Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.156
      1 /*	$NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.156 2009/03/22 16:12:53 msaitoh Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/device.h>
     96 #include <sys/socket.h>
     97 #include <sys/sysctl.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #if NRND > 0
    105 #include <sys/rnd.h>
    106 #endif
    107 
    108 #ifdef INET
    109 #include <netinet/in.h>
    110 #include <netinet/in_systm.h>
    111 #include <netinet/in_var.h>
    112 #include <netinet/ip.h>
    113 #endif
    114 
    115 /* Headers for TCP  Segmentation Offload (TSO) */
    116 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118 #include <netinet/ip.h>			/* for struct ip */
    119 #include <netinet/tcp.h>		/* for struct tcphdr */
    120 
    121 
    122 #if NBPFILTER > 0
    123 #include <net/bpf.h>
    124 #endif
    125 
    126 #include <dev/pci/pcireg.h>
    127 #include <dev/pci/pcivar.h>
    128 #include <dev/pci/pcidevs.h>
    129 
    130 #include <dev/mii/mii.h>
    131 #include <dev/mii/miivar.h>
    132 #include <dev/mii/miidevs.h>
    133 #include <dev/mii/brgphyreg.h>
    134 
    135 #include <dev/pci/if_bgereg.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    140 
    141 
    142 /*
    143  * Tunable thresholds for rx-side bge interrupt mitigation.
    144  */
    145 
    146 /*
    147  * The pairs of values below were obtained from empirical measurement
    148  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    149  * interrupt for every N packets received, where N is, approximately,
    150  * the second value (rx_max_bds) in each pair.  The values are chosen
    151  * such that moving from one pair to the succeeding pair was observed
    152  * to roughly halve interrupt rate under sustained input packet load.
    153  * The values were empirically chosen to avoid overflowing internal
    154  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    155  * results in internal wrapping and higher interrupt rates.
    156  * The limit of 46 frames was chosen to match NFS workloads.
    157  *
    158  * These values also work well on bcm5701, bcm5704C, and (less
    159  * tested) bcm5703.  On other chipsets, (including the Altima chip
    160  * family), the larger values may overflow internal chip limits,
    161  * leading to increasing interrupt rates rather than lower interrupt
    162  * rates.
    163  *
    164  * Applications using heavy interrupt mitigation (interrupting every
    165  * 32 or 46 frames) in both directions may need to increase the TCP
    166  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    167  * full link bandwidth, due to ACKs and window updates lingering
    168  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    169  */
    170 static const struct bge_load_rx_thresh {
    171 	int rx_ticks;
    172 	int rx_max_bds; }
    173 bge_rx_threshes[] = {
    174 	{ 32,   2 },
    175 	{ 50,   4 },
    176 	{ 100,  8 },
    177 	{ 192, 16 },
    178 	{ 416, 32 },
    179 	{ 598, 46 }
    180 };
    181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    182 
    183 /* XXX patchable; should be sysctl'able */
    184 static int	bge_auto_thresh = 1;
    185 static int	bge_rx_thresh_lvl;
    186 
    187 static int	bge_rxthresh_nodenum;
    188 
    189 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
    190 
    191 static int	bge_probe(device_t, cfdata_t, void *);
    192 static void	bge_attach(device_t, device_t, void *);
    193 static void	bge_release_resources(struct bge_softc *);
    194 static void	bge_txeof(struct bge_softc *);
    195 static void	bge_rxeof(struct bge_softc *);
    196 
    197 static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
    198 static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
    199 static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
    200 static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
    201 
    202 static void	bge_tick(void *);
    203 static void	bge_stats_update(struct bge_softc *);
    204 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    205 
    206 static int	bge_intr(void *);
    207 static void	bge_start(struct ifnet *);
    208 static int	bge_ioctl(struct ifnet *, u_long, void *);
    209 static int	bge_init(struct ifnet *);
    210 static void	bge_stop(struct ifnet *, int);
    211 static void	bge_watchdog(struct ifnet *);
    212 static int	bge_ifmedia_upd(struct ifnet *);
    213 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    214 
    215 static void	bge_setmulti(struct bge_softc *);
    216 
    217 static void	bge_handle_events(struct bge_softc *);
    218 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    219 #if 0 /* XXX */
    220 static void	bge_free_jumbo_mem(struct bge_softc *);
    221 #endif
    222 static void	*bge_jalloc(struct bge_softc *);
    223 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    224 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    225 			       bus_dmamap_t);
    226 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    227 static int	bge_init_rx_ring_std(struct bge_softc *);
    228 static void	bge_free_rx_ring_std(struct bge_softc *);
    229 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    230 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    231 static void	bge_free_tx_ring(struct bge_softc *);
    232 static int	bge_init_tx_ring(struct bge_softc *);
    233 
    234 static int	bge_chipinit(struct bge_softc *);
    235 static int	bge_blockinit(struct bge_softc *);
    236 static int	bge_setpowerstate(struct bge_softc *, int);
    237 
    238 static void	bge_reset(struct bge_softc *);
    239 
    240 #define BGE_DEBUG
    241 #ifdef BGE_DEBUG
    242 #define DPRINTF(x)	if (bgedebug) printf x
    243 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    244 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    245 int	bgedebug = 0;
    246 int	bge_tso_debug = 0;
    247 #else
    248 #define DPRINTF(x)
    249 #define DPRINTFN(n,x)
    250 #define BGE_TSO_PRINTF(x)
    251 #endif
    252 
    253 #ifdef BGE_EVENT_COUNTERS
    254 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    255 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    256 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    257 #else
    258 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    259 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    260 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    261 #endif
    262 
    263 /* Various chip quirks. */
    264 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    265 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    266 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    267 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    268 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    269 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    270 #define	BGE_QUIRK_5705_CORE		0x00000080
    271 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    272 
    273 /*
    274  * XXX: how to handle variants based on 5750 and derivatives:
    275  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    276  * in general behave like a 5705, except with additional quirks.
    277  * This driver's current handling of the 5721 is wrong;
    278  * how we map ASIC revision to "quirks" needs more thought.
    279  * (defined here until the thought is done).
    280  */
    281 #define BGE_IS_5714_FAMILY(sc) \
    282 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    283 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    284 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    285 
    286 #define BGE_IS_5750_OR_BEYOND(sc)  \
    287 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    288 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    289 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    290 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    291 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    292 	 BGE_IS_5714_FAMILY(sc) )
    293 
    294 #define BGE_IS_5705_OR_BEYOND(sc)  \
    295 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
    296 	  BGE_IS_5750_OR_BEYOND(sc) )
    297 
    298 
    299 /* following bugs are common to bcm5700 rev B, all flavours */
    300 #define BGE_QUIRK_5700_COMMON \
    301 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    302 
    303 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    304     bge_probe, bge_attach, NULL, NULL);
    305 
    306 static u_int32_t
    307 bge_readmem_ind(struct bge_softc *sc, int off)
    308 {
    309 	pcireg_t val;
    310 
    311 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    312 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    313 	return val;
    314 }
    315 
    316 static void
    317 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    318 {
    319 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    320 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    321 }
    322 
    323 #ifdef notdef
    324 static u_int32_t
    325 bge_readreg_ind(struct bge_softc *sc, int off)
    326 {
    327 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    328 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    329 }
    330 #endif
    331 
    332 static void
    333 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    334 {
    335 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    336 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    337 }
    338 
    339 static void
    340 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    341 {
    342 	CSR_WRITE_4(sc, off, val);
    343 }
    344 
    345 static void
    346 bge_writembx(struct bge_softc *sc, int off, int val)
    347 {
    348 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    349 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    350 
    351 	CSR_WRITE_4(sc, off, val);
    352 }
    353 
    354 #ifdef notdef
    355 static u_int8_t
    356 bge_vpd_readbyte(struct bge_softc *sc, int addr)
    357 {
    358 	int i;
    359 	u_int32_t val;
    360 
    361 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
    362 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    363 		DELAY(10);
    364 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
    365 		    BGE_VPD_FLAG)
    366 			break;
    367 	}
    368 
    369 	if (i == BGE_TIMEOUT) {
    370 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
    371 		return(0);
    372 	}
    373 
    374 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
    375 
    376 	return((val >> ((addr % 4) * 8)) & 0xFF);
    377 }
    378 
    379 static void
    380 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
    381 {
    382 	int i;
    383 	u_int8_t *ptr;
    384 
    385 	ptr = (u_int8_t *)res;
    386 	for (i = 0; i < sizeof(struct vpd_res); i++)
    387 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    388 }
    389 
    390 static void
    391 bge_vpd_read(struct bge_softc *sc)
    392 {
    393 	int pos = 0, i;
    394 	struct vpd_res res;
    395 
    396 	if (sc->bge_vpd_prodname != NULL)
    397 		free(sc->bge_vpd_prodname, M_DEVBUF);
    398 	if (sc->bge_vpd_readonly != NULL)
    399 		free(sc->bge_vpd_readonly, M_DEVBUF);
    400 	sc->bge_vpd_prodname = NULL;
    401 	sc->bge_vpd_readonly = NULL;
    402 
    403 	bge_vpd_read_res(sc, &res, pos);
    404 
    405 	if (res.vr_id != VPD_RES_ID) {
    406 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
    407 		    VPD_RES_ID, res.vr_id);
    408 		return;
    409 	}
    410 
    411 	pos += sizeof(res);
    412 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    413 	if (sc->bge_vpd_prodname == NULL)
    414 		panic("bge_vpd_read");
    415 	for (i = 0; i < res.vr_len; i++)
    416 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    417 	sc->bge_vpd_prodname[i] = '\0';
    418 	pos += i;
    419 
    420 	bge_vpd_read_res(sc, &res, pos);
    421 
    422 	if (res.vr_id != VPD_RES_READ) {
    423 		aprint_error_dev(sc->bge_dev,
    424 		    "bad VPD resource id: expected %x got %x\n",
    425 		    VPD_RES_READ, res.vr_id);
    426 		return;
    427 	}
    428 
    429 	pos += sizeof(res);
    430 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    431 	if (sc->bge_vpd_readonly == NULL)
    432 		panic("bge_vpd_read");
    433 	for (i = 0; i < res.vr_len + 1; i++)
    434 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    435 }
    436 #endif
    437 
    438 static u_int8_t
    439 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    440 {
    441 	u_int32_t access, byte = 0;
    442 	int i;
    443 
    444 	/* Lock. */
    445 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    446 	for (i = 0; i < 8000; i++) {
    447 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    448 			break;
    449 		DELAY(20);
    450 	}
    451 	if (i == 8000)
    452 		return (1);
    453 
    454 	/* Enable access. */
    455 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    456 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    457 
    458 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    459 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    460 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    461 		DELAY(10);
    462 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    463 			DELAY(10);
    464 			break;
    465 		}
    466 	}
    467 
    468 	if (i == BGE_TIMEOUT * 10) {
    469 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    470 		return (1);
    471 	}
    472 
    473 	/* Get result. */
    474 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    475 
    476 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    477 
    478 	/* Disable access. */
    479 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    480 
    481 	/* Unlock. */
    482 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    483 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    484 
    485 	return (0);
    486 }
    487 
    488 /*
    489  * Read a sequence of bytes from NVRAM.
    490  */
    491 static int
    492 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
    493 {
    494 	int err = 0, i;
    495 	u_int8_t byte = 0;
    496 
    497 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    498 		return (1);
    499 
    500 	for (i = 0; i < cnt; i++) {
    501 		err = bge_nvram_getbyte(sc, off + i, &byte);
    502 		if (err)
    503 			break;
    504 		*(dest + i) = byte;
    505 	}
    506 
    507 	return (err ? 1 : 0);
    508 }
    509 
    510 
    511 /*
    512  * Read a byte of data stored in the EEPROM at address 'addr.' The
    513  * BCM570x supports both the traditional bitbang interface and an
    514  * auto access interface for reading the EEPROM. We use the auto
    515  * access method.
    516  */
    517 static u_int8_t
    518 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    519 {
    520 	int i;
    521 	u_int32_t byte = 0;
    522 
    523 	/*
    524 	 * Enable use of auto EEPROM access so we can avoid
    525 	 * having to use the bitbang method.
    526 	 */
    527 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    528 
    529 	/* Reset the EEPROM, load the clock period. */
    530 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    531 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    532 	DELAY(20);
    533 
    534 	/* Issue the read EEPROM command. */
    535 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    536 
    537 	/* Wait for completion */
    538 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    539 		DELAY(10);
    540 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    541 			break;
    542 	}
    543 
    544 	if (i == BGE_TIMEOUT) {
    545 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    546 		return(0);
    547 	}
    548 
    549 	/* Get result. */
    550 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    551 
    552 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    553 
    554 	return(0);
    555 }
    556 
    557 /*
    558  * Read a sequence of bytes from the EEPROM.
    559  */
    560 static int
    561 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    562 {
    563 	int err = 0, i;
    564 	u_int8_t byte = 0;
    565 	char *dest = destv;
    566 
    567 	for (i = 0; i < cnt; i++) {
    568 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    569 		if (err)
    570 			break;
    571 		*(dest + i) = byte;
    572 	}
    573 
    574 	return(err ? 1 : 0);
    575 }
    576 
    577 static int
    578 bge_miibus_readreg(device_t dev, int phy, int reg)
    579 {
    580 	struct bge_softc *sc = device_private(dev);
    581 	u_int32_t val;
    582 	u_int32_t saved_autopoll;
    583 	int i;
    584 
    585 	/*
    586 	 * Broadcom's own driver always assumes the internal
    587 	 * PHY is at GMII address 1. On some chips, the PHY responds
    588 	 * to accesses at all addresses, which could cause us to
    589 	 * bogusly attach the PHY 32 times at probe type. Always
    590 	 * restricting the lookup to address 1 is simpler than
    591 	 * trying to figure out which chips revisions should be
    592 	 * special-cased.
    593 	 */
    594 	if (phy != 1)
    595 		return (0);
    596 
    597 	/* Reading with autopolling on may trigger PCI errors */
    598 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    599 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    600 		CSR_WRITE_4(sc, BGE_MI_MODE,
    601 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    602 		DELAY(40);
    603 	}
    604 
    605 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    606 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    607 
    608 	for (i = 0; i < BGE_TIMEOUT; i++) {
    609 		val = CSR_READ_4(sc, BGE_MI_COMM);
    610 		if (!(val & BGE_MICOMM_BUSY))
    611 			break;
    612 		delay(10);
    613 	}
    614 
    615 	if (i == BGE_TIMEOUT) {
    616 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    617 		val = 0;
    618 		goto done;
    619 	}
    620 
    621 	val = CSR_READ_4(sc, BGE_MI_COMM);
    622 
    623 done:
    624 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    625 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    626 		DELAY(40);
    627 	}
    628 
    629 	if (val & BGE_MICOMM_READFAIL)
    630 		return(0);
    631 
    632 	return(val & 0xFFFF);
    633 }
    634 
    635 static void
    636 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    637 {
    638 	struct bge_softc *sc = device_private(dev);
    639 	u_int32_t saved_autopoll;
    640 	int i;
    641 
    642 	if (phy!=1) {
    643 		return;
    644 	}
    645 
    646 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    647 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    648 		return;
    649 	}
    650 
    651 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    652 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    653 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    654 		delay(40);
    655 		CSR_WRITE_4(sc, BGE_MI_MODE,
    656 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    657 		delay(10); /* 40 usec is supposed to be adequate */
    658 	}
    659 
    660 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    661 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    662 
    663 	for (i = 0; i < BGE_TIMEOUT; i++) {
    664 		delay(10);
    665 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    666 			delay(5);
    667 			CSR_READ_4(sc, BGE_MI_COMM);
    668 			break;
    669 		}
    670 	}
    671 
    672 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    673 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    674 		delay(40);
    675 	}
    676 
    677 	if (i == BGE_TIMEOUT)
    678 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    679 }
    680 
    681 static void
    682 bge_miibus_statchg(device_t dev)
    683 {
    684 	struct bge_softc *sc = device_private(dev);
    685 	struct mii_data *mii = &sc->bge_mii;
    686 
    687 	/*
    688 	 * Get flow control negotiation result.
    689 	 */
    690 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    691 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    692 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    693 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    694 	}
    695 
    696 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    697 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    698 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    699 	} else {
    700 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    701 	}
    702 
    703 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    704 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    705 	} else {
    706 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    707 	}
    708 
    709 	/*
    710 	 * 802.3x flow control
    711 	 */
    712 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    713 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    714 	} else {
    715 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    716 	}
    717 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    718 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    719 	} else {
    720 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    721 	}
    722 }
    723 
    724 /*
    725  * Update rx threshold levels to values in a particular slot
    726  * of the interrupt-mitigation table bge_rx_threshes.
    727  */
    728 static void
    729 bge_set_thresh(struct ifnet *ifp, int lvl)
    730 {
    731 	struct bge_softc *sc = ifp->if_softc;
    732 	int s;
    733 
    734 	/* For now, just save the new Rx-intr thresholds and record
    735 	 * that a threshold update is pending.  Updating the hardware
    736 	 * registers here (even at splhigh()) is observed to
    737 	 * occasionaly cause glitches where Rx-interrupts are not
    738 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    739 	 */
    740 	s = splnet();
    741 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    742 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    743 	sc->bge_pending_rxintr_change = 1;
    744 	splx(s);
    745 
    746 	 return;
    747 }
    748 
    749 
    750 /*
    751  * Update Rx thresholds of all bge devices
    752  */
    753 static void
    754 bge_update_all_threshes(int lvl)
    755 {
    756 	struct ifnet *ifp;
    757 	const char * const namebuf = "bge";
    758 	int namelen;
    759 
    760 	if (lvl < 0)
    761 		lvl = 0;
    762 	else if( lvl >= NBGE_RX_THRESH)
    763 		lvl = NBGE_RX_THRESH - 1;
    764 
    765 	namelen = strlen(namebuf);
    766 	/*
    767 	 * Now search all the interfaces for this name/number
    768 	 */
    769 	IFNET_FOREACH(ifp) {
    770 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    771 		      continue;
    772 		/* We got a match: update if doing auto-threshold-tuning */
    773 		if (bge_auto_thresh)
    774 			bge_set_thresh(ifp, lvl);
    775 	}
    776 }
    777 
    778 /*
    779  * Handle events that have triggered interrupts.
    780  */
    781 static void
    782 bge_handle_events(struct bge_softc *sc)
    783 {
    784 
    785 	return;
    786 }
    787 
    788 /*
    789  * Memory management for jumbo frames.
    790  */
    791 
    792 static int
    793 bge_alloc_jumbo_mem(struct bge_softc *sc)
    794 {
    795 	char *ptr, *kva;
    796 	bus_dma_segment_t	seg;
    797 	int		i, rseg, state, error;
    798 	struct bge_jpool_entry   *entry;
    799 
    800 	state = error = 0;
    801 
    802 	/* Grab a big chunk o' storage. */
    803 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    804 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    805 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
    806 		return ENOBUFS;
    807 	}
    808 
    809 	state = 1;
    810 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
    811 	    BUS_DMA_NOWAIT)) {
    812 		aprint_error_dev(sc->bge_dev,
    813 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
    814 		error = ENOBUFS;
    815 		goto out;
    816 	}
    817 
    818 	state = 2;
    819 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    820 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    821 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
    822 		error = ENOBUFS;
    823 		goto out;
    824 	}
    825 
    826 	state = 3;
    827 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    828 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    829 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
    830 		error = ENOBUFS;
    831 		goto out;
    832 	}
    833 
    834 	state = 4;
    835 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
    836 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    837 
    838 	SLIST_INIT(&sc->bge_jfree_listhead);
    839 	SLIST_INIT(&sc->bge_jinuse_listhead);
    840 
    841 	/*
    842 	 * Now divide it up into 9K pieces and save the addresses
    843 	 * in an array.
    844 	 */
    845 	ptr = sc->bge_cdata.bge_jumbo_buf;
    846 	for (i = 0; i < BGE_JSLOTS; i++) {
    847 		sc->bge_cdata.bge_jslots[i] = ptr;
    848 		ptr += BGE_JLEN;
    849 		entry = malloc(sizeof(struct bge_jpool_entry),
    850 		    M_DEVBUF, M_NOWAIT);
    851 		if (entry == NULL) {
    852 			aprint_error_dev(sc->bge_dev,
    853 			    "no memory for jumbo buffer queue!\n");
    854 			error = ENOBUFS;
    855 			goto out;
    856 		}
    857 		entry->slot = i;
    858 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    859 				 entry, jpool_entries);
    860 	}
    861 out:
    862 	if (error != 0) {
    863 		switch (state) {
    864 		case 4:
    865 			bus_dmamap_unload(sc->bge_dmatag,
    866 			    sc->bge_cdata.bge_rx_jumbo_map);
    867 		case 3:
    868 			bus_dmamap_destroy(sc->bge_dmatag,
    869 			    sc->bge_cdata.bge_rx_jumbo_map);
    870 		case 2:
    871 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    872 		case 1:
    873 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    874 			break;
    875 		default:
    876 			break;
    877 		}
    878 	}
    879 
    880 	return error;
    881 }
    882 
    883 /*
    884  * Allocate a jumbo buffer.
    885  */
    886 static void *
    887 bge_jalloc(struct bge_softc *sc)
    888 {
    889 	struct bge_jpool_entry   *entry;
    890 
    891 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    892 
    893 	if (entry == NULL) {
    894 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
    895 		return(NULL);
    896 	}
    897 
    898 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    899 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    900 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    901 }
    902 
    903 /*
    904  * Release a jumbo buffer.
    905  */
    906 static void
    907 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    908 {
    909 	struct bge_jpool_entry *entry;
    910 	struct bge_softc *sc;
    911 	int i, s;
    912 
    913 	/* Extract the softc struct pointer. */
    914 	sc = (struct bge_softc *)arg;
    915 
    916 	if (sc == NULL)
    917 		panic("bge_jfree: can't find softc pointer!");
    918 
    919 	/* calculate the slot this buffer belongs to */
    920 
    921 	i = ((char *)buf
    922 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    923 
    924 	if ((i < 0) || (i >= BGE_JSLOTS))
    925 		panic("bge_jfree: asked to free buffer that we don't manage!");
    926 
    927 	s = splvm();
    928 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    929 	if (entry == NULL)
    930 		panic("bge_jfree: buffer not in use!");
    931 	entry->slot = i;
    932 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    933 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    934 
    935 	if (__predict_true(m != NULL))
    936   		pool_cache_put(mb_cache, m);
    937 	splx(s);
    938 }
    939 
    940 
    941 /*
    942  * Intialize a standard receive ring descriptor.
    943  */
    944 static int
    945 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    946 {
    947 	struct mbuf		*m_new = NULL;
    948 	struct bge_rx_bd	*r;
    949 	int			error;
    950 
    951 	if (dmamap == NULL) {
    952 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    953 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    954 		if (error != 0)
    955 			return error;
    956 	}
    957 
    958 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    959 
    960 	if (m == NULL) {
    961 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    962 		if (m_new == NULL) {
    963 			return(ENOBUFS);
    964 		}
    965 
    966 		MCLGET(m_new, M_DONTWAIT);
    967 		if (!(m_new->m_flags & M_EXT)) {
    968 			m_freem(m_new);
    969 			return(ENOBUFS);
    970 		}
    971 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    972 
    973 	} else {
    974 		m_new = m;
    975 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    976 		m_new->m_data = m_new->m_ext.ext_buf;
    977 	}
    978 	if (!sc->bge_rx_alignment_bug)
    979 	    m_adj(m_new, ETHER_ALIGN);
    980 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    981 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
    982 		return(ENOBUFS);
    983 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
    984 	    BUS_DMASYNC_PREREAD);
    985 
    986 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    987 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    988 	bge_set_hostaddr(&r->bge_addr,
    989 	    dmamap->dm_segs[0].ds_addr);
    990 	r->bge_flags = BGE_RXBDFLAG_END;
    991 	r->bge_len = m_new->m_len;
    992 	r->bge_idx = i;
    993 
    994 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    995 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    996 		i * sizeof (struct bge_rx_bd),
    997 	    sizeof (struct bge_rx_bd),
    998 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    999 
   1000 	return(0);
   1001 }
   1002 
   1003 /*
   1004  * Initialize a jumbo receive ring descriptor. This allocates
   1005  * a jumbo buffer from the pool managed internally by the driver.
   1006  */
   1007 static int
   1008 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1009 {
   1010 	struct mbuf *m_new = NULL;
   1011 	struct bge_rx_bd *r;
   1012 	void *buf = NULL;
   1013 
   1014 	if (m == NULL) {
   1015 
   1016 		/* Allocate the mbuf. */
   1017 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1018 		if (m_new == NULL) {
   1019 			return(ENOBUFS);
   1020 		}
   1021 
   1022 		/* Allocate the jumbo buffer */
   1023 		buf = bge_jalloc(sc);
   1024 		if (buf == NULL) {
   1025 			m_freem(m_new);
   1026 			aprint_error_dev(sc->bge_dev,
   1027 			    "jumbo allocation failed -- packet dropped!\n");
   1028 			return(ENOBUFS);
   1029 		}
   1030 
   1031 		/* Attach the buffer to the mbuf. */
   1032 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1033 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1034 		    bge_jfree, sc);
   1035 		m_new->m_flags |= M_EXT_RW;
   1036 	} else {
   1037 		m_new = m;
   1038 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1039 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1040 	}
   1041 	if (!sc->bge_rx_alignment_bug)
   1042 	    m_adj(m_new, ETHER_ALIGN);
   1043 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1044 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1045 	    BUS_DMASYNC_PREREAD);
   1046 	/* Set up the descriptor. */
   1047 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1048 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1049 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1050 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1051 	r->bge_len = m_new->m_len;
   1052 	r->bge_idx = i;
   1053 
   1054 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1055 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1056 		i * sizeof (struct bge_rx_bd),
   1057 	    sizeof (struct bge_rx_bd),
   1058 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1059 
   1060 	return(0);
   1061 }
   1062 
   1063 /*
   1064  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1065  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1066  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1067  * the NIC.
   1068  */
   1069 static int
   1070 bge_init_rx_ring_std(struct bge_softc *sc)
   1071 {
   1072 	int i;
   1073 
   1074 	if (sc->bge_flags & BGE_RXRING_VALID)
   1075 		return 0;
   1076 
   1077 	for (i = 0; i < BGE_SSLOTS; i++) {
   1078 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1079 			return(ENOBUFS);
   1080 	}
   1081 
   1082 	sc->bge_std = i - 1;
   1083 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1084 
   1085 	sc->bge_flags |= BGE_RXRING_VALID;
   1086 
   1087 	return(0);
   1088 }
   1089 
   1090 static void
   1091 bge_free_rx_ring_std(struct bge_softc *sc)
   1092 {
   1093 	int i;
   1094 
   1095 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1096 		return;
   1097 
   1098 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1099 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1100 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1101 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1102 			bus_dmamap_destroy(sc->bge_dmatag,
   1103 			    sc->bge_cdata.bge_rx_std_map[i]);
   1104 		}
   1105 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1106 		    sizeof(struct bge_rx_bd));
   1107 	}
   1108 
   1109 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1110 }
   1111 
   1112 static int
   1113 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1114 {
   1115 	int i;
   1116 	volatile struct bge_rcb *rcb;
   1117 
   1118 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1119 		return 0;
   1120 
   1121 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1122 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1123 			return(ENOBUFS);
   1124 	};
   1125 
   1126 	sc->bge_jumbo = i - 1;
   1127 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1128 
   1129 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1130 	rcb->bge_maxlen_flags = 0;
   1131 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1132 
   1133 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1134 
   1135 	return(0);
   1136 }
   1137 
   1138 static void
   1139 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1140 {
   1141 	int i;
   1142 
   1143 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1144 		return;
   1145 
   1146 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1147 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1148 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1149 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1150 		}
   1151 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1152 		    sizeof(struct bge_rx_bd));
   1153 	}
   1154 
   1155 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1156 }
   1157 
   1158 static void
   1159 bge_free_tx_ring(struct bge_softc *sc)
   1160 {
   1161 	int i, freed;
   1162 	struct txdmamap_pool_entry *dma;
   1163 
   1164 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1165 		return;
   1166 
   1167 	freed = 0;
   1168 
   1169 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1170 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1171 			freed++;
   1172 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1173 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1174 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1175 					    link);
   1176 			sc->txdma[i] = 0;
   1177 		}
   1178 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1179 		    sizeof(struct bge_tx_bd));
   1180 	}
   1181 
   1182 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1183 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1184 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1185 		free(dma, M_DEVBUF);
   1186 	}
   1187 
   1188 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1189 }
   1190 
   1191 static int
   1192 bge_init_tx_ring(struct bge_softc *sc)
   1193 {
   1194 	int i;
   1195 	bus_dmamap_t dmamap;
   1196 	struct txdmamap_pool_entry *dma;
   1197 
   1198 	if (sc->bge_flags & BGE_TXRING_VALID)
   1199 		return 0;
   1200 
   1201 	sc->bge_txcnt = 0;
   1202 	sc->bge_tx_saved_considx = 0;
   1203 
   1204 	/* Initialize transmit producer index for host-memory send ring. */
   1205 	sc->bge_tx_prodidx = 0;
   1206 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1207 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1208 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1209 
   1210 	/* NIC-memory send ring  not used; initialize to zero. */
   1211 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1212 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1213 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1214 
   1215 	SLIST_INIT(&sc->txdma_list);
   1216 	for (i = 0; i < BGE_RSLOTS; i++) {
   1217 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1218 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1219 		    &dmamap))
   1220 			return(ENOBUFS);
   1221 		if (dmamap == NULL)
   1222 			panic("dmamap NULL in bge_init_tx_ring");
   1223 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1224 		if (dma == NULL) {
   1225 			aprint_error_dev(sc->bge_dev,
   1226 			    "can't alloc txdmamap_pool_entry\n");
   1227 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1228 			return (ENOMEM);
   1229 		}
   1230 		dma->dmamap = dmamap;
   1231 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1232 	}
   1233 
   1234 	sc->bge_flags |= BGE_TXRING_VALID;
   1235 
   1236 	return(0);
   1237 }
   1238 
   1239 static void
   1240 bge_setmulti(struct bge_softc *sc)
   1241 {
   1242 	struct ethercom		*ac = &sc->ethercom;
   1243 	struct ifnet		*ifp = &ac->ec_if;
   1244 	struct ether_multi	*enm;
   1245 	struct ether_multistep  step;
   1246 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1247 	u_int32_t		h;
   1248 	int			i;
   1249 
   1250 	if (ifp->if_flags & IFF_PROMISC)
   1251 		goto allmulti;
   1252 
   1253 	/* Now program new ones. */
   1254 	ETHER_FIRST_MULTI(step, ac, enm);
   1255 	while (enm != NULL) {
   1256 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1257 			/*
   1258 			 * We must listen to a range of multicast addresses.
   1259 			 * For now, just accept all multicasts, rather than
   1260 			 * trying to set only those filter bits needed to match
   1261 			 * the range.  (At this time, the only use of address
   1262 			 * ranges is for IP multicast routing, for which the
   1263 			 * range is big enough to require all bits set.)
   1264 			 */
   1265 			goto allmulti;
   1266 		}
   1267 
   1268 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1269 
   1270 		/* Just want the 7 least-significant bits. */
   1271 		h &= 0x7f;
   1272 
   1273 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1274 		ETHER_NEXT_MULTI(step, enm);
   1275 	}
   1276 
   1277 	ifp->if_flags &= ~IFF_ALLMULTI;
   1278 	goto setit;
   1279 
   1280  allmulti:
   1281 	ifp->if_flags |= IFF_ALLMULTI;
   1282 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1283 
   1284  setit:
   1285 	for (i = 0; i < 4; i++)
   1286 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1287 }
   1288 
   1289 const int bge_swapbits[] = {
   1290 	0,
   1291 	BGE_MODECTL_BYTESWAP_DATA,
   1292 	BGE_MODECTL_WORDSWAP_DATA,
   1293 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1294 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1295 
   1296 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1297 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1298 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1299 
   1300 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1301 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1302 
   1303 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1304 
   1305 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1306 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1307 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1308 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1309 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1310 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1311 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1312 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1313 
   1314 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1315 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1316 };
   1317 
   1318 int bge_swapindex = 0;
   1319 
   1320 /*
   1321  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1322  * self-test results.
   1323  */
   1324 static int
   1325 bge_chipinit(struct bge_softc *sc)
   1326 {
   1327 	u_int32_t		cachesize;
   1328 	int			i;
   1329 	u_int32_t		dma_rw_ctl;
   1330 
   1331 
   1332 	/* Set endianness before we access any non-PCI registers. */
   1333 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1334 	    BGE_INIT);
   1335 
   1336 	/* Set power state to D0. */
   1337 	bge_setpowerstate(sc, 0);
   1338 
   1339 	/*
   1340 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1341 	 * self-tests passed.
   1342 	 */
   1343 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1344 		aprint_error_dev(sc->bge_dev,
   1345 		    "RX CPU self-diagnostics failed!\n");
   1346 		return(ENODEV);
   1347 	}
   1348 
   1349 	/* Clear the MAC control register */
   1350 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1351 
   1352 	/*
   1353 	 * Clear the MAC statistics block in the NIC's
   1354 	 * internal memory.
   1355 	 */
   1356 	for (i = BGE_STATS_BLOCK;
   1357 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1358 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1359 
   1360 	for (i = BGE_STATUS_BLOCK;
   1361 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1362 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1363 
   1364 	/* Set up the PCI DMA control register. */
   1365 	if (sc->bge_pcie) {
   1366 	  u_int32_t device_ctl;
   1367 
   1368 		/* From FreeBSD */
   1369 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1370 		    device_xname(sc->bge_dev)));
   1371 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1372 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1373 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1374 
   1375 		/* jonathan: alternative from Linux driver */
   1376 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
   1377 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
   1378 
   1379 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
   1380 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1381 					   BGE_PCI_CONF_DEV_CTRL);
   1382 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
   1383 
   1384 		if ((device_ctl & 0x00e0) && 0) {
   1385 			/*
   1386 			 * XXX jonathan (at) NetBSD.org:
   1387 			 * This clause is exactly what the Broadcom-supplied
   1388 			 * Linux does; but given overall register programming
   1389 			 * by if_bge(4), this larger DMA-write watermark
   1390 			 * value causes bcm5721 chips to totally wedge.
   1391 			 */
   1392 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
   1393 		} else {
   1394 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
   1395 		}
   1396 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
   1397 	    BGE_PCISTATE_PCI_BUSMODE) {
   1398 		/* Conventional PCI bus */
   1399 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1400 		    device_xname(sc->bge_dev)));
   1401 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1402 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1403 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1404 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1405 			dma_rw_ctl |= 0x0F;
   1406 		}
   1407 	} else {
   1408 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1409 		    device_xname(sc->bge_dev)));
   1410 		/* PCI-X bus */
   1411 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1412 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1413 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1414 		    (0x0F);
   1415 		/*
   1416 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1417 		 * for hardware bugs, which means we should also clear
   1418 		 * the low-order MINDMA bits.  In addition, the 5704
   1419 		 * uses a different encoding of read/write watermarks.
   1420 		 */
   1421 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1422 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1423 			  /* should be 0x1f0000 */
   1424 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1425 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1426 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1427 		}
   1428 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1429 			dma_rw_ctl &=  0xfffffff0;
   1430 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1431 		}
   1432 		else if (BGE_IS_5714_FAMILY(sc)) {
   1433 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1434 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1435 			/* XXX magic values, Broadcom-supplied Linux driver */
   1436 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1437 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1438 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1439 			else
   1440 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1441 		}
   1442 	}
   1443 
   1444 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1445 
   1446 	/*
   1447 	 * Set up general mode register.
   1448 	 */
   1449 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1450 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1451 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1452 
   1453 	/* Get cache line size. */
   1454 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   1455 
   1456 	/*
   1457 	 * Avoid violating PCI spec on certain chip revs.
   1458 	 */
   1459 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
   1460 	    PCIM_CMD_MWIEN) {
   1461 		switch(cachesize) {
   1462 		case 1:
   1463 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1464 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1465 			break;
   1466 		case 2:
   1467 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1468 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1469 			break;
   1470 		case 4:
   1471 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1472 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1473 			break;
   1474 		case 8:
   1475 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1476 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1477 			break;
   1478 		case 16:
   1479 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1480 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1481 			break;
   1482 		case 32:
   1483 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1484 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1485 			break;
   1486 		case 64:
   1487 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1488 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1489 			break;
   1490 		default:
   1491 		/* Disable PCI memory write and invalidate. */
   1492 #if 0
   1493 			if (bootverbose)
   1494 				aprint_error_dev(sc->bge_dev,
   1495 				    "cache line size %d not supported "
   1496 				    "disabling PCI MWI\n",
   1497 #endif
   1498 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
   1499 			    PCIM_CMD_MWIEN);
   1500 			break;
   1501 		}
   1502 	}
   1503 
   1504 	/*
   1505 	 * Disable memory write invalidate.  Apparently it is not supported
   1506 	 * properly by these devices.
   1507 	 */
   1508 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1509 
   1510 
   1511 #ifdef __brokenalpha__
   1512 	/*
   1513 	 * Must insure that we do not cross an 8K (bytes) boundary
   1514 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1515 	 * restriction on some ALPHA platforms with early revision
   1516 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1517 	 */
   1518 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1519 #endif
   1520 
   1521 	/* Set the timer prescaler (always 66MHz) */
   1522 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1523 
   1524 	return(0);
   1525 }
   1526 
   1527 static int
   1528 bge_blockinit(struct bge_softc *sc)
   1529 {
   1530 	volatile struct bge_rcb		*rcb;
   1531 	bus_size_t		rcb_addr;
   1532 	int			i;
   1533 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1534 	bge_hostaddr		taddr;
   1535 
   1536 	/*
   1537 	 * Initialize the memory window pointer register so that
   1538 	 * we can access the first 32K of internal NIC RAM. This will
   1539 	 * allow us to set up the TX send ring RCBs and the RX return
   1540 	 * ring RCBs, plus other things which live in NIC memory.
   1541 	 */
   1542 
   1543 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1544 
   1545 	/* Configure mbuf memory pool */
   1546 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1547 		if (sc->bge_extram) {
   1548 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1549 			    BGE_EXT_SSRAM);
   1550 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1551 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1552 			else
   1553 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1554 		} else {
   1555 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1556 			    BGE_BUFFPOOL_1);
   1557 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1558 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1559 			else
   1560 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1561 		}
   1562 
   1563 		/* Configure DMA resource pool */
   1564 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1565 		    BGE_DMA_DESCRIPTORS);
   1566 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1567 	}
   1568 
   1569 	/* Configure mbuf pool watermarks */
   1570 #ifdef ORIG_WPAUL_VALUES
   1571 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1572 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1573 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1574 #else
   1575 
   1576 	/* new broadcom docs strongly recommend these: */
   1577 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1578 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1579 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1580 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1581 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1582 		} else {
   1583 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1584 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1585 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1586 		}
   1587 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1588 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1589 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1590 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1591 	} else {
   1592 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1593 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1594 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1595 	}
   1596 #endif
   1597 
   1598 	/* Configure DMA resource watermarks */
   1599 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1600 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1601 
   1602 	/* Enable buffer manager */
   1603 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1604 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1605 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1606 
   1607 		/* Poll for buffer manager start indication */
   1608 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1609 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1610 				break;
   1611 			DELAY(10);
   1612 		}
   1613 
   1614 		if (i == BGE_TIMEOUT) {
   1615 			aprint_error_dev(sc->bge_dev,
   1616 			    "buffer manager failed to start\n");
   1617 			return(ENXIO);
   1618 		}
   1619 	}
   1620 
   1621 	/* Enable flow-through queues */
   1622 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1623 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1624 
   1625 	/* Wait until queue initialization is complete */
   1626 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1627 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1628 			break;
   1629 		DELAY(10);
   1630 	}
   1631 
   1632 	if (i == BGE_TIMEOUT) {
   1633 		aprint_error_dev(sc->bge_dev,
   1634 		    "flow-through queue init failed\n");
   1635 		return(ENXIO);
   1636 	}
   1637 
   1638 	/* Initialize the standard RX ring control block */
   1639 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1640 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1641 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1642 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1643 		rcb->bge_maxlen_flags =
   1644 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1645 	} else {
   1646 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1647 	}
   1648 	if (sc->bge_extram)
   1649 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1650 	else
   1651 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1652 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1653 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1654 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1655 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1656 
   1657 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1658 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1659 	} else {
   1660 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1661 	}
   1662 
   1663 	/*
   1664 	 * Initialize the jumbo RX ring control block
   1665 	 * We set the 'ring disabled' bit in the flags
   1666 	 * field until we're actually ready to start
   1667 	 * using this ring (i.e. once we set the MTU
   1668 	 * high enough to require it).
   1669 	 */
   1670 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1671 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1672 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1673 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1674 		rcb->bge_maxlen_flags =
   1675 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1676 			BGE_RCB_FLAG_RING_DISABLED);
   1677 		if (sc->bge_extram)
   1678 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1679 		else
   1680 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1681 
   1682 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1683 		    rcb->bge_hostaddr.bge_addr_hi);
   1684 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1685 		    rcb->bge_hostaddr.bge_addr_lo);
   1686 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1687 		    rcb->bge_maxlen_flags);
   1688 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1689 
   1690 		/* Set up dummy disabled mini ring RCB */
   1691 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1692 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1693 		    BGE_RCB_FLAG_RING_DISABLED);
   1694 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1695 		    rcb->bge_maxlen_flags);
   1696 
   1697 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1698 		    offsetof(struct bge_ring_data, bge_info),
   1699 		    sizeof (struct bge_gib),
   1700 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1701 	}
   1702 
   1703 	/*
   1704 	 * Set the BD ring replenish thresholds. The recommended
   1705 	 * values are 1/8th the number of descriptors allocated to
   1706 	 * each ring.
   1707 	 */
   1708 	i = BGE_STD_RX_RING_CNT / 8;
   1709 
   1710 	/*
   1711  	 * Use a value of 8 for the following chips to workaround HW errata.
   1712 	 * Some of these chips have been added based on empirical
   1713 	 * evidence (they don't work unless this is done).
   1714 	 */
   1715 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1716 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1717 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1718 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1719 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1720 		i = 8;
   1721 
   1722 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1723 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1724 
   1725 	/*
   1726 	 * Disable all unused send rings by setting the 'ring disabled'
   1727 	 * bit in the flags field of all the TX send ring control blocks.
   1728 	 * These are located in NIC memory.
   1729 	 */
   1730 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1731 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1732 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1733 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1734 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1735 		rcb_addr += sizeof(struct bge_rcb);
   1736 	}
   1737 
   1738 	/* Configure TX RCB 0 (we use only the first ring) */
   1739 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1740 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1741 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1742 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1743 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1744 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1745 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1746 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1747 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1748 	}
   1749 
   1750 	/* Disable all unused RX return rings */
   1751 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1752 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1753 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1754 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1755 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1756 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1757                                      BGE_RCB_FLAG_RING_DISABLED));
   1758 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1759 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1760 		    (i * (sizeof(u_int64_t))), 0);
   1761 		rcb_addr += sizeof(struct bge_rcb);
   1762 	}
   1763 
   1764 	/* Initialize RX ring indexes */
   1765 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1766 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1767 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1768 
   1769 	/*
   1770 	 * Set up RX return ring 0
   1771 	 * Note that the NIC address for RX return rings is 0x00000000.
   1772 	 * The return rings live entirely within the host, so the
   1773 	 * nicaddr field in the RCB isn't used.
   1774 	 */
   1775 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1776 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1777 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1778 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1779 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1780 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1781 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1782 
   1783 	/* Set random backoff seed for TX */
   1784 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1785 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1786 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1787 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1788 	    BGE_TX_BACKOFF_SEED_MASK);
   1789 
   1790 	/* Set inter-packet gap */
   1791 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1792 
   1793 	/*
   1794 	 * Specify which ring to use for packets that don't match
   1795 	 * any RX rules.
   1796 	 */
   1797 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1798 
   1799 	/*
   1800 	 * Configure number of RX lists. One interrupt distribution
   1801 	 * list, sixteen active lists, one bad frames class.
   1802 	 */
   1803 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1804 
   1805 	/* Inialize RX list placement stats mask. */
   1806 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1807 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1808 
   1809 	/* Disable host coalescing until we get it set up */
   1810 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1811 
   1812 	/* Poll to make sure it's shut down. */
   1813 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1814 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1815 			break;
   1816 		DELAY(10);
   1817 	}
   1818 
   1819 	if (i == BGE_TIMEOUT) {
   1820 		aprint_error_dev(sc->bge_dev,
   1821 		    "host coalescing engine failed to idle\n");
   1822 		return(ENXIO);
   1823 	}
   1824 
   1825 	/* Set up host coalescing defaults */
   1826 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1827 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1828 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1829 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1830 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1831 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1832 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1833 	}
   1834 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1835 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1836 
   1837 	/* Set up address of statistics block */
   1838 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1839 		bge_set_hostaddr(&taddr,
   1840 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1841 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1842 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1843 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1844 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1845 	}
   1846 
   1847 	/* Set up address of status block */
   1848 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1849 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1850 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1851 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1852 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1853 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1854 
   1855 	/* Turn on host coalescing state machine */
   1856 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1857 
   1858 	/* Turn on RX BD completion state machine and enable attentions */
   1859 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1860 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1861 
   1862 	/* Turn on RX list placement state machine */
   1863 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1864 
   1865 	/* Turn on RX list selector state machine. */
   1866 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1867 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1868 	}
   1869 
   1870 	/* Turn on DMA, clear stats */
   1871 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1872 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1873 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1874 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1875 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1876 
   1877 	/* Set misc. local control, enable interrupts on attentions */
   1878 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1879 
   1880 #ifdef notdef
   1881 	/* Assert GPIO pins for PHY reset */
   1882 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1883 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1884 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1885 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1886 #endif
   1887 
   1888 #if defined(not_quite_yet)
   1889 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1890 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1891 		sc->bge_local_ctrl_reg |=
   1892 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1893 	}
   1894 #endif
   1895 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1896 
   1897 	/* Turn on DMA completion state machine */
   1898 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1899 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1900 	}
   1901 
   1902 	/* Turn on write DMA state machine */
   1903 	{
   1904 		uint32_t bge_wdma_mode =
   1905 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   1906 
   1907 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1908 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   1909 		  /* Enable host coalescing bug fix; see Linux tg3.c */
   1910 		  bge_wdma_mode |= (1 << 29);
   1911 
   1912 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   1913         }
   1914 
   1915 	/* Turn on read DMA state machine */
   1916 	{
   1917 		uint32_t dma_read_modebits;
   1918 
   1919 		dma_read_modebits =
   1920 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   1921 
   1922 		if (sc->bge_pcie && 0) {
   1923 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   1924 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
   1925 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   1926 		}
   1927 
   1928 		/* XXX broadcom-supplied linux driver; undocumented */
   1929 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   1930  			/*
   1931 			 * XXX: magic values.
   1932 			 * From Broadcom-supplied Linux driver;  apparently
   1933 			 * required to workaround a DMA bug affecting TSO
   1934 			 * on bcm575x/bcm5721?
   1935 			 */
   1936 			dma_read_modebits |= (1 << 27);
   1937 		}
   1938 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   1939 	}
   1940 
   1941 	/* Turn on RX data completion state machine */
   1942 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1943 
   1944 	/* Turn on RX BD initiator state machine */
   1945 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1946 
   1947 	/* Turn on RX data and RX BD initiator state machine */
   1948 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1949 
   1950 	/* Turn on Mbuf cluster free state machine */
   1951 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1952 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1953 	}
   1954 
   1955 	/* Turn on send BD completion state machine */
   1956 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1957 
   1958 	/* Turn on send data completion state machine */
   1959 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1960 
   1961 	/* Turn on send data initiator state machine */
   1962 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   1963 		/* XXX: magic value from Linux driver */
   1964 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   1965 	} else {
   1966 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1967 	}
   1968 
   1969 	/* Turn on send BD initiator state machine */
   1970 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1971 
   1972 	/* Turn on send BD selector state machine */
   1973 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1974 
   1975 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1976 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1977 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1978 
   1979 	/* ack/clear link change events */
   1980 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1981 	    BGE_MACSTAT_CFG_CHANGED);
   1982 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1983 
   1984 	/* Enable PHY auto polling (for MII/GMII only) */
   1985 	if (sc->bge_tbi) {
   1986 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1987  	} else {
   1988 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1989 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1990 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1991 			    BGE_EVTENB_MI_INTERRUPT);
   1992 	}
   1993 
   1994 	/* Enable link state change attentions. */
   1995 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1996 
   1997 	return(0);
   1998 }
   1999 
   2000 static const struct bge_revision {
   2001 	uint32_t		br_chipid;
   2002 	uint32_t		br_quirks;
   2003 	const char		*br_name;
   2004 } bge_revisions[] = {
   2005 	{ BGE_CHIPID_BCM5700_A0,
   2006 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2007 	  "BCM5700 A0" },
   2008 
   2009 	{ BGE_CHIPID_BCM5700_A1,
   2010 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2011 	  "BCM5700 A1" },
   2012 
   2013 	{ BGE_CHIPID_BCM5700_B0,
   2014 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   2015 	  "BCM5700 B0" },
   2016 
   2017 	{ BGE_CHIPID_BCM5700_B1,
   2018 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2019 	  "BCM5700 B1" },
   2020 
   2021 	{ BGE_CHIPID_BCM5700_B2,
   2022 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2023 	  "BCM5700 B2" },
   2024 
   2025 	{ BGE_CHIPID_BCM5700_B3,
   2026 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2027 	  "BCM5700 B3" },
   2028 
   2029 	/* This is treated like a BCM5700 Bx */
   2030 	{ BGE_CHIPID_BCM5700_ALTIMA,
   2031 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   2032 	  "BCM5700 Altima" },
   2033 
   2034 	{ BGE_CHIPID_BCM5700_C0,
   2035 	  0,
   2036 	  "BCM5700 C0" },
   2037 
   2038 	{ BGE_CHIPID_BCM5701_A0,
   2039 	  0, /*XXX really, just not known */
   2040 	  "BCM5701 A0" },
   2041 
   2042 	{ BGE_CHIPID_BCM5701_B0,
   2043 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2044 	  "BCM5701 B0" },
   2045 
   2046 	{ BGE_CHIPID_BCM5701_B2,
   2047 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2048 	  "BCM5701 B2" },
   2049 
   2050 	{ BGE_CHIPID_BCM5701_B5,
   2051 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2052 	  "BCM5701 B5" },
   2053 
   2054 	{ BGE_CHIPID_BCM5703_A0,
   2055 	  0,
   2056 	  "BCM5703 A0" },
   2057 
   2058 	{ BGE_CHIPID_BCM5703_A1,
   2059 	  0,
   2060 	  "BCM5703 A1" },
   2061 
   2062 	{ BGE_CHIPID_BCM5703_A2,
   2063 	  BGE_QUIRK_ONLY_PHY_1,
   2064 	  "BCM5703 A2" },
   2065 
   2066 	{ BGE_CHIPID_BCM5703_A3,
   2067 	  BGE_QUIRK_ONLY_PHY_1,
   2068 	  "BCM5703 A3" },
   2069 
   2070 	{ BGE_CHIPID_BCM5703_B0,
   2071 	  BGE_QUIRK_ONLY_PHY_1,
   2072 	  "BCM5703 B0" },
   2073 
   2074 	{ BGE_CHIPID_BCM5704_A0,
   2075   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2076 	  "BCM5704 A0" },
   2077 
   2078 	{ BGE_CHIPID_BCM5704_A1,
   2079   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2080 	  "BCM5704 A1" },
   2081 
   2082 	{ BGE_CHIPID_BCM5704_A2,
   2083   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2084 	  "BCM5704 A2" },
   2085 
   2086 	{ BGE_CHIPID_BCM5704_A3,
   2087   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   2088 	  "BCM5704 A3" },
   2089 
   2090 	{ BGE_CHIPID_BCM5705_A0,
   2091 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2092 	  "BCM5705 A0" },
   2093 
   2094 	{ BGE_CHIPID_BCM5705_A1,
   2095 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2096 	  "BCM5705 A1" },
   2097 
   2098 	{ BGE_CHIPID_BCM5705_A2,
   2099 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2100 	  "BCM5705 A2" },
   2101 
   2102 	{ BGE_CHIPID_BCM5705_A3,
   2103 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2104 	  "BCM5705 A3" },
   2105 
   2106 	{ BGE_CHIPID_BCM5750_A0,
   2107 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2108 	  "BCM5750 A0" },
   2109 
   2110 	{ BGE_CHIPID_BCM5750_A1,
   2111 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2112 	  "BCM5750 A1" },
   2113 
   2114 	{ BGE_CHIPID_BCM5751_A1,
   2115 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2116 	  "BCM5751 A1" },
   2117 
   2118 	{ BGE_CHIPID_BCM5752_A0,
   2119 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2120 	  "BCM5752 A0" },
   2121 
   2122 	{ BGE_CHIPID_BCM5752_A1,
   2123 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2124 	  "BCM5752 A1" },
   2125 
   2126 	{ BGE_CHIPID_BCM5752_A2,
   2127 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2128 	  "BCM5752 A2" },
   2129 
   2130 	{ BGE_CHIPID_BCM5755_A0,
   2131 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2132 	  "BCM5755 A0" },
   2133 
   2134 	{ BGE_CHIPID_BCM5755_A1,
   2135 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2136 	  "BCM5755 A1" },
   2137 
   2138 	{ BGE_CHIPID_BCM5755_A2,
   2139 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2140 	  "BCM5755 A2" },
   2141 
   2142 	{ BGE_CHIPID_BCM5755_C0,
   2143 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2144 	  "BCM5755 C0" },
   2145 
   2146 	{ BGE_CHIPID_BCM5787_A0,
   2147 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2148 	  "BCM5754/5787 A0" },
   2149 
   2150 	{ BGE_CHIPID_BCM5787_A1,
   2151 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2152 	  "BCM5754/5787 A1" },
   2153 
   2154 	{ BGE_CHIPID_BCM5787_A2,
   2155 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2156 	  "BCM5754/5787 A2" },
   2157 
   2158 	{ 0, 0, NULL }
   2159 };
   2160 
   2161 /*
   2162  * Some defaults for major revisions, so that newer steppings
   2163  * that we don't know about have a shot at working.
   2164  */
   2165 static const struct bge_revision bge_majorrevs[] = {
   2166 	{ BGE_ASICREV_BCM5700,
   2167 	  BGE_QUIRK_LINK_STATE_BROKEN,
   2168 	  "unknown BCM5700" },
   2169 
   2170 	{ BGE_ASICREV_BCM5701,
   2171 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   2172 	  "unknown BCM5701" },
   2173 
   2174 	{ BGE_ASICREV_BCM5703,
   2175 	  0,
   2176 	  "unknown BCM5703" },
   2177 
   2178 	{ BGE_ASICREV_BCM5704,
   2179 	  BGE_QUIRK_ONLY_PHY_1,
   2180 	  "unknown BCM5704" },
   2181 
   2182 	{ BGE_ASICREV_BCM5705,
   2183 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2184 	  "unknown BCM5705" },
   2185 
   2186 	{ BGE_ASICREV_BCM5750,
   2187 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2188 	  "unknown BCM575x family" },
   2189 
   2190 	{ BGE_ASICREV_BCM5714_A0,
   2191 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2192 	  "unknown BCM5714" },
   2193 
   2194 	{ BGE_ASICREV_BCM5714,
   2195 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2196 	  "unknown BCM5714" },
   2197 
   2198 	{ BGE_ASICREV_BCM5752,
   2199 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2200 	  "unknown BCM5752 family" },
   2201 
   2202 	{ BGE_ASICREV_BCM5755,
   2203 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2204 	  "unknown BCM5755" },
   2205 
   2206 	{ BGE_ASICREV_BCM5780,
   2207 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2208 	  "unknown BCM5780" },
   2209 
   2210 	{ BGE_ASICREV_BCM5787,
   2211 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2212 	  "unknown BCM5787" },
   2213 
   2214 	{ BGE_ASICREV_BCM5906,
   2215 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   2216 	  "unknown BCM5906" },
   2217 
   2218 	{ 0,
   2219 	  0,
   2220 	  NULL }
   2221 };
   2222 
   2223 
   2224 static const struct bge_revision *
   2225 bge_lookup_rev(uint32_t chipid)
   2226 {
   2227 	const struct bge_revision *br;
   2228 
   2229 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2230 		if (br->br_chipid == chipid)
   2231 			return (br);
   2232 	}
   2233 
   2234 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2235 		if (br->br_chipid == BGE_ASICREV(chipid))
   2236 			return (br);
   2237 	}
   2238 
   2239 	return (NULL);
   2240 }
   2241 
   2242 static const struct bge_product {
   2243 	pci_vendor_id_t		bp_vendor;
   2244 	pci_product_id_t	bp_product;
   2245 	const char		*bp_name;
   2246 } bge_products[] = {
   2247 	/*
   2248 	 * The BCM5700 documentation seems to indicate that the hardware
   2249 	 * still has the Alteon vendor ID burned into it, though it
   2250 	 * should always be overridden by the value in the EEPROM.  We'll
   2251 	 * check for it anyway.
   2252 	 */
   2253 	{ PCI_VENDOR_ALTEON,
   2254 	  PCI_PRODUCT_ALTEON_BCM5700,
   2255 	  "Broadcom BCM5700 Gigabit Ethernet",
   2256 	  },
   2257 	{ PCI_VENDOR_ALTEON,
   2258 	  PCI_PRODUCT_ALTEON_BCM5701,
   2259 	  "Broadcom BCM5701 Gigabit Ethernet",
   2260 	  },
   2261 
   2262 	{ PCI_VENDOR_ALTIMA,
   2263 	  PCI_PRODUCT_ALTIMA_AC1000,
   2264 	  "Altima AC1000 Gigabit Ethernet",
   2265 	  },
   2266 	{ PCI_VENDOR_ALTIMA,
   2267 	  PCI_PRODUCT_ALTIMA_AC1001,
   2268 	  "Altima AC1001 Gigabit Ethernet",
   2269 	   },
   2270 	{ PCI_VENDOR_ALTIMA,
   2271 	  PCI_PRODUCT_ALTIMA_AC9100,
   2272 	  "Altima AC9100 Gigabit Ethernet",
   2273 	  },
   2274 
   2275 	{ PCI_VENDOR_BROADCOM,
   2276 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2277 	  "Broadcom BCM5700 Gigabit Ethernet",
   2278 	  },
   2279 	{ PCI_VENDOR_BROADCOM,
   2280 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2281 	  "Broadcom BCM5701 Gigabit Ethernet",
   2282 	  },
   2283 	{ PCI_VENDOR_BROADCOM,
   2284 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2285 	  "Broadcom BCM5702 Gigabit Ethernet",
   2286 	  },
   2287 	{ PCI_VENDOR_BROADCOM,
   2288 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2289 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2290 
   2291 	{ PCI_VENDOR_BROADCOM,
   2292 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2293 	  "Broadcom BCM5703 Gigabit Ethernet",
   2294 	  },
   2295 	{ PCI_VENDOR_BROADCOM,
   2296 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2297 	  "Broadcom BCM5703X Gigabit Ethernet",
   2298 	  },
   2299 	{ PCI_VENDOR_BROADCOM,
   2300 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
   2301 	  "Broadcom BCM5703 Gigabit Ethernet",
   2302 	  },
   2303 
   2304    	{ PCI_VENDOR_BROADCOM,
   2305 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2306 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2307 	  },
   2308    	{ PCI_VENDOR_BROADCOM,
   2309 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2310 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2311 	  },
   2312 
   2313    	{ PCI_VENDOR_BROADCOM,
   2314 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2315 	  "Broadcom BCM5705 Gigabit Ethernet",
   2316 	  },
   2317    	{ PCI_VENDOR_BROADCOM,
   2318 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2319 	  "Broadcom BCM5705K Gigabit Ethernet",
   2320 	  },
   2321    	{ PCI_VENDOR_BROADCOM,
   2322 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2323 	  "Broadcom BCM5705M Gigabit Ethernet",
   2324 	  },
   2325    	{ PCI_VENDOR_BROADCOM,
   2326 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
   2327 	  "Broadcom BCM5705M Gigabit Ethernet",
   2328 	  },
   2329 
   2330 	{ PCI_VENDOR_BROADCOM,
   2331 	  PCI_PRODUCT_BROADCOM_BCM5714,
   2332 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2333 	  },
   2334 	{ PCI_VENDOR_BROADCOM,
   2335 	  PCI_PRODUCT_BROADCOM_BCM5715,
   2336 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
   2337 	  },
   2338 	{ PCI_VENDOR_BROADCOM,
   2339 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2340 	  "Broadcom BCM5789 Gigabit Ethernet",
   2341 	  },
   2342 
   2343 	{ PCI_VENDOR_BROADCOM,
   2344 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2345 	  "Broadcom BCM5721 Gigabit Ethernet",
   2346 	  },
   2347 
   2348 	{ PCI_VENDOR_BROADCOM,
   2349 	  PCI_PRODUCT_BROADCOM_BCM5722,
   2350 	  "Broadcom BCM5722 Gigabit Ethernet",
   2351 	  },
   2352 
   2353 	{ PCI_VENDOR_BROADCOM,
   2354 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2355 	  "Broadcom BCM5750 Gigabit Ethernet",
   2356 	  },
   2357 
   2358 	{ PCI_VENDOR_BROADCOM,
   2359 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2360 	  "Broadcom BCM5750M Gigabit Ethernet",
   2361 	  },
   2362 
   2363 	{ PCI_VENDOR_BROADCOM,
   2364 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2365 	  "Broadcom BCM5751 Gigabit Ethernet",
   2366 	  },
   2367 
   2368 	{ PCI_VENDOR_BROADCOM,
   2369 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2370 	  "Broadcom BCM5751M Gigabit Ethernet",
   2371 	  },
   2372 
   2373 	{ PCI_VENDOR_BROADCOM,
   2374 	  PCI_PRODUCT_BROADCOM_BCM5752,
   2375 	  "Broadcom BCM5752 Gigabit Ethernet",
   2376 	  },
   2377 
   2378 	{ PCI_VENDOR_BROADCOM,
   2379 	  PCI_PRODUCT_BROADCOM_BCM5752M,
   2380 	  "Broadcom BCM5752M Gigabit Ethernet",
   2381 	  },
   2382 
   2383 	{ PCI_VENDOR_BROADCOM,
   2384 	  PCI_PRODUCT_BROADCOM_BCM5753,
   2385 	  "Broadcom BCM5753 Gigabit Ethernet",
   2386 	  },
   2387 
   2388 	{ PCI_VENDOR_BROADCOM,
   2389 	  PCI_PRODUCT_BROADCOM_BCM5753M,
   2390 	  "Broadcom BCM5753M Gigabit Ethernet",
   2391 	  },
   2392 
   2393 	{ PCI_VENDOR_BROADCOM,
   2394 	  PCI_PRODUCT_BROADCOM_BCM5754,
   2395 	  "Broadcom BCM5754 Gigabit Ethernet",
   2396 	},
   2397 
   2398 	{ PCI_VENDOR_BROADCOM,
   2399 	  PCI_PRODUCT_BROADCOM_BCM5754M,
   2400 	  "Broadcom BCM5754M Gigabit Ethernet",
   2401 	},
   2402 
   2403 	{ PCI_VENDOR_BROADCOM,
   2404 	  PCI_PRODUCT_BROADCOM_BCM5755,
   2405 	  "Broadcom BCM5755 Gigabit Ethernet",
   2406 	},
   2407 
   2408 	{ PCI_VENDOR_BROADCOM,
   2409 	  PCI_PRODUCT_BROADCOM_BCM5755M,
   2410 	  "Broadcom BCM5755M Gigabit Ethernet",
   2411 	},
   2412 
   2413    	{ PCI_VENDOR_BROADCOM,
   2414 	  PCI_PRODUCT_BROADCOM_BCM5780,
   2415 	  "Broadcom BCM5780 Gigabit Ethernet",
   2416 	  },
   2417 
   2418    	{ PCI_VENDOR_BROADCOM,
   2419 	  PCI_PRODUCT_BROADCOM_BCM5780S,
   2420 	  "Broadcom BCM5780S Gigabit Ethernet",
   2421 	  },
   2422 
   2423    	{ PCI_VENDOR_BROADCOM,
   2424 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2425 	  "Broadcom BCM5782 Gigabit Ethernet",
   2426 	},
   2427 
   2428 	{ PCI_VENDOR_BROADCOM,
   2429 	  PCI_PRODUCT_BROADCOM_BCM5786,
   2430 	  "Broadcom BCM5786 Gigabit Ethernet",
   2431 	},
   2432 
   2433 	{ PCI_VENDOR_BROADCOM,
   2434 	  PCI_PRODUCT_BROADCOM_BCM5787,
   2435 	  "Broadcom BCM5787 Gigabit Ethernet",
   2436 	},
   2437 
   2438 	{ PCI_VENDOR_BROADCOM,
   2439 	  PCI_PRODUCT_BROADCOM_BCM5787M,
   2440 	  "Broadcom BCM5787M Gigabit Ethernet",
   2441 	},
   2442 
   2443    	{ PCI_VENDOR_BROADCOM,
   2444 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2445 	  "Broadcom BCM5788 Gigabit Ethernet",
   2446 	  },
   2447    	{ PCI_VENDOR_BROADCOM,
   2448 	  PCI_PRODUCT_BROADCOM_BCM5789,
   2449 	  "Broadcom BCM5789 Gigabit Ethernet",
   2450 	  },
   2451 
   2452    	{ PCI_VENDOR_BROADCOM,
   2453 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2454 	  "Broadcom BCM5901 Fast Ethernet",
   2455 	  },
   2456    	{ PCI_VENDOR_BROADCOM,
   2457 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2458 	  "Broadcom BCM5901A2 Fast Ethernet",
   2459 	  },
   2460 
   2461 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2462 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2463 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2464 	  },
   2465 
   2466 	{ PCI_VENDOR_3COM,
   2467 	  PCI_PRODUCT_3COM_3C996,
   2468 	  "3Com 3c996 Gigabit Ethernet",
   2469 	  },
   2470 
   2471 	{ PCI_VENDOR_BROADCOM,
   2472 	  PCI_PRODUCT_BROADCOM_BCM5906,
   2473 	  "Broadcom BCM5906 Fast Ethernet",
   2474 	  },
   2475 
   2476 	{ PCI_VENDOR_BROADCOM,
   2477 	  PCI_PRODUCT_BROADCOM_BCM5906M,
   2478 	  "Broadcom BCM5906M Fast Ethernet",
   2479 	  },
   2480 
   2481 	{ 0,
   2482 	  0,
   2483 	  NULL },
   2484 };
   2485 
   2486 static const struct bge_product *
   2487 bge_lookup(const struct pci_attach_args *pa)
   2488 {
   2489 	const struct bge_product *bp;
   2490 
   2491 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2492 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2493 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2494 			return (bp);
   2495 	}
   2496 
   2497 	return (NULL);
   2498 }
   2499 
   2500 static int
   2501 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2502 {
   2503 #ifdef NOTYET
   2504 	u_int32_t pm_ctl = 0;
   2505 
   2506 	/* XXX FIXME: make sure indirect accesses enabled? */
   2507 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2508 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2509 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2510 
   2511 	/* clear the PME_assert bit and power state bits, enable PME */
   2512 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2513 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2514 	pm_ctl |= (1 << 8);
   2515 
   2516 	if (powerlevel == 0) {
   2517 		pm_ctl |= PCIM_PSTAT_D0;
   2518 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2519 		    pm_ctl, 2);
   2520 		DELAY(10000);
   2521 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2522 		DELAY(10000);
   2523 
   2524 #ifdef NOTYET
   2525 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2526 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2527 #endif
   2528 		DELAY(40); DELAY(40); DELAY(40);
   2529 		DELAY(10000);	/* above not quite adequate on 5700 */
   2530 		return 0;
   2531 	}
   2532 
   2533 
   2534 	/*
   2535 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2536 	 * GMII gpio pins. Example code assumes all hardware vendors
   2537 	 * followed Broadom's sample pcb layout. Until we verify that
   2538 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2539 	 */
   2540 	aprint_error_dev(sc->bge_dev,
   2541 	    "power state %d unimplemented; check GPIO pins\n",
   2542 	    powerlevel);
   2543 #endif
   2544 	return EOPNOTSUPP;
   2545 }
   2546 
   2547 
   2548 /*
   2549  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2550  * against our list and return its name if we find a match. Note
   2551  * that since the Broadcom controller contains VPD support, we
   2552  * can get the device name string from the controller itself instead
   2553  * of the compiled-in string. This is a little slow, but it guarantees
   2554  * we'll always announce the right product name.
   2555  */
   2556 static int
   2557 bge_probe(device_t parent, cfdata_t match, void *aux)
   2558 {
   2559 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2560 
   2561 	if (bge_lookup(pa) != NULL)
   2562 		return (1);
   2563 
   2564 	return (0);
   2565 }
   2566 
   2567 static void
   2568 bge_attach(device_t parent, device_t self, void *aux)
   2569 {
   2570 	struct bge_softc	*sc = device_private(self);
   2571 	struct pci_attach_args	*pa = aux;
   2572 	const struct bge_product *bp;
   2573 	const struct bge_revision *br;
   2574 	pci_chipset_tag_t	pc;
   2575 	pci_intr_handle_t	ih;
   2576 	const char		*intrstr = NULL;
   2577 	bus_dma_segment_t	seg;
   2578 	int			rseg;
   2579 	u_int32_t		hwcfg = 0;
   2580 	u_int32_t		command;
   2581 	struct ifnet		*ifp;
   2582 	void *			kva;
   2583 	u_char			eaddr[ETHER_ADDR_LEN];
   2584 	pcireg_t		memtype;
   2585 	bus_addr_t		memaddr;
   2586 	bus_size_t		memsize;
   2587 	u_int32_t		pm_ctl;
   2588 
   2589 	bp = bge_lookup(pa);
   2590 	KASSERT(bp != NULL);
   2591 
   2592 	sc->sc_pc = pa->pa_pc;
   2593 	sc->sc_pcitag = pa->pa_tag;
   2594 	sc->bge_dev = self;
   2595 
   2596 	aprint_naive(": Ethernet controller\n");
   2597 	aprint_normal(": %s\n", bp->bp_name);
   2598 
   2599 	/*
   2600 	 * Map control/status registers.
   2601 	 */
   2602 	DPRINTFN(5, ("Map control/status regs\n"));
   2603 	pc = sc->sc_pc;
   2604 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2605 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2606 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2607 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2608 
   2609 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2610 		aprint_error_dev(sc->bge_dev,
   2611 		    "failed to enable memory mapping!\n");
   2612 		return;
   2613 	}
   2614 
   2615 	DPRINTFN(5, ("pci_mem_find\n"));
   2616 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2617  	switch (memtype) {
   2618 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2619 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2620 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2621 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2622 		    &memaddr, &memsize) == 0)
   2623 			break;
   2624 	default:
   2625 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2626 		return;
   2627 	}
   2628 
   2629 	DPRINTFN(5, ("pci_intr_map\n"));
   2630 	if (pci_intr_map(pa, &ih)) {
   2631 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2632 		return;
   2633 	}
   2634 
   2635 	DPRINTFN(5, ("pci_intr_string\n"));
   2636 	intrstr = pci_intr_string(pc, ih);
   2637 
   2638 	DPRINTFN(5, ("pci_intr_establish\n"));
   2639 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2640 
   2641 	if (sc->bge_intrhand == NULL) {
   2642 		aprint_error_dev(sc->bge_dev,
   2643 		    "couldn't establish interrupt%s%s\n",
   2644 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2645 		return;
   2646 	}
   2647 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2648 
   2649 	/*
   2650 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2651 	 * can clobber the chip's PCI config-space power control registers,
   2652 	 * leaving the card in D3 powersave state.
   2653 	 * We do not have memory-mapped registers in this state,
   2654 	 * so force device into D0 state before starting initialization.
   2655 	 */
   2656 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2657 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2658 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2659 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2660 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2661 
   2662 	/*
   2663 	 * Save ASIC rev.  Look up any quirks associated with this
   2664 	 * ASIC.
   2665 	 */
   2666 	sc->bge_chipid =
   2667 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2668 	    BGE_PCIMISCCTL_ASICREV;
   2669 
   2670 	/*
   2671 	 * Detect PCI-Express devices
   2672 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2673 	 */
   2674 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2675 	        NULL, NULL) != 0)
   2676 		sc->bge_pcie = 1;
   2677 	else
   2678 		sc->bge_pcie = 0;
   2679 
   2680 	/* Try to reset the chip. */
   2681 	DPRINTFN(5, ("bge_reset\n"));
   2682 	bge_reset(sc);
   2683 
   2684 	if (bge_chipinit(sc)) {
   2685 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2686 		bge_release_resources(sc);
   2687 		return;
   2688 	}
   2689 
   2690 	/*
   2691 	 * Get station address from the EEPROM.
   2692 	 */
   2693 	if (bge_get_eaddr(sc, eaddr)) {
   2694 		aprint_error_dev(sc->bge_dev,
   2695 		"failed to reade station address\n");
   2696 		bge_release_resources(sc);
   2697 		return;
   2698 	}
   2699 
   2700 	br = bge_lookup_rev(sc->bge_chipid);
   2701 
   2702 	if (br == NULL) {
   2703 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2704 		    sc->bge_chipid >> 16);
   2705 		sc->bge_quirks = 0;
   2706 	} else {
   2707 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2708 		    br->br_name, sc->bge_chipid >> 16);
   2709 		sc->bge_quirks |= br->br_quirks;
   2710 	}
   2711 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2712 
   2713 	/* Allocate the general information block and ring buffers. */
   2714 	if (pci_dma64_available(pa))
   2715 		sc->bge_dmatag = pa->pa_dmat64;
   2716 	else
   2717 		sc->bge_dmatag = pa->pa_dmat;
   2718 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2719 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2720 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2721 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2722 		return;
   2723 	}
   2724 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2725 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2726 			   sizeof(struct bge_ring_data), &kva,
   2727 			   BUS_DMA_NOWAIT)) {
   2728 		aprint_error_dev(sc->bge_dev,
   2729 		    "can't map DMA buffers (%zu bytes)\n",
   2730 		    sizeof(struct bge_ring_data));
   2731 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2732 		return;
   2733 	}
   2734 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2735 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2736 	    sizeof(struct bge_ring_data), 0,
   2737 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2738 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2739 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2740 				 sizeof(struct bge_ring_data));
   2741 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2742 		return;
   2743 	}
   2744 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2745 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2746 			    sizeof(struct bge_ring_data), NULL,
   2747 			    BUS_DMA_NOWAIT)) {
   2748 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2749 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2750 				 sizeof(struct bge_ring_data));
   2751 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2752 		return;
   2753 	}
   2754 
   2755 	DPRINTFN(5, ("bzero\n"));
   2756 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2757 
   2758 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2759 
   2760 	/* Try to allocate memory for jumbo buffers. */
   2761 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2762 		if (bge_alloc_jumbo_mem(sc)) {
   2763 			aprint_error_dev(sc->bge_dev,
   2764 			    "jumbo buffer allocation failed\n");
   2765 		} else
   2766 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2767 	}
   2768 
   2769 	/* Set default tuneable values. */
   2770 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2771 	sc->bge_rx_coal_ticks = 150;
   2772 	sc->bge_rx_max_coal_bds = 64;
   2773 #ifdef ORIG_WPAUL_VALUES
   2774 	sc->bge_tx_coal_ticks = 150;
   2775 	sc->bge_tx_max_coal_bds = 128;
   2776 #else
   2777 	sc->bge_tx_coal_ticks = 300;
   2778 	sc->bge_tx_max_coal_bds = 400;
   2779 #endif
   2780 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2781 		sc->bge_tx_coal_ticks = (12 * 5);
   2782 		sc->bge_tx_max_coal_bds = (12 * 5);
   2783 			aprint_verbose_dev(sc->bge_dev,
   2784 			    "setting short Tx thresholds\n");
   2785 	}
   2786 
   2787 	/* Set up ifnet structure */
   2788 	ifp = &sc->ethercom.ec_if;
   2789 	ifp->if_softc = sc;
   2790 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2791 	ifp->if_ioctl = bge_ioctl;
   2792 	ifp->if_stop = bge_stop;
   2793 	ifp->if_start = bge_start;
   2794 	ifp->if_init = bge_init;
   2795 	ifp->if_watchdog = bge_watchdog;
   2796 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2797 	IFQ_SET_READY(&ifp->if_snd);
   2798 	DPRINTFN(5, ("strcpy if_xname\n"));
   2799 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2800 
   2801 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2802 		sc->ethercom.ec_if.if_capabilities |=
   2803 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2804 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2805 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2806 	sc->ethercom.ec_capabilities |=
   2807 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2808 
   2809 	if (sc->bge_pcie)
   2810 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2811 
   2812 	/*
   2813 	 * Do MII setup.
   2814 	 */
   2815 	DPRINTFN(5, ("mii setup\n"));
   2816 	sc->bge_mii.mii_ifp = ifp;
   2817 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2818 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2819 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2820 
   2821 	/*
   2822 	 * Figure out what sort of media we have by checking the
   2823 	 * hardware config word in the first 32k of NIC internal memory,
   2824 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2825 	 * cards, this value appears to be unset. If that's the
   2826 	 * case, we have to rely on identifying the NIC by its PCI
   2827 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2828 	 */
   2829 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2830 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2831 	} else {
   2832 		bge_read_eeprom(sc, (void *)&hwcfg,
   2833 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2834 		hwcfg = be32toh(hwcfg);
   2835 	}
   2836 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2837 		sc->bge_tbi = 1;
   2838 
   2839 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2840 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
   2841 	    SK_SUBSYSID_9D41)
   2842 		sc->bge_tbi = 1;
   2843 
   2844 	if (sc->bge_tbi) {
   2845 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2846 		    bge_ifmedia_sts);
   2847 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2848 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2849 			    0, NULL);
   2850 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2851 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2852 		/* Pretend the user requested this setting */
   2853 		sc->bge_ifmedia.ifm_media =
   2854 			sc->bge_ifmedia.ifm_cur->ifm_media;
   2855 	} else {
   2856 		/*
   2857 		 * Do transceiver setup.
   2858 		 */
   2859 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2860 			     bge_ifmedia_sts);
   2861 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2862 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2863 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2864 
   2865 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2866 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2867 			ifmedia_add(&sc->bge_mii.mii_media,
   2868 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2869 			ifmedia_set(&sc->bge_mii.mii_media,
   2870 				    IFM_ETHER|IFM_MANUAL);
   2871 		} else
   2872 			ifmedia_set(&sc->bge_mii.mii_media,
   2873 				    IFM_ETHER|IFM_AUTO);
   2874 	}
   2875 
   2876 	/*
   2877 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2878 	 * been observed in the first few bytes of some received packets.
   2879 	 * Aligning the packet buffer in memory eliminates the corruption.
   2880 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2881 	 * which do not support unaligned accesses, we will realign the
   2882 	 * payloads by copying the received packets.
   2883 	 */
   2884 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2885 		/* If in PCI-X mode, work around the alignment bug. */
   2886 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2887                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2888                          BGE_PCISTATE_PCI_BUSSPEED)
   2889 		sc->bge_rx_alignment_bug = 1;
   2890         }
   2891 
   2892 	/*
   2893 	 * Call MI attach routine.
   2894 	 */
   2895 	DPRINTFN(5, ("if_attach\n"));
   2896 	if_attach(ifp);
   2897 	DPRINTFN(5, ("ether_ifattach\n"));
   2898 	ether_ifattach(ifp, eaddr);
   2899 #if NRND > 0
   2900 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2901 		RND_TYPE_NET, 0);
   2902 #endif
   2903 #ifdef BGE_EVENT_COUNTERS
   2904 	/*
   2905 	 * Attach event counters.
   2906 	 */
   2907 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2908 	    NULL, device_xname(sc->bge_dev), "intr");
   2909 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2910 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2911 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2912 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2913 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2914 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2915 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2916 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2917 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2918 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2919 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2920 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2921 #endif /* BGE_EVENT_COUNTERS */
   2922 	DPRINTFN(5, ("callout_init\n"));
   2923 	callout_init(&sc->bge_timeout, 0);
   2924 
   2925 	if (!pmf_device_register(self, NULL, NULL))
   2926 		aprint_error_dev(self, "couldn't establish power handler\n");
   2927 	else
   2928 		pmf_class_network_register(self, ifp);
   2929 }
   2930 
   2931 static void
   2932 bge_release_resources(struct bge_softc *sc)
   2933 {
   2934 	if (sc->bge_vpd_prodname != NULL)
   2935 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2936 
   2937 	if (sc->bge_vpd_readonly != NULL)
   2938 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2939 }
   2940 
   2941 static void
   2942 bge_reset(struct bge_softc *sc)
   2943 {
   2944 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2945 	int i, val;
   2946 	void (*write_op)(struct bge_softc *, int, int);
   2947 
   2948 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2949 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2950 	    	if (sc->bge_pcie) {
   2951 			write_op = bge_writemem_direct;
   2952 		} else {
   2953 			write_op = bge_writemem_ind;
   2954 		}
   2955 	} else {
   2956 		write_op = bge_writereg_ind;
   2957 	}
   2958 
   2959 
   2960 	/* Save some important PCI state. */
   2961 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2962 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2963 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2964 
   2965 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2966 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2967 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2968 
   2969 	/*
   2970 	 * Disable the firmware fastboot feature on 5752 ASIC
   2971 	 * to avoid firmware timeout.
   2972 	 */
   2973 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2974 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2975 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2976 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2977 
   2978 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2979 	/*
   2980 	 * XXX: from FreeBSD/Linux; no documentation
   2981 	 */
   2982 	if (sc->bge_pcie) {
   2983 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2984 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2985 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2986 			/* No idea what that actually means */
   2987 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2988 			val |= (1<<29);
   2989 		}
   2990 	}
   2991 
   2992 	/* Issue global reset */
   2993 	write_op(sc, BGE_MISC_CFG, val);
   2994 
   2995 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2996 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2997 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2998 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2999 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3000 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3001 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3002 	}
   3003 
   3004 
   3005 
   3006 	DELAY(1000);
   3007 
   3008 	/*
   3009 	 * XXX: from FreeBSD/Linux; no documentation
   3010 	 */
   3011 	if (sc->bge_pcie) {
   3012 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3013 			pcireg_t reg;
   3014 
   3015 			DELAY(500000);
   3016 			/* XXX: Magic Numbers */
   3017 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   3018 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   3019 			    reg | (1 << 15));
   3020 		}
   3021 		/*
   3022 		 * XXX: Magic Numbers.
   3023 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   3024 		 * Should be replaced with references to PCI config-space
   3025 		 * capability block for PCI-Express.
   3026 		 */
   3027 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3028 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   3029 
   3030 	}
   3031 
   3032 	/* Reset some of the PCI state that got zapped by reset */
   3033 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3034 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   3035 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   3036 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3037 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3038 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3039 
   3040 	/* Enable memory arbiter. */
   3041 	{
   3042 		uint32_t marbmode = 0;
   3043 		if (BGE_IS_5714_FAMILY(sc)) {
   3044 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3045 		}
   3046  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3047 	}
   3048 
   3049 
   3050 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3051 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3052 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3053 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3054 				break;
   3055 			DELAY(100);
   3056 		}
   3057 		if (i == BGE_TIMEOUT) {
   3058 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3059 			return;
   3060 		}
   3061 	} else {
   3062 		/*
   3063 		 * Write the magic number to the firmware mailbox at 0xb50
   3064 		 * so that the driver can synchronize with the firmware.
   3065 		 */
   3066 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3067 
   3068 		/*
   3069 		 * Poll the value location we just wrote until
   3070 		 * we see the 1's complement of the magic number.
   3071 		 * This indicates that the firmware initialization
   3072 		 * is complete.
   3073 		 */
   3074 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3075 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3076 			if (val == ~BGE_MAGIC_NUMBER)
   3077 				break;
   3078 			DELAY(1000);
   3079 		}
   3080 
   3081 		if (i >= BGE_TIMEOUT) {
   3082 			aprint_error_dev(sc->bge_dev,
   3083 			    "firmware handshake timed out, val = %x\n", val);
   3084 			/*
   3085 			 * XXX: occasionally fired on bcm5721, but without
   3086 			 * apparent harm.  For now, keep going if we timeout
   3087 			 * against PCI-E devices.
   3088 			 */
   3089 			 if (!sc->bge_pcie)
   3090 				  return;
   3091 		}
   3092 	}
   3093 
   3094 	/*
   3095 	 * XXX Wait for the value of the PCISTATE register to
   3096 	 * return to its original pre-reset state. This is a
   3097 	 * fairly good indicator of reset completion. If we don't
   3098 	 * wait for the reset to fully complete, trying to read
   3099 	 * from the device's non-PCI registers may yield garbage
   3100 	 * results.
   3101 	 */
   3102 	for (i = 0; i < 10000; i++) {
   3103 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3104 		    BGE_PCI_PCISTATE);
   3105 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3106 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3107 			break;
   3108 		DELAY(10);
   3109 	}
   3110 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3111 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3112 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3113 	}
   3114 
   3115 	/* XXX: from FreeBSD/Linux; no documentation */
   3116 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   3117 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   3118 
   3119 	/* Enable memory arbiter. */
   3120 	/* XXX why do this twice? */
   3121 	{
   3122 		uint32_t marbmode = 0;
   3123 		if (BGE_IS_5714_FAMILY(sc)) {
   3124 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3125 		}
   3126  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3127 	}
   3128 
   3129 	/* Fix up byte swapping */
   3130 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3131 
   3132 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3133 
   3134 	DELAY(10000);
   3135 }
   3136 
   3137 /*
   3138  * Frame reception handling. This is called if there's a frame
   3139  * on the receive return list.
   3140  *
   3141  * Note: we have to be able to handle two possibilities here:
   3142  * 1) the frame is from the jumbo recieve ring
   3143  * 2) the frame is from the standard receive ring
   3144  */
   3145 
   3146 static void
   3147 bge_rxeof(struct bge_softc *sc)
   3148 {
   3149 	struct ifnet *ifp;
   3150 	int stdcnt = 0, jumbocnt = 0;
   3151 	bus_dmamap_t dmamap;
   3152 	bus_addr_t offset, toff;
   3153 	bus_size_t tlen;
   3154 	int tosync;
   3155 
   3156 	ifp = &sc->ethercom.ec_if;
   3157 
   3158 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3159 	    offsetof(struct bge_ring_data, bge_status_block),
   3160 	    sizeof (struct bge_status_block),
   3161 	    BUS_DMASYNC_POSTREAD);
   3162 
   3163 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3164 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   3165 	    sc->bge_rx_saved_considx;
   3166 
   3167 #if NRND > 0
   3168 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3169 		rnd_add_uint32(&sc->rnd_source, tosync);
   3170 #endif
   3171 
   3172 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   3173 
   3174 	if (tosync < 0) {
   3175 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   3176 		    sizeof (struct bge_rx_bd);
   3177 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3178 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3179 		tosync = -tosync;
   3180 	}
   3181 
   3182 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3183 	    offset, tosync * sizeof (struct bge_rx_bd),
   3184 	    BUS_DMASYNC_POSTREAD);
   3185 
   3186 	while(sc->bge_rx_saved_considx !=
   3187 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   3188 		struct bge_rx_bd	*cur_rx;
   3189 		u_int32_t		rxidx;
   3190 		struct mbuf		*m = NULL;
   3191 
   3192 		cur_rx = &sc->bge_rdata->
   3193 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   3194 
   3195 		rxidx = cur_rx->bge_idx;
   3196 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   3197 
   3198 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3199 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3200 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3201 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3202 			jumbocnt++;
   3203 			bus_dmamap_sync(sc->bge_dmatag,
   3204 			    sc->bge_cdata.bge_rx_jumbo_map,
   3205 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3206 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3207 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3208 				ifp->if_ierrors++;
   3209 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3210 				continue;
   3211 			}
   3212 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3213 					     NULL)== ENOBUFS) {
   3214 				ifp->if_ierrors++;
   3215 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3216 				continue;
   3217 			}
   3218 		} else {
   3219 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3220 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3221 
   3222 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3223 			stdcnt++;
   3224 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3225 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3226 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3227 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3228 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3229 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3230 				ifp->if_ierrors++;
   3231 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3232 				continue;
   3233 			}
   3234 			if (bge_newbuf_std(sc, sc->bge_std,
   3235 			    NULL, dmamap) == ENOBUFS) {
   3236 				ifp->if_ierrors++;
   3237 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3238 				continue;
   3239 			}
   3240 		}
   3241 
   3242 		ifp->if_ipackets++;
   3243 #ifndef __NO_STRICT_ALIGNMENT
   3244                 /*
   3245                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3246                  * the Rx buffer has the layer-2 header unaligned.
   3247                  * If our CPU requires alignment, re-align by copying.
   3248                  */
   3249 		if (sc->bge_rx_alignment_bug) {
   3250 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3251                                 cur_rx->bge_len);
   3252 			m->m_data += ETHER_ALIGN;
   3253 		}
   3254 #endif
   3255 
   3256 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3257 		m->m_pkthdr.rcvif = ifp;
   3258 
   3259 #if NBPFILTER > 0
   3260 		/*
   3261 		 * Handle BPF listeners. Let the BPF user see the packet.
   3262 		 */
   3263 		if (ifp->if_bpf)
   3264 			bpf_mtap(ifp->if_bpf, m);
   3265 #endif
   3266 
   3267 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3268 
   3269 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3270 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3271 		/*
   3272 		 * Rx transport checksum-offload may also
   3273 		 * have bugs with packets which, when transmitted,
   3274 		 * were `runts' requiring padding.
   3275 		 */
   3276 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3277 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3278 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3279 			m->m_pkthdr.csum_data =
   3280 			    cur_rx->bge_tcp_udp_csum;
   3281 			m->m_pkthdr.csum_flags |=
   3282 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3283 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3284 		}
   3285 
   3286 		/*
   3287 		 * If we received a packet with a vlan tag, pass it
   3288 		 * to vlan_input() instead of ether_input().
   3289 		 */
   3290 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3291 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3292 		}
   3293 
   3294 		(*ifp->if_input)(ifp, m);
   3295 	}
   3296 
   3297 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3298 	if (stdcnt)
   3299 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3300 	if (jumbocnt)
   3301 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3302 }
   3303 
   3304 static void
   3305 bge_txeof(struct bge_softc *sc)
   3306 {
   3307 	struct bge_tx_bd *cur_tx = NULL;
   3308 	struct ifnet *ifp;
   3309 	struct txdmamap_pool_entry *dma;
   3310 	bus_addr_t offset, toff;
   3311 	bus_size_t tlen;
   3312 	int tosync;
   3313 	struct mbuf *m;
   3314 
   3315 	ifp = &sc->ethercom.ec_if;
   3316 
   3317 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3318 	    offsetof(struct bge_ring_data, bge_status_block),
   3319 	    sizeof (struct bge_status_block),
   3320 	    BUS_DMASYNC_POSTREAD);
   3321 
   3322 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3323 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3324 	    sc->bge_tx_saved_considx;
   3325 
   3326 #if NRND > 0
   3327 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3328 		rnd_add_uint32(&sc->rnd_source, tosync);
   3329 #endif
   3330 
   3331 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3332 
   3333 	if (tosync < 0) {
   3334 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3335 		    sizeof (struct bge_tx_bd);
   3336 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3337 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3338 		tosync = -tosync;
   3339 	}
   3340 
   3341 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3342 	    offset, tosync * sizeof (struct bge_tx_bd),
   3343 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3344 
   3345 	/*
   3346 	 * Go through our tx ring and free mbufs for those
   3347 	 * frames that have been sent.
   3348 	 */
   3349 	while (sc->bge_tx_saved_considx !=
   3350 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3351 		u_int32_t		idx = 0;
   3352 
   3353 		idx = sc->bge_tx_saved_considx;
   3354 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3355 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3356 			ifp->if_opackets++;
   3357 		m = sc->bge_cdata.bge_tx_chain[idx];
   3358 		if (m != NULL) {
   3359 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3360 			dma = sc->txdma[idx];
   3361 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3362 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3363 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3364 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3365 			sc->txdma[idx] = NULL;
   3366 
   3367 			m_freem(m);
   3368 		}
   3369 		sc->bge_txcnt--;
   3370 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3371 		ifp->if_timer = 0;
   3372 	}
   3373 
   3374 	if (cur_tx != NULL)
   3375 		ifp->if_flags &= ~IFF_OACTIVE;
   3376 }
   3377 
   3378 static int
   3379 bge_intr(void *xsc)
   3380 {
   3381 	struct bge_softc *sc;
   3382 	struct ifnet *ifp;
   3383 
   3384 	sc = xsc;
   3385 	ifp = &sc->ethercom.ec_if;
   3386 
   3387 	/*
   3388 	 * Ascertain whether the interrupt is from this bge device.
   3389 	 * Do the cheap test first.
   3390 	 */
   3391 	if ((sc->bge_rdata->bge_status_block.bge_status &
   3392 	    BGE_STATFLAG_UPDATED) == 0) {
   3393 		/*
   3394 		 * Sometimes, the interrupt comes in before the
   3395 		 * DMA update of the status block (performed prior
   3396 		 * to the  interrupt itself) has completed.
   3397 		 * In that case, do the (extremely expensive!)
   3398 		 * PCI-config-space register read.
   3399 		 */
   3400 		uint32_t pcistate =
   3401 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3402 
   3403 		if (pcistate & BGE_PCISTATE_INTR_STATE)
   3404 			return (0);
   3405 
   3406 	}
   3407 	/*
   3408 	 *  If we reach here, then the interrupt is for us.
   3409 	 */
   3410 
   3411 	/* Ack interrupt and stop others from occuring. */
   3412 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3413 
   3414 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   3415 
   3416 	/*
   3417 	 * Process link state changes.
   3418 	 * Grrr. The link status word in the status block does
   3419 	 * not work correctly on the BCM5700 rev AX and BX chips,
   3420 	 * according to all available information. Hence, we have
   3421 	 * to enable MII interrupts in order to properly obtain
   3422 	 * async link changes. Unfortunately, this also means that
   3423 	 * we have to read the MAC status register to detect link
   3424 	 * changes, thereby adding an additional register access to
   3425 	 * the interrupt handler.
   3426 	 */
   3427 
   3428 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3429 		u_int32_t		status;
   3430 
   3431 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3432 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3433 			sc->bge_link = 0;
   3434 			callout_stop(&sc->bge_timeout);
   3435 			bge_tick(sc);
   3436 			/* Clear the interrupt */
   3437 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3438 			    BGE_EVTENB_MI_INTERRUPT);
   3439 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   3440 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   3441 			    BRGPHY_INTRS);
   3442 		}
   3443 	} else {
   3444 		u_int32_t		status;
   3445 
   3446 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3447 		if (status & BGE_MACSTAT_LINK_CHANGED) {
   3448 			sc->bge_link = 0;
   3449 			callout_stop(&sc->bge_timeout);
   3450 			bge_tick(sc);
   3451 			/* Clear the interrupt */
   3452 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3453 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3454 			    BGE_MACSTAT_LINK_CHANGED);
   3455 		}
   3456 	}
   3457 
   3458 	if (ifp->if_flags & IFF_RUNNING) {
   3459 		/* Check RX return ring producer/consumer */
   3460 		bge_rxeof(sc);
   3461 
   3462 		/* Check TX ring producer/consumer */
   3463 		bge_txeof(sc);
   3464 	}
   3465 
   3466 	if (sc->bge_pending_rxintr_change) {
   3467 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3468 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3469 		uint32_t junk;
   3470 
   3471 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3472 		DELAY(10);
   3473 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3474 
   3475 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3476 		DELAY(10);
   3477 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3478 
   3479 		sc->bge_pending_rxintr_change = 0;
   3480 	}
   3481 	bge_handle_events(sc);
   3482 
   3483 	/* Re-enable interrupts. */
   3484 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3485 
   3486 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3487 		bge_start(ifp);
   3488 
   3489 	return (1);
   3490 }
   3491 
   3492 static void
   3493 bge_tick(void *xsc)
   3494 {
   3495 	struct bge_softc *sc = xsc;
   3496 	struct mii_data *mii = &sc->bge_mii;
   3497 	int s;
   3498 
   3499 	s = splnet();
   3500 
   3501 	bge_stats_update(sc);
   3502 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3503 
   3504 	if (sc->bge_tbi) {
   3505 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3506 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3507 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3508 		}
   3509 	} else
   3510 		mii_tick(mii);
   3511 
   3512 	splx(s);
   3513 }
   3514 
   3515 static void
   3516 bge_stats_update(struct bge_softc *sc)
   3517 {
   3518 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3519 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3520 	bus_size_t rstats = BGE_RX_STATS;
   3521 
   3522 #define READ_RSTAT(sc, stats, stat) \
   3523 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3524 
   3525 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3526 		ifp->if_collisions +=
   3527 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3528 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3529 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3530 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3531 
   3532 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3533 			      READ_RSTAT(sc, rstats, outXoffSent));
   3534 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3535 			      READ_RSTAT(sc, rstats, outXonSent));
   3536 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3537 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3538 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3539 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3540 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3541 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3542 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3543 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3544 		return;
   3545 	}
   3546 
   3547 #undef READ_RSTAT
   3548 #define READ_STAT(sc, stats, stat) \
   3549 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3550 
   3551 	ifp->if_collisions +=
   3552 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3553 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3554 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3555 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3556 	  ifp->if_collisions;
   3557 
   3558 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3559 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3560 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3561 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3562 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3563 		      READ_STAT(sc, stats,
   3564 		      		xoffPauseFramesReceived.bge_addr_lo));
   3565 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3566 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3567 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3568 		      READ_STAT(sc, stats,
   3569 		      		macControlFramesReceived.bge_addr_lo));
   3570 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3571 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3572 
   3573 #undef READ_STAT
   3574 
   3575 #ifdef notdef
   3576 	ifp->if_collisions +=
   3577 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3578 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3579 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3580 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3581 	   ifp->if_collisions;
   3582 #endif
   3583 }
   3584 
   3585 /*
   3586  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3587  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3588  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3589  * the hardware checksum assist gives incorrect results (possibly
   3590  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3591  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3592  */
   3593 static inline int
   3594 bge_cksum_pad(struct mbuf *pkt)
   3595 {
   3596 	struct mbuf *last = NULL;
   3597 	int padlen;
   3598 
   3599 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3600 
   3601 	/* if there's only the packet-header and we can pad there, use it. */
   3602 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3603 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3604 		last = pkt;
   3605 	} else {
   3606 		/*
   3607 		 * Walk packet chain to find last mbuf. We will either
   3608 		 * pad there, or append a new mbuf and pad it
   3609 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3610 		 */
   3611 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3612 	      	       continue; /* do nothing */
   3613 		}
   3614 
   3615 		/* `last' now points to last in chain. */
   3616 		if (M_TRAILINGSPACE(last) < padlen) {
   3617 			/* Allocate new empty mbuf, pad it. Compact later. */
   3618 			struct mbuf *n;
   3619 			MGET(n, M_DONTWAIT, MT_DATA);
   3620 			if (n == NULL)
   3621 				return ENOBUFS;
   3622 			n->m_len = 0;
   3623 			last->m_next = n;
   3624 			last = n;
   3625 		}
   3626 	}
   3627 
   3628 	KDASSERT(!M_READONLY(last));
   3629 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3630 
   3631 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3632 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3633 	last->m_len += padlen;
   3634 	pkt->m_pkthdr.len += padlen;
   3635 	return 0;
   3636 }
   3637 
   3638 /*
   3639  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3640  */
   3641 static inline int
   3642 bge_compact_dma_runt(struct mbuf *pkt)
   3643 {
   3644 	struct mbuf	*m, *prev;
   3645 	int 		totlen, prevlen;
   3646 
   3647 	prev = NULL;
   3648 	totlen = 0;
   3649 	prevlen = -1;
   3650 
   3651 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3652 		int mlen = m->m_len;
   3653 		int shortfall = 8 - mlen ;
   3654 
   3655 		totlen += mlen;
   3656 		if (mlen == 0) {
   3657 			continue;
   3658 		}
   3659 		if (mlen >= 8)
   3660 			continue;
   3661 
   3662 		/* If we get here, mbuf data is too small for DMA engine.
   3663 		 * Try to fix by shuffling data to prev or next in chain.
   3664 		 * If that fails, do a compacting deep-copy of the whole chain.
   3665 		 */
   3666 
   3667 		/* Internal frag. If fits in prev, copy it there. */
   3668 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3669 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3670 			prev->m_len += mlen;
   3671 			m->m_len = 0;
   3672 			/* XXX stitch chain */
   3673 			prev->m_next = m_free(m);
   3674 			m = prev;
   3675 			continue;
   3676 		}
   3677 		else if (m->m_next != NULL &&
   3678 			     M_TRAILINGSPACE(m) >= shortfall &&
   3679 			     m->m_next->m_len >= (8 + shortfall)) {
   3680 		    /* m is writable and have enough data in next, pull up. */
   3681 
   3682 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3683 			    shortfall);
   3684 			m->m_len += shortfall;
   3685 			m->m_next->m_len -= shortfall;
   3686 			m->m_next->m_data += shortfall;
   3687 		}
   3688 		else if (m->m_next == NULL || 1) {
   3689 		  	/* Got a runt at the very end of the packet.
   3690 			 * borrow data from the tail of the preceding mbuf and
   3691 			 * update its length in-place. (The original data is still
   3692 			 * valid, so we can do this even if prev is not writable.)
   3693 			 */
   3694 
   3695 			/* if we'd make prev a runt, just move all of its data. */
   3696 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3697 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3698 
   3699 			if ((prev->m_len - shortfall) < 8)
   3700 				shortfall = prev->m_len;
   3701 
   3702 #ifdef notyet	/* just do the safe slow thing for now */
   3703 			if (!M_READONLY(m)) {
   3704 				if (M_LEADINGSPACE(m) < shorfall) {
   3705 					void *m_dat;
   3706 					m_dat = (m->m_flags & M_PKTHDR) ?
   3707 					  m->m_pktdat : m->dat;
   3708 					memmove(m_dat, mtod(m, void*), m->m_len);
   3709 					m->m_data = m_dat;
   3710 				    }
   3711 			} else
   3712 #endif	/* just do the safe slow thing */
   3713 			{
   3714 				struct mbuf * n = NULL;
   3715 				int newprevlen = prev->m_len - shortfall;
   3716 
   3717 				MGET(n, M_NOWAIT, MT_DATA);
   3718 				if (n == NULL)
   3719 				   return ENOBUFS;
   3720 				KASSERT(m->m_len + shortfall < MLEN
   3721 					/*,
   3722 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3723 
   3724 				/* first copy the data we're stealing from prev */
   3725 				memcpy(n->m_data, prev->m_data + newprevlen,
   3726 				    shortfall);
   3727 
   3728 				/* update prev->m_len accordingly */
   3729 				prev->m_len -= shortfall;
   3730 
   3731 				/* copy data from runt m */
   3732 				memcpy(n->m_data + shortfall, m->m_data,
   3733 				    m->m_len);
   3734 
   3735 				/* n holds what we stole from prev, plus m */
   3736 				n->m_len = shortfall + m->m_len;
   3737 
   3738 				/* stitch n into chain and free m */
   3739 				n->m_next = m->m_next;
   3740 				prev->m_next = n;
   3741 				/* KASSERT(m->m_next == NULL); */
   3742 				m->m_next = NULL;
   3743 				m_free(m);
   3744 				m = n;	/* for continuing loop */
   3745 			}
   3746 		}
   3747 		prevlen = m->m_len;
   3748 	}
   3749 	return 0;
   3750 }
   3751 
   3752 /*
   3753  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3754  * pointers to descriptors.
   3755  */
   3756 static int
   3757 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3758 {
   3759 	struct bge_tx_bd	*f = NULL;
   3760 	u_int32_t		frag, cur;
   3761 	u_int16_t		csum_flags = 0;
   3762 	u_int16_t		txbd_tso_flags = 0;
   3763 	struct txdmamap_pool_entry *dma;
   3764 	bus_dmamap_t dmamap;
   3765 	int			i = 0;
   3766 	struct m_tag		*mtag;
   3767 	int			use_tso, maxsegsize, error;
   3768 
   3769 	cur = frag = *txidx;
   3770 
   3771 	if (m_head->m_pkthdr.csum_flags) {
   3772 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3773 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3774 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3775 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3776 	}
   3777 
   3778 	/*
   3779 	 * If we were asked to do an outboard checksum, and the NIC
   3780 	 * has the bug where it sometimes adds in the Ethernet padding,
   3781 	 * explicitly pad with zeros so the cksum will be correct either way.
   3782 	 * (For now, do this for all chip versions, until newer
   3783 	 * are confirmed to not require the workaround.)
   3784 	 */
   3785 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3786 #ifdef notyet
   3787 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3788 #endif
   3789 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3790 		goto check_dma_bug;
   3791 
   3792 	if (bge_cksum_pad(m_head) != 0) {
   3793 	    return ENOBUFS;
   3794 	}
   3795 
   3796 check_dma_bug:
   3797 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3798 		goto doit;
   3799 	/*
   3800 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3801 	 * less than eight bytes.  If we encounter a teeny mbuf
   3802 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3803 	 */
   3804 	if (bge_compact_dma_runt(m_head) != 0)
   3805 		return ENOBUFS;
   3806 
   3807 doit:
   3808 	dma = SLIST_FIRST(&sc->txdma_list);
   3809 	if (dma == NULL)
   3810 		return ENOBUFS;
   3811 	dmamap = dma->dmamap;
   3812 
   3813 	/*
   3814 	 * Set up any necessary TSO state before we start packing...
   3815 	 */
   3816 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3817 	if (!use_tso) {
   3818 		maxsegsize = 0;
   3819 	} else {	/* TSO setup */
   3820 		unsigned  mss;
   3821 		struct ether_header *eh;
   3822 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3823 		struct mbuf * m0 = m_head;
   3824 		struct ip *ip;
   3825 		struct tcphdr *th;
   3826 		int iphl, hlen;
   3827 
   3828 		/*
   3829 		 * XXX It would be nice if the mbuf pkthdr had offset
   3830 		 * fields for the protocol headers.
   3831 		 */
   3832 
   3833 		eh = mtod(m0, struct ether_header *);
   3834 		switch (htons(eh->ether_type)) {
   3835 		case ETHERTYPE_IP:
   3836 			offset = ETHER_HDR_LEN;
   3837 			break;
   3838 
   3839 		case ETHERTYPE_VLAN:
   3840 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3841 			break;
   3842 
   3843 		default:
   3844 			/*
   3845 			 * Don't support this protocol or encapsulation.
   3846 			 */
   3847 			return (ENOBUFS);
   3848 		}
   3849 
   3850 		/*
   3851 		 * TCP/IP headers are in the first mbuf; we can do
   3852 		 * this the easy way.
   3853 		 */
   3854 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3855 		hlen = iphl + offset;
   3856 		if (__predict_false(m0->m_len <
   3857 				    (hlen + sizeof(struct tcphdr)))) {
   3858 
   3859 			aprint_debug_dev(sc->bge_dev,
   3860 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3861 			    "not handled yet\n",
   3862 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3863 #ifdef NOTYET
   3864 			/*
   3865 			 * XXX jonathan (at) NetBSD.org: untested.
   3866 			 * how to force  this branch to be taken?
   3867 			 */
   3868 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3869 
   3870 			m_copydata(m0, offset, sizeof(ip), &ip);
   3871 			m_copydata(m0, hlen, sizeof(th), &th);
   3872 
   3873 			ip.ip_len = 0;
   3874 
   3875 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3876 			    sizeof(ip.ip_len), &ip.ip_len);
   3877 
   3878 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3879 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3880 
   3881 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3882 			    sizeof(th.th_sum), &th.th_sum);
   3883 
   3884 			hlen += th.th_off << 2;
   3885 			iptcp_opt_words	= hlen;
   3886 #else
   3887 			/*
   3888 			 * if_wm "hard" case not yet supported, can we not
   3889 			 * mandate it out of existence?
   3890 			 */
   3891 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3892 
   3893 			return ENOBUFS;
   3894 #endif
   3895 		} else {
   3896 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3897 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3898 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3899 
   3900 			/* Total IP/TCP options, in 32-bit words */
   3901 			iptcp_opt_words = (ip_tcp_hlen
   3902 					   - sizeof(struct tcphdr)
   3903 					   - sizeof(struct ip)) >> 2;
   3904 		}
   3905 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3906 			th->th_sum = 0;
   3907 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3908 		} else {
   3909 			/*
   3910 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3911 			 * Requires TSO firmware patch for 5701/5703/5704.
   3912 			 */
   3913 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3914 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3915 		}
   3916 
   3917 		mss = m_head->m_pkthdr.segsz;
   3918 		txbd_tso_flags |=
   3919 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3920 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3921 
   3922 		/*
   3923 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3924 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3925 		 * the NIC copies 40 bytes of IP/TCP header from the
   3926 		 * supplied header into the IP/TCP header portion of
   3927 		 * each post-TSO-segment. If the supplied packet has IP or
   3928 		 * TCP options, we need to tell the NIC to copy those extra
   3929 		 * bytes into each  post-TSO header, in addition to the normal
   3930 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3931 		 * Unfortunately, the driver encoding of option length
   3932 		 * varies across different ASIC families.
   3933 		 */
   3934 		tcp_seg_flags = 0;
   3935 		if (iptcp_opt_words) {
   3936 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3937 				tcp_seg_flags =
   3938 					iptcp_opt_words << 11;
   3939 			} else {
   3940 				txbd_tso_flags |=
   3941 					iptcp_opt_words << 12;
   3942 			}
   3943 		}
   3944 		maxsegsize = mss | tcp_seg_flags;
   3945 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3946 
   3947 	}	/* TSO setup */
   3948 
   3949 	/*
   3950 	 * Start packing the mbufs in this chain into
   3951 	 * the fragment pointers. Stop when we run out
   3952 	 * of fragments or hit the end of the mbuf chain.
   3953 	 */
   3954 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3955 	    BUS_DMA_NOWAIT);
   3956 	if (error) {
   3957 		return(ENOBUFS);
   3958 	}
   3959 	/*
   3960 	 * Sanity check: avoid coming within 16 descriptors
   3961 	 * of the end of the ring.
   3962 	 */
   3963 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3964 		BGE_TSO_PRINTF(("%s: "
   3965 		    " dmamap_load_mbuf too close to ring wrap\n",
   3966 		    device_xname(sc->bge_dev)));
   3967 		goto fail_unload;
   3968 	}
   3969 
   3970 	mtag = sc->ethercom.ec_nvlans ?
   3971 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3972 
   3973 
   3974 	/* Iterate over dmap-map fragments. */
   3975 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3976 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3977 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3978 			break;
   3979 
   3980 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3981 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3982 
   3983 		/*
   3984 		 * For 5751 and follow-ons, for TSO we must turn
   3985 		 * off checksum-assist flag in the tx-descr, and
   3986 		 * supply the ASIC-revision-specific encoding
   3987 		 * of TSO flags and segsize.
   3988 		 */
   3989 		if (use_tso) {
   3990 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3991 				f->bge_rsvd = maxsegsize;
   3992 				f->bge_flags = csum_flags | txbd_tso_flags;
   3993 			} else {
   3994 				f->bge_rsvd = 0;
   3995 				f->bge_flags =
   3996 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3997 			}
   3998 		} else {
   3999 			f->bge_rsvd = 0;
   4000 			f->bge_flags = csum_flags;
   4001 		}
   4002 
   4003 		if (mtag != NULL) {
   4004 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4005 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4006 		} else {
   4007 			f->bge_vlan_tag = 0;
   4008 		}
   4009 		cur = frag;
   4010 		BGE_INC(frag, BGE_TX_RING_CNT);
   4011 	}
   4012 
   4013 	if (i < dmamap->dm_nsegs) {
   4014 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4015 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4016 		goto fail_unload;
   4017 	}
   4018 
   4019 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4020 	    BUS_DMASYNC_PREWRITE);
   4021 
   4022 	if (frag == sc->bge_tx_saved_considx) {
   4023 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4024 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4025 
   4026 		goto fail_unload;
   4027 	}
   4028 
   4029 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4030 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4031 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4032 	sc->txdma[cur] = dma;
   4033 	sc->bge_txcnt += dmamap->dm_nsegs;
   4034 
   4035 	*txidx = frag;
   4036 
   4037 	return(0);
   4038 
   4039  fail_unload:
   4040 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4041 
   4042 	return ENOBUFS;
   4043 }
   4044 
   4045 /*
   4046  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4047  * to the mbuf data regions directly in the transmit descriptors.
   4048  */
   4049 static void
   4050 bge_start(struct ifnet *ifp)
   4051 {
   4052 	struct bge_softc *sc;
   4053 	struct mbuf *m_head = NULL;
   4054 	u_int32_t prodidx;
   4055 	int pkts = 0;
   4056 
   4057 	sc = ifp->if_softc;
   4058 
   4059 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4060 		return;
   4061 
   4062 	prodidx = sc->bge_tx_prodidx;
   4063 
   4064 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4065 		IFQ_POLL(&ifp->if_snd, m_head);
   4066 		if (m_head == NULL)
   4067 			break;
   4068 
   4069 #if 0
   4070 		/*
   4071 		 * XXX
   4072 		 * safety overkill.  If this is a fragmented packet chain
   4073 		 * with delayed TCP/UDP checksums, then only encapsulate
   4074 		 * it if we have enough descriptors to handle the entire
   4075 		 * chain at once.
   4076 		 * (paranoia -- may not actually be needed)
   4077 		 */
   4078 		if (m_head->m_flags & M_FIRSTFRAG &&
   4079 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4080 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4081 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4082 				ifp->if_flags |= IFF_OACTIVE;
   4083 				break;
   4084 			}
   4085 		}
   4086 #endif
   4087 
   4088 		/*
   4089 		 * Pack the data into the transmit ring. If we
   4090 		 * don't have room, set the OACTIVE flag and wait
   4091 		 * for the NIC to drain the ring.
   4092 		 */
   4093 		if (bge_encap(sc, m_head, &prodidx)) {
   4094 			ifp->if_flags |= IFF_OACTIVE;
   4095 			break;
   4096 		}
   4097 
   4098 		/* now we are committed to transmit the packet */
   4099 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4100 		pkts++;
   4101 
   4102 #if NBPFILTER > 0
   4103 		/*
   4104 		 * If there's a BPF listener, bounce a copy of this frame
   4105 		 * to him.
   4106 		 */
   4107 		if (ifp->if_bpf)
   4108 			bpf_mtap(ifp->if_bpf, m_head);
   4109 #endif
   4110 	}
   4111 	if (pkts == 0)
   4112 		return;
   4113 
   4114 	/* Transmit */
   4115 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4116 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   4117 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4118 
   4119 	sc->bge_tx_prodidx = prodidx;
   4120 
   4121 	/*
   4122 	 * Set a timeout in case the chip goes out to lunch.
   4123 	 */
   4124 	ifp->if_timer = 5;
   4125 }
   4126 
   4127 static int
   4128 bge_init(struct ifnet *ifp)
   4129 {
   4130 	struct bge_softc *sc = ifp->if_softc;
   4131 	const u_int16_t *m;
   4132 	int s, error = 0;
   4133 
   4134 	s = splnet();
   4135 
   4136 	ifp = &sc->ethercom.ec_if;
   4137 
   4138 	/* Cancel pending I/O and flush buffers. */
   4139 	bge_stop(ifp, 0);
   4140 	bge_reset(sc);
   4141 	bge_chipinit(sc);
   4142 
   4143 	/*
   4144 	 * Init the various state machines, ring
   4145 	 * control blocks and firmware.
   4146 	 */
   4147 	error = bge_blockinit(sc);
   4148 	if (error != 0) {
   4149 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4150 		    error);
   4151 		splx(s);
   4152 		return error;
   4153 	}
   4154 
   4155 	ifp = &sc->ethercom.ec_if;
   4156 
   4157 	/* Specify MTU. */
   4158 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4159 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4160 
   4161 	/* Load our MAC address. */
   4162 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4163 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4164 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4165 
   4166 	/* Enable or disable promiscuous mode as needed. */
   4167 	if (ifp->if_flags & IFF_PROMISC) {
   4168 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4169 	} else {
   4170 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4171 	}
   4172 
   4173 	/* Program multicast filter. */
   4174 	bge_setmulti(sc);
   4175 
   4176 	/* Init RX ring. */
   4177 	bge_init_rx_ring_std(sc);
   4178 
   4179 	/* Init jumbo RX ring. */
   4180 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4181 		bge_init_rx_ring_jumbo(sc);
   4182 
   4183 	/* Init our RX return ring index */
   4184 	sc->bge_rx_saved_considx = 0;
   4185 
   4186 	/* Init TX ring. */
   4187 	bge_init_tx_ring(sc);
   4188 
   4189 	/* Turn on transmitter */
   4190 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4191 
   4192 	/* Turn on receiver */
   4193 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4194 
   4195 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4196 
   4197 	/* Tell firmware we're alive. */
   4198 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4199 
   4200 	/* Enable host interrupts. */
   4201 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4202 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4203 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4204 
   4205 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4206 		goto out;
   4207 
   4208 	ifp->if_flags |= IFF_RUNNING;
   4209 	ifp->if_flags &= ~IFF_OACTIVE;
   4210 
   4211 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4212 
   4213 out:
   4214 	splx(s);
   4215 
   4216 	return error;
   4217 }
   4218 
   4219 /*
   4220  * Set media options.
   4221  */
   4222 static int
   4223 bge_ifmedia_upd(struct ifnet *ifp)
   4224 {
   4225 	struct bge_softc *sc = ifp->if_softc;
   4226 	struct mii_data *mii = &sc->bge_mii;
   4227 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4228 	int rc;
   4229 
   4230 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4231 	if (sc->bge_tbi) {
   4232 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4233 			return(EINVAL);
   4234 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   4235 		case IFM_AUTO:
   4236 			break;
   4237 		case IFM_1000_SX:
   4238 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4239 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4240 				    BGE_MACMODE_HALF_DUPLEX);
   4241 			} else {
   4242 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4243 				    BGE_MACMODE_HALF_DUPLEX);
   4244 			}
   4245 			break;
   4246 		default:
   4247 			return(EINVAL);
   4248 		}
   4249 		/* XXX 802.3x flow control for 1000BASE-SX */
   4250 		return(0);
   4251 	}
   4252 
   4253 	sc->bge_link = 0;
   4254 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4255 		return 0;
   4256 	return rc;
   4257 }
   4258 
   4259 /*
   4260  * Report current media status.
   4261  */
   4262 static void
   4263 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4264 {
   4265 	struct bge_softc *sc = ifp->if_softc;
   4266 	struct mii_data *mii = &sc->bge_mii;
   4267 
   4268 	if (sc->bge_tbi) {
   4269 		ifmr->ifm_status = IFM_AVALID;
   4270 		ifmr->ifm_active = IFM_ETHER;
   4271 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4272 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4273 			ifmr->ifm_status |= IFM_ACTIVE;
   4274 		ifmr->ifm_active |= IFM_1000_SX;
   4275 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4276 			ifmr->ifm_active |= IFM_HDX;
   4277 		else
   4278 			ifmr->ifm_active |= IFM_FDX;
   4279 		return;
   4280 	}
   4281 
   4282 	mii_pollstat(mii);
   4283 	ifmr->ifm_status = mii->mii_media_status;
   4284 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4285 	    sc->bge_flowflags;
   4286 }
   4287 
   4288 static int
   4289 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4290 {
   4291 	struct bge_softc *sc = ifp->if_softc;
   4292 	struct ifreq *ifr = (struct ifreq *) data;
   4293 	int s, error = 0;
   4294 	struct mii_data *mii;
   4295 
   4296 	s = splnet();
   4297 
   4298 	switch(command) {
   4299 	case SIOCSIFFLAGS:
   4300 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4301 			break;
   4302 		if (ifp->if_flags & IFF_UP) {
   4303 			/*
   4304 			 * If only the state of the PROMISC flag changed,
   4305 			 * then just use the 'set promisc mode' command
   4306 			 * instead of reinitializing the entire NIC. Doing
   4307 			 * a full re-init means reloading the firmware and
   4308 			 * waiting for it to start up, which may take a
   4309 			 * second or two.
   4310 			 */
   4311 			if (ifp->if_flags & IFF_RUNNING &&
   4312 			    ifp->if_flags & IFF_PROMISC &&
   4313 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4314 				BGE_SETBIT(sc, BGE_RX_MODE,
   4315 				    BGE_RXMODE_RX_PROMISC);
   4316 			} else if (ifp->if_flags & IFF_RUNNING &&
   4317 			    !(ifp->if_flags & IFF_PROMISC) &&
   4318 			    sc->bge_if_flags & IFF_PROMISC) {
   4319 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4320 				    BGE_RXMODE_RX_PROMISC);
   4321 			} else if (!(sc->bge_if_flags & IFF_UP))
   4322 				bge_init(ifp);
   4323 		} else {
   4324 			if (ifp->if_flags & IFF_RUNNING)
   4325 				bge_stop(ifp, 1);
   4326 		}
   4327 		sc->bge_if_flags = ifp->if_flags;
   4328 		error = 0;
   4329 		break;
   4330 	case SIOCSIFMEDIA:
   4331 		/* XXX Flow control is not supported for 1000BASE-SX */
   4332 		if (sc->bge_tbi) {
   4333 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4334 			sc->bge_flowflags = 0;
   4335 		}
   4336 
   4337 		/* Flow control requires full-duplex mode. */
   4338 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4339 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4340 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4341 		}
   4342 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4343 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4344 				/* We an do both TXPAUSE and RXPAUSE. */
   4345 				ifr->ifr_media |=
   4346 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4347 			}
   4348 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4349 		}
   4350 		/* FALLTHROUGH */
   4351 	case SIOCGIFMEDIA:
   4352 		if (sc->bge_tbi) {
   4353 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4354 			    command);
   4355 		} else {
   4356 			mii = &sc->bge_mii;
   4357 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4358 			    command);
   4359 		}
   4360 		break;
   4361 	default:
   4362 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4363 			break;
   4364 
   4365 		error = 0;
   4366 
   4367 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4368 			;
   4369 		else if (ifp->if_flags & IFF_RUNNING)
   4370 			bge_setmulti(sc);
   4371 		break;
   4372 	}
   4373 
   4374 	splx(s);
   4375 
   4376 	return(error);
   4377 }
   4378 
   4379 static void
   4380 bge_watchdog(struct ifnet *ifp)
   4381 {
   4382 	struct bge_softc *sc;
   4383 
   4384 	sc = ifp->if_softc;
   4385 
   4386 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4387 
   4388 	ifp->if_flags &= ~IFF_RUNNING;
   4389 	bge_init(ifp);
   4390 
   4391 	ifp->if_oerrors++;
   4392 }
   4393 
   4394 static void
   4395 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4396 {
   4397 	int i;
   4398 
   4399 	BGE_CLRBIT(sc, reg, bit);
   4400 
   4401 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4402 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4403 			return;
   4404 		delay(100);
   4405 		if (sc->bge_pcie)
   4406 		  DELAY(1000);
   4407 	}
   4408 
   4409 	aprint_error_dev(sc->bge_dev,
   4410 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
   4411 }
   4412 
   4413 /*
   4414  * Stop the adapter and free any mbufs allocated to the
   4415  * RX and TX lists.
   4416  */
   4417 static void
   4418 bge_stop(struct ifnet *ifp, int disable)
   4419 {
   4420 	struct bge_softc *sc = ifp->if_softc;
   4421 
   4422 	callout_stop(&sc->bge_timeout);
   4423 
   4424 	/*
   4425 	 * Disable all of the receiver blocks
   4426 	 */
   4427 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4428 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4429 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4430 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4431 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4432 	}
   4433 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4434 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4435 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4436 
   4437 	/*
   4438 	 * Disable all of the transmit blocks
   4439 	 */
   4440 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4441 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4442 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4443 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4444 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4445 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4446 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4447 	}
   4448 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4449 
   4450 	/*
   4451 	 * Shut down all of the memory managers and related
   4452 	 * state machines.
   4453 	 */
   4454 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4455 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4456 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4457 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4458 	}
   4459 
   4460 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4461 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4462 
   4463 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   4464 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4465 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4466 	}
   4467 
   4468 	/* Disable host interrupts. */
   4469 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4470 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4471 
   4472 	/*
   4473 	 * Tell firmware we're shutting down.
   4474 	 */
   4475 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4476 
   4477 	/* Free the RX lists. */
   4478 	bge_free_rx_ring_std(sc);
   4479 
   4480 	/* Free jumbo RX list. */
   4481 	bge_free_rx_ring_jumbo(sc);
   4482 
   4483 	/* Free TX buffers. */
   4484 	bge_free_tx_ring(sc);
   4485 
   4486 	/*
   4487 	 * Isolate/power down the PHY.
   4488 	 */
   4489 	if (!sc->bge_tbi)
   4490 		mii_down(&sc->bge_mii);
   4491 
   4492 	sc->bge_link = 0;
   4493 
   4494 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4495 
   4496 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4497 }
   4498 
   4499 static int
   4500 sysctl_bge_verify(SYSCTLFN_ARGS)
   4501 {
   4502 	int error, t;
   4503 	struct sysctlnode node;
   4504 
   4505 	node = *rnode;
   4506 	t = *(int*)rnode->sysctl_data;
   4507 	node.sysctl_data = &t;
   4508 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4509 	if (error || newp == NULL)
   4510 		return (error);
   4511 
   4512 #if 0
   4513 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4514 	    node.sysctl_num, rnode->sysctl_num));
   4515 #endif
   4516 
   4517 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4518 		if (t < 0 || t >= NBGE_RX_THRESH)
   4519 			return (EINVAL);
   4520 		bge_update_all_threshes(t);
   4521 	} else
   4522 		return (EINVAL);
   4523 
   4524 	*(int*)rnode->sysctl_data = t;
   4525 
   4526 	return (0);
   4527 }
   4528 
   4529 /*
   4530  * Set up sysctl(3) MIB, hw.bge.*.
   4531  *
   4532  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4533  */
   4534 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4535 {
   4536 	int rc, bge_root_num;
   4537 	const struct sysctlnode *node;
   4538 
   4539 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4540 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4541 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4542 		goto err;
   4543 	}
   4544 
   4545 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4546 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4547 	    SYSCTL_DESCR("BGE interface controls"),
   4548 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4549 		goto err;
   4550 	}
   4551 
   4552 	bge_root_num = node->sysctl_num;
   4553 
   4554 	/* BGE Rx interrupt mitigation level */
   4555 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4556 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4557 	    CTLTYPE_INT, "rx_lvl",
   4558 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4559 	    sysctl_bge_verify, 0,
   4560 	    &bge_rx_thresh_lvl,
   4561 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4562 	    CTL_EOL)) != 0) {
   4563 		goto err;
   4564 	}
   4565 
   4566 	bge_rxthresh_nodenum = node->sysctl_num;
   4567 
   4568 	return;
   4569 
   4570 err:
   4571 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4572 }
   4573 
   4574 static int
   4575 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
   4576 {
   4577 	u_int32_t mac_addr;
   4578 
   4579 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4580 	if ((mac_addr >> 16) == 0x484b) {
   4581 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4582 		ether_addr[1] = (uint8_t)mac_addr;
   4583 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4584 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4585 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4586 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4587 		ether_addr[5] = (uint8_t)mac_addr;
   4588 		return (0);
   4589 	}
   4590 	return (1);
   4591 }
   4592 
   4593 static int
   4594 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
   4595 {
   4596 	int mac_offset = BGE_EE_MAC_OFFSET;
   4597 
   4598 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4599 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4600 	}
   4601 
   4602 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4603 	    ETHER_ADDR_LEN));
   4604 }
   4605 
   4606 static int
   4607 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
   4608 {
   4609 
   4610 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4611 		return (1);
   4612 	}
   4613 
   4614 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4615 	   ETHER_ADDR_LEN));
   4616 }
   4617 
   4618 static int
   4619 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
   4620 {
   4621 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4622 		/* NOTE: Order is critical */
   4623 		bge_get_eaddr_mem,
   4624 		bge_get_eaddr_nvram,
   4625 		bge_get_eaddr_eeprom,
   4626 		NULL
   4627 	};
   4628 	const bge_eaddr_fcn_t *func;
   4629 
   4630 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4631 		if ((*func)(sc, eaddr) == 0)
   4632 			break;
   4633 	}
   4634 	return (*func == NULL ? ENXIO : 0);
   4635 }
   4636