if_bge.c revision 1.16 1 /* $NetBSD: if_bge.c,v 1.16 2002/07/13 22:21:20 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 *
46 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
47 * Senior Engineer, Wind River Systems
48 */
49
50 /*
51 * The Broadcom BCM5700 is based on technology originally developed by
52 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
53 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
54 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
55 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
56 * frames, highly configurable RX filtering, and 16 RX and TX queues
57 * (which, along with RX filter rules, can be used for QOS applications).
58 * Other features, such as TCP segmentation, may be available as part
59 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
60 * firmware images can be stored in hardware and need not be compiled
61 * into the driver.
62 *
63 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
64 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
65 *
66 * The BCM5701 is a single-chip solution incorporating both the BCM5700
67 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
68 * does not support external SSRAM.
69 *
70 * Broadcom also produces a variation of the BCM5700 under the "Altima"
71 * brand name, which is functionally similar but lacks PCI-X support.
72 *
73 * Without external SSRAM, you can only have at most 4 TX rings,
74 * and the use of the mini RX ring is disabled. This seems to imply
75 * that these features are simply not available on the BCM5701. As a
76 * result, this driver does not implement any support for the mini RX
77 * ring.
78 */
79
80 #include "bpfilter.h"
81 #include "vlan.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/device.h>
91 #include <sys/socket.h>
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97
98 #ifdef INET
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/in_var.h>
102 #include <netinet/ip.h>
103 #endif
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #include <dev/mii/miidevs.h>
116 #include <dev/mii/brgphyreg.h>
117
118 #include <dev/pci/if_bgereg.h>
119
120 #include <uvm/uvm_extern.h>
121
122 /* #define BGE_CHECKSUM */
123
124 int bge_probe(struct device *, struct cfdata *, void *);
125 void bge_attach(struct device *, struct device *, void *);
126 void bge_release_resources(struct bge_softc *);
127 void bge_txeof(struct bge_softc *);
128 void bge_rxeof(struct bge_softc *);
129
130 void bge_tick(void *);
131 void bge_stats_update(struct bge_softc *);
132 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
133
134 int bge_intr(void *);
135 void bge_start(struct ifnet *);
136 int bge_ioctl(struct ifnet *, u_long, caddr_t);
137 int bge_init(struct ifnet *);
138 void bge_stop(struct bge_softc *);
139 void bge_watchdog(struct ifnet *);
140 void bge_shutdown(void *);
141 int bge_ifmedia_upd(struct ifnet *);
142 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143
144 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
145 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
146
147 void bge_setmulti(struct bge_softc *);
148
149 void bge_handle_events(struct bge_softc *);
150 int bge_alloc_jumbo_mem(struct bge_softc *);
151 void bge_free_jumbo_mem(struct bge_softc *);
152 void *bge_jalloc(struct bge_softc *);
153 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
154 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
155 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
156 int bge_init_rx_ring_std(struct bge_softc *);
157 void bge_free_rx_ring_std(struct bge_softc *);
158 int bge_init_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_rx_ring_jumbo(struct bge_softc *);
160 void bge_free_tx_ring(struct bge_softc *);
161 int bge_init_tx_ring(struct bge_softc *);
162
163 int bge_chipinit(struct bge_softc *);
164 int bge_blockinit(struct bge_softc *);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 struct cfattach bge_ca = {
199 sizeof(struct bge_softc), bge_probe, bge_attach
200 };
201
202 u_int32_t
203 bge_readmem_ind(sc, off)
204 struct bge_softc *sc;
205 int off;
206 {
207 struct pci_attach_args *pa = &(sc->bge_pa);
208 pcireg_t val;
209
210 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
211 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
212 return val;
213 }
214
215 void
216 bge_writemem_ind(sc, off, val)
217 struct bge_softc *sc;
218 int off, val;
219 {
220 struct pci_attach_args *pa = &(sc->bge_pa);
221
222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
223 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
224 }
225
226 #ifdef notdef
227 u_int32_t
228 bge_readreg_ind(sc, off)
229 struct bge_softc *sc;
230 int off;
231 {
232 struct pci_attach_args *pa = &(sc->bge_pa);
233
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
235 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
236 }
237 #endif
238
239 void
240 bge_writereg_ind(sc, off, val)
241 struct bge_softc *sc;
242 int off, val;
243 {
244 struct pci_attach_args *pa = &(sc->bge_pa);
245
246 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
247 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
248 }
249
250 #ifdef notdef
251 u_int8_t
252 bge_vpd_readbyte(sc, addr)
253 struct bge_softc *sc;
254 int addr;
255 {
256 int i;
257 u_int32_t val;
258 struct pci_attach_args *pa = &(sc->bge_pa);
259
260 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
261 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
262 DELAY(10);
263 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
264 BGE_VPD_FLAG)
265 break;
266 }
267
268 if (i == BGE_TIMEOUT) {
269 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
270 return(0);
271 }
272
273 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
274
275 return((val >> ((addr % 4) * 8)) & 0xFF);
276 }
277
278 void
279 bge_vpd_read_res(sc, res, addr)
280 struct bge_softc *sc;
281 struct vpd_res *res;
282 int addr;
283 {
284 int i;
285 u_int8_t *ptr;
286
287 ptr = (u_int8_t *)res;
288 for (i = 0; i < sizeof(struct vpd_res); i++)
289 ptr[i] = bge_vpd_readbyte(sc, i + addr);
290 }
291
292 void
293 bge_vpd_read(sc)
294 struct bge_softc *sc;
295 {
296 int pos = 0, i;
297 struct vpd_res res;
298
299 if (sc->bge_vpd_prodname != NULL)
300 free(sc->bge_vpd_prodname, M_DEVBUF);
301 if (sc->bge_vpd_readonly != NULL)
302 free(sc->bge_vpd_readonly, M_DEVBUF);
303 sc->bge_vpd_prodname = NULL;
304 sc->bge_vpd_readonly = NULL;
305
306 bge_vpd_read_res(sc, &res, pos);
307
308 if (res.vr_id != VPD_RES_ID) {
309 printf("%s: bad VPD resource id: expected %x got %x\n",
310 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
311 return;
312 }
313
314 pos += sizeof(res);
315 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
316 if (sc->bge_vpd_prodname == NULL)
317 panic("bge_vpd_read");
318 for (i = 0; i < res.vr_len; i++)
319 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
320 sc->bge_vpd_prodname[i] = '\0';
321 pos += i;
322
323 bge_vpd_read_res(sc, &res, pos);
324
325 if (res.vr_id != VPD_RES_READ) {
326 printf("%s: bad VPD resource id: expected %x got %x\n",
327 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
328 return;
329 }
330
331 pos += sizeof(res);
332 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
333 if (sc->bge_vpd_readonly == NULL)
334 panic("bge_vpd_read");
335 for (i = 0; i < res.vr_len + 1; i++)
336 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
337 }
338 #endif
339
340 /*
341 * Read a byte of data stored in the EEPROM at address 'addr.' The
342 * BCM570x supports both the traditional bitbang interface and an
343 * auto access interface for reading the EEPROM. We use the auto
344 * access method.
345 */
346 u_int8_t
347 bge_eeprom_getbyte(sc, addr, dest)
348 struct bge_softc *sc;
349 int addr;
350 u_int8_t *dest;
351 {
352 int i;
353 u_int32_t byte = 0;
354
355 /*
356 * Enable use of auto EEPROM access so we can avoid
357 * having to use the bitbang method.
358 */
359 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
360
361 /* Reset the EEPROM, load the clock period. */
362 CSR_WRITE_4(sc, BGE_EE_ADDR,
363 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
364 DELAY(20);
365
366 /* Issue the read EEPROM command. */
367 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
368
369 /* Wait for completion */
370 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
371 DELAY(10);
372 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
373 break;
374 }
375
376 if (i == BGE_TIMEOUT) {
377 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
378 return(0);
379 }
380
381 /* Get result. */
382 byte = CSR_READ_4(sc, BGE_EE_DATA);
383
384 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
385
386 return(0);
387 }
388
389 /*
390 * Read a sequence of bytes from the EEPROM.
391 */
392 int
393 bge_read_eeprom(sc, dest, off, cnt)
394 struct bge_softc *sc;
395 caddr_t dest;
396 int off;
397 int cnt;
398 {
399 int err = 0, i;
400 u_int8_t byte = 0;
401
402 for (i = 0; i < cnt; i++) {
403 err = bge_eeprom_getbyte(sc, off + i, &byte);
404 if (err)
405 break;
406 *(dest + i) = byte;
407 }
408
409 return(err ? 1 : 0);
410 }
411
412 int
413 bge_miibus_readreg(dev, phy, reg)
414 struct device *dev;
415 int phy, reg;
416 {
417 struct bge_softc *sc = (struct bge_softc *)dev;
418 struct ifnet *ifp;
419 u_int32_t val;
420 int i;
421
422 ifp = &sc->ethercom.ec_if;
423
424 if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
425 return(0);
426
427 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
428 BGE_MIPHY(phy)|BGE_MIREG(reg));
429
430 for (i = 0; i < BGE_TIMEOUT; i++) {
431 val = CSR_READ_4(sc, BGE_MI_COMM);
432 if (!(val & BGE_MICOMM_BUSY))
433 break;
434 delay(10);
435 }
436
437 if (i == BGE_TIMEOUT) {
438 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
439 return(0);
440 }
441
442 val = CSR_READ_4(sc, BGE_MI_COMM);
443
444 if (val & BGE_MICOMM_READFAIL)
445 return(0);
446
447 return(val & 0xFFFF);
448 }
449
450 void
451 bge_miibus_writereg(dev, phy, reg, val)
452 struct device *dev;
453 int phy, reg, val;
454 {
455 struct bge_softc *sc = (struct bge_softc *)dev;
456 int i;
457
458 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
459 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
460
461 for (i = 0; i < BGE_TIMEOUT; i++) {
462 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
463 break;
464 delay(10);
465 }
466
467 if (i == BGE_TIMEOUT) {
468 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
469 }
470 }
471
472 void
473 bge_miibus_statchg(dev)
474 struct device *dev;
475 {
476 struct bge_softc *sc = (struct bge_softc *)dev;
477 struct mii_data *mii = &sc->bge_mii;
478
479 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
480 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
481 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
482 } else {
483 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
484 }
485
486 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
487 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
488 } else {
489 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
490 }
491 }
492
493 /*
494 * Handle events that have triggered interrupts.
495 */
496 void
497 bge_handle_events(sc)
498 struct bge_softc *sc;
499 {
500
501 return;
502 }
503
504 /*
505 * Memory management for jumbo frames.
506 */
507
508 int
509 bge_alloc_jumbo_mem(sc)
510 struct bge_softc *sc;
511 {
512 caddr_t ptr, kva;
513 bus_dma_segment_t seg;
514 int i, rseg, state, error;
515 struct bge_jpool_entry *entry;
516
517 state = error = 0;
518
519 /* Grab a big chunk o' storage. */
520 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
521 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
522 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
523 return ENOBUFS;
524 }
525
526 state = 1;
527 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
528 BUS_DMA_NOWAIT)) {
529 printf("%s: can't map dma buffers (%d bytes)\n",
530 sc->bge_dev.dv_xname, (int)BGE_JMEM);
531 error = ENOBUFS;
532 goto out;
533 }
534
535 state = 2;
536 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
537 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
538 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
539 error = ENOBUFS;
540 goto out;
541 }
542
543 state = 3;
544 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
545 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
546 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
547 error = ENOBUFS;
548 goto out;
549 }
550
551 state = 4;
552 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
553 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
554
555 SLIST_INIT(&sc->bge_jfree_listhead);
556 SLIST_INIT(&sc->bge_jinuse_listhead);
557
558 /*
559 * Now divide it up into 9K pieces and save the addresses
560 * in an array.
561 */
562 ptr = sc->bge_cdata.bge_jumbo_buf;
563 for (i = 0; i < BGE_JSLOTS; i++) {
564 sc->bge_cdata.bge_jslots[i] = ptr;
565 ptr += BGE_JLEN;
566 entry = malloc(sizeof(struct bge_jpool_entry),
567 M_DEVBUF, M_NOWAIT);
568 if (entry == NULL) {
569 printf("%s: no memory for jumbo buffer queue!\n",
570 sc->bge_dev.dv_xname);
571 error = ENOBUFS;
572 goto out;
573 }
574 entry->slot = i;
575 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
576 entry, jpool_entries);
577 }
578 out:
579 if (error != 0) {
580 switch (state) {
581 case 4:
582 bus_dmamap_unload(sc->bge_dmatag,
583 sc->bge_cdata.bge_rx_jumbo_map);
584 case 3:
585 bus_dmamap_destroy(sc->bge_dmatag,
586 sc->bge_cdata.bge_rx_jumbo_map);
587 case 2:
588 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
589 case 1:
590 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
591 break;
592 default:
593 break;
594 }
595 }
596
597 return error;
598 }
599
600 /*
601 * Allocate a jumbo buffer.
602 */
603 void *
604 bge_jalloc(sc)
605 struct bge_softc *sc;
606 {
607 struct bge_jpool_entry *entry;
608
609 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
610
611 if (entry == NULL) {
612 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
613 return(NULL);
614 }
615
616 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
617 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
618 return(sc->bge_cdata.bge_jslots[entry->slot]);
619 }
620
621 /*
622 * Release a jumbo buffer.
623 */
624 void
625 bge_jfree(m, buf, size, arg)
626 struct mbuf *m;
627 caddr_t buf;
628 u_int size;
629 void *arg;
630 {
631 struct bge_jpool_entry *entry;
632 struct bge_softc *sc;
633 int i, s;
634
635 /* Extract the softc struct pointer. */
636 sc = (struct bge_softc *)arg;
637
638 if (sc == NULL)
639 panic("bge_jfree: can't find softc pointer!");
640
641 /* calculate the slot this buffer belongs to */
642
643 i = ((caddr_t)buf
644 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
645
646 if ((i < 0) || (i >= BGE_JSLOTS))
647 panic("bge_jfree: asked to free buffer that we don't manage!");
648
649 s = splvm();
650 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
651 if (entry == NULL)
652 panic("bge_jfree: buffer not in use!");
653 entry->slot = i;
654 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
655 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
656
657 if (__predict_true(m != NULL))
658 pool_cache_put(&mbpool_cache, m);
659 splx(s);
660 }
661
662
663 /*
664 * Intialize a standard receive ring descriptor.
665 */
666 int
667 bge_newbuf_std(sc, i, m, dmamap)
668 struct bge_softc *sc;
669 int i;
670 struct mbuf *m;
671 bus_dmamap_t dmamap;
672 {
673 struct mbuf *m_new = NULL;
674 struct bge_rx_bd *r;
675 int error;
676
677 if (dmamap == NULL) {
678 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
679 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
680 if (error != 0)
681 return error;
682 }
683
684 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
685
686 if (m == NULL) {
687 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
688 if (m_new == NULL) {
689 return(ENOBUFS);
690 }
691
692 MCLGET(m_new, M_DONTWAIT);
693 if (!(m_new->m_flags & M_EXT)) {
694 m_freem(m_new);
695 return(ENOBUFS);
696 }
697 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
698 m_adj(m_new, ETHER_ALIGN);
699
700 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
701 BUS_DMA_READ|BUS_DMA_NOWAIT))
702 return(ENOBUFS);
703 } else {
704 m_new = m;
705 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
706 m_new->m_data = m_new->m_ext.ext_buf;
707 m_adj(m_new, ETHER_ALIGN);
708 }
709
710 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
711 r = &sc->bge_rdata->bge_rx_std_ring[i];
712 bge_set_hostaddr(&r->bge_addr,
713 dmamap->dm_segs[0].ds_addr);
714 r->bge_flags = BGE_RXBDFLAG_END;
715 r->bge_len = m_new->m_len;
716 r->bge_idx = i;
717
718 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
719 offsetof(struct bge_ring_data, bge_rx_std_ring) +
720 i * sizeof (struct bge_rx_bd),
721 sizeof (struct bge_rx_bd),
722 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
723
724 return(0);
725 }
726
727 /*
728 * Initialize a jumbo receive ring descriptor. This allocates
729 * a jumbo buffer from the pool managed internally by the driver.
730 */
731 int
732 bge_newbuf_jumbo(sc, i, m)
733 struct bge_softc *sc;
734 int i;
735 struct mbuf *m;
736 {
737 struct mbuf *m_new = NULL;
738 struct bge_rx_bd *r;
739
740 if (m == NULL) {
741 caddr_t *buf = NULL;
742
743 /* Allocate the mbuf. */
744 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
745 if (m_new == NULL) {
746 return(ENOBUFS);
747 }
748
749 /* Allocate the jumbo buffer */
750 buf = bge_jalloc(sc);
751 if (buf == NULL) {
752 m_freem(m_new);
753 printf("%s: jumbo allocation failed "
754 "-- packet dropped!\n", sc->bge_dev.dv_xname);
755 return(ENOBUFS);
756 }
757
758 /* Attach the buffer to the mbuf. */
759 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
760 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
761 bge_jfree, sc);
762 } else {
763 m_new = m;
764 m_new->m_data = m_new->m_ext.ext_buf;
765 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
766 }
767
768 m_adj(m_new, ETHER_ALIGN);
769 /* Set up the descriptor. */
770 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
771 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
772 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
773 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
774 r->bge_len = m_new->m_len;
775 r->bge_idx = i;
776
777 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
778 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
779 i * sizeof (struct bge_rx_bd),
780 sizeof (struct bge_rx_bd),
781 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
782
783 return(0);
784 }
785
786 /*
787 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
788 * that's 1MB or memory, which is a lot. For now, we fill only the first
789 * 256 ring entries and hope that our CPU is fast enough to keep up with
790 * the NIC.
791 */
792 int
793 bge_init_rx_ring_std(sc)
794 struct bge_softc *sc;
795 {
796 int i;
797
798 if (sc->bge_flags & BGE_RXRING_VALID)
799 return 0;
800
801 for (i = 0; i < BGE_SSLOTS; i++) {
802 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
803 return(ENOBUFS);
804 }
805
806 sc->bge_std = i - 1;
807 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
808
809 sc->bge_flags |= BGE_RXRING_VALID;
810
811 return(0);
812 }
813
814 void
815 bge_free_rx_ring_std(sc)
816 struct bge_softc *sc;
817 {
818 int i;
819
820 if (!(sc->bge_flags & BGE_RXRING_VALID))
821 return;
822
823 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
824 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
825 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
826 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
827 bus_dmamap_destroy(sc->bge_dmatag,
828 sc->bge_cdata.bge_rx_std_map[i]);
829 }
830 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
831 sizeof(struct bge_rx_bd));
832 }
833
834 sc->bge_flags &= ~BGE_RXRING_VALID;
835 }
836
837 int
838 bge_init_rx_ring_jumbo(sc)
839 struct bge_softc *sc;
840 {
841 int i;
842 struct bge_rcb *rcb;
843 struct bge_rcb_opaque *rcbo;
844
845 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
846 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
847 return(ENOBUFS);
848 };
849
850 sc->bge_jumbo = i - 1;
851
852 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
853 rcbo = (struct bge_rcb_opaque *)rcb;
854 rcb->bge_flags = 0;
855 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
856
857 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
858
859 return(0);
860 }
861
862 void
863 bge_free_rx_ring_jumbo(sc)
864 struct bge_softc *sc;
865 {
866 int i;
867
868 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
869 return;
870
871 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
872 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
873 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
874 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
875 }
876 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
877 sizeof(struct bge_rx_bd));
878 }
879
880 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
881 }
882
883 void
884 bge_free_tx_ring(sc)
885 struct bge_softc *sc;
886 {
887 int i, freed;
888 struct txdmamap_pool_entry *dma;
889
890 if (!(sc->bge_flags & BGE_TXRING_VALID))
891 return;
892
893 freed = 0;
894
895 for (i = 0; i < BGE_TX_RING_CNT; i++) {
896 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
897 freed++;
898 m_freem(sc->bge_cdata.bge_tx_chain[i]);
899 sc->bge_cdata.bge_tx_chain[i] = NULL;
900 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
901 link);
902 sc->txdma[i] = 0;
903 }
904 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
905 sizeof(struct bge_tx_bd));
906 }
907
908 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
909 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
910 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
911 free(dma, M_DEVBUF);
912 }
913
914 sc->bge_flags &= ~BGE_TXRING_VALID;
915 }
916
917 int
918 bge_init_tx_ring(sc)
919 struct bge_softc *sc;
920 {
921 int i;
922 bus_dmamap_t dmamap;
923 struct txdmamap_pool_entry *dma;
924
925 if (sc->bge_flags & BGE_TXRING_VALID)
926 return 0;
927
928 sc->bge_txcnt = 0;
929 sc->bge_tx_saved_considx = 0;
930 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
931 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
932
933 SLIST_INIT(&sc->txdma_list);
934 for (i = 0; i < BGE_RSLOTS; i++) {
935 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
936 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
937 &dmamap))
938 return(ENOBUFS);
939 if (dmamap == NULL)
940 panic("dmamap NULL in bge_init_tx_ring");
941 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
942 if (dma == NULL) {
943 printf("%s: can't alloc txdmamap_pool_entry\n",
944 sc->bge_dev.dv_xname);
945 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
946 return (ENOMEM);
947 }
948 dma->dmamap = dmamap;
949 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
950 }
951
952 sc->bge_flags |= BGE_TXRING_VALID;
953
954 return(0);
955 }
956
957 void
958 bge_setmulti(sc)
959 struct bge_softc *sc;
960 {
961 struct ethercom *ac = &sc->ethercom;
962 struct ifnet *ifp = &ac->ec_if;
963 struct ether_multi *enm;
964 struct ether_multistep step;
965 u_int32_t hashes[4] = { 0, 0, 0, 0 };
966 u_int32_t h;
967 int i;
968
969 if (ifp->if_flags & IFF_PROMISC)
970 goto allmulti;
971
972 /* Now program new ones. */
973 ETHER_FIRST_MULTI(step, ac, enm);
974 while (enm != NULL) {
975 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
976 /*
977 * We must listen to a range of multicast addresses.
978 * For now, just accept all multicasts, rather than
979 * trying to set only those filter bits needed to match
980 * the range. (At this time, the only use of address
981 * ranges is for IP multicast routing, for which the
982 * range is big enough to require all bits set.)
983 */
984 goto allmulti;
985 }
986
987 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
988
989 /* Just want the 7 least-significant bits. */
990 h &= 0x7f;
991
992 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
993 ETHER_NEXT_MULTI(step, enm);
994 }
995
996 ifp->if_flags &= ~IFF_ALLMULTI;
997 goto setit;
998
999 allmulti:
1000 ifp->if_flags |= IFF_ALLMULTI;
1001 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1002
1003 setit:
1004 for (i = 0; i < 4; i++)
1005 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1006 }
1007
1008 int bge_swapbits[] = {
1009 0,
1010 BGE_MODECTL_BYTESWAP_DATA,
1011 BGE_MODECTL_WORDSWAP_DATA,
1012 BGE_MODECTL_BYTESWAP_NONFRAME,
1013 BGE_MODECTL_WORDSWAP_NONFRAME,
1014
1015 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1016 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1017 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1018
1019 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1020 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1021
1022 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1023
1024 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1025 BGE_MODECTL_BYTESWAP_NONFRAME,
1026 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1027 BGE_MODECTL_WORDSWAP_NONFRAME,
1028 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1029 BGE_MODECTL_WORDSWAP_NONFRAME,
1030 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1031 BGE_MODECTL_WORDSWAP_NONFRAME,
1032
1033 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1034 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1035 };
1036
1037 int bge_swapindex = 0;
1038
1039 /*
1040 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1041 * self-test results.
1042 */
1043 int
1044 bge_chipinit(sc)
1045 struct bge_softc *sc;
1046 {
1047 u_int32_t cachesize;
1048 int i;
1049 struct pci_attach_args *pa = &(sc->bge_pa);
1050
1051
1052 /* Set endianness before we access any non-PCI registers. */
1053 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1054 BGE_INIT);
1055
1056 /*
1057 * Check the 'ROM failed' bit on the RX CPU to see if
1058 * self-tests passed.
1059 */
1060 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1061 printf("%s: RX CPU self-diagnostics failed!\n",
1062 sc->bge_dev.dv_xname);
1063 return(ENODEV);
1064 }
1065
1066 /* Clear the MAC control register */
1067 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1068
1069 /*
1070 * Clear the MAC statistics block in the NIC's
1071 * internal memory.
1072 */
1073 for (i = BGE_STATS_BLOCK;
1074 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1075 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1076
1077 for (i = BGE_STATUS_BLOCK;
1078 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1079 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1080
1081 /* Set up the PCI DMA control register. */
1082 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1083 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1084
1085 /*
1086 * Set up general mode register.
1087 */
1088 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1089 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1090 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1091 BGE_MODECTL_RX_NO_PHDR_CSUM);
1092
1093 /* Get cache line size. */
1094 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1095
1096 /*
1097 * Avoid violating PCI spec on certain chip revs.
1098 */
1099 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1100 PCIM_CMD_MWIEN) {
1101 switch(cachesize) {
1102 case 1:
1103 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1104 BGE_PCI_WRITE_BNDRY_16BYTES);
1105 break;
1106 case 2:
1107 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1108 BGE_PCI_WRITE_BNDRY_32BYTES);
1109 break;
1110 case 4:
1111 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1112 BGE_PCI_WRITE_BNDRY_64BYTES);
1113 break;
1114 case 8:
1115 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1116 BGE_PCI_WRITE_BNDRY_128BYTES);
1117 break;
1118 case 16:
1119 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1120 BGE_PCI_WRITE_BNDRY_256BYTES);
1121 break;
1122 case 32:
1123 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1124 BGE_PCI_WRITE_BNDRY_512BYTES);
1125 break;
1126 case 64:
1127 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1128 BGE_PCI_WRITE_BNDRY_1024BYTES);
1129 break;
1130 default:
1131 /* Disable PCI memory write and invalidate. */
1132 #if 0
1133 if (bootverbose)
1134 printf("%s: cache line size %d not "
1135 "supported; disabling PCI MWI\n",
1136 sc->bge_dev.dv_xname, cachesize);
1137 #endif
1138 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1139 PCIM_CMD_MWIEN);
1140 break;
1141 }
1142 }
1143
1144 #ifdef __brokenalpha__
1145 /*
1146 * Must insure that we do not cross an 8K (bytes) boundary
1147 * for DMA reads. Our highest limit is 1K bytes. This is a
1148 * restriction on some ALPHA platforms with early revision
1149 * 21174 PCI chipsets, such as the AlphaPC 164lx
1150 */
1151 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1152 #endif
1153
1154 /* Set the timer prescaler (always 66Mhz) */
1155 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1156
1157 return(0);
1158 }
1159
1160 int
1161 bge_blockinit(sc)
1162 struct bge_softc *sc;
1163 {
1164 struct bge_rcb *rcb;
1165 struct bge_rcb_opaque *rcbo;
1166 bus_size_t rcb_addr;
1167 int i;
1168 struct ifnet *ifp = &sc->ethercom.ec_if;
1169 bge_hostaddr taddr;
1170
1171 /*
1172 * Initialize the memory window pointer register so that
1173 * we can access the first 32K of internal NIC RAM. This will
1174 * allow us to set up the TX send ring RCBs and the RX return
1175 * ring RCBs, plus other things which live in NIC memory.
1176 */
1177
1178 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1179 BGE_PCI_MEMWIN_BASEADDR, 0);
1180
1181 /* Configure mbuf memory pool */
1182 if (sc->bge_extram) {
1183 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1184 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1185 } else {
1186 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1187 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1188 }
1189
1190 /* Configure DMA resource pool */
1191 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1192 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1193
1194 /* Configure mbuf pool watermarks */
1195 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1196 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1197 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1198
1199 /* Configure DMA resource watermarks */
1200 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1201 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1202
1203 /* Enable buffer manager */
1204 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1205 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1206
1207 /* Poll for buffer manager start indication */
1208 for (i = 0; i < BGE_TIMEOUT; i++) {
1209 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1210 break;
1211 DELAY(10);
1212 }
1213
1214 if (i == BGE_TIMEOUT) {
1215 printf("%s: buffer manager failed to start\n",
1216 sc->bge_dev.dv_xname);
1217 return(ENXIO);
1218 }
1219
1220 /* Enable flow-through queues */
1221 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1222 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1223
1224 /* Wait until queue initialization is complete */
1225 for (i = 0; i < BGE_TIMEOUT; i++) {
1226 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1227 break;
1228 DELAY(10);
1229 }
1230
1231 if (i == BGE_TIMEOUT) {
1232 printf("%s: flow-through queue init failed\n",
1233 sc->bge_dev.dv_xname);
1234 return(ENXIO);
1235 }
1236
1237 /* Initialize the standard RX ring control block */
1238 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1239 bge_set_hostaddr(&rcb->bge_hostaddr,
1240 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1241 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1242 if (sc->bge_extram)
1243 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1244 else
1245 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1246 rcb->bge_flags = 0;
1247 rcbo = (struct bge_rcb_opaque *)rcb;
1248 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1249 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1250 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1251 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1252
1253 /*
1254 * Initialize the jumbo RX ring control block
1255 * We set the 'ring disabled' bit in the flags
1256 * field until we're actually ready to start
1257 * using this ring (i.e. once we set the MTU
1258 * high enough to require it).
1259 */
1260 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1261 bge_set_hostaddr(&rcb->bge_hostaddr,
1262 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1263 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1264 if (sc->bge_extram)
1265 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1266 else
1267 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1268 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1269
1270 rcbo = (struct bge_rcb_opaque *)rcb;
1271 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1272 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1273 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1274 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1275
1276 /* Set up dummy disabled mini ring RCB */
1277 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1278 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1279 rcbo = (struct bge_rcb_opaque *)rcb;
1280 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1281
1282 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1283 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1284 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1285
1286 /*
1287 * Set the BD ring replentish thresholds. The recommended
1288 * values are 1/8th the number of descriptors allocated to
1289 * each ring.
1290 */
1291 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1292 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1293
1294 /*
1295 * Disable all unused send rings by setting the 'ring disabled'
1296 * bit in the flags field of all the TX send ring control blocks.
1297 * These are located in NIC memory.
1298 */
1299 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1300 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1301 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1302 BGE_RCB_FLAG_RING_DISABLED);
1303 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1304 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1305 rcb_addr += sizeof(struct bge_rcb);
1306 }
1307
1308 /* Configure TX RCB 0 (we use only the first ring) */
1309 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1310 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1311 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1312 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1313 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1314 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1315 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1316 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1317
1318 /* Disable all unused RX return rings */
1319 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1320 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1321 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1322 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1323 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1324 BGE_RCB_FLAG_RING_DISABLED);
1325 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1326 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1327 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1328 (i * (sizeof(u_int64_t))), 0);
1329 rcb_addr += sizeof(struct bge_rcb);
1330 }
1331
1332 /* Initialize RX ring indexes */
1333 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1334 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1335 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1336
1337 /*
1338 * Set up RX return ring 0
1339 * Note that the NIC address for RX return rings is 0x00000000.
1340 * The return rings live entirely within the host, so the
1341 * nicaddr field in the RCB isn't used.
1342 */
1343 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1344 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1345 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1346 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1347 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1348 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1349 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1350
1351 /* Set random backoff seed for TX */
1352 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1353 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1354 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1355 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1356 BGE_TX_BACKOFF_SEED_MASK);
1357
1358 /* Set inter-packet gap */
1359 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1360
1361 /*
1362 * Specify which ring to use for packets that don't match
1363 * any RX rules.
1364 */
1365 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1366
1367 /*
1368 * Configure number of RX lists. One interrupt distribution
1369 * list, sixteen active lists, one bad frames class.
1370 */
1371 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1372
1373 /* Inialize RX list placement stats mask. */
1374 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1375 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1376
1377 /* Disable host coalescing until we get it set up */
1378 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1379
1380 /* Poll to make sure it's shut down. */
1381 for (i = 0; i < BGE_TIMEOUT; i++) {
1382 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1383 break;
1384 DELAY(10);
1385 }
1386
1387 if (i == BGE_TIMEOUT) {
1388 printf("%s: host coalescing engine failed to idle\n",
1389 sc->bge_dev.dv_xname);
1390 return(ENXIO);
1391 }
1392
1393 /* Set up host coalescing defaults */
1394 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1395 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1396 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1397 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1398 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1399 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1400 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1401 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1402 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1403
1404 /* Set up address of statistics block */
1405 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1406 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1407 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1408 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1409
1410 /* Set up address of status block */
1411 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1412 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1413 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1414 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1415 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1416 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1417
1418 /* Turn on host coalescing state machine */
1419 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1420
1421 /* Turn on RX BD completion state machine and enable attentions */
1422 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1423 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1424
1425 /* Turn on RX list placement state machine */
1426 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1427
1428 /* Turn on RX list selector state machine. */
1429 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1430
1431 /* Turn on DMA, clear stats */
1432 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1433 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1434 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1435 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1436 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1437
1438 /* Set misc. local control, enable interrupts on attentions */
1439 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1440
1441 #ifdef notdef
1442 /* Assert GPIO pins for PHY reset */
1443 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1444 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1445 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1446 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1447 #endif
1448
1449 /* Turn on DMA completion state machine */
1450 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1451
1452 /* Turn on write DMA state machine */
1453 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1454 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1455
1456 /* Turn on read DMA state machine */
1457 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1458 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1459
1460 /* Turn on RX data completion state machine */
1461 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1462
1463 /* Turn on RX BD initiator state machine */
1464 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1465
1466 /* Turn on RX data and RX BD initiator state machine */
1467 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1468
1469 /* Turn on Mbuf cluster free state machine */
1470 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1471
1472 /* Turn on send BD completion state machine */
1473 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1474
1475 /* Turn on send data completion state machine */
1476 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1477
1478 /* Turn on send data initiator state machine */
1479 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1480
1481 /* Turn on send BD initiator state machine */
1482 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1483
1484 /* Turn on send BD selector state machine */
1485 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1486
1487 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1488 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1489 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1490
1491 /* init LED register */
1492 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1493
1494 /* ack/clear link change events */
1495 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1496 BGE_MACSTAT_CFG_CHANGED);
1497 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1498
1499 /* Enable PHY auto polling (for MII/GMII only) */
1500 if (sc->bge_tbi) {
1501 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1502 } else {
1503 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1504 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
1505 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1506 BGE_EVTENB_MI_INTERRUPT);
1507 }
1508
1509 /* Enable link state change attentions. */
1510 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1511
1512 return(0);
1513 }
1514
1515 static const struct bge_revision {
1516 uint32_t br_asicrev;
1517 uint32_t br_quirks;
1518 const char *br_name;
1519 } bge_revisions[] = {
1520 { BGE_ASICREV_BCM5700_A0,
1521 0,
1522 "BCM5700 A0" },
1523
1524 { BGE_ASICREV_BCM5700_A1,
1525 0,
1526 "BCM5700 A1" },
1527
1528 { BGE_ASICREV_BCM5700_B0,
1529 0,
1530 "BCM5700 B0" },
1531
1532 { BGE_ASICREV_BCM5700_B1,
1533 0,
1534 "BCM5700 B1" },
1535
1536 { BGE_ASICREV_BCM5700_B2,
1537 0,
1538 "BCM5700 B2" },
1539
1540 { BGE_ASICREV_BCM5700_ALTIMA,
1541 0,
1542 "BCM5700 Altima" },
1543
1544 { BGE_ASICREV_BCM5700_C0,
1545 0,
1546 "BCM5700 C0" },
1547
1548 { BGE_ASICREV_BCM5701_A0,
1549 0,
1550 "BCM5701 A0" },
1551
1552 { BGE_ASICREV_BCM5701_B0,
1553 0,
1554 "BCM5701 B0" },
1555
1556 { BGE_ASICREV_BCM5701_B2,
1557 0,
1558 "BCM5701 B2" },
1559
1560 { BGE_ASICREV_BCM5701_B5,
1561 0,
1562 "BCM5701 B5" },
1563
1564 { BGE_ASICREV_BCM5703_A0,
1565 0,
1566 "BCM5703 A0" },
1567
1568 { BGE_ASICREV_BCM5703_A1,
1569 0,
1570 "BCM5703 A1" },
1571
1572 { BGE_ASICREV_BCM5703_A2,
1573 0,
1574 "BCM5703 A2" },
1575
1576 { 0, 0, NULL }
1577 };
1578
1579 static const struct bge_revision *
1580 bge_lookup_rev(uint32_t asicrev)
1581 {
1582 const struct bge_revision *br;
1583
1584 for (br = bge_revisions; br->br_name != NULL; br++) {
1585 if (br->br_asicrev == asicrev)
1586 return (br);
1587 }
1588
1589 return (NULL);
1590 }
1591
1592 static const struct bge_product {
1593 pci_vendor_id_t bp_vendor;
1594 pci_product_id_t bp_product;
1595 const char *bp_name;
1596 } bge_products[] = {
1597 /*
1598 * The BCM5700 documentation seems to indicate that the hardware
1599 * still has the Alteon vendor ID burned into it, though it
1600 * should always be overridden by the value in the EEPROM. We'll
1601 * check for it anyway.
1602 */
1603 { PCI_VENDOR_ALTEON,
1604 PCI_PRODUCT_ALTEON_BCM5700,
1605 "Broadcom BCM5700 Gigabit Ethernet" },
1606 { PCI_VENDOR_ALTEON,
1607 PCI_PRODUCT_ALTEON_BCM5701,
1608 "Broadcom BCM5701 Gigabit Ethernet" },
1609
1610 { PCI_VENDOR_ALTIMA,
1611 PCI_PRODUCT_ALTIMA_AC1000,
1612 "Altima AC1000 Gigabit Ethernet" },
1613 { PCI_VENDOR_ALTIMA,
1614 PCI_PRODUCT_ALTIMA_AC1001,
1615 "Altima AC1001 Gigabit Ethernet" },
1616 { PCI_VENDOR_ALTIMA,
1617 PCI_PRODUCT_ALTIMA_AC9100,
1618 "Altima AC9100 Gigabit Ethernet" },
1619
1620 { PCI_VENDOR_BROADCOM,
1621 PCI_PRODUCT_BROADCOM_BCM5700,
1622 "Broadcom BCM5700 Gigabit Ethernet" },
1623 { PCI_VENDOR_BROADCOM,
1624 PCI_PRODUCT_BROADCOM_BCM5701,
1625 "Broadcom BCM5700 Gigabit Ethernet" },
1626
1627 { PCI_VENDOR_SCHNEIDERKOCH,
1628 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1629 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1630
1631 { PCI_VENDOR_3COM,
1632 PCI_PRODUCT_3COM_3C996,
1633 "3Com 3c996 Gigabit Ethernet" },
1634
1635 { 0,
1636 0,
1637 NULL },
1638 };
1639
1640 static const struct bge_product *
1641 bge_lookup(const struct pci_attach_args *pa)
1642 {
1643 const struct bge_product *bp;
1644
1645 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1646 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1647 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1648 return (bp);
1649 }
1650
1651 return (NULL);
1652 }
1653
1654 /*
1655 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1656 * against our list and return its name if we find a match. Note
1657 * that since the Broadcom controller contains VPD support, we
1658 * can get the device name string from the controller itself instead
1659 * of the compiled-in string. This is a little slow, but it guarantees
1660 * we'll always announce the right product name.
1661 */
1662 int
1663 bge_probe(parent, match, aux)
1664 struct device *parent;
1665 struct cfdata *match;
1666 void *aux;
1667 {
1668 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1669
1670 if (bge_lookup(pa) != NULL)
1671 return (1);
1672
1673 return (0);
1674 }
1675
1676 void
1677 bge_attach(parent, self, aux)
1678 struct device *parent, *self;
1679 void *aux;
1680 {
1681 struct bge_softc *sc = (struct bge_softc *)self;
1682 struct pci_attach_args *pa = aux;
1683 const struct bge_product *bp;
1684 const struct bge_revision *br;
1685 pci_chipset_tag_t pc = pa->pa_pc;
1686 pci_intr_handle_t ih;
1687 const char *intrstr = NULL;
1688 bus_dma_segment_t seg;
1689 int rseg;
1690 u_int32_t hwcfg = 0;
1691 u_int32_t command;
1692 struct ifnet *ifp;
1693 int unit;
1694 caddr_t kva;
1695 u_char eaddr[ETHER_ADDR_LEN];
1696 pcireg_t memtype;
1697 bus_addr_t memaddr;
1698 bus_size_t memsize;
1699
1700 bp = bge_lookup(pa);
1701 KASSERT(bp != NULL);
1702
1703 sc->bge_pa = *pa;
1704
1705 printf(": %s\n", bp->bp_name);
1706
1707 /*
1708 * Map control/status registers.
1709 */
1710 DPRINTFN(5, ("Map control/status regs\n"));
1711 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1712 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1713 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1714 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1715
1716 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1717 printf("%s: failed to enable memory mapping!\n",
1718 sc->bge_dev.dv_xname);
1719 return;
1720 }
1721
1722 DPRINTFN(5, ("pci_mem_find\n"));
1723 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1724 switch (memtype) {
1725 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1726 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1727 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1728 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1729 &memaddr, &memsize) == 0)
1730 break;
1731 default:
1732 printf("%s: can't find mem space\n",
1733 sc->bge_dev.dv_xname);
1734 return;
1735 }
1736
1737 DPRINTFN(5, ("pci_intr_map\n"));
1738 if (pci_intr_map(pa, &ih)) {
1739 printf("%s: couldn't map interrupt\n",
1740 sc->bge_dev.dv_xname);
1741 return;
1742 }
1743
1744 DPRINTFN(5, ("pci_intr_string\n"));
1745 intrstr = pci_intr_string(pc, ih);
1746
1747 DPRINTFN(5, ("pci_intr_establish\n"));
1748 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1749
1750 if (sc->bge_intrhand == NULL) {
1751 printf("%s: couldn't establish interrupt",
1752 sc->bge_dev.dv_xname);
1753 if (intrstr != NULL)
1754 printf(" at %s", intrstr);
1755 printf("\n");
1756 return;
1757 }
1758 printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1759
1760 /* Try to reset the chip. */
1761 DPRINTFN(5, ("bge_reset\n"));
1762 bge_reset(sc);
1763
1764 if (bge_chipinit(sc)) {
1765 printf("%s: chip initializatino failed\n",
1766 sc->bge_dev.dv_xname);
1767 bge_release_resources(sc);
1768 return;
1769 }
1770
1771 /*
1772 * Get station address from the EEPROM.
1773 */
1774 if (bge_read_eeprom(sc, (caddr_t)eaddr,
1775 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1776 printf("bge%d: failed to read station address\n", unit);
1777 bge_release_resources(sc);
1778 return;
1779 }
1780
1781 /*
1782 * Save ASIC rev. Look up any quirks associated with this
1783 * ASIC.
1784 */
1785 sc->bge_asicrev =
1786 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1787 BGE_PCIMISCCTL_ASICREV;
1788 br = bge_lookup_rev(sc->bge_asicrev);
1789
1790 printf("%s: ", sc->bge_dev.dv_xname);
1791 if (br == NULL) {
1792 printf("unknown ASIC 0x%08x", sc->bge_asicrev);
1793 sc->bge_quirks = 0;
1794 } else {
1795 printf("ASIC %s", br->br_name);
1796 sc->bge_quirks = br->br_quirks;
1797 }
1798 printf(", Ethernet address %s\n", ether_sprintf(eaddr));
1799
1800 /* Allocate the general information block and ring buffers. */
1801 sc->bge_dmatag = pa->pa_dmat;
1802 DPRINTFN(5, ("bus_dmamem_alloc\n"));
1803 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1804 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1805 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1806 return;
1807 }
1808 DPRINTFN(5, ("bus_dmamem_map\n"));
1809 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1810 sizeof(struct bge_ring_data), &kva,
1811 BUS_DMA_NOWAIT)) {
1812 printf("%s: can't map dma buffers (%d bytes)\n",
1813 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1814 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1815 return;
1816 }
1817 DPRINTFN(5, ("bus_dmamem_create\n"));
1818 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1819 sizeof(struct bge_ring_data), 0,
1820 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1821 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1822 bus_dmamem_unmap(sc->bge_dmatag, kva,
1823 sizeof(struct bge_ring_data));
1824 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1825 return;
1826 }
1827 DPRINTFN(5, ("bus_dmamem_load\n"));
1828 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1829 sizeof(struct bge_ring_data), NULL,
1830 BUS_DMA_NOWAIT)) {
1831 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1832 bus_dmamem_unmap(sc->bge_dmatag, kva,
1833 sizeof(struct bge_ring_data));
1834 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1835 return;
1836 }
1837
1838 DPRINTFN(5, ("bzero\n"));
1839 sc->bge_rdata = (struct bge_ring_data *)kva;
1840
1841 memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
1842
1843 /* Try to allocate memory for jumbo buffers. */
1844 if (bge_alloc_jumbo_mem(sc)) {
1845 printf("%s: jumbo buffer allocation failed\n",
1846 sc->bge_dev.dv_xname);
1847 } else
1848 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1849
1850 /* Set default tuneable values. */
1851 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1852 sc->bge_rx_coal_ticks = 150;
1853 sc->bge_tx_coal_ticks = 150;
1854 sc->bge_rx_max_coal_bds = 64;
1855 sc->bge_tx_max_coal_bds = 128;
1856
1857 /* Set up ifnet structure */
1858 ifp = &sc->ethercom.ec_if;
1859 ifp->if_softc = sc;
1860 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1861 ifp->if_ioctl = bge_ioctl;
1862 ifp->if_start = bge_start;
1863 ifp->if_init = bge_init;
1864 ifp->if_watchdog = bge_watchdog;
1865 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1866 IFQ_SET_READY(&ifp->if_snd);
1867 DPRINTFN(5, ("bcopy\n"));
1868 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1869
1870 sc->ethercom.ec_if.if_capabilities |=
1871 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1872 sc->ethercom.ec_capabilities |=
1873 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1874
1875 /*
1876 * Do MII setup.
1877 */
1878 DPRINTFN(5, ("mii setup\n"));
1879 sc->bge_mii.mii_ifp = ifp;
1880 sc->bge_mii.mii_readreg = bge_miibus_readreg;
1881 sc->bge_mii.mii_writereg = bge_miibus_writereg;
1882 sc->bge_mii.mii_statchg = bge_miibus_statchg;
1883
1884 /*
1885 * Figure out what sort of media we have by checking the
1886 * hardware config word in the EEPROM. Note: on some BCM5700
1887 * cards, this value appears to be unset. If that's the
1888 * case, we have to rely on identifying the NIC by its PCI
1889 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1890 */
1891 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1892 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1893 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1894 sc->bge_tbi = 1;
1895
1896 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1897 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1898 SK_SUBSYSID_9D41)
1899 sc->bge_tbi = 1;
1900
1901 if (sc->bge_tbi) {
1902 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1903 bge_ifmedia_sts);
1904 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1905 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1906 0, NULL);
1907 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1908 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1909 } else {
1910 /*
1911 * Do transceiver setup.
1912 */
1913 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1914 bge_ifmedia_sts);
1915 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1916 MII_PHY_ANY, MII_OFFSET_ANY, 0);
1917
1918 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1919 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1920 ifmedia_add(&sc->bge_mii.mii_media,
1921 IFM_ETHER|IFM_MANUAL, 0, NULL);
1922 ifmedia_set(&sc->bge_mii.mii_media,
1923 IFM_ETHER|IFM_MANUAL);
1924 } else
1925 ifmedia_set(&sc->bge_mii.mii_media,
1926 IFM_ETHER|IFM_AUTO);
1927 }
1928
1929 /*
1930 * Call MI attach routine.
1931 */
1932 DPRINTFN(5, ("if_attach\n"));
1933 if_attach(ifp);
1934 DPRINTFN(5, ("ether_ifattach\n"));
1935 ether_ifattach(ifp, eaddr);
1936 DPRINTFN(5, ("callout_init\n"));
1937 callout_init(&sc->bge_timeout);
1938 }
1939
1940 void
1941 bge_release_resources(sc)
1942 struct bge_softc *sc;
1943 {
1944 if (sc->bge_vpd_prodname != NULL)
1945 free(sc->bge_vpd_prodname, M_DEVBUF);
1946
1947 if (sc->bge_vpd_readonly != NULL)
1948 free(sc->bge_vpd_readonly, M_DEVBUF);
1949 }
1950
1951 void
1952 bge_reset(sc)
1953 struct bge_softc *sc;
1954 {
1955 struct pci_attach_args *pa = &sc->bge_pa;
1956 u_int32_t cachesize, command, pcistate;
1957 int i, val = 0;
1958
1959 /* Save some important PCI state. */
1960 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1961 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1962 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1963
1964 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1965 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1966 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1967
1968 /* Issue global reset */
1969 bge_writereg_ind(sc, BGE_MISC_CFG,
1970 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1971
1972 DELAY(1000);
1973
1974 /* Reset some of the PCI state that got zapped by reset */
1975 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1976 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1977 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1978 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1979 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1980 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1981
1982 /* Enable memory arbiter. */
1983 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1984
1985 /*
1986 * Prevent PXE restart: write a magic number to the
1987 * general communications memory at 0xB50.
1988 */
1989 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1990
1991 /*
1992 * Poll the value location we just wrote until
1993 * we see the 1's complement of the magic number.
1994 * This indicates that the firmware initialization
1995 * is complete.
1996 */
1997 for (i = 0; i < 750; i++) {
1998 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1999 if (val == ~BGE_MAGIC_NUMBER)
2000 break;
2001 DELAY(1000);
2002 }
2003
2004 if (i == 750) {
2005 printf("%s: firmware handshake timed out, val = %x\n",
2006 sc->bge_dev.dv_xname, val);
2007 return;
2008 }
2009
2010 /*
2011 * XXX Wait for the value of the PCISTATE register to
2012 * return to its original pre-reset state. This is a
2013 * fairly good indicator of reset completion. If we don't
2014 * wait for the reset to fully complete, trying to read
2015 * from the device's non-PCI registers may yield garbage
2016 * results.
2017 */
2018 for (i = 0; i < BGE_TIMEOUT; i++) {
2019 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2020 pcistate)
2021 break;
2022 DELAY(10);
2023 }
2024
2025 /* Enable memory arbiter. */
2026 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2027
2028 /* Fix up byte swapping */
2029 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2030
2031 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2032
2033 DELAY(10000);
2034 }
2035
2036 /*
2037 * Frame reception handling. This is called if there's a frame
2038 * on the receive return list.
2039 *
2040 * Note: we have to be able to handle two possibilities here:
2041 * 1) the frame is from the jumbo recieve ring
2042 * 2) the frame is from the standard receive ring
2043 */
2044
2045 void
2046 bge_rxeof(sc)
2047 struct bge_softc *sc;
2048 {
2049 struct ifnet *ifp;
2050 int stdcnt = 0, jumbocnt = 0;
2051 int have_tag = 0;
2052 u_int16_t vlan_tag = 0;
2053 bus_dmamap_t dmamap;
2054 bus_addr_t offset, toff;
2055 bus_size_t tlen;
2056 int tosync;
2057
2058 ifp = &sc->ethercom.ec_if;
2059
2060 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2061 offsetof(struct bge_ring_data, bge_status_block),
2062 sizeof (struct bge_status_block),
2063 BUS_DMASYNC_POSTREAD);
2064
2065 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2066 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2067 sc->bge_rx_saved_considx;
2068
2069 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2070
2071 if (tosync < 0) {
2072 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2073 sizeof (struct bge_rx_bd);
2074 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2075 toff, tlen, BUS_DMASYNC_POSTREAD);
2076 tosync = -tosync;
2077 }
2078
2079 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2080 offset, tosync * sizeof (struct bge_rx_bd),
2081 BUS_DMASYNC_POSTREAD);
2082
2083 while(sc->bge_rx_saved_considx !=
2084 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2085 struct bge_rx_bd *cur_rx;
2086 u_int32_t rxidx;
2087 struct mbuf *m = NULL;
2088
2089 cur_rx = &sc->bge_rdata->
2090 bge_rx_return_ring[sc->bge_rx_saved_considx];
2091
2092 rxidx = cur_rx->bge_idx;
2093 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2094
2095 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2096 have_tag = 1;
2097 vlan_tag = cur_rx->bge_vlan_tag;
2098 }
2099
2100 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2101 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2102 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2103 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2104 jumbocnt++;
2105 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2106 ifp->if_ierrors++;
2107 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2108 continue;
2109 }
2110 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2111 NULL)== ENOBUFS) {
2112 ifp->if_ierrors++;
2113 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2114 continue;
2115 }
2116 } else {
2117 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2118 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2119 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2120 stdcnt++;
2121 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2122 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2123 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2124 ifp->if_ierrors++;
2125 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2126 continue;
2127 }
2128 if (bge_newbuf_std(sc, sc->bge_std,
2129 NULL, dmamap) == ENOBUFS) {
2130 ifp->if_ierrors++;
2131 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2132 continue;
2133 }
2134 }
2135
2136 ifp->if_ipackets++;
2137 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2138 m->m_pkthdr.rcvif = ifp;
2139
2140 #if NBPFILTER > 0
2141 /*
2142 * Handle BPF listeners. Let the BPF user see the packet.
2143 */
2144 if (ifp->if_bpf)
2145 bpf_mtap(ifp->if_bpf, m);
2146 #endif
2147
2148 if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
2149 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2150 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2151 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2152 #if 0 /* XXX appears to be broken */
2153 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2154 m->m_pkthdr.csum_data =
2155 cur_rx->bge_tcp_udp_csum;
2156 m->m_pkthdr.csum_flags |=
2157 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2158 }
2159 #endif
2160 }
2161
2162 /*
2163 * If we received a packet with a vlan tag, pass it
2164 * to vlan_input() instead of ether_input().
2165 */
2166 if (have_tag) {
2167 struct mbuf *n;
2168
2169 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2170 if (n != NULL) {
2171 *mtod(n, int *) = vlan_tag;
2172 n->m_len = sizeof(int);
2173 have_tag = vlan_tag = 0;
2174 } else {
2175 printf("%s: no mbuf for tag\n", ifp->if_xname);
2176 m_freem(m);
2177 have_tag = vlan_tag = 0;
2178 continue;
2179 }
2180 }
2181 (*ifp->if_input)(ifp, m);
2182 }
2183
2184 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2185 if (stdcnt)
2186 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2187 if (jumbocnt)
2188 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2189 }
2190
2191 void
2192 bge_txeof(sc)
2193 struct bge_softc *sc;
2194 {
2195 struct bge_tx_bd *cur_tx = NULL;
2196 struct ifnet *ifp;
2197 struct txdmamap_pool_entry *dma;
2198 bus_addr_t offset, toff;
2199 bus_size_t tlen;
2200 int tosync;
2201 struct mbuf *m;
2202
2203 ifp = &sc->ethercom.ec_if;
2204
2205 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2206 offsetof(struct bge_ring_data, bge_status_block),
2207 sizeof (struct bge_status_block),
2208 BUS_DMASYNC_POSTREAD);
2209
2210 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2211 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2212 sc->bge_tx_saved_considx;
2213
2214 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2215
2216 if (tosync < 0) {
2217 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2218 sizeof (struct bge_tx_bd);
2219 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2220 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2221 tosync = -tosync;
2222 }
2223
2224 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2225 offset, tosync * sizeof (struct bge_tx_bd),
2226 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2227
2228 /*
2229 * Go through our tx ring and free mbufs for those
2230 * frames that have been sent.
2231 */
2232 while (sc->bge_tx_saved_considx !=
2233 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2234 u_int32_t idx = 0;
2235
2236 idx = sc->bge_tx_saved_considx;
2237 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2238 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2239 ifp->if_opackets++;
2240 m = sc->bge_cdata.bge_tx_chain[idx];
2241 if (m != NULL) {
2242 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2243 dma = sc->txdma[idx];
2244 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2245 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2246 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2247 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2248 sc->txdma[idx] = NULL;
2249
2250 m_freem(m);
2251 }
2252 sc->bge_txcnt--;
2253 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2254 ifp->if_timer = 0;
2255 }
2256
2257 if (cur_tx != NULL)
2258 ifp->if_flags &= ~IFF_OACTIVE;
2259 }
2260
2261 int
2262 bge_intr(xsc)
2263 void *xsc;
2264 {
2265 struct bge_softc *sc;
2266 struct ifnet *ifp;
2267
2268 sc = xsc;
2269 ifp = &sc->ethercom.ec_if;
2270
2271 #ifdef notdef
2272 /* Avoid this for now -- checking this register is expensive. */
2273 /* Make sure this is really our interrupt. */
2274 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2275 return (0);
2276 #endif
2277 /* Ack interrupt and stop others from occuring. */
2278 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2279
2280 /*
2281 * Process link state changes.
2282 * Grrr. The link status word in the status block does
2283 * not work correctly on the BCM5700 rev AX and BX chips,
2284 * according to all avaibable information. Hence, we have
2285 * to enable MII interrupts in order to properly obtain
2286 * async link changes. Unfortunately, this also means that
2287 * we have to read the MAC status register to detect link
2288 * changes, thereby adding an additional register access to
2289 * the interrupt handler.
2290 */
2291
2292 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
2293 u_int32_t status;
2294
2295 status = CSR_READ_4(sc, BGE_MAC_STS);
2296 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2297 sc->bge_link = 0;
2298 callout_stop(&sc->bge_timeout);
2299 bge_tick(sc);
2300 /* Clear the interrupt */
2301 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2302 BGE_EVTENB_MI_INTERRUPT);
2303 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2304 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2305 BRGPHY_INTRS);
2306 }
2307 } else {
2308 if (sc->bge_rdata->bge_status_block.bge_status &
2309 BGE_STATFLAG_LINKSTATE_CHANGED) {
2310 sc->bge_link = 0;
2311 callout_stop(&sc->bge_timeout);
2312 bge_tick(sc);
2313 /* Clear the interrupt */
2314 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2315 BGE_MACSTAT_CFG_CHANGED);
2316 }
2317 }
2318
2319 if (ifp->if_flags & IFF_RUNNING) {
2320 /* Check RX return ring producer/consumer */
2321 bge_rxeof(sc);
2322
2323 /* Check TX ring producer/consumer */
2324 bge_txeof(sc);
2325 }
2326
2327 bge_handle_events(sc);
2328
2329 /* Re-enable interrupts. */
2330 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2331
2332 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2333 bge_start(ifp);
2334
2335 return (1);
2336 }
2337
2338 void
2339 bge_tick(xsc)
2340 void *xsc;
2341 {
2342 struct bge_softc *sc = xsc;
2343 struct mii_data *mii = &sc->bge_mii;
2344 struct ifmedia *ifm = NULL;
2345 struct ifnet *ifp = &sc->ethercom.ec_if;
2346 int s;
2347
2348 s = splnet();
2349
2350 bge_stats_update(sc);
2351 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2352 if (sc->bge_link) {
2353 splx(s);
2354 return;
2355 }
2356
2357 if (sc->bge_tbi) {
2358 ifm = &sc->bge_ifmedia;
2359 if (CSR_READ_4(sc, BGE_MAC_STS) &
2360 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2361 sc->bge_link++;
2362 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2363 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2364 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2365 bge_start(ifp);
2366 }
2367 splx(s);
2368 return;
2369 }
2370
2371 mii_tick(mii);
2372
2373 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2374 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2375 sc->bge_link++;
2376 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2377 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2378 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2379 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2380 bge_start(ifp);
2381 }
2382
2383 splx(s);
2384 }
2385
2386 void
2387 bge_stats_update(sc)
2388 struct bge_softc *sc;
2389 {
2390 struct ifnet *ifp = &sc->ethercom.ec_if;
2391 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2392
2393 #define READ_STAT(sc, stats, stat) \
2394 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2395
2396 ifp->if_collisions +=
2397 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2398 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2399 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2400 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2401 ifp->if_collisions;
2402
2403 #undef READ_STAT
2404
2405 #ifdef notdef
2406 ifp->if_collisions +=
2407 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2408 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2409 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2410 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2411 ifp->if_collisions;
2412 #endif
2413 }
2414
2415 /*
2416 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2417 * pointers to descriptors.
2418 */
2419 int
2420 bge_encap(sc, m_head, txidx)
2421 struct bge_softc *sc;
2422 struct mbuf *m_head;
2423 u_int32_t *txidx;
2424 {
2425 struct bge_tx_bd *f = NULL;
2426 u_int32_t frag, cur, cnt = 0;
2427 u_int16_t csum_flags = 0;
2428 struct txdmamap_pool_entry *dma;
2429 bus_dmamap_t dmamap;
2430 int i = 0;
2431 struct mbuf *n;
2432
2433 cur = frag = *txidx;
2434
2435 if (m_head->m_pkthdr.csum_flags) {
2436 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2437 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2438 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2439 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2440 }
2441
2442 dma = SLIST_FIRST(&sc->txdma_list);
2443 if (dma == NULL)
2444 return ENOBUFS;
2445 dmamap = dma->dmamap;
2446
2447 /*
2448 * Start packing the mbufs in this chain into
2449 * the fragment pointers. Stop when we run out
2450 * of fragments or hit the end of the mbuf chain.
2451 */
2452 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2453 BUS_DMA_NOWAIT))
2454 return(ENOBUFS);
2455
2456 n = sc->ethercom.ec_nvlans ?
2457 m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2458
2459 for (i = 0; i < dmamap->dm_nsegs; i++) {
2460 f = &sc->bge_rdata->bge_tx_ring[frag];
2461 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2462 break;
2463 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2464 f->bge_len = dmamap->dm_segs[i].ds_len;
2465 f->bge_flags = csum_flags;
2466
2467 if (n != NULL) {
2468 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2469 f->bge_vlan_tag = *mtod(n, int *);
2470 } else {
2471 f->bge_vlan_tag = 0;
2472 }
2473 /*
2474 * Sanity check: avoid coming within 16 descriptors
2475 * of the end of the ring.
2476 */
2477 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2478 return(ENOBUFS);
2479 cur = frag;
2480 BGE_INC(frag, BGE_TX_RING_CNT);
2481 cnt++;
2482 }
2483
2484 if (i < dmamap->dm_nsegs)
2485 return ENOBUFS;
2486
2487 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2488 BUS_DMASYNC_PREWRITE);
2489
2490 if (frag == sc->bge_tx_saved_considx)
2491 return(ENOBUFS);
2492
2493 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2494 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2495 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2496 sc->txdma[cur] = dma;
2497 sc->bge_txcnt += cnt;
2498
2499 *txidx = frag;
2500
2501 return(0);
2502 }
2503
2504 /*
2505 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2506 * to the mbuf data regions directly in the transmit descriptors.
2507 */
2508 void
2509 bge_start(ifp)
2510 struct ifnet *ifp;
2511 {
2512 struct bge_softc *sc;
2513 struct mbuf *m_head = NULL;
2514 u_int32_t prodidx = 0;
2515 int pkts = 0;
2516
2517 sc = ifp->if_softc;
2518
2519 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2520 return;
2521
2522 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2523
2524 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2525 IFQ_POLL(&ifp->if_snd, m_head);
2526 if (m_head == NULL)
2527 break;
2528
2529 #if 0
2530 /*
2531 * XXX
2532 * safety overkill. If this is a fragmented packet chain
2533 * with delayed TCP/UDP checksums, then only encapsulate
2534 * it if we have enough descriptors to handle the entire
2535 * chain at once.
2536 * (paranoia -- may not actually be needed)
2537 */
2538 if (m_head->m_flags & M_FIRSTFRAG &&
2539 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2540 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2541 m_head->m_pkthdr.csum_data + 16) {
2542 ifp->if_flags |= IFF_OACTIVE;
2543 break;
2544 }
2545 }
2546 #endif
2547
2548 /*
2549 * Pack the data into the transmit ring. If we
2550 * don't have room, set the OACTIVE flag and wait
2551 * for the NIC to drain the ring.
2552 */
2553 if (bge_encap(sc, m_head, &prodidx)) {
2554 ifp->if_flags |= IFF_OACTIVE;
2555 break;
2556 }
2557
2558 /* now we are committed to transmit the packet */
2559 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2560 pkts++;
2561
2562 #if NBPFILTER > 0
2563 /*
2564 * If there's a BPF listener, bounce a copy of this frame
2565 * to him.
2566 */
2567 if (ifp->if_bpf)
2568 bpf_mtap(ifp->if_bpf, m_head);
2569 #endif
2570 }
2571 if (pkts == 0)
2572 return;
2573
2574 /* Transmit */
2575 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2576
2577 /*
2578 * Set a timeout in case the chip goes out to lunch.
2579 */
2580 ifp->if_timer = 5;
2581 }
2582
2583 int
2584 bge_init(ifp)
2585 struct ifnet *ifp;
2586 {
2587 struct bge_softc *sc = ifp->if_softc;
2588 u_int16_t *m;
2589 int s, error;
2590
2591 s = splnet();
2592
2593 ifp = &sc->ethercom.ec_if;
2594
2595 /* Cancel pending I/O and flush buffers. */
2596 bge_stop(sc);
2597 bge_reset(sc);
2598 bge_chipinit(sc);
2599
2600 /*
2601 * Init the various state machines, ring
2602 * control blocks and firmware.
2603 */
2604 error = bge_blockinit(sc);
2605 if (error != 0) {
2606 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2607 error);
2608 splx(s);
2609 return error;
2610 }
2611
2612 ifp = &sc->ethercom.ec_if;
2613
2614 /* Specify MTU. */
2615 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2616 ETHER_HDR_LEN + ETHER_CRC_LEN);
2617
2618 /* Load our MAC address. */
2619 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2620 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2621 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2622
2623 /* Enable or disable promiscuous mode as needed. */
2624 if (ifp->if_flags & IFF_PROMISC) {
2625 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2626 } else {
2627 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2628 }
2629
2630 /* Program multicast filter. */
2631 bge_setmulti(sc);
2632
2633 /* Init RX ring. */
2634 bge_init_rx_ring_std(sc);
2635
2636 /* Init jumbo RX ring. */
2637 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2638 bge_init_rx_ring_jumbo(sc);
2639
2640 /* Init our RX return ring index */
2641 sc->bge_rx_saved_considx = 0;
2642
2643 /* Init TX ring. */
2644 bge_init_tx_ring(sc);
2645
2646 /* Turn on transmitter */
2647 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2648
2649 /* Turn on receiver */
2650 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2651
2652 /* Tell firmware we're alive. */
2653 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2654
2655 /* Enable host interrupts. */
2656 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2657 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2658 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2659
2660 bge_ifmedia_upd(ifp);
2661
2662 ifp->if_flags |= IFF_RUNNING;
2663 ifp->if_flags &= ~IFF_OACTIVE;
2664
2665 splx(s);
2666
2667 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2668
2669 return 0;
2670 }
2671
2672 /*
2673 * Set media options.
2674 */
2675 int
2676 bge_ifmedia_upd(ifp)
2677 struct ifnet *ifp;
2678 {
2679 struct bge_softc *sc = ifp->if_softc;
2680 struct mii_data *mii = &sc->bge_mii;
2681 struct ifmedia *ifm = &sc->bge_ifmedia;
2682
2683 /* If this is a 1000baseX NIC, enable the TBI port. */
2684 if (sc->bge_tbi) {
2685 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2686 return(EINVAL);
2687 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2688 case IFM_AUTO:
2689 break;
2690 case IFM_1000_SX:
2691 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2692 BGE_CLRBIT(sc, BGE_MAC_MODE,
2693 BGE_MACMODE_HALF_DUPLEX);
2694 } else {
2695 BGE_SETBIT(sc, BGE_MAC_MODE,
2696 BGE_MACMODE_HALF_DUPLEX);
2697 }
2698 break;
2699 default:
2700 return(EINVAL);
2701 }
2702 return(0);
2703 }
2704
2705 sc->bge_link = 0;
2706 mii_mediachg(mii);
2707
2708 return(0);
2709 }
2710
2711 /*
2712 * Report current media status.
2713 */
2714 void
2715 bge_ifmedia_sts(ifp, ifmr)
2716 struct ifnet *ifp;
2717 struct ifmediareq *ifmr;
2718 {
2719 struct bge_softc *sc = ifp->if_softc;
2720 struct mii_data *mii = &sc->bge_mii;
2721
2722 if (sc->bge_tbi) {
2723 ifmr->ifm_status = IFM_AVALID;
2724 ifmr->ifm_active = IFM_ETHER;
2725 if (CSR_READ_4(sc, BGE_MAC_STS) &
2726 BGE_MACSTAT_TBI_PCS_SYNCHED)
2727 ifmr->ifm_status |= IFM_ACTIVE;
2728 ifmr->ifm_active |= IFM_1000_SX;
2729 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2730 ifmr->ifm_active |= IFM_HDX;
2731 else
2732 ifmr->ifm_active |= IFM_FDX;
2733 return;
2734 }
2735
2736 mii_pollstat(mii);
2737 ifmr->ifm_active = mii->mii_media_active;
2738 ifmr->ifm_status = mii->mii_media_status;
2739 }
2740
2741 int
2742 bge_ioctl(ifp, command, data)
2743 struct ifnet *ifp;
2744 u_long command;
2745 caddr_t data;
2746 {
2747 struct bge_softc *sc = ifp->if_softc;
2748 struct ifreq *ifr = (struct ifreq *) data;
2749 int s, error = 0;
2750 struct mii_data *mii;
2751
2752 s = splnet();
2753
2754 switch(command) {
2755 case SIOCSIFFLAGS:
2756 if (ifp->if_flags & IFF_UP) {
2757 /*
2758 * If only the state of the PROMISC flag changed,
2759 * then just use the 'set promisc mode' command
2760 * instead of reinitializing the entire NIC. Doing
2761 * a full re-init means reloading the firmware and
2762 * waiting for it to start up, which may take a
2763 * second or two.
2764 */
2765 if (ifp->if_flags & IFF_RUNNING &&
2766 ifp->if_flags & IFF_PROMISC &&
2767 !(sc->bge_if_flags & IFF_PROMISC)) {
2768 BGE_SETBIT(sc, BGE_RX_MODE,
2769 BGE_RXMODE_RX_PROMISC);
2770 } else if (ifp->if_flags & IFF_RUNNING &&
2771 !(ifp->if_flags & IFF_PROMISC) &&
2772 sc->bge_if_flags & IFF_PROMISC) {
2773 BGE_CLRBIT(sc, BGE_RX_MODE,
2774 BGE_RXMODE_RX_PROMISC);
2775 } else
2776 bge_init(ifp);
2777 } else {
2778 if (ifp->if_flags & IFF_RUNNING) {
2779 bge_stop(sc);
2780 }
2781 }
2782 sc->bge_if_flags = ifp->if_flags;
2783 error = 0;
2784 break;
2785 case SIOCSIFMEDIA:
2786 case SIOCGIFMEDIA:
2787 if (sc->bge_tbi) {
2788 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2789 command);
2790 } else {
2791 mii = &sc->bge_mii;
2792 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2793 command);
2794 }
2795 error = 0;
2796 break;
2797 default:
2798 error = ether_ioctl(ifp, command, data);
2799 if (error == ENETRESET) {
2800 bge_setmulti(sc);
2801 error = 0;
2802 }
2803 break;
2804 }
2805
2806 splx(s);
2807
2808 return(error);
2809 }
2810
2811 void
2812 bge_watchdog(ifp)
2813 struct ifnet *ifp;
2814 {
2815 struct bge_softc *sc;
2816
2817 sc = ifp->if_softc;
2818
2819 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2820
2821 ifp->if_flags &= ~IFF_RUNNING;
2822 bge_init(ifp);
2823
2824 ifp->if_oerrors++;
2825 }
2826
2827 static void
2828 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
2829 {
2830 int i;
2831
2832 BGE_CLRBIT(sc, reg, bit);
2833
2834 for (i = 0; i < BGE_TIMEOUT; i++) {
2835 if ((CSR_READ_4(sc, reg) & bit) == 0)
2836 return;
2837 delay(100);
2838 }
2839
2840 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
2841 sc->bge_dev.dv_xname, (u_long) reg, bit);
2842 }
2843
2844 /*
2845 * Stop the adapter and free any mbufs allocated to the
2846 * RX and TX lists.
2847 */
2848 void
2849 bge_stop(sc)
2850 struct bge_softc *sc;
2851 {
2852 struct ifnet *ifp = &sc->ethercom.ec_if;
2853
2854 callout_stop(&sc->bge_timeout);
2855
2856 /*
2857 * Disable all of the receiver blocks
2858 */
2859 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2860 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2861 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2862 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2863 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2864 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2865 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2866
2867 /*
2868 * Disable all of the transmit blocks
2869 */
2870 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2871 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2872 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2873 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2874 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2875 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2876 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2877
2878 /*
2879 * Shut down all of the memory managers and related
2880 * state machines.
2881 */
2882 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2883 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2884 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2885
2886 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2887 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2888
2889 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2890 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2891
2892 /* Disable host interrupts. */
2893 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2894 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2895
2896 /*
2897 * Tell firmware we're shutting down.
2898 */
2899 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2900
2901 /* Free the RX lists. */
2902 bge_free_rx_ring_std(sc);
2903
2904 /* Free jumbo RX list. */
2905 bge_free_rx_ring_jumbo(sc);
2906
2907 /* Free TX buffers. */
2908 bge_free_tx_ring(sc);
2909
2910 /*
2911 * Isolate/power down the PHY.
2912 */
2913 if (!sc->bge_tbi)
2914 mii_down(&sc->bge_mii);
2915
2916 sc->bge_link = 0;
2917
2918 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2919
2920 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2921 }
2922
2923 /*
2924 * Stop all chip I/O so that the kernel's probe routines don't
2925 * get confused by errant DMAs when rebooting.
2926 */
2927 void
2928 bge_shutdown(xsc)
2929 void *xsc;
2930 {
2931 struct bge_softc *sc = (struct bge_softc *)xsc;
2932
2933 bge_stop(sc);
2934 bge_reset(sc);
2935 }
2936