Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.151
      1 /*	$NetBSD: if_bge.c,v 1.151 2008/08/25 08:15:05 cegger Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.151 2008/08/25 08:15:05 cegger Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/device.h>
     96 #include <sys/socket.h>
     97 #include <sys/sysctl.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #if NRND > 0
    105 #include <sys/rnd.h>
    106 #endif
    107 
    108 #ifdef INET
    109 #include <netinet/in.h>
    110 #include <netinet/in_systm.h>
    111 #include <netinet/in_var.h>
    112 #include <netinet/ip.h>
    113 #endif
    114 
    115 /* Headers for TCP  Segmentation Offload (TSO) */
    116 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118 #include <netinet/ip.h>			/* for struct ip */
    119 #include <netinet/tcp.h>		/* for struct tcphdr */
    120 
    121 
    122 #if NBPFILTER > 0
    123 #include <net/bpf.h>
    124 #endif
    125 
    126 #include <dev/pci/pcireg.h>
    127 #include <dev/pci/pcivar.h>
    128 #include <dev/pci/pcidevs.h>
    129 
    130 #include <dev/mii/mii.h>
    131 #include <dev/mii/miivar.h>
    132 #include <dev/mii/miidevs.h>
    133 #include <dev/mii/brgphyreg.h>
    134 
    135 #include <dev/pci/if_bgereg.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    140 
    141 
    142 /*
    143  * Tunable thresholds for rx-side bge interrupt mitigation.
    144  */
    145 
    146 /*
    147  * The pairs of values below were obtained from empirical measurement
    148  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    149  * interrupt for every N packets received, where N is, approximately,
    150  * the second value (rx_max_bds) in each pair.  The values are chosen
    151  * such that moving from one pair to the succeeding pair was observed
    152  * to roughly halve interrupt rate under sustained input packet load.
    153  * The values were empirically chosen to avoid overflowing internal
    154  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    155  * results in internal wrapping and higher interrupt rates.
    156  * The limit of 46 frames was chosen to match NFS workloads.
    157  *
    158  * These values also work well on bcm5701, bcm5704C, and (less
    159  * tested) bcm5703.  On other chipsets, (including the Altima chip
    160  * family), the larger values may overflow internal chip limits,
    161  * leading to increasing interrupt rates rather than lower interrupt
    162  * rates.
    163  *
    164  * Applications using heavy interrupt mitigation (interrupting every
    165  * 32 or 46 frames) in both directions may need to increase the TCP
    166  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    167  * full link bandwidth, due to ACKs and window updates lingering
    168  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    169  */
    170 static const struct bge_load_rx_thresh {
    171 	int rx_ticks;
    172 	int rx_max_bds; }
    173 bge_rx_threshes[] = {
    174 	{ 32,   2 },
    175 	{ 50,   4 },
    176 	{ 100,  8 },
    177 	{ 192, 16 },
    178 	{ 416, 32 },
    179 	{ 598, 46 }
    180 };
    181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    182 
    183 /* XXX patchable; should be sysctl'able */
    184 static int	bge_auto_thresh = 1;
    185 static int	bge_rx_thresh_lvl;
    186 
    187 static int	bge_rxthresh_nodenum;
    188 
    189 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
    190 
    191 static int	bge_probe(device_t, cfdata_t, void *);
    192 static void	bge_attach(device_t, device_t, void *);
    193 static void	bge_release_resources(struct bge_softc *);
    194 static void	bge_txeof(struct bge_softc *);
    195 static void	bge_rxeof(struct bge_softc *);
    196 
    197 static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
    198 static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
    199 static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
    200 static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
    201 
    202 static void	bge_tick(void *);
    203 static void	bge_stats_update(struct bge_softc *);
    204 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    205 
    206 static int	bge_intr(void *);
    207 static void	bge_start(struct ifnet *);
    208 static int	bge_ioctl(struct ifnet *, u_long, void *);
    209 static int	bge_init(struct ifnet *);
    210 static void	bge_stop(struct ifnet *, int);
    211 static void	bge_watchdog(struct ifnet *);
    212 static int	bge_ifmedia_upd(struct ifnet *);
    213 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    214 
    215 static void	bge_setmulti(struct bge_softc *);
    216 
    217 static void	bge_handle_events(struct bge_softc *);
    218 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    219 #if 0 /* XXX */
    220 static void	bge_free_jumbo_mem(struct bge_softc *);
    221 #endif
    222 static void	*bge_jalloc(struct bge_softc *);
    223 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    224 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    225 			       bus_dmamap_t);
    226 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    227 static int	bge_init_rx_ring_std(struct bge_softc *);
    228 static void	bge_free_rx_ring_std(struct bge_softc *);
    229 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    230 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    231 static void	bge_free_tx_ring(struct bge_softc *);
    232 static int	bge_init_tx_ring(struct bge_softc *);
    233 
    234 static int	bge_chipinit(struct bge_softc *);
    235 static int	bge_blockinit(struct bge_softc *);
    236 static int	bge_setpowerstate(struct bge_softc *, int);
    237 
    238 static void	bge_reset(struct bge_softc *);
    239 
    240 #define BGE_DEBUG
    241 #ifdef BGE_DEBUG
    242 #define DPRINTF(x)	if (bgedebug) printf x
    243 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    244 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    245 int	bgedebug = 0;
    246 int	bge_tso_debug = 0;
    247 #else
    248 #define DPRINTF(x)
    249 #define DPRINTFN(n,x)
    250 #define BGE_TSO_PRINTF(x)
    251 #endif
    252 
    253 #ifdef BGE_EVENT_COUNTERS
    254 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    255 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    256 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    257 #else
    258 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    259 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    260 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    261 #endif
    262 
    263 /* Various chip quirks. */
    264 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    265 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    266 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    267 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    268 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    269 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    270 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    271 #define	BGE_QUIRK_5705_CORE		0x00000080
    272 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    273 
    274 /*
    275  * XXX: how to handle variants based on 5750 and derivatives:
    276  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    277  * in general behave like a 5705, except with additional quirks.
    278  * This driver's current handling of the 5721 is wrong;
    279  * how we map ASIC revision to "quirks" needs more thought.
    280  * (defined here until the thought is done).
    281  */
    282 #define BGE_IS_5714_FAMILY(sc) \
    283 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    284 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    285 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    286 
    287 #define BGE_IS_5750_OR_BEYOND(sc)  \
    288 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    289 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    290 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    291 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    292 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    293 	 BGE_IS_5714_FAMILY(sc) )
    294 
    295 #define BGE_IS_5705_OR_BEYOND(sc)  \
    296 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    297 	  BGE_IS_5750_OR_BEYOND(sc) )
    298 
    299 
    300 /* following bugs are common to bcm5700 rev B, all flavours */
    301 #define BGE_QUIRK_5700_COMMON \
    302 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    303 
    304 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    305     bge_probe, bge_attach, NULL, NULL);
    306 
    307 static u_int32_t
    308 bge_readmem_ind(struct bge_softc *sc, int off)
    309 {
    310 	pcireg_t val;
    311 
    312 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    313 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    314 	return val;
    315 }
    316 
    317 static void
    318 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    319 {
    320 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    321 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    322 }
    323 
    324 #ifdef notdef
    325 static u_int32_t
    326 bge_readreg_ind(struct bge_softc *sc, int off)
    327 {
    328 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    329 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    330 }
    331 #endif
    332 
    333 static void
    334 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    335 {
    336 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    337 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    338 }
    339 
    340 static void
    341 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    342 {
    343 	CSR_WRITE_4(sc, off, val);
    344 }
    345 
    346 static void
    347 bge_writembx(struct bge_softc *sc, int off, int val)
    348 {
    349 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    350 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    351 
    352 	CSR_WRITE_4(sc, off, val);
    353 }
    354 
    355 #ifdef notdef
    356 static u_int8_t
    357 bge_vpd_readbyte(struct bge_softc *sc, int addr)
    358 {
    359 	int i;
    360 	u_int32_t val;
    361 
    362 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
    363 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    364 		DELAY(10);
    365 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
    366 		    BGE_VPD_FLAG)
    367 			break;
    368 	}
    369 
    370 	if (i == BGE_TIMEOUT) {
    371 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    372 		return(0);
    373 	}
    374 
    375 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
    376 
    377 	return((val >> ((addr % 4) * 8)) & 0xFF);
    378 }
    379 
    380 static void
    381 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    382 {
    383 	int i;
    384 	u_int8_t *ptr;
    385 
    386 	ptr = (u_int8_t *)res;
    387 	for (i = 0; i < sizeof(struct vpd_res); i++)
    388 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    389 }
    390 
    391 static void
    392 bge_vpd_read(struct bge_softc *sc)
    393 {
    394 	int pos = 0, i;
    395 	struct vpd_res res;
    396 
    397 	if (sc->bge_vpd_prodname != NULL)
    398 		free(sc->bge_vpd_prodname, M_DEVBUF);
    399 	if (sc->bge_vpd_readonly != NULL)
    400 		free(sc->bge_vpd_readonly, M_DEVBUF);
    401 	sc->bge_vpd_prodname = NULL;
    402 	sc->bge_vpd_readonly = NULL;
    403 
    404 	bge_vpd_read_res(sc, &res, pos);
    405 
    406 	if (res.vr_id != VPD_RES_ID) {
    407 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    408 		    VPD_RES_ID, res.vr_id);
    409 		return;
    410 	}
    411 
    412 	pos += sizeof(res);
    413 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    414 	if (sc->bge_vpd_prodname == NULL)
    415 		panic("bge_vpd_read");
    416 	for (i = 0; i < res.vr_len; i++)
    417 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    418 	sc->bge_vpd_prodname[i] = '\0';
    419 	pos += i;
    420 
    421 	bge_vpd_read_res(sc, &res, pos);
    422 
    423 	if (res.vr_id != VPD_RES_READ) {
    424 		aprint_error_dev(sc->bge_dev,
    425 		    "bad VPD resource id: expected %x got %x\n",
    426 		    VPD_RES_READ, res.vr_id);
    427 		return;
    428 	}
    429 
    430 	pos += sizeof(res);
    431 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    432 	if (sc->bge_vpd_readonly == NULL)
    433 		panic("bge_vpd_read");
    434 	for (i = 0; i < res.vr_len + 1; i++)
    435 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    436 }
    437 #endif
    438 
    439 static u_int8_t
    440 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    441 {
    442 	u_int32_t access, byte = 0;
    443 	int i;
    444 
    445 	/* Lock. */
    446 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    447 	for (i = 0; i < 8000; i++) {
    448 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    449 			break;
    450 		DELAY(20);
    451 	}
    452 	if (i == 8000)
    453 		return (1);
    454 
    455 	/* Enable access. */
    456 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    457 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    458 
    459 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    460 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    461 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    462 		DELAY(10);
    463 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    464 			DELAY(10);
    465 			break;
    466 		}
    467 	}
    468 
    469 	if (i == BGE_TIMEOUT * 10) {
    470 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    471 		return (1);
    472 	}
    473 
    474 	/* Get result. */
    475 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    476 
    477 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    478 
    479 	/* Disable access. */
    480 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    481 
    482 	/* Unlock. */
    483 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    484 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    485 
    486 	return (0);
    487 }
    488 
    489 /*
    490  * Read a sequence of bytes from NVRAM.
    491  */
    492 static int
    493 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
    494 {
    495 	int err = 0, i;
    496 	u_int8_t byte = 0;
    497 
    498 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    499 		return (1);
    500 
    501 	for (i = 0; i < cnt; i++) {
    502 		err = bge_nvram_getbyte(sc, off + i, &byte);
    503 		if (err)
    504 			break;
    505 		*(dest + i) = byte;
    506 	}
    507 
    508 	return (err ? 1 : 0);
    509 }
    510 
    511 
    512 /*
    513  * Read a byte of data stored in the EEPROM at address 'addr.' The
    514  * BCM570x supports both the traditional bitbang interface and an
    515  * auto access interface for reading the EEPROM. We use the auto
    516  * access method.
    517  */
    518 static u_int8_t
    519 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    520 {
    521 	int i;
    522 	u_int32_t byte = 0;
    523 
    524 	/*
    525 	 * Enable use of auto EEPROM access so we can avoid
    526 	 * having to use the bitbang method.
    527 	 */
    528 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    529 
    530 	/* Reset the EEPROM, load the clock period. */
    531 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    532 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    533 	DELAY(20);
    534 
    535 	/* Issue the read EEPROM command. */
    536 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    537 
    538 	/* Wait for completion */
    539 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    540 		DELAY(10);
    541 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    542 			break;
    543 	}
    544 
    545 	if (i == BGE_TIMEOUT) {
    546 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    547 		return(0);
    548 	}
    549 
    550 	/* Get result. */
    551 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    552 
    553 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    554 
    555 	return(0);
    556 }
    557 
    558 /*
    559  * Read a sequence of bytes from the EEPROM.
    560  */
    561 static int
    562 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    563 {
    564 	int err = 0, i;
    565 	u_int8_t byte = 0;
    566 	char *dest = destv;
    567 
    568 	for (i = 0; i < cnt; i++) {
    569 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    570 		if (err)
    571 			break;
    572 		*(dest + i) = byte;
    573 	}
    574 
    575 	return(err ? 1 : 0);
    576 }
    577 
    578 static int
    579 bge_miibus_readreg(device_t dev, int phy, int reg)
    580 {
    581 	struct bge_softc *sc = device_private(dev);
    582 	u_int32_t val;
    583 	u_int32_t saved_autopoll;
    584 	int i;
    585 
    586 	/*
    587 	 * Several chips with builtin PHYs will incorrectly answer to
    588 	 * other PHY instances than the builtin PHY at id 1.
    589 	 */
    590 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    591 		return(0);
    592 
    593 	/* Reading with autopolling on may trigger PCI errors */
    594 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    595 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    596 		CSR_WRITE_4(sc, BGE_MI_MODE,
    597 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    598 		DELAY(40);
    599 	}
    600 
    601 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    602 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    603 
    604 	for (i = 0; i < BGE_TIMEOUT; i++) {
    605 		val = CSR_READ_4(sc, BGE_MI_COMM);
    606 		if (!(val & BGE_MICOMM_BUSY))
    607 			break;
    608 		delay(10);
    609 	}
    610 
    611 	if (i == BGE_TIMEOUT) {
    612 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    613 		val = 0;
    614 		goto done;
    615 	}
    616 
    617 	val = CSR_READ_4(sc, BGE_MI_COMM);
    618 
    619 done:
    620 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    621 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    622 		DELAY(40);
    623 	}
    624 
    625 	if (val & BGE_MICOMM_READFAIL)
    626 		return(0);
    627 
    628 	return(val & 0xFFFF);
    629 }
    630 
    631 static void
    632 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    633 {
    634 	struct bge_softc *sc = device_private(dev);
    635 	u_int32_t saved_autopoll;
    636 	int i;
    637 
    638 	if (phy!=1) {
    639 		return;
    640 	}
    641 
    642 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    643 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    644 		return;
    645 	}
    646 
    647 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    648 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    649 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    650 		delay(40);
    651 		CSR_WRITE_4(sc, BGE_MI_MODE,
    652 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    653 		delay(10); /* 40 usec is supposed to be adequate */
    654 	}
    655 
    656 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    657 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    658 
    659 	for (i = 0; i < BGE_TIMEOUT; i++) {
    660 		delay(10);
    661 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    662 			delay(5);
    663 			CSR_READ_4(sc, BGE_MI_COMM);
    664 			break;
    665 		}
    666 	}
    667 
    668 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    669 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    670 		delay(40);
    671 	}
    672 
    673 	if (i == BGE_TIMEOUT)
    674 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    675 }
    676 
    677 static void
    678 bge_miibus_statchg(device_t dev)
    679 {
    680 	struct bge_softc *sc = device_private(dev);
    681 	struct mii_data *mii = &sc->bge_mii;
    682 
    683 	/*
    684 	 * Get flow control negotiation result.
    685 	 */
    686 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    687 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    688 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    689 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    690 	}
    691 
    692 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    693 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    694 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    695 	} else {
    696 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    697 	}
    698 
    699 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    700 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    701 	} else {
    702 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    703 	}
    704 
    705 	/*
    706 	 * 802.3x flow control
    707 	 */
    708 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    709 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    710 	} else {
    711 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    712 	}
    713 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    714 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    715 	} else {
    716 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    717 	}
    718 }
    719 
    720 /*
    721  * Update rx threshold levels to values in a particular slot
    722  * of the interrupt-mitigation table bge_rx_threshes.
    723  */
    724 static void
    725 bge_set_thresh(struct ifnet *ifp, int lvl)
    726 {
    727 	struct bge_softc *sc = ifp->if_softc;
    728 	int s;
    729 
    730 	/* For now, just save the new Rx-intr thresholds and record
    731 	 * that a threshold update is pending.  Updating the hardware
    732 	 * registers here (even at splhigh()) is observed to
    733 	 * occasionaly cause glitches where Rx-interrupts are not
    734 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    735 	 */
    736 	s = splnet();
    737 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    738 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    739 	sc->bge_pending_rxintr_change = 1;
    740 	splx(s);
    741 
    742 	 return;
    743 }
    744 
    745 
    746 /*
    747  * Update Rx thresholds of all bge devices
    748  */
    749 static void
    750 bge_update_all_threshes(int lvl)
    751 {
    752 	struct ifnet *ifp;
    753 	const char * const namebuf = "bge";
    754 	int namelen;
    755 
    756 	if (lvl < 0)
    757 		lvl = 0;
    758 	else if( lvl >= NBGE_RX_THRESH)
    759 		lvl = NBGE_RX_THRESH - 1;
    760 
    761 	namelen = strlen(namebuf);
    762 	/*
    763 	 * Now search all the interfaces for this name/number
    764 	 */
    765 	IFNET_FOREACH(ifp) {
    766 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    767 		      continue;
    768 		/* We got a match: update if doing auto-threshold-tuning */
    769 		if (bge_auto_thresh)
    770 			bge_set_thresh(ifp, lvl);
    771 	}
    772 }
    773 
    774 /*
    775  * Handle events that have triggered interrupts.
    776  */
    777 static void
    778 bge_handle_events(struct bge_softc *sc)
    779 {
    780 
    781 	return;
    782 }
    783 
    784 /*
    785  * Memory management for jumbo frames.
    786  */
    787 
    788 static int
    789 bge_alloc_jumbo_mem(struct bge_softc *sc)
    790 {
    791 	char *ptr, *kva;
    792 	bus_dma_segment_t	seg;
    793 	int		i, rseg, state, error;
    794 	struct bge_jpool_entry   *entry;
    795 
    796 	state = error = 0;
    797 
    798 	/* Grab a big chunk o' storage. */
    799 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    800 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    801 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    802 		return ENOBUFS;
    803 	}
    804 
    805 	state = 1;
    806 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    807 	    BUS_DMA_NOWAIT)) {
    808 		aprint_error_dev(sc->bge_dev,
    809 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    810 		error = ENOBUFS;
    811 		goto out;
    812 	}
    813 
    814 	state = 2;
    815 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    816 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    817 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    818 		error = ENOBUFS;
    819 		goto out;
    820 	}
    821 
    822 	state = 3;
    823 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    824 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    825 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    826 		error = ENOBUFS;
    827 		goto out;
    828 	}
    829 
    830 	state = 4;
    831 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    832 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    833 
    834 	SLIST_INIT(&sc->bge_jfree_listhead);
    835 	SLIST_INIT(&sc->bge_jinuse_listhead);
    836 
    837 	/*
    838 	 * Now divide it up into 9K pieces and save the addresses
    839 	 * in an array.
    840 	 */
    841 	ptr = sc->bge_cdata.bge_jumbo_buf;
    842 	for (i = 0; i < BGE_JSLOTS; i++) {
    843 		sc->bge_cdata.bge_jslots[i] = ptr;
    844 		ptr += BGE_JLEN;
    845 		entry = malloc(sizeof(struct bge_jpool_entry),
    846 		    M_DEVBUF, M_NOWAIT);
    847 		if (entry == NULL) {
    848 			aprint_error_dev(sc->bge_dev,
    849 			    "no memory for jumbo buffer queue!\n");
    850 			error = ENOBUFS;
    851 			goto out;
    852 		}
    853 		entry->slot = i;
    854 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    855 				 entry, jpool_entries);
    856 	}
    857 out:
    858 	if (error != 0) {
    859 		switch (state) {
    860 		case 4:
    861 			bus_dmamap_unload(sc->bge_dmatag,
    862 			    sc->bge_cdata.bge_rx_jumbo_map);
    863 		case 3:
    864 			bus_dmamap_destroy(sc->bge_dmatag,
    865 			    sc->bge_cdata.bge_rx_jumbo_map);
    866 		case 2:
    867 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    868 		case 1:
    869 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    870 			break;
    871 		default:
    872 			break;
    873 		}
    874 	}
    875 
    876 	return error;
    877 }
    878 
    879 /*
    880  * Allocate a jumbo buffer.
    881  */
    882 static void *
    883 bge_jalloc(struct bge_softc *sc)
    884 {
    885 	struct bge_jpool_entry   *entry;
    886 
    887 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    888 
    889 	if (entry == NULL) {
    890 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    891 		return(NULL);
    892 	}
    893 
    894 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    895 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    896 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    897 }
    898 
    899 /*
    900  * Release a jumbo buffer.
    901  */
    902 static void
    903 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    904 {
    905 	struct bge_jpool_entry *entry;
    906 	struct bge_softc *sc;
    907 	int i, s;
    908 
    909 	/* Extract the softc struct pointer. */
    910 	sc = (struct bge_softc *)arg;
    911 
    912 	if (sc == NULL)
    913 		panic("bge_jfree: can't find softc pointer!");
    914 
    915 	/* calculate the slot this buffer belongs to */
    916 
    917 	i = ((char *)buf
    918 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    919 
    920 	if ((i < 0) || (i >= BGE_JSLOTS))
    921 		panic("bge_jfree: asked to free buffer that we don't manage!");
    922 
    923 	s = splvm();
    924 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    925 	if (entry == NULL)
    926 		panic("bge_jfree: buffer not in use!");
    927 	entry->slot = i;
    928 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    929 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    930 
    931 	if (__predict_true(m != NULL))
    932   		pool_cache_put(mb_cache, m);
    933 	splx(s);
    934 }
    935 
    936 
    937 /*
    938  * Intialize a standard receive ring descriptor.
    939  */
    940 static int
    941 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    942 {
    943 	struct mbuf		*m_new = NULL;
    944 	struct bge_rx_bd	*r;
    945 	int			error;
    946 
    947 	if (dmamap == NULL) {
    948 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    949 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    950 		if (error != 0)
    951 			return error;
    952 	}
    953 
    954 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    955 
    956 	if (m == NULL) {
    957 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    958 		if (m_new == NULL) {
    959 			return(ENOBUFS);
    960 		}
    961 
    962 		MCLGET(m_new, M_DONTWAIT);
    963 		if (!(m_new->m_flags & M_EXT)) {
    964 			m_freem(m_new);
    965 			return(ENOBUFS);
    966 		}
    967 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    968 
    969 	} else {
    970 		m_new = m;
    971 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    972 		m_new->m_data = m_new->m_ext.ext_buf;
    973 	}
    974 	if (!sc->bge_rx_alignment_bug)
    975 	    m_adj(m_new, ETHER_ALIGN);
    976 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    977 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    978 		return(ENOBUFS);
    979 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    980 	    BUS_DMASYNC_PREREAD);
    981 
    982 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    983 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    984 	bge_set_hostaddr(&r->bge_addr,
    985 	    dmamap->dm_segs[0].ds_addr);
    986 	r->bge_flags = BGE_RXBDFLAG_END;
    987 	r->bge_len = m_new->m_len;
    988 	r->bge_idx = i;
    989 
    990 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    991 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    992 		i * sizeof (struct bge_rx_bd),
    993 	    sizeof (struct bge_rx_bd),
    994 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    995 
    996 	return(0);
    997 }
    998 
    999 /*
   1000  * Initialize a jumbo receive ring descriptor. This allocates
   1001  * a jumbo buffer from the pool managed internally by the driver.
   1002  */
   1003 static int
   1004 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1005 {
   1006 	struct mbuf *m_new = NULL;
   1007 	struct bge_rx_bd *r;
   1008 	void *buf = NULL;
   1009 
   1010 	if (m == NULL) {
   1011 
   1012 		/* Allocate the mbuf. */
   1013 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1014 		if (m_new == NULL) {
   1015 			return(ENOBUFS);
   1016 		}
   1017 
   1018 		/* Allocate the jumbo buffer */
   1019 		buf = bge_jalloc(sc);
   1020 		if (buf == NULL) {
   1021 			m_freem(m_new);
   1022 			aprint_error_dev(sc->bge_dev,
   1023 			    "jumbo allocation failed -- packet dropped!\n");
   1024 			return(ENOBUFS);
   1025 		}
   1026 
   1027 		/* Attach the buffer to the mbuf. */
   1028 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1029 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1030 		    bge_jfree, sc);
   1031 		m_new->m_flags |= M_EXT_RW;
   1032 	} else {
   1033 		m_new = m;
   1034 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1035 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1036 	}
   1037 	if (!sc->bge_rx_alignment_bug)
   1038 	    m_adj(m_new, ETHER_ALIGN);
   1039 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1040 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1041 	    BUS_DMASYNC_PREREAD);
   1042 	/* Set up the descriptor. */
   1043 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1044 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1045 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1046 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1047 	r->bge_len = m_new->m_len;
   1048 	r->bge_idx = i;
   1049 
   1050 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1051 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1052 		i * sizeof (struct bge_rx_bd),
   1053 	    sizeof (struct bge_rx_bd),
   1054 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1055 
   1056 	return(0);
   1057 }
   1058 
   1059 /*
   1060  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1061  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1062  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1063  * the NIC.
   1064  */
   1065 static int
   1066 bge_init_rx_ring_std(struct bge_softc *sc)
   1067 {
   1068 	int i;
   1069 
   1070 	if (sc->bge_flags & BGE_RXRING_VALID)
   1071 		return 0;
   1072 
   1073 	for (i = 0; i < BGE_SSLOTS; i++) {
   1074 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1075 			return(ENOBUFS);
   1076 	}
   1077 
   1078 	sc->bge_std = i - 1;
   1079 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1080 
   1081 	sc->bge_flags |= BGE_RXRING_VALID;
   1082 
   1083 	return(0);
   1084 }
   1085 
   1086 static void
   1087 bge_free_rx_ring_std(struct bge_softc *sc)
   1088 {
   1089 	int i;
   1090 
   1091 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1092 		return;
   1093 
   1094 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1095 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1096 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1097 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1098 			bus_dmamap_destroy(sc->bge_dmatag,
   1099 			    sc->bge_cdata.bge_rx_std_map[i]);
   1100 		}
   1101 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1102 		    sizeof(struct bge_rx_bd));
   1103 	}
   1104 
   1105 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1106 }
   1107 
   1108 static int
   1109 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1110 {
   1111 	int i;
   1112 	volatile struct bge_rcb *rcb;
   1113 
   1114 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1115 		return 0;
   1116 
   1117 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1118 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1119 			return(ENOBUFS);
   1120 	};
   1121 
   1122 	sc->bge_jumbo = i - 1;
   1123 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1124 
   1125 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1126 	rcb->bge_maxlen_flags = 0;
   1127 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1128 
   1129 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1130 
   1131 	return(0);
   1132 }
   1133 
   1134 static void
   1135 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1136 {
   1137 	int i;
   1138 
   1139 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1140 		return;
   1141 
   1142 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1143 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1144 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1145 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1146 		}
   1147 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1148 		    sizeof(struct bge_rx_bd));
   1149 	}
   1150 
   1151 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1152 }
   1153 
   1154 static void
   1155 bge_free_tx_ring(struct bge_softc *sc)
   1156 {
   1157 	int i, freed;
   1158 	struct txdmamap_pool_entry *dma;
   1159 
   1160 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1161 		return;
   1162 
   1163 	freed = 0;
   1164 
   1165 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1166 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1167 			freed++;
   1168 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1169 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1170 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1171 					    link);
   1172 			sc->txdma[i] = 0;
   1173 		}
   1174 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1175 		    sizeof(struct bge_tx_bd));
   1176 	}
   1177 
   1178 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1179 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1180 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1181 		free(dma, M_DEVBUF);
   1182 	}
   1183 
   1184 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1185 }
   1186 
   1187 static int
   1188 bge_init_tx_ring(struct bge_softc *sc)
   1189 {
   1190 	int i;
   1191 	bus_dmamap_t dmamap;
   1192 	struct txdmamap_pool_entry *dma;
   1193 
   1194 	if (sc->bge_flags & BGE_TXRING_VALID)
   1195 		return 0;
   1196 
   1197 	sc->bge_txcnt = 0;
   1198 	sc->bge_tx_saved_considx = 0;
   1199 
   1200 	/* Initialize transmit producer index for host-memory send ring. */
   1201 	sc->bge_tx_prodidx = 0;
   1202 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1203 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1204 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1205 
   1206 	/* NIC-memory send ring  not used; initialize to zero. */
   1207 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1208 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1209 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1210 
   1211 	SLIST_INIT(&sc->txdma_list);
   1212 	for (i = 0; i < BGE_RSLOTS; i++) {
   1213 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1214 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1215 		    &dmamap))
   1216 			return(ENOBUFS);
   1217 		if (dmamap == NULL)
   1218 			panic("dmamap NULL in bge_init_tx_ring");
   1219 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1220 		if (dma == NULL) {
   1221 			aprint_error_dev(sc->bge_dev,
   1222 			    "can't alloc txdmamap_pool_entry\n");
   1223 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1224 			return (ENOMEM);
   1225 		}
   1226 		dma->dmamap = dmamap;
   1227 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1228 	}
   1229 
   1230 	sc->bge_flags |= BGE_TXRING_VALID;
   1231 
   1232 	return(0);
   1233 }
   1234 
   1235 static void
   1236 bge_setmulti(struct bge_softc *sc)
   1237 {
   1238 	struct ethercom		*ac = &sc->ethercom;
   1239 	struct ifnet		*ifp = &ac->ec_if;
   1240 	struct ether_multi	*enm;
   1241 	struct ether_multistep  step;
   1242 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1243 	u_int32_t		h;
   1244 	int			i;
   1245 
   1246 	if (ifp->if_flags & IFF_PROMISC)
   1247 		goto allmulti;
   1248 
   1249 	/* Now program new ones. */
   1250 	ETHER_FIRST_MULTI(step, ac, enm);
   1251 	while (enm != NULL) {
   1252 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1253 			/*
   1254 			 * We must listen to a range of multicast addresses.
   1255 			 * For now, just accept all multicasts, rather than
   1256 			 * trying to set only those filter bits needed to match
   1257 			 * the range.  (At this time, the only use of address
   1258 			 * ranges is for IP multicast routing, for which the
   1259 			 * range is big enough to require all bits set.)
   1260 			 */
   1261 			goto allmulti;
   1262 		}
   1263 
   1264 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1265 
   1266 		/* Just want the 7 least-significant bits. */
   1267 		h &= 0x7f;
   1268 
   1269 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1270 		ETHER_NEXT_MULTI(step, enm);
   1271 	}
   1272 
   1273 	ifp->if_flags &= ~IFF_ALLMULTI;
   1274 	goto setit;
   1275 
   1276  allmulti:
   1277 	ifp->if_flags |= IFF_ALLMULTI;
   1278 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1279 
   1280  setit:
   1281 	for (i = 0; i < 4; i++)
   1282 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1283 }
   1284 
   1285 const int bge_swapbits[] = {
   1286 	0,
   1287 	BGE_MODECTL_BYTESWAP_DATA,
   1288 	BGE_MODECTL_WORDSWAP_DATA,
   1289 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1290 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1291 
   1292 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1293 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1294 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1295 
   1296 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1297 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1298 
   1299 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1300 
   1301 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1302 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1303 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1304 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1305 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1306 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1307 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1308 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1309 
   1310 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1311 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1312 };
   1313 
   1314 int bge_swapindex = 0;
   1315 
   1316 /*
   1317  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1318  * self-test results.
   1319  */
   1320 static int
   1321 bge_chipinit(struct bge_softc *sc)
   1322 {
   1323 	u_int32_t		cachesize;
   1324 	int			i;
   1325 	u_int32_t		dma_rw_ctl;
   1326 
   1327 
   1328 	/* Set endianness before we access any non-PCI registers. */
   1329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1330 	    BGE_INIT);
   1331 
   1332 	/* Set power state to D0. */
   1333 	bge_setpowerstate(sc, 0);
   1334 
   1335 	/*
   1336 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1337 	 * self-tests passed.
   1338 	 */
   1339 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1340 		aprint_error_dev(sc->bge_dev,
   1341 		    "RX CPU self-diagnostics failed!\n");
   1342 		return(ENODEV);
   1343 	}
   1344 
   1345 	/* Clear the MAC control register */
   1346 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1347 
   1348 	/*
   1349 	 * Clear the MAC statistics block in the NIC's
   1350 	 * internal memory.
   1351 	 */
   1352 	for (i = BGE_STATS_BLOCK;
   1353 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1354 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1355 
   1356 	for (i = BGE_STATUS_BLOCK;
   1357 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1358 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1359 
   1360 	/* Set up the PCI DMA control register. */
   1361 	if (sc->bge_pcie) {
   1362 	  u_int32_t device_ctl;
   1363 
   1364 		/* From FreeBSD */
   1365 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1366 		    device_xname(sc->bge_dev)));
   1367 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1368 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1369 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1370 
   1371 		/* jonathan: alternative from Linux driver */
   1372 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1373 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1374 
   1375 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1376 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1377 					   BGE_PCI_CONF_DEV_CTRL);
   1378 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1379 
   1380 		if ((device_ctl & 0x00e0) && 0) {
   1381 			/*
   1382 			 * XXX jonathan (at) NetBSD.org:
   1383 			 * This clause is exactly what the Broadcom-supplied
   1384 			 * Linux does; but given overall register programming
   1385 			 * by if_bge(4), this larger DMA-write watermark
   1386 			 * value causes bcm5721 chips to totally wedge.
   1387 			 */
   1388 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1389 		} else {
   1390 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1391 		}
   1392 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
   1393 	    BGE_PCISTATE_PCI_BUSMODE) {
   1394 		/* Conventional PCI bus */
   1395 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1396 		    device_xname(sc->bge_dev)));
   1397 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1398 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1399 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1400 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1401 			dma_rw_ctl |= 0x0F;
   1402 		}
   1403 	} else {
   1404 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1405 		    device_xname(sc->bge_dev)));
   1406 		/* PCI-X bus */
   1407 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1408 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1409 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1410 		    (0x0F);
   1411 		/*
   1412 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1413 		 * for hardware bugs, which means we should also clear
   1414 		 * the low-order MINDMA bits.  In addition, the 5704
   1415 		 * uses a different encoding of read/write watermarks.
   1416 		 */
   1417 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1418 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1419 			  /* should be 0x1f0000 */
   1420 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1421 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1422 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1423 		}
   1424 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1425 			dma_rw_ctl &=  0xfffffff0;
   1426 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1427 		}
   1428 		else if (BGE_IS_5714_FAMILY(sc)) {
   1429 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1430 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1431 			/* XXX magic values, Broadcom-supplied Linux driver */
   1432 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1433 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1434 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1435 			else
   1436 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1437 		}
   1438 	}
   1439 
   1440 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1441 
   1442 	/*
   1443 	 * Set up general mode register.
   1444 	 */
   1445 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1446 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1447 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1448 
   1449 	/* Get cache line size. */
   1450 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1451 
   1452 	/*
   1453 	 * Avoid violating PCI spec on certain chip revs.
   1454 	 */
   1455 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1456 	    PCIM_CMD_MWIEN) {
   1457 		switch(cachesize) {
   1458 		case 1:
   1459 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1460 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1461 			break;
   1462 		case 2:
   1463 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1464 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1465 			break;
   1466 		case 4:
   1467 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1468 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1469 			break;
   1470 		case 8:
   1471 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1472 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1473 			break;
   1474 		case 16:
   1475 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1476 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1477 			break;
   1478 		case 32:
   1479 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1480 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1481 			break;
   1482 		case 64:
   1483 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1484 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1485 			break;
   1486 		default:
   1487 		/* Disable PCI memory write and invalidate. */
   1488 #if 0
   1489 			if (bootverbose)
   1490 				aprint_error_dev(sc->bge_dev,
   1491 				    "cache line size %d not supported "
   1492 				    "disabling PCI MWI\n",
   1493 #endif
   1494 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1495 			    PCIM_CMD_MWIEN);
   1496 			break;
   1497 		}
   1498 	}
   1499 
   1500 	/*
   1501 	 * Disable memory write invalidate.  Apparently it is not supported
   1502 	 * properly by these devices.
   1503 	 */
   1504 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1505 
   1506 
   1507 #ifdef __brokenalpha__
   1508 	/*
   1509 	 * Must insure that we do not cross an 8K (bytes) boundary
   1510 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1511 	 * restriction on some ALPHA platforms with early revision
   1512 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1513 	 */
   1514 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1515 #endif
   1516 
   1517 	/* Set the timer prescaler (always 66MHz) */
   1518 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1519 
   1520 	return(0);
   1521 }
   1522 
   1523 static int
   1524 bge_blockinit(struct bge_softc *sc)
   1525 {
   1526 	volatile struct bge_rcb		*rcb;
   1527 	bus_size_t		rcb_addr;
   1528 	int			i;
   1529 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1530 	bge_hostaddr		taddr;
   1531 
   1532 	/*
   1533 	 * Initialize the memory window pointer register so that
   1534 	 * we can access the first 32K of internal NIC RAM. This will
   1535 	 * allow us to set up the TX send ring RCBs and the RX return
   1536 	 * ring RCBs, plus other things which live in NIC memory.
   1537 	 */
   1538 
   1539 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1540 
   1541 	/* Configure mbuf memory pool */
   1542 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1543 		if (sc->bge_extram) {
   1544 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1545 			    BGE_EXT_SSRAM);
   1546 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1547 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1548 			else
   1549 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1550 		} else {
   1551 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1552 			    BGE_BUFFPOOL_1);
   1553 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1554 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1555 			else
   1556 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1557 		}
   1558 
   1559 		/* Configure DMA resource pool */
   1560 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1561 		    BGE_DMA_DESCRIPTORS);
   1562 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1563 	}
   1564 
   1565 	/* Configure mbuf pool watermarks */
   1566 #ifdef ORIG_WPAUL_VALUES
   1567 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1568 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1569 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1570 #else
   1571 	/* new broadcom docs strongly recommend these: */
   1572 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1573 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1574 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1575 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1576 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1577 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1578 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1579 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1580 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1581 		} else {
   1582 			/* Values from Linux driver... */
   1583 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1584 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1585 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1586 		}
   1587 	} else {
   1588 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1589 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1590 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1591 	}
   1592 #endif
   1593 
   1594 	/* Configure DMA resource watermarks */
   1595 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1596 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1597 
   1598 	/* Enable buffer manager */
   1599 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1600 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1601 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1602 
   1603 		/* Poll for buffer manager start indication */
   1604 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1605 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1606 				break;
   1607 			DELAY(10);
   1608 		}
   1609 
   1610 		if (i == BGE_TIMEOUT) {
   1611 			aprint_error_dev(sc->bge_dev,
   1612 			    "buffer manager failed to start\n");
   1613 			return(ENXIO);
   1614 		}
   1615 	}
   1616 
   1617 	/* Enable flow-through queues */
   1618 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1619 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1620 
   1621 	/* Wait until queue initialization is complete */
   1622 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1623 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1624 			break;
   1625 		DELAY(10);
   1626 	}
   1627 
   1628 	if (i == BGE_TIMEOUT) {
   1629 		aprint_error_dev(sc->bge_dev,
   1630 		    "flow-through queue init failed\n");
   1631 		return(ENXIO);
   1632 	}
   1633 
   1634 	/* Initialize the standard RX ring control block */
   1635 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1636 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1637 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1638 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1639 		rcb->bge_maxlen_flags =
   1640 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1641 	} else {
   1642 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1643 	}
   1644 	if (sc->bge_extram)
   1645 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1646 	else
   1647 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1648 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1649 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1650 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1651 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1652 
   1653 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1654 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1655 	} else {
   1656 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1657 	}
   1658 
   1659 	/*
   1660 	 * Initialize the jumbo RX ring control block
   1661 	 * We set the 'ring disabled' bit in the flags
   1662 	 * field until we're actually ready to start
   1663 	 * using this ring (i.e. once we set the MTU
   1664 	 * high enough to require it).
   1665 	 */
   1666 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1667 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1668 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1669 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1670 		rcb->bge_maxlen_flags =
   1671 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1672 			BGE_RCB_FLAG_RING_DISABLED);
   1673 		if (sc->bge_extram)
   1674 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1675 		else
   1676 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1677 
   1678 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1679 		    rcb->bge_hostaddr.bge_addr_hi);
   1680 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1681 		    rcb->bge_hostaddr.bge_addr_lo);
   1682 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1683 		    rcb->bge_maxlen_flags);
   1684 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1685 
   1686 		/* Set up dummy disabled mini ring RCB */
   1687 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1688 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1689 		    BGE_RCB_FLAG_RING_DISABLED);
   1690 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1691 		    rcb->bge_maxlen_flags);
   1692 
   1693 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1694 		    offsetof(struct bge_ring_data, bge_info),
   1695 		    sizeof (struct bge_gib),
   1696 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1697 	}
   1698 
   1699 	/*
   1700 	 * Set the BD ring replenish thresholds. The recommended
   1701 	 * values are 1/8th the number of descriptors allocated to
   1702 	 * each ring.
   1703 	 */
   1704 	i = BGE_STD_RX_RING_CNT / 8;
   1705 
   1706 	/*
   1707  	 * Use a value of 8 for the following chips to workaround HW errata.
   1708 	 * Some of these chips have been added based on empirical
   1709 	 * evidence (they don't work unless this is done).
   1710 	 */
   1711 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1712 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1713 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1714 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1715 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1716 		i = 8;
   1717 
   1718 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1719 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1720 
   1721 	/*
   1722 	 * Disable all unused send rings by setting the 'ring disabled'
   1723 	 * bit in the flags field of all the TX send ring control blocks.
   1724 	 * These are located in NIC memory.
   1725 	 */
   1726 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1727 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1728 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1729 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1730 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1731 		rcb_addr += sizeof(struct bge_rcb);
   1732 	}
   1733 
   1734 	/* Configure TX RCB 0 (we use only the first ring) */
   1735 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1736 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1737 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1738 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1739 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1740 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1741 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1742 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1743 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1744 	}
   1745 
   1746 	/* Disable all unused RX return rings */
   1747 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1748 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1749 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1750 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1751 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1752 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1753                                      BGE_RCB_FLAG_RING_DISABLED));
   1754 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1755 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1756 		    (i * (sizeof(u_int64_t))), 0);
   1757 		rcb_addr += sizeof(struct bge_rcb);
   1758 	}
   1759 
   1760 	/* Initialize RX ring indexes */
   1761 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1762 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1763 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1764 
   1765 	/*
   1766 	 * Set up RX return ring 0
   1767 	 * Note that the NIC address for RX return rings is 0x00000000.
   1768 	 * The return rings live entirely within the host, so the
   1769 	 * nicaddr field in the RCB isn't used.
   1770 	 */
   1771 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1772 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1773 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1774 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1775 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1776 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1777 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1778 
   1779 	/* Set random backoff seed for TX */
   1780 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1781 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1782 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1783 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1784 	    BGE_TX_BACKOFF_SEED_MASK);
   1785 
   1786 	/* Set inter-packet gap */
   1787 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1788 
   1789 	/*
   1790 	 * Specify which ring to use for packets that don't match
   1791 	 * any RX rules.
   1792 	 */
   1793 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1794 
   1795 	/*
   1796 	 * Configure number of RX lists. One interrupt distribution
   1797 	 * list, sixteen active lists, one bad frames class.
   1798 	 */
   1799 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1800 
   1801 	/* Inialize RX list placement stats mask. */
   1802 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1803 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1804 
   1805 	/* Disable host coalescing until we get it set up */
   1806 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1807 
   1808 	/* Poll to make sure it's shut down. */
   1809 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1810 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1811 			break;
   1812 		DELAY(10);
   1813 	}
   1814 
   1815 	if (i == BGE_TIMEOUT) {
   1816 		aprint_error_dev(sc->bge_dev,
   1817 		    "host coalescing engine failed to idle\n");
   1818 		return(ENXIO);
   1819 	}
   1820 
   1821 	/* Set up host coalescing defaults */
   1822 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1823 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1824 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1825 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1826 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1827 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1828 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1829 	}
   1830 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1831 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1832 
   1833 	/* Set up address of statistics block */
   1834 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1835 		bge_set_hostaddr(&taddr,
   1836 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1837 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1838 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1839 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1840 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1841 	}
   1842 
   1843 	/* Set up address of status block */
   1844 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1845 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1846 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1847 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1848 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1849 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1850 
   1851 	/* Turn on host coalescing state machine */
   1852 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1853 
   1854 	/* Turn on RX BD completion state machine and enable attentions */
   1855 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1856 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1857 
   1858 	/* Turn on RX list placement state machine */
   1859 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1860 
   1861 	/* Turn on RX list selector state machine. */
   1862 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1863 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1864 	}
   1865 
   1866 	/* Turn on DMA, clear stats */
   1867 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1868 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1869 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1870 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1871 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1872 
   1873 	/* Set misc. local control, enable interrupts on attentions */
   1874 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1875 
   1876 #ifdef notdef
   1877 	/* Assert GPIO pins for PHY reset */
   1878 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1879 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1880 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1881 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1882 #endif
   1883 
   1884 #if defined(not_quite_yet)
   1885 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1886 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1887 		sc->bge_local_ctrl_reg |=
   1888 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1889 	}
   1890 #endif
   1891 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1892 
   1893 	/* Turn on DMA completion state machine */
   1894 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1895 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1896 	}
   1897 
   1898 	/* Turn on write DMA state machine */
   1899 	{
   1900 		uint32_t bge_wdma_mode =
   1901 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1902 
   1903 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1904 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1905 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1906 		  bge_wdma_mode |= (1 << 29);
   1907 
   1908 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1909         }
   1910 
   1911 	/* Turn on read DMA state machine */
   1912 	{
   1913 		uint32_t dma_read_modebits;
   1914 
   1915 		dma_read_modebits =
   1916 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1917 
   1918 		if (sc->bge_pcie && 0) {
   1919 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1920 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1921 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1922 		}
   1923 
   1924 		/* XXX broadcom-supplied linux driver; undocumented */
   1925 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1926  			/*
   1927 			 * XXX: magic values.
   1928 			 * From Broadcom-supplied Linux driver;  apparently
   1929 			 * required to workaround a DMA bug affecting TSO
   1930 			 * on bcm575x/bcm5721?
   1931 			 */
   1932 			dma_read_modebits |= (1 << 27);
   1933 		}
   1934 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1935 	}
   1936 
   1937 	/* Turn on RX data completion state machine */
   1938 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1939 
   1940 	/* Turn on RX BD initiator state machine */
   1941 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1942 
   1943 	/* Turn on RX data and RX BD initiator state machine */
   1944 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1945 
   1946 	/* Turn on Mbuf cluster free state machine */
   1947 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1948 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1949 	}
   1950 
   1951 	/* Turn on send BD completion state machine */
   1952 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1953 
   1954 	/* Turn on send data completion state machine */
   1955 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1956 
   1957 	/* Turn on send data initiator state machine */
   1958 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1959 		/* XXX: magic value from Linux driver */
   1960 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1961 	} else {
   1962 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1963 	}
   1964 
   1965 	/* Turn on send BD initiator state machine */
   1966 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1967 
   1968 	/* Turn on send BD selector state machine */
   1969 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1970 
   1971 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1972 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1973 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1974 
   1975 	/* ack/clear link change events */
   1976 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1977 	    BGE_MACSTAT_CFG_CHANGED);
   1978 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1979 
   1980 	/* Enable PHY auto polling (for MII/GMII only) */
   1981 	if (sc->bge_tbi) {
   1982 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1983  	} else {
   1984 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1985 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1986 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1987 			    BGE_EVTENB_MI_INTERRUPT);
   1988 	}
   1989 
   1990 	/* Enable link state change attentions. */
   1991 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1992 
   1993 	return(0);
   1994 }
   1995 
   1996 static const struct bge_revision {
   1997 	uint32_t		br_chipid;
   1998 	uint32_t		br_quirks;
   1999 	const char		*br_name;
   2000 } bge_revisions[] = {
   2001 	{ BGE_CHIPID_BCM5700_A0,
   2002 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2003 	  "BCM5700 A0" },
   2004 
   2005 	{ BGE_CHIPID_BCM5700_A1,
   2006 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2007 	  "BCM5700 A1" },
   2008 
   2009 	{ BGE_CHIPID_BCM5700_B0,
   2010 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   2011 	  "BCM5700 B0" },
   2012 
   2013 	{ BGE_CHIPID_BCM5700_B1,
   2014 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2015 	  "BCM5700 B1" },
   2016 
   2017 	{ BGE_CHIPID_BCM5700_B2,
   2018 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2019 	  "BCM5700 B2" },
   2020 
   2021 	{ BGE_CHIPID_BCM5700_B3,
   2022 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2023 	  "BCM5700 B3" },
   2024 
   2025 	/* This is treated like a BCM5700 Bx */
   2026 	{ BGE_CHIPID_BCM5700_ALTIMA,
   2027 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2028 	  "BCM5700 Altima" },
   2029 
   2030 	{ BGE_CHIPID_BCM5700_C0,
   2031 	  0,
   2032 	  "BCM5700 C0" },
   2033 
   2034 	{ BGE_CHIPID_BCM5701_A0,
   2035 	  0, /*XXX really, just not known */
   2036 	  "BCM5701 A0" },
   2037 
   2038 	{ BGE_CHIPID_BCM5701_B0,
   2039 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2040 	  "BCM5701 B0" },
   2041 
   2042 	{ BGE_CHIPID_BCM5701_B2,
   2043 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2044 	  "BCM5701 B2" },
   2045 
   2046 	{ BGE_CHIPID_BCM5701_B5,
   2047 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2048 	  "BCM5701 B5" },
   2049 
   2050 	{ BGE_CHIPID_BCM5703_A0,
   2051 	  0,
   2052 	  "BCM5703 A0" },
   2053 
   2054 	{ BGE_CHIPID_BCM5703_A1,
   2055 	  0,
   2056 	  "BCM5703 A1" },
   2057 
   2058 	{ BGE_CHIPID_BCM5703_A2,
   2059 	  BGE_QUIRK_ONLY_PHY_1,
   2060 	  "BCM5703 A2" },
   2061 
   2062 	{ BGE_CHIPID_BCM5703_A3,
   2063 	  BGE_QUIRK_ONLY_PHY_1,
   2064 	  "BCM5703 A3" },
   2065 
   2066 	{ BGE_CHIPID_BCM5703_B0,
   2067 	  BGE_QUIRK_ONLY_PHY_1,
   2068 	  "BCM5703 B0" },
   2069 
   2070 	{ BGE_CHIPID_BCM5704_A0,
   2071   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2072 	  "BCM5704 A0" },
   2073 
   2074 	{ BGE_CHIPID_BCM5704_A1,
   2075   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2076 	  "BCM5704 A1" },
   2077 
   2078 	{ BGE_CHIPID_BCM5704_A2,
   2079   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2080 	  "BCM5704 A2" },
   2081 
   2082 	{ BGE_CHIPID_BCM5704_A3,
   2083   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2084 	  "BCM5704 A3" },
   2085 
   2086 	{ BGE_CHIPID_BCM5705_A0,
   2087 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2088 	  "BCM5705 A0" },
   2089 
   2090 	{ BGE_CHIPID_BCM5705_A1,
   2091 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2092 	  "BCM5705 A1" },
   2093 
   2094 	{ BGE_CHIPID_BCM5705_A2,
   2095 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2096 	  "BCM5705 A2" },
   2097 
   2098 	{ BGE_CHIPID_BCM5705_A3,
   2099 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2100 	  "BCM5705 A3" },
   2101 
   2102 	{ BGE_CHIPID_BCM5750_A0,
   2103 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2104 	  "BCM5750 A0" },
   2105 
   2106 	{ BGE_CHIPID_BCM5750_A1,
   2107 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2108 	  "BCM5750 A1" },
   2109 
   2110 	{ BGE_CHIPID_BCM5751_A1,
   2111 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2112 	  "BCM5751 A1" },
   2113 
   2114 	{ BGE_CHIPID_BCM5752_A0,
   2115 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2116 	  "BCM5752 A0" },
   2117 
   2118 	{ BGE_CHIPID_BCM5752_A1,
   2119 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2120 	  "BCM5752 A1" },
   2121 
   2122 	{ BGE_CHIPID_BCM5752_A2,
   2123 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2124 	  "BCM5752 A2" },
   2125 
   2126 	{ BGE_CHIPID_BCM5755_A0,
   2127 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2128 	  "BCM5755 A0" },
   2129 
   2130 	{ BGE_CHIPID_BCM5755_A1,
   2131 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2132 	  "BCM5755 A1" },
   2133 
   2134 	{ BGE_CHIPID_BCM5755_A2,
   2135 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2136 	  "BCM5755 A2" },
   2137 
   2138 	{ BGE_CHIPID_BCM5755_C0,
   2139 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2140 	  "BCM5755 C0" },
   2141 
   2142 	{ BGE_CHIPID_BCM5787_A0,
   2143 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2144 	  "BCM5754/5787 A0" },
   2145 
   2146 	{ BGE_CHIPID_BCM5787_A1,
   2147 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2148 	  "BCM5754/5787 A1" },
   2149 
   2150 	{ BGE_CHIPID_BCM5787_A2,
   2151 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2152 	  "BCM5754/5787 A2" },
   2153 
   2154 	{ 0, 0, NULL }
   2155 };
   2156 
   2157 /*
   2158  * Some defaults for major revisions, so that newer steppings
   2159  * that we don't know about have a shot at working.
   2160  */
   2161 static const struct bge_revision bge_majorrevs[] = {
   2162 	{ BGE_ASICREV_BCM5700,
   2163 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2164 	  "unknown BCM5700" },
   2165 
   2166 	{ BGE_ASICREV_BCM5701,
   2167 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2168 	  "unknown BCM5701" },
   2169 
   2170 	{ BGE_ASICREV_BCM5703,
   2171 	  0,
   2172 	  "unknown BCM5703" },
   2173 
   2174 	{ BGE_ASICREV_BCM5704,
   2175 	  BGE_QUIRK_ONLY_PHY_1,
   2176 	  "unknown BCM5704" },
   2177 
   2178 	{ BGE_ASICREV_BCM5705,
   2179 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2180 	  "unknown BCM5705" },
   2181 
   2182 	{ BGE_ASICREV_BCM5750,
   2183 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2184 	  "unknown BCM575x family" },
   2185 
   2186 	{ BGE_ASICREV_BCM5714_A0,
   2187 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2188 	  "unknown BCM5714" },
   2189 
   2190 	{ BGE_ASICREV_BCM5714,
   2191 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2192 	  "unknown BCM5714" },
   2193 
   2194 	{ BGE_ASICREV_BCM5752,
   2195 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2196 	  "unknown BCM5752 family" },
   2197 
   2198 	{ BGE_ASICREV_BCM5755,
   2199 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2200 	  "unknown BCM5755" },
   2201 
   2202 	{ BGE_ASICREV_BCM5780,
   2203 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2204 	  "unknown BCM5780" },
   2205 
   2206 	{ BGE_ASICREV_BCM5787,
   2207 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2208 	  "unknown BCM5787" },
   2209 
   2210 	{ BGE_ASICREV_BCM5906,
   2211 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2212 	  "unknown BCM5906" },
   2213 
   2214 	{ 0,
   2215 	  0,
   2216 	  NULL }
   2217 };
   2218 
   2219 
   2220 static const struct bge_revision *
   2221 bge_lookup_rev(uint32_t chipid)
   2222 {
   2223 	const struct bge_revision *br;
   2224 
   2225 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2226 		if (br->br_chipid == chipid)
   2227 			return (br);
   2228 	}
   2229 
   2230 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2231 		if (br->br_chipid == BGE_ASICREV(chipid))
   2232 			return (br);
   2233 	}
   2234 
   2235 	return (NULL);
   2236 }
   2237 
   2238 static const struct bge_product {
   2239 	pci_vendor_id_t		bp_vendor;
   2240 	pci_product_id_t	bp_product;
   2241 	const char		*bp_name;
   2242 } bge_products[] = {
   2243 	/*
   2244 	 * The BCM5700 documentation seems to indicate that the hardware
   2245 	 * still has the Alteon vendor ID burned into it, though it
   2246 	 * should always be overridden by the value in the EEPROM.  We'll
   2247 	 * check for it anyway.
   2248 	 */
   2249 	{ PCI_VENDOR_ALTEON,
   2250 	  PCI_PRODUCT_ALTEON_BCM5700,
   2251 	  "Broadcom BCM5700 Gigabit Ethernet",
   2252 	  },
   2253 	{ PCI_VENDOR_ALTEON,
   2254 	  PCI_PRODUCT_ALTEON_BCM5701,
   2255 	  "Broadcom BCM5701 Gigabit Ethernet",
   2256 	  },
   2257 
   2258 	{ PCI_VENDOR_ALTIMA,
   2259 	  PCI_PRODUCT_ALTIMA_AC1000,
   2260 	  "Altima AC1000 Gigabit Ethernet",
   2261 	  },
   2262 	{ PCI_VENDOR_ALTIMA,
   2263 	  PCI_PRODUCT_ALTIMA_AC1001,
   2264 	  "Altima AC1001 Gigabit Ethernet",
   2265 	   },
   2266 	{ PCI_VENDOR_ALTIMA,
   2267 	  PCI_PRODUCT_ALTIMA_AC9100,
   2268 	  "Altima AC9100 Gigabit Ethernet",
   2269 	  },
   2270 
   2271 	{ PCI_VENDOR_BROADCOM,
   2272 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2273 	  "Broadcom BCM5700 Gigabit Ethernet",
   2274 	  },
   2275 	{ PCI_VENDOR_BROADCOM,
   2276 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2277 	  "Broadcom BCM5701 Gigabit Ethernet",
   2278 	  },
   2279 	{ PCI_VENDOR_BROADCOM,
   2280 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2281 	  "Broadcom BCM5702 Gigabit Ethernet",
   2282 	  },
   2283 	{ PCI_VENDOR_BROADCOM,
   2284 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2285 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2286 
   2287 	{ PCI_VENDOR_BROADCOM,
   2288 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2289 	  "Broadcom BCM5703 Gigabit Ethernet",
   2290 	  },
   2291 	{ PCI_VENDOR_BROADCOM,
   2292 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2293 	  "Broadcom BCM5703X Gigabit Ethernet",
   2294 	  },
   2295 	{ PCI_VENDOR_BROADCOM,
   2296 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2297 	  "Broadcom BCM5703 Gigabit Ethernet",
   2298 	  },
   2299 
   2300    	{ PCI_VENDOR_BROADCOM,
   2301 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2302 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2303 	  },
   2304    	{ PCI_VENDOR_BROADCOM,
   2305 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2306 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2307 	  },
   2308 
   2309    	{ PCI_VENDOR_BROADCOM,
   2310 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2311 	  "Broadcom BCM5705 Gigabit Ethernet",
   2312 	  },
   2313    	{ PCI_VENDOR_BROADCOM,
   2314 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2315 	  "Broadcom BCM5705K Gigabit Ethernet",
   2316 	  },
   2317    	{ PCI_VENDOR_BROADCOM,
   2318 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2319 	  "Broadcom BCM5705M Gigabit Ethernet",
   2320 	  },
   2321    	{ PCI_VENDOR_BROADCOM,
   2322 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2323 	  "Broadcom BCM5705M Gigabit Ethernet",
   2324 	  },
   2325 
   2326 	{ PCI_VENDOR_BROADCOM,
   2327 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2328 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2329 	  },
   2330 	{ PCI_VENDOR_BROADCOM,
   2331 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2332 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2333 	  },
   2334 	{ PCI_VENDOR_BROADCOM,
   2335 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2336 	  "Broadcom BCM5789 Gigabit Ethernet",
   2337 	  },
   2338 
   2339 	{ PCI_VENDOR_BROADCOM,
   2340 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2341 	  "Broadcom BCM5721 Gigabit Ethernet",
   2342 	  },
   2343 
   2344 	{ PCI_VENDOR_BROADCOM,
   2345 	  PCI_PRODUCT_BROADCOM_BCM5722,
   2346 	  "Broadcom BCM5722 Gigabit Ethernet",
   2347 	  },
   2348 
   2349 	{ PCI_VENDOR_BROADCOM,
   2350 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2351 	  "Broadcom BCM5750 Gigabit Ethernet",
   2352 	  },
   2353 
   2354 	{ PCI_VENDOR_BROADCOM,
   2355 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2356 	  "Broadcom BCM5750M Gigabit Ethernet",
   2357 	  },
   2358 
   2359 	{ PCI_VENDOR_BROADCOM,
   2360 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2361 	  "Broadcom BCM5751 Gigabit Ethernet",
   2362 	  },
   2363 
   2364 	{ PCI_VENDOR_BROADCOM,
   2365 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2366 	  "Broadcom BCM5751M Gigabit Ethernet",
   2367 	  },
   2368 
   2369 	{ PCI_VENDOR_BROADCOM,
   2370 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2371 	  "Broadcom BCM5752 Gigabit Ethernet",
   2372 	  },
   2373 
   2374 	{ PCI_VENDOR_BROADCOM,
   2375 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2376 	  "Broadcom BCM5752M Gigabit Ethernet",
   2377 	  },
   2378 
   2379 	{ PCI_VENDOR_BROADCOM,
   2380 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2381 	  "Broadcom BCM5753 Gigabit Ethernet",
   2382 	  },
   2383 
   2384 	{ PCI_VENDOR_BROADCOM,
   2385 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2386 	  "Broadcom BCM5753M Gigabit Ethernet",
   2387 	  },
   2388 
   2389 	{ PCI_VENDOR_BROADCOM,
   2390 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2391 	  "Broadcom BCM5754 Gigabit Ethernet",
   2392 	},
   2393 
   2394 	{ PCI_VENDOR_BROADCOM,
   2395 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2396 	  "Broadcom BCM5754M Gigabit Ethernet",
   2397 	},
   2398 
   2399 	{ PCI_VENDOR_BROADCOM,
   2400 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2401 	  "Broadcom BCM5755 Gigabit Ethernet",
   2402 	},
   2403 
   2404 	{ PCI_VENDOR_BROADCOM,
   2405 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2406 	  "Broadcom BCM5755M Gigabit Ethernet",
   2407 	},
   2408 
   2409    	{ PCI_VENDOR_BROADCOM,
   2410 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2411 	  "Broadcom BCM5780 Gigabit Ethernet",
   2412 	  },
   2413 
   2414    	{ PCI_VENDOR_BROADCOM,
   2415 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2416 	  "Broadcom BCM5780S Gigabit Ethernet",
   2417 	  },
   2418 
   2419    	{ PCI_VENDOR_BROADCOM,
   2420 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2421 	  "Broadcom BCM5782 Gigabit Ethernet",
   2422 	},
   2423 
   2424 	{ PCI_VENDOR_BROADCOM,
   2425 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2426 	  "Broadcom BCM5786 Gigabit Ethernet",
   2427 	},
   2428 
   2429 	{ PCI_VENDOR_BROADCOM,
   2430 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2431 	  "Broadcom BCM5787 Gigabit Ethernet",
   2432 	},
   2433 
   2434 	{ PCI_VENDOR_BROADCOM,
   2435 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2436 	  "Broadcom BCM5787M Gigabit Ethernet",
   2437 	},
   2438 
   2439    	{ PCI_VENDOR_BROADCOM,
   2440 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2441 	  "Broadcom BCM5788 Gigabit Ethernet",
   2442 	  },
   2443    	{ PCI_VENDOR_BROADCOM,
   2444 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2445 	  "Broadcom BCM5789 Gigabit Ethernet",
   2446 	  },
   2447 
   2448    	{ PCI_VENDOR_BROADCOM,
   2449 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2450 	  "Broadcom BCM5901 Fast Ethernet",
   2451 	  },
   2452    	{ PCI_VENDOR_BROADCOM,
   2453 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2454 	  "Broadcom BCM5901A2 Fast Ethernet",
   2455 	  },
   2456 
   2457 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2458 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2459 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2460 	  },
   2461 
   2462 	{ PCI_VENDOR_3COM,
   2463 	  PCI_PRODUCT_3COM_3C996,
   2464 	  "3Com 3c996 Gigabit Ethernet",
   2465 	  },
   2466 
   2467 	{ PCI_VENDOR_BROADCOM,
   2468 	  PCI_PRODUCT_BROADCOM_BCM5906,
   2469 	  "Broadcom BCM5906 Fast Ethernet",
   2470 	  },
   2471 
   2472 	{ PCI_VENDOR_BROADCOM,
   2473 	  PCI_PRODUCT_BROADCOM_BCM5906M,
   2474 	  "Broadcom BCM5906M Fast Ethernet",
   2475 	  },
   2476 
   2477 	{ 0,
   2478 	  0,
   2479 	  NULL },
   2480 };
   2481 
   2482 static const struct bge_product *
   2483 bge_lookup(const struct pci_attach_args *pa)
   2484 {
   2485 	const struct bge_product *bp;
   2486 
   2487 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2488 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2489 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2490 			return (bp);
   2491 	}
   2492 
   2493 	return (NULL);
   2494 }
   2495 
   2496 static int
   2497 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2498 {
   2499 #ifdef NOTYET
   2500 	u_int32_t pm_ctl = 0;
   2501 
   2502 	/* XXX FIXME: make sure indirect accesses enabled? */
   2503 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2504 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2505 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2506 
   2507 	/* clear the PME_assert bit and power state bits, enable PME */
   2508 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2509 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2510 	pm_ctl |= (1 << 8);
   2511 
   2512 	if (powerlevel == 0) {
   2513 		pm_ctl |= PCIM_PSTAT_D0;
   2514 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2515 		    pm_ctl, 2);
   2516 		DELAY(10000);
   2517 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2518 		DELAY(10000);
   2519 
   2520 #ifdef NOTYET
   2521 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2522 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2523 #endif
   2524 		DELAY(40); DELAY(40); DELAY(40);
   2525 		DELAY(10000);	/* above not quite adequate on 5700 */
   2526 		return 0;
   2527 	}
   2528 
   2529 
   2530 	/*
   2531 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2532 	 * GMII gpio pins. Example code assumes all hardware vendors
   2533 	 * followed Broadom's sample pcb layout. Until we verify that
   2534 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2535 	 */
   2536 	aprint_error_dev(sc->bge_dev,
   2537 	    "power state %d unimplemented; check GPIO pins\n",
   2538 	    powerlevel);
   2539 #endif
   2540 	return EOPNOTSUPP;
   2541 }
   2542 
   2543 
   2544 /*
   2545  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2546  * against our list and return its name if we find a match. Note
   2547  * that since the Broadcom controller contains VPD support, we
   2548  * can get the device name string from the controller itself instead
   2549  * of the compiled-in string. This is a little slow, but it guarantees
   2550  * we'll always announce the right product name.
   2551  */
   2552 static int
   2553 bge_probe(device_t parent, cfdata_t match, void *aux)
   2554 {
   2555 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2556 
   2557 	if (bge_lookup(pa) != NULL)
   2558 		return (1);
   2559 
   2560 	return (0);
   2561 }
   2562 
   2563 static void
   2564 bge_attach(device_t parent, device_t self, void *aux)
   2565 {
   2566 	struct bge_softc	*sc = device_private(self);
   2567 	struct pci_attach_args	*pa = aux;
   2568 	const struct bge_product *bp;
   2569 	const struct bge_revision *br;
   2570 	pci_chipset_tag_t	pc;
   2571 	pci_intr_handle_t	ih;
   2572 	const char		*intrstr = NULL;
   2573 	bus_dma_segment_t	seg;
   2574 	int			rseg;
   2575 	u_int32_t		hwcfg = 0;
   2576 	u_int32_t		command;
   2577 	struct ifnet		*ifp;
   2578 	void *			kva;
   2579 	u_char			eaddr[ETHER_ADDR_LEN];
   2580 	pcireg_t		memtype;
   2581 	bus_addr_t		memaddr;
   2582 	bus_size_t		memsize;
   2583 	u_int32_t		pm_ctl;
   2584 
   2585 	bp = bge_lookup(pa);
   2586 	KASSERT(bp != NULL);
   2587 
   2588 	sc->sc_pc = pa->pa_pc;
   2589 	sc->sc_pcitag = pa->pa_tag;
   2590 	sc->bge_dev = self;
   2591 
   2592 	aprint_naive(": Ethernet controller\n");
   2593 	aprint_normal(": %s\n", bp->bp_name);
   2594 
   2595 	/*
   2596 	 * Map control/status registers.
   2597 	 */
   2598 	DPRINTFN(5, ("Map control/status regs\n"));
   2599 	pc = sc->sc_pc;
   2600 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2601 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2602 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2603 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2604 
   2605 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2606 		aprint_error_dev(sc->bge_dev,
   2607 		    "failed to enable memory mapping!\n");
   2608 		return;
   2609 	}
   2610 
   2611 	DPRINTFN(5, ("pci_mem_find\n"));
   2612 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2613  	switch (memtype) {
   2614 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2615 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2616 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2617 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2618 		    &memaddr, &memsize) == 0)
   2619 			break;
   2620 	default:
   2621 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2622 		return;
   2623 	}
   2624 
   2625 	DPRINTFN(5, ("pci_intr_map\n"));
   2626 	if (pci_intr_map(pa, &ih)) {
   2627 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2628 		return;
   2629 	}
   2630 
   2631 	DPRINTFN(5, ("pci_intr_string\n"));
   2632 	intrstr = pci_intr_string(pc, ih);
   2633 
   2634 	DPRINTFN(5, ("pci_intr_establish\n"));
   2635 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2636 
   2637 	if (sc->bge_intrhand == NULL) {
   2638 		aprint_error_dev(sc->bge_dev,
   2639 		    "couldn't establish interrupt%s%s\n",
   2640 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2641 		return;
   2642 	}
   2643 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2644 
   2645 	/*
   2646 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2647 	 * can clobber the chip's PCI config-space power control registers,
   2648 	 * leaving the card in D3 powersave state.
   2649 	 * We do not have memory-mapped registers in this state,
   2650 	 * so force device into D0 state before starting initialization.
   2651 	 */
   2652 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2653 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2654 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2655 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2656 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2657 
   2658 	/*
   2659 	 * Save ASIC rev.  Look up any quirks associated with this
   2660 	 * ASIC.
   2661 	 */
   2662 	sc->bge_chipid =
   2663 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2664 	    BGE_PCIMISCCTL_ASICREV;
   2665 
   2666 	/*
   2667 	 * Detect PCI-Express devices
   2668 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2669 	 */
   2670 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2671 	        NULL, NULL) != 0)
   2672 		sc->bge_pcie = 1;
   2673 	else
   2674 		sc->bge_pcie = 0;
   2675 
   2676 	/* Try to reset the chip. */
   2677 	DPRINTFN(5, ("bge_reset\n"));
   2678 	bge_reset(sc);
   2679 
   2680 	if (bge_chipinit(sc)) {
   2681 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2682 		bge_release_resources(sc);
   2683 		return;
   2684 	}
   2685 
   2686 	/*
   2687 	 * Get station address from the EEPROM.
   2688 	 */
   2689 	if (bge_get_eaddr(sc, eaddr)) {
   2690 		aprint_error_dev(sc->bge_dev,
   2691 		"failed to reade station address\n");
   2692 		bge_release_resources(sc);
   2693 		return;
   2694 	}
   2695 
   2696 	br = bge_lookup_rev(sc->bge_chipid);
   2697 
   2698 	if (br == NULL) {
   2699 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2700 		    sc->bge_chipid >> 16);
   2701 		sc->bge_quirks = 0;
   2702 	} else {
   2703 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2704 		    br->br_name, sc->bge_chipid >> 16);
   2705 		sc->bge_quirks |= br->br_quirks;
   2706 	}
   2707 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2708 
   2709 	/* Allocate the general information block and ring buffers. */
   2710 	if (pci_dma64_available(pa))
   2711 		sc->bge_dmatag = pa->pa_dmat64;
   2712 	else
   2713 		sc->bge_dmatag = pa->pa_dmat;
   2714 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2715 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2716 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2717 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2718 		return;
   2719 	}
   2720 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2721 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2722 			   sizeof(struct bge_ring_data), &kva,
   2723 			   BUS_DMA_NOWAIT)) {
   2724 		aprint_error_dev(sc->bge_dev,
   2725 		    "can't map DMA buffers (%zu bytes)\n",
   2726 		    sizeof(struct bge_ring_data));
   2727 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2728 		return;
   2729 	}
   2730 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2731 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2732 	    sizeof(struct bge_ring_data), 0,
   2733 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2734 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2735 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2736 				 sizeof(struct bge_ring_data));
   2737 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2738 		return;
   2739 	}
   2740 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2741 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2742 			    sizeof(struct bge_ring_data), NULL,
   2743 			    BUS_DMA_NOWAIT)) {
   2744 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2745 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2746 				 sizeof(struct bge_ring_data));
   2747 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2748 		return;
   2749 	}
   2750 
   2751 	DPRINTFN(5, ("bzero\n"));
   2752 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2753 
   2754 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2755 
   2756 	/* Try to allocate memory for jumbo buffers. */
   2757 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2758 		if (bge_alloc_jumbo_mem(sc)) {
   2759 			aprint_error_dev(sc->bge_dev,
   2760 			    "jumbo buffer allocation failed\n");
   2761 		} else
   2762 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2763 	}
   2764 
   2765 	/* Set default tuneable values. */
   2766 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2767 	sc->bge_rx_coal_ticks = 150;
   2768 	sc->bge_rx_max_coal_bds = 64;
   2769 #ifdef ORIG_WPAUL_VALUES
   2770 	sc->bge_tx_coal_ticks = 150;
   2771 	sc->bge_tx_max_coal_bds = 128;
   2772 #else
   2773 	sc->bge_tx_coal_ticks = 300;
   2774 	sc->bge_tx_max_coal_bds = 400;
   2775 #endif
   2776 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2777 		sc->bge_tx_coal_ticks = (12 * 5);
   2778 		sc->bge_tx_max_coal_bds = (12 * 5);
   2779 			aprint_verbose_dev(sc->bge_dev,
   2780 			    "setting short Tx thresholds\n");
   2781 	}
   2782 
   2783 	/* Set up ifnet structure */
   2784 	ifp = &sc->ethercom.ec_if;
   2785 	ifp->if_softc = sc;
   2786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2787 	ifp->if_ioctl = bge_ioctl;
   2788 	ifp->if_stop = bge_stop;
   2789 	ifp->if_start = bge_start;
   2790 	ifp->if_init = bge_init;
   2791 	ifp->if_watchdog = bge_watchdog;
   2792 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2793 	IFQ_SET_READY(&ifp->if_snd);
   2794 	DPRINTFN(5, ("strcpy if_xname\n"));
   2795 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2796 
   2797 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2798 		sc->ethercom.ec_if.if_capabilities |=
   2799 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2800 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2801 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2802 	sc->ethercom.ec_capabilities |=
   2803 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2804 
   2805 	if (sc->bge_pcie)
   2806 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2807 
   2808 	/*
   2809 	 * Do MII setup.
   2810 	 */
   2811 	DPRINTFN(5, ("mii setup\n"));
   2812 	sc->bge_mii.mii_ifp = ifp;
   2813 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2814 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2815 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2816 
   2817 	/*
   2818 	 * Figure out what sort of media we have by checking the
   2819 	 * hardware config word in the first 32k of NIC internal memory,
   2820 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2821 	 * cards, this value appears to be unset. If that's the
   2822 	 * case, we have to rely on identifying the NIC by its PCI
   2823 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2824 	 */
   2825 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2826 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2827 	} else {
   2828 		bge_read_eeprom(sc, (void *)&hwcfg,
   2829 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2830 		hwcfg = be32toh(hwcfg);
   2831 	}
   2832 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2833 		sc->bge_tbi = 1;
   2834 
   2835 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2836 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2837 	    SK_SUBSYSID_9D41)
   2838 		sc->bge_tbi = 1;
   2839 
   2840 	if (sc->bge_tbi) {
   2841 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2842 		    bge_ifmedia_sts);
   2843 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2844 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2845 			    0, NULL);
   2846 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2847 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2848 	} else {
   2849 		/*
   2850 		 * Do transceiver setup.
   2851 		 */
   2852 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2853 			     bge_ifmedia_sts);
   2854 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2855 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2856 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2857 
   2858 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2859 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2860 			ifmedia_add(&sc->bge_mii.mii_media,
   2861 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2862 			ifmedia_set(&sc->bge_mii.mii_media,
   2863 				    IFM_ETHER|IFM_MANUAL);
   2864 		} else
   2865 			ifmedia_set(&sc->bge_mii.mii_media,
   2866 				    IFM_ETHER|IFM_AUTO);
   2867 	}
   2868 
   2869 	/*
   2870 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2871 	 * been observed in the first few bytes of some received packets.
   2872 	 * Aligning the packet buffer in memory eliminates the corruption.
   2873 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2874 	 * which do not support unaligned accesses, we will realign the
   2875 	 * payloads by copying the received packets.
   2876 	 */
   2877 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2878 		/* If in PCI-X mode, work around the alignment bug. */
   2879 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2880                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2881                          BGE_PCISTATE_PCI_BUSSPEED)
   2882 		sc->bge_rx_alignment_bug = 1;
   2883         }
   2884 
   2885 	/*
   2886 	 * Call MI attach routine.
   2887 	 */
   2888 	DPRINTFN(5, ("if_attach\n"));
   2889 	if_attach(ifp);
   2890 	DPRINTFN(5, ("ether_ifattach\n"));
   2891 	ether_ifattach(ifp, eaddr);
   2892 #if NRND > 0
   2893 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2894 		RND_TYPE_NET, 0);
   2895 #endif
   2896 #ifdef BGE_EVENT_COUNTERS
   2897 	/*
   2898 	 * Attach event counters.
   2899 	 */
   2900 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2901 	    NULL, device_xname(sc->bge_dev), "intr");
   2902 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2903 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2904 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2905 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2906 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2907 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2908 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2909 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2910 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2911 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2912 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2913 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2914 #endif /* BGE_EVENT_COUNTERS */
   2915 	DPRINTFN(5, ("callout_init\n"));
   2916 	callout_init(&sc->bge_timeout, 0);
   2917 
   2918 	if (!pmf_device_register(self, NULL, NULL))
   2919 		aprint_error_dev(self, "couldn't establish power handler\n");
   2920 	else
   2921 		pmf_class_network_register(self, ifp);
   2922 }
   2923 
   2924 static void
   2925 bge_release_resources(struct bge_softc *sc)
   2926 {
   2927 	if (sc->bge_vpd_prodname != NULL)
   2928 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2929 
   2930 	if (sc->bge_vpd_readonly != NULL)
   2931 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2932 }
   2933 
   2934 static void
   2935 bge_reset(struct bge_softc *sc)
   2936 {
   2937 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2938 	int i, val;
   2939 	void (*write_op)(struct bge_softc *, int, int);
   2940 
   2941 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2942 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2943 	    	if (sc->bge_pcie) {
   2944 			write_op = bge_writemem_direct;
   2945 		} else {
   2946 			write_op = bge_writemem_ind;
   2947 		}
   2948 	} else {
   2949 		write_op = bge_writereg_ind;
   2950 	}
   2951 
   2952 
   2953 	/* Save some important PCI state. */
   2954 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2955 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2956 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2957 
   2958 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2959 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2960 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2961 
   2962 	/*
   2963 	 * Disable the firmware fastboot feature on 5752 ASIC
   2964 	 * to avoid firmware timeout.
   2965 	 */
   2966 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2967 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2968 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2969 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2970 
   2971 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2972 	/*
   2973 	 * XXX: from FreeBSD/Linux; no documentation
   2974 	 */
   2975 	if (sc->bge_pcie) {
   2976 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2977 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2978 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2979 			/* No idea what that actually means */
   2980 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2981 			val |= (1<<29);
   2982 		}
   2983 	}
   2984 
   2985 	/* Issue global reset */
   2986 	write_op(sc, BGE_MISC_CFG, val);
   2987 
   2988 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2989 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2990 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2991 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2992 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2993 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2994 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2995 	}
   2996 
   2997 
   2998 
   2999 	DELAY(1000);
   3000 
   3001 	/*
   3002 	 * XXX: from FreeBSD/Linux; no documentation
   3003 	 */
   3004 	if (sc->bge_pcie) {
   3005 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3006 			pcireg_t reg;
   3007 
   3008 			DELAY(500000);
   3009 			/* XXX: Magic Numbers */
   3010 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   3011 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   3012 			    reg | (1 << 15));
   3013 		}
   3014 		/*
   3015 		 * XXX: Magic Numbers.
   3016 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   3017 		 * Should be replaced with references to PCI config-space
   3018 		 * capability block for PCI-Express.
   3019 		 */
   3020 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3021 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   3022 
   3023 	}
   3024 
   3025 	/* Reset some of the PCI state that got zapped by reset */
   3026 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3027 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   3028 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   3029 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3030 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3031 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3032 
   3033 	/* Enable memory arbiter. */
   3034 	{
   3035 		uint32_t marbmode = 0;
   3036 		if (BGE_IS_5714_FAMILY(sc)) {
   3037 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3038 		}
   3039  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3040 	}
   3041 
   3042 
   3043 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3044 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3045 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3046 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3047 				break;
   3048 			DELAY(100);
   3049 		}
   3050 		if (i == BGE_TIMEOUT) {
   3051 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3052 			return;
   3053 		}
   3054 	} else {
   3055 		/*
   3056 		 * Write the magic number to the firmware mailbox at 0xb50
   3057 		 * so that the driver can synchronize with the firmware.
   3058 		 */
   3059 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3060 
   3061 		/*
   3062 		 * Poll the value location we just wrote until
   3063 		 * we see the 1's complement of the magic number.
   3064 		 * This indicates that the firmware initialization
   3065 		 * is complete.
   3066 		 */
   3067 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3068 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3069 			if (val == ~BGE_MAGIC_NUMBER)
   3070 				break;
   3071 			DELAY(1000);
   3072 		}
   3073 
   3074 		if (i >= BGE_TIMEOUT) {
   3075 			aprint_error_dev(sc->bge_dev,
   3076 			    "firmware handshake timed out, val = %x\n", val);
   3077 			/*
   3078 			 * XXX: occasionally fired on bcm5721, but without
   3079 			 * apparent harm.  For now, keep going if we timeout
   3080 			 * against PCI-E devices.
   3081 			 */
   3082 			 if (!sc->bge_pcie)
   3083 				  return;
   3084 		}
   3085 	}
   3086 
   3087 	/*
   3088 	 * XXX Wait for the value of the PCISTATE register to
   3089 	 * return to its original pre-reset state. This is a
   3090 	 * fairly good indicator of reset completion. If we don't
   3091 	 * wait for the reset to fully complete, trying to read
   3092 	 * from the device's non-PCI registers may yield garbage
   3093 	 * results.
   3094 	 */
   3095 	for (i = 0; i < 10000; i++) {
   3096 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3097 		    BGE_PCI_PCISTATE);
   3098 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3099 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3100 			break;
   3101 		DELAY(10);
   3102 	}
   3103 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3104 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3105 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3106 	}
   3107 
   3108 	/* XXX: from FreeBSD/Linux; no documentation */
   3109 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   3110 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   3111 
   3112 	/* Enable memory arbiter. */
   3113 	/* XXX why do this twice? */
   3114 	{
   3115 		uint32_t marbmode = 0;
   3116 		if (BGE_IS_5714_FAMILY(sc)) {
   3117 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3118 		}
   3119  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3120 	}
   3121 
   3122 	/* Fix up byte swapping */
   3123 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3124 
   3125 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3126 
   3127 	DELAY(10000);
   3128 }
   3129 
   3130 /*
   3131  * Frame reception handling. This is called if there's a frame
   3132  * on the receive return list.
   3133  *
   3134  * Note: we have to be able to handle two possibilities here:
   3135  * 1) the frame is from the jumbo recieve ring
   3136  * 2) the frame is from the standard receive ring
   3137  */
   3138 
   3139 static void
   3140 bge_rxeof(struct bge_softc *sc)
   3141 {
   3142 	struct ifnet *ifp;
   3143 	int stdcnt = 0, jumbocnt = 0;
   3144 	bus_dmamap_t dmamap;
   3145 	bus_addr_t offset, toff;
   3146 	bus_size_t tlen;
   3147 	int tosync;
   3148 
   3149 	ifp = &sc->ethercom.ec_if;
   3150 
   3151 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3152 	    offsetof(struct bge_ring_data, bge_status_block),
   3153 	    sizeof (struct bge_status_block),
   3154 	    BUS_DMASYNC_POSTREAD);
   3155 
   3156 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3157 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   3158 	    sc->bge_rx_saved_considx;
   3159 
   3160 #if NRND > 0
   3161 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3162 		rnd_add_uint32(&sc->rnd_source, tosync);
   3163 #endif
   3164 
   3165 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   3166 
   3167 	if (tosync < 0) {
   3168 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   3169 		    sizeof (struct bge_rx_bd);
   3170 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3171 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3172 		tosync = -tosync;
   3173 	}
   3174 
   3175 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3176 	    offset, tosync * sizeof (struct bge_rx_bd),
   3177 	    BUS_DMASYNC_POSTREAD);
   3178 
   3179 	while(sc->bge_rx_saved_considx !=
   3180 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   3181 		struct bge_rx_bd	*cur_rx;
   3182 		u_int32_t		rxidx;
   3183 		struct mbuf		*m = NULL;
   3184 
   3185 		cur_rx = &sc->bge_rdata->
   3186 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   3187 
   3188 		rxidx = cur_rx->bge_idx;
   3189 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   3190 
   3191 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3192 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3193 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3194 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3195 			jumbocnt++;
   3196 			bus_dmamap_sync(sc->bge_dmatag,
   3197 			    sc->bge_cdata.bge_rx_jumbo_map,
   3198 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3199 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3200 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3201 				ifp->if_ierrors++;
   3202 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3203 				continue;
   3204 			}
   3205 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3206 					     NULL)== ENOBUFS) {
   3207 				ifp->if_ierrors++;
   3208 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3209 				continue;
   3210 			}
   3211 		} else {
   3212 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3213 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3214 
   3215 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3216 			stdcnt++;
   3217 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3218 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3219 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3220 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3221 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3222 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3223 				ifp->if_ierrors++;
   3224 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3225 				continue;
   3226 			}
   3227 			if (bge_newbuf_std(sc, sc->bge_std,
   3228 			    NULL, dmamap) == ENOBUFS) {
   3229 				ifp->if_ierrors++;
   3230 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3231 				continue;
   3232 			}
   3233 		}
   3234 
   3235 		ifp->if_ipackets++;
   3236 #ifndef __NO_STRICT_ALIGNMENT
   3237                 /*
   3238                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3239                  * the Rx buffer has the layer-2 header unaligned.
   3240                  * If our CPU requires alignment, re-align by copying.
   3241                  */
   3242 		if (sc->bge_rx_alignment_bug) {
   3243 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3244                                 cur_rx->bge_len);
   3245 			m->m_data += ETHER_ALIGN;
   3246 		}
   3247 #endif
   3248 
   3249 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3250 		m->m_pkthdr.rcvif = ifp;
   3251 
   3252 #if NBPFILTER > 0
   3253 		/*
   3254 		 * Handle BPF listeners. Let the BPF user see the packet.
   3255 		 */
   3256 		if (ifp->if_bpf)
   3257 			bpf_mtap(ifp->if_bpf, m);
   3258 #endif
   3259 
   3260 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3261 
   3262 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3263 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3264 		/*
   3265 		 * Rx transport checksum-offload may also
   3266 		 * have bugs with packets which, when transmitted,
   3267 		 * were `runts' requiring padding.
   3268 		 */
   3269 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3270 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3271 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3272 			m->m_pkthdr.csum_data =
   3273 			    cur_rx->bge_tcp_udp_csum;
   3274 			m->m_pkthdr.csum_flags |=
   3275 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3276 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3277 		}
   3278 
   3279 		/*
   3280 		 * If we received a packet with a vlan tag, pass it
   3281 		 * to vlan_input() instead of ether_input().
   3282 		 */
   3283 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3284 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3285 		}
   3286 
   3287 		(*ifp->if_input)(ifp, m);
   3288 	}
   3289 
   3290 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3291 	if (stdcnt)
   3292 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3293 	if (jumbocnt)
   3294 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3295 }
   3296 
   3297 static void
   3298 bge_txeof(struct bge_softc *sc)
   3299 {
   3300 	struct bge_tx_bd *cur_tx = NULL;
   3301 	struct ifnet *ifp;
   3302 	struct txdmamap_pool_entry *dma;
   3303 	bus_addr_t offset, toff;
   3304 	bus_size_t tlen;
   3305 	int tosync;
   3306 	struct mbuf *m;
   3307 
   3308 	ifp = &sc->ethercom.ec_if;
   3309 
   3310 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3311 	    offsetof(struct bge_ring_data, bge_status_block),
   3312 	    sizeof (struct bge_status_block),
   3313 	    BUS_DMASYNC_POSTREAD);
   3314 
   3315 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3316 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3317 	    sc->bge_tx_saved_considx;
   3318 
   3319 #if NRND > 0
   3320 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3321 		rnd_add_uint32(&sc->rnd_source, tosync);
   3322 #endif
   3323 
   3324 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3325 
   3326 	if (tosync < 0) {
   3327 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3328 		    sizeof (struct bge_tx_bd);
   3329 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3330 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3331 		tosync = -tosync;
   3332 	}
   3333 
   3334 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3335 	    offset, tosync * sizeof (struct bge_tx_bd),
   3336 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3337 
   3338 	/*
   3339 	 * Go through our tx ring and free mbufs for those
   3340 	 * frames that have been sent.
   3341 	 */
   3342 	while (sc->bge_tx_saved_considx !=
   3343 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3344 		u_int32_t		idx = 0;
   3345 
   3346 		idx = sc->bge_tx_saved_considx;
   3347 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3348 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3349 			ifp->if_opackets++;
   3350 		m = sc->bge_cdata.bge_tx_chain[idx];
   3351 		if (m != NULL) {
   3352 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3353 			dma = sc->txdma[idx];
   3354 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3355 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3356 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3357 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3358 			sc->txdma[idx] = NULL;
   3359 
   3360 			m_freem(m);
   3361 		}
   3362 		sc->bge_txcnt--;
   3363 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3364 		ifp->if_timer = 0;
   3365 	}
   3366 
   3367 	if (cur_tx != NULL)
   3368 		ifp->if_flags &= ~IFF_OACTIVE;
   3369 }
   3370 
   3371 static int
   3372 bge_intr(void *xsc)
   3373 {
   3374 	struct bge_softc *sc;
   3375 	struct ifnet *ifp;
   3376 
   3377 	sc = xsc;
   3378 	ifp = &sc->ethercom.ec_if;
   3379 
   3380 	/*
   3381 	 * Ascertain whether the interrupt is from this bge device.
   3382 	 * Do the cheap test first.
   3383 	 */
   3384 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3385 	    BGE_STATFLAG_UPDATED) == 0) {
   3386 		/*
   3387 		 * Sometimes, the interrupt comes in before the
   3388 		 * DMA update of the status block (performed prior
   3389 		 * to the  interrupt itself) has completed.
   3390 		 * In that case, do the (extremely expensive!)
   3391 		 * PCI-config-space register read.
   3392 		 */
   3393 		uint32_t pcistate =
   3394 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3395 
   3396 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3397 			return (0);
   3398 
   3399 	}
   3400 	/*
   3401 	 *  If we reach here, then the interrupt is for us.
   3402 	 */
   3403 
   3404 	/* Ack interrupt and stop others from occuring. */
   3405 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3406 
   3407 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3408 
   3409 	/*
   3410 	 * Process link state changes.
   3411 	 * Grrr. The link status word in the status block does
   3412 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3413 	 * according to all available information. Hence, we have
   3414 	 * to enable MII interrupts in order to properly obtain
   3415 	 * async link changes. Unfortunately, this also means that
   3416 	 * we have to read the MAC status register to detect link
   3417 	 * changes, thereby adding an additional register access to
   3418 	 * the interrupt handler.
   3419 	 */
   3420 
   3421 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3422 		u_int32_t		status;
   3423 
   3424 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3425 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3426 			sc->bge_link = 0;
   3427 			callout_stop(&sc->bge_timeout);
   3428 			bge_tick(sc);
   3429 			/* Clear the interrupt */
   3430 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3431 			    BGE_EVTENB_MI_INTERRUPT);
   3432 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3433 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3434 			    BRGPHY_INTRS);
   3435 		}
   3436 	} else {
   3437 		u_int32_t		status;
   3438 
   3439 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3440 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3441 			sc->bge_link = 0;
   3442 			callout_stop(&sc->bge_timeout);
   3443 			bge_tick(sc);
   3444 			/* Clear the interrupt */
   3445 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3446 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3447 			    BGE_MACSTAT_LINK_CHANGED);
   3448 		}
   3449 	}
   3450 
   3451 	if (ifp->if_flags & IFF_RUNNING) {
   3452 		/* Check RX return ring producer/consumer */
   3453 		bge_rxeof(sc);
   3454 
   3455 		/* Check TX ring producer/consumer */
   3456 		bge_txeof(sc);
   3457 	}
   3458 
   3459 	if (sc->bge_pending_rxintr_change) {
   3460 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3461 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3462 		uint32_t junk;
   3463 
   3464 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3465 		DELAY(10);
   3466 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3467 
   3468 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3469 		DELAY(10);
   3470 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3471 
   3472 		sc->bge_pending_rxintr_change = 0;
   3473 	}
   3474 	bge_handle_events(sc);
   3475 
   3476 	/* Re-enable interrupts. */
   3477 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3478 
   3479 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3480 		bge_start(ifp);
   3481 
   3482 	return (1);
   3483 }
   3484 
   3485 static void
   3486 bge_tick(void *xsc)
   3487 {
   3488 	struct bge_softc *sc = xsc;
   3489 	struct mii_data *mii = &sc->bge_mii;
   3490 	int s;
   3491 
   3492 	s = splnet();
   3493 
   3494 	bge_stats_update(sc);
   3495 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3496 
   3497 	if (sc->bge_tbi) {
   3498 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3499 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3500 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3501 		}
   3502 	} else
   3503 		mii_tick(mii);
   3504 
   3505 	splx(s);
   3506 }
   3507 
   3508 static void
   3509 bge_stats_update(struct bge_softc *sc)
   3510 {
   3511 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3512 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3513 	bus_size_t rstats = BGE_RX_STATS;
   3514 
   3515 #define READ_RSTAT(sc, stats, stat) \
   3516 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3517 
   3518 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3519 		ifp->if_collisions +=
   3520 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3521 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3522 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3523 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3524 
   3525 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3526 			      READ_RSTAT(sc, rstats, outXoffSent));
   3527 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3528 			      READ_RSTAT(sc, rstats, outXonSent));
   3529 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3530 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3531 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3532 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3533 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3534 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3535 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3536 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3537 		return;
   3538 	}
   3539 
   3540 #undef READ_RSTAT
   3541 #define READ_STAT(sc, stats, stat) \
   3542 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3543 
   3544 	ifp->if_collisions +=
   3545 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3546 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3547 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3548 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3549 	  ifp->if_collisions;
   3550 
   3551 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3552 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3553 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3554 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3555 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3556 		      READ_STAT(sc, stats,
   3557 		      		xoffPauseFramesReceived.bge_addr_lo));
   3558 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3559 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3560 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3561 		      READ_STAT(sc, stats,
   3562 		      		macControlFramesReceived.bge_addr_lo));
   3563 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3564 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3565 
   3566 #undef READ_STAT
   3567 
   3568 #ifdef notdef
   3569 	ifp->if_collisions +=
   3570 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3571 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3572 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3573 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3574 	   ifp->if_collisions;
   3575 #endif
   3576 }
   3577 
   3578 /*
   3579  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3580  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3581  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3582  * the hardware checksum assist gives incorrect results (possibly
   3583  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3584  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3585  */
   3586 static inline int
   3587 bge_cksum_pad(struct mbuf *pkt)
   3588 {
   3589 	struct mbuf *last = NULL;
   3590 	int padlen;
   3591 
   3592 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3593 
   3594 	/* if there's only the packet-header and we can pad there, use it. */
   3595 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3596 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3597 		last = pkt;
   3598 	} else {
   3599 		/*
   3600 		 * Walk packet chain to find last mbuf. We will either
   3601 		 * pad there, or append a new mbuf and pad it
   3602 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3603 		 */
   3604 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3605 	      	       continue; /* do nothing */
   3606 		}
   3607 
   3608 		/* `last' now points to last in chain. */
   3609 		if (M_TRAILINGSPACE(last) < padlen) {
   3610 			/* Allocate new empty mbuf, pad it. Compact later. */
   3611 			struct mbuf *n;
   3612 			MGET(n, M_DONTWAIT, MT_DATA);
   3613 			if (n == NULL)
   3614 				return ENOBUFS;
   3615 			n->m_len = 0;
   3616 			last->m_next = n;
   3617 			last = n;
   3618 		}
   3619 	}
   3620 
   3621 	KDASSERT(!M_READONLY(last));
   3622 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3623 
   3624 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3625 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3626 	last->m_len += padlen;
   3627 	pkt->m_pkthdr.len += padlen;
   3628 	return 0;
   3629 }
   3630 
   3631 /*
   3632  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3633  */
   3634 static inline int
   3635 bge_compact_dma_runt(struct mbuf *pkt)
   3636 {
   3637 	struct mbuf	*m, *prev;
   3638 	int 		totlen, prevlen;
   3639 
   3640 	prev = NULL;
   3641 	totlen = 0;
   3642 	prevlen = -1;
   3643 
   3644 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3645 		int mlen = m->m_len;
   3646 		int shortfall = 8 - mlen ;
   3647 
   3648 		totlen += mlen;
   3649 		if (mlen == 0) {
   3650 			continue;
   3651 		}
   3652 		if (mlen >= 8)
   3653 			continue;
   3654 
   3655 		/* If we get here, mbuf data is too small for DMA engine.
   3656 		 * Try to fix by shuffling data to prev or next in chain.
   3657 		 * If that fails, do a compacting deep-copy of the whole chain.
   3658 		 */
   3659 
   3660 		/* Internal frag. If fits in prev, copy it there. */
   3661 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3662 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3663 			prev->m_len += mlen;
   3664 			m->m_len = 0;
   3665 			/* XXX stitch chain */
   3666 			prev->m_next = m_free(m);
   3667 			m = prev;
   3668 			continue;
   3669 		}
   3670 		else if (m->m_next != NULL &&
   3671 			     M_TRAILINGSPACE(m) >= shortfall &&
   3672 			     m->m_next->m_len >= (8 + shortfall)) {
   3673 		    /* m is writable and have enough data in next, pull up. */
   3674 
   3675 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3676 			    shortfall);
   3677 			m->m_len += shortfall;
   3678 			m->m_next->m_len -= shortfall;
   3679 			m->m_next->m_data += shortfall;
   3680 		}
   3681 		else if (m->m_next == NULL || 1) {
   3682 		  	/* Got a runt at the very end of the packet.
   3683 			 * borrow data from the tail of the preceding mbuf and
   3684 			 * update its length in-place. (The original data is still
   3685 			 * valid, so we can do this even if prev is not writable.)
   3686 			 */
   3687 
   3688 			/* if we'd make prev a runt, just move all of its data. */
   3689 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3690 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3691 
   3692 			if ((prev->m_len - shortfall) < 8)
   3693 				shortfall = prev->m_len;
   3694 
   3695 #ifdef notyet	/* just do the safe slow thing for now */
   3696 			if (!M_READONLY(m)) {
   3697 				if (M_LEADINGSPACE(m) < shorfall) {
   3698 					void *m_dat;
   3699 					m_dat = (m->m_flags & M_PKTHDR) ?
   3700 					  m->m_pktdat : m->dat;
   3701 					memmove(m_dat, mtod(m, void*), m->m_len);
   3702 					m->m_data = m_dat;
   3703 				    }
   3704 			} else
   3705 #endif	/* just do the safe slow thing */
   3706 			{
   3707 				struct mbuf * n = NULL;
   3708 				int newprevlen = prev->m_len - shortfall;
   3709 
   3710 				MGET(n, M_NOWAIT, MT_DATA);
   3711 				if (n == NULL)
   3712 				   return ENOBUFS;
   3713 				KASSERT(m->m_len + shortfall < MLEN
   3714 					/*,
   3715 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3716 
   3717 				/* first copy the data we're stealing from prev */
   3718 				memcpy(n->m_data, prev->m_data + newprevlen,
   3719 				    shortfall);
   3720 
   3721 				/* update prev->m_len accordingly */
   3722 				prev->m_len -= shortfall;
   3723 
   3724 				/* copy data from runt m */
   3725 				memcpy(n->m_data + shortfall, m->m_data,
   3726 				    m->m_len);
   3727 
   3728 				/* n holds what we stole from prev, plus m */
   3729 				n->m_len = shortfall + m->m_len;
   3730 
   3731 				/* stitch n into chain and free m */
   3732 				n->m_next = m->m_next;
   3733 				prev->m_next = n;
   3734 				/* KASSERT(m->m_next == NULL); */
   3735 				m->m_next = NULL;
   3736 				m_free(m);
   3737 				m = n;	/* for continuing loop */
   3738 			}
   3739 		}
   3740 		prevlen = m->m_len;
   3741 	}
   3742 	return 0;
   3743 }
   3744 
   3745 /*
   3746  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3747  * pointers to descriptors.
   3748  */
   3749 static int
   3750 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3751 {
   3752 	struct bge_tx_bd	*f = NULL;
   3753 	u_int32_t		frag, cur;
   3754 	u_int16_t		csum_flags = 0;
   3755 	u_int16_t		txbd_tso_flags = 0;
   3756 	struct txdmamap_pool_entry *dma;
   3757 	bus_dmamap_t dmamap;
   3758 	int			i = 0;
   3759 	struct m_tag		*mtag;
   3760 	int			use_tso, maxsegsize, error;
   3761 
   3762 	cur = frag = *txidx;
   3763 
   3764 	if (m_head->m_pkthdr.csum_flags) {
   3765 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3766 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3767 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3768 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3769 	}
   3770 
   3771 	/*
   3772 	 * If we were asked to do an outboard checksum, and the NIC
   3773 	 * has the bug where it sometimes adds in the Ethernet padding,
   3774 	 * explicitly pad with zeros so the cksum will be correct either way.
   3775 	 * (For now, do this for all chip versions, until newer
   3776 	 * are confirmed to not require the workaround.)
   3777 	 */
   3778 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3779 #ifdef notyet
   3780 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3781 #endif
   3782 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3783 		goto check_dma_bug;
   3784 
   3785 	if (bge_cksum_pad(m_head) != 0) {
   3786 	    return ENOBUFS;
   3787 	}
   3788 
   3789 check_dma_bug:
   3790 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3791 		goto doit;
   3792 	/*
   3793 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3794 	 * less than eight bytes.  If we encounter a teeny mbuf
   3795 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3796 	 */
   3797 	if (bge_compact_dma_runt(m_head) != 0)
   3798 		return ENOBUFS;
   3799 
   3800 doit:
   3801 	dma = SLIST_FIRST(&sc->txdma_list);
   3802 	if (dma == NULL)
   3803 		return ENOBUFS;
   3804 	dmamap = dma->dmamap;
   3805 
   3806 	/*
   3807 	 * Set up any necessary TSO state before we start packing...
   3808 	 */
   3809 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3810 	if (!use_tso) {
   3811 		maxsegsize = 0;
   3812 	} else {	/* TSO setup */
   3813 		unsigned  mss;
   3814 		struct ether_header *eh;
   3815 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3816 		struct mbuf * m0 = m_head;
   3817 		struct ip *ip;
   3818 		struct tcphdr *th;
   3819 		int iphl, hlen;
   3820 
   3821 		/*
   3822 		 * XXX It would be nice if the mbuf pkthdr had offset
   3823 		 * fields for the protocol headers.
   3824 		 */
   3825 
   3826 		eh = mtod(m0, struct ether_header *);
   3827 		switch (htons(eh->ether_type)) {
   3828 		case ETHERTYPE_IP:
   3829 			offset = ETHER_HDR_LEN;
   3830 			break;
   3831 
   3832 		case ETHERTYPE_VLAN:
   3833 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3834 			break;
   3835 
   3836 		default:
   3837 			/*
   3838 			 * Don't support this protocol or encapsulation.
   3839 			 */
   3840 			return (ENOBUFS);
   3841 		}
   3842 
   3843 		/*
   3844 		 * TCP/IP headers are in the first mbuf; we can do
   3845 		 * this the easy way.
   3846 		 */
   3847 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3848 		hlen = iphl + offset;
   3849 		if (__predict_false(m0->m_len <
   3850 				    (hlen + sizeof(struct tcphdr)))) {
   3851 
   3852 			aprint_debug_dev(sc->bge_dev,
   3853 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3854 			    "not handled yet\n",
   3855 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3856 #ifdef NOTYET
   3857 			/*
   3858 			 * XXX jonathan (at) NetBSD.org: untested.
   3859 			 * how to force  this branch to be taken?
   3860 			 */
   3861 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3862 
   3863 			m_copydata(m0, offset, sizeof(ip), &ip);
   3864 			m_copydata(m0, hlen, sizeof(th), &th);
   3865 
   3866 			ip.ip_len = 0;
   3867 
   3868 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3869 			    sizeof(ip.ip_len), &ip.ip_len);
   3870 
   3871 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3872 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3873 
   3874 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3875 			    sizeof(th.th_sum), &th.th_sum);
   3876 
   3877 			hlen += th.th_off << 2;
   3878 			iptcp_opt_words	= hlen;
   3879 #else
   3880 			/*
   3881 			 * if_wm "hard" case not yet supported, can we not
   3882 			 * mandate it out of existence?
   3883 			 */
   3884 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3885 
   3886 			return ENOBUFS;
   3887 #endif
   3888 		} else {
   3889 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3890 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3891 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3892 
   3893 			/* Total IP/TCP options, in 32-bit words */
   3894 			iptcp_opt_words = (ip_tcp_hlen
   3895 					   - sizeof(struct tcphdr)
   3896 					   - sizeof(struct ip)) >> 2;
   3897 		}
   3898 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3899 			th->th_sum = 0;
   3900 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3901 		} else {
   3902 			/*
   3903 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3904 			 * Requires TSO firmware patch for 5701/5703/5704.
   3905 			 */
   3906 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3907 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3908 		}
   3909 
   3910 		mss = m_head->m_pkthdr.segsz;
   3911 		txbd_tso_flags |=
   3912 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3913 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3914 
   3915 		/*
   3916 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3917 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3918 		 * the NIC copies 40 bytes of IP/TCP header from the
   3919 		 * supplied header into the IP/TCP header portion of
   3920 		 * each post-TSO-segment. If the supplied packet has IP or
   3921 		 * TCP options, we need to tell the NIC to copy those extra
   3922 		 * bytes into each  post-TSO header, in addition to the normal
   3923 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3924 		 * Unfortunately, the driver encoding of option length
   3925 		 * varies across different ASIC families.
   3926 		 */
   3927 		tcp_seg_flags = 0;
   3928 		if (iptcp_opt_words) {
   3929 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3930 				tcp_seg_flags =
   3931 					iptcp_opt_words << 11;
   3932 			} else {
   3933 				txbd_tso_flags |=
   3934 					iptcp_opt_words << 12;
   3935 			}
   3936 		}
   3937 		maxsegsize = mss | tcp_seg_flags;
   3938 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3939 
   3940 	}	/* TSO setup */
   3941 
   3942 	/*
   3943 	 * Start packing the mbufs in this chain into
   3944 	 * the fragment pointers. Stop when we run out
   3945 	 * of fragments or hit the end of the mbuf chain.
   3946 	 */
   3947 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3948 	    BUS_DMA_NOWAIT);
   3949 	if (error) {
   3950 		return(ENOBUFS);
   3951 	}
   3952 	/*
   3953 	 * Sanity check: avoid coming within 16 descriptors
   3954 	 * of the end of the ring.
   3955 	 */
   3956 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3957 		BGE_TSO_PRINTF(("%s: "
   3958 		    " dmamap_load_mbuf too close to ring wrap\n",
   3959 		    device_xname(sc->bge_dev)));
   3960 		goto fail_unload;
   3961 	}
   3962 
   3963 	mtag = sc->ethercom.ec_nvlans ?
   3964 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3965 
   3966 
   3967 	/* Iterate over dmap-map fragments. */
   3968 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3969 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3970 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3971 			break;
   3972 
   3973 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3974 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3975 
   3976 		/*
   3977 		 * For 5751 and follow-ons, for TSO we must turn
   3978 		 * off checksum-assist flag in the tx-descr, and
   3979 		 * supply the ASIC-revision-specific encoding
   3980 		 * of TSO flags and segsize.
   3981 		 */
   3982 		if (use_tso) {
   3983 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3984 				f->bge_rsvd = maxsegsize;
   3985 				f->bge_flags = csum_flags | txbd_tso_flags;
   3986 			} else {
   3987 				f->bge_rsvd = 0;
   3988 				f->bge_flags =
   3989 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3990 			}
   3991 		} else {
   3992 			f->bge_rsvd = 0;
   3993 			f->bge_flags = csum_flags;
   3994 		}
   3995 
   3996 		if (mtag != NULL) {
   3997 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3998 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3999 		} else {
   4000 			f->bge_vlan_tag = 0;
   4001 		}
   4002 		cur = frag;
   4003 		BGE_INC(frag, BGE_TX_RING_CNT);
   4004 	}
   4005 
   4006 	if (i < dmamap->dm_nsegs) {
   4007 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4008 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4009 		goto fail_unload;
   4010 	}
   4011 
   4012 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4013 	    BUS_DMASYNC_PREWRITE);
   4014 
   4015 	if (frag == sc->bge_tx_saved_considx) {
   4016 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4017 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4018 
   4019 		goto fail_unload;
   4020 	}
   4021 
   4022 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4023 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4024 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4025 	sc->txdma[cur] = dma;
   4026 	sc->bge_txcnt += dmamap->dm_nsegs;
   4027 
   4028 	*txidx = frag;
   4029 
   4030 	return(0);
   4031 
   4032  fail_unload:
   4033 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4034 
   4035 	return ENOBUFS;
   4036 }
   4037 
   4038 /*
   4039  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4040  * to the mbuf data regions directly in the transmit descriptors.
   4041  */
   4042 static void
   4043 bge_start(struct ifnet *ifp)
   4044 {
   4045 	struct bge_softc *sc;
   4046 	struct mbuf *m_head = NULL;
   4047 	u_int32_t prodidx;
   4048 	int pkts = 0;
   4049 
   4050 	sc = ifp->if_softc;
   4051 
   4052 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4053 		return;
   4054 
   4055 	prodidx = sc->bge_tx_prodidx;
   4056 
   4057 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4058 		IFQ_POLL(&ifp->if_snd, m_head);
   4059 		if (m_head == NULL)
   4060 			break;
   4061 
   4062 #if 0
   4063 		/*
   4064 		 * XXX
   4065 		 * safety overkill.  If this is a fragmented packet chain
   4066 		 * with delayed TCP/UDP checksums, then only encapsulate
   4067 		 * it if we have enough descriptors to handle the entire
   4068 		 * chain at once.
   4069 		 * (paranoia -- may not actually be needed)
   4070 		 */
   4071 		if (m_head->m_flags & M_FIRSTFRAG &&
   4072 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4073 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4074 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4075 				ifp->if_flags |= IFF_OACTIVE;
   4076 				break;
   4077 			}
   4078 		}
   4079 #endif
   4080 
   4081 		/*
   4082 		 * Pack the data into the transmit ring. If we
   4083 		 * don't have room, set the OACTIVE flag and wait
   4084 		 * for the NIC to drain the ring.
   4085 		 */
   4086 		if (bge_encap(sc, m_head, &prodidx)) {
   4087 			ifp->if_flags |= IFF_OACTIVE;
   4088 			break;
   4089 		}
   4090 
   4091 		/* now we are committed to transmit the packet */
   4092 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4093 		pkts++;
   4094 
   4095 #if NBPFILTER > 0
   4096 		/*
   4097 		 * If there's a BPF listener, bounce a copy of this frame
   4098 		 * to him.
   4099 		 */
   4100 		if (ifp->if_bpf)
   4101 			bpf_mtap(ifp->if_bpf, m_head);
   4102 #endif
   4103 	}
   4104 	if (pkts == 0)
   4105 		return;
   4106 
   4107 	/* Transmit */
   4108 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4109 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   4110 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4111 
   4112 	sc->bge_tx_prodidx = prodidx;
   4113 
   4114 	/*
   4115 	 * Set a timeout in case the chip goes out to lunch.
   4116 	 */
   4117 	ifp->if_timer = 5;
   4118 }
   4119 
   4120 static int
   4121 bge_init(struct ifnet *ifp)
   4122 {
   4123 	struct bge_softc *sc = ifp->if_softc;
   4124 	const u_int16_t *m;
   4125 	int s, error = 0;
   4126 
   4127 	s = splnet();
   4128 
   4129 	ifp = &sc->ethercom.ec_if;
   4130 
   4131 	/* Cancel pending I/O and flush buffers. */
   4132 	bge_stop(ifp, 0);
   4133 	bge_reset(sc);
   4134 	bge_chipinit(sc);
   4135 
   4136 	/*
   4137 	 * Init the various state machines, ring
   4138 	 * control blocks and firmware.
   4139 	 */
   4140 	error = bge_blockinit(sc);
   4141 	if (error != 0) {
   4142 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4143 		    error);
   4144 		splx(s);
   4145 		return error;
   4146 	}
   4147 
   4148 	ifp = &sc->ethercom.ec_if;
   4149 
   4150 	/* Specify MTU. */
   4151 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4152 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4153 
   4154 	/* Load our MAC address. */
   4155 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4156 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4157 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4158 
   4159 	/* Enable or disable promiscuous mode as needed. */
   4160 	if (ifp->if_flags & IFF_PROMISC) {
   4161 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4162 	} else {
   4163 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4164 	}
   4165 
   4166 	/* Program multicast filter. */
   4167 	bge_setmulti(sc);
   4168 
   4169 	/* Init RX ring. */
   4170 	bge_init_rx_ring_std(sc);
   4171 
   4172 	/* Init jumbo RX ring. */
   4173 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4174 		bge_init_rx_ring_jumbo(sc);
   4175 
   4176 	/* Init our RX return ring index */
   4177 	sc->bge_rx_saved_considx = 0;
   4178 
   4179 	/* Init TX ring. */
   4180 	bge_init_tx_ring(sc);
   4181 
   4182 	/* Turn on transmitter */
   4183 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4184 
   4185 	/* Turn on receiver */
   4186 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4187 
   4188 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4189 
   4190 	/* Tell firmware we're alive. */
   4191 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4192 
   4193 	/* Enable host interrupts. */
   4194 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4195 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4196 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4197 
   4198 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4199 		goto out;
   4200 
   4201 	ifp->if_flags |= IFF_RUNNING;
   4202 	ifp->if_flags &= ~IFF_OACTIVE;
   4203 
   4204 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4205 
   4206 out:
   4207 	splx(s);
   4208 
   4209 	return error;
   4210 }
   4211 
   4212 /*
   4213  * Set media options.
   4214  */
   4215 static int
   4216 bge_ifmedia_upd(struct ifnet *ifp)
   4217 {
   4218 	struct bge_softc *sc = ifp->if_softc;
   4219 	struct mii_data *mii = &sc->bge_mii;
   4220 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4221 	int rc;
   4222 
   4223 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4224 	if (sc->bge_tbi) {
   4225 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4226 			return(EINVAL);
   4227 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4228 		case IFM_AUTO:
   4229 			break;
   4230 		case IFM_1000_SX:
   4231 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4232 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4233 				    BGE_MACMODE_HALF_DUPLEX);
   4234 			} else {
   4235 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4236 				    BGE_MACMODE_HALF_DUPLEX);
   4237 			}
   4238 			break;
   4239 		default:
   4240 			return(EINVAL);
   4241 		}
   4242 		/* XXX 802.3x flow control for 1000BASE-SX */
   4243 		return(0);
   4244 	}
   4245 
   4246 	sc->bge_link = 0;
   4247 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4248 		return 0;
   4249 	return rc;
   4250 }
   4251 
   4252 /*
   4253  * Report current media status.
   4254  */
   4255 static void
   4256 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4257 {
   4258 	struct bge_softc *sc = ifp->if_softc;
   4259 	struct mii_data *mii = &sc->bge_mii;
   4260 
   4261 	if (sc->bge_tbi) {
   4262 		ifmr->ifm_status = IFM_AVALID;
   4263 		ifmr->ifm_active = IFM_ETHER;
   4264 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4265 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4266 			ifmr->ifm_status |= IFM_ACTIVE;
   4267 		ifmr->ifm_active |= IFM_1000_SX;
   4268 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4269 			ifmr->ifm_active |= IFM_HDX;
   4270 		else
   4271 			ifmr->ifm_active |= IFM_FDX;
   4272 		return;
   4273 	}
   4274 
   4275 	mii_pollstat(mii);
   4276 	ifmr->ifm_status = mii->mii_media_status;
   4277 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4278 	    sc->bge_flowflags;
   4279 }
   4280 
   4281 static int
   4282 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4283 {
   4284 	struct bge_softc *sc = ifp->if_softc;
   4285 	struct ifreq *ifr = (struct ifreq *) data;
   4286 	int s, error = 0;
   4287 	struct mii_data *mii;
   4288 
   4289 	s = splnet();
   4290 
   4291 	switch(command) {
   4292 	case SIOCSIFFLAGS:
   4293 		if (ifp->if_flags & IFF_UP) {
   4294 			/*
   4295 			 * If only the state of the PROMISC flag changed,
   4296 			 * then just use the 'set promisc mode' command
   4297 			 * instead of reinitializing the entire NIC. Doing
   4298 			 * a full re-init means reloading the firmware and
   4299 			 * waiting for it to start up, which may take a
   4300 			 * second or two.
   4301 			 */
   4302 			if (ifp->if_flags & IFF_RUNNING &&
   4303 			    ifp->if_flags & IFF_PROMISC &&
   4304 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4305 				BGE_SETBIT(sc, BGE_RX_MODE,
   4306 				    BGE_RXMODE_RX_PROMISC);
   4307 			} else if (ifp->if_flags & IFF_RUNNING &&
   4308 			    !(ifp->if_flags & IFF_PROMISC) &&
   4309 			    sc->bge_if_flags & IFF_PROMISC) {
   4310 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4311 				    BGE_RXMODE_RX_PROMISC);
   4312 			} else if (!(sc->bge_if_flags & IFF_UP))
   4313 				bge_init(ifp);
   4314 		} else {
   4315 			if (ifp->if_flags & IFF_RUNNING)
   4316 				bge_stop(ifp, 1);
   4317 		}
   4318 		sc->bge_if_flags = ifp->if_flags;
   4319 		error = 0;
   4320 		break;
   4321 	case SIOCADDMULTI:
   4322 	case SIOCDELMULTI:
   4323 		if (ifp->if_flags & IFF_RUNNING) {
   4324 			bge_setmulti(sc);
   4325 			error = 0;
   4326 		}
   4327 		break;
   4328 	case SIOCSIFMEDIA:
   4329 		/* XXX Flow control is not supported for 1000BASE-SX */
   4330 		if (sc->bge_tbi) {
   4331 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4332 			sc->bge_flowflags = 0;
   4333 		}
   4334 
   4335 		/* Flow control requires full-duplex mode. */
   4336 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4337 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4338 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4339 		}
   4340 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4341 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4342 				/* We an do both TXPAUSE and RXPAUSE. */
   4343 				ifr->ifr_media |=
   4344 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4345 			}
   4346 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4347 		}
   4348 		/* FALLTHROUGH */
   4349 	case SIOCGIFMEDIA:
   4350 		if (sc->bge_tbi) {
   4351 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4352 			    command);
   4353 		} else {
   4354 			mii = &sc->bge_mii;
   4355 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4356 			    command);
   4357 		}
   4358 		break;
   4359 	default:
   4360 		error = ether_ioctl(ifp, command, data);
   4361 		if (error == ENETRESET) {
   4362 			error = 0;
   4363 		}
   4364 		break;
   4365 	}
   4366 
   4367 	splx(s);
   4368 
   4369 	return(error);
   4370 }
   4371 
   4372 static void
   4373 bge_watchdog(struct ifnet *ifp)
   4374 {
   4375 	struct bge_softc *sc;
   4376 
   4377 	sc = ifp->if_softc;
   4378 
   4379 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4380 
   4381 	ifp->if_flags &= ~IFF_RUNNING;
   4382 	bge_init(ifp);
   4383 
   4384 	ifp->if_oerrors++;
   4385 }
   4386 
   4387 static void
   4388 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4389 {
   4390 	int i;
   4391 
   4392 	BGE_CLRBIT(sc, reg, bit);
   4393 
   4394 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4395 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4396 			return;
   4397 		delay(100);
   4398 		if (sc->bge_pcie)
   4399 		  DELAY(1000);
   4400 	}
   4401 
   4402 	aprint_error_dev(sc->bge_dev,
   4403 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4404 }
   4405 
   4406 /*
   4407  * Stop the adapter and free any mbufs allocated to the
   4408  * RX and TX lists.
   4409  */
   4410 static void
   4411 bge_stop(struct ifnet *ifp, int disable)
   4412 {
   4413 	struct bge_softc *sc = ifp->if_softc;
   4414 
   4415 	callout_stop(&sc->bge_timeout);
   4416 
   4417 	/*
   4418 	 * Disable all of the receiver blocks
   4419 	 */
   4420 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4421 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4422 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4423 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4424 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4425 	}
   4426 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4427 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4428 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4429 
   4430 	/*
   4431 	 * Disable all of the transmit blocks
   4432 	 */
   4433 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4434 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4435 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4436 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4437 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4438 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4439 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4440 	}
   4441 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4442 
   4443 	/*
   4444 	 * Shut down all of the memory managers and related
   4445 	 * state machines.
   4446 	 */
   4447 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4448 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4449 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4450 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4451 	}
   4452 
   4453 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4454 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4455 
   4456 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4457 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4458 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4459 	}
   4460 
   4461 	/* Disable host interrupts. */
   4462 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4463 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4464 
   4465 	/*
   4466 	 * Tell firmware we're shutting down.
   4467 	 */
   4468 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4469 
   4470 	/* Free the RX lists. */
   4471 	bge_free_rx_ring_std(sc);
   4472 
   4473 	/* Free jumbo RX list. */
   4474 	bge_free_rx_ring_jumbo(sc);
   4475 
   4476 	/* Free TX buffers. */
   4477 	bge_free_tx_ring(sc);
   4478 
   4479 	/*
   4480 	 * Isolate/power down the PHY.
   4481 	 */
   4482 	if (!sc->bge_tbi)
   4483 		mii_down(&sc->bge_mii);
   4484 
   4485 	sc->bge_link = 0;
   4486 
   4487 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4488 
   4489 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4490 }
   4491 
   4492 static int
   4493 sysctl_bge_verify(SYSCTLFN_ARGS)
   4494 {
   4495 	int error, t;
   4496 	struct sysctlnode node;
   4497 
   4498 	node = *rnode;
   4499 	t = *(int*)rnode->sysctl_data;
   4500 	node.sysctl_data = &t;
   4501 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4502 	if (error || newp == NULL)
   4503 		return (error);
   4504 
   4505 #if 0
   4506 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4507 	    node.sysctl_num, rnode->sysctl_num));
   4508 #endif
   4509 
   4510 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4511 		if (t < 0 || t >= NBGE_RX_THRESH)
   4512 			return (EINVAL);
   4513 		bge_update_all_threshes(t);
   4514 	} else
   4515 		return (EINVAL);
   4516 
   4517 	*(int*)rnode->sysctl_data = t;
   4518 
   4519 	return (0);
   4520 }
   4521 
   4522 /*
   4523  * Set up sysctl(3) MIB, hw.bge.*.
   4524  *
   4525  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4526  */
   4527 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4528 {
   4529 	int rc, bge_root_num;
   4530 	const struct sysctlnode *node;
   4531 
   4532 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4533 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4534 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4535 		goto err;
   4536 	}
   4537 
   4538 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4539 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4540 	    SYSCTL_DESCR("BGE interface controls"),
   4541 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4542 		goto err;
   4543 	}
   4544 
   4545 	bge_root_num = node->sysctl_num;
   4546 
   4547 	/* BGE Rx interrupt mitigation level */
   4548 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4549 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4550 	    CTLTYPE_INT, "rx_lvl",
   4551 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4552 	    sysctl_bge_verify, 0,
   4553 	    &bge_rx_thresh_lvl,
   4554 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4555 	    CTL_EOL)) != 0) {
   4556 		goto err;
   4557 	}
   4558 
   4559 	bge_rxthresh_nodenum = node->sysctl_num;
   4560 
   4561 	return;
   4562 
   4563 err:
   4564 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4565 }
   4566 
   4567 static int
   4568 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
   4569 {
   4570 	u_int32_t mac_addr;
   4571 
   4572 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4573 	if ((mac_addr >> 16) == 0x484b) {
   4574 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4575 		ether_addr[1] = (uint8_t)mac_addr;
   4576 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4577 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4578 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4579 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4580 		ether_addr[5] = (uint8_t)mac_addr;
   4581 		return (0);
   4582 	}
   4583 	return (1);
   4584 }
   4585 
   4586 static int
   4587 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
   4588 {
   4589 	int mac_offset = BGE_EE_MAC_OFFSET;
   4590 
   4591 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4592 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4593 	}
   4594 
   4595 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4596 	    ETHER_ADDR_LEN));
   4597 }
   4598 
   4599 static int
   4600 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
   4601 {
   4602 
   4603 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4604 		return (1);
   4605 	}
   4606 
   4607 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4608 	   ETHER_ADDR_LEN));
   4609 }
   4610 
   4611 static int
   4612 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
   4613 {
   4614 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4615 		/* NOTE: Order is critical */
   4616 		bge_get_eaddr_mem,
   4617 		bge_get_eaddr_nvram,
   4618 		bge_get_eaddr_eeprom,
   4619 		NULL
   4620 	};
   4621 	const bge_eaddr_fcn_t *func;
   4622 
   4623 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4624 		if ((*func)(sc, eaddr) == 0)
   4625 			break;
   4626 	}
   4627 	return (*func == NULL ? ENXIO : 0);
   4628 }
   4629