if_bge.c revision 1.149 1 /* $NetBSD: if_bge.c,v 1.149 2008/07/24 08:14:49 sborrill Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.149 2008/07/24 08:14:49 sborrill Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
120
121
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134
135 #include <dev/pci/if_bgereg.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140
141
142 /*
143 * Tunable thresholds for rx-side bge interrupt mitigation.
144 */
145
146 /*
147 * The pairs of values below were obtained from empirical measurement
148 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 * interrupt for every N packets received, where N is, approximately,
150 * the second value (rx_max_bds) in each pair. The values are chosen
151 * such that moving from one pair to the succeeding pair was observed
152 * to roughly halve interrupt rate under sustained input packet load.
153 * The values were empirically chosen to avoid overflowing internal
154 * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 * results in internal wrapping and higher interrupt rates.
156 * The limit of 46 frames was chosen to match NFS workloads.
157 *
158 * These values also work well on bcm5701, bcm5704C, and (less
159 * tested) bcm5703. On other chipsets, (including the Altima chip
160 * family), the larger values may overflow internal chip limits,
161 * leading to increasing interrupt rates rather than lower interrupt
162 * rates.
163 *
164 * Applications using heavy interrupt mitigation (interrupting every
165 * 32 or 46 frames) in both directions may need to increase the TCP
166 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 * full link bandwidth, due to ACKs and window updates lingering
168 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 */
170 static const struct bge_load_rx_thresh {
171 int rx_ticks;
172 int rx_max_bds; }
173 bge_rx_threshes[] = {
174 { 32, 2 },
175 { 50, 4 },
176 { 100, 8 },
177 { 192, 16 },
178 { 416, 32 },
179 { 598, 46 }
180 };
181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182
183 /* XXX patchable; should be sysctl'able */
184 static int bge_auto_thresh = 1;
185 static int bge_rx_thresh_lvl;
186
187 static int bge_rxthresh_nodenum;
188
189 static int bge_probe(device_t, cfdata_t, void *);
190 static void bge_attach(device_t, device_t, void *);
191 static void bge_release_resources(struct bge_softc *);
192 static void bge_txeof(struct bge_softc *);
193 static void bge_rxeof(struct bge_softc *);
194
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
198
199 static int bge_intr(void *);
200 static void bge_start(struct ifnet *);
201 static int bge_ioctl(struct ifnet *, u_long, void *);
202 static int bge_init(struct ifnet *);
203 static void bge_stop(struct ifnet *, int);
204 static void bge_watchdog(struct ifnet *);
205 static int bge_ifmedia_upd(struct ifnet *);
206 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
207
208 static void bge_setmulti(struct bge_softc *);
209
210 static void bge_handle_events(struct bge_softc *);
211 static int bge_alloc_jumbo_mem(struct bge_softc *);
212 #if 0 /* XXX */
213 static void bge_free_jumbo_mem(struct bge_softc *);
214 #endif
215 static void *bge_jalloc(struct bge_softc *);
216 static void bge_jfree(struct mbuf *, void *, size_t, void *);
217 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
218 bus_dmamap_t);
219 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
220 static int bge_init_rx_ring_std(struct bge_softc *);
221 static void bge_free_rx_ring_std(struct bge_softc *);
222 static int bge_init_rx_ring_jumbo(struct bge_softc *);
223 static void bge_free_rx_ring_jumbo(struct bge_softc *);
224 static void bge_free_tx_ring(struct bge_softc *);
225 static int bge_init_tx_ring(struct bge_softc *);
226
227 static int bge_chipinit(struct bge_softc *);
228 static int bge_blockinit(struct bge_softc *);
229 static int bge_setpowerstate(struct bge_softc *, int);
230
231 static void bge_reset(struct bge_softc *);
232
233 #define BGE_DEBUG
234 #ifdef BGE_DEBUG
235 #define DPRINTF(x) if (bgedebug) printf x
236 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
237 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
238 int bgedebug = 0;
239 int bge_tso_debug = 0;
240 #else
241 #define DPRINTF(x)
242 #define DPRINTFN(n,x)
243 #define BGE_TSO_PRINTF(x)
244 #endif
245
246 #ifdef BGE_EVENT_COUNTERS
247 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
248 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
249 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
250 #else
251 #define BGE_EVCNT_INCR(ev) /* nothing */
252 #define BGE_EVCNT_ADD(ev, val) /* nothing */
253 #define BGE_EVCNT_UPD(ev, val) /* nothing */
254 #endif
255
256 /* Various chip quirks. */
257 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
258 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
259 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
260 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
261 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
262 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
263 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
264 #define BGE_QUIRK_5705_CORE 0x00000080
265 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
266
267 /*
268 * XXX: how to handle variants based on 5750 and derivatives:
269 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
270 * in general behave like a 5705, except with additional quirks.
271 * This driver's current handling of the 5721 is wrong;
272 * how we map ASIC revision to "quirks" needs more thought.
273 * (defined here until the thought is done).
274 */
275 #define BGE_IS_5714_FAMILY(sc) \
276 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
277 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
278 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
279
280 #define BGE_IS_5750_OR_BEYOND(sc) \
281 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
282 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
283 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
284 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
285 BGE_IS_5714_FAMILY(sc) )
286
287 #define BGE_IS_5705_OR_BEYOND(sc) \
288 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
289 BGE_IS_5750_OR_BEYOND(sc) )
290
291
292 /* following bugs are common to bcm5700 rev B, all flavours */
293 #define BGE_QUIRK_5700_COMMON \
294 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
295
296 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
297 bge_probe, bge_attach, NULL, NULL);
298
299 static u_int32_t
300 bge_readmem_ind(struct bge_softc *sc, int off)
301 {
302 pcireg_t val;
303
304 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
305 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
306 return val;
307 }
308
309 static void
310 bge_writemem_ind(struct bge_softc *sc, int off, int val)
311 {
312 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
313 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
314 }
315
316 #ifdef notdef
317 static u_int32_t
318 bge_readreg_ind(struct bge_softc *sc, int off)
319 {
320 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(struct bge_softc *sc, int off, int val)
327 {
328 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
330 }
331
332 #ifdef notdef
333 static u_int8_t
334 bge_vpd_readbyte(struct bge_softc *sc, int addr)
335 {
336 int i;
337 u_int32_t val;
338
339 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
340 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
341 DELAY(10);
342 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
343 BGE_VPD_FLAG)
344 break;
345 }
346
347 if (i == BGE_TIMEOUT) {
348 aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
349 return(0);
350 }
351
352 val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
353
354 return((val >> ((addr % 4) * 8)) & 0xFF);
355 }
356
357 static void
358 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
359 {
360 int i;
361 u_int8_t *ptr;
362
363 ptr = (u_int8_t *)res;
364 for (i = 0; i < sizeof(struct vpd_res); i++)
365 ptr[i] = bge_vpd_readbyte(sc, i + addr);
366 }
367
368 static void
369 bge_vpd_read(struct bge_softc *sc)
370 {
371 int pos = 0, i;
372 struct vpd_res res;
373
374 if (sc->bge_vpd_prodname != NULL)
375 free(sc->bge_vpd_prodname, M_DEVBUF);
376 if (sc->bge_vpd_readonly != NULL)
377 free(sc->bge_vpd_readonly, M_DEVBUF);
378 sc->bge_vpd_prodname = NULL;
379 sc->bge_vpd_readonly = NULL;
380
381 bge_vpd_read_res(sc, &res, pos);
382
383 if (res.vr_id != VPD_RES_ID) {
384 aprint_error_dev("bad VPD resource id: expected %x got %x\n",
385 VPD_RES_ID, res.vr_id);
386 return;
387 }
388
389 pos += sizeof(res);
390 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 if (sc->bge_vpd_prodname == NULL)
392 panic("bge_vpd_read");
393 for (i = 0; i < res.vr_len; i++)
394 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
395 sc->bge_vpd_prodname[i] = '\0';
396 pos += i;
397
398 bge_vpd_read_res(sc, &res, pos);
399
400 if (res.vr_id != VPD_RES_READ) {
401 aprint_error_dev(sc->bge_dev,
402 "bad VPD resource id: expected %x got %x\n",
403 VPD_RES_READ, res.vr_id);
404 return;
405 }
406
407 pos += sizeof(res);
408 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
409 if (sc->bge_vpd_readonly == NULL)
410 panic("bge_vpd_read");
411 for (i = 0; i < res.vr_len + 1; i++)
412 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
413 }
414 #endif
415
416 /*
417 * Read a byte of data stored in the EEPROM at address 'addr.' The
418 * BCM570x supports both the traditional bitbang interface and an
419 * auto access interface for reading the EEPROM. We use the auto
420 * access method.
421 */
422 static u_int8_t
423 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
424 {
425 int i;
426 u_int32_t byte = 0;
427
428 /*
429 * Enable use of auto EEPROM access so we can avoid
430 * having to use the bitbang method.
431 */
432 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
433
434 /* Reset the EEPROM, load the clock period. */
435 CSR_WRITE_4(sc, BGE_EE_ADDR,
436 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
437 DELAY(20);
438
439 /* Issue the read EEPROM command. */
440 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
441
442 /* Wait for completion */
443 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
444 DELAY(10);
445 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
446 break;
447 }
448
449 if (i == BGE_TIMEOUT) {
450 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
451 return(0);
452 }
453
454 /* Get result. */
455 byte = CSR_READ_4(sc, BGE_EE_DATA);
456
457 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
458
459 return(0);
460 }
461
462 /*
463 * Read a sequence of bytes from the EEPROM.
464 */
465 static int
466 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
467 {
468 int err = 0, i;
469 u_int8_t byte = 0;
470 char *dest = destv;
471
472 for (i = 0; i < cnt; i++) {
473 err = bge_eeprom_getbyte(sc, off + i, &byte);
474 if (err)
475 break;
476 *(dest + i) = byte;
477 }
478
479 return(err ? 1 : 0);
480 }
481
482 static int
483 bge_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct bge_softc *sc = device_private(dev);
486 u_int32_t val;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /*
491 * Several chips with builtin PHYs will incorrectly answer to
492 * other PHY instances than the builtin PHY at id 1.
493 */
494 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
495 return(0);
496
497 /* Reading with autopolling on may trigger PCI errors */
498 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 CSR_WRITE_4(sc, BGE_MI_MODE,
501 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
502 DELAY(40);
503 }
504
505 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
506 BGE_MIPHY(phy)|BGE_MIREG(reg));
507
508 for (i = 0; i < BGE_TIMEOUT; i++) {
509 val = CSR_READ_4(sc, BGE_MI_COMM);
510 if (!(val & BGE_MICOMM_BUSY))
511 break;
512 delay(10);
513 }
514
515 if (i == BGE_TIMEOUT) {
516 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
517 val = 0;
518 goto done;
519 }
520
521 val = CSR_READ_4(sc, BGE_MI_COMM);
522
523 done:
524 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
525 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
526 DELAY(40);
527 }
528
529 if (val & BGE_MICOMM_READFAIL)
530 return(0);
531
532 return(val & 0xFFFF);
533 }
534
535 static void
536 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
537 {
538 struct bge_softc *sc = device_private(dev);
539 u_int32_t saved_autopoll;
540 int i;
541
542 /* Touching the PHY while autopolling is on may trigger PCI errors */
543 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
544 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
545 delay(40);
546 CSR_WRITE_4(sc, BGE_MI_MODE,
547 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
548 delay(10); /* 40 usec is supposed to be adequate */
549 }
550
551 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
552 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
553
554 for (i = 0; i < BGE_TIMEOUT; i++) {
555 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
556 break;
557 delay(10);
558 }
559
560 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
561 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
562 delay(40);
563 }
564
565 if (i == BGE_TIMEOUT)
566 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
567 }
568
569 static void
570 bge_miibus_statchg(device_t dev)
571 {
572 struct bge_softc *sc = device_private(dev);
573 struct mii_data *mii = &sc->bge_mii;
574
575 /*
576 * Get flow control negotiation result.
577 */
578 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
579 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
580 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
581 mii->mii_media_active &= ~IFM_ETH_FMASK;
582 }
583
584 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
585 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
586 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
587 } else {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
589 }
590
591 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
593 } else {
594 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 }
596
597 /*
598 * 802.3x flow control
599 */
600 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
601 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
602 } else {
603 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
604 }
605 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
606 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
607 } else {
608 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
609 }
610 }
611
612 /*
613 * Update rx threshold levels to values in a particular slot
614 * of the interrupt-mitigation table bge_rx_threshes.
615 */
616 static void
617 bge_set_thresh(struct ifnet *ifp, int lvl)
618 {
619 struct bge_softc *sc = ifp->if_softc;
620 int s;
621
622 /* For now, just save the new Rx-intr thresholds and record
623 * that a threshold update is pending. Updating the hardware
624 * registers here (even at splhigh()) is observed to
625 * occasionaly cause glitches where Rx-interrupts are not
626 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
627 */
628 s = splnet();
629 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
630 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
631 sc->bge_pending_rxintr_change = 1;
632 splx(s);
633
634 return;
635 }
636
637
638 /*
639 * Update Rx thresholds of all bge devices
640 */
641 static void
642 bge_update_all_threshes(int lvl)
643 {
644 struct ifnet *ifp;
645 const char * const namebuf = "bge";
646 int namelen;
647
648 if (lvl < 0)
649 lvl = 0;
650 else if( lvl >= NBGE_RX_THRESH)
651 lvl = NBGE_RX_THRESH - 1;
652
653 namelen = strlen(namebuf);
654 /*
655 * Now search all the interfaces for this name/number
656 */
657 IFNET_FOREACH(ifp) {
658 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
659 continue;
660 /* We got a match: update if doing auto-threshold-tuning */
661 if (bge_auto_thresh)
662 bge_set_thresh(ifp, lvl);
663 }
664 }
665
666 /*
667 * Handle events that have triggered interrupts.
668 */
669 static void
670 bge_handle_events(struct bge_softc *sc)
671 {
672
673 return;
674 }
675
676 /*
677 * Memory management for jumbo frames.
678 */
679
680 static int
681 bge_alloc_jumbo_mem(struct bge_softc *sc)
682 {
683 char *ptr, *kva;
684 bus_dma_segment_t seg;
685 int i, rseg, state, error;
686 struct bge_jpool_entry *entry;
687
688 state = error = 0;
689
690 /* Grab a big chunk o' storage. */
691 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
692 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
693 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
694 return ENOBUFS;
695 }
696
697 state = 1;
698 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
699 BUS_DMA_NOWAIT)) {
700 aprint_error_dev(sc->bge_dev,
701 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
702 error = ENOBUFS;
703 goto out;
704 }
705
706 state = 2;
707 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
708 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
709 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
710 error = ENOBUFS;
711 goto out;
712 }
713
714 state = 3;
715 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
716 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
717 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
718 error = ENOBUFS;
719 goto out;
720 }
721
722 state = 4;
723 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
724 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
725
726 SLIST_INIT(&sc->bge_jfree_listhead);
727 SLIST_INIT(&sc->bge_jinuse_listhead);
728
729 /*
730 * Now divide it up into 9K pieces and save the addresses
731 * in an array.
732 */
733 ptr = sc->bge_cdata.bge_jumbo_buf;
734 for (i = 0; i < BGE_JSLOTS; i++) {
735 sc->bge_cdata.bge_jslots[i] = ptr;
736 ptr += BGE_JLEN;
737 entry = malloc(sizeof(struct bge_jpool_entry),
738 M_DEVBUF, M_NOWAIT);
739 if (entry == NULL) {
740 aprint_error_dev(sc->bge_dev,
741 "no memory for jumbo buffer queue!\n");
742 error = ENOBUFS;
743 goto out;
744 }
745 entry->slot = i;
746 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
747 entry, jpool_entries);
748 }
749 out:
750 if (error != 0) {
751 switch (state) {
752 case 4:
753 bus_dmamap_unload(sc->bge_dmatag,
754 sc->bge_cdata.bge_rx_jumbo_map);
755 case 3:
756 bus_dmamap_destroy(sc->bge_dmatag,
757 sc->bge_cdata.bge_rx_jumbo_map);
758 case 2:
759 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
760 case 1:
761 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
762 break;
763 default:
764 break;
765 }
766 }
767
768 return error;
769 }
770
771 /*
772 * Allocate a jumbo buffer.
773 */
774 static void *
775 bge_jalloc(struct bge_softc *sc)
776 {
777 struct bge_jpool_entry *entry;
778
779 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
780
781 if (entry == NULL) {
782 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
783 return(NULL);
784 }
785
786 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
787 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
788 return(sc->bge_cdata.bge_jslots[entry->slot]);
789 }
790
791 /*
792 * Release a jumbo buffer.
793 */
794 static void
795 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
796 {
797 struct bge_jpool_entry *entry;
798 struct bge_softc *sc;
799 int i, s;
800
801 /* Extract the softc struct pointer. */
802 sc = (struct bge_softc *)arg;
803
804 if (sc == NULL)
805 panic("bge_jfree: can't find softc pointer!");
806
807 /* calculate the slot this buffer belongs to */
808
809 i = ((char *)buf
810 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
811
812 if ((i < 0) || (i >= BGE_JSLOTS))
813 panic("bge_jfree: asked to free buffer that we don't manage!");
814
815 s = splvm();
816 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
817 if (entry == NULL)
818 panic("bge_jfree: buffer not in use!");
819 entry->slot = i;
820 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
821 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
822
823 if (__predict_true(m != NULL))
824 pool_cache_put(mb_cache, m);
825 splx(s);
826 }
827
828
829 /*
830 * Intialize a standard receive ring descriptor.
831 */
832 static int
833 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
834 {
835 struct mbuf *m_new = NULL;
836 struct bge_rx_bd *r;
837 int error;
838
839 if (dmamap == NULL) {
840 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
841 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
842 if (error != 0)
843 return error;
844 }
845
846 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
847
848 if (m == NULL) {
849 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
850 if (m_new == NULL) {
851 return(ENOBUFS);
852 }
853
854 MCLGET(m_new, M_DONTWAIT);
855 if (!(m_new->m_flags & M_EXT)) {
856 m_freem(m_new);
857 return(ENOBUFS);
858 }
859 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
860
861 } else {
862 m_new = m;
863 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
864 m_new->m_data = m_new->m_ext.ext_buf;
865 }
866 if (!sc->bge_rx_alignment_bug)
867 m_adj(m_new, ETHER_ALIGN);
868 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
869 BUS_DMA_READ|BUS_DMA_NOWAIT))
870 return(ENOBUFS);
871 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
872 BUS_DMASYNC_PREREAD);
873
874 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
875 r = &sc->bge_rdata->bge_rx_std_ring[i];
876 bge_set_hostaddr(&r->bge_addr,
877 dmamap->dm_segs[0].ds_addr);
878 r->bge_flags = BGE_RXBDFLAG_END;
879 r->bge_len = m_new->m_len;
880 r->bge_idx = i;
881
882 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
883 offsetof(struct bge_ring_data, bge_rx_std_ring) +
884 i * sizeof (struct bge_rx_bd),
885 sizeof (struct bge_rx_bd),
886 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
887
888 return(0);
889 }
890
891 /*
892 * Initialize a jumbo receive ring descriptor. This allocates
893 * a jumbo buffer from the pool managed internally by the driver.
894 */
895 static int
896 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
897 {
898 struct mbuf *m_new = NULL;
899 struct bge_rx_bd *r;
900 void *buf = NULL;
901
902 if (m == NULL) {
903
904 /* Allocate the mbuf. */
905 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
906 if (m_new == NULL) {
907 return(ENOBUFS);
908 }
909
910 /* Allocate the jumbo buffer */
911 buf = bge_jalloc(sc);
912 if (buf == NULL) {
913 m_freem(m_new);
914 aprint_error_dev(sc->bge_dev,
915 "jumbo allocation failed -- packet dropped!\n");
916 return(ENOBUFS);
917 }
918
919 /* Attach the buffer to the mbuf. */
920 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
921 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
922 bge_jfree, sc);
923 m_new->m_flags |= M_EXT_RW;
924 } else {
925 m_new = m;
926 buf = m_new->m_data = m_new->m_ext.ext_buf;
927 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
928 }
929 if (!sc->bge_rx_alignment_bug)
930 m_adj(m_new, ETHER_ALIGN);
931 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
932 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
933 BUS_DMASYNC_PREREAD);
934 /* Set up the descriptor. */
935 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
936 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
937 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
938 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
939 r->bge_len = m_new->m_len;
940 r->bge_idx = i;
941
942 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
943 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
944 i * sizeof (struct bge_rx_bd),
945 sizeof (struct bge_rx_bd),
946 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
947
948 return(0);
949 }
950
951 /*
952 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
953 * that's 1MB or memory, which is a lot. For now, we fill only the first
954 * 256 ring entries and hope that our CPU is fast enough to keep up with
955 * the NIC.
956 */
957 static int
958 bge_init_rx_ring_std(struct bge_softc *sc)
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 static void
979 bge_free_rx_ring_std(struct bge_softc *sc)
980 {
981 int i;
982
983 if (!(sc->bge_flags & BGE_RXRING_VALID))
984 return;
985
986 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
987 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
988 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
989 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
990 bus_dmamap_destroy(sc->bge_dmatag,
991 sc->bge_cdata.bge_rx_std_map[i]);
992 }
993 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
994 sizeof(struct bge_rx_bd));
995 }
996
997 sc->bge_flags &= ~BGE_RXRING_VALID;
998 }
999
1000 static int
1001 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1002 {
1003 int i;
1004 volatile struct bge_rcb *rcb;
1005
1006 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1007 return 0;
1008
1009 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1010 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1011 return(ENOBUFS);
1012 };
1013
1014 sc->bge_jumbo = i - 1;
1015 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1016
1017 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1018 rcb->bge_maxlen_flags = 0;
1019 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1020
1021 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1022
1023 return(0);
1024 }
1025
1026 static void
1027 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1028 {
1029 int i;
1030
1031 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1032 return;
1033
1034 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1035 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1036 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1037 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1038 }
1039 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1040 sizeof(struct bge_rx_bd));
1041 }
1042
1043 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1044 }
1045
1046 static void
1047 bge_free_tx_ring(struct bge_softc *sc)
1048 {
1049 int i, freed;
1050 struct txdmamap_pool_entry *dma;
1051
1052 if (!(sc->bge_flags & BGE_TXRING_VALID))
1053 return;
1054
1055 freed = 0;
1056
1057 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1058 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1059 freed++;
1060 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1061 sc->bge_cdata.bge_tx_chain[i] = NULL;
1062 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1067 sizeof(struct bge_tx_bd));
1068 }
1069
1070 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1071 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 sc->bge_flags &= ~BGE_TXRING_VALID;
1077 }
1078
1079 static int
1080 bge_init_tx_ring(struct bge_softc *sc)
1081 {
1082 int i;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 if (sc->bge_flags & BGE_TXRING_VALID)
1087 return 0;
1088
1089 sc->bge_txcnt = 0;
1090 sc->bge_tx_saved_considx = 0;
1091
1092 /* Initialize transmit producer index for host-memory send ring. */
1093 sc->bge_tx_prodidx = 0;
1094 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1095 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1097
1098 /* NIC-memory send ring not used; initialize to zero. */
1099 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1100 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1101 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1102
1103 SLIST_INIT(&sc->txdma_list);
1104 for (i = 0; i < BGE_RSLOTS; i++) {
1105 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1106 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1107 &dmamap))
1108 return(ENOBUFS);
1109 if (dmamap == NULL)
1110 panic("dmamap NULL in bge_init_tx_ring");
1111 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1112 if (dma == NULL) {
1113 aprint_error_dev(sc->bge_dev,
1114 "can't alloc txdmamap_pool_entry\n");
1115 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1116 return (ENOMEM);
1117 }
1118 dma->dmamap = dmamap;
1119 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1120 }
1121
1122 sc->bge_flags |= BGE_TXRING_VALID;
1123
1124 return(0);
1125 }
1126
1127 static void
1128 bge_setmulti(struct bge_softc *sc)
1129 {
1130 struct ethercom *ac = &sc->ethercom;
1131 struct ifnet *ifp = &ac->ec_if;
1132 struct ether_multi *enm;
1133 struct ether_multistep step;
1134 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1135 u_int32_t h;
1136 int i;
1137
1138 if (ifp->if_flags & IFF_PROMISC)
1139 goto allmulti;
1140
1141 /* Now program new ones. */
1142 ETHER_FIRST_MULTI(step, ac, enm);
1143 while (enm != NULL) {
1144 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1145 /*
1146 * We must listen to a range of multicast addresses.
1147 * For now, just accept all multicasts, rather than
1148 * trying to set only those filter bits needed to match
1149 * the range. (At this time, the only use of address
1150 * ranges is for IP multicast routing, for which the
1151 * range is big enough to require all bits set.)
1152 */
1153 goto allmulti;
1154 }
1155
1156 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1157
1158 /* Just want the 7 least-significant bits. */
1159 h &= 0x7f;
1160
1161 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1162 ETHER_NEXT_MULTI(step, enm);
1163 }
1164
1165 ifp->if_flags &= ~IFF_ALLMULTI;
1166 goto setit;
1167
1168 allmulti:
1169 ifp->if_flags |= IFF_ALLMULTI;
1170 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1171
1172 setit:
1173 for (i = 0; i < 4; i++)
1174 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1175 }
1176
1177 const int bge_swapbits[] = {
1178 0,
1179 BGE_MODECTL_BYTESWAP_DATA,
1180 BGE_MODECTL_WORDSWAP_DATA,
1181 BGE_MODECTL_BYTESWAP_NONFRAME,
1182 BGE_MODECTL_WORDSWAP_NONFRAME,
1183
1184 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1185 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1187
1188 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1189 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1190
1191 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1194 BGE_MODECTL_BYTESWAP_NONFRAME,
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_WORDSWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201
1202 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1203 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1204 };
1205
1206 int bge_swapindex = 0;
1207
1208 /*
1209 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1210 * self-test results.
1211 */
1212 static int
1213 bge_chipinit(struct bge_softc *sc)
1214 {
1215 u_int32_t cachesize;
1216 int i;
1217 u_int32_t dma_rw_ctl;
1218
1219
1220 /* Set endianness before we access any non-PCI registers. */
1221 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1222 BGE_INIT);
1223
1224 /* Set power state to D0. */
1225 bge_setpowerstate(sc, 0);
1226
1227 /*
1228 * Check the 'ROM failed' bit on the RX CPU to see if
1229 * self-tests passed.
1230 */
1231 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1232 aprint_error_dev(sc->bge_dev,
1233 "RX CPU self-diagnostics failed!\n");
1234 return(ENODEV);
1235 }
1236
1237 /* Clear the MAC control register */
1238 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1239
1240 /*
1241 * Clear the MAC statistics block in the NIC's
1242 * internal memory.
1243 */
1244 for (i = BGE_STATS_BLOCK;
1245 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1246 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1247
1248 for (i = BGE_STATUS_BLOCK;
1249 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1250 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1251
1252 /* Set up the PCI DMA control register. */
1253 if (sc->bge_pcie) {
1254 u_int32_t device_ctl;
1255
1256 /* From FreeBSD */
1257 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1258 device_xname(sc->bge_dev)));
1259 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1260 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1262
1263 /* jonathan: alternative from Linux driver */
1264 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1265 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1266
1267 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1268 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1269 BGE_PCI_CONF_DEV_CTRL);
1270 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1271
1272 if ((device_ctl & 0x00e0) && 0) {
1273 /*
1274 * XXX jonathan (at) NetBSD.org:
1275 * This clause is exactly what the Broadcom-supplied
1276 * Linux does; but given overall register programming
1277 * by if_bge(4), this larger DMA-write watermark
1278 * value causes bcm5721 chips to totally wedge.
1279 */
1280 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1281 } else {
1282 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1283 }
1284 } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1285 BGE_PCISTATE_PCI_BUSMODE) {
1286 /* Conventional PCI bus */
1287 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1288 device_xname(sc->bge_dev)));
1289 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1290 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1291 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 dma_rw_ctl |= 0x0F;
1294 }
1295 } else {
1296 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1297 device_xname(sc->bge_dev)));
1298 /* PCI-X bus */
1299 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1300 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1301 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1302 (0x0F);
1303 /*
1304 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1305 * for hardware bugs, which means we should also clear
1306 * the low-order MINDMA bits. In addition, the 5704
1307 * uses a different encoding of read/write watermarks.
1308 */
1309 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1310 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1311 /* should be 0x1f0000 */
1312 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1314 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1315 }
1316 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1317 dma_rw_ctl &= 0xfffffff0;
1318 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1319 }
1320 else if (BGE_IS_5714_FAMILY(sc)) {
1321 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1322 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1323 /* XXX magic values, Broadcom-supplied Linux driver */
1324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1325 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1326 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 else
1328 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1329 }
1330 }
1331
1332 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1333
1334 /*
1335 * Set up general mode register.
1336 */
1337 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1338 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1339 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1340
1341 /* Get cache line size. */
1342 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1343
1344 /*
1345 * Avoid violating PCI spec on certain chip revs.
1346 */
1347 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1348 PCIM_CMD_MWIEN) {
1349 switch(cachesize) {
1350 case 1:
1351 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1352 BGE_PCI_WRITE_BNDRY_16BYTES);
1353 break;
1354 case 2:
1355 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1356 BGE_PCI_WRITE_BNDRY_32BYTES);
1357 break;
1358 case 4:
1359 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1360 BGE_PCI_WRITE_BNDRY_64BYTES);
1361 break;
1362 case 8:
1363 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1364 BGE_PCI_WRITE_BNDRY_128BYTES);
1365 break;
1366 case 16:
1367 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1368 BGE_PCI_WRITE_BNDRY_256BYTES);
1369 break;
1370 case 32:
1371 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1372 BGE_PCI_WRITE_BNDRY_512BYTES);
1373 break;
1374 case 64:
1375 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1376 BGE_PCI_WRITE_BNDRY_1024BYTES);
1377 break;
1378 default:
1379 /* Disable PCI memory write and invalidate. */
1380 #if 0
1381 if (bootverbose)
1382 aprint_error_dev(sc->bge_dev,
1383 "cache line size %d not supported "
1384 "disabling PCI MWI\n",
1385 #endif
1386 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1387 PCIM_CMD_MWIEN);
1388 break;
1389 }
1390 }
1391
1392 /*
1393 * Disable memory write invalidate. Apparently it is not supported
1394 * properly by these devices.
1395 */
1396 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1397
1398
1399 #ifdef __brokenalpha__
1400 /*
1401 * Must insure that we do not cross an 8K (bytes) boundary
1402 * for DMA reads. Our highest limit is 1K bytes. This is a
1403 * restriction on some ALPHA platforms with early revision
1404 * 21174 PCI chipsets, such as the AlphaPC 164lx
1405 */
1406 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1407 #endif
1408
1409 /* Set the timer prescaler (always 66MHz) */
1410 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1411
1412 return(0);
1413 }
1414
1415 static int
1416 bge_blockinit(struct bge_softc *sc)
1417 {
1418 volatile struct bge_rcb *rcb;
1419 bus_size_t rcb_addr;
1420 int i;
1421 struct ifnet *ifp = &sc->ethercom.ec_if;
1422 bge_hostaddr taddr;
1423
1424 /*
1425 * Initialize the memory window pointer register so that
1426 * we can access the first 32K of internal NIC RAM. This will
1427 * allow us to set up the TX send ring RCBs and the RX return
1428 * ring RCBs, plus other things which live in NIC memory.
1429 */
1430
1431 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1432
1433 /* Configure mbuf memory pool */
1434 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1435 if (sc->bge_extram) {
1436 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1437 BGE_EXT_SSRAM);
1438 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1439 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1440 else
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1442 } else {
1443 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1444 BGE_BUFFPOOL_1);
1445 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1447 else
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1449 }
1450
1451 /* Configure DMA resource pool */
1452 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1453 BGE_DMA_DESCRIPTORS);
1454 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1455 }
1456
1457 /* Configure mbuf pool watermarks */
1458 #ifdef ORIG_WPAUL_VALUES
1459 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1460 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1461 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1462 #else
1463 /* new broadcom docs strongly recommend these: */
1464 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1465 if (ifp->if_mtu > ETHER_MAX_LEN) {
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1467 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1469 } else {
1470 /* Values from Linux driver... */
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1474 }
1475 } else {
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1479 }
1480 #endif
1481
1482 /* Configure DMA resource watermarks */
1483 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1484 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1485
1486 /* Enable buffer manager */
1487 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1488 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1489
1490 /* Poll for buffer manager start indication */
1491 for (i = 0; i < BGE_TIMEOUT; i++) {
1492 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1493 break;
1494 DELAY(10);
1495 }
1496
1497 if (i == BGE_TIMEOUT) {
1498 aprint_error_dev(sc->bge_dev,
1499 "buffer manager failed to start\n");
1500 return(ENXIO);
1501 }
1502
1503 /* Enable flow-through queues */
1504 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1505 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1506
1507 /* Wait until queue initialization is complete */
1508 for (i = 0; i < BGE_TIMEOUT; i++) {
1509 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1510 break;
1511 DELAY(10);
1512 }
1513
1514 if (i == BGE_TIMEOUT) {
1515 aprint_error_dev(sc->bge_dev,
1516 "flow-through queue init failed\n");
1517 return(ENXIO);
1518 }
1519
1520 /* Initialize the standard RX ring control block */
1521 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1522 bge_set_hostaddr(&rcb->bge_hostaddr,
1523 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1524 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1525 rcb->bge_maxlen_flags =
1526 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1527 } else {
1528 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1529 }
1530 if (sc->bge_extram)
1531 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1532 else
1533 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1534 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1535 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1538
1539 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1541 } else {
1542 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1543 }
1544
1545 /*
1546 * Initialize the jumbo RX ring control block
1547 * We set the 'ring disabled' bit in the flags
1548 * field until we're actually ready to start
1549 * using this ring (i.e. once we set the MTU
1550 * high enough to require it).
1551 */
1552 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1553 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1554 bge_set_hostaddr(&rcb->bge_hostaddr,
1555 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1556 rcb->bge_maxlen_flags =
1557 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1558 BGE_RCB_FLAG_RING_DISABLED);
1559 if (sc->bge_extram)
1560 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1561 else
1562 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1563
1564 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1565 rcb->bge_hostaddr.bge_addr_hi);
1566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1567 rcb->bge_hostaddr.bge_addr_lo);
1568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1569 rcb->bge_maxlen_flags);
1570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1571
1572 /* Set up dummy disabled mini ring RCB */
1573 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1574 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1575 BGE_RCB_FLAG_RING_DISABLED);
1576 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1577 rcb->bge_maxlen_flags);
1578
1579 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1580 offsetof(struct bge_ring_data, bge_info),
1581 sizeof (struct bge_gib),
1582 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583 }
1584
1585 /*
1586 * Set the BD ring replenish thresholds. The recommended
1587 * values are 1/8th the number of descriptors allocated to
1588 * each ring.
1589 */
1590 i = BGE_STD_RX_RING_CNT / 8;
1591
1592 /*
1593 * Use a value of 8 for the following chips to workaround HW errata.
1594 * Some of these chips have been added based on empirical
1595 * evidence (they don't work unless this is done).
1596 */
1597 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1598 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1601 i = 8;
1602
1603 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1604 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1605
1606 /*
1607 * Disable all unused send rings by setting the 'ring disabled'
1608 * bit in the flags field of all the TX send ring control blocks.
1609 * These are located in NIC memory.
1610 */
1611 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1612 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1613 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1614 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1615 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1616 rcb_addr += sizeof(struct bge_rcb);
1617 }
1618
1619 /* Configure TX RCB 0 (we use only the first ring) */
1620 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1621 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1622 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1623 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1624 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1625 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1626 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1627 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1628 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1629 }
1630
1631 /* Disable all unused RX return rings */
1632 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1633 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1634 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1635 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1636 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1637 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1638 BGE_RCB_FLAG_RING_DISABLED));
1639 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1640 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1641 (i * (sizeof(u_int64_t))), 0);
1642 rcb_addr += sizeof(struct bge_rcb);
1643 }
1644
1645 /* Initialize RX ring indexes */
1646 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1647 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1648 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1649
1650 /*
1651 * Set up RX return ring 0
1652 * Note that the NIC address for RX return rings is 0x00000000.
1653 * The return rings live entirely within the host, so the
1654 * nicaddr field in the RCB isn't used.
1655 */
1656 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1657 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1659 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1661 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1662 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1663
1664 /* Set random backoff seed for TX */
1665 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1666 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1667 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1668 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1669 BGE_TX_BACKOFF_SEED_MASK);
1670
1671 /* Set inter-packet gap */
1672 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1673
1674 /*
1675 * Specify which ring to use for packets that don't match
1676 * any RX rules.
1677 */
1678 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1679
1680 /*
1681 * Configure number of RX lists. One interrupt distribution
1682 * list, sixteen active lists, one bad frames class.
1683 */
1684 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1685
1686 /* Inialize RX list placement stats mask. */
1687 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1688 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1689
1690 /* Disable host coalescing until we get it set up */
1691 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1692
1693 /* Poll to make sure it's shut down. */
1694 for (i = 0; i < BGE_TIMEOUT; i++) {
1695 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1696 break;
1697 DELAY(10);
1698 }
1699
1700 if (i == BGE_TIMEOUT) {
1701 aprint_error_dev(sc->bge_dev,
1702 "host coalescing engine failed to idle\n");
1703 return(ENXIO);
1704 }
1705
1706 /* Set up host coalescing defaults */
1707 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1708 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1709 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1710 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1711 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1712 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1713 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1714 }
1715 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1716 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1717
1718 /* Set up address of statistics block */
1719 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1720 bge_set_hostaddr(&taddr,
1721 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1722 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1723 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1724 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1725 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1726 }
1727
1728 /* Set up address of status block */
1729 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1730 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1731 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1732 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1733 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1734 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1735
1736 /* Turn on host coalescing state machine */
1737 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1738
1739 /* Turn on RX BD completion state machine and enable attentions */
1740 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1741 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1742
1743 /* Turn on RX list placement state machine */
1744 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1745
1746 /* Turn on RX list selector state machine. */
1747 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1748 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1749 }
1750
1751 /* Turn on DMA, clear stats */
1752 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1753 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1754 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1755 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1756 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1757
1758 /* Set misc. local control, enable interrupts on attentions */
1759 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1760
1761 #ifdef notdef
1762 /* Assert GPIO pins for PHY reset */
1763 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1764 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1765 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1766 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1767 #endif
1768
1769 #if defined(not_quite_yet)
1770 /* Linux driver enables enable gpio pin #1 on 5700s */
1771 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1772 sc->bge_local_ctrl_reg |=
1773 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1774 }
1775 #endif
1776 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1777
1778 /* Turn on DMA completion state machine */
1779 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1780 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1781 }
1782
1783 /* Turn on write DMA state machine */
1784 {
1785 uint32_t bge_wdma_mode =
1786 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1787
1788 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1789 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1790 /* Enable host coalescing bug fix; see Linux tg3.c */
1791 bge_wdma_mode |= (1 << 29);
1792
1793 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1794 }
1795
1796 /* Turn on read DMA state machine */
1797 {
1798 uint32_t dma_read_modebits;
1799
1800 dma_read_modebits =
1801 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1802
1803 if (sc->bge_pcie && 0) {
1804 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1805 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1806 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1807 }
1808
1809 /* XXX broadcom-supplied linux driver; undocumented */
1810 if (BGE_IS_5750_OR_BEYOND(sc)) {
1811 /*
1812 * XXX: magic values.
1813 * From Broadcom-supplied Linux driver; apparently
1814 * required to workaround a DMA bug affecting TSO
1815 * on bcm575x/bcm5721?
1816 */
1817 dma_read_modebits |= (1 << 27);
1818 }
1819 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1820 }
1821
1822 /* Turn on RX data completion state machine */
1823 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1824
1825 /* Turn on RX BD initiator state machine */
1826 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1827
1828 /* Turn on RX data and RX BD initiator state machine */
1829 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1830
1831 /* Turn on Mbuf cluster free state machine */
1832 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1833 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1834 }
1835
1836 /* Turn on send BD completion state machine */
1837 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1838
1839 /* Turn on send data completion state machine */
1840 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1841
1842 /* Turn on send data initiator state machine */
1843 if (BGE_IS_5750_OR_BEYOND(sc)) {
1844 /* XXX: magic value from Linux driver */
1845 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1846 } else {
1847 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1848 }
1849
1850 /* Turn on send BD initiator state machine */
1851 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1852
1853 /* Turn on send BD selector state machine */
1854 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1855
1856 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1857 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1858 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1859
1860 /* ack/clear link change events */
1861 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1862 BGE_MACSTAT_CFG_CHANGED);
1863 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1864
1865 /* Enable PHY auto polling (for MII/GMII only) */
1866 if (sc->bge_tbi) {
1867 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1868 } else {
1869 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1870 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1871 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1872 BGE_EVTENB_MI_INTERRUPT);
1873 }
1874
1875 /* Enable link state change attentions. */
1876 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1877
1878 return(0);
1879 }
1880
1881 static const struct bge_revision {
1882 uint32_t br_chipid;
1883 uint32_t br_quirks;
1884 const char *br_name;
1885 } bge_revisions[] = {
1886 { BGE_CHIPID_BCM5700_A0,
1887 BGE_QUIRK_LINK_STATE_BROKEN,
1888 "BCM5700 A0" },
1889
1890 { BGE_CHIPID_BCM5700_A1,
1891 BGE_QUIRK_LINK_STATE_BROKEN,
1892 "BCM5700 A1" },
1893
1894 { BGE_CHIPID_BCM5700_B0,
1895 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1896 "BCM5700 B0" },
1897
1898 { BGE_CHIPID_BCM5700_B1,
1899 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1900 "BCM5700 B1" },
1901
1902 { BGE_CHIPID_BCM5700_B2,
1903 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1904 "BCM5700 B2" },
1905
1906 { BGE_CHIPID_BCM5700_B3,
1907 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1908 "BCM5700 B3" },
1909
1910 /* This is treated like a BCM5700 Bx */
1911 { BGE_CHIPID_BCM5700_ALTIMA,
1912 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1913 "BCM5700 Altima" },
1914
1915 { BGE_CHIPID_BCM5700_C0,
1916 0,
1917 "BCM5700 C0" },
1918
1919 { BGE_CHIPID_BCM5701_A0,
1920 0, /*XXX really, just not known */
1921 "BCM5701 A0" },
1922
1923 { BGE_CHIPID_BCM5701_B0,
1924 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1925 "BCM5701 B0" },
1926
1927 { BGE_CHIPID_BCM5701_B2,
1928 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1929 "BCM5701 B2" },
1930
1931 { BGE_CHIPID_BCM5701_B5,
1932 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1933 "BCM5701 B5" },
1934
1935 { BGE_CHIPID_BCM5703_A0,
1936 0,
1937 "BCM5703 A0" },
1938
1939 { BGE_CHIPID_BCM5703_A1,
1940 0,
1941 "BCM5703 A1" },
1942
1943 { BGE_CHIPID_BCM5703_A2,
1944 BGE_QUIRK_ONLY_PHY_1,
1945 "BCM5703 A2" },
1946
1947 { BGE_CHIPID_BCM5703_A3,
1948 BGE_QUIRK_ONLY_PHY_1,
1949 "BCM5703 A3" },
1950
1951 { BGE_CHIPID_BCM5703_B0,
1952 BGE_QUIRK_ONLY_PHY_1,
1953 "BCM5703 B0" },
1954
1955 { BGE_CHIPID_BCM5704_A0,
1956 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1957 "BCM5704 A0" },
1958
1959 { BGE_CHIPID_BCM5704_A1,
1960 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1961 "BCM5704 A1" },
1962
1963 { BGE_CHIPID_BCM5704_A2,
1964 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1965 "BCM5704 A2" },
1966
1967 { BGE_CHIPID_BCM5704_A3,
1968 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1969 "BCM5704 A3" },
1970
1971 { BGE_CHIPID_BCM5705_A0,
1972 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1973 "BCM5705 A0" },
1974
1975 { BGE_CHIPID_BCM5705_A1,
1976 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1977 "BCM5705 A1" },
1978
1979 { BGE_CHIPID_BCM5705_A2,
1980 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1981 "BCM5705 A2" },
1982
1983 { BGE_CHIPID_BCM5705_A3,
1984 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1985 "BCM5705 A3" },
1986
1987 { BGE_CHIPID_BCM5750_A0,
1988 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1989 "BCM5750 A0" },
1990
1991 { BGE_CHIPID_BCM5750_A1,
1992 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1993 "BCM5750 A1" },
1994
1995 { BGE_CHIPID_BCM5751_A1,
1996 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1997 "BCM5751 A1" },
1998
1999 { BGE_CHIPID_BCM5752_A0,
2000 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2001 "BCM5752 A0" },
2002
2003 { BGE_CHIPID_BCM5752_A1,
2004 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2005 "BCM5752 A1" },
2006
2007 { BGE_CHIPID_BCM5752_A2,
2008 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2009 "BCM5752 A2" },
2010
2011 { BGE_CHIPID_BCM5755_A0,
2012 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2013 "BCM5755 A0" },
2014
2015 { BGE_CHIPID_BCM5755_A1,
2016 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2017 "BCM5755 A1" },
2018
2019 { BGE_CHIPID_BCM5755_A2,
2020 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2021 "BCM5755 A2" },
2022
2023 { BGE_CHIPID_BCM5755_C0,
2024 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2025 "BCM5755 C0" },
2026
2027 { BGE_CHIPID_BCM5787_A0,
2028 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2029 "BCM5754/5787 A0" },
2030
2031 { BGE_CHIPID_BCM5787_A1,
2032 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2033 "BCM5754/5787 A1" },
2034
2035 { BGE_CHIPID_BCM5787_A2,
2036 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2037 "BCM5754/5787 A2" },
2038
2039 { 0, 0, NULL }
2040 };
2041
2042 /*
2043 * Some defaults for major revisions, so that newer steppings
2044 * that we don't know about have a shot at working.
2045 */
2046 static const struct bge_revision bge_majorrevs[] = {
2047 { BGE_ASICREV_BCM5700,
2048 BGE_QUIRK_LINK_STATE_BROKEN,
2049 "unknown BCM5700" },
2050
2051 { BGE_ASICREV_BCM5701,
2052 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2053 "unknown BCM5701" },
2054
2055 { BGE_ASICREV_BCM5703,
2056 0,
2057 "unknown BCM5703" },
2058
2059 { BGE_ASICREV_BCM5704,
2060 BGE_QUIRK_ONLY_PHY_1,
2061 "unknown BCM5704" },
2062
2063 { BGE_ASICREV_BCM5705,
2064 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2065 "unknown BCM5705" },
2066
2067 { BGE_ASICREV_BCM5750,
2068 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2069 "unknown BCM575x family" },
2070
2071 { BGE_ASICREV_BCM5714_A0,
2072 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2073 "unknown BCM5714" },
2074
2075 { BGE_ASICREV_BCM5714,
2076 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2077 "unknown BCM5714" },
2078
2079 { BGE_ASICREV_BCM5752,
2080 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2081 "unknown BCM5752 family" },
2082
2083 { BGE_ASICREV_BCM5755,
2084 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2085 "unknown BCM5755" },
2086
2087 { BGE_ASICREV_BCM5780,
2088 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2089 "unknown BCM5780" },
2090
2091 { BGE_ASICREV_BCM5787,
2092 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2093 "unknown BCM5787" },
2094
2095 { 0,
2096 0,
2097 NULL }
2098 };
2099
2100
2101 static const struct bge_revision *
2102 bge_lookup_rev(uint32_t chipid)
2103 {
2104 const struct bge_revision *br;
2105
2106 for (br = bge_revisions; br->br_name != NULL; br++) {
2107 if (br->br_chipid == chipid)
2108 return (br);
2109 }
2110
2111 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2112 if (br->br_chipid == BGE_ASICREV(chipid))
2113 return (br);
2114 }
2115
2116 return (NULL);
2117 }
2118
2119 static const struct bge_product {
2120 pci_vendor_id_t bp_vendor;
2121 pci_product_id_t bp_product;
2122 const char *bp_name;
2123 } bge_products[] = {
2124 /*
2125 * The BCM5700 documentation seems to indicate that the hardware
2126 * still has the Alteon vendor ID burned into it, though it
2127 * should always be overridden by the value in the EEPROM. We'll
2128 * check for it anyway.
2129 */
2130 { PCI_VENDOR_ALTEON,
2131 PCI_PRODUCT_ALTEON_BCM5700,
2132 "Broadcom BCM5700 Gigabit Ethernet",
2133 },
2134 { PCI_VENDOR_ALTEON,
2135 PCI_PRODUCT_ALTEON_BCM5701,
2136 "Broadcom BCM5701 Gigabit Ethernet",
2137 },
2138
2139 { PCI_VENDOR_ALTIMA,
2140 PCI_PRODUCT_ALTIMA_AC1000,
2141 "Altima AC1000 Gigabit Ethernet",
2142 },
2143 { PCI_VENDOR_ALTIMA,
2144 PCI_PRODUCT_ALTIMA_AC1001,
2145 "Altima AC1001 Gigabit Ethernet",
2146 },
2147 { PCI_VENDOR_ALTIMA,
2148 PCI_PRODUCT_ALTIMA_AC9100,
2149 "Altima AC9100 Gigabit Ethernet",
2150 },
2151
2152 { PCI_VENDOR_BROADCOM,
2153 PCI_PRODUCT_BROADCOM_BCM5700,
2154 "Broadcom BCM5700 Gigabit Ethernet",
2155 },
2156 { PCI_VENDOR_BROADCOM,
2157 PCI_PRODUCT_BROADCOM_BCM5701,
2158 "Broadcom BCM5701 Gigabit Ethernet",
2159 },
2160 { PCI_VENDOR_BROADCOM,
2161 PCI_PRODUCT_BROADCOM_BCM5702,
2162 "Broadcom BCM5702 Gigabit Ethernet",
2163 },
2164 { PCI_VENDOR_BROADCOM,
2165 PCI_PRODUCT_BROADCOM_BCM5702X,
2166 "Broadcom BCM5702X Gigabit Ethernet" },
2167
2168 { PCI_VENDOR_BROADCOM,
2169 PCI_PRODUCT_BROADCOM_BCM5703,
2170 "Broadcom BCM5703 Gigabit Ethernet",
2171 },
2172 { PCI_VENDOR_BROADCOM,
2173 PCI_PRODUCT_BROADCOM_BCM5703X,
2174 "Broadcom BCM5703X Gigabit Ethernet",
2175 },
2176 { PCI_VENDOR_BROADCOM,
2177 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2178 "Broadcom BCM5703 Gigabit Ethernet",
2179 },
2180
2181 { PCI_VENDOR_BROADCOM,
2182 PCI_PRODUCT_BROADCOM_BCM5704C,
2183 "Broadcom BCM5704C Dual Gigabit Ethernet",
2184 },
2185 { PCI_VENDOR_BROADCOM,
2186 PCI_PRODUCT_BROADCOM_BCM5704S,
2187 "Broadcom BCM5704S Dual Gigabit Ethernet",
2188 },
2189
2190 { PCI_VENDOR_BROADCOM,
2191 PCI_PRODUCT_BROADCOM_BCM5705,
2192 "Broadcom BCM5705 Gigabit Ethernet",
2193 },
2194 { PCI_VENDOR_BROADCOM,
2195 PCI_PRODUCT_BROADCOM_BCM5705K,
2196 "Broadcom BCM5705K Gigabit Ethernet",
2197 },
2198 { PCI_VENDOR_BROADCOM,
2199 PCI_PRODUCT_BROADCOM_BCM5705M,
2200 "Broadcom BCM5705M Gigabit Ethernet",
2201 },
2202 { PCI_VENDOR_BROADCOM,
2203 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2204 "Broadcom BCM5705M Gigabit Ethernet",
2205 },
2206
2207 { PCI_VENDOR_BROADCOM,
2208 PCI_PRODUCT_BROADCOM_BCM5714,
2209 "Broadcom BCM5714/5715 Gigabit Ethernet",
2210 },
2211 { PCI_VENDOR_BROADCOM,
2212 PCI_PRODUCT_BROADCOM_BCM5715,
2213 "Broadcom BCM5714/5715 Gigabit Ethernet",
2214 },
2215 { PCI_VENDOR_BROADCOM,
2216 PCI_PRODUCT_BROADCOM_BCM5789,
2217 "Broadcom BCM5789 Gigabit Ethernet",
2218 },
2219
2220 { PCI_VENDOR_BROADCOM,
2221 PCI_PRODUCT_BROADCOM_BCM5721,
2222 "Broadcom BCM5721 Gigabit Ethernet",
2223 },
2224
2225 { PCI_VENDOR_BROADCOM,
2226 PCI_PRODUCT_BROADCOM_BCM5722,
2227 "Broadcom BCM5722 Gigabit Ethernet",
2228 },
2229
2230 { PCI_VENDOR_BROADCOM,
2231 PCI_PRODUCT_BROADCOM_BCM5750,
2232 "Broadcom BCM5750 Gigabit Ethernet",
2233 },
2234
2235 { PCI_VENDOR_BROADCOM,
2236 PCI_PRODUCT_BROADCOM_BCM5750M,
2237 "Broadcom BCM5750M Gigabit Ethernet",
2238 },
2239
2240 { PCI_VENDOR_BROADCOM,
2241 PCI_PRODUCT_BROADCOM_BCM5751,
2242 "Broadcom BCM5751 Gigabit Ethernet",
2243 },
2244
2245 { PCI_VENDOR_BROADCOM,
2246 PCI_PRODUCT_BROADCOM_BCM5751M,
2247 "Broadcom BCM5751M Gigabit Ethernet",
2248 },
2249
2250 { PCI_VENDOR_BROADCOM,
2251 PCI_PRODUCT_BROADCOM_BCM5752,
2252 "Broadcom BCM5752 Gigabit Ethernet",
2253 },
2254
2255 { PCI_VENDOR_BROADCOM,
2256 PCI_PRODUCT_BROADCOM_BCM5752M,
2257 "Broadcom BCM5752M Gigabit Ethernet",
2258 },
2259
2260 { PCI_VENDOR_BROADCOM,
2261 PCI_PRODUCT_BROADCOM_BCM5753,
2262 "Broadcom BCM5753 Gigabit Ethernet",
2263 },
2264
2265 { PCI_VENDOR_BROADCOM,
2266 PCI_PRODUCT_BROADCOM_BCM5753M,
2267 "Broadcom BCM5753M Gigabit Ethernet",
2268 },
2269
2270 { PCI_VENDOR_BROADCOM,
2271 PCI_PRODUCT_BROADCOM_BCM5754,
2272 "Broadcom BCM5754 Gigabit Ethernet",
2273 },
2274
2275 { PCI_VENDOR_BROADCOM,
2276 PCI_PRODUCT_BROADCOM_BCM5754M,
2277 "Broadcom BCM5754M Gigabit Ethernet",
2278 },
2279
2280 { PCI_VENDOR_BROADCOM,
2281 PCI_PRODUCT_BROADCOM_BCM5755,
2282 "Broadcom BCM5755 Gigabit Ethernet",
2283 },
2284
2285 { PCI_VENDOR_BROADCOM,
2286 PCI_PRODUCT_BROADCOM_BCM5755M,
2287 "Broadcom BCM5755M Gigabit Ethernet",
2288 },
2289
2290 { PCI_VENDOR_BROADCOM,
2291 PCI_PRODUCT_BROADCOM_BCM5780,
2292 "Broadcom BCM5780 Gigabit Ethernet",
2293 },
2294
2295 { PCI_VENDOR_BROADCOM,
2296 PCI_PRODUCT_BROADCOM_BCM5780S,
2297 "Broadcom BCM5780S Gigabit Ethernet",
2298 },
2299
2300 { PCI_VENDOR_BROADCOM,
2301 PCI_PRODUCT_BROADCOM_BCM5782,
2302 "Broadcom BCM5782 Gigabit Ethernet",
2303 },
2304
2305 { PCI_VENDOR_BROADCOM,
2306 PCI_PRODUCT_BROADCOM_BCM5786,
2307 "Broadcom BCM5786 Gigabit Ethernet",
2308 },
2309
2310 { PCI_VENDOR_BROADCOM,
2311 PCI_PRODUCT_BROADCOM_BCM5787,
2312 "Broadcom BCM5787 Gigabit Ethernet",
2313 },
2314
2315 { PCI_VENDOR_BROADCOM,
2316 PCI_PRODUCT_BROADCOM_BCM5787M,
2317 "Broadcom BCM5787M Gigabit Ethernet",
2318 },
2319
2320 { PCI_VENDOR_BROADCOM,
2321 PCI_PRODUCT_BROADCOM_BCM5788,
2322 "Broadcom BCM5788 Gigabit Ethernet",
2323 },
2324 { PCI_VENDOR_BROADCOM,
2325 PCI_PRODUCT_BROADCOM_BCM5789,
2326 "Broadcom BCM5789 Gigabit Ethernet",
2327 },
2328
2329 { PCI_VENDOR_BROADCOM,
2330 PCI_PRODUCT_BROADCOM_BCM5901,
2331 "Broadcom BCM5901 Fast Ethernet",
2332 },
2333 { PCI_VENDOR_BROADCOM,
2334 PCI_PRODUCT_BROADCOM_BCM5901A2,
2335 "Broadcom BCM5901A2 Fast Ethernet",
2336 },
2337
2338 { PCI_VENDOR_SCHNEIDERKOCH,
2339 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2340 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2341 },
2342
2343 { PCI_VENDOR_3COM,
2344 PCI_PRODUCT_3COM_3C996,
2345 "3Com 3c996 Gigabit Ethernet",
2346 },
2347
2348 { 0,
2349 0,
2350 NULL },
2351 };
2352
2353 static const struct bge_product *
2354 bge_lookup(const struct pci_attach_args *pa)
2355 {
2356 const struct bge_product *bp;
2357
2358 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2359 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2360 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2361 return (bp);
2362 }
2363
2364 return (NULL);
2365 }
2366
2367 static int
2368 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2369 {
2370 #ifdef NOTYET
2371 u_int32_t pm_ctl = 0;
2372
2373 /* XXX FIXME: make sure indirect accesses enabled? */
2374 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2375 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2376 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2377
2378 /* clear the PME_assert bit and power state bits, enable PME */
2379 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2380 pm_ctl &= ~PCIM_PSTAT_DMASK;
2381 pm_ctl |= (1 << 8);
2382
2383 if (powerlevel == 0) {
2384 pm_ctl |= PCIM_PSTAT_D0;
2385 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2386 pm_ctl, 2);
2387 DELAY(10000);
2388 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2389 DELAY(10000);
2390
2391 #ifdef NOTYET
2392 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2393 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2394 #endif
2395 DELAY(40); DELAY(40); DELAY(40);
2396 DELAY(10000); /* above not quite adequate on 5700 */
2397 return 0;
2398 }
2399
2400
2401 /*
2402 * Entering ACPI power states D1-D3 is achieved by wiggling
2403 * GMII gpio pins. Example code assumes all hardware vendors
2404 * followed Broadom's sample pcb layout. Until we verify that
2405 * for all supported OEM cards, states D1-D3 are unsupported.
2406 */
2407 aprint_error_dev(sc->bge_dev,
2408 "power state %d unimplemented; check GPIO pins\n",
2409 powerlevel);
2410 #endif
2411 return EOPNOTSUPP;
2412 }
2413
2414
2415 /*
2416 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2417 * against our list and return its name if we find a match. Note
2418 * that since the Broadcom controller contains VPD support, we
2419 * can get the device name string from the controller itself instead
2420 * of the compiled-in string. This is a little slow, but it guarantees
2421 * we'll always announce the right product name.
2422 */
2423 static int
2424 bge_probe(device_t parent, cfdata_t match, void *aux)
2425 {
2426 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2427
2428 if (bge_lookup(pa) != NULL)
2429 return (1);
2430
2431 return (0);
2432 }
2433
2434 static void
2435 bge_attach(device_t parent, device_t self, void *aux)
2436 {
2437 struct bge_softc *sc = device_private(self);
2438 struct pci_attach_args *pa = aux;
2439 const struct bge_product *bp;
2440 const struct bge_revision *br;
2441 pci_chipset_tag_t pc;
2442 pci_intr_handle_t ih;
2443 const char *intrstr = NULL;
2444 bus_dma_segment_t seg;
2445 int rseg;
2446 u_int32_t hwcfg = 0;
2447 u_int32_t mac_addr = 0;
2448 u_int32_t command;
2449 struct ifnet *ifp;
2450 void * kva;
2451 u_char eaddr[ETHER_ADDR_LEN];
2452 pcireg_t memtype;
2453 bus_addr_t memaddr;
2454 bus_size_t memsize;
2455 u_int32_t pm_ctl;
2456
2457 bp = bge_lookup(pa);
2458 KASSERT(bp != NULL);
2459
2460 sc->sc_pc = pa->pa_pc;
2461 sc->sc_pcitag = pa->pa_tag;
2462 sc->bge_dev = self;
2463
2464 aprint_naive(": Ethernet controller\n");
2465 aprint_normal(": %s\n", bp->bp_name);
2466
2467 /*
2468 * Map control/status registers.
2469 */
2470 DPRINTFN(5, ("Map control/status regs\n"));
2471 pc = sc->sc_pc;
2472 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2473 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2474 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2475 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2476
2477 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2478 aprint_error_dev(sc->bge_dev,
2479 "failed to enable memory mapping!\n");
2480 return;
2481 }
2482
2483 DPRINTFN(5, ("pci_mem_find\n"));
2484 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2485 switch (memtype) {
2486 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2487 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2488 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2489 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2490 &memaddr, &memsize) == 0)
2491 break;
2492 default:
2493 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2494 return;
2495 }
2496
2497 DPRINTFN(5, ("pci_intr_map\n"));
2498 if (pci_intr_map(pa, &ih)) {
2499 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2500 return;
2501 }
2502
2503 DPRINTFN(5, ("pci_intr_string\n"));
2504 intrstr = pci_intr_string(pc, ih);
2505
2506 DPRINTFN(5, ("pci_intr_establish\n"));
2507 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2508
2509 if (sc->bge_intrhand == NULL) {
2510 aprint_error_dev(sc->bge_dev,
2511 "couldn't establish interrupt%s%s\n",
2512 intrstr ? " at " : "", intrstr ? intrstr : "");
2513 return;
2514 }
2515 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2516
2517 /*
2518 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2519 * can clobber the chip's PCI config-space power control registers,
2520 * leaving the card in D3 powersave state.
2521 * We do not have memory-mapped registers in this state,
2522 * so force device into D0 state before starting initialization.
2523 */
2524 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2525 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2526 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2527 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2528 DELAY(1000); /* 27 usec is allegedly sufficent */
2529
2530 /*
2531 * Save ASIC rev. Look up any quirks associated with this
2532 * ASIC.
2533 */
2534 sc->bge_chipid =
2535 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2536 BGE_PCIMISCCTL_ASICREV;
2537
2538 /*
2539 * Detect PCI-Express devices
2540 * XXX: guessed from Linux/FreeBSD; no documentation
2541 */
2542 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2543 NULL, NULL) != 0)
2544 sc->bge_pcie = 1;
2545 else
2546 sc->bge_pcie = 0;
2547
2548 /* Try to reset the chip. */
2549 DPRINTFN(5, ("bge_reset\n"));
2550 bge_reset(sc);
2551
2552 if (bge_chipinit(sc)) {
2553 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2554 bge_release_resources(sc);
2555 return;
2556 }
2557
2558 /*
2559 * Get station address from the EEPROM.
2560 */
2561 mac_addr = bge_readmem_ind(sc, 0x0c14);
2562 if ((mac_addr >> 16) == 0x484b) {
2563 eaddr[0] = (u_char)(mac_addr >> 8);
2564 eaddr[1] = (u_char)(mac_addr >> 0);
2565 mac_addr = bge_readmem_ind(sc, 0x0c18);
2566 eaddr[2] = (u_char)(mac_addr >> 24);
2567 eaddr[3] = (u_char)(mac_addr >> 16);
2568 eaddr[4] = (u_char)(mac_addr >> 8);
2569 eaddr[5] = (u_char)(mac_addr >> 0);
2570 } else if (bge_read_eeprom(sc, (void *)eaddr,
2571 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2572 aprint_error_dev(sc->bge_dev,
2573 "failed to read station address\n");
2574 bge_release_resources(sc);
2575 return;
2576 }
2577
2578 br = bge_lookup_rev(sc->bge_chipid);
2579
2580 if (br == NULL) {
2581 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2582 sc->bge_chipid >> 16);
2583 sc->bge_quirks = 0;
2584 } else {
2585 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2586 br->br_name, sc->bge_chipid >> 16);
2587 sc->bge_quirks |= br->br_quirks;
2588 }
2589 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2590
2591 /* Allocate the general information block and ring buffers. */
2592 if (pci_dma64_available(pa))
2593 sc->bge_dmatag = pa->pa_dmat64;
2594 else
2595 sc->bge_dmatag = pa->pa_dmat;
2596 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2597 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2598 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2599 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2600 return;
2601 }
2602 DPRINTFN(5, ("bus_dmamem_map\n"));
2603 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2604 sizeof(struct bge_ring_data), &kva,
2605 BUS_DMA_NOWAIT)) {
2606 aprint_error_dev(sc->bge_dev,
2607 "can't map DMA buffers (%zu bytes)\n",
2608 sizeof(struct bge_ring_data));
2609 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2610 return;
2611 }
2612 DPRINTFN(5, ("bus_dmamem_create\n"));
2613 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2614 sizeof(struct bge_ring_data), 0,
2615 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2616 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2617 bus_dmamem_unmap(sc->bge_dmatag, kva,
2618 sizeof(struct bge_ring_data));
2619 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2620 return;
2621 }
2622 DPRINTFN(5, ("bus_dmamem_load\n"));
2623 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2624 sizeof(struct bge_ring_data), NULL,
2625 BUS_DMA_NOWAIT)) {
2626 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2627 bus_dmamem_unmap(sc->bge_dmatag, kva,
2628 sizeof(struct bge_ring_data));
2629 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2630 return;
2631 }
2632
2633 DPRINTFN(5, ("bzero\n"));
2634 sc->bge_rdata = (struct bge_ring_data *)kva;
2635
2636 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2637
2638 /* Try to allocate memory for jumbo buffers. */
2639 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2640 if (bge_alloc_jumbo_mem(sc)) {
2641 aprint_error_dev(sc->bge_dev,
2642 "jumbo buffer allocation failed\n");
2643 } else
2644 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2645 }
2646
2647 /* Set default tuneable values. */
2648 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2649 sc->bge_rx_coal_ticks = 150;
2650 sc->bge_rx_max_coal_bds = 64;
2651 #ifdef ORIG_WPAUL_VALUES
2652 sc->bge_tx_coal_ticks = 150;
2653 sc->bge_tx_max_coal_bds = 128;
2654 #else
2655 sc->bge_tx_coal_ticks = 300;
2656 sc->bge_tx_max_coal_bds = 400;
2657 #endif
2658 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2659 sc->bge_tx_coal_ticks = (12 * 5);
2660 sc->bge_tx_max_coal_bds = (12 * 5);
2661 aprint_verbose_dev(sc->bge_dev,
2662 "setting short Tx thresholds\n");
2663 }
2664
2665 /* Set up ifnet structure */
2666 ifp = &sc->ethercom.ec_if;
2667 ifp->if_softc = sc;
2668 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2669 ifp->if_ioctl = bge_ioctl;
2670 ifp->if_stop = bge_stop;
2671 ifp->if_start = bge_start;
2672 ifp->if_init = bge_init;
2673 ifp->if_watchdog = bge_watchdog;
2674 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2675 IFQ_SET_READY(&ifp->if_snd);
2676 DPRINTFN(5, ("strcpy if_xname\n"));
2677 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2678
2679 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2680 sc->ethercom.ec_if.if_capabilities |=
2681 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2682 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2683 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2684 sc->ethercom.ec_capabilities |=
2685 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2686
2687 if (sc->bge_pcie)
2688 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2689
2690 /*
2691 * Do MII setup.
2692 */
2693 DPRINTFN(5, ("mii setup\n"));
2694 sc->bge_mii.mii_ifp = ifp;
2695 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2696 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2697 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2698
2699 /*
2700 * Figure out what sort of media we have by checking the
2701 * hardware config word in the first 32k of NIC internal memory,
2702 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2703 * cards, this value appears to be unset. If that's the
2704 * case, we have to rely on identifying the NIC by its PCI
2705 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2706 */
2707 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2708 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2709 } else {
2710 bge_read_eeprom(sc, (void *)&hwcfg,
2711 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2712 hwcfg = be32toh(hwcfg);
2713 }
2714 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2715 sc->bge_tbi = 1;
2716
2717 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2718 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2719 SK_SUBSYSID_9D41)
2720 sc->bge_tbi = 1;
2721
2722 if (sc->bge_tbi) {
2723 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2724 bge_ifmedia_sts);
2725 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2726 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2727 0, NULL);
2728 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2729 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2730 } else {
2731 /*
2732 * Do transceiver setup.
2733 */
2734 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2735 bge_ifmedia_sts);
2736 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2737 MII_PHY_ANY, MII_OFFSET_ANY,
2738 MIIF_FORCEANEG|MIIF_DOPAUSE);
2739
2740 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2741 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2742 ifmedia_add(&sc->bge_mii.mii_media,
2743 IFM_ETHER|IFM_MANUAL, 0, NULL);
2744 ifmedia_set(&sc->bge_mii.mii_media,
2745 IFM_ETHER|IFM_MANUAL);
2746 } else
2747 ifmedia_set(&sc->bge_mii.mii_media,
2748 IFM_ETHER|IFM_AUTO);
2749 }
2750
2751 /*
2752 * When using the BCM5701 in PCI-X mode, data corruption has
2753 * been observed in the first few bytes of some received packets.
2754 * Aligning the packet buffer in memory eliminates the corruption.
2755 * Unfortunately, this misaligns the packet payloads. On platforms
2756 * which do not support unaligned accesses, we will realign the
2757 * payloads by copying the received packets.
2758 */
2759 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2760 /* If in PCI-X mode, work around the alignment bug. */
2761 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2762 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2763 BGE_PCISTATE_PCI_BUSSPEED)
2764 sc->bge_rx_alignment_bug = 1;
2765 }
2766
2767 /*
2768 * Call MI attach routine.
2769 */
2770 DPRINTFN(5, ("if_attach\n"));
2771 if_attach(ifp);
2772 DPRINTFN(5, ("ether_ifattach\n"));
2773 ether_ifattach(ifp, eaddr);
2774 #if NRND > 0
2775 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2776 RND_TYPE_NET, 0);
2777 #endif
2778 #ifdef BGE_EVENT_COUNTERS
2779 /*
2780 * Attach event counters.
2781 */
2782 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2783 NULL, device_xname(sc->bge_dev), "intr");
2784 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2785 NULL, device_xname(sc->bge_dev), "tx_xoff");
2786 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2787 NULL, device_xname(sc->bge_dev), "tx_xon");
2788 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2789 NULL, device_xname(sc->bge_dev), "rx_xoff");
2790 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2791 NULL, device_xname(sc->bge_dev), "rx_xon");
2792 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2793 NULL, device_xname(sc->bge_dev), "rx_macctl");
2794 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2795 NULL, device_xname(sc->bge_dev), "xoffentered");
2796 #endif /* BGE_EVENT_COUNTERS */
2797 DPRINTFN(5, ("callout_init\n"));
2798 callout_init(&sc->bge_timeout, 0);
2799
2800 if (!pmf_device_register(self, NULL, NULL))
2801 aprint_error_dev(self, "couldn't establish power handler\n");
2802 else
2803 pmf_class_network_register(self, ifp);
2804 }
2805
2806 static void
2807 bge_release_resources(struct bge_softc *sc)
2808 {
2809 if (sc->bge_vpd_prodname != NULL)
2810 free(sc->bge_vpd_prodname, M_DEVBUF);
2811
2812 if (sc->bge_vpd_readonly != NULL)
2813 free(sc->bge_vpd_readonly, M_DEVBUF);
2814 }
2815
2816 static void
2817 bge_reset(struct bge_softc *sc)
2818 {
2819 u_int32_t cachesize, command, pcistate, new_pcistate;
2820 int i, val;
2821
2822 /* Save some important PCI state. */
2823 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2824 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2825 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2826
2827 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2828 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2829 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2830
2831 /*
2832 * Disable the firmware fastboot feature on 5752 ASIC
2833 * to avoid firmware timeout.
2834 */
2835 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2836 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2837 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2838 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2839
2840 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2841 /*
2842 * XXX: from FreeBSD/Linux; no documentation
2843 */
2844 if (sc->bge_pcie) {
2845 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2846 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2847 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2848 /* No idea what that actually means */
2849 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2850 val |= (1<<29);
2851 }
2852 }
2853
2854 /* Issue global reset */
2855 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2856
2857 DELAY(1000);
2858
2859 /*
2860 * XXX: from FreeBSD/Linux; no documentation
2861 */
2862 if (sc->bge_pcie) {
2863 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2864 pcireg_t reg;
2865
2866 DELAY(500000);
2867 /* XXX: Magic Numbers */
2868 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2869 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2870 reg | (1 << 15));
2871 }
2872 /*
2873 * XXX: Magic Numbers.
2874 * Sets maximal PCI-e payload and clears any PCI-e errors.
2875 * Should be replaced with references to PCI config-space
2876 * capability block for PCI-Express.
2877 */
2878 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2879 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2880
2881 }
2882
2883 /* Reset some of the PCI state that got zapped by reset */
2884 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2885 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2886 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2887 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2888 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2889 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2890
2891 /* Enable memory arbiter. */
2892 {
2893 uint32_t marbmode = 0;
2894 if (BGE_IS_5714_FAMILY(sc)) {
2895 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2896 }
2897 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2898 }
2899
2900 /*
2901 * Write the magic number to the firmware mailbox at 0xb50
2902 * so that the driver can synchronize with the firmware.
2903 */
2904 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2905
2906 /*
2907 * Poll the value location we just wrote until
2908 * we see the 1's complement of the magic number.
2909 * This indicates that the firmware initialization
2910 * is complete.
2911 */
2912 for (i = 0; i < BGE_TIMEOUT; i++) {
2913 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2914 if (val == ~BGE_MAGIC_NUMBER)
2915 break;
2916 DELAY(1000);
2917 }
2918
2919 if (i >= BGE_TIMEOUT) {
2920 aprint_error_dev(sc->bge_dev,
2921 "firmware handshake timed out, val = %x\n", val);
2922 /*
2923 * XXX: occasionally fired on bcm5721, but without
2924 * apparent harm. For now, keep going if we timeout
2925 * against PCI-E devices.
2926 */
2927 if (!sc->bge_pcie)
2928 return;
2929 }
2930
2931 /*
2932 * XXX Wait for the value of the PCISTATE register to
2933 * return to its original pre-reset state. This is a
2934 * fairly good indicator of reset completion. If we don't
2935 * wait for the reset to fully complete, trying to read
2936 * from the device's non-PCI registers may yield garbage
2937 * results.
2938 */
2939 for (i = 0; i < 10000; i++) {
2940 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2941 BGE_PCI_PCISTATE);
2942 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2943 (pcistate & ~BGE_PCISTATE_RESERVED))
2944 break;
2945 DELAY(10);
2946 }
2947 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2948 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2949 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2950 }
2951
2952 /* XXX: from FreeBSD/Linux; no documentation */
2953 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2954 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2955
2956 /* Enable memory arbiter. */
2957 /* XXX why do this twice? */
2958 {
2959 uint32_t marbmode = 0;
2960 if (BGE_IS_5714_FAMILY(sc)) {
2961 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2962 }
2963 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2964 }
2965
2966 /* Fix up byte swapping */
2967 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2968
2969 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2970
2971 DELAY(10000);
2972 }
2973
2974 /*
2975 * Frame reception handling. This is called if there's a frame
2976 * on the receive return list.
2977 *
2978 * Note: we have to be able to handle two possibilities here:
2979 * 1) the frame is from the jumbo recieve ring
2980 * 2) the frame is from the standard receive ring
2981 */
2982
2983 static void
2984 bge_rxeof(struct bge_softc *sc)
2985 {
2986 struct ifnet *ifp;
2987 int stdcnt = 0, jumbocnt = 0;
2988 bus_dmamap_t dmamap;
2989 bus_addr_t offset, toff;
2990 bus_size_t tlen;
2991 int tosync;
2992
2993 ifp = &sc->ethercom.ec_if;
2994
2995 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2996 offsetof(struct bge_ring_data, bge_status_block),
2997 sizeof (struct bge_status_block),
2998 BUS_DMASYNC_POSTREAD);
2999
3000 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3001 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
3002 sc->bge_rx_saved_considx;
3003
3004 #if NRND > 0
3005 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3006 rnd_add_uint32(&sc->rnd_source, tosync);
3007 #endif
3008
3009 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
3010
3011 if (tosync < 0) {
3012 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
3013 sizeof (struct bge_rx_bd);
3014 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3015 toff, tlen, BUS_DMASYNC_POSTREAD);
3016 tosync = -tosync;
3017 }
3018
3019 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3020 offset, tosync * sizeof (struct bge_rx_bd),
3021 BUS_DMASYNC_POSTREAD);
3022
3023 while(sc->bge_rx_saved_considx !=
3024 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3025 struct bge_rx_bd *cur_rx;
3026 u_int32_t rxidx;
3027 struct mbuf *m = NULL;
3028
3029 cur_rx = &sc->bge_rdata->
3030 bge_rx_return_ring[sc->bge_rx_saved_considx];
3031
3032 rxidx = cur_rx->bge_idx;
3033 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3034
3035 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3036 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3037 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3038 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3039 jumbocnt++;
3040 bus_dmamap_sync(sc->bge_dmatag,
3041 sc->bge_cdata.bge_rx_jumbo_map,
3042 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3043 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3044 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3045 ifp->if_ierrors++;
3046 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3047 continue;
3048 }
3049 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3050 NULL)== ENOBUFS) {
3051 ifp->if_ierrors++;
3052 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3053 continue;
3054 }
3055 } else {
3056 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3057 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3058
3059 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3060 stdcnt++;
3061 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3062 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3063 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3064 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3065 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3066 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3067 ifp->if_ierrors++;
3068 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3069 continue;
3070 }
3071 if (bge_newbuf_std(sc, sc->bge_std,
3072 NULL, dmamap) == ENOBUFS) {
3073 ifp->if_ierrors++;
3074 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3075 continue;
3076 }
3077 }
3078
3079 ifp->if_ipackets++;
3080 #ifndef __NO_STRICT_ALIGNMENT
3081 /*
3082 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3083 * the Rx buffer has the layer-2 header unaligned.
3084 * If our CPU requires alignment, re-align by copying.
3085 */
3086 if (sc->bge_rx_alignment_bug) {
3087 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3088 cur_rx->bge_len);
3089 m->m_data += ETHER_ALIGN;
3090 }
3091 #endif
3092
3093 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3094 m->m_pkthdr.rcvif = ifp;
3095
3096 #if NBPFILTER > 0
3097 /*
3098 * Handle BPF listeners. Let the BPF user see the packet.
3099 */
3100 if (ifp->if_bpf)
3101 bpf_mtap(ifp->if_bpf, m);
3102 #endif
3103
3104 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3105
3106 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3107 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3108 /*
3109 * Rx transport checksum-offload may also
3110 * have bugs with packets which, when transmitted,
3111 * were `runts' requiring padding.
3112 */
3113 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3114 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3115 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3116 m->m_pkthdr.csum_data =
3117 cur_rx->bge_tcp_udp_csum;
3118 m->m_pkthdr.csum_flags |=
3119 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3120 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3121 }
3122
3123 /*
3124 * If we received a packet with a vlan tag, pass it
3125 * to vlan_input() instead of ether_input().
3126 */
3127 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3128 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3129
3130 (*ifp->if_input)(ifp, m);
3131 }
3132
3133 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3134 if (stdcnt)
3135 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3136 if (jumbocnt)
3137 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3138 }
3139
3140 static void
3141 bge_txeof(struct bge_softc *sc)
3142 {
3143 struct bge_tx_bd *cur_tx = NULL;
3144 struct ifnet *ifp;
3145 struct txdmamap_pool_entry *dma;
3146 bus_addr_t offset, toff;
3147 bus_size_t tlen;
3148 int tosync;
3149 struct mbuf *m;
3150
3151 ifp = &sc->ethercom.ec_if;
3152
3153 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3154 offsetof(struct bge_ring_data, bge_status_block),
3155 sizeof (struct bge_status_block),
3156 BUS_DMASYNC_POSTREAD);
3157
3158 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3159 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3160 sc->bge_tx_saved_considx;
3161
3162 #if NRND > 0
3163 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3164 rnd_add_uint32(&sc->rnd_source, tosync);
3165 #endif
3166
3167 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3168
3169 if (tosync < 0) {
3170 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3171 sizeof (struct bge_tx_bd);
3172 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3173 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3174 tosync = -tosync;
3175 }
3176
3177 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3178 offset, tosync * sizeof (struct bge_tx_bd),
3179 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3180
3181 /*
3182 * Go through our tx ring and free mbufs for those
3183 * frames that have been sent.
3184 */
3185 while (sc->bge_tx_saved_considx !=
3186 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3187 u_int32_t idx = 0;
3188
3189 idx = sc->bge_tx_saved_considx;
3190 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3191 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3192 ifp->if_opackets++;
3193 m = sc->bge_cdata.bge_tx_chain[idx];
3194 if (m != NULL) {
3195 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3196 dma = sc->txdma[idx];
3197 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3198 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3199 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3200 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3201 sc->txdma[idx] = NULL;
3202
3203 m_freem(m);
3204 }
3205 sc->bge_txcnt--;
3206 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3207 ifp->if_timer = 0;
3208 }
3209
3210 if (cur_tx != NULL)
3211 ifp->if_flags &= ~IFF_OACTIVE;
3212 }
3213
3214 static int
3215 bge_intr(void *xsc)
3216 {
3217 struct bge_softc *sc;
3218 struct ifnet *ifp;
3219
3220 sc = xsc;
3221 ifp = &sc->ethercom.ec_if;
3222
3223 /*
3224 * Ascertain whether the interrupt is from this bge device.
3225 * Do the cheap test first.
3226 */
3227 if ((sc->bge_rdata->bge_status_block.bge_status &
3228 BGE_STATFLAG_UPDATED) == 0) {
3229 /*
3230 * Sometimes, the interrupt comes in before the
3231 * DMA update of the status block (performed prior
3232 * to the interrupt itself) has completed.
3233 * In that case, do the (extremely expensive!)
3234 * PCI-config-space register read.
3235 */
3236 uint32_t pcistate =
3237 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3238
3239 if (pcistate & BGE_PCISTATE_INTR_STATE)
3240 return (0);
3241
3242 }
3243 /*
3244 * If we reach here, then the interrupt is for us.
3245 */
3246
3247 /* Ack interrupt and stop others from occuring. */
3248 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3249
3250 BGE_EVCNT_INCR(sc->bge_ev_intr);
3251
3252 /*
3253 * Process link state changes.
3254 * Grrr. The link status word in the status block does
3255 * not work correctly on the BCM5700 rev AX and BX chips,
3256 * according to all available information. Hence, we have
3257 * to enable MII interrupts in order to properly obtain
3258 * async link changes. Unfortunately, this also means that
3259 * we have to read the MAC status register to detect link
3260 * changes, thereby adding an additional register access to
3261 * the interrupt handler.
3262 */
3263
3264 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3265 u_int32_t status;
3266
3267 status = CSR_READ_4(sc, BGE_MAC_STS);
3268 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3269 sc->bge_link = 0;
3270 callout_stop(&sc->bge_timeout);
3271 bge_tick(sc);
3272 /* Clear the interrupt */
3273 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3274 BGE_EVTENB_MI_INTERRUPT);
3275 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3276 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3277 BRGPHY_INTRS);
3278 }
3279 } else {
3280 u_int32_t status;
3281
3282 status = CSR_READ_4(sc, BGE_MAC_STS);
3283 if (status & BGE_MACSTAT_LINK_CHANGED) {
3284 sc->bge_link = 0;
3285 callout_stop(&sc->bge_timeout);
3286 bge_tick(sc);
3287 /* Clear the interrupt */
3288 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3289 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3290 BGE_MACSTAT_LINK_CHANGED);
3291 }
3292 }
3293
3294 if (ifp->if_flags & IFF_RUNNING) {
3295 /* Check RX return ring producer/consumer */
3296 bge_rxeof(sc);
3297
3298 /* Check TX ring producer/consumer */
3299 bge_txeof(sc);
3300 }
3301
3302 if (sc->bge_pending_rxintr_change) {
3303 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3304 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3305 uint32_t junk;
3306
3307 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3308 DELAY(10);
3309 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3310
3311 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3312 DELAY(10);
3313 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3314
3315 sc->bge_pending_rxintr_change = 0;
3316 }
3317 bge_handle_events(sc);
3318
3319 /* Re-enable interrupts. */
3320 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3321
3322 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3323 bge_start(ifp);
3324
3325 return (1);
3326 }
3327
3328 static void
3329 bge_tick(void *xsc)
3330 {
3331 struct bge_softc *sc = xsc;
3332 struct mii_data *mii = &sc->bge_mii;
3333 int s;
3334
3335 s = splnet();
3336
3337 bge_stats_update(sc);
3338 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3339
3340 if (sc->bge_tbi) {
3341 if (CSR_READ_4(sc, BGE_MAC_STS) &
3342 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3343 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3344 }
3345 } else
3346 mii_tick(mii);
3347
3348 splx(s);
3349 }
3350
3351 static void
3352 bge_stats_update(struct bge_softc *sc)
3353 {
3354 struct ifnet *ifp = &sc->ethercom.ec_if;
3355 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3356 bus_size_t rstats = BGE_RX_STATS;
3357
3358 #define READ_RSTAT(sc, stats, stat) \
3359 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3360
3361 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3362 ifp->if_collisions +=
3363 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3364 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3365 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3366 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3367
3368 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3369 READ_RSTAT(sc, rstats, outXoffSent));
3370 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3371 READ_RSTAT(sc, rstats, outXonSent));
3372 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3373 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3374 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3375 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3376 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3377 READ_RSTAT(sc, rstats, macControlFramesReceived));
3378 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3379 READ_RSTAT(sc, rstats, xoffStateEntered));
3380 return;
3381 }
3382
3383 #undef READ_RSTAT
3384 #define READ_STAT(sc, stats, stat) \
3385 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3386
3387 ifp->if_collisions +=
3388 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3389 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3390 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3391 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3392 ifp->if_collisions;
3393
3394 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3395 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3396 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3397 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3398 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3399 READ_STAT(sc, stats,
3400 xoffPauseFramesReceived.bge_addr_lo));
3401 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3402 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3403 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3404 READ_STAT(sc, stats,
3405 macControlFramesReceived.bge_addr_lo));
3406 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3407 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3408
3409 #undef READ_STAT
3410
3411 #ifdef notdef
3412 ifp->if_collisions +=
3413 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3414 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3415 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3416 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3417 ifp->if_collisions;
3418 #endif
3419 }
3420
3421 /*
3422 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3423 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3424 * but when such padded frames employ the bge IP/TCP checksum offload,
3425 * the hardware checksum assist gives incorrect results (possibly
3426 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3427 * If we pad such runts with zeros, the onboard checksum comes out correct.
3428 */
3429 static inline int
3430 bge_cksum_pad(struct mbuf *pkt)
3431 {
3432 struct mbuf *last = NULL;
3433 int padlen;
3434
3435 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3436
3437 /* if there's only the packet-header and we can pad there, use it. */
3438 if (pkt->m_pkthdr.len == pkt->m_len &&
3439 M_TRAILINGSPACE(pkt) >= padlen) {
3440 last = pkt;
3441 } else {
3442 /*
3443 * Walk packet chain to find last mbuf. We will either
3444 * pad there, or append a new mbuf and pad it
3445 * (thus perhaps avoiding the bcm5700 dma-min bug).
3446 */
3447 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3448 continue; /* do nothing */
3449 }
3450
3451 /* `last' now points to last in chain. */
3452 if (M_TRAILINGSPACE(last) < padlen) {
3453 /* Allocate new empty mbuf, pad it. Compact later. */
3454 struct mbuf *n;
3455 MGET(n, M_DONTWAIT, MT_DATA);
3456 if (n == NULL)
3457 return ENOBUFS;
3458 n->m_len = 0;
3459 last->m_next = n;
3460 last = n;
3461 }
3462 }
3463
3464 KDASSERT(!M_READONLY(last));
3465 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3466
3467 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3468 memset(mtod(last, char *) + last->m_len, 0, padlen);
3469 last->m_len += padlen;
3470 pkt->m_pkthdr.len += padlen;
3471 return 0;
3472 }
3473
3474 /*
3475 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3476 */
3477 static inline int
3478 bge_compact_dma_runt(struct mbuf *pkt)
3479 {
3480 struct mbuf *m, *prev;
3481 int totlen, prevlen;
3482
3483 prev = NULL;
3484 totlen = 0;
3485 prevlen = -1;
3486
3487 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3488 int mlen = m->m_len;
3489 int shortfall = 8 - mlen ;
3490
3491 totlen += mlen;
3492 if (mlen == 0) {
3493 continue;
3494 }
3495 if (mlen >= 8)
3496 continue;
3497
3498 /* If we get here, mbuf data is too small for DMA engine.
3499 * Try to fix by shuffling data to prev or next in chain.
3500 * If that fails, do a compacting deep-copy of the whole chain.
3501 */
3502
3503 /* Internal frag. If fits in prev, copy it there. */
3504 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3505 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3506 prev->m_len += mlen;
3507 m->m_len = 0;
3508 /* XXX stitch chain */
3509 prev->m_next = m_free(m);
3510 m = prev;
3511 continue;
3512 }
3513 else if (m->m_next != NULL &&
3514 M_TRAILINGSPACE(m) >= shortfall &&
3515 m->m_next->m_len >= (8 + shortfall)) {
3516 /* m is writable and have enough data in next, pull up. */
3517
3518 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3519 shortfall);
3520 m->m_len += shortfall;
3521 m->m_next->m_len -= shortfall;
3522 m->m_next->m_data += shortfall;
3523 }
3524 else if (m->m_next == NULL || 1) {
3525 /* Got a runt at the very end of the packet.
3526 * borrow data from the tail of the preceding mbuf and
3527 * update its length in-place. (The original data is still
3528 * valid, so we can do this even if prev is not writable.)
3529 */
3530
3531 /* if we'd make prev a runt, just move all of its data. */
3532 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3533 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3534
3535 if ((prev->m_len - shortfall) < 8)
3536 shortfall = prev->m_len;
3537
3538 #ifdef notyet /* just do the safe slow thing for now */
3539 if (!M_READONLY(m)) {
3540 if (M_LEADINGSPACE(m) < shorfall) {
3541 void *m_dat;
3542 m_dat = (m->m_flags & M_PKTHDR) ?
3543 m->m_pktdat : m->dat;
3544 memmove(m_dat, mtod(m, void*), m->m_len);
3545 m->m_data = m_dat;
3546 }
3547 } else
3548 #endif /* just do the safe slow thing */
3549 {
3550 struct mbuf * n = NULL;
3551 int newprevlen = prev->m_len - shortfall;
3552
3553 MGET(n, M_NOWAIT, MT_DATA);
3554 if (n == NULL)
3555 return ENOBUFS;
3556 KASSERT(m->m_len + shortfall < MLEN
3557 /*,
3558 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3559
3560 /* first copy the data we're stealing from prev */
3561 memcpy(n->m_data, prev->m_data + newprevlen,
3562 shortfall);
3563
3564 /* update prev->m_len accordingly */
3565 prev->m_len -= shortfall;
3566
3567 /* copy data from runt m */
3568 memcpy(n->m_data + shortfall, m->m_data,
3569 m->m_len);
3570
3571 /* n holds what we stole from prev, plus m */
3572 n->m_len = shortfall + m->m_len;
3573
3574 /* stitch n into chain and free m */
3575 n->m_next = m->m_next;
3576 prev->m_next = n;
3577 /* KASSERT(m->m_next == NULL); */
3578 m->m_next = NULL;
3579 m_free(m);
3580 m = n; /* for continuing loop */
3581 }
3582 }
3583 prevlen = m->m_len;
3584 }
3585 return 0;
3586 }
3587
3588 /*
3589 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3590 * pointers to descriptors.
3591 */
3592 static int
3593 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3594 {
3595 struct bge_tx_bd *f = NULL;
3596 u_int32_t frag, cur;
3597 u_int16_t csum_flags = 0;
3598 u_int16_t txbd_tso_flags = 0;
3599 struct txdmamap_pool_entry *dma;
3600 bus_dmamap_t dmamap;
3601 int i = 0;
3602 struct m_tag *mtag;
3603 int use_tso, maxsegsize, error;
3604
3605 cur = frag = *txidx;
3606
3607 if (m_head->m_pkthdr.csum_flags) {
3608 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3609 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3610 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3611 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3612 }
3613
3614 /*
3615 * If we were asked to do an outboard checksum, and the NIC
3616 * has the bug where it sometimes adds in the Ethernet padding,
3617 * explicitly pad with zeros so the cksum will be correct either way.
3618 * (For now, do this for all chip versions, until newer
3619 * are confirmed to not require the workaround.)
3620 */
3621 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3622 #ifdef notyet
3623 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3624 #endif
3625 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3626 goto check_dma_bug;
3627
3628 if (bge_cksum_pad(m_head) != 0) {
3629 return ENOBUFS;
3630 }
3631
3632 check_dma_bug:
3633 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3634 goto doit;
3635 /*
3636 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3637 * less than eight bytes. If we encounter a teeny mbuf
3638 * at the end of a chain, we can pad. Otherwise, copy.
3639 */
3640 if (bge_compact_dma_runt(m_head) != 0)
3641 return ENOBUFS;
3642
3643 doit:
3644 dma = SLIST_FIRST(&sc->txdma_list);
3645 if (dma == NULL)
3646 return ENOBUFS;
3647 dmamap = dma->dmamap;
3648
3649 /*
3650 * Set up any necessary TSO state before we start packing...
3651 */
3652 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3653 if (!use_tso) {
3654 maxsegsize = 0;
3655 } else { /* TSO setup */
3656 unsigned mss;
3657 struct ether_header *eh;
3658 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3659 struct mbuf * m0 = m_head;
3660 struct ip *ip;
3661 struct tcphdr *th;
3662 int iphl, hlen;
3663
3664 /*
3665 * XXX It would be nice if the mbuf pkthdr had offset
3666 * fields for the protocol headers.
3667 */
3668
3669 eh = mtod(m0, struct ether_header *);
3670 switch (htons(eh->ether_type)) {
3671 case ETHERTYPE_IP:
3672 offset = ETHER_HDR_LEN;
3673 break;
3674
3675 case ETHERTYPE_VLAN:
3676 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3677 break;
3678
3679 default:
3680 /*
3681 * Don't support this protocol or encapsulation.
3682 */
3683 return (ENOBUFS);
3684 }
3685
3686 /*
3687 * TCP/IP headers are in the first mbuf; we can do
3688 * this the easy way.
3689 */
3690 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3691 hlen = iphl + offset;
3692 if (__predict_false(m0->m_len <
3693 (hlen + sizeof(struct tcphdr)))) {
3694
3695 aprint_debug_dev(sc->bge_dev,
3696 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3697 "not handled yet\n",
3698 m0->m_len, hlen+ sizeof(struct tcphdr));
3699 #ifdef NOTYET
3700 /*
3701 * XXX jonathan (at) NetBSD.org: untested.
3702 * how to force this branch to be taken?
3703 */
3704 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3705
3706 m_copydata(m0, offset, sizeof(ip), &ip);
3707 m_copydata(m0, hlen, sizeof(th), &th);
3708
3709 ip.ip_len = 0;
3710
3711 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3712 sizeof(ip.ip_len), &ip.ip_len);
3713
3714 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3715 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3716
3717 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3718 sizeof(th.th_sum), &th.th_sum);
3719
3720 hlen += th.th_off << 2;
3721 iptcp_opt_words = hlen;
3722 #else
3723 /*
3724 * if_wm "hard" case not yet supported, can we not
3725 * mandate it out of existence?
3726 */
3727 (void) ip; (void)th; (void) ip_tcp_hlen;
3728
3729 return ENOBUFS;
3730 #endif
3731 } else {
3732 ip = (struct ip *) (mtod(m0, char *) + offset);
3733 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3734 ip_tcp_hlen = iphl + (th->th_off << 2);
3735
3736 /* Total IP/TCP options, in 32-bit words */
3737 iptcp_opt_words = (ip_tcp_hlen
3738 - sizeof(struct tcphdr)
3739 - sizeof(struct ip)) >> 2;
3740 }
3741 if (BGE_IS_5750_OR_BEYOND(sc)) {
3742 th->th_sum = 0;
3743 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3744 } else {
3745 /*
3746 * XXX jonathan (at) NetBSD.org: 5705 untested.
3747 * Requires TSO firmware patch for 5701/5703/5704.
3748 */
3749 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3750 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3751 }
3752
3753 mss = m_head->m_pkthdr.segsz;
3754 txbd_tso_flags |=
3755 BGE_TXBDFLAG_CPU_PRE_DMA |
3756 BGE_TXBDFLAG_CPU_POST_DMA;
3757
3758 /*
3759 * Our NIC TSO-assist assumes TSO has standard, optionless
3760 * IPv4 and TCP headers, which total 40 bytes. By default,
3761 * the NIC copies 40 bytes of IP/TCP header from the
3762 * supplied header into the IP/TCP header portion of
3763 * each post-TSO-segment. If the supplied packet has IP or
3764 * TCP options, we need to tell the NIC to copy those extra
3765 * bytes into each post-TSO header, in addition to the normal
3766 * 40-byte IP/TCP header (and to leave space accordingly).
3767 * Unfortunately, the driver encoding of option length
3768 * varies across different ASIC families.
3769 */
3770 tcp_seg_flags = 0;
3771 if (iptcp_opt_words) {
3772 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3773 tcp_seg_flags =
3774 iptcp_opt_words << 11;
3775 } else {
3776 txbd_tso_flags |=
3777 iptcp_opt_words << 12;
3778 }
3779 }
3780 maxsegsize = mss | tcp_seg_flags;
3781 ip->ip_len = htons(mss + ip_tcp_hlen);
3782
3783 } /* TSO setup */
3784
3785 /*
3786 * Start packing the mbufs in this chain into
3787 * the fragment pointers. Stop when we run out
3788 * of fragments or hit the end of the mbuf chain.
3789 */
3790 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3791 BUS_DMA_NOWAIT);
3792 if (error) {
3793 return(ENOBUFS);
3794 }
3795 /*
3796 * Sanity check: avoid coming within 16 descriptors
3797 * of the end of the ring.
3798 */
3799 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3800 BGE_TSO_PRINTF(("%s: "
3801 " dmamap_load_mbuf too close to ring wrap\n",
3802 device_xname(sc->bge_dev)));
3803 goto fail_unload;
3804 }
3805
3806 mtag = sc->ethercom.ec_nvlans ?
3807 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3808
3809
3810 /* Iterate over dmap-map fragments. */
3811 for (i = 0; i < dmamap->dm_nsegs; i++) {
3812 f = &sc->bge_rdata->bge_tx_ring[frag];
3813 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3814 break;
3815
3816 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3817 f->bge_len = dmamap->dm_segs[i].ds_len;
3818
3819 /*
3820 * For 5751 and follow-ons, for TSO we must turn
3821 * off checksum-assist flag in the tx-descr, and
3822 * supply the ASIC-revision-specific encoding
3823 * of TSO flags and segsize.
3824 */
3825 if (use_tso) {
3826 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3827 f->bge_rsvd = maxsegsize;
3828 f->bge_flags = csum_flags | txbd_tso_flags;
3829 } else {
3830 f->bge_rsvd = 0;
3831 f->bge_flags =
3832 (csum_flags | txbd_tso_flags) & 0x0fff;
3833 }
3834 } else {
3835 f->bge_rsvd = 0;
3836 f->bge_flags = csum_flags;
3837 }
3838
3839 if (mtag != NULL) {
3840 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3841 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3842 } else {
3843 f->bge_vlan_tag = 0;
3844 }
3845 cur = frag;
3846 BGE_INC(frag, BGE_TX_RING_CNT);
3847 }
3848
3849 if (i < dmamap->dm_nsegs) {
3850 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3851 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3852 goto fail_unload;
3853 }
3854
3855 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3856 BUS_DMASYNC_PREWRITE);
3857
3858 if (frag == sc->bge_tx_saved_considx) {
3859 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3860 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3861
3862 goto fail_unload;
3863 }
3864
3865 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3866 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3867 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3868 sc->txdma[cur] = dma;
3869 sc->bge_txcnt += dmamap->dm_nsegs;
3870
3871 *txidx = frag;
3872
3873 return(0);
3874
3875 fail_unload:
3876 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3877
3878 return ENOBUFS;
3879 }
3880
3881 /*
3882 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3883 * to the mbuf data regions directly in the transmit descriptors.
3884 */
3885 static void
3886 bge_start(struct ifnet *ifp)
3887 {
3888 struct bge_softc *sc;
3889 struct mbuf *m_head = NULL;
3890 u_int32_t prodidx;
3891 int pkts = 0;
3892
3893 sc = ifp->if_softc;
3894
3895 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3896 return;
3897
3898 prodidx = sc->bge_tx_prodidx;
3899
3900 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3901 IFQ_POLL(&ifp->if_snd, m_head);
3902 if (m_head == NULL)
3903 break;
3904
3905 #if 0
3906 /*
3907 * XXX
3908 * safety overkill. If this is a fragmented packet chain
3909 * with delayed TCP/UDP checksums, then only encapsulate
3910 * it if we have enough descriptors to handle the entire
3911 * chain at once.
3912 * (paranoia -- may not actually be needed)
3913 */
3914 if (m_head->m_flags & M_FIRSTFRAG &&
3915 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3916 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3917 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3918 ifp->if_flags |= IFF_OACTIVE;
3919 break;
3920 }
3921 }
3922 #endif
3923
3924 /*
3925 * Pack the data into the transmit ring. If we
3926 * don't have room, set the OACTIVE flag and wait
3927 * for the NIC to drain the ring.
3928 */
3929 if (bge_encap(sc, m_head, &prodidx)) {
3930 ifp->if_flags |= IFF_OACTIVE;
3931 break;
3932 }
3933
3934 /* now we are committed to transmit the packet */
3935 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3936 pkts++;
3937
3938 #if NBPFILTER > 0
3939 /*
3940 * If there's a BPF listener, bounce a copy of this frame
3941 * to him.
3942 */
3943 if (ifp->if_bpf)
3944 bpf_mtap(ifp->if_bpf, m_head);
3945 #endif
3946 }
3947 if (pkts == 0)
3948 return;
3949
3950 /* Transmit */
3951 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3952 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3953 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3954
3955 sc->bge_tx_prodidx = prodidx;
3956
3957 /*
3958 * Set a timeout in case the chip goes out to lunch.
3959 */
3960 ifp->if_timer = 5;
3961 }
3962
3963 static int
3964 bge_init(struct ifnet *ifp)
3965 {
3966 struct bge_softc *sc = ifp->if_softc;
3967 const u_int16_t *m;
3968 int s, error = 0;
3969
3970 s = splnet();
3971
3972 ifp = &sc->ethercom.ec_if;
3973
3974 /* Cancel pending I/O and flush buffers. */
3975 bge_stop(ifp, 0);
3976 bge_reset(sc);
3977 bge_chipinit(sc);
3978
3979 /*
3980 * Init the various state machines, ring
3981 * control blocks and firmware.
3982 */
3983 error = bge_blockinit(sc);
3984 if (error != 0) {
3985 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3986 error);
3987 splx(s);
3988 return error;
3989 }
3990
3991 ifp = &sc->ethercom.ec_if;
3992
3993 /* Specify MTU. */
3994 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3995 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3996
3997 /* Load our MAC address. */
3998 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3999 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4000 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4001
4002 /* Enable or disable promiscuous mode as needed. */
4003 if (ifp->if_flags & IFF_PROMISC) {
4004 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4005 } else {
4006 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4007 }
4008
4009 /* Program multicast filter. */
4010 bge_setmulti(sc);
4011
4012 /* Init RX ring. */
4013 bge_init_rx_ring_std(sc);
4014
4015 /* Init jumbo RX ring. */
4016 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4017 bge_init_rx_ring_jumbo(sc);
4018
4019 /* Init our RX return ring index */
4020 sc->bge_rx_saved_considx = 0;
4021
4022 /* Init TX ring. */
4023 bge_init_tx_ring(sc);
4024
4025 /* Turn on transmitter */
4026 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4027
4028 /* Turn on receiver */
4029 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4030
4031 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4032
4033 /* Tell firmware we're alive. */
4034 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4035
4036 /* Enable host interrupts. */
4037 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4038 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4039 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4040
4041 if ((error = bge_ifmedia_upd(ifp)) != 0)
4042 goto out;
4043
4044 ifp->if_flags |= IFF_RUNNING;
4045 ifp->if_flags &= ~IFF_OACTIVE;
4046
4047 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4048
4049 out:
4050 splx(s);
4051
4052 return error;
4053 }
4054
4055 /*
4056 * Set media options.
4057 */
4058 static int
4059 bge_ifmedia_upd(struct ifnet *ifp)
4060 {
4061 struct bge_softc *sc = ifp->if_softc;
4062 struct mii_data *mii = &sc->bge_mii;
4063 struct ifmedia *ifm = &sc->bge_ifmedia;
4064 int rc;
4065
4066 /* If this is a 1000baseX NIC, enable the TBI port. */
4067 if (sc->bge_tbi) {
4068 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4069 return(EINVAL);
4070 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4071 case IFM_AUTO:
4072 break;
4073 case IFM_1000_SX:
4074 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4075 BGE_CLRBIT(sc, BGE_MAC_MODE,
4076 BGE_MACMODE_HALF_DUPLEX);
4077 } else {
4078 BGE_SETBIT(sc, BGE_MAC_MODE,
4079 BGE_MACMODE_HALF_DUPLEX);
4080 }
4081 break;
4082 default:
4083 return(EINVAL);
4084 }
4085 /* XXX 802.3x flow control for 1000BASE-SX */
4086 return(0);
4087 }
4088
4089 sc->bge_link = 0;
4090 if ((rc = mii_mediachg(mii)) == ENXIO)
4091 return 0;
4092 return rc;
4093 }
4094
4095 /*
4096 * Report current media status.
4097 */
4098 static void
4099 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4100 {
4101 struct bge_softc *sc = ifp->if_softc;
4102 struct mii_data *mii = &sc->bge_mii;
4103
4104 if (sc->bge_tbi) {
4105 ifmr->ifm_status = IFM_AVALID;
4106 ifmr->ifm_active = IFM_ETHER;
4107 if (CSR_READ_4(sc, BGE_MAC_STS) &
4108 BGE_MACSTAT_TBI_PCS_SYNCHED)
4109 ifmr->ifm_status |= IFM_ACTIVE;
4110 ifmr->ifm_active |= IFM_1000_SX;
4111 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4112 ifmr->ifm_active |= IFM_HDX;
4113 else
4114 ifmr->ifm_active |= IFM_FDX;
4115 return;
4116 }
4117
4118 mii_pollstat(mii);
4119 ifmr->ifm_status = mii->mii_media_status;
4120 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4121 sc->bge_flowflags;
4122 }
4123
4124 static int
4125 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4126 {
4127 struct bge_softc *sc = ifp->if_softc;
4128 struct ifreq *ifr = (struct ifreq *) data;
4129 int s, error = 0;
4130 struct mii_data *mii;
4131
4132 s = splnet();
4133
4134 switch(command) {
4135 case SIOCSIFFLAGS:
4136 if (ifp->if_flags & IFF_UP) {
4137 /*
4138 * If only the state of the PROMISC flag changed,
4139 * then just use the 'set promisc mode' command
4140 * instead of reinitializing the entire NIC. Doing
4141 * a full re-init means reloading the firmware and
4142 * waiting for it to start up, which may take a
4143 * second or two.
4144 */
4145 if (ifp->if_flags & IFF_RUNNING &&
4146 ifp->if_flags & IFF_PROMISC &&
4147 !(sc->bge_if_flags & IFF_PROMISC)) {
4148 BGE_SETBIT(sc, BGE_RX_MODE,
4149 BGE_RXMODE_RX_PROMISC);
4150 } else if (ifp->if_flags & IFF_RUNNING &&
4151 !(ifp->if_flags & IFF_PROMISC) &&
4152 sc->bge_if_flags & IFF_PROMISC) {
4153 BGE_CLRBIT(sc, BGE_RX_MODE,
4154 BGE_RXMODE_RX_PROMISC);
4155 } else if (!(sc->bge_if_flags & IFF_UP))
4156 bge_init(ifp);
4157 } else {
4158 if (ifp->if_flags & IFF_RUNNING)
4159 bge_stop(ifp, 1);
4160 }
4161 sc->bge_if_flags = ifp->if_flags;
4162 error = 0;
4163 break;
4164 case SIOCSIFMEDIA:
4165 /* XXX Flow control is not supported for 1000BASE-SX */
4166 if (sc->bge_tbi) {
4167 ifr->ifr_media &= ~IFM_ETH_FMASK;
4168 sc->bge_flowflags = 0;
4169 }
4170
4171 /* Flow control requires full-duplex mode. */
4172 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4173 (ifr->ifr_media & IFM_FDX) == 0) {
4174 ifr->ifr_media &= ~IFM_ETH_FMASK;
4175 }
4176 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4177 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4178 /* We an do both TXPAUSE and RXPAUSE. */
4179 ifr->ifr_media |=
4180 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4181 }
4182 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4183 }
4184 /* FALLTHROUGH */
4185 case SIOCGIFMEDIA:
4186 if (sc->bge_tbi) {
4187 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4188 command);
4189 } else {
4190 mii = &sc->bge_mii;
4191 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4192 command);
4193 }
4194 break;
4195 default:
4196 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4197 break;
4198
4199 error = 0;
4200
4201 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4202 ;
4203 else if (ifp->if_flags & IFF_RUNNING)
4204 bge_setmulti(sc);
4205 break;
4206 }
4207
4208 splx(s);
4209
4210 return(error);
4211 }
4212
4213 static void
4214 bge_watchdog(struct ifnet *ifp)
4215 {
4216 struct bge_softc *sc;
4217
4218 sc = ifp->if_softc;
4219
4220 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4221
4222 ifp->if_flags &= ~IFF_RUNNING;
4223 bge_init(ifp);
4224
4225 ifp->if_oerrors++;
4226 }
4227
4228 static void
4229 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4230 {
4231 int i;
4232
4233 BGE_CLRBIT(sc, reg, bit);
4234
4235 for (i = 0; i < BGE_TIMEOUT; i++) {
4236 if ((CSR_READ_4(sc, reg) & bit) == 0)
4237 return;
4238 delay(100);
4239 if (sc->bge_pcie)
4240 DELAY(1000);
4241 }
4242
4243 aprint_error_dev(sc->bge_dev,
4244 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4245 }
4246
4247 /*
4248 * Stop the adapter and free any mbufs allocated to the
4249 * RX and TX lists.
4250 */
4251 static void
4252 bge_stop(struct ifnet *ifp, int disable)
4253 {
4254 struct bge_softc *sc = ifp->if_softc;
4255
4256 callout_stop(&sc->bge_timeout);
4257
4258 /*
4259 * Disable all of the receiver blocks
4260 */
4261 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4262 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4263 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4264 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4265 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4266 }
4267 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4268 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4269 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4270
4271 /*
4272 * Disable all of the transmit blocks
4273 */
4274 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4275 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4276 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4277 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4278 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4279 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4280 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4281 }
4282 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4283
4284 /*
4285 * Shut down all of the memory managers and related
4286 * state machines.
4287 */
4288 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4289 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4290 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4291 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4292 }
4293
4294 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4295 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4296
4297 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4298 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4299 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4300 }
4301
4302 /* Disable host interrupts. */
4303 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4304 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4305
4306 /*
4307 * Tell firmware we're shutting down.
4308 */
4309 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4310
4311 /* Free the RX lists. */
4312 bge_free_rx_ring_std(sc);
4313
4314 /* Free jumbo RX list. */
4315 bge_free_rx_ring_jumbo(sc);
4316
4317 /* Free TX buffers. */
4318 bge_free_tx_ring(sc);
4319
4320 /*
4321 * Isolate/power down the PHY.
4322 */
4323 if (!sc->bge_tbi)
4324 mii_down(&sc->bge_mii);
4325
4326 sc->bge_link = 0;
4327
4328 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4329
4330 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4331 }
4332
4333 static int
4334 sysctl_bge_verify(SYSCTLFN_ARGS)
4335 {
4336 int error, t;
4337 struct sysctlnode node;
4338
4339 node = *rnode;
4340 t = *(int*)rnode->sysctl_data;
4341 node.sysctl_data = &t;
4342 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4343 if (error || newp == NULL)
4344 return (error);
4345
4346 #if 0
4347 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4348 node.sysctl_num, rnode->sysctl_num));
4349 #endif
4350
4351 if (node.sysctl_num == bge_rxthresh_nodenum) {
4352 if (t < 0 || t >= NBGE_RX_THRESH)
4353 return (EINVAL);
4354 bge_update_all_threshes(t);
4355 } else
4356 return (EINVAL);
4357
4358 *(int*)rnode->sysctl_data = t;
4359
4360 return (0);
4361 }
4362
4363 /*
4364 * Set up sysctl(3) MIB, hw.bge.*.
4365 *
4366 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4367 */
4368 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4369 {
4370 int rc, bge_root_num;
4371 const struct sysctlnode *node;
4372
4373 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4374 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4375 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4376 goto err;
4377 }
4378
4379 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4380 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4381 SYSCTL_DESCR("BGE interface controls"),
4382 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4383 goto err;
4384 }
4385
4386 bge_root_num = node->sysctl_num;
4387
4388 /* BGE Rx interrupt mitigation level */
4389 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4390 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4391 CTLTYPE_INT, "rx_lvl",
4392 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4393 sysctl_bge_verify, 0,
4394 &bge_rx_thresh_lvl,
4395 0, CTL_HW, bge_root_num, CTL_CREATE,
4396 CTL_EOL)) != 0) {
4397 goto err;
4398 }
4399
4400 bge_rxthresh_nodenum = node->sysctl_num;
4401
4402 return;
4403
4404 err:
4405 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4406 }
4407