if_bge.c revision 1.148 1 /* $NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
120
121
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134
135 #include <dev/pci/if_bgereg.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140
141
142 /*
143 * Tunable thresholds for rx-side bge interrupt mitigation.
144 */
145
146 /*
147 * The pairs of values below were obtained from empirical measurement
148 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 * interrupt for every N packets received, where N is, approximately,
150 * the second value (rx_max_bds) in each pair. The values are chosen
151 * such that moving from one pair to the succeeding pair was observed
152 * to roughly halve interrupt rate under sustained input packet load.
153 * The values were empirically chosen to avoid overflowing internal
154 * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 * results in internal wrapping and higher interrupt rates.
156 * The limit of 46 frames was chosen to match NFS workloads.
157 *
158 * These values also work well on bcm5701, bcm5704C, and (less
159 * tested) bcm5703. On other chipsets, (including the Altima chip
160 * family), the larger values may overflow internal chip limits,
161 * leading to increasing interrupt rates rather than lower interrupt
162 * rates.
163 *
164 * Applications using heavy interrupt mitigation (interrupting every
165 * 32 or 46 frames) in both directions may need to increase the TCP
166 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 * full link bandwidth, due to ACKs and window updates lingering
168 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 */
170 static const struct bge_load_rx_thresh {
171 int rx_ticks;
172 int rx_max_bds; }
173 bge_rx_threshes[] = {
174 { 32, 2 },
175 { 50, 4 },
176 { 100, 8 },
177 { 192, 16 },
178 { 416, 32 },
179 { 598, 46 }
180 };
181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182
183 /* XXX patchable; should be sysctl'able */
184 static int bge_auto_thresh = 1;
185 static int bge_rx_thresh_lvl;
186
187 static int bge_rxthresh_nodenum;
188
189 static int bge_probe(device_t, cfdata_t, void *);
190 static void bge_attach(device_t, device_t, void *);
191 static void bge_release_resources(struct bge_softc *);
192 static void bge_txeof(struct bge_softc *);
193 static void bge_rxeof(struct bge_softc *);
194
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
198
199 static int bge_intr(void *);
200 static void bge_start(struct ifnet *);
201 static int bge_ioctl(struct ifnet *, u_long, void *);
202 static int bge_init(struct ifnet *);
203 static void bge_stop(struct ifnet *, int);
204 static void bge_watchdog(struct ifnet *);
205 static int bge_ifmedia_upd(struct ifnet *);
206 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
207
208 static void bge_setmulti(struct bge_softc *);
209
210 static void bge_handle_events(struct bge_softc *);
211 static int bge_alloc_jumbo_mem(struct bge_softc *);
212 #if 0 /* XXX */
213 static void bge_free_jumbo_mem(struct bge_softc *);
214 #endif
215 static void *bge_jalloc(struct bge_softc *);
216 static void bge_jfree(struct mbuf *, void *, size_t, void *);
217 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
218 bus_dmamap_t);
219 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
220 static int bge_init_rx_ring_std(struct bge_softc *);
221 static void bge_free_rx_ring_std(struct bge_softc *);
222 static int bge_init_rx_ring_jumbo(struct bge_softc *);
223 static void bge_free_rx_ring_jumbo(struct bge_softc *);
224 static void bge_free_tx_ring(struct bge_softc *);
225 static int bge_init_tx_ring(struct bge_softc *);
226
227 static int bge_chipinit(struct bge_softc *);
228 static int bge_blockinit(struct bge_softc *);
229 static int bge_setpowerstate(struct bge_softc *, int);
230
231 static void bge_reset(struct bge_softc *);
232
233 #define BGE_DEBUG
234 #ifdef BGE_DEBUG
235 #define DPRINTF(x) if (bgedebug) printf x
236 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
237 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
238 int bgedebug = 0;
239 int bge_tso_debug = 0;
240 #else
241 #define DPRINTF(x)
242 #define DPRINTFN(n,x)
243 #define BGE_TSO_PRINTF(x)
244 #endif
245
246 #ifdef BGE_EVENT_COUNTERS
247 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
248 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
249 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
250 #else
251 #define BGE_EVCNT_INCR(ev) /* nothing */
252 #define BGE_EVCNT_ADD(ev, val) /* nothing */
253 #define BGE_EVCNT_UPD(ev, val) /* nothing */
254 #endif
255
256 /* Various chip quirks. */
257 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
258 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
259 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
260 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
261 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
262 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
263 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
264 #define BGE_QUIRK_5705_CORE 0x00000080
265 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
266
267 /*
268 * XXX: how to handle variants based on 5750 and derivatives:
269 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
270 * in general behave like a 5705, except with additional quirks.
271 * This driver's current handling of the 5721 is wrong;
272 * how we map ASIC revision to "quirks" needs more thought.
273 * (defined here until the thought is done).
274 */
275 #define BGE_IS_5714_FAMILY(sc) \
276 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
277 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
278 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
279
280 #define BGE_IS_5750_OR_BEYOND(sc) \
281 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
282 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
283 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
284 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
285 BGE_IS_5714_FAMILY(sc) )
286
287 #define BGE_IS_5705_OR_BEYOND(sc) \
288 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
289 BGE_IS_5750_OR_BEYOND(sc) )
290
291
292 /* following bugs are common to bcm5700 rev B, all flavours */
293 #define BGE_QUIRK_5700_COMMON \
294 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
295
296 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
297 bge_probe, bge_attach, NULL, NULL);
298
299 static u_int32_t
300 bge_readmem_ind(struct bge_softc *sc, int off)
301 {
302 pcireg_t val;
303
304 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
305 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
306 return val;
307 }
308
309 static void
310 bge_writemem_ind(struct bge_softc *sc, int off, int val)
311 {
312 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
313 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
314 }
315
316 #ifdef notdef
317 static u_int32_t
318 bge_readreg_ind(struct bge_softc *sc, int off)
319 {
320 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 {
328 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
330 }
331
332 #ifdef notdef
333 static u_int8_t
334 bge_vpd_readbyte(struct bge_softc *sc, int addr)
335 {
336 int i;
337 u_int32_t val;
338
339 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
340 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
341 DELAY(10);
342 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
343 BGE_VPD_FLAG)
344 break;
345 }
346
347 if (i == BGE_TIMEOUT) {
348 aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
349 return(0);
350 }
351
352 val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
353
354 return((val >> ((addr % 4) * 8)) & 0xFF);
355 }
356
357 static void
358 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
359 {
360 int i;
361 u_int8_t *ptr;
362
363 ptr = (u_int8_t *)res;
364 for (i = 0; i < sizeof(struct vpd_res); i++)
365 ptr[i] = bge_vpd_readbyte(sc, i + addr);
366 }
367
368 static void
369 bge_vpd_read(struct bge_softc *sc)
370 {
371 int pos = 0, i;
372 struct vpd_res res;
373
374 if (sc->bge_vpd_prodname != NULL)
375 free(sc->bge_vpd_prodname, M_DEVBUF);
376 if (sc->bge_vpd_readonly != NULL)
377 free(sc->bge_vpd_readonly, M_DEVBUF);
378 sc->bge_vpd_prodname = NULL;
379 sc->bge_vpd_readonly = NULL;
380
381 bge_vpd_read_res(sc, &res, pos);
382
383 if (res.vr_id != VPD_RES_ID) {
384 aprint_error_dev("bad VPD resource id: expected %x got %x\n",
385 VPD_RES_ID, res.vr_id);
386 return;
387 }
388
389 pos += sizeof(res);
390 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 if (sc->bge_vpd_prodname == NULL)
392 panic("bge_vpd_read");
393 for (i = 0; i < res.vr_len; i++)
394 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
395 sc->bge_vpd_prodname[i] = '\0';
396 pos += i;
397
398 bge_vpd_read_res(sc, &res, pos);
399
400 if (res.vr_id != VPD_RES_READ) {
401 aprint_error_dev(sc->bge_dev,
402 "bad VPD resource id: expected %x got %x\n",
403 VPD_RES_READ, res.vr_id);
404 return;
405 }
406
407 pos += sizeof(res);
408 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
409 if (sc->bge_vpd_readonly == NULL)
410 panic("bge_vpd_read");
411 for (i = 0; i < res.vr_len + 1; i++)
412 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
413 }
414 #endif
415
416 /*
417 * Read a byte of data stored in the EEPROM at address 'addr.' The
418 * BCM570x supports both the traditional bitbang interface and an
419 * auto access interface for reading the EEPROM. We use the auto
420 * access method.
421 */
422 static u_int8_t
423 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
424 {
425 int i;
426 u_int32_t byte = 0;
427
428 /*
429 * Enable use of auto EEPROM access so we can avoid
430 * having to use the bitbang method.
431 */
432 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
433
434 /* Reset the EEPROM, load the clock period. */
435 CSR_WRITE_4(sc, BGE_EE_ADDR,
436 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
437 DELAY(20);
438
439 /* Issue the read EEPROM command. */
440 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
441
442 /* Wait for completion */
443 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
444 DELAY(10);
445 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
446 break;
447 }
448
449 if (i == BGE_TIMEOUT) {
450 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
451 return(0);
452 }
453
454 /* Get result. */
455 byte = CSR_READ_4(sc, BGE_EE_DATA);
456
457 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
458
459 return(0);
460 }
461
462 /*
463 * Read a sequence of bytes from the EEPROM.
464 */
465 static int
466 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
467 {
468 int err = 0, i;
469 u_int8_t byte = 0;
470 char *dest = destv;
471
472 for (i = 0; i < cnt; i++) {
473 err = bge_eeprom_getbyte(sc, off + i, &byte);
474 if (err)
475 break;
476 *(dest + i) = byte;
477 }
478
479 return(err ? 1 : 0);
480 }
481
482 static int
483 bge_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct bge_softc *sc = device_private(dev);
486 u_int32_t val;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /*
491 * Several chips with builtin PHYs will incorrectly answer to
492 * other PHY instances than the builtin PHY at id 1.
493 */
494 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
495 return(0);
496
497 /* Reading with autopolling on may trigger PCI errors */
498 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 CSR_WRITE_4(sc, BGE_MI_MODE,
501 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
502 DELAY(40);
503 }
504
505 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
506 BGE_MIPHY(phy)|BGE_MIREG(reg));
507
508 for (i = 0; i < BGE_TIMEOUT; i++) {
509 val = CSR_READ_4(sc, BGE_MI_COMM);
510 if (!(val & BGE_MICOMM_BUSY))
511 break;
512 delay(10);
513 }
514
515 if (i == BGE_TIMEOUT) {
516 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
517 val = 0;
518 goto done;
519 }
520
521 val = CSR_READ_4(sc, BGE_MI_COMM);
522
523 done:
524 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
525 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
526 DELAY(40);
527 }
528
529 if (val & BGE_MICOMM_READFAIL)
530 return(0);
531
532 return(val & 0xFFFF);
533 }
534
535 static void
536 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
537 {
538 struct bge_softc *sc = device_private(dev);
539 u_int32_t saved_autopoll;
540 int i;
541
542 /* Touching the PHY while autopolling is on may trigger PCI errors */
543 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
544 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
545 delay(40);
546 CSR_WRITE_4(sc, BGE_MI_MODE,
547 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
548 delay(10); /* 40 usec is supposed to be adequate */
549 }
550
551 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
552 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
553
554 for (i = 0; i < BGE_TIMEOUT; i++) {
555 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
556 break;
557 delay(10);
558 }
559
560 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
561 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
562 delay(40);
563 }
564
565 if (i == BGE_TIMEOUT)
566 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
567 }
568
569 static void
570 bge_miibus_statchg(device_t dev)
571 {
572 struct bge_softc *sc = device_private(dev);
573 struct mii_data *mii = &sc->bge_mii;
574
575 /*
576 * Get flow control negotiation result.
577 */
578 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
579 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
580 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
581 mii->mii_media_active &= ~IFM_ETH_FMASK;
582 }
583
584 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
585 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
586 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
587 } else {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
589 }
590
591 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
593 } else {
594 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 }
596
597 /*
598 * 802.3x flow control
599 */
600 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
601 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
602 } else {
603 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 }
605 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
606 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
607 } else {
608 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 }
610 }
611
612 /*
613 * Update rx threshold levels to values in a particular slot
614 * of the interrupt-mitigation table bge_rx_threshes.
615 */
616 static void
617 bge_set_thresh(struct ifnet *ifp, int lvl)
618 {
619 struct bge_softc *sc = ifp->if_softc;
620 int s;
621
622 /* For now, just save the new Rx-intr thresholds and record
623 * that a threshold update is pending. Updating the hardware
624 * registers here (even at splhigh()) is observed to
625 * occasionaly cause glitches where Rx-interrupts are not
626 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
627 */
628 s = splnet();
629 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
630 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
631 sc->bge_pending_rxintr_change = 1;
632 splx(s);
633
634 return;
635 }
636
637
638 /*
639 * Update Rx thresholds of all bge devices
640 */
641 static void
642 bge_update_all_threshes(int lvl)
643 {
644 struct ifnet *ifp;
645 const char * const namebuf = "bge";
646 int namelen;
647
648 if (lvl < 0)
649 lvl = 0;
650 else if( lvl >= NBGE_RX_THRESH)
651 lvl = NBGE_RX_THRESH - 1;
652
653 namelen = strlen(namebuf);
654 /*
655 * Now search all the interfaces for this name/number
656 */
657 IFNET_FOREACH(ifp) {
658 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
659 continue;
660 /* We got a match: update if doing auto-threshold-tuning */
661 if (bge_auto_thresh)
662 bge_set_thresh(ifp, lvl);
663 }
664 }
665
666 /*
667 * Handle events that have triggered interrupts.
668 */
669 static void
670 bge_handle_events(struct bge_softc *sc)
671 {
672
673 return;
674 }
675
676 /*
677 * Memory management for jumbo frames.
678 */
679
680 static int
681 bge_alloc_jumbo_mem(struct bge_softc *sc)
682 {
683 char *ptr, *kva;
684 bus_dma_segment_t seg;
685 int i, rseg, state, error;
686 struct bge_jpool_entry *entry;
687
688 state = error = 0;
689
690 /* Grab a big chunk o' storage. */
691 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
692 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
693 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
694 return ENOBUFS;
695 }
696
697 state = 1;
698 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
699 BUS_DMA_NOWAIT)) {
700 aprint_error_dev(sc->bge_dev,
701 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
702 error = ENOBUFS;
703 goto out;
704 }
705
706 state = 2;
707 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
708 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
709 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
710 error = ENOBUFS;
711 goto out;
712 }
713
714 state = 3;
715 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
716 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
717 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
718 error = ENOBUFS;
719 goto out;
720 }
721
722 state = 4;
723 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
724 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
725
726 SLIST_INIT(&sc->bge_jfree_listhead);
727 SLIST_INIT(&sc->bge_jinuse_listhead);
728
729 /*
730 * Now divide it up into 9K pieces and save the addresses
731 * in an array.
732 */
733 ptr = sc->bge_cdata.bge_jumbo_buf;
734 for (i = 0; i < BGE_JSLOTS; i++) {
735 sc->bge_cdata.bge_jslots[i] = ptr;
736 ptr += BGE_JLEN;
737 entry = malloc(sizeof(struct bge_jpool_entry),
738 M_DEVBUF, M_NOWAIT);
739 if (entry == NULL) {
740 aprint_error_dev(sc->bge_dev,
741 "no memory for jumbo buffer queue!\n");
742 error = ENOBUFS;
743 goto out;
744 }
745 entry->slot = i;
746 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
747 entry, jpool_entries);
748 }
749 out:
750 if (error != 0) {
751 switch (state) {
752 case 4:
753 bus_dmamap_unload(sc->bge_dmatag,
754 sc->bge_cdata.bge_rx_jumbo_map);
755 case 3:
756 bus_dmamap_destroy(sc->bge_dmatag,
757 sc->bge_cdata.bge_rx_jumbo_map);
758 case 2:
759 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
760 case 1:
761 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
762 break;
763 default:
764 break;
765 }
766 }
767
768 return error;
769 }
770
771 /*
772 * Allocate a jumbo buffer.
773 */
774 static void *
775 bge_jalloc(struct bge_softc *sc)
776 {
777 struct bge_jpool_entry *entry;
778
779 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
780
781 if (entry == NULL) {
782 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
783 return(NULL);
784 }
785
786 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
787 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
788 return(sc->bge_cdata.bge_jslots[entry->slot]);
789 }
790
791 /*
792 * Release a jumbo buffer.
793 */
794 static void
795 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
796 {
797 struct bge_jpool_entry *entry;
798 struct bge_softc *sc;
799 int i, s;
800
801 /* Extract the softc struct pointer. */
802 sc = (struct bge_softc *)arg;
803
804 if (sc == NULL)
805 panic("bge_jfree: can't find softc pointer!");
806
807 /* calculate the slot this buffer belongs to */
808
809 i = ((char *)buf
810 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
811
812 if ((i < 0) || (i >= BGE_JSLOTS))
813 panic("bge_jfree: asked to free buffer that we don't manage!");
814
815 s = splvm();
816 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
817 if (entry == NULL)
818 panic("bge_jfree: buffer not in use!");
819 entry->slot = i;
820 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
821 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
822
823 if (__predict_true(m != NULL))
824 pool_cache_put(mb_cache, m);
825 splx(s);
826 }
827
828
829 /*
830 * Intialize a standard receive ring descriptor.
831 */
832 static int
833 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
834 {
835 struct mbuf *m_new = NULL;
836 struct bge_rx_bd *r;
837 int error;
838
839 if (dmamap == NULL) {
840 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
841 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
842 if (error != 0)
843 return error;
844 }
845
846 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
847
848 if (m == NULL) {
849 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
850 if (m_new == NULL) {
851 return(ENOBUFS);
852 }
853
854 MCLGET(m_new, M_DONTWAIT);
855 if (!(m_new->m_flags & M_EXT)) {
856 m_freem(m_new);
857 return(ENOBUFS);
858 }
859 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
860
861 } else {
862 m_new = m;
863 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
864 m_new->m_data = m_new->m_ext.ext_buf;
865 }
866 if (!sc->bge_rx_alignment_bug)
867 m_adj(m_new, ETHER_ALIGN);
868 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
869 BUS_DMA_READ|BUS_DMA_NOWAIT))
870 return(ENOBUFS);
871 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
872 BUS_DMASYNC_PREREAD);
873
874 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
875 r = &sc->bge_rdata->bge_rx_std_ring[i];
876 bge_set_hostaddr(&r->bge_addr,
877 dmamap->dm_segs[0].ds_addr);
878 r->bge_flags = BGE_RXBDFLAG_END;
879 r->bge_len = m_new->m_len;
880 r->bge_idx = i;
881
882 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
883 offsetof(struct bge_ring_data, bge_rx_std_ring) +
884 i * sizeof (struct bge_rx_bd),
885 sizeof (struct bge_rx_bd),
886 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
887
888 return(0);
889 }
890
891 /*
892 * Initialize a jumbo receive ring descriptor. This allocates
893 * a jumbo buffer from the pool managed internally by the driver.
894 */
895 static int
896 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
897 {
898 struct mbuf *m_new = NULL;
899 struct bge_rx_bd *r;
900 void *buf = NULL;
901
902 if (m == NULL) {
903
904 /* Allocate the mbuf. */
905 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
906 if (m_new == NULL) {
907 return(ENOBUFS);
908 }
909
910 /* Allocate the jumbo buffer */
911 buf = bge_jalloc(sc);
912 if (buf == NULL) {
913 m_freem(m_new);
914 aprint_error_dev(sc->bge_dev,
915 "jumbo allocation failed -- packet dropped!\n");
916 return(ENOBUFS);
917 }
918
919 /* Attach the buffer to the mbuf. */
920 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
921 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
922 bge_jfree, sc);
923 m_new->m_flags |= M_EXT_RW;
924 } else {
925 m_new = m;
926 buf = m_new->m_data = m_new->m_ext.ext_buf;
927 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
928 }
929 if (!sc->bge_rx_alignment_bug)
930 m_adj(m_new, ETHER_ALIGN);
931 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
932 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
933 BUS_DMASYNC_PREREAD);
934 /* Set up the descriptor. */
935 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 r->bge_len = m_new->m_len;
940 r->bge_idx = i;
941
942 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 i * sizeof (struct bge_rx_bd),
945 sizeof (struct bge_rx_bd),
946 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947
948 return(0);
949 }
950
951 /*
952 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 * that's 1MB or memory, which is a lot. For now, we fill only the first
954 * 256 ring entries and hope that our CPU is fast enough to keep up with
955 * the NIC.
956 */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 static void
979 bge_free_rx_ring_std(struct bge_softc *sc)
980 {
981 int i;
982
983 if (!(sc->bge_flags & BGE_RXRING_VALID))
984 return;
985
986 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 bus_dmamap_destroy(sc->bge_dmatag,
991 sc->bge_cdata.bge_rx_std_map[i]);
992 }
993 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 sizeof(struct bge_rx_bd));
995 }
996
997 sc->bge_flags &= ~BGE_RXRING_VALID;
998 }
999
1000 static int
1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 {
1003 int i;
1004 volatile struct bge_rcb *rcb;
1005
1006 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 return 0;
1008
1009 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 };
1013
1014 sc->bge_jumbo = i - 1;
1015 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016
1017 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 rcb->bge_maxlen_flags = 0;
1019 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020
1021 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022
1023 return(0);
1024 }
1025
1026 static void
1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 {
1029 int i;
1030
1031 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 return;
1033
1034 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 }
1039 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 sizeof(struct bge_rx_bd));
1041 }
1042
1043 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 }
1045
1046 static void
1047 bge_free_tx_ring(struct bge_softc *sc)
1048 {
1049 int i, freed;
1050 struct txdmamap_pool_entry *dma;
1051
1052 if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 return;
1054
1055 freed = 0;
1056
1057 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 freed++;
1060 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 sizeof(struct bge_tx_bd));
1068 }
1069
1070 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 sc->bge_flags &= ~BGE_TXRING_VALID;
1077 }
1078
1079 static int
1080 bge_init_tx_ring(struct bge_softc *sc)
1081 {
1082 int i;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 if (sc->bge_flags & BGE_TXRING_VALID)
1087 return 0;
1088
1089 sc->bge_txcnt = 0;
1090 sc->bge_tx_saved_considx = 0;
1091
1092 /* Initialize transmit producer index for host-memory send ring. */
1093 sc->bge_tx_prodidx = 0;
1094 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097
1098 /* NIC-memory send ring not used; initialize to zero. */
1099 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1102
1103 SLIST_INIT(&sc->txdma_list);
1104 for (i = 0; i < BGE_RSLOTS; i++) {
1105 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 &dmamap))
1108 return(ENOBUFS);
1109 if (dmamap == NULL)
1110 panic("dmamap NULL in bge_init_tx_ring");
1111 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 if (dma == NULL) {
1113 aprint_error_dev(sc->bge_dev,
1114 "can't alloc txdmamap_pool_entry\n");
1115 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 return (ENOMEM);
1117 }
1118 dma->dmamap = dmamap;
1119 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 }
1121
1122 sc->bge_flags |= BGE_TXRING_VALID;
1123
1124 return(0);
1125 }
1126
1127 static void
1128 bge_setmulti(struct bge_softc *sc)
1129 {
1130 struct ethercom *ac = &sc->ethercom;
1131 struct ifnet *ifp = &ac->ec_if;
1132 struct ether_multi *enm;
1133 struct ether_multistep step;
1134 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 u_int32_t h;
1136 int i;
1137
1138 if (ifp->if_flags & IFF_PROMISC)
1139 goto allmulti;
1140
1141 /* Now program new ones. */
1142 ETHER_FIRST_MULTI(step, ac, enm);
1143 while (enm != NULL) {
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 /*
1146 * We must listen to a range of multicast addresses.
1147 * For now, just accept all multicasts, rather than
1148 * trying to set only those filter bits needed to match
1149 * the range. (At this time, the only use of address
1150 * ranges is for IP multicast routing, for which the
1151 * range is big enough to require all bits set.)
1152 */
1153 goto allmulti;
1154 }
1155
1156 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157
1158 /* Just want the 7 least-significant bits. */
1159 h &= 0x7f;
1160
1161 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 ETHER_NEXT_MULTI(step, enm);
1163 }
1164
1165 ifp->if_flags &= ~IFF_ALLMULTI;
1166 goto setit;
1167
1168 allmulti:
1169 ifp->if_flags |= IFF_ALLMULTI;
1170 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171
1172 setit:
1173 for (i = 0; i < 4; i++)
1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 }
1176
1177 const int bge_swapbits[] = {
1178 0,
1179 BGE_MODECTL_BYTESWAP_DATA,
1180 BGE_MODECTL_WORDSWAP_DATA,
1181 BGE_MODECTL_BYTESWAP_NONFRAME,
1182 BGE_MODECTL_WORDSWAP_NONFRAME,
1183
1184 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190
1191 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 BGE_MODECTL_BYTESWAP_NONFRAME,
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_WORDSWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 };
1205
1206 int bge_swapindex = 0;
1207
1208 /*
1209 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 * self-test results.
1211 */
1212 static int
1213 bge_chipinit(struct bge_softc *sc)
1214 {
1215 u_int32_t cachesize;
1216 int i;
1217 u_int32_t dma_rw_ctl;
1218
1219
1220 /* Set endianness before we access any non-PCI registers. */
1221 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1222 BGE_INIT);
1223
1224 /* Set power state to D0. */
1225 bge_setpowerstate(sc, 0);
1226
1227 /*
1228 * Check the 'ROM failed' bit on the RX CPU to see if
1229 * self-tests passed.
1230 */
1231 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1232 aprint_error_dev(sc->bge_dev,
1233 "RX CPU self-diagnostics failed!\n");
1234 return(ENODEV);
1235 }
1236
1237 /* Clear the MAC control register */
1238 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1239
1240 /*
1241 * Clear the MAC statistics block in the NIC's
1242 * internal memory.
1243 */
1244 for (i = BGE_STATS_BLOCK;
1245 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1246 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1247
1248 for (i = BGE_STATUS_BLOCK;
1249 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1250 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1251
1252 /* Set up the PCI DMA control register. */
1253 if (sc->bge_pcie) {
1254 u_int32_t device_ctl;
1255
1256 /* From FreeBSD */
1257 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1258 device_xname(sc->bge_dev)));
1259 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1260 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1262
1263 /* jonathan: alternative from Linux driver */
1264 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1266
1267 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1268 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1269 BGE_PCI_CONF_DEV_CTRL);
1270 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1271
1272 if ((device_ctl & 0x00e0) && 0) {
1273 /*
1274 * XXX jonathan (at) NetBSD.org:
1275 * This clause is exactly what the Broadcom-supplied
1276 * Linux does; but given overall register programming
1277 * by if_bge(4), this larger DMA-write watermark
1278 * value causes bcm5721 chips to totally wedge.
1279 */
1280 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1281 } else {
1282 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1283 }
1284 } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1285 BGE_PCISTATE_PCI_BUSMODE) {
1286 /* Conventional PCI bus */
1287 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1288 device_xname(sc->bge_dev)));
1289 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1290 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1291 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 dma_rw_ctl |= 0x0F;
1294 }
1295 } else {
1296 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1297 device_xname(sc->bge_dev)));
1298 /* PCI-X bus */
1299 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1300 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1301 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1302 (0x0F);
1303 /*
1304 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1305 * for hardware bugs, which means we should also clear
1306 * the low-order MINDMA bits. In addition, the 5704
1307 * uses a different encoding of read/write watermarks.
1308 */
1309 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1310 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1311 /* should be 0x1f0000 */
1312 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1314 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1315 }
1316 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1317 dma_rw_ctl &= 0xfffffff0;
1318 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1319 }
1320 else if (BGE_IS_5714_FAMILY(sc)) {
1321 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1322 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1323 /* XXX magic values, Broadcom-supplied Linux driver */
1324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1325 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1326 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 else
1328 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1329 }
1330 }
1331
1332 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1333
1334 /*
1335 * Set up general mode register.
1336 */
1337 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1338 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1339 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1340
1341 /* Get cache line size. */
1342 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1343
1344 /*
1345 * Avoid violating PCI spec on certain chip revs.
1346 */
1347 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1348 PCIM_CMD_MWIEN) {
1349 switch(cachesize) {
1350 case 1:
1351 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1352 BGE_PCI_WRITE_BNDRY_16BYTES);
1353 break;
1354 case 2:
1355 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1356 BGE_PCI_WRITE_BNDRY_32BYTES);
1357 break;
1358 case 4:
1359 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1360 BGE_PCI_WRITE_BNDRY_64BYTES);
1361 break;
1362 case 8:
1363 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1364 BGE_PCI_WRITE_BNDRY_128BYTES);
1365 break;
1366 case 16:
1367 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1368 BGE_PCI_WRITE_BNDRY_256BYTES);
1369 break;
1370 case 32:
1371 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1372 BGE_PCI_WRITE_BNDRY_512BYTES);
1373 break;
1374 case 64:
1375 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1376 BGE_PCI_WRITE_BNDRY_1024BYTES);
1377 break;
1378 default:
1379 /* Disable PCI memory write and invalidate. */
1380 #if 0
1381 if (bootverbose)
1382 aprint_error_dev(sc->bge_dev,
1383 "cache line size %d not supported "
1384 "disabling PCI MWI\n",
1385 #endif
1386 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1387 PCIM_CMD_MWIEN);
1388 break;
1389 }
1390 }
1391
1392 /*
1393 * Disable memory write invalidate. Apparently it is not supported
1394 * properly by these devices.
1395 */
1396 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1397
1398
1399 #ifdef __brokenalpha__
1400 /*
1401 * Must insure that we do not cross an 8K (bytes) boundary
1402 * for DMA reads. Our highest limit is 1K bytes. This is a
1403 * restriction on some ALPHA platforms with early revision
1404 * 21174 PCI chipsets, such as the AlphaPC 164lx
1405 */
1406 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1407 #endif
1408
1409 /* Set the timer prescaler (always 66MHz) */
1410 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1411
1412 return(0);
1413 }
1414
1415 static int
1416 bge_blockinit(struct bge_softc *sc)
1417 {
1418 volatile struct bge_rcb *rcb;
1419 bus_size_t rcb_addr;
1420 int i;
1421 struct ifnet *ifp = &sc->ethercom.ec_if;
1422 bge_hostaddr taddr;
1423
1424 /*
1425 * Initialize the memory window pointer register so that
1426 * we can access the first 32K of internal NIC RAM. This will
1427 * allow us to set up the TX send ring RCBs and the RX return
1428 * ring RCBs, plus other things which live in NIC memory.
1429 */
1430
1431 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1432
1433 /* Configure mbuf memory pool */
1434 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1435 if (sc->bge_extram) {
1436 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1437 BGE_EXT_SSRAM);
1438 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1439 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1440 else
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1442 } else {
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 BGE_BUFFPOOL_1);
1445 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 else
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 }
1450
1451 /* Configure DMA resource pool */
1452 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1453 BGE_DMA_DESCRIPTORS);
1454 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1455 }
1456
1457 /* Configure mbuf pool watermarks */
1458 #ifdef ORIG_WPAUL_VALUES
1459 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1460 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1462 #else
1463 /* new broadcom docs strongly recommend these: */
1464 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1465 if (ifp->if_mtu > ETHER_MAX_LEN) {
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1469 } else {
1470 /* Values from Linux driver... */
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1474 }
1475 } else {
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1479 }
1480 #endif
1481
1482 /* Configure DMA resource watermarks */
1483 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1484 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1485
1486 /* Enable buffer manager */
1487 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1488 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1489
1490 /* Poll for buffer manager start indication */
1491 for (i = 0; i < BGE_TIMEOUT; i++) {
1492 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1493 break;
1494 DELAY(10);
1495 }
1496
1497 if (i == BGE_TIMEOUT) {
1498 aprint_error_dev(sc->bge_dev,
1499 "buffer manager failed to start\n");
1500 return(ENXIO);
1501 }
1502
1503 /* Enable flow-through queues */
1504 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1505 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1506
1507 /* Wait until queue initialization is complete */
1508 for (i = 0; i < BGE_TIMEOUT; i++) {
1509 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1510 break;
1511 DELAY(10);
1512 }
1513
1514 if (i == BGE_TIMEOUT) {
1515 aprint_error_dev(sc->bge_dev,
1516 "flow-through queue init failed\n");
1517 return(ENXIO);
1518 }
1519
1520 /* Initialize the standard RX ring control block */
1521 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1522 bge_set_hostaddr(&rcb->bge_hostaddr,
1523 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1524 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1525 rcb->bge_maxlen_flags =
1526 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1527 } else {
1528 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1529 }
1530 if (sc->bge_extram)
1531 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1532 else
1533 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1534 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1535 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1538
1539 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1541 } else {
1542 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1543 }
1544
1545 /*
1546 * Initialize the jumbo RX ring control block
1547 * We set the 'ring disabled' bit in the flags
1548 * field until we're actually ready to start
1549 * using this ring (i.e. once we set the MTU
1550 * high enough to require it).
1551 */
1552 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1553 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1554 bge_set_hostaddr(&rcb->bge_hostaddr,
1555 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1556 rcb->bge_maxlen_flags =
1557 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1558 BGE_RCB_FLAG_RING_DISABLED);
1559 if (sc->bge_extram)
1560 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1561 else
1562 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1563
1564 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1565 rcb->bge_hostaddr.bge_addr_hi);
1566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1567 rcb->bge_hostaddr.bge_addr_lo);
1568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1569 rcb->bge_maxlen_flags);
1570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1571
1572 /* Set up dummy disabled mini ring RCB */
1573 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1574 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1575 BGE_RCB_FLAG_RING_DISABLED);
1576 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1577 rcb->bge_maxlen_flags);
1578
1579 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1580 offsetof(struct bge_ring_data, bge_info),
1581 sizeof (struct bge_gib),
1582 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583 }
1584
1585 /*
1586 * Set the BD ring replenish thresholds. The recommended
1587 * values are 1/8th the number of descriptors allocated to
1588 * each ring.
1589 */
1590 i = BGE_STD_RX_RING_CNT / 8;
1591
1592 /*
1593 * Use a value of 8 for the following chips to workaround HW errata.
1594 * Some of these chips have been added based on empirical
1595 * evidence (they don't work unless this is done).
1596 */
1597 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1598 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1601 i = 8;
1602
1603 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1604 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1605
1606 /*
1607 * Disable all unused send rings by setting the 'ring disabled'
1608 * bit in the flags field of all the TX send ring control blocks.
1609 * These are located in NIC memory.
1610 */
1611 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1612 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1613 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1614 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1615 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1616 rcb_addr += sizeof(struct bge_rcb);
1617 }
1618
1619 /* Configure TX RCB 0 (we use only the first ring) */
1620 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1621 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1622 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1623 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1624 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1625 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1626 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1627 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1628 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1629 }
1630
1631 /* Disable all unused RX return rings */
1632 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1633 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1634 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1635 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1636 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1637 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1638 BGE_RCB_FLAG_RING_DISABLED));
1639 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1640 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1641 (i * (sizeof(u_int64_t))), 0);
1642 rcb_addr += sizeof(struct bge_rcb);
1643 }
1644
1645 /* Initialize RX ring indexes */
1646 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1647 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1648 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1649
1650 /*
1651 * Set up RX return ring 0
1652 * Note that the NIC address for RX return rings is 0x00000000.
1653 * The return rings live entirely within the host, so the
1654 * nicaddr field in the RCB isn't used.
1655 */
1656 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1657 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1659 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1661 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1662 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1663
1664 /* Set random backoff seed for TX */
1665 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1666 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1667 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1668 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1669 BGE_TX_BACKOFF_SEED_MASK);
1670
1671 /* Set inter-packet gap */
1672 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1673
1674 /*
1675 * Specify which ring to use for packets that don't match
1676 * any RX rules.
1677 */
1678 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1679
1680 /*
1681 * Configure number of RX lists. One interrupt distribution
1682 * list, sixteen active lists, one bad frames class.
1683 */
1684 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1685
1686 /* Inialize RX list placement stats mask. */
1687 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1688 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1689
1690 /* Disable host coalescing until we get it set up */
1691 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1692
1693 /* Poll to make sure it's shut down. */
1694 for (i = 0; i < BGE_TIMEOUT; i++) {
1695 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1696 break;
1697 DELAY(10);
1698 }
1699
1700 if (i == BGE_TIMEOUT) {
1701 aprint_error_dev(sc->bge_dev,
1702 "host coalescing engine failed to idle\n");
1703 return(ENXIO);
1704 }
1705
1706 /* Set up host coalescing defaults */
1707 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1708 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1709 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1710 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1711 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1712 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1713 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1714 }
1715 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1716 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1717
1718 /* Set up address of statistics block */
1719 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1720 bge_set_hostaddr(&taddr,
1721 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1722 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1723 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1724 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1725 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1726 }
1727
1728 /* Set up address of status block */
1729 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1730 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1731 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1732 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1733 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1734 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1735
1736 /* Turn on host coalescing state machine */
1737 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1738
1739 /* Turn on RX BD completion state machine and enable attentions */
1740 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1741 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1742
1743 /* Turn on RX list placement state machine */
1744 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1745
1746 /* Turn on RX list selector state machine. */
1747 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1748 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1749 }
1750
1751 /* Turn on DMA, clear stats */
1752 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1753 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1754 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1755 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1756 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1757
1758 /* Set misc. local control, enable interrupts on attentions */
1759 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1760
1761 #ifdef notdef
1762 /* Assert GPIO pins for PHY reset */
1763 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1764 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1765 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1766 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1767 #endif
1768
1769 #if defined(not_quite_yet)
1770 /* Linux driver enables enable gpio pin #1 on 5700s */
1771 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1772 sc->bge_local_ctrl_reg |=
1773 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1774 }
1775 #endif
1776 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1777
1778 /* Turn on DMA completion state machine */
1779 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1780 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1781 }
1782
1783 /* Turn on write DMA state machine */
1784 {
1785 uint32_t bge_wdma_mode =
1786 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1787
1788 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1789 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1790 /* Enable host coalescing bug fix; see Linux tg3.c */
1791 bge_wdma_mode |= (1 << 29);
1792
1793 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1794 }
1795
1796 /* Turn on read DMA state machine */
1797 {
1798 uint32_t dma_read_modebits;
1799
1800 dma_read_modebits =
1801 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1802
1803 if (sc->bge_pcie && 0) {
1804 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1805 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1806 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1807 }
1808
1809 /* XXX broadcom-supplied linux driver; undocumented */
1810 if (BGE_IS_5750_OR_BEYOND(sc)) {
1811 /*
1812 * XXX: magic values.
1813 * From Broadcom-supplied Linux driver; apparently
1814 * required to workaround a DMA bug affecting TSO
1815 * on bcm575x/bcm5721?
1816 */
1817 dma_read_modebits |= (1 << 27);
1818 }
1819 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1820 }
1821
1822 /* Turn on RX data completion state machine */
1823 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1824
1825 /* Turn on RX BD initiator state machine */
1826 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1827
1828 /* Turn on RX data and RX BD initiator state machine */
1829 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1830
1831 /* Turn on Mbuf cluster free state machine */
1832 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1833 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1834 }
1835
1836 /* Turn on send BD completion state machine */
1837 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1838
1839 /* Turn on send data completion state machine */
1840 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1841
1842 /* Turn on send data initiator state machine */
1843 if (BGE_IS_5750_OR_BEYOND(sc)) {
1844 /* XXX: magic value from Linux driver */
1845 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1846 } else {
1847 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1848 }
1849
1850 /* Turn on send BD initiator state machine */
1851 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1852
1853 /* Turn on send BD selector state machine */
1854 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1855
1856 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1857 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1858 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1859
1860 /* ack/clear link change events */
1861 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1862 BGE_MACSTAT_CFG_CHANGED);
1863 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1864
1865 /* Enable PHY auto polling (for MII/GMII only) */
1866 if (sc->bge_tbi) {
1867 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1868 } else {
1869 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1870 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1871 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1872 BGE_EVTENB_MI_INTERRUPT);
1873 }
1874
1875 /* Enable link state change attentions. */
1876 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1877
1878 return(0);
1879 }
1880
1881 static const struct bge_revision {
1882 uint32_t br_chipid;
1883 uint32_t br_quirks;
1884 const char *br_name;
1885 } bge_revisions[] = {
1886 { BGE_CHIPID_BCM5700_A0,
1887 BGE_QUIRK_LINK_STATE_BROKEN,
1888 "BCM5700 A0" },
1889
1890 { BGE_CHIPID_BCM5700_A1,
1891 BGE_QUIRK_LINK_STATE_BROKEN,
1892 "BCM5700 A1" },
1893
1894 { BGE_CHIPID_BCM5700_B0,
1895 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1896 "BCM5700 B0" },
1897
1898 { BGE_CHIPID_BCM5700_B1,
1899 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1900 "BCM5700 B1" },
1901
1902 { BGE_CHIPID_BCM5700_B2,
1903 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1904 "BCM5700 B2" },
1905
1906 { BGE_CHIPID_BCM5700_B3,
1907 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1908 "BCM5700 B3" },
1909
1910 /* This is treated like a BCM5700 Bx */
1911 { BGE_CHIPID_BCM5700_ALTIMA,
1912 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1913 "BCM5700 Altima" },
1914
1915 { BGE_CHIPID_BCM5700_C0,
1916 0,
1917 "BCM5700 C0" },
1918
1919 { BGE_CHIPID_BCM5701_A0,
1920 0, /*XXX really, just not known */
1921 "BCM5701 A0" },
1922
1923 { BGE_CHIPID_BCM5701_B0,
1924 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1925 "BCM5701 B0" },
1926
1927 { BGE_CHIPID_BCM5701_B2,
1928 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1929 "BCM5701 B2" },
1930
1931 { BGE_CHIPID_BCM5701_B5,
1932 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1933 "BCM5701 B5" },
1934
1935 { BGE_CHIPID_BCM5703_A0,
1936 0,
1937 "BCM5703 A0" },
1938
1939 { BGE_CHIPID_BCM5703_A1,
1940 0,
1941 "BCM5703 A1" },
1942
1943 { BGE_CHIPID_BCM5703_A2,
1944 BGE_QUIRK_ONLY_PHY_1,
1945 "BCM5703 A2" },
1946
1947 { BGE_CHIPID_BCM5703_A3,
1948 BGE_QUIRK_ONLY_PHY_1,
1949 "BCM5703 A3" },
1950
1951 { BGE_CHIPID_BCM5703_B0,
1952 BGE_QUIRK_ONLY_PHY_1,
1953 "BCM5703 B0" },
1954
1955 { BGE_CHIPID_BCM5704_A0,
1956 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1957 "BCM5704 A0" },
1958
1959 { BGE_CHIPID_BCM5704_A1,
1960 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1961 "BCM5704 A1" },
1962
1963 { BGE_CHIPID_BCM5704_A2,
1964 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1965 "BCM5704 A2" },
1966
1967 { BGE_CHIPID_BCM5704_A3,
1968 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1969 "BCM5704 A3" },
1970
1971 { BGE_CHIPID_BCM5705_A0,
1972 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1973 "BCM5705 A0" },
1974
1975 { BGE_CHIPID_BCM5705_A1,
1976 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1977 "BCM5705 A1" },
1978
1979 { BGE_CHIPID_BCM5705_A2,
1980 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1981 "BCM5705 A2" },
1982
1983 { BGE_CHIPID_BCM5705_A3,
1984 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1985 "BCM5705 A3" },
1986
1987 { BGE_CHIPID_BCM5750_A0,
1988 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1989 "BCM5750 A0" },
1990
1991 { BGE_CHIPID_BCM5750_A1,
1992 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1993 "BCM5750 A1" },
1994
1995 { BGE_CHIPID_BCM5751_A1,
1996 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1997 "BCM5751 A1" },
1998
1999 { BGE_CHIPID_BCM5752_A0,
2000 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2001 "BCM5752 A0" },
2002
2003 { BGE_CHIPID_BCM5752_A1,
2004 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2005 "BCM5752 A1" },
2006
2007 { BGE_CHIPID_BCM5752_A2,
2008 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2009 "BCM5752 A2" },
2010
2011 { BGE_CHIPID_BCM5787_A0,
2012 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2013 "BCM5754/5787 A0" },
2014
2015 { BGE_CHIPID_BCM5787_A1,
2016 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2017 "BCM5754/5787 A1" },
2018
2019 { BGE_CHIPID_BCM5787_A2,
2020 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2021 "BCM5754/5787 A2" },
2022
2023 { 0, 0, NULL }
2024 };
2025
2026 /*
2027 * Some defaults for major revisions, so that newer steppings
2028 * that we don't know about have a shot at working.
2029 */
2030 static const struct bge_revision bge_majorrevs[] = {
2031 { BGE_ASICREV_BCM5700,
2032 BGE_QUIRK_LINK_STATE_BROKEN,
2033 "unknown BCM5700" },
2034
2035 { BGE_ASICREV_BCM5701,
2036 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2037 "unknown BCM5701" },
2038
2039 { BGE_ASICREV_BCM5703,
2040 0,
2041 "unknown BCM5703" },
2042
2043 { BGE_ASICREV_BCM5704,
2044 BGE_QUIRK_ONLY_PHY_1,
2045 "unknown BCM5704" },
2046
2047 { BGE_ASICREV_BCM5705,
2048 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2049 "unknown BCM5705" },
2050
2051 { BGE_ASICREV_BCM5750,
2052 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2053 "unknown BCM575x family" },
2054
2055 { BGE_ASICREV_BCM5714_A0,
2056 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2057 "unknown BCM5714" },
2058
2059 { BGE_ASICREV_BCM5714,
2060 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2061 "unknown BCM5714" },
2062
2063 { BGE_ASICREV_BCM5752,
2064 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2065 "unknown BCM5752 family" },
2066
2067 { BGE_ASICREV_BCM5755,
2068 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2069 "unknown BCM5755" },
2070
2071 { BGE_ASICREV_BCM5780,
2072 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2073 "unknown BCM5780" },
2074
2075 { BGE_ASICREV_BCM5787,
2076 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2077 "unknown BCM5787" },
2078
2079 { 0,
2080 0,
2081 NULL }
2082 };
2083
2084
2085 static const struct bge_revision *
2086 bge_lookup_rev(uint32_t chipid)
2087 {
2088 const struct bge_revision *br;
2089
2090 for (br = bge_revisions; br->br_name != NULL; br++) {
2091 if (br->br_chipid == chipid)
2092 return (br);
2093 }
2094
2095 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2096 if (br->br_chipid == BGE_ASICREV(chipid))
2097 return (br);
2098 }
2099
2100 return (NULL);
2101 }
2102
2103 static const struct bge_product {
2104 pci_vendor_id_t bp_vendor;
2105 pci_product_id_t bp_product;
2106 const char *bp_name;
2107 } bge_products[] = {
2108 /*
2109 * The BCM5700 documentation seems to indicate that the hardware
2110 * still has the Alteon vendor ID burned into it, though it
2111 * should always be overridden by the value in the EEPROM. We'll
2112 * check for it anyway.
2113 */
2114 { PCI_VENDOR_ALTEON,
2115 PCI_PRODUCT_ALTEON_BCM5700,
2116 "Broadcom BCM5700 Gigabit Ethernet",
2117 },
2118 { PCI_VENDOR_ALTEON,
2119 PCI_PRODUCT_ALTEON_BCM5701,
2120 "Broadcom BCM5701 Gigabit Ethernet",
2121 },
2122
2123 { PCI_VENDOR_ALTIMA,
2124 PCI_PRODUCT_ALTIMA_AC1000,
2125 "Altima AC1000 Gigabit Ethernet",
2126 },
2127 { PCI_VENDOR_ALTIMA,
2128 PCI_PRODUCT_ALTIMA_AC1001,
2129 "Altima AC1001 Gigabit Ethernet",
2130 },
2131 { PCI_VENDOR_ALTIMA,
2132 PCI_PRODUCT_ALTIMA_AC9100,
2133 "Altima AC9100 Gigabit Ethernet",
2134 },
2135
2136 { PCI_VENDOR_BROADCOM,
2137 PCI_PRODUCT_BROADCOM_BCM5700,
2138 "Broadcom BCM5700 Gigabit Ethernet",
2139 },
2140 { PCI_VENDOR_BROADCOM,
2141 PCI_PRODUCT_BROADCOM_BCM5701,
2142 "Broadcom BCM5701 Gigabit Ethernet",
2143 },
2144 { PCI_VENDOR_BROADCOM,
2145 PCI_PRODUCT_BROADCOM_BCM5702,
2146 "Broadcom BCM5702 Gigabit Ethernet",
2147 },
2148 { PCI_VENDOR_BROADCOM,
2149 PCI_PRODUCT_BROADCOM_BCM5702X,
2150 "Broadcom BCM5702X Gigabit Ethernet" },
2151
2152 { PCI_VENDOR_BROADCOM,
2153 PCI_PRODUCT_BROADCOM_BCM5703,
2154 "Broadcom BCM5703 Gigabit Ethernet",
2155 },
2156 { PCI_VENDOR_BROADCOM,
2157 PCI_PRODUCT_BROADCOM_BCM5703X,
2158 "Broadcom BCM5703X Gigabit Ethernet",
2159 },
2160 { PCI_VENDOR_BROADCOM,
2161 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2162 "Broadcom BCM5703 Gigabit Ethernet",
2163 },
2164
2165 { PCI_VENDOR_BROADCOM,
2166 PCI_PRODUCT_BROADCOM_BCM5704C,
2167 "Broadcom BCM5704C Dual Gigabit Ethernet",
2168 },
2169 { PCI_VENDOR_BROADCOM,
2170 PCI_PRODUCT_BROADCOM_BCM5704S,
2171 "Broadcom BCM5704S Dual Gigabit Ethernet",
2172 },
2173
2174 { PCI_VENDOR_BROADCOM,
2175 PCI_PRODUCT_BROADCOM_BCM5705,
2176 "Broadcom BCM5705 Gigabit Ethernet",
2177 },
2178 { PCI_VENDOR_BROADCOM,
2179 PCI_PRODUCT_BROADCOM_BCM5705K,
2180 "Broadcom BCM5705K Gigabit Ethernet",
2181 },
2182 { PCI_VENDOR_BROADCOM,
2183 PCI_PRODUCT_BROADCOM_BCM5705M,
2184 "Broadcom BCM5705M Gigabit Ethernet",
2185 },
2186 { PCI_VENDOR_BROADCOM,
2187 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2188 "Broadcom BCM5705M Gigabit Ethernet",
2189 },
2190
2191 { PCI_VENDOR_BROADCOM,
2192 PCI_PRODUCT_BROADCOM_BCM5714,
2193 "Broadcom BCM5714/5715 Gigabit Ethernet",
2194 },
2195 { PCI_VENDOR_BROADCOM,
2196 PCI_PRODUCT_BROADCOM_BCM5715,
2197 "Broadcom BCM5714/5715 Gigabit Ethernet",
2198 },
2199 { PCI_VENDOR_BROADCOM,
2200 PCI_PRODUCT_BROADCOM_BCM5789,
2201 "Broadcom BCM5789 Gigabit Ethernet",
2202 },
2203
2204 { PCI_VENDOR_BROADCOM,
2205 PCI_PRODUCT_BROADCOM_BCM5721,
2206 "Broadcom BCM5721 Gigabit Ethernet",
2207 },
2208
2209 { PCI_VENDOR_BROADCOM,
2210 PCI_PRODUCT_BROADCOM_BCM5750,
2211 "Broadcom BCM5750 Gigabit Ethernet",
2212 },
2213
2214 { PCI_VENDOR_BROADCOM,
2215 PCI_PRODUCT_BROADCOM_BCM5750M,
2216 "Broadcom BCM5750M Gigabit Ethernet",
2217 },
2218
2219 { PCI_VENDOR_BROADCOM,
2220 PCI_PRODUCT_BROADCOM_BCM5751,
2221 "Broadcom BCM5751 Gigabit Ethernet",
2222 },
2223
2224 { PCI_VENDOR_BROADCOM,
2225 PCI_PRODUCT_BROADCOM_BCM5751M,
2226 "Broadcom BCM5751M Gigabit Ethernet",
2227 },
2228
2229 { PCI_VENDOR_BROADCOM,
2230 PCI_PRODUCT_BROADCOM_BCM5752,
2231 "Broadcom BCM5752 Gigabit Ethernet",
2232 },
2233
2234 { PCI_VENDOR_BROADCOM,
2235 PCI_PRODUCT_BROADCOM_BCM5752M,
2236 "Broadcom BCM5752M Gigabit Ethernet",
2237 },
2238
2239 { PCI_VENDOR_BROADCOM,
2240 PCI_PRODUCT_BROADCOM_BCM5753,
2241 "Broadcom BCM5753 Gigabit Ethernet",
2242 },
2243
2244 { PCI_VENDOR_BROADCOM,
2245 PCI_PRODUCT_BROADCOM_BCM5753M,
2246 "Broadcom BCM5753M Gigabit Ethernet",
2247 },
2248
2249 { PCI_VENDOR_BROADCOM,
2250 PCI_PRODUCT_BROADCOM_BCM5754,
2251 "Broadcom BCM5754 Gigabit Ethernet",
2252 },
2253
2254 { PCI_VENDOR_BROADCOM,
2255 PCI_PRODUCT_BROADCOM_BCM5754M,
2256 "Broadcom BCM5754M Gigabit Ethernet",
2257 },
2258
2259 { PCI_VENDOR_BROADCOM,
2260 PCI_PRODUCT_BROADCOM_BCM5755,
2261 "Broadcom BCM5755 Gigabit Ethernet",
2262 },
2263
2264 { PCI_VENDOR_BROADCOM,
2265 PCI_PRODUCT_BROADCOM_BCM5755M,
2266 "Broadcom BCM5755M Gigabit Ethernet",
2267 },
2268
2269 { PCI_VENDOR_BROADCOM,
2270 PCI_PRODUCT_BROADCOM_BCM5780,
2271 "Broadcom BCM5780 Gigabit Ethernet",
2272 },
2273
2274 { PCI_VENDOR_BROADCOM,
2275 PCI_PRODUCT_BROADCOM_BCM5780S,
2276 "Broadcom BCM5780S Gigabit Ethernet",
2277 },
2278
2279 { PCI_VENDOR_BROADCOM,
2280 PCI_PRODUCT_BROADCOM_BCM5782,
2281 "Broadcom BCM5782 Gigabit Ethernet",
2282 },
2283
2284 { PCI_VENDOR_BROADCOM,
2285 PCI_PRODUCT_BROADCOM_BCM5786,
2286 "Broadcom BCM5786 Gigabit Ethernet",
2287 },
2288
2289 { PCI_VENDOR_BROADCOM,
2290 PCI_PRODUCT_BROADCOM_BCM5787,
2291 "Broadcom BCM5787 Gigabit Ethernet",
2292 },
2293
2294 { PCI_VENDOR_BROADCOM,
2295 PCI_PRODUCT_BROADCOM_BCM5787M,
2296 "Broadcom BCM5787M Gigabit Ethernet",
2297 },
2298
2299 { PCI_VENDOR_BROADCOM,
2300 PCI_PRODUCT_BROADCOM_BCM5788,
2301 "Broadcom BCM5788 Gigabit Ethernet",
2302 },
2303 { PCI_VENDOR_BROADCOM,
2304 PCI_PRODUCT_BROADCOM_BCM5789,
2305 "Broadcom BCM5789 Gigabit Ethernet",
2306 },
2307
2308 { PCI_VENDOR_BROADCOM,
2309 PCI_PRODUCT_BROADCOM_BCM5901,
2310 "Broadcom BCM5901 Fast Ethernet",
2311 },
2312 { PCI_VENDOR_BROADCOM,
2313 PCI_PRODUCT_BROADCOM_BCM5901A2,
2314 "Broadcom BCM5901A2 Fast Ethernet",
2315 },
2316
2317 { PCI_VENDOR_SCHNEIDERKOCH,
2318 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2319 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2320 },
2321
2322 { PCI_VENDOR_3COM,
2323 PCI_PRODUCT_3COM_3C996,
2324 "3Com 3c996 Gigabit Ethernet",
2325 },
2326
2327 { 0,
2328 0,
2329 NULL },
2330 };
2331
2332 static const struct bge_product *
2333 bge_lookup(const struct pci_attach_args *pa)
2334 {
2335 const struct bge_product *bp;
2336
2337 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2338 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2339 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2340 return (bp);
2341 }
2342
2343 return (NULL);
2344 }
2345
2346 static int
2347 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2348 {
2349 #ifdef NOTYET
2350 u_int32_t pm_ctl = 0;
2351
2352 /* XXX FIXME: make sure indirect accesses enabled? */
2353 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2354 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2355 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2356
2357 /* clear the PME_assert bit and power state bits, enable PME */
2358 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2359 pm_ctl &= ~PCIM_PSTAT_DMASK;
2360 pm_ctl |= (1 << 8);
2361
2362 if (powerlevel == 0) {
2363 pm_ctl |= PCIM_PSTAT_D0;
2364 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2365 pm_ctl, 2);
2366 DELAY(10000);
2367 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2368 DELAY(10000);
2369
2370 #ifdef NOTYET
2371 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2372 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2373 #endif
2374 DELAY(40); DELAY(40); DELAY(40);
2375 DELAY(10000); /* above not quite adequate on 5700 */
2376 return 0;
2377 }
2378
2379
2380 /*
2381 * Entering ACPI power states D1-D3 is achieved by wiggling
2382 * GMII gpio pins. Example code assumes all hardware vendors
2383 * followed Broadom's sample pcb layout. Until we verify that
2384 * for all supported OEM cards, states D1-D3 are unsupported.
2385 */
2386 aprint_error_dev(sc->bge_dev,
2387 "power state %d unimplemented; check GPIO pins\n",
2388 powerlevel);
2389 #endif
2390 return EOPNOTSUPP;
2391 }
2392
2393
2394 /*
2395 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2396 * against our list and return its name if we find a match. Note
2397 * that since the Broadcom controller contains VPD support, we
2398 * can get the device name string from the controller itself instead
2399 * of the compiled-in string. This is a little slow, but it guarantees
2400 * we'll always announce the right product name.
2401 */
2402 static int
2403 bge_probe(device_t parent, cfdata_t match, void *aux)
2404 {
2405 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2406
2407 if (bge_lookup(pa) != NULL)
2408 return (1);
2409
2410 return (0);
2411 }
2412
2413 static void
2414 bge_attach(device_t parent, device_t self, void *aux)
2415 {
2416 struct bge_softc *sc = device_private(self);
2417 struct pci_attach_args *pa = aux;
2418 const struct bge_product *bp;
2419 const struct bge_revision *br;
2420 pci_chipset_tag_t pc;
2421 pci_intr_handle_t ih;
2422 const char *intrstr = NULL;
2423 bus_dma_segment_t seg;
2424 int rseg;
2425 u_int32_t hwcfg = 0;
2426 u_int32_t mac_addr = 0;
2427 u_int32_t command;
2428 struct ifnet *ifp;
2429 void * kva;
2430 u_char eaddr[ETHER_ADDR_LEN];
2431 pcireg_t memtype;
2432 bus_addr_t memaddr;
2433 bus_size_t memsize;
2434 u_int32_t pm_ctl;
2435
2436 bp = bge_lookup(pa);
2437 KASSERT(bp != NULL);
2438
2439 sc->sc_pc = pa->pa_pc;
2440 sc->sc_pcitag = pa->pa_tag;
2441 sc->bge_dev = self;
2442
2443 aprint_naive(": Ethernet controller\n");
2444 aprint_normal(": %s\n", bp->bp_name);
2445
2446 /*
2447 * Map control/status registers.
2448 */
2449 DPRINTFN(5, ("Map control/status regs\n"));
2450 pc = sc->sc_pc;
2451 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2452 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2453 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2454 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2455
2456 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2457 aprint_error_dev(sc->bge_dev,
2458 "failed to enable memory mapping!\n");
2459 return;
2460 }
2461
2462 DPRINTFN(5, ("pci_mem_find\n"));
2463 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2464 switch (memtype) {
2465 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2466 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2467 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2468 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2469 &memaddr, &memsize) == 0)
2470 break;
2471 default:
2472 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2473 return;
2474 }
2475
2476 DPRINTFN(5, ("pci_intr_map\n"));
2477 if (pci_intr_map(pa, &ih)) {
2478 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2479 return;
2480 }
2481
2482 DPRINTFN(5, ("pci_intr_string\n"));
2483 intrstr = pci_intr_string(pc, ih);
2484
2485 DPRINTFN(5, ("pci_intr_establish\n"));
2486 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2487
2488 if (sc->bge_intrhand == NULL) {
2489 aprint_error_dev(sc->bge_dev,
2490 "couldn't establish interrupt%s%s\n",
2491 intrstr ? " at " : "", intrstr ? intrstr : "");
2492 return;
2493 }
2494 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2495
2496 /*
2497 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2498 * can clobber the chip's PCI config-space power control registers,
2499 * leaving the card in D3 powersave state.
2500 * We do not have memory-mapped registers in this state,
2501 * so force device into D0 state before starting initialization.
2502 */
2503 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2504 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2505 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2506 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2507 DELAY(1000); /* 27 usec is allegedly sufficent */
2508
2509 /*
2510 * Save ASIC rev. Look up any quirks associated with this
2511 * ASIC.
2512 */
2513 sc->bge_chipid =
2514 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2515 BGE_PCIMISCCTL_ASICREV;
2516
2517 /*
2518 * Detect PCI-Express devices
2519 * XXX: guessed from Linux/FreeBSD; no documentation
2520 */
2521 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2522 NULL, NULL) != 0)
2523 sc->bge_pcie = 1;
2524 else
2525 sc->bge_pcie = 0;
2526
2527 /* Try to reset the chip. */
2528 DPRINTFN(5, ("bge_reset\n"));
2529 bge_reset(sc);
2530
2531 if (bge_chipinit(sc)) {
2532 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2533 bge_release_resources(sc);
2534 return;
2535 }
2536
2537 /*
2538 * Get station address from the EEPROM.
2539 */
2540 mac_addr = bge_readmem_ind(sc, 0x0c14);
2541 if ((mac_addr >> 16) == 0x484b) {
2542 eaddr[0] = (u_char)(mac_addr >> 8);
2543 eaddr[1] = (u_char)(mac_addr >> 0);
2544 mac_addr = bge_readmem_ind(sc, 0x0c18);
2545 eaddr[2] = (u_char)(mac_addr >> 24);
2546 eaddr[3] = (u_char)(mac_addr >> 16);
2547 eaddr[4] = (u_char)(mac_addr >> 8);
2548 eaddr[5] = (u_char)(mac_addr >> 0);
2549 } else if (bge_read_eeprom(sc, (void *)eaddr,
2550 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2551 aprint_error_dev(sc->bge_dev,
2552 "failed to read station address\n");
2553 bge_release_resources(sc);
2554 return;
2555 }
2556
2557 br = bge_lookup_rev(sc->bge_chipid);
2558
2559 if (br == NULL) {
2560 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2561 sc->bge_chipid >> 16);
2562 sc->bge_quirks = 0;
2563 } else {
2564 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2565 br->br_name, sc->bge_chipid >> 16);
2566 sc->bge_quirks |= br->br_quirks;
2567 }
2568 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2569
2570 /* Allocate the general information block and ring buffers. */
2571 if (pci_dma64_available(pa))
2572 sc->bge_dmatag = pa->pa_dmat64;
2573 else
2574 sc->bge_dmatag = pa->pa_dmat;
2575 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2576 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2577 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2578 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2579 return;
2580 }
2581 DPRINTFN(5, ("bus_dmamem_map\n"));
2582 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2583 sizeof(struct bge_ring_data), &kva,
2584 BUS_DMA_NOWAIT)) {
2585 aprint_error_dev(sc->bge_dev,
2586 "can't map DMA buffers (%zu bytes)\n",
2587 sizeof(struct bge_ring_data));
2588 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2589 return;
2590 }
2591 DPRINTFN(5, ("bus_dmamem_create\n"));
2592 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2593 sizeof(struct bge_ring_data), 0,
2594 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2595 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2596 bus_dmamem_unmap(sc->bge_dmatag, kva,
2597 sizeof(struct bge_ring_data));
2598 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2599 return;
2600 }
2601 DPRINTFN(5, ("bus_dmamem_load\n"));
2602 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2603 sizeof(struct bge_ring_data), NULL,
2604 BUS_DMA_NOWAIT)) {
2605 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2606 bus_dmamem_unmap(sc->bge_dmatag, kva,
2607 sizeof(struct bge_ring_data));
2608 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2609 return;
2610 }
2611
2612 DPRINTFN(5, ("bzero\n"));
2613 sc->bge_rdata = (struct bge_ring_data *)kva;
2614
2615 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2616
2617 /* Try to allocate memory for jumbo buffers. */
2618 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2619 if (bge_alloc_jumbo_mem(sc)) {
2620 aprint_error_dev(sc->bge_dev,
2621 "jumbo buffer allocation failed\n");
2622 } else
2623 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2624 }
2625
2626 /* Set default tuneable values. */
2627 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2628 sc->bge_rx_coal_ticks = 150;
2629 sc->bge_rx_max_coal_bds = 64;
2630 #ifdef ORIG_WPAUL_VALUES
2631 sc->bge_tx_coal_ticks = 150;
2632 sc->bge_tx_max_coal_bds = 128;
2633 #else
2634 sc->bge_tx_coal_ticks = 300;
2635 sc->bge_tx_max_coal_bds = 400;
2636 #endif
2637 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2638 sc->bge_tx_coal_ticks = (12 * 5);
2639 sc->bge_tx_max_coal_bds = (12 * 5);
2640 aprint_verbose_dev(sc->bge_dev,
2641 "setting short Tx thresholds\n");
2642 }
2643
2644 /* Set up ifnet structure */
2645 ifp = &sc->ethercom.ec_if;
2646 ifp->if_softc = sc;
2647 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2648 ifp->if_ioctl = bge_ioctl;
2649 ifp->if_stop = bge_stop;
2650 ifp->if_start = bge_start;
2651 ifp->if_init = bge_init;
2652 ifp->if_watchdog = bge_watchdog;
2653 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2654 IFQ_SET_READY(&ifp->if_snd);
2655 DPRINTFN(5, ("strcpy if_xname\n"));
2656 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2657
2658 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2659 sc->ethercom.ec_if.if_capabilities |=
2660 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2661 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2662 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2663 sc->ethercom.ec_capabilities |=
2664 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2665
2666 if (sc->bge_pcie)
2667 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2668
2669 /*
2670 * Do MII setup.
2671 */
2672 DPRINTFN(5, ("mii setup\n"));
2673 sc->bge_mii.mii_ifp = ifp;
2674 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2675 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2676 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2677
2678 /*
2679 * Figure out what sort of media we have by checking the
2680 * hardware config word in the first 32k of NIC internal memory,
2681 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2682 * cards, this value appears to be unset. If that's the
2683 * case, we have to rely on identifying the NIC by its PCI
2684 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2685 */
2686 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2687 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2688 } else {
2689 bge_read_eeprom(sc, (void *)&hwcfg,
2690 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2691 hwcfg = be32toh(hwcfg);
2692 }
2693 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2694 sc->bge_tbi = 1;
2695
2696 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2697 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2698 SK_SUBSYSID_9D41)
2699 sc->bge_tbi = 1;
2700
2701 if (sc->bge_tbi) {
2702 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2703 bge_ifmedia_sts);
2704 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2705 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2706 0, NULL);
2707 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2708 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2709 } else {
2710 /*
2711 * Do transceiver setup.
2712 */
2713 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2714 bge_ifmedia_sts);
2715 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2716 MII_PHY_ANY, MII_OFFSET_ANY,
2717 MIIF_FORCEANEG|MIIF_DOPAUSE);
2718
2719 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2720 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2721 ifmedia_add(&sc->bge_mii.mii_media,
2722 IFM_ETHER|IFM_MANUAL, 0, NULL);
2723 ifmedia_set(&sc->bge_mii.mii_media,
2724 IFM_ETHER|IFM_MANUAL);
2725 } else
2726 ifmedia_set(&sc->bge_mii.mii_media,
2727 IFM_ETHER|IFM_AUTO);
2728 }
2729
2730 /*
2731 * When using the BCM5701 in PCI-X mode, data corruption has
2732 * been observed in the first few bytes of some received packets.
2733 * Aligning the packet buffer in memory eliminates the corruption.
2734 * Unfortunately, this misaligns the packet payloads. On platforms
2735 * which do not support unaligned accesses, we will realign the
2736 * payloads by copying the received packets.
2737 */
2738 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2739 /* If in PCI-X mode, work around the alignment bug. */
2740 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2741 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2742 BGE_PCISTATE_PCI_BUSSPEED)
2743 sc->bge_rx_alignment_bug = 1;
2744 }
2745
2746 /*
2747 * Call MI attach routine.
2748 */
2749 DPRINTFN(5, ("if_attach\n"));
2750 if_attach(ifp);
2751 DPRINTFN(5, ("ether_ifattach\n"));
2752 ether_ifattach(ifp, eaddr);
2753 #if NRND > 0
2754 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2755 RND_TYPE_NET, 0);
2756 #endif
2757 #ifdef BGE_EVENT_COUNTERS
2758 /*
2759 * Attach event counters.
2760 */
2761 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2762 NULL, device_xname(sc->bge_dev), "intr");
2763 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2764 NULL, device_xname(sc->bge_dev), "tx_xoff");
2765 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2766 NULL, device_xname(sc->bge_dev), "tx_xon");
2767 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2768 NULL, device_xname(sc->bge_dev), "rx_xoff");
2769 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2770 NULL, device_xname(sc->bge_dev), "rx_xon");
2771 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2772 NULL, device_xname(sc->bge_dev), "rx_macctl");
2773 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2774 NULL, device_xname(sc->bge_dev), "xoffentered");
2775 #endif /* BGE_EVENT_COUNTERS */
2776 DPRINTFN(5, ("callout_init\n"));
2777 callout_init(&sc->bge_timeout, 0);
2778
2779 if (!pmf_device_register(self, NULL, NULL))
2780 aprint_error_dev(self, "couldn't establish power handler\n");
2781 else
2782 pmf_class_network_register(self, ifp);
2783 }
2784
2785 static void
2786 bge_release_resources(struct bge_softc *sc)
2787 {
2788 if (sc->bge_vpd_prodname != NULL)
2789 free(sc->bge_vpd_prodname, M_DEVBUF);
2790
2791 if (sc->bge_vpd_readonly != NULL)
2792 free(sc->bge_vpd_readonly, M_DEVBUF);
2793 }
2794
2795 static void
2796 bge_reset(struct bge_softc *sc)
2797 {
2798 u_int32_t cachesize, command, pcistate, new_pcistate;
2799 int i, val;
2800
2801 /* Save some important PCI state. */
2802 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2803 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2804 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2805
2806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2807 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2808 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2809
2810 /*
2811 * Disable the firmware fastboot feature on 5752 ASIC
2812 * to avoid firmware timeout.
2813 */
2814 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2815 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2816 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2817 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2818
2819 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2820 /*
2821 * XXX: from FreeBSD/Linux; no documentation
2822 */
2823 if (sc->bge_pcie) {
2824 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2825 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2826 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2827 /* No idea what that actually means */
2828 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2829 val |= (1<<29);
2830 }
2831 }
2832
2833 /* Issue global reset */
2834 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2835
2836 DELAY(1000);
2837
2838 /*
2839 * XXX: from FreeBSD/Linux; no documentation
2840 */
2841 if (sc->bge_pcie) {
2842 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2843 pcireg_t reg;
2844
2845 DELAY(500000);
2846 /* XXX: Magic Numbers */
2847 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2848 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2849 reg | (1 << 15));
2850 }
2851 /*
2852 * XXX: Magic Numbers.
2853 * Sets maximal PCI-e payload and clears any PCI-e errors.
2854 * Should be replaced with references to PCI config-space
2855 * capability block for PCI-Express.
2856 */
2857 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2858 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2859
2860 }
2861
2862 /* Reset some of the PCI state that got zapped by reset */
2863 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2864 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2865 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2866 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2867 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2868 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2869
2870 /* Enable memory arbiter. */
2871 {
2872 uint32_t marbmode = 0;
2873 if (BGE_IS_5714_FAMILY(sc)) {
2874 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2875 }
2876 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2877 }
2878
2879 /*
2880 * Write the magic number to the firmware mailbox at 0xb50
2881 * so that the driver can synchronize with the firmware.
2882 */
2883 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2884
2885 /*
2886 * Poll the value location we just wrote until
2887 * we see the 1's complement of the magic number.
2888 * This indicates that the firmware initialization
2889 * is complete.
2890 */
2891 for (i = 0; i < BGE_TIMEOUT; i++) {
2892 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2893 if (val == ~BGE_MAGIC_NUMBER)
2894 break;
2895 DELAY(1000);
2896 }
2897
2898 if (i >= BGE_TIMEOUT) {
2899 aprint_error_dev(sc->bge_dev,
2900 "firmware handshake timed out, val = %x\n", val);
2901 /*
2902 * XXX: occasionally fired on bcm5721, but without
2903 * apparent harm. For now, keep going if we timeout
2904 * against PCI-E devices.
2905 */
2906 if (!sc->bge_pcie)
2907 return;
2908 }
2909
2910 /*
2911 * XXX Wait for the value of the PCISTATE register to
2912 * return to its original pre-reset state. This is a
2913 * fairly good indicator of reset completion. If we don't
2914 * wait for the reset to fully complete, trying to read
2915 * from the device's non-PCI registers may yield garbage
2916 * results.
2917 */
2918 for (i = 0; i < 10000; i++) {
2919 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2920 BGE_PCI_PCISTATE);
2921 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2922 (pcistate & ~BGE_PCISTATE_RESERVED))
2923 break;
2924 DELAY(10);
2925 }
2926 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2927 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2928 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2929 }
2930
2931 /* XXX: from FreeBSD/Linux; no documentation */
2932 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2933 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2934
2935 /* Enable memory arbiter. */
2936 /* XXX why do this twice? */
2937 {
2938 uint32_t marbmode = 0;
2939 if (BGE_IS_5714_FAMILY(sc)) {
2940 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2941 }
2942 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2943 }
2944
2945 /* Fix up byte swapping */
2946 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2947
2948 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2949
2950 DELAY(10000);
2951 }
2952
2953 /*
2954 * Frame reception handling. This is called if there's a frame
2955 * on the receive return list.
2956 *
2957 * Note: we have to be able to handle two possibilities here:
2958 * 1) the frame is from the jumbo recieve ring
2959 * 2) the frame is from the standard receive ring
2960 */
2961
2962 static void
2963 bge_rxeof(struct bge_softc *sc)
2964 {
2965 struct ifnet *ifp;
2966 int stdcnt = 0, jumbocnt = 0;
2967 bus_dmamap_t dmamap;
2968 bus_addr_t offset, toff;
2969 bus_size_t tlen;
2970 int tosync;
2971
2972 ifp = &sc->ethercom.ec_if;
2973
2974 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2975 offsetof(struct bge_ring_data, bge_status_block),
2976 sizeof (struct bge_status_block),
2977 BUS_DMASYNC_POSTREAD);
2978
2979 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2980 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2981 sc->bge_rx_saved_considx;
2982
2983 #if NRND > 0
2984 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2985 rnd_add_uint32(&sc->rnd_source, tosync);
2986 #endif
2987
2988 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2989
2990 if (tosync < 0) {
2991 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2992 sizeof (struct bge_rx_bd);
2993 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2994 toff, tlen, BUS_DMASYNC_POSTREAD);
2995 tosync = -tosync;
2996 }
2997
2998 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2999 offset, tosync * sizeof (struct bge_rx_bd),
3000 BUS_DMASYNC_POSTREAD);
3001
3002 while(sc->bge_rx_saved_considx !=
3003 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3004 struct bge_rx_bd *cur_rx;
3005 u_int32_t rxidx;
3006 struct mbuf *m = NULL;
3007
3008 cur_rx = &sc->bge_rdata->
3009 bge_rx_return_ring[sc->bge_rx_saved_considx];
3010
3011 rxidx = cur_rx->bge_idx;
3012 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3013
3014 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3015 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3016 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3017 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3018 jumbocnt++;
3019 bus_dmamap_sync(sc->bge_dmatag,
3020 sc->bge_cdata.bge_rx_jumbo_map,
3021 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3022 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3023 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3024 ifp->if_ierrors++;
3025 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3026 continue;
3027 }
3028 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3029 NULL)== ENOBUFS) {
3030 ifp->if_ierrors++;
3031 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3032 continue;
3033 }
3034 } else {
3035 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3036 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3037
3038 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3039 stdcnt++;
3040 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3041 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3042 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3043 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3044 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3045 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3046 ifp->if_ierrors++;
3047 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3048 continue;
3049 }
3050 if (bge_newbuf_std(sc, sc->bge_std,
3051 NULL, dmamap) == ENOBUFS) {
3052 ifp->if_ierrors++;
3053 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3054 continue;
3055 }
3056 }
3057
3058 ifp->if_ipackets++;
3059 #ifndef __NO_STRICT_ALIGNMENT
3060 /*
3061 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3062 * the Rx buffer has the layer-2 header unaligned.
3063 * If our CPU requires alignment, re-align by copying.
3064 */
3065 if (sc->bge_rx_alignment_bug) {
3066 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3067 cur_rx->bge_len);
3068 m->m_data += ETHER_ALIGN;
3069 }
3070 #endif
3071
3072 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3073 m->m_pkthdr.rcvif = ifp;
3074
3075 #if NBPFILTER > 0
3076 /*
3077 * Handle BPF listeners. Let the BPF user see the packet.
3078 */
3079 if (ifp->if_bpf)
3080 bpf_mtap(ifp->if_bpf, m);
3081 #endif
3082
3083 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3084
3085 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3086 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3087 /*
3088 * Rx transport checksum-offload may also
3089 * have bugs with packets which, when transmitted,
3090 * were `runts' requiring padding.
3091 */
3092 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3093 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3094 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3095 m->m_pkthdr.csum_data =
3096 cur_rx->bge_tcp_udp_csum;
3097 m->m_pkthdr.csum_flags |=
3098 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3099 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3100 }
3101
3102 /*
3103 * If we received a packet with a vlan tag, pass it
3104 * to vlan_input() instead of ether_input().
3105 */
3106 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3107 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3108
3109 (*ifp->if_input)(ifp, m);
3110 }
3111
3112 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3113 if (stdcnt)
3114 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3115 if (jumbocnt)
3116 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3117 }
3118
3119 static void
3120 bge_txeof(struct bge_softc *sc)
3121 {
3122 struct bge_tx_bd *cur_tx = NULL;
3123 struct ifnet *ifp;
3124 struct txdmamap_pool_entry *dma;
3125 bus_addr_t offset, toff;
3126 bus_size_t tlen;
3127 int tosync;
3128 struct mbuf *m;
3129
3130 ifp = &sc->ethercom.ec_if;
3131
3132 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3133 offsetof(struct bge_ring_data, bge_status_block),
3134 sizeof (struct bge_status_block),
3135 BUS_DMASYNC_POSTREAD);
3136
3137 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3138 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3139 sc->bge_tx_saved_considx;
3140
3141 #if NRND > 0
3142 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3143 rnd_add_uint32(&sc->rnd_source, tosync);
3144 #endif
3145
3146 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3147
3148 if (tosync < 0) {
3149 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3150 sizeof (struct bge_tx_bd);
3151 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3152 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3153 tosync = -tosync;
3154 }
3155
3156 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3157 offset, tosync * sizeof (struct bge_tx_bd),
3158 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3159
3160 /*
3161 * Go through our tx ring and free mbufs for those
3162 * frames that have been sent.
3163 */
3164 while (sc->bge_tx_saved_considx !=
3165 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3166 u_int32_t idx = 0;
3167
3168 idx = sc->bge_tx_saved_considx;
3169 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3170 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3171 ifp->if_opackets++;
3172 m = sc->bge_cdata.bge_tx_chain[idx];
3173 if (m != NULL) {
3174 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3175 dma = sc->txdma[idx];
3176 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3177 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3178 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3179 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3180 sc->txdma[idx] = NULL;
3181
3182 m_freem(m);
3183 }
3184 sc->bge_txcnt--;
3185 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3186 ifp->if_timer = 0;
3187 }
3188
3189 if (cur_tx != NULL)
3190 ifp->if_flags &= ~IFF_OACTIVE;
3191 }
3192
3193 static int
3194 bge_intr(void *xsc)
3195 {
3196 struct bge_softc *sc;
3197 struct ifnet *ifp;
3198
3199 sc = xsc;
3200 ifp = &sc->ethercom.ec_if;
3201
3202 /*
3203 * Ascertain whether the interrupt is from this bge device.
3204 * Do the cheap test first.
3205 */
3206 if ((sc->bge_rdata->bge_status_block.bge_status &
3207 BGE_STATFLAG_UPDATED) == 0) {
3208 /*
3209 * Sometimes, the interrupt comes in before the
3210 * DMA update of the status block (performed prior
3211 * to the interrupt itself) has completed.
3212 * In that case, do the (extremely expensive!)
3213 * PCI-config-space register read.
3214 */
3215 uint32_t pcistate =
3216 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3217
3218 if (pcistate & BGE_PCISTATE_INTR_STATE)
3219 return (0);
3220
3221 }
3222 /*
3223 * If we reach here, then the interrupt is for us.
3224 */
3225
3226 /* Ack interrupt and stop others from occuring. */
3227 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3228
3229 BGE_EVCNT_INCR(sc->bge_ev_intr);
3230
3231 /*
3232 * Process link state changes.
3233 * Grrr. The link status word in the status block does
3234 * not work correctly on the BCM5700 rev AX and BX chips,
3235 * according to all available information. Hence, we have
3236 * to enable MII interrupts in order to properly obtain
3237 * async link changes. Unfortunately, this also means that
3238 * we have to read the MAC status register to detect link
3239 * changes, thereby adding an additional register access to
3240 * the interrupt handler.
3241 */
3242
3243 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3244 u_int32_t status;
3245
3246 status = CSR_READ_4(sc, BGE_MAC_STS);
3247 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3248 sc->bge_link = 0;
3249 callout_stop(&sc->bge_timeout);
3250 bge_tick(sc);
3251 /* Clear the interrupt */
3252 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3253 BGE_EVTENB_MI_INTERRUPT);
3254 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3255 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3256 BRGPHY_INTRS);
3257 }
3258 } else {
3259 u_int32_t status;
3260
3261 status = CSR_READ_4(sc, BGE_MAC_STS);
3262 if (status & BGE_MACSTAT_LINK_CHANGED) {
3263 sc->bge_link = 0;
3264 callout_stop(&sc->bge_timeout);
3265 bge_tick(sc);
3266 /* Clear the interrupt */
3267 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3268 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3269 BGE_MACSTAT_LINK_CHANGED);
3270 }
3271 }
3272
3273 if (ifp->if_flags & IFF_RUNNING) {
3274 /* Check RX return ring producer/consumer */
3275 bge_rxeof(sc);
3276
3277 /* Check TX ring producer/consumer */
3278 bge_txeof(sc);
3279 }
3280
3281 if (sc->bge_pending_rxintr_change) {
3282 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3283 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3284 uint32_t junk;
3285
3286 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3287 DELAY(10);
3288 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3289
3290 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3291 DELAY(10);
3292 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3293
3294 sc->bge_pending_rxintr_change = 0;
3295 }
3296 bge_handle_events(sc);
3297
3298 /* Re-enable interrupts. */
3299 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3300
3301 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3302 bge_start(ifp);
3303
3304 return (1);
3305 }
3306
3307 static void
3308 bge_tick(void *xsc)
3309 {
3310 struct bge_softc *sc = xsc;
3311 struct mii_data *mii = &sc->bge_mii;
3312 int s;
3313
3314 s = splnet();
3315
3316 bge_stats_update(sc);
3317 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3318
3319 if (sc->bge_tbi) {
3320 if (CSR_READ_4(sc, BGE_MAC_STS) &
3321 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3322 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3323 }
3324 } else
3325 mii_tick(mii);
3326
3327 splx(s);
3328 }
3329
3330 static void
3331 bge_stats_update(struct bge_softc *sc)
3332 {
3333 struct ifnet *ifp = &sc->ethercom.ec_if;
3334 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3335 bus_size_t rstats = BGE_RX_STATS;
3336
3337 #define READ_RSTAT(sc, stats, stat) \
3338 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3339
3340 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3341 ifp->if_collisions +=
3342 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3343 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3344 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3345 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3346
3347 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3348 READ_RSTAT(sc, rstats, outXoffSent));
3349 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3350 READ_RSTAT(sc, rstats, outXonSent));
3351 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3352 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3353 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3354 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3355 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3356 READ_RSTAT(sc, rstats, macControlFramesReceived));
3357 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3358 READ_RSTAT(sc, rstats, xoffStateEntered));
3359 return;
3360 }
3361
3362 #undef READ_RSTAT
3363 #define READ_STAT(sc, stats, stat) \
3364 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3365
3366 ifp->if_collisions +=
3367 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3368 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3369 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3370 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3371 ifp->if_collisions;
3372
3373 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3374 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3375 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3376 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3377 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3378 READ_STAT(sc, stats,
3379 xoffPauseFramesReceived.bge_addr_lo));
3380 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3381 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3382 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3383 READ_STAT(sc, stats,
3384 macControlFramesReceived.bge_addr_lo));
3385 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3386 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3387
3388 #undef READ_STAT
3389
3390 #ifdef notdef
3391 ifp->if_collisions +=
3392 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3393 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3394 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3395 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3396 ifp->if_collisions;
3397 #endif
3398 }
3399
3400 /*
3401 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3402 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3403 * but when such padded frames employ the bge IP/TCP checksum offload,
3404 * the hardware checksum assist gives incorrect results (possibly
3405 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3406 * If we pad such runts with zeros, the onboard checksum comes out correct.
3407 */
3408 static inline int
3409 bge_cksum_pad(struct mbuf *pkt)
3410 {
3411 struct mbuf *last = NULL;
3412 int padlen;
3413
3414 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3415
3416 /* if there's only the packet-header and we can pad there, use it. */
3417 if (pkt->m_pkthdr.len == pkt->m_len &&
3418 M_TRAILINGSPACE(pkt) >= padlen) {
3419 last = pkt;
3420 } else {
3421 /*
3422 * Walk packet chain to find last mbuf. We will either
3423 * pad there, or append a new mbuf and pad it
3424 * (thus perhaps avoiding the bcm5700 dma-min bug).
3425 */
3426 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3427 continue; /* do nothing */
3428 }
3429
3430 /* `last' now points to last in chain. */
3431 if (M_TRAILINGSPACE(last) < padlen) {
3432 /* Allocate new empty mbuf, pad it. Compact later. */
3433 struct mbuf *n;
3434 MGET(n, M_DONTWAIT, MT_DATA);
3435 if (n == NULL)
3436 return ENOBUFS;
3437 n->m_len = 0;
3438 last->m_next = n;
3439 last = n;
3440 }
3441 }
3442
3443 KDASSERT(!M_READONLY(last));
3444 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3445
3446 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3447 memset(mtod(last, char *) + last->m_len, 0, padlen);
3448 last->m_len += padlen;
3449 pkt->m_pkthdr.len += padlen;
3450 return 0;
3451 }
3452
3453 /*
3454 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3455 */
3456 static inline int
3457 bge_compact_dma_runt(struct mbuf *pkt)
3458 {
3459 struct mbuf *m, *prev;
3460 int totlen, prevlen;
3461
3462 prev = NULL;
3463 totlen = 0;
3464 prevlen = -1;
3465
3466 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3467 int mlen = m->m_len;
3468 int shortfall = 8 - mlen ;
3469
3470 totlen += mlen;
3471 if (mlen == 0) {
3472 continue;
3473 }
3474 if (mlen >= 8)
3475 continue;
3476
3477 /* If we get here, mbuf data is too small for DMA engine.
3478 * Try to fix by shuffling data to prev or next in chain.
3479 * If that fails, do a compacting deep-copy of the whole chain.
3480 */
3481
3482 /* Internal frag. If fits in prev, copy it there. */
3483 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3484 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3485 prev->m_len += mlen;
3486 m->m_len = 0;
3487 /* XXX stitch chain */
3488 prev->m_next = m_free(m);
3489 m = prev;
3490 continue;
3491 }
3492 else if (m->m_next != NULL &&
3493 M_TRAILINGSPACE(m) >= shortfall &&
3494 m->m_next->m_len >= (8 + shortfall)) {
3495 /* m is writable and have enough data in next, pull up. */
3496
3497 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3498 shortfall);
3499 m->m_len += shortfall;
3500 m->m_next->m_len -= shortfall;
3501 m->m_next->m_data += shortfall;
3502 }
3503 else if (m->m_next == NULL || 1) {
3504 /* Got a runt at the very end of the packet.
3505 * borrow data from the tail of the preceding mbuf and
3506 * update its length in-place. (The original data is still
3507 * valid, so we can do this even if prev is not writable.)
3508 */
3509
3510 /* if we'd make prev a runt, just move all of its data. */
3511 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3512 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3513
3514 if ((prev->m_len - shortfall) < 8)
3515 shortfall = prev->m_len;
3516
3517 #ifdef notyet /* just do the safe slow thing for now */
3518 if (!M_READONLY(m)) {
3519 if (M_LEADINGSPACE(m) < shorfall) {
3520 void *m_dat;
3521 m_dat = (m->m_flags & M_PKTHDR) ?
3522 m->m_pktdat : m->dat;
3523 memmove(m_dat, mtod(m, void*), m->m_len);
3524 m->m_data = m_dat;
3525 }
3526 } else
3527 #endif /* just do the safe slow thing */
3528 {
3529 struct mbuf * n = NULL;
3530 int newprevlen = prev->m_len - shortfall;
3531
3532 MGET(n, M_NOWAIT, MT_DATA);
3533 if (n == NULL)
3534 return ENOBUFS;
3535 KASSERT(m->m_len + shortfall < MLEN
3536 /*,
3537 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3538
3539 /* first copy the data we're stealing from prev */
3540 memcpy(n->m_data, prev->m_data + newprevlen,
3541 shortfall);
3542
3543 /* update prev->m_len accordingly */
3544 prev->m_len -= shortfall;
3545
3546 /* copy data from runt m */
3547 memcpy(n->m_data + shortfall, m->m_data,
3548 m->m_len);
3549
3550 /* n holds what we stole from prev, plus m */
3551 n->m_len = shortfall + m->m_len;
3552
3553 /* stitch n into chain and free m */
3554 n->m_next = m->m_next;
3555 prev->m_next = n;
3556 /* KASSERT(m->m_next == NULL); */
3557 m->m_next = NULL;
3558 m_free(m);
3559 m = n; /* for continuing loop */
3560 }
3561 }
3562 prevlen = m->m_len;
3563 }
3564 return 0;
3565 }
3566
3567 /*
3568 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3569 * pointers to descriptors.
3570 */
3571 static int
3572 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3573 {
3574 struct bge_tx_bd *f = NULL;
3575 u_int32_t frag, cur;
3576 u_int16_t csum_flags = 0;
3577 u_int16_t txbd_tso_flags = 0;
3578 struct txdmamap_pool_entry *dma;
3579 bus_dmamap_t dmamap;
3580 int i = 0;
3581 struct m_tag *mtag;
3582 int use_tso, maxsegsize, error;
3583
3584 cur = frag = *txidx;
3585
3586 if (m_head->m_pkthdr.csum_flags) {
3587 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3588 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3589 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3590 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3591 }
3592
3593 /*
3594 * If we were asked to do an outboard checksum, and the NIC
3595 * has the bug where it sometimes adds in the Ethernet padding,
3596 * explicitly pad with zeros so the cksum will be correct either way.
3597 * (For now, do this for all chip versions, until newer
3598 * are confirmed to not require the workaround.)
3599 */
3600 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3601 #ifdef notyet
3602 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3603 #endif
3604 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3605 goto check_dma_bug;
3606
3607 if (bge_cksum_pad(m_head) != 0) {
3608 return ENOBUFS;
3609 }
3610
3611 check_dma_bug:
3612 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3613 goto doit;
3614 /*
3615 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3616 * less than eight bytes. If we encounter a teeny mbuf
3617 * at the end of a chain, we can pad. Otherwise, copy.
3618 */
3619 if (bge_compact_dma_runt(m_head) != 0)
3620 return ENOBUFS;
3621
3622 doit:
3623 dma = SLIST_FIRST(&sc->txdma_list);
3624 if (dma == NULL)
3625 return ENOBUFS;
3626 dmamap = dma->dmamap;
3627
3628 /*
3629 * Set up any necessary TSO state before we start packing...
3630 */
3631 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3632 if (!use_tso) {
3633 maxsegsize = 0;
3634 } else { /* TSO setup */
3635 unsigned mss;
3636 struct ether_header *eh;
3637 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3638 struct mbuf * m0 = m_head;
3639 struct ip *ip;
3640 struct tcphdr *th;
3641 int iphl, hlen;
3642
3643 /*
3644 * XXX It would be nice if the mbuf pkthdr had offset
3645 * fields for the protocol headers.
3646 */
3647
3648 eh = mtod(m0, struct ether_header *);
3649 switch (htons(eh->ether_type)) {
3650 case ETHERTYPE_IP:
3651 offset = ETHER_HDR_LEN;
3652 break;
3653
3654 case ETHERTYPE_VLAN:
3655 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3656 break;
3657
3658 default:
3659 /*
3660 * Don't support this protocol or encapsulation.
3661 */
3662 return (ENOBUFS);
3663 }
3664
3665 /*
3666 * TCP/IP headers are in the first mbuf; we can do
3667 * this the easy way.
3668 */
3669 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3670 hlen = iphl + offset;
3671 if (__predict_false(m0->m_len <
3672 (hlen + sizeof(struct tcphdr)))) {
3673
3674 aprint_debug_dev(sc->bge_dev,
3675 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3676 "not handled yet\n",
3677 m0->m_len, hlen+ sizeof(struct tcphdr));
3678 #ifdef NOTYET
3679 /*
3680 * XXX jonathan (at) NetBSD.org: untested.
3681 * how to force this branch to be taken?
3682 */
3683 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3684
3685 m_copydata(m0, offset, sizeof(ip), &ip);
3686 m_copydata(m0, hlen, sizeof(th), &th);
3687
3688 ip.ip_len = 0;
3689
3690 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3691 sizeof(ip.ip_len), &ip.ip_len);
3692
3693 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3694 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3695
3696 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3697 sizeof(th.th_sum), &th.th_sum);
3698
3699 hlen += th.th_off << 2;
3700 iptcp_opt_words = hlen;
3701 #else
3702 /*
3703 * if_wm "hard" case not yet supported, can we not
3704 * mandate it out of existence?
3705 */
3706 (void) ip; (void)th; (void) ip_tcp_hlen;
3707
3708 return ENOBUFS;
3709 #endif
3710 } else {
3711 ip = (struct ip *) (mtod(m0, char *) + offset);
3712 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3713 ip_tcp_hlen = iphl + (th->th_off << 2);
3714
3715 /* Total IP/TCP options, in 32-bit words */
3716 iptcp_opt_words = (ip_tcp_hlen
3717 - sizeof(struct tcphdr)
3718 - sizeof(struct ip)) >> 2;
3719 }
3720 if (BGE_IS_5750_OR_BEYOND(sc)) {
3721 th->th_sum = 0;
3722 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3723 } else {
3724 /*
3725 * XXX jonathan (at) NetBSD.org: 5705 untested.
3726 * Requires TSO firmware patch for 5701/5703/5704.
3727 */
3728 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3729 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3730 }
3731
3732 mss = m_head->m_pkthdr.segsz;
3733 txbd_tso_flags |=
3734 BGE_TXBDFLAG_CPU_PRE_DMA |
3735 BGE_TXBDFLAG_CPU_POST_DMA;
3736
3737 /*
3738 * Our NIC TSO-assist assumes TSO has standard, optionless
3739 * IPv4 and TCP headers, which total 40 bytes. By default,
3740 * the NIC copies 40 bytes of IP/TCP header from the
3741 * supplied header into the IP/TCP header portion of
3742 * each post-TSO-segment. If the supplied packet has IP or
3743 * TCP options, we need to tell the NIC to copy those extra
3744 * bytes into each post-TSO header, in addition to the normal
3745 * 40-byte IP/TCP header (and to leave space accordingly).
3746 * Unfortunately, the driver encoding of option length
3747 * varies across different ASIC families.
3748 */
3749 tcp_seg_flags = 0;
3750 if (iptcp_opt_words) {
3751 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3752 tcp_seg_flags =
3753 iptcp_opt_words << 11;
3754 } else {
3755 txbd_tso_flags |=
3756 iptcp_opt_words << 12;
3757 }
3758 }
3759 maxsegsize = mss | tcp_seg_flags;
3760 ip->ip_len = htons(mss + ip_tcp_hlen);
3761
3762 } /* TSO setup */
3763
3764 /*
3765 * Start packing the mbufs in this chain into
3766 * the fragment pointers. Stop when we run out
3767 * of fragments or hit the end of the mbuf chain.
3768 */
3769 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3770 BUS_DMA_NOWAIT);
3771 if (error) {
3772 return(ENOBUFS);
3773 }
3774 /*
3775 * Sanity check: avoid coming within 16 descriptors
3776 * of the end of the ring.
3777 */
3778 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3779 BGE_TSO_PRINTF(("%s: "
3780 " dmamap_load_mbuf too close to ring wrap\n",
3781 device_xname(sc->bge_dev)));
3782 goto fail_unload;
3783 }
3784
3785 mtag = sc->ethercom.ec_nvlans ?
3786 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3787
3788
3789 /* Iterate over dmap-map fragments. */
3790 for (i = 0; i < dmamap->dm_nsegs; i++) {
3791 f = &sc->bge_rdata->bge_tx_ring[frag];
3792 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3793 break;
3794
3795 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3796 f->bge_len = dmamap->dm_segs[i].ds_len;
3797
3798 /*
3799 * For 5751 and follow-ons, for TSO we must turn
3800 * off checksum-assist flag in the tx-descr, and
3801 * supply the ASIC-revision-specific encoding
3802 * of TSO flags and segsize.
3803 */
3804 if (use_tso) {
3805 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3806 f->bge_rsvd = maxsegsize;
3807 f->bge_flags = csum_flags | txbd_tso_flags;
3808 } else {
3809 f->bge_rsvd = 0;
3810 f->bge_flags =
3811 (csum_flags | txbd_tso_flags) & 0x0fff;
3812 }
3813 } else {
3814 f->bge_rsvd = 0;
3815 f->bge_flags = csum_flags;
3816 }
3817
3818 if (mtag != NULL) {
3819 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3820 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3821 } else {
3822 f->bge_vlan_tag = 0;
3823 }
3824 cur = frag;
3825 BGE_INC(frag, BGE_TX_RING_CNT);
3826 }
3827
3828 if (i < dmamap->dm_nsegs) {
3829 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3830 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3831 goto fail_unload;
3832 }
3833
3834 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3835 BUS_DMASYNC_PREWRITE);
3836
3837 if (frag == sc->bge_tx_saved_considx) {
3838 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3839 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3840
3841 goto fail_unload;
3842 }
3843
3844 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3845 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3846 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3847 sc->txdma[cur] = dma;
3848 sc->bge_txcnt += dmamap->dm_nsegs;
3849
3850 *txidx = frag;
3851
3852 return(0);
3853
3854 fail_unload:
3855 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3856
3857 return ENOBUFS;
3858 }
3859
3860 /*
3861 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3862 * to the mbuf data regions directly in the transmit descriptors.
3863 */
3864 static void
3865 bge_start(struct ifnet *ifp)
3866 {
3867 struct bge_softc *sc;
3868 struct mbuf *m_head = NULL;
3869 u_int32_t prodidx;
3870 int pkts = 0;
3871
3872 sc = ifp->if_softc;
3873
3874 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3875 return;
3876
3877 prodidx = sc->bge_tx_prodidx;
3878
3879 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3880 IFQ_POLL(&ifp->if_snd, m_head);
3881 if (m_head == NULL)
3882 break;
3883
3884 #if 0
3885 /*
3886 * XXX
3887 * safety overkill. If this is a fragmented packet chain
3888 * with delayed TCP/UDP checksums, then only encapsulate
3889 * it if we have enough descriptors to handle the entire
3890 * chain at once.
3891 * (paranoia -- may not actually be needed)
3892 */
3893 if (m_head->m_flags & M_FIRSTFRAG &&
3894 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3895 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3896 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3897 ifp->if_flags |= IFF_OACTIVE;
3898 break;
3899 }
3900 }
3901 #endif
3902
3903 /*
3904 * Pack the data into the transmit ring. If we
3905 * don't have room, set the OACTIVE flag and wait
3906 * for the NIC to drain the ring.
3907 */
3908 if (bge_encap(sc, m_head, &prodidx)) {
3909 ifp->if_flags |= IFF_OACTIVE;
3910 break;
3911 }
3912
3913 /* now we are committed to transmit the packet */
3914 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3915 pkts++;
3916
3917 #if NBPFILTER > 0
3918 /*
3919 * If there's a BPF listener, bounce a copy of this frame
3920 * to him.
3921 */
3922 if (ifp->if_bpf)
3923 bpf_mtap(ifp->if_bpf, m_head);
3924 #endif
3925 }
3926 if (pkts == 0)
3927 return;
3928
3929 /* Transmit */
3930 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3931 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3932 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3933
3934 sc->bge_tx_prodidx = prodidx;
3935
3936 /*
3937 * Set a timeout in case the chip goes out to lunch.
3938 */
3939 ifp->if_timer = 5;
3940 }
3941
3942 static int
3943 bge_init(struct ifnet *ifp)
3944 {
3945 struct bge_softc *sc = ifp->if_softc;
3946 const u_int16_t *m;
3947 int s, error = 0;
3948
3949 s = splnet();
3950
3951 ifp = &sc->ethercom.ec_if;
3952
3953 /* Cancel pending I/O and flush buffers. */
3954 bge_stop(ifp, 0);
3955 bge_reset(sc);
3956 bge_chipinit(sc);
3957
3958 /*
3959 * Init the various state machines, ring
3960 * control blocks and firmware.
3961 */
3962 error = bge_blockinit(sc);
3963 if (error != 0) {
3964 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3965 error);
3966 splx(s);
3967 return error;
3968 }
3969
3970 ifp = &sc->ethercom.ec_if;
3971
3972 /* Specify MTU. */
3973 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3974 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3975
3976 /* Load our MAC address. */
3977 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3978 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3979 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3980
3981 /* Enable or disable promiscuous mode as needed. */
3982 if (ifp->if_flags & IFF_PROMISC) {
3983 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3984 } else {
3985 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3986 }
3987
3988 /* Program multicast filter. */
3989 bge_setmulti(sc);
3990
3991 /* Init RX ring. */
3992 bge_init_rx_ring_std(sc);
3993
3994 /* Init jumbo RX ring. */
3995 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3996 bge_init_rx_ring_jumbo(sc);
3997
3998 /* Init our RX return ring index */
3999 sc->bge_rx_saved_considx = 0;
4000
4001 /* Init TX ring. */
4002 bge_init_tx_ring(sc);
4003
4004 /* Turn on transmitter */
4005 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4006
4007 /* Turn on receiver */
4008 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4009
4010 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4011
4012 /* Tell firmware we're alive. */
4013 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4014
4015 /* Enable host interrupts. */
4016 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4017 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4018 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4019
4020 if ((error = bge_ifmedia_upd(ifp)) != 0)
4021 goto out;
4022
4023 ifp->if_flags |= IFF_RUNNING;
4024 ifp->if_flags &= ~IFF_OACTIVE;
4025
4026 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4027
4028 out:
4029 splx(s);
4030
4031 return error;
4032 }
4033
4034 /*
4035 * Set media options.
4036 */
4037 static int
4038 bge_ifmedia_upd(struct ifnet *ifp)
4039 {
4040 struct bge_softc *sc = ifp->if_softc;
4041 struct mii_data *mii = &sc->bge_mii;
4042 struct ifmedia *ifm = &sc->bge_ifmedia;
4043 int rc;
4044
4045 /* If this is a 1000baseX NIC, enable the TBI port. */
4046 if (sc->bge_tbi) {
4047 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4048 return(EINVAL);
4049 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4050 case IFM_AUTO:
4051 break;
4052 case IFM_1000_SX:
4053 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4054 BGE_CLRBIT(sc, BGE_MAC_MODE,
4055 BGE_MACMODE_HALF_DUPLEX);
4056 } else {
4057 BGE_SETBIT(sc, BGE_MAC_MODE,
4058 BGE_MACMODE_HALF_DUPLEX);
4059 }
4060 break;
4061 default:
4062 return(EINVAL);
4063 }
4064 /* XXX 802.3x flow control for 1000BASE-SX */
4065 return(0);
4066 }
4067
4068 sc->bge_link = 0;
4069 if ((rc = mii_mediachg(mii)) == ENXIO)
4070 return 0;
4071 return rc;
4072 }
4073
4074 /*
4075 * Report current media status.
4076 */
4077 static void
4078 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4079 {
4080 struct bge_softc *sc = ifp->if_softc;
4081 struct mii_data *mii = &sc->bge_mii;
4082
4083 if (sc->bge_tbi) {
4084 ifmr->ifm_status = IFM_AVALID;
4085 ifmr->ifm_active = IFM_ETHER;
4086 if (CSR_READ_4(sc, BGE_MAC_STS) &
4087 BGE_MACSTAT_TBI_PCS_SYNCHED)
4088 ifmr->ifm_status |= IFM_ACTIVE;
4089 ifmr->ifm_active |= IFM_1000_SX;
4090 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4091 ifmr->ifm_active |= IFM_HDX;
4092 else
4093 ifmr->ifm_active |= IFM_FDX;
4094 return;
4095 }
4096
4097 mii_pollstat(mii);
4098 ifmr->ifm_status = mii->mii_media_status;
4099 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4100 sc->bge_flowflags;
4101 }
4102
4103 static int
4104 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4105 {
4106 struct bge_softc *sc = ifp->if_softc;
4107 struct ifreq *ifr = (struct ifreq *) data;
4108 int s, error = 0;
4109 struct mii_data *mii;
4110
4111 s = splnet();
4112
4113 switch(command) {
4114 case SIOCSIFFLAGS:
4115 if (ifp->if_flags & IFF_UP) {
4116 /*
4117 * If only the state of the PROMISC flag changed,
4118 * then just use the 'set promisc mode' command
4119 * instead of reinitializing the entire NIC. Doing
4120 * a full re-init means reloading the firmware and
4121 * waiting for it to start up, which may take a
4122 * second or two.
4123 */
4124 if (ifp->if_flags & IFF_RUNNING &&
4125 ifp->if_flags & IFF_PROMISC &&
4126 !(sc->bge_if_flags & IFF_PROMISC)) {
4127 BGE_SETBIT(sc, BGE_RX_MODE,
4128 BGE_RXMODE_RX_PROMISC);
4129 } else if (ifp->if_flags & IFF_RUNNING &&
4130 !(ifp->if_flags & IFF_PROMISC) &&
4131 sc->bge_if_flags & IFF_PROMISC) {
4132 BGE_CLRBIT(sc, BGE_RX_MODE,
4133 BGE_RXMODE_RX_PROMISC);
4134 } else if (!(sc->bge_if_flags & IFF_UP))
4135 bge_init(ifp);
4136 } else {
4137 if (ifp->if_flags & IFF_RUNNING)
4138 bge_stop(ifp, 1);
4139 }
4140 sc->bge_if_flags = ifp->if_flags;
4141 error = 0;
4142 break;
4143 case SIOCSIFMEDIA:
4144 /* XXX Flow control is not supported for 1000BASE-SX */
4145 if (sc->bge_tbi) {
4146 ifr->ifr_media &= ~IFM_ETH_FMASK;
4147 sc->bge_flowflags = 0;
4148 }
4149
4150 /* Flow control requires full-duplex mode. */
4151 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4152 (ifr->ifr_media & IFM_FDX) == 0) {
4153 ifr->ifr_media &= ~IFM_ETH_FMASK;
4154 }
4155 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4156 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4157 /* We an do both TXPAUSE and RXPAUSE. */
4158 ifr->ifr_media |=
4159 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4160 }
4161 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4162 }
4163 /* FALLTHROUGH */
4164 case SIOCGIFMEDIA:
4165 if (sc->bge_tbi) {
4166 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4167 command);
4168 } else {
4169 mii = &sc->bge_mii;
4170 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4171 command);
4172 }
4173 break;
4174 default:
4175 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4176 break;
4177
4178 error = 0;
4179
4180 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4181 ;
4182 else if (ifp->if_flags & IFF_RUNNING)
4183 bge_setmulti(sc);
4184 break;
4185 }
4186
4187 splx(s);
4188
4189 return(error);
4190 }
4191
4192 static void
4193 bge_watchdog(struct ifnet *ifp)
4194 {
4195 struct bge_softc *sc;
4196
4197 sc = ifp->if_softc;
4198
4199 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4200
4201 ifp->if_flags &= ~IFF_RUNNING;
4202 bge_init(ifp);
4203
4204 ifp->if_oerrors++;
4205 }
4206
4207 static void
4208 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4209 {
4210 int i;
4211
4212 BGE_CLRBIT(sc, reg, bit);
4213
4214 for (i = 0; i < BGE_TIMEOUT; i++) {
4215 if ((CSR_READ_4(sc, reg) & bit) == 0)
4216 return;
4217 delay(100);
4218 if (sc->bge_pcie)
4219 DELAY(1000);
4220 }
4221
4222 aprint_error_dev(sc->bge_dev,
4223 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4224 }
4225
4226 /*
4227 * Stop the adapter and free any mbufs allocated to the
4228 * RX and TX lists.
4229 */
4230 static void
4231 bge_stop(struct ifnet *ifp, int disable)
4232 {
4233 struct bge_softc *sc = ifp->if_softc;
4234
4235 callout_stop(&sc->bge_timeout);
4236
4237 /*
4238 * Disable all of the receiver blocks
4239 */
4240 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4241 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4242 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4243 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4244 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4245 }
4246 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4247 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4248 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4249
4250 /*
4251 * Disable all of the transmit blocks
4252 */
4253 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4254 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4255 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4256 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4257 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4258 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4259 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4260 }
4261 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4262
4263 /*
4264 * Shut down all of the memory managers and related
4265 * state machines.
4266 */
4267 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4268 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4269 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4270 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4271 }
4272
4273 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4274 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4275
4276 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4277 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4278 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4279 }
4280
4281 /* Disable host interrupts. */
4282 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4283 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4284
4285 /*
4286 * Tell firmware we're shutting down.
4287 */
4288 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4289
4290 /* Free the RX lists. */
4291 bge_free_rx_ring_std(sc);
4292
4293 /* Free jumbo RX list. */
4294 bge_free_rx_ring_jumbo(sc);
4295
4296 /* Free TX buffers. */
4297 bge_free_tx_ring(sc);
4298
4299 /*
4300 * Isolate/power down the PHY.
4301 */
4302 if (!sc->bge_tbi)
4303 mii_down(&sc->bge_mii);
4304
4305 sc->bge_link = 0;
4306
4307 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4308
4309 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4310 }
4311
4312 static int
4313 sysctl_bge_verify(SYSCTLFN_ARGS)
4314 {
4315 int error, t;
4316 struct sysctlnode node;
4317
4318 node = *rnode;
4319 t = *(int*)rnode->sysctl_data;
4320 node.sysctl_data = &t;
4321 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4322 if (error || newp == NULL)
4323 return (error);
4324
4325 #if 0
4326 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4327 node.sysctl_num, rnode->sysctl_num));
4328 #endif
4329
4330 if (node.sysctl_num == bge_rxthresh_nodenum) {
4331 if (t < 0 || t >= NBGE_RX_THRESH)
4332 return (EINVAL);
4333 bge_update_all_threshes(t);
4334 } else
4335 return (EINVAL);
4336
4337 *(int*)rnode->sysctl_data = t;
4338
4339 return (0);
4340 }
4341
4342 /*
4343 * Set up sysctl(3) MIB, hw.bge.*.
4344 *
4345 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4346 */
4347 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4348 {
4349 int rc, bge_root_num;
4350 const struct sysctlnode *node;
4351
4352 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4353 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4354 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4355 goto err;
4356 }
4357
4358 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4359 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4360 SYSCTL_DESCR("BGE interface controls"),
4361 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4362 goto err;
4363 }
4364
4365 bge_root_num = node->sysctl_num;
4366
4367 /* BGE Rx interrupt mitigation level */
4368 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4369 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4370 CTLTYPE_INT, "rx_lvl",
4371 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4372 sysctl_bge_verify, 0,
4373 &bge_rx_thresh_lvl,
4374 0, CTL_HW, bge_root_num, CTL_CREATE,
4375 CTL_EOL)) != 0) {
4376 goto err;
4377 }
4378
4379 bge_rxthresh_nodenum = node->sysctl_num;
4380
4381 return;
4382
4383 err:
4384 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4385 }
4386