Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.147
      1 /*	$NetBSD: if_bge.c,v 1.147 2008/06/17 06:04:07 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.147 2008/06/17 06:04:07 mlelstv Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #ifdef INET
    104 #include <netinet/in.h>
    105 #include <netinet/in_systm.h>
    106 #include <netinet/in_var.h>
    107 #include <netinet/ip.h>
    108 #endif
    109 
    110 /* Headers for TCP  Segmentation Offload (TSO) */
    111 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113 #include <netinet/ip.h>			/* for struct ip */
    114 #include <netinet/tcp.h>		/* for struct tcphdr */
    115 
    116 
    117 #if NBPFILTER > 0
    118 #include <net/bpf.h>
    119 #endif
    120 
    121 #include <dev/pci/pcireg.h>
    122 #include <dev/pci/pcivar.h>
    123 #include <dev/pci/pcidevs.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/miidevs.h>
    128 #include <dev/mii/brgphyreg.h>
    129 
    130 #include <dev/pci/if_bgereg.h>
    131 
    132 #include <uvm/uvm_extern.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 32,   2 },
    170 	{ 50,   4 },
    171 	{ 100,  8 },
    172 	{ 192, 16 },
    173 	{ 416, 32 },
    174 	{ 598, 46 }
    175 };
    176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    177 
    178 /* XXX patchable; should be sysctl'able */
    179 static int	bge_auto_thresh = 1;
    180 static int	bge_rx_thresh_lvl;
    181 
    182 static int	bge_rxthresh_nodenum;
    183 
    184 static int	bge_probe(device_t, cfdata_t, void *);
    185 static void	bge_attach(device_t, device_t, void *);
    186 static void	bge_release_resources(struct bge_softc *);
    187 static void	bge_txeof(struct bge_softc *);
    188 static void	bge_rxeof(struct bge_softc *);
    189 
    190 static void	bge_tick(void *);
    191 static void	bge_stats_update(struct bge_softc *);
    192 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    193 
    194 static int	bge_intr(void *);
    195 static void	bge_start(struct ifnet *);
    196 static int	bge_ioctl(struct ifnet *, u_long, void *);
    197 static int	bge_init(struct ifnet *);
    198 static void	bge_stop(struct ifnet *, int);
    199 static void	bge_watchdog(struct ifnet *);
    200 static int	bge_ifmedia_upd(struct ifnet *);
    201 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    202 
    203 static void	bge_setmulti(struct bge_softc *);
    204 
    205 static void	bge_handle_events(struct bge_softc *);
    206 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    207 #if 0 /* XXX */
    208 static void	bge_free_jumbo_mem(struct bge_softc *);
    209 #endif
    210 static void	*bge_jalloc(struct bge_softc *);
    211 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    212 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    213 			       bus_dmamap_t);
    214 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    215 static int	bge_init_rx_ring_std(struct bge_softc *);
    216 static void	bge_free_rx_ring_std(struct bge_softc *);
    217 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    218 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    219 static void	bge_free_tx_ring(struct bge_softc *);
    220 static int	bge_init_tx_ring(struct bge_softc *);
    221 
    222 static int	bge_chipinit(struct bge_softc *);
    223 static int	bge_blockinit(struct bge_softc *);
    224 static int	bge_setpowerstate(struct bge_softc *, int);
    225 
    226 static void	bge_reset(struct bge_softc *);
    227 
    228 #define BGE_DEBUG
    229 #ifdef BGE_DEBUG
    230 #define DPRINTF(x)	if (bgedebug) printf x
    231 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    232 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    233 int	bgedebug = 0;
    234 int	bge_tso_debug = 0;
    235 #else
    236 #define DPRINTF(x)
    237 #define DPRINTFN(n,x)
    238 #define BGE_TSO_PRINTF(x)
    239 #endif
    240 
    241 #ifdef BGE_EVENT_COUNTERS
    242 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    243 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    244 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    245 #else
    246 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    247 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    248 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    249 #endif
    250 
    251 /* Various chip quirks. */
    252 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    253 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    254 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    255 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    256 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    257 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    258 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    259 #define	BGE_QUIRK_5705_CORE		0x00000080
    260 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    261 
    262 /*
    263  * XXX: how to handle variants based on 5750 and derivatives:
    264  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    265  * in general behave like a 5705, except with additional quirks.
    266  * This driver's current handling of the 5721 is wrong;
    267  * how we map ASIC revision to "quirks" needs more thought.
    268  * (defined here until the thought is done).
    269  */
    270 #define BGE_IS_5714_FAMILY(sc) \
    271 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    272 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    273 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    274 
    275 #define BGE_IS_5750_OR_BEYOND(sc)  \
    276 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    277 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    278 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    279 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    280 	 BGE_IS_5714_FAMILY(sc) )
    281 
    282 #define BGE_IS_5705_OR_BEYOND(sc)  \
    283 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    284 	  BGE_IS_5750_OR_BEYOND(sc) )
    285 
    286 
    287 /* following bugs are common to bcm5700 rev B, all flavours */
    288 #define BGE_QUIRK_5700_COMMON \
    289 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    290 
    291 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    292     bge_probe, bge_attach, NULL, NULL);
    293 
    294 static u_int32_t
    295 bge_readmem_ind(struct bge_softc *sc, int off)
    296 {
    297 	pcireg_t val;
    298 
    299 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    300 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    301 	return val;
    302 }
    303 
    304 static void
    305 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    306 {
    307 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    308 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    309 }
    310 
    311 #ifdef notdef
    312 static u_int32_t
    313 bge_readreg_ind(struct bge_softc *sc, int off)
    314 {
    315 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    316 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    317 }
    318 #endif
    319 
    320 static void
    321 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    322 {
    323 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    324 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    325 }
    326 
    327 #ifdef notdef
    328 static u_int8_t
    329 bge_vpd_readbyte(struct bge_softc *sc, int addr)
    330 {
    331 	int i;
    332 	u_int32_t val;
    333 
    334 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
    335 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    336 		DELAY(10);
    337 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
    338 		    BGE_VPD_FLAG)
    339 			break;
    340 	}
    341 
    342 	if (i == BGE_TIMEOUT) {
    343 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    344 		return(0);
    345 	}
    346 
    347 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
    348 
    349 	return((val >> ((addr % 4) * 8)) & 0xFF);
    350 }
    351 
    352 static void
    353 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    354 {
    355 	int i;
    356 	u_int8_t *ptr;
    357 
    358 	ptr = (u_int8_t *)res;
    359 	for (i = 0; i < sizeof(struct vpd_res); i++)
    360 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    361 }
    362 
    363 static void
    364 bge_vpd_read(struct bge_softc *sc)
    365 {
    366 	int pos = 0, i;
    367 	struct vpd_res res;
    368 
    369 	if (sc->bge_vpd_prodname != NULL)
    370 		free(sc->bge_vpd_prodname, M_DEVBUF);
    371 	if (sc->bge_vpd_readonly != NULL)
    372 		free(sc->bge_vpd_readonly, M_DEVBUF);
    373 	sc->bge_vpd_prodname = NULL;
    374 	sc->bge_vpd_readonly = NULL;
    375 
    376 	bge_vpd_read_res(sc, &res, pos);
    377 
    378 	if (res.vr_id != VPD_RES_ID) {
    379 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    380 		    VPD_RES_ID, res.vr_id);
    381 		return;
    382 	}
    383 
    384 	pos += sizeof(res);
    385 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    386 	if (sc->bge_vpd_prodname == NULL)
    387 		panic("bge_vpd_read");
    388 	for (i = 0; i < res.vr_len; i++)
    389 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    390 	sc->bge_vpd_prodname[i] = '\0';
    391 	pos += i;
    392 
    393 	bge_vpd_read_res(sc, &res, pos);
    394 
    395 	if (res.vr_id != VPD_RES_READ) {
    396 		aprint_error_dev(sc->bge_dev,
    397 		    "bad VPD resource id: expected %x got %x\n",
    398 		    VPD_RES_READ, res.vr_id);
    399 		return;
    400 	}
    401 
    402 	pos += sizeof(res);
    403 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    404 	if (sc->bge_vpd_readonly == NULL)
    405 		panic("bge_vpd_read");
    406 	for (i = 0; i < res.vr_len + 1; i++)
    407 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    408 }
    409 #endif
    410 
    411 /*
    412  * Read a byte of data stored in the EEPROM at address 'addr.' The
    413  * BCM570x supports both the traditional bitbang interface and an
    414  * auto access interface for reading the EEPROM. We use the auto
    415  * access method.
    416  */
    417 static u_int8_t
    418 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    419 {
    420 	int i;
    421 	u_int32_t byte = 0;
    422 
    423 	/*
    424 	 * Enable use of auto EEPROM access so we can avoid
    425 	 * having to use the bitbang method.
    426 	 */
    427 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    428 
    429 	/* Reset the EEPROM, load the clock period. */
    430 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    431 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    432 	DELAY(20);
    433 
    434 	/* Issue the read EEPROM command. */
    435 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    436 
    437 	/* Wait for completion */
    438 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    439 		DELAY(10);
    440 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    441 			break;
    442 	}
    443 
    444 	if (i == BGE_TIMEOUT) {
    445 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    446 		return(0);
    447 	}
    448 
    449 	/* Get result. */
    450 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    451 
    452 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    453 
    454 	return(0);
    455 }
    456 
    457 /*
    458  * Read a sequence of bytes from the EEPROM.
    459  */
    460 static int
    461 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    462 {
    463 	int err = 0, i;
    464 	u_int8_t byte = 0;
    465 	char *dest = destv;
    466 
    467 	for (i = 0; i < cnt; i++) {
    468 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    469 		if (err)
    470 			break;
    471 		*(dest + i) = byte;
    472 	}
    473 
    474 	return(err ? 1 : 0);
    475 }
    476 
    477 static int
    478 bge_miibus_readreg(device_t dev, int phy, int reg)
    479 {
    480 	struct bge_softc *sc = device_private(dev);
    481 	u_int32_t val;
    482 	u_int32_t saved_autopoll;
    483 	int i;
    484 
    485 	/*
    486 	 * Several chips with builtin PHYs will incorrectly answer to
    487 	 * other PHY instances than the builtin PHY at id 1.
    488 	 */
    489 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    490 		return(0);
    491 
    492 	/* Reading with autopolling on may trigger PCI errors */
    493 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    494 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    495 		CSR_WRITE_4(sc, BGE_MI_MODE,
    496 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    497 		DELAY(40);
    498 	}
    499 
    500 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    501 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    502 
    503 	for (i = 0; i < BGE_TIMEOUT; i++) {
    504 		val = CSR_READ_4(sc, BGE_MI_COMM);
    505 		if (!(val & BGE_MICOMM_BUSY))
    506 			break;
    507 		delay(10);
    508 	}
    509 
    510 	if (i == BGE_TIMEOUT) {
    511 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    512 		val = 0;
    513 		goto done;
    514 	}
    515 
    516 	val = CSR_READ_4(sc, BGE_MI_COMM);
    517 
    518 done:
    519 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    520 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    521 		DELAY(40);
    522 	}
    523 
    524 	if (val & BGE_MICOMM_READFAIL)
    525 		return(0);
    526 
    527 	return(val & 0xFFFF);
    528 }
    529 
    530 static void
    531 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    532 {
    533 	struct bge_softc *sc = device_private(dev);
    534 	u_int32_t saved_autopoll;
    535 	int i;
    536 
    537 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    538 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    539 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    540 		delay(40);
    541 		CSR_WRITE_4(sc, BGE_MI_MODE,
    542 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    543 		delay(10); /* 40 usec is supposed to be adequate */
    544 	}
    545 
    546 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    547 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    548 
    549 	for (i = 0; i < BGE_TIMEOUT; i++) {
    550 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    551 			break;
    552 		delay(10);
    553 	}
    554 
    555 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    556 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    557 		delay(40);
    558 	}
    559 
    560 	if (i == BGE_TIMEOUT)
    561 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    562 }
    563 
    564 static void
    565 bge_miibus_statchg(device_t dev)
    566 {
    567 	struct bge_softc *sc = device_private(dev);
    568 	struct mii_data *mii = &sc->bge_mii;
    569 
    570 	/*
    571 	 * Get flow control negotiation result.
    572 	 */
    573 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    574 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    575 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    576 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    577 	}
    578 
    579 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    580 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    581 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    582 	} else {
    583 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    584 	}
    585 
    586 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    587 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    588 	} else {
    589 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    590 	}
    591 
    592 	/*
    593 	 * 802.3x flow control
    594 	 */
    595 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    596 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    597 	} else {
    598 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    599 	}
    600 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    601 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    602 	} else {
    603 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    604 	}
    605 }
    606 
    607 /*
    608  * Update rx threshold levels to values in a particular slot
    609  * of the interrupt-mitigation table bge_rx_threshes.
    610  */
    611 static void
    612 bge_set_thresh(struct ifnet *ifp, int lvl)
    613 {
    614 	struct bge_softc *sc = ifp->if_softc;
    615 	int s;
    616 
    617 	/* For now, just save the new Rx-intr thresholds and record
    618 	 * that a threshold update is pending.  Updating the hardware
    619 	 * registers here (even at splhigh()) is observed to
    620 	 * occasionaly cause glitches where Rx-interrupts are not
    621 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    622 	 */
    623 	s = splnet();
    624 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    625 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    626 	sc->bge_pending_rxintr_change = 1;
    627 	splx(s);
    628 
    629 	 return;
    630 }
    631 
    632 
    633 /*
    634  * Update Rx thresholds of all bge devices
    635  */
    636 static void
    637 bge_update_all_threshes(int lvl)
    638 {
    639 	struct ifnet *ifp;
    640 	const char * const namebuf = "bge";
    641 	int namelen;
    642 
    643 	if (lvl < 0)
    644 		lvl = 0;
    645 	else if( lvl >= NBGE_RX_THRESH)
    646 		lvl = NBGE_RX_THRESH - 1;
    647 
    648 	namelen = strlen(namebuf);
    649 	/*
    650 	 * Now search all the interfaces for this name/number
    651 	 */
    652 	IFNET_FOREACH(ifp) {
    653 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    654 		      continue;
    655 		/* We got a match: update if doing auto-threshold-tuning */
    656 		if (bge_auto_thresh)
    657 			bge_set_thresh(ifp, lvl);
    658 	}
    659 }
    660 
    661 /*
    662  * Handle events that have triggered interrupts.
    663  */
    664 static void
    665 bge_handle_events(struct bge_softc *sc)
    666 {
    667 
    668 	return;
    669 }
    670 
    671 /*
    672  * Memory management for jumbo frames.
    673  */
    674 
    675 static int
    676 bge_alloc_jumbo_mem(struct bge_softc *sc)
    677 {
    678 	char *ptr, *kva;
    679 	bus_dma_segment_t	seg;
    680 	int		i, rseg, state, error;
    681 	struct bge_jpool_entry   *entry;
    682 
    683 	state = error = 0;
    684 
    685 	/* Grab a big chunk o' storage. */
    686 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    687 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    688 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    689 		return ENOBUFS;
    690 	}
    691 
    692 	state = 1;
    693 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    694 	    BUS_DMA_NOWAIT)) {
    695 		aprint_error_dev(sc->bge_dev,
    696 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    697 		error = ENOBUFS;
    698 		goto out;
    699 	}
    700 
    701 	state = 2;
    702 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    703 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    704 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    705 		error = ENOBUFS;
    706 		goto out;
    707 	}
    708 
    709 	state = 3;
    710 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    711 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    712 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    713 		error = ENOBUFS;
    714 		goto out;
    715 	}
    716 
    717 	state = 4;
    718 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    719 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    720 
    721 	SLIST_INIT(&sc->bge_jfree_listhead);
    722 	SLIST_INIT(&sc->bge_jinuse_listhead);
    723 
    724 	/*
    725 	 * Now divide it up into 9K pieces and save the addresses
    726 	 * in an array.
    727 	 */
    728 	ptr = sc->bge_cdata.bge_jumbo_buf;
    729 	for (i = 0; i < BGE_JSLOTS; i++) {
    730 		sc->bge_cdata.bge_jslots[i] = ptr;
    731 		ptr += BGE_JLEN;
    732 		entry = malloc(sizeof(struct bge_jpool_entry),
    733 		    M_DEVBUF, M_NOWAIT);
    734 		if (entry == NULL) {
    735 			aprint_error_dev(sc->bge_dev,
    736 			    "no memory for jumbo buffer queue!\n");
    737 			error = ENOBUFS;
    738 			goto out;
    739 		}
    740 		entry->slot = i;
    741 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    742 				 entry, jpool_entries);
    743 	}
    744 out:
    745 	if (error != 0) {
    746 		switch (state) {
    747 		case 4:
    748 			bus_dmamap_unload(sc->bge_dmatag,
    749 			    sc->bge_cdata.bge_rx_jumbo_map);
    750 		case 3:
    751 			bus_dmamap_destroy(sc->bge_dmatag,
    752 			    sc->bge_cdata.bge_rx_jumbo_map);
    753 		case 2:
    754 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    755 		case 1:
    756 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    757 			break;
    758 		default:
    759 			break;
    760 		}
    761 	}
    762 
    763 	return error;
    764 }
    765 
    766 /*
    767  * Allocate a jumbo buffer.
    768  */
    769 static void *
    770 bge_jalloc(struct bge_softc *sc)
    771 {
    772 	struct bge_jpool_entry   *entry;
    773 
    774 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    775 
    776 	if (entry == NULL) {
    777 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    778 		return(NULL);
    779 	}
    780 
    781 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    782 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    783 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    784 }
    785 
    786 /*
    787  * Release a jumbo buffer.
    788  */
    789 static void
    790 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    791 {
    792 	struct bge_jpool_entry *entry;
    793 	struct bge_softc *sc;
    794 	int i, s;
    795 
    796 	/* Extract the softc struct pointer. */
    797 	sc = (struct bge_softc *)arg;
    798 
    799 	if (sc == NULL)
    800 		panic("bge_jfree: can't find softc pointer!");
    801 
    802 	/* calculate the slot this buffer belongs to */
    803 
    804 	i = ((char *)buf
    805 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    806 
    807 	if ((i < 0) || (i >= BGE_JSLOTS))
    808 		panic("bge_jfree: asked to free buffer that we don't manage!");
    809 
    810 	s = splvm();
    811 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    812 	if (entry == NULL)
    813 		panic("bge_jfree: buffer not in use!");
    814 	entry->slot = i;
    815 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    816 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    817 
    818 	if (__predict_true(m != NULL))
    819   		pool_cache_put(mb_cache, m);
    820 	splx(s);
    821 }
    822 
    823 
    824 /*
    825  * Intialize a standard receive ring descriptor.
    826  */
    827 static int
    828 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    829 {
    830 	struct mbuf		*m_new = NULL;
    831 	struct bge_rx_bd	*r;
    832 	int			error;
    833 
    834 	if (dmamap == NULL) {
    835 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    836 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    837 		if (error != 0)
    838 			return error;
    839 	}
    840 
    841 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    842 
    843 	if (m == NULL) {
    844 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    845 		if (m_new == NULL) {
    846 			return(ENOBUFS);
    847 		}
    848 
    849 		MCLGET(m_new, M_DONTWAIT);
    850 		if (!(m_new->m_flags & M_EXT)) {
    851 			m_freem(m_new);
    852 			return(ENOBUFS);
    853 		}
    854 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    855 
    856 	} else {
    857 		m_new = m;
    858 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    859 		m_new->m_data = m_new->m_ext.ext_buf;
    860 	}
    861 	if (!sc->bge_rx_alignment_bug)
    862 	    m_adj(m_new, ETHER_ALIGN);
    863 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    864 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    865 		return(ENOBUFS);
    866 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    867 	    BUS_DMASYNC_PREREAD);
    868 
    869 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    870 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    871 	bge_set_hostaddr(&r->bge_addr,
    872 	    dmamap->dm_segs[0].ds_addr);
    873 	r->bge_flags = BGE_RXBDFLAG_END;
    874 	r->bge_len = m_new->m_len;
    875 	r->bge_idx = i;
    876 
    877 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    878 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    879 		i * sizeof (struct bge_rx_bd),
    880 	    sizeof (struct bge_rx_bd),
    881 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    882 
    883 	return(0);
    884 }
    885 
    886 /*
    887  * Initialize a jumbo receive ring descriptor. This allocates
    888  * a jumbo buffer from the pool managed internally by the driver.
    889  */
    890 static int
    891 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
    892 {
    893 	struct mbuf *m_new = NULL;
    894 	struct bge_rx_bd *r;
    895 	void *buf = NULL;
    896 
    897 	if (m == NULL) {
    898 
    899 		/* Allocate the mbuf. */
    900 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    901 		if (m_new == NULL) {
    902 			return(ENOBUFS);
    903 		}
    904 
    905 		/* Allocate the jumbo buffer */
    906 		buf = bge_jalloc(sc);
    907 		if (buf == NULL) {
    908 			m_freem(m_new);
    909 			aprint_error_dev(sc->bge_dev,
    910 			    "jumbo allocation failed -- packet dropped!\n");
    911 			return(ENOBUFS);
    912 		}
    913 
    914 		/* Attach the buffer to the mbuf. */
    915 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    916 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    917 		    bge_jfree, sc);
    918 		m_new->m_flags |= M_EXT_RW;
    919 	} else {
    920 		m_new = m;
    921 		buf = m_new->m_data = m_new->m_ext.ext_buf;
    922 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    923 	}
    924 	if (!sc->bge_rx_alignment_bug)
    925 	    m_adj(m_new, ETHER_ALIGN);
    926 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    927 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
    928 	    BUS_DMASYNC_PREREAD);
    929 	/* Set up the descriptor. */
    930 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    931 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    932 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    933 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    934 	r->bge_len = m_new->m_len;
    935 	r->bge_idx = i;
    936 
    937 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    938 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    939 		i * sizeof (struct bge_rx_bd),
    940 	    sizeof (struct bge_rx_bd),
    941 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    942 
    943 	return(0);
    944 }
    945 
    946 /*
    947  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    948  * that's 1MB or memory, which is a lot. For now, we fill only the first
    949  * 256 ring entries and hope that our CPU is fast enough to keep up with
    950  * the NIC.
    951  */
    952 static int
    953 bge_init_rx_ring_std(struct bge_softc *sc)
    954 {
    955 	int i;
    956 
    957 	if (sc->bge_flags & BGE_RXRING_VALID)
    958 		return 0;
    959 
    960 	for (i = 0; i < BGE_SSLOTS; i++) {
    961 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    962 			return(ENOBUFS);
    963 	}
    964 
    965 	sc->bge_std = i - 1;
    966 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    967 
    968 	sc->bge_flags |= BGE_RXRING_VALID;
    969 
    970 	return(0);
    971 }
    972 
    973 static void
    974 bge_free_rx_ring_std(struct bge_softc *sc)
    975 {
    976 	int i;
    977 
    978 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    979 		return;
    980 
    981 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    982 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    983 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    984 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    985 			bus_dmamap_destroy(sc->bge_dmatag,
    986 			    sc->bge_cdata.bge_rx_std_map[i]);
    987 		}
    988 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    989 		    sizeof(struct bge_rx_bd));
    990 	}
    991 
    992 	sc->bge_flags &= ~BGE_RXRING_VALID;
    993 }
    994 
    995 static int
    996 bge_init_rx_ring_jumbo(struct bge_softc *sc)
    997 {
    998 	int i;
    999 	volatile struct bge_rcb *rcb;
   1000 
   1001 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1002 		return 0;
   1003 
   1004 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1005 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1006 			return(ENOBUFS);
   1007 	};
   1008 
   1009 	sc->bge_jumbo = i - 1;
   1010 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1011 
   1012 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1013 	rcb->bge_maxlen_flags = 0;
   1014 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1015 
   1016 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1017 
   1018 	return(0);
   1019 }
   1020 
   1021 static void
   1022 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1023 {
   1024 	int i;
   1025 
   1026 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1027 		return;
   1028 
   1029 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1030 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1031 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1032 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1033 		}
   1034 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1035 		    sizeof(struct bge_rx_bd));
   1036 	}
   1037 
   1038 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1039 }
   1040 
   1041 static void
   1042 bge_free_tx_ring(struct bge_softc *sc)
   1043 {
   1044 	int i, freed;
   1045 	struct txdmamap_pool_entry *dma;
   1046 
   1047 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1048 		return;
   1049 
   1050 	freed = 0;
   1051 
   1052 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1053 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1054 			freed++;
   1055 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1056 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1057 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1058 					    link);
   1059 			sc->txdma[i] = 0;
   1060 		}
   1061 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1062 		    sizeof(struct bge_tx_bd));
   1063 	}
   1064 
   1065 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1066 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1067 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1068 		free(dma, M_DEVBUF);
   1069 	}
   1070 
   1071 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1072 }
   1073 
   1074 static int
   1075 bge_init_tx_ring(struct bge_softc *sc)
   1076 {
   1077 	int i;
   1078 	bus_dmamap_t dmamap;
   1079 	struct txdmamap_pool_entry *dma;
   1080 
   1081 	if (sc->bge_flags & BGE_TXRING_VALID)
   1082 		return 0;
   1083 
   1084 	sc->bge_txcnt = 0;
   1085 	sc->bge_tx_saved_considx = 0;
   1086 
   1087 	/* Initialize transmit producer index for host-memory send ring. */
   1088 	sc->bge_tx_prodidx = 0;
   1089 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1090 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1091 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1092 
   1093 	/* NIC-memory send ring  not used; initialize to zero. */
   1094 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1095 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1096 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1097 
   1098 	SLIST_INIT(&sc->txdma_list);
   1099 	for (i = 0; i < BGE_RSLOTS; i++) {
   1100 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1101 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1102 		    &dmamap))
   1103 			return(ENOBUFS);
   1104 		if (dmamap == NULL)
   1105 			panic("dmamap NULL in bge_init_tx_ring");
   1106 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1107 		if (dma == NULL) {
   1108 			aprint_error_dev(sc->bge_dev,
   1109 			    "can't alloc txdmamap_pool_entry\n");
   1110 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1111 			return (ENOMEM);
   1112 		}
   1113 		dma->dmamap = dmamap;
   1114 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1115 	}
   1116 
   1117 	sc->bge_flags |= BGE_TXRING_VALID;
   1118 
   1119 	return(0);
   1120 }
   1121 
   1122 static void
   1123 bge_setmulti(struct bge_softc *sc)
   1124 {
   1125 	struct ethercom		*ac = &sc->ethercom;
   1126 	struct ifnet		*ifp = &ac->ec_if;
   1127 	struct ether_multi	*enm;
   1128 	struct ether_multistep  step;
   1129 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1130 	u_int32_t		h;
   1131 	int			i;
   1132 
   1133 	if (ifp->if_flags & IFF_PROMISC)
   1134 		goto allmulti;
   1135 
   1136 	/* Now program new ones. */
   1137 	ETHER_FIRST_MULTI(step, ac, enm);
   1138 	while (enm != NULL) {
   1139 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1140 			/*
   1141 			 * We must listen to a range of multicast addresses.
   1142 			 * For now, just accept all multicasts, rather than
   1143 			 * trying to set only those filter bits needed to match
   1144 			 * the range.  (At this time, the only use of address
   1145 			 * ranges is for IP multicast routing, for which the
   1146 			 * range is big enough to require all bits set.)
   1147 			 */
   1148 			goto allmulti;
   1149 		}
   1150 
   1151 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1152 
   1153 		/* Just want the 7 least-significant bits. */
   1154 		h &= 0x7f;
   1155 
   1156 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1157 		ETHER_NEXT_MULTI(step, enm);
   1158 	}
   1159 
   1160 	ifp->if_flags &= ~IFF_ALLMULTI;
   1161 	goto setit;
   1162 
   1163  allmulti:
   1164 	ifp->if_flags |= IFF_ALLMULTI;
   1165 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1166 
   1167  setit:
   1168 	for (i = 0; i < 4; i++)
   1169 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1170 }
   1171 
   1172 const int bge_swapbits[] = {
   1173 	0,
   1174 	BGE_MODECTL_BYTESWAP_DATA,
   1175 	BGE_MODECTL_WORDSWAP_DATA,
   1176 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1177 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1178 
   1179 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1180 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1181 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1182 
   1183 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1184 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1185 
   1186 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1187 
   1188 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1189 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1190 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1191 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1192 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1193 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1194 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1195 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1196 
   1197 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1198 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1199 };
   1200 
   1201 int bge_swapindex = 0;
   1202 
   1203 /*
   1204  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1205  * self-test results.
   1206  */
   1207 static int
   1208 bge_chipinit(struct bge_softc *sc)
   1209 {
   1210 	u_int32_t		cachesize;
   1211 	int			i;
   1212 	u_int32_t		dma_rw_ctl;
   1213 
   1214 
   1215 	/* Set endianness before we access any non-PCI registers. */
   1216 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1217 	    BGE_INIT);
   1218 
   1219 	/* Set power state to D0. */
   1220 	bge_setpowerstate(sc, 0);
   1221 
   1222 	/*
   1223 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1224 	 * self-tests passed.
   1225 	 */
   1226 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1227 		aprint_error_dev(sc->bge_dev,
   1228 		    "RX CPU self-diagnostics failed!\n");
   1229 		return(ENODEV);
   1230 	}
   1231 
   1232 	/* Clear the MAC control register */
   1233 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1234 
   1235 	/*
   1236 	 * Clear the MAC statistics block in the NIC's
   1237 	 * internal memory.
   1238 	 */
   1239 	for (i = BGE_STATS_BLOCK;
   1240 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1241 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1242 
   1243 	for (i = BGE_STATUS_BLOCK;
   1244 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1245 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1246 
   1247 	/* Set up the PCI DMA control register. */
   1248 	if (sc->bge_pcie) {
   1249 	  u_int32_t device_ctl;
   1250 
   1251 		/* From FreeBSD */
   1252 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1253 		    device_xname(sc->bge_dev)));
   1254 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1255 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1256 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1257 
   1258 		/* jonathan: alternative from Linux driver */
   1259 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1260 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1261 
   1262 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1263 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1264 					   BGE_PCI_CONF_DEV_CTRL);
   1265 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1266 
   1267 		if ((device_ctl & 0x00e0) && 0) {
   1268 			/*
   1269 			 * XXX jonathan (at) NetBSD.org:
   1270 			 * This clause is exactly what the Broadcom-supplied
   1271 			 * Linux does; but given overall register programming
   1272 			 * by if_bge(4), this larger DMA-write watermark
   1273 			 * value causes bcm5721 chips to totally wedge.
   1274 			 */
   1275 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1276 		} else {
   1277 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1278 		}
   1279 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
   1280 	    BGE_PCISTATE_PCI_BUSMODE) {
   1281 		/* Conventional PCI bus */
   1282 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1283 		    device_xname(sc->bge_dev)));
   1284 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1285 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1286 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1287 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1288 			dma_rw_ctl |= 0x0F;
   1289 		}
   1290 	} else {
   1291 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1292 		    device_xname(sc->bge_dev)));
   1293 		/* PCI-X bus */
   1294 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1295 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1296 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1297 		    (0x0F);
   1298 		/*
   1299 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1300 		 * for hardware bugs, which means we should also clear
   1301 		 * the low-order MINDMA bits.  In addition, the 5704
   1302 		 * uses a different encoding of read/write watermarks.
   1303 		 */
   1304 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1305 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1306 			  /* should be 0x1f0000 */
   1307 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1308 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1309 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1310 		}
   1311 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1312 			dma_rw_ctl &=  0xfffffff0;
   1313 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1314 		}
   1315 		else if (BGE_IS_5714_FAMILY(sc)) {
   1316 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1317 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1318 			/* XXX magic values, Broadcom-supplied Linux driver */
   1319 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1320 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1321 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1322 			else
   1323 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1324 		}
   1325 	}
   1326 
   1327 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1328 
   1329 	/*
   1330 	 * Set up general mode register.
   1331 	 */
   1332 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1333 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1334 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1335 
   1336 	/* Get cache line size. */
   1337 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1338 
   1339 	/*
   1340 	 * Avoid violating PCI spec on certain chip revs.
   1341 	 */
   1342 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1343 	    PCIM_CMD_MWIEN) {
   1344 		switch(cachesize) {
   1345 		case 1:
   1346 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1347 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1348 			break;
   1349 		case 2:
   1350 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1351 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1352 			break;
   1353 		case 4:
   1354 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1355 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1356 			break;
   1357 		case 8:
   1358 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1359 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1360 			break;
   1361 		case 16:
   1362 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1363 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1364 			break;
   1365 		case 32:
   1366 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1367 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1368 			break;
   1369 		case 64:
   1370 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1371 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1372 			break;
   1373 		default:
   1374 		/* Disable PCI memory write and invalidate. */
   1375 #if 0
   1376 			if (bootverbose)
   1377 				aprint_error_dev(sc->bge_dev,
   1378 				    "cache line size %d not supported "
   1379 				    "disabling PCI MWI\n",
   1380 #endif
   1381 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1382 			    PCIM_CMD_MWIEN);
   1383 			break;
   1384 		}
   1385 	}
   1386 
   1387 	/*
   1388 	 * Disable memory write invalidate.  Apparently it is not supported
   1389 	 * properly by these devices.
   1390 	 */
   1391 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1392 
   1393 
   1394 #ifdef __brokenalpha__
   1395 	/*
   1396 	 * Must insure that we do not cross an 8K (bytes) boundary
   1397 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1398 	 * restriction on some ALPHA platforms with early revision
   1399 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1400 	 */
   1401 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1402 #endif
   1403 
   1404 	/* Set the timer prescaler (always 66MHz) */
   1405 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1406 
   1407 	return(0);
   1408 }
   1409 
   1410 static int
   1411 bge_blockinit(struct bge_softc *sc)
   1412 {
   1413 	volatile struct bge_rcb		*rcb;
   1414 	bus_size_t		rcb_addr;
   1415 	int			i;
   1416 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1417 	bge_hostaddr		taddr;
   1418 
   1419 	/*
   1420 	 * Initialize the memory window pointer register so that
   1421 	 * we can access the first 32K of internal NIC RAM. This will
   1422 	 * allow us to set up the TX send ring RCBs and the RX return
   1423 	 * ring RCBs, plus other things which live in NIC memory.
   1424 	 */
   1425 
   1426 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1427 
   1428 	/* Configure mbuf memory pool */
   1429 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1430 		if (sc->bge_extram) {
   1431 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1432 			    BGE_EXT_SSRAM);
   1433 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1434 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1435 			else
   1436 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1437 		} else {
   1438 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1439 			    BGE_BUFFPOOL_1);
   1440 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1441 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1442 			else
   1443 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1444 		}
   1445 
   1446 		/* Configure DMA resource pool */
   1447 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1448 		    BGE_DMA_DESCRIPTORS);
   1449 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1450 	}
   1451 
   1452 	/* Configure mbuf pool watermarks */
   1453 #ifdef ORIG_WPAUL_VALUES
   1454 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1455 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1456 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1457 #else
   1458 	/* new broadcom docs strongly recommend these: */
   1459 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1460 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1461 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1462 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1463 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1464 		} else {
   1465 			/* Values from Linux driver... */
   1466 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1467 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1468 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1469 		}
   1470 	} else {
   1471 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1472 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1473 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1474 	}
   1475 #endif
   1476 
   1477 	/* Configure DMA resource watermarks */
   1478 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1479 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1480 
   1481 	/* Enable buffer manager */
   1482 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1483 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1484 
   1485 	/* Poll for buffer manager start indication */
   1486 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1487 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1488 			break;
   1489 		DELAY(10);
   1490 	}
   1491 
   1492 	if (i == BGE_TIMEOUT) {
   1493 		aprint_error_dev(sc->bge_dev,
   1494 		    "buffer manager failed to start\n");
   1495 		return(ENXIO);
   1496 	}
   1497 
   1498 	/* Enable flow-through queues */
   1499 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1500 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1501 
   1502 	/* Wait until queue initialization is complete */
   1503 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1504 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1505 			break;
   1506 		DELAY(10);
   1507 	}
   1508 
   1509 	if (i == BGE_TIMEOUT) {
   1510 		aprint_error_dev(sc->bge_dev,
   1511 		    "flow-through queue init failed\n");
   1512 		return(ENXIO);
   1513 	}
   1514 
   1515 	/* Initialize the standard RX ring control block */
   1516 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1517 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1518 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1519 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1520 		rcb->bge_maxlen_flags =
   1521 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1522 	} else {
   1523 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1524 	}
   1525 	if (sc->bge_extram)
   1526 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1527 	else
   1528 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1529 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1530 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1531 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1532 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1533 
   1534 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1535 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1536 	} else {
   1537 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1538 	}
   1539 
   1540 	/*
   1541 	 * Initialize the jumbo RX ring control block
   1542 	 * We set the 'ring disabled' bit in the flags
   1543 	 * field until we're actually ready to start
   1544 	 * using this ring (i.e. once we set the MTU
   1545 	 * high enough to require it).
   1546 	 */
   1547 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1548 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1549 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1550 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1551 		rcb->bge_maxlen_flags =
   1552 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1553 			BGE_RCB_FLAG_RING_DISABLED);
   1554 		if (sc->bge_extram)
   1555 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1556 		else
   1557 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1558 
   1559 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1560 		    rcb->bge_hostaddr.bge_addr_hi);
   1561 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1562 		    rcb->bge_hostaddr.bge_addr_lo);
   1563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1564 		    rcb->bge_maxlen_flags);
   1565 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1566 
   1567 		/* Set up dummy disabled mini ring RCB */
   1568 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1569 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1570 		    BGE_RCB_FLAG_RING_DISABLED);
   1571 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1572 		    rcb->bge_maxlen_flags);
   1573 
   1574 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1575 		    offsetof(struct bge_ring_data, bge_info),
   1576 		    sizeof (struct bge_gib),
   1577 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1578 	}
   1579 
   1580 	/*
   1581 	 * Set the BD ring replenish thresholds. The recommended
   1582 	 * values are 1/8th the number of descriptors allocated to
   1583 	 * each ring.
   1584 	 */
   1585 	i = BGE_STD_RX_RING_CNT / 8;
   1586 
   1587 	/*
   1588  	 * Use a value of 8 for the following chips to workaround HW errata.
   1589 	 * Some of these chips have been added based on empirical
   1590 	 * evidence (they don't work unless this is done).
   1591 	 */
   1592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1593 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1594 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1595 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1596 		i = 8;
   1597 
   1598 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1599 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1600 
   1601 	/*
   1602 	 * Disable all unused send rings by setting the 'ring disabled'
   1603 	 * bit in the flags field of all the TX send ring control blocks.
   1604 	 * These are located in NIC memory.
   1605 	 */
   1606 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1607 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1608 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1609 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1610 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1611 		rcb_addr += sizeof(struct bge_rcb);
   1612 	}
   1613 
   1614 	/* Configure TX RCB 0 (we use only the first ring) */
   1615 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1616 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1617 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1618 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1619 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1620 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1621 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1622 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1623 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1624 	}
   1625 
   1626 	/* Disable all unused RX return rings */
   1627 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1628 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1629 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1630 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1631 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1632 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1633                                      BGE_RCB_FLAG_RING_DISABLED));
   1634 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1635 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1636 		    (i * (sizeof(u_int64_t))), 0);
   1637 		rcb_addr += sizeof(struct bge_rcb);
   1638 	}
   1639 
   1640 	/* Initialize RX ring indexes */
   1641 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1642 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1643 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1644 
   1645 	/*
   1646 	 * Set up RX return ring 0
   1647 	 * Note that the NIC address for RX return rings is 0x00000000.
   1648 	 * The return rings live entirely within the host, so the
   1649 	 * nicaddr field in the RCB isn't used.
   1650 	 */
   1651 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1652 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1653 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1654 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1655 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1656 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1657 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1658 
   1659 	/* Set random backoff seed for TX */
   1660 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1661 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1662 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1663 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1664 	    BGE_TX_BACKOFF_SEED_MASK);
   1665 
   1666 	/* Set inter-packet gap */
   1667 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1668 
   1669 	/*
   1670 	 * Specify which ring to use for packets that don't match
   1671 	 * any RX rules.
   1672 	 */
   1673 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1674 
   1675 	/*
   1676 	 * Configure number of RX lists. One interrupt distribution
   1677 	 * list, sixteen active lists, one bad frames class.
   1678 	 */
   1679 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1680 
   1681 	/* Inialize RX list placement stats mask. */
   1682 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1683 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1684 
   1685 	/* Disable host coalescing until we get it set up */
   1686 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1687 
   1688 	/* Poll to make sure it's shut down. */
   1689 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1690 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1691 			break;
   1692 		DELAY(10);
   1693 	}
   1694 
   1695 	if (i == BGE_TIMEOUT) {
   1696 		aprint_error_dev(sc->bge_dev,
   1697 		    "host coalescing engine failed to idle\n");
   1698 		return(ENXIO);
   1699 	}
   1700 
   1701 	/* Set up host coalescing defaults */
   1702 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1703 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1704 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1705 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1706 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1707 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1708 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1709 	}
   1710 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1711 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1712 
   1713 	/* Set up address of statistics block */
   1714 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1715 		bge_set_hostaddr(&taddr,
   1716 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1717 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1718 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1719 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1720 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1721 	}
   1722 
   1723 	/* Set up address of status block */
   1724 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1725 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1726 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1727 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1728 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1729 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1730 
   1731 	/* Turn on host coalescing state machine */
   1732 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1733 
   1734 	/* Turn on RX BD completion state machine and enable attentions */
   1735 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1736 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1737 
   1738 	/* Turn on RX list placement state machine */
   1739 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1740 
   1741 	/* Turn on RX list selector state machine. */
   1742 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1743 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1744 	}
   1745 
   1746 	/* Turn on DMA, clear stats */
   1747 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1748 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1749 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1750 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1751 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1752 
   1753 	/* Set misc. local control, enable interrupts on attentions */
   1754 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1755 
   1756 #ifdef notdef
   1757 	/* Assert GPIO pins for PHY reset */
   1758 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1759 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1760 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1761 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1762 #endif
   1763 
   1764 #if defined(not_quite_yet)
   1765 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1766 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1767 		sc->bge_local_ctrl_reg |=
   1768 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1769 	}
   1770 #endif
   1771 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1772 
   1773 	/* Turn on DMA completion state machine */
   1774 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1775 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1776 	}
   1777 
   1778 	/* Turn on write DMA state machine */
   1779 	{
   1780 		uint32_t bge_wdma_mode =
   1781 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1782 
   1783 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1784 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1785 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1786 		  bge_wdma_mode |= (1 << 29);
   1787 
   1788 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1789         }
   1790 
   1791 	/* Turn on read DMA state machine */
   1792 	{
   1793 		uint32_t dma_read_modebits;
   1794 
   1795 		dma_read_modebits =
   1796 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1797 
   1798 		if (sc->bge_pcie && 0) {
   1799 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1800 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1801 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1802 		}
   1803 
   1804 		/* XXX broadcom-supplied linux driver; undocumented */
   1805 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1806  			/*
   1807 			 * XXX: magic values.
   1808 			 * From Broadcom-supplied Linux driver;  apparently
   1809 			 * required to workaround a DMA bug affecting TSO
   1810 			 * on bcm575x/bcm5721?
   1811 			 */
   1812 			dma_read_modebits |= (1 << 27);
   1813 		}
   1814 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1815 	}
   1816 
   1817 	/* Turn on RX data completion state machine */
   1818 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1819 
   1820 	/* Turn on RX BD initiator state machine */
   1821 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1822 
   1823 	/* Turn on RX data and RX BD initiator state machine */
   1824 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1825 
   1826 	/* Turn on Mbuf cluster free state machine */
   1827 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1828 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1829 	}
   1830 
   1831 	/* Turn on send BD completion state machine */
   1832 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1833 
   1834 	/* Turn on send data completion state machine */
   1835 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1836 
   1837 	/* Turn on send data initiator state machine */
   1838 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1839 		/* XXX: magic value from Linux driver */
   1840 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1841 	} else {
   1842 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1843 	}
   1844 
   1845 	/* Turn on send BD initiator state machine */
   1846 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1847 
   1848 	/* Turn on send BD selector state machine */
   1849 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1850 
   1851 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1852 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1853 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1854 
   1855 	/* ack/clear link change events */
   1856 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1857 	    BGE_MACSTAT_CFG_CHANGED);
   1858 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1859 
   1860 	/* Enable PHY auto polling (for MII/GMII only) */
   1861 	if (sc->bge_tbi) {
   1862 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1863  	} else {
   1864 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1865 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1866 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1867 			    BGE_EVTENB_MI_INTERRUPT);
   1868 	}
   1869 
   1870 	/* Enable link state change attentions. */
   1871 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1872 
   1873 	return(0);
   1874 }
   1875 
   1876 static const struct bge_revision {
   1877 	uint32_t		br_chipid;
   1878 	uint32_t		br_quirks;
   1879 	const char		*br_name;
   1880 } bge_revisions[] = {
   1881 	{ BGE_CHIPID_BCM5700_A0,
   1882 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1883 	  "BCM5700 A0" },
   1884 
   1885 	{ BGE_CHIPID_BCM5700_A1,
   1886 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1887 	  "BCM5700 A1" },
   1888 
   1889 	{ BGE_CHIPID_BCM5700_B0,
   1890 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1891 	  "BCM5700 B0" },
   1892 
   1893 	{ BGE_CHIPID_BCM5700_B1,
   1894 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1895 	  "BCM5700 B1" },
   1896 
   1897 	{ BGE_CHIPID_BCM5700_B2,
   1898 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1899 	  "BCM5700 B2" },
   1900 
   1901 	{ BGE_CHIPID_BCM5700_B3,
   1902 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1903 	  "BCM5700 B3" },
   1904 
   1905 	/* This is treated like a BCM5700 Bx */
   1906 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1907 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1908 	  "BCM5700 Altima" },
   1909 
   1910 	{ BGE_CHIPID_BCM5700_C0,
   1911 	  0,
   1912 	  "BCM5700 C0" },
   1913 
   1914 	{ BGE_CHIPID_BCM5701_A0,
   1915 	  0, /*XXX really, just not known */
   1916 	  "BCM5701 A0" },
   1917 
   1918 	{ BGE_CHIPID_BCM5701_B0,
   1919 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1920 	  "BCM5701 B0" },
   1921 
   1922 	{ BGE_CHIPID_BCM5701_B2,
   1923 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1924 	  "BCM5701 B2" },
   1925 
   1926 	{ BGE_CHIPID_BCM5701_B5,
   1927 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1928 	  "BCM5701 B5" },
   1929 
   1930 	{ BGE_CHIPID_BCM5703_A0,
   1931 	  0,
   1932 	  "BCM5703 A0" },
   1933 
   1934 	{ BGE_CHIPID_BCM5703_A1,
   1935 	  0,
   1936 	  "BCM5703 A1" },
   1937 
   1938 	{ BGE_CHIPID_BCM5703_A2,
   1939 	  BGE_QUIRK_ONLY_PHY_1,
   1940 	  "BCM5703 A2" },
   1941 
   1942 	{ BGE_CHIPID_BCM5703_A3,
   1943 	  BGE_QUIRK_ONLY_PHY_1,
   1944 	  "BCM5703 A3" },
   1945 
   1946 	{ BGE_CHIPID_BCM5703_B0,
   1947 	  BGE_QUIRK_ONLY_PHY_1,
   1948 	  "BCM5703 B0" },
   1949 
   1950 	{ BGE_CHIPID_BCM5704_A0,
   1951   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1952 	  "BCM5704 A0" },
   1953 
   1954 	{ BGE_CHIPID_BCM5704_A1,
   1955   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1956 	  "BCM5704 A1" },
   1957 
   1958 	{ BGE_CHIPID_BCM5704_A2,
   1959   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1960 	  "BCM5704 A2" },
   1961 
   1962 	{ BGE_CHIPID_BCM5704_A3,
   1963   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1964 	  "BCM5704 A3" },
   1965 
   1966 	{ BGE_CHIPID_BCM5705_A0,
   1967 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1968 	  "BCM5705 A0" },
   1969 
   1970 	{ BGE_CHIPID_BCM5705_A1,
   1971 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1972 	  "BCM5705 A1" },
   1973 
   1974 	{ BGE_CHIPID_BCM5705_A2,
   1975 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1976 	  "BCM5705 A2" },
   1977 
   1978 	{ BGE_CHIPID_BCM5705_A3,
   1979 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1980 	  "BCM5705 A3" },
   1981 
   1982 	{ BGE_CHIPID_BCM5750_A0,
   1983 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1984 	  "BCM5750 A0" },
   1985 
   1986 	{ BGE_CHIPID_BCM5750_A1,
   1987 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1988 	  "BCM5750 A1" },
   1989 
   1990 	{ BGE_CHIPID_BCM5751_A1,
   1991 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1992 	  "BCM5751 A1" },
   1993 
   1994 	{ BGE_CHIPID_BCM5752_A0,
   1995 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1996 	  "BCM5752 A0" },
   1997 
   1998 	{ BGE_CHIPID_BCM5752_A1,
   1999 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2000 	  "BCM5752 A1" },
   2001 
   2002 	{ BGE_CHIPID_BCM5752_A2,
   2003 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2004 	  "BCM5752 A2" },
   2005 
   2006 	{ BGE_CHIPID_BCM5787_A0,
   2007 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2008 	  "BCM5754/5787 A0" },
   2009 
   2010 	{ BGE_CHIPID_BCM5787_A1,
   2011 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2012 	  "BCM5754/5787 A1" },
   2013 
   2014 	{ BGE_CHIPID_BCM5787_A2,
   2015 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2016 	  "BCM5754/5787 A2" },
   2017 
   2018 	{ 0, 0, NULL }
   2019 };
   2020 
   2021 /*
   2022  * Some defaults for major revisions, so that newer steppings
   2023  * that we don't know about have a shot at working.
   2024  */
   2025 static const struct bge_revision bge_majorrevs[] = {
   2026 	{ BGE_ASICREV_BCM5700,
   2027 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2028 	  "unknown BCM5700" },
   2029 
   2030 	{ BGE_ASICREV_BCM5701,
   2031 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2032 	  "unknown BCM5701" },
   2033 
   2034 	{ BGE_ASICREV_BCM5703,
   2035 	  0,
   2036 	  "unknown BCM5703" },
   2037 
   2038 	{ BGE_ASICREV_BCM5704,
   2039 	  BGE_QUIRK_ONLY_PHY_1,
   2040 	  "unknown BCM5704" },
   2041 
   2042 	{ BGE_ASICREV_BCM5705,
   2043 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2044 	  "unknown BCM5705" },
   2045 
   2046 	{ BGE_ASICREV_BCM5750,
   2047 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2048 	  "unknown BCM575x family" },
   2049 
   2050 	{ BGE_ASICREV_BCM5714_A0,
   2051 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2052 	  "unknown BCM5714" },
   2053 
   2054 	{ BGE_ASICREV_BCM5714,
   2055 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2056 	  "unknown BCM5714" },
   2057 
   2058 	{ BGE_ASICREV_BCM5752,
   2059 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2060 	  "unknown BCM5752 family" },
   2061 
   2062 	{ BGE_ASICREV_BCM5755,
   2063 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2064 	  "unknown BCM5755" },
   2065 
   2066 	{ BGE_ASICREV_BCM5780,
   2067 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2068 	  "unknown BCM5780" },
   2069 
   2070 	{ BGE_ASICREV_BCM5787,
   2071 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2072 	  "unknown BCM5787" },
   2073 
   2074 	{ 0,
   2075 	  0,
   2076 	  NULL }
   2077 };
   2078 
   2079 
   2080 static const struct bge_revision *
   2081 bge_lookup_rev(uint32_t chipid)
   2082 {
   2083 	const struct bge_revision *br;
   2084 
   2085 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2086 		if (br->br_chipid == chipid)
   2087 			return (br);
   2088 	}
   2089 
   2090 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2091 		if (br->br_chipid == BGE_ASICREV(chipid))
   2092 			return (br);
   2093 	}
   2094 
   2095 	return (NULL);
   2096 }
   2097 
   2098 static const struct bge_product {
   2099 	pci_vendor_id_t		bp_vendor;
   2100 	pci_product_id_t	bp_product;
   2101 	const char		*bp_name;
   2102 } bge_products[] = {
   2103 	/*
   2104 	 * The BCM5700 documentation seems to indicate that the hardware
   2105 	 * still has the Alteon vendor ID burned into it, though it
   2106 	 * should always be overridden by the value in the EEPROM.  We'll
   2107 	 * check for it anyway.
   2108 	 */
   2109 	{ PCI_VENDOR_ALTEON,
   2110 	  PCI_PRODUCT_ALTEON_BCM5700,
   2111 	  "Broadcom BCM5700 Gigabit Ethernet",
   2112 	  },
   2113 	{ PCI_VENDOR_ALTEON,
   2114 	  PCI_PRODUCT_ALTEON_BCM5701,
   2115 	  "Broadcom BCM5701 Gigabit Ethernet",
   2116 	  },
   2117 
   2118 	{ PCI_VENDOR_ALTIMA,
   2119 	  PCI_PRODUCT_ALTIMA_AC1000,
   2120 	  "Altima AC1000 Gigabit Ethernet",
   2121 	  },
   2122 	{ PCI_VENDOR_ALTIMA,
   2123 	  PCI_PRODUCT_ALTIMA_AC1001,
   2124 	  "Altima AC1001 Gigabit Ethernet",
   2125 	   },
   2126 	{ PCI_VENDOR_ALTIMA,
   2127 	  PCI_PRODUCT_ALTIMA_AC9100,
   2128 	  "Altima AC9100 Gigabit Ethernet",
   2129 	  },
   2130 
   2131 	{ PCI_VENDOR_BROADCOM,
   2132 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2133 	  "Broadcom BCM5700 Gigabit Ethernet",
   2134 	  },
   2135 	{ PCI_VENDOR_BROADCOM,
   2136 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2137 	  "Broadcom BCM5701 Gigabit Ethernet",
   2138 	  },
   2139 	{ PCI_VENDOR_BROADCOM,
   2140 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2141 	  "Broadcom BCM5702 Gigabit Ethernet",
   2142 	  },
   2143 	{ PCI_VENDOR_BROADCOM,
   2144 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2145 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2146 
   2147 	{ PCI_VENDOR_BROADCOM,
   2148 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2149 	  "Broadcom BCM5703 Gigabit Ethernet",
   2150 	  },
   2151 	{ PCI_VENDOR_BROADCOM,
   2152 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2153 	  "Broadcom BCM5703X Gigabit Ethernet",
   2154 	  },
   2155 	{ PCI_VENDOR_BROADCOM,
   2156 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2157 	  "Broadcom BCM5703 Gigabit Ethernet",
   2158 	  },
   2159 
   2160    	{ PCI_VENDOR_BROADCOM,
   2161 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2162 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2163 	  },
   2164    	{ PCI_VENDOR_BROADCOM,
   2165 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2166 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2167 	  },
   2168 
   2169    	{ PCI_VENDOR_BROADCOM,
   2170 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2171 	  "Broadcom BCM5705 Gigabit Ethernet",
   2172 	  },
   2173    	{ PCI_VENDOR_BROADCOM,
   2174 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2175 	  "Broadcom BCM5705K Gigabit Ethernet",
   2176 	  },
   2177    	{ PCI_VENDOR_BROADCOM,
   2178 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2179 	  "Broadcom BCM5705M Gigabit Ethernet",
   2180 	  },
   2181    	{ PCI_VENDOR_BROADCOM,
   2182 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2183 	  "Broadcom BCM5705M Gigabit Ethernet",
   2184 	  },
   2185 
   2186 	{ PCI_VENDOR_BROADCOM,
   2187 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2188 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2189 	  },
   2190 	{ PCI_VENDOR_BROADCOM,
   2191 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2192 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2193 	  },
   2194 	{ PCI_VENDOR_BROADCOM,
   2195 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2196 	  "Broadcom BCM5789 Gigabit Ethernet",
   2197 	  },
   2198 
   2199 	{ PCI_VENDOR_BROADCOM,
   2200 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2201 	  "Broadcom BCM5721 Gigabit Ethernet",
   2202 	  },
   2203 
   2204 	{ PCI_VENDOR_BROADCOM,
   2205 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2206 	  "Broadcom BCM5750 Gigabit Ethernet",
   2207 	  },
   2208 
   2209 	{ PCI_VENDOR_BROADCOM,
   2210 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2211 	  "Broadcom BCM5750M Gigabit Ethernet",
   2212 	  },
   2213 
   2214 	{ PCI_VENDOR_BROADCOM,
   2215 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2216 	  "Broadcom BCM5751 Gigabit Ethernet",
   2217 	  },
   2218 
   2219 	{ PCI_VENDOR_BROADCOM,
   2220 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2221 	  "Broadcom BCM5751M Gigabit Ethernet",
   2222 	  },
   2223 
   2224 	{ PCI_VENDOR_BROADCOM,
   2225 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2226 	  "Broadcom BCM5752 Gigabit Ethernet",
   2227 	  },
   2228 
   2229 	{ PCI_VENDOR_BROADCOM,
   2230 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2231 	  "Broadcom BCM5752M Gigabit Ethernet",
   2232 	  },
   2233 
   2234 	{ PCI_VENDOR_BROADCOM,
   2235 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2236 	  "Broadcom BCM5753 Gigabit Ethernet",
   2237 	  },
   2238 
   2239 	{ PCI_VENDOR_BROADCOM,
   2240 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2241 	  "Broadcom BCM5753M Gigabit Ethernet",
   2242 	  },
   2243 
   2244 	{ PCI_VENDOR_BROADCOM,
   2245 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2246 	  "Broadcom BCM5754 Gigabit Ethernet",
   2247 	},
   2248 
   2249 	{ PCI_VENDOR_BROADCOM,
   2250 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2251 	  "Broadcom BCM5754M Gigabit Ethernet",
   2252 	},
   2253 
   2254 	{ PCI_VENDOR_BROADCOM,
   2255 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2256 	  "Broadcom BCM5755 Gigabit Ethernet",
   2257 	},
   2258 
   2259 	{ PCI_VENDOR_BROADCOM,
   2260 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2261 	  "Broadcom BCM5755M Gigabit Ethernet",
   2262 	},
   2263 
   2264    	{ PCI_VENDOR_BROADCOM,
   2265 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2266 	  "Broadcom BCM5780 Gigabit Ethernet",
   2267 	  },
   2268 
   2269    	{ PCI_VENDOR_BROADCOM,
   2270 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2271 	  "Broadcom BCM5780S Gigabit Ethernet",
   2272 	  },
   2273 
   2274    	{ PCI_VENDOR_BROADCOM,
   2275 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2276 	  "Broadcom BCM5782 Gigabit Ethernet",
   2277 	},
   2278 
   2279 	{ PCI_VENDOR_BROADCOM,
   2280 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2281 	  "Broadcom BCM5786 Gigabit Ethernet",
   2282 	},
   2283 
   2284 	{ PCI_VENDOR_BROADCOM,
   2285 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2286 	  "Broadcom BCM5787 Gigabit Ethernet",
   2287 	},
   2288 
   2289 	{ PCI_VENDOR_BROADCOM,
   2290 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2291 	  "Broadcom BCM5787M Gigabit Ethernet",
   2292 	},
   2293 
   2294    	{ PCI_VENDOR_BROADCOM,
   2295 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2296 	  "Broadcom BCM5788 Gigabit Ethernet",
   2297 	  },
   2298    	{ PCI_VENDOR_BROADCOM,
   2299 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2300 	  "Broadcom BCM5789 Gigabit Ethernet",
   2301 	  },
   2302 
   2303    	{ PCI_VENDOR_BROADCOM,
   2304 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2305 	  "Broadcom BCM5901 Fast Ethernet",
   2306 	  },
   2307    	{ PCI_VENDOR_BROADCOM,
   2308 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2309 	  "Broadcom BCM5901A2 Fast Ethernet",
   2310 	  },
   2311 
   2312 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2313 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2314 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2315 	  },
   2316 
   2317 	{ PCI_VENDOR_3COM,
   2318 	  PCI_PRODUCT_3COM_3C996,
   2319 	  "3Com 3c996 Gigabit Ethernet",
   2320 	  },
   2321 
   2322 	{ 0,
   2323 	  0,
   2324 	  NULL },
   2325 };
   2326 
   2327 static const struct bge_product *
   2328 bge_lookup(const struct pci_attach_args *pa)
   2329 {
   2330 	const struct bge_product *bp;
   2331 
   2332 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2333 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2334 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2335 			return (bp);
   2336 	}
   2337 
   2338 	return (NULL);
   2339 }
   2340 
   2341 static int
   2342 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2343 {
   2344 #ifdef NOTYET
   2345 	u_int32_t pm_ctl = 0;
   2346 
   2347 	/* XXX FIXME: make sure indirect accesses enabled? */
   2348 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2349 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2350 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2351 
   2352 	/* clear the PME_assert bit and power state bits, enable PME */
   2353 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2354 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2355 	pm_ctl |= (1 << 8);
   2356 
   2357 	if (powerlevel == 0) {
   2358 		pm_ctl |= PCIM_PSTAT_D0;
   2359 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2360 		    pm_ctl, 2);
   2361 		DELAY(10000);
   2362 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2363 		DELAY(10000);
   2364 
   2365 #ifdef NOTYET
   2366 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2367 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2368 #endif
   2369 		DELAY(40); DELAY(40); DELAY(40);
   2370 		DELAY(10000);	/* above not quite adequate on 5700 */
   2371 		return 0;
   2372 	}
   2373 
   2374 
   2375 	/*
   2376 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2377 	 * GMII gpio pins. Example code assumes all hardware vendors
   2378 	 * followed Broadom's sample pcb layout. Until we verify that
   2379 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2380 	 */
   2381 	aprint_error_dev(sc->bge_dev,
   2382 	    "power state %d unimplemented; check GPIO pins\n",
   2383 	    powerlevel);
   2384 #endif
   2385 	return EOPNOTSUPP;
   2386 }
   2387 
   2388 
   2389 /*
   2390  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2391  * against our list and return its name if we find a match. Note
   2392  * that since the Broadcom controller contains VPD support, we
   2393  * can get the device name string from the controller itself instead
   2394  * of the compiled-in string. This is a little slow, but it guarantees
   2395  * we'll always announce the right product name.
   2396  */
   2397 static int
   2398 bge_probe(device_t parent, cfdata_t match, void *aux)
   2399 {
   2400 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2401 
   2402 	if (bge_lookup(pa) != NULL)
   2403 		return (1);
   2404 
   2405 	return (0);
   2406 }
   2407 
   2408 static void
   2409 bge_attach(device_t parent, device_t self, void *aux)
   2410 {
   2411 	struct bge_softc	*sc = device_private(self);
   2412 	struct pci_attach_args	*pa = aux;
   2413 	const struct bge_product *bp;
   2414 	const struct bge_revision *br;
   2415 	pci_chipset_tag_t	pc;
   2416 	pci_intr_handle_t	ih;
   2417 	const char		*intrstr = NULL;
   2418 	bus_dma_segment_t	seg;
   2419 	int			rseg;
   2420 	u_int32_t		hwcfg = 0;
   2421 	u_int32_t		mac_addr = 0;
   2422 	u_int32_t		command;
   2423 	struct ifnet		*ifp;
   2424 	void *			kva;
   2425 	u_char			eaddr[ETHER_ADDR_LEN];
   2426 	pcireg_t		memtype;
   2427 	bus_addr_t		memaddr;
   2428 	bus_size_t		memsize;
   2429 	u_int32_t		pm_ctl;
   2430 
   2431 	bp = bge_lookup(pa);
   2432 	KASSERT(bp != NULL);
   2433 
   2434 	sc->sc_pc = pa->pa_pc;
   2435 	sc->sc_pcitag = pa->pa_tag;
   2436 	sc->bge_dev = self;
   2437 
   2438 	aprint_naive(": Ethernet controller\n");
   2439 	aprint_normal(": %s\n", bp->bp_name);
   2440 
   2441 	/*
   2442 	 * Map control/status registers.
   2443 	 */
   2444 	DPRINTFN(5, ("Map control/status regs\n"));
   2445 	pc = sc->sc_pc;
   2446 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2447 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2448 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2449 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2450 
   2451 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2452 		aprint_error_dev(sc->bge_dev,
   2453 		    "failed to enable memory mapping!\n");
   2454 		return;
   2455 	}
   2456 
   2457 	DPRINTFN(5, ("pci_mem_find\n"));
   2458 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2459  	switch (memtype) {
   2460 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2461 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2462 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2463 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2464 		    &memaddr, &memsize) == 0)
   2465 			break;
   2466 	default:
   2467 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2468 		return;
   2469 	}
   2470 
   2471 	DPRINTFN(5, ("pci_intr_map\n"));
   2472 	if (pci_intr_map(pa, &ih)) {
   2473 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2474 		return;
   2475 	}
   2476 
   2477 	DPRINTFN(5, ("pci_intr_string\n"));
   2478 	intrstr = pci_intr_string(pc, ih);
   2479 
   2480 	DPRINTFN(5, ("pci_intr_establish\n"));
   2481 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2482 
   2483 	if (sc->bge_intrhand == NULL) {
   2484 		aprint_error_dev(sc->bge_dev,
   2485 		    "couldn't establish interrupt%s%s\n",
   2486 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2487 		return;
   2488 	}
   2489 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2490 
   2491 	/*
   2492 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2493 	 * can clobber the chip's PCI config-space power control registers,
   2494 	 * leaving the card in D3 powersave state.
   2495 	 * We do not have memory-mapped registers in this state,
   2496 	 * so force device into D0 state before starting initialization.
   2497 	 */
   2498 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2499 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2500 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2501 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2502 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2503 
   2504 	/*
   2505 	 * Save ASIC rev.  Look up any quirks associated with this
   2506 	 * ASIC.
   2507 	 */
   2508 	sc->bge_chipid =
   2509 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2510 	    BGE_PCIMISCCTL_ASICREV;
   2511 
   2512 	/*
   2513 	 * Detect PCI-Express devices
   2514 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2515 	 */
   2516 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2517 	        NULL, NULL) != 0)
   2518 		sc->bge_pcie = 1;
   2519 	else
   2520 		sc->bge_pcie = 0;
   2521 
   2522 	/* Try to reset the chip. */
   2523 	DPRINTFN(5, ("bge_reset\n"));
   2524 	bge_reset(sc);
   2525 
   2526 	if (bge_chipinit(sc)) {
   2527 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2528 		bge_release_resources(sc);
   2529 		return;
   2530 	}
   2531 
   2532 	/*
   2533 	 * Get station address from the EEPROM.
   2534 	 */
   2535 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2536 	if ((mac_addr >> 16) == 0x484b) {
   2537 		eaddr[0] = (u_char)(mac_addr >> 8);
   2538 		eaddr[1] = (u_char)(mac_addr >> 0);
   2539 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2540 		eaddr[2] = (u_char)(mac_addr >> 24);
   2541 		eaddr[3] = (u_char)(mac_addr >> 16);
   2542 		eaddr[4] = (u_char)(mac_addr >> 8);
   2543 		eaddr[5] = (u_char)(mac_addr >> 0);
   2544 	} else if (bge_read_eeprom(sc, (void *)eaddr,
   2545 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2546 		aprint_error_dev(sc->bge_dev,
   2547 		    "failed to read station address\n");
   2548 		bge_release_resources(sc);
   2549 		return;
   2550 	}
   2551 
   2552 	br = bge_lookup_rev(sc->bge_chipid);
   2553 
   2554 	if (br == NULL) {
   2555 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2556 		    sc->bge_chipid >> 16);
   2557 		sc->bge_quirks = 0;
   2558 	} else {
   2559 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2560 		    br->br_name, sc->bge_chipid >> 16);
   2561 		sc->bge_quirks |= br->br_quirks;
   2562 	}
   2563 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2564 
   2565 	/* Allocate the general information block and ring buffers. */
   2566 	if (pci_dma64_available(pa))
   2567 		sc->bge_dmatag = pa->pa_dmat64;
   2568 	else
   2569 		sc->bge_dmatag = pa->pa_dmat;
   2570 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2571 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2572 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2573 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2574 		return;
   2575 	}
   2576 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2577 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2578 			   sizeof(struct bge_ring_data), &kva,
   2579 			   BUS_DMA_NOWAIT)) {
   2580 		aprint_error_dev(sc->bge_dev,
   2581 		    "can't map DMA buffers (%zu bytes)\n",
   2582 		    sizeof(struct bge_ring_data));
   2583 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2584 		return;
   2585 	}
   2586 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2587 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2588 	    sizeof(struct bge_ring_data), 0,
   2589 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2590 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2591 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2592 				 sizeof(struct bge_ring_data));
   2593 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2594 		return;
   2595 	}
   2596 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2597 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2598 			    sizeof(struct bge_ring_data), NULL,
   2599 			    BUS_DMA_NOWAIT)) {
   2600 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2601 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2602 				 sizeof(struct bge_ring_data));
   2603 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2604 		return;
   2605 	}
   2606 
   2607 	DPRINTFN(5, ("bzero\n"));
   2608 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2609 
   2610 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2611 
   2612 	/* Try to allocate memory for jumbo buffers. */
   2613 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2614 		if (bge_alloc_jumbo_mem(sc)) {
   2615 			aprint_error_dev(sc->bge_dev,
   2616 			    "jumbo buffer allocation failed\n");
   2617 		} else
   2618 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2619 	}
   2620 
   2621 	/* Set default tuneable values. */
   2622 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2623 	sc->bge_rx_coal_ticks = 150;
   2624 	sc->bge_rx_max_coal_bds = 64;
   2625 #ifdef ORIG_WPAUL_VALUES
   2626 	sc->bge_tx_coal_ticks = 150;
   2627 	sc->bge_tx_max_coal_bds = 128;
   2628 #else
   2629 	sc->bge_tx_coal_ticks = 300;
   2630 	sc->bge_tx_max_coal_bds = 400;
   2631 #endif
   2632 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2633 		sc->bge_tx_coal_ticks = (12 * 5);
   2634 		sc->bge_tx_max_coal_bds = (12 * 5);
   2635 			aprint_verbose_dev(sc->bge_dev,
   2636 			    "setting short Tx thresholds\n");
   2637 	}
   2638 
   2639 	/* Set up ifnet structure */
   2640 	ifp = &sc->ethercom.ec_if;
   2641 	ifp->if_softc = sc;
   2642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2643 	ifp->if_ioctl = bge_ioctl;
   2644 	ifp->if_stop = bge_stop;
   2645 	ifp->if_start = bge_start;
   2646 	ifp->if_init = bge_init;
   2647 	ifp->if_watchdog = bge_watchdog;
   2648 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2649 	IFQ_SET_READY(&ifp->if_snd);
   2650 	DPRINTFN(5, ("strcpy if_xname\n"));
   2651 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2652 
   2653 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2654 		sc->ethercom.ec_if.if_capabilities |=
   2655 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2656 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2657 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2658 	sc->ethercom.ec_capabilities |=
   2659 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2660 
   2661 	if (sc->bge_pcie)
   2662 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2663 
   2664 	/*
   2665 	 * Do MII setup.
   2666 	 */
   2667 	DPRINTFN(5, ("mii setup\n"));
   2668 	sc->bge_mii.mii_ifp = ifp;
   2669 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2670 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2671 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2672 
   2673 	/*
   2674 	 * Figure out what sort of media we have by checking the
   2675 	 * hardware config word in the first 32k of NIC internal memory,
   2676 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2677 	 * cards, this value appears to be unset. If that's the
   2678 	 * case, we have to rely on identifying the NIC by its PCI
   2679 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2680 	 */
   2681 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2682 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2683 	} else {
   2684 		bge_read_eeprom(sc, (void *)&hwcfg,
   2685 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2686 		hwcfg = be32toh(hwcfg);
   2687 	}
   2688 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2689 		sc->bge_tbi = 1;
   2690 
   2691 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2692 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2693 	    SK_SUBSYSID_9D41)
   2694 		sc->bge_tbi = 1;
   2695 
   2696 	if (sc->bge_tbi) {
   2697 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2698 		    bge_ifmedia_sts);
   2699 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2700 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2701 			    0, NULL);
   2702 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2703 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2704 	} else {
   2705 		/*
   2706 		 * Do transceiver setup.
   2707 		 */
   2708 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2709 			     bge_ifmedia_sts);
   2710 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2711 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2712 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2713 
   2714 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2715 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2716 			ifmedia_add(&sc->bge_mii.mii_media,
   2717 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2718 			ifmedia_set(&sc->bge_mii.mii_media,
   2719 				    IFM_ETHER|IFM_MANUAL);
   2720 		} else
   2721 			ifmedia_set(&sc->bge_mii.mii_media,
   2722 				    IFM_ETHER|IFM_AUTO);
   2723 	}
   2724 
   2725 	/*
   2726 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2727 	 * been observed in the first few bytes of some received packets.
   2728 	 * Aligning the packet buffer in memory eliminates the corruption.
   2729 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2730 	 * which do not support unaligned accesses, we will realign the
   2731 	 * payloads by copying the received packets.
   2732 	 */
   2733 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2734 		/* If in PCI-X mode, work around the alignment bug. */
   2735 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2736                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2737                          BGE_PCISTATE_PCI_BUSSPEED)
   2738 		sc->bge_rx_alignment_bug = 1;
   2739         }
   2740 
   2741 	/*
   2742 	 * Call MI attach routine.
   2743 	 */
   2744 	DPRINTFN(5, ("if_attach\n"));
   2745 	if_attach(ifp);
   2746 	DPRINTFN(5, ("ether_ifattach\n"));
   2747 	ether_ifattach(ifp, eaddr);
   2748 #ifdef BGE_EVENT_COUNTERS
   2749 	/*
   2750 	 * Attach event counters.
   2751 	 */
   2752 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2753 	    NULL, device_xname(sc->bge_dev), "intr");
   2754 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2755 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2756 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2757 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2758 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2759 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2760 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2761 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2762 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2763 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2764 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2765 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2766 #endif /* BGE_EVENT_COUNTERS */
   2767 	DPRINTFN(5, ("callout_init\n"));
   2768 	callout_init(&sc->bge_timeout, 0);
   2769 
   2770 	if (!pmf_device_register(self, NULL, NULL))
   2771 		aprint_error_dev(self, "couldn't establish power handler\n");
   2772 	else
   2773 		pmf_class_network_register(self, ifp);
   2774 }
   2775 
   2776 static void
   2777 bge_release_resources(struct bge_softc *sc)
   2778 {
   2779 	if (sc->bge_vpd_prodname != NULL)
   2780 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2781 
   2782 	if (sc->bge_vpd_readonly != NULL)
   2783 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2784 }
   2785 
   2786 static void
   2787 bge_reset(struct bge_softc *sc)
   2788 {
   2789 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2790 	int i, val;
   2791 
   2792 	/* Save some important PCI state. */
   2793 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2794 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2795 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2796 
   2797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2798 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2799 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2800 
   2801 	/*
   2802 	 * Disable the firmware fastboot feature on 5752 ASIC
   2803 	 * to avoid firmware timeout.
   2804 	 */
   2805 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2806 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2807 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2808 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2809 
   2810 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2811 	/*
   2812 	 * XXX: from FreeBSD/Linux; no documentation
   2813 	 */
   2814 	if (sc->bge_pcie) {
   2815 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2816 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2817 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2818 			/* No idea what that actually means */
   2819 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2820 			val |= (1<<29);
   2821 		}
   2822 	}
   2823 
   2824 	/* Issue global reset */
   2825 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2826 
   2827 	DELAY(1000);
   2828 
   2829 	/*
   2830 	 * XXX: from FreeBSD/Linux; no documentation
   2831 	 */
   2832 	if (sc->bge_pcie) {
   2833 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2834 			pcireg_t reg;
   2835 
   2836 			DELAY(500000);
   2837 			/* XXX: Magic Numbers */
   2838 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   2839 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   2840 			    reg | (1 << 15));
   2841 		}
   2842 		/*
   2843 		 * XXX: Magic Numbers.
   2844 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2845 		 * Should be replaced with references to PCI config-space
   2846 		 * capability block for PCI-Express.
   2847 		 */
   2848 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2849 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2850 
   2851 	}
   2852 
   2853 	/* Reset some of the PCI state that got zapped by reset */
   2854 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2855 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2856 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   2858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   2859 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2860 
   2861 	/* Enable memory arbiter. */
   2862 	{
   2863 		uint32_t marbmode = 0;
   2864 		if (BGE_IS_5714_FAMILY(sc)) {
   2865 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2866 		}
   2867  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2868 	}
   2869 
   2870 	/*
   2871 	 * Write the magic number to the firmware mailbox at 0xb50
   2872 	 * so that the driver can synchronize with the firmware.
   2873 	 */
   2874 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2875 
   2876 	/*
   2877 	 * Poll the value location we just wrote until
   2878 	 * we see the 1's complement of the magic number.
   2879 	 * This indicates that the firmware initialization
   2880 	 * is complete.
   2881 	 */
   2882 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2883 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2884 		if (val == ~BGE_MAGIC_NUMBER)
   2885 			break;
   2886 		DELAY(1000);
   2887 	}
   2888 
   2889 	if (i >= BGE_TIMEOUT) {
   2890 		aprint_error_dev(sc->bge_dev,
   2891 		    "firmware handshake timed out, val = %x\n", val);
   2892 		/*
   2893 		 * XXX: occasionally fired on bcm5721, but without
   2894 		 * apparent harm.  For now, keep going if we timeout
   2895 		 * against PCI-E devices.
   2896 		 */
   2897 		 if (!sc->bge_pcie)
   2898 		  return;
   2899 	}
   2900 
   2901 	/*
   2902 	 * XXX Wait for the value of the PCISTATE register to
   2903 	 * return to its original pre-reset state. This is a
   2904 	 * fairly good indicator of reset completion. If we don't
   2905 	 * wait for the reset to fully complete, trying to read
   2906 	 * from the device's non-PCI registers may yield garbage
   2907 	 * results.
   2908 	 */
   2909 	for (i = 0; i < 10000; i++) {
   2910 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2911 		    BGE_PCI_PCISTATE);
   2912 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2913 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2914 			break;
   2915 		DELAY(10);
   2916 	}
   2917 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2918 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2919 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2920 	}
   2921 
   2922 	/* XXX: from FreeBSD/Linux; no documentation */
   2923 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2924 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2925 
   2926 	/* Enable memory arbiter. */
   2927 	/* XXX why do this twice? */
   2928 	{
   2929 		uint32_t marbmode = 0;
   2930 		if (BGE_IS_5714_FAMILY(sc)) {
   2931 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2932 		}
   2933  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2934 	}
   2935 
   2936 	/* Fix up byte swapping */
   2937 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2938 
   2939 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2940 
   2941 	DELAY(10000);
   2942 }
   2943 
   2944 /*
   2945  * Frame reception handling. This is called if there's a frame
   2946  * on the receive return list.
   2947  *
   2948  * Note: we have to be able to handle two possibilities here:
   2949  * 1) the frame is from the jumbo recieve ring
   2950  * 2) the frame is from the standard receive ring
   2951  */
   2952 
   2953 static void
   2954 bge_rxeof(struct bge_softc *sc)
   2955 {
   2956 	struct ifnet *ifp;
   2957 	int stdcnt = 0, jumbocnt = 0;
   2958 	bus_dmamap_t dmamap;
   2959 	bus_addr_t offset, toff;
   2960 	bus_size_t tlen;
   2961 	int tosync;
   2962 
   2963 	ifp = &sc->ethercom.ec_if;
   2964 
   2965 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2966 	    offsetof(struct bge_ring_data, bge_status_block),
   2967 	    sizeof (struct bge_status_block),
   2968 	    BUS_DMASYNC_POSTREAD);
   2969 
   2970 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2971 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2972 	    sc->bge_rx_saved_considx;
   2973 
   2974 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2975 
   2976 	if (tosync < 0) {
   2977 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2978 		    sizeof (struct bge_rx_bd);
   2979 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2980 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2981 		tosync = -tosync;
   2982 	}
   2983 
   2984 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2985 	    offset, tosync * sizeof (struct bge_rx_bd),
   2986 	    BUS_DMASYNC_POSTREAD);
   2987 
   2988 	while(sc->bge_rx_saved_considx !=
   2989 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2990 		struct bge_rx_bd	*cur_rx;
   2991 		u_int32_t		rxidx;
   2992 		struct mbuf		*m = NULL;
   2993 
   2994 		cur_rx = &sc->bge_rdata->
   2995 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2996 
   2997 		rxidx = cur_rx->bge_idx;
   2998 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2999 
   3000 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3001 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3002 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3003 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3004 			jumbocnt++;
   3005 			bus_dmamap_sync(sc->bge_dmatag,
   3006 			    sc->bge_cdata.bge_rx_jumbo_map,
   3007 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3008 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3009 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3010 				ifp->if_ierrors++;
   3011 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3012 				continue;
   3013 			}
   3014 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3015 					     NULL)== ENOBUFS) {
   3016 				ifp->if_ierrors++;
   3017 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3018 				continue;
   3019 			}
   3020 		} else {
   3021 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3022 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3023 
   3024 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3025 			stdcnt++;
   3026 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3027 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3028 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3029 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3030 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3031 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3032 				ifp->if_ierrors++;
   3033 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3034 				continue;
   3035 			}
   3036 			if (bge_newbuf_std(sc, sc->bge_std,
   3037 			    NULL, dmamap) == ENOBUFS) {
   3038 				ifp->if_ierrors++;
   3039 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3040 				continue;
   3041 			}
   3042 		}
   3043 
   3044 		ifp->if_ipackets++;
   3045 #ifndef __NO_STRICT_ALIGNMENT
   3046                 /*
   3047                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3048                  * the Rx buffer has the layer-2 header unaligned.
   3049                  * If our CPU requires alignment, re-align by copying.
   3050                  */
   3051 		if (sc->bge_rx_alignment_bug) {
   3052 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3053                                 cur_rx->bge_len);
   3054 			m->m_data += ETHER_ALIGN;
   3055 		}
   3056 #endif
   3057 
   3058 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3059 		m->m_pkthdr.rcvif = ifp;
   3060 
   3061 #if NBPFILTER > 0
   3062 		/*
   3063 		 * Handle BPF listeners. Let the BPF user see the packet.
   3064 		 */
   3065 		if (ifp->if_bpf)
   3066 			bpf_mtap(ifp->if_bpf, m);
   3067 #endif
   3068 
   3069 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3070 
   3071 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3072 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3073 		/*
   3074 		 * Rx transport checksum-offload may also
   3075 		 * have bugs with packets which, when transmitted,
   3076 		 * were `runts' requiring padding.
   3077 		 */
   3078 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3079 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3080 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3081 			m->m_pkthdr.csum_data =
   3082 			    cur_rx->bge_tcp_udp_csum;
   3083 			m->m_pkthdr.csum_flags |=
   3084 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3085 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3086 		}
   3087 
   3088 		/*
   3089 		 * If we received a packet with a vlan tag, pass it
   3090 		 * to vlan_input() instead of ether_input().
   3091 		 */
   3092 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   3093 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3094 
   3095 		(*ifp->if_input)(ifp, m);
   3096 	}
   3097 
   3098 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3099 	if (stdcnt)
   3100 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3101 	if (jumbocnt)
   3102 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3103 }
   3104 
   3105 static void
   3106 bge_txeof(struct bge_softc *sc)
   3107 {
   3108 	struct bge_tx_bd *cur_tx = NULL;
   3109 	struct ifnet *ifp;
   3110 	struct txdmamap_pool_entry *dma;
   3111 	bus_addr_t offset, toff;
   3112 	bus_size_t tlen;
   3113 	int tosync;
   3114 	struct mbuf *m;
   3115 
   3116 	ifp = &sc->ethercom.ec_if;
   3117 
   3118 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3119 	    offsetof(struct bge_ring_data, bge_status_block),
   3120 	    sizeof (struct bge_status_block),
   3121 	    BUS_DMASYNC_POSTREAD);
   3122 
   3123 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3124 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3125 	    sc->bge_tx_saved_considx;
   3126 
   3127 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3128 
   3129 	if (tosync < 0) {
   3130 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3131 		    sizeof (struct bge_tx_bd);
   3132 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3133 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3134 		tosync = -tosync;
   3135 	}
   3136 
   3137 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3138 	    offset, tosync * sizeof (struct bge_tx_bd),
   3139 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3140 
   3141 	/*
   3142 	 * Go through our tx ring and free mbufs for those
   3143 	 * frames that have been sent.
   3144 	 */
   3145 	while (sc->bge_tx_saved_considx !=
   3146 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3147 		u_int32_t		idx = 0;
   3148 
   3149 		idx = sc->bge_tx_saved_considx;
   3150 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3151 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3152 			ifp->if_opackets++;
   3153 		m = sc->bge_cdata.bge_tx_chain[idx];
   3154 		if (m != NULL) {
   3155 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3156 			dma = sc->txdma[idx];
   3157 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3158 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3159 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3160 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3161 			sc->txdma[idx] = NULL;
   3162 
   3163 			m_freem(m);
   3164 		}
   3165 		sc->bge_txcnt--;
   3166 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3167 		ifp->if_timer = 0;
   3168 	}
   3169 
   3170 	if (cur_tx != NULL)
   3171 		ifp->if_flags &= ~IFF_OACTIVE;
   3172 }
   3173 
   3174 static int
   3175 bge_intr(void *xsc)
   3176 {
   3177 	struct bge_softc *sc;
   3178 	struct ifnet *ifp;
   3179 
   3180 	sc = xsc;
   3181 	ifp = &sc->ethercom.ec_if;
   3182 
   3183 	/*
   3184 	 * Ascertain whether the interrupt is from this bge device.
   3185 	 * Do the cheap test first.
   3186 	 */
   3187 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3188 	    BGE_STATFLAG_UPDATED) == 0) {
   3189 		/*
   3190 		 * Sometimes, the interrupt comes in before the
   3191 		 * DMA update of the status block (performed prior
   3192 		 * to the  interrupt itself) has completed.
   3193 		 * In that case, do the (extremely expensive!)
   3194 		 * PCI-config-space register read.
   3195 		 */
   3196 		uint32_t pcistate =
   3197 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3198 
   3199 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3200 			return (0);
   3201 
   3202 	}
   3203 	/*
   3204 	 *  If we reach here, then the interrupt is for us.
   3205 	 */
   3206 
   3207 	/* Ack interrupt and stop others from occuring. */
   3208 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3209 
   3210 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3211 
   3212 	/*
   3213 	 * Process link state changes.
   3214 	 * Grrr. The link status word in the status block does
   3215 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3216 	 * according to all available information. Hence, we have
   3217 	 * to enable MII interrupts in order to properly obtain
   3218 	 * async link changes. Unfortunately, this also means that
   3219 	 * we have to read the MAC status register to detect link
   3220 	 * changes, thereby adding an additional register access to
   3221 	 * the interrupt handler.
   3222 	 */
   3223 
   3224 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3225 		u_int32_t		status;
   3226 
   3227 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3228 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3229 			sc->bge_link = 0;
   3230 			callout_stop(&sc->bge_timeout);
   3231 			bge_tick(sc);
   3232 			/* Clear the interrupt */
   3233 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3234 			    BGE_EVTENB_MI_INTERRUPT);
   3235 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3236 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3237 			    BRGPHY_INTRS);
   3238 		}
   3239 	} else {
   3240 		u_int32_t		status;
   3241 
   3242 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3243 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3244 			sc->bge_link = 0;
   3245 			callout_stop(&sc->bge_timeout);
   3246 			bge_tick(sc);
   3247 			/* Clear the interrupt */
   3248 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3249 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3250 			    BGE_MACSTAT_LINK_CHANGED);
   3251 		}
   3252 	}
   3253 
   3254 	if (ifp->if_flags & IFF_RUNNING) {
   3255 		/* Check RX return ring producer/consumer */
   3256 		bge_rxeof(sc);
   3257 
   3258 		/* Check TX ring producer/consumer */
   3259 		bge_txeof(sc);
   3260 	}
   3261 
   3262 	if (sc->bge_pending_rxintr_change) {
   3263 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3264 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3265 		uint32_t junk;
   3266 
   3267 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3268 		DELAY(10);
   3269 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3270 
   3271 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3272 		DELAY(10);
   3273 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3274 
   3275 		sc->bge_pending_rxintr_change = 0;
   3276 	}
   3277 	bge_handle_events(sc);
   3278 
   3279 	/* Re-enable interrupts. */
   3280 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3281 
   3282 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3283 		bge_start(ifp);
   3284 
   3285 	return (1);
   3286 }
   3287 
   3288 static void
   3289 bge_tick(void *xsc)
   3290 {
   3291 	struct bge_softc *sc = xsc;
   3292 	struct mii_data *mii = &sc->bge_mii;
   3293 	int s;
   3294 
   3295 	s = splnet();
   3296 
   3297 	bge_stats_update(sc);
   3298 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3299 
   3300 	if (sc->bge_tbi) {
   3301 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3302 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3303 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3304 		}
   3305 	} else
   3306 		mii_tick(mii);
   3307 
   3308 	splx(s);
   3309 }
   3310 
   3311 static void
   3312 bge_stats_update(struct bge_softc *sc)
   3313 {
   3314 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3315 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3316 	bus_size_t rstats = BGE_RX_STATS;
   3317 
   3318 #define READ_RSTAT(sc, stats, stat) \
   3319 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3320 
   3321 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3322 		ifp->if_collisions +=
   3323 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3324 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3325 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3326 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3327 
   3328 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3329 			      READ_RSTAT(sc, rstats, outXoffSent));
   3330 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3331 			      READ_RSTAT(sc, rstats, outXonSent));
   3332 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3333 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3334 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3335 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3336 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3337 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3338 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3339 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3340 		return;
   3341 	}
   3342 
   3343 #undef READ_RSTAT
   3344 #define READ_STAT(sc, stats, stat) \
   3345 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3346 
   3347 	ifp->if_collisions +=
   3348 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3349 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3350 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3351 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3352 	  ifp->if_collisions;
   3353 
   3354 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3355 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3356 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3357 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3358 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3359 		      READ_STAT(sc, stats,
   3360 		      		xoffPauseFramesReceived.bge_addr_lo));
   3361 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3362 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3363 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3364 		      READ_STAT(sc, stats,
   3365 		      		macControlFramesReceived.bge_addr_lo));
   3366 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3367 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3368 
   3369 #undef READ_STAT
   3370 
   3371 #ifdef notdef
   3372 	ifp->if_collisions +=
   3373 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3374 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3375 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3376 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3377 	   ifp->if_collisions;
   3378 #endif
   3379 }
   3380 
   3381 /*
   3382  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3383  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3384  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3385  * the hardware checksum assist gives incorrect results (possibly
   3386  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3387  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3388  */
   3389 static inline int
   3390 bge_cksum_pad(struct mbuf *pkt)
   3391 {
   3392 	struct mbuf *last = NULL;
   3393 	int padlen;
   3394 
   3395 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3396 
   3397 	/* if there's only the packet-header and we can pad there, use it. */
   3398 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3399 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3400 		last = pkt;
   3401 	} else {
   3402 		/*
   3403 		 * Walk packet chain to find last mbuf. We will either
   3404 		 * pad there, or append a new mbuf and pad it
   3405 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3406 		 */
   3407 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3408 	      	       continue; /* do nothing */
   3409 		}
   3410 
   3411 		/* `last' now points to last in chain. */
   3412 		if (M_TRAILINGSPACE(last) < padlen) {
   3413 			/* Allocate new empty mbuf, pad it. Compact later. */
   3414 			struct mbuf *n;
   3415 			MGET(n, M_DONTWAIT, MT_DATA);
   3416 			if (n == NULL)
   3417 				return ENOBUFS;
   3418 			n->m_len = 0;
   3419 			last->m_next = n;
   3420 			last = n;
   3421 		}
   3422 	}
   3423 
   3424 	KDASSERT(!M_READONLY(last));
   3425 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3426 
   3427 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3428 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3429 	last->m_len += padlen;
   3430 	pkt->m_pkthdr.len += padlen;
   3431 	return 0;
   3432 }
   3433 
   3434 /*
   3435  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3436  */
   3437 static inline int
   3438 bge_compact_dma_runt(struct mbuf *pkt)
   3439 {
   3440 	struct mbuf	*m, *prev;
   3441 	int 		totlen, prevlen;
   3442 
   3443 	prev = NULL;
   3444 	totlen = 0;
   3445 	prevlen = -1;
   3446 
   3447 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3448 		int mlen = m->m_len;
   3449 		int shortfall = 8 - mlen ;
   3450 
   3451 		totlen += mlen;
   3452 		if (mlen == 0) {
   3453 			continue;
   3454 		}
   3455 		if (mlen >= 8)
   3456 			continue;
   3457 
   3458 		/* If we get here, mbuf data is too small for DMA engine.
   3459 		 * Try to fix by shuffling data to prev or next in chain.
   3460 		 * If that fails, do a compacting deep-copy of the whole chain.
   3461 		 */
   3462 
   3463 		/* Internal frag. If fits in prev, copy it there. */
   3464 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3465 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3466 			prev->m_len += mlen;
   3467 			m->m_len = 0;
   3468 			/* XXX stitch chain */
   3469 			prev->m_next = m_free(m);
   3470 			m = prev;
   3471 			continue;
   3472 		}
   3473 		else if (m->m_next != NULL &&
   3474 			     M_TRAILINGSPACE(m) >= shortfall &&
   3475 			     m->m_next->m_len >= (8 + shortfall)) {
   3476 		    /* m is writable and have enough data in next, pull up. */
   3477 
   3478 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3479 			    shortfall);
   3480 			m->m_len += shortfall;
   3481 			m->m_next->m_len -= shortfall;
   3482 			m->m_next->m_data += shortfall;
   3483 		}
   3484 		else if (m->m_next == NULL || 1) {
   3485 		  	/* Got a runt at the very end of the packet.
   3486 			 * borrow data from the tail of the preceding mbuf and
   3487 			 * update its length in-place. (The original data is still
   3488 			 * valid, so we can do this even if prev is not writable.)
   3489 			 */
   3490 
   3491 			/* if we'd make prev a runt, just move all of its data. */
   3492 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3493 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3494 
   3495 			if ((prev->m_len - shortfall) < 8)
   3496 				shortfall = prev->m_len;
   3497 
   3498 #ifdef notyet	/* just do the safe slow thing for now */
   3499 			if (!M_READONLY(m)) {
   3500 				if (M_LEADINGSPACE(m) < shorfall) {
   3501 					void *m_dat;
   3502 					m_dat = (m->m_flags & M_PKTHDR) ?
   3503 					  m->m_pktdat : m->dat;
   3504 					memmove(m_dat, mtod(m, void*), m->m_len);
   3505 					m->m_data = m_dat;
   3506 				    }
   3507 			} else
   3508 #endif	/* just do the safe slow thing */
   3509 			{
   3510 				struct mbuf * n = NULL;
   3511 				int newprevlen = prev->m_len - shortfall;
   3512 
   3513 				MGET(n, M_NOWAIT, MT_DATA);
   3514 				if (n == NULL)
   3515 				   return ENOBUFS;
   3516 				KASSERT(m->m_len + shortfall < MLEN
   3517 					/*,
   3518 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3519 
   3520 				/* first copy the data we're stealing from prev */
   3521 				memcpy(n->m_data, prev->m_data + newprevlen,
   3522 				    shortfall);
   3523 
   3524 				/* update prev->m_len accordingly */
   3525 				prev->m_len -= shortfall;
   3526 
   3527 				/* copy data from runt m */
   3528 				memcpy(n->m_data + shortfall, m->m_data,
   3529 				    m->m_len);
   3530 
   3531 				/* n holds what we stole from prev, plus m */
   3532 				n->m_len = shortfall + m->m_len;
   3533 
   3534 				/* stitch n into chain and free m */
   3535 				n->m_next = m->m_next;
   3536 				prev->m_next = n;
   3537 				/* KASSERT(m->m_next == NULL); */
   3538 				m->m_next = NULL;
   3539 				m_free(m);
   3540 				m = n;	/* for continuing loop */
   3541 			}
   3542 		}
   3543 		prevlen = m->m_len;
   3544 	}
   3545 	return 0;
   3546 }
   3547 
   3548 /*
   3549  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3550  * pointers to descriptors.
   3551  */
   3552 static int
   3553 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3554 {
   3555 	struct bge_tx_bd	*f = NULL;
   3556 	u_int32_t		frag, cur;
   3557 	u_int16_t		csum_flags = 0;
   3558 	u_int16_t		txbd_tso_flags = 0;
   3559 	struct txdmamap_pool_entry *dma;
   3560 	bus_dmamap_t dmamap;
   3561 	int			i = 0;
   3562 	struct m_tag		*mtag;
   3563 	int			use_tso, maxsegsize, error;
   3564 
   3565 	cur = frag = *txidx;
   3566 
   3567 	if (m_head->m_pkthdr.csum_flags) {
   3568 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3569 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3570 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3571 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3572 	}
   3573 
   3574 	/*
   3575 	 * If we were asked to do an outboard checksum, and the NIC
   3576 	 * has the bug where it sometimes adds in the Ethernet padding,
   3577 	 * explicitly pad with zeros so the cksum will be correct either way.
   3578 	 * (For now, do this for all chip versions, until newer
   3579 	 * are confirmed to not require the workaround.)
   3580 	 */
   3581 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3582 #ifdef notyet
   3583 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3584 #endif
   3585 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3586 		goto check_dma_bug;
   3587 
   3588 	if (bge_cksum_pad(m_head) != 0) {
   3589 	    return ENOBUFS;
   3590 	}
   3591 
   3592 check_dma_bug:
   3593 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3594 		goto doit;
   3595 	/*
   3596 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3597 	 * less than eight bytes.  If we encounter a teeny mbuf
   3598 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3599 	 */
   3600 	if (bge_compact_dma_runt(m_head) != 0)
   3601 		return ENOBUFS;
   3602 
   3603 doit:
   3604 	dma = SLIST_FIRST(&sc->txdma_list);
   3605 	if (dma == NULL)
   3606 		return ENOBUFS;
   3607 	dmamap = dma->dmamap;
   3608 
   3609 	/*
   3610 	 * Set up any necessary TSO state before we start packing...
   3611 	 */
   3612 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3613 	if (!use_tso) {
   3614 		maxsegsize = 0;
   3615 	} else {	/* TSO setup */
   3616 		unsigned  mss;
   3617 		struct ether_header *eh;
   3618 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3619 		struct mbuf * m0 = m_head;
   3620 		struct ip *ip;
   3621 		struct tcphdr *th;
   3622 		int iphl, hlen;
   3623 
   3624 		/*
   3625 		 * XXX It would be nice if the mbuf pkthdr had offset
   3626 		 * fields for the protocol headers.
   3627 		 */
   3628 
   3629 		eh = mtod(m0, struct ether_header *);
   3630 		switch (htons(eh->ether_type)) {
   3631 		case ETHERTYPE_IP:
   3632 			offset = ETHER_HDR_LEN;
   3633 			break;
   3634 
   3635 		case ETHERTYPE_VLAN:
   3636 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3637 			break;
   3638 
   3639 		default:
   3640 			/*
   3641 			 * Don't support this protocol or encapsulation.
   3642 			 */
   3643 			return (ENOBUFS);
   3644 		}
   3645 
   3646 		/*
   3647 		 * TCP/IP headers are in the first mbuf; we can do
   3648 		 * this the easy way.
   3649 		 */
   3650 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3651 		hlen = iphl + offset;
   3652 		if (__predict_false(m0->m_len <
   3653 				    (hlen + sizeof(struct tcphdr)))) {
   3654 
   3655 			aprint_debug_dev(sc->bge_dev,
   3656 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3657 			    "not handled yet\n",
   3658 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3659 #ifdef NOTYET
   3660 			/*
   3661 			 * XXX jonathan (at) NetBSD.org: untested.
   3662 			 * how to force  this branch to be taken?
   3663 			 */
   3664 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3665 
   3666 			m_copydata(m0, offset, sizeof(ip), &ip);
   3667 			m_copydata(m0, hlen, sizeof(th), &th);
   3668 
   3669 			ip.ip_len = 0;
   3670 
   3671 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3672 			    sizeof(ip.ip_len), &ip.ip_len);
   3673 
   3674 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3675 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3676 
   3677 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3678 			    sizeof(th.th_sum), &th.th_sum);
   3679 
   3680 			hlen += th.th_off << 2;
   3681 			iptcp_opt_words	= hlen;
   3682 #else
   3683 			/*
   3684 			 * if_wm "hard" case not yet supported, can we not
   3685 			 * mandate it out of existence?
   3686 			 */
   3687 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3688 
   3689 			return ENOBUFS;
   3690 #endif
   3691 		} else {
   3692 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3693 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3694 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3695 
   3696 			/* Total IP/TCP options, in 32-bit words */
   3697 			iptcp_opt_words = (ip_tcp_hlen
   3698 					   - sizeof(struct tcphdr)
   3699 					   - sizeof(struct ip)) >> 2;
   3700 		}
   3701 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3702 			th->th_sum = 0;
   3703 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3704 		} else {
   3705 			/*
   3706 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3707 			 * Requires TSO firmware patch for 5701/5703/5704.
   3708 			 */
   3709 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3710 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3711 		}
   3712 
   3713 		mss = m_head->m_pkthdr.segsz;
   3714 		txbd_tso_flags |=
   3715 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3716 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3717 
   3718 		/*
   3719 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3720 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3721 		 * the NIC copies 40 bytes of IP/TCP header from the
   3722 		 * supplied header into the IP/TCP header portion of
   3723 		 * each post-TSO-segment. If the supplied packet has IP or
   3724 		 * TCP options, we need to tell the NIC to copy those extra
   3725 		 * bytes into each  post-TSO header, in addition to the normal
   3726 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3727 		 * Unfortunately, the driver encoding of option length
   3728 		 * varies across different ASIC families.
   3729 		 */
   3730 		tcp_seg_flags = 0;
   3731 		if (iptcp_opt_words) {
   3732 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3733 				tcp_seg_flags =
   3734 					iptcp_opt_words << 11;
   3735 			} else {
   3736 				txbd_tso_flags |=
   3737 					iptcp_opt_words << 12;
   3738 			}
   3739 		}
   3740 		maxsegsize = mss | tcp_seg_flags;
   3741 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3742 
   3743 	}	/* TSO setup */
   3744 
   3745 	/*
   3746 	 * Start packing the mbufs in this chain into
   3747 	 * the fragment pointers. Stop when we run out
   3748 	 * of fragments or hit the end of the mbuf chain.
   3749 	 */
   3750 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3751 	    BUS_DMA_NOWAIT);
   3752 	if (error) {
   3753 		return(ENOBUFS);
   3754 	}
   3755 	/*
   3756 	 * Sanity check: avoid coming within 16 descriptors
   3757 	 * of the end of the ring.
   3758 	 */
   3759 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3760 		BGE_TSO_PRINTF(("%s: "
   3761 		    " dmamap_load_mbuf too close to ring wrap\n",
   3762 		    device_xname(sc->bge_dev)));
   3763 		goto fail_unload;
   3764 	}
   3765 
   3766 	mtag = sc->ethercom.ec_nvlans ?
   3767 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3768 
   3769 
   3770 	/* Iterate over dmap-map fragments. */
   3771 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3772 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3773 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3774 			break;
   3775 
   3776 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3777 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3778 
   3779 		/*
   3780 		 * For 5751 and follow-ons, for TSO we must turn
   3781 		 * off checksum-assist flag in the tx-descr, and
   3782 		 * supply the ASIC-revision-specific encoding
   3783 		 * of TSO flags and segsize.
   3784 		 */
   3785 		if (use_tso) {
   3786 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3787 				f->bge_rsvd = maxsegsize;
   3788 				f->bge_flags = csum_flags | txbd_tso_flags;
   3789 			} else {
   3790 				f->bge_rsvd = 0;
   3791 				f->bge_flags =
   3792 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3793 			}
   3794 		} else {
   3795 			f->bge_rsvd = 0;
   3796 			f->bge_flags = csum_flags;
   3797 		}
   3798 
   3799 		if (mtag != NULL) {
   3800 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3801 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3802 		} else {
   3803 			f->bge_vlan_tag = 0;
   3804 		}
   3805 		cur = frag;
   3806 		BGE_INC(frag, BGE_TX_RING_CNT);
   3807 	}
   3808 
   3809 	if (i < dmamap->dm_nsegs) {
   3810 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3811 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3812 		goto fail_unload;
   3813 	}
   3814 
   3815 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3816 	    BUS_DMASYNC_PREWRITE);
   3817 
   3818 	if (frag == sc->bge_tx_saved_considx) {
   3819 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3820 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3821 
   3822 		goto fail_unload;
   3823 	}
   3824 
   3825 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3826 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3827 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3828 	sc->txdma[cur] = dma;
   3829 	sc->bge_txcnt += dmamap->dm_nsegs;
   3830 
   3831 	*txidx = frag;
   3832 
   3833 	return(0);
   3834 
   3835  fail_unload:
   3836 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3837 
   3838 	return ENOBUFS;
   3839 }
   3840 
   3841 /*
   3842  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3843  * to the mbuf data regions directly in the transmit descriptors.
   3844  */
   3845 static void
   3846 bge_start(struct ifnet *ifp)
   3847 {
   3848 	struct bge_softc *sc;
   3849 	struct mbuf *m_head = NULL;
   3850 	u_int32_t prodidx;
   3851 	int pkts = 0;
   3852 
   3853 	sc = ifp->if_softc;
   3854 
   3855 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3856 		return;
   3857 
   3858 	prodidx = sc->bge_tx_prodidx;
   3859 
   3860 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3861 		IFQ_POLL(&ifp->if_snd, m_head);
   3862 		if (m_head == NULL)
   3863 			break;
   3864 
   3865 #if 0
   3866 		/*
   3867 		 * XXX
   3868 		 * safety overkill.  If this is a fragmented packet chain
   3869 		 * with delayed TCP/UDP checksums, then only encapsulate
   3870 		 * it if we have enough descriptors to handle the entire
   3871 		 * chain at once.
   3872 		 * (paranoia -- may not actually be needed)
   3873 		 */
   3874 		if (m_head->m_flags & M_FIRSTFRAG &&
   3875 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3876 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3877 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3878 				ifp->if_flags |= IFF_OACTIVE;
   3879 				break;
   3880 			}
   3881 		}
   3882 #endif
   3883 
   3884 		/*
   3885 		 * Pack the data into the transmit ring. If we
   3886 		 * don't have room, set the OACTIVE flag and wait
   3887 		 * for the NIC to drain the ring.
   3888 		 */
   3889 		if (bge_encap(sc, m_head, &prodidx)) {
   3890 			ifp->if_flags |= IFF_OACTIVE;
   3891 			break;
   3892 		}
   3893 
   3894 		/* now we are committed to transmit the packet */
   3895 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3896 		pkts++;
   3897 
   3898 #if NBPFILTER > 0
   3899 		/*
   3900 		 * If there's a BPF listener, bounce a copy of this frame
   3901 		 * to him.
   3902 		 */
   3903 		if (ifp->if_bpf)
   3904 			bpf_mtap(ifp->if_bpf, m_head);
   3905 #endif
   3906 	}
   3907 	if (pkts == 0)
   3908 		return;
   3909 
   3910 	/* Transmit */
   3911 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3912 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3913 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3914 
   3915 	sc->bge_tx_prodidx = prodidx;
   3916 
   3917 	/*
   3918 	 * Set a timeout in case the chip goes out to lunch.
   3919 	 */
   3920 	ifp->if_timer = 5;
   3921 }
   3922 
   3923 static int
   3924 bge_init(struct ifnet *ifp)
   3925 {
   3926 	struct bge_softc *sc = ifp->if_softc;
   3927 	const u_int16_t *m;
   3928 	int s, error = 0;
   3929 
   3930 	s = splnet();
   3931 
   3932 	ifp = &sc->ethercom.ec_if;
   3933 
   3934 	/* Cancel pending I/O and flush buffers. */
   3935 	bge_stop(ifp, 0);
   3936 	bge_reset(sc);
   3937 	bge_chipinit(sc);
   3938 
   3939 	/*
   3940 	 * Init the various state machines, ring
   3941 	 * control blocks and firmware.
   3942 	 */
   3943 	error = bge_blockinit(sc);
   3944 	if (error != 0) {
   3945 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3946 		    error);
   3947 		splx(s);
   3948 		return error;
   3949 	}
   3950 
   3951 	ifp = &sc->ethercom.ec_if;
   3952 
   3953 	/* Specify MTU. */
   3954 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3955 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3956 
   3957 	/* Load our MAC address. */
   3958 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3959 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3960 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3961 
   3962 	/* Enable or disable promiscuous mode as needed. */
   3963 	if (ifp->if_flags & IFF_PROMISC) {
   3964 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3965 	} else {
   3966 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3967 	}
   3968 
   3969 	/* Program multicast filter. */
   3970 	bge_setmulti(sc);
   3971 
   3972 	/* Init RX ring. */
   3973 	bge_init_rx_ring_std(sc);
   3974 
   3975 	/* Init jumbo RX ring. */
   3976 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3977 		bge_init_rx_ring_jumbo(sc);
   3978 
   3979 	/* Init our RX return ring index */
   3980 	sc->bge_rx_saved_considx = 0;
   3981 
   3982 	/* Init TX ring. */
   3983 	bge_init_tx_ring(sc);
   3984 
   3985 	/* Turn on transmitter */
   3986 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3987 
   3988 	/* Turn on receiver */
   3989 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3990 
   3991 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3992 
   3993 	/* Tell firmware we're alive. */
   3994 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3995 
   3996 	/* Enable host interrupts. */
   3997 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3998 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3999 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   4000 
   4001 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4002 		goto out;
   4003 
   4004 	ifp->if_flags |= IFF_RUNNING;
   4005 	ifp->if_flags &= ~IFF_OACTIVE;
   4006 
   4007 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4008 
   4009 out:
   4010 	splx(s);
   4011 
   4012 	return error;
   4013 }
   4014 
   4015 /*
   4016  * Set media options.
   4017  */
   4018 static int
   4019 bge_ifmedia_upd(struct ifnet *ifp)
   4020 {
   4021 	struct bge_softc *sc = ifp->if_softc;
   4022 	struct mii_data *mii = &sc->bge_mii;
   4023 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4024 	int rc;
   4025 
   4026 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4027 	if (sc->bge_tbi) {
   4028 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4029 			return(EINVAL);
   4030 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4031 		case IFM_AUTO:
   4032 			break;
   4033 		case IFM_1000_SX:
   4034 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4035 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4036 				    BGE_MACMODE_HALF_DUPLEX);
   4037 			} else {
   4038 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4039 				    BGE_MACMODE_HALF_DUPLEX);
   4040 			}
   4041 			break;
   4042 		default:
   4043 			return(EINVAL);
   4044 		}
   4045 		/* XXX 802.3x flow control for 1000BASE-SX */
   4046 		return(0);
   4047 	}
   4048 
   4049 	sc->bge_link = 0;
   4050 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4051 		return 0;
   4052 	return rc;
   4053 }
   4054 
   4055 /*
   4056  * Report current media status.
   4057  */
   4058 static void
   4059 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4060 {
   4061 	struct bge_softc *sc = ifp->if_softc;
   4062 	struct mii_data *mii = &sc->bge_mii;
   4063 
   4064 	if (sc->bge_tbi) {
   4065 		ifmr->ifm_status = IFM_AVALID;
   4066 		ifmr->ifm_active = IFM_ETHER;
   4067 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4068 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4069 			ifmr->ifm_status |= IFM_ACTIVE;
   4070 		ifmr->ifm_active |= IFM_1000_SX;
   4071 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4072 			ifmr->ifm_active |= IFM_HDX;
   4073 		else
   4074 			ifmr->ifm_active |= IFM_FDX;
   4075 		return;
   4076 	}
   4077 
   4078 	mii_pollstat(mii);
   4079 	ifmr->ifm_status = mii->mii_media_status;
   4080 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4081 	    sc->bge_flowflags;
   4082 }
   4083 
   4084 static int
   4085 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4086 {
   4087 	struct bge_softc *sc = ifp->if_softc;
   4088 	struct ifreq *ifr = (struct ifreq *) data;
   4089 	int s, error = 0;
   4090 	struct mii_data *mii;
   4091 
   4092 	s = splnet();
   4093 
   4094 	switch(command) {
   4095 	case SIOCSIFFLAGS:
   4096 		if (ifp->if_flags & IFF_UP) {
   4097 			/*
   4098 			 * If only the state of the PROMISC flag changed,
   4099 			 * then just use the 'set promisc mode' command
   4100 			 * instead of reinitializing the entire NIC. Doing
   4101 			 * a full re-init means reloading the firmware and
   4102 			 * waiting for it to start up, which may take a
   4103 			 * second or two.
   4104 			 */
   4105 			if (ifp->if_flags & IFF_RUNNING &&
   4106 			    ifp->if_flags & IFF_PROMISC &&
   4107 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4108 				BGE_SETBIT(sc, BGE_RX_MODE,
   4109 				    BGE_RXMODE_RX_PROMISC);
   4110 			} else if (ifp->if_flags & IFF_RUNNING &&
   4111 			    !(ifp->if_flags & IFF_PROMISC) &&
   4112 			    sc->bge_if_flags & IFF_PROMISC) {
   4113 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4114 				    BGE_RXMODE_RX_PROMISC);
   4115 			} else if (!(sc->bge_if_flags & IFF_UP))
   4116 				bge_init(ifp);
   4117 		} else {
   4118 			if (ifp->if_flags & IFF_RUNNING)
   4119 				bge_stop(ifp, 1);
   4120 		}
   4121 		sc->bge_if_flags = ifp->if_flags;
   4122 		error = 0;
   4123 		break;
   4124 	case SIOCSIFMEDIA:
   4125 		/* XXX Flow control is not supported for 1000BASE-SX */
   4126 		if (sc->bge_tbi) {
   4127 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4128 			sc->bge_flowflags = 0;
   4129 		}
   4130 
   4131 		/* Flow control requires full-duplex mode. */
   4132 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4133 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4134 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4135 		}
   4136 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4137 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4138 				/* We an do both TXPAUSE and RXPAUSE. */
   4139 				ifr->ifr_media |=
   4140 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4141 			}
   4142 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4143 		}
   4144 		/* FALLTHROUGH */
   4145 	case SIOCGIFMEDIA:
   4146 		if (sc->bge_tbi) {
   4147 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4148 			    command);
   4149 		} else {
   4150 			mii = &sc->bge_mii;
   4151 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4152 			    command);
   4153 		}
   4154 		break;
   4155 	default:
   4156 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4157 			break;
   4158 
   4159 		error = 0;
   4160 
   4161 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4162 			;
   4163 		else if (ifp->if_flags & IFF_RUNNING)
   4164 			bge_setmulti(sc);
   4165 		break;
   4166 	}
   4167 
   4168 	splx(s);
   4169 
   4170 	return(error);
   4171 }
   4172 
   4173 static void
   4174 bge_watchdog(struct ifnet *ifp)
   4175 {
   4176 	struct bge_softc *sc;
   4177 
   4178 	sc = ifp->if_softc;
   4179 
   4180 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4181 
   4182 	ifp->if_flags &= ~IFF_RUNNING;
   4183 	bge_init(ifp);
   4184 
   4185 	ifp->if_oerrors++;
   4186 }
   4187 
   4188 static void
   4189 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4190 {
   4191 	int i;
   4192 
   4193 	BGE_CLRBIT(sc, reg, bit);
   4194 
   4195 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4196 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4197 			return;
   4198 		delay(100);
   4199 		if (sc->bge_pcie)
   4200 		  DELAY(1000);
   4201 	}
   4202 
   4203 	aprint_error_dev(sc->bge_dev,
   4204 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4205 }
   4206 
   4207 /*
   4208  * Stop the adapter and free any mbufs allocated to the
   4209  * RX and TX lists.
   4210  */
   4211 static void
   4212 bge_stop(struct ifnet *ifp, int disable)
   4213 {
   4214 	struct bge_softc *sc = ifp->if_softc;
   4215 
   4216 	callout_stop(&sc->bge_timeout);
   4217 
   4218 	/*
   4219 	 * Disable all of the receiver blocks
   4220 	 */
   4221 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4222 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4223 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4224 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4225 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4226 	}
   4227 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4228 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4229 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4230 
   4231 	/*
   4232 	 * Disable all of the transmit blocks
   4233 	 */
   4234 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4235 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4236 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4237 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4238 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4239 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4240 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4241 	}
   4242 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4243 
   4244 	/*
   4245 	 * Shut down all of the memory managers and related
   4246 	 * state machines.
   4247 	 */
   4248 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4249 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4250 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4251 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4252 	}
   4253 
   4254 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4255 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4256 
   4257 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4258 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4259 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4260 	}
   4261 
   4262 	/* Disable host interrupts. */
   4263 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4264 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4265 
   4266 	/*
   4267 	 * Tell firmware we're shutting down.
   4268 	 */
   4269 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4270 
   4271 	/* Free the RX lists. */
   4272 	bge_free_rx_ring_std(sc);
   4273 
   4274 	/* Free jumbo RX list. */
   4275 	bge_free_rx_ring_jumbo(sc);
   4276 
   4277 	/* Free TX buffers. */
   4278 	bge_free_tx_ring(sc);
   4279 
   4280 	/*
   4281 	 * Isolate/power down the PHY.
   4282 	 */
   4283 	if (!sc->bge_tbi)
   4284 		mii_down(&sc->bge_mii);
   4285 
   4286 	sc->bge_link = 0;
   4287 
   4288 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4289 
   4290 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4291 }
   4292 
   4293 static int
   4294 sysctl_bge_verify(SYSCTLFN_ARGS)
   4295 {
   4296 	int error, t;
   4297 	struct sysctlnode node;
   4298 
   4299 	node = *rnode;
   4300 	t = *(int*)rnode->sysctl_data;
   4301 	node.sysctl_data = &t;
   4302 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4303 	if (error || newp == NULL)
   4304 		return (error);
   4305 
   4306 #if 0
   4307 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4308 	    node.sysctl_num, rnode->sysctl_num));
   4309 #endif
   4310 
   4311 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4312 		if (t < 0 || t >= NBGE_RX_THRESH)
   4313 			return (EINVAL);
   4314 		bge_update_all_threshes(t);
   4315 	} else
   4316 		return (EINVAL);
   4317 
   4318 	*(int*)rnode->sysctl_data = t;
   4319 
   4320 	return (0);
   4321 }
   4322 
   4323 /*
   4324  * Set up sysctl(3) MIB, hw.bge.*.
   4325  *
   4326  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4327  */
   4328 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4329 {
   4330 	int rc, bge_root_num;
   4331 	const struct sysctlnode *node;
   4332 
   4333 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4334 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4335 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4336 		goto err;
   4337 	}
   4338 
   4339 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4340 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4341 	    SYSCTL_DESCR("BGE interface controls"),
   4342 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4343 		goto err;
   4344 	}
   4345 
   4346 	bge_root_num = node->sysctl_num;
   4347 
   4348 	/* BGE Rx interrupt mitigation level */
   4349 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4350 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4351 	    CTLTYPE_INT, "rx_lvl",
   4352 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4353 	    sysctl_bge_verify, 0,
   4354 	    &bge_rx_thresh_lvl,
   4355 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4356 	    CTL_EOL)) != 0) {
   4357 		goto err;
   4358 	}
   4359 
   4360 	bge_rxthresh_nodenum = node->sysctl_num;
   4361 
   4362 	return;
   4363 
   4364 err:
   4365 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4366 }
   4367