
1901 { BGE_CHIPID_BCM5700_B0,
1902 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1903 "BCM5700 B0" },
1904
1905 { BGE_CHIPID_BCM5700_B1,
1906 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1907 "BCM5700 B1" },
1908
1909 { BGE_CHIPID_BCM5700_B2,
1910 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1911 "BCM5700 B2" },
1912
1913 { BGE_CHIPID_BCM5700_B3,
1914 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1915 "BCM5700 B3" },
1916
1917 /* This is treated like a BCM5700 Bx */
1918 { BGE_CHIPID_BCM5700_ALTIMA,
1919 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1920 "BCM5700 Altima" },
1921
1922 { BGE_CHIPID_BCM5700_C0,
1923 0,
1924 "BCM5700 C0" },
1925
1926 { BGE_CHIPID_BCM5701_A0,
1927 0, /*XXX really, just not known */
1928 "BCM5701 A0" },
1929
1930 { BGE_CHIPID_BCM5701_B0,
1931 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1932 "BCM5701 B0" },
1933
1934 { BGE_CHIPID_BCM5701_B2,
1935 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1936 "BCM5701 B2" },
1937
1938 { BGE_CHIPID_BCM5701_B5,
1939 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1940 "BCM5701 B5" },
1941
1942 { BGE_CHIPID_BCM5703_A0,
1943 0,
1944 "BCM5703 A0" },
1945
1946 { BGE_CHIPID_BCM5703_A1,
1947 0,
1948 "BCM5703 A1" },
1949
1950 { BGE_CHIPID_BCM5703_A2,
1951 BGE_QUIRK_ONLY_PHY_1,
1952 "BCM5703 A2" },
1953
1954 { BGE_CHIPID_BCM5703_A3,
1955 BGE_QUIRK_ONLY_PHY_1,
1956 "BCM5703 A3" },
1957
1958 { BGE_CHIPID_BCM5703_B0,
1959 BGE_QUIRK_ONLY_PHY_1,
1960 "BCM5703 B0" },
1961
1962 { BGE_CHIPID_BCM5704_A0,
1963 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1964 "BCM5704 A0" },
1965
1966 { BGE_CHIPID_BCM5704_A1,
1967 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1968 "BCM5704 A1" },
1969
1970 { BGE_CHIPID_BCM5704_A2,
1971 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1972 "BCM5704 A2" },
1973
1974 { BGE_CHIPID_BCM5704_A3,
1975 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1976 "BCM5704 A3" },
1977
1978 { BGE_CHIPID_BCM5705_A0,
1979 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1980 "BCM5705 A0" },
1981
1982 { BGE_CHIPID_BCM5705_A1,
1983 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1984 "BCM5705 A1" },
1985
1986 { BGE_CHIPID_BCM5705_A2,
1987 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1988 "BCM5705 A2" },
1989
1990 { BGE_CHIPID_BCM5705_A3,
1991 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1992 "BCM5705 A3" },
1993
1994 { BGE_CHIPID_BCM5750_A0,
1995 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1996 "BCM5750 A0" },
1997
1998 { BGE_CHIPID_BCM5750_A1,
1999 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2000 "BCM5750 A1" },
2001
2002 { BGE_CHIPID_BCM5751_A1,
2003 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2004 "BCM5751 A1" },
2005
2006 { BGE_CHIPID_BCM5752_A0,
2007 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2008 "BCM5752 A0" },
2009
2010 { BGE_CHIPID_BCM5752_A1,
2011 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2012 "BCM5752 A1" },
2013
2014 { BGE_CHIPID_BCM5752_A2,
2015 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2016 "BCM5752 A2" },
2017
2018 { BGE_CHIPID_BCM5787_A0,
2019 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2020 "BCM5754/5787 A0" },
2021
2022 { BGE_CHIPID_BCM5787_A1,
2023 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2024 "BCM5754/5787 A1" },
2025
2026 { BGE_CHIPID_BCM5787_A2,
2027 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2028 "BCM5754/5787 A2" },
2029
2030 { 0, 0, NULL }
2031 };
2032
2033 /*
2034 * Some defaults for major revisions, so that newer steppings
2035 * that we don't know about have a shot at working.
2036 */
2037 static const struct bge_revision bge_majorrevs[] = {
2038 { BGE_ASICREV_BCM5700,
2039 BGE_QUIRK_LINK_STATE_BROKEN,
2040 "unknown BCM5700" },
2041
2042 { BGE_ASICREV_BCM5701,
2043 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2044 "unknown BCM5701" },
2045
2046 { BGE_ASICREV_BCM5703,
2047 0,
2048 "unknown BCM5703" },
2049
2050 { BGE_ASICREV_BCM5704,
2051 BGE_QUIRK_ONLY_PHY_1,
2052 "unknown BCM5704" },
2053
2054 { BGE_ASICREV_BCM5705,
2055 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2056 "unknown BCM5705" },
2057
2058 { BGE_ASICREV_BCM5750,
2059 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2060 "unknown BCM575x family" },
2061
2062 { BGE_ASICREV_BCM5714_A0,
2063 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2064 "unknown BCM5714" },
2065
2066 { BGE_ASICREV_BCM5714,
2067 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2068 "unknown BCM5714" },
2069
2070 { BGE_ASICREV_BCM5752,
2071 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2072 "unknown BCM5752 family" },
2073
2074 { BGE_ASICREV_BCM5755,
2075 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2076 "unknown BCM5755" },
2077
2078 { BGE_ASICREV_BCM5780,
2079 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2080 "unknown BCM5780" },
2081
2082 { BGE_ASICREV_BCM5787,
2083 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2084 "unknown BCM5787" },
2085
2086 { 0,
2087 0,
2088 NULL }
2089 };
2090
2091
2092 static const struct bge_revision *
2093 bge_lookup_rev(uint32_t chipid)
2094 {
2095 const struct bge_revision *br;
2096
2097 for (br = bge_revisions; br->br_name != NULL; br++) {
2098 if (br->br_chipid == chipid)
2099 return (br);
2100 }
2101
2102 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2103 if (br->br_chipid == BGE_ASICREV(chipid))
2104 return (br);
2105 }
2106
2107 return (NULL);
2108 }
2109
2110 static const struct bge_product {
2111 pci_vendor_id_t bp_vendor;
2112 pci_product_id_t bp_product;
2113 const char *bp_name;
2114 } bge_products[] = {
2115 /*
2116 * The BCM5700 documentation seems to indicate that the hardware
2117 * still has the Alteon vendor ID burned into it, though it
2118 * should always be overridden by the value in the EEPROM. We'll
2119 * check for it anyway.
2120 */
2121 { PCI_VENDOR_ALTEON,
2122 PCI_PRODUCT_ALTEON_BCM5700,
2123 "Broadcom BCM5700 Gigabit Ethernet",
2124 },
2125 { PCI_VENDOR_ALTEON,
2126 PCI_PRODUCT_ALTEON_BCM5701,
2127 "Broadcom BCM5701 Gigabit Ethernet",
2128 },
2129
2130 { PCI_VENDOR_ALTIMA,
2131 PCI_PRODUCT_ALTIMA_AC1000,
2132 "Altima AC1000 Gigabit Ethernet",
2133 },
2134 { PCI_VENDOR_ALTIMA,
2135 PCI_PRODUCT_ALTIMA_AC1001,
2136 "Altima AC1001 Gigabit Ethernet",
2137 },
2138 { PCI_VENDOR_ALTIMA,
2139 PCI_PRODUCT_ALTIMA_AC9100,
2140 "Altima AC9100 Gigabit Ethernet",
2141 },
2142
2143 { PCI_VENDOR_BROADCOM,
2144 PCI_PRODUCT_BROADCOM_BCM5700,
2145 "Broadcom BCM5700 Gigabit Ethernet",
2146 },
2147 { PCI_VENDOR_BROADCOM,
2148 PCI_PRODUCT_BROADCOM_BCM5701,
2149 "Broadcom BCM5701 Gigabit Ethernet",
2150 },
2151 { PCI_VENDOR_BROADCOM,
2152 PCI_PRODUCT_BROADCOM_BCM5702,
2153 "Broadcom BCM5702 Gigabit Ethernet",
2154 },
2155 { PCI_VENDOR_BROADCOM,
2156 PCI_PRODUCT_BROADCOM_BCM5702X,
2157 "Broadcom BCM5702X Gigabit Ethernet" },
2158
2159 { PCI_VENDOR_BROADCOM,
2160 PCI_PRODUCT_BROADCOM_BCM5703,
2161 "Broadcom BCM5703 Gigabit Ethernet",
2162 },
2163 { PCI_VENDOR_BROADCOM,
2164 PCI_PRODUCT_BROADCOM_BCM5703X,
2165 "Broadcom BCM5703X Gigabit Ethernet",
2166 },
2167 { PCI_VENDOR_BROADCOM,
2168 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2169 "Broadcom BCM5703 Gigabit Ethernet",
2170 },
2171
2172 { PCI_VENDOR_BROADCOM,
2173 PCI_PRODUCT_BROADCOM_BCM5704C,
2174 "Broadcom BCM5704C Dual Gigabit Ethernet",
2175 },
2176 { PCI_VENDOR_BROADCOM,
2177 PCI_PRODUCT_BROADCOM_BCM5704S,
2178 "Broadcom BCM5704S Dual Gigabit Ethernet",
2179 },
2180
2181 { PCI_VENDOR_BROADCOM,
2182 PCI_PRODUCT_BROADCOM_BCM5705,
2183 "Broadcom BCM5705 Gigabit Ethernet",
2184 },
2185 { PCI_VENDOR_BROADCOM,
2186 PCI_PRODUCT_BROADCOM_BCM5705K,
2187 "Broadcom BCM5705K Gigabit Ethernet",
2188 },
2189 { PCI_VENDOR_BROADCOM,
2190 PCI_PRODUCT_BROADCOM_BCM5705M,
2191 "Broadcom BCM5705M Gigabit Ethernet",
2192 },
2193 { PCI_VENDOR_BROADCOM,
2194 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2195 "Broadcom BCM5705M Gigabit Ethernet",
2196 },
2197
2198 { PCI_VENDOR_BROADCOM,
2199 PCI_PRODUCT_BROADCOM_BCM5714,
2200 "Broadcom BCM5714/5715 Gigabit Ethernet",
2201 },
2202 { PCI_VENDOR_BROADCOM,
2203 PCI_PRODUCT_BROADCOM_BCM5715,
2204 "Broadcom BCM5714/5715 Gigabit Ethernet",
2205 },
2206 { PCI_VENDOR_BROADCOM,
2207 PCI_PRODUCT_BROADCOM_BCM5789,
2208 "Broadcom BCM5789 Gigabit Ethernet",
2209 },
2210
2211 { PCI_VENDOR_BROADCOM,
2212 PCI_PRODUCT_BROADCOM_BCM5721,
2213 "Broadcom BCM5721 Gigabit Ethernet",
2214 },
2215
2216 { PCI_VENDOR_BROADCOM,
2217 PCI_PRODUCT_BROADCOM_BCM5750,
2218 "Broadcom BCM5750 Gigabit Ethernet",
2219 },
2220
2221 { PCI_VENDOR_BROADCOM,
2222 PCI_PRODUCT_BROADCOM_BCM5750M,
2223 "Broadcom BCM5750M Gigabit Ethernet",
2224 },
2225
2226 { PCI_VENDOR_BROADCOM,
2227 PCI_PRODUCT_BROADCOM_BCM5751,
2228 "Broadcom BCM5751 Gigabit Ethernet",
2229 },
2230
2231 { PCI_VENDOR_BROADCOM,
2232 PCI_PRODUCT_BROADCOM_BCM5751M,
2233 "Broadcom BCM5751M Gigabit Ethernet",
2234 },
2235
2236 { PCI_VENDOR_BROADCOM,
2237 PCI_PRODUCT_BROADCOM_BCM5752,
2238 "Broadcom BCM5752 Gigabit Ethernet",
2239 },
2240
2241 { PCI_VENDOR_BROADCOM,
2242 PCI_PRODUCT_BROADCOM_BCM5752M,
2243 "Broadcom BCM5752M Gigabit Ethernet",
2244 },
2245
2246 { PCI_VENDOR_BROADCOM,
2247 PCI_PRODUCT_BROADCOM_BCM5753,
2248 "Broadcom BCM5753 Gigabit Ethernet",
2249 },
2250
2251 { PCI_VENDOR_BROADCOM,
2252 PCI_PRODUCT_BROADCOM_BCM5753M,
2253 "Broadcom BCM5753M Gigabit Ethernet",
2254 },
2255
2256 { PCI_VENDOR_BROADCOM,
2257 PCI_PRODUCT_BROADCOM_BCM5754,
2258 "Broadcom BCM5754 Gigabit Ethernet",
2259 },
2260
2261 { PCI_VENDOR_BROADCOM,
2262 PCI_PRODUCT_BROADCOM_BCM5754M,
2263 "Broadcom BCM5754M Gigabit Ethernet",
2264 },
2265
2266 { PCI_VENDOR_BROADCOM,
2267 PCI_PRODUCT_BROADCOM_BCM5755,
2268 "Broadcom BCM5755 Gigabit Ethernet",
2269 },
2270
2271 { PCI_VENDOR_BROADCOM,
2272 PCI_PRODUCT_BROADCOM_BCM5755M,
2273 "Broadcom BCM5755M Gigabit Ethernet",
2274 },
2275
2276 { PCI_VENDOR_BROADCOM,
2277 PCI_PRODUCT_BROADCOM_BCM5780,
2278 "Broadcom BCM5780 Gigabit Ethernet",
2279 },
2280
2281 { PCI_VENDOR_BROADCOM,
2282 PCI_PRODUCT_BROADCOM_BCM5780S,
2283 "Broadcom BCM5780S Gigabit Ethernet",
2284 },
2285
2286 { PCI_VENDOR_BROADCOM,
2287 PCI_PRODUCT_BROADCOM_BCM5782,
2288 "Broadcom BCM5782 Gigabit Ethernet",
2289 },
2290
2291 { PCI_VENDOR_BROADCOM,
2292 PCI_PRODUCT_BROADCOM_BCM5786,
2293 "Broadcom BCM5786 Gigabit Ethernet",
2294 },
2295
2296 { PCI_VENDOR_BROADCOM,
2297 PCI_PRODUCT_BROADCOM_BCM5787,
2298 "Broadcom BCM5787 Gigabit Ethernet",
2299 },
2300
2301 { PCI_VENDOR_BROADCOM,
2302 PCI_PRODUCT_BROADCOM_BCM5787M,
2303 "Broadcom BCM5787M Gigabit Ethernet",
2304 },
2305
2306 { PCI_VENDOR_BROADCOM,
2307 PCI_PRODUCT_BROADCOM_BCM5788,
2308 "Broadcom BCM5788 Gigabit Ethernet",
2309 },
2310 { PCI_VENDOR_BROADCOM,
2311 PCI_PRODUCT_BROADCOM_BCM5789,
2312 "Broadcom BCM5789 Gigabit Ethernet",
2313 },
2314
2315 { PCI_VENDOR_BROADCOM,
2316 PCI_PRODUCT_BROADCOM_BCM5901,
2317 "Broadcom BCM5901 Fast Ethernet",
2318 },
2319 { PCI_VENDOR_BROADCOM,
2320 PCI_PRODUCT_BROADCOM_BCM5901A2,
2321 "Broadcom BCM5901A2 Fast Ethernet",
2322 },
2323
2324 { PCI_VENDOR_SCHNEIDERKOCH,
2325 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2326 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2327 },
2328
2329 { PCI_VENDOR_3COM,
2330 PCI_PRODUCT_3COM_3C996,
2331 "3Com 3c996 Gigabit Ethernet",
2332 },
2333
2334 { 0,
2335 0,
2336 NULL },
2337 };
2338
2339 static const struct bge_product *
2340 bge_lookup(const struct pci_attach_args *pa)
2341 {
2342 const struct bge_product *bp;
2343
2344 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2345 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2346 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2347 return (bp);
2348 }
2349
2350 return (NULL);
2351 }
2352
2353 static int
2354 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2355 {
2356 #ifdef NOTYET
2357 u_int32_t pm_ctl = 0;
2358
2359 /* XXX FIXME: make sure indirect accesses enabled? */
2360 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2361 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2362 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2363
2364 /* clear the PME_assert bit and power state bits, enable PME */
2365 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2366 pm_ctl &= ~PCIM_PSTAT_DMASK;
2367 pm_ctl |= (1 << 8);
2368
2369 if (powerlevel == 0) {
2370 pm_ctl |= PCIM_PSTAT_D0;
2371 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2372 pm_ctl, 2);
2373 DELAY(10000);
2374 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2375 DELAY(10000);
2376
2377 #ifdef NOTYET
2378 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2379 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2380 #endif
2381 DELAY(40); DELAY(40); DELAY(40);
2382 DELAY(10000); /* above not quite adequate on 5700 */
2383 return 0;
2384 }
2385
2386
2387 /*
2388 * Entering ACPI power states D1-D3 is achieved by wiggling
2389 * GMII gpio pins. Example code assumes all hardware vendors
2390 * followed Broadom's sample pcb layout. Until we verify that
2391 * for all supported OEM cards, states D1-D3 are unsupported.
2392 */
2393 aprint_error_dev(sc->bge_dev,
2394 "power state %d unimplemented; check GPIO pins\n",
2395 powerlevel);
2396 #endif
2397 return EOPNOTSUPP;
2398 }
2399
2400
2401 /*
2402 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2403 * against our list and return its name if we find a match. Note
2404 * that since the Broadcom controller contains VPD support, we
2405 * can get the device name string from the controller itself instead
2406 * of the compiled-in string. This is a little slow, but it guarantees
2407 * we'll always announce the right product name.
2408 */
2409 static int
2410 bge_probe(device_t parent, cfdata_t match, void *aux)
2411 {
2412 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2413
2414 if (bge_lookup(pa) != NULL)
2415 return (1);
2416
2417 return (0);
2418 }
2419
2420 static void
2421 bge_attach(device_t parent, device_t self, void *aux)
2422 {
2423 struct bge_softc *sc = device_private(self);
2424 struct pci_attach_args *pa = aux;
2425 const struct bge_product *bp;
2426 const struct bge_revision *br;
2427 pci_chipset_tag_t pc = pa->pa_pc;
2428 pci_intr_handle_t ih;
2429 const char *intrstr = NULL;
2430 bus_dma_segment_t seg;
2431 int rseg;
2432 u_int32_t hwcfg = 0;
2433 u_int32_t mac_addr = 0;
2434 u_int32_t command;
2435 struct ifnet *ifp;
2436 void * kva;
2437 u_char eaddr[ETHER_ADDR_LEN];
2438 pcireg_t memtype;
2439 bus_addr_t memaddr;
2440 bus_size_t memsize;
2441 u_int32_t pm_ctl;
2442
2443 bp = bge_lookup(pa);
2444 KASSERT(bp != NULL);
2445
2446 sc->bge_dev = self;
2447 sc->bge_pa = *pa;
2448
2449 aprint_naive(": Ethernet controller\n");
2450 aprint_normal(": %s\n", bp->bp_name);
2451
2452 /*
2453 * Map control/status registers.
2454 */
2455 DPRINTFN(5, ("Map control/status regs\n"));
2456 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2457 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2458 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2459 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2460
2461 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2462 aprint_error_dev(sc->bge_dev,
2463 "failed to enable memory mapping!\n");
2464 return;
2465 }
2466
2467 DPRINTFN(5, ("pci_mem_find\n"));
2468 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2469 switch (memtype) {
2470 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2471 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2472 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2473 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2474 &memaddr, &memsize) == 0)
2475 break;
2476 default:
2477 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2478 return;
2479 }
2480
2481 DPRINTFN(5, ("pci_intr_map\n"));
2482 if (pci_intr_map(pa, &ih)) {
2483 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2484 return;
2485 }
2486
2487 DPRINTFN(5, ("pci_intr_string\n"));
2488 intrstr = pci_intr_string(pc, ih);
2489
2490 DPRINTFN(5, ("pci_intr_establish\n"));
2491 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2492
2493 if (sc->bge_intrhand == NULL) {
2494 aprint_error_dev(sc->bge_dev,
2495 "couldn't establish interrupt%s%s\n",
2496 intrstr ? " at " : "", intrstr ? intrstr : "");
2497 return;
2498 }
2499 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2500
2501 /*
2502 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2503 * can clobber the chip's PCI config-space power control registers,
2504 * leaving the card in D3 powersave state.
2505 * We do not have memory-mapped registers in this state,
2506 * so force device into D0 state before starting initialization.
2507 */
2508 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2509 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2510 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2511 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2512 DELAY(1000); /* 27 usec is allegedly sufficent */
2513
2514 /*
2515 * Save ASIC rev. Look up any quirks associated with this
2516 * ASIC.
2517 */
2518 sc->bge_chipid =
2519 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2520 BGE_PCIMISCCTL_ASICREV;
2521
2522 /*
2523 * Detect PCI-Express devices
2524 * XXX: guessed from Linux/FreeBSD; no documentation
2525 */
2526 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2527 NULL, NULL) != 0)
2528 sc->bge_pcie = 1;
2529 else
2530 sc->bge_pcie = 0;
2531
2532 /* Try to reset the chip. */
2533 DPRINTFN(5, ("bge_reset\n"));
2534 bge_reset(sc);
2535
2536 if (bge_chipinit(sc)) {
2537 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2538 bge_release_resources(sc);
2539 return;
2540 }
2541
2542 /*
2543 * Get station address from the EEPROM.
2544 */
2545 mac_addr = bge_readmem_ind(sc, 0x0c14);
2546 if ((mac_addr >> 16) == 0x484b) {
2547 eaddr[0] = (u_char)(mac_addr >> 8);
2548 eaddr[1] = (u_char)(mac_addr >> 0);
2549 mac_addr = bge_readmem_ind(sc, 0x0c18);
2550 eaddr[2] = (u_char)(mac_addr >> 24);
2551 eaddr[3] = (u_char)(mac_addr >> 16);
2552 eaddr[4] = (u_char)(mac_addr >> 8);
2553 eaddr[5] = (u_char)(mac_addr >> 0);
2554 } else if (bge_read_eeprom(sc, (void *)eaddr,
2555 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2556 aprint_error_dev(sc->bge_dev,
2557 "failed to read station address\n");
2558 bge_release_resources(sc);
2559 return;
2560 }
2561
2562 br = bge_lookup_rev(sc->bge_chipid);
2563
2564 if (br == NULL) {
2565 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2566 sc->bge_chipid >> 16);
2567 sc->bge_quirks = 0;
2568 } else {
2569 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2570 br->br_name, sc->bge_chipid >> 16);
2571 sc->bge_quirks |= br->br_quirks;
2572 }
2573 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2574
2575 /* Allocate the general information block and ring buffers. */
2576 if (pci_dma64_available(pa))
2577 sc->bge_dmatag = pa->pa_dmat64;
2578 else
2579 sc->bge_dmatag = pa->pa_dmat;
2580 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2581 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2582 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2583 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2584 return;
2585 }
2586 DPRINTFN(5, ("bus_dmamem_map\n"));
2587 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2588 sizeof(struct bge_ring_data), &kva,
2589 BUS_DMA_NOWAIT)) {
2590 aprint_error_dev(sc->bge_dev,
2591 "can't map DMA buffers (%zu bytes)\n",
2592 sizeof(struct bge_ring_data));
2593 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2594 return;
2595 }
2596 DPRINTFN(5, ("bus_dmamem_create\n"));
2597 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2598 sizeof(struct bge_ring_data), 0,
2599 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2600 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2601 bus_dmamem_unmap(sc->bge_dmatag, kva,
2602 sizeof(struct bge_ring_data));
2603 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2604 return;
2605 }
2606 DPRINTFN(5, ("bus_dmamem_load\n"));
2607 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2608 sizeof(struct bge_ring_data), NULL,
2609 BUS_DMA_NOWAIT)) {
2610 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2611 bus_dmamem_unmap(sc->bge_dmatag, kva,
2612 sizeof(struct bge_ring_data));
2613 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2614 return;
2615 }
2616
2617 DPRINTFN(5, ("bzero\n"));
2618 sc->bge_rdata = (struct bge_ring_data *)kva;
2619
2620 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2621
2622 /* Try to allocate memory for jumbo buffers. */
2623 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2624 if (bge_alloc_jumbo_mem(sc)) {
2625 aprint_error_dev(sc->bge_dev,
2626 "jumbo buffer allocation failed\n");
2627 } else
2628 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2629 }
2630
2631 /* Set default tuneable values. */
2632 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2633 sc->bge_rx_coal_ticks = 150;
2634 sc->bge_rx_max_coal_bds = 64;
2635 #ifdef ORIG_WPAUL_VALUES
2636 sc->bge_tx_coal_ticks = 150;
2637 sc->bge_tx_max_coal_bds = 128;
2638 #else
2639 sc->bge_tx_coal_ticks = 300;
2640 sc->bge_tx_max_coal_bds = 400;
2641 #endif
2642 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2643 sc->bge_tx_coal_ticks = (12 * 5);
2644 sc->bge_rx_max_coal_bds = (12 * 5);
2645 aprint_verbose_dev(sc->bge_dev,
2646 "setting short Tx thresholds\n");
2647 }
2648
2649 /* Set up ifnet structure */
2650 ifp = &sc->ethercom.ec_if;
2651 ifp->if_softc = sc;
2652 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2653 ifp->if_ioctl = bge_ioctl;
2654 ifp->if_start = bge_start;
2655 ifp->if_init = bge_init;
2656 ifp->if_watchdog = bge_watchdog;
2657 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2658 IFQ_SET_READY(&ifp->if_snd);
2659 DPRINTFN(5, ("strcpy if_xname\n"));
2660 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2661
2662 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2663 sc->ethercom.ec_if.if_capabilities |=
2664 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2665 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2666 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2667 sc->ethercom.ec_capabilities |=
2668 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2669
2670 if (sc->bge_pcie)
2671 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2672
2673 /*
2674 * Do MII setup.
2675 */
2676 DPRINTFN(5, ("mii setup\n"));
2677 sc->bge_mii.mii_ifp = ifp;
2678 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2679 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2680 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2681
2682 /*
2683 * Figure out what sort of media we have by checking the
2684 * hardware config word in the first 32k of NIC internal memory,
2685 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2686 * cards, this value appears to be unset. If that's the
2687 * case, we have to rely on identifying the NIC by its PCI
2688 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2689 */
2690 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2691 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2692 } else {
2693 bge_read_eeprom(sc, (void *)&hwcfg,
2694 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2695 hwcfg = be32toh(hwcfg);
2696 }
2697 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2698 sc->bge_tbi = 1;
2699
2700 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2701 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2702 SK_SUBSYSID_9D41)
2703 sc->bge_tbi = 1;
2704
2705 if (sc->bge_tbi) {
2706 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2707 bge_ifmedia_sts);
2708 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2709 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2710 0, NULL);
2711 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2712 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2713 } else {
2714 /*
2715 * Do transceiver setup.
2716 */
2717 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2718 bge_ifmedia_sts);
2719 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2720 MII_PHY_ANY, MII_OFFSET_ANY,
2721 MIIF_FORCEANEG|MIIF_DOPAUSE);
2722
2723 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2724 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2725 ifmedia_add(&sc->bge_mii.mii_media,
2726 IFM_ETHER|IFM_MANUAL, 0, NULL);
2727 ifmedia_set(&sc->bge_mii.mii_media,
2728 IFM_ETHER|IFM_MANUAL);
2729 } else
2730 ifmedia_set(&sc->bge_mii.mii_media,
2731 IFM_ETHER|IFM_AUTO);
2732 }
2733
2734 /*
2735 * When using the BCM5701 in PCI-X mode, data corruption has
2736 * been observed in the first few bytes of some received packets.
2737 * Aligning the packet buffer in memory eliminates the corruption.
2738 * Unfortunately, this misaligns the packet payloads. On platforms
2739 * which do not support unaligned accesses, we will realign the
2740 * payloads by copying the received packets.
2741 */
2742 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2743 /* If in PCI-X mode, work around the alignment bug. */
2744 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2745 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2746 BGE_PCISTATE_PCI_BUSSPEED)
2747 sc->bge_rx_alignment_bug = 1;
2748 }
2749
2750 /*
2751 * Call MI attach routine.
2752 */
2753 DPRINTFN(5, ("if_attach\n"));
2754 if_attach(ifp);
2755 DPRINTFN(5, ("ether_ifattach\n"));
2756 ether_ifattach(ifp, eaddr);
2757 #ifdef BGE_EVENT_COUNTERS
2758 /*
2759 * Attach event counters.
2760 */
2761 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2762 NULL, device_xname(sc->bge_dev), "intr");
2763 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2764 NULL, device_xname(sc->bge_dev), "tx_xoff");
2765 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2766 NULL, device_xname(sc->bge_dev), "tx_xon");
2767 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2768 NULL, device_xname(sc->bge_dev), "rx_xoff");
2769 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2770 NULL, device_xname(sc->bge_dev), "rx_xon");
2771 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2772 NULL, device_xname(sc->bge_dev), "rx_macctl");
2773 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2774 NULL, device_xname(sc->bge_dev), "xoffentered");
2775 #endif /* BGE_EVENT_COUNTERS */
2776 DPRINTFN(5, ("callout_init\n"));
2777 callout_init(&sc->bge_timeout, 0);
2778
2779 sc->bge_powerhook = powerhook_establish(device_xname(sc->bge_dev),
2780 bge_powerhook, sc);
2781 if (sc->bge_powerhook == NULL)
2782 aprint_error_dev(sc->bge_dev,
2783 "unable to establish PCI power hook\n");
2784 }
2785
2786 static void
2787 bge_release_resources(struct bge_softc *sc)
2788 {
2789 if (sc->bge_vpd_prodname != NULL)
2790 free(sc->bge_vpd_prodname, M_DEVBUF);
2791
2792 if (sc->bge_vpd_readonly != NULL)
2793 free(sc->bge_vpd_readonly, M_DEVBUF);
2794 }
2795
2796 static void
2797 bge_reset(struct bge_softc *sc)
2798 {
2799 struct pci_attach_args *pa = &sc->bge_pa;
2800 u_int32_t cachesize, command, pcistate, new_pcistate;
2801 int i, val;
2802
2803 /* Save some important PCI state. */
2804 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2805 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2806 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2807
2808 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2809 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2810 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2811
2812 /*
2813 * Disable the firmware fastboot feature on 5752 ASIC
2814 * to avoid firmware timeout.
2815 */
2816 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2817 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2818 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2819 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2820
2821 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2822 /*
2823 * XXX: from FreeBSD/Linux; no documentation
2824 */
2825 if (sc->bge_pcie) {
2826 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2827 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2828 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2829 /* No idea what that actually means */
2830 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2831 val |= (1<<29);
2832 }
2833 }
2834
2835 /* Issue global reset */
2836 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2837
2838 DELAY(1000);
2839
2840 /*
2841 * XXX: from FreeBSD/Linux; no documentation
2842 */
2843 if (sc->bge_pcie) {
2844 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2845 pcireg_t reg;
2846
2847 DELAY(500000);
2848 /* XXX: Magic Numbers */
2849 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2850 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2851 reg | (1 << 15));
2852 }
2853 /*
2854 * XXX: Magic Numbers.
2855 * Sets maximal PCI-e payload and clears any PCI-e errors.
2856 * Should be replaced with references to PCI config-space
2857 * capability block for PCI-Express.
2858 */
2859 pci_conf_write(pa->pa_pc, pa->pa_tag,
2860 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2861
2862 }
2863
2864 /* Reset some of the PCI state that got zapped by reset */
2865 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2866 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2867 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2868 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2869 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2870 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2871
2872 /* Enable memory arbiter. */
2873 {
2874 uint32_t marbmode = 0;
2875 if (BGE_IS_5714_FAMILY(sc)) {
2876 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2877 }
2878 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2879 }
2880
2881 /*
2882 * Write the magic number to the firmware mailbox at 0xb50
2883 * so that the driver can synchronize with the firmware.
2884 */
2885 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2886
2887 /*
2888 * Poll the value location we just wrote until
2889 * we see the 1's complement of the magic number.
2890 * This indicates that the firmware initialization
2891 * is complete.
2892 */
2893 for (i = 0; i < BGE_TIMEOUT; i++) {
2894 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2895 if (val == ~BGE_MAGIC_NUMBER)
2896 break;
2897 DELAY(1000);
2898 }
2899
2900 if (i >= BGE_TIMEOUT) {
2901 aprint_error_dev(sc->bge_dev,
2902 "firmware handshake timed out, val = %x\n", val);
2903 /*
2904 * XXX: occasionally fired on bcm5721, but without
2905 * apparent harm. For now, keep going if we timeout
2906 * against PCI-E devices.
2907 */
2908 if (!sc->bge_pcie)
2909 return;
2910 }
2911
2912 /*
2913 * XXX Wait for the value of the PCISTATE register to
2914 * return to its original pre-reset state. This is a
2915 * fairly good indicator of reset completion. If we don't
2916 * wait for the reset to fully complete, trying to read
2917 * from the device's non-PCI registers may yield garbage
2918 * results.
2919 */
2920 for (i = 0; i < 10000; i++) {
2921 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2922 BGE_PCI_PCISTATE);
2923 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2924 (pcistate & ~BGE_PCISTATE_RESERVED))
2925 break;
2926 DELAY(10);
2927 }
2928 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2929 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2930 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2931 }
2932
2933 /* XXX: from FreeBSD/Linux; no documentation */
2934 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2935 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2936
2937 /* Enable memory arbiter. */
2938 /* XXX why do this twice? */
2939 {
2940 uint32_t marbmode = 0;
2941 if (BGE_IS_5714_FAMILY(sc)) {
2942 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2943 }
2944 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2945 }
2946
2947 /* Fix up byte swapping */
2948 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2949
2950 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2951
2952 DELAY(10000);
2953 }
2954
2955 /*
2956 * Frame reception handling. This is called if there's a frame
2957 * on the receive return list.
2958 *
2959 * Note: we have to be able to handle two possibilities here:
2960 * 1) the frame is from the jumbo recieve ring
2961 * 2) the frame is from the standard receive ring
2962 */
2963
2964 static void
2965 bge_rxeof(struct bge_softc *sc)
2966 {
2967 struct ifnet *ifp;
2968 int stdcnt = 0, jumbocnt = 0;
2969 bus_dmamap_t dmamap;
2970 bus_addr_t offset, toff;
2971 bus_size_t tlen;
2972 int tosync;
2973
2974 ifp = &sc->ethercom.ec_if;
2975
2976 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2977 offsetof(struct bge_ring_data, bge_status_block),
2978 sizeof (struct bge_status_block),
2979 BUS_DMASYNC_POSTREAD);
2980
2981 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2982 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2983 sc->bge_rx_saved_considx;
2984
2985 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2986
2987 if (tosync < 0) {
2988 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2989 sizeof (struct bge_rx_bd);
2990 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2991 toff, tlen, BUS_DMASYNC_POSTREAD);
2992 tosync = -tosync;
2993 }
2994
2995 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2996 offset, tosync * sizeof (struct bge_rx_bd),
2997 BUS_DMASYNC_POSTREAD);
2998
2999 while(sc->bge_rx_saved_considx !=
3000 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3001 struct bge_rx_bd *cur_rx;
3002 u_int32_t rxidx;
3003 struct mbuf *m = NULL;
3004
3005 cur_rx = &sc->bge_rdata->
3006 bge_rx_return_ring[sc->bge_rx_saved_considx];
3007
3008 rxidx = cur_rx->bge_idx;
3009 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3010
3011 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3012 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3013 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3014 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3015 jumbocnt++;
3016 bus_dmamap_sync(sc->bge_dmatag,
3017 sc->bge_cdata.bge_rx_jumbo_map,
3018 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3019 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3020 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3021 ifp->if_ierrors++;
3022 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3023 continue;
3024 }
3025 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3026 NULL)== ENOBUFS) {
3027 ifp->if_ierrors++;
3028 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3029 continue;
3030 }
3031 } else {
3032 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3033 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3034
3035 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3036 stdcnt++;
3037 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3038 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3039 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3040 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3041 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3042 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3043 ifp->if_ierrors++;
3044 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3045 continue;
3046 }
3047 if (bge_newbuf_std(sc, sc->bge_std,
3048 NULL, dmamap) == ENOBUFS) {
3049 ifp->if_ierrors++;
3050 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3051 continue;
3052 }
3053 }
3054
3055 ifp->if_ipackets++;
3056 #ifndef __NO_STRICT_ALIGNMENT
3057 /*
3058 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3059 * the Rx buffer has the layer-2 header unaligned.
3060 * If our CPU requires alignment, re-align by copying.
3061 */
3062 if (sc->bge_rx_alignment_bug) {
3063 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3064 cur_rx->bge_len);
3065 m->m_data += ETHER_ALIGN;
3066 }
3067 #endif
3068
3069 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3070 m->m_pkthdr.rcvif = ifp;
3071
3072 #if NBPFILTER > 0
3073 /*
3074 * Handle BPF listeners. Let the BPF user see the packet.
3075 */
3076 if (ifp->if_bpf)
3077 bpf_mtap(ifp->if_bpf, m);
3078 #endif
3079
3080 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3081
3082 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3083 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3084 /*
3085 * Rx transport checksum-offload may also
3086 * have bugs with packets which, when transmitted,
3087 * were `runts' requiring padding.
3088 */
3089 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3090 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3091 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3092 m->m_pkthdr.csum_data =
3093 cur_rx->bge_tcp_udp_csum;
3094 m->m_pkthdr.csum_flags |=
3095 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3096 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3097 }
3098
3099 /*
3100 * If we received a packet with a vlan tag, pass it
3101 * to vlan_input() instead of ether_input().
3102 */
3103 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3104 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3105
3106 (*ifp->if_input)(ifp, m);
3107 }
3108
3109 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3110 if (stdcnt)
3111 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3112 if (jumbocnt)
3113 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3114 }
3115
3116 static void
3117 bge_txeof(struct bge_softc *sc)
3118 {
3119 struct bge_tx_bd *cur_tx = NULL;
3120 struct ifnet *ifp;
3121 struct txdmamap_pool_entry *dma;
3122 bus_addr_t offset, toff;
3123 bus_size_t tlen;
3124 int tosync;
3125 struct mbuf *m;
3126
3127 ifp = &sc->ethercom.ec_if;
3128
3129 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3130 offsetof(struct bge_ring_data, bge_status_block),
3131 sizeof (struct bge_status_block),
3132 BUS_DMASYNC_POSTREAD);
3133
3134 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3135 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3136 sc->bge_tx_saved_considx;
3137
3138 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3139
3140 if (tosync < 0) {
3141 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3142 sizeof (struct bge_tx_bd);
3143 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3144 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3145 tosync = -tosync;
3146 }
3147
3148 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3149 offset, tosync * sizeof (struct bge_tx_bd),
3150 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3151
3152 /*
3153 * Go through our tx ring and free mbufs for those
3154 * frames that have been sent.
3155 */
3156 while (sc->bge_tx_saved_considx !=
3157 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3158 u_int32_t idx = 0;
3159
3160 idx = sc->bge_tx_saved_considx;
3161 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3162 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3163 ifp->if_opackets++;
3164 m = sc->bge_cdata.bge_tx_chain[idx];
3165 if (m != NULL) {
3166 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3167 dma = sc->txdma[idx];
3168 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3169 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3170 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3171 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3172 sc->txdma[idx] = NULL;
3173
3174 m_freem(m);
3175 }
3176 sc->bge_txcnt--;
3177 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3178 ifp->if_timer = 0;
3179 }
3180
3181 if (cur_tx != NULL)
3182 ifp->if_flags &= ~IFF_OACTIVE;
3183 }
3184
3185 static int
3186 bge_intr(void *xsc)
3187 {
3188 struct bge_softc *sc;
3189 struct ifnet *ifp;
3190
3191 sc = xsc;
3192 ifp = &sc->ethercom.ec_if;
3193
3194 #ifdef notdef
3195 /* Avoid this for now -- checking this register is expensive. */
3196 /* Make sure this is really our interrupt. */
3197 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
3198 return (0);
3199 #endif
3200 /* Ack interrupt and stop others from occuring. */
3201 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3202
3203 BGE_EVCNT_INCR(sc->bge_ev_intr);
3204
3205 /*
3206 * Process link state changes.
3207 * Grrr. The link status word in the status block does
3208 * not work correctly on the BCM5700 rev AX and BX chips,
3209 * according to all available information. Hence, we have
3210 * to enable MII interrupts in order to properly obtain
3211 * async link changes. Unfortunately, this also means that
3212 * we have to read the MAC status register to detect link
3213 * changes, thereby adding an additional register access to
3214 * the interrupt handler.
3215 */
3216
3217 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3218 u_int32_t status;
3219
3220 status = CSR_READ_4(sc, BGE_MAC_STS);
3221 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3222 sc->bge_link = 0;
3223 callout_stop(&sc->bge_timeout);
3224 bge_tick(sc);
3225 /* Clear the interrupt */
3226 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3227 BGE_EVTENB_MI_INTERRUPT);
3228 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3229 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3230 BRGPHY_INTRS);
3231 }
3232 } else {
3233 if (sc->bge_rdata->bge_status_block.bge_status &
3234 BGE_STATFLAG_LINKSTATE_CHANGED) {
3235 sc->bge_link = 0;
3236 callout_stop(&sc->bge_timeout);
3237 bge_tick(sc);
3238 /* Clear the interrupt */
3239 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3240 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3241 BGE_MACSTAT_LINK_CHANGED);
3242 }
3243 }
3244
3245 if (ifp->if_flags & IFF_RUNNING) {
3246 /* Check RX return ring producer/consumer */
3247 bge_rxeof(sc);
3248
3249 /* Check TX ring producer/consumer */
3250 bge_txeof(sc);
3251 }
3252
3253 if (sc->bge_pending_rxintr_change) {
3254 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3255 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3256 uint32_t junk;
3257
3258 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3259 DELAY(10);
3260 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3261
3262 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3263 DELAY(10);
3264 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3265
3266 sc->bge_pending_rxintr_change = 0;
3267 }
3268 bge_handle_events(sc);
3269
3270 /* Re-enable interrupts. */
3271 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3272
3273 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3274 bge_start(ifp);
3275
3276 return (1);
3277 }
3278
3279 static void
3280 bge_tick(void *xsc)
3281 {
3282 struct bge_softc *sc = xsc;
3283 struct mii_data *mii = &sc->bge_mii;
3284 struct ifmedia *ifm = NULL;
3285 struct ifnet *ifp = &sc->ethercom.ec_if;
3286 int s;
3287
3288 s = splnet();
3289
3290 bge_stats_update(sc);
3291 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3292 if (sc->bge_link) {
3293 splx(s);
3294 return;
3295 }
3296
3297 if (sc->bge_tbi) {
3298 ifm = &sc->bge_ifmedia;
3299 if (CSR_READ_4(sc, BGE_MAC_STS) &
3300 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3301 sc->bge_link++;
3302 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3303 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3304 bge_start(ifp);
3305 }
3306 splx(s);
3307 return;
3308 }
3309
3310 mii_tick(mii);
3311
3312 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3313 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3314 sc->bge_link++;
3315 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3316 bge_start(ifp);
3317 }
3318
3319 splx(s);
3320 }
3321
3322 static void
3323 bge_stats_update(struct bge_softc *sc)
3324 {
3325 struct ifnet *ifp = &sc->ethercom.ec_if;
3326 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3327 bus_size_t rstats = BGE_RX_STATS;
3328
3329 #define READ_RSTAT(sc, stats, stat) \
3330 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3331
3332 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3333 ifp->if_collisions +=
3334 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3335 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3336 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3337 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3338
3339 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3340 READ_RSTAT(sc, rstats, outXoffSent));
3341 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3342 READ_RSTAT(sc, rstats, outXonSent));
3343 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3344 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3345 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3346 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3347 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3348 READ_RSTAT(sc, rstats, macControlFramesReceived));
3349 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3350 READ_RSTAT(sc, rstats, xoffStateEntered));
3351 return;
3352 }
3353
3354 #undef READ_RSTAT
3355 #define READ_STAT(sc, stats, stat) \
3356 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3357
3358 ifp->if_collisions +=
3359 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3360 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3361 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3362 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3363 ifp->if_collisions;
3364
3365 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3366 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3367 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3368 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3369 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3370 READ_STAT(sc, stats,
3371 xoffPauseFramesReceived.bge_addr_lo));
3372 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3373 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3374 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3375 READ_STAT(sc, stats,
3376 macControlFramesReceived.bge_addr_lo));
3377 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3378 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3379
3380 #undef READ_STAT
3381
3382 #ifdef notdef
3383 ifp->if_collisions +=
3384 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3385 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3386 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3387 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3388 ifp->if_collisions;
3389 #endif
3390 }
3391
3392 /*
3393 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3394 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3395 * but when such padded frames employ the bge IP/TCP checksum offload,
3396 * the hardware checksum assist gives incorrect results (possibly
3397 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3398 * If we pad such runts with zeros, the onboard checksum comes out correct.
3399 */
3400 static inline int
3401 bge_cksum_pad(struct mbuf *pkt)
3402 {
3403 struct mbuf *last = NULL;
3404 int padlen;
3405
3406 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3407
3408 /* if there's only the packet-header and we can pad there, use it. */
3409 if (pkt->m_pkthdr.len == pkt->m_len &&
3410 M_TRAILINGSPACE(pkt) >= padlen) {
3411 last = pkt;
3412 } else {
3413 /*
3414 * Walk packet chain to find last mbuf. We will either
3415 * pad there, or append a new mbuf and pad it
3416 * (thus perhaps avoiding the bcm5700 dma-min bug).
3417 */
3418 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3419 continue; /* do nothing */
3420 }
3421
3422 /* `last' now points to last in chain. */
3423 if (M_TRAILINGSPACE(last) < padlen) {
3424 /* Allocate new empty mbuf, pad it. Compact later. */
3425 struct mbuf *n;
3426 MGET(n, M_DONTWAIT, MT_DATA);
3427 if (n == NULL)
3428 return ENOBUFS;
3429 n->m_len = 0;
3430 last->m_next = n;
3431 last = n;
3432 }
3433 }
3434
3435 KDASSERT(!M_READONLY(last));
3436 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3437
3438 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3439 memset(mtod(last, char *) + last->m_len, 0, padlen);
3440 last->m_len += padlen;
3441 pkt->m_pkthdr.len += padlen;
3442 return 0;
3443 }
3444
3445 /*
3446 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3447 */
3448 static inline int
3449 bge_compact_dma_runt(struct mbuf *pkt)
3450 {
3451 struct mbuf *m, *prev;
3452 int totlen, prevlen;
3453
3454 prev = NULL;
3455 totlen = 0;
3456 prevlen = -1;
3457
3458 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3459 int mlen = m->m_len;
3460 int shortfall = 8 - mlen ;
3461
3462 totlen += mlen;
3463 if (mlen == 0) {
3464 continue;
3465 }
3466 if (mlen >= 8)
3467 continue;
3468
3469 /* If we get here, mbuf data is too small for DMA engine.
3470 * Try to fix by shuffling data to prev or next in chain.
3471 * If that fails, do a compacting deep-copy of the whole chain.
3472 */
3473
3474 /* Internal frag. If fits in prev, copy it there. */
3475 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3476 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3477 prev->m_len += mlen;
3478 m->m_len = 0;
3479 /* XXX stitch chain */
3480 prev->m_next = m_free(m);
3481 m = prev;
3482 continue;
3483 }
3484 else if (m->m_next != NULL &&
3485 M_TRAILINGSPACE(m) >= shortfall &&
3486 m->m_next->m_len >= (8 + shortfall)) {
3487 /* m is writable and have enough data in next, pull up. */
3488
3489 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3490 shortfall);
3491 m->m_len += shortfall;
3492 m->m_next->m_len -= shortfall;
3493 m->m_next->m_data += shortfall;
3494 }
3495 else if (m->m_next == NULL || 1) {
3496 /* Got a runt at the very end of the packet.
3497 * borrow data from the tail of the preceding mbuf and
3498 * update its length in-place. (The original data is still
3499 * valid, so we can do this even if prev is not writable.)
3500 */
3501
3502 /* if we'd make prev a runt, just move all of its data. */
3503 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3504 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3505
3506 if ((prev->m_len - shortfall) < 8)
3507 shortfall = prev->m_len;
3508
3509 #ifdef notyet /* just do the safe slow thing for now */
3510 if (!M_READONLY(m)) {
3511 if (M_LEADINGSPACE(m) < shorfall) {
3512 void *m_dat;
3513 m_dat = (m->m_flags & M_PKTHDR) ?
3514 m->m_pktdat : m->dat;
3515 memmove(m_dat, mtod(m, void*), m->m_len);
3516 m->m_data = m_dat;
3517 }
3518 } else
3519 #endif /* just do the safe slow thing */
3520 {
3521 struct mbuf * n = NULL;
3522 int newprevlen = prev->m_len - shortfall;
3523
3524 MGET(n, M_NOWAIT, MT_DATA);
3525 if (n == NULL)
3526 return ENOBUFS;
3527 KASSERT(m->m_len + shortfall < MLEN
3528 /*,
3529 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3530
3531 /* first copy the data we're stealing from prev */
3532 memcpy(n->m_data, prev->m_data + newprevlen,
3533 shortfall);
3534
3535 /* update prev->m_len accordingly */
3536 prev->m_len -= shortfall;
3537
3538 /* copy data from runt m */
3539 memcpy(n->m_data + shortfall, m->m_data,
3540 m->m_len);
3541
3542 /* n holds what we stole from prev, plus m */
3543 n->m_len = shortfall + m->m_len;
3544
3545 /* stitch n into chain and free m */
3546 n->m_next = m->m_next;
3547 prev->m_next = n;
3548 /* KASSERT(m->m_next == NULL); */
3549 m->m_next = NULL;
3550 m_free(m);
3551 m = n; /* for continuing loop */
3552 }
3553 }
3554 prevlen = m->m_len;
3555 }
3556 return 0;
3557 }
3558
3559 /*
3560 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3561 * pointers to descriptors.
3562 */
3563 static int
3564 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3565 {
3566 struct bge_tx_bd *f = NULL;
3567 u_int32_t frag, cur;
3568 u_int16_t csum_flags = 0;
3569 u_int16_t txbd_tso_flags = 0;
3570 struct txdmamap_pool_entry *dma;
3571 bus_dmamap_t dmamap;
3572 int i = 0;
3573 struct m_tag *mtag;
3574 int use_tso, maxsegsize, error;
3575
3576 cur = frag = *txidx;
3577
3578 if (m_head->m_pkthdr.csum_flags) {
3579 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3580 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3581 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3582 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3583 }
3584
3585 /*
3586 * If we were asked to do an outboard checksum, and the NIC
3587 * has the bug where it sometimes adds in the Ethernet padding,
3588 * explicitly pad with zeros so the cksum will be correct either way.
3589 * (For now, do this for all chip versions, until newer
3590 * are confirmed to not require the workaround.)
3591 */
3592 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3593 #ifdef notyet
3594 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3595 #endif
3596 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3597 goto check_dma_bug;
3598
3599 if (bge_cksum_pad(m_head) != 0) {
3600 return ENOBUFS;
3601 }
3602
3603 check_dma_bug:
3604 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3605 goto doit;
3606 /*
3607 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3608 * less than eight bytes. If we encounter a teeny mbuf
3609 * at the end of a chain, we can pad. Otherwise, copy.
3610 */
3611 if (bge_compact_dma_runt(m_head) != 0)
3612 return ENOBUFS;
3613
3614 doit:
3615 dma = SLIST_FIRST(&sc->txdma_list);
3616 if (dma == NULL)
3617 return ENOBUFS;
3618 dmamap = dma->dmamap;
3619
3620 /*
3621 * Set up any necessary TSO state before we start packing...
3622 */
3623 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3624 if (!use_tso) {
3625 maxsegsize = 0;
3626 } else { /* TSO setup */
3627 unsigned mss;
3628 struct ether_header *eh;
3629 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3630 struct mbuf * m0 = m_head;
3631 struct ip *ip;
3632 struct tcphdr *th;
3633 int iphl, hlen;
3634
3635 /*
3636 * XXX It would be nice if the mbuf pkthdr had offset
3637 * fields for the protocol headers.
3638 */
3639
3640 eh = mtod(m0, struct ether_header *);
3641 switch (htons(eh->ether_type)) {
3642 case ETHERTYPE_IP:
3643 offset = ETHER_HDR_LEN;
3644 break;
3645
3646 case ETHERTYPE_VLAN:
3647 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3648 break;
3649
3650 default:
3651 /*
3652 * Don't support this protocol or encapsulation.
3653 */
3654 return (ENOBUFS);
3655 }
3656
3657 /*
3658 * TCP/IP headers are in the first mbuf; we can do
3659 * this the easy way.
3660 */
3661 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3662 hlen = iphl + offset;
3663 if (__predict_false(m0->m_len <
3664 (hlen + sizeof(struct tcphdr)))) {
3665
3666 aprint_debug_dev(sc->bge_dev,
3667 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3668 "not handled yet\n",
3669 m0->m_len, hlen+ sizeof(struct tcphdr));
3670 #ifdef NOTYET
3671 /*
3672 * XXX jonathan (at) NetBSD.org: untested.
3673 * how to force this branch to be taken?
3674 */
3675 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3676
3677 m_copydata(m0, offset, sizeof(ip), &ip);
3678 m_copydata(m0, hlen, sizeof(th), &th);
3679
3680 ip.ip_len = 0;
3681
3682 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3683 sizeof(ip.ip_len), &ip.ip_len);
3684
3685 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3686 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3687
3688 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3689 sizeof(th.th_sum), &th.th_sum);
3690
3691 hlen += th.th_off << 2;
3692 iptcp_opt_words = hlen;
3693 #else
3694 /*
3695 * if_wm "hard" case not yet supported, can we not
3696 * mandate it out of existence?
3697 */
3698 (void) ip; (void)th; (void) ip_tcp_hlen;
3699
3700 return ENOBUFS;
3701 #endif
3702 } else {
3703 ip = (struct ip *) (mtod(m0, char *) + offset);
3704 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3705 ip_tcp_hlen = iphl + (th->th_off << 2);
3706
3707 /* Total IP/TCP options, in 32-bit words */
3708 iptcp_opt_words = (ip_tcp_hlen
3709 - sizeof(struct tcphdr)
3710 - sizeof(struct ip)) >> 2;
3711 }
3712 if (BGE_IS_5750_OR_BEYOND(sc)) {
3713 th->th_sum = 0;
3714 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3715 } else {
3716 /*
3717 * XXX jonathan (at) NetBSD.org: 5705 untested.
3718 * Requires TSO firmware patch for 5701/5703/5704.
3719 */
3720 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3721 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3722 }
3723
3724 mss = m_head->m_pkthdr.segsz;
3725 txbd_tso_flags |=
3726 BGE_TXBDFLAG_CPU_PRE_DMA |
3727 BGE_TXBDFLAG_CPU_POST_DMA;
3728
3729 /*
3730 * Our NIC TSO-assist assumes TSO has standard, optionless
3731 * IPv4 and TCP headers, which total 40 bytes. By default,
3732 * the NIC copies 40 bytes of IP/TCP header from the
3733 * supplied header into the IP/TCP header portion of
3734 * each post-TSO-segment. If the supplied packet has IP or
3735 * TCP options, we need to tell the NIC to copy those extra
3736 * bytes into each post-TSO header, in addition to the normal
3737 * 40-byte IP/TCP header (and to leave space accordingly).
3738 * Unfortunately, the driver encoding of option length
3739 * varies across different ASIC families.
3740 */
3741 tcp_seg_flags = 0;
3742 if (iptcp_opt_words) {
3743 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3744 tcp_seg_flags =
3745 iptcp_opt_words << 11;
3746 } else {
3747 txbd_tso_flags |=
3748 iptcp_opt_words << 12;
3749 }
3750 }
3751 maxsegsize = mss | tcp_seg_flags;
3752 ip->ip_len = htons(mss + ip_tcp_hlen);
3753
3754 } /* TSO setup */
3755
3756 /*
3757 * Start packing the mbufs in this chain into
3758 * the fragment pointers. Stop when we run out
3759 * of fragments or hit the end of the mbuf chain.
3760 */
3761 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3762 BUS_DMA_NOWAIT);
3763 if (error) {
3764 return(ENOBUFS);
3765 }
3766 /*
3767 * Sanity check: avoid coming within 16 descriptors
3768 * of the end of the ring.
3769 */
3770 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3771 BGE_TSO_PRINTF(("%s: "
3772 " dmamap_load_mbuf too close to ring wrap\n",
3773 device_xname(sc->bge_dev)));
3774 goto fail_unload;
3775 }
3776
3777 mtag = sc->ethercom.ec_nvlans ?
3778 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3779
3780
3781 /* Iterate over dmap-map fragments. */
3782 for (i = 0; i < dmamap->dm_nsegs; i++) {
3783 f = &sc->bge_rdata->bge_tx_ring[frag];
3784 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3785 break;
3786
3787 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3788 f->bge_len = dmamap->dm_segs[i].ds_len;
3789
3790 /*
3791 * For 5751 and follow-ons, for TSO we must turn
3792 * off checksum-assist flag in the tx-descr, and
3793 * supply the ASIC-revision-specific encoding
3794 * of TSO flags and segsize.
3795 */
3796 if (use_tso) {
3797 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3798 f->bge_rsvd = maxsegsize;
3799 f->bge_flags = csum_flags | txbd_tso_flags;
3800 } else {
3801 f->bge_rsvd = 0;
3802 f->bge_flags =
3803 (csum_flags | txbd_tso_flags) & 0x0fff;
3804 }
3805 } else {
3806 f->bge_rsvd = 0;
3807 f->bge_flags = csum_flags;
3808 }
3809
3810 if (mtag != NULL) {
3811 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3812 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3813 } else {
3814 f->bge_vlan_tag = 0;
3815 }
3816 cur = frag;
3817 BGE_INC(frag, BGE_TX_RING_CNT);
3818 }
3819
3820 if (i < dmamap->dm_nsegs) {
3821 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3822 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3823 goto fail_unload;
3824 }
3825
3826 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3827 BUS_DMASYNC_PREWRITE);
3828
3829 if (frag == sc->bge_tx_saved_considx) {
3830 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3831 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3832
3833 goto fail_unload;
3834 }
3835
3836 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3837 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3838 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3839 sc->txdma[cur] = dma;
3840 sc->bge_txcnt += dmamap->dm_nsegs;
3841
3842 *txidx = frag;
3843
3844 return(0);
3845
3846 fail_unload:
3847 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3848
3849 return ENOBUFS;
3850 }
3851
3852 /*
3853 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3854 * to the mbuf data regions directly in the transmit descriptors.
3855 */
3856 static void
3857 bge_start(struct ifnet *ifp)
3858 {
3859 struct bge_softc *sc;
3860 struct mbuf *m_head = NULL;
3861 u_int32_t prodidx;
3862 int pkts = 0;
3863
3864 sc = ifp->if_softc;
3865
3866 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3867 return;
3868
3869 prodidx = sc->bge_tx_prodidx;
3870
3871 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3872 IFQ_POLL(&ifp->if_snd, m_head);
3873 if (m_head == NULL)
3874 break;
3875
3876 #if 0
3877 /*
3878 * XXX
3879 * safety overkill. If this is a fragmented packet chain
3880 * with delayed TCP/UDP checksums, then only encapsulate
3881 * it if we have enough descriptors to handle the entire
3882 * chain at once.
3883 * (paranoia -- may not actually be needed)
3884 */
3885 if (m_head->m_flags & M_FIRSTFRAG &&
3886 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3887 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3888 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3889 ifp->if_flags |= IFF_OACTIVE;
3890 break;
3891 }
3892 }
3893 #endif
3894
3895 /*
3896 * Pack the data into the transmit ring. If we
3897 * don't have room, set the OACTIVE flag and wait
3898 * for the NIC to drain the ring.
3899 */
3900 if (bge_encap(sc, m_head, &prodidx)) {
3901 ifp->if_flags |= IFF_OACTIVE;
3902 break;
3903 }
3904
3905 /* now we are committed to transmit the packet */
3906 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3907 pkts++;
3908
3909 #if NBPFILTER > 0
3910 /*
3911 * If there's a BPF listener, bounce a copy of this frame
3912 * to him.
3913 */
3914 if (ifp->if_bpf)
3915 bpf_mtap(ifp->if_bpf, m_head);
3916 #endif
3917 }
3918 if (pkts == 0)
3919 return;
3920
3921 /* Transmit */
3922 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3923 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3924 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3925
3926 sc->bge_tx_prodidx = prodidx;
3927
3928 /*
3929 * Set a timeout in case the chip goes out to lunch.
3930 */
3931 ifp->if_timer = 5;
3932 }
3933
3934 static int
3935 bge_init(struct ifnet *ifp)
3936 {
3937 struct bge_softc *sc = ifp->if_softc;
3938 const u_int16_t *m;
3939 int s, error;
3940
3941 s = splnet();
3942
3943 ifp = &sc->ethercom.ec_if;
3944
3945 /* Cancel pending I/O and flush buffers. */
3946 bge_stop(sc);
3947 bge_reset(sc);
3948 bge_chipinit(sc);
3949
3950 /*
3951 * Init the various state machines, ring
3952 * control blocks and firmware.
3953 */
3954 error = bge_blockinit(sc);
3955 if (error != 0) {
3956 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3957 error);
3958 splx(s);
3959 return error;
3960 }
3961
3962 ifp = &sc->ethercom.ec_if;
3963
3964 /* Specify MTU. */
3965 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3966 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3967
3968 /* Load our MAC address. */
3969 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3970 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3971 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3972
3973 /* Enable or disable promiscuous mode as needed. */
3974 if (ifp->if_flags & IFF_PROMISC) {
3975 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3976 } else {
3977 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3978 }
3979
3980 /* Program multicast filter. */
3981 bge_setmulti(sc);
3982
3983 /* Init RX ring. */
3984 bge_init_rx_ring_std(sc);
3985
3986 /* Init jumbo RX ring. */
3987 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3988 bge_init_rx_ring_jumbo(sc);
3989
3990 /* Init our RX return ring index */
3991 sc->bge_rx_saved_considx = 0;
3992
3993 /* Init TX ring. */
3994 bge_init_tx_ring(sc);
3995
3996 /* Turn on transmitter */
3997 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3998
3999 /* Turn on receiver */
4000 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4001
4002 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4003
4004 /* Tell firmware we're alive. */
4005 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4006
4007 /* Enable host interrupts. */
4008 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4009 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4010 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4011
4012 bge_ifmedia_upd(ifp);
4013
4014 ifp->if_flags |= IFF_RUNNING;
4015 ifp->if_flags &= ~IFF_OACTIVE;
4016
4017 splx(s);
4018
4019 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4020
4021 return 0;
4022 }
4023
4024 /*
4025 * Set media options.
4026 */
4027 static int
4028 bge_ifmedia_upd(struct ifnet *ifp)
4029 {
4030 struct bge_softc *sc = ifp->if_softc;
4031 struct mii_data *mii = &sc->bge_mii;
4032 struct ifmedia *ifm = &sc->bge_ifmedia;
4033
4034 /* If this is a 1000baseX NIC, enable the TBI port. */
4035 if (sc->bge_tbi) {
4036 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4037 return(EINVAL);
4038 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4039 case IFM_AUTO:
4040 break;
4041 case IFM_1000_SX:
4042 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4043 BGE_CLRBIT(sc, BGE_MAC_MODE,
4044 BGE_MACMODE_HALF_DUPLEX);
4045 } else {
4046 BGE_SETBIT(sc, BGE_MAC_MODE,
4047 BGE_MACMODE_HALF_DUPLEX);
4048 }
4049 break;
4050 default:
4051 return(EINVAL);
4052 }
4053 /* XXX 802.3x flow control for 1000BASE-SX */
4054 return(0);
4055 }
4056
4057 sc->bge_link = 0;
4058 mii_mediachg(mii);
4059
4060 return(0);
4061 }
4062
4063 /*
4064 * Report current media status.
4065 */
4066 static void
4067 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4068 {
4069 struct bge_softc *sc = ifp->if_softc;
4070 struct mii_data *mii = &sc->bge_mii;
4071
4072 if (sc->bge_tbi) {
4073 ifmr->ifm_status = IFM_AVALID;
4074 ifmr->ifm_active = IFM_ETHER;
4075 if (CSR_READ_4(sc, BGE_MAC_STS) &
4076 BGE_MACSTAT_TBI_PCS_SYNCHED)
4077 ifmr->ifm_status |= IFM_ACTIVE;
4078 ifmr->ifm_active |= IFM_1000_SX;
4079 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4080 ifmr->ifm_active |= IFM_HDX;
4081 else
4082 ifmr->ifm_active |= IFM_FDX;
4083 return;
4084 }
4085
4086 mii_pollstat(mii);
4087 ifmr->ifm_status = mii->mii_media_status;
4088 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4089 sc->bge_flowflags;
4090 }
4091
4092 static int
4093 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4094 {
4095 struct bge_softc *sc = ifp->if_softc;
4096 struct ifreq *ifr = (struct ifreq *) data;
4097 int s, error = 0;
4098 struct mii_data *mii;
4099
4100 s = splnet();
4101
4102 switch(command) {
4103 case SIOCSIFFLAGS:
4104 if (ifp->if_flags & IFF_UP) {
4105 /*
4106 * If only the state of the PROMISC flag changed,
4107 * then just use the 'set promisc mode' command
4108 * instead of reinitializing the entire NIC. Doing
4109 * a full re-init means reloading the firmware and
4110 * waiting for it to start up, which may take a
4111 * second or two.
4112 */
4113 if (ifp->if_flags & IFF_RUNNING &&
4114 ifp->if_flags & IFF_PROMISC &&
4115 !(sc->bge_if_flags & IFF_PROMISC)) {
4116 BGE_SETBIT(sc, BGE_RX_MODE,
4117 BGE_RXMODE_RX_PROMISC);
4118 } else if (ifp->if_flags & IFF_RUNNING &&
4119 !(ifp->if_flags & IFF_PROMISC) &&
4120 sc->bge_if_flags & IFF_PROMISC) {
4121 BGE_CLRBIT(sc, BGE_RX_MODE,
4122 BGE_RXMODE_RX_PROMISC);
4123 } else if (!(sc->bge_if_flags & IFF_UP))
4124 bge_init(ifp);
4125 } else {
4126 if (ifp->if_flags & IFF_RUNNING) {
4127 bge_stop(sc);
4128 }
4129 }
4130 sc->bge_if_flags = ifp->if_flags;
4131 error = 0;
4132 break;
4133 case SIOCSIFMEDIA:
4134 /* XXX Flow control is not supported for 1000BASE-SX */
4135 if (sc->bge_tbi) {
4136 ifr->ifr_media &= ~IFM_ETH_FMASK;
4137 sc->bge_flowflags = 0;
4138 }
4139
4140 /* Flow control requires full-duplex mode. */
4141 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4142 (ifr->ifr_media & IFM_FDX) == 0) {
4143 ifr->ifr_media &= ~IFM_ETH_FMASK;
4144 }
4145 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4146 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4147 /* We an do both TXPAUSE and RXPAUSE. */
4148 ifr->ifr_media |=
4149 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4150 }
4151 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4152 }
4153 /* FALLTHROUGH */
4154 case SIOCGIFMEDIA:
4155 if (sc->bge_tbi) {
4156 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4157 command);
4158 } else {
4159 mii = &sc->bge_mii;
4160 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4161 command);
4162 }
4163 break;
4164 default:
4165 error = ether_ioctl(ifp, command, data);
4166 if (error == ENETRESET) {
4167 if (ifp->if_flags & IFF_RUNNING)
4168 bge_setmulti(sc);
4169 error = 0;
4170 }
4171 break;
4172 }
4173
4174 splx(s);
4175
4176 return(error);
4177 }
4178
4179 static void
4180 bge_watchdog(struct ifnet *ifp)
4181 {
4182 struct bge_softc *sc;
4183
4184 sc = ifp->if_softc;
4185
4186 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4187
4188 ifp->if_flags &= ~IFF_RUNNING;
4189 bge_init(ifp);
4190
4191 ifp->if_oerrors++;
4192 }
4193
4194 static void
4195 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4196 {
4197 int i;
4198
4199 BGE_CLRBIT(sc, reg, bit);
4200
4201 for (i = 0; i < BGE_TIMEOUT; i++) {
4202 if ((CSR_READ_4(sc, reg) & bit) == 0)
4203 return;
4204 delay(100);
4205 if (sc->bge_pcie)
4206 DELAY(1000);
4207 }
4208
4209 aprint_error_dev(sc->bge_dev,
4210 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4211 }
4212
4213 /*
4214 * Stop the adapter and free any mbufs allocated to the
4215 * RX and TX lists.
4216 */
4217 static void
4218 bge_stop(struct bge_softc *sc)
4219 {
4220 struct ifnet *ifp = &sc->ethercom.ec_if;
4221
4222 callout_stop(&sc->bge_timeout);
4223
4224 /*
4225 * Disable all of the receiver blocks
4226 */
4227 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4228 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4229 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4230 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4231 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4232 }
4233 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4234 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4235 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4236
4237 /*
4238 * Disable all of the transmit blocks
4239 */
4240 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4241 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4242 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4243 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4244 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4245 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4246 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4247 }
4248 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4249
4250 /*
4251 * Shut down all of the memory managers and related
4252 * state machines.
4253 */
4254 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4255 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4256 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4257 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4258 }
4259
4260 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4261 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4262
4263 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4264 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4265 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4266 }
4267
4268 /* Disable host interrupts. */
4269 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4270 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4271
4272 /*
4273 * Tell firmware we're shutting down.
4274 */
4275 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4276
4277 /* Free the RX lists. */
4278 bge_free_rx_ring_std(sc);
4279
4280 /* Free jumbo RX list. */
4281 bge_free_rx_ring_jumbo(sc);
4282
4283 /* Free TX buffers. */
4284 bge_free_tx_ring(sc);
4285
4286 /*
4287 * Isolate/power down the PHY.
4288 */
4289 if (!sc->bge_tbi)
4290 mii_down(&sc->bge_mii);
4291
4292 sc->bge_link = 0;
4293
4294 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4295
4296 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4297 }
4298
4299 /*
4300 * Stop all chip I/O so that the kernel's probe routines don't
4301 * get confused by errant DMAs when rebooting.
4302 */
4303 static void
4304 bge_shutdown(void *xsc)
4305 {
4306 struct bge_softc *sc = (struct bge_softc *)xsc;
4307
4308 bge_stop(sc);
4309 bge_reset(sc);
4310 }
4311
4312
4313 static int
4314 sysctl_bge_verify(SYSCTLFN_ARGS)
4315 {
4316 int error, t;
4317 struct sysctlnode node;
4318
4319 node = *rnode;
4320 t = *(int*)rnode->sysctl_data;
4321 node.sysctl_data = &t;
4322 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4323 if (error || newp == NULL)
4324 return (error);
4325
4326 #if 0
4327 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4328 node.sysctl_num, rnode->sysctl_num));
4329 #endif
4330
4331 if (node.sysctl_num == bge_rxthresh_nodenum) {
4332 if (t < 0 || t >= NBGE_RX_THRESH)
4333 return (EINVAL);
4334 bge_update_all_threshes(t);
4335 } else
4336 return (EINVAL);
4337
4338 *(int*)rnode->sysctl_data = t;
4339
4340 return (0);
4341 }
4342
4343 /*
4344 * Set up sysctl(3) MIB, hw.bge.*.
4345 *
4346 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4347 */
4348 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4349 {
4350 int rc, bge_root_num;
4351 const struct sysctlnode *node;
4352
4353 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4354 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4355 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4356 goto err;
4357 }
4358
4359 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4360 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4361 SYSCTL_DESCR("BGE interface controls"),
4362 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4363 goto err;
4364 }
4365
4366 bge_root_num = node->sysctl_num;
4367
4368 /* BGE Rx interrupt mitigation level */
4369 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4371 CTLTYPE_INT, "rx_lvl",
4372 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4373 sysctl_bge_verify, 0,
4374 &bge_rx_thresh_lvl,
4375 0, CTL_HW, bge_root_num, CTL_CREATE,
4376 CTL_EOL)) != 0) {
4377 goto err;
4378 }
4379
4380 bge_rxthresh_nodenum = node->sysctl_num;
4381
4382 return;
4383
4384 err:
4385 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4386 }
4387
4388 static void
4389 bge_powerhook(int why, void *hdl)
4390 {
4391 struct bge_softc *sc = (struct bge_softc *)hdl;
4392 struct ifnet *ifp = &sc->ethercom.ec_if;
4393 struct pci_attach_args *pa = &(sc->bge_pa);
4394 pci_chipset_tag_t pc = pa->pa_pc;
4395 pcitag_t tag = pa->pa_tag;
4396
4397 switch (why) {
4398 case PWR_SOFTSUSPEND:
4399 case PWR_SOFTSTANDBY:
4400 bge_shutdown(sc);
4401 break;
4402 case PWR_SOFTRESUME:
4403 if (ifp->if_flags & IFF_UP) {
4404 ifp->if_flags &= ~IFF_RUNNING;
4405 bge_init(ifp);
4406 }
4407 break;
4408 case PWR_SUSPEND:
4409 case PWR_STANDBY:
4410 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4411 break;
4412 case PWR_RESUME:
4413 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4414 break;
4415 }
4416
4417 return;
4418 }
4419