if_bge.c revision 1.160 1 /* $NetBSD: if_bge.c,v 1.160 2009/04/16 01:35:24 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.160 2009/04/16 01:35:24 msaitoh Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
120
121
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134
135 #include <dev/pci/if_bgereg.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140
141
142 /*
143 * Tunable thresholds for rx-side bge interrupt mitigation.
144 */
145
146 /*
147 * The pairs of values below were obtained from empirical measurement
148 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149 * interrupt for every N packets received, where N is, approximately,
150 * the second value (rx_max_bds) in each pair. The values are chosen
151 * such that moving from one pair to the succeeding pair was observed
152 * to roughly halve interrupt rate under sustained input packet load.
153 * The values were empirically chosen to avoid overflowing internal
154 * limits on the bcm5700: inreasing rx_ticks much beyond 600
155 * results in internal wrapping and higher interrupt rates.
156 * The limit of 46 frames was chosen to match NFS workloads.
157 *
158 * These values also work well on bcm5701, bcm5704C, and (less
159 * tested) bcm5703. On other chipsets, (including the Altima chip
160 * family), the larger values may overflow internal chip limits,
161 * leading to increasing interrupt rates rather than lower interrupt
162 * rates.
163 *
164 * Applications using heavy interrupt mitigation (interrupting every
165 * 32 or 46 frames) in both directions may need to increase the TCP
166 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167 * full link bandwidth, due to ACKs and window updates lingering
168 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169 */
170 static const struct bge_load_rx_thresh {
171 int rx_ticks;
172 int rx_max_bds; }
173 bge_rx_threshes[] = {
174 { 32, 2 },
175 { 50, 4 },
176 { 100, 8 },
177 { 192, 16 },
178 { 416, 32 },
179 { 598, 46 }
180 };
181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182
183 /* XXX patchable; should be sysctl'able */
184 static int bge_auto_thresh = 1;
185 static int bge_rx_thresh_lvl;
186
187 static int bge_rxthresh_nodenum;
188
189 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
190
191 static int bge_probe(device_t, cfdata_t, void *);
192 static void bge_attach(device_t, device_t, void *);
193 static void bge_release_resources(struct bge_softc *);
194 static void bge_txeof(struct bge_softc *);
195 static void bge_rxeof(struct bge_softc *);
196
197 static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
198 static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
199 static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
200 static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
201
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static void bge_setmulti(struct bge_softc *);
216
217 static void bge_handle_events(struct bge_softc *);
218 static int bge_alloc_jumbo_mem(struct bge_softc *);
219 #if 0 /* XXX */
220 static void bge_free_jumbo_mem(struct bge_softc *);
221 #endif
222 static void *bge_jalloc(struct bge_softc *);
223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
225 bus_dmamap_t);
226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int bge_init_rx_ring_std(struct bge_softc *);
228 static void bge_free_rx_ring_std(struct bge_softc *);
229 static int bge_init_rx_ring_jumbo(struct bge_softc *);
230 static void bge_free_rx_ring_jumbo(struct bge_softc *);
231 static void bge_free_tx_ring(struct bge_softc *);
232 static int bge_init_tx_ring(struct bge_softc *);
233
234 static int bge_chipinit(struct bge_softc *);
235 static int bge_blockinit(struct bge_softc *);
236 static int bge_setpowerstate(struct bge_softc *, int);
237
238 static void bge_reset(struct bge_softc *);
239
240 #define BGE_DEBUG
241 #ifdef BGE_DEBUG
242 #define DPRINTF(x) if (bgedebug) printf x
243 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
244 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
245 int bgedebug = 0;
246 int bge_tso_debug = 0;
247 #else
248 #define DPRINTF(x)
249 #define DPRINTFN(n,x)
250 #define BGE_TSO_PRINTF(x)
251 #endif
252
253 #ifdef BGE_EVENT_COUNTERS
254 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
255 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
256 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
257 #else
258 #define BGE_EVCNT_INCR(ev) /* nothing */
259 #define BGE_EVCNT_ADD(ev, val) /* nothing */
260 #define BGE_EVCNT_UPD(ev, val) /* nothing */
261 #endif
262
263 static const struct bge_product {
264 pci_vendor_id_t bp_vendor;
265 pci_product_id_t bp_product;
266 const char *bp_name;
267 } bge_products[] = {
268 /*
269 * The BCM5700 documentation seems to indicate that the hardware
270 * still has the Alteon vendor ID burned into it, though it
271 * should always be overridden by the value in the EEPROM. We'll
272 * check for it anyway.
273 */
274 { PCI_VENDOR_ALTEON,
275 PCI_PRODUCT_ALTEON_BCM5700,
276 "Broadcom BCM5700 Gigabit Ethernet",
277 },
278 { PCI_VENDOR_ALTEON,
279 PCI_PRODUCT_ALTEON_BCM5701,
280 "Broadcom BCM5701 Gigabit Ethernet",
281 },
282 { PCI_VENDOR_ALTIMA,
283 PCI_PRODUCT_ALTIMA_AC1000,
284 "Altima AC1000 Gigabit Ethernet",
285 },
286 { PCI_VENDOR_ALTIMA,
287 PCI_PRODUCT_ALTIMA_AC1001,
288 "Altima AC1001 Gigabit Ethernet",
289 },
290 { PCI_VENDOR_ALTIMA,
291 PCI_PRODUCT_ALTIMA_AC9100,
292 "Altima AC9100 Gigabit Ethernet",
293 },
294 { PCI_VENDOR_BROADCOM,
295 PCI_PRODUCT_BROADCOM_BCM5700,
296 "Broadcom BCM5700 Gigabit Ethernet",
297 },
298 { PCI_VENDOR_BROADCOM,
299 PCI_PRODUCT_BROADCOM_BCM5701,
300 "Broadcom BCM5701 Gigabit Ethernet",
301 },
302 { PCI_VENDOR_BROADCOM,
303 PCI_PRODUCT_BROADCOM_BCM5702,
304 "Broadcom BCM5702 Gigabit Ethernet",
305 },
306 { PCI_VENDOR_BROADCOM,
307 PCI_PRODUCT_BROADCOM_BCM5702X,
308 "Broadcom BCM5702X Gigabit Ethernet" },
309 { PCI_VENDOR_BROADCOM,
310 PCI_PRODUCT_BROADCOM_BCM5703,
311 "Broadcom BCM5703 Gigabit Ethernet",
312 },
313 { PCI_VENDOR_BROADCOM,
314 PCI_PRODUCT_BROADCOM_BCM5703X,
315 "Broadcom BCM5703X Gigabit Ethernet",
316 },
317 { PCI_VENDOR_BROADCOM,
318 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
319 "Broadcom BCM5703 Gigabit Ethernet",
320 },
321 { PCI_VENDOR_BROADCOM,
322 PCI_PRODUCT_BROADCOM_BCM5704C,
323 "Broadcom BCM5704C Dual Gigabit Ethernet",
324 },
325 { PCI_VENDOR_BROADCOM,
326 PCI_PRODUCT_BROADCOM_BCM5704S,
327 "Broadcom BCM5704S Dual Gigabit Ethernet",
328 },
329 { PCI_VENDOR_BROADCOM,
330 PCI_PRODUCT_BROADCOM_BCM5705,
331 "Broadcom BCM5705 Gigabit Ethernet",
332 },
333 { PCI_VENDOR_BROADCOM,
334 PCI_PRODUCT_BROADCOM_BCM5705K,
335 "Broadcom BCM5705K Gigabit Ethernet",
336 },
337 { PCI_VENDOR_BROADCOM,
338 PCI_PRODUCT_BROADCOM_BCM5705M,
339 "Broadcom BCM5705M Gigabit Ethernet",
340 },
341 { PCI_VENDOR_BROADCOM,
342 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
343 "Broadcom BCM5705M Gigabit Ethernet",
344 },
345 { PCI_VENDOR_BROADCOM,
346 PCI_PRODUCT_BROADCOM_BCM5714,
347 "Broadcom BCM5714/5715 Gigabit Ethernet",
348 },
349 { PCI_VENDOR_BROADCOM,
350 PCI_PRODUCT_BROADCOM_BCM5715,
351 "Broadcom BCM5714/5715 Gigabit Ethernet",
352 },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5789,
355 "Broadcom BCM5789 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5721,
359 "Broadcom BCM5721 Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5722,
363 "Broadcom BCM5722 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5750,
367 "Broadcom BCM5750 Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5750M,
371 "Broadcom BCM5750M Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5751,
375 "Broadcom BCM5751 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5751M,
379 "Broadcom BCM5751M Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5752,
383 "Broadcom BCM5752 Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5752M,
387 "Broadcom BCM5752M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5753,
391 "Broadcom BCM5753 Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5753M,
395 "Broadcom BCM5753M Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5754,
399 "Broadcom BCM5754 Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5754M,
403 "Broadcom BCM5754M Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5755,
407 "Broadcom BCM5755 Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5755M,
411 "Broadcom BCM5755M Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5780,
415 "Broadcom BCM5780 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5780S,
419 "Broadcom BCM5780S Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5782,
423 "Broadcom BCM5782 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5786,
427 "Broadcom BCM5786 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5787,
431 "Broadcom BCM5787 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5787M,
435 "Broadcom BCM5787M Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5788,
439 "Broadcom BCM5788 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5789,
443 "Broadcom BCM5789 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5901,
447 "Broadcom BCM5901 Fast Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5901A2,
451 "Broadcom BCM5901A2 Fast Ethernet",
452 },
453 { PCI_VENDOR_SCHNEIDERKOCH,
454 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
455 "SysKonnect SK-9Dx1 Gigabit Ethernet",
456 },
457 { PCI_VENDOR_3COM,
458 PCI_PRODUCT_3COM_3C996,
459 "3Com 3c996 Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5906,
463 "Broadcom BCM5906 Fast Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5906M,
467 "Broadcom BCM5906M Fast Ethernet",
468 },
469 { 0,
470 0,
471 NULL },
472 };
473
474 /*
475 * XXX: how to handle variants based on 5750 and derivatives:
476 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
477 * in general behave like a 5705, except with additional quirks.
478 * This driver's current handling of the 5721 is wrong;
479 * how we map ASIC revision to "quirks" needs more thought.
480 * (defined here until the thought is done).
481 */
482 #define BGE_IS_5714_FAMILY(sc) \
483 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
485 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
486
487 #define BGE_IS_5750_OR_BEYOND(sc) \
488 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
489 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
490 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
491 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
493 BGE_IS_5714_FAMILY(sc) )
494
495 #define BGE_IS_5705_OR_BEYOND(sc) \
496 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
497 (BGE_IS_5750_OR_BEYOND(sc)))
498
499 static const struct bge_revision {
500 uint32_t br_chipid;
501 const char *br_name;
502 } bge_revisions[] = {
503 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
504 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
505 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
506 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
507 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
508 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
509 /* This is treated like a BCM5700 Bx */
510 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
511 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
512 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
513 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
514 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
515 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
516 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
517 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
518 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
519 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
520 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
521 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
522 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
523 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
524 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
525 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
526 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
527 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
528 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
529 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
530 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
531 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
532 { BGE_CHIPID_BCM5751_A1, "BCM5751 A1" },
533 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
534 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
535 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
536 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
537 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
538 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
539 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
540 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
541 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
542 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
543 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
544 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
545 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
546 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
547 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
548 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
549 { 0, NULL }
550 };
551
552 /*
553 * Some defaults for major revisions, so that newer steppings
554 * that we don't know about have a shot at working.
555 */
556 static const struct bge_revision bge_majorrevs[] = {
557 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
558 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
559 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
560 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
561 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
562 { BGE_ASICREV_BCM5750, "unknown BCM575x family" },
563 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
564 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
565 { BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
566 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
567 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
568 { BGE_ASICREV_BCM5787, "unknown BCM5787" },
569 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
570 { 0, NULL }
571 };
572
573 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
574 bge_probe, bge_attach, NULL, NULL);
575
576 static u_int32_t
577 bge_readmem_ind(struct bge_softc *sc, int off)
578 {
579 pcireg_t val;
580
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
582 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
583 return val;
584 }
585
586 static void
587 bge_writemem_ind(struct bge_softc *sc, int off, int val)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
590 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
591 }
592
593 #ifdef notdef
594 static u_int32_t
595 bge_readreg_ind(struct bge_softc *sc, int off)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
599 }
600 #endif
601
602 static void
603 bge_writereg_ind(struct bge_softc *sc, int off, int val)
604 {
605 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
606 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
607 }
608
609 static void
610 bge_writemem_direct(struct bge_softc *sc, int off, int val)
611 {
612 CSR_WRITE_4(sc, off, val);
613 }
614
615 static void
616 bge_writembx(struct bge_softc *sc, int off, int val)
617 {
618 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
619 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
620
621 CSR_WRITE_4(sc, off, val);
622 }
623
624 static u_int8_t
625 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
626 {
627 u_int32_t access, byte = 0;
628 int i;
629
630 /* Lock. */
631 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
632 for (i = 0; i < 8000; i++) {
633 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
634 break;
635 DELAY(20);
636 }
637 if (i == 8000)
638 return (1);
639
640 /* Enable access. */
641 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
642 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
643
644 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
645 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
646 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
647 DELAY(10);
648 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
649 DELAY(10);
650 break;
651 }
652 }
653
654 if (i == BGE_TIMEOUT * 10) {
655 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
656 return (1);
657 }
658
659 /* Get result. */
660 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
661
662 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
663
664 /* Disable access. */
665 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
666
667 /* Unlock. */
668 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
669 CSR_READ_4(sc, BGE_NVRAM_SWARB);
670
671 return (0);
672 }
673
674 /*
675 * Read a sequence of bytes from NVRAM.
676 */
677 static int
678 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
679 {
680 int err = 0, i;
681 u_int8_t byte = 0;
682
683 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
684 return (1);
685
686 for (i = 0; i < cnt; i++) {
687 err = bge_nvram_getbyte(sc, off + i, &byte);
688 if (err)
689 break;
690 *(dest + i) = byte;
691 }
692
693 return (err ? 1 : 0);
694 }
695
696 /*
697 * Read a byte of data stored in the EEPROM at address 'addr.' The
698 * BCM570x supports both the traditional bitbang interface and an
699 * auto access interface for reading the EEPROM. We use the auto
700 * access method.
701 */
702 static u_int8_t
703 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
704 {
705 int i;
706 u_int32_t byte = 0;
707
708 /*
709 * Enable use of auto EEPROM access so we can avoid
710 * having to use the bitbang method.
711 */
712 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
713
714 /* Reset the EEPROM, load the clock period. */
715 CSR_WRITE_4(sc, BGE_EE_ADDR,
716 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
717 DELAY(20);
718
719 /* Issue the read EEPROM command. */
720 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
721
722 /* Wait for completion */
723 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
724 DELAY(10);
725 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
726 break;
727 }
728
729 if (i == BGE_TIMEOUT) {
730 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
731 return (0);
732 }
733
734 /* Get result. */
735 byte = CSR_READ_4(sc, BGE_EE_DATA);
736
737 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
738
739 return (0);
740 }
741
742 /*
743 * Read a sequence of bytes from the EEPROM.
744 */
745 static int
746 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
747 {
748 int err = 0, i;
749 u_int8_t byte = 0;
750 char *dest = destv;
751
752 for (i = 0; i < cnt; i++) {
753 err = bge_eeprom_getbyte(sc, off + i, &byte);
754 if (err)
755 break;
756 *(dest + i) = byte;
757 }
758
759 return (err ? 1 : 0);
760 }
761
762 static int
763 bge_miibus_readreg(device_t dev, int phy, int reg)
764 {
765 struct bge_softc *sc = device_private(dev);
766 u_int32_t val;
767 u_int32_t saved_autopoll;
768 int i;
769
770 /*
771 * Broadcom's own driver always assumes the internal
772 * PHY is at GMII address 1. On some chips, the PHY responds
773 * to accesses at all addresses, which could cause us to
774 * bogusly attach the PHY 32 times at probe type. Always
775 * restricting the lookup to address 1 is simpler than
776 * trying to figure out which chips revisions should be
777 * special-cased.
778 */
779 if (phy != 1)
780 return (0);
781
782 /* Reading with autopolling on may trigger PCI errors */
783 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
784 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
785 CSR_WRITE_4(sc, BGE_MI_MODE,
786 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
787 DELAY(40);
788 }
789
790 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
791 BGE_MIPHY(phy)|BGE_MIREG(reg));
792
793 for (i = 0; i < BGE_TIMEOUT; i++) {
794 val = CSR_READ_4(sc, BGE_MI_COMM);
795 if (!(val & BGE_MICOMM_BUSY))
796 break;
797 delay(10);
798 }
799
800 if (i == BGE_TIMEOUT) {
801 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
802 val = 0;
803 goto done;
804 }
805
806 val = CSR_READ_4(sc, BGE_MI_COMM);
807
808 done:
809 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
810 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
811 DELAY(40);
812 }
813
814 if (val & BGE_MICOMM_READFAIL)
815 return (0);
816
817 return (val & 0xFFFF);
818 }
819
820 static void
821 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
822 {
823 struct bge_softc *sc = device_private(dev);
824 u_int32_t saved_autopoll;
825 int i;
826
827 if (phy!=1) {
828 return;
829 }
830
831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
832 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
833 return;
834 }
835
836 /* Touching the PHY while autopolling is on may trigger PCI errors */
837 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
838 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
839 delay(40);
840 CSR_WRITE_4(sc, BGE_MI_MODE,
841 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
842 delay(10); /* 40 usec is supposed to be adequate */
843 }
844
845 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
846 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
847
848 for (i = 0; i < BGE_TIMEOUT; i++) {
849 delay(10);
850 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
851 delay(5);
852 CSR_READ_4(sc, BGE_MI_COMM);
853 break;
854 }
855 }
856
857 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
858 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
859 delay(40);
860 }
861
862 if (i == BGE_TIMEOUT)
863 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
864 }
865
866 static void
867 bge_miibus_statchg(device_t dev)
868 {
869 struct bge_softc *sc = device_private(dev);
870 struct mii_data *mii = &sc->bge_mii;
871
872 /*
873 * Get flow control negotiation result.
874 */
875 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
876 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
877 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
878 mii->mii_media_active &= ~IFM_ETH_FMASK;
879 }
880
881 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
882 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
883 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
884 } else
885 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
886
887 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
888 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
889 else
890 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
891
892 /*
893 * 802.3x flow control
894 */
895 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
896 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
897 else
898 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
899
900 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
901 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
902 else
903 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
904 }
905
906 /*
907 * Update rx threshold levels to values in a particular slot
908 * of the interrupt-mitigation table bge_rx_threshes.
909 */
910 static void
911 bge_set_thresh(struct ifnet *ifp, int lvl)
912 {
913 struct bge_softc *sc = ifp->if_softc;
914 int s;
915
916 /* For now, just save the new Rx-intr thresholds and record
917 * that a threshold update is pending. Updating the hardware
918 * registers here (even at splhigh()) is observed to
919 * occasionaly cause glitches where Rx-interrupts are not
920 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
921 */
922 s = splnet();
923 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
924 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
925 sc->bge_pending_rxintr_change = 1;
926 splx(s);
927
928 return;
929 }
930
931
932 /*
933 * Update Rx thresholds of all bge devices
934 */
935 static void
936 bge_update_all_threshes(int lvl)
937 {
938 struct ifnet *ifp;
939 const char * const namebuf = "bge";
940 int namelen;
941
942 if (lvl < 0)
943 lvl = 0;
944 else if( lvl >= NBGE_RX_THRESH)
945 lvl = NBGE_RX_THRESH - 1;
946
947 namelen = strlen(namebuf);
948 /*
949 * Now search all the interfaces for this name/number
950 */
951 IFNET_FOREACH(ifp) {
952 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
953 continue;
954 /* We got a match: update if doing auto-threshold-tuning */
955 if (bge_auto_thresh)
956 bge_set_thresh(ifp, lvl);
957 }
958 }
959
960 /*
961 * Handle events that have triggered interrupts.
962 */
963 static void
964 bge_handle_events(struct bge_softc *sc)
965 {
966
967 return;
968 }
969
970 /*
971 * Memory management for jumbo frames.
972 */
973
974 static int
975 bge_alloc_jumbo_mem(struct bge_softc *sc)
976 {
977 char *ptr, *kva;
978 bus_dma_segment_t seg;
979 int i, rseg, state, error;
980 struct bge_jpool_entry *entry;
981
982 state = error = 0;
983
984 /* Grab a big chunk o' storage. */
985 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
986 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
987 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
988 return ENOBUFS;
989 }
990
991 state = 1;
992 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
993 BUS_DMA_NOWAIT)) {
994 aprint_error_dev(sc->bge_dev,
995 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
996 error = ENOBUFS;
997 goto out;
998 }
999
1000 state = 2;
1001 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1002 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1003 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1004 error = ENOBUFS;
1005 goto out;
1006 }
1007
1008 state = 3;
1009 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1010 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1011 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1012 error = ENOBUFS;
1013 goto out;
1014 }
1015
1016 state = 4;
1017 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1018 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1019
1020 SLIST_INIT(&sc->bge_jfree_listhead);
1021 SLIST_INIT(&sc->bge_jinuse_listhead);
1022
1023 /*
1024 * Now divide it up into 9K pieces and save the addresses
1025 * in an array.
1026 */
1027 ptr = sc->bge_cdata.bge_jumbo_buf;
1028 for (i = 0; i < BGE_JSLOTS; i++) {
1029 sc->bge_cdata.bge_jslots[i] = ptr;
1030 ptr += BGE_JLEN;
1031 entry = malloc(sizeof(struct bge_jpool_entry),
1032 M_DEVBUF, M_NOWAIT);
1033 if (entry == NULL) {
1034 aprint_error_dev(sc->bge_dev,
1035 "no memory for jumbo buffer queue!\n");
1036 error = ENOBUFS;
1037 goto out;
1038 }
1039 entry->slot = i;
1040 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1041 entry, jpool_entries);
1042 }
1043 out:
1044 if (error != 0) {
1045 switch (state) {
1046 case 4:
1047 bus_dmamap_unload(sc->bge_dmatag,
1048 sc->bge_cdata.bge_rx_jumbo_map);
1049 case 3:
1050 bus_dmamap_destroy(sc->bge_dmatag,
1051 sc->bge_cdata.bge_rx_jumbo_map);
1052 case 2:
1053 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1054 case 1:
1055 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1056 break;
1057 default:
1058 break;
1059 }
1060 }
1061
1062 return error;
1063 }
1064
1065 /*
1066 * Allocate a jumbo buffer.
1067 */
1068 static void *
1069 bge_jalloc(struct bge_softc *sc)
1070 {
1071 struct bge_jpool_entry *entry;
1072
1073 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1074
1075 if (entry == NULL) {
1076 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1077 return (NULL);
1078 }
1079
1080 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1081 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1082 return (sc->bge_cdata.bge_jslots[entry->slot]);
1083 }
1084
1085 /*
1086 * Release a jumbo buffer.
1087 */
1088 static void
1089 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1090 {
1091 struct bge_jpool_entry *entry;
1092 struct bge_softc *sc;
1093 int i, s;
1094
1095 /* Extract the softc struct pointer. */
1096 sc = (struct bge_softc *)arg;
1097
1098 if (sc == NULL)
1099 panic("bge_jfree: can't find softc pointer!");
1100
1101 /* calculate the slot this buffer belongs to */
1102
1103 i = ((char *)buf
1104 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1105
1106 if ((i < 0) || (i >= BGE_JSLOTS))
1107 panic("bge_jfree: asked to free buffer that we don't manage!");
1108
1109 s = splvm();
1110 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1111 if (entry == NULL)
1112 panic("bge_jfree: buffer not in use!");
1113 entry->slot = i;
1114 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1115 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1116
1117 if (__predict_true(m != NULL))
1118 pool_cache_put(mb_cache, m);
1119 splx(s);
1120 }
1121
1122
1123 /*
1124 * Intialize a standard receive ring descriptor.
1125 */
1126 static int
1127 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1128 {
1129 struct mbuf *m_new = NULL;
1130 struct bge_rx_bd *r;
1131 int error;
1132
1133 if (dmamap == NULL) {
1134 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1135 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1136 if (error != 0)
1137 return error;
1138 }
1139
1140 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1141
1142 if (m == NULL) {
1143 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1144 if (m_new == NULL)
1145 return (ENOBUFS);
1146
1147 MCLGET(m_new, M_DONTWAIT);
1148 if (!(m_new->m_flags & M_EXT)) {
1149 m_freem(m_new);
1150 return (ENOBUFS);
1151 }
1152 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1153
1154 } else {
1155 m_new = m;
1156 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1157 m_new->m_data = m_new->m_ext.ext_buf;
1158 }
1159 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1160 m_adj(m_new, ETHER_ALIGN);
1161 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1162 BUS_DMA_READ|BUS_DMA_NOWAIT))
1163 return (ENOBUFS);
1164 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1165 BUS_DMASYNC_PREREAD);
1166
1167 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1168 r = &sc->bge_rdata->bge_rx_std_ring[i];
1169 bge_set_hostaddr(&r->bge_addr,
1170 dmamap->dm_segs[0].ds_addr);
1171 r->bge_flags = BGE_RXBDFLAG_END;
1172 r->bge_len = m_new->m_len;
1173 r->bge_idx = i;
1174
1175 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1176 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1177 i * sizeof (struct bge_rx_bd),
1178 sizeof (struct bge_rx_bd),
1179 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1180
1181 return (0);
1182 }
1183
1184 /*
1185 * Initialize a jumbo receive ring descriptor. This allocates
1186 * a jumbo buffer from the pool managed internally by the driver.
1187 */
1188 static int
1189 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1190 {
1191 struct mbuf *m_new = NULL;
1192 struct bge_rx_bd *r;
1193 void *buf = NULL;
1194
1195 if (m == NULL) {
1196
1197 /* Allocate the mbuf. */
1198 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1199 if (m_new == NULL)
1200 return (ENOBUFS);
1201
1202 /* Allocate the jumbo buffer */
1203 buf = bge_jalloc(sc);
1204 if (buf == NULL) {
1205 m_freem(m_new);
1206 aprint_error_dev(sc->bge_dev,
1207 "jumbo allocation failed -- packet dropped!\n");
1208 return (ENOBUFS);
1209 }
1210
1211 /* Attach the buffer to the mbuf. */
1212 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1213 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1214 bge_jfree, sc);
1215 m_new->m_flags |= M_EXT_RW;
1216 } else {
1217 m_new = m;
1218 buf = m_new->m_data = m_new->m_ext.ext_buf;
1219 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1220 }
1221 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1222 m_adj(m_new, ETHER_ALIGN);
1223 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1224 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1225 BUS_DMASYNC_PREREAD);
1226 /* Set up the descriptor. */
1227 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1228 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1229 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1230 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1231 r->bge_len = m_new->m_len;
1232 r->bge_idx = i;
1233
1234 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1235 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1236 i * sizeof (struct bge_rx_bd),
1237 sizeof (struct bge_rx_bd),
1238 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1239
1240 return (0);
1241 }
1242
1243 /*
1244 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1245 * that's 1MB or memory, which is a lot. For now, we fill only the first
1246 * 256 ring entries and hope that our CPU is fast enough to keep up with
1247 * the NIC.
1248 */
1249 static int
1250 bge_init_rx_ring_std(struct bge_softc *sc)
1251 {
1252 int i;
1253
1254 if (sc->bge_flags & BGE_RXRING_VALID)
1255 return 0;
1256
1257 for (i = 0; i < BGE_SSLOTS; i++) {
1258 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1259 return (ENOBUFS);
1260 }
1261
1262 sc->bge_std = i - 1;
1263 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1264
1265 sc->bge_flags |= BGE_RXRING_VALID;
1266
1267 return (0);
1268 }
1269
1270 static void
1271 bge_free_rx_ring_std(struct bge_softc *sc)
1272 {
1273 int i;
1274
1275 if (!(sc->bge_flags & BGE_RXRING_VALID))
1276 return;
1277
1278 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1279 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1280 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1281 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1282 bus_dmamap_destroy(sc->bge_dmatag,
1283 sc->bge_cdata.bge_rx_std_map[i]);
1284 }
1285 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1286 sizeof(struct bge_rx_bd));
1287 }
1288
1289 sc->bge_flags &= ~BGE_RXRING_VALID;
1290 }
1291
1292 static int
1293 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1294 {
1295 int i;
1296 volatile struct bge_rcb *rcb;
1297
1298 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1299 return 0;
1300
1301 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1302 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1303 return (ENOBUFS);
1304 };
1305
1306 sc->bge_jumbo = i - 1;
1307 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1308
1309 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1310 rcb->bge_maxlen_flags = 0;
1311 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1312
1313 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1314
1315 return (0);
1316 }
1317
1318 static void
1319 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1320 {
1321 int i;
1322
1323 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1324 return;
1325
1326 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1327 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1328 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1329 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1330 }
1331 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1332 sizeof(struct bge_rx_bd));
1333 }
1334
1335 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1336 }
1337
1338 static void
1339 bge_free_tx_ring(struct bge_softc *sc)
1340 {
1341 int i, freed;
1342 struct txdmamap_pool_entry *dma;
1343
1344 if (!(sc->bge_flags & BGE_TXRING_VALID))
1345 return;
1346
1347 freed = 0;
1348
1349 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1350 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1351 freed++;
1352 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1353 sc->bge_cdata.bge_tx_chain[i] = NULL;
1354 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1355 link);
1356 sc->txdma[i] = 0;
1357 }
1358 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1359 sizeof(struct bge_tx_bd));
1360 }
1361
1362 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1363 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1364 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1365 free(dma, M_DEVBUF);
1366 }
1367
1368 sc->bge_flags &= ~BGE_TXRING_VALID;
1369 }
1370
1371 static int
1372 bge_init_tx_ring(struct bge_softc *sc)
1373 {
1374 int i;
1375 bus_dmamap_t dmamap;
1376 struct txdmamap_pool_entry *dma;
1377
1378 if (sc->bge_flags & BGE_TXRING_VALID)
1379 return 0;
1380
1381 sc->bge_txcnt = 0;
1382 sc->bge_tx_saved_considx = 0;
1383
1384 /* Initialize transmit producer index for host-memory send ring. */
1385 sc->bge_tx_prodidx = 0;
1386 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1387 /* 5700 b2 errata */
1388 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1389 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1390
1391 /* NIC-memory send ring not used; initialize to zero. */
1392 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1393 /* 5700 b2 errata */
1394 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1395 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1396
1397 SLIST_INIT(&sc->txdma_list);
1398 for (i = 0; i < BGE_RSLOTS; i++) {
1399 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1400 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1401 &dmamap))
1402 return (ENOBUFS);
1403 if (dmamap == NULL)
1404 panic("dmamap NULL in bge_init_tx_ring");
1405 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1406 if (dma == NULL) {
1407 aprint_error_dev(sc->bge_dev,
1408 "can't alloc txdmamap_pool_entry\n");
1409 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1410 return (ENOMEM);
1411 }
1412 dma->dmamap = dmamap;
1413 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1414 }
1415
1416 sc->bge_flags |= BGE_TXRING_VALID;
1417
1418 return (0);
1419 }
1420
1421 static void
1422 bge_setmulti(struct bge_softc *sc)
1423 {
1424 struct ethercom *ac = &sc->ethercom;
1425 struct ifnet *ifp = &ac->ec_if;
1426 struct ether_multi *enm;
1427 struct ether_multistep step;
1428 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1429 u_int32_t h;
1430 int i;
1431
1432 if (ifp->if_flags & IFF_PROMISC)
1433 goto allmulti;
1434
1435 /* Now program new ones. */
1436 ETHER_FIRST_MULTI(step, ac, enm);
1437 while (enm != NULL) {
1438 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1439 /*
1440 * We must listen to a range of multicast addresses.
1441 * For now, just accept all multicasts, rather than
1442 * trying to set only those filter bits needed to match
1443 * the range. (At this time, the only use of address
1444 * ranges is for IP multicast routing, for which the
1445 * range is big enough to require all bits set.)
1446 */
1447 goto allmulti;
1448 }
1449
1450 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1451
1452 /* Just want the 7 least-significant bits. */
1453 h &= 0x7f;
1454
1455 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1456 ETHER_NEXT_MULTI(step, enm);
1457 }
1458
1459 ifp->if_flags &= ~IFF_ALLMULTI;
1460 goto setit;
1461
1462 allmulti:
1463 ifp->if_flags |= IFF_ALLMULTI;
1464 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1465
1466 setit:
1467 for (i = 0; i < 4; i++)
1468 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1469 }
1470
1471 const int bge_swapbits[] = {
1472 0,
1473 BGE_MODECTL_BYTESWAP_DATA,
1474 BGE_MODECTL_WORDSWAP_DATA,
1475 BGE_MODECTL_BYTESWAP_NONFRAME,
1476 BGE_MODECTL_WORDSWAP_NONFRAME,
1477
1478 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1479 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1480 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1481
1482 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1483 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1484
1485 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1486
1487 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1488 BGE_MODECTL_BYTESWAP_NONFRAME,
1489 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1490 BGE_MODECTL_WORDSWAP_NONFRAME,
1491 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1492 BGE_MODECTL_WORDSWAP_NONFRAME,
1493 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1494 BGE_MODECTL_WORDSWAP_NONFRAME,
1495
1496 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1497 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1498 };
1499
1500 int bge_swapindex = 0;
1501
1502 /*
1503 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1504 * self-test results.
1505 */
1506 static int
1507 bge_chipinit(struct bge_softc *sc)
1508 {
1509 u_int32_t cachesize;
1510 int i;
1511 u_int32_t dma_rw_ctl;
1512
1513
1514 /* Set endianness before we access any non-PCI registers. */
1515 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1516 BGE_INIT);
1517
1518 /* Set power state to D0. */
1519 bge_setpowerstate(sc, 0);
1520
1521 /*
1522 * Check the 'ROM failed' bit on the RX CPU to see if
1523 * self-tests passed.
1524 */
1525 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1526 aprint_error_dev(sc->bge_dev,
1527 "RX CPU self-diagnostics failed!\n");
1528 return (ENODEV);
1529 }
1530
1531 /* Clear the MAC control register */
1532 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1533
1534 /*
1535 * Clear the MAC statistics block in the NIC's
1536 * internal memory.
1537 */
1538 for (i = BGE_STATS_BLOCK;
1539 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1540 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1541
1542 for (i = BGE_STATUS_BLOCK;
1543 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1544 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1545
1546 /* Set up the PCI DMA control register. */
1547 if (sc->bge_flags & BGE_PCIE) {
1548 u_int32_t device_ctl;
1549
1550 /* From FreeBSD */
1551 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1552 device_xname(sc->bge_dev)));
1553 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1554 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1555 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1556
1557 /* jonathan: alternative from Linux driver */
1558 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1559 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1560
1561 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1562 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1563 BGE_PCI_CONF_DEV_CTRL);
1564 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1565
1566 if ((device_ctl & 0x00e0) && 0) {
1567 /*
1568 * XXX jonathan (at) NetBSD.org:
1569 * This clause is exactly what the Broadcom-supplied
1570 * Linux does; but given overall register programming
1571 * by if_bge(4), this larger DMA-write watermark
1572 * value causes bcm5721 chips to totally wedge.
1573 */
1574 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1575 } else {
1576 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1577 }
1578 } else if (sc->bge_flags & BGE_PCIX){
1579 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1580 device_xname(sc->bge_dev)));
1581 /* PCI-X bus */
1582 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1583 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1584 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1585 (0x0F);
1586 /*
1587 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1588 * for hardware bugs, which means we should also clear
1589 * the low-order MINDMA bits. In addition, the 5704
1590 * uses a different encoding of read/write watermarks.
1591 */
1592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1593 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1594 /* should be 0x1f0000 */
1595 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1596 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1597 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1598 }
1599 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1600 dma_rw_ctl &= 0xfffffff0;
1601 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1602 }
1603 else if (BGE_IS_5714_FAMILY(sc)) {
1604 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1605 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1606 /* XXX magic values, Broadcom-supplied Linux driver */
1607 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1608 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1609 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1610 else
1611 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1612 }
1613 } else {
1614 /* Conventional PCI bus */
1615 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1616 device_xname(sc->bge_dev)));
1617 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1618 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1619 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1620 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1621 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1622 dma_rw_ctl |= 0x0F;
1623 }
1624
1625 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1626
1627 /*
1628 * Set up general mode register.
1629 */
1630 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1631 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1632 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1633
1634 /* Get cache line size. */
1635 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1636
1637 /*
1638 * Avoid violating PCI spec on certain chip revs.
1639 */
1640 if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1641 PCIM_CMD_MWIEN) {
1642 switch(cachesize) {
1643 case 1:
1644 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1645 BGE_PCI_WRITE_BNDRY_16BYTES);
1646 break;
1647 case 2:
1648 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1649 BGE_PCI_WRITE_BNDRY_32BYTES);
1650 break;
1651 case 4:
1652 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1653 BGE_PCI_WRITE_BNDRY_64BYTES);
1654 break;
1655 case 8:
1656 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1657 BGE_PCI_WRITE_BNDRY_128BYTES);
1658 break;
1659 case 16:
1660 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1661 BGE_PCI_WRITE_BNDRY_256BYTES);
1662 break;
1663 case 32:
1664 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1665 BGE_PCI_WRITE_BNDRY_512BYTES);
1666 break;
1667 case 64:
1668 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1669 BGE_PCI_WRITE_BNDRY_1024BYTES);
1670 break;
1671 default:
1672 /* Disable PCI memory write and invalidate. */
1673 #if 0
1674 if (bootverbose)
1675 aprint_error_dev(sc->bge_dev,
1676 "cache line size %d not supported "
1677 "disabling PCI MWI\n",
1678 #endif
1679 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1680 PCIM_CMD_MWIEN);
1681 break;
1682 }
1683 }
1684
1685 /*
1686 * Disable memory write invalidate. Apparently it is not supported
1687 * properly by these devices.
1688 */
1689 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1690
1691
1692 #ifdef __brokenalpha__
1693 /*
1694 * Must insure that we do not cross an 8K (bytes) boundary
1695 * for DMA reads. Our highest limit is 1K bytes. This is a
1696 * restriction on some ALPHA platforms with early revision
1697 * 21174 PCI chipsets, such as the AlphaPC 164lx
1698 */
1699 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1700 #endif
1701
1702 /* Set the timer prescaler (always 66MHz) */
1703 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1704
1705 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1706 DELAY(40); /* XXX */
1707
1708 /* Put PHY into ready state */
1709 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1710 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1711 DELAY(40);
1712 }
1713
1714 return (0);
1715 }
1716
1717 static int
1718 bge_blockinit(struct bge_softc *sc)
1719 {
1720 volatile struct bge_rcb *rcb;
1721 bus_size_t rcb_addr;
1722 int i;
1723 struct ifnet *ifp = &sc->ethercom.ec_if;
1724 bge_hostaddr taddr;
1725
1726 /*
1727 * Initialize the memory window pointer register so that
1728 * we can access the first 32K of internal NIC RAM. This will
1729 * allow us to set up the TX send ring RCBs and the RX return
1730 * ring RCBs, plus other things which live in NIC memory.
1731 */
1732
1733 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1734
1735 /* Configure mbuf memory pool */
1736 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1737 if (sc->bge_extram) {
1738 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1739 BGE_EXT_SSRAM);
1740 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1741 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1742 else
1743 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1744 } else {
1745 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1746 BGE_BUFFPOOL_1);
1747 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1748 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1749 else
1750 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1751 }
1752
1753 /* Configure DMA resource pool */
1754 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1755 BGE_DMA_DESCRIPTORS);
1756 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1757 }
1758
1759 /* Configure mbuf pool watermarks */
1760 #ifdef ORIG_WPAUL_VALUES
1761 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1762 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1763 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1764 #else
1765
1766 /* new broadcom docs strongly recommend these: */
1767 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1768 if (ifp->if_mtu > ETHER_MAX_LEN) {
1769 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1770 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1771 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1772 } else {
1773 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1774 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1775 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1776 }
1777 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1778 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1779 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1780 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1781 } else {
1782 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1783 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1784 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1785 }
1786 #endif
1787
1788 /* Configure DMA resource watermarks */
1789 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1790 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1791
1792 /* Enable buffer manager */
1793 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1794 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1795 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1796
1797 /* Poll for buffer manager start indication */
1798 for (i = 0; i < BGE_TIMEOUT; i++) {
1799 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1800 break;
1801 DELAY(10);
1802 }
1803
1804 if (i == BGE_TIMEOUT) {
1805 aprint_error_dev(sc->bge_dev,
1806 "buffer manager failed to start\n");
1807 return (ENXIO);
1808 }
1809 }
1810
1811 /* Enable flow-through queues */
1812 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1813 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1814
1815 /* Wait until queue initialization is complete */
1816 for (i = 0; i < BGE_TIMEOUT; i++) {
1817 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1818 break;
1819 DELAY(10);
1820 }
1821
1822 if (i == BGE_TIMEOUT) {
1823 aprint_error_dev(sc->bge_dev,
1824 "flow-through queue init failed\n");
1825 return (ENXIO);
1826 }
1827
1828 /* Initialize the standard RX ring control block */
1829 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1830 bge_set_hostaddr(&rcb->bge_hostaddr,
1831 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1832 if (BGE_IS_5705_OR_BEYOND(sc))
1833 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1834 else
1835 rcb->bge_maxlen_flags =
1836 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1837 if (sc->bge_extram)
1838 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1839 else
1840 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1841 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1842 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1843 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1844 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1845
1846 if (BGE_IS_5705_OR_BEYOND(sc))
1847 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1848 else
1849 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1850
1851 /*
1852 * Initialize the jumbo RX ring control block
1853 * We set the 'ring disabled' bit in the flags
1854 * field until we're actually ready to start
1855 * using this ring (i.e. once we set the MTU
1856 * high enough to require it).
1857 */
1858 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1859 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1860 bge_set_hostaddr(&rcb->bge_hostaddr,
1861 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1862 rcb->bge_maxlen_flags =
1863 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1864 BGE_RCB_FLAG_RING_DISABLED);
1865 if (sc->bge_extram)
1866 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1867 else
1868 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1869
1870 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1871 rcb->bge_hostaddr.bge_addr_hi);
1872 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1873 rcb->bge_hostaddr.bge_addr_lo);
1874 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1875 rcb->bge_maxlen_flags);
1876 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1877
1878 /* Set up dummy disabled mini ring RCB */
1879 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1880 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1881 BGE_RCB_FLAG_RING_DISABLED);
1882 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1883 rcb->bge_maxlen_flags);
1884
1885 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1886 offsetof(struct bge_ring_data, bge_info),
1887 sizeof (struct bge_gib),
1888 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1889 }
1890
1891 /*
1892 * Set the BD ring replenish thresholds. The recommended
1893 * values are 1/8th the number of descriptors allocated to
1894 * each ring.
1895 */
1896 i = BGE_STD_RX_RING_CNT / 8;
1897
1898 /*
1899 * Use a value of 8 for the following chips to workaround HW errata.
1900 * Some of these chips have been added based on empirical
1901 * evidence (they don't work unless this is done).
1902 */
1903 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1904 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1905 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1906 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1907 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1908 i = 8;
1909
1910 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1911 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1912
1913 /*
1914 * Disable all unused send rings by setting the 'ring disabled'
1915 * bit in the flags field of all the TX send ring control blocks.
1916 * These are located in NIC memory.
1917 */
1918 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1919 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1920 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1921 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1922 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1923 rcb_addr += sizeof(struct bge_rcb);
1924 }
1925
1926 /* Configure TX RCB 0 (we use only the first ring) */
1927 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1928 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1929 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1930 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1931 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1932 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1933 if (!(BGE_IS_5705_OR_BEYOND(sc)))
1934 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1935 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1936
1937 /* Disable all unused RX return rings */
1938 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1939 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1940 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1941 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1942 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1943 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1944 BGE_RCB_FLAG_RING_DISABLED));
1945 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1946 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1947 (i * (sizeof(u_int64_t))), 0);
1948 rcb_addr += sizeof(struct bge_rcb);
1949 }
1950
1951 /* Initialize RX ring indexes */
1952 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1953 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1954 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1955
1956 /*
1957 * Set up RX return ring 0
1958 * Note that the NIC address for RX return rings is 0x00000000.
1959 * The return rings live entirely within the host, so the
1960 * nicaddr field in the RCB isn't used.
1961 */
1962 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1963 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1964 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1965 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1966 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1967 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1968 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1969
1970 /* Set random backoff seed for TX */
1971 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1972 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1973 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1974 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1975 BGE_TX_BACKOFF_SEED_MASK);
1976
1977 /* Set inter-packet gap */
1978 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1979
1980 /*
1981 * Specify which ring to use for packets that don't match
1982 * any RX rules.
1983 */
1984 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1985
1986 /*
1987 * Configure number of RX lists. One interrupt distribution
1988 * list, sixteen active lists, one bad frames class.
1989 */
1990 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1991
1992 /* Inialize RX list placement stats mask. */
1993 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1994 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1995
1996 /* Disable host coalescing until we get it set up */
1997 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1998
1999 /* Poll to make sure it's shut down. */
2000 for (i = 0; i < BGE_TIMEOUT; i++) {
2001 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2002 break;
2003 DELAY(10);
2004 }
2005
2006 if (i == BGE_TIMEOUT) {
2007 aprint_error_dev(sc->bge_dev,
2008 "host coalescing engine failed to idle\n");
2009 return (ENXIO);
2010 }
2011
2012 /* Set up host coalescing defaults */
2013 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2014 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2015 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2016 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2017 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2018 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2019 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2020 }
2021 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2022 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2023
2024 /* Set up address of statistics block */
2025 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2026 bge_set_hostaddr(&taddr,
2027 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2028 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2029 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2030 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2031 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2032 }
2033
2034 /* Set up address of status block */
2035 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2036 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2037 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2038 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2039 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2040 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2041
2042 /* Turn on host coalescing state machine */
2043 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2044
2045 /* Turn on RX BD completion state machine and enable attentions */
2046 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2047 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
2048
2049 /* Turn on RX list placement state machine */
2050 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2051
2052 /* Turn on RX list selector state machine. */
2053 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2054 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2055
2056 /* Turn on DMA, clear stats */
2057 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
2058 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
2059 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
2060 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
2061 ((sc->bge_flags & BGE_PHY_FIBER_TBI) ? BGE_PORTMODE_TBI
2062 : BGE_PORTMODE_MII));
2063
2064 /* Set misc. local control, enable interrupts on attentions */
2065 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2066
2067 #ifdef notdef
2068 /* Assert GPIO pins for PHY reset */
2069 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2070 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2071 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2072 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2073 #endif
2074
2075 #if defined(not_quite_yet)
2076 /* Linux driver enables enable gpio pin #1 on 5700s */
2077 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2078 sc->bge_local_ctrl_reg |=
2079 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2080 }
2081 #endif
2082 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2083
2084 /* Turn on DMA completion state machine */
2085 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2086 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2087
2088 /* Turn on write DMA state machine */
2089 {
2090 uint32_t bge_wdma_mode =
2091 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2092
2093 /* Enable host coalescing bug fix; see Linux tg3.c */
2094 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2095 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2096 bge_wdma_mode |= (1 << 29);
2097
2098 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2099 }
2100
2101 /* Turn on read DMA state machine */
2102 {
2103 uint32_t dma_read_modebits;
2104
2105 dma_read_modebits =
2106 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2107
2108 if ((sc->bge_flags & BGE_PCIE) && 0) {
2109 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2110 } else if (BGE_IS_5705_OR_BEYOND(sc)) {
2111 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
2112 }
2113
2114 /* XXX broadcom-supplied linux driver; undocumented */
2115 if (BGE_IS_5750_OR_BEYOND(sc)) {
2116 /*
2117 * XXX: magic values.
2118 * From Broadcom-supplied Linux driver; apparently
2119 * required to workaround a DMA bug affecting TSO
2120 * on bcm575x/bcm5721?
2121 */
2122 dma_read_modebits |= (1 << 27);
2123 }
2124 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2125 }
2126
2127 /* Turn on RX data completion state machine */
2128 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2129
2130 /* Turn on RX BD initiator state machine */
2131 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2132
2133 /* Turn on RX data and RX BD initiator state machine */
2134 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2135
2136 /* Turn on Mbuf cluster free state machine */
2137 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2138 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2139
2140 /* Turn on send BD completion state machine */
2141 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2142
2143 /* Turn on send data completion state machine */
2144 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2145
2146 /* Turn on send data initiator state machine */
2147 if (BGE_IS_5750_OR_BEYOND(sc)) {
2148 /* XXX: magic value from Linux driver */
2149 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2150 } else {
2151 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2152 }
2153
2154 /* Turn on send BD initiator state machine */
2155 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2156
2157 /* Turn on send BD selector state machine */
2158 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2159
2160 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2161 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2162 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
2163
2164 /* ack/clear link change events */
2165 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2166 BGE_MACSTAT_CFG_CHANGED);
2167 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2168
2169 /* Enable PHY auto polling (for MII/GMII only) */
2170 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2171 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2172 } else {
2173 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
2174 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2175 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2176 BGE_EVTENB_MI_INTERRUPT);
2177 }
2178
2179 /* Enable link state change attentions. */
2180 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2181
2182 return (0);
2183 }
2184
2185 static const struct bge_revision *
2186 bge_lookup_rev(uint32_t chipid)
2187 {
2188 const struct bge_revision *br;
2189
2190 for (br = bge_revisions; br->br_name != NULL; br++) {
2191 if (br->br_chipid == chipid)
2192 return (br);
2193 }
2194
2195 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2196 if (br->br_chipid == BGE_ASICREV(chipid))
2197 return (br);
2198 }
2199
2200 return (NULL);
2201 }
2202
2203 static const struct bge_product *
2204 bge_lookup(const struct pci_attach_args *pa)
2205 {
2206 const struct bge_product *bp;
2207
2208 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2209 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2210 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2211 return (bp);
2212 }
2213
2214 return (NULL);
2215 }
2216
2217 static int
2218 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2219 {
2220 #ifdef NOTYET
2221 u_int32_t pm_ctl = 0;
2222
2223 /* XXX FIXME: make sure indirect accesses enabled? */
2224 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2225 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2226 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2227
2228 /* clear the PME_assert bit and power state bits, enable PME */
2229 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2230 pm_ctl &= ~PCIM_PSTAT_DMASK;
2231 pm_ctl |= (1 << 8);
2232
2233 if (powerlevel == 0) {
2234 pm_ctl |= PCIM_PSTAT_D0;
2235 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2236 pm_ctl, 2);
2237 DELAY(10000);
2238 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2239 DELAY(10000);
2240
2241 #ifdef NOTYET
2242 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2243 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2244 #endif
2245 DELAY(40); DELAY(40); DELAY(40);
2246 DELAY(10000); /* above not quite adequate on 5700 */
2247 return 0;
2248 }
2249
2250
2251 /*
2252 * Entering ACPI power states D1-D3 is achieved by wiggling
2253 * GMII gpio pins. Example code assumes all hardware vendors
2254 * followed Broadom's sample pcb layout. Until we verify that
2255 * for all supported OEM cards, states D1-D3 are unsupported.
2256 */
2257 aprint_error_dev(sc->bge_dev,
2258 "power state %d unimplemented; check GPIO pins\n",
2259 powerlevel);
2260 #endif
2261 return EOPNOTSUPP;
2262 }
2263
2264
2265 /*
2266 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2267 * against our list and return its name if we find a match. Note
2268 * that since the Broadcom controller contains VPD support, we
2269 * can get the device name string from the controller itself instead
2270 * of the compiled-in string. This is a little slow, but it guarantees
2271 * we'll always announce the right product name.
2272 */
2273 static int
2274 bge_probe(device_t parent, cfdata_t match, void *aux)
2275 {
2276 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2277
2278 if (bge_lookup(pa) != NULL)
2279 return (1);
2280
2281 return (0);
2282 }
2283
2284 static void
2285 bge_attach(device_t parent, device_t self, void *aux)
2286 {
2287 struct bge_softc *sc = device_private(self);
2288 struct pci_attach_args *pa = aux;
2289 const struct bge_product *bp;
2290 const struct bge_revision *br;
2291 pci_chipset_tag_t pc;
2292 pci_intr_handle_t ih;
2293 const char *intrstr = NULL;
2294 bus_dma_segment_t seg;
2295 int rseg;
2296 u_int32_t hwcfg = 0;
2297 u_int32_t command;
2298 struct ifnet *ifp;
2299 void * kva;
2300 u_char eaddr[ETHER_ADDR_LEN];
2301 pcireg_t memtype;
2302 bus_addr_t memaddr;
2303 bus_size_t memsize;
2304 u_int32_t pm_ctl;
2305
2306 bp = bge_lookup(pa);
2307 KASSERT(bp != NULL);
2308
2309 sc->sc_pc = pa->pa_pc;
2310 sc->sc_pcitag = pa->pa_tag;
2311 sc->bge_dev = self;
2312
2313 aprint_naive(": Ethernet controller\n");
2314 aprint_normal(": %s\n", bp->bp_name);
2315
2316 /*
2317 * Map control/status registers.
2318 */
2319 DPRINTFN(5, ("Map control/status regs\n"));
2320 pc = sc->sc_pc;
2321 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2322 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2323 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2324 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2325
2326 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2327 aprint_error_dev(sc->bge_dev,
2328 "failed to enable memory mapping!\n");
2329 return;
2330 }
2331
2332 DPRINTFN(5, ("pci_mem_find\n"));
2333 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2334 switch (memtype) {
2335 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2336 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2337 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2338 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2339 &memaddr, &memsize) == 0)
2340 break;
2341 default:
2342 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2343 return;
2344 }
2345
2346 DPRINTFN(5, ("pci_intr_map\n"));
2347 if (pci_intr_map(pa, &ih)) {
2348 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2349 return;
2350 }
2351
2352 DPRINTFN(5, ("pci_intr_string\n"));
2353 intrstr = pci_intr_string(pc, ih);
2354
2355 DPRINTFN(5, ("pci_intr_establish\n"));
2356 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2357
2358 if (sc->bge_intrhand == NULL) {
2359 aprint_error_dev(sc->bge_dev,
2360 "couldn't establish interrupt%s%s\n",
2361 intrstr ? " at " : "", intrstr ? intrstr : "");
2362 return;
2363 }
2364 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2365
2366 /*
2367 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2368 * can clobber the chip's PCI config-space power control registers,
2369 * leaving the card in D3 powersave state.
2370 * We do not have memory-mapped registers in this state,
2371 * so force device into D0 state before starting initialization.
2372 */
2373 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2374 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2375 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2376 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2377 DELAY(1000); /* 27 usec is allegedly sufficent */
2378
2379 /*
2380 * Save ASIC rev. Look up any quirks associated with this
2381 * ASIC.
2382 */
2383 sc->bge_chipid =
2384 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2385 BGE_PCIMISCCTL_ASICREV;
2386
2387 /*
2388 * Detect PCI-Express devices
2389 * XXX: guessed from Linux/FreeBSD; no documentation
2390 */
2391 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2392 NULL, NULL) != 0)
2393 sc->bge_flags |= BGE_PCIE;
2394
2395 /*
2396 * PCI-X check.
2397 */
2398 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2399 BGE_PCISTATE_PCI_BUSMODE) == 0)
2400 sc->bge_flags |= BGE_PCIX;
2401
2402 /* Try to reset the chip. */
2403 DPRINTFN(5, ("bge_reset\n"));
2404 bge_reset(sc);
2405
2406 if (bge_chipinit(sc)) {
2407 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2408 bge_release_resources(sc);
2409 return;
2410 }
2411
2412 /*
2413 * Get station address from the EEPROM.
2414 */
2415 if (bge_get_eaddr(sc, eaddr)) {
2416 aprint_error_dev(sc->bge_dev,
2417 "failed to reade station address\n");
2418 bge_release_resources(sc);
2419 return;
2420 }
2421
2422 br = bge_lookup_rev(sc->bge_chipid);
2423
2424 if (br == NULL) {
2425 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2426 sc->bge_chipid >> 16);
2427 } else {
2428 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2429 br->br_name, sc->bge_chipid >> 16);
2430 }
2431 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2432
2433 /* Allocate the general information block and ring buffers. */
2434 if (pci_dma64_available(pa))
2435 sc->bge_dmatag = pa->pa_dmat64;
2436 else
2437 sc->bge_dmatag = pa->pa_dmat;
2438 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2439 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2440 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2441 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2442 return;
2443 }
2444 DPRINTFN(5, ("bus_dmamem_map\n"));
2445 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2446 sizeof(struct bge_ring_data), &kva,
2447 BUS_DMA_NOWAIT)) {
2448 aprint_error_dev(sc->bge_dev,
2449 "can't map DMA buffers (%zu bytes)\n",
2450 sizeof(struct bge_ring_data));
2451 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2452 return;
2453 }
2454 DPRINTFN(5, ("bus_dmamem_create\n"));
2455 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2456 sizeof(struct bge_ring_data), 0,
2457 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2458 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2459 bus_dmamem_unmap(sc->bge_dmatag, kva,
2460 sizeof(struct bge_ring_data));
2461 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2462 return;
2463 }
2464 DPRINTFN(5, ("bus_dmamem_load\n"));
2465 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2466 sizeof(struct bge_ring_data), NULL,
2467 BUS_DMA_NOWAIT)) {
2468 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2469 bus_dmamem_unmap(sc->bge_dmatag, kva,
2470 sizeof(struct bge_ring_data));
2471 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2472 return;
2473 }
2474
2475 DPRINTFN(5, ("bzero\n"));
2476 sc->bge_rdata = (struct bge_ring_data *)kva;
2477
2478 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2479
2480 /* Try to allocate memory for jumbo buffers. */
2481 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2482 if (bge_alloc_jumbo_mem(sc)) {
2483 aprint_error_dev(sc->bge_dev,
2484 "jumbo buffer allocation failed\n");
2485 } else
2486 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2487 }
2488
2489 /* Set default tuneable values. */
2490 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2491 sc->bge_rx_coal_ticks = 150;
2492 sc->bge_rx_max_coal_bds = 64;
2493 #ifdef ORIG_WPAUL_VALUES
2494 sc->bge_tx_coal_ticks = 150;
2495 sc->bge_tx_max_coal_bds = 128;
2496 #else
2497 sc->bge_tx_coal_ticks = 300;
2498 sc->bge_tx_max_coal_bds = 400;
2499 #endif
2500 if (BGE_IS_5705_OR_BEYOND(sc)) {
2501 sc->bge_tx_coal_ticks = (12 * 5);
2502 sc->bge_tx_max_coal_bds = (12 * 5);
2503 aprint_verbose_dev(sc->bge_dev,
2504 "setting short Tx thresholds\n");
2505 }
2506
2507 /* Set up ifnet structure */
2508 ifp = &sc->ethercom.ec_if;
2509 ifp->if_softc = sc;
2510 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2511 ifp->if_ioctl = bge_ioctl;
2512 ifp->if_stop = bge_stop;
2513 ifp->if_start = bge_start;
2514 ifp->if_init = bge_init;
2515 ifp->if_watchdog = bge_watchdog;
2516 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2517 IFQ_SET_READY(&ifp->if_snd);
2518 DPRINTFN(5, ("strcpy if_xname\n"));
2519 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2520
2521 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2522 sc->ethercom.ec_if.if_capabilities |=
2523 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2524 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2525 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2526 sc->ethercom.ec_capabilities |=
2527 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2528
2529 if (sc->bge_flags & BGE_PCIE)
2530 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2531
2532 /*
2533 * Do MII setup.
2534 */
2535 DPRINTFN(5, ("mii setup\n"));
2536 sc->bge_mii.mii_ifp = ifp;
2537 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2538 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2539 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2540
2541 /*
2542 * Figure out what sort of media we have by checking the
2543 * hardware config word in the first 32k of NIC internal memory,
2544 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2545 * cards, this value appears to be unset. If that's the
2546 * case, we have to rely on identifying the NIC by its PCI
2547 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2548 */
2549 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2550 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2551 } else {
2552 bge_read_eeprom(sc, (void *)&hwcfg,
2553 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2554 hwcfg = be32toh(hwcfg);
2555 }
2556 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2557 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2558
2559 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2560 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2561 SK_SUBSYSID_9D41)
2562 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2563
2564 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2565 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2566 bge_ifmedia_sts);
2567 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2568 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2569 0, NULL);
2570 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2571 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2572 /* Pretend the user requested this setting */
2573 sc->bge_ifmedia.ifm_media =
2574 sc->bge_ifmedia.ifm_cur->ifm_media;
2575 } else {
2576 /*
2577 * Do transceiver setup.
2578 */
2579 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2580 bge_ifmedia_sts);
2581 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2582 MII_PHY_ANY, MII_OFFSET_ANY,
2583 MIIF_FORCEANEG|MIIF_DOPAUSE);
2584
2585 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2586 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2587 ifmedia_add(&sc->bge_mii.mii_media,
2588 IFM_ETHER|IFM_MANUAL, 0, NULL);
2589 ifmedia_set(&sc->bge_mii.mii_media,
2590 IFM_ETHER|IFM_MANUAL);
2591 } else
2592 ifmedia_set(&sc->bge_mii.mii_media,
2593 IFM_ETHER|IFM_AUTO);
2594 }
2595
2596 /*
2597 * When using the BCM5701 in PCI-X mode, data corruption has
2598 * been observed in the first few bytes of some received packets.
2599 * Aligning the packet buffer in memory eliminates the corruption.
2600 * Unfortunately, this misaligns the packet payloads. On platforms
2601 * which do not support unaligned accesses, we will realign the
2602 * payloads by copying the received packets.
2603 */
2604 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2605 sc->bge_flags & BGE_PCIX)
2606 sc->bge_flags |= BGE_RX_ALIGNBUG;
2607
2608 /*
2609 * Call MI attach routine.
2610 */
2611 DPRINTFN(5, ("if_attach\n"));
2612 if_attach(ifp);
2613 DPRINTFN(5, ("ether_ifattach\n"));
2614 ether_ifattach(ifp, eaddr);
2615 #if NRND > 0
2616 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2617 RND_TYPE_NET, 0);
2618 #endif
2619 #ifdef BGE_EVENT_COUNTERS
2620 /*
2621 * Attach event counters.
2622 */
2623 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2624 NULL, device_xname(sc->bge_dev), "intr");
2625 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2626 NULL, device_xname(sc->bge_dev), "tx_xoff");
2627 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2628 NULL, device_xname(sc->bge_dev), "tx_xon");
2629 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2630 NULL, device_xname(sc->bge_dev), "rx_xoff");
2631 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2632 NULL, device_xname(sc->bge_dev), "rx_xon");
2633 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2634 NULL, device_xname(sc->bge_dev), "rx_macctl");
2635 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2636 NULL, device_xname(sc->bge_dev), "xoffentered");
2637 #endif /* BGE_EVENT_COUNTERS */
2638 DPRINTFN(5, ("callout_init\n"));
2639 callout_init(&sc->bge_timeout, 0);
2640
2641 if (!pmf_device_register(self, NULL, NULL))
2642 aprint_error_dev(self, "couldn't establish power handler\n");
2643 else
2644 pmf_class_network_register(self, ifp);
2645 }
2646
2647 static void
2648 bge_release_resources(struct bge_softc *sc)
2649 {
2650 if (sc->bge_vpd_prodname != NULL)
2651 free(sc->bge_vpd_prodname, M_DEVBUF);
2652
2653 if (sc->bge_vpd_readonly != NULL)
2654 free(sc->bge_vpd_readonly, M_DEVBUF);
2655 }
2656
2657 static void
2658 bge_reset(struct bge_softc *sc)
2659 {
2660 u_int32_t cachesize, command, pcistate, new_pcistate;
2661 int i, val;
2662 void (*write_op)(struct bge_softc *, int, int);
2663
2664 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2665 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2666 if (sc->bge_flags & BGE_PCIE) {
2667 write_op = bge_writemem_direct;
2668 } else {
2669 write_op = bge_writemem_ind;
2670 }
2671 } else {
2672 write_op = bge_writereg_ind;
2673 }
2674
2675
2676 /* Save some important PCI state. */
2677 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2678 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2679 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2680
2681 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2682 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2683 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2684
2685 /*
2686 * Disable the firmware fastboot feature on 5752 ASIC
2687 * to avoid firmware timeout.
2688 */
2689 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2690 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2691 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2692 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2693
2694 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2695 /*
2696 * XXX: from FreeBSD/Linux; no documentation
2697 */
2698 if (sc->bge_flags & BGE_PCIE) {
2699 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2700 /* PCI Express 1.0 system */
2701 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2702 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2703 /*
2704 * Prevent PCI Express link training
2705 * during global reset.
2706 */
2707 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2708 val |= (1<<29);
2709 }
2710 }
2711
2712 /* Issue global reset */
2713 write_op(sc, BGE_MISC_CFG, val);
2714
2715 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2716 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2717 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2718 i | BGE_VCPU_STATUS_DRV_RESET);
2719 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2720 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2721 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2722 }
2723
2724
2725
2726 DELAY(1000);
2727
2728 /*
2729 * XXX: from FreeBSD/Linux; no documentation
2730 */
2731 if (sc->bge_flags & BGE_PCIE) {
2732 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2733 pcireg_t reg;
2734
2735 DELAY(500000);
2736 /* XXX: Magic Numbers */
2737 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2738 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2739 reg | (1 << 15));
2740 }
2741 /*
2742 * XXX: Magic Numbers.
2743 * Sets maximal PCI-e payload and clears any PCI-e errors.
2744 * Should be replaced with references to PCI config-space
2745 * capability block for PCI-Express.
2746 */
2747 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2748 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2749
2750 }
2751
2752 /* Reset some of the PCI state that got zapped by reset */
2753 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2754 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2755 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2756 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2757 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2758 write_op(sc, BGE_MISC_CFG, (65 << 1));
2759
2760 /* Enable memory arbiter. */
2761 {
2762 uint32_t marbmode = 0;
2763 if (BGE_IS_5714_FAMILY(sc)) {
2764 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2765 }
2766 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2767 }
2768
2769
2770 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2771 for (i = 0; i < BGE_TIMEOUT; i++) {
2772 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2773 if (val & BGE_VCPU_STATUS_INIT_DONE)
2774 break;
2775 DELAY(100);
2776 }
2777 if (i == BGE_TIMEOUT) {
2778 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2779 return;
2780 }
2781 } else {
2782 /*
2783 * Write the magic number to the firmware mailbox at 0xb50
2784 * so that the driver can synchronize with the firmware.
2785 */
2786 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2787
2788 /*
2789 * Poll the value location we just wrote until
2790 * we see the 1's complement of the magic number.
2791 * This indicates that the firmware initialization
2792 * is complete.
2793 */
2794 for (i = 0; i < BGE_TIMEOUT; i++) {
2795 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2796 if (val == ~BGE_MAGIC_NUMBER)
2797 break;
2798 DELAY(1000);
2799 }
2800
2801 if (i >= BGE_TIMEOUT) {
2802 aprint_error_dev(sc->bge_dev,
2803 "firmware handshake timed out, val = %x\n", val);
2804 /*
2805 * XXX: occasionally fired on bcm5721, but without
2806 * apparent harm. For now, keep going if we timeout
2807 * against PCI-E devices.
2808 */
2809 if ((sc->bge_flags & BGE_PCIE) == 0)
2810 return;
2811 }
2812 }
2813
2814 /*
2815 * XXX Wait for the value of the PCISTATE register to
2816 * return to its original pre-reset state. This is a
2817 * fairly good indicator of reset completion. If we don't
2818 * wait for the reset to fully complete, trying to read
2819 * from the device's non-PCI registers may yield garbage
2820 * results.
2821 */
2822 for (i = 0; i < 10000; i++) {
2823 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2824 BGE_PCI_PCISTATE);
2825 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2826 (pcistate & ~BGE_PCISTATE_RESERVED))
2827 break;
2828 DELAY(10);
2829 }
2830 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2831 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2832 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2833 }
2834
2835 /* XXX: from FreeBSD/Linux; no documentation */
2836 if (sc->bge_flags & BGE_PCIE &&
2837 sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2838 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2839
2840 /* Enable memory arbiter. */
2841 /* XXX why do this twice? */
2842 {
2843 uint32_t marbmode = 0;
2844 if (BGE_IS_5714_FAMILY(sc)) {
2845 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2846 }
2847 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2848 }
2849
2850 /* Fix up byte swapping */
2851 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2852
2853 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2854
2855 DELAY(10000);
2856 }
2857
2858 /*
2859 * Frame reception handling. This is called if there's a frame
2860 * on the receive return list.
2861 *
2862 * Note: we have to be able to handle two possibilities here:
2863 * 1) the frame is from the jumbo recieve ring
2864 * 2) the frame is from the standard receive ring
2865 */
2866
2867 static void
2868 bge_rxeof(struct bge_softc *sc)
2869 {
2870 struct ifnet *ifp;
2871 int stdcnt = 0, jumbocnt = 0;
2872 bus_dmamap_t dmamap;
2873 bus_addr_t offset, toff;
2874 bus_size_t tlen;
2875 int tosync;
2876
2877 ifp = &sc->ethercom.ec_if;
2878
2879 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2880 offsetof(struct bge_ring_data, bge_status_block),
2881 sizeof (struct bge_status_block),
2882 BUS_DMASYNC_POSTREAD);
2883
2884 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2885 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2886 sc->bge_rx_saved_considx;
2887
2888 #if NRND > 0
2889 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2890 rnd_add_uint32(&sc->rnd_source, tosync);
2891 #endif
2892
2893 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2894
2895 if (tosync < 0) {
2896 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2897 sizeof (struct bge_rx_bd);
2898 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2899 toff, tlen, BUS_DMASYNC_POSTREAD);
2900 tosync = -tosync;
2901 }
2902
2903 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2904 offset, tosync * sizeof (struct bge_rx_bd),
2905 BUS_DMASYNC_POSTREAD);
2906
2907 while(sc->bge_rx_saved_considx !=
2908 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2909 struct bge_rx_bd *cur_rx;
2910 u_int32_t rxidx;
2911 struct mbuf *m = NULL;
2912
2913 cur_rx = &sc->bge_rdata->
2914 bge_rx_return_ring[sc->bge_rx_saved_considx];
2915
2916 rxidx = cur_rx->bge_idx;
2917 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2918
2919 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2920 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2921 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2922 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2923 jumbocnt++;
2924 bus_dmamap_sync(sc->bge_dmatag,
2925 sc->bge_cdata.bge_rx_jumbo_map,
2926 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
2927 BGE_JLEN, BUS_DMASYNC_POSTREAD);
2928 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2929 ifp->if_ierrors++;
2930 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2931 continue;
2932 }
2933 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2934 NULL)== ENOBUFS) {
2935 ifp->if_ierrors++;
2936 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2937 continue;
2938 }
2939 } else {
2940 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2941 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2942
2943 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2944 stdcnt++;
2945 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2946 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2947 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
2948 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2949 bus_dmamap_unload(sc->bge_dmatag, dmamap);
2950 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2951 ifp->if_ierrors++;
2952 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2953 continue;
2954 }
2955 if (bge_newbuf_std(sc, sc->bge_std,
2956 NULL, dmamap) == ENOBUFS) {
2957 ifp->if_ierrors++;
2958 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2959 continue;
2960 }
2961 }
2962
2963 ifp->if_ipackets++;
2964 #ifndef __NO_STRICT_ALIGNMENT
2965 /*
2966 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2967 * the Rx buffer has the layer-2 header unaligned.
2968 * If our CPU requires alignment, re-align by copying.
2969 */
2970 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
2971 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
2972 cur_rx->bge_len);
2973 m->m_data += ETHER_ALIGN;
2974 }
2975 #endif
2976
2977 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2978 m->m_pkthdr.rcvif = ifp;
2979
2980 #if NBPFILTER > 0
2981 /*
2982 * Handle BPF listeners. Let the BPF user see the packet.
2983 */
2984 if (ifp->if_bpf)
2985 bpf_mtap(ifp->if_bpf, m);
2986 #endif
2987
2988 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2989
2990 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2991 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2992 /*
2993 * Rx transport checksum-offload may also
2994 * have bugs with packets which, when transmitted,
2995 * were `runts' requiring padding.
2996 */
2997 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2998 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2999 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3000 m->m_pkthdr.csum_data =
3001 cur_rx->bge_tcp_udp_csum;
3002 m->m_pkthdr.csum_flags |=
3003 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3004 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3005 }
3006
3007 /*
3008 * If we received a packet with a vlan tag, pass it
3009 * to vlan_input() instead of ether_input().
3010 */
3011 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3012 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3013 }
3014
3015 (*ifp->if_input)(ifp, m);
3016 }
3017
3018 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3019 if (stdcnt)
3020 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3021 if (jumbocnt)
3022 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3023 }
3024
3025 static void
3026 bge_txeof(struct bge_softc *sc)
3027 {
3028 struct bge_tx_bd *cur_tx = NULL;
3029 struct ifnet *ifp;
3030 struct txdmamap_pool_entry *dma;
3031 bus_addr_t offset, toff;
3032 bus_size_t tlen;
3033 int tosync;
3034 struct mbuf *m;
3035
3036 ifp = &sc->ethercom.ec_if;
3037
3038 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3039 offsetof(struct bge_ring_data, bge_status_block),
3040 sizeof (struct bge_status_block),
3041 BUS_DMASYNC_POSTREAD);
3042
3043 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3044 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3045 sc->bge_tx_saved_considx;
3046
3047 #if NRND > 0
3048 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3049 rnd_add_uint32(&sc->rnd_source, tosync);
3050 #endif
3051
3052 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3053
3054 if (tosync < 0) {
3055 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3056 sizeof (struct bge_tx_bd);
3057 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3058 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3059 tosync = -tosync;
3060 }
3061
3062 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3063 offset, tosync * sizeof (struct bge_tx_bd),
3064 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3065
3066 /*
3067 * Go through our tx ring and free mbufs for those
3068 * frames that have been sent.
3069 */
3070 while (sc->bge_tx_saved_considx !=
3071 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3072 u_int32_t idx = 0;
3073
3074 idx = sc->bge_tx_saved_considx;
3075 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3076 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3077 ifp->if_opackets++;
3078 m = sc->bge_cdata.bge_tx_chain[idx];
3079 if (m != NULL) {
3080 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3081 dma = sc->txdma[idx];
3082 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3083 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3084 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3085 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3086 sc->txdma[idx] = NULL;
3087
3088 m_freem(m);
3089 }
3090 sc->bge_txcnt--;
3091 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3092 ifp->if_timer = 0;
3093 }
3094
3095 if (cur_tx != NULL)
3096 ifp->if_flags &= ~IFF_OACTIVE;
3097 }
3098
3099 static int
3100 bge_intr(void *xsc)
3101 {
3102 struct bge_softc *sc;
3103 struct ifnet *ifp;
3104
3105 sc = xsc;
3106 ifp = &sc->ethercom.ec_if;
3107
3108 /*
3109 * Ascertain whether the interrupt is from this bge device.
3110 * Do the cheap test first.
3111 */
3112 if ((sc->bge_rdata->bge_status_block.bge_status &
3113 BGE_STATFLAG_UPDATED) == 0) {
3114 /*
3115 * Sometimes, the interrupt comes in before the
3116 * DMA update of the status block (performed prior
3117 * to the interrupt itself) has completed.
3118 * In that case, do the (extremely expensive!)
3119 * PCI-config-space register read.
3120 */
3121 uint32_t pcistate =
3122 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3123
3124 if (pcistate & BGE_PCISTATE_INTR_STATE)
3125 return (0);
3126
3127 }
3128 /*
3129 * If we reach here, then the interrupt is for us.
3130 */
3131
3132 /* Ack interrupt and stop others from occuring. */
3133 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3134
3135 BGE_EVCNT_INCR(sc->bge_ev_intr);
3136
3137 /*
3138 * Process link state changes.
3139 * Grrr. The link status word in the status block does
3140 * not work correctly on the BCM5700 rev AX and BX chips,
3141 * according to all available information. Hence, we have
3142 * to enable MII interrupts in order to properly obtain
3143 * async link changes. Unfortunately, this also means that
3144 * we have to read the MAC status register to detect link
3145 * changes, thereby adding an additional register access to
3146 * the interrupt handler.
3147 */
3148
3149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3150 u_int32_t status;
3151
3152 status = CSR_READ_4(sc, BGE_MAC_STS);
3153 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3154 sc->bge_link = 0;
3155 callout_stop(&sc->bge_timeout);
3156 bge_tick(sc);
3157 /* Clear the interrupt */
3158 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3159 BGE_EVTENB_MI_INTERRUPT);
3160 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3161 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3162 BRGPHY_INTRS);
3163 }
3164 } else {
3165 u_int32_t status;
3166
3167 status = CSR_READ_4(sc, BGE_MAC_STS);
3168 if (status & BGE_MACSTAT_LINK_CHANGED) {
3169 sc->bge_link = 0;
3170 callout_stop(&sc->bge_timeout);
3171 bge_tick(sc);
3172 /* Clear the interrupt */
3173 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3174 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3175 BGE_MACSTAT_LINK_CHANGED);
3176 }
3177 }
3178
3179 if (ifp->if_flags & IFF_RUNNING) {
3180 /* Check RX return ring producer/consumer */
3181 bge_rxeof(sc);
3182
3183 /* Check TX ring producer/consumer */
3184 bge_txeof(sc);
3185 }
3186
3187 if (sc->bge_pending_rxintr_change) {
3188 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3189 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3190 uint32_t junk;
3191
3192 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3193 DELAY(10);
3194 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3195
3196 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3197 DELAY(10);
3198 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3199
3200 sc->bge_pending_rxintr_change = 0;
3201 }
3202 bge_handle_events(sc);
3203
3204 /* Re-enable interrupts. */
3205 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3206
3207 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3208 bge_start(ifp);
3209
3210 return (1);
3211 }
3212
3213 static void
3214 bge_tick(void *xsc)
3215 {
3216 struct bge_softc *sc = xsc;
3217 struct mii_data *mii = &sc->bge_mii;
3218 int s;
3219
3220 s = splnet();
3221
3222 bge_stats_update(sc);
3223 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3224
3225 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3226 if (CSR_READ_4(sc, BGE_MAC_STS) &
3227 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3228 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3229 }
3230 } else
3231 mii_tick(mii);
3232
3233 splx(s);
3234 }
3235
3236 static void
3237 bge_stats_update(struct bge_softc *sc)
3238 {
3239 struct ifnet *ifp = &sc->ethercom.ec_if;
3240 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3241 bus_size_t rstats = BGE_RX_STATS;
3242
3243 #define READ_RSTAT(sc, stats, stat) \
3244 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3245
3246 if (BGE_IS_5705_OR_BEYOND(sc)) {
3247 ifp->if_collisions +=
3248 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3249 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3250 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3251 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3252
3253 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3254 READ_RSTAT(sc, rstats, outXoffSent));
3255 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3256 READ_RSTAT(sc, rstats, outXonSent));
3257 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3258 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3259 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3260 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3261 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3262 READ_RSTAT(sc, rstats, macControlFramesReceived));
3263 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3264 READ_RSTAT(sc, rstats, xoffStateEntered));
3265 return;
3266 }
3267
3268 #undef READ_RSTAT
3269 #define READ_STAT(sc, stats, stat) \
3270 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3271
3272 ifp->if_collisions +=
3273 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3274 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3275 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3276 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3277 ifp->if_collisions;
3278
3279 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3280 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3281 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3282 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3283 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3284 READ_STAT(sc, stats,
3285 xoffPauseFramesReceived.bge_addr_lo));
3286 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3287 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3288 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3289 READ_STAT(sc, stats,
3290 macControlFramesReceived.bge_addr_lo));
3291 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3292 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3293
3294 #undef READ_STAT
3295
3296 #ifdef notdef
3297 ifp->if_collisions +=
3298 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3299 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3300 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3301 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3302 ifp->if_collisions;
3303 #endif
3304 }
3305
3306 /*
3307 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3308 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3309 * but when such padded frames employ the bge IP/TCP checksum offload,
3310 * the hardware checksum assist gives incorrect results (possibly
3311 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3312 * If we pad such runts with zeros, the onboard checksum comes out correct.
3313 */
3314 static inline int
3315 bge_cksum_pad(struct mbuf *pkt)
3316 {
3317 struct mbuf *last = NULL;
3318 int padlen;
3319
3320 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3321
3322 /* if there's only the packet-header and we can pad there, use it. */
3323 if (pkt->m_pkthdr.len == pkt->m_len &&
3324 M_TRAILINGSPACE(pkt) >= padlen) {
3325 last = pkt;
3326 } else {
3327 /*
3328 * Walk packet chain to find last mbuf. We will either
3329 * pad there, or append a new mbuf and pad it
3330 * (thus perhaps avoiding the bcm5700 dma-min bug).
3331 */
3332 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3333 continue; /* do nothing */
3334 }
3335
3336 /* `last' now points to last in chain. */
3337 if (M_TRAILINGSPACE(last) < padlen) {
3338 /* Allocate new empty mbuf, pad it. Compact later. */
3339 struct mbuf *n;
3340 MGET(n, M_DONTWAIT, MT_DATA);
3341 if (n == NULL)
3342 return ENOBUFS;
3343 n->m_len = 0;
3344 last->m_next = n;
3345 last = n;
3346 }
3347 }
3348
3349 KDASSERT(!M_READONLY(last));
3350 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3351
3352 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3353 memset(mtod(last, char *) + last->m_len, 0, padlen);
3354 last->m_len += padlen;
3355 pkt->m_pkthdr.len += padlen;
3356 return 0;
3357 }
3358
3359 /*
3360 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3361 */
3362 static inline int
3363 bge_compact_dma_runt(struct mbuf *pkt)
3364 {
3365 struct mbuf *m, *prev;
3366 int totlen, prevlen;
3367
3368 prev = NULL;
3369 totlen = 0;
3370 prevlen = -1;
3371
3372 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3373 int mlen = m->m_len;
3374 int shortfall = 8 - mlen ;
3375
3376 totlen += mlen;
3377 if (mlen == 0) {
3378 continue;
3379 }
3380 if (mlen >= 8)
3381 continue;
3382
3383 /* If we get here, mbuf data is too small for DMA engine.
3384 * Try to fix by shuffling data to prev or next in chain.
3385 * If that fails, do a compacting deep-copy of the whole chain.
3386 */
3387
3388 /* Internal frag. If fits in prev, copy it there. */
3389 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3390 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3391 prev->m_len += mlen;
3392 m->m_len = 0;
3393 /* XXX stitch chain */
3394 prev->m_next = m_free(m);
3395 m = prev;
3396 continue;
3397 }
3398 else if (m->m_next != NULL &&
3399 M_TRAILINGSPACE(m) >= shortfall &&
3400 m->m_next->m_len >= (8 + shortfall)) {
3401 /* m is writable and have enough data in next, pull up. */
3402
3403 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3404 shortfall);
3405 m->m_len += shortfall;
3406 m->m_next->m_len -= shortfall;
3407 m->m_next->m_data += shortfall;
3408 }
3409 else if (m->m_next == NULL || 1) {
3410 /* Got a runt at the very end of the packet.
3411 * borrow data from the tail of the preceding mbuf and
3412 * update its length in-place. (The original data is still
3413 * valid, so we can do this even if prev is not writable.)
3414 */
3415
3416 /* if we'd make prev a runt, just move all of its data. */
3417 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3418 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3419
3420 if ((prev->m_len - shortfall) < 8)
3421 shortfall = prev->m_len;
3422
3423 #ifdef notyet /* just do the safe slow thing for now */
3424 if (!M_READONLY(m)) {
3425 if (M_LEADINGSPACE(m) < shorfall) {
3426 void *m_dat;
3427 m_dat = (m->m_flags & M_PKTHDR) ?
3428 m->m_pktdat : m->dat;
3429 memmove(m_dat, mtod(m, void*), m->m_len);
3430 m->m_data = m_dat;
3431 }
3432 } else
3433 #endif /* just do the safe slow thing */
3434 {
3435 struct mbuf * n = NULL;
3436 int newprevlen = prev->m_len - shortfall;
3437
3438 MGET(n, M_NOWAIT, MT_DATA);
3439 if (n == NULL)
3440 return ENOBUFS;
3441 KASSERT(m->m_len + shortfall < MLEN
3442 /*,
3443 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3444
3445 /* first copy the data we're stealing from prev */
3446 memcpy(n->m_data, prev->m_data + newprevlen,
3447 shortfall);
3448
3449 /* update prev->m_len accordingly */
3450 prev->m_len -= shortfall;
3451
3452 /* copy data from runt m */
3453 memcpy(n->m_data + shortfall, m->m_data,
3454 m->m_len);
3455
3456 /* n holds what we stole from prev, plus m */
3457 n->m_len = shortfall + m->m_len;
3458
3459 /* stitch n into chain and free m */
3460 n->m_next = m->m_next;
3461 prev->m_next = n;
3462 /* KASSERT(m->m_next == NULL); */
3463 m->m_next = NULL;
3464 m_free(m);
3465 m = n; /* for continuing loop */
3466 }
3467 }
3468 prevlen = m->m_len;
3469 }
3470 return 0;
3471 }
3472
3473 /*
3474 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3475 * pointers to descriptors.
3476 */
3477 static int
3478 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3479 {
3480 struct bge_tx_bd *f = NULL;
3481 u_int32_t frag, cur;
3482 u_int16_t csum_flags = 0;
3483 u_int16_t txbd_tso_flags = 0;
3484 struct txdmamap_pool_entry *dma;
3485 bus_dmamap_t dmamap;
3486 int i = 0;
3487 struct m_tag *mtag;
3488 int use_tso, maxsegsize, error;
3489
3490 cur = frag = *txidx;
3491
3492 if (m_head->m_pkthdr.csum_flags) {
3493 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3494 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3495 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3496 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3497 }
3498
3499 /*
3500 * If we were asked to do an outboard checksum, and the NIC
3501 * has the bug where it sometimes adds in the Ethernet padding,
3502 * explicitly pad with zeros so the cksum will be correct either way.
3503 * (For now, do this for all chip versions, until newer
3504 * are confirmed to not require the workaround.)
3505 */
3506 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3507 #ifdef notyet
3508 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3509 #endif
3510 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3511 goto check_dma_bug;
3512
3513 if (bge_cksum_pad(m_head) != 0) {
3514 return ENOBUFS;
3515 }
3516
3517 check_dma_bug:
3518 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3519 goto doit;
3520
3521 /*
3522 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3523 * less than eight bytes. If we encounter a teeny mbuf
3524 * at the end of a chain, we can pad. Otherwise, copy.
3525 */
3526 if (bge_compact_dma_runt(m_head) != 0)
3527 return ENOBUFS;
3528
3529 doit:
3530 dma = SLIST_FIRST(&sc->txdma_list);
3531 if (dma == NULL)
3532 return ENOBUFS;
3533 dmamap = dma->dmamap;
3534
3535 /*
3536 * Set up any necessary TSO state before we start packing...
3537 */
3538 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3539 if (!use_tso) {
3540 maxsegsize = 0;
3541 } else { /* TSO setup */
3542 unsigned mss;
3543 struct ether_header *eh;
3544 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3545 struct mbuf * m0 = m_head;
3546 struct ip *ip;
3547 struct tcphdr *th;
3548 int iphl, hlen;
3549
3550 /*
3551 * XXX It would be nice if the mbuf pkthdr had offset
3552 * fields for the protocol headers.
3553 */
3554
3555 eh = mtod(m0, struct ether_header *);
3556 switch (htons(eh->ether_type)) {
3557 case ETHERTYPE_IP:
3558 offset = ETHER_HDR_LEN;
3559 break;
3560
3561 case ETHERTYPE_VLAN:
3562 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3563 break;
3564
3565 default:
3566 /*
3567 * Don't support this protocol or encapsulation.
3568 */
3569 return (ENOBUFS);
3570 }
3571
3572 /*
3573 * TCP/IP headers are in the first mbuf; we can do
3574 * this the easy way.
3575 */
3576 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3577 hlen = iphl + offset;
3578 if (__predict_false(m0->m_len <
3579 (hlen + sizeof(struct tcphdr)))) {
3580
3581 aprint_debug_dev(sc->bge_dev,
3582 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3583 "not handled yet\n",
3584 m0->m_len, hlen+ sizeof(struct tcphdr));
3585 #ifdef NOTYET
3586 /*
3587 * XXX jonathan (at) NetBSD.org: untested.
3588 * how to force this branch to be taken?
3589 */
3590 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3591
3592 m_copydata(m0, offset, sizeof(ip), &ip);
3593 m_copydata(m0, hlen, sizeof(th), &th);
3594
3595 ip.ip_len = 0;
3596
3597 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3598 sizeof(ip.ip_len), &ip.ip_len);
3599
3600 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3601 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3602
3603 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3604 sizeof(th.th_sum), &th.th_sum);
3605
3606 hlen += th.th_off << 2;
3607 iptcp_opt_words = hlen;
3608 #else
3609 /*
3610 * if_wm "hard" case not yet supported, can we not
3611 * mandate it out of existence?
3612 */
3613 (void) ip; (void)th; (void) ip_tcp_hlen;
3614
3615 return ENOBUFS;
3616 #endif
3617 } else {
3618 ip = (struct ip *) (mtod(m0, char *) + offset);
3619 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3620 ip_tcp_hlen = iphl + (th->th_off << 2);
3621
3622 /* Total IP/TCP options, in 32-bit words */
3623 iptcp_opt_words = (ip_tcp_hlen
3624 - sizeof(struct tcphdr)
3625 - sizeof(struct ip)) >> 2;
3626 }
3627 if (BGE_IS_5750_OR_BEYOND(sc)) {
3628 th->th_sum = 0;
3629 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3630 } else {
3631 /*
3632 * XXX jonathan (at) NetBSD.org: 5705 untested.
3633 * Requires TSO firmware patch for 5701/5703/5704.
3634 */
3635 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3636 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3637 }
3638
3639 mss = m_head->m_pkthdr.segsz;
3640 txbd_tso_flags |=
3641 BGE_TXBDFLAG_CPU_PRE_DMA |
3642 BGE_TXBDFLAG_CPU_POST_DMA;
3643
3644 /*
3645 * Our NIC TSO-assist assumes TSO has standard, optionless
3646 * IPv4 and TCP headers, which total 40 bytes. By default,
3647 * the NIC copies 40 bytes of IP/TCP header from the
3648 * supplied header into the IP/TCP header portion of
3649 * each post-TSO-segment. If the supplied packet has IP or
3650 * TCP options, we need to tell the NIC to copy those extra
3651 * bytes into each post-TSO header, in addition to the normal
3652 * 40-byte IP/TCP header (and to leave space accordingly).
3653 * Unfortunately, the driver encoding of option length
3654 * varies across different ASIC families.
3655 */
3656 tcp_seg_flags = 0;
3657 if (iptcp_opt_words) {
3658 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3659 tcp_seg_flags =
3660 iptcp_opt_words << 11;
3661 } else {
3662 txbd_tso_flags |=
3663 iptcp_opt_words << 12;
3664 }
3665 }
3666 maxsegsize = mss | tcp_seg_flags;
3667 ip->ip_len = htons(mss + ip_tcp_hlen);
3668
3669 } /* TSO setup */
3670
3671 /*
3672 * Start packing the mbufs in this chain into
3673 * the fragment pointers. Stop when we run out
3674 * of fragments or hit the end of the mbuf chain.
3675 */
3676 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3677 BUS_DMA_NOWAIT);
3678 if (error) {
3679 return (ENOBUFS);
3680 }
3681 /*
3682 * Sanity check: avoid coming within 16 descriptors
3683 * of the end of the ring.
3684 */
3685 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3686 BGE_TSO_PRINTF(("%s: "
3687 " dmamap_load_mbuf too close to ring wrap\n",
3688 device_xname(sc->bge_dev)));
3689 goto fail_unload;
3690 }
3691
3692 mtag = sc->ethercom.ec_nvlans ?
3693 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3694
3695
3696 /* Iterate over dmap-map fragments. */
3697 for (i = 0; i < dmamap->dm_nsegs; i++) {
3698 f = &sc->bge_rdata->bge_tx_ring[frag];
3699 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3700 break;
3701
3702 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3703 f->bge_len = dmamap->dm_segs[i].ds_len;
3704
3705 /*
3706 * For 5751 and follow-ons, for TSO we must turn
3707 * off checksum-assist flag in the tx-descr, and
3708 * supply the ASIC-revision-specific encoding
3709 * of TSO flags and segsize.
3710 */
3711 if (use_tso) {
3712 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3713 f->bge_rsvd = maxsegsize;
3714 f->bge_flags = csum_flags | txbd_tso_flags;
3715 } else {
3716 f->bge_rsvd = 0;
3717 f->bge_flags =
3718 (csum_flags | txbd_tso_flags) & 0x0fff;
3719 }
3720 } else {
3721 f->bge_rsvd = 0;
3722 f->bge_flags = csum_flags;
3723 }
3724
3725 if (mtag != NULL) {
3726 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3727 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3728 } else {
3729 f->bge_vlan_tag = 0;
3730 }
3731 cur = frag;
3732 BGE_INC(frag, BGE_TX_RING_CNT);
3733 }
3734
3735 if (i < dmamap->dm_nsegs) {
3736 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3737 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3738 goto fail_unload;
3739 }
3740
3741 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3742 BUS_DMASYNC_PREWRITE);
3743
3744 if (frag == sc->bge_tx_saved_considx) {
3745 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3746 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3747
3748 goto fail_unload;
3749 }
3750
3751 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3752 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3753 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3754 sc->txdma[cur] = dma;
3755 sc->bge_txcnt += dmamap->dm_nsegs;
3756
3757 *txidx = frag;
3758
3759 return (0);
3760
3761 fail_unload:
3762 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3763
3764 return ENOBUFS;
3765 }
3766
3767 /*
3768 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3769 * to the mbuf data regions directly in the transmit descriptors.
3770 */
3771 static void
3772 bge_start(struct ifnet *ifp)
3773 {
3774 struct bge_softc *sc;
3775 struct mbuf *m_head = NULL;
3776 u_int32_t prodidx;
3777 int pkts = 0;
3778
3779 sc = ifp->if_softc;
3780
3781 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3782 return;
3783
3784 prodidx = sc->bge_tx_prodidx;
3785
3786 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3787 IFQ_POLL(&ifp->if_snd, m_head);
3788 if (m_head == NULL)
3789 break;
3790
3791 #if 0
3792 /*
3793 * XXX
3794 * safety overkill. If this is a fragmented packet chain
3795 * with delayed TCP/UDP checksums, then only encapsulate
3796 * it if we have enough descriptors to handle the entire
3797 * chain at once.
3798 * (paranoia -- may not actually be needed)
3799 */
3800 if (m_head->m_flags & M_FIRSTFRAG &&
3801 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3802 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3803 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3804 ifp->if_flags |= IFF_OACTIVE;
3805 break;
3806 }
3807 }
3808 #endif
3809
3810 /*
3811 * Pack the data into the transmit ring. If we
3812 * don't have room, set the OACTIVE flag and wait
3813 * for the NIC to drain the ring.
3814 */
3815 if (bge_encap(sc, m_head, &prodidx)) {
3816 ifp->if_flags |= IFF_OACTIVE;
3817 break;
3818 }
3819
3820 /* now we are committed to transmit the packet */
3821 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3822 pkts++;
3823
3824 #if NBPFILTER > 0
3825 /*
3826 * If there's a BPF listener, bounce a copy of this frame
3827 * to him.
3828 */
3829 if (ifp->if_bpf)
3830 bpf_mtap(ifp->if_bpf, m_head);
3831 #endif
3832 }
3833 if (pkts == 0)
3834 return;
3835
3836 /* Transmit */
3837 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3838 /* 5700 b2 errata */
3839 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
3840 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3841
3842 sc->bge_tx_prodidx = prodidx;
3843
3844 /*
3845 * Set a timeout in case the chip goes out to lunch.
3846 */
3847 ifp->if_timer = 5;
3848 }
3849
3850 static int
3851 bge_init(struct ifnet *ifp)
3852 {
3853 struct bge_softc *sc = ifp->if_softc;
3854 const u_int16_t *m;
3855 int s, error = 0;
3856
3857 s = splnet();
3858
3859 ifp = &sc->ethercom.ec_if;
3860
3861 /* Cancel pending I/O and flush buffers. */
3862 bge_stop(ifp, 0);
3863 bge_reset(sc);
3864 bge_chipinit(sc);
3865
3866 /*
3867 * Init the various state machines, ring
3868 * control blocks and firmware.
3869 */
3870 error = bge_blockinit(sc);
3871 if (error != 0) {
3872 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3873 error);
3874 splx(s);
3875 return error;
3876 }
3877
3878 ifp = &sc->ethercom.ec_if;
3879
3880 /* Specify MTU. */
3881 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3882 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3883
3884 /* Load our MAC address. */
3885 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3886 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3887 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3888
3889 /* Enable or disable promiscuous mode as needed. */
3890 if (ifp->if_flags & IFF_PROMISC) {
3891 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3892 } else {
3893 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3894 }
3895
3896 /* Program multicast filter. */
3897 bge_setmulti(sc);
3898
3899 /* Init RX ring. */
3900 bge_init_rx_ring_std(sc);
3901
3902 /* Init jumbo RX ring. */
3903 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3904 bge_init_rx_ring_jumbo(sc);
3905
3906 /* Init our RX return ring index */
3907 sc->bge_rx_saved_considx = 0;
3908
3909 /* Init TX ring. */
3910 bge_init_tx_ring(sc);
3911
3912 /* Turn on transmitter */
3913 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3914
3915 /* Turn on receiver */
3916 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3917
3918 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3919
3920 /* Tell firmware we're alive. */
3921 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3922
3923 /* Enable host interrupts. */
3924 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3925 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3926 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3927
3928 if ((error = bge_ifmedia_upd(ifp)) != 0)
3929 goto out;
3930
3931 ifp->if_flags |= IFF_RUNNING;
3932 ifp->if_flags &= ~IFF_OACTIVE;
3933
3934 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3935
3936 out:
3937 splx(s);
3938
3939 return error;
3940 }
3941
3942 /*
3943 * Set media options.
3944 */
3945 static int
3946 bge_ifmedia_upd(struct ifnet *ifp)
3947 {
3948 struct bge_softc *sc = ifp->if_softc;
3949 struct mii_data *mii = &sc->bge_mii;
3950 struct ifmedia *ifm = &sc->bge_ifmedia;
3951 int rc;
3952
3953 /* If this is a 1000baseX NIC, enable the TBI port. */
3954 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3955 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3956 return (EINVAL);
3957 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3958 case IFM_AUTO:
3959 break;
3960 case IFM_1000_SX:
3961 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3962 BGE_CLRBIT(sc, BGE_MAC_MODE,
3963 BGE_MACMODE_HALF_DUPLEX);
3964 } else {
3965 BGE_SETBIT(sc, BGE_MAC_MODE,
3966 BGE_MACMODE_HALF_DUPLEX);
3967 }
3968 break;
3969 default:
3970 return (EINVAL);
3971 }
3972 /* XXX 802.3x flow control for 1000BASE-SX */
3973 return (0);
3974 }
3975
3976 sc->bge_link = 0;
3977 if ((rc = mii_mediachg(mii)) == ENXIO)
3978 return 0;
3979 return rc;
3980 }
3981
3982 /*
3983 * Report current media status.
3984 */
3985 static void
3986 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3987 {
3988 struct bge_softc *sc = ifp->if_softc;
3989 struct mii_data *mii = &sc->bge_mii;
3990
3991 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3992 ifmr->ifm_status = IFM_AVALID;
3993 ifmr->ifm_active = IFM_ETHER;
3994 if (CSR_READ_4(sc, BGE_MAC_STS) &
3995 BGE_MACSTAT_TBI_PCS_SYNCHED)
3996 ifmr->ifm_status |= IFM_ACTIVE;
3997 ifmr->ifm_active |= IFM_1000_SX;
3998 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3999 ifmr->ifm_active |= IFM_HDX;
4000 else
4001 ifmr->ifm_active |= IFM_FDX;
4002 return;
4003 }
4004
4005 mii_pollstat(mii);
4006 ifmr->ifm_status = mii->mii_media_status;
4007 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4008 sc->bge_flowflags;
4009 }
4010
4011 static int
4012 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4013 {
4014 struct bge_softc *sc = ifp->if_softc;
4015 struct ifreq *ifr = (struct ifreq *) data;
4016 int s, error = 0;
4017 struct mii_data *mii;
4018
4019 s = splnet();
4020
4021 switch(command) {
4022 case SIOCSIFFLAGS:
4023 if ((error = ifioctl_common(ifp, command, data)) != 0)
4024 break;
4025 if (ifp->if_flags & IFF_UP) {
4026 /*
4027 * If only the state of the PROMISC flag changed,
4028 * then just use the 'set promisc mode' command
4029 * instead of reinitializing the entire NIC. Doing
4030 * a full re-init means reloading the firmware and
4031 * waiting for it to start up, which may take a
4032 * second or two.
4033 */
4034 if (ifp->if_flags & IFF_RUNNING &&
4035 ifp->if_flags & IFF_PROMISC &&
4036 !(sc->bge_if_flags & IFF_PROMISC)) {
4037 BGE_SETBIT(sc, BGE_RX_MODE,
4038 BGE_RXMODE_RX_PROMISC);
4039 } else if (ifp->if_flags & IFF_RUNNING &&
4040 !(ifp->if_flags & IFF_PROMISC) &&
4041 sc->bge_if_flags & IFF_PROMISC) {
4042 BGE_CLRBIT(sc, BGE_RX_MODE,
4043 BGE_RXMODE_RX_PROMISC);
4044 } else if (!(sc->bge_if_flags & IFF_UP))
4045 bge_init(ifp);
4046 } else {
4047 if (ifp->if_flags & IFF_RUNNING)
4048 bge_stop(ifp, 1);
4049 }
4050 sc->bge_if_flags = ifp->if_flags;
4051 error = 0;
4052 break;
4053 case SIOCSIFMEDIA:
4054 /* XXX Flow control is not supported for 1000BASE-SX */
4055 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4056 ifr->ifr_media &= ~IFM_ETH_FMASK;
4057 sc->bge_flowflags = 0;
4058 }
4059
4060 /* Flow control requires full-duplex mode. */
4061 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4062 (ifr->ifr_media & IFM_FDX) == 0) {
4063 ifr->ifr_media &= ~IFM_ETH_FMASK;
4064 }
4065 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4066 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4067 /* We can do both TXPAUSE and RXPAUSE. */
4068 ifr->ifr_media |=
4069 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4070 }
4071 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4072 }
4073 /* FALLTHROUGH */
4074 case SIOCGIFMEDIA:
4075 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4076 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4077 command);
4078 } else {
4079 mii = &sc->bge_mii;
4080 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4081 command);
4082 }
4083 break;
4084 default:
4085 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4086 break;
4087
4088 error = 0;
4089
4090 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4091 ;
4092 else if (ifp->if_flags & IFF_RUNNING)
4093 bge_setmulti(sc);
4094 break;
4095 }
4096
4097 splx(s);
4098
4099 return (error);
4100 }
4101
4102 static void
4103 bge_watchdog(struct ifnet *ifp)
4104 {
4105 struct bge_softc *sc;
4106
4107 sc = ifp->if_softc;
4108
4109 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4110
4111 ifp->if_flags &= ~IFF_RUNNING;
4112 bge_init(ifp);
4113
4114 ifp->if_oerrors++;
4115 }
4116
4117 static void
4118 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4119 {
4120 int i;
4121
4122 BGE_CLRBIT(sc, reg, bit);
4123
4124 for (i = 0; i < BGE_TIMEOUT; i++) {
4125 if ((CSR_READ_4(sc, reg) & bit) == 0)
4126 return;
4127 delay(100);
4128 if (sc->bge_flags & BGE_PCIE)
4129 DELAY(1000);
4130 }
4131
4132 aprint_error_dev(sc->bge_dev,
4133 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4134 }
4135
4136 /*
4137 * Stop the adapter and free any mbufs allocated to the
4138 * RX and TX lists.
4139 */
4140 static void
4141 bge_stop(struct ifnet *ifp, int disable)
4142 {
4143 struct bge_softc *sc = ifp->if_softc;
4144
4145 callout_stop(&sc->bge_timeout);
4146
4147 /*
4148 * Disable all of the receiver blocks
4149 */
4150 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4151 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4152 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4153 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4154 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4155 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4156 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4157 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4158
4159 /*
4160 * Disable all of the transmit blocks
4161 */
4162 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4163 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4164 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4165 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4166 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4167 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4168 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4169 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4170
4171 /*
4172 * Shut down all of the memory managers and related
4173 * state machines.
4174 */
4175 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4176 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4177 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4178 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4179
4180 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4181 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4182
4183 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
4184 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4185 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4186 }
4187
4188 /* Disable host interrupts. */
4189 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4190 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4191
4192 /*
4193 * Tell firmware we're shutting down.
4194 */
4195 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4196
4197 /* Free the RX lists. */
4198 bge_free_rx_ring_std(sc);
4199
4200 /* Free jumbo RX list. */
4201 bge_free_rx_ring_jumbo(sc);
4202
4203 /* Free TX buffers. */
4204 bge_free_tx_ring(sc);
4205
4206 /*
4207 * Isolate/power down the PHY.
4208 */
4209 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4210 mii_down(&sc->bge_mii);
4211
4212 sc->bge_link = 0;
4213
4214 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4215
4216 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4217 }
4218
4219 static int
4220 sysctl_bge_verify(SYSCTLFN_ARGS)
4221 {
4222 int error, t;
4223 struct sysctlnode node;
4224
4225 node = *rnode;
4226 t = *(int*)rnode->sysctl_data;
4227 node.sysctl_data = &t;
4228 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4229 if (error || newp == NULL)
4230 return (error);
4231
4232 #if 0
4233 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4234 node.sysctl_num, rnode->sysctl_num));
4235 #endif
4236
4237 if (node.sysctl_num == bge_rxthresh_nodenum) {
4238 if (t < 0 || t >= NBGE_RX_THRESH)
4239 return (EINVAL);
4240 bge_update_all_threshes(t);
4241 } else
4242 return (EINVAL);
4243
4244 *(int*)rnode->sysctl_data = t;
4245
4246 return (0);
4247 }
4248
4249 /*
4250 * Set up sysctl(3) MIB, hw.bge.*.
4251 *
4252 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4253 */
4254 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4255 {
4256 int rc, bge_root_num;
4257 const struct sysctlnode *node;
4258
4259 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4260 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4261 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4262 goto err;
4263 }
4264
4265 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4266 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4267 SYSCTL_DESCR("BGE interface controls"),
4268 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4269 goto err;
4270 }
4271
4272 bge_root_num = node->sysctl_num;
4273
4274 /* BGE Rx interrupt mitigation level */
4275 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4277 CTLTYPE_INT, "rx_lvl",
4278 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4279 sysctl_bge_verify, 0,
4280 &bge_rx_thresh_lvl,
4281 0, CTL_HW, bge_root_num, CTL_CREATE,
4282 CTL_EOL)) != 0) {
4283 goto err;
4284 }
4285
4286 bge_rxthresh_nodenum = node->sysctl_num;
4287
4288 return;
4289
4290 err:
4291 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4292 }
4293
4294 static int
4295 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4296 {
4297 u_int32_t mac_addr;
4298
4299 mac_addr = bge_readmem_ind(sc, 0x0c14);
4300 if ((mac_addr >> 16) == 0x484b) {
4301 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4302 ether_addr[1] = (uint8_t)mac_addr;
4303 mac_addr = bge_readmem_ind(sc, 0x0c18);
4304 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4305 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4306 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4307 ether_addr[5] = (uint8_t)mac_addr;
4308 return (0);
4309 }
4310 return (1);
4311 }
4312
4313 static int
4314 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4315 {
4316 int mac_offset = BGE_EE_MAC_OFFSET;
4317
4318 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4319 mac_offset = BGE_EE_MAC_OFFSET_5906;
4320 }
4321
4322 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4323 ETHER_ADDR_LEN));
4324 }
4325
4326 static int
4327 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4328 {
4329
4330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4331 return (1);
4332 }
4333
4334 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4335 ETHER_ADDR_LEN));
4336 }
4337
4338 static int
4339 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4340 {
4341 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4342 /* NOTE: Order is critical */
4343 bge_get_eaddr_mem,
4344 bge_get_eaddr_nvram,
4345 bge_get_eaddr_eeprom,
4346 NULL
4347 };
4348 const bge_eaddr_fcn_t *func;
4349
4350 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4351 if ((*func)(sc, eaddr) == 0)
4352 break;
4353 }
4354 return (*func == NULL ? ENXIO : 0);
4355 }
4356