Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.148
      1 /*	$NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.148 2008/06/17 06:08:46 mlelstv Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/device.h>
     96 #include <sys/socket.h>
     97 #include <sys/sysctl.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #if NRND > 0
    105 #include <sys/rnd.h>
    106 #endif
    107 
    108 #ifdef INET
    109 #include <netinet/in.h>
    110 #include <netinet/in_systm.h>
    111 #include <netinet/in_var.h>
    112 #include <netinet/ip.h>
    113 #endif
    114 
    115 /* Headers for TCP  Segmentation Offload (TSO) */
    116 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118 #include <netinet/ip.h>			/* for struct ip */
    119 #include <netinet/tcp.h>		/* for struct tcphdr */
    120 
    121 
    122 #if NBPFILTER > 0
    123 #include <net/bpf.h>
    124 #endif
    125 
    126 #include <dev/pci/pcireg.h>
    127 #include <dev/pci/pcivar.h>
    128 #include <dev/pci/pcidevs.h>
    129 
    130 #include <dev/mii/mii.h>
    131 #include <dev/mii/miivar.h>
    132 #include <dev/mii/miidevs.h>
    133 #include <dev/mii/brgphyreg.h>
    134 
    135 #include <dev/pci/if_bgereg.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    140 
    141 
    142 /*
    143  * Tunable thresholds for rx-side bge interrupt mitigation.
    144  */
    145 
    146 /*
    147  * The pairs of values below were obtained from empirical measurement
    148  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    149  * interrupt for every N packets received, where N is, approximately,
    150  * the second value (rx_max_bds) in each pair.  The values are chosen
    151  * such that moving from one pair to the succeeding pair was observed
    152  * to roughly halve interrupt rate under sustained input packet load.
    153  * The values were empirically chosen to avoid overflowing internal
    154  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    155  * results in internal wrapping and higher interrupt rates.
    156  * The limit of 46 frames was chosen to match NFS workloads.
    157  *
    158  * These values also work well on bcm5701, bcm5704C, and (less
    159  * tested) bcm5703.  On other chipsets, (including the Altima chip
    160  * family), the larger values may overflow internal chip limits,
    161  * leading to increasing interrupt rates rather than lower interrupt
    162  * rates.
    163  *
    164  * Applications using heavy interrupt mitigation (interrupting every
    165  * 32 or 46 frames) in both directions may need to increase the TCP
    166  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    167  * full link bandwidth, due to ACKs and window updates lingering
    168  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    169  */
    170 static const struct bge_load_rx_thresh {
    171 	int rx_ticks;
    172 	int rx_max_bds; }
    173 bge_rx_threshes[] = {
    174 	{ 32,   2 },
    175 	{ 50,   4 },
    176 	{ 100,  8 },
    177 	{ 192, 16 },
    178 	{ 416, 32 },
    179 	{ 598, 46 }
    180 };
    181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    182 
    183 /* XXX patchable; should be sysctl'able */
    184 static int	bge_auto_thresh = 1;
    185 static int	bge_rx_thresh_lvl;
    186 
    187 static int	bge_rxthresh_nodenum;
    188 
    189 static int	bge_probe(device_t, cfdata_t, void *);
    190 static void	bge_attach(device_t, device_t, void *);
    191 static void	bge_release_resources(struct bge_softc *);
    192 static void	bge_txeof(struct bge_softc *);
    193 static void	bge_rxeof(struct bge_softc *);
    194 
    195 static void	bge_tick(void *);
    196 static void	bge_stats_update(struct bge_softc *);
    197 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    198 
    199 static int	bge_intr(void *);
    200 static void	bge_start(struct ifnet *);
    201 static int	bge_ioctl(struct ifnet *, u_long, void *);
    202 static int	bge_init(struct ifnet *);
    203 static void	bge_stop(struct ifnet *, int);
    204 static void	bge_watchdog(struct ifnet *);
    205 static int	bge_ifmedia_upd(struct ifnet *);
    206 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    207 
    208 static void	bge_setmulti(struct bge_softc *);
    209 
    210 static void	bge_handle_events(struct bge_softc *);
    211 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    212 #if 0 /* XXX */
    213 static void	bge_free_jumbo_mem(struct bge_softc *);
    214 #endif
    215 static void	*bge_jalloc(struct bge_softc *);
    216 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    217 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    218 			       bus_dmamap_t);
    219 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    220 static int	bge_init_rx_ring_std(struct bge_softc *);
    221 static void	bge_free_rx_ring_std(struct bge_softc *);
    222 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    223 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    224 static void	bge_free_tx_ring(struct bge_softc *);
    225 static int	bge_init_tx_ring(struct bge_softc *);
    226 
    227 static int	bge_chipinit(struct bge_softc *);
    228 static int	bge_blockinit(struct bge_softc *);
    229 static int	bge_setpowerstate(struct bge_softc *, int);
    230 
    231 static void	bge_reset(struct bge_softc *);
    232 
    233 #define BGE_DEBUG
    234 #ifdef BGE_DEBUG
    235 #define DPRINTF(x)	if (bgedebug) printf x
    236 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    237 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    238 int	bgedebug = 0;
    239 int	bge_tso_debug = 0;
    240 #else
    241 #define DPRINTF(x)
    242 #define DPRINTFN(n,x)
    243 #define BGE_TSO_PRINTF(x)
    244 #endif
    245 
    246 #ifdef BGE_EVENT_COUNTERS
    247 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    248 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    249 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    250 #else
    251 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    252 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    253 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    254 #endif
    255 
    256 /* Various chip quirks. */
    257 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    258 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    259 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    260 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    261 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    262 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    263 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    264 #define	BGE_QUIRK_5705_CORE		0x00000080
    265 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    266 
    267 /*
    268  * XXX: how to handle variants based on 5750 and derivatives:
    269  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    270  * in general behave like a 5705, except with additional quirks.
    271  * This driver's current handling of the 5721 is wrong;
    272  * how we map ASIC revision to "quirks" needs more thought.
    273  * (defined here until the thought is done).
    274  */
    275 #define BGE_IS_5714_FAMILY(sc) \
    276 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    277 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    278 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    279 
    280 #define BGE_IS_5750_OR_BEYOND(sc)  \
    281 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    282 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    283 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    284 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    285 	 BGE_IS_5714_FAMILY(sc) )
    286 
    287 #define BGE_IS_5705_OR_BEYOND(sc)  \
    288 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    289 	  BGE_IS_5750_OR_BEYOND(sc) )
    290 
    291 
    292 /* following bugs are common to bcm5700 rev B, all flavours */
    293 #define BGE_QUIRK_5700_COMMON \
    294 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    295 
    296 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    297     bge_probe, bge_attach, NULL, NULL);
    298 
    299 static u_int32_t
    300 bge_readmem_ind(struct bge_softc *sc, int off)
    301 {
    302 	pcireg_t val;
    303 
    304 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    305 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    306 	return val;
    307 }
    308 
    309 static void
    310 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    311 {
    312 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    313 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    314 }
    315 
    316 #ifdef notdef
    317 static u_int32_t
    318 bge_readreg_ind(struct bge_softc *sc, int off)
    319 {
    320 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    321 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    322 }
    323 #endif
    324 
    325 static void
    326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    327 {
    328 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    330 }
    331 
    332 #ifdef notdef
    333 static u_int8_t
    334 bge_vpd_readbyte(struct bge_softc *sc, int addr)
    335 {
    336 	int i;
    337 	u_int32_t val;
    338 
    339 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
    340 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    341 		DELAY(10);
    342 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
    343 		    BGE_VPD_FLAG)
    344 			break;
    345 	}
    346 
    347 	if (i == BGE_TIMEOUT) {
    348 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    349 		return(0);
    350 	}
    351 
    352 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
    353 
    354 	return((val >> ((addr % 4) * 8)) & 0xFF);
    355 }
    356 
    357 static void
    358 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    359 {
    360 	int i;
    361 	u_int8_t *ptr;
    362 
    363 	ptr = (u_int8_t *)res;
    364 	for (i = 0; i < sizeof(struct vpd_res); i++)
    365 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    366 }
    367 
    368 static void
    369 bge_vpd_read(struct bge_softc *sc)
    370 {
    371 	int pos = 0, i;
    372 	struct vpd_res res;
    373 
    374 	if (sc->bge_vpd_prodname != NULL)
    375 		free(sc->bge_vpd_prodname, M_DEVBUF);
    376 	if (sc->bge_vpd_readonly != NULL)
    377 		free(sc->bge_vpd_readonly, M_DEVBUF);
    378 	sc->bge_vpd_prodname = NULL;
    379 	sc->bge_vpd_readonly = NULL;
    380 
    381 	bge_vpd_read_res(sc, &res, pos);
    382 
    383 	if (res.vr_id != VPD_RES_ID) {
    384 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    385 		    VPD_RES_ID, res.vr_id);
    386 		return;
    387 	}
    388 
    389 	pos += sizeof(res);
    390 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    391 	if (sc->bge_vpd_prodname == NULL)
    392 		panic("bge_vpd_read");
    393 	for (i = 0; i < res.vr_len; i++)
    394 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    395 	sc->bge_vpd_prodname[i] = '\0';
    396 	pos += i;
    397 
    398 	bge_vpd_read_res(sc, &res, pos);
    399 
    400 	if (res.vr_id != VPD_RES_READ) {
    401 		aprint_error_dev(sc->bge_dev,
    402 		    "bad VPD resource id: expected %x got %x\n",
    403 		    VPD_RES_READ, res.vr_id);
    404 		return;
    405 	}
    406 
    407 	pos += sizeof(res);
    408 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    409 	if (sc->bge_vpd_readonly == NULL)
    410 		panic("bge_vpd_read");
    411 	for (i = 0; i < res.vr_len + 1; i++)
    412 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    413 }
    414 #endif
    415 
    416 /*
    417  * Read a byte of data stored in the EEPROM at address 'addr.' The
    418  * BCM570x supports both the traditional bitbang interface and an
    419  * auto access interface for reading the EEPROM. We use the auto
    420  * access method.
    421  */
    422 static u_int8_t
    423 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    424 {
    425 	int i;
    426 	u_int32_t byte = 0;
    427 
    428 	/*
    429 	 * Enable use of auto EEPROM access so we can avoid
    430 	 * having to use the bitbang method.
    431 	 */
    432 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    433 
    434 	/* Reset the EEPROM, load the clock period. */
    435 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    436 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    437 	DELAY(20);
    438 
    439 	/* Issue the read EEPROM command. */
    440 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    441 
    442 	/* Wait for completion */
    443 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    444 		DELAY(10);
    445 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    446 			break;
    447 	}
    448 
    449 	if (i == BGE_TIMEOUT) {
    450 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    451 		return(0);
    452 	}
    453 
    454 	/* Get result. */
    455 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    456 
    457 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    458 
    459 	return(0);
    460 }
    461 
    462 /*
    463  * Read a sequence of bytes from the EEPROM.
    464  */
    465 static int
    466 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    467 {
    468 	int err = 0, i;
    469 	u_int8_t byte = 0;
    470 	char *dest = destv;
    471 
    472 	for (i = 0; i < cnt; i++) {
    473 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    474 		if (err)
    475 			break;
    476 		*(dest + i) = byte;
    477 	}
    478 
    479 	return(err ? 1 : 0);
    480 }
    481 
    482 static int
    483 bge_miibus_readreg(device_t dev, int phy, int reg)
    484 {
    485 	struct bge_softc *sc = device_private(dev);
    486 	u_int32_t val;
    487 	u_int32_t saved_autopoll;
    488 	int i;
    489 
    490 	/*
    491 	 * Several chips with builtin PHYs will incorrectly answer to
    492 	 * other PHY instances than the builtin PHY at id 1.
    493 	 */
    494 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    495 		return(0);
    496 
    497 	/* Reading with autopolling on may trigger PCI errors */
    498 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    499 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    500 		CSR_WRITE_4(sc, BGE_MI_MODE,
    501 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    502 		DELAY(40);
    503 	}
    504 
    505 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    506 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    507 
    508 	for (i = 0; i < BGE_TIMEOUT; i++) {
    509 		val = CSR_READ_4(sc, BGE_MI_COMM);
    510 		if (!(val & BGE_MICOMM_BUSY))
    511 			break;
    512 		delay(10);
    513 	}
    514 
    515 	if (i == BGE_TIMEOUT) {
    516 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    517 		val = 0;
    518 		goto done;
    519 	}
    520 
    521 	val = CSR_READ_4(sc, BGE_MI_COMM);
    522 
    523 done:
    524 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    525 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    526 		DELAY(40);
    527 	}
    528 
    529 	if (val & BGE_MICOMM_READFAIL)
    530 		return(0);
    531 
    532 	return(val & 0xFFFF);
    533 }
    534 
    535 static void
    536 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    537 {
    538 	struct bge_softc *sc = device_private(dev);
    539 	u_int32_t saved_autopoll;
    540 	int i;
    541 
    542 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    543 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    544 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    545 		delay(40);
    546 		CSR_WRITE_4(sc, BGE_MI_MODE,
    547 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    548 		delay(10); /* 40 usec is supposed to be adequate */
    549 	}
    550 
    551 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    552 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    553 
    554 	for (i = 0; i < BGE_TIMEOUT; i++) {
    555 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    556 			break;
    557 		delay(10);
    558 	}
    559 
    560 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    561 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    562 		delay(40);
    563 	}
    564 
    565 	if (i == BGE_TIMEOUT)
    566 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    567 }
    568 
    569 static void
    570 bge_miibus_statchg(device_t dev)
    571 {
    572 	struct bge_softc *sc = device_private(dev);
    573 	struct mii_data *mii = &sc->bge_mii;
    574 
    575 	/*
    576 	 * Get flow control negotiation result.
    577 	 */
    578 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    579 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    580 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    581 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    582 	}
    583 
    584 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    585 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    586 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    587 	} else {
    588 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    589 	}
    590 
    591 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    592 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    593 	} else {
    594 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    595 	}
    596 
    597 	/*
    598 	 * 802.3x flow control
    599 	 */
    600 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    601 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    602 	} else {
    603 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    604 	}
    605 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    606 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    607 	} else {
    608 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    609 	}
    610 }
    611 
    612 /*
    613  * Update rx threshold levels to values in a particular slot
    614  * of the interrupt-mitigation table bge_rx_threshes.
    615  */
    616 static void
    617 bge_set_thresh(struct ifnet *ifp, int lvl)
    618 {
    619 	struct bge_softc *sc = ifp->if_softc;
    620 	int s;
    621 
    622 	/* For now, just save the new Rx-intr thresholds and record
    623 	 * that a threshold update is pending.  Updating the hardware
    624 	 * registers here (even at splhigh()) is observed to
    625 	 * occasionaly cause glitches where Rx-interrupts are not
    626 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    627 	 */
    628 	s = splnet();
    629 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    630 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    631 	sc->bge_pending_rxintr_change = 1;
    632 	splx(s);
    633 
    634 	 return;
    635 }
    636 
    637 
    638 /*
    639  * Update Rx thresholds of all bge devices
    640  */
    641 static void
    642 bge_update_all_threshes(int lvl)
    643 {
    644 	struct ifnet *ifp;
    645 	const char * const namebuf = "bge";
    646 	int namelen;
    647 
    648 	if (lvl < 0)
    649 		lvl = 0;
    650 	else if( lvl >= NBGE_RX_THRESH)
    651 		lvl = NBGE_RX_THRESH - 1;
    652 
    653 	namelen = strlen(namebuf);
    654 	/*
    655 	 * Now search all the interfaces for this name/number
    656 	 */
    657 	IFNET_FOREACH(ifp) {
    658 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    659 		      continue;
    660 		/* We got a match: update if doing auto-threshold-tuning */
    661 		if (bge_auto_thresh)
    662 			bge_set_thresh(ifp, lvl);
    663 	}
    664 }
    665 
    666 /*
    667  * Handle events that have triggered interrupts.
    668  */
    669 static void
    670 bge_handle_events(struct bge_softc *sc)
    671 {
    672 
    673 	return;
    674 }
    675 
    676 /*
    677  * Memory management for jumbo frames.
    678  */
    679 
    680 static int
    681 bge_alloc_jumbo_mem(struct bge_softc *sc)
    682 {
    683 	char *ptr, *kva;
    684 	bus_dma_segment_t	seg;
    685 	int		i, rseg, state, error;
    686 	struct bge_jpool_entry   *entry;
    687 
    688 	state = error = 0;
    689 
    690 	/* Grab a big chunk o' storage. */
    691 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    692 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    693 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    694 		return ENOBUFS;
    695 	}
    696 
    697 	state = 1;
    698 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    699 	    BUS_DMA_NOWAIT)) {
    700 		aprint_error_dev(sc->bge_dev,
    701 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    702 		error = ENOBUFS;
    703 		goto out;
    704 	}
    705 
    706 	state = 2;
    707 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    708 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    709 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    710 		error = ENOBUFS;
    711 		goto out;
    712 	}
    713 
    714 	state = 3;
    715 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    716 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    717 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    718 		error = ENOBUFS;
    719 		goto out;
    720 	}
    721 
    722 	state = 4;
    723 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    724 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    725 
    726 	SLIST_INIT(&sc->bge_jfree_listhead);
    727 	SLIST_INIT(&sc->bge_jinuse_listhead);
    728 
    729 	/*
    730 	 * Now divide it up into 9K pieces and save the addresses
    731 	 * in an array.
    732 	 */
    733 	ptr = sc->bge_cdata.bge_jumbo_buf;
    734 	for (i = 0; i < BGE_JSLOTS; i++) {
    735 		sc->bge_cdata.bge_jslots[i] = ptr;
    736 		ptr += BGE_JLEN;
    737 		entry = malloc(sizeof(struct bge_jpool_entry),
    738 		    M_DEVBUF, M_NOWAIT);
    739 		if (entry == NULL) {
    740 			aprint_error_dev(sc->bge_dev,
    741 			    "no memory for jumbo buffer queue!\n");
    742 			error = ENOBUFS;
    743 			goto out;
    744 		}
    745 		entry->slot = i;
    746 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    747 				 entry, jpool_entries);
    748 	}
    749 out:
    750 	if (error != 0) {
    751 		switch (state) {
    752 		case 4:
    753 			bus_dmamap_unload(sc->bge_dmatag,
    754 			    sc->bge_cdata.bge_rx_jumbo_map);
    755 		case 3:
    756 			bus_dmamap_destroy(sc->bge_dmatag,
    757 			    sc->bge_cdata.bge_rx_jumbo_map);
    758 		case 2:
    759 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    760 		case 1:
    761 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    762 			break;
    763 		default:
    764 			break;
    765 		}
    766 	}
    767 
    768 	return error;
    769 }
    770 
    771 /*
    772  * Allocate a jumbo buffer.
    773  */
    774 static void *
    775 bge_jalloc(struct bge_softc *sc)
    776 {
    777 	struct bge_jpool_entry   *entry;
    778 
    779 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    780 
    781 	if (entry == NULL) {
    782 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    783 		return(NULL);
    784 	}
    785 
    786 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    787 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    788 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    789 }
    790 
    791 /*
    792  * Release a jumbo buffer.
    793  */
    794 static void
    795 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    796 {
    797 	struct bge_jpool_entry *entry;
    798 	struct bge_softc *sc;
    799 	int i, s;
    800 
    801 	/* Extract the softc struct pointer. */
    802 	sc = (struct bge_softc *)arg;
    803 
    804 	if (sc == NULL)
    805 		panic("bge_jfree: can't find softc pointer!");
    806 
    807 	/* calculate the slot this buffer belongs to */
    808 
    809 	i = ((char *)buf
    810 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    811 
    812 	if ((i < 0) || (i >= BGE_JSLOTS))
    813 		panic("bge_jfree: asked to free buffer that we don't manage!");
    814 
    815 	s = splvm();
    816 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    817 	if (entry == NULL)
    818 		panic("bge_jfree: buffer not in use!");
    819 	entry->slot = i;
    820 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    821 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    822 
    823 	if (__predict_true(m != NULL))
    824   		pool_cache_put(mb_cache, m);
    825 	splx(s);
    826 }
    827 
    828 
    829 /*
    830  * Intialize a standard receive ring descriptor.
    831  */
    832 static int
    833 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    834 {
    835 	struct mbuf		*m_new = NULL;
    836 	struct bge_rx_bd	*r;
    837 	int			error;
    838 
    839 	if (dmamap == NULL) {
    840 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    841 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    842 		if (error != 0)
    843 			return error;
    844 	}
    845 
    846 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    847 
    848 	if (m == NULL) {
    849 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    850 		if (m_new == NULL) {
    851 			return(ENOBUFS);
    852 		}
    853 
    854 		MCLGET(m_new, M_DONTWAIT);
    855 		if (!(m_new->m_flags & M_EXT)) {
    856 			m_freem(m_new);
    857 			return(ENOBUFS);
    858 		}
    859 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    860 
    861 	} else {
    862 		m_new = m;
    863 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    864 		m_new->m_data = m_new->m_ext.ext_buf;
    865 	}
    866 	if (!sc->bge_rx_alignment_bug)
    867 	    m_adj(m_new, ETHER_ALIGN);
    868 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    869 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    870 		return(ENOBUFS);
    871 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    872 	    BUS_DMASYNC_PREREAD);
    873 
    874 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    875 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    876 	bge_set_hostaddr(&r->bge_addr,
    877 	    dmamap->dm_segs[0].ds_addr);
    878 	r->bge_flags = BGE_RXBDFLAG_END;
    879 	r->bge_len = m_new->m_len;
    880 	r->bge_idx = i;
    881 
    882 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    883 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    884 		i * sizeof (struct bge_rx_bd),
    885 	    sizeof (struct bge_rx_bd),
    886 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    887 
    888 	return(0);
    889 }
    890 
    891 /*
    892  * Initialize a jumbo receive ring descriptor. This allocates
    893  * a jumbo buffer from the pool managed internally by the driver.
    894  */
    895 static int
    896 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
    897 {
    898 	struct mbuf *m_new = NULL;
    899 	struct bge_rx_bd *r;
    900 	void *buf = NULL;
    901 
    902 	if (m == NULL) {
    903 
    904 		/* Allocate the mbuf. */
    905 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    906 		if (m_new == NULL) {
    907 			return(ENOBUFS);
    908 		}
    909 
    910 		/* Allocate the jumbo buffer */
    911 		buf = bge_jalloc(sc);
    912 		if (buf == NULL) {
    913 			m_freem(m_new);
    914 			aprint_error_dev(sc->bge_dev,
    915 			    "jumbo allocation failed -- packet dropped!\n");
    916 			return(ENOBUFS);
    917 		}
    918 
    919 		/* Attach the buffer to the mbuf. */
    920 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    921 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    922 		    bge_jfree, sc);
    923 		m_new->m_flags |= M_EXT_RW;
    924 	} else {
    925 		m_new = m;
    926 		buf = m_new->m_data = m_new->m_ext.ext_buf;
    927 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    928 	}
    929 	if (!sc->bge_rx_alignment_bug)
    930 	    m_adj(m_new, ETHER_ALIGN);
    931 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    932 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
    933 	    BUS_DMASYNC_PREREAD);
    934 	/* Set up the descriptor. */
    935 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    936 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    937 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    938 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    939 	r->bge_len = m_new->m_len;
    940 	r->bge_idx = i;
    941 
    942 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    943 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    944 		i * sizeof (struct bge_rx_bd),
    945 	    sizeof (struct bge_rx_bd),
    946 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    947 
    948 	return(0);
    949 }
    950 
    951 /*
    952  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    953  * that's 1MB or memory, which is a lot. For now, we fill only the first
    954  * 256 ring entries and hope that our CPU is fast enough to keep up with
    955  * the NIC.
    956  */
    957 static int
    958 bge_init_rx_ring_std(struct bge_softc *sc)
    959 {
    960 	int i;
    961 
    962 	if (sc->bge_flags & BGE_RXRING_VALID)
    963 		return 0;
    964 
    965 	for (i = 0; i < BGE_SSLOTS; i++) {
    966 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    967 			return(ENOBUFS);
    968 	}
    969 
    970 	sc->bge_std = i - 1;
    971 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    972 
    973 	sc->bge_flags |= BGE_RXRING_VALID;
    974 
    975 	return(0);
    976 }
    977 
    978 static void
    979 bge_free_rx_ring_std(struct bge_softc *sc)
    980 {
    981 	int i;
    982 
    983 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    984 		return;
    985 
    986 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    987 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    988 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    989 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    990 			bus_dmamap_destroy(sc->bge_dmatag,
    991 			    sc->bge_cdata.bge_rx_std_map[i]);
    992 		}
    993 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    994 		    sizeof(struct bge_rx_bd));
    995 	}
    996 
    997 	sc->bge_flags &= ~BGE_RXRING_VALID;
    998 }
    999 
   1000 static int
   1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1002 {
   1003 	int i;
   1004 	volatile struct bge_rcb *rcb;
   1005 
   1006 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1007 		return 0;
   1008 
   1009 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1010 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1011 			return(ENOBUFS);
   1012 	};
   1013 
   1014 	sc->bge_jumbo = i - 1;
   1015 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1016 
   1017 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1018 	rcb->bge_maxlen_flags = 0;
   1019 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1020 
   1021 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1022 
   1023 	return(0);
   1024 }
   1025 
   1026 static void
   1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1028 {
   1029 	int i;
   1030 
   1031 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1032 		return;
   1033 
   1034 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1035 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1036 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1037 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1038 		}
   1039 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1040 		    sizeof(struct bge_rx_bd));
   1041 	}
   1042 
   1043 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1044 }
   1045 
   1046 static void
   1047 bge_free_tx_ring(struct bge_softc *sc)
   1048 {
   1049 	int i, freed;
   1050 	struct txdmamap_pool_entry *dma;
   1051 
   1052 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1053 		return;
   1054 
   1055 	freed = 0;
   1056 
   1057 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1058 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1059 			freed++;
   1060 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1061 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1062 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1063 					    link);
   1064 			sc->txdma[i] = 0;
   1065 		}
   1066 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1067 		    sizeof(struct bge_tx_bd));
   1068 	}
   1069 
   1070 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1071 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1072 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1073 		free(dma, M_DEVBUF);
   1074 	}
   1075 
   1076 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1077 }
   1078 
   1079 static int
   1080 bge_init_tx_ring(struct bge_softc *sc)
   1081 {
   1082 	int i;
   1083 	bus_dmamap_t dmamap;
   1084 	struct txdmamap_pool_entry *dma;
   1085 
   1086 	if (sc->bge_flags & BGE_TXRING_VALID)
   1087 		return 0;
   1088 
   1089 	sc->bge_txcnt = 0;
   1090 	sc->bge_tx_saved_considx = 0;
   1091 
   1092 	/* Initialize transmit producer index for host-memory send ring. */
   1093 	sc->bge_tx_prodidx = 0;
   1094 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1095 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1096 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1097 
   1098 	/* NIC-memory send ring  not used; initialize to zero. */
   1099 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1100 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1101 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1102 
   1103 	SLIST_INIT(&sc->txdma_list);
   1104 	for (i = 0; i < BGE_RSLOTS; i++) {
   1105 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1106 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1107 		    &dmamap))
   1108 			return(ENOBUFS);
   1109 		if (dmamap == NULL)
   1110 			panic("dmamap NULL in bge_init_tx_ring");
   1111 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1112 		if (dma == NULL) {
   1113 			aprint_error_dev(sc->bge_dev,
   1114 			    "can't alloc txdmamap_pool_entry\n");
   1115 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1116 			return (ENOMEM);
   1117 		}
   1118 		dma->dmamap = dmamap;
   1119 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1120 	}
   1121 
   1122 	sc->bge_flags |= BGE_TXRING_VALID;
   1123 
   1124 	return(0);
   1125 }
   1126 
   1127 static void
   1128 bge_setmulti(struct bge_softc *sc)
   1129 {
   1130 	struct ethercom		*ac = &sc->ethercom;
   1131 	struct ifnet		*ifp = &ac->ec_if;
   1132 	struct ether_multi	*enm;
   1133 	struct ether_multistep  step;
   1134 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1135 	u_int32_t		h;
   1136 	int			i;
   1137 
   1138 	if (ifp->if_flags & IFF_PROMISC)
   1139 		goto allmulti;
   1140 
   1141 	/* Now program new ones. */
   1142 	ETHER_FIRST_MULTI(step, ac, enm);
   1143 	while (enm != NULL) {
   1144 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1145 			/*
   1146 			 * We must listen to a range of multicast addresses.
   1147 			 * For now, just accept all multicasts, rather than
   1148 			 * trying to set only those filter bits needed to match
   1149 			 * the range.  (At this time, the only use of address
   1150 			 * ranges is for IP multicast routing, for which the
   1151 			 * range is big enough to require all bits set.)
   1152 			 */
   1153 			goto allmulti;
   1154 		}
   1155 
   1156 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1157 
   1158 		/* Just want the 7 least-significant bits. */
   1159 		h &= 0x7f;
   1160 
   1161 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1162 		ETHER_NEXT_MULTI(step, enm);
   1163 	}
   1164 
   1165 	ifp->if_flags &= ~IFF_ALLMULTI;
   1166 	goto setit;
   1167 
   1168  allmulti:
   1169 	ifp->if_flags |= IFF_ALLMULTI;
   1170 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1171 
   1172  setit:
   1173 	for (i = 0; i < 4; i++)
   1174 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1175 }
   1176 
   1177 const int bge_swapbits[] = {
   1178 	0,
   1179 	BGE_MODECTL_BYTESWAP_DATA,
   1180 	BGE_MODECTL_WORDSWAP_DATA,
   1181 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1182 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1183 
   1184 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1185 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1186 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1187 
   1188 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1189 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1190 
   1191 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1192 
   1193 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1194 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1195 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1196 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1197 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1198 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1199 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1200 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1201 
   1202 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1203 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1204 };
   1205 
   1206 int bge_swapindex = 0;
   1207 
   1208 /*
   1209  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1210  * self-test results.
   1211  */
   1212 static int
   1213 bge_chipinit(struct bge_softc *sc)
   1214 {
   1215 	u_int32_t		cachesize;
   1216 	int			i;
   1217 	u_int32_t		dma_rw_ctl;
   1218 
   1219 
   1220 	/* Set endianness before we access any non-PCI registers. */
   1221 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1222 	    BGE_INIT);
   1223 
   1224 	/* Set power state to D0. */
   1225 	bge_setpowerstate(sc, 0);
   1226 
   1227 	/*
   1228 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1229 	 * self-tests passed.
   1230 	 */
   1231 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1232 		aprint_error_dev(sc->bge_dev,
   1233 		    "RX CPU self-diagnostics failed!\n");
   1234 		return(ENODEV);
   1235 	}
   1236 
   1237 	/* Clear the MAC control register */
   1238 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1239 
   1240 	/*
   1241 	 * Clear the MAC statistics block in the NIC's
   1242 	 * internal memory.
   1243 	 */
   1244 	for (i = BGE_STATS_BLOCK;
   1245 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1246 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1247 
   1248 	for (i = BGE_STATUS_BLOCK;
   1249 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1250 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1251 
   1252 	/* Set up the PCI DMA control register. */
   1253 	if (sc->bge_pcie) {
   1254 	  u_int32_t device_ctl;
   1255 
   1256 		/* From FreeBSD */
   1257 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1258 		    device_xname(sc->bge_dev)));
   1259 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1260 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1261 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1262 
   1263 		/* jonathan: alternative from Linux driver */
   1264 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1266 
   1267 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1268 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1269 					   BGE_PCI_CONF_DEV_CTRL);
   1270 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1271 
   1272 		if ((device_ctl & 0x00e0) && 0) {
   1273 			/*
   1274 			 * XXX jonathan (at) NetBSD.org:
   1275 			 * This clause is exactly what the Broadcom-supplied
   1276 			 * Linux does; but given overall register programming
   1277 			 * by if_bge(4), this larger DMA-write watermark
   1278 			 * value causes bcm5721 chips to totally wedge.
   1279 			 */
   1280 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1281 		} else {
   1282 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1283 		}
   1284 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
   1285 	    BGE_PCISTATE_PCI_BUSMODE) {
   1286 		/* Conventional PCI bus */
   1287 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1288 		    device_xname(sc->bge_dev)));
   1289 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1290 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1291 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1292 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1293 			dma_rw_ctl |= 0x0F;
   1294 		}
   1295 	} else {
   1296 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1297 		    device_xname(sc->bge_dev)));
   1298 		/* PCI-X bus */
   1299 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1300 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1301 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1302 		    (0x0F);
   1303 		/*
   1304 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1305 		 * for hardware bugs, which means we should also clear
   1306 		 * the low-order MINDMA bits.  In addition, the 5704
   1307 		 * uses a different encoding of read/write watermarks.
   1308 		 */
   1309 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1310 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1311 			  /* should be 0x1f0000 */
   1312 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1313 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1314 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1315 		}
   1316 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1317 			dma_rw_ctl &=  0xfffffff0;
   1318 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1319 		}
   1320 		else if (BGE_IS_5714_FAMILY(sc)) {
   1321 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1322 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1323 			/* XXX magic values, Broadcom-supplied Linux driver */
   1324 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1325 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1326 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1327 			else
   1328 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1329 		}
   1330 	}
   1331 
   1332 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1333 
   1334 	/*
   1335 	 * Set up general mode register.
   1336 	 */
   1337 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1338 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1339 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1340 
   1341 	/* Get cache line size. */
   1342 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1343 
   1344 	/*
   1345 	 * Avoid violating PCI spec on certain chip revs.
   1346 	 */
   1347 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1348 	    PCIM_CMD_MWIEN) {
   1349 		switch(cachesize) {
   1350 		case 1:
   1351 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1352 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1353 			break;
   1354 		case 2:
   1355 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1356 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1357 			break;
   1358 		case 4:
   1359 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1360 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1361 			break;
   1362 		case 8:
   1363 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1364 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1365 			break;
   1366 		case 16:
   1367 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1368 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1369 			break;
   1370 		case 32:
   1371 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1372 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1373 			break;
   1374 		case 64:
   1375 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1376 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1377 			break;
   1378 		default:
   1379 		/* Disable PCI memory write and invalidate. */
   1380 #if 0
   1381 			if (bootverbose)
   1382 				aprint_error_dev(sc->bge_dev,
   1383 				    "cache line size %d not supported "
   1384 				    "disabling PCI MWI\n",
   1385 #endif
   1386 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1387 			    PCIM_CMD_MWIEN);
   1388 			break;
   1389 		}
   1390 	}
   1391 
   1392 	/*
   1393 	 * Disable memory write invalidate.  Apparently it is not supported
   1394 	 * properly by these devices.
   1395 	 */
   1396 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1397 
   1398 
   1399 #ifdef __brokenalpha__
   1400 	/*
   1401 	 * Must insure that we do not cross an 8K (bytes) boundary
   1402 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1403 	 * restriction on some ALPHA platforms with early revision
   1404 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1405 	 */
   1406 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1407 #endif
   1408 
   1409 	/* Set the timer prescaler (always 66MHz) */
   1410 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1411 
   1412 	return(0);
   1413 }
   1414 
   1415 static int
   1416 bge_blockinit(struct bge_softc *sc)
   1417 {
   1418 	volatile struct bge_rcb		*rcb;
   1419 	bus_size_t		rcb_addr;
   1420 	int			i;
   1421 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1422 	bge_hostaddr		taddr;
   1423 
   1424 	/*
   1425 	 * Initialize the memory window pointer register so that
   1426 	 * we can access the first 32K of internal NIC RAM. This will
   1427 	 * allow us to set up the TX send ring RCBs and the RX return
   1428 	 * ring RCBs, plus other things which live in NIC memory.
   1429 	 */
   1430 
   1431 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1432 
   1433 	/* Configure mbuf memory pool */
   1434 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1435 		if (sc->bge_extram) {
   1436 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1437 			    BGE_EXT_SSRAM);
   1438 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1439 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1440 			else
   1441 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1442 		} else {
   1443 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1444 			    BGE_BUFFPOOL_1);
   1445 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1446 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1447 			else
   1448 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1449 		}
   1450 
   1451 		/* Configure DMA resource pool */
   1452 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1453 		    BGE_DMA_DESCRIPTORS);
   1454 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1455 	}
   1456 
   1457 	/* Configure mbuf pool watermarks */
   1458 #ifdef ORIG_WPAUL_VALUES
   1459 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1460 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1461 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1462 #else
   1463 	/* new broadcom docs strongly recommend these: */
   1464 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1465 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1466 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1467 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1468 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1469 		} else {
   1470 			/* Values from Linux driver... */
   1471 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1472 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1473 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1474 		}
   1475 	} else {
   1476 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1477 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1478 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1479 	}
   1480 #endif
   1481 
   1482 	/* Configure DMA resource watermarks */
   1483 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1484 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1485 
   1486 	/* Enable buffer manager */
   1487 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1488 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1489 
   1490 	/* Poll for buffer manager start indication */
   1491 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1492 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1493 			break;
   1494 		DELAY(10);
   1495 	}
   1496 
   1497 	if (i == BGE_TIMEOUT) {
   1498 		aprint_error_dev(sc->bge_dev,
   1499 		    "buffer manager failed to start\n");
   1500 		return(ENXIO);
   1501 	}
   1502 
   1503 	/* Enable flow-through queues */
   1504 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1505 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1506 
   1507 	/* Wait until queue initialization is complete */
   1508 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1509 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1510 			break;
   1511 		DELAY(10);
   1512 	}
   1513 
   1514 	if (i == BGE_TIMEOUT) {
   1515 		aprint_error_dev(sc->bge_dev,
   1516 		    "flow-through queue init failed\n");
   1517 		return(ENXIO);
   1518 	}
   1519 
   1520 	/* Initialize the standard RX ring control block */
   1521 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1522 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1523 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1524 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1525 		rcb->bge_maxlen_flags =
   1526 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1527 	} else {
   1528 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1529 	}
   1530 	if (sc->bge_extram)
   1531 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1532 	else
   1533 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1534 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1535 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1536 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1537 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1538 
   1539 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1540 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1541 	} else {
   1542 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1543 	}
   1544 
   1545 	/*
   1546 	 * Initialize the jumbo RX ring control block
   1547 	 * We set the 'ring disabled' bit in the flags
   1548 	 * field until we're actually ready to start
   1549 	 * using this ring (i.e. once we set the MTU
   1550 	 * high enough to require it).
   1551 	 */
   1552 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1553 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1554 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1555 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1556 		rcb->bge_maxlen_flags =
   1557 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1558 			BGE_RCB_FLAG_RING_DISABLED);
   1559 		if (sc->bge_extram)
   1560 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1561 		else
   1562 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1563 
   1564 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1565 		    rcb->bge_hostaddr.bge_addr_hi);
   1566 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1567 		    rcb->bge_hostaddr.bge_addr_lo);
   1568 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1569 		    rcb->bge_maxlen_flags);
   1570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1571 
   1572 		/* Set up dummy disabled mini ring RCB */
   1573 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1574 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1575 		    BGE_RCB_FLAG_RING_DISABLED);
   1576 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1577 		    rcb->bge_maxlen_flags);
   1578 
   1579 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1580 		    offsetof(struct bge_ring_data, bge_info),
   1581 		    sizeof (struct bge_gib),
   1582 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1583 	}
   1584 
   1585 	/*
   1586 	 * Set the BD ring replenish thresholds. The recommended
   1587 	 * values are 1/8th the number of descriptors allocated to
   1588 	 * each ring.
   1589 	 */
   1590 	i = BGE_STD_RX_RING_CNT / 8;
   1591 
   1592 	/*
   1593  	 * Use a value of 8 for the following chips to workaround HW errata.
   1594 	 * Some of these chips have been added based on empirical
   1595 	 * evidence (they don't work unless this is done).
   1596 	 */
   1597 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1598 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1599 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1600 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1601 		i = 8;
   1602 
   1603 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1604 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1605 
   1606 	/*
   1607 	 * Disable all unused send rings by setting the 'ring disabled'
   1608 	 * bit in the flags field of all the TX send ring control blocks.
   1609 	 * These are located in NIC memory.
   1610 	 */
   1611 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1612 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1613 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1614 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1615 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1616 		rcb_addr += sizeof(struct bge_rcb);
   1617 	}
   1618 
   1619 	/* Configure TX RCB 0 (we use only the first ring) */
   1620 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1621 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1622 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1623 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1624 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1625 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1626 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1627 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1628 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1629 	}
   1630 
   1631 	/* Disable all unused RX return rings */
   1632 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1633 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1634 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1635 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1636 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1637 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1638                                      BGE_RCB_FLAG_RING_DISABLED));
   1639 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1640 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1641 		    (i * (sizeof(u_int64_t))), 0);
   1642 		rcb_addr += sizeof(struct bge_rcb);
   1643 	}
   1644 
   1645 	/* Initialize RX ring indexes */
   1646 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1647 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1648 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1649 
   1650 	/*
   1651 	 * Set up RX return ring 0
   1652 	 * Note that the NIC address for RX return rings is 0x00000000.
   1653 	 * The return rings live entirely within the host, so the
   1654 	 * nicaddr field in the RCB isn't used.
   1655 	 */
   1656 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1657 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1658 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1659 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1660 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1661 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1662 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1663 
   1664 	/* Set random backoff seed for TX */
   1665 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1666 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1667 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1668 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1669 	    BGE_TX_BACKOFF_SEED_MASK);
   1670 
   1671 	/* Set inter-packet gap */
   1672 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1673 
   1674 	/*
   1675 	 * Specify which ring to use for packets that don't match
   1676 	 * any RX rules.
   1677 	 */
   1678 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1679 
   1680 	/*
   1681 	 * Configure number of RX lists. One interrupt distribution
   1682 	 * list, sixteen active lists, one bad frames class.
   1683 	 */
   1684 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1685 
   1686 	/* Inialize RX list placement stats mask. */
   1687 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1688 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1689 
   1690 	/* Disable host coalescing until we get it set up */
   1691 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1692 
   1693 	/* Poll to make sure it's shut down. */
   1694 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1695 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1696 			break;
   1697 		DELAY(10);
   1698 	}
   1699 
   1700 	if (i == BGE_TIMEOUT) {
   1701 		aprint_error_dev(sc->bge_dev,
   1702 		    "host coalescing engine failed to idle\n");
   1703 		return(ENXIO);
   1704 	}
   1705 
   1706 	/* Set up host coalescing defaults */
   1707 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1708 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1709 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1710 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1711 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1712 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1713 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1714 	}
   1715 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1716 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1717 
   1718 	/* Set up address of statistics block */
   1719 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1720 		bge_set_hostaddr(&taddr,
   1721 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1722 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1723 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1724 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1725 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1726 	}
   1727 
   1728 	/* Set up address of status block */
   1729 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1730 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1731 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1732 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1733 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1734 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1735 
   1736 	/* Turn on host coalescing state machine */
   1737 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1738 
   1739 	/* Turn on RX BD completion state machine and enable attentions */
   1740 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1741 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1742 
   1743 	/* Turn on RX list placement state machine */
   1744 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1745 
   1746 	/* Turn on RX list selector state machine. */
   1747 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1748 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1749 	}
   1750 
   1751 	/* Turn on DMA, clear stats */
   1752 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1753 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1754 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1755 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1756 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1757 
   1758 	/* Set misc. local control, enable interrupts on attentions */
   1759 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1760 
   1761 #ifdef notdef
   1762 	/* Assert GPIO pins for PHY reset */
   1763 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1764 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1765 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1766 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1767 #endif
   1768 
   1769 #if defined(not_quite_yet)
   1770 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1771 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1772 		sc->bge_local_ctrl_reg |=
   1773 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1774 	}
   1775 #endif
   1776 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1777 
   1778 	/* Turn on DMA completion state machine */
   1779 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1780 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1781 	}
   1782 
   1783 	/* Turn on write DMA state machine */
   1784 	{
   1785 		uint32_t bge_wdma_mode =
   1786 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1787 
   1788 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1789 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1790 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1791 		  bge_wdma_mode |= (1 << 29);
   1792 
   1793 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1794         }
   1795 
   1796 	/* Turn on read DMA state machine */
   1797 	{
   1798 		uint32_t dma_read_modebits;
   1799 
   1800 		dma_read_modebits =
   1801 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1802 
   1803 		if (sc->bge_pcie && 0) {
   1804 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1805 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1806 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1807 		}
   1808 
   1809 		/* XXX broadcom-supplied linux driver; undocumented */
   1810 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1811  			/*
   1812 			 * XXX: magic values.
   1813 			 * From Broadcom-supplied Linux driver;  apparently
   1814 			 * required to workaround a DMA bug affecting TSO
   1815 			 * on bcm575x/bcm5721?
   1816 			 */
   1817 			dma_read_modebits |= (1 << 27);
   1818 		}
   1819 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1820 	}
   1821 
   1822 	/* Turn on RX data completion state machine */
   1823 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1824 
   1825 	/* Turn on RX BD initiator state machine */
   1826 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1827 
   1828 	/* Turn on RX data and RX BD initiator state machine */
   1829 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1830 
   1831 	/* Turn on Mbuf cluster free state machine */
   1832 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1833 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1834 	}
   1835 
   1836 	/* Turn on send BD completion state machine */
   1837 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1838 
   1839 	/* Turn on send data completion state machine */
   1840 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1841 
   1842 	/* Turn on send data initiator state machine */
   1843 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1844 		/* XXX: magic value from Linux driver */
   1845 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1846 	} else {
   1847 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1848 	}
   1849 
   1850 	/* Turn on send BD initiator state machine */
   1851 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1852 
   1853 	/* Turn on send BD selector state machine */
   1854 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1855 
   1856 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1857 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1858 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1859 
   1860 	/* ack/clear link change events */
   1861 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1862 	    BGE_MACSTAT_CFG_CHANGED);
   1863 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1864 
   1865 	/* Enable PHY auto polling (for MII/GMII only) */
   1866 	if (sc->bge_tbi) {
   1867 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1868  	} else {
   1869 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1870 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1871 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1872 			    BGE_EVTENB_MI_INTERRUPT);
   1873 	}
   1874 
   1875 	/* Enable link state change attentions. */
   1876 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1877 
   1878 	return(0);
   1879 }
   1880 
   1881 static const struct bge_revision {
   1882 	uint32_t		br_chipid;
   1883 	uint32_t		br_quirks;
   1884 	const char		*br_name;
   1885 } bge_revisions[] = {
   1886 	{ BGE_CHIPID_BCM5700_A0,
   1887 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1888 	  "BCM5700 A0" },
   1889 
   1890 	{ BGE_CHIPID_BCM5700_A1,
   1891 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1892 	  "BCM5700 A1" },
   1893 
   1894 	{ BGE_CHIPID_BCM5700_B0,
   1895 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1896 	  "BCM5700 B0" },
   1897 
   1898 	{ BGE_CHIPID_BCM5700_B1,
   1899 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1900 	  "BCM5700 B1" },
   1901 
   1902 	{ BGE_CHIPID_BCM5700_B2,
   1903 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1904 	  "BCM5700 B2" },
   1905 
   1906 	{ BGE_CHIPID_BCM5700_B3,
   1907 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1908 	  "BCM5700 B3" },
   1909 
   1910 	/* This is treated like a BCM5700 Bx */
   1911 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1912 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1913 	  "BCM5700 Altima" },
   1914 
   1915 	{ BGE_CHIPID_BCM5700_C0,
   1916 	  0,
   1917 	  "BCM5700 C0" },
   1918 
   1919 	{ BGE_CHIPID_BCM5701_A0,
   1920 	  0, /*XXX really, just not known */
   1921 	  "BCM5701 A0" },
   1922 
   1923 	{ BGE_CHIPID_BCM5701_B0,
   1924 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1925 	  "BCM5701 B0" },
   1926 
   1927 	{ BGE_CHIPID_BCM5701_B2,
   1928 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1929 	  "BCM5701 B2" },
   1930 
   1931 	{ BGE_CHIPID_BCM5701_B5,
   1932 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1933 	  "BCM5701 B5" },
   1934 
   1935 	{ BGE_CHIPID_BCM5703_A0,
   1936 	  0,
   1937 	  "BCM5703 A0" },
   1938 
   1939 	{ BGE_CHIPID_BCM5703_A1,
   1940 	  0,
   1941 	  "BCM5703 A1" },
   1942 
   1943 	{ BGE_CHIPID_BCM5703_A2,
   1944 	  BGE_QUIRK_ONLY_PHY_1,
   1945 	  "BCM5703 A2" },
   1946 
   1947 	{ BGE_CHIPID_BCM5703_A3,
   1948 	  BGE_QUIRK_ONLY_PHY_1,
   1949 	  "BCM5703 A3" },
   1950 
   1951 	{ BGE_CHIPID_BCM5703_B0,
   1952 	  BGE_QUIRK_ONLY_PHY_1,
   1953 	  "BCM5703 B0" },
   1954 
   1955 	{ BGE_CHIPID_BCM5704_A0,
   1956   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1957 	  "BCM5704 A0" },
   1958 
   1959 	{ BGE_CHIPID_BCM5704_A1,
   1960   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1961 	  "BCM5704 A1" },
   1962 
   1963 	{ BGE_CHIPID_BCM5704_A2,
   1964   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1965 	  "BCM5704 A2" },
   1966 
   1967 	{ BGE_CHIPID_BCM5704_A3,
   1968   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1969 	  "BCM5704 A3" },
   1970 
   1971 	{ BGE_CHIPID_BCM5705_A0,
   1972 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1973 	  "BCM5705 A0" },
   1974 
   1975 	{ BGE_CHIPID_BCM5705_A1,
   1976 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1977 	  "BCM5705 A1" },
   1978 
   1979 	{ BGE_CHIPID_BCM5705_A2,
   1980 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1981 	  "BCM5705 A2" },
   1982 
   1983 	{ BGE_CHIPID_BCM5705_A3,
   1984 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1985 	  "BCM5705 A3" },
   1986 
   1987 	{ BGE_CHIPID_BCM5750_A0,
   1988 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1989 	  "BCM5750 A0" },
   1990 
   1991 	{ BGE_CHIPID_BCM5750_A1,
   1992 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1993 	  "BCM5750 A1" },
   1994 
   1995 	{ BGE_CHIPID_BCM5751_A1,
   1996 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1997 	  "BCM5751 A1" },
   1998 
   1999 	{ BGE_CHIPID_BCM5752_A0,
   2000 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2001 	  "BCM5752 A0" },
   2002 
   2003 	{ BGE_CHIPID_BCM5752_A1,
   2004 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2005 	  "BCM5752 A1" },
   2006 
   2007 	{ BGE_CHIPID_BCM5752_A2,
   2008 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2009 	  "BCM5752 A2" },
   2010 
   2011 	{ BGE_CHIPID_BCM5787_A0,
   2012 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2013 	  "BCM5754/5787 A0" },
   2014 
   2015 	{ BGE_CHIPID_BCM5787_A1,
   2016 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2017 	  "BCM5754/5787 A1" },
   2018 
   2019 	{ BGE_CHIPID_BCM5787_A2,
   2020 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2021 	  "BCM5754/5787 A2" },
   2022 
   2023 	{ 0, 0, NULL }
   2024 };
   2025 
   2026 /*
   2027  * Some defaults for major revisions, so that newer steppings
   2028  * that we don't know about have a shot at working.
   2029  */
   2030 static const struct bge_revision bge_majorrevs[] = {
   2031 	{ BGE_ASICREV_BCM5700,
   2032 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2033 	  "unknown BCM5700" },
   2034 
   2035 	{ BGE_ASICREV_BCM5701,
   2036 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2037 	  "unknown BCM5701" },
   2038 
   2039 	{ BGE_ASICREV_BCM5703,
   2040 	  0,
   2041 	  "unknown BCM5703" },
   2042 
   2043 	{ BGE_ASICREV_BCM5704,
   2044 	  BGE_QUIRK_ONLY_PHY_1,
   2045 	  "unknown BCM5704" },
   2046 
   2047 	{ BGE_ASICREV_BCM5705,
   2048 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2049 	  "unknown BCM5705" },
   2050 
   2051 	{ BGE_ASICREV_BCM5750,
   2052 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2053 	  "unknown BCM575x family" },
   2054 
   2055 	{ BGE_ASICREV_BCM5714_A0,
   2056 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2057 	  "unknown BCM5714" },
   2058 
   2059 	{ BGE_ASICREV_BCM5714,
   2060 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2061 	  "unknown BCM5714" },
   2062 
   2063 	{ BGE_ASICREV_BCM5752,
   2064 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2065 	  "unknown BCM5752 family" },
   2066 
   2067 	{ BGE_ASICREV_BCM5755,
   2068 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2069 	  "unknown BCM5755" },
   2070 
   2071 	{ BGE_ASICREV_BCM5780,
   2072 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2073 	  "unknown BCM5780" },
   2074 
   2075 	{ BGE_ASICREV_BCM5787,
   2076 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2077 	  "unknown BCM5787" },
   2078 
   2079 	{ 0,
   2080 	  0,
   2081 	  NULL }
   2082 };
   2083 
   2084 
   2085 static const struct bge_revision *
   2086 bge_lookup_rev(uint32_t chipid)
   2087 {
   2088 	const struct bge_revision *br;
   2089 
   2090 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2091 		if (br->br_chipid == chipid)
   2092 			return (br);
   2093 	}
   2094 
   2095 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2096 		if (br->br_chipid == BGE_ASICREV(chipid))
   2097 			return (br);
   2098 	}
   2099 
   2100 	return (NULL);
   2101 }
   2102 
   2103 static const struct bge_product {
   2104 	pci_vendor_id_t		bp_vendor;
   2105 	pci_product_id_t	bp_product;
   2106 	const char		*bp_name;
   2107 } bge_products[] = {
   2108 	/*
   2109 	 * The BCM5700 documentation seems to indicate that the hardware
   2110 	 * still has the Alteon vendor ID burned into it, though it
   2111 	 * should always be overridden by the value in the EEPROM.  We'll
   2112 	 * check for it anyway.
   2113 	 */
   2114 	{ PCI_VENDOR_ALTEON,
   2115 	  PCI_PRODUCT_ALTEON_BCM5700,
   2116 	  "Broadcom BCM5700 Gigabit Ethernet",
   2117 	  },
   2118 	{ PCI_VENDOR_ALTEON,
   2119 	  PCI_PRODUCT_ALTEON_BCM5701,
   2120 	  "Broadcom BCM5701 Gigabit Ethernet",
   2121 	  },
   2122 
   2123 	{ PCI_VENDOR_ALTIMA,
   2124 	  PCI_PRODUCT_ALTIMA_AC1000,
   2125 	  "Altima AC1000 Gigabit Ethernet",
   2126 	  },
   2127 	{ PCI_VENDOR_ALTIMA,
   2128 	  PCI_PRODUCT_ALTIMA_AC1001,
   2129 	  "Altima AC1001 Gigabit Ethernet",
   2130 	   },
   2131 	{ PCI_VENDOR_ALTIMA,
   2132 	  PCI_PRODUCT_ALTIMA_AC9100,
   2133 	  "Altima AC9100 Gigabit Ethernet",
   2134 	  },
   2135 
   2136 	{ PCI_VENDOR_BROADCOM,
   2137 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2138 	  "Broadcom BCM5700 Gigabit Ethernet",
   2139 	  },
   2140 	{ PCI_VENDOR_BROADCOM,
   2141 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2142 	  "Broadcom BCM5701 Gigabit Ethernet",
   2143 	  },
   2144 	{ PCI_VENDOR_BROADCOM,
   2145 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2146 	  "Broadcom BCM5702 Gigabit Ethernet",
   2147 	  },
   2148 	{ PCI_VENDOR_BROADCOM,
   2149 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2150 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2151 
   2152 	{ PCI_VENDOR_BROADCOM,
   2153 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2154 	  "Broadcom BCM5703 Gigabit Ethernet",
   2155 	  },
   2156 	{ PCI_VENDOR_BROADCOM,
   2157 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2158 	  "Broadcom BCM5703X Gigabit Ethernet",
   2159 	  },
   2160 	{ PCI_VENDOR_BROADCOM,
   2161 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2162 	  "Broadcom BCM5703 Gigabit Ethernet",
   2163 	  },
   2164 
   2165    	{ PCI_VENDOR_BROADCOM,
   2166 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2167 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2168 	  },
   2169    	{ PCI_VENDOR_BROADCOM,
   2170 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2171 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2172 	  },
   2173 
   2174    	{ PCI_VENDOR_BROADCOM,
   2175 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2176 	  "Broadcom BCM5705 Gigabit Ethernet",
   2177 	  },
   2178    	{ PCI_VENDOR_BROADCOM,
   2179 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2180 	  "Broadcom BCM5705K Gigabit Ethernet",
   2181 	  },
   2182    	{ PCI_VENDOR_BROADCOM,
   2183 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2184 	  "Broadcom BCM5705M Gigabit Ethernet",
   2185 	  },
   2186    	{ PCI_VENDOR_BROADCOM,
   2187 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2188 	  "Broadcom BCM5705M Gigabit Ethernet",
   2189 	  },
   2190 
   2191 	{ PCI_VENDOR_BROADCOM,
   2192 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2193 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2194 	  },
   2195 	{ PCI_VENDOR_BROADCOM,
   2196 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2197 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2198 	  },
   2199 	{ PCI_VENDOR_BROADCOM,
   2200 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2201 	  "Broadcom BCM5789 Gigabit Ethernet",
   2202 	  },
   2203 
   2204 	{ PCI_VENDOR_BROADCOM,
   2205 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2206 	  "Broadcom BCM5721 Gigabit Ethernet",
   2207 	  },
   2208 
   2209 	{ PCI_VENDOR_BROADCOM,
   2210 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2211 	  "Broadcom BCM5750 Gigabit Ethernet",
   2212 	  },
   2213 
   2214 	{ PCI_VENDOR_BROADCOM,
   2215 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2216 	  "Broadcom BCM5750M Gigabit Ethernet",
   2217 	  },
   2218 
   2219 	{ PCI_VENDOR_BROADCOM,
   2220 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2221 	  "Broadcom BCM5751 Gigabit Ethernet",
   2222 	  },
   2223 
   2224 	{ PCI_VENDOR_BROADCOM,
   2225 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2226 	  "Broadcom BCM5751M Gigabit Ethernet",
   2227 	  },
   2228 
   2229 	{ PCI_VENDOR_BROADCOM,
   2230 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2231 	  "Broadcom BCM5752 Gigabit Ethernet",
   2232 	  },
   2233 
   2234 	{ PCI_VENDOR_BROADCOM,
   2235 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2236 	  "Broadcom BCM5752M Gigabit Ethernet",
   2237 	  },
   2238 
   2239 	{ PCI_VENDOR_BROADCOM,
   2240 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2241 	  "Broadcom BCM5753 Gigabit Ethernet",
   2242 	  },
   2243 
   2244 	{ PCI_VENDOR_BROADCOM,
   2245 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2246 	  "Broadcom BCM5753M Gigabit Ethernet",
   2247 	  },
   2248 
   2249 	{ PCI_VENDOR_BROADCOM,
   2250 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2251 	  "Broadcom BCM5754 Gigabit Ethernet",
   2252 	},
   2253 
   2254 	{ PCI_VENDOR_BROADCOM,
   2255 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2256 	  "Broadcom BCM5754M Gigabit Ethernet",
   2257 	},
   2258 
   2259 	{ PCI_VENDOR_BROADCOM,
   2260 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2261 	  "Broadcom BCM5755 Gigabit Ethernet",
   2262 	},
   2263 
   2264 	{ PCI_VENDOR_BROADCOM,
   2265 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2266 	  "Broadcom BCM5755M Gigabit Ethernet",
   2267 	},
   2268 
   2269    	{ PCI_VENDOR_BROADCOM,
   2270 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2271 	  "Broadcom BCM5780 Gigabit Ethernet",
   2272 	  },
   2273 
   2274    	{ PCI_VENDOR_BROADCOM,
   2275 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2276 	  "Broadcom BCM5780S Gigabit Ethernet",
   2277 	  },
   2278 
   2279    	{ PCI_VENDOR_BROADCOM,
   2280 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2281 	  "Broadcom BCM5782 Gigabit Ethernet",
   2282 	},
   2283 
   2284 	{ PCI_VENDOR_BROADCOM,
   2285 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2286 	  "Broadcom BCM5786 Gigabit Ethernet",
   2287 	},
   2288 
   2289 	{ PCI_VENDOR_BROADCOM,
   2290 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2291 	  "Broadcom BCM5787 Gigabit Ethernet",
   2292 	},
   2293 
   2294 	{ PCI_VENDOR_BROADCOM,
   2295 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2296 	  "Broadcom BCM5787M Gigabit Ethernet",
   2297 	},
   2298 
   2299    	{ PCI_VENDOR_BROADCOM,
   2300 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2301 	  "Broadcom BCM5788 Gigabit Ethernet",
   2302 	  },
   2303    	{ PCI_VENDOR_BROADCOM,
   2304 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2305 	  "Broadcom BCM5789 Gigabit Ethernet",
   2306 	  },
   2307 
   2308    	{ PCI_VENDOR_BROADCOM,
   2309 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2310 	  "Broadcom BCM5901 Fast Ethernet",
   2311 	  },
   2312    	{ PCI_VENDOR_BROADCOM,
   2313 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2314 	  "Broadcom BCM5901A2 Fast Ethernet",
   2315 	  },
   2316 
   2317 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2318 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2319 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2320 	  },
   2321 
   2322 	{ PCI_VENDOR_3COM,
   2323 	  PCI_PRODUCT_3COM_3C996,
   2324 	  "3Com 3c996 Gigabit Ethernet",
   2325 	  },
   2326 
   2327 	{ 0,
   2328 	  0,
   2329 	  NULL },
   2330 };
   2331 
   2332 static const struct bge_product *
   2333 bge_lookup(const struct pci_attach_args *pa)
   2334 {
   2335 	const struct bge_product *bp;
   2336 
   2337 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2338 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2339 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2340 			return (bp);
   2341 	}
   2342 
   2343 	return (NULL);
   2344 }
   2345 
   2346 static int
   2347 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2348 {
   2349 #ifdef NOTYET
   2350 	u_int32_t pm_ctl = 0;
   2351 
   2352 	/* XXX FIXME: make sure indirect accesses enabled? */
   2353 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2354 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2355 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2356 
   2357 	/* clear the PME_assert bit and power state bits, enable PME */
   2358 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2359 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2360 	pm_ctl |= (1 << 8);
   2361 
   2362 	if (powerlevel == 0) {
   2363 		pm_ctl |= PCIM_PSTAT_D0;
   2364 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2365 		    pm_ctl, 2);
   2366 		DELAY(10000);
   2367 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2368 		DELAY(10000);
   2369 
   2370 #ifdef NOTYET
   2371 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2372 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2373 #endif
   2374 		DELAY(40); DELAY(40); DELAY(40);
   2375 		DELAY(10000);	/* above not quite adequate on 5700 */
   2376 		return 0;
   2377 	}
   2378 
   2379 
   2380 	/*
   2381 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2382 	 * GMII gpio pins. Example code assumes all hardware vendors
   2383 	 * followed Broadom's sample pcb layout. Until we verify that
   2384 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2385 	 */
   2386 	aprint_error_dev(sc->bge_dev,
   2387 	    "power state %d unimplemented; check GPIO pins\n",
   2388 	    powerlevel);
   2389 #endif
   2390 	return EOPNOTSUPP;
   2391 }
   2392 
   2393 
   2394 /*
   2395  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2396  * against our list and return its name if we find a match. Note
   2397  * that since the Broadcom controller contains VPD support, we
   2398  * can get the device name string from the controller itself instead
   2399  * of the compiled-in string. This is a little slow, but it guarantees
   2400  * we'll always announce the right product name.
   2401  */
   2402 static int
   2403 bge_probe(device_t parent, cfdata_t match, void *aux)
   2404 {
   2405 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2406 
   2407 	if (bge_lookup(pa) != NULL)
   2408 		return (1);
   2409 
   2410 	return (0);
   2411 }
   2412 
   2413 static void
   2414 bge_attach(device_t parent, device_t self, void *aux)
   2415 {
   2416 	struct bge_softc	*sc = device_private(self);
   2417 	struct pci_attach_args	*pa = aux;
   2418 	const struct bge_product *bp;
   2419 	const struct bge_revision *br;
   2420 	pci_chipset_tag_t	pc;
   2421 	pci_intr_handle_t	ih;
   2422 	const char		*intrstr = NULL;
   2423 	bus_dma_segment_t	seg;
   2424 	int			rseg;
   2425 	u_int32_t		hwcfg = 0;
   2426 	u_int32_t		mac_addr = 0;
   2427 	u_int32_t		command;
   2428 	struct ifnet		*ifp;
   2429 	void *			kva;
   2430 	u_char			eaddr[ETHER_ADDR_LEN];
   2431 	pcireg_t		memtype;
   2432 	bus_addr_t		memaddr;
   2433 	bus_size_t		memsize;
   2434 	u_int32_t		pm_ctl;
   2435 
   2436 	bp = bge_lookup(pa);
   2437 	KASSERT(bp != NULL);
   2438 
   2439 	sc->sc_pc = pa->pa_pc;
   2440 	sc->sc_pcitag = pa->pa_tag;
   2441 	sc->bge_dev = self;
   2442 
   2443 	aprint_naive(": Ethernet controller\n");
   2444 	aprint_normal(": %s\n", bp->bp_name);
   2445 
   2446 	/*
   2447 	 * Map control/status registers.
   2448 	 */
   2449 	DPRINTFN(5, ("Map control/status regs\n"));
   2450 	pc = sc->sc_pc;
   2451 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2452 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2453 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2454 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2455 
   2456 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2457 		aprint_error_dev(sc->bge_dev,
   2458 		    "failed to enable memory mapping!\n");
   2459 		return;
   2460 	}
   2461 
   2462 	DPRINTFN(5, ("pci_mem_find\n"));
   2463 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2464  	switch (memtype) {
   2465 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2466 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2467 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2468 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2469 		    &memaddr, &memsize) == 0)
   2470 			break;
   2471 	default:
   2472 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2473 		return;
   2474 	}
   2475 
   2476 	DPRINTFN(5, ("pci_intr_map\n"));
   2477 	if (pci_intr_map(pa, &ih)) {
   2478 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2479 		return;
   2480 	}
   2481 
   2482 	DPRINTFN(5, ("pci_intr_string\n"));
   2483 	intrstr = pci_intr_string(pc, ih);
   2484 
   2485 	DPRINTFN(5, ("pci_intr_establish\n"));
   2486 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2487 
   2488 	if (sc->bge_intrhand == NULL) {
   2489 		aprint_error_dev(sc->bge_dev,
   2490 		    "couldn't establish interrupt%s%s\n",
   2491 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2492 		return;
   2493 	}
   2494 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2495 
   2496 	/*
   2497 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2498 	 * can clobber the chip's PCI config-space power control registers,
   2499 	 * leaving the card in D3 powersave state.
   2500 	 * We do not have memory-mapped registers in this state,
   2501 	 * so force device into D0 state before starting initialization.
   2502 	 */
   2503 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2504 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2505 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2506 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2507 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2508 
   2509 	/*
   2510 	 * Save ASIC rev.  Look up any quirks associated with this
   2511 	 * ASIC.
   2512 	 */
   2513 	sc->bge_chipid =
   2514 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2515 	    BGE_PCIMISCCTL_ASICREV;
   2516 
   2517 	/*
   2518 	 * Detect PCI-Express devices
   2519 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2520 	 */
   2521 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2522 	        NULL, NULL) != 0)
   2523 		sc->bge_pcie = 1;
   2524 	else
   2525 		sc->bge_pcie = 0;
   2526 
   2527 	/* Try to reset the chip. */
   2528 	DPRINTFN(5, ("bge_reset\n"));
   2529 	bge_reset(sc);
   2530 
   2531 	if (bge_chipinit(sc)) {
   2532 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2533 		bge_release_resources(sc);
   2534 		return;
   2535 	}
   2536 
   2537 	/*
   2538 	 * Get station address from the EEPROM.
   2539 	 */
   2540 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2541 	if ((mac_addr >> 16) == 0x484b) {
   2542 		eaddr[0] = (u_char)(mac_addr >> 8);
   2543 		eaddr[1] = (u_char)(mac_addr >> 0);
   2544 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2545 		eaddr[2] = (u_char)(mac_addr >> 24);
   2546 		eaddr[3] = (u_char)(mac_addr >> 16);
   2547 		eaddr[4] = (u_char)(mac_addr >> 8);
   2548 		eaddr[5] = (u_char)(mac_addr >> 0);
   2549 	} else if (bge_read_eeprom(sc, (void *)eaddr,
   2550 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2551 		aprint_error_dev(sc->bge_dev,
   2552 		    "failed to read station address\n");
   2553 		bge_release_resources(sc);
   2554 		return;
   2555 	}
   2556 
   2557 	br = bge_lookup_rev(sc->bge_chipid);
   2558 
   2559 	if (br == NULL) {
   2560 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2561 		    sc->bge_chipid >> 16);
   2562 		sc->bge_quirks = 0;
   2563 	} else {
   2564 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2565 		    br->br_name, sc->bge_chipid >> 16);
   2566 		sc->bge_quirks |= br->br_quirks;
   2567 	}
   2568 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2569 
   2570 	/* Allocate the general information block and ring buffers. */
   2571 	if (pci_dma64_available(pa))
   2572 		sc->bge_dmatag = pa->pa_dmat64;
   2573 	else
   2574 		sc->bge_dmatag = pa->pa_dmat;
   2575 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2576 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2577 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2578 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2579 		return;
   2580 	}
   2581 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2582 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2583 			   sizeof(struct bge_ring_data), &kva,
   2584 			   BUS_DMA_NOWAIT)) {
   2585 		aprint_error_dev(sc->bge_dev,
   2586 		    "can't map DMA buffers (%zu bytes)\n",
   2587 		    sizeof(struct bge_ring_data));
   2588 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2589 		return;
   2590 	}
   2591 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2592 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2593 	    sizeof(struct bge_ring_data), 0,
   2594 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2595 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2596 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2597 				 sizeof(struct bge_ring_data));
   2598 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2599 		return;
   2600 	}
   2601 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2602 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2603 			    sizeof(struct bge_ring_data), NULL,
   2604 			    BUS_DMA_NOWAIT)) {
   2605 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2606 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2607 				 sizeof(struct bge_ring_data));
   2608 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2609 		return;
   2610 	}
   2611 
   2612 	DPRINTFN(5, ("bzero\n"));
   2613 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2614 
   2615 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2616 
   2617 	/* Try to allocate memory for jumbo buffers. */
   2618 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2619 		if (bge_alloc_jumbo_mem(sc)) {
   2620 			aprint_error_dev(sc->bge_dev,
   2621 			    "jumbo buffer allocation failed\n");
   2622 		} else
   2623 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2624 	}
   2625 
   2626 	/* Set default tuneable values. */
   2627 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2628 	sc->bge_rx_coal_ticks = 150;
   2629 	sc->bge_rx_max_coal_bds = 64;
   2630 #ifdef ORIG_WPAUL_VALUES
   2631 	sc->bge_tx_coal_ticks = 150;
   2632 	sc->bge_tx_max_coal_bds = 128;
   2633 #else
   2634 	sc->bge_tx_coal_ticks = 300;
   2635 	sc->bge_tx_max_coal_bds = 400;
   2636 #endif
   2637 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2638 		sc->bge_tx_coal_ticks = (12 * 5);
   2639 		sc->bge_tx_max_coal_bds = (12 * 5);
   2640 			aprint_verbose_dev(sc->bge_dev,
   2641 			    "setting short Tx thresholds\n");
   2642 	}
   2643 
   2644 	/* Set up ifnet structure */
   2645 	ifp = &sc->ethercom.ec_if;
   2646 	ifp->if_softc = sc;
   2647 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2648 	ifp->if_ioctl = bge_ioctl;
   2649 	ifp->if_stop = bge_stop;
   2650 	ifp->if_start = bge_start;
   2651 	ifp->if_init = bge_init;
   2652 	ifp->if_watchdog = bge_watchdog;
   2653 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2654 	IFQ_SET_READY(&ifp->if_snd);
   2655 	DPRINTFN(5, ("strcpy if_xname\n"));
   2656 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2657 
   2658 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2659 		sc->ethercom.ec_if.if_capabilities |=
   2660 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2661 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2662 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2663 	sc->ethercom.ec_capabilities |=
   2664 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2665 
   2666 	if (sc->bge_pcie)
   2667 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2668 
   2669 	/*
   2670 	 * Do MII setup.
   2671 	 */
   2672 	DPRINTFN(5, ("mii setup\n"));
   2673 	sc->bge_mii.mii_ifp = ifp;
   2674 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2675 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2676 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2677 
   2678 	/*
   2679 	 * Figure out what sort of media we have by checking the
   2680 	 * hardware config word in the first 32k of NIC internal memory,
   2681 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2682 	 * cards, this value appears to be unset. If that's the
   2683 	 * case, we have to rely on identifying the NIC by its PCI
   2684 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2685 	 */
   2686 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2687 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2688 	} else {
   2689 		bge_read_eeprom(sc, (void *)&hwcfg,
   2690 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2691 		hwcfg = be32toh(hwcfg);
   2692 	}
   2693 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2694 		sc->bge_tbi = 1;
   2695 
   2696 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2697 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2698 	    SK_SUBSYSID_9D41)
   2699 		sc->bge_tbi = 1;
   2700 
   2701 	if (sc->bge_tbi) {
   2702 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2703 		    bge_ifmedia_sts);
   2704 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2705 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2706 			    0, NULL);
   2707 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2708 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2709 	} else {
   2710 		/*
   2711 		 * Do transceiver setup.
   2712 		 */
   2713 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2714 			     bge_ifmedia_sts);
   2715 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2716 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2717 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2718 
   2719 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2720 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2721 			ifmedia_add(&sc->bge_mii.mii_media,
   2722 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2723 			ifmedia_set(&sc->bge_mii.mii_media,
   2724 				    IFM_ETHER|IFM_MANUAL);
   2725 		} else
   2726 			ifmedia_set(&sc->bge_mii.mii_media,
   2727 				    IFM_ETHER|IFM_AUTO);
   2728 	}
   2729 
   2730 	/*
   2731 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2732 	 * been observed in the first few bytes of some received packets.
   2733 	 * Aligning the packet buffer in memory eliminates the corruption.
   2734 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2735 	 * which do not support unaligned accesses, we will realign the
   2736 	 * payloads by copying the received packets.
   2737 	 */
   2738 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2739 		/* If in PCI-X mode, work around the alignment bug. */
   2740 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2741                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2742                          BGE_PCISTATE_PCI_BUSSPEED)
   2743 		sc->bge_rx_alignment_bug = 1;
   2744         }
   2745 
   2746 	/*
   2747 	 * Call MI attach routine.
   2748 	 */
   2749 	DPRINTFN(5, ("if_attach\n"));
   2750 	if_attach(ifp);
   2751 	DPRINTFN(5, ("ether_ifattach\n"));
   2752 	ether_ifattach(ifp, eaddr);
   2753 #if NRND > 0
   2754 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2755 		RND_TYPE_NET, 0);
   2756 #endif
   2757 #ifdef BGE_EVENT_COUNTERS
   2758 	/*
   2759 	 * Attach event counters.
   2760 	 */
   2761 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2762 	    NULL, device_xname(sc->bge_dev), "intr");
   2763 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2764 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2765 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2766 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2767 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2768 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2769 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2770 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2771 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2772 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2773 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2774 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2775 #endif /* BGE_EVENT_COUNTERS */
   2776 	DPRINTFN(5, ("callout_init\n"));
   2777 	callout_init(&sc->bge_timeout, 0);
   2778 
   2779 	if (!pmf_device_register(self, NULL, NULL))
   2780 		aprint_error_dev(self, "couldn't establish power handler\n");
   2781 	else
   2782 		pmf_class_network_register(self, ifp);
   2783 }
   2784 
   2785 static void
   2786 bge_release_resources(struct bge_softc *sc)
   2787 {
   2788 	if (sc->bge_vpd_prodname != NULL)
   2789 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2790 
   2791 	if (sc->bge_vpd_readonly != NULL)
   2792 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2793 }
   2794 
   2795 static void
   2796 bge_reset(struct bge_softc *sc)
   2797 {
   2798 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2799 	int i, val;
   2800 
   2801 	/* Save some important PCI state. */
   2802 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2803 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2804 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2805 
   2806 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2807 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2808 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2809 
   2810 	/*
   2811 	 * Disable the firmware fastboot feature on 5752 ASIC
   2812 	 * to avoid firmware timeout.
   2813 	 */
   2814 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2815 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2816 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2817 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2818 
   2819 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2820 	/*
   2821 	 * XXX: from FreeBSD/Linux; no documentation
   2822 	 */
   2823 	if (sc->bge_pcie) {
   2824 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2825 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2826 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2827 			/* No idea what that actually means */
   2828 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2829 			val |= (1<<29);
   2830 		}
   2831 	}
   2832 
   2833 	/* Issue global reset */
   2834 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2835 
   2836 	DELAY(1000);
   2837 
   2838 	/*
   2839 	 * XXX: from FreeBSD/Linux; no documentation
   2840 	 */
   2841 	if (sc->bge_pcie) {
   2842 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2843 			pcireg_t reg;
   2844 
   2845 			DELAY(500000);
   2846 			/* XXX: Magic Numbers */
   2847 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   2848 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   2849 			    reg | (1 << 15));
   2850 		}
   2851 		/*
   2852 		 * XXX: Magic Numbers.
   2853 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2854 		 * Should be replaced with references to PCI config-space
   2855 		 * capability block for PCI-Express.
   2856 		 */
   2857 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2858 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2859 
   2860 	}
   2861 
   2862 	/* Reset some of the PCI state that got zapped by reset */
   2863 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2864 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2865 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2866 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   2867 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   2868 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2869 
   2870 	/* Enable memory arbiter. */
   2871 	{
   2872 		uint32_t marbmode = 0;
   2873 		if (BGE_IS_5714_FAMILY(sc)) {
   2874 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2875 		}
   2876  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2877 	}
   2878 
   2879 	/*
   2880 	 * Write the magic number to the firmware mailbox at 0xb50
   2881 	 * so that the driver can synchronize with the firmware.
   2882 	 */
   2883 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2884 
   2885 	/*
   2886 	 * Poll the value location we just wrote until
   2887 	 * we see the 1's complement of the magic number.
   2888 	 * This indicates that the firmware initialization
   2889 	 * is complete.
   2890 	 */
   2891 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2892 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2893 		if (val == ~BGE_MAGIC_NUMBER)
   2894 			break;
   2895 		DELAY(1000);
   2896 	}
   2897 
   2898 	if (i >= BGE_TIMEOUT) {
   2899 		aprint_error_dev(sc->bge_dev,
   2900 		    "firmware handshake timed out, val = %x\n", val);
   2901 		/*
   2902 		 * XXX: occasionally fired on bcm5721, but without
   2903 		 * apparent harm.  For now, keep going if we timeout
   2904 		 * against PCI-E devices.
   2905 		 */
   2906 		 if (!sc->bge_pcie)
   2907 		  return;
   2908 	}
   2909 
   2910 	/*
   2911 	 * XXX Wait for the value of the PCISTATE register to
   2912 	 * return to its original pre-reset state. This is a
   2913 	 * fairly good indicator of reset completion. If we don't
   2914 	 * wait for the reset to fully complete, trying to read
   2915 	 * from the device's non-PCI registers may yield garbage
   2916 	 * results.
   2917 	 */
   2918 	for (i = 0; i < 10000; i++) {
   2919 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2920 		    BGE_PCI_PCISTATE);
   2921 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2922 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2923 			break;
   2924 		DELAY(10);
   2925 	}
   2926 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2927 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2928 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2929 	}
   2930 
   2931 	/* XXX: from FreeBSD/Linux; no documentation */
   2932 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2933 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2934 
   2935 	/* Enable memory arbiter. */
   2936 	/* XXX why do this twice? */
   2937 	{
   2938 		uint32_t marbmode = 0;
   2939 		if (BGE_IS_5714_FAMILY(sc)) {
   2940 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2941 		}
   2942  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2943 	}
   2944 
   2945 	/* Fix up byte swapping */
   2946 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2947 
   2948 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2949 
   2950 	DELAY(10000);
   2951 }
   2952 
   2953 /*
   2954  * Frame reception handling. This is called if there's a frame
   2955  * on the receive return list.
   2956  *
   2957  * Note: we have to be able to handle two possibilities here:
   2958  * 1) the frame is from the jumbo recieve ring
   2959  * 2) the frame is from the standard receive ring
   2960  */
   2961 
   2962 static void
   2963 bge_rxeof(struct bge_softc *sc)
   2964 {
   2965 	struct ifnet *ifp;
   2966 	int stdcnt = 0, jumbocnt = 0;
   2967 	bus_dmamap_t dmamap;
   2968 	bus_addr_t offset, toff;
   2969 	bus_size_t tlen;
   2970 	int tosync;
   2971 
   2972 	ifp = &sc->ethercom.ec_if;
   2973 
   2974 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2975 	    offsetof(struct bge_ring_data, bge_status_block),
   2976 	    sizeof (struct bge_status_block),
   2977 	    BUS_DMASYNC_POSTREAD);
   2978 
   2979 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2980 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2981 	    sc->bge_rx_saved_considx;
   2982 
   2983 #if NRND > 0
   2984 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   2985 		rnd_add_uint32(&sc->rnd_source, tosync);
   2986 #endif
   2987 
   2988 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2989 
   2990 	if (tosync < 0) {
   2991 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2992 		    sizeof (struct bge_rx_bd);
   2993 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2994 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2995 		tosync = -tosync;
   2996 	}
   2997 
   2998 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2999 	    offset, tosync * sizeof (struct bge_rx_bd),
   3000 	    BUS_DMASYNC_POSTREAD);
   3001 
   3002 	while(sc->bge_rx_saved_considx !=
   3003 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   3004 		struct bge_rx_bd	*cur_rx;
   3005 		u_int32_t		rxidx;
   3006 		struct mbuf		*m = NULL;
   3007 
   3008 		cur_rx = &sc->bge_rdata->
   3009 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   3010 
   3011 		rxidx = cur_rx->bge_idx;
   3012 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   3013 
   3014 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3015 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3016 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3017 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3018 			jumbocnt++;
   3019 			bus_dmamap_sync(sc->bge_dmatag,
   3020 			    sc->bge_cdata.bge_rx_jumbo_map,
   3021 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3022 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3023 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3024 				ifp->if_ierrors++;
   3025 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3026 				continue;
   3027 			}
   3028 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3029 					     NULL)== ENOBUFS) {
   3030 				ifp->if_ierrors++;
   3031 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3032 				continue;
   3033 			}
   3034 		} else {
   3035 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3036 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3037 
   3038 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3039 			stdcnt++;
   3040 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3041 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3042 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3043 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3044 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3045 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3046 				ifp->if_ierrors++;
   3047 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3048 				continue;
   3049 			}
   3050 			if (bge_newbuf_std(sc, sc->bge_std,
   3051 			    NULL, dmamap) == ENOBUFS) {
   3052 				ifp->if_ierrors++;
   3053 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3054 				continue;
   3055 			}
   3056 		}
   3057 
   3058 		ifp->if_ipackets++;
   3059 #ifndef __NO_STRICT_ALIGNMENT
   3060                 /*
   3061                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3062                  * the Rx buffer has the layer-2 header unaligned.
   3063                  * If our CPU requires alignment, re-align by copying.
   3064                  */
   3065 		if (sc->bge_rx_alignment_bug) {
   3066 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3067                                 cur_rx->bge_len);
   3068 			m->m_data += ETHER_ALIGN;
   3069 		}
   3070 #endif
   3071 
   3072 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3073 		m->m_pkthdr.rcvif = ifp;
   3074 
   3075 #if NBPFILTER > 0
   3076 		/*
   3077 		 * Handle BPF listeners. Let the BPF user see the packet.
   3078 		 */
   3079 		if (ifp->if_bpf)
   3080 			bpf_mtap(ifp->if_bpf, m);
   3081 #endif
   3082 
   3083 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3084 
   3085 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3086 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3087 		/*
   3088 		 * Rx transport checksum-offload may also
   3089 		 * have bugs with packets which, when transmitted,
   3090 		 * were `runts' requiring padding.
   3091 		 */
   3092 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3093 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3094 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3095 			m->m_pkthdr.csum_data =
   3096 			    cur_rx->bge_tcp_udp_csum;
   3097 			m->m_pkthdr.csum_flags |=
   3098 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3099 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3100 		}
   3101 
   3102 		/*
   3103 		 * If we received a packet with a vlan tag, pass it
   3104 		 * to vlan_input() instead of ether_input().
   3105 		 */
   3106 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   3107 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3108 
   3109 		(*ifp->if_input)(ifp, m);
   3110 	}
   3111 
   3112 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3113 	if (stdcnt)
   3114 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3115 	if (jumbocnt)
   3116 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3117 }
   3118 
   3119 static void
   3120 bge_txeof(struct bge_softc *sc)
   3121 {
   3122 	struct bge_tx_bd *cur_tx = NULL;
   3123 	struct ifnet *ifp;
   3124 	struct txdmamap_pool_entry *dma;
   3125 	bus_addr_t offset, toff;
   3126 	bus_size_t tlen;
   3127 	int tosync;
   3128 	struct mbuf *m;
   3129 
   3130 	ifp = &sc->ethercom.ec_if;
   3131 
   3132 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3133 	    offsetof(struct bge_ring_data, bge_status_block),
   3134 	    sizeof (struct bge_status_block),
   3135 	    BUS_DMASYNC_POSTREAD);
   3136 
   3137 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3138 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3139 	    sc->bge_tx_saved_considx;
   3140 
   3141 #if NRND > 0
   3142 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3143 		rnd_add_uint32(&sc->rnd_source, tosync);
   3144 #endif
   3145 
   3146 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3147 
   3148 	if (tosync < 0) {
   3149 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3150 		    sizeof (struct bge_tx_bd);
   3151 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3152 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3153 		tosync = -tosync;
   3154 	}
   3155 
   3156 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3157 	    offset, tosync * sizeof (struct bge_tx_bd),
   3158 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3159 
   3160 	/*
   3161 	 * Go through our tx ring and free mbufs for those
   3162 	 * frames that have been sent.
   3163 	 */
   3164 	while (sc->bge_tx_saved_considx !=
   3165 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3166 		u_int32_t		idx = 0;
   3167 
   3168 		idx = sc->bge_tx_saved_considx;
   3169 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3170 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3171 			ifp->if_opackets++;
   3172 		m = sc->bge_cdata.bge_tx_chain[idx];
   3173 		if (m != NULL) {
   3174 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3175 			dma = sc->txdma[idx];
   3176 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3177 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3178 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3179 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3180 			sc->txdma[idx] = NULL;
   3181 
   3182 			m_freem(m);
   3183 		}
   3184 		sc->bge_txcnt--;
   3185 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3186 		ifp->if_timer = 0;
   3187 	}
   3188 
   3189 	if (cur_tx != NULL)
   3190 		ifp->if_flags &= ~IFF_OACTIVE;
   3191 }
   3192 
   3193 static int
   3194 bge_intr(void *xsc)
   3195 {
   3196 	struct bge_softc *sc;
   3197 	struct ifnet *ifp;
   3198 
   3199 	sc = xsc;
   3200 	ifp = &sc->ethercom.ec_if;
   3201 
   3202 	/*
   3203 	 * Ascertain whether the interrupt is from this bge device.
   3204 	 * Do the cheap test first.
   3205 	 */
   3206 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3207 	    BGE_STATFLAG_UPDATED) == 0) {
   3208 		/*
   3209 		 * Sometimes, the interrupt comes in before the
   3210 		 * DMA update of the status block (performed prior
   3211 		 * to the  interrupt itself) has completed.
   3212 		 * In that case, do the (extremely expensive!)
   3213 		 * PCI-config-space register read.
   3214 		 */
   3215 		uint32_t pcistate =
   3216 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3217 
   3218 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3219 			return (0);
   3220 
   3221 	}
   3222 	/*
   3223 	 *  If we reach here, then the interrupt is for us.
   3224 	 */
   3225 
   3226 	/* Ack interrupt and stop others from occuring. */
   3227 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3228 
   3229 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3230 
   3231 	/*
   3232 	 * Process link state changes.
   3233 	 * Grrr. The link status word in the status block does
   3234 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3235 	 * according to all available information. Hence, we have
   3236 	 * to enable MII interrupts in order to properly obtain
   3237 	 * async link changes. Unfortunately, this also means that
   3238 	 * we have to read the MAC status register to detect link
   3239 	 * changes, thereby adding an additional register access to
   3240 	 * the interrupt handler.
   3241 	 */
   3242 
   3243 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3244 		u_int32_t		status;
   3245 
   3246 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3247 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3248 			sc->bge_link = 0;
   3249 			callout_stop(&sc->bge_timeout);
   3250 			bge_tick(sc);
   3251 			/* Clear the interrupt */
   3252 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3253 			    BGE_EVTENB_MI_INTERRUPT);
   3254 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3255 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3256 			    BRGPHY_INTRS);
   3257 		}
   3258 	} else {
   3259 		u_int32_t		status;
   3260 
   3261 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3262 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3263 			sc->bge_link = 0;
   3264 			callout_stop(&sc->bge_timeout);
   3265 			bge_tick(sc);
   3266 			/* Clear the interrupt */
   3267 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3268 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3269 			    BGE_MACSTAT_LINK_CHANGED);
   3270 		}
   3271 	}
   3272 
   3273 	if (ifp->if_flags & IFF_RUNNING) {
   3274 		/* Check RX return ring producer/consumer */
   3275 		bge_rxeof(sc);
   3276 
   3277 		/* Check TX ring producer/consumer */
   3278 		bge_txeof(sc);
   3279 	}
   3280 
   3281 	if (sc->bge_pending_rxintr_change) {
   3282 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3283 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3284 		uint32_t junk;
   3285 
   3286 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3287 		DELAY(10);
   3288 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3289 
   3290 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3291 		DELAY(10);
   3292 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3293 
   3294 		sc->bge_pending_rxintr_change = 0;
   3295 	}
   3296 	bge_handle_events(sc);
   3297 
   3298 	/* Re-enable interrupts. */
   3299 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3300 
   3301 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3302 		bge_start(ifp);
   3303 
   3304 	return (1);
   3305 }
   3306 
   3307 static void
   3308 bge_tick(void *xsc)
   3309 {
   3310 	struct bge_softc *sc = xsc;
   3311 	struct mii_data *mii = &sc->bge_mii;
   3312 	int s;
   3313 
   3314 	s = splnet();
   3315 
   3316 	bge_stats_update(sc);
   3317 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3318 
   3319 	if (sc->bge_tbi) {
   3320 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3321 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3322 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3323 		}
   3324 	} else
   3325 		mii_tick(mii);
   3326 
   3327 	splx(s);
   3328 }
   3329 
   3330 static void
   3331 bge_stats_update(struct bge_softc *sc)
   3332 {
   3333 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3334 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3335 	bus_size_t rstats = BGE_RX_STATS;
   3336 
   3337 #define READ_RSTAT(sc, stats, stat) \
   3338 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3339 
   3340 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3341 		ifp->if_collisions +=
   3342 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3343 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3344 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3345 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3346 
   3347 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3348 			      READ_RSTAT(sc, rstats, outXoffSent));
   3349 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3350 			      READ_RSTAT(sc, rstats, outXonSent));
   3351 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3352 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3353 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3354 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3355 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3356 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3357 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3358 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3359 		return;
   3360 	}
   3361 
   3362 #undef READ_RSTAT
   3363 #define READ_STAT(sc, stats, stat) \
   3364 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3365 
   3366 	ifp->if_collisions +=
   3367 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3368 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3369 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3370 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3371 	  ifp->if_collisions;
   3372 
   3373 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3374 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3375 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3376 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3377 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3378 		      READ_STAT(sc, stats,
   3379 		      		xoffPauseFramesReceived.bge_addr_lo));
   3380 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3381 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3382 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3383 		      READ_STAT(sc, stats,
   3384 		      		macControlFramesReceived.bge_addr_lo));
   3385 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3386 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3387 
   3388 #undef READ_STAT
   3389 
   3390 #ifdef notdef
   3391 	ifp->if_collisions +=
   3392 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3393 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3394 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3395 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3396 	   ifp->if_collisions;
   3397 #endif
   3398 }
   3399 
   3400 /*
   3401  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3402  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3403  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3404  * the hardware checksum assist gives incorrect results (possibly
   3405  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3406  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3407  */
   3408 static inline int
   3409 bge_cksum_pad(struct mbuf *pkt)
   3410 {
   3411 	struct mbuf *last = NULL;
   3412 	int padlen;
   3413 
   3414 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3415 
   3416 	/* if there's only the packet-header and we can pad there, use it. */
   3417 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3418 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3419 		last = pkt;
   3420 	} else {
   3421 		/*
   3422 		 * Walk packet chain to find last mbuf. We will either
   3423 		 * pad there, or append a new mbuf and pad it
   3424 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3425 		 */
   3426 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3427 	      	       continue; /* do nothing */
   3428 		}
   3429 
   3430 		/* `last' now points to last in chain. */
   3431 		if (M_TRAILINGSPACE(last) < padlen) {
   3432 			/* Allocate new empty mbuf, pad it. Compact later. */
   3433 			struct mbuf *n;
   3434 			MGET(n, M_DONTWAIT, MT_DATA);
   3435 			if (n == NULL)
   3436 				return ENOBUFS;
   3437 			n->m_len = 0;
   3438 			last->m_next = n;
   3439 			last = n;
   3440 		}
   3441 	}
   3442 
   3443 	KDASSERT(!M_READONLY(last));
   3444 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3445 
   3446 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3447 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3448 	last->m_len += padlen;
   3449 	pkt->m_pkthdr.len += padlen;
   3450 	return 0;
   3451 }
   3452 
   3453 /*
   3454  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3455  */
   3456 static inline int
   3457 bge_compact_dma_runt(struct mbuf *pkt)
   3458 {
   3459 	struct mbuf	*m, *prev;
   3460 	int 		totlen, prevlen;
   3461 
   3462 	prev = NULL;
   3463 	totlen = 0;
   3464 	prevlen = -1;
   3465 
   3466 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3467 		int mlen = m->m_len;
   3468 		int shortfall = 8 - mlen ;
   3469 
   3470 		totlen += mlen;
   3471 		if (mlen == 0) {
   3472 			continue;
   3473 		}
   3474 		if (mlen >= 8)
   3475 			continue;
   3476 
   3477 		/* If we get here, mbuf data is too small for DMA engine.
   3478 		 * Try to fix by shuffling data to prev or next in chain.
   3479 		 * If that fails, do a compacting deep-copy of the whole chain.
   3480 		 */
   3481 
   3482 		/* Internal frag. If fits in prev, copy it there. */
   3483 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3484 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3485 			prev->m_len += mlen;
   3486 			m->m_len = 0;
   3487 			/* XXX stitch chain */
   3488 			prev->m_next = m_free(m);
   3489 			m = prev;
   3490 			continue;
   3491 		}
   3492 		else if (m->m_next != NULL &&
   3493 			     M_TRAILINGSPACE(m) >= shortfall &&
   3494 			     m->m_next->m_len >= (8 + shortfall)) {
   3495 		    /* m is writable and have enough data in next, pull up. */
   3496 
   3497 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3498 			    shortfall);
   3499 			m->m_len += shortfall;
   3500 			m->m_next->m_len -= shortfall;
   3501 			m->m_next->m_data += shortfall;
   3502 		}
   3503 		else if (m->m_next == NULL || 1) {
   3504 		  	/* Got a runt at the very end of the packet.
   3505 			 * borrow data from the tail of the preceding mbuf and
   3506 			 * update its length in-place. (The original data is still
   3507 			 * valid, so we can do this even if prev is not writable.)
   3508 			 */
   3509 
   3510 			/* if we'd make prev a runt, just move all of its data. */
   3511 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3512 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3513 
   3514 			if ((prev->m_len - shortfall) < 8)
   3515 				shortfall = prev->m_len;
   3516 
   3517 #ifdef notyet	/* just do the safe slow thing for now */
   3518 			if (!M_READONLY(m)) {
   3519 				if (M_LEADINGSPACE(m) < shorfall) {
   3520 					void *m_dat;
   3521 					m_dat = (m->m_flags & M_PKTHDR) ?
   3522 					  m->m_pktdat : m->dat;
   3523 					memmove(m_dat, mtod(m, void*), m->m_len);
   3524 					m->m_data = m_dat;
   3525 				    }
   3526 			} else
   3527 #endif	/* just do the safe slow thing */
   3528 			{
   3529 				struct mbuf * n = NULL;
   3530 				int newprevlen = prev->m_len - shortfall;
   3531 
   3532 				MGET(n, M_NOWAIT, MT_DATA);
   3533 				if (n == NULL)
   3534 				   return ENOBUFS;
   3535 				KASSERT(m->m_len + shortfall < MLEN
   3536 					/*,
   3537 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3538 
   3539 				/* first copy the data we're stealing from prev */
   3540 				memcpy(n->m_data, prev->m_data + newprevlen,
   3541 				    shortfall);
   3542 
   3543 				/* update prev->m_len accordingly */
   3544 				prev->m_len -= shortfall;
   3545 
   3546 				/* copy data from runt m */
   3547 				memcpy(n->m_data + shortfall, m->m_data,
   3548 				    m->m_len);
   3549 
   3550 				/* n holds what we stole from prev, plus m */
   3551 				n->m_len = shortfall + m->m_len;
   3552 
   3553 				/* stitch n into chain and free m */
   3554 				n->m_next = m->m_next;
   3555 				prev->m_next = n;
   3556 				/* KASSERT(m->m_next == NULL); */
   3557 				m->m_next = NULL;
   3558 				m_free(m);
   3559 				m = n;	/* for continuing loop */
   3560 			}
   3561 		}
   3562 		prevlen = m->m_len;
   3563 	}
   3564 	return 0;
   3565 }
   3566 
   3567 /*
   3568  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3569  * pointers to descriptors.
   3570  */
   3571 static int
   3572 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3573 {
   3574 	struct bge_tx_bd	*f = NULL;
   3575 	u_int32_t		frag, cur;
   3576 	u_int16_t		csum_flags = 0;
   3577 	u_int16_t		txbd_tso_flags = 0;
   3578 	struct txdmamap_pool_entry *dma;
   3579 	bus_dmamap_t dmamap;
   3580 	int			i = 0;
   3581 	struct m_tag		*mtag;
   3582 	int			use_tso, maxsegsize, error;
   3583 
   3584 	cur = frag = *txidx;
   3585 
   3586 	if (m_head->m_pkthdr.csum_flags) {
   3587 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3588 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3589 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3590 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3591 	}
   3592 
   3593 	/*
   3594 	 * If we were asked to do an outboard checksum, and the NIC
   3595 	 * has the bug where it sometimes adds in the Ethernet padding,
   3596 	 * explicitly pad with zeros so the cksum will be correct either way.
   3597 	 * (For now, do this for all chip versions, until newer
   3598 	 * are confirmed to not require the workaround.)
   3599 	 */
   3600 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3601 #ifdef notyet
   3602 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3603 #endif
   3604 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3605 		goto check_dma_bug;
   3606 
   3607 	if (bge_cksum_pad(m_head) != 0) {
   3608 	    return ENOBUFS;
   3609 	}
   3610 
   3611 check_dma_bug:
   3612 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3613 		goto doit;
   3614 	/*
   3615 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3616 	 * less than eight bytes.  If we encounter a teeny mbuf
   3617 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3618 	 */
   3619 	if (bge_compact_dma_runt(m_head) != 0)
   3620 		return ENOBUFS;
   3621 
   3622 doit:
   3623 	dma = SLIST_FIRST(&sc->txdma_list);
   3624 	if (dma == NULL)
   3625 		return ENOBUFS;
   3626 	dmamap = dma->dmamap;
   3627 
   3628 	/*
   3629 	 * Set up any necessary TSO state before we start packing...
   3630 	 */
   3631 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3632 	if (!use_tso) {
   3633 		maxsegsize = 0;
   3634 	} else {	/* TSO setup */
   3635 		unsigned  mss;
   3636 		struct ether_header *eh;
   3637 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3638 		struct mbuf * m0 = m_head;
   3639 		struct ip *ip;
   3640 		struct tcphdr *th;
   3641 		int iphl, hlen;
   3642 
   3643 		/*
   3644 		 * XXX It would be nice if the mbuf pkthdr had offset
   3645 		 * fields for the protocol headers.
   3646 		 */
   3647 
   3648 		eh = mtod(m0, struct ether_header *);
   3649 		switch (htons(eh->ether_type)) {
   3650 		case ETHERTYPE_IP:
   3651 			offset = ETHER_HDR_LEN;
   3652 			break;
   3653 
   3654 		case ETHERTYPE_VLAN:
   3655 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3656 			break;
   3657 
   3658 		default:
   3659 			/*
   3660 			 * Don't support this protocol or encapsulation.
   3661 			 */
   3662 			return (ENOBUFS);
   3663 		}
   3664 
   3665 		/*
   3666 		 * TCP/IP headers are in the first mbuf; we can do
   3667 		 * this the easy way.
   3668 		 */
   3669 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3670 		hlen = iphl + offset;
   3671 		if (__predict_false(m0->m_len <
   3672 				    (hlen + sizeof(struct tcphdr)))) {
   3673 
   3674 			aprint_debug_dev(sc->bge_dev,
   3675 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3676 			    "not handled yet\n",
   3677 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3678 #ifdef NOTYET
   3679 			/*
   3680 			 * XXX jonathan (at) NetBSD.org: untested.
   3681 			 * how to force  this branch to be taken?
   3682 			 */
   3683 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3684 
   3685 			m_copydata(m0, offset, sizeof(ip), &ip);
   3686 			m_copydata(m0, hlen, sizeof(th), &th);
   3687 
   3688 			ip.ip_len = 0;
   3689 
   3690 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3691 			    sizeof(ip.ip_len), &ip.ip_len);
   3692 
   3693 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3694 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3695 
   3696 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3697 			    sizeof(th.th_sum), &th.th_sum);
   3698 
   3699 			hlen += th.th_off << 2;
   3700 			iptcp_opt_words	= hlen;
   3701 #else
   3702 			/*
   3703 			 * if_wm "hard" case not yet supported, can we not
   3704 			 * mandate it out of existence?
   3705 			 */
   3706 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3707 
   3708 			return ENOBUFS;
   3709 #endif
   3710 		} else {
   3711 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3712 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3713 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3714 
   3715 			/* Total IP/TCP options, in 32-bit words */
   3716 			iptcp_opt_words = (ip_tcp_hlen
   3717 					   - sizeof(struct tcphdr)
   3718 					   - sizeof(struct ip)) >> 2;
   3719 		}
   3720 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3721 			th->th_sum = 0;
   3722 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3723 		} else {
   3724 			/*
   3725 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3726 			 * Requires TSO firmware patch for 5701/5703/5704.
   3727 			 */
   3728 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3729 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3730 		}
   3731 
   3732 		mss = m_head->m_pkthdr.segsz;
   3733 		txbd_tso_flags |=
   3734 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3735 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3736 
   3737 		/*
   3738 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3739 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3740 		 * the NIC copies 40 bytes of IP/TCP header from the
   3741 		 * supplied header into the IP/TCP header portion of
   3742 		 * each post-TSO-segment. If the supplied packet has IP or
   3743 		 * TCP options, we need to tell the NIC to copy those extra
   3744 		 * bytes into each  post-TSO header, in addition to the normal
   3745 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3746 		 * Unfortunately, the driver encoding of option length
   3747 		 * varies across different ASIC families.
   3748 		 */
   3749 		tcp_seg_flags = 0;
   3750 		if (iptcp_opt_words) {
   3751 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3752 				tcp_seg_flags =
   3753 					iptcp_opt_words << 11;
   3754 			} else {
   3755 				txbd_tso_flags |=
   3756 					iptcp_opt_words << 12;
   3757 			}
   3758 		}
   3759 		maxsegsize = mss | tcp_seg_flags;
   3760 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3761 
   3762 	}	/* TSO setup */
   3763 
   3764 	/*
   3765 	 * Start packing the mbufs in this chain into
   3766 	 * the fragment pointers. Stop when we run out
   3767 	 * of fragments or hit the end of the mbuf chain.
   3768 	 */
   3769 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3770 	    BUS_DMA_NOWAIT);
   3771 	if (error) {
   3772 		return(ENOBUFS);
   3773 	}
   3774 	/*
   3775 	 * Sanity check: avoid coming within 16 descriptors
   3776 	 * of the end of the ring.
   3777 	 */
   3778 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3779 		BGE_TSO_PRINTF(("%s: "
   3780 		    " dmamap_load_mbuf too close to ring wrap\n",
   3781 		    device_xname(sc->bge_dev)));
   3782 		goto fail_unload;
   3783 	}
   3784 
   3785 	mtag = sc->ethercom.ec_nvlans ?
   3786 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3787 
   3788 
   3789 	/* Iterate over dmap-map fragments. */
   3790 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3791 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3792 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3793 			break;
   3794 
   3795 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3796 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3797 
   3798 		/*
   3799 		 * For 5751 and follow-ons, for TSO we must turn
   3800 		 * off checksum-assist flag in the tx-descr, and
   3801 		 * supply the ASIC-revision-specific encoding
   3802 		 * of TSO flags and segsize.
   3803 		 */
   3804 		if (use_tso) {
   3805 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3806 				f->bge_rsvd = maxsegsize;
   3807 				f->bge_flags = csum_flags | txbd_tso_flags;
   3808 			} else {
   3809 				f->bge_rsvd = 0;
   3810 				f->bge_flags =
   3811 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3812 			}
   3813 		} else {
   3814 			f->bge_rsvd = 0;
   3815 			f->bge_flags = csum_flags;
   3816 		}
   3817 
   3818 		if (mtag != NULL) {
   3819 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3820 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3821 		} else {
   3822 			f->bge_vlan_tag = 0;
   3823 		}
   3824 		cur = frag;
   3825 		BGE_INC(frag, BGE_TX_RING_CNT);
   3826 	}
   3827 
   3828 	if (i < dmamap->dm_nsegs) {
   3829 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3830 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3831 		goto fail_unload;
   3832 	}
   3833 
   3834 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3835 	    BUS_DMASYNC_PREWRITE);
   3836 
   3837 	if (frag == sc->bge_tx_saved_considx) {
   3838 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3839 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3840 
   3841 		goto fail_unload;
   3842 	}
   3843 
   3844 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3845 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3846 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3847 	sc->txdma[cur] = dma;
   3848 	sc->bge_txcnt += dmamap->dm_nsegs;
   3849 
   3850 	*txidx = frag;
   3851 
   3852 	return(0);
   3853 
   3854  fail_unload:
   3855 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3856 
   3857 	return ENOBUFS;
   3858 }
   3859 
   3860 /*
   3861  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3862  * to the mbuf data regions directly in the transmit descriptors.
   3863  */
   3864 static void
   3865 bge_start(struct ifnet *ifp)
   3866 {
   3867 	struct bge_softc *sc;
   3868 	struct mbuf *m_head = NULL;
   3869 	u_int32_t prodidx;
   3870 	int pkts = 0;
   3871 
   3872 	sc = ifp->if_softc;
   3873 
   3874 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3875 		return;
   3876 
   3877 	prodidx = sc->bge_tx_prodidx;
   3878 
   3879 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3880 		IFQ_POLL(&ifp->if_snd, m_head);
   3881 		if (m_head == NULL)
   3882 			break;
   3883 
   3884 #if 0
   3885 		/*
   3886 		 * XXX
   3887 		 * safety overkill.  If this is a fragmented packet chain
   3888 		 * with delayed TCP/UDP checksums, then only encapsulate
   3889 		 * it if we have enough descriptors to handle the entire
   3890 		 * chain at once.
   3891 		 * (paranoia -- may not actually be needed)
   3892 		 */
   3893 		if (m_head->m_flags & M_FIRSTFRAG &&
   3894 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3895 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3896 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3897 				ifp->if_flags |= IFF_OACTIVE;
   3898 				break;
   3899 			}
   3900 		}
   3901 #endif
   3902 
   3903 		/*
   3904 		 * Pack the data into the transmit ring. If we
   3905 		 * don't have room, set the OACTIVE flag and wait
   3906 		 * for the NIC to drain the ring.
   3907 		 */
   3908 		if (bge_encap(sc, m_head, &prodidx)) {
   3909 			ifp->if_flags |= IFF_OACTIVE;
   3910 			break;
   3911 		}
   3912 
   3913 		/* now we are committed to transmit the packet */
   3914 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3915 		pkts++;
   3916 
   3917 #if NBPFILTER > 0
   3918 		/*
   3919 		 * If there's a BPF listener, bounce a copy of this frame
   3920 		 * to him.
   3921 		 */
   3922 		if (ifp->if_bpf)
   3923 			bpf_mtap(ifp->if_bpf, m_head);
   3924 #endif
   3925 	}
   3926 	if (pkts == 0)
   3927 		return;
   3928 
   3929 	/* Transmit */
   3930 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3931 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3932 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3933 
   3934 	sc->bge_tx_prodidx = prodidx;
   3935 
   3936 	/*
   3937 	 * Set a timeout in case the chip goes out to lunch.
   3938 	 */
   3939 	ifp->if_timer = 5;
   3940 }
   3941 
   3942 static int
   3943 bge_init(struct ifnet *ifp)
   3944 {
   3945 	struct bge_softc *sc = ifp->if_softc;
   3946 	const u_int16_t *m;
   3947 	int s, error = 0;
   3948 
   3949 	s = splnet();
   3950 
   3951 	ifp = &sc->ethercom.ec_if;
   3952 
   3953 	/* Cancel pending I/O and flush buffers. */
   3954 	bge_stop(ifp, 0);
   3955 	bge_reset(sc);
   3956 	bge_chipinit(sc);
   3957 
   3958 	/*
   3959 	 * Init the various state machines, ring
   3960 	 * control blocks and firmware.
   3961 	 */
   3962 	error = bge_blockinit(sc);
   3963 	if (error != 0) {
   3964 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3965 		    error);
   3966 		splx(s);
   3967 		return error;
   3968 	}
   3969 
   3970 	ifp = &sc->ethercom.ec_if;
   3971 
   3972 	/* Specify MTU. */
   3973 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3974 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3975 
   3976 	/* Load our MAC address. */
   3977 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3978 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3979 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3980 
   3981 	/* Enable or disable promiscuous mode as needed. */
   3982 	if (ifp->if_flags & IFF_PROMISC) {
   3983 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3984 	} else {
   3985 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3986 	}
   3987 
   3988 	/* Program multicast filter. */
   3989 	bge_setmulti(sc);
   3990 
   3991 	/* Init RX ring. */
   3992 	bge_init_rx_ring_std(sc);
   3993 
   3994 	/* Init jumbo RX ring. */
   3995 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3996 		bge_init_rx_ring_jumbo(sc);
   3997 
   3998 	/* Init our RX return ring index */
   3999 	sc->bge_rx_saved_considx = 0;
   4000 
   4001 	/* Init TX ring. */
   4002 	bge_init_tx_ring(sc);
   4003 
   4004 	/* Turn on transmitter */
   4005 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4006 
   4007 	/* Turn on receiver */
   4008 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4009 
   4010 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4011 
   4012 	/* Tell firmware we're alive. */
   4013 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4014 
   4015 	/* Enable host interrupts. */
   4016 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4017 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4018 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   4019 
   4020 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4021 		goto out;
   4022 
   4023 	ifp->if_flags |= IFF_RUNNING;
   4024 	ifp->if_flags &= ~IFF_OACTIVE;
   4025 
   4026 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4027 
   4028 out:
   4029 	splx(s);
   4030 
   4031 	return error;
   4032 }
   4033 
   4034 /*
   4035  * Set media options.
   4036  */
   4037 static int
   4038 bge_ifmedia_upd(struct ifnet *ifp)
   4039 {
   4040 	struct bge_softc *sc = ifp->if_softc;
   4041 	struct mii_data *mii = &sc->bge_mii;
   4042 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4043 	int rc;
   4044 
   4045 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4046 	if (sc->bge_tbi) {
   4047 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4048 			return(EINVAL);
   4049 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4050 		case IFM_AUTO:
   4051 			break;
   4052 		case IFM_1000_SX:
   4053 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4054 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4055 				    BGE_MACMODE_HALF_DUPLEX);
   4056 			} else {
   4057 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4058 				    BGE_MACMODE_HALF_DUPLEX);
   4059 			}
   4060 			break;
   4061 		default:
   4062 			return(EINVAL);
   4063 		}
   4064 		/* XXX 802.3x flow control for 1000BASE-SX */
   4065 		return(0);
   4066 	}
   4067 
   4068 	sc->bge_link = 0;
   4069 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4070 		return 0;
   4071 	return rc;
   4072 }
   4073 
   4074 /*
   4075  * Report current media status.
   4076  */
   4077 static void
   4078 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4079 {
   4080 	struct bge_softc *sc = ifp->if_softc;
   4081 	struct mii_data *mii = &sc->bge_mii;
   4082 
   4083 	if (sc->bge_tbi) {
   4084 		ifmr->ifm_status = IFM_AVALID;
   4085 		ifmr->ifm_active = IFM_ETHER;
   4086 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4087 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4088 			ifmr->ifm_status |= IFM_ACTIVE;
   4089 		ifmr->ifm_active |= IFM_1000_SX;
   4090 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4091 			ifmr->ifm_active |= IFM_HDX;
   4092 		else
   4093 			ifmr->ifm_active |= IFM_FDX;
   4094 		return;
   4095 	}
   4096 
   4097 	mii_pollstat(mii);
   4098 	ifmr->ifm_status = mii->mii_media_status;
   4099 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4100 	    sc->bge_flowflags;
   4101 }
   4102 
   4103 static int
   4104 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4105 {
   4106 	struct bge_softc *sc = ifp->if_softc;
   4107 	struct ifreq *ifr = (struct ifreq *) data;
   4108 	int s, error = 0;
   4109 	struct mii_data *mii;
   4110 
   4111 	s = splnet();
   4112 
   4113 	switch(command) {
   4114 	case SIOCSIFFLAGS:
   4115 		if (ifp->if_flags & IFF_UP) {
   4116 			/*
   4117 			 * If only the state of the PROMISC flag changed,
   4118 			 * then just use the 'set promisc mode' command
   4119 			 * instead of reinitializing the entire NIC. Doing
   4120 			 * a full re-init means reloading the firmware and
   4121 			 * waiting for it to start up, which may take a
   4122 			 * second or two.
   4123 			 */
   4124 			if (ifp->if_flags & IFF_RUNNING &&
   4125 			    ifp->if_flags & IFF_PROMISC &&
   4126 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4127 				BGE_SETBIT(sc, BGE_RX_MODE,
   4128 				    BGE_RXMODE_RX_PROMISC);
   4129 			} else if (ifp->if_flags & IFF_RUNNING &&
   4130 			    !(ifp->if_flags & IFF_PROMISC) &&
   4131 			    sc->bge_if_flags & IFF_PROMISC) {
   4132 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4133 				    BGE_RXMODE_RX_PROMISC);
   4134 			} else if (!(sc->bge_if_flags & IFF_UP))
   4135 				bge_init(ifp);
   4136 		} else {
   4137 			if (ifp->if_flags & IFF_RUNNING)
   4138 				bge_stop(ifp, 1);
   4139 		}
   4140 		sc->bge_if_flags = ifp->if_flags;
   4141 		error = 0;
   4142 		break;
   4143 	case SIOCSIFMEDIA:
   4144 		/* XXX Flow control is not supported for 1000BASE-SX */
   4145 		if (sc->bge_tbi) {
   4146 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4147 			sc->bge_flowflags = 0;
   4148 		}
   4149 
   4150 		/* Flow control requires full-duplex mode. */
   4151 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4152 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4153 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4154 		}
   4155 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4156 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4157 				/* We an do both TXPAUSE and RXPAUSE. */
   4158 				ifr->ifr_media |=
   4159 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4160 			}
   4161 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4162 		}
   4163 		/* FALLTHROUGH */
   4164 	case SIOCGIFMEDIA:
   4165 		if (sc->bge_tbi) {
   4166 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4167 			    command);
   4168 		} else {
   4169 			mii = &sc->bge_mii;
   4170 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4171 			    command);
   4172 		}
   4173 		break;
   4174 	default:
   4175 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4176 			break;
   4177 
   4178 		error = 0;
   4179 
   4180 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4181 			;
   4182 		else if (ifp->if_flags & IFF_RUNNING)
   4183 			bge_setmulti(sc);
   4184 		break;
   4185 	}
   4186 
   4187 	splx(s);
   4188 
   4189 	return(error);
   4190 }
   4191 
   4192 static void
   4193 bge_watchdog(struct ifnet *ifp)
   4194 {
   4195 	struct bge_softc *sc;
   4196 
   4197 	sc = ifp->if_softc;
   4198 
   4199 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4200 
   4201 	ifp->if_flags &= ~IFF_RUNNING;
   4202 	bge_init(ifp);
   4203 
   4204 	ifp->if_oerrors++;
   4205 }
   4206 
   4207 static void
   4208 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4209 {
   4210 	int i;
   4211 
   4212 	BGE_CLRBIT(sc, reg, bit);
   4213 
   4214 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4215 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4216 			return;
   4217 		delay(100);
   4218 		if (sc->bge_pcie)
   4219 		  DELAY(1000);
   4220 	}
   4221 
   4222 	aprint_error_dev(sc->bge_dev,
   4223 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4224 }
   4225 
   4226 /*
   4227  * Stop the adapter and free any mbufs allocated to the
   4228  * RX and TX lists.
   4229  */
   4230 static void
   4231 bge_stop(struct ifnet *ifp, int disable)
   4232 {
   4233 	struct bge_softc *sc = ifp->if_softc;
   4234 
   4235 	callout_stop(&sc->bge_timeout);
   4236 
   4237 	/*
   4238 	 * Disable all of the receiver blocks
   4239 	 */
   4240 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4241 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4242 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4243 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4244 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4245 	}
   4246 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4247 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4248 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4249 
   4250 	/*
   4251 	 * Disable all of the transmit blocks
   4252 	 */
   4253 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4254 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4255 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4256 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4257 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4258 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4259 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4260 	}
   4261 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4262 
   4263 	/*
   4264 	 * Shut down all of the memory managers and related
   4265 	 * state machines.
   4266 	 */
   4267 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4268 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4269 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4270 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4271 	}
   4272 
   4273 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4274 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4275 
   4276 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4277 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4278 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4279 	}
   4280 
   4281 	/* Disable host interrupts. */
   4282 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4283 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   4284 
   4285 	/*
   4286 	 * Tell firmware we're shutting down.
   4287 	 */
   4288 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4289 
   4290 	/* Free the RX lists. */
   4291 	bge_free_rx_ring_std(sc);
   4292 
   4293 	/* Free jumbo RX list. */
   4294 	bge_free_rx_ring_jumbo(sc);
   4295 
   4296 	/* Free TX buffers. */
   4297 	bge_free_tx_ring(sc);
   4298 
   4299 	/*
   4300 	 * Isolate/power down the PHY.
   4301 	 */
   4302 	if (!sc->bge_tbi)
   4303 		mii_down(&sc->bge_mii);
   4304 
   4305 	sc->bge_link = 0;
   4306 
   4307 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4308 
   4309 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4310 }
   4311 
   4312 static int
   4313 sysctl_bge_verify(SYSCTLFN_ARGS)
   4314 {
   4315 	int error, t;
   4316 	struct sysctlnode node;
   4317 
   4318 	node = *rnode;
   4319 	t = *(int*)rnode->sysctl_data;
   4320 	node.sysctl_data = &t;
   4321 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4322 	if (error || newp == NULL)
   4323 		return (error);
   4324 
   4325 #if 0
   4326 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4327 	    node.sysctl_num, rnode->sysctl_num));
   4328 #endif
   4329 
   4330 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4331 		if (t < 0 || t >= NBGE_RX_THRESH)
   4332 			return (EINVAL);
   4333 		bge_update_all_threshes(t);
   4334 	} else
   4335 		return (EINVAL);
   4336 
   4337 	*(int*)rnode->sysctl_data = t;
   4338 
   4339 	return (0);
   4340 }
   4341 
   4342 /*
   4343  * Set up sysctl(3) MIB, hw.bge.*.
   4344  *
   4345  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4346  */
   4347 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4348 {
   4349 	int rc, bge_root_num;
   4350 	const struct sysctlnode *node;
   4351 
   4352 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4353 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4354 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4355 		goto err;
   4356 	}
   4357 
   4358 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4359 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4360 	    SYSCTL_DESCR("BGE interface controls"),
   4361 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4362 		goto err;
   4363 	}
   4364 
   4365 	bge_root_num = node->sysctl_num;
   4366 
   4367 	/* BGE Rx interrupt mitigation level */
   4368 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4369 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4370 	    CTLTYPE_INT, "rx_lvl",
   4371 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4372 	    sysctl_bge_verify, 0,
   4373 	    &bge_rx_thresh_lvl,
   4374 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4375 	    CTL_EOL)) != 0) {
   4376 		goto err;
   4377 	}
   4378 
   4379 	bge_rxthresh_nodenum = node->sysctl_num;
   4380 
   4381 	return;
   4382 
   4383 err:
   4384 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4385 }
   4386