if_bge.c revision 1.156 1 /* $NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
120
121
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134
135 #include <dev/pci/if_bgereg.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140
141
142 /*
143 * Tunable thresholds for rx-side bge interrupt mitigation.
144 */
145
146 /*
147 * The pairs of values below were obtained from empirical measurement
148 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 * interrupt for every N packets received, where N is, approximately,
150 * the second value (rx_max_bds) in each pair. The values are chosen
151 * such that moving from one pair to the succeeding pair was observed
152 * to roughly halve interrupt rate under sustained input packet load.
153 * The values were empirically chosen to avoid overflowing internal
154 * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 * results in internal wrapping and higher interrupt rates.
156 * The limit of 46 frames was chosen to match NFS workloads.
157 *
158 * These values also work well on bcm5701, bcm5704C, and (less
159 * tested) bcm5703. On other chipsets, (including the Altima chip
160 * family), the larger values may overflow internal chip limits,
161 * leading to increasing interrupt rates rather than lower interrupt
162 * rates.
163 *
164 * Applications using heavy interrupt mitigation (interrupting every
165 * 32 or 46 frames) in both directions may need to increase the TCP
166 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 * full link bandwidth, due to ACKs and window updates lingering
168 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 */
170 static const struct bge_load_rx_thresh {
171 int rx_ticks;
172 int rx_max_bds; }
173 bge_rx_threshes[] = {
174 { 32, 2 },
175 { 50, 4 },
176 { 100, 8 },
177 { 192, 16 },
178 { 416, 32 },
179 { 598, 46 }
180 };
181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182
183 /* XXX patchable; should be sysctl'able */
184 static int bge_auto_thresh = 1;
185 static int bge_rx_thresh_lvl;
186
187 static int bge_rxthresh_nodenum;
188
189 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
190
191 static int bge_probe(device_t, cfdata_t, void *);
192 static void bge_attach(device_t, device_t, void *);
193 static void bge_release_resources(struct bge_softc *);
194 static void bge_txeof(struct bge_softc *);
195 static void bge_rxeof(struct bge_softc *);
196
197 static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
198 static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
199 static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
200 static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
201
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static void bge_setmulti(struct bge_softc *);
216
217 static void bge_handle_events(struct bge_softc *);
218 static int bge_alloc_jumbo_mem(struct bge_softc *);
219 #if 0 /* XXX */
220 static void bge_free_jumbo_mem(struct bge_softc *);
221 #endif
222 static void *bge_jalloc(struct bge_softc *);
223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
225 bus_dmamap_t);
226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int bge_init_rx_ring_std(struct bge_softc *);
228 static void bge_free_rx_ring_std(struct bge_softc *);
229 static int bge_init_rx_ring_jumbo(struct bge_softc *);
230 static void bge_free_rx_ring_jumbo(struct bge_softc *);
231 static void bge_free_tx_ring(struct bge_softc *);
232 static int bge_init_tx_ring(struct bge_softc *);
233
234 static int bge_chipinit(struct bge_softc *);
235 static int bge_blockinit(struct bge_softc *);
236 static int bge_setpowerstate(struct bge_softc *, int);
237
238 static void bge_reset(struct bge_softc *);
239
240 #define BGE_DEBUG
241 #ifdef BGE_DEBUG
242 #define DPRINTF(x) if (bgedebug) printf x
243 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
244 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
245 int bgedebug = 0;
246 int bge_tso_debug = 0;
247 #else
248 #define DPRINTF(x)
249 #define DPRINTFN(n,x)
250 #define BGE_TSO_PRINTF(x)
251 #endif
252
253 #ifdef BGE_EVENT_COUNTERS
254 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
255 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
256 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
257 #else
258 #define BGE_EVCNT_INCR(ev) /* nothing */
259 #define BGE_EVCNT_ADD(ev, val) /* nothing */
260 #define BGE_EVCNT_UPD(ev, val) /* nothing */
261 #endif
262
263 /* Various chip quirks. */
264 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
265 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
266 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
267 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
268 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
269 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
270 #define BGE_QUIRK_5705_CORE 0x00000080
271 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
272
273 /*
274 * XXX: how to handle variants based on 5750 and derivatives:
275 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
276 * in general behave like a 5705, except with additional quirks.
277 * This driver's current handling of the 5721 is wrong;
278 * how we map ASIC revision to "quirks" needs more thought.
279 * (defined here until the thought is done).
280 */
281 #define BGE_IS_5714_FAMILY(sc) \
282 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
283 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
284 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
285
286 #define BGE_IS_5750_OR_BEYOND(sc) \
287 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
288 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
289 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
290 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
291 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
292 BGE_IS_5714_FAMILY(sc) )
293
294 #define BGE_IS_5705_OR_BEYOND(sc) \
295 ( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
296 BGE_IS_5750_OR_BEYOND(sc) )
297
298
299 /* following bugs are common to bcm5700 rev B, all flavours */
300 #define BGE_QUIRK_5700_COMMON \
301 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
302
303 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
304 bge_probe, bge_attach, NULL, NULL);
305
306 static u_int32_t
307 bge_readmem_ind(struct bge_softc *sc, int off)
308 {
309 pcireg_t val;
310
311 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
312 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
313 return val;
314 }
315
316 static void
317 bge_writemem_ind(struct bge_softc *sc, int off, int val)
318 {
319 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
320 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
321 }
322
323 #ifdef notdef
324 static u_int32_t
325 bge_readreg_ind(struct bge_softc *sc, int off)
326 {
327 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
328 return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
329 }
330 #endif
331
332 static void
333 bge_writereg_ind(struct bge_softc *sc, int off, int val)
334 {
335 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
336 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
337 }
338
339 static void
340 bge_writemem_direct(struct bge_softc *sc, int off, int val)
341 {
342 CSR_WRITE_4(sc, off, val);
343 }
344
345 static void
346 bge_writembx(struct bge_softc *sc, int off, int val)
347 {
348 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
349 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
350
351 CSR_WRITE_4(sc, off, val);
352 }
353
354 #ifdef notdef
355 static u_int8_t
356 bge_vpd_readbyte(struct bge_softc *sc, int addr)
357 {
358 int i;
359 u_int32_t val;
360
361 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
362 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
363 DELAY(10);
364 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
365 BGE_VPD_FLAG)
366 break;
367 }
368
369 if (i == BGE_TIMEOUT) {
370 aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
371 return(0);
372 }
373
374 val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
375
376 return((val >> ((addr % 4) * 8)) & 0xFF);
377 }
378
379 static void
380 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
381 {
382 int i;
383 u_int8_t *ptr;
384
385 ptr = (u_int8_t *)res;
386 for (i = 0; i < sizeof(struct vpd_res); i++)
387 ptr[i] = bge_vpd_readbyte(sc, i + addr);
388 }
389
390 static void
391 bge_vpd_read(struct bge_softc *sc)
392 {
393 int pos = 0, i;
394 struct vpd_res res;
395
396 if (sc->bge_vpd_prodname != NULL)
397 free(sc->bge_vpd_prodname, M_DEVBUF);
398 if (sc->bge_vpd_readonly != NULL)
399 free(sc->bge_vpd_readonly, M_DEVBUF);
400 sc->bge_vpd_prodname = NULL;
401 sc->bge_vpd_readonly = NULL;
402
403 bge_vpd_read_res(sc, &res, pos);
404
405 if (res.vr_id != VPD_RES_ID) {
406 aprint_error_dev("bad VPD resource id: expected %x got %x\n",
407 VPD_RES_ID, res.vr_id);
408 return;
409 }
410
411 pos += sizeof(res);
412 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
413 if (sc->bge_vpd_prodname == NULL)
414 panic("bge_vpd_read");
415 for (i = 0; i < res.vr_len; i++)
416 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
417 sc->bge_vpd_prodname[i] = '\0';
418 pos += i;
419
420 bge_vpd_read_res(sc, &res, pos);
421
422 if (res.vr_id != VPD_RES_READ) {
423 aprint_error_dev(sc->bge_dev,
424 "bad VPD resource id: expected %x got %x\n",
425 VPD_RES_READ, res.vr_id);
426 return;
427 }
428
429 pos += sizeof(res);
430 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
431 if (sc->bge_vpd_readonly == NULL)
432 panic("bge_vpd_read");
433 for (i = 0; i < res.vr_len + 1; i++)
434 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
435 }
436 #endif
437
438 static u_int8_t
439 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
440 {
441 u_int32_t access, byte = 0;
442 int i;
443
444 /* Lock. */
445 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
446 for (i = 0; i < 8000; i++) {
447 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
448 break;
449 DELAY(20);
450 }
451 if (i == 8000)
452 return (1);
453
454 /* Enable access. */
455 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
456 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
457
458 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
459 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
460 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
461 DELAY(10);
462 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
463 DELAY(10);
464 break;
465 }
466 }
467
468 if (i == BGE_TIMEOUT * 10) {
469 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
470 return (1);
471 }
472
473 /* Get result. */
474 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
475
476 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
477
478 /* Disable access. */
479 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
480
481 /* Unlock. */
482 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
483 CSR_READ_4(sc, BGE_NVRAM_SWARB);
484
485 return (0);
486 }
487
488 /*
489 * Read a sequence of bytes from NVRAM.
490 */
491 static int
492 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
493 {
494 int err = 0, i;
495 u_int8_t byte = 0;
496
497 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
498 return (1);
499
500 for (i = 0; i < cnt; i++) {
501 err = bge_nvram_getbyte(sc, off + i, &byte);
502 if (err)
503 break;
504 *(dest + i) = byte;
505 }
506
507 return (err ? 1 : 0);
508 }
509
510
511 /*
512 * Read a byte of data stored in the EEPROM at address 'addr.' The
513 * BCM570x supports both the traditional bitbang interface and an
514 * auto access interface for reading the EEPROM. We use the auto
515 * access method.
516 */
517 static u_int8_t
518 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
519 {
520 int i;
521 u_int32_t byte = 0;
522
523 /*
524 * Enable use of auto EEPROM access so we can avoid
525 * having to use the bitbang method.
526 */
527 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
528
529 /* Reset the EEPROM, load the clock period. */
530 CSR_WRITE_4(sc, BGE_EE_ADDR,
531 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
532 DELAY(20);
533
534 /* Issue the read EEPROM command. */
535 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
536
537 /* Wait for completion */
538 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
539 DELAY(10);
540 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
541 break;
542 }
543
544 if (i == BGE_TIMEOUT) {
545 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
546 return(0);
547 }
548
549 /* Get result. */
550 byte = CSR_READ_4(sc, BGE_EE_DATA);
551
552 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
553
554 return(0);
555 }
556
557 /*
558 * Read a sequence of bytes from the EEPROM.
559 */
560 static int
561 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
562 {
563 int err = 0, i;
564 u_int8_t byte = 0;
565 char *dest = destv;
566
567 for (i = 0; i < cnt; i++) {
568 err = bge_eeprom_getbyte(sc, off + i, &byte);
569 if (err)
570 break;
571 *(dest + i) = byte;
572 }
573
574 return(err ? 1 : 0);
575 }
576
577 static int
578 bge_miibus_readreg(device_t dev, int phy, int reg)
579 {
580 struct bge_softc *sc = device_private(dev);
581 u_int32_t val;
582 u_int32_t saved_autopoll;
583 int i;
584
585 /*
586 * Broadcom's own driver always assumes the internal
587 * PHY is at GMII address 1. On some chips, the PHY responds
588 * to accesses at all addresses, which could cause us to
589 * bogusly attach the PHY 32 times at probe type. Always
590 * restricting the lookup to address 1 is simpler than
591 * trying to figure out which chips revisions should be
592 * special-cased.
593 */
594 if (phy != 1)
595 return (0);
596
597 /* Reading with autopolling on may trigger PCI errors */
598 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
599 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
600 CSR_WRITE_4(sc, BGE_MI_MODE,
601 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
602 DELAY(40);
603 }
604
605 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
606 BGE_MIPHY(phy)|BGE_MIREG(reg));
607
608 for (i = 0; i < BGE_TIMEOUT; i++) {
609 val = CSR_READ_4(sc, BGE_MI_COMM);
610 if (!(val & BGE_MICOMM_BUSY))
611 break;
612 delay(10);
613 }
614
615 if (i == BGE_TIMEOUT) {
616 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
617 val = 0;
618 goto done;
619 }
620
621 val = CSR_READ_4(sc, BGE_MI_COMM);
622
623 done:
624 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
625 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
626 DELAY(40);
627 }
628
629 if (val & BGE_MICOMM_READFAIL)
630 return(0);
631
632 return(val & 0xFFFF);
633 }
634
635 static void
636 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
637 {
638 struct bge_softc *sc = device_private(dev);
639 u_int32_t saved_autopoll;
640 int i;
641
642 if (phy!=1) {
643 return;
644 }
645
646 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
647 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
648 return;
649 }
650
651 /* Touching the PHY while autopolling is on may trigger PCI errors */
652 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
653 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
654 delay(40);
655 CSR_WRITE_4(sc, BGE_MI_MODE,
656 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
657 delay(10); /* 40 usec is supposed to be adequate */
658 }
659
660 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
661 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
662
663 for (i = 0; i < BGE_TIMEOUT; i++) {
664 delay(10);
665 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
666 delay(5);
667 CSR_READ_4(sc, BGE_MI_COMM);
668 break;
669 }
670 }
671
672 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
673 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
674 delay(40);
675 }
676
677 if (i == BGE_TIMEOUT)
678 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
679 }
680
681 static void
682 bge_miibus_statchg(device_t dev)
683 {
684 struct bge_softc *sc = device_private(dev);
685 struct mii_data *mii = &sc->bge_mii;
686
687 /*
688 * Get flow control negotiation result.
689 */
690 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
691 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
692 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
693 mii->mii_media_active &= ~IFM_ETH_FMASK;
694 }
695
696 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
697 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
698 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
699 } else {
700 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
701 }
702
703 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
704 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
705 } else {
706 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
707 }
708
709 /*
710 * 802.3x flow control
711 */
712 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
713 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
714 } else {
715 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
716 }
717 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
718 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
719 } else {
720 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
721 }
722 }
723
724 /*
725 * Update rx threshold levels to values in a particular slot
726 * of the interrupt-mitigation table bge_rx_threshes.
727 */
728 static void
729 bge_set_thresh(struct ifnet *ifp, int lvl)
730 {
731 struct bge_softc *sc = ifp->if_softc;
732 int s;
733
734 /* For now, just save the new Rx-intr thresholds and record
735 * that a threshold update is pending. Updating the hardware
736 * registers here (even at splhigh()) is observed to
737 * occasionaly cause glitches where Rx-interrupts are not
738 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
739 */
740 s = splnet();
741 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
742 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
743 sc->bge_pending_rxintr_change = 1;
744 splx(s);
745
746 return;
747 }
748
749
750 /*
751 * Update Rx thresholds of all bge devices
752 */
753 static void
754 bge_update_all_threshes(int lvl)
755 {
756 struct ifnet *ifp;
757 const char * const namebuf = "bge";
758 int namelen;
759
760 if (lvl < 0)
761 lvl = 0;
762 else if( lvl >= NBGE_RX_THRESH)
763 lvl = NBGE_RX_THRESH - 1;
764
765 namelen = strlen(namebuf);
766 /*
767 * Now search all the interfaces for this name/number
768 */
769 IFNET_FOREACH(ifp) {
770 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
771 continue;
772 /* We got a match: update if doing auto-threshold-tuning */
773 if (bge_auto_thresh)
774 bge_set_thresh(ifp, lvl);
775 }
776 }
777
778 /*
779 * Handle events that have triggered interrupts.
780 */
781 static void
782 bge_handle_events(struct bge_softc *sc)
783 {
784
785 return;
786 }
787
788 /*
789 * Memory management for jumbo frames.
790 */
791
792 static int
793 bge_alloc_jumbo_mem(struct bge_softc *sc)
794 {
795 char *ptr, *kva;
796 bus_dma_segment_t seg;
797 int i, rseg, state, error;
798 struct bge_jpool_entry *entry;
799
800 state = error = 0;
801
802 /* Grab a big chunk o' storage. */
803 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
804 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
805 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
806 return ENOBUFS;
807 }
808
809 state = 1;
810 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
811 BUS_DMA_NOWAIT)) {
812 aprint_error_dev(sc->bge_dev,
813 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
814 error = ENOBUFS;
815 goto out;
816 }
817
818 state = 2;
819 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
820 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
821 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
822 error = ENOBUFS;
823 goto out;
824 }
825
826 state = 3;
827 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
828 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
829 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
830 error = ENOBUFS;
831 goto out;
832 }
833
834 state = 4;
835 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
836 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
837
838 SLIST_INIT(&sc->bge_jfree_listhead);
839 SLIST_INIT(&sc->bge_jinuse_listhead);
840
841 /*
842 * Now divide it up into 9K pieces and save the addresses
843 * in an array.
844 */
845 ptr = sc->bge_cdata.bge_jumbo_buf;
846 for (i = 0; i < BGE_JSLOTS; i++) {
847 sc->bge_cdata.bge_jslots[i] = ptr;
848 ptr += BGE_JLEN;
849 entry = malloc(sizeof(struct bge_jpool_entry),
850 M_DEVBUF, M_NOWAIT);
851 if (entry == NULL) {
852 aprint_error_dev(sc->bge_dev,
853 "no memory for jumbo buffer queue!\n");
854 error = ENOBUFS;
855 goto out;
856 }
857 entry->slot = i;
858 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
859 entry, jpool_entries);
860 }
861 out:
862 if (error != 0) {
863 switch (state) {
864 case 4:
865 bus_dmamap_unload(sc->bge_dmatag,
866 sc->bge_cdata.bge_rx_jumbo_map);
867 case 3:
868 bus_dmamap_destroy(sc->bge_dmatag,
869 sc->bge_cdata.bge_rx_jumbo_map);
870 case 2:
871 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
872 case 1:
873 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
874 break;
875 default:
876 break;
877 }
878 }
879
880 return error;
881 }
882
883 /*
884 * Allocate a jumbo buffer.
885 */
886 static void *
887 bge_jalloc(struct bge_softc *sc)
888 {
889 struct bge_jpool_entry *entry;
890
891 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
892
893 if (entry == NULL) {
894 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
895 return(NULL);
896 }
897
898 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
899 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
900 return(sc->bge_cdata.bge_jslots[entry->slot]);
901 }
902
903 /*
904 * Release a jumbo buffer.
905 */
906 static void
907 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
908 {
909 struct bge_jpool_entry *entry;
910 struct bge_softc *sc;
911 int i, s;
912
913 /* Extract the softc struct pointer. */
914 sc = (struct bge_softc *)arg;
915
916 if (sc == NULL)
917 panic("bge_jfree: can't find softc pointer!");
918
919 /* calculate the slot this buffer belongs to */
920
921 i = ((char *)buf
922 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
923
924 if ((i < 0) || (i >= BGE_JSLOTS))
925 panic("bge_jfree: asked to free buffer that we don't manage!");
926
927 s = splvm();
928 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
929 if (entry == NULL)
930 panic("bge_jfree: buffer not in use!");
931 entry->slot = i;
932 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
933 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
934
935 if (__predict_true(m != NULL))
936 pool_cache_put(mb_cache, m);
937 splx(s);
938 }
939
940
941 /*
942 * Intialize a standard receive ring descriptor.
943 */
944 static int
945 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
946 {
947 struct mbuf *m_new = NULL;
948 struct bge_rx_bd *r;
949 int error;
950
951 if (dmamap == NULL) {
952 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
953 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
954 if (error != 0)
955 return error;
956 }
957
958 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
959
960 if (m == NULL) {
961 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
962 if (m_new == NULL) {
963 return(ENOBUFS);
964 }
965
966 MCLGET(m_new, M_DONTWAIT);
967 if (!(m_new->m_flags & M_EXT)) {
968 m_freem(m_new);
969 return(ENOBUFS);
970 }
971 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
972
973 } else {
974 m_new = m;
975 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
976 m_new->m_data = m_new->m_ext.ext_buf;
977 }
978 if (!sc->bge_rx_alignment_bug)
979 m_adj(m_new, ETHER_ALIGN);
980 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
981 BUS_DMA_READ|BUS_DMA_NOWAIT))
982 return(ENOBUFS);
983 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
984 BUS_DMASYNC_PREREAD);
985
986 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
987 r = &sc->bge_rdata->bge_rx_std_ring[i];
988 bge_set_hostaddr(&r->bge_addr,
989 dmamap->dm_segs[0].ds_addr);
990 r->bge_flags = BGE_RXBDFLAG_END;
991 r->bge_len = m_new->m_len;
992 r->bge_idx = i;
993
994 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
995 offsetof(struct bge_ring_data, bge_rx_std_ring) +
996 i * sizeof (struct bge_rx_bd),
997 sizeof (struct bge_rx_bd),
998 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
999
1000 return(0);
1001 }
1002
1003 /*
1004 * Initialize a jumbo receive ring descriptor. This allocates
1005 * a jumbo buffer from the pool managed internally by the driver.
1006 */
1007 static int
1008 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1009 {
1010 struct mbuf *m_new = NULL;
1011 struct bge_rx_bd *r;
1012 void *buf = NULL;
1013
1014 if (m == NULL) {
1015
1016 /* Allocate the mbuf. */
1017 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1018 if (m_new == NULL) {
1019 return(ENOBUFS);
1020 }
1021
1022 /* Allocate the jumbo buffer */
1023 buf = bge_jalloc(sc);
1024 if (buf == NULL) {
1025 m_freem(m_new);
1026 aprint_error_dev(sc->bge_dev,
1027 "jumbo allocation failed -- packet dropped!\n");
1028 return(ENOBUFS);
1029 }
1030
1031 /* Attach the buffer to the mbuf. */
1032 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1033 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1034 bge_jfree, sc);
1035 m_new->m_flags |= M_EXT_RW;
1036 } else {
1037 m_new = m;
1038 buf = m_new->m_data = m_new->m_ext.ext_buf;
1039 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1040 }
1041 if (!sc->bge_rx_alignment_bug)
1042 m_adj(m_new, ETHER_ALIGN);
1043 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1044 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1045 BUS_DMASYNC_PREREAD);
1046 /* Set up the descriptor. */
1047 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1048 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1049 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1050 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1051 r->bge_len = m_new->m_len;
1052 r->bge_idx = i;
1053
1054 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1055 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1056 i * sizeof (struct bge_rx_bd),
1057 sizeof (struct bge_rx_bd),
1058 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1059
1060 return(0);
1061 }
1062
1063 /*
1064 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1065 * that's 1MB or memory, which is a lot. For now, we fill only the first
1066 * 256 ring entries and hope that our CPU is fast enough to keep up with
1067 * the NIC.
1068 */
1069 static int
1070 bge_init_rx_ring_std(struct bge_softc *sc)
1071 {
1072 int i;
1073
1074 if (sc->bge_flags & BGE_RXRING_VALID)
1075 return 0;
1076
1077 for (i = 0; i < BGE_SSLOTS; i++) {
1078 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1079 return(ENOBUFS);
1080 }
1081
1082 sc->bge_std = i - 1;
1083 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1084
1085 sc->bge_flags |= BGE_RXRING_VALID;
1086
1087 return(0);
1088 }
1089
1090 static void
1091 bge_free_rx_ring_std(struct bge_softc *sc)
1092 {
1093 int i;
1094
1095 if (!(sc->bge_flags & BGE_RXRING_VALID))
1096 return;
1097
1098 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1099 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1100 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1101 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1102 bus_dmamap_destroy(sc->bge_dmatag,
1103 sc->bge_cdata.bge_rx_std_map[i]);
1104 }
1105 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1106 sizeof(struct bge_rx_bd));
1107 }
1108
1109 sc->bge_flags &= ~BGE_RXRING_VALID;
1110 }
1111
1112 static int
1113 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1114 {
1115 int i;
1116 volatile struct bge_rcb *rcb;
1117
1118 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1119 return 0;
1120
1121 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1122 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1123 return(ENOBUFS);
1124 };
1125
1126 sc->bge_jumbo = i - 1;
1127 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1128
1129 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1130 rcb->bge_maxlen_flags = 0;
1131 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1132
1133 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1134
1135 return(0);
1136 }
1137
1138 static void
1139 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1140 {
1141 int i;
1142
1143 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1144 return;
1145
1146 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1147 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1148 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1149 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1150 }
1151 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1152 sizeof(struct bge_rx_bd));
1153 }
1154
1155 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1156 }
1157
1158 static void
1159 bge_free_tx_ring(struct bge_softc *sc)
1160 {
1161 int i, freed;
1162 struct txdmamap_pool_entry *dma;
1163
1164 if (!(sc->bge_flags & BGE_TXRING_VALID))
1165 return;
1166
1167 freed = 0;
1168
1169 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1170 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1171 freed++;
1172 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1173 sc->bge_cdata.bge_tx_chain[i] = NULL;
1174 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1175 link);
1176 sc->txdma[i] = 0;
1177 }
1178 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1179 sizeof(struct bge_tx_bd));
1180 }
1181
1182 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1183 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1184 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1185 free(dma, M_DEVBUF);
1186 }
1187
1188 sc->bge_flags &= ~BGE_TXRING_VALID;
1189 }
1190
1191 static int
1192 bge_init_tx_ring(struct bge_softc *sc)
1193 {
1194 int i;
1195 bus_dmamap_t dmamap;
1196 struct txdmamap_pool_entry *dma;
1197
1198 if (sc->bge_flags & BGE_TXRING_VALID)
1199 return 0;
1200
1201 sc->bge_txcnt = 0;
1202 sc->bge_tx_saved_considx = 0;
1203
1204 /* Initialize transmit producer index for host-memory send ring. */
1205 sc->bge_tx_prodidx = 0;
1206 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1207 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1208 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1209
1210 /* NIC-memory send ring not used; initialize to zero. */
1211 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1212 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1213 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1214
1215 SLIST_INIT(&sc->txdma_list);
1216 for (i = 0; i < BGE_RSLOTS; i++) {
1217 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1218 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1219 &dmamap))
1220 return(ENOBUFS);
1221 if (dmamap == NULL)
1222 panic("dmamap NULL in bge_init_tx_ring");
1223 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1224 if (dma == NULL) {
1225 aprint_error_dev(sc->bge_dev,
1226 "can't alloc txdmamap_pool_entry\n");
1227 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1228 return (ENOMEM);
1229 }
1230 dma->dmamap = dmamap;
1231 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1232 }
1233
1234 sc->bge_flags |= BGE_TXRING_VALID;
1235
1236 return(0);
1237 }
1238
1239 static void
1240 bge_setmulti(struct bge_softc *sc)
1241 {
1242 struct ethercom *ac = &sc->ethercom;
1243 struct ifnet *ifp = &ac->ec_if;
1244 struct ether_multi *enm;
1245 struct ether_multistep step;
1246 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1247 u_int32_t h;
1248 int i;
1249
1250 if (ifp->if_flags & IFF_PROMISC)
1251 goto allmulti;
1252
1253 /* Now program new ones. */
1254 ETHER_FIRST_MULTI(step, ac, enm);
1255 while (enm != NULL) {
1256 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1257 /*
1258 * We must listen to a range of multicast addresses.
1259 * For now, just accept all multicasts, rather than
1260 * trying to set only those filter bits needed to match
1261 * the range. (At this time, the only use of address
1262 * ranges is for IP multicast routing, for which the
1263 * range is big enough to require all bits set.)
1264 */
1265 goto allmulti;
1266 }
1267
1268 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1269
1270 /* Just want the 7 least-significant bits. */
1271 h &= 0x7f;
1272
1273 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1274 ETHER_NEXT_MULTI(step, enm);
1275 }
1276
1277 ifp->if_flags &= ~IFF_ALLMULTI;
1278 goto setit;
1279
1280 allmulti:
1281 ifp->if_flags |= IFF_ALLMULTI;
1282 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1283
1284 setit:
1285 for (i = 0; i < 4; i++)
1286 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1287 }
1288
1289 const int bge_swapbits[] = {
1290 0,
1291 BGE_MODECTL_BYTESWAP_DATA,
1292 BGE_MODECTL_WORDSWAP_DATA,
1293 BGE_MODECTL_BYTESWAP_NONFRAME,
1294 BGE_MODECTL_WORDSWAP_NONFRAME,
1295
1296 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1297 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1298 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1299
1300 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1301 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1302
1303 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1304
1305 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1306 BGE_MODECTL_BYTESWAP_NONFRAME,
1307 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1308 BGE_MODECTL_WORDSWAP_NONFRAME,
1309 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1310 BGE_MODECTL_WORDSWAP_NONFRAME,
1311 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1312 BGE_MODECTL_WORDSWAP_NONFRAME,
1313
1314 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1315 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1316 };
1317
1318 int bge_swapindex = 0;
1319
1320 /*
1321 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1322 * self-test results.
1323 */
1324 static int
1325 bge_chipinit(struct bge_softc *sc)
1326 {
1327 u_int32_t cachesize;
1328 int i;
1329 u_int32_t dma_rw_ctl;
1330
1331
1332 /* Set endianness before we access any non-PCI registers. */
1333 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1334 BGE_INIT);
1335
1336 /* Set power state to D0. */
1337 bge_setpowerstate(sc, 0);
1338
1339 /*
1340 * Check the 'ROM failed' bit on the RX CPU to see if
1341 * self-tests passed.
1342 */
1343 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1344 aprint_error_dev(sc->bge_dev,
1345 "RX CPU self-diagnostics failed!\n");
1346 return(ENODEV);
1347 }
1348
1349 /* Clear the MAC control register */
1350 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1351
1352 /*
1353 * Clear the MAC statistics block in the NIC's
1354 * internal memory.
1355 */
1356 for (i = BGE_STATS_BLOCK;
1357 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1358 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1359
1360 for (i = BGE_STATUS_BLOCK;
1361 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1362 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1363
1364 /* Set up the PCI DMA control register. */
1365 if (sc->bge_pcie) {
1366 u_int32_t device_ctl;
1367
1368 /* From FreeBSD */
1369 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1370 device_xname(sc->bge_dev)));
1371 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1372 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1373 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1374
1375 /* jonathan: alternative from Linux driver */
1376 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1377 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1378
1379 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1380 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1381 BGE_PCI_CONF_DEV_CTRL);
1382 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1383
1384 if ((device_ctl & 0x00e0) && 0) {
1385 /*
1386 * XXX jonathan (at) NetBSD.org:
1387 * This clause is exactly what the Broadcom-supplied
1388 * Linux does; but given overall register programming
1389 * by if_bge(4), this larger DMA-write watermark
1390 * value causes bcm5721 chips to totally wedge.
1391 */
1392 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1393 } else {
1394 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1395 }
1396 } else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1397 BGE_PCISTATE_PCI_BUSMODE) {
1398 /* Conventional PCI bus */
1399 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1400 device_xname(sc->bge_dev)));
1401 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1402 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1403 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1404 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1405 dma_rw_ctl |= 0x0F;
1406 }
1407 } else {
1408 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1409 device_xname(sc->bge_dev)));
1410 /* PCI-X bus */
1411 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1412 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1413 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1414 (0x0F);
1415 /*
1416 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1417 * for hardware bugs, which means we should also clear
1418 * the low-order MINDMA bits. In addition, the 5704
1419 * uses a different encoding of read/write watermarks.
1420 */
1421 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1422 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1423 /* should be 0x1f0000 */
1424 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1425 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1426 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1427 }
1428 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1429 dma_rw_ctl &= 0xfffffff0;
1430 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1431 }
1432 else if (BGE_IS_5714_FAMILY(sc)) {
1433 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1434 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1435 /* XXX magic values, Broadcom-supplied Linux driver */
1436 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1437 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1438 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1439 else
1440 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1441 }
1442 }
1443
1444 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1445
1446 /*
1447 * Set up general mode register.
1448 */
1449 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1450 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1451 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1452
1453 /* Get cache line size. */
1454 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1455
1456 /*
1457 * Avoid violating PCI spec on certain chip revs.
1458 */
1459 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1460 PCIM_CMD_MWIEN) {
1461 switch(cachesize) {
1462 case 1:
1463 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1464 BGE_PCI_WRITE_BNDRY_16BYTES);
1465 break;
1466 case 2:
1467 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1468 BGE_PCI_WRITE_BNDRY_32BYTES);
1469 break;
1470 case 4:
1471 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1472 BGE_PCI_WRITE_BNDRY_64BYTES);
1473 break;
1474 case 8:
1475 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1476 BGE_PCI_WRITE_BNDRY_128BYTES);
1477 break;
1478 case 16:
1479 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1480 BGE_PCI_WRITE_BNDRY_256BYTES);
1481 break;
1482 case 32:
1483 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1484 BGE_PCI_WRITE_BNDRY_512BYTES);
1485 break;
1486 case 64:
1487 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1488 BGE_PCI_WRITE_BNDRY_1024BYTES);
1489 break;
1490 default:
1491 /* Disable PCI memory write and invalidate. */
1492 #if 0
1493 if (bootverbose)
1494 aprint_error_dev(sc->bge_dev,
1495 "cache line size %d not supported "
1496 "disabling PCI MWI\n",
1497 #endif
1498 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1499 PCIM_CMD_MWIEN);
1500 break;
1501 }
1502 }
1503
1504 /*
1505 * Disable memory write invalidate. Apparently it is not supported
1506 * properly by these devices.
1507 */
1508 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1509
1510
1511 #ifdef __brokenalpha__
1512 /*
1513 * Must insure that we do not cross an 8K (bytes) boundary
1514 * for DMA reads. Our highest limit is 1K bytes. This is a
1515 * restriction on some ALPHA platforms with early revision
1516 * 21174 PCI chipsets, such as the AlphaPC 164lx
1517 */
1518 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1519 #endif
1520
1521 /* Set the timer prescaler (always 66MHz) */
1522 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1523
1524 return(0);
1525 }
1526
1527 static int
1528 bge_blockinit(struct bge_softc *sc)
1529 {
1530 volatile struct bge_rcb *rcb;
1531 bus_size_t rcb_addr;
1532 int i;
1533 struct ifnet *ifp = &sc->ethercom.ec_if;
1534 bge_hostaddr taddr;
1535
1536 /*
1537 * Initialize the memory window pointer register so that
1538 * we can access the first 32K of internal NIC RAM. This will
1539 * allow us to set up the TX send ring RCBs and the RX return
1540 * ring RCBs, plus other things which live in NIC memory.
1541 */
1542
1543 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1544
1545 /* Configure mbuf memory pool */
1546 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1547 if (sc->bge_extram) {
1548 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1549 BGE_EXT_SSRAM);
1550 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1551 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1552 else
1553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1554 } else {
1555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1556 BGE_BUFFPOOL_1);
1557 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1559 else
1560 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1561 }
1562
1563 /* Configure DMA resource pool */
1564 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1565 BGE_DMA_DESCRIPTORS);
1566 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1567 }
1568
1569 /* Configure mbuf pool watermarks */
1570 #ifdef ORIG_WPAUL_VALUES
1571 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1572 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1573 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1574 #else
1575
1576 /* new broadcom docs strongly recommend these: */
1577 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1578 if (ifp->if_mtu > ETHER_MAX_LEN) {
1579 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1580 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1581 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1582 } else {
1583 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1584 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1585 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1586 }
1587 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1588 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1589 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1590 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1591 } else {
1592 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1593 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1594 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1595 }
1596 #endif
1597
1598 /* Configure DMA resource watermarks */
1599 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1600 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1601
1602 /* Enable buffer manager */
1603 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1604 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1605 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1606
1607 /* Poll for buffer manager start indication */
1608 for (i = 0; i < BGE_TIMEOUT; i++) {
1609 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1610 break;
1611 DELAY(10);
1612 }
1613
1614 if (i == BGE_TIMEOUT) {
1615 aprint_error_dev(sc->bge_dev,
1616 "buffer manager failed to start\n");
1617 return(ENXIO);
1618 }
1619 }
1620
1621 /* Enable flow-through queues */
1622 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1623 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1624
1625 /* Wait until queue initialization is complete */
1626 for (i = 0; i < BGE_TIMEOUT; i++) {
1627 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1628 break;
1629 DELAY(10);
1630 }
1631
1632 if (i == BGE_TIMEOUT) {
1633 aprint_error_dev(sc->bge_dev,
1634 "flow-through queue init failed\n");
1635 return(ENXIO);
1636 }
1637
1638 /* Initialize the standard RX ring control block */
1639 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1640 bge_set_hostaddr(&rcb->bge_hostaddr,
1641 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1642 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1643 rcb->bge_maxlen_flags =
1644 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1645 } else {
1646 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1647 }
1648 if (sc->bge_extram)
1649 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1650 else
1651 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1652 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1653 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1654 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1655 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1656
1657 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1658 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1659 } else {
1660 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1661 }
1662
1663 /*
1664 * Initialize the jumbo RX ring control block
1665 * We set the 'ring disabled' bit in the flags
1666 * field until we're actually ready to start
1667 * using this ring (i.e. once we set the MTU
1668 * high enough to require it).
1669 */
1670 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1671 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1672 bge_set_hostaddr(&rcb->bge_hostaddr,
1673 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1674 rcb->bge_maxlen_flags =
1675 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1676 BGE_RCB_FLAG_RING_DISABLED);
1677 if (sc->bge_extram)
1678 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1679 else
1680 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1681
1682 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1683 rcb->bge_hostaddr.bge_addr_hi);
1684 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1685 rcb->bge_hostaddr.bge_addr_lo);
1686 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1687 rcb->bge_maxlen_flags);
1688 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1689
1690 /* Set up dummy disabled mini ring RCB */
1691 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1692 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1693 BGE_RCB_FLAG_RING_DISABLED);
1694 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1695 rcb->bge_maxlen_flags);
1696
1697 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1698 offsetof(struct bge_ring_data, bge_info),
1699 sizeof (struct bge_gib),
1700 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1701 }
1702
1703 /*
1704 * Set the BD ring replenish thresholds. The recommended
1705 * values are 1/8th the number of descriptors allocated to
1706 * each ring.
1707 */
1708 i = BGE_STD_RX_RING_CNT / 8;
1709
1710 /*
1711 * Use a value of 8 for the following chips to workaround HW errata.
1712 * Some of these chips have been added based on empirical
1713 * evidence (they don't work unless this is done).
1714 */
1715 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1716 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1717 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1719 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1720 i = 8;
1721
1722 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1723 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1724
1725 /*
1726 * Disable all unused send rings by setting the 'ring disabled'
1727 * bit in the flags field of all the TX send ring control blocks.
1728 * These are located in NIC memory.
1729 */
1730 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1731 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1732 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1733 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1734 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1735 rcb_addr += sizeof(struct bge_rcb);
1736 }
1737
1738 /* Configure TX RCB 0 (we use only the first ring) */
1739 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1740 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1741 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1742 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1743 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1744 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1745 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1746 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1747 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1748 }
1749
1750 /* Disable all unused RX return rings */
1751 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1752 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1753 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1754 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1755 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1756 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1757 BGE_RCB_FLAG_RING_DISABLED));
1758 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1759 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1760 (i * (sizeof(u_int64_t))), 0);
1761 rcb_addr += sizeof(struct bge_rcb);
1762 }
1763
1764 /* Initialize RX ring indexes */
1765 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1766 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1767 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1768
1769 /*
1770 * Set up RX return ring 0
1771 * Note that the NIC address for RX return rings is 0x00000000.
1772 * The return rings live entirely within the host, so the
1773 * nicaddr field in the RCB isn't used.
1774 */
1775 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1776 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1777 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1778 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1779 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1780 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1781 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1782
1783 /* Set random backoff seed for TX */
1784 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1785 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1786 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1787 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1788 BGE_TX_BACKOFF_SEED_MASK);
1789
1790 /* Set inter-packet gap */
1791 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1792
1793 /*
1794 * Specify which ring to use for packets that don't match
1795 * any RX rules.
1796 */
1797 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1798
1799 /*
1800 * Configure number of RX lists. One interrupt distribution
1801 * list, sixteen active lists, one bad frames class.
1802 */
1803 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1804
1805 /* Inialize RX list placement stats mask. */
1806 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1807 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1808
1809 /* Disable host coalescing until we get it set up */
1810 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1811
1812 /* Poll to make sure it's shut down. */
1813 for (i = 0; i < BGE_TIMEOUT; i++) {
1814 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1815 break;
1816 DELAY(10);
1817 }
1818
1819 if (i == BGE_TIMEOUT) {
1820 aprint_error_dev(sc->bge_dev,
1821 "host coalescing engine failed to idle\n");
1822 return(ENXIO);
1823 }
1824
1825 /* Set up host coalescing defaults */
1826 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1827 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1828 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1829 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1830 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1831 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1832 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1833 }
1834 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1835 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1836
1837 /* Set up address of statistics block */
1838 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1839 bge_set_hostaddr(&taddr,
1840 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1841 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1842 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1843 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1844 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1845 }
1846
1847 /* Set up address of status block */
1848 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1849 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1850 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1851 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1852 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1853 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1854
1855 /* Turn on host coalescing state machine */
1856 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1857
1858 /* Turn on RX BD completion state machine and enable attentions */
1859 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1860 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1861
1862 /* Turn on RX list placement state machine */
1863 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1864
1865 /* Turn on RX list selector state machine. */
1866 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1867 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1868 }
1869
1870 /* Turn on DMA, clear stats */
1871 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1872 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1873 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1874 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1875 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1876
1877 /* Set misc. local control, enable interrupts on attentions */
1878 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1879
1880 #ifdef notdef
1881 /* Assert GPIO pins for PHY reset */
1882 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1883 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1884 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1885 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1886 #endif
1887
1888 #if defined(not_quite_yet)
1889 /* Linux driver enables enable gpio pin #1 on 5700s */
1890 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1891 sc->bge_local_ctrl_reg |=
1892 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1893 }
1894 #endif
1895 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1896
1897 /* Turn on DMA completion state machine */
1898 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1899 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1900 }
1901
1902 /* Turn on write DMA state machine */
1903 {
1904 uint32_t bge_wdma_mode =
1905 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1906
1907 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1908 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1909 /* Enable host coalescing bug fix; see Linux tg3.c */
1910 bge_wdma_mode |= (1 << 29);
1911
1912 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1913 }
1914
1915 /* Turn on read DMA state machine */
1916 {
1917 uint32_t dma_read_modebits;
1918
1919 dma_read_modebits =
1920 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1921
1922 if (sc->bge_pcie && 0) {
1923 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1924 } else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1925 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1926 }
1927
1928 /* XXX broadcom-supplied linux driver; undocumented */
1929 if (BGE_IS_5750_OR_BEYOND(sc)) {
1930 /*
1931 * XXX: magic values.
1932 * From Broadcom-supplied Linux driver; apparently
1933 * required to workaround a DMA bug affecting TSO
1934 * on bcm575x/bcm5721?
1935 */
1936 dma_read_modebits |= (1 << 27);
1937 }
1938 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1939 }
1940
1941 /* Turn on RX data completion state machine */
1942 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1943
1944 /* Turn on RX BD initiator state machine */
1945 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1946
1947 /* Turn on RX data and RX BD initiator state machine */
1948 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1949
1950 /* Turn on Mbuf cluster free state machine */
1951 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1952 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1953 }
1954
1955 /* Turn on send BD completion state machine */
1956 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1957
1958 /* Turn on send data completion state machine */
1959 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1960
1961 /* Turn on send data initiator state machine */
1962 if (BGE_IS_5750_OR_BEYOND(sc)) {
1963 /* XXX: magic value from Linux driver */
1964 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1965 } else {
1966 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1967 }
1968
1969 /* Turn on send BD initiator state machine */
1970 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1971
1972 /* Turn on send BD selector state machine */
1973 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1974
1975 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1976 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1977 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1978
1979 /* ack/clear link change events */
1980 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1981 BGE_MACSTAT_CFG_CHANGED);
1982 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1983
1984 /* Enable PHY auto polling (for MII/GMII only) */
1985 if (sc->bge_tbi) {
1986 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1987 } else {
1988 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1989 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1990 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1991 BGE_EVTENB_MI_INTERRUPT);
1992 }
1993
1994 /* Enable link state change attentions. */
1995 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1996
1997 return(0);
1998 }
1999
2000 static const struct bge_revision {
2001 uint32_t br_chipid;
2002 uint32_t br_quirks;
2003 const char *br_name;
2004 } bge_revisions[] = {
2005 { BGE_CHIPID_BCM5700_A0,
2006 BGE_QUIRK_LINK_STATE_BROKEN,
2007 "BCM5700 A0" },
2008
2009 { BGE_CHIPID_BCM5700_A1,
2010 BGE_QUIRK_LINK_STATE_BROKEN,
2011 "BCM5700 A1" },
2012
2013 { BGE_CHIPID_BCM5700_B0,
2014 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
2015 "BCM5700 B0" },
2016
2017 { BGE_CHIPID_BCM5700_B1,
2018 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2019 "BCM5700 B1" },
2020
2021 { BGE_CHIPID_BCM5700_B2,
2022 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2023 "BCM5700 B2" },
2024
2025 { BGE_CHIPID_BCM5700_B3,
2026 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2027 "BCM5700 B3" },
2028
2029 /* This is treated like a BCM5700 Bx */
2030 { BGE_CHIPID_BCM5700_ALTIMA,
2031 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2032 "BCM5700 Altima" },
2033
2034 { BGE_CHIPID_BCM5700_C0,
2035 0,
2036 "BCM5700 C0" },
2037
2038 { BGE_CHIPID_BCM5701_A0,
2039 0, /*XXX really, just not known */
2040 "BCM5701 A0" },
2041
2042 { BGE_CHIPID_BCM5701_B0,
2043 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2044 "BCM5701 B0" },
2045
2046 { BGE_CHIPID_BCM5701_B2,
2047 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2048 "BCM5701 B2" },
2049
2050 { BGE_CHIPID_BCM5701_B5,
2051 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2052 "BCM5701 B5" },
2053
2054 { BGE_CHIPID_BCM5703_A0,
2055 0,
2056 "BCM5703 A0" },
2057
2058 { BGE_CHIPID_BCM5703_A1,
2059 0,
2060 "BCM5703 A1" },
2061
2062 { BGE_CHIPID_BCM5703_A2,
2063 BGE_QUIRK_ONLY_PHY_1,
2064 "BCM5703 A2" },
2065
2066 { BGE_CHIPID_BCM5703_A3,
2067 BGE_QUIRK_ONLY_PHY_1,
2068 "BCM5703 A3" },
2069
2070 { BGE_CHIPID_BCM5703_B0,
2071 BGE_QUIRK_ONLY_PHY_1,
2072 "BCM5703 B0" },
2073
2074 { BGE_CHIPID_BCM5704_A0,
2075 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2076 "BCM5704 A0" },
2077
2078 { BGE_CHIPID_BCM5704_A1,
2079 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2080 "BCM5704 A1" },
2081
2082 { BGE_CHIPID_BCM5704_A2,
2083 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2084 "BCM5704 A2" },
2085
2086 { BGE_CHIPID_BCM5704_A3,
2087 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2088 "BCM5704 A3" },
2089
2090 { BGE_CHIPID_BCM5705_A0,
2091 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2092 "BCM5705 A0" },
2093
2094 { BGE_CHIPID_BCM5705_A1,
2095 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2096 "BCM5705 A1" },
2097
2098 { BGE_CHIPID_BCM5705_A2,
2099 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2100 "BCM5705 A2" },
2101
2102 { BGE_CHIPID_BCM5705_A3,
2103 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2104 "BCM5705 A3" },
2105
2106 { BGE_CHIPID_BCM5750_A0,
2107 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2108 "BCM5750 A0" },
2109
2110 { BGE_CHIPID_BCM5750_A1,
2111 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2112 "BCM5750 A1" },
2113
2114 { BGE_CHIPID_BCM5751_A1,
2115 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2116 "BCM5751 A1" },
2117
2118 { BGE_CHIPID_BCM5752_A0,
2119 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2120 "BCM5752 A0" },
2121
2122 { BGE_CHIPID_BCM5752_A1,
2123 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2124 "BCM5752 A1" },
2125
2126 { BGE_CHIPID_BCM5752_A2,
2127 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2128 "BCM5752 A2" },
2129
2130 { BGE_CHIPID_BCM5755_A0,
2131 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2132 "BCM5755 A0" },
2133
2134 { BGE_CHIPID_BCM5755_A1,
2135 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2136 "BCM5755 A1" },
2137
2138 { BGE_CHIPID_BCM5755_A2,
2139 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2140 "BCM5755 A2" },
2141
2142 { BGE_CHIPID_BCM5755_C0,
2143 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2144 "BCM5755 C0" },
2145
2146 { BGE_CHIPID_BCM5787_A0,
2147 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2148 "BCM5754/5787 A0" },
2149
2150 { BGE_CHIPID_BCM5787_A1,
2151 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2152 "BCM5754/5787 A1" },
2153
2154 { BGE_CHIPID_BCM5787_A2,
2155 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2156 "BCM5754/5787 A2" },
2157
2158 { 0, 0, NULL }
2159 };
2160
2161 /*
2162 * Some defaults for major revisions, so that newer steppings
2163 * that we don't know about have a shot at working.
2164 */
2165 static const struct bge_revision bge_majorrevs[] = {
2166 { BGE_ASICREV_BCM5700,
2167 BGE_QUIRK_LINK_STATE_BROKEN,
2168 "unknown BCM5700" },
2169
2170 { BGE_ASICREV_BCM5701,
2171 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2172 "unknown BCM5701" },
2173
2174 { BGE_ASICREV_BCM5703,
2175 0,
2176 "unknown BCM5703" },
2177
2178 { BGE_ASICREV_BCM5704,
2179 BGE_QUIRK_ONLY_PHY_1,
2180 "unknown BCM5704" },
2181
2182 { BGE_ASICREV_BCM5705,
2183 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2184 "unknown BCM5705" },
2185
2186 { BGE_ASICREV_BCM5750,
2187 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2188 "unknown BCM575x family" },
2189
2190 { BGE_ASICREV_BCM5714_A0,
2191 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2192 "unknown BCM5714" },
2193
2194 { BGE_ASICREV_BCM5714,
2195 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2196 "unknown BCM5714" },
2197
2198 { BGE_ASICREV_BCM5752,
2199 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2200 "unknown BCM5752 family" },
2201
2202 { BGE_ASICREV_BCM5755,
2203 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2204 "unknown BCM5755" },
2205
2206 { BGE_ASICREV_BCM5780,
2207 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2208 "unknown BCM5780" },
2209
2210 { BGE_ASICREV_BCM5787,
2211 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2212 "unknown BCM5787" },
2213
2214 { BGE_ASICREV_BCM5906,
2215 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2216 "unknown BCM5906" },
2217
2218 { 0,
2219 0,
2220 NULL }
2221 };
2222
2223
2224 static const struct bge_revision *
2225 bge_lookup_rev(uint32_t chipid)
2226 {
2227 const struct bge_revision *br;
2228
2229 for (br = bge_revisions; br->br_name != NULL; br++) {
2230 if (br->br_chipid == chipid)
2231 return (br);
2232 }
2233
2234 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2235 if (br->br_chipid == BGE_ASICREV(chipid))
2236 return (br);
2237 }
2238
2239 return (NULL);
2240 }
2241
2242 static const struct bge_product {
2243 pci_vendor_id_t bp_vendor;
2244 pci_product_id_t bp_product;
2245 const char *bp_name;
2246 } bge_products[] = {
2247 /*
2248 * The BCM5700 documentation seems to indicate that the hardware
2249 * still has the Alteon vendor ID burned into it, though it
2250 * should always be overridden by the value in the EEPROM. We'll
2251 * check for it anyway.
2252 */
2253 { PCI_VENDOR_ALTEON,
2254 PCI_PRODUCT_ALTEON_BCM5700,
2255 "Broadcom BCM5700 Gigabit Ethernet",
2256 },
2257 { PCI_VENDOR_ALTEON,
2258 PCI_PRODUCT_ALTEON_BCM5701,
2259 "Broadcom BCM5701 Gigabit Ethernet",
2260 },
2261
2262 { PCI_VENDOR_ALTIMA,
2263 PCI_PRODUCT_ALTIMA_AC1000,
2264 "Altima AC1000 Gigabit Ethernet",
2265 },
2266 { PCI_VENDOR_ALTIMA,
2267 PCI_PRODUCT_ALTIMA_AC1001,
2268 "Altima AC1001 Gigabit Ethernet",
2269 },
2270 { PCI_VENDOR_ALTIMA,
2271 PCI_PRODUCT_ALTIMA_AC9100,
2272 "Altima AC9100 Gigabit Ethernet",
2273 },
2274
2275 { PCI_VENDOR_BROADCOM,
2276 PCI_PRODUCT_BROADCOM_BCM5700,
2277 "Broadcom BCM5700 Gigabit Ethernet",
2278 },
2279 { PCI_VENDOR_BROADCOM,
2280 PCI_PRODUCT_BROADCOM_BCM5701,
2281 "Broadcom BCM5701 Gigabit Ethernet",
2282 },
2283 { PCI_VENDOR_BROADCOM,
2284 PCI_PRODUCT_BROADCOM_BCM5702,
2285 "Broadcom BCM5702 Gigabit Ethernet",
2286 },
2287 { PCI_VENDOR_BROADCOM,
2288 PCI_PRODUCT_BROADCOM_BCM5702X,
2289 "Broadcom BCM5702X Gigabit Ethernet" },
2290
2291 { PCI_VENDOR_BROADCOM,
2292 PCI_PRODUCT_BROADCOM_BCM5703,
2293 "Broadcom BCM5703 Gigabit Ethernet",
2294 },
2295 { PCI_VENDOR_BROADCOM,
2296 PCI_PRODUCT_BROADCOM_BCM5703X,
2297 "Broadcom BCM5703X Gigabit Ethernet",
2298 },
2299 { PCI_VENDOR_BROADCOM,
2300 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2301 "Broadcom BCM5703 Gigabit Ethernet",
2302 },
2303
2304 { PCI_VENDOR_BROADCOM,
2305 PCI_PRODUCT_BROADCOM_BCM5704C,
2306 "Broadcom BCM5704C Dual Gigabit Ethernet",
2307 },
2308 { PCI_VENDOR_BROADCOM,
2309 PCI_PRODUCT_BROADCOM_BCM5704S,
2310 "Broadcom BCM5704S Dual Gigabit Ethernet",
2311 },
2312
2313 { PCI_VENDOR_BROADCOM,
2314 PCI_PRODUCT_BROADCOM_BCM5705,
2315 "Broadcom BCM5705 Gigabit Ethernet",
2316 },
2317 { PCI_VENDOR_BROADCOM,
2318 PCI_PRODUCT_BROADCOM_BCM5705K,
2319 "Broadcom BCM5705K Gigabit Ethernet",
2320 },
2321 { PCI_VENDOR_BROADCOM,
2322 PCI_PRODUCT_BROADCOM_BCM5705M,
2323 "Broadcom BCM5705M Gigabit Ethernet",
2324 },
2325 { PCI_VENDOR_BROADCOM,
2326 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2327 "Broadcom BCM5705M Gigabit Ethernet",
2328 },
2329
2330 { PCI_VENDOR_BROADCOM,
2331 PCI_PRODUCT_BROADCOM_BCM5714,
2332 "Broadcom BCM5714/5715 Gigabit Ethernet",
2333 },
2334 { PCI_VENDOR_BROADCOM,
2335 PCI_PRODUCT_BROADCOM_BCM5715,
2336 "Broadcom BCM5714/5715 Gigabit Ethernet",
2337 },
2338 { PCI_VENDOR_BROADCOM,
2339 PCI_PRODUCT_BROADCOM_BCM5789,
2340 "Broadcom BCM5789 Gigabit Ethernet",
2341 },
2342
2343 { PCI_VENDOR_BROADCOM,
2344 PCI_PRODUCT_BROADCOM_BCM5721,
2345 "Broadcom BCM5721 Gigabit Ethernet",
2346 },
2347
2348 { PCI_VENDOR_BROADCOM,
2349 PCI_PRODUCT_BROADCOM_BCM5722,
2350 "Broadcom BCM5722 Gigabit Ethernet",
2351 },
2352
2353 { PCI_VENDOR_BROADCOM,
2354 PCI_PRODUCT_BROADCOM_BCM5750,
2355 "Broadcom BCM5750 Gigabit Ethernet",
2356 },
2357
2358 { PCI_VENDOR_BROADCOM,
2359 PCI_PRODUCT_BROADCOM_BCM5750M,
2360 "Broadcom BCM5750M Gigabit Ethernet",
2361 },
2362
2363 { PCI_VENDOR_BROADCOM,
2364 PCI_PRODUCT_BROADCOM_BCM5751,
2365 "Broadcom BCM5751 Gigabit Ethernet",
2366 },
2367
2368 { PCI_VENDOR_BROADCOM,
2369 PCI_PRODUCT_BROADCOM_BCM5751M,
2370 "Broadcom BCM5751M Gigabit Ethernet",
2371 },
2372
2373 { PCI_VENDOR_BROADCOM,
2374 PCI_PRODUCT_BROADCOM_BCM5752,
2375 "Broadcom BCM5752 Gigabit Ethernet",
2376 },
2377
2378 { PCI_VENDOR_BROADCOM,
2379 PCI_PRODUCT_BROADCOM_BCM5752M,
2380 "Broadcom BCM5752M Gigabit Ethernet",
2381 },
2382
2383 { PCI_VENDOR_BROADCOM,
2384 PCI_PRODUCT_BROADCOM_BCM5753,
2385 "Broadcom BCM5753 Gigabit Ethernet",
2386 },
2387
2388 { PCI_VENDOR_BROADCOM,
2389 PCI_PRODUCT_BROADCOM_BCM5753M,
2390 "Broadcom BCM5753M Gigabit Ethernet",
2391 },
2392
2393 { PCI_VENDOR_BROADCOM,
2394 PCI_PRODUCT_BROADCOM_BCM5754,
2395 "Broadcom BCM5754 Gigabit Ethernet",
2396 },
2397
2398 { PCI_VENDOR_BROADCOM,
2399 PCI_PRODUCT_BROADCOM_BCM5754M,
2400 "Broadcom BCM5754M Gigabit Ethernet",
2401 },
2402
2403 { PCI_VENDOR_BROADCOM,
2404 PCI_PRODUCT_BROADCOM_BCM5755,
2405 "Broadcom BCM5755 Gigabit Ethernet",
2406 },
2407
2408 { PCI_VENDOR_BROADCOM,
2409 PCI_PRODUCT_BROADCOM_BCM5755M,
2410 "Broadcom BCM5755M Gigabit Ethernet",
2411 },
2412
2413 { PCI_VENDOR_BROADCOM,
2414 PCI_PRODUCT_BROADCOM_BCM5780,
2415 "Broadcom BCM5780 Gigabit Ethernet",
2416 },
2417
2418 { PCI_VENDOR_BROADCOM,
2419 PCI_PRODUCT_BROADCOM_BCM5780S,
2420 "Broadcom BCM5780S Gigabit Ethernet",
2421 },
2422
2423 { PCI_VENDOR_BROADCOM,
2424 PCI_PRODUCT_BROADCOM_BCM5782,
2425 "Broadcom BCM5782 Gigabit Ethernet",
2426 },
2427
2428 { PCI_VENDOR_BROADCOM,
2429 PCI_PRODUCT_BROADCOM_BCM5786,
2430 "Broadcom BCM5786 Gigabit Ethernet",
2431 },
2432
2433 { PCI_VENDOR_BROADCOM,
2434 PCI_PRODUCT_BROADCOM_BCM5787,
2435 "Broadcom BCM5787 Gigabit Ethernet",
2436 },
2437
2438 { PCI_VENDOR_BROADCOM,
2439 PCI_PRODUCT_BROADCOM_BCM5787M,
2440 "Broadcom BCM5787M Gigabit Ethernet",
2441 },
2442
2443 { PCI_VENDOR_BROADCOM,
2444 PCI_PRODUCT_BROADCOM_BCM5788,
2445 "Broadcom BCM5788 Gigabit Ethernet",
2446 },
2447 { PCI_VENDOR_BROADCOM,
2448 PCI_PRODUCT_BROADCOM_BCM5789,
2449 "Broadcom BCM5789 Gigabit Ethernet",
2450 },
2451
2452 { PCI_VENDOR_BROADCOM,
2453 PCI_PRODUCT_BROADCOM_BCM5901,
2454 "Broadcom BCM5901 Fast Ethernet",
2455 },
2456 { PCI_VENDOR_BROADCOM,
2457 PCI_PRODUCT_BROADCOM_BCM5901A2,
2458 "Broadcom BCM5901A2 Fast Ethernet",
2459 },
2460
2461 { PCI_VENDOR_SCHNEIDERKOCH,
2462 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2463 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2464 },
2465
2466 { PCI_VENDOR_3COM,
2467 PCI_PRODUCT_3COM_3C996,
2468 "3Com 3c996 Gigabit Ethernet",
2469 },
2470
2471 { PCI_VENDOR_BROADCOM,
2472 PCI_PRODUCT_BROADCOM_BCM5906,
2473 "Broadcom BCM5906 Fast Ethernet",
2474 },
2475
2476 { PCI_VENDOR_BROADCOM,
2477 PCI_PRODUCT_BROADCOM_BCM5906M,
2478 "Broadcom BCM5906M Fast Ethernet",
2479 },
2480
2481 { 0,
2482 0,
2483 NULL },
2484 };
2485
2486 static const struct bge_product *
2487 bge_lookup(const struct pci_attach_args *pa)
2488 {
2489 const struct bge_product *bp;
2490
2491 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2492 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2493 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2494 return (bp);
2495 }
2496
2497 return (NULL);
2498 }
2499
2500 static int
2501 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2502 {
2503 #ifdef NOTYET
2504 u_int32_t pm_ctl = 0;
2505
2506 /* XXX FIXME: make sure indirect accesses enabled? */
2507 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2508 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2509 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2510
2511 /* clear the PME_assert bit and power state bits, enable PME */
2512 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2513 pm_ctl &= ~PCIM_PSTAT_DMASK;
2514 pm_ctl |= (1 << 8);
2515
2516 if (powerlevel == 0) {
2517 pm_ctl |= PCIM_PSTAT_D0;
2518 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2519 pm_ctl, 2);
2520 DELAY(10000);
2521 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2522 DELAY(10000);
2523
2524 #ifdef NOTYET
2525 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2526 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2527 #endif
2528 DELAY(40); DELAY(40); DELAY(40);
2529 DELAY(10000); /* above not quite adequate on 5700 */
2530 return 0;
2531 }
2532
2533
2534 /*
2535 * Entering ACPI power states D1-D3 is achieved by wiggling
2536 * GMII gpio pins. Example code assumes all hardware vendors
2537 * followed Broadom's sample pcb layout. Until we verify that
2538 * for all supported OEM cards, states D1-D3 are unsupported.
2539 */
2540 aprint_error_dev(sc->bge_dev,
2541 "power state %d unimplemented; check GPIO pins\n",
2542 powerlevel);
2543 #endif
2544 return EOPNOTSUPP;
2545 }
2546
2547
2548 /*
2549 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2550 * against our list and return its name if we find a match. Note
2551 * that since the Broadcom controller contains VPD support, we
2552 * can get the device name string from the controller itself instead
2553 * of the compiled-in string. This is a little slow, but it guarantees
2554 * we'll always announce the right product name.
2555 */
2556 static int
2557 bge_probe(device_t parent, cfdata_t match, void *aux)
2558 {
2559 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2560
2561 if (bge_lookup(pa) != NULL)
2562 return (1);
2563
2564 return (0);
2565 }
2566
2567 static void
2568 bge_attach(device_t parent, device_t self, void *aux)
2569 {
2570 struct bge_softc *sc = device_private(self);
2571 struct pci_attach_args *pa = aux;
2572 const struct bge_product *bp;
2573 const struct bge_revision *br;
2574 pci_chipset_tag_t pc;
2575 pci_intr_handle_t ih;
2576 const char *intrstr = NULL;
2577 bus_dma_segment_t seg;
2578 int rseg;
2579 u_int32_t hwcfg = 0;
2580 u_int32_t command;
2581 struct ifnet *ifp;
2582 void * kva;
2583 u_char eaddr[ETHER_ADDR_LEN];
2584 pcireg_t memtype;
2585 bus_addr_t memaddr;
2586 bus_size_t memsize;
2587 u_int32_t pm_ctl;
2588
2589 bp = bge_lookup(pa);
2590 KASSERT(bp != NULL);
2591
2592 sc->sc_pc = pa->pa_pc;
2593 sc->sc_pcitag = pa->pa_tag;
2594 sc->bge_dev = self;
2595
2596 aprint_naive(": Ethernet controller\n");
2597 aprint_normal(": %s\n", bp->bp_name);
2598
2599 /*
2600 * Map control/status registers.
2601 */
2602 DPRINTFN(5, ("Map control/status regs\n"));
2603 pc = sc->sc_pc;
2604 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2605 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2606 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2607 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2608
2609 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2610 aprint_error_dev(sc->bge_dev,
2611 "failed to enable memory mapping!\n");
2612 return;
2613 }
2614
2615 DPRINTFN(5, ("pci_mem_find\n"));
2616 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2617 switch (memtype) {
2618 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2619 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2620 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2621 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2622 &memaddr, &memsize) == 0)
2623 break;
2624 default:
2625 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2626 return;
2627 }
2628
2629 DPRINTFN(5, ("pci_intr_map\n"));
2630 if (pci_intr_map(pa, &ih)) {
2631 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2632 return;
2633 }
2634
2635 DPRINTFN(5, ("pci_intr_string\n"));
2636 intrstr = pci_intr_string(pc, ih);
2637
2638 DPRINTFN(5, ("pci_intr_establish\n"));
2639 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2640
2641 if (sc->bge_intrhand == NULL) {
2642 aprint_error_dev(sc->bge_dev,
2643 "couldn't establish interrupt%s%s\n",
2644 intrstr ? " at " : "", intrstr ? intrstr : "");
2645 return;
2646 }
2647 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2648
2649 /*
2650 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2651 * can clobber the chip's PCI config-space power control registers,
2652 * leaving the card in D3 powersave state.
2653 * We do not have memory-mapped registers in this state,
2654 * so force device into D0 state before starting initialization.
2655 */
2656 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2657 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2658 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2659 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2660 DELAY(1000); /* 27 usec is allegedly sufficent */
2661
2662 /*
2663 * Save ASIC rev. Look up any quirks associated with this
2664 * ASIC.
2665 */
2666 sc->bge_chipid =
2667 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2668 BGE_PCIMISCCTL_ASICREV;
2669
2670 /*
2671 * Detect PCI-Express devices
2672 * XXX: guessed from Linux/FreeBSD; no documentation
2673 */
2674 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2675 NULL, NULL) != 0)
2676 sc->bge_pcie = 1;
2677 else
2678 sc->bge_pcie = 0;
2679
2680 /* Try to reset the chip. */
2681 DPRINTFN(5, ("bge_reset\n"));
2682 bge_reset(sc);
2683
2684 if (bge_chipinit(sc)) {
2685 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2686 bge_release_resources(sc);
2687 return;
2688 }
2689
2690 /*
2691 * Get station address from the EEPROM.
2692 */
2693 if (bge_get_eaddr(sc, eaddr)) {
2694 aprint_error_dev(sc->bge_dev,
2695 "failed to reade station address\n");
2696 bge_release_resources(sc);
2697 return;
2698 }
2699
2700 br = bge_lookup_rev(sc->bge_chipid);
2701
2702 if (br == NULL) {
2703 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2704 sc->bge_chipid >> 16);
2705 sc->bge_quirks = 0;
2706 } else {
2707 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2708 br->br_name, sc->bge_chipid >> 16);
2709 sc->bge_quirks |= br->br_quirks;
2710 }
2711 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2712
2713 /* Allocate the general information block and ring buffers. */
2714 if (pci_dma64_available(pa))
2715 sc->bge_dmatag = pa->pa_dmat64;
2716 else
2717 sc->bge_dmatag = pa->pa_dmat;
2718 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2719 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2720 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2721 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2722 return;
2723 }
2724 DPRINTFN(5, ("bus_dmamem_map\n"));
2725 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2726 sizeof(struct bge_ring_data), &kva,
2727 BUS_DMA_NOWAIT)) {
2728 aprint_error_dev(sc->bge_dev,
2729 "can't map DMA buffers (%zu bytes)\n",
2730 sizeof(struct bge_ring_data));
2731 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2732 return;
2733 }
2734 DPRINTFN(5, ("bus_dmamem_create\n"));
2735 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2736 sizeof(struct bge_ring_data), 0,
2737 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2738 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2739 bus_dmamem_unmap(sc->bge_dmatag, kva,
2740 sizeof(struct bge_ring_data));
2741 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2742 return;
2743 }
2744 DPRINTFN(5, ("bus_dmamem_load\n"));
2745 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2746 sizeof(struct bge_ring_data), NULL,
2747 BUS_DMA_NOWAIT)) {
2748 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2749 bus_dmamem_unmap(sc->bge_dmatag, kva,
2750 sizeof(struct bge_ring_data));
2751 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2752 return;
2753 }
2754
2755 DPRINTFN(5, ("bzero\n"));
2756 sc->bge_rdata = (struct bge_ring_data *)kva;
2757
2758 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2759
2760 /* Try to allocate memory for jumbo buffers. */
2761 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2762 if (bge_alloc_jumbo_mem(sc)) {
2763 aprint_error_dev(sc->bge_dev,
2764 "jumbo buffer allocation failed\n");
2765 } else
2766 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2767 }
2768
2769 /* Set default tuneable values. */
2770 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2771 sc->bge_rx_coal_ticks = 150;
2772 sc->bge_rx_max_coal_bds = 64;
2773 #ifdef ORIG_WPAUL_VALUES
2774 sc->bge_tx_coal_ticks = 150;
2775 sc->bge_tx_max_coal_bds = 128;
2776 #else
2777 sc->bge_tx_coal_ticks = 300;
2778 sc->bge_tx_max_coal_bds = 400;
2779 #endif
2780 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2781 sc->bge_tx_coal_ticks = (12 * 5);
2782 sc->bge_tx_max_coal_bds = (12 * 5);
2783 aprint_verbose_dev(sc->bge_dev,
2784 "setting short Tx thresholds\n");
2785 }
2786
2787 /* Set up ifnet structure */
2788 ifp = &sc->ethercom.ec_if;
2789 ifp->if_softc = sc;
2790 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2791 ifp->if_ioctl = bge_ioctl;
2792 ifp->if_stop = bge_stop;
2793 ifp->if_start = bge_start;
2794 ifp->if_init = bge_init;
2795 ifp->if_watchdog = bge_watchdog;
2796 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2797 IFQ_SET_READY(&ifp->if_snd);
2798 DPRINTFN(5, ("strcpy if_xname\n"));
2799 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2800
2801 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2802 sc->ethercom.ec_if.if_capabilities |=
2803 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2804 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2805 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2806 sc->ethercom.ec_capabilities |=
2807 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2808
2809 if (sc->bge_pcie)
2810 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2811
2812 /*
2813 * Do MII setup.
2814 */
2815 DPRINTFN(5, ("mii setup\n"));
2816 sc->bge_mii.mii_ifp = ifp;
2817 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2818 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2819 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2820
2821 /*
2822 * Figure out what sort of media we have by checking the
2823 * hardware config word in the first 32k of NIC internal memory,
2824 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2825 * cards, this value appears to be unset. If that's the
2826 * case, we have to rely on identifying the NIC by its PCI
2827 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2828 */
2829 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2830 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2831 } else {
2832 bge_read_eeprom(sc, (void *)&hwcfg,
2833 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2834 hwcfg = be32toh(hwcfg);
2835 }
2836 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2837 sc->bge_tbi = 1;
2838
2839 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2840 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2841 SK_SUBSYSID_9D41)
2842 sc->bge_tbi = 1;
2843
2844 if (sc->bge_tbi) {
2845 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2846 bge_ifmedia_sts);
2847 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2848 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2849 0, NULL);
2850 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2851 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2852 /* Pretend the user requested this setting */
2853 sc->bge_ifmedia.ifm_media =
2854 sc->bge_ifmedia.ifm_cur->ifm_media;
2855 } else {
2856 /*
2857 * Do transceiver setup.
2858 */
2859 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2860 bge_ifmedia_sts);
2861 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2862 MII_PHY_ANY, MII_OFFSET_ANY,
2863 MIIF_FORCEANEG|MIIF_DOPAUSE);
2864
2865 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2866 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2867 ifmedia_add(&sc->bge_mii.mii_media,
2868 IFM_ETHER|IFM_MANUAL, 0, NULL);
2869 ifmedia_set(&sc->bge_mii.mii_media,
2870 IFM_ETHER|IFM_MANUAL);
2871 } else
2872 ifmedia_set(&sc->bge_mii.mii_media,
2873 IFM_ETHER|IFM_AUTO);
2874 }
2875
2876 /*
2877 * When using the BCM5701 in PCI-X mode, data corruption has
2878 * been observed in the first few bytes of some received packets.
2879 * Aligning the packet buffer in memory eliminates the corruption.
2880 * Unfortunately, this misaligns the packet payloads. On platforms
2881 * which do not support unaligned accesses, we will realign the
2882 * payloads by copying the received packets.
2883 */
2884 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2885 /* If in PCI-X mode, work around the alignment bug. */
2886 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2887 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2888 BGE_PCISTATE_PCI_BUSSPEED)
2889 sc->bge_rx_alignment_bug = 1;
2890 }
2891
2892 /*
2893 * Call MI attach routine.
2894 */
2895 DPRINTFN(5, ("if_attach\n"));
2896 if_attach(ifp);
2897 DPRINTFN(5, ("ether_ifattach\n"));
2898 ether_ifattach(ifp, eaddr);
2899 #if NRND > 0
2900 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2901 RND_TYPE_NET, 0);
2902 #endif
2903 #ifdef BGE_EVENT_COUNTERS
2904 /*
2905 * Attach event counters.
2906 */
2907 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2908 NULL, device_xname(sc->bge_dev), "intr");
2909 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2910 NULL, device_xname(sc->bge_dev), "tx_xoff");
2911 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2912 NULL, device_xname(sc->bge_dev), "tx_xon");
2913 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2914 NULL, device_xname(sc->bge_dev), "rx_xoff");
2915 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2916 NULL, device_xname(sc->bge_dev), "rx_xon");
2917 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2918 NULL, device_xname(sc->bge_dev), "rx_macctl");
2919 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2920 NULL, device_xname(sc->bge_dev), "xoffentered");
2921 #endif /* BGE_EVENT_COUNTERS */
2922 DPRINTFN(5, ("callout_init\n"));
2923 callout_init(&sc->bge_timeout, 0);
2924
2925 if (!pmf_device_register(self, NULL, NULL))
2926 aprint_error_dev(self, "couldn't establish power handler\n");
2927 else
2928 pmf_class_network_register(self, ifp);
2929 }
2930
2931 static void
2932 bge_release_resources(struct bge_softc *sc)
2933 {
2934 if (sc->bge_vpd_prodname != NULL)
2935 free(sc->bge_vpd_prodname, M_DEVBUF);
2936
2937 if (sc->bge_vpd_readonly != NULL)
2938 free(sc->bge_vpd_readonly, M_DEVBUF);
2939 }
2940
2941 static void
2942 bge_reset(struct bge_softc *sc)
2943 {
2944 u_int32_t cachesize, command, pcistate, new_pcistate;
2945 int i, val;
2946 void (*write_op)(struct bge_softc *, int, int);
2947
2948 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2949 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2950 if (sc->bge_pcie) {
2951 write_op = bge_writemem_direct;
2952 } else {
2953 write_op = bge_writemem_ind;
2954 }
2955 } else {
2956 write_op = bge_writereg_ind;
2957 }
2958
2959
2960 /* Save some important PCI state. */
2961 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2962 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2963 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2964
2965 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2966 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2967 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2968
2969 /*
2970 * Disable the firmware fastboot feature on 5752 ASIC
2971 * to avoid firmware timeout.
2972 */
2973 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2974 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2975 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2976 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2977
2978 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2979 /*
2980 * XXX: from FreeBSD/Linux; no documentation
2981 */
2982 if (sc->bge_pcie) {
2983 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2984 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2985 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2986 /* No idea what that actually means */
2987 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2988 val |= (1<<29);
2989 }
2990 }
2991
2992 /* Issue global reset */
2993 write_op(sc, BGE_MISC_CFG, val);
2994
2995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2996 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2997 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2998 i | BGE_VCPU_STATUS_DRV_RESET);
2999 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3000 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3001 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3002 }
3003
3004
3005
3006 DELAY(1000);
3007
3008 /*
3009 * XXX: from FreeBSD/Linux; no documentation
3010 */
3011 if (sc->bge_pcie) {
3012 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3013 pcireg_t reg;
3014
3015 DELAY(500000);
3016 /* XXX: Magic Numbers */
3017 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
3018 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
3019 reg | (1 << 15));
3020 }
3021 /*
3022 * XXX: Magic Numbers.
3023 * Sets maximal PCI-e payload and clears any PCI-e errors.
3024 * Should be replaced with references to PCI config-space
3025 * capability block for PCI-Express.
3026 */
3027 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3028 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
3029
3030 }
3031
3032 /* Reset some of the PCI state that got zapped by reset */
3033 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3034 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
3035 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
3036 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3037 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3038 write_op(sc, BGE_MISC_CFG, (65 << 1));
3039
3040 /* Enable memory arbiter. */
3041 {
3042 uint32_t marbmode = 0;
3043 if (BGE_IS_5714_FAMILY(sc)) {
3044 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3045 }
3046 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3047 }
3048
3049
3050 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3051 for (i = 0; i < BGE_TIMEOUT; i++) {
3052 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3053 if (val & BGE_VCPU_STATUS_INIT_DONE)
3054 break;
3055 DELAY(100);
3056 }
3057 if (i == BGE_TIMEOUT) {
3058 aprint_error_dev(sc->bge_dev, "reset timed out\n");
3059 return;
3060 }
3061 } else {
3062 /*
3063 * Write the magic number to the firmware mailbox at 0xb50
3064 * so that the driver can synchronize with the firmware.
3065 */
3066 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3067
3068 /*
3069 * Poll the value location we just wrote until
3070 * we see the 1's complement of the magic number.
3071 * This indicates that the firmware initialization
3072 * is complete.
3073 */
3074 for (i = 0; i < BGE_TIMEOUT; i++) {
3075 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3076 if (val == ~BGE_MAGIC_NUMBER)
3077 break;
3078 DELAY(1000);
3079 }
3080
3081 if (i >= BGE_TIMEOUT) {
3082 aprint_error_dev(sc->bge_dev,
3083 "firmware handshake timed out, val = %x\n", val);
3084 /*
3085 * XXX: occasionally fired on bcm5721, but without
3086 * apparent harm. For now, keep going if we timeout
3087 * against PCI-E devices.
3088 */
3089 if (!sc->bge_pcie)
3090 return;
3091 }
3092 }
3093
3094 /*
3095 * XXX Wait for the value of the PCISTATE register to
3096 * return to its original pre-reset state. This is a
3097 * fairly good indicator of reset completion. If we don't
3098 * wait for the reset to fully complete, trying to read
3099 * from the device's non-PCI registers may yield garbage
3100 * results.
3101 */
3102 for (i = 0; i < 10000; i++) {
3103 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3104 BGE_PCI_PCISTATE);
3105 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3106 (pcistate & ~BGE_PCISTATE_RESERVED))
3107 break;
3108 DELAY(10);
3109 }
3110 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3111 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3112 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3113 }
3114
3115 /* XXX: from FreeBSD/Linux; no documentation */
3116 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
3117 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
3118
3119 /* Enable memory arbiter. */
3120 /* XXX why do this twice? */
3121 {
3122 uint32_t marbmode = 0;
3123 if (BGE_IS_5714_FAMILY(sc)) {
3124 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3125 }
3126 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3127 }
3128
3129 /* Fix up byte swapping */
3130 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3131
3132 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3133
3134 DELAY(10000);
3135 }
3136
3137 /*
3138 * Frame reception handling. This is called if there's a frame
3139 * on the receive return list.
3140 *
3141 * Note: we have to be able to handle two possibilities here:
3142 * 1) the frame is from the jumbo recieve ring
3143 * 2) the frame is from the standard receive ring
3144 */
3145
3146 static void
3147 bge_rxeof(struct bge_softc *sc)
3148 {
3149 struct ifnet *ifp;
3150 int stdcnt = 0, jumbocnt = 0;
3151 bus_dmamap_t dmamap;
3152 bus_addr_t offset, toff;
3153 bus_size_t tlen;
3154 int tosync;
3155
3156 ifp = &sc->ethercom.ec_if;
3157
3158 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3159 offsetof(struct bge_ring_data, bge_status_block),
3160 sizeof (struct bge_status_block),
3161 BUS_DMASYNC_POSTREAD);
3162
3163 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3164 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
3165 sc->bge_rx_saved_considx;
3166
3167 #if NRND > 0
3168 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3169 rnd_add_uint32(&sc->rnd_source, tosync);
3170 #endif
3171
3172 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
3173
3174 if (tosync < 0) {
3175 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
3176 sizeof (struct bge_rx_bd);
3177 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3178 toff, tlen, BUS_DMASYNC_POSTREAD);
3179 tosync = -tosync;
3180 }
3181
3182 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3183 offset, tosync * sizeof (struct bge_rx_bd),
3184 BUS_DMASYNC_POSTREAD);
3185
3186 while(sc->bge_rx_saved_considx !=
3187 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3188 struct bge_rx_bd *cur_rx;
3189 u_int32_t rxidx;
3190 struct mbuf *m = NULL;
3191
3192 cur_rx = &sc->bge_rdata->
3193 bge_rx_return_ring[sc->bge_rx_saved_considx];
3194
3195 rxidx = cur_rx->bge_idx;
3196 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3197
3198 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3199 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3200 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3201 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3202 jumbocnt++;
3203 bus_dmamap_sync(sc->bge_dmatag,
3204 sc->bge_cdata.bge_rx_jumbo_map,
3205 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3206 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3207 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3208 ifp->if_ierrors++;
3209 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3210 continue;
3211 }
3212 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3213 NULL)== ENOBUFS) {
3214 ifp->if_ierrors++;
3215 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3216 continue;
3217 }
3218 } else {
3219 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3220 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3221
3222 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3223 stdcnt++;
3224 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3225 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3226 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3227 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3228 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3229 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3230 ifp->if_ierrors++;
3231 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3232 continue;
3233 }
3234 if (bge_newbuf_std(sc, sc->bge_std,
3235 NULL, dmamap) == ENOBUFS) {
3236 ifp->if_ierrors++;
3237 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3238 continue;
3239 }
3240 }
3241
3242 ifp->if_ipackets++;
3243 #ifndef __NO_STRICT_ALIGNMENT
3244 /*
3245 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3246 * the Rx buffer has the layer-2 header unaligned.
3247 * If our CPU requires alignment, re-align by copying.
3248 */
3249 if (sc->bge_rx_alignment_bug) {
3250 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3251 cur_rx->bge_len);
3252 m->m_data += ETHER_ALIGN;
3253 }
3254 #endif
3255
3256 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3257 m->m_pkthdr.rcvif = ifp;
3258
3259 #if NBPFILTER > 0
3260 /*
3261 * Handle BPF listeners. Let the BPF user see the packet.
3262 */
3263 if (ifp->if_bpf)
3264 bpf_mtap(ifp->if_bpf, m);
3265 #endif
3266
3267 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3268
3269 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3270 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3271 /*
3272 * Rx transport checksum-offload may also
3273 * have bugs with packets which, when transmitted,
3274 * were `runts' requiring padding.
3275 */
3276 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3277 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3278 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3279 m->m_pkthdr.csum_data =
3280 cur_rx->bge_tcp_udp_csum;
3281 m->m_pkthdr.csum_flags |=
3282 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3283 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3284 }
3285
3286 /*
3287 * If we received a packet with a vlan tag, pass it
3288 * to vlan_input() instead of ether_input().
3289 */
3290 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3291 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3292 }
3293
3294 (*ifp->if_input)(ifp, m);
3295 }
3296
3297 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3298 if (stdcnt)
3299 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3300 if (jumbocnt)
3301 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3302 }
3303
3304 static void
3305 bge_txeof(struct bge_softc *sc)
3306 {
3307 struct bge_tx_bd *cur_tx = NULL;
3308 struct ifnet *ifp;
3309 struct txdmamap_pool_entry *dma;
3310 bus_addr_t offset, toff;
3311 bus_size_t tlen;
3312 int tosync;
3313 struct mbuf *m;
3314
3315 ifp = &sc->ethercom.ec_if;
3316
3317 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3318 offsetof(struct bge_ring_data, bge_status_block),
3319 sizeof (struct bge_status_block),
3320 BUS_DMASYNC_POSTREAD);
3321
3322 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3323 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3324 sc->bge_tx_saved_considx;
3325
3326 #if NRND > 0
3327 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3328 rnd_add_uint32(&sc->rnd_source, tosync);
3329 #endif
3330
3331 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3332
3333 if (tosync < 0) {
3334 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3335 sizeof (struct bge_tx_bd);
3336 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3337 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3338 tosync = -tosync;
3339 }
3340
3341 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3342 offset, tosync * sizeof (struct bge_tx_bd),
3343 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3344
3345 /*
3346 * Go through our tx ring and free mbufs for those
3347 * frames that have been sent.
3348 */
3349 while (sc->bge_tx_saved_considx !=
3350 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3351 u_int32_t idx = 0;
3352
3353 idx = sc->bge_tx_saved_considx;
3354 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3355 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3356 ifp->if_opackets++;
3357 m = sc->bge_cdata.bge_tx_chain[idx];
3358 if (m != NULL) {
3359 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3360 dma = sc->txdma[idx];
3361 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3362 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3363 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3364 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3365 sc->txdma[idx] = NULL;
3366
3367 m_freem(m);
3368 }
3369 sc->bge_txcnt--;
3370 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3371 ifp->if_timer = 0;
3372 }
3373
3374 if (cur_tx != NULL)
3375 ifp->if_flags &= ~IFF_OACTIVE;
3376 }
3377
3378 static int
3379 bge_intr(void *xsc)
3380 {
3381 struct bge_softc *sc;
3382 struct ifnet *ifp;
3383
3384 sc = xsc;
3385 ifp = &sc->ethercom.ec_if;
3386
3387 /*
3388 * Ascertain whether the interrupt is from this bge device.
3389 * Do the cheap test first.
3390 */
3391 if ((sc->bge_rdata->bge_status_block.bge_status &
3392 BGE_STATFLAG_UPDATED) == 0) {
3393 /*
3394 * Sometimes, the interrupt comes in before the
3395 * DMA update of the status block (performed prior
3396 * to the interrupt itself) has completed.
3397 * In that case, do the (extremely expensive!)
3398 * PCI-config-space register read.
3399 */
3400 uint32_t pcistate =
3401 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3402
3403 if (pcistate & BGE_PCISTATE_INTR_STATE)
3404 return (0);
3405
3406 }
3407 /*
3408 * If we reach here, then the interrupt is for us.
3409 */
3410
3411 /* Ack interrupt and stop others from occuring. */
3412 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3413
3414 BGE_EVCNT_INCR(sc->bge_ev_intr);
3415
3416 /*
3417 * Process link state changes.
3418 * Grrr. The link status word in the status block does
3419 * not work correctly on the BCM5700 rev AX and BX chips,
3420 * according to all available information. Hence, we have
3421 * to enable MII interrupts in order to properly obtain
3422 * async link changes. Unfortunately, this also means that
3423 * we have to read the MAC status register to detect link
3424 * changes, thereby adding an additional register access to
3425 * the interrupt handler.
3426 */
3427
3428 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3429 u_int32_t status;
3430
3431 status = CSR_READ_4(sc, BGE_MAC_STS);
3432 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3433 sc->bge_link = 0;
3434 callout_stop(&sc->bge_timeout);
3435 bge_tick(sc);
3436 /* Clear the interrupt */
3437 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3438 BGE_EVTENB_MI_INTERRUPT);
3439 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3440 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3441 BRGPHY_INTRS);
3442 }
3443 } else {
3444 u_int32_t status;
3445
3446 status = CSR_READ_4(sc, BGE_MAC_STS);
3447 if (status & BGE_MACSTAT_LINK_CHANGED) {
3448 sc->bge_link = 0;
3449 callout_stop(&sc->bge_timeout);
3450 bge_tick(sc);
3451 /* Clear the interrupt */
3452 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3453 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3454 BGE_MACSTAT_LINK_CHANGED);
3455 }
3456 }
3457
3458 if (ifp->if_flags & IFF_RUNNING) {
3459 /* Check RX return ring producer/consumer */
3460 bge_rxeof(sc);
3461
3462 /* Check TX ring producer/consumer */
3463 bge_txeof(sc);
3464 }
3465
3466 if (sc->bge_pending_rxintr_change) {
3467 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3468 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3469 uint32_t junk;
3470
3471 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3472 DELAY(10);
3473 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3474
3475 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3476 DELAY(10);
3477 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3478
3479 sc->bge_pending_rxintr_change = 0;
3480 }
3481 bge_handle_events(sc);
3482
3483 /* Re-enable interrupts. */
3484 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3485
3486 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3487 bge_start(ifp);
3488
3489 return (1);
3490 }
3491
3492 static void
3493 bge_tick(void *xsc)
3494 {
3495 struct bge_softc *sc = xsc;
3496 struct mii_data *mii = &sc->bge_mii;
3497 int s;
3498
3499 s = splnet();
3500
3501 bge_stats_update(sc);
3502 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3503
3504 if (sc->bge_tbi) {
3505 if (CSR_READ_4(sc, BGE_MAC_STS) &
3506 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3507 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3508 }
3509 } else
3510 mii_tick(mii);
3511
3512 splx(s);
3513 }
3514
3515 static void
3516 bge_stats_update(struct bge_softc *sc)
3517 {
3518 struct ifnet *ifp = &sc->ethercom.ec_if;
3519 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3520 bus_size_t rstats = BGE_RX_STATS;
3521
3522 #define READ_RSTAT(sc, stats, stat) \
3523 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3524
3525 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3526 ifp->if_collisions +=
3527 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3528 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3529 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3530 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3531
3532 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3533 READ_RSTAT(sc, rstats, outXoffSent));
3534 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3535 READ_RSTAT(sc, rstats, outXonSent));
3536 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3537 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3538 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3539 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3540 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3541 READ_RSTAT(sc, rstats, macControlFramesReceived));
3542 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3543 READ_RSTAT(sc, rstats, xoffStateEntered));
3544 return;
3545 }
3546
3547 #undef READ_RSTAT
3548 #define READ_STAT(sc, stats, stat) \
3549 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3550
3551 ifp->if_collisions +=
3552 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3553 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3554 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3555 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3556 ifp->if_collisions;
3557
3558 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3559 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3560 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3561 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3562 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3563 READ_STAT(sc, stats,
3564 xoffPauseFramesReceived.bge_addr_lo));
3565 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3566 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3567 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3568 READ_STAT(sc, stats,
3569 macControlFramesReceived.bge_addr_lo));
3570 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3571 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3572
3573 #undef READ_STAT
3574
3575 #ifdef notdef
3576 ifp->if_collisions +=
3577 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3578 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3579 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3580 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3581 ifp->if_collisions;
3582 #endif
3583 }
3584
3585 /*
3586 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3587 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3588 * but when such padded frames employ the bge IP/TCP checksum offload,
3589 * the hardware checksum assist gives incorrect results (possibly
3590 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3591 * If we pad such runts with zeros, the onboard checksum comes out correct.
3592 */
3593 static inline int
3594 bge_cksum_pad(struct mbuf *pkt)
3595 {
3596 struct mbuf *last = NULL;
3597 int padlen;
3598
3599 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3600
3601 /* if there's only the packet-header and we can pad there, use it. */
3602 if (pkt->m_pkthdr.len == pkt->m_len &&
3603 M_TRAILINGSPACE(pkt) >= padlen) {
3604 last = pkt;
3605 } else {
3606 /*
3607 * Walk packet chain to find last mbuf. We will either
3608 * pad there, or append a new mbuf and pad it
3609 * (thus perhaps avoiding the bcm5700 dma-min bug).
3610 */
3611 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3612 continue; /* do nothing */
3613 }
3614
3615 /* `last' now points to last in chain. */
3616 if (M_TRAILINGSPACE(last) < padlen) {
3617 /* Allocate new empty mbuf, pad it. Compact later. */
3618 struct mbuf *n;
3619 MGET(n, M_DONTWAIT, MT_DATA);
3620 if (n == NULL)
3621 return ENOBUFS;
3622 n->m_len = 0;
3623 last->m_next = n;
3624 last = n;
3625 }
3626 }
3627
3628 KDASSERT(!M_READONLY(last));
3629 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3630
3631 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3632 memset(mtod(last, char *) + last->m_len, 0, padlen);
3633 last->m_len += padlen;
3634 pkt->m_pkthdr.len += padlen;
3635 return 0;
3636 }
3637
3638 /*
3639 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3640 */
3641 static inline int
3642 bge_compact_dma_runt(struct mbuf *pkt)
3643 {
3644 struct mbuf *m, *prev;
3645 int totlen, prevlen;
3646
3647 prev = NULL;
3648 totlen = 0;
3649 prevlen = -1;
3650
3651 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3652 int mlen = m->m_len;
3653 int shortfall = 8 - mlen ;
3654
3655 totlen += mlen;
3656 if (mlen == 0) {
3657 continue;
3658 }
3659 if (mlen >= 8)
3660 continue;
3661
3662 /* If we get here, mbuf data is too small for DMA engine.
3663 * Try to fix by shuffling data to prev or next in chain.
3664 * If that fails, do a compacting deep-copy of the whole chain.
3665 */
3666
3667 /* Internal frag. If fits in prev, copy it there. */
3668 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3669 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3670 prev->m_len += mlen;
3671 m->m_len = 0;
3672 /* XXX stitch chain */
3673 prev->m_next = m_free(m);
3674 m = prev;
3675 continue;
3676 }
3677 else if (m->m_next != NULL &&
3678 M_TRAILINGSPACE(m) >= shortfall &&
3679 m->m_next->m_len >= (8 + shortfall)) {
3680 /* m is writable and have enough data in next, pull up. */
3681
3682 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3683 shortfall);
3684 m->m_len += shortfall;
3685 m->m_next->m_len -= shortfall;
3686 m->m_next->m_data += shortfall;
3687 }
3688 else if (m->m_next == NULL || 1) {
3689 /* Got a runt at the very end of the packet.
3690 * borrow data from the tail of the preceding mbuf and
3691 * update its length in-place. (The original data is still
3692 * valid, so we can do this even if prev is not writable.)
3693 */
3694
3695 /* if we'd make prev a runt, just move all of its data. */
3696 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3697 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3698
3699 if ((prev->m_len - shortfall) < 8)
3700 shortfall = prev->m_len;
3701
3702 #ifdef notyet /* just do the safe slow thing for now */
3703 if (!M_READONLY(m)) {
3704 if (M_LEADINGSPACE(m) < shorfall) {
3705 void *m_dat;
3706 m_dat = (m->m_flags & M_PKTHDR) ?
3707 m->m_pktdat : m->dat;
3708 memmove(m_dat, mtod(m, void*), m->m_len);
3709 m->m_data = m_dat;
3710 }
3711 } else
3712 #endif /* just do the safe slow thing */
3713 {
3714 struct mbuf * n = NULL;
3715 int newprevlen = prev->m_len - shortfall;
3716
3717 MGET(n, M_NOWAIT, MT_DATA);
3718 if (n == NULL)
3719 return ENOBUFS;
3720 KASSERT(m->m_len + shortfall < MLEN
3721 /*,
3722 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3723
3724 /* first copy the data we're stealing from prev */
3725 memcpy(n->m_data, prev->m_data + newprevlen,
3726 shortfall);
3727
3728 /* update prev->m_len accordingly */
3729 prev->m_len -= shortfall;
3730
3731 /* copy data from runt m */
3732 memcpy(n->m_data + shortfall, m->m_data,
3733 m->m_len);
3734
3735 /* n holds what we stole from prev, plus m */
3736 n->m_len = shortfall + m->m_len;
3737
3738 /* stitch n into chain and free m */
3739 n->m_next = m->m_next;
3740 prev->m_next = n;
3741 /* KASSERT(m->m_next == NULL); */
3742 m->m_next = NULL;
3743 m_free(m);
3744 m = n; /* for continuing loop */
3745 }
3746 }
3747 prevlen = m->m_len;
3748 }
3749 return 0;
3750 }
3751
3752 /*
3753 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3754 * pointers to descriptors.
3755 */
3756 static int
3757 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3758 {
3759 struct bge_tx_bd *f = NULL;
3760 u_int32_t frag, cur;
3761 u_int16_t csum_flags = 0;
3762 u_int16_t txbd_tso_flags = 0;
3763 struct txdmamap_pool_entry *dma;
3764 bus_dmamap_t dmamap;
3765 int i = 0;
3766 struct m_tag *mtag;
3767 int use_tso, maxsegsize, error;
3768
3769 cur = frag = *txidx;
3770
3771 if (m_head->m_pkthdr.csum_flags) {
3772 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3773 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3774 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3775 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3776 }
3777
3778 /*
3779 * If we were asked to do an outboard checksum, and the NIC
3780 * has the bug where it sometimes adds in the Ethernet padding,
3781 * explicitly pad with zeros so the cksum will be correct either way.
3782 * (For now, do this for all chip versions, until newer
3783 * are confirmed to not require the workaround.)
3784 */
3785 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3786 #ifdef notyet
3787 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3788 #endif
3789 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3790 goto check_dma_bug;
3791
3792 if (bge_cksum_pad(m_head) != 0) {
3793 return ENOBUFS;
3794 }
3795
3796 check_dma_bug:
3797 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3798 goto doit;
3799 /*
3800 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3801 * less than eight bytes. If we encounter a teeny mbuf
3802 * at the end of a chain, we can pad. Otherwise, copy.
3803 */
3804 if (bge_compact_dma_runt(m_head) != 0)
3805 return ENOBUFS;
3806
3807 doit:
3808 dma = SLIST_FIRST(&sc->txdma_list);
3809 if (dma == NULL)
3810 return ENOBUFS;
3811 dmamap = dma->dmamap;
3812
3813 /*
3814 * Set up any necessary TSO state before we start packing...
3815 */
3816 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3817 if (!use_tso) {
3818 maxsegsize = 0;
3819 } else { /* TSO setup */
3820 unsigned mss;
3821 struct ether_header *eh;
3822 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3823 struct mbuf * m0 = m_head;
3824 struct ip *ip;
3825 struct tcphdr *th;
3826 int iphl, hlen;
3827
3828 /*
3829 * XXX It would be nice if the mbuf pkthdr had offset
3830 * fields for the protocol headers.
3831 */
3832
3833 eh = mtod(m0, struct ether_header *);
3834 switch (htons(eh->ether_type)) {
3835 case ETHERTYPE_IP:
3836 offset = ETHER_HDR_LEN;
3837 break;
3838
3839 case ETHERTYPE_VLAN:
3840 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3841 break;
3842
3843 default:
3844 /*
3845 * Don't support this protocol or encapsulation.
3846 */
3847 return (ENOBUFS);
3848 }
3849
3850 /*
3851 * TCP/IP headers are in the first mbuf; we can do
3852 * this the easy way.
3853 */
3854 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3855 hlen = iphl + offset;
3856 if (__predict_false(m0->m_len <
3857 (hlen + sizeof(struct tcphdr)))) {
3858
3859 aprint_debug_dev(sc->bge_dev,
3860 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3861 "not handled yet\n",
3862 m0->m_len, hlen+ sizeof(struct tcphdr));
3863 #ifdef NOTYET
3864 /*
3865 * XXX jonathan (at) NetBSD.org: untested.
3866 * how to force this branch to be taken?
3867 */
3868 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3869
3870 m_copydata(m0, offset, sizeof(ip), &ip);
3871 m_copydata(m0, hlen, sizeof(th), &th);
3872
3873 ip.ip_len = 0;
3874
3875 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3876 sizeof(ip.ip_len), &ip.ip_len);
3877
3878 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3879 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3880
3881 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3882 sizeof(th.th_sum), &th.th_sum);
3883
3884 hlen += th.th_off << 2;
3885 iptcp_opt_words = hlen;
3886 #else
3887 /*
3888 * if_wm "hard" case not yet supported, can we not
3889 * mandate it out of existence?
3890 */
3891 (void) ip; (void)th; (void) ip_tcp_hlen;
3892
3893 return ENOBUFS;
3894 #endif
3895 } else {
3896 ip = (struct ip *) (mtod(m0, char *) + offset);
3897 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3898 ip_tcp_hlen = iphl + (th->th_off << 2);
3899
3900 /* Total IP/TCP options, in 32-bit words */
3901 iptcp_opt_words = (ip_tcp_hlen
3902 - sizeof(struct tcphdr)
3903 - sizeof(struct ip)) >> 2;
3904 }
3905 if (BGE_IS_5750_OR_BEYOND(sc)) {
3906 th->th_sum = 0;
3907 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3908 } else {
3909 /*
3910 * XXX jonathan (at) NetBSD.org: 5705 untested.
3911 * Requires TSO firmware patch for 5701/5703/5704.
3912 */
3913 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3914 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3915 }
3916
3917 mss = m_head->m_pkthdr.segsz;
3918 txbd_tso_flags |=
3919 BGE_TXBDFLAG_CPU_PRE_DMA |
3920 BGE_TXBDFLAG_CPU_POST_DMA;
3921
3922 /*
3923 * Our NIC TSO-assist assumes TSO has standard, optionless
3924 * IPv4 and TCP headers, which total 40 bytes. By default,
3925 * the NIC copies 40 bytes of IP/TCP header from the
3926 * supplied header into the IP/TCP header portion of
3927 * each post-TSO-segment. If the supplied packet has IP or
3928 * TCP options, we need to tell the NIC to copy those extra
3929 * bytes into each post-TSO header, in addition to the normal
3930 * 40-byte IP/TCP header (and to leave space accordingly).
3931 * Unfortunately, the driver encoding of option length
3932 * varies across different ASIC families.
3933 */
3934 tcp_seg_flags = 0;
3935 if (iptcp_opt_words) {
3936 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3937 tcp_seg_flags =
3938 iptcp_opt_words << 11;
3939 } else {
3940 txbd_tso_flags |=
3941 iptcp_opt_words << 12;
3942 }
3943 }
3944 maxsegsize = mss | tcp_seg_flags;
3945 ip->ip_len = htons(mss + ip_tcp_hlen);
3946
3947 } /* TSO setup */
3948
3949 /*
3950 * Start packing the mbufs in this chain into
3951 * the fragment pointers. Stop when we run out
3952 * of fragments or hit the end of the mbuf chain.
3953 */
3954 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3955 BUS_DMA_NOWAIT);
3956 if (error) {
3957 return(ENOBUFS);
3958 }
3959 /*
3960 * Sanity check: avoid coming within 16 descriptors
3961 * of the end of the ring.
3962 */
3963 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3964 BGE_TSO_PRINTF(("%s: "
3965 " dmamap_load_mbuf too close to ring wrap\n",
3966 device_xname(sc->bge_dev)));
3967 goto fail_unload;
3968 }
3969
3970 mtag = sc->ethercom.ec_nvlans ?
3971 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3972
3973
3974 /* Iterate over dmap-map fragments. */
3975 for (i = 0; i < dmamap->dm_nsegs; i++) {
3976 f = &sc->bge_rdata->bge_tx_ring[frag];
3977 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3978 break;
3979
3980 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3981 f->bge_len = dmamap->dm_segs[i].ds_len;
3982
3983 /*
3984 * For 5751 and follow-ons, for TSO we must turn
3985 * off checksum-assist flag in the tx-descr, and
3986 * supply the ASIC-revision-specific encoding
3987 * of TSO flags and segsize.
3988 */
3989 if (use_tso) {
3990 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3991 f->bge_rsvd = maxsegsize;
3992 f->bge_flags = csum_flags | txbd_tso_flags;
3993 } else {
3994 f->bge_rsvd = 0;
3995 f->bge_flags =
3996 (csum_flags | txbd_tso_flags) & 0x0fff;
3997 }
3998 } else {
3999 f->bge_rsvd = 0;
4000 f->bge_flags = csum_flags;
4001 }
4002
4003 if (mtag != NULL) {
4004 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4005 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4006 } else {
4007 f->bge_vlan_tag = 0;
4008 }
4009 cur = frag;
4010 BGE_INC(frag, BGE_TX_RING_CNT);
4011 }
4012
4013 if (i < dmamap->dm_nsegs) {
4014 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4015 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4016 goto fail_unload;
4017 }
4018
4019 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4020 BUS_DMASYNC_PREWRITE);
4021
4022 if (frag == sc->bge_tx_saved_considx) {
4023 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4024 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4025
4026 goto fail_unload;
4027 }
4028
4029 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4030 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4031 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4032 sc->txdma[cur] = dma;
4033 sc->bge_txcnt += dmamap->dm_nsegs;
4034
4035 *txidx = frag;
4036
4037 return(0);
4038
4039 fail_unload:
4040 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4041
4042 return ENOBUFS;
4043 }
4044
4045 /*
4046 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4047 * to the mbuf data regions directly in the transmit descriptors.
4048 */
4049 static void
4050 bge_start(struct ifnet *ifp)
4051 {
4052 struct bge_softc *sc;
4053 struct mbuf *m_head = NULL;
4054 u_int32_t prodidx;
4055 int pkts = 0;
4056
4057 sc = ifp->if_softc;
4058
4059 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4060 return;
4061
4062 prodidx = sc->bge_tx_prodidx;
4063
4064 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4065 IFQ_POLL(&ifp->if_snd, m_head);
4066 if (m_head == NULL)
4067 break;
4068
4069 #if 0
4070 /*
4071 * XXX
4072 * safety overkill. If this is a fragmented packet chain
4073 * with delayed TCP/UDP checksums, then only encapsulate
4074 * it if we have enough descriptors to handle the entire
4075 * chain at once.
4076 * (paranoia -- may not actually be needed)
4077 */
4078 if (m_head->m_flags & M_FIRSTFRAG &&
4079 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4080 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4081 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4082 ifp->if_flags |= IFF_OACTIVE;
4083 break;
4084 }
4085 }
4086 #endif
4087
4088 /*
4089 * Pack the data into the transmit ring. If we
4090 * don't have room, set the OACTIVE flag and wait
4091 * for the NIC to drain the ring.
4092 */
4093 if (bge_encap(sc, m_head, &prodidx)) {
4094 ifp->if_flags |= IFF_OACTIVE;
4095 break;
4096 }
4097
4098 /* now we are committed to transmit the packet */
4099 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4100 pkts++;
4101
4102 #if NBPFILTER > 0
4103 /*
4104 * If there's a BPF listener, bounce a copy of this frame
4105 * to him.
4106 */
4107 if (ifp->if_bpf)
4108 bpf_mtap(ifp->if_bpf, m_head);
4109 #endif
4110 }
4111 if (pkts == 0)
4112 return;
4113
4114 /* Transmit */
4115 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4116 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
4117 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4118
4119 sc->bge_tx_prodidx = prodidx;
4120
4121 /*
4122 * Set a timeout in case the chip goes out to lunch.
4123 */
4124 ifp->if_timer = 5;
4125 }
4126
4127 static int
4128 bge_init(struct ifnet *ifp)
4129 {
4130 struct bge_softc *sc = ifp->if_softc;
4131 const u_int16_t *m;
4132 int s, error = 0;
4133
4134 s = splnet();
4135
4136 ifp = &sc->ethercom.ec_if;
4137
4138 /* Cancel pending I/O and flush buffers. */
4139 bge_stop(ifp, 0);
4140 bge_reset(sc);
4141 bge_chipinit(sc);
4142
4143 /*
4144 * Init the various state machines, ring
4145 * control blocks and firmware.
4146 */
4147 error = bge_blockinit(sc);
4148 if (error != 0) {
4149 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4150 error);
4151 splx(s);
4152 return error;
4153 }
4154
4155 ifp = &sc->ethercom.ec_if;
4156
4157 /* Specify MTU. */
4158 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4159 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4160
4161 /* Load our MAC address. */
4162 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4163 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4164 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4165
4166 /* Enable or disable promiscuous mode as needed. */
4167 if (ifp->if_flags & IFF_PROMISC) {
4168 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4169 } else {
4170 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4171 }
4172
4173 /* Program multicast filter. */
4174 bge_setmulti(sc);
4175
4176 /* Init RX ring. */
4177 bge_init_rx_ring_std(sc);
4178
4179 /* Init jumbo RX ring. */
4180 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4181 bge_init_rx_ring_jumbo(sc);
4182
4183 /* Init our RX return ring index */
4184 sc->bge_rx_saved_considx = 0;
4185
4186 /* Init TX ring. */
4187 bge_init_tx_ring(sc);
4188
4189 /* Turn on transmitter */
4190 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4191
4192 /* Turn on receiver */
4193 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4194
4195 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4196
4197 /* Tell firmware we're alive. */
4198 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4199
4200 /* Enable host interrupts. */
4201 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4202 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4203 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4204
4205 if ((error = bge_ifmedia_upd(ifp)) != 0)
4206 goto out;
4207
4208 ifp->if_flags |= IFF_RUNNING;
4209 ifp->if_flags &= ~IFF_OACTIVE;
4210
4211 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4212
4213 out:
4214 splx(s);
4215
4216 return error;
4217 }
4218
4219 /*
4220 * Set media options.
4221 */
4222 static int
4223 bge_ifmedia_upd(struct ifnet *ifp)
4224 {
4225 struct bge_softc *sc = ifp->if_softc;
4226 struct mii_data *mii = &sc->bge_mii;
4227 struct ifmedia *ifm = &sc->bge_ifmedia;
4228 int rc;
4229
4230 /* If this is a 1000baseX NIC, enable the TBI port. */
4231 if (sc->bge_tbi) {
4232 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4233 return(EINVAL);
4234 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4235 case IFM_AUTO:
4236 break;
4237 case IFM_1000_SX:
4238 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4239 BGE_CLRBIT(sc, BGE_MAC_MODE,
4240 BGE_MACMODE_HALF_DUPLEX);
4241 } else {
4242 BGE_SETBIT(sc, BGE_MAC_MODE,
4243 BGE_MACMODE_HALF_DUPLEX);
4244 }
4245 break;
4246 default:
4247 return(EINVAL);
4248 }
4249 /* XXX 802.3x flow control for 1000BASE-SX */
4250 return(0);
4251 }
4252
4253 sc->bge_link = 0;
4254 if ((rc = mii_mediachg(mii)) == ENXIO)
4255 return 0;
4256 return rc;
4257 }
4258
4259 /*
4260 * Report current media status.
4261 */
4262 static void
4263 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4264 {
4265 struct bge_softc *sc = ifp->if_softc;
4266 struct mii_data *mii = &sc->bge_mii;
4267
4268 if (sc->bge_tbi) {
4269 ifmr->ifm_status = IFM_AVALID;
4270 ifmr->ifm_active = IFM_ETHER;
4271 if (CSR_READ_4(sc, BGE_MAC_STS) &
4272 BGE_MACSTAT_TBI_PCS_SYNCHED)
4273 ifmr->ifm_status |= IFM_ACTIVE;
4274 ifmr->ifm_active |= IFM_1000_SX;
4275 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4276 ifmr->ifm_active |= IFM_HDX;
4277 else
4278 ifmr->ifm_active |= IFM_FDX;
4279 return;
4280 }
4281
4282 mii_pollstat(mii);
4283 ifmr->ifm_status = mii->mii_media_status;
4284 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4285 sc->bge_flowflags;
4286 }
4287
4288 static int
4289 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4290 {
4291 struct bge_softc *sc = ifp->if_softc;
4292 struct ifreq *ifr = (struct ifreq *) data;
4293 int s, error = 0;
4294 struct mii_data *mii;
4295
4296 s = splnet();
4297
4298 switch(command) {
4299 case SIOCSIFFLAGS:
4300 if ((error = ifioctl_common(ifp, command, data)) != 0)
4301 break;
4302 if (ifp->if_flags & IFF_UP) {
4303 /*
4304 * If only the state of the PROMISC flag changed,
4305 * then just use the 'set promisc mode' command
4306 * instead of reinitializing the entire NIC. Doing
4307 * a full re-init means reloading the firmware and
4308 * waiting for it to start up, which may take a
4309 * second or two.
4310 */
4311 if (ifp->if_flags & IFF_RUNNING &&
4312 ifp->if_flags & IFF_PROMISC &&
4313 !(sc->bge_if_flags & IFF_PROMISC)) {
4314 BGE_SETBIT(sc, BGE_RX_MODE,
4315 BGE_RXMODE_RX_PROMISC);
4316 } else if (ifp->if_flags & IFF_RUNNING &&
4317 !(ifp->if_flags & IFF_PROMISC) &&
4318 sc->bge_if_flags & IFF_PROMISC) {
4319 BGE_CLRBIT(sc, BGE_RX_MODE,
4320 BGE_RXMODE_RX_PROMISC);
4321 } else if (!(sc->bge_if_flags & IFF_UP))
4322 bge_init(ifp);
4323 } else {
4324 if (ifp->if_flags & IFF_RUNNING)
4325 bge_stop(ifp, 1);
4326 }
4327 sc->bge_if_flags = ifp->if_flags;
4328 error = 0;
4329 break;
4330 case SIOCSIFMEDIA:
4331 /* XXX Flow control is not supported for 1000BASE-SX */
4332 if (sc->bge_tbi) {
4333 ifr->ifr_media &= ~IFM_ETH_FMASK;
4334 sc->bge_flowflags = 0;
4335 }
4336
4337 /* Flow control requires full-duplex mode. */
4338 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4339 (ifr->ifr_media & IFM_FDX) == 0) {
4340 ifr->ifr_media &= ~IFM_ETH_FMASK;
4341 }
4342 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4343 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4344 /* We an do both TXPAUSE and RXPAUSE. */
4345 ifr->ifr_media |=
4346 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4347 }
4348 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4349 }
4350 /* FALLTHROUGH */
4351 case SIOCGIFMEDIA:
4352 if (sc->bge_tbi) {
4353 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4354 command);
4355 } else {
4356 mii = &sc->bge_mii;
4357 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4358 command);
4359 }
4360 break;
4361 default:
4362 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4363 break;
4364
4365 error = 0;
4366
4367 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4368 ;
4369 else if (ifp->if_flags & IFF_RUNNING)
4370 bge_setmulti(sc);
4371 break;
4372 }
4373
4374 splx(s);
4375
4376 return(error);
4377 }
4378
4379 static void
4380 bge_watchdog(struct ifnet *ifp)
4381 {
4382 struct bge_softc *sc;
4383
4384 sc = ifp->if_softc;
4385
4386 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4387
4388 ifp->if_flags &= ~IFF_RUNNING;
4389 bge_init(ifp);
4390
4391 ifp->if_oerrors++;
4392 }
4393
4394 static void
4395 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4396 {
4397 int i;
4398
4399 BGE_CLRBIT(sc, reg, bit);
4400
4401 for (i = 0; i < BGE_TIMEOUT; i++) {
4402 if ((CSR_READ_4(sc, reg) & bit) == 0)
4403 return;
4404 delay(100);
4405 if (sc->bge_pcie)
4406 DELAY(1000);
4407 }
4408
4409 aprint_error_dev(sc->bge_dev,
4410 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4411 }
4412
4413 /*
4414 * Stop the adapter and free any mbufs allocated to the
4415 * RX and TX lists.
4416 */
4417 static void
4418 bge_stop(struct ifnet *ifp, int disable)
4419 {
4420 struct bge_softc *sc = ifp->if_softc;
4421
4422 callout_stop(&sc->bge_timeout);
4423
4424 /*
4425 * Disable all of the receiver blocks
4426 */
4427 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4428 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4429 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4430 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4431 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4432 }
4433 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4434 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4435 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4436
4437 /*
4438 * Disable all of the transmit blocks
4439 */
4440 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4441 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4442 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4443 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4444 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4445 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4446 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4447 }
4448 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4449
4450 /*
4451 * Shut down all of the memory managers and related
4452 * state machines.
4453 */
4454 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4455 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4456 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4457 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4458 }
4459
4460 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4461 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4462
4463 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4464 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4465 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4466 }
4467
4468 /* Disable host interrupts. */
4469 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4470 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4471
4472 /*
4473 * Tell firmware we're shutting down.
4474 */
4475 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4476
4477 /* Free the RX lists. */
4478 bge_free_rx_ring_std(sc);
4479
4480 /* Free jumbo RX list. */
4481 bge_free_rx_ring_jumbo(sc);
4482
4483 /* Free TX buffers. */
4484 bge_free_tx_ring(sc);
4485
4486 /*
4487 * Isolate/power down the PHY.
4488 */
4489 if (!sc->bge_tbi)
4490 mii_down(&sc->bge_mii);
4491
4492 sc->bge_link = 0;
4493
4494 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4495
4496 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4497 }
4498
4499 static int
4500 sysctl_bge_verify(SYSCTLFN_ARGS)
4501 {
4502 int error, t;
4503 struct sysctlnode node;
4504
4505 node = *rnode;
4506 t = *(int*)rnode->sysctl_data;
4507 node.sysctl_data = &t;
4508 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4509 if (error || newp == NULL)
4510 return (error);
4511
4512 #if 0
4513 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4514 node.sysctl_num, rnode->sysctl_num));
4515 #endif
4516
4517 if (node.sysctl_num == bge_rxthresh_nodenum) {
4518 if (t < 0 || t >= NBGE_RX_THRESH)
4519 return (EINVAL);
4520 bge_update_all_threshes(t);
4521 } else
4522 return (EINVAL);
4523
4524 *(int*)rnode->sysctl_data = t;
4525
4526 return (0);
4527 }
4528
4529 /*
4530 * Set up sysctl(3) MIB, hw.bge.*.
4531 *
4532 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4533 */
4534 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4535 {
4536 int rc, bge_root_num;
4537 const struct sysctlnode *node;
4538
4539 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4540 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4541 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4542 goto err;
4543 }
4544
4545 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4546 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4547 SYSCTL_DESCR("BGE interface controls"),
4548 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4549 goto err;
4550 }
4551
4552 bge_root_num = node->sysctl_num;
4553
4554 /* BGE Rx interrupt mitigation level */
4555 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4556 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4557 CTLTYPE_INT, "rx_lvl",
4558 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4559 sysctl_bge_verify, 0,
4560 &bge_rx_thresh_lvl,
4561 0, CTL_HW, bge_root_num, CTL_CREATE,
4562 CTL_EOL)) != 0) {
4563 goto err;
4564 }
4565
4566 bge_rxthresh_nodenum = node->sysctl_num;
4567
4568 return;
4569
4570 err:
4571 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4572 }
4573
4574 static int
4575 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4576 {
4577 u_int32_t mac_addr;
4578
4579 mac_addr = bge_readmem_ind(sc, 0x0c14);
4580 if ((mac_addr >> 16) == 0x484b) {
4581 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4582 ether_addr[1] = (uint8_t)mac_addr;
4583 mac_addr = bge_readmem_ind(sc, 0x0c18);
4584 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4585 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4586 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4587 ether_addr[5] = (uint8_t)mac_addr;
4588 return (0);
4589 }
4590 return (1);
4591 }
4592
4593 static int
4594 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4595 {
4596 int mac_offset = BGE_EE_MAC_OFFSET;
4597
4598 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4599 mac_offset = BGE_EE_MAC_OFFSET_5906;
4600 }
4601
4602 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4603 ETHER_ADDR_LEN));
4604 }
4605
4606 static int
4607 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4608 {
4609
4610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4611 return (1);
4612 }
4613
4614 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4615 ETHER_ADDR_LEN));
4616 }
4617
4618 static int
4619 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4620 {
4621 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4622 /* NOTE: Order is critical */
4623 bge_get_eaddr_mem,
4624 bge_get_eaddr_nvram,
4625 bge_get_eaddr_eeprom,
4626 NULL
4627 };
4628 const bge_eaddr_fcn_t *func;
4629
4630 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4631 if ((*func)(sc, eaddr) == 0)
4632 break;
4633 }
4634 return (*func == NULL ? ENXIO : 0);
4635 }
4636