if_bge.c revision 1.147 1 /* $NetBSD: if_bge.c,v 1.147 2008/06/17 06:04:07 mlelstv Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.147 2008/06/17 06:04:07 mlelstv Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129
130 #include <dev/pci/if_bgereg.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: inreasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 32, 2 },
170 { 50, 4 },
171 { 100, 8 },
172 { 192, 16 },
173 { 416, 32 },
174 { 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177
178 /* XXX patchable; should be sysctl'able */
179 static int bge_auto_thresh = 1;
180 static int bge_rx_thresh_lvl;
181
182 static int bge_rxthresh_nodenum;
183
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static void bge_release_resources(struct bge_softc *);
187 static void bge_txeof(struct bge_softc *);
188 static void bge_rxeof(struct bge_softc *);
189
190 static void bge_tick(void *);
191 static void bge_stats_update(struct bge_softc *);
192 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
193
194 static int bge_intr(void *);
195 static void bge_start(struct ifnet *);
196 static int bge_ioctl(struct ifnet *, u_long, void *);
197 static int bge_init(struct ifnet *);
198 static void bge_stop(struct ifnet *, int);
199 static void bge_watchdog(struct ifnet *);
200 static int bge_ifmedia_upd(struct ifnet *);
201 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202
203 static void bge_setmulti(struct bge_softc *);
204
205 static void bge_handle_events(struct bge_softc *);
206 static int bge_alloc_jumbo_mem(struct bge_softc *);
207 #if 0 /* XXX */
208 static void bge_free_jumbo_mem(struct bge_softc *);
209 #endif
210 static void *bge_jalloc(struct bge_softc *);
211 static void bge_jfree(struct mbuf *, void *, size_t, void *);
212 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
213 bus_dmamap_t);
214 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
215 static int bge_init_rx_ring_std(struct bge_softc *);
216 static void bge_free_rx_ring_std(struct bge_softc *);
217 static int bge_init_rx_ring_jumbo(struct bge_softc *);
218 static void bge_free_rx_ring_jumbo(struct bge_softc *);
219 static void bge_free_tx_ring(struct bge_softc *);
220 static int bge_init_tx_ring(struct bge_softc *);
221
222 static int bge_chipinit(struct bge_softc *);
223 static int bge_blockinit(struct bge_softc *);
224 static int bge_setpowerstate(struct bge_softc *, int);
225
226 static void bge_reset(struct bge_softc *);
227
228 #define BGE_DEBUG
229 #ifdef BGE_DEBUG
230 #define DPRINTF(x) if (bgedebug) printf x
231 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
232 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
233 int bgedebug = 0;
234 int bge_tso_debug = 0;
235 #else
236 #define DPRINTF(x)
237 #define DPRINTFN(n,x)
238 #define BGE_TSO_PRINTF(x)
239 #endif
240
241 #ifdef BGE_EVENT_COUNTERS
242 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
243 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
244 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
245 #else
246 #define BGE_EVCNT_INCR(ev) /* nothing */
247 #define BGE_EVCNT_ADD(ev, val) /* nothing */
248 #define BGE_EVCNT_UPD(ev, val) /* nothing */
249 #endif
250
251 /* Various chip quirks. */
252 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
253 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
254 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
255 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
256 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
257 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
258 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
259 #define BGE_QUIRK_5705_CORE 0x00000080
260 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
261
262 /*
263 * XXX: how to handle variants based on 5750 and derivatives:
264 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
265 * in general behave like a 5705, except with additional quirks.
266 * This driver's current handling of the 5721 is wrong;
267 * how we map ASIC revision to "quirks" needs more thought.
268 * (defined here until the thought is done).
269 */
270 #define BGE_IS_5714_FAMILY(sc) \
271 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
272 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
273 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
274
275 #define BGE_IS_5750_OR_BEYOND(sc) \
276 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
277 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
278 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
279 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
280 BGE_IS_5714_FAMILY(sc) )
281
282 #define BGE_IS_5705_OR_BEYOND(sc) \
283 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
284 BGE_IS_5750_OR_BEYOND(sc) )
285
286
287 /* following bugs are common to bcm5700 rev B, all flavours */
288 #define BGE_QUIRK_5700_COMMON \
289 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
290
291 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
292 bge_probe, bge_attach, NULL, NULL);
293
294 static u_int32_t
295 bge_readmem_ind(struct bge_softc *sc, int off)
296 {
297 pcireg_t val;
298
299 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
300 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
301 return val;
302 }
303
304 static void
305 bge_writemem_ind(struct bge_softc *sc, int off, int val)
306 {
307 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
308 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
309 }
310
311 #ifdef notdef
312 static u_int32_t
313 bge_readreg_ind(struct bge_softc *sc, int off)
314 {
315 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
316 return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
317 }
318 #endif
319
320 static void
321 bge_writereg_ind(struct bge_softc *sc, int off, int val)
322 {
323 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
324 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
325 }
326
327 #ifdef notdef
328 static u_int8_t
329 bge_vpd_readbyte(struct bge_softc *sc, int addr)
330 {
331 int i;
332 u_int32_t val;
333
334 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
335 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
336 DELAY(10);
337 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
338 BGE_VPD_FLAG)
339 break;
340 }
341
342 if (i == BGE_TIMEOUT) {
343 aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
344 return(0);
345 }
346
347 val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
348
349 return((val >> ((addr % 4) * 8)) & 0xFF);
350 }
351
352 static void
353 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
354 {
355 int i;
356 u_int8_t *ptr;
357
358 ptr = (u_int8_t *)res;
359 for (i = 0; i < sizeof(struct vpd_res); i++)
360 ptr[i] = bge_vpd_readbyte(sc, i + addr);
361 }
362
363 static void
364 bge_vpd_read(struct bge_softc *sc)
365 {
366 int pos = 0, i;
367 struct vpd_res res;
368
369 if (sc->bge_vpd_prodname != NULL)
370 free(sc->bge_vpd_prodname, M_DEVBUF);
371 if (sc->bge_vpd_readonly != NULL)
372 free(sc->bge_vpd_readonly, M_DEVBUF);
373 sc->bge_vpd_prodname = NULL;
374 sc->bge_vpd_readonly = NULL;
375
376 bge_vpd_read_res(sc, &res, pos);
377
378 if (res.vr_id != VPD_RES_ID) {
379 aprint_error_dev("bad VPD resource id: expected %x got %x\n",
380 VPD_RES_ID, res.vr_id);
381 return;
382 }
383
384 pos += sizeof(res);
385 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 if (sc->bge_vpd_prodname == NULL)
387 panic("bge_vpd_read");
388 for (i = 0; i < res.vr_len; i++)
389 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
390 sc->bge_vpd_prodname[i] = '\0';
391 pos += i;
392
393 bge_vpd_read_res(sc, &res, pos);
394
395 if (res.vr_id != VPD_RES_READ) {
396 aprint_error_dev(sc->bge_dev,
397 "bad VPD resource id: expected %x got %x\n",
398 VPD_RES_READ, res.vr_id);
399 return;
400 }
401
402 pos += sizeof(res);
403 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
404 if (sc->bge_vpd_readonly == NULL)
405 panic("bge_vpd_read");
406 for (i = 0; i < res.vr_len + 1; i++)
407 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
408 }
409 #endif
410
411 /*
412 * Read a byte of data stored in the EEPROM at address 'addr.' The
413 * BCM570x supports both the traditional bitbang interface and an
414 * auto access interface for reading the EEPROM. We use the auto
415 * access method.
416 */
417 static u_int8_t
418 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
419 {
420 int i;
421 u_int32_t byte = 0;
422
423 /*
424 * Enable use of auto EEPROM access so we can avoid
425 * having to use the bitbang method.
426 */
427 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
428
429 /* Reset the EEPROM, load the clock period. */
430 CSR_WRITE_4(sc, BGE_EE_ADDR,
431 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
432 DELAY(20);
433
434 /* Issue the read EEPROM command. */
435 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
436
437 /* Wait for completion */
438 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
439 DELAY(10);
440 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
441 break;
442 }
443
444 if (i == BGE_TIMEOUT) {
445 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
446 return(0);
447 }
448
449 /* Get result. */
450 byte = CSR_READ_4(sc, BGE_EE_DATA);
451
452 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
453
454 return(0);
455 }
456
457 /*
458 * Read a sequence of bytes from the EEPROM.
459 */
460 static int
461 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
462 {
463 int err = 0, i;
464 u_int8_t byte = 0;
465 char *dest = destv;
466
467 for (i = 0; i < cnt; i++) {
468 err = bge_eeprom_getbyte(sc, off + i, &byte);
469 if (err)
470 break;
471 *(dest + i) = byte;
472 }
473
474 return(err ? 1 : 0);
475 }
476
477 static int
478 bge_miibus_readreg(device_t dev, int phy, int reg)
479 {
480 struct bge_softc *sc = device_private(dev);
481 u_int32_t val;
482 u_int32_t saved_autopoll;
483 int i;
484
485 /*
486 * Several chips with builtin PHYs will incorrectly answer to
487 * other PHY instances than the builtin PHY at id 1.
488 */
489 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
490 return(0);
491
492 /* Reading with autopolling on may trigger PCI errors */
493 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
494 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
495 CSR_WRITE_4(sc, BGE_MI_MODE,
496 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
497 DELAY(40);
498 }
499
500 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
501 BGE_MIPHY(phy)|BGE_MIREG(reg));
502
503 for (i = 0; i < BGE_TIMEOUT; i++) {
504 val = CSR_READ_4(sc, BGE_MI_COMM);
505 if (!(val & BGE_MICOMM_BUSY))
506 break;
507 delay(10);
508 }
509
510 if (i == BGE_TIMEOUT) {
511 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
512 val = 0;
513 goto done;
514 }
515
516 val = CSR_READ_4(sc, BGE_MI_COMM);
517
518 done:
519 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
520 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
521 DELAY(40);
522 }
523
524 if (val & BGE_MICOMM_READFAIL)
525 return(0);
526
527 return(val & 0xFFFF);
528 }
529
530 static void
531 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
532 {
533 struct bge_softc *sc = device_private(dev);
534 u_int32_t saved_autopoll;
535 int i;
536
537 /* Touching the PHY while autopolling is on may trigger PCI errors */
538 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
539 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
540 delay(40);
541 CSR_WRITE_4(sc, BGE_MI_MODE,
542 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
543 delay(10); /* 40 usec is supposed to be adequate */
544 }
545
546 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
547 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
548
549 for (i = 0; i < BGE_TIMEOUT; i++) {
550 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
551 break;
552 delay(10);
553 }
554
555 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
556 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
557 delay(40);
558 }
559
560 if (i == BGE_TIMEOUT)
561 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
562 }
563
564 static void
565 bge_miibus_statchg(device_t dev)
566 {
567 struct bge_softc *sc = device_private(dev);
568 struct mii_data *mii = &sc->bge_mii;
569
570 /*
571 * Get flow control negotiation result.
572 */
573 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
574 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
575 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
576 mii->mii_media_active &= ~IFM_ETH_FMASK;
577 }
578
579 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
580 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
581 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
582 } else {
583 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
584 }
585
586 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
587 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
588 } else {
589 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
590 }
591
592 /*
593 * 802.3x flow control
594 */
595 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
596 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
597 } else {
598 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
599 }
600 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
601 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
602 } else {
603 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
604 }
605 }
606
607 /*
608 * Update rx threshold levels to values in a particular slot
609 * of the interrupt-mitigation table bge_rx_threshes.
610 */
611 static void
612 bge_set_thresh(struct ifnet *ifp, int lvl)
613 {
614 struct bge_softc *sc = ifp->if_softc;
615 int s;
616
617 /* For now, just save the new Rx-intr thresholds and record
618 * that a threshold update is pending. Updating the hardware
619 * registers here (even at splhigh()) is observed to
620 * occasionaly cause glitches where Rx-interrupts are not
621 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
622 */
623 s = splnet();
624 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
625 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
626 sc->bge_pending_rxintr_change = 1;
627 splx(s);
628
629 return;
630 }
631
632
633 /*
634 * Update Rx thresholds of all bge devices
635 */
636 static void
637 bge_update_all_threshes(int lvl)
638 {
639 struct ifnet *ifp;
640 const char * const namebuf = "bge";
641 int namelen;
642
643 if (lvl < 0)
644 lvl = 0;
645 else if( lvl >= NBGE_RX_THRESH)
646 lvl = NBGE_RX_THRESH - 1;
647
648 namelen = strlen(namebuf);
649 /*
650 * Now search all the interfaces for this name/number
651 */
652 IFNET_FOREACH(ifp) {
653 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
654 continue;
655 /* We got a match: update if doing auto-threshold-tuning */
656 if (bge_auto_thresh)
657 bge_set_thresh(ifp, lvl);
658 }
659 }
660
661 /*
662 * Handle events that have triggered interrupts.
663 */
664 static void
665 bge_handle_events(struct bge_softc *sc)
666 {
667
668 return;
669 }
670
671 /*
672 * Memory management for jumbo frames.
673 */
674
675 static int
676 bge_alloc_jumbo_mem(struct bge_softc *sc)
677 {
678 char *ptr, *kva;
679 bus_dma_segment_t seg;
680 int i, rseg, state, error;
681 struct bge_jpool_entry *entry;
682
683 state = error = 0;
684
685 /* Grab a big chunk o' storage. */
686 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
687 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
688 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
689 return ENOBUFS;
690 }
691
692 state = 1;
693 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
694 BUS_DMA_NOWAIT)) {
695 aprint_error_dev(sc->bge_dev,
696 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
697 error = ENOBUFS;
698 goto out;
699 }
700
701 state = 2;
702 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
703 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
704 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
705 error = ENOBUFS;
706 goto out;
707 }
708
709 state = 3;
710 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
711 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
712 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
713 error = ENOBUFS;
714 goto out;
715 }
716
717 state = 4;
718 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
719 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
720
721 SLIST_INIT(&sc->bge_jfree_listhead);
722 SLIST_INIT(&sc->bge_jinuse_listhead);
723
724 /*
725 * Now divide it up into 9K pieces and save the addresses
726 * in an array.
727 */
728 ptr = sc->bge_cdata.bge_jumbo_buf;
729 for (i = 0; i < BGE_JSLOTS; i++) {
730 sc->bge_cdata.bge_jslots[i] = ptr;
731 ptr += BGE_JLEN;
732 entry = malloc(sizeof(struct bge_jpool_entry),
733 M_DEVBUF, M_NOWAIT);
734 if (entry == NULL) {
735 aprint_error_dev(sc->bge_dev,
736 "no memory for jumbo buffer queue!\n");
737 error = ENOBUFS;
738 goto out;
739 }
740 entry->slot = i;
741 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
742 entry, jpool_entries);
743 }
744 out:
745 if (error != 0) {
746 switch (state) {
747 case 4:
748 bus_dmamap_unload(sc->bge_dmatag,
749 sc->bge_cdata.bge_rx_jumbo_map);
750 case 3:
751 bus_dmamap_destroy(sc->bge_dmatag,
752 sc->bge_cdata.bge_rx_jumbo_map);
753 case 2:
754 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
755 case 1:
756 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
757 break;
758 default:
759 break;
760 }
761 }
762
763 return error;
764 }
765
766 /*
767 * Allocate a jumbo buffer.
768 */
769 static void *
770 bge_jalloc(struct bge_softc *sc)
771 {
772 struct bge_jpool_entry *entry;
773
774 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
775
776 if (entry == NULL) {
777 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
778 return(NULL);
779 }
780
781 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
782 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
783 return(sc->bge_cdata.bge_jslots[entry->slot]);
784 }
785
786 /*
787 * Release a jumbo buffer.
788 */
789 static void
790 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
791 {
792 struct bge_jpool_entry *entry;
793 struct bge_softc *sc;
794 int i, s;
795
796 /* Extract the softc struct pointer. */
797 sc = (struct bge_softc *)arg;
798
799 if (sc == NULL)
800 panic("bge_jfree: can't find softc pointer!");
801
802 /* calculate the slot this buffer belongs to */
803
804 i = ((char *)buf
805 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
806
807 if ((i < 0) || (i >= BGE_JSLOTS))
808 panic("bge_jfree: asked to free buffer that we don't manage!");
809
810 s = splvm();
811 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
812 if (entry == NULL)
813 panic("bge_jfree: buffer not in use!");
814 entry->slot = i;
815 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
816 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
817
818 if (__predict_true(m != NULL))
819 pool_cache_put(mb_cache, m);
820 splx(s);
821 }
822
823
824 /*
825 * Intialize a standard receive ring descriptor.
826 */
827 static int
828 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
829 {
830 struct mbuf *m_new = NULL;
831 struct bge_rx_bd *r;
832 int error;
833
834 if (dmamap == NULL) {
835 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
836 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
837 if (error != 0)
838 return error;
839 }
840
841 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
842
843 if (m == NULL) {
844 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
845 if (m_new == NULL) {
846 return(ENOBUFS);
847 }
848
849 MCLGET(m_new, M_DONTWAIT);
850 if (!(m_new->m_flags & M_EXT)) {
851 m_freem(m_new);
852 return(ENOBUFS);
853 }
854 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
855
856 } else {
857 m_new = m;
858 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
859 m_new->m_data = m_new->m_ext.ext_buf;
860 }
861 if (!sc->bge_rx_alignment_bug)
862 m_adj(m_new, ETHER_ALIGN);
863 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
864 BUS_DMA_READ|BUS_DMA_NOWAIT))
865 return(ENOBUFS);
866 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
867 BUS_DMASYNC_PREREAD);
868
869 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
870 r = &sc->bge_rdata->bge_rx_std_ring[i];
871 bge_set_hostaddr(&r->bge_addr,
872 dmamap->dm_segs[0].ds_addr);
873 r->bge_flags = BGE_RXBDFLAG_END;
874 r->bge_len = m_new->m_len;
875 r->bge_idx = i;
876
877 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
878 offsetof(struct bge_ring_data, bge_rx_std_ring) +
879 i * sizeof (struct bge_rx_bd),
880 sizeof (struct bge_rx_bd),
881 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
882
883 return(0);
884 }
885
886 /*
887 * Initialize a jumbo receive ring descriptor. This allocates
888 * a jumbo buffer from the pool managed internally by the driver.
889 */
890 static int
891 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
892 {
893 struct mbuf *m_new = NULL;
894 struct bge_rx_bd *r;
895 void *buf = NULL;
896
897 if (m == NULL) {
898
899 /* Allocate the mbuf. */
900 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
901 if (m_new == NULL) {
902 return(ENOBUFS);
903 }
904
905 /* Allocate the jumbo buffer */
906 buf = bge_jalloc(sc);
907 if (buf == NULL) {
908 m_freem(m_new);
909 aprint_error_dev(sc->bge_dev,
910 "jumbo allocation failed -- packet dropped!\n");
911 return(ENOBUFS);
912 }
913
914 /* Attach the buffer to the mbuf. */
915 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
916 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
917 bge_jfree, sc);
918 m_new->m_flags |= M_EXT_RW;
919 } else {
920 m_new = m;
921 buf = m_new->m_data = m_new->m_ext.ext_buf;
922 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
923 }
924 if (!sc->bge_rx_alignment_bug)
925 m_adj(m_new, ETHER_ALIGN);
926 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
927 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
928 BUS_DMASYNC_PREREAD);
929 /* Set up the descriptor. */
930 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
931 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
932 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
933 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
934 r->bge_len = m_new->m_len;
935 r->bge_idx = i;
936
937 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
938 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
939 i * sizeof (struct bge_rx_bd),
940 sizeof (struct bge_rx_bd),
941 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
942
943 return(0);
944 }
945
946 /*
947 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
948 * that's 1MB or memory, which is a lot. For now, we fill only the first
949 * 256 ring entries and hope that our CPU is fast enough to keep up with
950 * the NIC.
951 */
952 static int
953 bge_init_rx_ring_std(struct bge_softc *sc)
954 {
955 int i;
956
957 if (sc->bge_flags & BGE_RXRING_VALID)
958 return 0;
959
960 for (i = 0; i < BGE_SSLOTS; i++) {
961 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
962 return(ENOBUFS);
963 }
964
965 sc->bge_std = i - 1;
966 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
967
968 sc->bge_flags |= BGE_RXRING_VALID;
969
970 return(0);
971 }
972
973 static void
974 bge_free_rx_ring_std(struct bge_softc *sc)
975 {
976 int i;
977
978 if (!(sc->bge_flags & BGE_RXRING_VALID))
979 return;
980
981 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
982 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
983 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
984 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
985 bus_dmamap_destroy(sc->bge_dmatag,
986 sc->bge_cdata.bge_rx_std_map[i]);
987 }
988 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
989 sizeof(struct bge_rx_bd));
990 }
991
992 sc->bge_flags &= ~BGE_RXRING_VALID;
993 }
994
995 static int
996 bge_init_rx_ring_jumbo(struct bge_softc *sc)
997 {
998 int i;
999 volatile struct bge_rcb *rcb;
1000
1001 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1002 return 0;
1003
1004 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1005 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1006 return(ENOBUFS);
1007 };
1008
1009 sc->bge_jumbo = i - 1;
1010 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1011
1012 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1013 rcb->bge_maxlen_flags = 0;
1014 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1015
1016 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1017
1018 return(0);
1019 }
1020
1021 static void
1022 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1023 {
1024 int i;
1025
1026 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1027 return;
1028
1029 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1030 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1031 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1032 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1033 }
1034 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1035 sizeof(struct bge_rx_bd));
1036 }
1037
1038 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1039 }
1040
1041 static void
1042 bge_free_tx_ring(struct bge_softc *sc)
1043 {
1044 int i, freed;
1045 struct txdmamap_pool_entry *dma;
1046
1047 if (!(sc->bge_flags & BGE_TXRING_VALID))
1048 return;
1049
1050 freed = 0;
1051
1052 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1053 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1054 freed++;
1055 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1056 sc->bge_cdata.bge_tx_chain[i] = NULL;
1057 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1058 link);
1059 sc->txdma[i] = 0;
1060 }
1061 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1062 sizeof(struct bge_tx_bd));
1063 }
1064
1065 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1066 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1067 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1068 free(dma, M_DEVBUF);
1069 }
1070
1071 sc->bge_flags &= ~BGE_TXRING_VALID;
1072 }
1073
1074 static int
1075 bge_init_tx_ring(struct bge_softc *sc)
1076 {
1077 int i;
1078 bus_dmamap_t dmamap;
1079 struct txdmamap_pool_entry *dma;
1080
1081 if (sc->bge_flags & BGE_TXRING_VALID)
1082 return 0;
1083
1084 sc->bge_txcnt = 0;
1085 sc->bge_tx_saved_considx = 0;
1086
1087 /* Initialize transmit producer index for host-memory send ring. */
1088 sc->bge_tx_prodidx = 0;
1089 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1090 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1091 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1092
1093 /* NIC-memory send ring not used; initialize to zero. */
1094 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1097
1098 SLIST_INIT(&sc->txdma_list);
1099 for (i = 0; i < BGE_RSLOTS; i++) {
1100 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1101 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1102 &dmamap))
1103 return(ENOBUFS);
1104 if (dmamap == NULL)
1105 panic("dmamap NULL in bge_init_tx_ring");
1106 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1107 if (dma == NULL) {
1108 aprint_error_dev(sc->bge_dev,
1109 "can't alloc txdmamap_pool_entry\n");
1110 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1111 return (ENOMEM);
1112 }
1113 dma->dmamap = dmamap;
1114 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1115 }
1116
1117 sc->bge_flags |= BGE_TXRING_VALID;
1118
1119 return(0);
1120 }
1121
1122 static void
1123 bge_setmulti(struct bge_softc *sc)
1124 {
1125 struct ethercom *ac = &sc->ethercom;
1126 struct ifnet *ifp = &ac->ec_if;
1127 struct ether_multi *enm;
1128 struct ether_multistep step;
1129 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1130 u_int32_t h;
1131 int i;
1132
1133 if (ifp->if_flags & IFF_PROMISC)
1134 goto allmulti;
1135
1136 /* Now program new ones. */
1137 ETHER_FIRST_MULTI(step, ac, enm);
1138 while (enm != NULL) {
1139 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1140 /*
1141 * We must listen to a range of multicast addresses.
1142 * For now, just accept all multicasts, rather than
1143 * trying to set only those filter bits needed to match
1144 * the range. (At this time, the only use of address
1145 * ranges is for IP multicast routing, for which the
1146 * range is big enough to require all bits set.)
1147 */
1148 goto allmulti;
1149 }
1150
1151 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1152
1153 /* Just want the 7 least-significant bits. */
1154 h &= 0x7f;
1155
1156 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1157 ETHER_NEXT_MULTI(step, enm);
1158 }
1159
1160 ifp->if_flags &= ~IFF_ALLMULTI;
1161 goto setit;
1162
1163 allmulti:
1164 ifp->if_flags |= IFF_ALLMULTI;
1165 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1166
1167 setit:
1168 for (i = 0; i < 4; i++)
1169 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1170 }
1171
1172 const int bge_swapbits[] = {
1173 0,
1174 BGE_MODECTL_BYTESWAP_DATA,
1175 BGE_MODECTL_WORDSWAP_DATA,
1176 BGE_MODECTL_BYTESWAP_NONFRAME,
1177 BGE_MODECTL_WORDSWAP_NONFRAME,
1178
1179 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1180 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1181 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1182
1183 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1184 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1185
1186 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1189 BGE_MODECTL_BYTESWAP_NONFRAME,
1190 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1191 BGE_MODECTL_WORDSWAP_NONFRAME,
1192 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1193 BGE_MODECTL_WORDSWAP_NONFRAME,
1194 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1195 BGE_MODECTL_WORDSWAP_NONFRAME,
1196
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1198 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1199 };
1200
1201 int bge_swapindex = 0;
1202
1203 /*
1204 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1205 * self-test results.
1206 */
1207 static int
1208 bge_chipinit(struct bge_softc *sc)
1209 {
1210 u_int32_t cachesize;
1211 int i;
1212 u_int32_t dma_rw_ctl;
1213
1214
1215 /* Set endianness before we access any non-PCI registers. */
1216 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1217 BGE_INIT);
1218
1219 /* Set power state to D0. */
1220 bge_setpowerstate(sc, 0);
1221
1222 /*
1223 * Check the 'ROM failed' bit on the RX CPU to see if
1224 * self-tests passed.
1225 */
1226 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1227 aprint_error_dev(sc->bge_dev,
1228 "RX CPU self-diagnostics failed!\n");
1229 return(ENODEV);
1230 }
1231
1232 /* Clear the MAC control register */
1233 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1234
1235 /*
1236 * Clear the MAC statistics block in the NIC's
1237 * internal memory.
1238 */
1239 for (i = BGE_STATS_BLOCK;
1240 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1241 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1242
1243 for (i = BGE_STATUS_BLOCK;
1244 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1245 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1246
1247 /* Set up the PCI DMA control register. */
1248 if (sc->bge_pcie) {
1249 u_int32_t device_ctl;
1250
1251 /* From FreeBSD */
1252 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1253 device_xname(sc->bge_dev)));
1254 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1255 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1256 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1257
1258 /* jonathan: alternative from Linux driver */
1259 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1260 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1261
1262 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1263 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1264 BGE_PCI_CONF_DEV_CTRL);
1265 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1266
1267 if ((device_ctl & 0x00e0) && 0) {
1268 /*
1269 * XXX jonathan (at) NetBSD.org:
1270 * This clause is exactly what the Broadcom-supplied
1271 * Linux does; but given overall register programming
1272 * by if_bge(4), this larger DMA-write watermark
1273 * value causes bcm5721 chips to totally wedge.
1274 */
1275 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1276 } else {
1277 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1278 }
1279 } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1280 BGE_PCISTATE_PCI_BUSMODE) {
1281 /* Conventional PCI bus */
1282 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1283 device_xname(sc->bge_dev)));
1284 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1285 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1286 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1287 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1288 dma_rw_ctl |= 0x0F;
1289 }
1290 } else {
1291 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1292 device_xname(sc->bge_dev)));
1293 /* PCI-X bus */
1294 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1295 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1296 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1297 (0x0F);
1298 /*
1299 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1300 * for hardware bugs, which means we should also clear
1301 * the low-order MINDMA bits. In addition, the 5704
1302 * uses a different encoding of read/write watermarks.
1303 */
1304 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1305 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1306 /* should be 0x1f0000 */
1307 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1308 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1309 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1310 }
1311 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1312 dma_rw_ctl &= 0xfffffff0;
1313 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1314 }
1315 else if (BGE_IS_5714_FAMILY(sc)) {
1316 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1317 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1318 /* XXX magic values, Broadcom-supplied Linux driver */
1319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1320 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1321 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1322 else
1323 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1324 }
1325 }
1326
1327 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1328
1329 /*
1330 * Set up general mode register.
1331 */
1332 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1333 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1334 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1335
1336 /* Get cache line size. */
1337 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1338
1339 /*
1340 * Avoid violating PCI spec on certain chip revs.
1341 */
1342 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1343 PCIM_CMD_MWIEN) {
1344 switch(cachesize) {
1345 case 1:
1346 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1347 BGE_PCI_WRITE_BNDRY_16BYTES);
1348 break;
1349 case 2:
1350 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1351 BGE_PCI_WRITE_BNDRY_32BYTES);
1352 break;
1353 case 4:
1354 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1355 BGE_PCI_WRITE_BNDRY_64BYTES);
1356 break;
1357 case 8:
1358 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_128BYTES);
1360 break;
1361 case 16:
1362 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_256BYTES);
1364 break;
1365 case 32:
1366 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_512BYTES);
1368 break;
1369 case 64:
1370 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_1024BYTES);
1372 break;
1373 default:
1374 /* Disable PCI memory write and invalidate. */
1375 #if 0
1376 if (bootverbose)
1377 aprint_error_dev(sc->bge_dev,
1378 "cache line size %d not supported "
1379 "disabling PCI MWI\n",
1380 #endif
1381 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1382 PCIM_CMD_MWIEN);
1383 break;
1384 }
1385 }
1386
1387 /*
1388 * Disable memory write invalidate. Apparently it is not supported
1389 * properly by these devices.
1390 */
1391 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1392
1393
1394 #ifdef __brokenalpha__
1395 /*
1396 * Must insure that we do not cross an 8K (bytes) boundary
1397 * for DMA reads. Our highest limit is 1K bytes. This is a
1398 * restriction on some ALPHA platforms with early revision
1399 * 21174 PCI chipsets, such as the AlphaPC 164lx
1400 */
1401 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1402 #endif
1403
1404 /* Set the timer prescaler (always 66MHz) */
1405 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1406
1407 return(0);
1408 }
1409
1410 static int
1411 bge_blockinit(struct bge_softc *sc)
1412 {
1413 volatile struct bge_rcb *rcb;
1414 bus_size_t rcb_addr;
1415 int i;
1416 struct ifnet *ifp = &sc->ethercom.ec_if;
1417 bge_hostaddr taddr;
1418
1419 /*
1420 * Initialize the memory window pointer register so that
1421 * we can access the first 32K of internal NIC RAM. This will
1422 * allow us to set up the TX send ring RCBs and the RX return
1423 * ring RCBs, plus other things which live in NIC memory.
1424 */
1425
1426 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1427
1428 /* Configure mbuf memory pool */
1429 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1430 if (sc->bge_extram) {
1431 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1432 BGE_EXT_SSRAM);
1433 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1434 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1435 else
1436 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1437 } else {
1438 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1439 BGE_BUFFPOOL_1);
1440 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1442 else
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1444 }
1445
1446 /* Configure DMA resource pool */
1447 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1448 BGE_DMA_DESCRIPTORS);
1449 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1450 }
1451
1452 /* Configure mbuf pool watermarks */
1453 #ifdef ORIG_WPAUL_VALUES
1454 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1455 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1456 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1457 #else
1458 /* new broadcom docs strongly recommend these: */
1459 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1460 if (ifp->if_mtu > ETHER_MAX_LEN) {
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1462 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1463 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1464 } else {
1465 /* Values from Linux driver... */
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1469 }
1470 } else {
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474 }
1475 #endif
1476
1477 /* Configure DMA resource watermarks */
1478 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1479 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1480
1481 /* Enable buffer manager */
1482 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1483 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1484
1485 /* Poll for buffer manager start indication */
1486 for (i = 0; i < BGE_TIMEOUT; i++) {
1487 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1488 break;
1489 DELAY(10);
1490 }
1491
1492 if (i == BGE_TIMEOUT) {
1493 aprint_error_dev(sc->bge_dev,
1494 "buffer manager failed to start\n");
1495 return(ENXIO);
1496 }
1497
1498 /* Enable flow-through queues */
1499 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1500 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1501
1502 /* Wait until queue initialization is complete */
1503 for (i = 0; i < BGE_TIMEOUT; i++) {
1504 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1505 break;
1506 DELAY(10);
1507 }
1508
1509 if (i == BGE_TIMEOUT) {
1510 aprint_error_dev(sc->bge_dev,
1511 "flow-through queue init failed\n");
1512 return(ENXIO);
1513 }
1514
1515 /* Initialize the standard RX ring control block */
1516 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1517 bge_set_hostaddr(&rcb->bge_hostaddr,
1518 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1519 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1520 rcb->bge_maxlen_flags =
1521 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1522 } else {
1523 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1524 }
1525 if (sc->bge_extram)
1526 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1527 else
1528 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1529 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1530 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1531 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1533
1534 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1535 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1536 } else {
1537 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1538 }
1539
1540 /*
1541 * Initialize the jumbo RX ring control block
1542 * We set the 'ring disabled' bit in the flags
1543 * field until we're actually ready to start
1544 * using this ring (i.e. once we set the MTU
1545 * high enough to require it).
1546 */
1547 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1549 bge_set_hostaddr(&rcb->bge_hostaddr,
1550 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1551 rcb->bge_maxlen_flags =
1552 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1553 BGE_RCB_FLAG_RING_DISABLED);
1554 if (sc->bge_extram)
1555 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1556 else
1557 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1558
1559 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1560 rcb->bge_hostaddr.bge_addr_hi);
1561 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1562 rcb->bge_hostaddr.bge_addr_lo);
1563 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1564 rcb->bge_maxlen_flags);
1565 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1566
1567 /* Set up dummy disabled mini ring RCB */
1568 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1569 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1570 BGE_RCB_FLAG_RING_DISABLED);
1571 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1572 rcb->bge_maxlen_flags);
1573
1574 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1575 offsetof(struct bge_ring_data, bge_info),
1576 sizeof (struct bge_gib),
1577 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1578 }
1579
1580 /*
1581 * Set the BD ring replenish thresholds. The recommended
1582 * values are 1/8th the number of descriptors allocated to
1583 * each ring.
1584 */
1585 i = BGE_STD_RX_RING_CNT / 8;
1586
1587 /*
1588 * Use a value of 8 for the following chips to workaround HW errata.
1589 * Some of these chips have been added based on empirical
1590 * evidence (they don't work unless this is done).
1591 */
1592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1593 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1594 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1595 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1596 i = 8;
1597
1598 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1599 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1600
1601 /*
1602 * Disable all unused send rings by setting the 'ring disabled'
1603 * bit in the flags field of all the TX send ring control blocks.
1604 * These are located in NIC memory.
1605 */
1606 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1607 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1608 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1609 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1610 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1611 rcb_addr += sizeof(struct bge_rcb);
1612 }
1613
1614 /* Configure TX RCB 0 (we use only the first ring) */
1615 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1616 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1617 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1618 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1619 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1620 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1621 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1622 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1623 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1624 }
1625
1626 /* Disable all unused RX return rings */
1627 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1628 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1629 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1630 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1631 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1632 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1633 BGE_RCB_FLAG_RING_DISABLED));
1634 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1635 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1636 (i * (sizeof(u_int64_t))), 0);
1637 rcb_addr += sizeof(struct bge_rcb);
1638 }
1639
1640 /* Initialize RX ring indexes */
1641 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1642 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1643 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1644
1645 /*
1646 * Set up RX return ring 0
1647 * Note that the NIC address for RX return rings is 0x00000000.
1648 * The return rings live entirely within the host, so the
1649 * nicaddr field in the RCB isn't used.
1650 */
1651 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1652 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1653 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1654 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1655 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1656 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1657 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1658
1659 /* Set random backoff seed for TX */
1660 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1661 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1662 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1663 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1664 BGE_TX_BACKOFF_SEED_MASK);
1665
1666 /* Set inter-packet gap */
1667 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1668
1669 /*
1670 * Specify which ring to use for packets that don't match
1671 * any RX rules.
1672 */
1673 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1674
1675 /*
1676 * Configure number of RX lists. One interrupt distribution
1677 * list, sixteen active lists, one bad frames class.
1678 */
1679 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1680
1681 /* Inialize RX list placement stats mask. */
1682 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1683 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1684
1685 /* Disable host coalescing until we get it set up */
1686 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1687
1688 /* Poll to make sure it's shut down. */
1689 for (i = 0; i < BGE_TIMEOUT; i++) {
1690 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1691 break;
1692 DELAY(10);
1693 }
1694
1695 if (i == BGE_TIMEOUT) {
1696 aprint_error_dev(sc->bge_dev,
1697 "host coalescing engine failed to idle\n");
1698 return(ENXIO);
1699 }
1700
1701 /* Set up host coalescing defaults */
1702 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1703 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1704 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1705 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1706 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1707 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1708 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1709 }
1710 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1711 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1712
1713 /* Set up address of statistics block */
1714 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1715 bge_set_hostaddr(&taddr,
1716 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1717 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1718 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1719 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1720 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1721 }
1722
1723 /* Set up address of status block */
1724 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1725 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1726 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1727 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1728 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1729 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1730
1731 /* Turn on host coalescing state machine */
1732 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1733
1734 /* Turn on RX BD completion state machine and enable attentions */
1735 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1736 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1737
1738 /* Turn on RX list placement state machine */
1739 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1740
1741 /* Turn on RX list selector state machine. */
1742 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1743 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1744 }
1745
1746 /* Turn on DMA, clear stats */
1747 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1748 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1749 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1750 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1751 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1752
1753 /* Set misc. local control, enable interrupts on attentions */
1754 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1755
1756 #ifdef notdef
1757 /* Assert GPIO pins for PHY reset */
1758 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1759 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1760 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1761 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1762 #endif
1763
1764 #if defined(not_quite_yet)
1765 /* Linux driver enables enable gpio pin #1 on 5700s */
1766 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1767 sc->bge_local_ctrl_reg |=
1768 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1769 }
1770 #endif
1771 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1772
1773 /* Turn on DMA completion state machine */
1774 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1775 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1776 }
1777
1778 /* Turn on write DMA state machine */
1779 {
1780 uint32_t bge_wdma_mode =
1781 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1782
1783 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1784 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1785 /* Enable host coalescing bug fix; see Linux tg3.c */
1786 bge_wdma_mode |= (1 << 29);
1787
1788 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1789 }
1790
1791 /* Turn on read DMA state machine */
1792 {
1793 uint32_t dma_read_modebits;
1794
1795 dma_read_modebits =
1796 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1797
1798 if (sc->bge_pcie && 0) {
1799 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1800 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1801 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1802 }
1803
1804 /* XXX broadcom-supplied linux driver; undocumented */
1805 if (BGE_IS_5750_OR_BEYOND(sc)) {
1806 /*
1807 * XXX: magic values.
1808 * From Broadcom-supplied Linux driver; apparently
1809 * required to workaround a DMA bug affecting TSO
1810 * on bcm575x/bcm5721?
1811 */
1812 dma_read_modebits |= (1 << 27);
1813 }
1814 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1815 }
1816
1817 /* Turn on RX data completion state machine */
1818 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1819
1820 /* Turn on RX BD initiator state machine */
1821 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1822
1823 /* Turn on RX data and RX BD initiator state machine */
1824 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1825
1826 /* Turn on Mbuf cluster free state machine */
1827 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1828 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1829 }
1830
1831 /* Turn on send BD completion state machine */
1832 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1833
1834 /* Turn on send data completion state machine */
1835 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1836
1837 /* Turn on send data initiator state machine */
1838 if (BGE_IS_5750_OR_BEYOND(sc)) {
1839 /* XXX: magic value from Linux driver */
1840 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1841 } else {
1842 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1843 }
1844
1845 /* Turn on send BD initiator state machine */
1846 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1847
1848 /* Turn on send BD selector state machine */
1849 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1850
1851 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1852 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1853 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1854
1855 /* ack/clear link change events */
1856 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1857 BGE_MACSTAT_CFG_CHANGED);
1858 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1859
1860 /* Enable PHY auto polling (for MII/GMII only) */
1861 if (sc->bge_tbi) {
1862 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1863 } else {
1864 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1865 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1866 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1867 BGE_EVTENB_MI_INTERRUPT);
1868 }
1869
1870 /* Enable link state change attentions. */
1871 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1872
1873 return(0);
1874 }
1875
1876 static const struct bge_revision {
1877 uint32_t br_chipid;
1878 uint32_t br_quirks;
1879 const char *br_name;
1880 } bge_revisions[] = {
1881 { BGE_CHIPID_BCM5700_A0,
1882 BGE_QUIRK_LINK_STATE_BROKEN,
1883 "BCM5700 A0" },
1884
1885 { BGE_CHIPID_BCM5700_A1,
1886 BGE_QUIRK_LINK_STATE_BROKEN,
1887 "BCM5700 A1" },
1888
1889 { BGE_CHIPID_BCM5700_B0,
1890 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1891 "BCM5700 B0" },
1892
1893 { BGE_CHIPID_BCM5700_B1,
1894 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1895 "BCM5700 B1" },
1896
1897 { BGE_CHIPID_BCM5700_B2,
1898 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1899 "BCM5700 B2" },
1900
1901 { BGE_CHIPID_BCM5700_B3,
1902 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1903 "BCM5700 B3" },
1904
1905 /* This is treated like a BCM5700 Bx */
1906 { BGE_CHIPID_BCM5700_ALTIMA,
1907 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1908 "BCM5700 Altima" },
1909
1910 { BGE_CHIPID_BCM5700_C0,
1911 0,
1912 "BCM5700 C0" },
1913
1914 { BGE_CHIPID_BCM5701_A0,
1915 0, /*XXX really, just not known */
1916 "BCM5701 A0" },
1917
1918 { BGE_CHIPID_BCM5701_B0,
1919 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1920 "BCM5701 B0" },
1921
1922 { BGE_CHIPID_BCM5701_B2,
1923 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1924 "BCM5701 B2" },
1925
1926 { BGE_CHIPID_BCM5701_B5,
1927 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1928 "BCM5701 B5" },
1929
1930 { BGE_CHIPID_BCM5703_A0,
1931 0,
1932 "BCM5703 A0" },
1933
1934 { BGE_CHIPID_BCM5703_A1,
1935 0,
1936 "BCM5703 A1" },
1937
1938 { BGE_CHIPID_BCM5703_A2,
1939 BGE_QUIRK_ONLY_PHY_1,
1940 "BCM5703 A2" },
1941
1942 { BGE_CHIPID_BCM5703_A3,
1943 BGE_QUIRK_ONLY_PHY_1,
1944 "BCM5703 A3" },
1945
1946 { BGE_CHIPID_BCM5703_B0,
1947 BGE_QUIRK_ONLY_PHY_1,
1948 "BCM5703 B0" },
1949
1950 { BGE_CHIPID_BCM5704_A0,
1951 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1952 "BCM5704 A0" },
1953
1954 { BGE_CHIPID_BCM5704_A1,
1955 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1956 "BCM5704 A1" },
1957
1958 { BGE_CHIPID_BCM5704_A2,
1959 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1960 "BCM5704 A2" },
1961
1962 { BGE_CHIPID_BCM5704_A3,
1963 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1964 "BCM5704 A3" },
1965
1966 { BGE_CHIPID_BCM5705_A0,
1967 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1968 "BCM5705 A0" },
1969
1970 { BGE_CHIPID_BCM5705_A1,
1971 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1972 "BCM5705 A1" },
1973
1974 { BGE_CHIPID_BCM5705_A2,
1975 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1976 "BCM5705 A2" },
1977
1978 { BGE_CHIPID_BCM5705_A3,
1979 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1980 "BCM5705 A3" },
1981
1982 { BGE_CHIPID_BCM5750_A0,
1983 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1984 "BCM5750 A0" },
1985
1986 { BGE_CHIPID_BCM5750_A1,
1987 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1988 "BCM5750 A1" },
1989
1990 { BGE_CHIPID_BCM5751_A1,
1991 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1992 "BCM5751 A1" },
1993
1994 { BGE_CHIPID_BCM5752_A0,
1995 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1996 "BCM5752 A0" },
1997
1998 { BGE_CHIPID_BCM5752_A1,
1999 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2000 "BCM5752 A1" },
2001
2002 { BGE_CHIPID_BCM5752_A2,
2003 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2004 "BCM5752 A2" },
2005
2006 { BGE_CHIPID_BCM5787_A0,
2007 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2008 "BCM5754/5787 A0" },
2009
2010 { BGE_CHIPID_BCM5787_A1,
2011 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2012 "BCM5754/5787 A1" },
2013
2014 { BGE_CHIPID_BCM5787_A2,
2015 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2016 "BCM5754/5787 A2" },
2017
2018 { 0, 0, NULL }
2019 };
2020
2021 /*
2022 * Some defaults for major revisions, so that newer steppings
2023 * that we don't know about have a shot at working.
2024 */
2025 static const struct bge_revision bge_majorrevs[] = {
2026 { BGE_ASICREV_BCM5700,
2027 BGE_QUIRK_LINK_STATE_BROKEN,
2028 "unknown BCM5700" },
2029
2030 { BGE_ASICREV_BCM5701,
2031 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2032 "unknown BCM5701" },
2033
2034 { BGE_ASICREV_BCM5703,
2035 0,
2036 "unknown BCM5703" },
2037
2038 { BGE_ASICREV_BCM5704,
2039 BGE_QUIRK_ONLY_PHY_1,
2040 "unknown BCM5704" },
2041
2042 { BGE_ASICREV_BCM5705,
2043 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2044 "unknown BCM5705" },
2045
2046 { BGE_ASICREV_BCM5750,
2047 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2048 "unknown BCM575x family" },
2049
2050 { BGE_ASICREV_BCM5714_A0,
2051 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2052 "unknown BCM5714" },
2053
2054 { BGE_ASICREV_BCM5714,
2055 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2056 "unknown BCM5714" },
2057
2058 { BGE_ASICREV_BCM5752,
2059 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2060 "unknown BCM5752 family" },
2061
2062 { BGE_ASICREV_BCM5755,
2063 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2064 "unknown BCM5755" },
2065
2066 { BGE_ASICREV_BCM5780,
2067 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2068 "unknown BCM5780" },
2069
2070 { BGE_ASICREV_BCM5787,
2071 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2072 "unknown BCM5787" },
2073
2074 { 0,
2075 0,
2076 NULL }
2077 };
2078
2079
2080 static const struct bge_revision *
2081 bge_lookup_rev(uint32_t chipid)
2082 {
2083 const struct bge_revision *br;
2084
2085 for (br = bge_revisions; br->br_name != NULL; br++) {
2086 if (br->br_chipid == chipid)
2087 return (br);
2088 }
2089
2090 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2091 if (br->br_chipid == BGE_ASICREV(chipid))
2092 return (br);
2093 }
2094
2095 return (NULL);
2096 }
2097
2098 static const struct bge_product {
2099 pci_vendor_id_t bp_vendor;
2100 pci_product_id_t bp_product;
2101 const char *bp_name;
2102 } bge_products[] = {
2103 /*
2104 * The BCM5700 documentation seems to indicate that the hardware
2105 * still has the Alteon vendor ID burned into it, though it
2106 * should always be overridden by the value in the EEPROM. We'll
2107 * check for it anyway.
2108 */
2109 { PCI_VENDOR_ALTEON,
2110 PCI_PRODUCT_ALTEON_BCM5700,
2111 "Broadcom BCM5700 Gigabit Ethernet",
2112 },
2113 { PCI_VENDOR_ALTEON,
2114 PCI_PRODUCT_ALTEON_BCM5701,
2115 "Broadcom BCM5701 Gigabit Ethernet",
2116 },
2117
2118 { PCI_VENDOR_ALTIMA,
2119 PCI_PRODUCT_ALTIMA_AC1000,
2120 "Altima AC1000 Gigabit Ethernet",
2121 },
2122 { PCI_VENDOR_ALTIMA,
2123 PCI_PRODUCT_ALTIMA_AC1001,
2124 "Altima AC1001 Gigabit Ethernet",
2125 },
2126 { PCI_VENDOR_ALTIMA,
2127 PCI_PRODUCT_ALTIMA_AC9100,
2128 "Altima AC9100 Gigabit Ethernet",
2129 },
2130
2131 { PCI_VENDOR_BROADCOM,
2132 PCI_PRODUCT_BROADCOM_BCM5700,
2133 "Broadcom BCM5700 Gigabit Ethernet",
2134 },
2135 { PCI_VENDOR_BROADCOM,
2136 PCI_PRODUCT_BROADCOM_BCM5701,
2137 "Broadcom BCM5701 Gigabit Ethernet",
2138 },
2139 { PCI_VENDOR_BROADCOM,
2140 PCI_PRODUCT_BROADCOM_BCM5702,
2141 "Broadcom BCM5702 Gigabit Ethernet",
2142 },
2143 { PCI_VENDOR_BROADCOM,
2144 PCI_PRODUCT_BROADCOM_BCM5702X,
2145 "Broadcom BCM5702X Gigabit Ethernet" },
2146
2147 { PCI_VENDOR_BROADCOM,
2148 PCI_PRODUCT_BROADCOM_BCM5703,
2149 "Broadcom BCM5703 Gigabit Ethernet",
2150 },
2151 { PCI_VENDOR_BROADCOM,
2152 PCI_PRODUCT_BROADCOM_BCM5703X,
2153 "Broadcom BCM5703X Gigabit Ethernet",
2154 },
2155 { PCI_VENDOR_BROADCOM,
2156 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2157 "Broadcom BCM5703 Gigabit Ethernet",
2158 },
2159
2160 { PCI_VENDOR_BROADCOM,
2161 PCI_PRODUCT_BROADCOM_BCM5704C,
2162 "Broadcom BCM5704C Dual Gigabit Ethernet",
2163 },
2164 { PCI_VENDOR_BROADCOM,
2165 PCI_PRODUCT_BROADCOM_BCM5704S,
2166 "Broadcom BCM5704S Dual Gigabit Ethernet",
2167 },
2168
2169 { PCI_VENDOR_BROADCOM,
2170 PCI_PRODUCT_BROADCOM_BCM5705,
2171 "Broadcom BCM5705 Gigabit Ethernet",
2172 },
2173 { PCI_VENDOR_BROADCOM,
2174 PCI_PRODUCT_BROADCOM_BCM5705K,
2175 "Broadcom BCM5705K Gigabit Ethernet",
2176 },
2177 { PCI_VENDOR_BROADCOM,
2178 PCI_PRODUCT_BROADCOM_BCM5705M,
2179 "Broadcom BCM5705M Gigabit Ethernet",
2180 },
2181 { PCI_VENDOR_BROADCOM,
2182 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2183 "Broadcom BCM5705M Gigabit Ethernet",
2184 },
2185
2186 { PCI_VENDOR_BROADCOM,
2187 PCI_PRODUCT_BROADCOM_BCM5714,
2188 "Broadcom BCM5714/5715 Gigabit Ethernet",
2189 },
2190 { PCI_VENDOR_BROADCOM,
2191 PCI_PRODUCT_BROADCOM_BCM5715,
2192 "Broadcom BCM5714/5715 Gigabit Ethernet",
2193 },
2194 { PCI_VENDOR_BROADCOM,
2195 PCI_PRODUCT_BROADCOM_BCM5789,
2196 "Broadcom BCM5789 Gigabit Ethernet",
2197 },
2198
2199 { PCI_VENDOR_BROADCOM,
2200 PCI_PRODUCT_BROADCOM_BCM5721,
2201 "Broadcom BCM5721 Gigabit Ethernet",
2202 },
2203
2204 { PCI_VENDOR_BROADCOM,
2205 PCI_PRODUCT_BROADCOM_BCM5750,
2206 "Broadcom BCM5750 Gigabit Ethernet",
2207 },
2208
2209 { PCI_VENDOR_BROADCOM,
2210 PCI_PRODUCT_BROADCOM_BCM5750M,
2211 "Broadcom BCM5750M Gigabit Ethernet",
2212 },
2213
2214 { PCI_VENDOR_BROADCOM,
2215 PCI_PRODUCT_BROADCOM_BCM5751,
2216 "Broadcom BCM5751 Gigabit Ethernet",
2217 },
2218
2219 { PCI_VENDOR_BROADCOM,
2220 PCI_PRODUCT_BROADCOM_BCM5751M,
2221 "Broadcom BCM5751M Gigabit Ethernet",
2222 },
2223
2224 { PCI_VENDOR_BROADCOM,
2225 PCI_PRODUCT_BROADCOM_BCM5752,
2226 "Broadcom BCM5752 Gigabit Ethernet",
2227 },
2228
2229 { PCI_VENDOR_BROADCOM,
2230 PCI_PRODUCT_BROADCOM_BCM5752M,
2231 "Broadcom BCM5752M Gigabit Ethernet",
2232 },
2233
2234 { PCI_VENDOR_BROADCOM,
2235 PCI_PRODUCT_BROADCOM_BCM5753,
2236 "Broadcom BCM5753 Gigabit Ethernet",
2237 },
2238
2239 { PCI_VENDOR_BROADCOM,
2240 PCI_PRODUCT_BROADCOM_BCM5753M,
2241 "Broadcom BCM5753M Gigabit Ethernet",
2242 },
2243
2244 { PCI_VENDOR_BROADCOM,
2245 PCI_PRODUCT_BROADCOM_BCM5754,
2246 "Broadcom BCM5754 Gigabit Ethernet",
2247 },
2248
2249 { PCI_VENDOR_BROADCOM,
2250 PCI_PRODUCT_BROADCOM_BCM5754M,
2251 "Broadcom BCM5754M Gigabit Ethernet",
2252 },
2253
2254 { PCI_VENDOR_BROADCOM,
2255 PCI_PRODUCT_BROADCOM_BCM5755,
2256 "Broadcom BCM5755 Gigabit Ethernet",
2257 },
2258
2259 { PCI_VENDOR_BROADCOM,
2260 PCI_PRODUCT_BROADCOM_BCM5755M,
2261 "Broadcom BCM5755M Gigabit Ethernet",
2262 },
2263
2264 { PCI_VENDOR_BROADCOM,
2265 PCI_PRODUCT_BROADCOM_BCM5780,
2266 "Broadcom BCM5780 Gigabit Ethernet",
2267 },
2268
2269 { PCI_VENDOR_BROADCOM,
2270 PCI_PRODUCT_BROADCOM_BCM5780S,
2271 "Broadcom BCM5780S Gigabit Ethernet",
2272 },
2273
2274 { PCI_VENDOR_BROADCOM,
2275 PCI_PRODUCT_BROADCOM_BCM5782,
2276 "Broadcom BCM5782 Gigabit Ethernet",
2277 },
2278
2279 { PCI_VENDOR_BROADCOM,
2280 PCI_PRODUCT_BROADCOM_BCM5786,
2281 "Broadcom BCM5786 Gigabit Ethernet",
2282 },
2283
2284 { PCI_VENDOR_BROADCOM,
2285 PCI_PRODUCT_BROADCOM_BCM5787,
2286 "Broadcom BCM5787 Gigabit Ethernet",
2287 },
2288
2289 { PCI_VENDOR_BROADCOM,
2290 PCI_PRODUCT_BROADCOM_BCM5787M,
2291 "Broadcom BCM5787M Gigabit Ethernet",
2292 },
2293
2294 { PCI_VENDOR_BROADCOM,
2295 PCI_PRODUCT_BROADCOM_BCM5788,
2296 "Broadcom BCM5788 Gigabit Ethernet",
2297 },
2298 { PCI_VENDOR_BROADCOM,
2299 PCI_PRODUCT_BROADCOM_BCM5789,
2300 "Broadcom BCM5789 Gigabit Ethernet",
2301 },
2302
2303 { PCI_VENDOR_BROADCOM,
2304 PCI_PRODUCT_BROADCOM_BCM5901,
2305 "Broadcom BCM5901 Fast Ethernet",
2306 },
2307 { PCI_VENDOR_BROADCOM,
2308 PCI_PRODUCT_BROADCOM_BCM5901A2,
2309 "Broadcom BCM5901A2 Fast Ethernet",
2310 },
2311
2312 { PCI_VENDOR_SCHNEIDERKOCH,
2313 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2314 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2315 },
2316
2317 { PCI_VENDOR_3COM,
2318 PCI_PRODUCT_3COM_3C996,
2319 "3Com 3c996 Gigabit Ethernet",
2320 },
2321
2322 { 0,
2323 0,
2324 NULL },
2325 };
2326
2327 static const struct bge_product *
2328 bge_lookup(const struct pci_attach_args *pa)
2329 {
2330 const struct bge_product *bp;
2331
2332 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2333 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2334 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2335 return (bp);
2336 }
2337
2338 return (NULL);
2339 }
2340
2341 static int
2342 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2343 {
2344 #ifdef NOTYET
2345 u_int32_t pm_ctl = 0;
2346
2347 /* XXX FIXME: make sure indirect accesses enabled? */
2348 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2349 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2350 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2351
2352 /* clear the PME_assert bit and power state bits, enable PME */
2353 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2354 pm_ctl &= ~PCIM_PSTAT_DMASK;
2355 pm_ctl |= (1 << 8);
2356
2357 if (powerlevel == 0) {
2358 pm_ctl |= PCIM_PSTAT_D0;
2359 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2360 pm_ctl, 2);
2361 DELAY(10000);
2362 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2363 DELAY(10000);
2364
2365 #ifdef NOTYET
2366 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2367 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2368 #endif
2369 DELAY(40); DELAY(40); DELAY(40);
2370 DELAY(10000); /* above not quite adequate on 5700 */
2371 return 0;
2372 }
2373
2374
2375 /*
2376 * Entering ACPI power states D1-D3 is achieved by wiggling
2377 * GMII gpio pins. Example code assumes all hardware vendors
2378 * followed Broadom's sample pcb layout. Until we verify that
2379 * for all supported OEM cards, states D1-D3 are unsupported.
2380 */
2381 aprint_error_dev(sc->bge_dev,
2382 "power state %d unimplemented; check GPIO pins\n",
2383 powerlevel);
2384 #endif
2385 return EOPNOTSUPP;
2386 }
2387
2388
2389 /*
2390 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2391 * against our list and return its name if we find a match. Note
2392 * that since the Broadcom controller contains VPD support, we
2393 * can get the device name string from the controller itself instead
2394 * of the compiled-in string. This is a little slow, but it guarantees
2395 * we'll always announce the right product name.
2396 */
2397 static int
2398 bge_probe(device_t parent, cfdata_t match, void *aux)
2399 {
2400 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2401
2402 if (bge_lookup(pa) != NULL)
2403 return (1);
2404
2405 return (0);
2406 }
2407
2408 static void
2409 bge_attach(device_t parent, device_t self, void *aux)
2410 {
2411 struct bge_softc *sc = device_private(self);
2412 struct pci_attach_args *pa = aux;
2413 const struct bge_product *bp;
2414 const struct bge_revision *br;
2415 pci_chipset_tag_t pc;
2416 pci_intr_handle_t ih;
2417 const char *intrstr = NULL;
2418 bus_dma_segment_t seg;
2419 int rseg;
2420 u_int32_t hwcfg = 0;
2421 u_int32_t mac_addr = 0;
2422 u_int32_t command;
2423 struct ifnet *ifp;
2424 void * kva;
2425 u_char eaddr[ETHER_ADDR_LEN];
2426 pcireg_t memtype;
2427 bus_addr_t memaddr;
2428 bus_size_t memsize;
2429 u_int32_t pm_ctl;
2430
2431 bp = bge_lookup(pa);
2432 KASSERT(bp != NULL);
2433
2434 sc->sc_pc = pa->pa_pc;
2435 sc->sc_pcitag = pa->pa_tag;
2436 sc->bge_dev = self;
2437
2438 aprint_naive(": Ethernet controller\n");
2439 aprint_normal(": %s\n", bp->bp_name);
2440
2441 /*
2442 * Map control/status registers.
2443 */
2444 DPRINTFN(5, ("Map control/status regs\n"));
2445 pc = sc->sc_pc;
2446 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2447 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2448 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2449 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2450
2451 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2452 aprint_error_dev(sc->bge_dev,
2453 "failed to enable memory mapping!\n");
2454 return;
2455 }
2456
2457 DPRINTFN(5, ("pci_mem_find\n"));
2458 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2459 switch (memtype) {
2460 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2461 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2462 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2463 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2464 &memaddr, &memsize) == 0)
2465 break;
2466 default:
2467 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2468 return;
2469 }
2470
2471 DPRINTFN(5, ("pci_intr_map\n"));
2472 if (pci_intr_map(pa, &ih)) {
2473 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2474 return;
2475 }
2476
2477 DPRINTFN(5, ("pci_intr_string\n"));
2478 intrstr = pci_intr_string(pc, ih);
2479
2480 DPRINTFN(5, ("pci_intr_establish\n"));
2481 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2482
2483 if (sc->bge_intrhand == NULL) {
2484 aprint_error_dev(sc->bge_dev,
2485 "couldn't establish interrupt%s%s\n",
2486 intrstr ? " at " : "", intrstr ? intrstr : "");
2487 return;
2488 }
2489 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2490
2491 /*
2492 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2493 * can clobber the chip's PCI config-space power control registers,
2494 * leaving the card in D3 powersave state.
2495 * We do not have memory-mapped registers in this state,
2496 * so force device into D0 state before starting initialization.
2497 */
2498 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2499 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2500 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2501 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2502 DELAY(1000); /* 27 usec is allegedly sufficent */
2503
2504 /*
2505 * Save ASIC rev. Look up any quirks associated with this
2506 * ASIC.
2507 */
2508 sc->bge_chipid =
2509 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2510 BGE_PCIMISCCTL_ASICREV;
2511
2512 /*
2513 * Detect PCI-Express devices
2514 * XXX: guessed from Linux/FreeBSD; no documentation
2515 */
2516 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2517 NULL, NULL) != 0)
2518 sc->bge_pcie = 1;
2519 else
2520 sc->bge_pcie = 0;
2521
2522 /* Try to reset the chip. */
2523 DPRINTFN(5, ("bge_reset\n"));
2524 bge_reset(sc);
2525
2526 if (bge_chipinit(sc)) {
2527 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2528 bge_release_resources(sc);
2529 return;
2530 }
2531
2532 /*
2533 * Get station address from the EEPROM.
2534 */
2535 mac_addr = bge_readmem_ind(sc, 0x0c14);
2536 if ((mac_addr >> 16) == 0x484b) {
2537 eaddr[0] = (u_char)(mac_addr >> 8);
2538 eaddr[1] = (u_char)(mac_addr >> 0);
2539 mac_addr = bge_readmem_ind(sc, 0x0c18);
2540 eaddr[2] = (u_char)(mac_addr >> 24);
2541 eaddr[3] = (u_char)(mac_addr >> 16);
2542 eaddr[4] = (u_char)(mac_addr >> 8);
2543 eaddr[5] = (u_char)(mac_addr >> 0);
2544 } else if (bge_read_eeprom(sc, (void *)eaddr,
2545 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2546 aprint_error_dev(sc->bge_dev,
2547 "failed to read station address\n");
2548 bge_release_resources(sc);
2549 return;
2550 }
2551
2552 br = bge_lookup_rev(sc->bge_chipid);
2553
2554 if (br == NULL) {
2555 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2556 sc->bge_chipid >> 16);
2557 sc->bge_quirks = 0;
2558 } else {
2559 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2560 br->br_name, sc->bge_chipid >> 16);
2561 sc->bge_quirks |= br->br_quirks;
2562 }
2563 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2564
2565 /* Allocate the general information block and ring buffers. */
2566 if (pci_dma64_available(pa))
2567 sc->bge_dmatag = pa->pa_dmat64;
2568 else
2569 sc->bge_dmatag = pa->pa_dmat;
2570 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2571 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2572 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2573 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2574 return;
2575 }
2576 DPRINTFN(5, ("bus_dmamem_map\n"));
2577 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2578 sizeof(struct bge_ring_data), &kva,
2579 BUS_DMA_NOWAIT)) {
2580 aprint_error_dev(sc->bge_dev,
2581 "can't map DMA buffers (%zu bytes)\n",
2582 sizeof(struct bge_ring_data));
2583 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2584 return;
2585 }
2586 DPRINTFN(5, ("bus_dmamem_create\n"));
2587 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2588 sizeof(struct bge_ring_data), 0,
2589 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2590 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2591 bus_dmamem_unmap(sc->bge_dmatag, kva,
2592 sizeof(struct bge_ring_data));
2593 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2594 return;
2595 }
2596 DPRINTFN(5, ("bus_dmamem_load\n"));
2597 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2598 sizeof(struct bge_ring_data), NULL,
2599 BUS_DMA_NOWAIT)) {
2600 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2601 bus_dmamem_unmap(sc->bge_dmatag, kva,
2602 sizeof(struct bge_ring_data));
2603 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2604 return;
2605 }
2606
2607 DPRINTFN(5, ("bzero\n"));
2608 sc->bge_rdata = (struct bge_ring_data *)kva;
2609
2610 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2611
2612 /* Try to allocate memory for jumbo buffers. */
2613 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2614 if (bge_alloc_jumbo_mem(sc)) {
2615 aprint_error_dev(sc->bge_dev,
2616 "jumbo buffer allocation failed\n");
2617 } else
2618 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2619 }
2620
2621 /* Set default tuneable values. */
2622 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2623 sc->bge_rx_coal_ticks = 150;
2624 sc->bge_rx_max_coal_bds = 64;
2625 #ifdef ORIG_WPAUL_VALUES
2626 sc->bge_tx_coal_ticks = 150;
2627 sc->bge_tx_max_coal_bds = 128;
2628 #else
2629 sc->bge_tx_coal_ticks = 300;
2630 sc->bge_tx_max_coal_bds = 400;
2631 #endif
2632 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2633 sc->bge_tx_coal_ticks = (12 * 5);
2634 sc->bge_tx_max_coal_bds = (12 * 5);
2635 aprint_verbose_dev(sc->bge_dev,
2636 "setting short Tx thresholds\n");
2637 }
2638
2639 /* Set up ifnet structure */
2640 ifp = &sc->ethercom.ec_if;
2641 ifp->if_softc = sc;
2642 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2643 ifp->if_ioctl = bge_ioctl;
2644 ifp->if_stop = bge_stop;
2645 ifp->if_start = bge_start;
2646 ifp->if_init = bge_init;
2647 ifp->if_watchdog = bge_watchdog;
2648 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2649 IFQ_SET_READY(&ifp->if_snd);
2650 DPRINTFN(5, ("strcpy if_xname\n"));
2651 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2652
2653 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2654 sc->ethercom.ec_if.if_capabilities |=
2655 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2656 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2657 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2658 sc->ethercom.ec_capabilities |=
2659 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2660
2661 if (sc->bge_pcie)
2662 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2663
2664 /*
2665 * Do MII setup.
2666 */
2667 DPRINTFN(5, ("mii setup\n"));
2668 sc->bge_mii.mii_ifp = ifp;
2669 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2670 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2671 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2672
2673 /*
2674 * Figure out what sort of media we have by checking the
2675 * hardware config word in the first 32k of NIC internal memory,
2676 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2677 * cards, this value appears to be unset. If that's the
2678 * case, we have to rely on identifying the NIC by its PCI
2679 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2680 */
2681 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2682 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2683 } else {
2684 bge_read_eeprom(sc, (void *)&hwcfg,
2685 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2686 hwcfg = be32toh(hwcfg);
2687 }
2688 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2689 sc->bge_tbi = 1;
2690
2691 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2692 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2693 SK_SUBSYSID_9D41)
2694 sc->bge_tbi = 1;
2695
2696 if (sc->bge_tbi) {
2697 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2698 bge_ifmedia_sts);
2699 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2700 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2701 0, NULL);
2702 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2703 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2704 } else {
2705 /*
2706 * Do transceiver setup.
2707 */
2708 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2709 bge_ifmedia_sts);
2710 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2711 MII_PHY_ANY, MII_OFFSET_ANY,
2712 MIIF_FORCEANEG|MIIF_DOPAUSE);
2713
2714 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2715 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2716 ifmedia_add(&sc->bge_mii.mii_media,
2717 IFM_ETHER|IFM_MANUAL, 0, NULL);
2718 ifmedia_set(&sc->bge_mii.mii_media,
2719 IFM_ETHER|IFM_MANUAL);
2720 } else
2721 ifmedia_set(&sc->bge_mii.mii_media,
2722 IFM_ETHER|IFM_AUTO);
2723 }
2724
2725 /*
2726 * When using the BCM5701 in PCI-X mode, data corruption has
2727 * been observed in the first few bytes of some received packets.
2728 * Aligning the packet buffer in memory eliminates the corruption.
2729 * Unfortunately, this misaligns the packet payloads. On platforms
2730 * which do not support unaligned accesses, we will realign the
2731 * payloads by copying the received packets.
2732 */
2733 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2734 /* If in PCI-X mode, work around the alignment bug. */
2735 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2736 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2737 BGE_PCISTATE_PCI_BUSSPEED)
2738 sc->bge_rx_alignment_bug = 1;
2739 }
2740
2741 /*
2742 * Call MI attach routine.
2743 */
2744 DPRINTFN(5, ("if_attach\n"));
2745 if_attach(ifp);
2746 DPRINTFN(5, ("ether_ifattach\n"));
2747 ether_ifattach(ifp, eaddr);
2748 #ifdef BGE_EVENT_COUNTERS
2749 /*
2750 * Attach event counters.
2751 */
2752 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2753 NULL, device_xname(sc->bge_dev), "intr");
2754 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2755 NULL, device_xname(sc->bge_dev), "tx_xoff");
2756 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2757 NULL, device_xname(sc->bge_dev), "tx_xon");
2758 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2759 NULL, device_xname(sc->bge_dev), "rx_xoff");
2760 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2761 NULL, device_xname(sc->bge_dev), "rx_xon");
2762 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2763 NULL, device_xname(sc->bge_dev), "rx_macctl");
2764 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2765 NULL, device_xname(sc->bge_dev), "xoffentered");
2766 #endif /* BGE_EVENT_COUNTERS */
2767 DPRINTFN(5, ("callout_init\n"));
2768 callout_init(&sc->bge_timeout, 0);
2769
2770 if (!pmf_device_register(self, NULL, NULL))
2771 aprint_error_dev(self, "couldn't establish power handler\n");
2772 else
2773 pmf_class_network_register(self, ifp);
2774 }
2775
2776 static void
2777 bge_release_resources(struct bge_softc *sc)
2778 {
2779 if (sc->bge_vpd_prodname != NULL)
2780 free(sc->bge_vpd_prodname, M_DEVBUF);
2781
2782 if (sc->bge_vpd_readonly != NULL)
2783 free(sc->bge_vpd_readonly, M_DEVBUF);
2784 }
2785
2786 static void
2787 bge_reset(struct bge_softc *sc)
2788 {
2789 u_int32_t cachesize, command, pcistate, new_pcistate;
2790 int i, val;
2791
2792 /* Save some important PCI state. */
2793 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2794 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2795 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2796
2797 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2798 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2799 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2800
2801 /*
2802 * Disable the firmware fastboot feature on 5752 ASIC
2803 * to avoid firmware timeout.
2804 */
2805 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2806 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2807 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2808 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2809
2810 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2811 /*
2812 * XXX: from FreeBSD/Linux; no documentation
2813 */
2814 if (sc->bge_pcie) {
2815 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2816 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2817 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2818 /* No idea what that actually means */
2819 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2820 val |= (1<<29);
2821 }
2822 }
2823
2824 /* Issue global reset */
2825 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2826
2827 DELAY(1000);
2828
2829 /*
2830 * XXX: from FreeBSD/Linux; no documentation
2831 */
2832 if (sc->bge_pcie) {
2833 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2834 pcireg_t reg;
2835
2836 DELAY(500000);
2837 /* XXX: Magic Numbers */
2838 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2839 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2840 reg | (1 << 15));
2841 }
2842 /*
2843 * XXX: Magic Numbers.
2844 * Sets maximal PCI-e payload and clears any PCI-e errors.
2845 * Should be replaced with references to PCI config-space
2846 * capability block for PCI-Express.
2847 */
2848 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2849 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2850
2851 }
2852
2853 /* Reset some of the PCI state that got zapped by reset */
2854 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2855 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2856 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2859 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2860
2861 /* Enable memory arbiter. */
2862 {
2863 uint32_t marbmode = 0;
2864 if (BGE_IS_5714_FAMILY(sc)) {
2865 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2866 }
2867 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2868 }
2869
2870 /*
2871 * Write the magic number to the firmware mailbox at 0xb50
2872 * so that the driver can synchronize with the firmware.
2873 */
2874 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2875
2876 /*
2877 * Poll the value location we just wrote until
2878 * we see the 1's complement of the magic number.
2879 * This indicates that the firmware initialization
2880 * is complete.
2881 */
2882 for (i = 0; i < BGE_TIMEOUT; i++) {
2883 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2884 if (val == ~BGE_MAGIC_NUMBER)
2885 break;
2886 DELAY(1000);
2887 }
2888
2889 if (i >= BGE_TIMEOUT) {
2890 aprint_error_dev(sc->bge_dev,
2891 "firmware handshake timed out, val = %x\n", val);
2892 /*
2893 * XXX: occasionally fired on bcm5721, but without
2894 * apparent harm. For now, keep going if we timeout
2895 * against PCI-E devices.
2896 */
2897 if (!sc->bge_pcie)
2898 return;
2899 }
2900
2901 /*
2902 * XXX Wait for the value of the PCISTATE register to
2903 * return to its original pre-reset state. This is a
2904 * fairly good indicator of reset completion. If we don't
2905 * wait for the reset to fully complete, trying to read
2906 * from the device's non-PCI registers may yield garbage
2907 * results.
2908 */
2909 for (i = 0; i < 10000; i++) {
2910 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2911 BGE_PCI_PCISTATE);
2912 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2913 (pcistate & ~BGE_PCISTATE_RESERVED))
2914 break;
2915 DELAY(10);
2916 }
2917 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2918 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2919 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2920 }
2921
2922 /* XXX: from FreeBSD/Linux; no documentation */
2923 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2924 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2925
2926 /* Enable memory arbiter. */
2927 /* XXX why do this twice? */
2928 {
2929 uint32_t marbmode = 0;
2930 if (BGE_IS_5714_FAMILY(sc)) {
2931 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2932 }
2933 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2934 }
2935
2936 /* Fix up byte swapping */
2937 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2938
2939 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2940
2941 DELAY(10000);
2942 }
2943
2944 /*
2945 * Frame reception handling. This is called if there's a frame
2946 * on the receive return list.
2947 *
2948 * Note: we have to be able to handle two possibilities here:
2949 * 1) the frame is from the jumbo recieve ring
2950 * 2) the frame is from the standard receive ring
2951 */
2952
2953 static void
2954 bge_rxeof(struct bge_softc *sc)
2955 {
2956 struct ifnet *ifp;
2957 int stdcnt = 0, jumbocnt = 0;
2958 bus_dmamap_t dmamap;
2959 bus_addr_t offset, toff;
2960 bus_size_t tlen;
2961 int tosync;
2962
2963 ifp = &sc->ethercom.ec_if;
2964
2965 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2966 offsetof(struct bge_ring_data, bge_status_block),
2967 sizeof (struct bge_status_block),
2968 BUS_DMASYNC_POSTREAD);
2969
2970 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2971 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2972 sc->bge_rx_saved_considx;
2973
2974 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2975
2976 if (tosync < 0) {
2977 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2978 sizeof (struct bge_rx_bd);
2979 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2980 toff, tlen, BUS_DMASYNC_POSTREAD);
2981 tosync = -tosync;
2982 }
2983
2984 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2985 offset, tosync * sizeof (struct bge_rx_bd),
2986 BUS_DMASYNC_POSTREAD);
2987
2988 while(sc->bge_rx_saved_considx !=
2989 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2990 struct bge_rx_bd *cur_rx;
2991 u_int32_t rxidx;
2992 struct mbuf *m = NULL;
2993
2994 cur_rx = &sc->bge_rdata->
2995 bge_rx_return_ring[sc->bge_rx_saved_considx];
2996
2997 rxidx = cur_rx->bge_idx;
2998 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2999
3000 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3001 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3002 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3003 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3004 jumbocnt++;
3005 bus_dmamap_sync(sc->bge_dmatag,
3006 sc->bge_cdata.bge_rx_jumbo_map,
3007 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3008 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3009 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3010 ifp->if_ierrors++;
3011 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3012 continue;
3013 }
3014 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3015 NULL)== ENOBUFS) {
3016 ifp->if_ierrors++;
3017 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3018 continue;
3019 }
3020 } else {
3021 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3022 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3023
3024 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3025 stdcnt++;
3026 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3027 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3028 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3029 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3030 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3031 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3032 ifp->if_ierrors++;
3033 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3034 continue;
3035 }
3036 if (bge_newbuf_std(sc, sc->bge_std,
3037 NULL, dmamap) == ENOBUFS) {
3038 ifp->if_ierrors++;
3039 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3040 continue;
3041 }
3042 }
3043
3044 ifp->if_ipackets++;
3045 #ifndef __NO_STRICT_ALIGNMENT
3046 /*
3047 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3048 * the Rx buffer has the layer-2 header unaligned.
3049 * If our CPU requires alignment, re-align by copying.
3050 */
3051 if (sc->bge_rx_alignment_bug) {
3052 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3053 cur_rx->bge_len);
3054 m->m_data += ETHER_ALIGN;
3055 }
3056 #endif
3057
3058 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3059 m->m_pkthdr.rcvif = ifp;
3060
3061 #if NBPFILTER > 0
3062 /*
3063 * Handle BPF listeners. Let the BPF user see the packet.
3064 */
3065 if (ifp->if_bpf)
3066 bpf_mtap(ifp->if_bpf, m);
3067 #endif
3068
3069 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3070
3071 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3072 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3073 /*
3074 * Rx transport checksum-offload may also
3075 * have bugs with packets which, when transmitted,
3076 * were `runts' requiring padding.
3077 */
3078 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3079 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3080 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3081 m->m_pkthdr.csum_data =
3082 cur_rx->bge_tcp_udp_csum;
3083 m->m_pkthdr.csum_flags |=
3084 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3085 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3086 }
3087
3088 /*
3089 * If we received a packet with a vlan tag, pass it
3090 * to vlan_input() instead of ether_input().
3091 */
3092 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3093 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3094
3095 (*ifp->if_input)(ifp, m);
3096 }
3097
3098 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3099 if (stdcnt)
3100 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3101 if (jumbocnt)
3102 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3103 }
3104
3105 static void
3106 bge_txeof(struct bge_softc *sc)
3107 {
3108 struct bge_tx_bd *cur_tx = NULL;
3109 struct ifnet *ifp;
3110 struct txdmamap_pool_entry *dma;
3111 bus_addr_t offset, toff;
3112 bus_size_t tlen;
3113 int tosync;
3114 struct mbuf *m;
3115
3116 ifp = &sc->ethercom.ec_if;
3117
3118 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3119 offsetof(struct bge_ring_data, bge_status_block),
3120 sizeof (struct bge_status_block),
3121 BUS_DMASYNC_POSTREAD);
3122
3123 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3124 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3125 sc->bge_tx_saved_considx;
3126
3127 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3128
3129 if (tosync < 0) {
3130 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3131 sizeof (struct bge_tx_bd);
3132 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3133 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3134 tosync = -tosync;
3135 }
3136
3137 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3138 offset, tosync * sizeof (struct bge_tx_bd),
3139 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3140
3141 /*
3142 * Go through our tx ring and free mbufs for those
3143 * frames that have been sent.
3144 */
3145 while (sc->bge_tx_saved_considx !=
3146 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3147 u_int32_t idx = 0;
3148
3149 idx = sc->bge_tx_saved_considx;
3150 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3151 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3152 ifp->if_opackets++;
3153 m = sc->bge_cdata.bge_tx_chain[idx];
3154 if (m != NULL) {
3155 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3156 dma = sc->txdma[idx];
3157 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3158 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3159 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3160 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3161 sc->txdma[idx] = NULL;
3162
3163 m_freem(m);
3164 }
3165 sc->bge_txcnt--;
3166 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3167 ifp->if_timer = 0;
3168 }
3169
3170 if (cur_tx != NULL)
3171 ifp->if_flags &= ~IFF_OACTIVE;
3172 }
3173
3174 static int
3175 bge_intr(void *xsc)
3176 {
3177 struct bge_softc *sc;
3178 struct ifnet *ifp;
3179
3180 sc = xsc;
3181 ifp = &sc->ethercom.ec_if;
3182
3183 /*
3184 * Ascertain whether the interrupt is from this bge device.
3185 * Do the cheap test first.
3186 */
3187 if ((sc->bge_rdata->bge_status_block.bge_status &
3188 BGE_STATFLAG_UPDATED) == 0) {
3189 /*
3190 * Sometimes, the interrupt comes in before the
3191 * DMA update of the status block (performed prior
3192 * to the interrupt itself) has completed.
3193 * In that case, do the (extremely expensive!)
3194 * PCI-config-space register read.
3195 */
3196 uint32_t pcistate =
3197 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3198
3199 if (pcistate & BGE_PCISTATE_INTR_STATE)
3200 return (0);
3201
3202 }
3203 /*
3204 * If we reach here, then the interrupt is for us.
3205 */
3206
3207 /* Ack interrupt and stop others from occuring. */
3208 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3209
3210 BGE_EVCNT_INCR(sc->bge_ev_intr);
3211
3212 /*
3213 * Process link state changes.
3214 * Grrr. The link status word in the status block does
3215 * not work correctly on the BCM5700 rev AX and BX chips,
3216 * according to all available information. Hence, we have
3217 * to enable MII interrupts in order to properly obtain
3218 * async link changes. Unfortunately, this also means that
3219 * we have to read the MAC status register to detect link
3220 * changes, thereby adding an additional register access to
3221 * the interrupt handler.
3222 */
3223
3224 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3225 u_int32_t status;
3226
3227 status = CSR_READ_4(sc, BGE_MAC_STS);
3228 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3229 sc->bge_link = 0;
3230 callout_stop(&sc->bge_timeout);
3231 bge_tick(sc);
3232 /* Clear the interrupt */
3233 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3234 BGE_EVTENB_MI_INTERRUPT);
3235 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3236 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3237 BRGPHY_INTRS);
3238 }
3239 } else {
3240 u_int32_t status;
3241
3242 status = CSR_READ_4(sc, BGE_MAC_STS);
3243 if (status & BGE_MACSTAT_LINK_CHANGED) {
3244 sc->bge_link = 0;
3245 callout_stop(&sc->bge_timeout);
3246 bge_tick(sc);
3247 /* Clear the interrupt */
3248 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3249 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3250 BGE_MACSTAT_LINK_CHANGED);
3251 }
3252 }
3253
3254 if (ifp->if_flags & IFF_RUNNING) {
3255 /* Check RX return ring producer/consumer */
3256 bge_rxeof(sc);
3257
3258 /* Check TX ring producer/consumer */
3259 bge_txeof(sc);
3260 }
3261
3262 if (sc->bge_pending_rxintr_change) {
3263 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3264 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3265 uint32_t junk;
3266
3267 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3268 DELAY(10);
3269 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3270
3271 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3272 DELAY(10);
3273 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3274
3275 sc->bge_pending_rxintr_change = 0;
3276 }
3277 bge_handle_events(sc);
3278
3279 /* Re-enable interrupts. */
3280 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3281
3282 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3283 bge_start(ifp);
3284
3285 return (1);
3286 }
3287
3288 static void
3289 bge_tick(void *xsc)
3290 {
3291 struct bge_softc *sc = xsc;
3292 struct mii_data *mii = &sc->bge_mii;
3293 int s;
3294
3295 s = splnet();
3296
3297 bge_stats_update(sc);
3298 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3299
3300 if (sc->bge_tbi) {
3301 if (CSR_READ_4(sc, BGE_MAC_STS) &
3302 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3303 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3304 }
3305 } else
3306 mii_tick(mii);
3307
3308 splx(s);
3309 }
3310
3311 static void
3312 bge_stats_update(struct bge_softc *sc)
3313 {
3314 struct ifnet *ifp = &sc->ethercom.ec_if;
3315 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3316 bus_size_t rstats = BGE_RX_STATS;
3317
3318 #define READ_RSTAT(sc, stats, stat) \
3319 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3320
3321 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3322 ifp->if_collisions +=
3323 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3324 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3325 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3326 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3327
3328 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3329 READ_RSTAT(sc, rstats, outXoffSent));
3330 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3331 READ_RSTAT(sc, rstats, outXonSent));
3332 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3333 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3334 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3335 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3336 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3337 READ_RSTAT(sc, rstats, macControlFramesReceived));
3338 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3339 READ_RSTAT(sc, rstats, xoffStateEntered));
3340 return;
3341 }
3342
3343 #undef READ_RSTAT
3344 #define READ_STAT(sc, stats, stat) \
3345 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3346
3347 ifp->if_collisions +=
3348 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3349 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3350 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3351 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3352 ifp->if_collisions;
3353
3354 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3355 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3356 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3357 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3358 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3359 READ_STAT(sc, stats,
3360 xoffPauseFramesReceived.bge_addr_lo));
3361 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3362 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3363 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3364 READ_STAT(sc, stats,
3365 macControlFramesReceived.bge_addr_lo));
3366 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3367 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3368
3369 #undef READ_STAT
3370
3371 #ifdef notdef
3372 ifp->if_collisions +=
3373 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3374 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3375 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3376 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3377 ifp->if_collisions;
3378 #endif
3379 }
3380
3381 /*
3382 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3383 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3384 * but when such padded frames employ the bge IP/TCP checksum offload,
3385 * the hardware checksum assist gives incorrect results (possibly
3386 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3387 * If we pad such runts with zeros, the onboard checksum comes out correct.
3388 */
3389 static inline int
3390 bge_cksum_pad(struct mbuf *pkt)
3391 {
3392 struct mbuf *last = NULL;
3393 int padlen;
3394
3395 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3396
3397 /* if there's only the packet-header and we can pad there, use it. */
3398 if (pkt->m_pkthdr.len == pkt->m_len &&
3399 M_TRAILINGSPACE(pkt) >= padlen) {
3400 last = pkt;
3401 } else {
3402 /*
3403 * Walk packet chain to find last mbuf. We will either
3404 * pad there, or append a new mbuf and pad it
3405 * (thus perhaps avoiding the bcm5700 dma-min bug).
3406 */
3407 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3408 continue; /* do nothing */
3409 }
3410
3411 /* `last' now points to last in chain. */
3412 if (M_TRAILINGSPACE(last) < padlen) {
3413 /* Allocate new empty mbuf, pad it. Compact later. */
3414 struct mbuf *n;
3415 MGET(n, M_DONTWAIT, MT_DATA);
3416 if (n == NULL)
3417 return ENOBUFS;
3418 n->m_len = 0;
3419 last->m_next = n;
3420 last = n;
3421 }
3422 }
3423
3424 KDASSERT(!M_READONLY(last));
3425 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3426
3427 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3428 memset(mtod(last, char *) + last->m_len, 0, padlen);
3429 last->m_len += padlen;
3430 pkt->m_pkthdr.len += padlen;
3431 return 0;
3432 }
3433
3434 /*
3435 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3436 */
3437 static inline int
3438 bge_compact_dma_runt(struct mbuf *pkt)
3439 {
3440 struct mbuf *m, *prev;
3441 int totlen, prevlen;
3442
3443 prev = NULL;
3444 totlen = 0;
3445 prevlen = -1;
3446
3447 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3448 int mlen = m->m_len;
3449 int shortfall = 8 - mlen ;
3450
3451 totlen += mlen;
3452 if (mlen == 0) {
3453 continue;
3454 }
3455 if (mlen >= 8)
3456 continue;
3457
3458 /* If we get here, mbuf data is too small for DMA engine.
3459 * Try to fix by shuffling data to prev or next in chain.
3460 * If that fails, do a compacting deep-copy of the whole chain.
3461 */
3462
3463 /* Internal frag. If fits in prev, copy it there. */
3464 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3465 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3466 prev->m_len += mlen;
3467 m->m_len = 0;
3468 /* XXX stitch chain */
3469 prev->m_next = m_free(m);
3470 m = prev;
3471 continue;
3472 }
3473 else if (m->m_next != NULL &&
3474 M_TRAILINGSPACE(m) >= shortfall &&
3475 m->m_next->m_len >= (8 + shortfall)) {
3476 /* m is writable and have enough data in next, pull up. */
3477
3478 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3479 shortfall);
3480 m->m_len += shortfall;
3481 m->m_next->m_len -= shortfall;
3482 m->m_next->m_data += shortfall;
3483 }
3484 else if (m->m_next == NULL || 1) {
3485 /* Got a runt at the very end of the packet.
3486 * borrow data from the tail of the preceding mbuf and
3487 * update its length in-place. (The original data is still
3488 * valid, so we can do this even if prev is not writable.)
3489 */
3490
3491 /* if we'd make prev a runt, just move all of its data. */
3492 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3493 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3494
3495 if ((prev->m_len - shortfall) < 8)
3496 shortfall = prev->m_len;
3497
3498 #ifdef notyet /* just do the safe slow thing for now */
3499 if (!M_READONLY(m)) {
3500 if (M_LEADINGSPACE(m) < shorfall) {
3501 void *m_dat;
3502 m_dat = (m->m_flags & M_PKTHDR) ?
3503 m->m_pktdat : m->dat;
3504 memmove(m_dat, mtod(m, void*), m->m_len);
3505 m->m_data = m_dat;
3506 }
3507 } else
3508 #endif /* just do the safe slow thing */
3509 {
3510 struct mbuf * n = NULL;
3511 int newprevlen = prev->m_len - shortfall;
3512
3513 MGET(n, M_NOWAIT, MT_DATA);
3514 if (n == NULL)
3515 return ENOBUFS;
3516 KASSERT(m->m_len + shortfall < MLEN
3517 /*,
3518 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3519
3520 /* first copy the data we're stealing from prev */
3521 memcpy(n->m_data, prev->m_data + newprevlen,
3522 shortfall);
3523
3524 /* update prev->m_len accordingly */
3525 prev->m_len -= shortfall;
3526
3527 /* copy data from runt m */
3528 memcpy(n->m_data + shortfall, m->m_data,
3529 m->m_len);
3530
3531 /* n holds what we stole from prev, plus m */
3532 n->m_len = shortfall + m->m_len;
3533
3534 /* stitch n into chain and free m */
3535 n->m_next = m->m_next;
3536 prev->m_next = n;
3537 /* KASSERT(m->m_next == NULL); */
3538 m->m_next = NULL;
3539 m_free(m);
3540 m = n; /* for continuing loop */
3541 }
3542 }
3543 prevlen = m->m_len;
3544 }
3545 return 0;
3546 }
3547
3548 /*
3549 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3550 * pointers to descriptors.
3551 */
3552 static int
3553 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3554 {
3555 struct bge_tx_bd *f = NULL;
3556 u_int32_t frag, cur;
3557 u_int16_t csum_flags = 0;
3558 u_int16_t txbd_tso_flags = 0;
3559 struct txdmamap_pool_entry *dma;
3560 bus_dmamap_t dmamap;
3561 int i = 0;
3562 struct m_tag *mtag;
3563 int use_tso, maxsegsize, error;
3564
3565 cur = frag = *txidx;
3566
3567 if (m_head->m_pkthdr.csum_flags) {
3568 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3569 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3570 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3571 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3572 }
3573
3574 /*
3575 * If we were asked to do an outboard checksum, and the NIC
3576 * has the bug where it sometimes adds in the Ethernet padding,
3577 * explicitly pad with zeros so the cksum will be correct either way.
3578 * (For now, do this for all chip versions, until newer
3579 * are confirmed to not require the workaround.)
3580 */
3581 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3582 #ifdef notyet
3583 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3584 #endif
3585 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3586 goto check_dma_bug;
3587
3588 if (bge_cksum_pad(m_head) != 0) {
3589 return ENOBUFS;
3590 }
3591
3592 check_dma_bug:
3593 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3594 goto doit;
3595 /*
3596 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3597 * less than eight bytes. If we encounter a teeny mbuf
3598 * at the end of a chain, we can pad. Otherwise, copy.
3599 */
3600 if (bge_compact_dma_runt(m_head) != 0)
3601 return ENOBUFS;
3602
3603 doit:
3604 dma = SLIST_FIRST(&sc->txdma_list);
3605 if (dma == NULL)
3606 return ENOBUFS;
3607 dmamap = dma->dmamap;
3608
3609 /*
3610 * Set up any necessary TSO state before we start packing...
3611 */
3612 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3613 if (!use_tso) {
3614 maxsegsize = 0;
3615 } else { /* TSO setup */
3616 unsigned mss;
3617 struct ether_header *eh;
3618 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3619 struct mbuf * m0 = m_head;
3620 struct ip *ip;
3621 struct tcphdr *th;
3622 int iphl, hlen;
3623
3624 /*
3625 * XXX It would be nice if the mbuf pkthdr had offset
3626 * fields for the protocol headers.
3627 */
3628
3629 eh = mtod(m0, struct ether_header *);
3630 switch (htons(eh->ether_type)) {
3631 case ETHERTYPE_IP:
3632 offset = ETHER_HDR_LEN;
3633 break;
3634
3635 case ETHERTYPE_VLAN:
3636 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3637 break;
3638
3639 default:
3640 /*
3641 * Don't support this protocol or encapsulation.
3642 */
3643 return (ENOBUFS);
3644 }
3645
3646 /*
3647 * TCP/IP headers are in the first mbuf; we can do
3648 * this the easy way.
3649 */
3650 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3651 hlen = iphl + offset;
3652 if (__predict_false(m0->m_len <
3653 (hlen + sizeof(struct tcphdr)))) {
3654
3655 aprint_debug_dev(sc->bge_dev,
3656 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3657 "not handled yet\n",
3658 m0->m_len, hlen+ sizeof(struct tcphdr));
3659 #ifdef NOTYET
3660 /*
3661 * XXX jonathan (at) NetBSD.org: untested.
3662 * how to force this branch to be taken?
3663 */
3664 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3665
3666 m_copydata(m0, offset, sizeof(ip), &ip);
3667 m_copydata(m0, hlen, sizeof(th), &th);
3668
3669 ip.ip_len = 0;
3670
3671 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3672 sizeof(ip.ip_len), &ip.ip_len);
3673
3674 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3675 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3676
3677 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3678 sizeof(th.th_sum), &th.th_sum);
3679
3680 hlen += th.th_off << 2;
3681 iptcp_opt_words = hlen;
3682 #else
3683 /*
3684 * if_wm "hard" case not yet supported, can we not
3685 * mandate it out of existence?
3686 */
3687 (void) ip; (void)th; (void) ip_tcp_hlen;
3688
3689 return ENOBUFS;
3690 #endif
3691 } else {
3692 ip = (struct ip *) (mtod(m0, char *) + offset);
3693 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3694 ip_tcp_hlen = iphl + (th->th_off << 2);
3695
3696 /* Total IP/TCP options, in 32-bit words */
3697 iptcp_opt_words = (ip_tcp_hlen
3698 - sizeof(struct tcphdr)
3699 - sizeof(struct ip)) >> 2;
3700 }
3701 if (BGE_IS_5750_OR_BEYOND(sc)) {
3702 th->th_sum = 0;
3703 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3704 } else {
3705 /*
3706 * XXX jonathan (at) NetBSD.org: 5705 untested.
3707 * Requires TSO firmware patch for 5701/5703/5704.
3708 */
3709 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3710 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3711 }
3712
3713 mss = m_head->m_pkthdr.segsz;
3714 txbd_tso_flags |=
3715 BGE_TXBDFLAG_CPU_PRE_DMA |
3716 BGE_TXBDFLAG_CPU_POST_DMA;
3717
3718 /*
3719 * Our NIC TSO-assist assumes TSO has standard, optionless
3720 * IPv4 and TCP headers, which total 40 bytes. By default,
3721 * the NIC copies 40 bytes of IP/TCP header from the
3722 * supplied header into the IP/TCP header portion of
3723 * each post-TSO-segment. If the supplied packet has IP or
3724 * TCP options, we need to tell the NIC to copy those extra
3725 * bytes into each post-TSO header, in addition to the normal
3726 * 40-byte IP/TCP header (and to leave space accordingly).
3727 * Unfortunately, the driver encoding of option length
3728 * varies across different ASIC families.
3729 */
3730 tcp_seg_flags = 0;
3731 if (iptcp_opt_words) {
3732 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3733 tcp_seg_flags =
3734 iptcp_opt_words << 11;
3735 } else {
3736 txbd_tso_flags |=
3737 iptcp_opt_words << 12;
3738 }
3739 }
3740 maxsegsize = mss | tcp_seg_flags;
3741 ip->ip_len = htons(mss + ip_tcp_hlen);
3742
3743 } /* TSO setup */
3744
3745 /*
3746 * Start packing the mbufs in this chain into
3747 * the fragment pointers. Stop when we run out
3748 * of fragments or hit the end of the mbuf chain.
3749 */
3750 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3751 BUS_DMA_NOWAIT);
3752 if (error) {
3753 return(ENOBUFS);
3754 }
3755 /*
3756 * Sanity check: avoid coming within 16 descriptors
3757 * of the end of the ring.
3758 */
3759 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3760 BGE_TSO_PRINTF(("%s: "
3761 " dmamap_load_mbuf too close to ring wrap\n",
3762 device_xname(sc->bge_dev)));
3763 goto fail_unload;
3764 }
3765
3766 mtag = sc->ethercom.ec_nvlans ?
3767 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3768
3769
3770 /* Iterate over dmap-map fragments. */
3771 for (i = 0; i < dmamap->dm_nsegs; i++) {
3772 f = &sc->bge_rdata->bge_tx_ring[frag];
3773 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3774 break;
3775
3776 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3777 f->bge_len = dmamap->dm_segs[i].ds_len;
3778
3779 /*
3780 * For 5751 and follow-ons, for TSO we must turn
3781 * off checksum-assist flag in the tx-descr, and
3782 * supply the ASIC-revision-specific encoding
3783 * of TSO flags and segsize.
3784 */
3785 if (use_tso) {
3786 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3787 f->bge_rsvd = maxsegsize;
3788 f->bge_flags = csum_flags | txbd_tso_flags;
3789 } else {
3790 f->bge_rsvd = 0;
3791 f->bge_flags =
3792 (csum_flags | txbd_tso_flags) & 0x0fff;
3793 }
3794 } else {
3795 f->bge_rsvd = 0;
3796 f->bge_flags = csum_flags;
3797 }
3798
3799 if (mtag != NULL) {
3800 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3801 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3802 } else {
3803 f->bge_vlan_tag = 0;
3804 }
3805 cur = frag;
3806 BGE_INC(frag, BGE_TX_RING_CNT);
3807 }
3808
3809 if (i < dmamap->dm_nsegs) {
3810 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3811 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3812 goto fail_unload;
3813 }
3814
3815 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3816 BUS_DMASYNC_PREWRITE);
3817
3818 if (frag == sc->bge_tx_saved_considx) {
3819 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3820 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3821
3822 goto fail_unload;
3823 }
3824
3825 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3826 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3827 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3828 sc->txdma[cur] = dma;
3829 sc->bge_txcnt += dmamap->dm_nsegs;
3830
3831 *txidx = frag;
3832
3833 return(0);
3834
3835 fail_unload:
3836 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3837
3838 return ENOBUFS;
3839 }
3840
3841 /*
3842 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3843 * to the mbuf data regions directly in the transmit descriptors.
3844 */
3845 static void
3846 bge_start(struct ifnet *ifp)
3847 {
3848 struct bge_softc *sc;
3849 struct mbuf *m_head = NULL;
3850 u_int32_t prodidx;
3851 int pkts = 0;
3852
3853 sc = ifp->if_softc;
3854
3855 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3856 return;
3857
3858 prodidx = sc->bge_tx_prodidx;
3859
3860 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3861 IFQ_POLL(&ifp->if_snd, m_head);
3862 if (m_head == NULL)
3863 break;
3864
3865 #if 0
3866 /*
3867 * XXX
3868 * safety overkill. If this is a fragmented packet chain
3869 * with delayed TCP/UDP checksums, then only encapsulate
3870 * it if we have enough descriptors to handle the entire
3871 * chain at once.
3872 * (paranoia -- may not actually be needed)
3873 */
3874 if (m_head->m_flags & M_FIRSTFRAG &&
3875 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3876 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3877 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3878 ifp->if_flags |= IFF_OACTIVE;
3879 break;
3880 }
3881 }
3882 #endif
3883
3884 /*
3885 * Pack the data into the transmit ring. If we
3886 * don't have room, set the OACTIVE flag and wait
3887 * for the NIC to drain the ring.
3888 */
3889 if (bge_encap(sc, m_head, &prodidx)) {
3890 ifp->if_flags |= IFF_OACTIVE;
3891 break;
3892 }
3893
3894 /* now we are committed to transmit the packet */
3895 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3896 pkts++;
3897
3898 #if NBPFILTER > 0
3899 /*
3900 * If there's a BPF listener, bounce a copy of this frame
3901 * to him.
3902 */
3903 if (ifp->if_bpf)
3904 bpf_mtap(ifp->if_bpf, m_head);
3905 #endif
3906 }
3907 if (pkts == 0)
3908 return;
3909
3910 /* Transmit */
3911 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3912 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3913 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3914
3915 sc->bge_tx_prodidx = prodidx;
3916
3917 /*
3918 * Set a timeout in case the chip goes out to lunch.
3919 */
3920 ifp->if_timer = 5;
3921 }
3922
3923 static int
3924 bge_init(struct ifnet *ifp)
3925 {
3926 struct bge_softc *sc = ifp->if_softc;
3927 const u_int16_t *m;
3928 int s, error = 0;
3929
3930 s = splnet();
3931
3932 ifp = &sc->ethercom.ec_if;
3933
3934 /* Cancel pending I/O and flush buffers. */
3935 bge_stop(ifp, 0);
3936 bge_reset(sc);
3937 bge_chipinit(sc);
3938
3939 /*
3940 * Init the various state machines, ring
3941 * control blocks and firmware.
3942 */
3943 error = bge_blockinit(sc);
3944 if (error != 0) {
3945 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3946 error);
3947 splx(s);
3948 return error;
3949 }
3950
3951 ifp = &sc->ethercom.ec_if;
3952
3953 /* Specify MTU. */
3954 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3955 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3956
3957 /* Load our MAC address. */
3958 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3959 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3960 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3961
3962 /* Enable or disable promiscuous mode as needed. */
3963 if (ifp->if_flags & IFF_PROMISC) {
3964 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3965 } else {
3966 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3967 }
3968
3969 /* Program multicast filter. */
3970 bge_setmulti(sc);
3971
3972 /* Init RX ring. */
3973 bge_init_rx_ring_std(sc);
3974
3975 /* Init jumbo RX ring. */
3976 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3977 bge_init_rx_ring_jumbo(sc);
3978
3979 /* Init our RX return ring index */
3980 sc->bge_rx_saved_considx = 0;
3981
3982 /* Init TX ring. */
3983 bge_init_tx_ring(sc);
3984
3985 /* Turn on transmitter */
3986 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3987
3988 /* Turn on receiver */
3989 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3990
3991 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3992
3993 /* Tell firmware we're alive. */
3994 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3995
3996 /* Enable host interrupts. */
3997 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3998 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3999 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4000
4001 if ((error = bge_ifmedia_upd(ifp)) != 0)
4002 goto out;
4003
4004 ifp->if_flags |= IFF_RUNNING;
4005 ifp->if_flags &= ~IFF_OACTIVE;
4006
4007 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4008
4009 out:
4010 splx(s);
4011
4012 return error;
4013 }
4014
4015 /*
4016 * Set media options.
4017 */
4018 static int
4019 bge_ifmedia_upd(struct ifnet *ifp)
4020 {
4021 struct bge_softc *sc = ifp->if_softc;
4022 struct mii_data *mii = &sc->bge_mii;
4023 struct ifmedia *ifm = &sc->bge_ifmedia;
4024 int rc;
4025
4026 /* If this is a 1000baseX NIC, enable the TBI port. */
4027 if (sc->bge_tbi) {
4028 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4029 return(EINVAL);
4030 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4031 case IFM_AUTO:
4032 break;
4033 case IFM_1000_SX:
4034 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4035 BGE_CLRBIT(sc, BGE_MAC_MODE,
4036 BGE_MACMODE_HALF_DUPLEX);
4037 } else {
4038 BGE_SETBIT(sc, BGE_MAC_MODE,
4039 BGE_MACMODE_HALF_DUPLEX);
4040 }
4041 break;
4042 default:
4043 return(EINVAL);
4044 }
4045 /* XXX 802.3x flow control for 1000BASE-SX */
4046 return(0);
4047 }
4048
4049 sc->bge_link = 0;
4050 if ((rc = mii_mediachg(mii)) == ENXIO)
4051 return 0;
4052 return rc;
4053 }
4054
4055 /*
4056 * Report current media status.
4057 */
4058 static void
4059 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4060 {
4061 struct bge_softc *sc = ifp->if_softc;
4062 struct mii_data *mii = &sc->bge_mii;
4063
4064 if (sc->bge_tbi) {
4065 ifmr->ifm_status = IFM_AVALID;
4066 ifmr->ifm_active = IFM_ETHER;
4067 if (CSR_READ_4(sc, BGE_MAC_STS) &
4068 BGE_MACSTAT_TBI_PCS_SYNCHED)
4069 ifmr->ifm_status |= IFM_ACTIVE;
4070 ifmr->ifm_active |= IFM_1000_SX;
4071 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4072 ifmr->ifm_active |= IFM_HDX;
4073 else
4074 ifmr->ifm_active |= IFM_FDX;
4075 return;
4076 }
4077
4078 mii_pollstat(mii);
4079 ifmr->ifm_status = mii->mii_media_status;
4080 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4081 sc->bge_flowflags;
4082 }
4083
4084 static int
4085 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4086 {
4087 struct bge_softc *sc = ifp->if_softc;
4088 struct ifreq *ifr = (struct ifreq *) data;
4089 int s, error = 0;
4090 struct mii_data *mii;
4091
4092 s = splnet();
4093
4094 switch(command) {
4095 case SIOCSIFFLAGS:
4096 if (ifp->if_flags & IFF_UP) {
4097 /*
4098 * If only the state of the PROMISC flag changed,
4099 * then just use the 'set promisc mode' command
4100 * instead of reinitializing the entire NIC. Doing
4101 * a full re-init means reloading the firmware and
4102 * waiting for it to start up, which may take a
4103 * second or two.
4104 */
4105 if (ifp->if_flags & IFF_RUNNING &&
4106 ifp->if_flags & IFF_PROMISC &&
4107 !(sc->bge_if_flags & IFF_PROMISC)) {
4108 BGE_SETBIT(sc, BGE_RX_MODE,
4109 BGE_RXMODE_RX_PROMISC);
4110 } else if (ifp->if_flags & IFF_RUNNING &&
4111 !(ifp->if_flags & IFF_PROMISC) &&
4112 sc->bge_if_flags & IFF_PROMISC) {
4113 BGE_CLRBIT(sc, BGE_RX_MODE,
4114 BGE_RXMODE_RX_PROMISC);
4115 } else if (!(sc->bge_if_flags & IFF_UP))
4116 bge_init(ifp);
4117 } else {
4118 if (ifp->if_flags & IFF_RUNNING)
4119 bge_stop(ifp, 1);
4120 }
4121 sc->bge_if_flags = ifp->if_flags;
4122 error = 0;
4123 break;
4124 case SIOCSIFMEDIA:
4125 /* XXX Flow control is not supported for 1000BASE-SX */
4126 if (sc->bge_tbi) {
4127 ifr->ifr_media &= ~IFM_ETH_FMASK;
4128 sc->bge_flowflags = 0;
4129 }
4130
4131 /* Flow control requires full-duplex mode. */
4132 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4133 (ifr->ifr_media & IFM_FDX) == 0) {
4134 ifr->ifr_media &= ~IFM_ETH_FMASK;
4135 }
4136 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4137 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4138 /* We an do both TXPAUSE and RXPAUSE. */
4139 ifr->ifr_media |=
4140 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4141 }
4142 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4143 }
4144 /* FALLTHROUGH */
4145 case SIOCGIFMEDIA:
4146 if (sc->bge_tbi) {
4147 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4148 command);
4149 } else {
4150 mii = &sc->bge_mii;
4151 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4152 command);
4153 }
4154 break;
4155 default:
4156 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4157 break;
4158
4159 error = 0;
4160
4161 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4162 ;
4163 else if (ifp->if_flags & IFF_RUNNING)
4164 bge_setmulti(sc);
4165 break;
4166 }
4167
4168 splx(s);
4169
4170 return(error);
4171 }
4172
4173 static void
4174 bge_watchdog(struct ifnet *ifp)
4175 {
4176 struct bge_softc *sc;
4177
4178 sc = ifp->if_softc;
4179
4180 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4181
4182 ifp->if_flags &= ~IFF_RUNNING;
4183 bge_init(ifp);
4184
4185 ifp->if_oerrors++;
4186 }
4187
4188 static void
4189 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4190 {
4191 int i;
4192
4193 BGE_CLRBIT(sc, reg, bit);
4194
4195 for (i = 0; i < BGE_TIMEOUT; i++) {
4196 if ((CSR_READ_4(sc, reg) & bit) == 0)
4197 return;
4198 delay(100);
4199 if (sc->bge_pcie)
4200 DELAY(1000);
4201 }
4202
4203 aprint_error_dev(sc->bge_dev,
4204 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4205 }
4206
4207 /*
4208 * Stop the adapter and free any mbufs allocated to the
4209 * RX and TX lists.
4210 */
4211 static void
4212 bge_stop(struct ifnet *ifp, int disable)
4213 {
4214 struct bge_softc *sc = ifp->if_softc;
4215
4216 callout_stop(&sc->bge_timeout);
4217
4218 /*
4219 * Disable all of the receiver blocks
4220 */
4221 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4222 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4223 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4224 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4225 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4226 }
4227 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4228 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4229 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4230
4231 /*
4232 * Disable all of the transmit blocks
4233 */
4234 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4235 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4236 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4237 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4238 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4239 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4240 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4241 }
4242 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4243
4244 /*
4245 * Shut down all of the memory managers and related
4246 * state machines.
4247 */
4248 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4249 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4250 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4251 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4252 }
4253
4254 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4255 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4256
4257 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4258 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4259 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4260 }
4261
4262 /* Disable host interrupts. */
4263 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4264 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4265
4266 /*
4267 * Tell firmware we're shutting down.
4268 */
4269 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4270
4271 /* Free the RX lists. */
4272 bge_free_rx_ring_std(sc);
4273
4274 /* Free jumbo RX list. */
4275 bge_free_rx_ring_jumbo(sc);
4276
4277 /* Free TX buffers. */
4278 bge_free_tx_ring(sc);
4279
4280 /*
4281 * Isolate/power down the PHY.
4282 */
4283 if (!sc->bge_tbi)
4284 mii_down(&sc->bge_mii);
4285
4286 sc->bge_link = 0;
4287
4288 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4289
4290 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4291 }
4292
4293 static int
4294 sysctl_bge_verify(SYSCTLFN_ARGS)
4295 {
4296 int error, t;
4297 struct sysctlnode node;
4298
4299 node = *rnode;
4300 t = *(int*)rnode->sysctl_data;
4301 node.sysctl_data = &t;
4302 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4303 if (error || newp == NULL)
4304 return (error);
4305
4306 #if 0
4307 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4308 node.sysctl_num, rnode->sysctl_num));
4309 #endif
4310
4311 if (node.sysctl_num == bge_rxthresh_nodenum) {
4312 if (t < 0 || t >= NBGE_RX_THRESH)
4313 return (EINVAL);
4314 bge_update_all_threshes(t);
4315 } else
4316 return (EINVAL);
4317
4318 *(int*)rnode->sysctl_data = t;
4319
4320 return (0);
4321 }
4322
4323 /*
4324 * Set up sysctl(3) MIB, hw.bge.*.
4325 *
4326 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4327 */
4328 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4329 {
4330 int rc, bge_root_num;
4331 const struct sysctlnode *node;
4332
4333 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4334 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4335 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4336 goto err;
4337 }
4338
4339 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4340 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4341 SYSCTL_DESCR("BGE interface controls"),
4342 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4343 goto err;
4344 }
4345
4346 bge_root_num = node->sysctl_num;
4347
4348 /* BGE Rx interrupt mitigation level */
4349 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4350 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4351 CTLTYPE_INT, "rx_lvl",
4352 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4353 sysctl_bge_verify, 0,
4354 &bge_rx_thresh_lvl,
4355 0, CTL_HW, bge_root_num, CTL_CREATE,
4356 CTL_EOL)) != 0) {
4357 goto err;
4358 }
4359
4360 bge_rxthresh_nodenum = node->sysctl_num;
4361
4362 return;
4363
4364 err:
4365 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4366 }
4367